
For weeks, months —nay!—from the very moment you 
were born, you’ve felt it calling to you. At long last you’ll 
be united with the programming language you’ve been 
longing for: Clojure!

As a Lisp-style functional programming language, Clojure lets you write robust 
and elegant code, and because it runs on the Java Virtual Machine, you can take 
advantage of the vast Java ecosystem. Clojure for the Brave and True offers 
a “dessert-first” approach: you’ll start play ing with real programs immediately, 
as you steadily acclimate to the abstract but powerful features of Lisp and 
functional programming. Inside you’ll find an offbeat, practical guide to Clojure, 
filled with quirky sample programs that catch cheese thieves and track glittery 
vampires.

l e a r n  h o w to
• Wield Clojure’s core functions
• Use Emacs for Clojure development
• Write macros to modify Clojure itself
• Use Clojure’s tools to simplify concurrency and parallel programming

Clojure for the Brave and True assumes no prior experience with Clojure, the 
Java Virtual Machine, or functional programming. Are you ready, brave reader, 
to meet your true destiny? Grab your best pair of parentheses—you’re about to 
embark on an epic journey into the world of Clojure!

Join the Ranks of noble CloJuRists CloJuRe 

bRave
  
tRue
learn the ultimate
language and
become a better
programmer

f o r  T h e

A n d

daniel higginbotham

shelve in:  PRogRamming languages/CloJuRe

a b o ut th e autho R 
Daniel Higginbotham has been a professional programmer for 11 years, half of that at McKinsey & 
Company, where he used Clojure to build mobile and web applications. He has also contributed to 
the curriculum for ClojureBridge, an organization that offers free, beginner-friendly Clojure workshops 
for women. Daniel blogs about life and programming at http://flyingmachinestudios.com/, and can be 
found on Twitter, @nonrecursive. He lives in Durham, North Carolina, with his wife and four cats. 

Covers Clojure 1.7 
requires java 1.6 or later

Join the Ranks of noble CloJuRists

$34.95 ($40.95 CDN)

www.nostarch.com

THE F I NEST I N  
GEEK ENTERTAI N MENT™ 

daniel higginbotham
Clo

Ju
R

e   b
R

av
e   tR

u
e

for
The

And



Clojure for the Brave and true







Clojure for the Brave and true. Copyright © 2015 by Daniel Higginbotham.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher.

Printed in USA

First printing

19 18 17 16 15  1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-591-9
ISBN-13: 978-1-59327-591-4

Publisher: William Pollock
Production Editor: Riley Hoffman
Cover Design: Beth Middleworth and Daniel and Jessica Higginbotham
Cover and Interior Illustrations: Jessica Higginbotham
Interior Design: Octopod Studios
Developmental Editors: Hayley Baker and Seph Kramer
Technical Reviewer: Alan Dipert 
Copyeditor: Anne Marie Walker 
Compositors: Riley Hoffman and Susan Glinert Stevens  
Proofreader: Emelie Burnette 

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com 
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Higginbotham, Daniel.
  Clojure for the brave and true : learn the ultimate language and become a better programmer / by 
Daniel Higginbotham.
       pages cm
  Includes index.
  Summary: "Guide to the functional programming language Clojure. Teaches tools and techniques for 
writing programs in Clojure. Covers how to wield and compose Clojure's core functions; use Emacs 
for Clojure development; write macros to modify the Clojure programming language; and use Clojure's 
tools to simplify concurrency and parallel programming"-- Provided by publisher.
  ISBN 978-1-59327-591-4 -- ISBN 1-59327-591-9
 1.  Clojure (Computer program language)  I. Title.
  QA76.73.C565H54 2015
  005.13'3--dc23
                                                            2015014205

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other 
product and company names mentioned herein may be the trademarks of their respective owners. Rather 
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution 
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any 
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or 
indirectly by the information contained in it.

http://www.nostarch.com


about the author
Daniel Higginbotham has been a professional programmer for 11 years, 
half of that at McKinsey & Company, where he used Clojure to build 
mobile and web applications. He has also contributed to the curriculum 
for ClojureBridge, an organization that offers free, beginner-friendly 
Clojure workshops for women. Daniel blogs about life and program-
ming at http://flyingmachinestudios.com/, and can be found on Twitter, 
@nonrecursive. He lives in Durham, North Carolina, with his wife and 
four cats.

about the technical reviewer
Alan Dipert first heard about Lisp when he was 10 years old. After it 
was described to him, he said “That sounds dumb.” In 2009, he learned 
Clojure and revised his opinion. Alan has designed and built Clojure 
systems, conducted Clojure trainings, and spoken at Clojure conferences. 
You can keep track of Alan’s work and recent opinions by visiting http://
tailrecursion.com/~alan or by following him on Twitter, @alandipert.

http://flyingmachinestudios.com/
http://twitter.com/nonrecursive
http://tailrecursion.com/~alan
http://tailrecursion.com/~alan
http://twitter.com/alandipert




For Jess





B r i e f  C o n t e n t s

Foreword by Alan Dipert .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xvii

Acknowledgments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xix

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxi

Part I: EnvIronmEnt SEtuP

Chapter 1: Building, Running, and the REPL  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

Chapter 2: How to Use Emacs, an Excellent Clojure Editor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11

Part II: LanguagE FundamEntaLS

Chapter 3: Do Things: A Clojure Crash Course  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35

Chapter 4: Core Functions in Depth  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71

Chapter 5: Functional Programming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 97

Chapter 6: Organizing Your Project: A Librarian’s Tale  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 125

Chapter 7: Clojure Alchemy: Reading, Evaluation, and Macros .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 147

Chapter 8: Writing Macros  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 165

Part III: advancEd toPIcS

Chapter 9: The Sacred Art of Concurrent and Parallel Programming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 189

Chapter 10: Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies  .  .  .  .  .  .  .  .  .  .  . 207

Chapter 11: Mastering Concurrent Processes with core .async  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 233

Chapter 12: Working with the JVM  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 247

Chapter 13: Creating and Extending Abstractions with Multimethods,  
Protocols, and Records  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 265



x   Brief Contents

Appendix A: Building and Developing with Leiningen .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 277

Appendix B: Boot, the Fancy Clojure Build Framework  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 281

Farewell! .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 291

Index  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 293



C o n t e n t s  i n  D e t a i l

foreword by alan dipert xvii

aCknowledgments xix

IntroduCtIon xxi
Learning a New Programming Language: A Journey Through the Four Labyrinths .  .  .  .  .  . xxii
How This Book Is Organized  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxii

Part I: Environment Setup  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxii
Part II: Language Fundamentals .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xxiii
Part III: Advanced Topics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xxiv

The Code  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxv
The Journey Begins!  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxv

Part I: envIronment setuP

1 
BuIldIng, runnIng, and the rePl 3
First Things First: What Is Clojure?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4
Leiningen  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

Creating a New Clojure Project  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5
Running the Clojure Project  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6
Building the Clojure Project  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
Using the REPL  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7

Clojure Editors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9

2 
how to use emaCs, an exCellent Clojure edItor 11
Installation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12
Configuration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
Emacs Escape Hatch  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14
Emacs Buffers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14
Working with Files  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15
Key Bindings and Modes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

Emacs Is a Lisp Interpreter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
Modes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18
Installing Packages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19

Core Editing Terminology and Key Bindings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19
Point  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20
Movement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20
Selection with Regions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20
Killing and the Kill Ring  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21
Editing and Help .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22

Using Emacs with Clojure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
Fire Up Your REPL!  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
Interlude: Emacs Windows and Frames  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24



xii   Contents in Detail

A Cornucopia of Useful Key Bindings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25
How to Handle Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27
Paredit .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28

Continue Learning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31

Part II: language fundamentals

3 
do thIngs: a Clojure Crash Course 35
Syntax  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36

Forms  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36
Control Flow .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37
Naming Values with def  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 40

Data Structures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41
Numbers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42
Strings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42
Maps .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43
Keywords .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 44
Vectors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45
Lists  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45
Sets  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46
Simplicity  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48

Functions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48
Calling Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48
Function Calls, Macro Calls, and Special Forms  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50
Defining Functions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51
Anonymous Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57
Returning Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58

Pulling It All Together  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 59
The Shire’s Next Top Model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 59
let  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 61
loop  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 63
Regular Expressions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64
Symmetrizer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 65
Better Symmetrizer with reduce  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 66
Hobbit Violence  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 67

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69
Exercises  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .69

4 
Core funCtIons In dePth 71
Programming to Abstractions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 72

Treating Lists, Vectors, Sets, and Maps as Sequences  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73
first, rest, and cons  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 74
Abstraction Through Indirection .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 77

Seq Function Examples  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 79
map  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 79
reduce  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 80
take, drop, take-while, and drop-while .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81



Contents in Detail   xiii

filter and some  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 83
sort and sort-by  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 84
concat  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 84

Lazy Seqs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 84
Demonstrating Lazy Seq Efficiency  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 84
Infinite Sequences   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 87

The Collection Abstraction .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 88
into  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 88
conj   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 90

Function Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 90
apply .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
partial  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
complement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92

A Vampire Data Analysis Program for the FWPD  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 93
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 96
Exercises  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .96

5 
funCtIonal ProgrammIng 97
Pure Functions: What and Why  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98

Pure Functions Are Referentially Transparent  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98
Pure Functions Have No Side Effects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99

Living with Immutable Data Structures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 100
Recursion Instead of for/while  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 100
Function Composition Instead of Attribute Mutation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 103

Cool Things to Do with Pure Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 105
comp .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 105
memoize  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 107

Peg Thing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108
Playing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108
Code Organization .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 110
Creating the Board  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 111
Moving Pegs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117
Rendering and Printing the Board  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120
Player Interaction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 124
Exercises  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .124

6 
organIzIng Your ProjeCt: a lIBrarIan’s tale 125
Your Project as a Library  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 126
Storing Objects with def  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127
Creating and Switching to Namespaces  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 129

refer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 130
alias  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132

Real Project Organization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 133
The Relationship Between File Paths and Namespace Names  .  .  .  .  .  .  .  .  .  .  .  . 133
Requiring and Using Namespaces  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134
The ns Macro  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 138

To Catch a Burglar  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 140
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 144



xiv   Contents in Detail

7 
Clojure alChemY: readIng, evaluatIon, and maCros 147
An Overview of Clojure’s Evaluation Model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 148
The Reader  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 153

Reading .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 153
Reader Macros  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 154

The Evaluator .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 155
These Things Evaluate to Themselves  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 156
Symbols  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 156
Lists  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 159
Macros  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 160
Syntactic Abstraction and the -> Macro  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 163

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 164
Exercises  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .164

8 
wrItIng maCros 165
Macros Are Essential  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
Anatomy of a Macro  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 167
Building Lists for Evaluation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 168

Distinguishing Symbols and Values  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 168
Simple Quoting .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 169
Syntax Quoting .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 171

Using Syntax Quoting in a Macro  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 173
Refactoring a Macro and Unquote Splicing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 174
Things to Watch Out For .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 176

Variable Capture  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 176
Double Evaluation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 178
Macros All the Way Down .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 179

Brews for the Brave and True .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 180
Validation Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 180
if-valid  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 182

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
Exercises  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .184

Part III: advanCed toPICs

9 
the saCred art of ConCurrent and  
Parallel ProgrammIng 189
Concurrency and Parallelism Concepts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 190

Managing Multiple Tasks vs . Executing Tasks Simultaneously  .  .  .  .  .  .  .  .  .  .  .  . 190
Blocking and Asynchronous Tasks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 191
Concurrent Programming and Parallel Programming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 191

Clojure Implementation: JVM Threads  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 191
What’s a Thread?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 192
The Three Goblins: Reference Cells, Mutual Exclusion, and  

Dwarven Berserkers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 193



Contents in Detail   xv

Futures, Delays, and Promises  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 196
Futures .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 196
Delays  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198
Promises  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 200
Rolling Your Own Queue  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 205
Exercises  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .206

10 
Clojure metaPhYsICs:  
atoms, refs, vars, and Cuddle zomBIes 207
Object-Oriented Metaphysics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208
Clojure Metaphysics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 210
Atoms .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 212
Watches and Validators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 215

Watches  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 215
Validators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 217

Refs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 218
Modeling Sock Transfers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 218
commute  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221

Vars  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 223
Dynamic Binding .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 223
Altering the Var Root  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 227

Stateless Concurrency and Parallelism with pmap  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 228
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 232
Exercises  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .232

11 
masterIng ConCurrent ProCesses wIth Core.asYnC 233
Getting Started with Processes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 234

Buffering  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 236
Blocking and Parking   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 237
thread  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 238

The Hot Dog Machine Process You’ve Been Longing For  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 239
alts!! .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 241
Queues .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 243
Escape Callback Hell with Process Pipelines  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 244
Additional Resources  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 245
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 245

12 
workIng wIth the jvm 247
The JVM  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 248
Writing, Compiling, and Running a Java Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 250

Object-Oriented Programming in the World’s Tiniest Nutshell  .  .  .  .  .  .  .  .  .  .  .  . 250
Ahoy, World  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 251

Packages and Imports .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 253
JAR Files  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 255
clojure .jar  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 255
Clojure App JARs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 257



xvi   Contents in Detail

Java Interop .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 257
Interop Syntax  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 258
Creating and Mutating Objects .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 259
Importing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 260

Commonly Used Java Classes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 261
The System Class  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 261
The Date Class  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 262

Files and Input/Output  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 262
Resources  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 264
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 264

13 
CreatIng and extendIng aBstraCtIons wIth  
multImethods, ProtoCols, and reCords 265
Polymorphism  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 266

Multimethods  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 266
Protocols  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 269

Records  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 272
Further Study  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 275
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 275
Exercises  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .275

a 
BuIldIng and develoPIng wIth leInIngen 277
The Artifact Ecosystem  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 277

Identification .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 278
Dependencies .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 278
Plug-Ins  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 279

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 280

B 
Boot, the fanCY Clojure BuIld framework 281
Boot’s Abstractions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 282
Tasks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 282
The REPL  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 284
Composition and Coordination  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 285

Handlers and Middleware  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 285
Tasks Are Middleware Factories  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 287

Filesets  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 288
Next Steps  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 289

farewell! 291

Index 293



f o r e w o r D

As you read this hilarious book, you will at some point experience a very 
serious moment. It is the moment you admit to yourself that programming 
is more enjoyable after knowing some Clojure. It is also the moment that 
your investment in this book, in money and time, comes back to you—
with interest.

Humor has a certain relationship to seriousness. It is appropriate 
to joke about serious things, but only after the right amount of time has 
passed. For example, it took years for me to be able to crack a smile when I 
remember my favorite uncle’s last words: “Hold my beer.”

This book works in the opposite way. It points out really funny things 
for the right amount of time before, and perhaps even during, the serious 
event—that moment you realize you enjoy programming more because 
of Clojure. It does this without obscuring the deep, technical aspects of 
Clojure programming that you will learn.

This approach is refreshing because most of the programming books 
I’ve read are drier than a camel’s fart. We are fortunate that Daniel is a 
brilliant programmer and writer and that his wife Jess is an equally bril-
liant illustrator. We are especially fortunate that they both went insane and 
decided to write a book at exactly the same time.

Clojure is the topic of this book, but in a way it—or perhaps its creator, 
Rich Hickey—is also one of the authors, since Clojure is the most elegant 



xviii    Foreword

programming language ever designed. Like the concept of brunch, Clojure 
is so elegant that it’s difficult to tell anyone anything about it without some-
how improving them.

Elegance is a quality regularly ascribed to many dialects in the family of 
programming languages known collectively as Lisp, of which Clojure is one. 
All Lisps descend from a set of simple and beautiful discoveries made by the 
mathematician John McCarthy in 1958.

Since 1958, there have been many Lisps and Lisp books. There are 
many more Lisps and books to come. As artifacts of the past and future, 
each are right for the unique combination of constraints and desires faced 
and fancied by their authors, in their respective times.

I find Clojure, and this particular book about it, especially right for the 
present. I hope you will too.

Alan Dipert



a C k n o w l e D g m e n t s

So many people helped me birth this weird baby, and I am humbled and 
grateful for all their support.

First, thanks to Jess, my wife, for doing the illustrations that complete 
this book, giving it the visual character I had hoped for. Thanks, too, for 
the support and for putting up with me when I was in crazy-eyed writer 
mode. (P.S. It feels bizarre to thank my wife via a programming book’s 
front matter.)

Thanks to my friends and colleagues at McKinsey who read early revi-
sions and encouraged me to keep writing. Foremost among them are Pat 
Shaughnessy, Alex Rothenberg, Thomas Newton, Jalil Fanaian, Chris 
Parker, Mark Daggett, Christian Lilley, and Mike Morreale. Y’all are so 
great; please move to Durham.

Thanks to my friend Bridget Hillyer for being a constant source of sup-
port and positivity. I always feel like you have my back, and it means a lot 
to me! Thanks, too, to my friend Joe Jackson, for reading, listening to me 
blather, and offering feedback, and for making me feel cool by gushing 
about this book to other people in front of me. Alan Dipert, friend, tech 
reviewer, and now coworker, I give thee a million thanks for your excellent 
technical editing and for introducing me to Clojure in the first place. 

I don’t know if every writer continually asks himself, “Why the hell am I 
doing this? Is anyone even going to read it?” but I certainly did. So I want to 



xx    Acknowledgments

thank all the friendly folks who wrote to me and suggested edits while the 
initial web version of this book was being written. That positive feedback 
made me feel confident that I was doing something worthwhile. By the 
same token, thanks to everyone who bought the Leanpub version!

A big thank you to Clojure community leaders Eric Normand, David 
Nolen, and Alex Miller for giving this book positive press. See you at the 
next Conj!

Finally, a bazillion thank yous to the magnificent folks at No Starch 
Press for all your help in shaping this book into something I’m immensely 
proud of. Thank you for your high standards. Thank you for continually 
pushing for greater clarity, and for even suggesting jokes. (Seph’s “ball of 
wax” edit still makes me crack up.) Seph Kramer, Riley Hoffman, Hayley 
Baker, Alison Law, Tyler Ortman, Anne Marie Walker: thank you!



i n t r o D u C t i o n

Deep in your innermost being, you’ve 
always known you were destined to learn 

Clojure. Every time you held your keyboard 
aloft, crying out in anguish over an incompre-

hensible class hierarchy; every time you lay awake at 
night, disturbing your loved ones with sobs over a 
mutation-induced heisenbug; every time a race condition caused you to 
pull out more of your ever-dwindling hair, some secret part of you has 
known that there has to be a better way.

Now, at long last, the instructional material you have in front of 
your face will unite you with the programming language you’ve been 
longing for.



xxii   Introduction

learning a new Programming language:  
a journey through the four labyrinths

To wield Clojure to its fullest, you’ll need to find your way through the four 
labyrinths that face every programmer learning a new language:

The Forest of Tooling A friendly and efficient programming environ-
ment makes it easy to try your ideas. You’ll learn how to set up your 
environment.

The Mountain of Language As you ascend, you’ll gain knowledge of 
Clojure’s syntax, semantics, and data structures. You’ll learn how to use 
one of the mightiest programming tools, the macro, and learn how to 
simplify your life with Clojure’s concurrency constructs.

The Cave of Artifacts In its depths you’ll learn to build, run, and 
distribute your own programs, and how to use code libraries. You’ll also 
learn Clojure’s relationship to the Java Virtual Machine ( JVM).

The Cloud Castle of Mindset In its rarefied air, you’ll come to know 
the why and how of Lisp and functional programming. You’ll learn 
about the philosophy of simplicity that permeates Clojure, and how to 
solve problems like a Clojurist.

Make no mistake, you will work. But this book will make the work 
feel exhilarating, not exhausting. That’s because this book follows three 
guidelines:

•	 It takes the dessert-first approach, giving you the development tools 
and language details you need to start playing with real programs 
immediately.

•	 It assumes zero experience with the JVM, functional programming, or 
Lisp. It covers these topics in detail so you’ll feel confident about what 
you’re doing when you build and run Clojure programs.

•	 It eschews real-world examples in favor of more interesting exercises, like 
assaulting hobbits and tracking glittery vampires.

By the end, you’ll be able to use Clojure, one of the most exciting and 
fun programming languages in existence!

how this Book Is organized
This book is split into three parts to better guide you through your valiant 
quest, brave fledgling Clojurist.

Part I: Environment Setup
To stay motivated and learn efficiently, you need to actually write code and 
build executables. These chapters take you on a quick tour of the tools 
you’ll need to easily write programs. That way you can focus on learning 
Clojure, not fiddling with your environment.



Introduction   xxiii

Chapter 1: Building, Running, and the REPL
There’s something powerful and motivating about getting a real pro-
gram running. Once you can do that, you’re free to experiment, and 
you can actually share your work!

In this short chapter, you’ll invest a small amount of time to 
become familiar with a quick way to build and run Clojure programs. 
You’ll learn how to experiment with code in a running Clojure process 
using a read-eval-print loop (REPL). This will tighten your feedback 
loop and help you learn more efficiently.

Chapter 2: How to Use Emacs, an Excellent Clojure Editor
A quick feedback loop is crucial for learning. In this chapter, I cover 
Emacs from the ground up to guarantee you have an efficient Emacs/
Clojure workflow.

Part II: Language Fundamentals
These chapters give you a solid foundation on which to continue learning 
Clojure. You’ll start by learning Clojure’s basics (syntax, semantics, and data 
structures) so you can do things. Then you’ll take a step back to examine 
Clojure’s most used functions in detail and learn how to solve problems 
with them using the functional programming mindset.

Chapter 3: Do Things: A Clojure Crash Course
This is where you’ll start to really dig into Clojure. It’s also where you’ll 
need to close your windows because you’ll start shouting, “HOLY MOLEY 
THAT’S SPIFFY! ” at the top of your lungs and won’t stop until you’ve hit 
this book’s index.

You’ve undoubtedly heard of Clojure’s awesome concurrency 
support and other stupendous features, but Clojure’s most salient 
characteristic is that it is a Lisp. You’ll explore this Lisp core, which 
is composed of two parts: functions and data.

Chapter 4: Core Functions in Depth
In this chapter, you’ll learn about a couple of Clojure’s underlying con-
cepts. This will give you the grounding you need to read the documen-
tation for functions you haven’t used before and to understand what’s 
happening when you try them.

You’ll also see usage examples of the functions you’ll be reaching 
for the most. This will give you a solid foundation for writing your own 
code and for reading and learning from other people’s projects. And 
remember how I mentioned tracking glittery vampires? You’ll do that in 
this chapter (unless you already do it in your spare time).

Chapter 5: Functional Programming
In this chapter, you’ll take your concrete experience with functions 
and data structures and integrate it with a new mindset: the functional 
programming mindset. You’ll show off your knowledge by constructing 
the hottest new game that’s sweeping the nation: Peg Thing!



xxiv   Introduction

Chapter 6: Organizing Your Project: A Librarian’s Tale
This chapter explains what namespaces are and how to use them to 
organize your code. I don’t want to give away too much, but it also 
involves an international cheese thief.

Chapter 7: Clojure Alchemy: Reading, Evaluation, and Macros
In this chapter, we’ll take a step back and describe how Clojure runs 
your code. This will give you the conceptual structure you need to truly 
understand how Clojure works and how it’s different from other, non-
Lisp languages. With this structure in place, I’ll introduce the macro, 
one of the most powerful tools in existence.

Chapter 8: Writing Macros
This chapter thoroughly examines how to write macros, starting with 
basic examples and advancing in complexity. You’ll close by donning 
your make-believe cap, pretending that you run an online potion store 
and using macros to validate customer orders.

Part III: Advanced Topics
These chapters cover Clojure’s extra-fun topics: concurrency, Java interop, 
and abstraction. Although you can write programs without understand-
ing these tools and concepts, they’re intellectually rewarding and give you 
tremendous power as a programmer. One of the reasons people say that 
learning Clojure makes you a better programmer is that it makes the con-
cepts covered in these chapters easy to understand and practical to use.

Chapter 9: The Sacred Art of Concurrent and Parallel Programming
In this chapter, you’ll learn what concurrency and parallelism are and 
why they matter. You’ll learn about the challenges you’ll face when writ-
ing parallel programs and about how Clojure’s design helps to mitigate 
them. You’ll use futures, delays, and promises to safely write parallel 
programs.

Chapter 10: Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies
This chapter goes into great detail about Clojure’s approach to manag-
ing state and how that simplifies concurrent programming. You’ll learn 
how to use atoms, refs, and vars, three constructs for managing state, 
and you’ll learn how to do stateless parallel computation with pmap. And 
there will be cuddle zombies.

Chapter 11: Mastering Concurrent Processes with core.async
In this chapter, you’ll ponder the idea that everything in the universe is 
a hot dog vending machine. By which I mean you’ll learn how to model 
systems of independently running processes that communicate with 
each other over channels using the core.async library.



Introduction   xxv

Chapter 12: Working with the JVM
This chapter is like a cross between a phrase book and cultural intro-
duction to the Land of Java. It gives you an overview of what the JVM 
is, how it runs programs, and how to compile programs for it. It also 
gives you a brief tour of frequently used Java classes and methods, and 
explains how to interact with them from Clojure. More than that, it 
shows you how to think about and understand Java so you can incorpo-
rate any Java library into your Clojure program.

Chapter 13: Creating and Extending Abstractions with Multimethods, 
Protocols, and Records

In Chapter 4 you learn that Clojure is written in terms of abstractions. 
This chapter serves as an introduction to the world of creating and 
implementing your own abstractions. You’ll learn the basics of multi-
methods, protocols, and records.

Appendix A: Building and Developing with Leiningen
This appendix clarifies some of the finer points of working with 
Leiningen, like what Maven is and how to figure out the version 
numbers of Java libraries so that you can use them.

Appendix B: Boot, the Fancy Clojure Build Framework
Boot is an alternative to Leiningen that provides the same functionally, 
but with the added bonus that it’s easier to extend and write composable 
tasks. This appendix explains Boot’s underlying concepts and guides 
you through writing your first tasks.

the Code
You can download all the source code from the book at http://www.nostarch 
.com/clojure/. The code is organized by chapter.

Chapter 1 describes the different ways that you can run Clojure code, 
including how to use a REPL. I recommend running most of the examples 
in the REPL as you encounter them, especially in Chapters 3 through 8. 
This will help you get used to writing and understanding Lisp code, and it 
will help you retain everything you’re learning. But for the examples that 
are long, it’s best to write your code to a file, and then run the code you 
wrote in a REPL.

the journey Begins!
Are you ready, brave reader? Are you ready to meet your true destiny? Grab 
your best pair of parentheses: you’re about to embark on the journey of a 
lifetime!

http://www.nostarch.com/clojure/
http://www.nostarch.com/clojure/




Part I
e n v i r o n m e n t  s e t u p





1
B u i l D i n g ,  r u n n i n g ,  

a n D  t h e  r e p l

In this chapter, you’ll invest a small amount 
of time up front to get familiar with a quick, 

foolproof way to build and run Clojure pro-
grams. It feels great to get a real program running. 

Reaching that milestone frees you up to experiment, 
share your work, and gloat to your colleagues who are 
still using last decade’s languages. This will help keep 
you motivated!

You’ll also learn how to instantly run code within a running Clojure 
process using a Read-Eval-Print Loop (REPL), which allows you to quickly test 
your understanding of the language and learn more efficiently.



4   Chapter 1

But first, I’ll briefly introduce Clojure. Next, I’ll cover Leiningen, the 
de facto standard build tool for Clojure. By the end of the chapter, you’ll 
know how to do the following:

•	 Create a new Clojure project with Leiningen

•	 Build the project to create an executable JAR file

•	 Execute the JAR file

•	 Execute code in a Clojure REPL

first things first: what Is Clojure?
Clojure was forged in a mythic volcano by Rich Hickey. Using an alloy of 
Lisp, functional programming, and a lock of his own epic hair, he crafted 
a language that’s delightful yet powerful. Its Lisp heritage gives you the 
power to write code more expressively than is possible in most non-Lisp 
languages, and its distinct take on functional programming will sharpen 
your thinking as a programmer. Plus, Clojure gives you better tools for 
tackling complex domains (like concurrent programming) that are tradi-
tionally known to drive developers into years of therapy.

When talking about Clojure, though, it’s important to keep in mind the 
distinction between the Clojure language and the Clojure compiler. The 
Clojure language is a Lisp dialect with a functional emphasis whose syntax 
and semantics are independent of any implementation. The compiler is 
an executable JAR file, clojure.jar, which takes code written in the Clojure 
language and compiles it to Java Virtual Machine ( JVM) bytecode. You’ll 
see Clojure used to refer to both the language and the compiler, which can 
be confusing if you’re not aware that they’re separate things. But now that 
you’re aware, you’ll be fine.

This distinction is necessary because, unlike most programming 
languages like Ruby, Python, C, and a bazillion others, Clojure is a hosted 
language. Clojure programs are executed within a JVM and rely on the JVM 
for core features like threading and garbage collection. Clojure also targets 
JavaScript and the Microsoft Common Language Runtime (CLR), but this 
book only focuses on the JVM implementation.

We’ll explore the relationship between Clojure and the JVM more later 
on, but for now the main concepts you need to understand are these:

•	 JVM processes execute Java bytecode.

•	 Usually, the Java Compiler produces Java bytecode from Java source code.

•	 JAR files are collections of Java bytecode.

•	 Java programs are usually distributed as JAR files.

•	 The Java program clojure.jar reads Clojure source code and produces 
Java bytecode.

•	 That Java bytecode is then executed by the same JVM process already 
running clojure.jar.



Building, Running, and the REPL    5

Clojure continues to evolve. As of this writing, it’s at version 1.7.0, and 
development is going strong. If you’re reading this book in the far future 
and Clojure has a higher version number, don’t worry! This book covers 
Clojure’s fundamentals, which shouldn’t change from one version to the 
next. There’s no need for your robot butler to return this book to the 
bookstore.

Now that you know what Clojure is, let’s actually build a freakin’ 
Clojure program!

leiningen
These days, most Clojurists use Leiningen to build and manage their proj-
ects. You can read a full description of Leiningen in Appendix A, but for 
now we’ll focus on using it for four tasks:

1. Creating a new Clojure project

2. Running the Clojure project

3. Building the Clojure project

4. Using the REPL

Before continuing, make sure you have Java version 1.6 or later 
installed. You can check your version by running java -version in your 
terminal, and download the latest Java Runtime Environment (JRE) from 
http://www.oracle.com/technetwork/java/javase/downloads/index.html. Then, 
install Leiningen using the instructions on the Leiningen home page at 
http://leiningen.org/ (Windows users, note there’s a Windows installer). 
When you install Leiningen, it automatically downloads the Clojure com-
piler, clojure.jar.

Creating a New Clojure Project
Creating a new Clojure project is very simple. A single Leiningen command 
creates a project skeleton. Later, you’ll learn how to do tasks like incorporate 
Clojure libraries, but for now, these instructions will enable you to execute 
the code you write.

Go ahead and create your first Clojure project by typing the following 
in your terminal:

lein new app clojure-noob

This command should create a directory structure that looks similar to 
this (it’s okay if there are some differences):

| .gitignore
| doc
| | intro.md

u | project.clj
| README.md

v | resources
| src

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://leiningen.org/


6   Chapter 1

| | clojure_noob
w | | | core.clj
x | test

| | clojure_noob
| | | core_test.clj

This project skeleton isn’t inherently special or Clojure-y. It’s just a 
convention used by Leiningen. You’ll be using Leiningen to build and run 
Clojure apps, and Leiningen expects your app to have this structure. The 
first file of note is project.clj at u, which is a configuration file for Leiningen. 
It helps Leiningen answer such questions as “What dependencies does this 
project have?” and “When this Clojure program runs, what function should 
run first?” In general, you’ll save your source code in src/<project_name>. In 
this case, the file src/clojure_noob/core.clj at w is where you’ll be writing your 
Clojure code for a while. The test directory at x obviously contains tests, 
and resources at v is where you store assets like images.

Running the Clojure Project
Now let’s actually run the project. Open src/clojure_noob/core.clj in your favor-
ite editor. You should see this:

u (ns clojure-noob.core
  (:gen-class))

v (defn -main
  "I don't do a whole lot...yet."
  [& args]

w   (println "Hello, World!"))

The lines at u declare a namespace, which you don’t need to worry 
about right now. The -main function at v is the entry point to your program, 
a topic that is covered in Appendix A. For now, replace the text "Hello, 
World!" at w with "I'm a little teapot!". The full line should read (println 
"I'm a little teapot!")).

Next, navigate to the clojure_noob directory in your terminal and enter:

lein run

You should see the output "I'm a 
little teapot!" Congratulations, little 
teapot, you wrote and executed a 
program!

You’ll learn more about what’s 
actually happening in the program 
as you read through the book, but for 
now all you need to know is that you 
created a function, -main, and that 
function runs when you execute lein 
run at the command line. 



Building, Running, and the REPL    7

Building the Clojure Project
Using lein run is great for trying out your code, but what if you want to share 
your work with people who don’t have Leiningen installed? To do that, you 
can create a stand-alone file that anyone with Java installed (which is basi-
cally everyone) can execute. To create the file, run this:

lein uberjar

This command creates the file target/uberjar/clojure-noob-0.1.0 
-SNAPSHOT-standalone.jar. You can make Java execute it by running this:

java -jar target/uberjar/clojure-noob-0.1.0-SNAPSHOT-standalone.jar

Look at that! The file target/uberjar/clojure-noob-0.1.0-SNAPSHOT 
-standalone.jar is your new, award-winning Clojure program, which you can 
distribute and run on almost any platform. 

You now have all the basic details you need to build, run, and distribute 
(very) basic Clojure programs. In later chapters, you’ll learn more details 
about what Leiningen is doing when you run the preceding commands, 
gaining a complete understanding of Clojure’s relationship to the JVM 
and how you can run production code.

Before we move on to Chapter 2 and discuss the wonder and glory of 
Emacs, let’s go over another important tool: the REPL.

Using the REPL
The REPL is a tool for experimenting with code. It allows you to interact 
with a running program and quickly try out ideas. It does this by present-
ing you with a prompt where you can enter code. It then reads your input, 
evaluates it, prints the result, and loops, presenting you with a prompt again.

This process enables a quick feedback cycle that isn’t possible in most 
other languages. I strongly recommend that you use it frequently because 
you’ll be able to quickly check your understanding of Clojure as you learn. 
Besides that, REPL development is an essential part of the Lisp experience, 
and you’d really be missing out if you didn’t use it.

To start a REPL, run this:

lein repl

The output should look like this:

nREPL server started on port 28925
REPL-y 0.1.10
Clojure 1.7.0
    Exit: Control+D or (exit) or (quit)
Commands: (user/help)
    Docs: (doc function-name-here)
          (find-doc "part-of-name-here")



8   Chapter 1

  Source: (source function-name-here)
          (user/sourcery function-name-here)
 Javadoc: (javadoc java-object-or-class-here)
Examples from clojuredocs.org: [clojuredocs or cdoc]
          (user/clojuredocs name-here)
          (user/clojuredocs "ns-here" "name-here")
clojure-noob.core=>

The last line, clojure-noob.core=>, tells you that you’re in the clojure 
-noob.core namespace. You’ll learn about namespaces later, but for now 
notice that the namespace basically matches the name of your src/
clojure_noob/core.clj file. Also, notice that the REPL shows the version 
as Clojure 1.7.0, but as mentioned earlier, everything will work okay no 
matter which version you use.

The prompt also indicates that your code is loaded in the REPL, and 
you can execute the functions that are defined. Right now only one func-
tion, -main, is defined. Go ahead and execute it now:

clojure-noob.core=> (-main)
I'm a little teapot!
nil

Well done! You just used the REPL to evaluate a function call. Try a few 
more basic Clojure functions:

clojure-noob.core=> (+ 1 2 3 4)
10
clojure-noob.core=> (* 1 2 3 4)
24
clojure-noob.core=> (first [1 2 3 4])
1

Awesome! You added some numbers, multiplied some numbers, and 
took the first element from a vector. You also had your first encounter 
with weird Lisp syntax! All Lisps, Clojure included, employ prefix notation, 
meaning that the operator always comes first in an expression. If you’re 
unsure about what that means, don’t worry. You’ll learn all about Clojure’s 
syntax soon.

Conceptually, the REPL is similar to Secure Shell (SSH). In the same 
way that you can use SSH to interact with a remote server, the Clojure REPL 
allows you to interact with a running Clojure process. This feature can be 
very powerful because you can even attach a REPL to a live production app 
and modify your program as it runs. For now, though, you’ll be using the 
REPL to build your knowledge of Clojure syntax and semantics.

One more note: going forward, this book will present code without 
REPL prompts, but please do try the code! Here’s an example:

(do (println "no prompt here!")
   (+ 1 3))



Building, Running, and the REPL    9

; => no prompt here!
; => 4

When you see code snippets like this, lines that begin with ; => indicate 
the output of the code being run. In this case, the text no prompt here should 
be printed, and the return value of the code is 4.

Clojure editors
At this point you should have the basic knowledge you need to begin learn-
ing the Clojure language without having to fuss with an editor or integrated 
development environment (IDE). But if you do want a good tutorial on a 
powerful editor, Chapter 2 covers Emacs, the most popular editor among 
Clojurists. You absolutely do not need to use Emacs for Clojure develop-
ment, but Emacs offers tight integration with the Clojure REPL and is 
well-suited to writing Lisp code. What’s most important, however, is that you 
use whatever works for you.

If Emacs isn’t your cup of tea, here are some resources for setting up 
other text editors and IDEs for Clojure development:

•	 This YouTube video will show you how to set up Sublime Text 2 for 
Clojure development: http://www.youtube.com/watch?v=wBl0rYXQdGg/.

•	 Vim has good tools for Clojure development. This article is a good 
starting point: http://mybuddymichael.com/writings/writing-clojure-with 
-vim-in-2013.html.

•	 Counterclockwise is a highly recommended Eclipse plug-in: https://
github.com/laurentpetit/ccw/wiki/GoogleCodeHome.

•	 Cursive Clojure is the recommended IDE for those who use IntelliJ: 
https://cursiveclojure.com/.

•	 Nightcode is a simple, free IDE written in Clojure: https://github.com/
oakes/Nightcode/.

summary
I’m so proud of you, little teapot. You’ve run your first Clojure program! 
Not only that, but you’ve become acquainted with the REPL, one of the 
most important tools for developing Clojure software. Amazing! It brings to 
mind the immortal lines from “Long Live” by one of my personal heroes:

You held your head like a hero 
On a history book page 
It was the end of a decade 
But the start of an age 
—Taylor Swift

Bravo!

http://www.youtube.com/watch?v=wBl0rYXQdGg/
http://mybuddymichael.com/writings/writing-clojure-with-vim-in-2013.html
http://mybuddymichael.com/writings/writing-clojure-with-vim-in-2013.html
https://github.com/laurentpetit/ccw/wiki/GoogleCodeHome
https://github.com/laurentpetit/ccw/wiki/GoogleCodeHome
https://cursiveclojure.com/
https://cursiveclojure.com/
https://github.com/oakes/Nightcode/
https://github.com/oakes/Nightcode/




2
h o w  t o  u s e  e m a C s , 

a n  e x C e l l e n t  C l o j u r e  e D i t o r

On your journey to Clojure mastery, your 
editor will be your closest ally. I highly rec-

ommend working with Emacs, but you can, of 
course, use any editor you want. If you don’t follow 
the thorough Emacs instructions in this chapter, or if 
you choose to use a different editor, it’s worthwhile to 
at least invest some time in setting up your editor to 
work with a REPL.

The reason I recommend Emacs is that it offers tight integration with a 
Clojure REPL, which allows you to instantly try out your code as you write. 
That kind of tight feedback loop will be useful while learning Clojure and, 
later, when writing real Clojure programs. Emacs is also great for working 
with any Lisp dialect; in fact, Emacs is written in a Lisp dialect called Emacs 
Lisp (elisp). 



12   Chapter 2

By the end of this chapter, your Emacs setup will look something like 
Figure 2-1.

Figure 2-1: A typical Emacs setup for working with Clojure—code on one side, REPL on 
the other

To get there, you’ll start by installing Emacs and setting up a new-
person-friendly Emacs configuration. Then you’ll learn the basics: how to 
open, edit, and save files, and how to interact with Emacs using essential key 
bindings. Finally, you’ll learn how to actually edit Clojure code and interact 
with the REPL.

Installation
You should use the latest major version of Emacs, Emacs 24, for the plat-
form you’re working on:

OS X Install vanilla Emacs as a Mac app from http://emacsformacosx 
.com/. Other options, like Aquamacs, are supposed to make Emacs 
more “Mac-like,” but they’re problematic in the long run because 
they’re set up so differently from standard Emacs that it’s difficult to 
use the Emacs manual or follow along with tutorials.

Ubuntu Follow the instructions at https://launchpad.net/~cassou/ 
+archive/emacs.

Windows You can find a binary at http://ftp.gnu.org/gnu/emacs/windows/. 
After you download and unzip the latest version, you can run the Emacs 
executable under bin\runemacs.exe.

After you’ve installed Emacs, open it. You should see something like 
Figure 2-2.

http://emacsformacosx.com/
http://emacsformacosx.com/
https://launchpad.net/~cassou/+archive/emacs
https://launchpad.net/~cassou/+archive/emacs
http://ftp.gnu.org/gnu/emacs/windows/


How to Use Emacs, an Excellent Clojure Editor   13

Figure 2-2: The screen Emacs displays when you open it for the first time

Welcome to the cult of Emacs! You’ve made Richard Stallman proud!

Configuration
I’ve created a repository of all the files you need to configure Emacs for 
Clojure, available in this book’s resources at https://www.nostarch.com/
clojure/. Do the following to delete your existing Emacs configuration and 
install the Clojure-friendly one:

1. Close Emacs.

2. Delete ~/.emacs or ~/.emacs.d if they exist. This is where Emacs looks for 
configuration files, and deleting these files and directories will ensure 
that you start with a clean slate.

3. Download the Emacs configuration zip file from the book’s resource 
page and unzip it. Its contents should be a folder, emacs-for-clojure-
book1. Run mv path/to/emacs-for-clojure-book1 ~/.emacs.d.

4. Create the file ~/.lein/profiles.clj and add this line to it: 

{:user {:plugins [[cider/cider-nrepl "0.8.1"]]}} 

5. Open Emacs.

When you open Emacs, you should see a lot of activity as Emacs down-
loads a bunch of useful packages. Once the activity stops, go ahead and just 
quit Emacs, and then open it again. After you do so, you should see a win-
dow like the one in Figure 2-3.

https://www.nostarch.com/clojure/
https://www.nostarch.com/clojure/


14   Chapter 2

Figure 2-3: How Emacs looks after installing your sweet new configuration

Now that we’ve got everything set up, let’s learn how to use Emacs!

emacs escape hatch
Before we dig in to the fun stuff, you need to know an important Emacs key 
binding: ctrl-G. This key binding quits whatever Emacs command you’re 
trying to run. So if things aren’t going right, hold down ctrl, press G, and 
then try again. It won’t close Emacs or make you lose any work; it’ll just 
cancel your current action.

emacs Buffers
All editing happens in an Emacs buffer. When you first start Emacs, a buffer 
named *scratch* is open. Emacs will always show you the name of the cur-
rent buffer at the bottom of the window, as shown in Figure 2-4.

Figure 2-4: Emacs will always show you the name of the current buffer.

By default, the *scratch* buffer handles parentheses and indentation 
in a way that’s optimal for Lisp development but is inconvenient for writing 
plain text. Let’s create a fresh buffer so we can play around without having 
unexpected things happen. To create a buffer, do this:

1. Hold down ctrl and press X.

2. Release ctrl.

3. Press B.

Buffer name



How to Use Emacs, an Excellent Clojure Editor   15

We can express the same sequence in a more compact format: C-x b.
After performing this key sequence, you’ll see a prompt at the bottom 

of the application, as shown in Figure 2-5.

Figure 2-5: The minibuffer is where Emacs prompts you for input.

This area is called the minibuffer, and it is where Emacs prompts you 
for input. Right now it’s prompting us for a buffer name. You can enter the 
name of a buffer that is already open, or you can enter a new buffer name. 
Type in emacs-fun-times and press enter. You should now see a completely 
blank buffer and can just start typing. You’ll find that keys mostly work the 
way you’d expect. Characters appear as you type them. The up, down, left, 
and right arrow keys move you as you’d expect, and enter creates a new line.

You’ll also notice that you’re not suddenly sporting a bushy Unix beard 
or Birkenstocks (unless you had them to begin with). This should help ease 
any lingering trepidation you feel about using Emacs. When you’re done 
messing around, go ahead and kill the buffer by typing C-x k enter. (It 
might come as a surprise, but Emacs is actually quite violent, making ample 
use of the term kill.)

Now that you’ve killed the emacs-fun-times buffer, you should be back 
in the *scratch* buffer. In general, you can create as many new buffers as 
you want with C-x b. You can also quickly switch between buffers using the 
same command. When you create a new buffer this way, it exists only in 
memory until you save it as a file; buffers aren’t necessarily backed by files, 
and creating a buffer doesn’t necessarily create a file. Let’s learn about 
working with files.

working with files
The key binding for opening a file in Emacs is C-x C-f. Notice that you’ll 
need to hold down ctrl when pressing both X and F. After you do that, 
you’ll get another minibuffer prompt. Navigate to ~/.emacs.d/customizations/
ui.el, which customizes the way Emacs looks and how you can interact with 
it. Emacs opens the file in a new buffer with the same name as the filename. 
Let’s go to line 37 and uncomment it by removing the leading semicolons. 
It will look like this:

(setq initial-frame-alist '((top . 0) (left . 0) (width . 120) (height . 80)))

Then change the values for width and height, which set the dimensions 
in characters for the active window. By changing these values, you can set the 

minibuffer



16   Chapter 2

Emacs window to open at a certain size every time it starts. Try something 
small at first, like 80 and 20:

(setq initial-frame-alist '((top . 0) (left . 0) (width . 80) (height . 20)))

Now save your file with the following key binding: C-x C-s. You should 
get a message at the bottom of Emacs like Wrote /Users/snuffleupagus/ 
.emacs.d/customizations/ui.el. You can also try saving your buffer using the 
key binding you use in other applications (for example, ctrl-S or z-S). 
The Emacs configuration you downloaded should allow that to work, but 
if it doesn’t, it’s no big deal.

After saving the file, quit Emacs and start it again. I bet it’s very tiny! 
See my example in Figure 2-6.

Figure 2-6: You can configure Emacs to set its  
height and width every time you open it.

Go through that same process a couple of times until Emacs starts at 
a size that you like. Or just comment out those lines again and be done 
with it (in which case Emacs will open at its default width and height). 
If you’re done editing ui.el, you can close its buffer with C-x k. Either way, 
you’re done saving your first file in Emacs! If something crazy happens, 
you can follow the instructions in “Configuration” on page 13 to get Emacs 
working again.

If you want to create a new file, just use C-x C-f and enter the new file’s 
path in the minibuffer. As soon as you save the buffer, Emacs will create a 
file with the buffer’s contents at the path you entered.

Let’s recap:

1. In Emacs, editing takes place in buffers.

2. To switch to a buffer, use C-x b and enter the buffer name in the 
minibuffer.

3. To create a new buffer, use C-x b and enter a new buffer name.



How to Use Emacs, an Excellent Clojure Editor   17

4. To open a file, use C-x C-f and navigate to the file.

5. To save a buffer to a file, use C-x C-s.

6. To create a new file, use C-x C-f and enter the new file’s path. When 
you save the buffer, Emacs will create the file on the filesystem.

key Bindings and modes
You’ve already come a long way! You can now use Emacs like a very basic 
editor. This should help you get by if you ever need to use Emacs on a server 
or are forced into pairing with an Emacs nerd.

However, to really be productive, it’ll be useful for you to know some key 
details about key bindings (ha-ha!). Then I’ll introduce Emacs modes. After 
that, I’ll cover some core terminology and go over a bunch of super useful 
key bindings.

Emacs Is a Lisp Interpreter
The term key binding derives from the fact that Emacs binds keystrokes to 
commands, which are just elisp functions (I’ll use command and function inter-
changeably). For example, C-x b is bound to the function switch-to-buffer. 
Likewise, C-x C-s is bound to save-file.

But  Emacs goes even further than that. Even simple keystrokes like 
f and a are bound to a function, in this case self-insert-command, the com-
mand for adding characters to the buffer you’re editing.

From Emacs’s point of view, all functions are created equal, and you 
can redefine all functions, even core functions like save-file. You probably 
won’t want to redefine core functions, but you can.

You can redefine functions because, at its core, Emacs is just a Lisp inter-
preter that happens to load code-editing facilities. Most of Emacs is written 
in elisp, so from the perspective of Emacs, save-file is just a function, as is 
switch-to-buffer and almost any other command you can run. Not only that, 
but any functions you create are treated the same way as built-in functions. 
You can even use Emacs to execute elisp, modifying Emacs as it runs.

The freedom to modify Emacs using a powerful programming language 
is what makes Emacs so flexible and why people like me are so crazy about 
it. Yes, it has a lot of surface-level complexity that can take time to learn. But 
underlying Emacs is the elegant simplicity of Lisp and the infinite tinker-
ability that comes with it. This tinkerability isn’t limited to just creating and 
redefining functions. You can also create, redefine, and remove key bindings. 
Conceptually, key bindings are just an entry in a lookup table associating key-
strokes with functions, and that lookup table is completely modifiable.

You can also run commands by name, without a specific key binding, 
using M-x function-name (for example, M-x save-buffer). M stands for meta, 
a key that modern keyboards don’t possess but which is mapped to alt on 
Windows and Linux and option on Macs. M-x runs the smex command, 
which prompts you for the name of another command to be run.

Now that you understand key bindings and functions, you’ll be able to 
understand what modes are and how they work.



18   Chapter 2

Modes
An Emacs mode is a collection of key bindings and functions that are pack-
aged together to help you be productive when editing different types of 
files. (Modes also do things like tell Emacs how to do syntax highlighting, 
but that’s of secondary importance, and I won’t cover that here.)

For example, when you’re editing a Clojure file, you’ll want to 
load Clojure mode. Right now I’m writing a Markdown file and using 
Markdown mode, which has lots of useful key bindings specific to working 
with Markdown. When editing Clojure, it’s best to have a set of Clojure-
specific key bindings, like C-c C-k to load the current buffer into a REPL 
and compile it.

Modes come in two flavors: major modes and minor modes. Markdown 
mode and Clojure mode are major modes. Major modes are usually set by 
Emacs when you open a file, but you can also set the mode explicitly by run-
ning the relevant Emacs command, for example with M-x clojure-mode or 
M-x major-mode. Only one major mode is active at a time.

Whereas major modes specialize Emacs for a certain file type or 
language, minor modes usually provide functionality that’s useful across 
file types. For example, abbrev mode “automatically expands text based on 
pre-defined abbreviation definitions” (per the Emacs manual1). You can 
have multiple minor modes active at the same time.

You can see which modes are active on the mode line, as shown in 
Figure 2-7.

Figure 2-7: The mode line shows you which modes are active.

1. http://www.gnu.org/software/emacs/manual/html_node/emacs/Minor-Modes.html.

major mode 
(markdown mode)

minor modes



How to Use Emacs, an Excellent Clojure Editor   19

If you open a file and Emacs doesn’t load a major mode for it, chances 
are that one exists. You’ll just need to download its package. Speaking of 
which . . .

Installing Packages
Many modes are distributed as packages, which are just bundles of elisp files 
stored in a package repository. Emacs 24, which you installed at the begin-
ning of this chapter, makes it very easy to browse and install packages. M-x 
package-list-packages will show you almost every package available; just make 
sure you run M-x package-refresh-contents first so you get the latest list. You 
can install packages with M-x package-install.

You can also customize Emacs by loading your own elisp files or files 
you find on the Internet. The “Beginner’s Guide to Emacs” (found at http://
www.masteringemacs.org/articles/2010/10/04/beginners-guide-to-emacs/) has a 
good description of how to load customizations under the section “Loading 
New Packages” toward the bottom of the article.

Core editing terminology and key Bindings
If all you want to do is use Emacs 
like a text editor, you can skip this 
section entirely! But you’ll be miss-
ing out on some great stuff. In this 
section, we’ll go over key Emacs 
terms; how to select, cut, copy, 
and paste text; how to select, cut, 
copy, and paste text (see what I did 
there? Ha ha ha!); and how to move 
through the buffer efficiently.

To get started, open a new 
buffer in Emacs and name it 
jack-handy. Then enter the follow-
ing Jack Handy quotations:

If you were a pirate, you know what would be the one thing that would
really make you mad? Treasure chests with no handles. How the hell are
you supposed to carry it?!

The face of a child can say it all, especially the mouth part of the
face.

To me, boxing is like a ballet, except there's no music, no
choreography, and the dancers hit each other.

Use this example to experiment with navigation and editing in this 
section.

http://www.masteringemacs.org/articles/2010/10/04/beginners-guide-to-emacs/
http://www.masteringemacs.org/articles/2010/10/04/beginners-guide-to-emacs/


20   Chapter 2

Point
If you’ve been following along, you should see a red-orange rectangle in 
your Emacs buffer. This is the cursor, and it’s the graphical representation 
of the point. Point is where all the magic happens: you insert text at point, 
and most editing commands happen in relation to point. And even though 
your cursor appears to rest on top of a character, point is actually located 
between that character and the previous one.

For example, place your cursor over the f in If you were a pirate. Point is 
located between I and f. Now, if you use C-k, all the text from the letter f 
onward will disappear. C-k runs the command kill-line, which kills all text 
after point on the current line (I’ll talk more about killing later). Undo 
that change with C-/. Also, try your normal OS key binding for undo; that 
should work as well.

Movement
You can use your arrow keys to move point just like any other editor, but 
many key bindings allow you to navigate more efficiently, as shown in 
Table 2-1.

table 2-1: Key Bindings for Navigating Text

Keys description

c-a Move to beginning of line .

m-m Move to first non-whitespace character on the line .

c-e Move to end of line .

c-f Move forward one character .

c-b Move backward one character .

m-f Move forward one word (I use this a lot) .

m-b Move backward one word (I use this a lot, too) .

c-s Regex search for text in current buffer and move to it . Press c-s again 
to move to next match .

c-r Same as c-s, but search in reverse .

m-< Move to beginning of buffer .

m-> Move to end of buffer .

m-g g Go to line .

Go ahead and try out these key bindings in your jack-handy buffer!

Selection with Regions
In Emacs, we don’t select text. We create regions, and we do so by setting the 
mark with C-spc (ctrl-spacebar). Then, when you move point, everything 
between mark and point is the region. It’s very similar to shift-selecting 
text for basic purposes. 



How to Use Emacs, an Excellent Clojure Editor   21

For example, do the following in your jack-handy buffer:

1. Go to the beginning of the file.

2. Use C-spc.

3. Use M-f twice. You should see a highlighted region encompassing If you.

4. Press backspace. That should delete If you.

One cool thing about using mark instead of Shift-selecting text is that 
you’re free to use all of Emacs’s movement commands after you set the 
mark. For example, you could set a mark and then use C-s to search for 
some bit of text hundreds of lines down in your buffer. Doing so would 
create a very large region, and you wouldn’t have to strain your pinky hold-
ing down shift.

Regions also let you confine an operation to a limited area of the buffer. 
Try this:

1. Create a region encompassing The face of a child can say it all.

2. Use M-x replace-string and replace face with head.

This will perform the replacement within the current region rather 
than the entire buffer after point, which is the default behavior.

Killing and the Kill Ring
In most applications we can cut text, which is only mildly violent. We can 
also copy and paste. Cutting and copying add the selection to the clipboard, 
and pasting copies the contents of the clipboard to the current application. 
In Emacs, we take the homicidal approach and kill regions, adding them to 
the kill ring. Don’t you feel braver and truer knowing that you’re laying waste 
to untold kilobytes of text? We can then yank, inserting the most recently 
killed text at point. We can also copy text to the kill ring without actually 
killing it.

Why bother with all this morbid terminology? Well, first, so you won’t 
be frightened when you hear someone talking about killing things in Emacs. 
But more important, Emacs allows you to do tasks that you can’t do with the 
typical cut/copy/paste clipboard featureset.

Emacs stores multiple blocks of text on the kill ring, and you can cycle 
through them. This is cool because you can cycle through to retrieve text 
you killed a long time ago. Let’s see this in action:

1. Create a region over the word Treasure in the first line.

2. Use M-w, which is bound to the kill-ring-save command. In general, 
M-w is like copying. It adds the region to the kill ring without deleting 
it from your buffer.

3. Move point to the word choreography on the last line.

4. Use M-d, which is bound to the kill-word command. This adds choreog-
raphy to the kill ring and deletes it from your buffer.



22   Chapter 2

5. Use C-y. This will yank the text you just killed, choreography, inserting it 
at point.

6. Use M-y. This will remove choreography and yank the next item on the 
kill ring, Treasure.

You can see some useful kill/yank key bindings in Table 2-2.

table 2-2: Key Bindings for Killing and Yanking Text

Keys description

c-w Kill region .

m-w Copy region to kill ring .

c-y Yank .

m-y Cycle through kill ring after yanking .

m-d Kill word .

c-k Kill line .

Editing and Help
Table 2-3 shows some additional, useful, editing key bindings you should 
know about for dealing with spacing and expanding text.

table 2-3: Other Useful Editing Key Bindings

Keys description

tab Indent line .

c-j New line and indent, equivalent to enter followed by tab .

m-/ Hippie expand; cycles through possible expansions of the text before 
point .

m-\ Delete all spaces and tabs around point . (I use this one a lot .)

Emacs also has excellent built-in help. The two key bindings shown in 
Table 2-4 will serve you well.

table 2-4: Key Bindings for Built-in Help

Keys description

c-h k key-binding Describe the function bound to the key binding . To get this 
to work, you actually perform the key sequence after typing 
c-h k .

c-h f Describe function .

The help text appears in a new window, a concept I will cover later in 
the chapter. For now, you can close help windows by pressing C-x o q.



How to Use Emacs, an Excellent Clojure Editor   23

Using Emacs with Clojure
Next, I’ll explain how to use Emacs to efficiently develop a Clojure applica-
tion. You’ll learn how to start a REPL process that’s connected to Emacs 
and how to work with Emacs windows. Then I’ll cover a cornucopia of use-
ful key bindings for evaluating expressions, compiling files, and performing 
other handy tasks. Finally, I’ll show you how to handle Clojure errors and 
introduce some features of Paredit, an optional minor mode, which is use-
ful for writing and editing code in Lisp-style languages.

If you want to start digging in to Clojure code, please do skip ahead! 
You can always return later.

Fire Up Your REPL!
As you learned in Chapter 1, a REPL allows you to interactively write and 
run Clojure code. The REPL is a running Clojure program that gives you a 
prompt and then reads your input, evaluates it, prints the result, and loops 
back to the prompt. In Chapter 1, you started the REPL in a terminal win-
dow with lein repl. In this section, you’ll start a REPL directly in Emacs.

To connect Emacs to a REPL, you’ll use the Emacs package CIDER, 
available at https://github.com/clojure-emacs/cider/. If you followed the con-
figuration instructions earlier in this chapter, you should already have it 
installed, but you can also install it by running M-x package-install, enter-
ing cider, and pressing enter.

CIDER allows you to start a REPL within Emacs and provides you 
with key bindings that allow you to interact with the REPL more effi-
ciently. Go ahead and start a REPL session now. Using Emacs, open the 
file clojure-noob/src/clojure_noob/core.clj, which you created in Chapter 1. 
Next, use M-x cider-jack-in. This starts the REPL and creates a new buffer 
where you can interact with it. After a short wait (it should be less than a 
minute), you should see something like Figure 2-8.

Figure 2-8: What your Emacs should look like after running M-x cider-jack-in

https://github.com/clojure-emacs/cider
https://github.com/clojure-emacs/cider/


24   Chapter 2

Now we have two windows: our core.clj file is open on the left, and the 
REPL is running on the right. If you’ve never seen Emacs split in half like 
this, don’t worry! I’ll talk about how Emacs splits windows in a second. In 
the meantime, try evaluating some code in the REPL. Type in the following 
bolded lines. The result that you should see printed in the REPL when you 
press enter is shown after each line of code. Don’t worry about the code at 
this time; I’ll cover all these functions in the next chapter.

(+ 1 2 3 4)
; => 10
(map inc [1 2 3 4])
; => (2 3 4 5)
(reduce + [5 6 100])
; => 111

Pretty nifty! You can use this REPL just as you used lein repl in the 
first chapter. You can also do a whole lot more, but before I go into that, 
I’ll explain how to work with split-screen Emacs.

Interlude: Emacs Windows and Frames
Let’s take a quick detour to talk about how Emacs handles frames and win-
dows, and to go over some useful window-related key bindings. Feel free to 
skip this section if you’re already familiar with Emacs windows.

Emacs was invented in, like, 1802 or something, so it uses terminology 
slightly different from what you’re used to. What you would normally refer 
to as a window, Emacs calls a frame, and the frame can be split into multiple 
windows. Splitting into multiple windows allows you to view more than one 
buffer at a time. You already saw this happen when you ran cider-jack-in 
(see Figure 2-9).

Figure 2-9: In Emacs, a frame contains windows.

Window

Frame

Window



How to Use Emacs, an Excellent Clojure Editor   25

Table 2-5 shows several key bindings for working with the frame and 
windows.

table 2-5: Emacs Window Key Bindings

Keys description

c-x o Switch cursor to another window . Try this now to switch between your 
Clojure file and the REPL .

c-x 1 Delete all other windows, leaving only the current window in the 
frame . This doesn’t close your buffers, and it won’t cause you to lose 
any work .

c-x 2 Split frame above and below .

c-x 3 Split frame side by side .

c-x 0 Delete current window .

I encourage you to try the Emacs window key bindings. For example, 
put your cursor in the left window, the one with the Clojure file, and use 
C-x 1. The other window should disappear, and you should see only the 
Clojure code. Then do the following:

•	 Use C-x 3 to split the window side by side again.

•	 Use C-x o to switch to the right window.

•	 Use C-x b *cider-repl* to switch to the CIDER buffer in the right 
window.

Once you’ve experimented a bit, set up Emacs so that it contains two 
side-by-side windows with Clojure code on the left and the CIDER buffer on 
the right, as in the previous images. If you’re interested in learning more 
about windows and frames, the Emacs manual has a ton of info: see http://
www.gnu.org/software/emacs/manual/html_node/elisp/Windows.html#Windows.

Now that you can navigate Emacs windows, it’s time to learn some 
Clojure development key bindings!

A Cornucopia of Useful Key Bindings
Now you’re ready to learn some key bindings that will reveal the true power 
of using Emacs for Clojure projects. These commands will let you evaluate, 
tweak, compile, and run code with just a few dainty keystrokes. Let’s start by 
going over how to quickly evaluate an expression.

At the bottom of core.clj, add the following:

(println "Cleanliness is next to godliness")

Now use C-e to navigate to the end of the line, and then use C-x C-e.
The text Cleanliness is next to godliness should appear in the CIDER buffer, 
as shown in Figure 2-10.

http://www.gnu.org/software/emacs/manual/html_node/elisp/Windows.html#Windows
http://www.gnu.org/software/emacs/manual/html_node/elisp/Windows.html#Windows


26   Chapter 2

Figure 2-10: Instantly evaluating code from another buffer in the REPL

The key binding C-x C-e runs the command cider-eval-last-expression. 
As the name suggests, this command sends the expression immediately 
preceding point to the REPL, which then evaluates the expression. You can 
also try C-u C-x C-e, which prints the result of the evaluation after point.

Now let’s try to run the -main function we wrote in Chapter 1 so we can 
let the world know that we’re little teapots.

In the core.clj buffer, use C-c M-n. This key binding sets the namespace 
to the namespace listed at the top of your current file, so the prompt in the 
right window should now read clojure-noob.core>. I haven’t gone into detail 
about namespaces yet, but for now it’s enough to know that a namespace 
is an organizational mechanism that allows us to avoid naming conflicts. 
Next, enter (-main) at the prompt. The REPL should print I'm a little 
teapot! How exciting!

Now let’s create a new function and run it. At the bottom of core.clj, add 
the following:

(defn train
  []
  (println "Choo choo!"))

When you’re done, save your file and use C-c C-k to compile your cur-
rent file within the REPL session. (You have to compile your code for the 
REPL to be aware of your changes.) Now if you run (train) in the REPL, it 
will echo back Choo choo!.

While still in the REPL, try C- (ctrl plus the up arrow key). C- and 
C- cycle through your REPL history, which includes all the Clojure expres-
sions that you’ve asked the REPL to evaluate.

Note for Mac users: by default, OS X maps C-, C-, C-, and C- 
to Mission Control commands. You can change your Mac key bindings by 
opening System Preferences, and then going to Keyboard4Shortcuts4 
Mission Control.

Finally, try this:

1. Type (-main at the REPL prompt. Note the lack of a closing parenthesis.

2. Press C-enter.



How to Use Emacs, an Excellent Clojure Editor   27

CIDER should close the parenthesis and evaluate the expression. This 
is just a nice little convenience that CIDER provides for dealing with so 
many parentheses.

CIDER also has a few key bindings that are great when you’re learning 
Clojure. Pressing C-c C-d C-d will display documentation for the symbol 
under point, which can be a huge time-saver. When you’re done with the 
documentation, press q to close the documentation buffer. The key bind-
ing M-. will navigate to the source code for the symbol under point, and 
M-, will return you to your original buffer and position. Finally, C-c C-d C-a 
lets you search for arbitrary text across function names and documenta-
tion. This is a great way to find a function when you can’t exactly remem-
ber its name.

The CIDER README (https://github.com/clojure-emacs/cider/) has a 
comprehensive list of key bindings that you can learn over time, but for 
now, Tables 2-6 and 2-7 contain a summary of the key bindings we just 
went over.

table 2-6: Clojure Buffer Key Bindings

Keys description

c-c m-n Switch to namespace of current buffer .

c-x c-e Evaluate expression immediately preceding point .

c-c c-k Compile current buffer .

c-c c-d c-d Display documentation for symbol under point .

m- . and m-, Navigate to source code for symbol under point and return to 
your original buffer .

c-c c-d c-a Apropros search; find arbitrary text across function names and 
documentation .

table 2-7: CIDER Buffer Key Bindings

Keys description

c-, c- Cycle through REPL history .

c-enter Close parentheses and evaluate .

How to Handle Errors
In this section, you’ll write some buggy code so you can see how Emacs 
responds to it and how you can recover from the error and continue on 
your merry way. You’ll do this in both the REPL buffer and the core.clj 
buffer. Let’s start with the REPL. At the prompt, type (map) and press 
enter. You should see something like Figure 2-11.

https://github.com/clojure-emacs/cider/


28   Chapter 2

Figure 2-11: This is what happens when you run bad code in the REPL.

As you can see, calling map with no arguments causes Clojure to lose its 
mind—it shows an ArityException error message in your REPL buffer and 
fills your left window with text that looks like the ravings of a madman. 
These ravings are the stack trace, which shows the function that actually 
threw the exception, along with which function called that function, down 
the stack of function calls.

Clojure’s stack traces can be difficult to decipher when you’re just 
starting, but after a while you’ll learn to get useful information from 
them. CIDER gives you a hand by allowing you to filter stack traces, which 
reduces noise so you can zero in on the cause of your exception. Line 2 
of the *cider-error* buffer has the filters Clojure, Java, REPL, Tooling, 
Duplicates, and All. You can click each option to activate that filter. You can 
also click each stack trace line to jump to the corresponding source code.

Here’s how to close the stack trace in the left window:

1. Use C-x o to switch to the window.

2. Press q to close the stack trace and go back to CIDER.

If you want to view the error again, you can switch to the *cider-error* 
buffer. You can also get error messages when trying to compile files. To see 
this, go to the core.clj buffer, write some buggy code, and compile:

1. Add (map) to the end.

2. Use C-c C-k to compile.

You should see a *cider-error* buffer similar to the one you saw earlier. 
Again, press q to close the stack trace.

Paredit
While writing code in the Clojure buffer, you may have noticed some unex-
pected things happening. For example, every time you type a left parenthe-
sis, a right parenthesis immediately gets inserted.

This occurs thanks to paredit-mode, a minor mode that turns Lisp’s pro-
fusion of parentheses from a liability into an asset. Paredit ensures that all 
parentheses, double quotes, and brackets are closed, relieving you of that 
odious burden.



How to Use Emacs, an Excellent Clojure Editor   29

Paredit also offers key bindings to easily navigate and alter the struc-
ture created by all those parentheses. In the next section, I’ll go over the 
most useful key bindings, but you can also check out a comprehensive 
cheat sheet at https://github.com/georgek/paredit-cheatsheet/blob/master/paredit 
-cheatsheet.pdf (in the cheat sheet, the red pipe represents point).

However, if you’re not used to it, paredit can sometimes be annoying. 
I think it’s more than worth your while to take some time to learn it, but 
you can always disable it with M-x paredit-mode, which toggles the mode on 
and off. 

The following section shows you the most useful key bindings. 

Wrapping and Slurping

Wrapping surrounds the expression after point with parentheses. Slurping 
moves a closing parenthesis to include the next expression to the right. For 
example, say we start with this:

(+ 1 2 3 4)

and we want to get this:

(+ 1 (* 2 3) 4)

We can wrap the 2, add an asterisk, and then slurp the 3. First, place 
point, which is represented here as a vertical pipe, |:

(+ 1 |2 3 4)

Then type M-(, the binding for paredit-wrap-round, getting this result:

(+ 1 (|2) 3 4)

Add the asterisk and a space:

(+ 1 (* |2) 3 4)

To slurp in the 3, press C-:

(+ 1 (* |2 3) 4)

This makes it easy to add and extend parentheses without wasting pre-
cious moments holding down arrow keys to move point.

Barfing

Suppose, in the preceding example, you accidentally slurped the four. To 
unslurp it (also known as barfing), place your cursor (|) anywhere in the 
inner parentheses:

(+ 1 (|* 2 3 4))

https://github.com/georgek/paredit-cheatsheet/blob/master/paredit-cheatsheet.pdf
https://github.com/georgek/paredit-cheatsheet/blob/master/paredit-cheatsheet.pdf


30   Chapter 2

Then use C-:

(+ 1 (|* 2 3) 4)

Ta-da! Now you know how to expand and contract parentheses at will.

Navigation

Often when writing in a Lisp dialect, you’ll work with expressions like this:

(map (comp record first)
     (d/q '[:find ?post
            :in $ ?search
            :where
            [(fulltext $ :post/content ?search)
             [[?post ?content]]]]
          (db/db)
          (:q params)))

With this kind of expression, it’s useful to jump quickly from one sub-
expression to the next. If you put point right before an opening parenthe-
sis, C-M-f will take you to the closing parenthesis. Similarly, if point is right 
after a closing parenthesis, C-M-b will take you to the opening parenthesis.

Table 2-8 summarizes the paredit key bindings you just learned.

table 2-8: Paredit Key Bindings

Keys description

m-x paredit-mode Toggle paredit mode .

m-( Surround expression after point in parentheses 
(paredit-wrap-round) .

c- Slurp; move closing parenthesis to the right to include next 
expression .

c- Barf; move closing parenthesis to the left to exclude last 
expression .

c-m-f, c-m-b Move to the opening/closing parenthesis .

Continue learning
Emacs is one of the longest-lived editors, and its adherents often approach 
fanaticism in their enthusiasm for it. It can be awkward to use at first, but 
stick with it and you will be amply rewarded over your lifetime.

Whenever I open Emacs, I feel inspired. Like a craftsman entering his 
workshop, I feel a realm of possibility open before me. I feel the comfort of 
an environment that has evolved over time to fit me perfectly—an assort-
ment of packages and key bindings that help me bring ideas to life day 
after day.



How to Use Emacs, an Excellent Clojure Editor   31

These resources will help you as you continue on your Emacs journey:

•	 The Emacs Manual provides excellent, comprehensive instructions. 
Spend some time with it every morning! Download the PDF and read 
it on the go: http://www.gnu.org/software/emacs/manual/html_node/emacs/
index.html#Top.

•	 The Emacs Reference Card is a handy cheat sheet: http://www.ic.unicamp 
.br/~helio/disciplinas/MC102/Emacs_Reference_Card.pdf.

•	 Mastering Emacs by Mickey Petersen is one of the best Emacs resources 
available. Start with the reading guide: http://www.masteringemacs.org/
reading-guide/.

•	 For the more visually minded folks, I recommend the hand-drawn 
“How to Learn Emacs: A Beginner’s Guide to Emacs 24 or Later” by 
Sacha Chua: http://sachachua.com/blog/wp-content/uploads/2013/05/
How-to-Learn-Emacs8.png.

•	 Just press C-h t for the built-in tutorial.

summary
Whew! You’ve covered a lot of ground. You now know about Emacs’s true 
nature as a Lisp interpreter. Key bindings act as shortcuts to execute elisp 
functions, and modes are collections of key bindings and functions. You 
learned how to interact with Emacs on its own terms and mastered buffers, 
windows, regions, killing, and yanking. Finally, you learned how to easily 
work with Clojure using CIDER and paredit.

With all of this hard-won Emacs knowledge under your belt, it’s time to 
start learning Clojure in earnest!

http://www.gnu.org/software/emacs/manual/html_node/emacs/index.html#Top
http://www.gnu.org/software/emacs/manual/html_node/emacs/index.html#Top
http://www.ic.unicamp.br/~helio/disciplinas/MC102/Emacs_Reference_Card.pdf
http://www.ic.unicamp.br/~helio/disciplinas/MC102/Emacs_Reference_Card.pdf
http://www.masteringemacs.org/reading-guide/
http://www.masteringemacs.org/reading-guide/
http://sachachua.com/blog/wp-content/uploads/2013/05/How-to-Learn-Emacs8.png
http://sachachua.com/blog/wp-content/uploads/2013/05/How-to-Learn-Emacs8.png




Part II
l a n g u a g e  f u n D a m e n t a l s





3
D o  t h i n g s :  

a  C l o j u r e  C r a s h  C o u r s e

It’s time to learn how to actually do things 
with Clojure! Hot damn! Although you’ve 

undoubtedly heard of Clojure’s awesome 
concurrency support and other stupendous fea-

tures, Clojure’s most salient characteristic is that it is a 
Lisp. In this chapter, you’ll explore the elements that 
compose this Lisp core: syntax, functions, and data. 
Together they will give you a solid foundation for rep-
resenting and solving problems in Clojure.

After laying this groundwork, you will be able to write some super 
important code. In the last section, you’ll tie everything together by creat-
ing a model of a hobbit and writing a function to hit it in a random spot. 
Super! Important!



36   Chapter 3

As you move through the chapter, I recommend that you type the 
examples in a REPL and run them. Programming in a new language is a 
skill, and just like yodeling or synchronized swimming, you have to practice 
to learn it. By the way, Synchronized Swimming for Yodelers for the Brave and True 
will be published in August of 20never. Keep an eye out for it!

syntax
Clojure’s syntax is simple. Like all Lisps, it employs a uniform structure, a 
handful of special operators, and a constant supply of parentheses delivered 
from the parenthesis mines hidden beneath the Massachusetts Institute of 
Technology, where Lisp was born.

Forms
All Clojure code is written in a uniform structure. Clojure recognizes two 
kinds of structures:

•	 Literal representations of data structures (like numbers, strings, maps, 
and vectors)

•	 Operations

We use the term form to refer to valid code. I’ll also sometimes use 
expression to refer to Clojure forms. But don’t get too hung up on the termi-
nology. Clojure evaluates every form to produce a value. These literal repre-
sentations are all valid forms:

1
"a string"
["a" "vector" "of" "strings"]

Your code will rarely contain free-floating literals, of course, because 
they don’t actually do anything on their own. Instead, you’ll use literals in 
operations. Operations are how you do things. All operations take the form 
opening parenthesis, operator, operands, closing parenthesis:

(operator operand1 operand2 ... operandn)

Notice that there are no commas. Clojure uses whitespace to separate 
operands, and it treats commas as whitespace. Here are some example 
operations:

(+ 1 2 3)
; => 6

(str "It was the panda " "in the library " "with a dust buster")
; => "It was the panda in the library with a dust buster"



Do Things: A Clojure Crash Course    37

In the first operation, the operator + adds the operands 1, 2, and 3. In 
the second operation, the operator str concatenates three strings to form a 
new string. Both are valid forms. Here’s 
something that is not a form because it 
doesn’t have a closing parenthesis:

(+

Clojure’s structural uniformity is 
probably different from what you’re 
used to. In other languages, different 
operations might have different struc-
tures depending on the operator and 
the operands. For example, JavaScript 
employs a smorgasbord of infix nota-
tion, dot operators, and parentheses:

1 + 2 + 3
"It was the panda ".concat("in the library ", "with a dust buster")

Clojure’s structure is very simple and consistent by comparison. No 
matter which operator you’re using or what kind of data you’re operating 
on, the structure is the same.

Control Flow
Let’s look at three basic control flow operators: if, do, and when. Throughout 
the book you’ll encounter more, but these will get you started.

if

This is the general structure for an if expression:

(if boolean-form
  then-form
  optional-else-form)

A Boolean form is just a form that evaluates to a truthy or falsey value. 
You’ll learn about truthiness and falsiness in the next section. Here are a 
couple of if examples:

(if true
  "By Zeus's hammer!"
  "By Aquaman's trident!")
; => "By Zeus's hammer!"

(if false
  "By Zeus's hammer!"
  "By Aquaman's trident!")
; => "By Aquaman's trident!"



38   Chapter 3

The first example returns "By Zeus's hammer!" because the Boolean 
form evaluates to true, a truthy value, and the second example returns "By 
Aquaman's trident!" because its Boolean form, false, evaluates to a falsey value.

You can also omit the else branch. If you do that and the Boolean 
expression is false, Clojure returns nil, like this:

(if false
  "By Odin's Elbow!")
; => nil

Notice that if uses operand position to associate operands with the then 
and else branches: the first operand is the then branch, and the second 
operand is the (optional) else branch. As a result, each branch can have 
only one form. This is different from most languages. For example, you can 
write this in Ruby:

if true
  doer.do_thing(1)
  doer.do_thing(2)
else
  other_doer.do_thing(1)
  other_doer.do_thing(2)
end

To get around this apparent limitation, you can use the do operator.

do

The do operator lets you wrap up multiple forms in parentheses and run 
each of them. Try the following in your REPL:

(if true
  (do (println "Success!")
      "By Zeus's hammer!")
  (do (println "Failure!")
      "By Aquaman's trident!"))
; => Success!
; => "By Zeus's hammer!"

This operator lets you do multiple things in each of the if expression’s 
branches. In this case, two things happen: Success! is printed in the REPL, 
and "By Zeus's hammer!" is returned as the value of the entire if expression.

when

The when operator is like a combination of if and do, but with no else branch. 
Here’s an example:

(when true
  (println "Success!")
  "abra cadabra")



Do Things: A Clojure Crash Course    39

; => Success!
; => "abra cadabra"

Use when if you want to do multiple things when some condition is true, 
and you always want to return nil when the condition is false.

nil, true, false, truthiness, Equality, and Boolean Expressions

Clojure has true and false values. nil is used to indicate no value in Clojure. 
You can check if a value is nil with the appropriately named nil? function:

(nil? 1)
; => false

(nil? nil)
; => true

Both nil and false are used to represent logical falsiness, whereas all 
other values are logically truthy. Truthy and falsey refer to how a value is 
treated in a Boolean expression, like the first expression passed to if:

(if "bears eat beets"
  "bears beets Battlestar Galactica")
; => "bears beets Battlestar Galactica"

(if nil
  "This won't be the result because nil is falsey"
  "nil is falsey")
; => "nil is falsey"

In the first example, the string "bears eat beets" is considered truthy, so 
the if expression evaluates to "bears beets Battlestar Galactica". The second 
example shows a falsey value as falsey.

Clojure’s equality operator is =:

(= 1 1)
; => true

(= nil nil)
; => true

(= 1 2)
; => false

Some other languages require you to use different operators when com-
paring values of different types. For example, you might have to use some 
kind of special string equality operator made just for strings. But you don’t 
need anything weird or tedious like that to test for equality when using 
Clojure’s built-in data structures.



40   Chapter 3

Clojure uses the Boolean operators or and and. or returns either the first 
truthy value or the last value. and returns the first falsey value or, if no values 
are falsey, the last truthy value. Let’s look at or first:

(or false nil :large_I_mean_venti :why_cant_I_just_say_large)
; => :large_I_mean_venti

(or (= 0 1) (= "yes" "no"))
; => false

(or nil)
; => nil

In the first example, the return value is :large_I_mean_venti because 
it’s the first truthy value. The second example has no truthy values, so or 
returns the last value, which is false. In the last example, once again no 
truthy values exist, and or returns the last value, which is nil. Now let’s look 
at and:

(and :free_wifi :hot_coffee)
; => :hot_coffee

(and :feelin_super_cool nil false)
; => nil

In the first example, and returns the last truthy value, :hot_coffee. In the 
second example, and returns nil, which is the first falsey value.

Naming Values with def
You use def to bind a name to a value in Clojure:

(def failed-protagonist-names
  ["Larry Potter" "Doreen the Explorer" "The Incredible Bulk"])

failed-protagonist-names
; => ["Larry Potter" "Doreen the Explorer" "The Incredible Bulk"]

In this case, you’re binding the 
name failed-protagonist-names to 
a vector containing three strings 
(you’ll learn about vectors in  
“Vectors” on page 45).

Notice that I’m using the term 
bind, whereas in other languages you’d 
say you’re assigning a value to a vari-
able. Those other languages typically 
encourage you to perform multiple 
assignments to the same variable. 



Do Things: A Clojure Crash Course    41

For example, in Ruby you might perform multiple assignments to a vari-
able to build up its value:

severity = :mild
error_message = "OH GOD! IT'S A DISASTER! WE'RE "
if severity == :mild
  error_message = error_message + "MILDLY INCONVENIENCED!"
else
  error_message = error_message + "DOOOOOOOMED!"
end

You might be tempted to do something similar in Clojure:

(def severity :mild)
(def error-message "OH GOD! IT'S A DISASTER! WE'RE ")
(if (= severity :mild)
  (def error-message (str error-message "MILDLY INCONVENIENCED!"))
  (def error-message (str error-message "DOOOOOOOMED!")))

However, changing the value associated with a name like this can make 
it harder to understand your program’s behavior because it’s more difficult 
to know which value is associated with a name or why that value might have 
changed. Clojure has a set of tools for dealing with change, which you’ll 
learn about in Chapter 10. As you learn Clojure, you’ll find that you’ll rarely 
need to alter a name/value association. Here’s one way you could write the 
preceding code:

(defn error-message
  [severity]
  (str "OH GOD! IT'S A DISASTER! WE'RE "
       (if (= severity :mild)
         "MILDLY INCONVENIENCED!"
         "DOOOOOOOMED!")))

(error-message :mild)
; => "OH GOD! IT'S A DISASTER! WE'RE MILDLY INCONVENIENCED!"

Here, you create a function, error-message, which accepts a single argu-
ment, severity, and uses that to determine which string to return. You then 
call the function with :mild for the severity. You’ll learn all about creating 
functions in “Functions” on page 48; in the meantime, you should treat 
def as if it’s defining constants. In the next few chapters, you’ll learn how to 
work with this apparent limitation by embracing the functional program-
ming paradigm.

data structures
Clojure comes with a handful of data structures that you’ll use the major-
ity of the time. If you’re coming from an object-oriented background, 
you’ll be surprised at how much you can do with the seemingly basic types 
presented here.



42   Chapter 3

All of Clojure’s data structures are immutable, meaning you can’t 
change them in place. For example, in Ruby you could do the following 
to reassign the failed protagonist name at index 0:

failed_protagonist_names = [
  "Larry Potter",
  "Doreen the Explorer",
  "The Incredible Bulk"
]
failed_protagonist_names[0] = "Gary Potter"

failed_protagonist_names
# => [
#   "Gary Potter",
#   "Doreen the Explorer",
#   "The Incredible Bulk"
# ]

Clojure has no equivalent for this. You’ll learn more about why Clojure 
was implemented this way in Chapter 10, but for now it’s fun to learn just 
how to do things without all that philosophizing. Without further ado, let’s 
look at numbers in Clojure.

Numbers
Clojure has pretty sophisticated numerical support. I won’t spend much 
time dwelling on the boring technical details (like coercion and contagion), 
because that will get in the way of doing things. If you’re interested in said 
boring details, check out the documentation at http://clojure.org/data_
structures#Data%20Structures-Numbers. Suffice it to say, Clojure will merrily 
handle pretty much anything you throw at it.

In the meantime, we’ll work with integers and floats. We’ll also work 
with ratios, which Clojure can represent directly. Here’s an integer, a float, 
and a ratio, respectively:

93
1.2
1/5

Strings
Strings represent text. The name comes from the ancient Phoenicians, who 
one day invented the alphabet after an accident involving yarn. Here are 
some examples of string literals:

"Lord Voldemort"
"\"He who must not be named\""
"\"Great cow of Moscow!\" - Hermes Conrad"

http://clojure.org/data_structures#Data%20Structures-Numbers
http://clojure.org/data_structures#Data%20Structures-Numbers


Do Things: A Clojure Crash Course    43

Notice that Clojure only allows double 
quotes to delineate strings. 'Lord Voldemort', 
for example, is not a valid string. Also notice 
that Clojure doesn’t have string interpola-
tion. It only allows concatenation via the str 
function:

(def name "Chewbacca")
(str "\"Uggllglglglglglglglll\" - " name)
; => "Uggllglglglglglglglll" - Chewbacca

Maps
Maps are similar to dictionaries or hashes in other languages. They’re a way 
of associating some value with some other value. The two kinds of maps in 
Clojure are hash maps and sorted maps. I’ll only cover the more basic hash 
maps. Let’s look at some examples of map literals. Here’s an empty map:

{}

In this example, :first-name and :last-name are keywords (I’ll cover 
those in the next section):

{:first-name "Charlie"
 :last-name "McFishwich"}

Here we associate "string-key" with the + function:

{"string-key" +}

Maps can be nested:

{:name {:first "John" :middle "Jacob" :last "Jingleheimerschmidt"}}

Notice that map values can be of any type—strings, numbers, maps, 
vectors, even functions. Clojure don’t care!

Besides using map literals, you can use the hash-map function to create 
a map:

(hash-map :a 1 :b 2)
; => {:a 1 :b 2}

You can look up values in maps with the get function:

(get {:a 0 :b 1} :b)
; => 1

(get {:a 0 :b {:c "ho hum"}} :b)
; => {:c "ho hum"}



44   Chapter 3

In both of these examples, we asked get for the value of the :b key 
in the given map—in the first case it returns 1, and in the second case it 
returns the nested map {:c "ho hum"}.

get will return nil if it doesn’t find your key, or you can give it a default 
value to return, such as "unicorns?":

(get {:a 0 :b 1} :c)
; => nil

(get {:a 0 :b 1} :c "unicorns?")
; => "unicorns?"

The get-in function lets you look up values in nested maps:

(get-in {:a 0 :b {:c "ho hum"}} [:b :c])
; => "ho hum"

Another way to look up a value in a map is to treat the map like a func-
tion with the key as its argument:

({:name "The Human Coffeepot"} :name)
; => "The Human Coffeepot"

Another cool thing you can do with maps is use keywords as functions 
to look up their values, which leads to the next subject, keywords.

Keywords
Clojure keywords are best understood by seeing how they’re used. They’re 
primarily used as keys in maps, as you saw in the preceding section. Here 
are some more examples of keywords:

:a
:rumplestiltsken
:34
:_?

Keywords can be used as functions that look up the corresponding 
value in a data structure. For example, you can look up :a in a map:

(:a {:a 1 :b 2 :c 3})
; => 1

This is equivalent to:

(get {:a 1 :b 2 :c 3} :a)
; => 1

You can provide a default value, as with get:

(:d {:a 1 :b 2 :c 3} "No gnome knows homes like Noah knows")
; => "No gnome knows homes like Noah knows"



Do Things: A Clojure Crash Course    45

Using a keyword as a function is pleasantly succinct, and Real Clojurists 
do it all the time. You should do it too!

Vectors
A vector is similar to an array, in that it’s a 0-indexed collection. For example, 
here’s a vector literal:

[3 2 1]

Here we’re returning the 0th element of a vector:

(get [3 2 1] 0)
; => 3

Here’s another example of getting by index:

(get ["a" {:name "Pugsley Winterbottom"} "c"] 1)
; => {:name "Pugsley Winterbottom"}

You can see that vector elements can be of any type, and you can mix 
types. Also notice that we’re using the same get function as we use when 
looking up values in maps.

You can create vectors with the vector function:

(vector "creepy" "full" "moon")
; => ["creepy" "full" "moon"]

You can use the conj function to add additional elements to the vector. 
Elements are added to the end of a vector:

(conj [1 2 3] 4)
; => [1 2 3 4]

Vectors aren’t the only way to store sequences; Clojure also has lists.

Lists
Lists are similar to vectors in that they’re linear collections of values. But 
there are some differences. For example, you can’t retrieve list elements 
with get. To write a list literal, just insert the elements into parentheses and 
use a single quote at the beginning:

'(1 2 3 4)
; => (1 2 3 4)



46   Chapter 3

Notice that when the REPL prints out the list, it doesn’t include the 
single quote. We’ll come back to why that happens later, in Chapter 7. If 
you want to retrieve an element from a list, you can use the nth function:

(nth '(:a :b :c) 0)
; => :a

(nth '(:a :b :c) 2)
; => :c

I don’t cover performance in detail in this book because I don’t think 
it’s useful to focus on it until after you’ve become familiar with a language. 
However, it’s good to know that using nth to retrieve an element from a list 
is slower than using get to retrieve an element from a vector. This is because 
Clojure has to traverse all n elements of a list to get to the nth, whereas it 
only takes a few hops at most to access a vector element by its index.

List values can have any type, and you can create lists with the list 
function:

(list 1 "two" {3 4})
; => (1 "two" {3 4})

Elements are added to the beginning of a list:

(conj '(1 2 3) 4)
; => (4 1 2 3)

When should you use a list and when should you use a vector? A good 
rule of thumb is that if you need to easily add items to the beginning of a 
sequence or if you’re writing a macro, you should use a list. Otherwise, you 
should use a vector. As you learn more, you’ll get a good feel for when to 
use which.

Sets
Sets are collections of unique values. Clojure has two kinds of sets: hash 
sets and sorted sets. I’ll focus on hash sets because they’re used more often. 
Here’s the literal notation for a hash set:

#{"kurt vonnegut" 20 :icicle}

You can also use hash-set to create a set:

(hash-set 1 1 2 2)
; => #{1 2}

Note that multiple instances of a value become one unique value in 
the set, so we’re left with a single 1 and a single 2. If you try to add a value 



Do Things: A Clojure Crash Course    47

to a set that already contains that value (such as :b in the following code), 
it will still have only one of that value:

(conj #{:a :b} :b)
; => #{:a :b}

You can also create sets from existing vectors and lists by using the set 
function:

(set [3 3 3 4 4])
; => #{3 4}

You can check for set membership using the contains? function, by 
using get, or by using a keyword as a function with the set as its argument. 
contains? returns true or false, whereas get and keyword lookup will return 
the value if it exists, or nil if it doesn’t. 

Here’s how you’d use contains?:

(contains? #{:a :b} :a)
; => true

(contains? #{:a :b} 3)
; => false

(contains? #{nil} nil)
; => true

Here’s how you’d use a keyword:

(:a #{:a :b})
; => :a

And here’s how you’d use get:

(get #{:a :b} :a)
; => :a

(get #{:a nil} nil)
; => nil

(get #{:a :b} "kurt vonnegut")
; => nil

Notice that using get to test whether a set contains nil will always return 
nil, which is confusing. contains? may be the better option when you’re test-
ing specifically for set membership.



48   Chapter 3

Simplicity
You may have noticed that the treatment of data structures so far doesn’t 
include a description of how to create new types or classes. The reason is 
that Clojure’s emphasis on simplicity encourages you to reach for the built-
in data structures first.

If you come from an object-oriented background, you might think that 
this approach is weird and backward. However, what you’ll find is that your 
data does not have to be tightly bundled with a class for it to be useful and 
intelligible. Here’s an epigram loved by Clojurists that hints at the Clojure 
philosophy:

It is better to have 100 functions operate on one data structure 
than 10 functions on 10 data structures. 
—Alan Perlis

You’ll learn more about this aspect of Clojure’s philosophy in the 
coming chapters. For now, keep an eye out for the ways that you gain code 
reusability by sticking to basic data structures.

This concludes our Clojure data structures primer. Now it’s time to dig 
in to functions and learn how to use these data structures!

functions
One of the reasons people go nuts over Lisps is that these languages let 
you build programs that behave in complex ways, yet the primary building 
block—the function—is so simple. This section initiates you into the beauty 
and elegance of Lisp functions by explaining the following:

•	 Calling functions

•	 How functions differ from macros and special forms

•	 Defining functions

•	 Anonymous functions

•	 Returning functions

Calling Functions
By now you’ve seen many examples of function calls:

(+ 1 2 3 4)
(* 1 2 3 4)
(first [1 2 3 4])

Remember that all Clojure operations have the same syntax: opening 
parenthesis, operator, operands, closing parenthesis. Function call is just 
another term for an operation where the operator is a function or a func-
tion expression (an expression that returns a function).



Do Things: A Clojure Crash Course    49

This lets you write some pretty interesting code. Here’s a function 
expression that returns the + (addition) function:

(or + -)
; => #<core$_PLUS_ clojure.core$_PLUS_@76dace31>

That return value is the string representation of the addition func-
tion. Because the return value of or is the first truthy value, and here the 
addition function is truthy, the addition function is returned. You can 
also use this expression as the operator in another expression:

((or + -) 1 2 3)
; => 6

Because (or + -) returns +, this expression evaluates to the sum of 1, 2, 
and 3, returning 6. 

Here are a couple more valid function calls that each return 6:

((and (= 1 1) +) 1 2 3)
; => 6

((first [+ 0]) 1 2 3)
; => 6

In the first example, the return value of and is the first falsey value or 
the last truthy value. In this case, + is returned because it’s the last truthy 
value, and is then applied to the arguments 1 2 3, returning 6. In the sec-
ond example, the return value of first is the first element in a sequence, 
which is + in this case.

However, these aren’t valid function calls, because numbers and strings 
aren’t functions:

(1 2 3 4)
("test" 1 2 3)

If you run these in your REPL, you’ll get something like this:

ClassCastException java.lang.String cannot be cast to clojure.lang.IFn
user/eval728 (NO_SOURCE_FILE:1)

You’re likely to see this error many times as you continue with Clojure: 
<x> cannot be cast to clojure.lang.IFn just means that you’re trying to use some-
thing as a function when it’s not.

Function flexibility doesn’t end with the function expression! Syntac-
tically, functions can take any expressions as arguments—including other 
functions. Functions that can either take a function as an argument or 
return a function are called higher-order functions. Programming languages 
with higher-order functions are said to support first-class functions because 
you can treat functions as values in the same way you treat more familiar 
data types like numbers and vectors.



50   Chapter 3

Take the map function (not to be confused with the map data structure), 
for instance. map creates a new list by applying a function to each member of 
a collection. Here, the inc function increments a number by 1:

(inc 1.1)
; => 2.1

(map inc [0 1 2 3])
; => (1 2 3 4)

(Note that map doesn’t return a vector, even though we supplied a vector 
as an argument. You’ll learn why in Chapter 4. For now, just trust that this is 
okay and expected.)

Clojure’s support for first-class functions allows you to build more 
power ful abstractions than you can in languages without them. Those 
unfamiliar with this kind of programming think of functions as allowing 
you to generalize operations over data instances. For example, the + func-
tion abstracts addition over any specific numbers.

By contrast, Clojure (and all Lisps) allows you to create functions 
that generalize over processes. map allows you to generalize the process of 
transforming a collection by applying a function—any function—over any 
collection.

The last detail that you need know about function calls is that Clojure 
evaluates all function arguments recursively before passing them to the 
function. Here’s how Clojure would evaluate a function call whose argu-
ments are also function calls:

(+ (inc 199) (/ 100 (- 7 2)))
(+ 200 (/ 100 (- 7 2))) ; evaluated "(inc 199)"
(+ 200 (/ 100 5)) ; evaluated (- 7 2)
(+ 200 20) ; evaluated (/ 100 5)
220 ; final evaluation

The function call kicks off the evaluation process, and all subforms are 
evaluated before applying the + function.

Function Calls, Macro Calls, and Special Forms
In the previous section, you learned that function calls are expressions that 
have a function expression as the operator. The two other kinds of expres-
sions are macro calls and special forms. You’ve already seen a couple of special 
forms: definitions and if expressions.

You’ll learn everything there is to know about macro calls and special 
forms in Chapter 7. For now, the main feature that makes special forms 
“special” is that, unlike function calls, they don’t always evaluate all of their 
operands.



Do Things: A Clojure Crash Course    51

Take if, for example. This is its general structure:

(if boolean-form
  then-form
  optional-else-form)

Now imagine you had an if statement like this:

(if good-mood
  (tweet walking-on-sunshine-lyrics)
  (tweet mopey-country-song-lyrics))

Clearly, in an if expression like this, we want Clojure to evaluate only 
one of the two branches. If Clojure evaluated both tweet function calls, your 
Twitter followers would end up very confused.

Another feature that differentiates special forms is that you can’t use 
them as arguments to functions. In general, special forms implement core 
Clojure functionality that just can’t be implemented with functions. Clojure 
has only a handful of special forms, and it’s pretty amazing that such a rich 
language is implemented with such a small set of building blocks.

Macros are similar to special forms in that they evaluate their operands 
differently from function calls, and they also can’t be passed as arguments 
to functions. But this detour has taken long enough; it’s time to learn 
how to define functions!

Defining Functions
Function definitions are composed of five main parts:

•	 defn

•	 Function name

•	 A docstring describing the function (optional)

•	 Parameters listed in brackets

•	 Function body

Here’s an example of a function definition and a sample call of the 
function:

u (defn too-enthusiastic
v   "Return a cheer that might be a bit too enthusiastic"
w   [name]
x   (str "OH. MY. GOD! " name " YOU ARE MOST DEFINITELY LIKE THE BEST "

  "MAN SLASH WOMAN EVER I LOVE YOU AND WE SHOULD RUN AWAY SOMEWHERE"))

(too-enthusiastic "Zelda")
; => "OH. MY. GOD! Zelda YOU ARE MOST DEFINITELY LIKE THE BEST MAN SLASH WOMAN 
EVER I LOVE YOU AND WE SHOULD RUN AWAY SOMEWHERE"



52   Chapter 3

At u, too-enthusiastic is the name of the function, and it’s followed by 
a descriptive docstring at v. The parameter, name, is given at w, and the 
function body at x takes the parameter and does what it says on the tin—
returns a cheer that might be a bit too enthusiastic.

Let’s dive deeper into the docstring, parameters, and function body.

the Docstring

The docstring is a useful way to describe and document your code. You 
can view the docstring for a function in the REPL with (doc fn-name)—for 
example, (doc map). The docstring also comes into play if you use a tool to 
generate documentation for your code. 

Parameters and arity

Clojure functions can be defined with zero or more parameters. The values 
you pass to functions are called arguments, and the arguments can be of any 
type. The number of parameters is the function’s arity. Here are some func-
tion definitions with different arities:

(defn no-params
  []
  "I take no parameters!")
(defn one-param
  [x]
  (str "I take one parameter: " x))
(defn two-params
  [x y]
  (str "Two parameters! That's nothing! Pah! I will smoosh them "
  "together to spite you! " x y))

In these examples, no-params is a 0-arity function, one-param is 1-arity, and 
two-params is 2-arity. 

Functions also support arity overloading. This means that you can define 
a function so a different function body will run depending on the arity. 
Here’s the general form of a multiple-arity function definition. Notice that 
each arity definition is enclosed in parentheses and has an argument list:

(defn multi-arity
  ;; 3-arity arguments and body
  ([first-arg second-arg third-arg]
     (do-things first-arg second-arg third-arg))
  ;; 2-arity arguments and body
  ([first-arg second-arg]
     (do-things first-arg second-arg))
  ;; 1-arity arguments and body
  ([first-arg]
     (do-things first-arg)))



Do Things: A Clojure Crash Course    53

Arity overloading is one way to provide default values for arguments. 
In the following example, "karate" is the default argument for the chop-type 
parameter:

(defn x-chop
  "Describe the kind of chop you're inflicting on someone"
  ([name chop-type]
     (str "I " chop-type " chop " name "! Take that!"))
  ([name]
     (x-chop name "karate")))

If you call x-chop with two arguments, the function works just as it would 
if it weren’t a multiple-arity function:

(x-chop "Kanye West" "slap")
; => "I slap chop Kanye West! Take that!"

If you call x-chop with only one argument, x-chop will 
actually call itself with the second argument "karate" 
supplied:

(x-chop "Kanye East")
; => "I karate chop Kanye East! Take that!"

It might seem unusual to define a 
function in terms of itself like this. 
If so, great! You’re learning a new 
way to do things!

You can also make each 
arity do something completely 
unrelated:

(defn weird-arity
  ([]
     "Destiny dressed you this morning, my friend, and now Fear is
     trying to pull off your pants. If you give up, if you give in,
     you're gonna end up naked with Fear just standing there laughing
     at your dangling unmentionables! - the Tick")
  ([number]
     (inc number)))

The 0-arity body returns a wise quote, and the 1-arity body increments 
a number. Most likely, you wouldn’t want to write a function like this, 
because it would be confusing to have two function bodies that are com-
pletely unrelated.



54   Chapter 3

Clojure also allows you to define variable-arity functions by including a 
rest parameter, as in “put the rest of these arguments in a list with the following 
name.” The rest parameter is indicated by an ampersand (&), as shown at u:

(defn codger-communication
  [whippersnapper]
  (str "Get off my lawn, " whippersnapper "!!!"))

(defn codger
u   [& whippersnappers]

  (map codger-communication whippersnappers))

(codger "Billy" "Anne-Marie" "The Incredible Bulk")
; => ("Get off my lawn, Billy!!!"
      "Get off my lawn, Anne-Marie!!!"
      "Get off my lawn, The Incredible Bulk!!!")

As you can see, when you provide arguments to variable-arity functions, 
the arguments are treated as a list. You can mix rest parameters with nor-
mal parameters, but the rest parameter has to come last:

(defn favorite-things
  [name & things]
  (str "Hi, " name ", here are my favorite things: "
       (clojure.string/join ", " things)))

(favorite-things "Doreen" "gum" "shoes" "kara-te")
; => "Hi, Doreen, here are my favorite things: gum, shoes, kara-te"

Finally, Clojure has a more sophisticated way of defining parameters, 
called destructuring, which deserves its own subsection.

Destructuring

The basic idea behind destructuring is that it lets you concisely bind names 
to values within a collection. Let’s look at a basic example:

;; Return the first element of a collection
(defn my-first
  [[first-thing]] ; Notice that first-thing is within a vector
  first-thing)

(my-first ["oven" "bike" "war-axe"])
; => "oven"

Here, the my-first function associates the symbol first-thing with 
the first element of the vector that was passed in as an argument. You tell 
my-first to do this by placing the symbol first-thing within a vector.

That vector is like a huge sign held up to Clojure that says, “Hey! This 
function is going to receive a list or a vector as an argument. Make my life 
easier by taking apart the argument’s structure for me and associating 



Do Things: A Clojure Crash Course    55

meaningful names with different parts of the argument!” When destruc-
turing a vector or list, you can name as many elements as you want and 
also use rest parameters:

(defn chooser
  [[first-choice second-choice & unimportant-choices]]
  (println (str "Your first choice is: " first-choice))
  (println (str "Your second choice is: " second-choice))
  (println (str "We're ignoring the rest of your choices. "
                "Here they are in case you need to cry over them: "
                (clojure.string/join ", " unimportant-choices))))

(chooser ["Marmalade", "Handsome Jack", "Pigpen", "Aquaman"])
; => Your first choice is: Marmalade
; => Your second choice is: Handsome Jack
; => We're ignoring the rest of your choices. Here they are in case \
     you need to cry over them: Pigpen, Aquaman

Here, the rest parameter unimportant-choices handles any number of 
additional choices from the user after the first and second.

You can also destructure maps. In the same way that you tell Clojure 
to destructure a vector or list by providing a vector as a parameter, you 
destructure maps by providing a map as a parameter:

(defn announce-treasure-location
u   [{lat :lat lng :lng}]

  (println (str "Treasure lat: " lat))
  (println (str "Treasure lng: " lng)))

(announce-treasure-location {:lat 28.22 :lng 81.33})
; => Treasure lat: 100
; => Treasure lng: 50

Let’s look at the line at u in more detail. This is like telling Clojure, 
“Yo! Clojure! Do me a flava and associate the name lat with the value corre-
sponding to the key :lat. Do the same thing with lng and :lng, okay?” 

We often want to just break keywords out of a map, so there’s a shorter 
syntax for that. This has the same result as the previous example:

(defn announce-treasure-location
  [{:keys [lat lng]}]
  (println (str "Treasure lat: " lat))
  (println (str "Treasure lng: " lng)))

You can retain access to the original map argument by using the :as 
keyword. In the following example, the original map is accessed with 
treasure-location:

(defn receive-treasure-location
  [{:keys [lat lng] :as treasure-location}]



56   Chapter 3

  (println (str "Treasure lat: " lat))
  (println (str "Treasure lng: " lng))

  ;; One would assume that this would put in new coordinates for your ship
  (steer-ship! treasure-location))

In general, you can think of destructuring as instructing Clojure on 
how to associate names with values in a list, map, set, or vector. Now, on to 
the part of the function that actually does something: the function body!

Function Body

The function body can contain forms of any kind. Clojure automatically 
returns the last form evaluated. This function body contains just three 
forms, and when you call the function, it spits out the last form, "joe":

(defn illustrative-function
  []
  (+ 1 304)
  30
  "joe")

(illustrative-function)
; => "joe"

Here’s another function body, which uses an if expression:

(defn number-comment
  [x]
  (if (> x 6)
    "Oh my gosh! What a big number!"
    "That number's OK, I guess"))

(number-comment 5)
; => "That number's OK, I guess"

(number-comment 7)
; => "Oh my gosh! What a big number!"

all Functions are Created Equal

One final note: Clojure has no privileged functions. + is just a function, - is 
just a function, and inc and map are just functions. They’re no better than 
the functions you define yourself. So don’t let them give you any lip!

More important, this fact helps demonstrate Clojure’s underlying 
simplicity. In a way, Clojure is very dumb. When you make a function call, 
Clojure just says, “map? Sure, whatever! I’ll just apply this and move on.” It 
doesn’t care what the function is or where it came from; it treats all func-
tions the same. At its core, Clojure doesn’t give two burger flips about addi-
tion, multiplication, or mapping. It just cares about applying functions.

As you continue to program with Clojure, you’ll see that this simplicity 
is ideal. You don’t have to worry about special rules or syntax for working 
with different functions. They all work the same!



Do Things: A Clojure Crash Course    57

Anonymous Functions
In Clojure, functions don’t need to have names. In fact, you’ll use anony-
mous functions all the time. How mysterious! You create anonymous func-
tions in two ways. The first is to use the fn form:

(fn [param-list]
  function body)

Looks a lot like defn, doesn’t it? Let’s try a couple of examples:

(map (fn [name] (str "Hi, " name))
     ["Darth Vader" "Mr. Magoo"])
; => ("Hi, Darth Vader" "Hi, Mr. Magoo")

((fn [x] (* x 3)) 8)
; => 24

You can treat fn nearly identically to the way you treat defn. The param-
eter lists and function bodies work exactly the same. You can use argument 
destructuring, rest parameters, and so on. You could even associate your 
anonymous function with a name, which shouldn’t come as a surprise (if 
that does come as a surprise, then . . . Surprise!):

(def my-special-multiplier (fn [x] (* x 3)))
(my-special-multiplier 12)
; => 36

Clojure also offers another, more compact way to create anonymous 
functions. Here’s what an anonymous function looks like:

#(* % 3)

Whoa, that looks weird. Go ahead and apply that weird-looking 
function: 

(#(* % 3) 8)
; => 24

Here’s an example of passing an anonymous function as an argument 
to map:

(map #(str "Hi, " %)
     ["Darth Vader" "Mr. Magoo"])
; => ("Hi, Darth Vader" "Hi, Mr. Magoo")

This strange-looking style of writing anonymous functions is made 
possible by a feature called reader macros. You’ll learn all about those in 
Chapter 7. Right now, it’s okay to learn how to use just these anonymous 
functions.



58   Chapter 3

You can see that this syntax is definitely more compact, but it’s also a 
little odd. Let’s break it down. This kind of anonymous function looks a lot 
like a function call, except that it’s preceded by a hash mark, #:

;; Function call
(* 8 3)

;; Anonymous function
#(* % 3)

This similarity allows you to more quickly see what will happen when 
this anonymous function is applied. “Oh,” you can say to yourself, “this is 
going to multiply its argument by three.”

As you may have guessed by now, the percent sign, %, indicates the argu-
ment passed to the function. If your anonymous function takes multiple 
arguments, you can distinguish them like this: %1, %2, %3, and so on. % is 
equivalent to %1:

(#(str %1 " and " %2) "cornbread" "butter beans")
; => "cornbread and butter beans"

You can also pass a rest parameter with %&:

(#(identity %&) 1 "blarg" :yip)
; => (1 "blarg" :yip)

In this case, you applied the identity function to the rest argument. 
Identity returns the argument it’s given without altering it. Rest argu-
ments are stored as lists, so the function application returns a list of all 
the arguments.

If you need to write a simple anonymous function, using this style is 
best because it’s visually compact. On the other hand, it can easily become 
unreadable if you’re writing a longer, more complex function. If that’s the 
case, use fn.

Returning Functions
By now you’ve seen that functions can return other functions. The returned 
functions are closures, which means that they can access all the variables that 
were in scope when the function was created. Here’s a standard example:

(defn inc-maker
  "Create a custom incrementor"
  [inc-by]
  #(+ % inc-by))

(def inc3 (inc-maker 3))

(inc3 7)
; => 10



Do Things: A Clojure Crash Course    59

Here, inc-by is in scope, so the returned function has access to it even 
when the returned function is used outside inc-maker. 

Pulling It all together
Okay! It's time to use your newfound knowledge 
for a noble purpose: smacking around hobbits! 
To hit a hobbit, you’ll first model its body parts. 
Each body part will include its relative size to 
indicate how likely it is that that part will be 
hit. To avoid repetition, the hobbit model will 
include only entries for left foot, left ear, and so on. 
Therefore, you’ll need a function to fully symme-
trize the model, creating right foot, right ear, and 
so forth. Finally, you’ll create a function that iter-
ates over the body parts and randomly chooses 
the one hit. Along the way, you’ll learn about a 
few new Clojure tools: let expressions, loops, and 
regular expressions. Fun!

The Shire’s Next Top Model
For our hobbit model, we’ll eschew such hobbit 
characteristics as joviality and mischievousness 
and focus only on the hobbit’s tiny body. Here’s 
the hobbit model:

(def asym-hobbit-body-parts [{:name "head" :size 3}
                             {:name "left-eye" :size 1}
                             {:name "left-ear" :size 1}
                             {:name "mouth" :size 1}
                             {:name "nose" :size 1}
                             {:name "neck" :size 2}
                             {:name "left-shoulder" :size 3}
                             {:name "left-upper-arm" :size 3}
                             {:name "chest" :size 10}
                             {:name "back" :size 10}
                             {:name "left-forearm" :size 3}
                             {:name "abdomen" :size 6}
                             {:name "left-kidney" :size 1}
                             {:name "left-hand" :size 2}
                             {:name "left-knee" :size 2}
                             {:name "left-thigh" :size 4}
                             {:name "left-lower-leg" :size 3}
                             {:name "left-achilles" :size 1}
                             {:name "left-foot" :size 2}])

This is a vector of maps. Each map has the name of the body part and 
relative size of the body part. (I know that only anime characters have eyes 
one-third the size of their head, but just go with it, okay?)



60   Chapter 3

Conspicuously missing is the hobbit’s right side. Let’s fix that. Listing 3-1 
is the most complex code you’ve seen so far, and it introduces some new 
ideas. But don’t worry, because we’ll examine it in great detail.

(defn matching-part
  [part]
  {:name (clojure.string/replace (:name part) #"^left-" "right-")
   :size (:size part)})

(defn symmetrize-body-parts
  "Expects a seq of maps that have a :name and :size"
  [asym-body-parts]
  (loop [remaining-asym-parts asym-body-parts
         final-body-parts []]
    (if (empty? remaining-asym-parts)
      final-body-parts
      (let [[part & remaining] remaining-asym-parts]
        (recur remaining
               (into final-body-parts
                     (set [part (matching-part part)])))))))

Listing 3-1: The matching-part and symmetrize-body-parts functions

When we call the function symmetrize-body-parts on asym-hobbit-body-parts, 
we get a fully symmetrical hobbit:

(symmetrize-body-parts asym-hobbit-body-parts)
; => [{:name "head", :size 3}
      {:name "left-eye", :size 1}
      {:name "right-eye", :size 1}
      {:name "left-ear", :size 1}
      {:name "right-ear", :size 1}
      {:name "mouth", :size 1}
      {:name "nose", :size 1}
      {:name "neck", :size 2}
      {:name "left-shoulder", :size 3}
      {:name "right-shoulder", :size 3}
      {:name "left-upper-arm", :size 3}
      {:name "right-upper-arm", :size 3}
      {:name "chest", :size 10}
      {:name "back", :size 10}
      {:name "left-forearm", :size 3}
      {:name "right-forearm", :size 3}
      {:name "abdomen", :size 6}
      {:name "left-kidney", :size 1}
      {:name "right-kidney", :size 1}
      {:name "left-hand", :size 2}
      {:name "right-hand", :size 2}
      {:name "left-knee", :size 2}
      {:name "right-knee", :size 2}
      {:name "left-thigh", :size 4}
      {:name "right-thigh", :size 4}
      {:name "left-lower-leg", :size 3}
      {:name "right-lower-leg", :size 3}



Do Things: A Clojure Crash Course    61

      {:name "left-achilles", :size 1}
      {:name "right-achilles", :size 1}
      {:name "left-foot", :size 2}
      {:name "right-foot", :size 2}]

Let’s break down this code!

let
In the mass of craziness in Listing 3-1, you can see a form of the structure 
(let ...). Let’s build up an understanding of let one example at a time, and 
then examine the full example from the program once we’re familiar with 
all the pieces.

let binds names to values. You can think of let as short for let it be, 
which is also a beautiful Beatles song about programming. Here’s an 
example:

(let [x 3]
  x)
; => 3

(def dalmatian-list
  ["Pongo" "Perdita" "Puppy 1" "Puppy 2"])
(let [dalmatians (take 2 dalmatian-list)]
  dalmatians)
; => ("Pongo" "Perdita")

In the first example, you bind the name x to the value 3. In the sec-
ond, you bind the name dalmatians to the result of the expression (take 2 
dalmatian-list), which was the list ("Pongo" "Perdita"). let also introduces a 
new scope :

(def x 0)
(let [x 1] x)
; => 1

Here, you first bind the name x to the value 0 using def. Then, let 
creates a new scope in which the name x is bound to the value 1. I think 
of scope as the context for what something refers to. For example, in the 
phrase “please clean up these butts,” butts means something different 
depending on whether you’re working in a maternity ward or on the cus-
todial staff of a cigarette manufacturers convention. In this code snippet, 
you’re saying, “I want x to be 0 in the global context, but within the context 
of this let expression, it should be 1.”

You can reference existing bindings in your let binding:

(def x 0)
(let [x (inc x)] x)
; => 1



62   Chapter 3

In this example, the x in (inc x) refers to the binding created by (def 
x 0). The resulting value is 1, which is then bound to the name x within a 
new scope created by let. Within the confines of the let form, x refers to 1, 
not 0.

You can also use rest parameters in let, just like you can in functions:

(let [[pongo & dalmatians] dalmatian-list]
  [pongo dalmatians])
; => ["Pongo" ("Perdita" "Puppy 1" "Puppy 2")]

Notice that the value of a let form is the last form in its body that 
is evaluated. let forms follow all the destructuring rules introduced in 
“Calling Functions” on page 48. In this case, [pongo & dalmatians] destruc-
tured dalmatian-list, binding the string "Pongo" to the name pongo and the 
list of the rest of the dalmatians to dalmatians. The vector [pongo dalmatians] 
is the last expression in let, so it’s the value of the let form.

let forms have two main uses. First, they provide clarity by allowing you 
to name things. Second, they allow you to evaluate an expression only once 
and reuse the result. This is especially important when you need to reuse 
the result of an expensive function call, like a network API call. It’s also 
important when the expression has side effects.

Let’s have another look at the let form in our symmetrizing function so 
we can understand exactly what’s going on:

(let [[part & remaining] remaining-asym-parts]
  (recur remaining
         (into final-body-parts
               (set [part (matching-part part)]))))    

This code tells Clojure, “Create a new scope. Within it, associate part 
with the first element of remaining-asym-parts. Associate remaining with the 
rest of the elements in remaining-asym-parts.”

As for the body of the let expression, you’ll learn about the meaning of 
recur in the next section. The function call 

(into final-body-parts
  (set [part (matching-part part)]))

first tells Clojure, “Use the set function to create a set consisting of part and 
its matching part. Then use the function into to add the elements of that set 
to the vector final-body-parts.” You create a set here to ensure you’re adding 
unique elements to final-body-parts because part and (matching-part part) 
are sometimes the same thing, as you’ll see in the upcoming section on 
regular expressions. Here’s a simplified example:

(into [] (set [:a :a]))
; => [:a]



Do Things: A Clojure Crash Course    63

First, (set [:a :a]) returns the set #{:a}, because sets don’t contain 
duplicate elements. Then (into [] #{:a}) returns the vector [:a].

Back to let: notice that part is used multiple times in the body of the 
let. If we used the original expressions instead of using the names part and 
remaining, it would be a mess! Here’s an example:

(recur (rest remaining-asym-parts)
       (into final-body-parts
             (set [(first remaining-asym-parts) (matching-part (first 
remaining-asym-parts))])))

So, let is a handy way to introduce local names for values, which helps 
simplify the code.

loop
In our symmetrize-body-parts function we use loop, which provides another 
way to do recursion in Clojure. Let’s look at a simple example:

(loop [iteration 0]
  (println (str "Iteration " iteration))
  (if (> iteration 3)
    (println "Goodbye!")
    (recur (inc iteration))))
; => Iteration 0
; => Iteration 1
; => Iteration 2
; => Iteration 3
; => Iteration 4
; => Goodbye!

The first line, loop [iteration 0], begins the loop and introduces a bind-
ing with an initial value. On the first pass through the loop, iteration has 
a value of 0. Next, it prints a short message. Then, it checks the value of 
iteration. If the value is greater than 3, it’s time to say Goodbye. Otherwise, 
we recur. It’s as if loop creates an anonymous function with a parameter 
named iteration, and recur allows you to call the function from within 
itself, passing the argument (inc iteration).

You could in fact accomplish the same thing by just using a normal 
function definition:

(defn recursive-printer
  ([]
     (recursive-printer 0))
  ([iteration]
     (println iteration)
     (if (> iteration 3)
       (println "Goodbye!")
       (recursive-printer (inc iteration)))))
(recursive-printer)



64   Chapter 3

; => Iteration 0
; => Iteration 1
; => Iteration 2
; => Iteration 3
; => Iteration 4
; => Goodbye!

But as you can see, this is a bit more verbose. Also, loop has much better 
performance. In our symmetrizing function, we’ll use loop to go through 
each element in the asymmetrical list of body parts.

Regular Expressions
Regular expressions are tools for performing pattern matching on text. The 
literal notation for a regular expression is to place the expression in quotes 
after a hash mark:

#"regular-expression"

In the function matching-part in Listing 3-1, clojure.string/replace uses 
the regular expression #"^left-" to match strings starting with "left-" in 
order to replace "left-" with "right-". The carat, ^, is how the regular 
expression signals that it will match the text "left-" only if it’s at the begin-
ning of the string, which ensures that something like "cleft-chin" won’t 
match. You can test this with re-find, which checks whether a string matches 
the pattern described by a regular expression, returning the matched text 
or nil if there is no match:

(re-find #"^left-" "left-eye")
; => "left-"

(re-find #"^left-" "cleft-chin")
; => nil

(re-find #"^left-" "wongleblart")
; => nil

Here are a couple of examples of matching-part using a regex to replace 
"left-" with "right-": 

(defn matching-part
  [part]
  {:name (clojure.string/replace (:name part) #"^left-" "right-")
   :size (:size part)})
(matching-part {:name "left-eye" :size 1})
; => {:name "right-eye" :size 1}]

(matching-part {:name "head" :size 3})
; => {:name "head" :size 3}]

Notice that the name "head" is returned as is.



Do Things: A Clojure Crash Course    65

Symmetrizer
Now let’s go back to the full symmetrizer and analyze it in more detail:

(def asym-hobbit-body-parts [{:name "head" :size 3}
                             {:name "left-eye" :size 1}
                             {:name "left-ear" :size 1}
                             {:name "mouth" :size 1}
                             {:name "nose" :size 1}
                             {:name "neck" :size 2}
                             {:name "left-shoulder" :size 3}
                             {:name "left-upper-arm" :size 3}
                             {:name "chest" :size 10}
                             {:name "back" :size 10}
                             {:name "left-forearm" :size 3}
                             {:name "abdomen" :size 6}
                             {:name "left-kidney" :size 1}
                             {:name "left-hand" :size 2}
                             {:name "left-knee" :size 2}
                             {:name "left-thigh" :size 4}
                             {:name "left-lower-leg" :size 3}
                             {:name "left-achilles" :size 1}
                             {:name "left-foot" :size 2}])

(defn matching-part
  [part]
  {:name (clojure.string/replace (:name part) #"^left-" "right-")
   :size (:size part)})

u (defn symmetrize-body-parts
  "Expects a seq of maps that have a :name and :size"
  [asym-body-parts]

v   (loop [remaining-asym-parts asym-body-parts 
         final-body-parts []]

w     (if (empty? remaining-asym-parts) 
      final-body-parts

x       (let [[part & remaining] remaining-asym-parts] 
y         (recur remaining 

               (into final-body-parts
                     (set [part (matching-part part)])))))))

The symmetrize-body-parts function (starting at u) employs a general 
strategy that is common in functional programming. Given a sequence (in 
this case, a vector of body parts and their sizes), the function continuously 
splits the sequence into a head and a tail. Then it processes the head, adds it 
to some result, and uses recursion to continue the process with the tail.

We begin looping over the body parts at v. The tail of the sequence will 
be bound to remaining-asym-parts. Initially, it’s bound to the full sequence 
passed to the function: asym-body-parts. We also create a result sequence, 
final-body-parts; its initial value is an empty vector.



66   Chapter 3

If remaining-asym-parts is empty at w, that means we’ve processed the 
entire sequence and can return the result, final-body-parts. Otherwise, at x 
we split the list into a head, part, and tail, remaining.

At y, we recur with remaining, a list that gets shorter by one element on 
each iteration of the loop, and the (into) expression, which builds our vec-
tor of symmetrized body parts.

If you’re new to this kind of programming, this code might take some 
time to puzzle out. Stick with it! Once you understand what’s happening, 
you’ll feel like a million bucks!

Better Symmetrizer with reduce
The pattern of process each element in a sequence and build a result is so com-
mon that there’s a built-in function for it called reduce. Here’s a simple 
example:

;; sum with reduce
(reduce + [1 2 3 4])
; => 10

This is like telling Clojure to do this:

(+ (+ (+ 1 2) 3) 4)

The reduce function works according to the following steps:

1. Apply the given function to the first two elements of a sequence. That’s 
where (+ 1 2) comes from.

2. Apply the given function to the result and the next element of the 
sequence. In this case, the result of step 1 is 3, and the next element 
of the sequence is 3 as well. So the final result is (+ 3 3).

3. Repeat step 2 for every remaining element in the sequence.

reduce also takes an optional initial value. The initial value here is 15:

(reduce + 15 [1 2 3 4])

If you provide an initial value, reduce starts by applying the given func-
tion to the initial value and the first element of the sequence rather than 
the first two elements of the sequence.

One detail to note is that, in these examples, reduce takes a collection 
of elements, [1 2 3 4], and returns a single number. Although program-
mers often use reduce this way, you can also use reduce to return an even 
larger collection than the one you started with, as we’re trying to do 
with symmetrize-body-parts. reduce abstracts the task “process a collection 



Do Things: A Clojure Crash Course    67

and build a result,” which is agnostic about the type of result returned. 
To further understand how reduce works, here’s one way that you could 
implement it:

(defn my-reduce
  ([f initial coll]
   (loop [result initial
          remaining coll]
     (if (empty? remaining)
       result
       (recur (f result (first remaining)) (rest remaining)))))
  ([f [head & tail]]
   (my-reduce f head tail)))

We could reimplement our symmetrizer as follows:

(defn better-symmetrize-body-parts
  "Expects a seq of maps that have a :name and :size"
  [asym-body-parts]
  (reduce (fn [final-body-parts part]
            (into final-body-parts (set [part (matching-part part)])))
          []
          asym-body-parts))

Groovy! One immediately obvious advantage of using reduce is that you 
write less code overall. The anonymous function you pass to reduce focuses 
only on processing an element and building a result. The reason is that reduce 
handles the lower-level machinery of keeping track of which elements have 
been processed and deciding whether to return a final result or to recur.

Using reduce is also more expressive. If readers of your code encounter 
loop, they won’t be sure exactly what the loop is doing without reading all of 
the code. But if they see reduce, they’ll immediately know that the purpose 
of the code is to process the elements of a collection to build a result.

Finally, by abstracting the reduce process into a function that takes 
another function as an argument, your program becomes more compos-
able. You can pass the reduce function as an argument to other functions, 
for example. You could also create a more generic version of symmetrize-body 
-parts, say, expand-body-parts. This could take an expander function in addition 
to a list of body parts and would let you model more than just hobbits. For 
example, you could have a spider expander that could multiply the numbers 
of eyes and legs. I’ll leave it up to you to write that because I am evil.

Hobbit Violence
My word, this is truly Clojure for the Brave and True! To put the capstone on 
your work, here’s a function that determines which part of a hobbit is hit:

(defn hit
  [asym-body-parts]



68   Chapter 3

  (let [sym-parts (ubetter-symmetrize-body-parts asym-body-parts)
        vbody-part-size-sum (reduce + (map :size sym-parts))
        target (rand body-part-size-sum)]
    w(loop [[part & remaining] sym-parts
           accumulated-size (:size part)]
      (if (> accumulated-size target)
        part
        (recur remaining (+ accumulated-size (:size (first remaining))))))))

hit works by taking a vector of asymmetrical body parts, symmetriz-
ing it at u, and then summing the sizes of the parts at v. Once we sum the 
sizes, it’s like each number from 1 through body-part-size-sum corresponds 
to a body part; 1 might correspond to the left eye, and 2, 3, 4 might corre-
spond to the head. This makes it so when you hit a body part (by choosing a 
random number in this range), the likelihood that a particular body part is 
hit will depend on the size of the body part. 

Finally, one of these numbers is randomly chosen, and then we use loop 
at w to find and return the body part that corresponds to the number. The 
loop does this by keeping track of the accumulated sizes of parts that we’ve 
checked and checking whether the accumulated size is greater than the tar-
get. I visualize this process as lining up the body parts with a row of num-
bered slots. After I line up a body part, I ask myself, “Have I reached the 
target yet?” If I have, that means the body part I 
just lined up was the one hit. Otherwise, I just 
keep lining up those parts.

For example, say that your list of parts is 
head, left eye, and left hand, like in Figure 3-1. 
After taking the first part, the head, the accu-
mulated size is 3. The body part is hit if the 
accumulated size is greater than the target, so 
if the target is 0, 1, or 2, then the head was hit. 
Otherwise, you take the next part, the left eye, 
and increase the accumulated size to 4, yielding 
a hit if the target is 3. Similarly, the left hand 
gets hit if the target is 4 or 5. 

Here are some sample runs of the hit 
function:

(hit asym-hobbit-body-parts)
; => {:name "right-upper-arm", :size 3}

(hit asym-hobbit-body-parts)
; => {:name "chest", :size 10}

(hit asym-hobbit-body-parts)
; => {:name "left-eye", :size 1}

Oh my god, that poor hobbit! You monster!

Head
Left
eye

Left
hand

1 2 3 4 5 6

Figure 3-1: Body parts 
correspond to ranges 
of numbers and get hit 
if the target falls within 
that range.



Do Things: A Clojure Crash Course    69

summary
This chapter gave you a whirlwind tour of how to do stuff in Clojure. You 
now know how to represent information using strings, numbers, maps, key-
words, vectors, lists, and sets, and how to name these representations with 
def and let. You’ve learned about how flexible functions are and how to 
create your own functions. Also, you’ve been introduced to Clojure’s philos-
ophy of simplicity, including its uniform syntax and its emphasis on using 
large libraries of functions on primitive data types.

Chapter 4 will take you through a detailed examination of Clojure’s 
core functions, and Chapter 5 explains the functional programming mind-
set. This chapter has shown you how to write Clojure code—the next two 
will show you how to write Clojure well.

At this point I recommend, with every fiber of my being, that you start 
writing code. There is no better way to solidify your Clojure knowledge. 
The Clojure Cheat Sheet (http://clojure.org/cheatsheet/) is a great reference 
that lists all the built-in functions that operate on the data structures cov-
ered in this chapter.

The following exercises will really tickle your brain. If you’d like to test 
your new skills even more, try some Project Euler challenges at http://www 
.projecteuler.net/. You could also check out 4Clojure (http://www.4clojure.com/
problems/), an online set of Clojure problems designed to test your knowl-
edge. Just write something!

exercises
These exercises are meant to be a fun way to test your Clojure knowledge 
and to learn more Clojure functions. The first three can be completed 
using only the information presented in this chapter, but the last three will 
require you to use functions that haven’t been covered so far. Tackle the last 
three if you’re really itching to write more code and explore Clojure’s stan-
dard library. If you find the exercises too difficult, revisit them after read-
ing Chapters 4 and 5—you’ll find them much easier.

1. Use the str, vector, list, hash-map, and hash-set functions.

2. Write a function that takes a number and adds 100 to it.

3. Write a function, dec-maker, that works exactly like the function inc-maker 
except with subtraction:

(def dec9 (dec-maker 9))
(dec9 10)
; => 1

4. Write a function, mapset, that works like map except the return value is 
a set:

(mapset inc [1 1 2 2])
; => #{2 3}

http://clojure.org/cheatsheet/
http://www .projecteuler.net/
http://www .projecteuler.net/
http://www.4clojure.com/problems/
http://www.4clojure.com/problems/


70   Chapter 3

5. Create a function that’s similar to symmetrize-body-parts except that it 
has to work with weird space aliens with radial symmetry. Instead of 
two eyes, arms, legs, and so on, they have five.

6. Create a function that generalizes symmetrize-body-parts and the func-
tion you created in Exercise 5. The new function should take a col-
lection of body parts and the number of matching body parts to add. 
If you’re completely new to Lisp languages and functional program-
ming, it probably won’t be obvious how to do this. If you get stuck, just 
move on to the next chapter and revisit the problem later.



4
C o r e  f u n C t i o n s  i n  D e p t h

If you’re a huge fan of the angsty, teenager-
centric, quasi–soap opera The Vampire 

Diaries like I am, you’ll remember the epi-
sode where the lead protagonist, Elena, starts 

to question her pale, mysterious crush’s behavior: 
“Why did he instantly vanish without a trace when I 
scraped my knee?” and “How come his face turned 
into a grotesque mask of death when I nicked my 
finger?” and so on.

You might be asking yourself similar questions if you’ve started playing 
with Clojure’s core functions. “Why did map return a list when I gave it a vec-
tor?” and “How come reduce treats my map like a list of vectors?” and so on. 
(With Clojure, though, you’re at least spared from contemplating the pro-
found existential horror of being a 17-year-old for eternity.)

In this chapter, you’ll learn about Clojure’s deep, dark, bloodthirsty, 
supernatur—*cough* I mean, in this chapter, you’ll learn about Clojure’s 



72   Chapter 4

underlying concept of programming to abstractions and about the sequence 
and collection abstractions. You’ll also learn about lazy sequences. This will 
give you the grounding you need to read the documentation for functions 
you haven’t used before and to understand what’s happening when you give 
them a try.

Next, you’ll get more experience with the functions you’ll be reaching 
for the most. You’ll learn how to work with lists, vectors, maps, and sets 
with the functions map, reduce, into, conj, concat, some, filter, take, drop, sort, 
sort-by, and identity. You’ll also learn how to create new functions with 
apply, partial, and complement. All this 
information will help you understand 
how to do things the Clojure way, and 
it will give you a solid foundation for 
writing your own code as well as for 
reading and learning from others’ 
projects.

Finally, you’ll learn how to parse 
and query a CSV of vampire data to 
determine what nosferatu lurk in your 
hometown.

Programming to abstractions
To understand programming to abstractions, let’s compare Clojure to a 
language that wasn’t built with that principle in mind: Emacs Lisp (elisp). 
In elisp, you can use the mapcar function to derive a new list, which is similar 
to how you use map in Clojure. However, if you want to map over a hash map 
(similar to Clojure’s map data structure) in elisp, you’ll need to use the 
maphash function, whereas in Clojure you can still just use map. In other words, 
elisp uses two different, data structure–specific functions to implement the 
map operation, but Clojure uses only one. You can also call reduce on a map in 
Clojure, whereas elisp doesn’t provide a function for reducing a hash map. 

The reason is that Clojure defines map and reduce functions in terms of 
the sequence abstraction, not in terms of specific data structures. As long as 
a data structure responds to the core sequence operations (the functions 
first, rest, and cons, which we’ll look at more closely in a moment), it will 
work with map, reduce, and oodles of other sequence functions for free. This 
is what Clojurists mean by programming to abstractions, and it’s a central 
tenet of Clojure philosophy.

I think of abstractions as named collections of operations. If you can 
perform all of an abstraction’s operations on an object, then that object is 
an instance of the abstraction. I think this way even outside of program-
ming. For example, the battery abstraction includes the operation “connect a 
conducting medium to its anode and cathode,” and the operation’s output 
is electrical current. It doesn’t matter if the battery is made out of lithium or 
out of potatoes. It’s a battery as long as it responds to the set of operations 
that define battery.



Core Functions in Depth   73

Similarly, map doesn’t care about how lists, vectors, sets, and maps are 
implemented. It only cares about whether it can perform sequence operations 
on them. Let’s look at how map is defined in terms of the sequence abstraction 
so you can understand programming to abstractions in general.

Treating Lists, Vectors, Sets, and Maps as Sequences
If you think about the map operation independently of any programming 
language, or even of programming altogether, its essential behavior is to 
derive a new sequence y from an existing sequence x using a function ƒ 
such that y1 = ƒ(x1), y2 = ƒ(x2), . . . yn = ƒ(xn). Figure 4-1 illustrates how you 
might visualize a mapping applied to a sequence.

x1 x2 x3 x4

ƒ ƒ ƒ ƒ

y1 y2 y3 y4

Sequence

Mapping
Individual 
function 
application

Result

Figure 4-1: Visualizing a mapping

The term sequence here refers to a collection of elements organized in 
linear order, as opposed to, say, an unordered collection or a graph with-
out a before-and-after relationship between its nodes. Figure 4-2 shows how 
you might visualize a sequence, in contrast to the other two collections 
mentioned.

Sequence

Sequence
element

Unordered
collection

Graph without
before/after
relationships

Figure 4-2: Sequential and nonsequential collections

Absent from this description of mapping and sequences is any mention of 
lists, vectors, or other concrete data structures. Clojure is designed to allow 
us to think and program in such abstract terms as much as possible, and it 
does this by implementing functions in terms of data structure abstractions. 
In this case, map is defined in terms of the sequence abstraction. In conversa-
tion, you would say map, reduce, and other sequence functions take a sequence 



74   Chapter 4

or even take a seq. In fact, Clojurists usually use seq instead of sequence, using 
terms like seq functions and the seq library to refer to functions that perform 
sequential operations. Whether you use sequence or seq, you’re indicating 
that the data structure in question will be treated as a sequence and that 
what it actually is in its truest heart of hearts doesn’t matter in this context.

If the core sequence functions first, rest, and cons work on a data struc-
ture, you can say the data structure implements the sequence abstraction. 
Lists, vectors, sets, and maps all implement the sequence abstraction, so 
they all work with map, as shown here:

(defn titleize
  [topic]
  (str topic " for the Brave and True"))

(map titleize ["Hamsters" "Ragnarok"])
; => ("Hamsters for the Brave and True" "Ragnarok for the Brave and True")

(map titleize '("Empathy" "Decorating"))
; => ("Empathy for the Brave and True" "Decorating for the Brave and True")

(map titleize #{"Elbows" "Soap Carving"})
; => ("Elbows for the Brave and True" "Soap Carving for the Brave and True")

(map #(titleize (second %)) {:uncomfortable-thing "Winking"})
; => ("Winking for the Brave and True")

The first two examples show that map works identically with vectors and 
lists. The third example shows that map can work with unsorted sets. In the 
fourth example, you must call second on the anonymous function’s argument 
before title-izing it because the argument is a map. I’ll explain why soon, but 
first let’s look at the three functions that define the sequence abstraction.

first, rest, and cons
In this section, we’ll take a quick detour 
into JavaScript to implement a linked 
list and three core functions: first, rest, 
and cons. After those three core func-
tions are implemented, I’ll show how 
you to build map with them.

The point is to appreciate the dis-
tinction between the seq abstraction 
in Clojure and the concrete implemen-
tation of a linked list. It doesn’t mat-
ter how a particular data structure is 
implemented: when it comes to using 
seq functions on a data structure, all 
Clojure asks is “can I first, rest, and 
cons it?” If the answer is yes, you can use 
the seq library with that data structure.



Core Functions in Depth   75

In a linked list, nodes are linked in a linear sequence. Here’s how you 
might create one in JavaScript. In this snippet, next is null because this is 
the last node in the list:

var node3 = {
  value: "last",
  next: null
};

In this snippet, node2’s next points to node3, and node1’s next points to 
node2; that’s the “link” in “linked list”:

var node2 = {
  value: "middle",
  next: node3
};

var node1 = {
  value: "first",
  next: node2
};

Graphically, you could represent this list as shown in Figure 4-3.

value next value next value next

node1

"first"

node2

"middle" "last"

node3

Figure 4-3: A linked list

You can perform three core functions on a linked list: first, rest, and 
cons. first returns the value for the requested node, rest returns the remain-
ing values after the requested node, and cons adds a new node with the given 
value to the beginning of the list. After those are implemented, you can 
implement map, reduce, filter, and other seq functions on top of them. 

The following code shows how we would implement and use first, rest, 
and cons with our JavaScript node example, as well as how to use them to 
return specific nodes and derive a new list. Note that the parameter of first 
and rest is named node. This might be confusing because you might say, 
“Ain’t I getting the first element of a list?” Well, you operate on the elements 
of a list one node at a time!

var first = function(node) {
  return node.value;
};

var rest = function(node) {
  return node.next;
};



76   Chapter 4

var cons = function(newValue, node) {
  return {
    value: newValue,
    next: node
  };
};

first(node1);
// => "first"

first(rest(node1));
// => "middle"

first(rest(rest(node1)));
// => "last"

var node0 = cons("new first", node1);
first(node0);
// => "new first"

first(rest(node0));
// => "first"

As noted previously, you can implement map in terms of first, rest, 
and cons:

var map = function (list, transform) {
  if (list === null) {
    return null;
  } else {
    return cons(transform(first(list)), map(rest(list), transform));
  }
}

This function transforms the first element of the list and then calls 
itself again on the rest of the list until it reaches the end (a null). Let’s see 
it in action! In this example, you’re mapping the list that begins with node1, 
returning a new list where the string " mapped!" is appended to each node’s 
value. Then you’re using first to return the first node’s value:

first(
  map(node1, function (val) { return val + " mapped!"})
);

// => "first mapped!"

So here’s the cool thing: because map is implemented completely in terms 
of cons, first, and rest, you could actually pass it any data structure and it 
would work as long as cons, first, and rest work on that data structure. 



Core Functions in Depth   77

Here’s how they might work for an array:

var first = function (array) {
  return array[0];
}

var rest = function (array) {
  var sliced = array.slice(1, array.length);
  if (sliced.length == 0) {
    return null;
  } else {
    return sliced;
  }
}

var cons = function (newValue, array) {
  return [newValue].concat(array);
}

var list = ["Transylvania", "Forks, WA"];
map(list, function (val) { return val + " mapped!"})
// => ["Transylvania mapped!", "Forks, WA mapped!"]

This code snippet defines first, rest, and cons in terms of JavaScript’s 
array functions. Meanwhile, map continues referencing functions named 
first, rest, and cons, so now it works on array. So, if you can just imple-
ment first, rest, and cons, you get map for free along with the aforemen-
tioned oodles of other functions.

Abstraction Through Indirection
At this point, you might object that I’m just kicking the can down the road 
because we’re still left with the problem of how a function like first is able 
to work with different data structures. Clojure does this using two forms of 
indirection. In programming, indirection is a generic term for the mechanisms 
a language employs so that one name can have multiple, related meanings. 
In this case, the name first has multiple, data structure–specific meanings. 
Indirection is what makes abstraction possible.

Polymorphism is one way that Clojure provides indirection. I don’t want 
to get lost in the details, but basically, polymorphic functions dispatch to 
different function bodies based on the type of the argument supplied. (It’s 
not so different from how multiple-arity functions dispatch to different 
function bodies based on the number of arguments you provide.)

n o t e  Clojure has two constructs for defining polymorphic dispatch: the host platform’s 
interface construct and platform-independent protocols. But it’s not necessary to 
understand how these work when you’re just getting started. I’ll cover protocols in 
Chapter 13.



78   Chapter 4

When it comes to sequences, Clojure also creates indirection by doing a 
kind of lightweight type conversion, producing a data structure that works 
with an abstraction’s functions. Whenever Clojure expects a sequence—for 
example, when you call map, first, rest, or cons—it calls the seq function 
on the data structure in question to obtain a data structure that allows for 
first, rest, and cons:

(seq '(1 2 3))
; => (1 2 3)

(seq [1 2 3])
; => (1 2 3)

(seq #{1 2 3})
; => (1 2 3)

(seq {:name "Bill Compton" :occupation "Dead mopey guy"})
; => ([:name "Bill Compton"] [:occupation "Dead mopey guy"])

There are two notable details here. First, seq always returns a value 
that looks and behaves like a list; you’d call this value a sequence or seq. 
Second, the seq of a map consists of two-element key-value vectors. That’s 
why map treats your maps like lists of vectors! You can see this in the "Bill 
Compton" example. I wanted to point out this example in particular because 
it might be surprising and confusing. It was for me when I first started 
using Clojure. Knowing these underlying mechanisms will spare you from 
the kind of frustration and general mopiness often exhibited by male 
vampires trying to retain their humanity.

You can convert the seq back into a map by using into to stick the result 
into an empty map (you’ll look at into closely later):

(into {} (seq {:a 1 :b 2 :c 3}))
; => {:a 1, :c 3, :b 2}

So, Clojure’s sequence functions use seq on their arguments. The 
sequence functions are defined in terms of the sequence abstraction, 
using first, rest, and cons. As long as a data structure implements 
the sequence abstraction, it can use the extensive seq library, which 
includes such superstar functions as reduce, filter, distinct, group-by, 
and dozens more. 

The takeaway here is that it’s powerful to focus on what we can do with 
a data structure and to ignore, as much as possible, its implementation. 
Implementations rarely matter in and of themselves. They’re just a means to 
an end. In general, programming to abstractions gives you power by letting 
you use libraries of functions on different data structure regardless of how 
those data structures are implemented.



Core Functions in Depth   79

seq function examples
Clojure’s seq library is full of useful functions that you’ll use all the time. 
Now that you have a deeper understanding of Clojure’s sequence abstraction, 
let’s look at these functions in detail. If you’re new to Lisp and functional 
programming, these examples will be surprising and delightful.

map
You’ve seen many examples of map by now, but this section shows map doing 
two new tasks: taking multiple collections as arguments and taking a collec-
tion of functions as an argument. It also highlights a common map pattern: 
using keywords as the mapping function.

So far, you’ve only seen examples of map operating on one collection. In 
the following code, the collection is the vector [1 2 3]:

(map inc [1 2 3])
; => (2 3 4)

However, you can also give map multiple collections. Here’s a simple 
example to show how this works:

(map str ["a" "b" "c"] ["A" "B" "C"])
; => ("aA" "bB" "cC")

It’s as if map does the following:

(list (str "a" "A") (str "b" "B") (str "c" "C"))

When you pass map multiple collections, the elements of the first col-
lection (["a" "b" "c"]) will be passed as the first argument of the mapping 
function (str), the elements of the second collection (["A" "B" "C"]) will be 
passed as the second argument, and so on. Just be sure that your mapping 
function can take a number of arguments equal to the number of collec-
tions you’re passing to map.

The following example shows how you could use this capability if you 
were a vampire trying to curb your human consumption. You have two vec-
tors, one representing human intake in liters and another representing 
critter intake for the past four days. The unify-diet-data function takes a 
single day’s data for both human and critter feeding and unifies the two 
into a single map:

(def human-consumption   [8.1 7.3 6.6 5.0])
(def critter-consumption [0.0 0.2 0.3 1.1])
(defn unify-diet-data
  [human critter]
  {:human human
   :critter critter})



80   Chapter 4

(map unify-diet-data human-consumption critter-consumption)
; => ({:human 8.1, :critter 0.0}
      {:human 7.3, :critter 0.2}
      {:human 6.6, :critter 0.3}
      {:human 5.0, :critter 1.8})

Good job laying off the human!
Another fun thing you can do with map is 

pass it a collection of functions. You could use 
this if you wanted to perform a set of calcula-
tions on different collections of numbers, 
like so:

(def sum #(reduce + %))
(def avg #(/ (sum %) (count %)))
(defn stats
  [numbers]
  (map #(% numbers) [sum count avg]))

(stats [3 4 10])
; => (17 3 17/3)

(stats [80 1 44 13 6])
; => (144 5 144/5)

In this example, the stats function iterates over a vector of functions, 
applying each function to numbers.

Additionally, Clojurists often use map to retrieve the value associated 
with a keyword from a collection of map data structures. Because keywords 
can be used as functions, you can do this succinctly. Here’s an example:

(def identities
  [{:alias "Batman" :real "Bruce Wayne"}
   {:alias "Spider-Man" :real "Peter Parker"}
   {:alias "Santa" :real "Your mom"}
   {:alias "Easter Bunny" :real "Your dad"}])

(map :real identities)
; => ("Bruce Wayne" "Peter Parker" "Your mom" "Your dad")

(If you are five, then I apologize profusely.)

reduce
Chapter 3 showed how reduce processes each element in a sequence to build 
a result. This section shows a couple of other ways to use it that might not 
be obvious.

The first use is to transform a map’s values, producing a new map with 
the same keys but with updated values:

(reduce (fn [new-map [key val]]
          (assoc new-map key (inc val)))



Core Functions in Depth   81

        {}
        {:max 30 :min 10})
; => {:max 31, :min 11}

In this example, reduce treats the argument {:max 30 :min 10} as a 
sequence of vectors, like ([:max 30] [:min 10]). Then, it starts with an empty 
map (the second argument) and builds it up using the first argument, an 
anonymous function. It’s as if reduce does this:

(assoc (assoc {} :max (inc 30))
       :min (inc 10))

Another use for reduce is to filter out keys from a map based on their value. 
In the following example, the anonymous function checks whether the value of 
a key-value pair is greather than 4. If it isn’t, then the key-value pair is filtered 
out. In the map {:human 4.1 :critter 3.9}, 3.9 is less than 4, so the :critter key 
and its 3.9 value are filtered out.

(reduce (fn [new-map [key val]]
          (if (> val 4)
            (assoc new-map key val)
            new-map))
        {}
        {:human 4.1
         :critter 3.9})
; => {:human 4.1}

The takeaway here is that reduce is a more flexible function than it first 
appears. Whenever you want to derive a new value from a seqable data 
structure, reduce will usually be able to do what you need. If you want an 
exercise that will really blow your hair back, try implementing map using 
reduce, and then do the same for filter and some after you read about them 
later in this chapter.

take, drop, take-while, and drop-while
take and drop both take two arguments: a number and a sequence. take 
returns the first n elements of the sequence, whereas drop returns the 
sequence with the first n elements removed:

(take 3 [1 2 3 4 5 6 7 8 9 10])
; => (1 2 3)

(drop 3 [1 2 3 4 5 6 7 8 9 10])
; => (4 5 6 7 8 9 10)

Their cousins take-while and drop-while are a bit more interesting. 
Each takes a predicate function (a function whose return value is evaluated 
for truth or falsity) to determine when it should stop taking or dropping. 



82   Chapter 4

Suppose, for example, that you had a vector representing entries in your 
“food” journal. Each entry has the year, month, day, and what you ate. To 
preserve space, we’ll only include a few entries:

(def food-journal
  [{:month 1 :day 1 :human 5.3 :critter 2.3}
   {:month 1 :day 2 :human 5.1 :critter 2.0}
   {:month 2 :day 1 :human 4.9 :critter 2.1}
   {:month 2 :day 2 :human 5.0 :critter 2.5}
   {:month 3 :day 1 :human 4.2 :critter 3.3}
   {:month 3 :day 2 :human 4.0 :critter 3.8}
   {:month 4 :day 1 :human 3.7 :critter 3.9}
   {:month 4 :day 2 :human 3.7 :critter 3.6}])

With take-while, you can retrieve just January’s and February’s data. 
take-while traverses the given sequence (in this case, food-journal), applying 
the predicate function to each element.

This example uses the anonymous function #(< (:month %) 3) to test 
whether the journal entry’s month is out of range:

(take-while #(< (:month %) 3) food-journal)
; => ({:month 1 :day 1 :human 5.3 :critter 2.3}
      {:month 1 :day 2 :human 5.1 :critter 2.0}
      {:month 2 :day 1 :human 4.9 :critter 2.1}
      {:month 2 :day 2 :human 5.0 :critter 2.5})

When take-while reaches the first March entry, the anonymous function 
returns false, and take-while returns a sequence of every element it tested 
until that point.

The same idea applies with drop-while except that it keeps dropping ele-
ments until one tests true:

(drop-while #(< (:month %) 3) food-journal)
; => ({:month 3 :day 1 :human 4.2 :critter 3.3}
      {:month 3 :day 2 :human 4.0 :critter 3.8}
      {:month 4 :day 1 :human 3.7 :critter 3.9}
      {:month 4 :day 2 :human 3.7 :critter 3.6})

By using take-while and drop-while together, you can get data for just 
February and March:

(take-while #(< (:month %) 4)
            (drop-while #(< (:month %) 2) food-journal))
; => ({:month 2 :day 1 :human 4.9 :critter 2.1}
      {:month 2 :day 2 :human 5.0 :critter 2.5}
      {:month 3 :day 1 :human 4.2 :critter 3.3}
      {:month 3 :day 2 :human 4.0 :critter 3.8})

This example uses drop-while to get rid of the January entries, and then 
it uses take-while on the result to keep taking entries until it reaches the first 
April entry.



Core Functions in Depth   83

filter and some
Use filter to return all elements of a sequence that test true for a predicate 
function. Here are the journal entries where human consumption is less 
than five liters:

(filter #(< (:human %) 5) food-journal)
; => ({:month 2 :day 1 :human 4.9 :critter 2.1}
      {:month 3 :day 1 :human 4.2 :critter 3.3}
      {:month 3 :day 2 :human 4.0 :critter 3.8}
      {:month 4 :day 1 :human 3.7 :critter 3.9}
      {:month 4 :day 2 :human 3.7 :critter 3.6})

You might be wondering why we didn’t just use filter in the take-while 
and drop-while examples earlier. Indeed, filter would work for that too. 
Here we’re grabbing the January and February data, just like in the take-
while example:

(filter #(< (:month %) 3) food-journal)
; => ({:month 1 :day 1 :human 5.3 :critter 2.3}
      {:month 1 :day 2 :human 5.1 :critter 2.0}
      {:month 2 :day 1 :human 4.9 :critter 2.1}
      {:month 2 :day 2 :human 5.0 :critter 2.5})

This use is perfectly fine, but filter can end up processing all of your 
data, which isn’t always necessary. Because the food journal is already 
sorted by date, we know that take-while will return the data we want without 
having to examine any of the data we won’t need. Therefore, take-while can 
be more efficient.

Often, you want to know whether a collection contains any values that 
test true for a predicate function. The some function does that, returning 
the first truthy value (any value that’s not false or nil) returned by a predi-
cate function:

(some #(> (:critter %) 5) food-journal)
; => nil

(some #(> (:critter %) 3) food-journal)
; => true

You don’t have any food journal entries where you consumed more than 
five liters from critter sources, but you do have at least one where you con-
sumed more than three liters. Notice that the return value in the second 
example is true and not the actual entry that produced the true value. The 
reason is that the anonymous function #(> (:critter %) 3) returns true or 
false. Here’s how you could return the entry:

(some #(and (> (:critter %) 3) %) food-journal)
; => {:month 3 :day 1 :human 4.2 :critter 3.3}



84   Chapter 4

Here, a slightly different anonymous function uses and to first check 
whether the condition (> (:critter %) 3) is true, and then returns the entry 
when the condition is indeed true.

sort and sort-by
You can sort elements in ascending order with sort:

(sort [3 1 2])
; => (1 2 3)

If your sorting needs are more complicated, you can use sort-by, which 
allows you to apply a function (sometimes called a key function) to the ele-
ments of a sequence and use the values it returns to determine the sort 
order. In the following example, which is taken from http://clojuredocs.org/, 
count is the key function:

(sort-by count ["aaa" "c" "bb"])
; => ("c" "bb" "aaa")

If you were sorting using sort, the elements would be sorted in alpha-
betical order, returning ("aaa" "bb" "c"). Instead, the result is ("c" "bb" 
"aaa") because you’re sorting by count and the count of "c" is 1, "bb" is 2, 
and "aaa" is 3.

concat
Finally, concat simply appends the members of one sequence to the end of 
another:

(concat [1 2] [3 4])
; => (1 2 3 4)

lazy seqs
As you saw earlier, map first calls seq on the collection you pass to it. But 
that’s not the whole story. Many functions, including map and filter, return 
a lazy seq. A lazy seq is a seq whose members aren’t computed until you 
try to access them. Computing a seq’s members is called realizing the seq. 
Deferring the computation until the moment it’s needed makes your pro-
grams more efficient, and it has the surprising benefit of allowing you to 
construct infinite sequences.

Demonstrating Lazy Seq Efficiency
To see lazy seqs in action, pretend that you’re part of a modern-day task 
force whose purpose is to identify vampires. Your intelligence agents tell 
you that there is only one active vampire in your city, and they’ve helpfully 

http://clojuredocs.org/


Core Functions in Depth   85

narrowed down the list of suspects to a million people. Your boss gives 
you a list of one million Social Security numbers and shouts, “Get it done, 
McFishwich!”

Thankfully, you are in possession of a Vampmatic 3000 computifier, 
the state-of-the-art device for vampire identification. Because the source 
code for this vampire-hunting technology is proprietary, I’ve stubbed it out 
to simulate the time it would take to perform this task. Here is a subset of a 
vampire database: 

(def vampire-database
  {0 {:makes-blood-puns? false, :has-pulse? true  :name "McFishwich"}
   1 {:makes-blood-puns? false, :has-pulse? true  :name "McMackson"}
   2 {:makes-blood-puns? true,  :has-pulse? false :name "Damon Salvatore"}
   3 {:makes-blood-puns? true,  :has-pulse? true  :name "Mickey Mouse"}})

(defn vampire-related-details
  [social-security-number]
  (Thread/sleep 1000)
  (get vampire-database social-security-number))

(defn vampire?
  [record]
  (and (:makes-blood-puns? record)
       (not (:has-pulse? record))
       record))

(defn identify-vampire
  [social-security-numbers]
  (first (filter vampire?
                 (map vampire-related-details social-security-numbers))))

You have a function, vampire-related-details, which takes one second 
to look up an entry from the database. Next, you have a function, vampire?, 
which returns a record if it passes the vampire test; otherwise, it returns 
false. Finally, identify-vampire maps Social Security numbers to database 
records and then returns the first record that indicates vampirism. 

To show how much time it takes to run these functions, you can use the 
time operation. When you use time, your code behaves exactly as it would if 
you didn’t use time, but with one exception: a report of the elapsed time is 
printed. Here’s an example:

(time (vampire-related-details 0))
; => "Elapsed time: 1001.042 msecs"
; => {:name "McFishwich", :makes-blood-puns? false, :has-pulse? true}

The first printed line reports the time taken by the given operation—in 
this case, 1,001.042 milliseconds. The second is the return value, which is 
your database record in this case. The return value is exactly the same as it 
would have been if you hadn’t used time.

A nonlazy implementation of map would first have to apply vampire-
related-details to every member of social-security-numbers before passing 



86   Chapter 4

the result to filter. Because you have one million suspects, this would take 
one million seconds, or 12 days, and half your city would be dead by then! 
Of course, if it turns out that the only vampire is the last suspect in the 
record, it will still take that much time with the lazy version, but at least 
there’s a good chance that it won’t.

Because map is lazy, it doesn’t actually apply vampire-related-details to 
Social Security numbers until you try to access the mapped element. In 
fact, map returns a value almost instantly:

(time (def mapped-details (map vampire-related-details (range 0 1000000))))
; => "Elapsed time: 0.049 msecs"
; => #'user/mapped-details

In this example, range returns a lazy sequence consisting of the integers 
from 0 to 999,999. Then, map returns a lazy sequence that is associated with the 
name mapped-details. Because map didn’t actually apply vampire-related-details 
to any of the elements returned by range, the entire operation took barely 
any time—certainly less than 12 days.

You can think of a lazy seq as consisting of two parts: a recipe for how 
to realize the elements of a sequence and the elements that have been 
realized so far. When you use map, the lazy seq it returns doesn’t include 
any realized elements yet, but it does have the recipe for generating its ele-
ments. Every time you try to access an unrealized element, the lazy seq will 
use its recipe to generate the requested element.

In the previous example, mapped-details is unrealized. Once you try to 
access a member of mapped-details, it will use its recipe to generate the element 
you’ve requested, and you’ll incur the one-second-per-database-lookup cost:

(time (first mapped-details))
; => "Elapsed time: 32030.767 msecs"
; => {:name "McFishwich", :makes-blood-puns? false, :has-pulse? true}

This operation took about 32 seconds. That’s much better than one 
million seconds, but it’s still 31 seconds more than we would have expected. 
After all, you’re only trying to access the very first element, so it should have 
taken only one second.

The reason it took 32 seconds is that Clojure chunks its lazy sequences, 
which just means that whenever Clojure has to realize an element, it pre-
emptively realizes some of the next elements as well. In this example, you 
wanted only the very first element of mapped-details, but Clojure went ahead 
and prepared the next 31 as well. Clojure does this because it almost always 
results in better performance.

Thankfully, lazy seq elements need to be realized only once. Accessing 
the first element of mapped-details again takes almost no time:

(time (first mapped-details))
; => "Elapsed time: 0.022 msecs"
; => {:name "McFishwich", :makes-blood-puns? false, :has-pulse? true}



Core Functions in Depth   87

With all this newfound knowledge, you can efficiently mine the vampire 
database to find the fanged culprit:

(time (identify-vampire (range 0 1000000)))
"Elapsed time: 32019.912 msecs"
; => {:name "Damon Salvatore", :makes-blood-puns? true, :has-pulse? false}

Ooh! That’s why Damon makes those creepy puns!

Infinite Sequences 
One cool, useful capability that lazy seqs give you is the ability to construct 
infinite sequences. So far, you’ve only worked with lazy sequences generated 
from vectors or lists that terminated. However, Clojure comes with a few 
functions to create infinite sequences. One easy way to create an infinite 
sequence is with repeat, which creates a sequence whose every member is 
the argument you pass:

(concat (take 8 (repeat "na")) ["Batman!"])
; => ("na" "na" "na" "na" "na" "na" "na" "na" "Batman!")

In this case, you create an infinite sequence whose every element is the 
string "na", then use that to construct a sequence that may or not provoke 
nostalgia.

You can also use repeatedly, which will call the provided function to 
generate each element in the sequence:

(take 3 (repeatedly (fn [] (rand-int 10))))
; => (1 4 0)

Here, the lazy sequence returned by repeatedly generates every new 
element by calling the anonymous function (fn [] (rand-int 10)), which 
returns a random integer between 0 and 9. If you run this in your REPL, 
your result will most likely be different from this one.

A lazy seq’s recipe doesn’t have to specify an endpoint. Functions like 
first and take, which realize the lazy seq, have no way of knowing what will 
come next in a seq, and if the seq keeps providing elements, well, they’ll 
just keep taking them. You can see this if you construct your own infinite 
sequence:

(defn even-numbers
  ([] (even-numbers 0))
  ([n] (cons n (lazy-seq (even-numbers (+ n 2))))))

(take 10 (even-numbers))
; => (0 2 4 6 8 10 12 14 16 18)



88   Chapter 4

This example is a bit mind-bending because of its use of recursion. It 
helps to remember that cons returns a new list with an element appended to 
the given list:

(cons 0 '(2 4 6))
; => (0 2 4 6)

(Incidentally, Lisp programmers call it consing when they use the cons 
function.)

In even-numbers, you’re consing to a lazy list, which includes a recipe (a 
function) for the next element (as opposed to consing to a fully realized list).

And that covers lazy seqs! Now you know everything there is to know about 
the sequence abstraction, and we can turn to the collection abstraction!

the Collection abstraction
The collection abstraction is closely related to the sequence abstraction. All 
of Clojure’s core data structures—vectors, maps, lists, and sets—take part 
in both abstractions.

The sequence abstraction is about operating on members individually, 
whereas the collection abstraction is about the data structure as a whole. 
For example, the collection functions count, empty?, and every? aren’t about 
any individual element; they’re about the whole:

(empty? [])
; => true

(empty? ["no!"])
; => false

Practically speaking, you’ll rarely consciously say, “Okay, self! You’re 
working with the collection as a whole now. Think in terms of the collection 
abstraction!” Nevertheless, it’s useful to know these concepts that underlie 
the functions and data structures you’re using.

Now we’ll examine two common collection functions—into and conj—
whose similarities can be a bit confusing.

into
One of the most important collection functions is into. As you now know, 
many seq functions return a seq rather than the original data structure. 
You’ll probably want to convert the return value back into the original 
value, and into lets you do that:

(map identity {:sunlight-reaction "Glitter!"})
; => ([:sunlight-reaction "Glitter!"])

(into {} (map identity {:sunlight-reaction "Glitter!"}))
; => {:sunlight-reaction "Glitter!"}



Core Functions in Depth   89

Here, the map function returns a sequential data structure after being 
given a map data structure, and into converts the seq back into a map.

This will work with other data structures as well:

(map identity [:garlic :sesame-oil :fried-eggs])
; => (:garlic :sesame-oil :fried-eggs)

(into [] (map identity [:garlic :sesame-oil :fried-eggs]))
; => [:garlic :sesame-oil :fried-eggs]

Here, in the first line, map returns a seq, and we use into in the second 
line to convert the result back to a vector.

In the following example, we start with a vector with two identical 
entries, map converts it to a list, and then we use into to stick the values into 
a set.

(map identity [:garlic-clove :garlic-clove])
; => (:garlic-clove :garlic-clove)

(into #{} (map identity [:garlic-clove :garlic-clove]))
; => #{:garlic-clove}

Because sets only contain unique values, the set ends up with just one 
value in it.

The first argument of into doesn’t have to be empty. Here, the first 
example shows how you can use into to add elements to a map, and the 
second shows how you can add elements to a vector.

(into {:favorite-emotion "gloomy"} [[:sunlight-reaction "Glitter!"]])
; => {:favorite-emotion "gloomy" :sunlight-reaction "Glitter!"}

(into ["cherry"] '("pine" "spruce"))
; => ["cherry" "pine" "spruce"]

And, of course, both arguments can be the same type. In this next 
example, both arguments are maps, whereas all the previous examples had 
arguments of different types. It works as you’d expect, returning a new map 
with the elements of the second map added to the first:

(into {:favorite-animal "kitty"} {:least-favorite-smell "dog"
                                  :relationship-with-teenager "creepy"})
; => {:favorite-animal "kitty"
      :relationship-with-teenager "creepy"
      :least-favorite-smell "dog"}

If into were asked to describe its strengths at a job interview, it would 
say, “I’m great at taking two collections and adding all the elements from 
the second to the first.”



90   Chapter 4

conj
conj also adds elements to a collection, but it does it in a slightly different way:

(conj [0] [1])
; => [0 [1]]

Whoopsie! Looks like it added the entire vector [1] to [0]. Compare 
this with into:

(into [0] [1])
; => [0 1]

Here’s how we’d do the same with conj:

(conj [0] 1)
; => [0 1]

Notice that the number 1 is passed as a scalar (singular, non-collection) 
value, whereas into’s second argument must be a collection.

You can supply as many elements to add with conj as you want, and you 
can also add to other collections like maps:

(conj [0] 1 2 3 4)
; => [0 1 2 3 4]

(conj {:time "midnight"} [:place "ye olde cemetarium"])
; => {:place "ye olde cemetarium" :time "midnight"}

conj and into are so similar that you could even define conj in terms 
of into:

(defn my-conj
  [target & additions]
  (into target additions))

(my-conj [0] 1 2 3)
; => [0 1 2 3]

This kind of pattern isn’t that uncommon. You’ll often see two func-
tions that do the same thing, except one takes a rest parameter (conj) and 
one takes a seqable data structure (into).

function functions
Learning to take advantage of Clojure’s ability to accept functions as argu-
ments and return functions as values is really fun, even if it takes some 
getting used to.

Two of Clojure’s functions, apply and partial, might seem especially 
weird because they both accept and return functions. Let’s unweird them.



Core Functions in Depth   91

apply
apply explodes a seqable data structure so it can be passed to a function that 
expects a rest parameter. For example, max takes any number of arguments 
and returns the greatest of all the arguments. Here’s how you’d find the 
greatest number:

(max 0 1 2)
; => 2

But what if you want to find the greatest element of a vector? You can’t 
just pass the vector to max:

(max [0 1 2])
; => [0 1 2]

This doesn’t return the greatest element in the vector because max returns 
the greatest of all the arguments passed to it, and in this case you’re only 
passing it a vector containing all the numbers you want to compare, rather 
than passing in the numbers as separate arguments. apply is perfect for this 
situation:

(apply max [0 1 2])
; => 2

By using apply, it’s as if you called (max 0 1 2). You’ll often use apply 
like this, exploding the elements of a collection so that they get passed to 
a function as separate arguments.

Remember how we defined conj in terms of into earlier? Well, we can 
also define into in terms of conj by using apply:

(defn my-into
  [target additions]
  (apply conj target additions))

(my-into [0] [1 2 3])
; => [0 1 2 3]

This call to my-into is equivalent to calling (conj [0] 1 2 3).

partial
partial takes a function and any number of arguments. It then returns a 
new function. When you call the returned function, it calls the original 
function with the original arguments you supplied it along with the new 
arguments. 

Here’s an example:

(def add10 (partial + 10))
(add10 3) 
; => 13



92   Chapter 4

(add10 5) 
; => 15

(def add-missing-elements
  (partial conj ["water" "earth" "air"]))

(add-missing-elements "unobtainium" "adamantium")
; => ["water" "earth" "air" "unobtainium" "adamantium"]

So when you call add10, it calls the original function and arguments (+ 10) 
and tacks on whichever arguments you call add10 with. To help clarify how 
partial works, here’s how you might define it:

(defn my-partial
  [partialized-fn & args]
  (fn [& more-args]
    (apply partialized-fn (into args more-args))))

(def add20 (my-partial + 20))
(add20 3) 
; => 23

In this example, the value of add20 is the anonymous function returned 
by my-partial. The anonymous function is defined like this:

(fn [& more-args]
  (apply + (into [20] more-args)))

In general, you want to use partials when you find you’re repeating the 
same combination of function and arguments in many different contexts. 
This toy example shows how you could use partial to specialize a logger, 
creating a warn function:

(defn lousy-logger
  [log-level message]
  (condp = log-level
    :warn (clojure.string/lower-case message)
    :emergency (clojure.string/upper-case message)))

(def warn (partial lousy-logger :warn))

(warn "Red light ahead")
; => "red light ahead"

Calling (warn "Red light ahead") here is identical to calling (lousy-logger 
:warn "Red light ahead").

complement
Earlier you created the identify-vampire function to find one vampire amid a 
million people. What if you wanted to create a function to find all humans? 



Core Functions in Depth   93

Perhaps you want to send them thank-you cards for not being an undead 
predator. Here’s how you could do it:

(defn identify-humans
  [social-security-numbers]
  (filter #(not (vampire? %))
          (map vampire-related-details social-security-numbers)))

Look at the first argument to filter, #(not (vampire? %)). It’s so common 
to want the complement (the negation) of a Boolean function that there’s a 
function, complement, for that:

(def not-vampire? (complement vampire?))
(defn identify-humans
  [social-security-numbers]
  (filter not-vampire?
          (map vampire-related-details social-security-numbers)))

Here’s how you might implement complement:

(defn my-complement
  [fun]
  (fn [& args]
    (not (apply fun args))))

(def my-pos? (complement neg?))
(my-pos? 1)  
; => true

(my-pos? -1) 
; => false

As you can see, complement is a humble function. It does one little 
thing and does it well. complement made it trivial to create a not-vampire? 
function, and anyone reading the code could understand the code’s 
intention. 

This won’t MapReduce terabytes of data for you or anything like that, 
but it does demonstrate the power of higher-order functions. They allow you 
to build up libraries of utility functions in a way that is impossible in some 
languages. In aggregate, these utility functions make your life a lot easier.

a vampire data analysis Program for the fwPd
To pull everything together, let’s write the beginnings of a sophisti-
cated vampire data analysis program for the Forks, Washington Police 
Department (FWPD).

The FWPD has a fancy new database technology called CSV (comma-
separated values). Your job is to parse this state-of-the-art CSV and analyze 



94   Chapter 4

it for potential vampires. We’ll do that by filtering on each suspect’s glitter 
index, a 0–10 prediction of the suspect’s vampireness developed by some 
teenage girl. Go ahead and create a new Leiningen project for your tool:

lein new app fwpd

Under the new fwpd directory, create a file named suspects.csv and enter 
contents like the following:

Edward Cullen,10
Bella Swan,0
Charlie Swan,0
Jacob Black,3
Carlisle Cullen,6

Now it’s time to get your hands dirty by building up the fwpd/src/fwpd/
core.clj file. I recommend that you start a new REPL session so you can try 
things out as you go along. In Emacs you can do this by opening fwpd/
src/fwpd/core.clj and running M-x cider-restart. Once the REPL is started, 
delete the contents of core.clj, and then add this:

(ns fwpd.core)
(def filename "suspects.csv")

The first line establishes the namespace, and the second just makes 
it a tiny bit easier to refer to the CSV you created. You can do a quick 
sanity check in your REPL by compiling your file (C-c C-k in Emacs) and 
running this:

(slurp filename)
; => "Edward Cullen,10\nBella Swan,0\nCharlie Swan,0\nJacob Black,3\nCarlisle Cullen,6"

If the slurp function doesn’t return the preceding string, try restarting 
your REPL session with core.clj open.

Next, add this to core.clj:

u (def vamp-keys [:name :glitter-index])

v (defn str->int
  [str]
  (Integer. str))

w (def conversions {:name identity
                  :glitter-index str->int})

x (defn convert
  [vamp-key value]
  ((get conversions vamp-key) value))

Ultimately, you’ll end up with a sequence of maps that look like 
{:name "Edward Cullen" :glitter-index 10}, and the preceding definitions help 



Core Functions in Depth   95

you get there. First, vamp-keys u is a vector of the keys that you’ll soon use to 
create vampire maps. Next, the function str->int v converts a string to an 
integer. The map conversions w associates a conversion function with each 
of the vamp keys. You don’t need to transform the name at all, so its conver-
sion function is identity, which just returns the argument passed to it. The 
glitter index is converted to an integer, so its conversion function is str->int. 
Finally, the convert function x takes a vamp key and a value, and returns 
the converted value. Here’s an example:

(convert :glitter-index "3")
; => 3

Now add this to your file:

(defn parse
  "Convert a CSV into rows of columns"
  [string]
  (map #(clojure.string/split % #",")
       (clojure.string/split string #"\n")))

The parse function takes a string and first splits it on the newline char-
acter to create a seq of strings. Next, it maps over the seq of strings, splitting 
each one on the comma character. Try running parse on your CSV:

(parse (slurp filename))
; => (["Edward Cullen" "10"] ["Bella Swan" "0"] ["Charlie Swan" "0"]
      ["Jacob Black" "3"] ["Carlisle Cullen" "6"])

The next bit of code takes the seq of vectors and combines it with your 
vamp keys to create maps:

(defn mapify
  "Return a seq of maps like {:name \"Edward Cullen\" :glitter-index 10}"
  [rows]
  (map (fn [unmapped-row]
         (reduce (fn [row-map [vamp-key value]]
                   (assoc row-map vamp-key (convert vamp-key value)))
                 {}
                 (map vector vamp-keys unmapped-row)))
       rows))

In this function, map transforms each row—vectors like ["Bella Swan" 
0]—into a map by using reduce in a manner similar to the first example in 
“reduce” on page 80. First, map creates a seq of key-value pairs like ([:name 
"Bella Swan"] [:glitter-index] 0). Then, reduce builds up a map by associat-
ing a vamp key with a converted vamp value into row-map. Here’s the first row 
mapified:

(first (mapify (parse (slurp filename))))
; => {:glitter-index 10, :name "Edward Cullen"}



96   Chapter 4

Finally, add this glitter-filter function:

(defn glitter-filter
  [minimum-glitter records]
  (filter #(>= (:glitter-index %) minimum-glitter) records))

This takes fully mapified vampire records and filters out those with a 
:glitter-index less than the provided minimum-glitter:

(glitter-filter 3 (mapify (parse (slurp filename))))
({:name "Edward Cullen", :glitter-index 10}
 {:name "Jacob Black", :glitter-index 3}
 {:name "Carlisle Cullen", :glitter-index 6})

Et voilà! You are now one step closer to fulfilling your dream of being 
a supernatural-creature-hunting vigilante. You better go round up those 
sketchy characters!

summary
In this chapter, you learned that Clojure emphasizes programming to 
abstractions. The sequence abstraction deals with operating on the indi-
vidual elements of a sequence, and seq functions often convert their argu-
ments to a seq and return a lazy seq. Lazy evaluation improves performance 
by delaying computations until they’re needed. The other abstraction you 
learned about, the collection abstraction, deals with data structures as a 
whole. Finally, the most important thing you learned is that you should 
never trust someone who sparkles in sunlight.

exercises
The vampire analysis program you now have is already decades ahead of 
anything else on the market. But how could you make it better? I suggest 
trying the following:

1. Turn the result of your glitter filter into a list of names.

2. Write a function, append, which will append a new suspect to your list of 
suspects.

3. Write a function, validate, which will check that :name and :glitter-index 
are present when you append. The validate function should accept 
two arguments: a map of keywords to validating functions, similar to 
conversions, and the record to be validated.

4. Write a function that will take your list of maps and convert it back to a 
CSV string. You’ll need to use the clojure.string/join function.

Good luck, McFishwich!



5
f u n C t i o n a l  p r o g r a m m i n g

So far, you’ve focused on becoming familiar 
with the tools that Clojure provides: immu-

table data structures, functions, abstractions, 
and so on. In this chapter, you’ll learn how to 

think about your programming tasks in a way that 
makes the best use of those tools. You’ll begin inte-
grating your experience into a new functional pro-
gramming mindset.

The core concepts you’ll learn include: what pure functions are and 
why they’re useful; how to work with immutable data structures and why 
they’re superior to their mutable cousins; how disentangling data and func-
tions gives you more power and flexibility; and why it’s powerful to program 
to a small set of data abstractions. Once you shove all this knowledge into 
your brain matter, you’ll have an entirely new approach to problem solving!



98   Chapter 5

After going over these topics, you’ll put everything you’ve learned to use 
by writing a terminal-based game inspired by an ancient, mystic mind-training 
device found in Cracker Barrel restaurants across America: Peg Thing!

Pure functions: what and why
Except for println and rand, all the functions you’ve used up till now have 
been pure functions. What makes them pure functions, and why does it 
matter? A function is pure if it meets two qualifications:

•	 It always returns the same result if given the same arguments. This is 
called referential transparency, and you can add it to your list of $5 pro-
gramming terms.

•	 It can’t cause any side effects. That is, the function can’t make any 
changes that are observable outside the function itself—for example, by 
changing an externally accessible mutable object or writing to a file.

These qualities make it easier for you to reason about your programs 
because the functions are completely isolated, unable to impact other parts 
of your system. When you use them, you don’t have to ask yourself, “What 
could I break by calling this function?” They’re also consistent: you’ll never 
need to figure out why passing a function the same arguments results in 
different return values, because that will never happen.

Pure functions are as stable and problem free as arithmetic (when was 
the last time you fretted over adding two numbers?). They’re stupendous 
little bricks of functionality that you can confidently use as the foundation 
of your program. Let’s look at referential transparency and lack of side 
effects in more detail to see exactly what they are and how they’re helpful.

Pure Functions Are Referentially Transparent
To return the same result when called with the same argument, pure 
functions rely only on 1) their own arguments and 2) immutable values to 
determine their return value. Mathematical functions, for example, are ref-
erentially transparent:

(+ 1 2)
; => 3

If a function relies on an immutable value, it’s referentially transparent. 
The string ", Daniel-san" is immutable, so the following function is also ref-
erentially transparent:

(defn wisdom
  [words]
  (str words ", Daniel-san"))

(wisdom "Always bathe on Fridays")
; => "Always bathe on Fridays, Daniel-san"



Functional Programming   99

By contrast, the following functions do not yield the same result with 
the same arguments; therefore, they are not referentially transparent. Any 
function that relies on a random number generator cannot be referentially 
transparent:

(defn year-end-evaluation
  []
  (if (> (rand) 0.5)
    "You get a raise!"
    "Better luck next year!"))

If your function reads from a file, it’s not referentially transparent 
because the file’s contents can change. The following function, analyze-file, 
is not referentially transparent, but the function analysis is:

(defn analyze-file
  [filename]
  (analysis (slurp filename)))

(defn analysis
  [text]
  (str "Character count: " (count text)))

When using a referentially transparent function, you never have to 
consider what possible external conditions could affect the return value of 
the function. This is especially important if your function is used multiple 
places or if it’s nested deeply in a chain of function calls. In both cases, you 
can rest easy knowing that changes to external conditions won’t cause your 
code to break.

Another way to think about this is that reality is largely referentially 
transparent. If you think of gravity as a function, then gravitational force 
is the return value of calling that function on two objects. Therefore, the 
next time you’re in a programming interview, you can demonstrate your 
functional programming knowledge by knocking everything off your inter-
viewer’s desk. (This also demonstrates that you know how to apply a func-
tion over a collection.)

Pure Functions Have No Side Effects
To perform a side effect is to change the association between a name and 
its value within a given scope. Here is an example in JavaScript:

var haplessObject = {
  emotion: "Carefree!"
};

var evilMutator = function(object){
  object.emotion = "So emo :'(";
}



100   Chapter 5

evilMutator(haplessObject);
haplessObject.emotion;
// => "So emo :'("

Of course, your program has to have some side effects. It writes to a 
disk, which changes the association between a filename and a collection 
of disk sectors; it changes the RGB values of your monitor’s pixels; and 
so on. Otherwise, there’d be no point in running it.

Side effects are potentially harmful, however, because they introduce 
uncertainty about what the names in your code are referring to. This leads to 
situations where it’s very difficult to trace why and how a name came to be 
associated with a value, which makes it hard to debug the program. When 
you call a function that doesn’t have side effects, you only have to consider 
the relationship between the input and the output. You don’t have to worry 
about other changes that could be rippling through your system.

Functions with side effects, on the other hand, place more of a bur-
den on your mind grapes: now you have to worry about how the world is 
affected when you call the function. Not only that, but every function that 
depends on a side-effecting function gets infected by this worry; it, too, 
becomes another component that requires extra care and thought as you 
build your program.

If you have any significant experience with a language like Ruby or 
JavaScript, you’ve probably run into this problem. As an object gets passed 
around, its attributes somehow change, and you can’t figure out why. Then 
you have to buy a new computer because you’ve chucked yours out the win-
dow. If you’ve read anything about object-oriented design, you know that a 
lot of writing has been devoted to strategies for managing state and reduc-
ing side effects for just this reason.

For all these reasons, it’s a good idea to look for ways to limit the use 
of side effects in your code. Lucky for you, Clojure makes your job easier by 
going to great lengths to limit side effects—all of its core data structures 
are immutable. You cannot change them in place, no matter how hard 
you try! However, if you’re unfamiliar with immutable data structures, you 
might feel like your favorite tool has been taken from you. How can you do 
anything without side effects? Well, that’s what the next section is all about! 
How about that segue, eh? Eh?

living with Immutable data structures
Immutable data structures ensure that your code won’t have side effects. As 
you now know with all your heart, this is a good thing. But how do you get 
anything done without side effects?

Recursion Instead of for/while
Raise your hand if you’ve ever written something like this in JavaScript:

var wrestlers = getAlligatorWrestlers();
var totalBites = 0;



Functional Programming   101

var l = wrestlers.length;

for(var i=0; i < l; i++){
  totalBites += wrestlers[i].timesBitten;
}

Or this:

var allPatients = getArkhamPatients();
var analyzedPatients = [];
var l = allPatients.length;

for(var i=0; i < l; i++){
  if(allPatients[i].analyzed){
    analyzedPatients.push(allPatients[i]);
  }
}

Notice that both examples induce side effects on the looping variable 
i, as well as a variable outside the loop (totalBites in the first example 
and analyzedPatients in the second). Using side effects this way—mutating 
internal variables—is pretty much harmless. You’re 
creating new values, as opposed to changing an 
object you’ve received from elsewhere in your 
program.

But Clojure’s core data structures don’t even 
allow these harmless mutations. So what can you 
do instead? First, ignore the fact that you could eas-
ily use map and reduce to accomplish the preceding 
work. In these situations—iterating over some col-
lection to build a result—the functional alternative 
to mutation is recursion.

Let’s look at the first example, building a sum. 
Clojure has no assignment operator. You can’t asso-
ciate a new value with a name without creating a 
new scope:

(def great-baby-name "Rosanthony")
great-baby-name
; => "Rosanthony"

(let [great-baby-name "Bloodthunder"]
  great-baby-name)
; => "Bloodthunder"

great-baby-name
; => "Rosanthony"

In this example, you first bind the name great-baby-name to "Rosanthony" 
within the global scope. Next, you introduce a new scope with let. Within 



102   Chapter 5

that scope, you bind great-baby-name to "Bloodthunder". Once Clojure fin-
ishes evaluating the let expression, you’re back in the global scope, and 
great-baby-name evaluates to "Rosanthony" once again.

Clojure lets you work around this apparent limitation with recursion. The 
following example shows the general approach to recursive problem solving:

(defn sum
u   ([vals] (sum vals 0)) 

  ([vals accumulating-total]
v      (if (empty? vals)  

       accumulating-total
       (sum (rest vals) (+ (first vals) accumulating-total)))))

This function takes two arguments, a collection to process (vals) and 
an accumulator (accumulating-total), and it uses arity overloading (covered 
in Chapter 3) to provide a default value of 0 for accumulating-total at u.

Like all recursive solutions, this function checks the argument it’s 
processing against a base condition. In this case, we check whether vals is 
empty at v. If it is, we know that we’ve processed all the elements in the 
collection, so we return accumulating-total.

If vals isn’t empty, it means we’re still working our way through the 
sequence, so we recursively call sum passing it two arguments: the tail of vals 
with (rest vals) and the sum of the first element of vals plus the accumulat-
ing total with (+ (first vals) accumulating-total). In this way, we build up 
accumulating-total and at the same time reduce vals until it reaches the base 
case of an empty collection.

Here’s what the recursive function call might look like if we separate 
out each time it recurs:

(sum [39 5 1]) ; single-arity body calls two-arity body
(sum [39 5 1] 0)
(sum [5 1] 39)
(sum [1] 44)
(sum [] 45) ; base case is reached, so return accumulating-total
; => 45

Each recursive call to sum creates a new scope where vals and 
accumulating-total are bound to different values, all without needing to 
alter the values originally passed to the function or perform any internal 
mutation. As you can see, you can get along fine without mutation.

Note that you should generally use recur when doing recursion for 
performance reasons. The reason is that Clojure doesn’t provide tail call 
optimization, a topic I will never bring up again! (Check out this URL for 
more information: http://en.wikipedia.org/wiki/Tail_call.) So here’s how you’d 
do this with recur:

(defn sum
  ([vals]
     (sum vals 0))
  ([vals accumulating-total]

http://en.wikipedia.org/wiki/Tail_call


Functional Programming   103

     (if (empty? vals)
       accumulating-total
       (recur (rest vals) (+ (first vals) accumulating-total)))))

Using recur isn’t that important if you’re recursively operating on a 
small collection, but if your collection contains thousands or millions 
values, you will definitely need to whip out recur so you don’t blow up your 
program with a stack overflow.

One last thing! You might be saying, “Wait a minute—what if I end up 
creating thousands of intermediate values? Doesn’t this cause the program 
to thrash because of garbage collection or whatever?”

Very good question, eagle-eyed reader! The answer is no! The reason 
is that, behind the scenes, Clojure’s immutable data structures are imple-
mented using structural sharing, which is totally beyond the scope of this 
book. It’s kind of like Git! Read this great article if you want to know more: 
http://hypirion.com/musings/understanding-persistent-vector-pt-1.

Function Composition Instead of Attribute Mutation
Another way you might be used to using mutation is to build up the final 
state of an object. In the following Ruby example, the GlamourShotCaption 
object uses mutation to clean input by removing trailing spaces and capital-
izing "lol":

class GlamourShotCaption
  attr_reader :text
  def initialize(text)
    @text = text
    clean!
  end

  private
  def clean!
    text.trim!
    text.gsub!(/lol/, "LOL")
  end
end

best = GlamourShotCaption.new("My boa constrictor is so sassy lol!  ")
best.text
; => "My boa constrictor is so sassy LOL!"

In this code, the class GlamourShotCaption encapsulates the knowledge 
of how to clean a glamour shot caption. On creating a GlamourShotCaption 
object, you assign text to an instance variable and progressively mutate it.

Listing 5-1 shows how you might do this in Clojure:

(require '[clojure.string :as s])
(defn clean
  [text]
  (s/replace (s/trim text) #"lol" "LOL"))

http://hypirion.com/musings/understanding-persistent-vector-pt-1


104   Chapter 5

(clean "My boa constrictor is so sassy lol!  ")
; => "My boa constrictor is so sassy LOL!"

Listing 5-1: Using function composition to modify a glamour shot caption

In the first line, we use require 
to access the string function library 
(I’ll discuss this function and related 
concepts in Chapter 6). Otherwise, 
the code is easy peasy. No mutation 
required. Instead of progressively 
mutating an object, the clean function 
works by passing an immutable value, 
text, to a pure function, s/trim, which 
returns an immutable value ("My boa 
constrictor is so sassy lol!"; the spaces 
at the end of the string have been 
trimmed). That value is then passed 
to the pure function s/replace, which 
returns another immutable value ("My 
boa constrictor is so sassy LOL!").

Combining functions like this—so that the return value of one func-
tion is passed as an argument to another—is called function composition. 
In fact, this isn’t so different from the previous example, which used 
recursion, because recursion continually passes the result of a function to 
another function; it just happens to be the same function. In general, func-
tional programming encourages you to build more complex functions by 
combining simpler functions.

This comparison also starts to reveal some limitations of object-oriented 
programming (OOP). In OOP, one of the main purposes of classes is to pro-
tect against unwanted modification of private data—something that isn’t 
necessary with immutable data structures. You also have to tightly couple 
methods with classes, thus limiting the reusability of the methods. In the 
Ruby example, you have to do extra work to reuse the clean! method. In 
Clojure, clean will work on any string at all. By both a) decoupling functions 
and data, and b) programming to a small set of abstractions, you end up 
with more reusable, composable code. You gain power and lose nothing.

Going beyond immediately practical concerns, the differences between 
the way you write object-oriented and functional code point to a deeper 
difference between the two mindsets. Programming is about manipulat-
ing data for your own nefarious purposes (as much as you can say it’s about 
anything). In OOP, you think about data as something you can embody in 
an object, and you poke and prod it until it looks right. During this process, 
your original data is lost forever unless you’re very careful about preserving 
it. By contrast, in functional programming you think of data as unchang-
ing, and you derive new data from existing data. During this process, the 
original data remains safe and sound. In the preceding Clojure example, 



Functional Programming   105

the original caption doesn’t get modified. It’s safe in the same way that 
numbers are safe when you add them together; you don’t somehow trans-
form 4 into 7 when you add 3 to it.

Once you are confident using immutable data structures to get stuff 
done, you’ll feel even more confident because you won’t have to worry about 
what dirty code might be getting its greasy paws on your precious, mutable 
variables. It’ll be great!

Cool things to do with Pure functions
You can derive new functions from existing functions in the same way that 
you derive new data from existing data. You’ve already seen one function, 
partial, that creates new functions. This section introduces you to two more 
functions, comp and memoize, which rely on referential transparency, immutabil-
ity, or both.

comp
It’s always safe to compose pure functions like we just did in the previous 
section, because you only need to worry about their input/output relation-
ship. Composing functions is so common that Clojure provides a function, 
comp, for creating a new function from the composition of any number of 
functions. Here’s a simple example:

((comp inc *) 2 3)
; => 7

Here, you create an anonymous function by composing the inc and * 
functions. Then, you immediately apply this function to the arguments 2 
and 3. The function multiplies the numbers 2 and 3 and then increments 
the result. Using math notation, you’d say that, in general, using comp on the 
functions f1, f2, ... fn, creates a new function g such that g(x1, x2, ... xn) equals 
f1( f2( fn(x1, x2, ... xn))). One detail to note here is that the first function 
applied—* in the code shown here—can take any number of arguments, 
whereas the remaining functions must be able to take only one argument.

Here’s an example that shows how you could use comp to retrieve charac-
ter attributes in role-playing games:

(def character
  {:name "Smooches McCutes"
   :attributes {:intelligence 10
                :strength 4
                :dexterity 5}})
(def c-int (comp :intelligence :attributes))
(def c-str (comp :strength :attributes))
(def c-dex (comp :dexterity :attributes))

(c-int character)
; => 10



106   Chapter 5

(c-str character)
; => 4

(c-dex character)
; => 5

In this example, you created three functions that help you look up a 
character’s attributes. Instead of using comp, you could just have written 
something like this for each attribute:

(fn [c] (:strength (:attributes c)))

But comp is more elegant because it uses less code to convey more mean-
ing. When you see comp, you immediately know that the resulting function’s 
purpose is to combine existing functions in a well-known way.

What do you do if one of the functions you want to compose needs 
to take more than one argument? You wrap it in an anonymous function. 
Have a look at this next snippet, which calculates the number of spell slots 
your character has based on her intelligence attribute:

(defn spell-slots
  [char]
  (int (inc (/ (c-int char) 2))))

(spell-slots character)
; => 6

First, you divide intelligence by two, then you add one, and then you 
use the int function to round down. Here’s how you could do the same 
thing with comp:

(def spell-slots-comp (comp int inc #(/ % 2) c-int))

To divide by two, all you needed to do was wrap the division in an 
anony mous function.

Clojure’s comp function can compose any number of functions. To get 
a hint of how it does this, here’s an implementation that composes just two 
functions:

(defn two-comp
  [f g]
  (fn [& args]
    (f (apply g args))))

I encourage you to evaluate this code and use two-comp to compose two 
functions! Also, try reimplementing Clojure’s comp function so you can com-
pose any number of functions.



Functional Programming   107

memoize
Another cool thing you can do with pure functions is memoize them so 
that Clojure remembers the result of a particular function call. You can 
do this because, as you learned earlier, pure functions are referentially 
transparent. For example, + is referentially transparent. You can replace 

(+ 3 (+ 5 8))

with

(+ 3 13)

or

16

and the program will have the same behavior.
Memoization lets you take advantage of referential transparency by stor-

ing the arguments passed to a function and the return value of the func-
tion. That way, subsequent calls to the function with the same arguments 
can return the result immediately. This is especially useful for functions 
that take a lot of time to run. For example, in this unmemoized function, 
the result is returned after one second:

(defn sleepy-identity
  "Returns the given value after 1 second"
  [x]
  (Thread/sleep 1000)
  x)
(sleepy-identity "Mr. Fantastico")
; => "Mr. Fantastico" after 1 second

(sleepy-identity "Mr. Fantastico")
; => "Mr. Fantastico" after 1 second

However, if you create a new, memoized version of sleepy-identity with 
memoize, only the first call waits one second; every subsequent function call 
returns immediately:

(def memo-sleepy-identity (memoize sleepy-identity))
(memo-sleepy-identity "Mr. Fantastico")
; => "Mr. Fantastico" after 1 second

(memo-sleepy-identity "Mr. Fantastico")
; => "Mr. Fantastico" immediately

Pretty cool! From here on out, memo-sleepy-identity will not incur the 
initial one-second cost when called with "Mr. Fantastico". This implementa-
tion could be useful for functions that are computationally intensive or that 
make network requests.



108   Chapter 5

Peg thing
It’s that time! Time to build a terminal implementation of Peg Thing using 
everything you’ve learned so far: immutable data structures, lazy sequences, 
pure functions, recursion—everything! Doing this will help you understand 
how to combine these concepts and techniques to solve larger problems. 
Most important, you’ll learn how to model the changes that result from 
each move a player makes without having to mutate objects like you would 
in OOP.

To build the game, you’ll first learn the game’s mechanics and how 
to start and play the program. Then, I’ll explain the code’s organization. 
Finally, I’ll walk through each function.

You can find the complete code repository for Peg Thing at https://
www.nostarch.com/clojure/.  

Playing
As mentioned earlier, Peg Thing is based on the secret mind-sharpening 
tool passed down from ye olden days and is now distributed by Cracker 
Barrel.

If you’re not familiar with the game, here are the mechanics. You start 
out with a triangular board consisting of holes filled with pegs, and one 
hole has a missing a peg, as shown in Figure 5-1.

Board

Peg

Hole

Figure 5-1: The initial setup for Peg Thing

The object of the game is to remove as many pegs as possible. You do 
this by jumping over pegs. In Figure 5-2, peg A jumps over peg B into the 
empty hole, and you remove peg B from the board.

https://www.nostarch.com/clojure/
https://www.nostarch.com/clojure/


Functional Programming   109

Figure 5-2: Jump a peg to remove it from the board.

To start Peg Thing, download the code, and then run lein run in your 
terminal while in the pegthing directory. A prompt appears that looks like this:

Get ready to play Peg Thing!
How many rows? [5]

Now you can enter the number of rows the board will have, using 5 as 
the default. If you want five rows, just press enter (otherwise, type a number 
and press enter). You’ll then see this:

Here's your board:
       a0
      b0 c0
    d0 e0 f0
   g0 h0 i0 j0
 k0 l0 m0 n0 o0
Remove which peg? [e]

Each letter identifies a position on the board. The number 0 (which 
should be blue, but if it’s not, it’s no big deal) indicates that a position is 
filled. Before gameplay begins, one peg must be empty, so the prompt asks 
you to enter the position of the first to peg to remove. The default is the 
center peg, e, but you can choose a different one. After you remove the peg, 
you’ll see this:

Here's your board:
       a0
      b0 c0
    d0 e- f0
   g0 h0 i0 j0
 k0 l0 m0 n0 o0
Move from where to where? Enter two letters:

Notice that the e position now has a dash, - (which should be red, but 
if it’s not, it’s no big deal). The dash indicates that the position is empty. To 



110   Chapter 5

move, you enter the position of the peg you want to pick up followed by the 
position of the empty position that you want to place it in. If you enter le, 
for example, you’ll get this:

Here's your board:
       a0
      b0 c0
    d0 e0 f0
   g0 h- i0 j0
 k0 l- m0 n0 o0
Move from where to where? Enter two letters:

You’ve moved the peg from l to e, jumping over h and removing its peg 
according to the rule shown in Figure 5-2. The game continues to prompt 
you for moves until no moves are available, whereupon it prompts you to 
play again.

Code Organization
The program has to handle four major tasks, and the source code is orga-
nized accordingly, with the functions for each of these tasks grouped together:

1. Creating a new board

2. Returning a board with the result of the player’s move

3. Representing a board textually

4. Handling user interaction

Two more points about the organization: First, the code has a basic 
architecture, or conceptual organization, of two layers. The top layer consists 
of the functions for handling user interaction. These functions produce 
all of the program’s side effects, printing out the board and presenting 
prompts for player interaction. The functions in this layer use the functions 
in the bottom layer to create a new board, make moves, and create a textual 
representation, but the functions in the bottom layer don’t use those in 
the top layer at all. Even for a program this small, a little architecture helps 
make the code more manageable.

Second, I’ve tried as much as possible to decompose tasks into small 
functions so that each does one tiny, understandable task. Some of 
these functions are used by only one other function. I find this helpful 
because it lets me name each tiny subtask, allowing me to better express 
the intention of the code.

But before all the architecture, there’s this:

(ns pegthing.core
  (require [clojure.set :as set])
  (:gen-class))

(declare successful-move prompt-move game-over query-rows)



Functional Programming   111

I’ll explain the functions here in more detail in Chapter 6. If you’re 
curious about what’s going on, the short explanation is that (require 
[clojure.set :as set]) allows you to easily use functions in the clojure.set 
namespace, (:gen-class) allows you to run the program from the command 
line, and (declare successful-move prompt-move game-over query-rows) allows 
functions to refer to those names before they’re defined. If that doesn’t 
quite make sense yet, trust that I will explain it soon.

Creating the Board
The data structure you use to represent the board should make it easy 
for you to print the board, check whether a player has made a valid move, 
actually perform a move, and check whether the game is over. You could 
structure the board in many ways to allow these tasks. In this case, you’ll 
represent the board using a map with numerical keys corresponding to 
each board position and values containing information about that posi-
tion’s connections. The map will also contain a :rows key, storing the total 
number of rows. Figure 5-3 shows a board with each position numbered.

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

Figure 5-3: The numbered pegboard

Here’s the data structure built to represent it:

{1  {:pegged true, :connections {6 3, 4 2}},
 2  {:pegged true, :connections {9 5, 7 4}},
 3  {:pegged true, :connections {10 6, 8 5}},
 4  {:pegged true, :connections {13 8, 11 7, 6 5, 1 2}},
 5  {:pegged true, :connections {14 9, 12 8}},
 6  {:pegged true, :connections {15 10, 13 9, 4 5, 1 3}},
 7  {:pegged true, :connections {9 8, 2 4}},
 8  {:pegged true, :connections {10 9, 3 5}},
 9  {:pegged true, :connections {7 8, 2 5}},
 10 {:pegged true, :connections {8 9, 3 6}},
 11 {:pegged true, :connections {13 12, 4 7}},
 12 {:pegged true, :connections {14 13, 5 8}},
 13 {:pegged true, :connections {15 14, 11 12, 6 9, 4 8}},
 14 {:pegged true, :connections {12 13, 5 9}},
 15 {:pegged true, :connections {13 14, 6 10}},
 :rows 5}



112   Chapter 5

You might be wondering why, when you play the game, each position is 
represented by a letter but here the positions are represented by numbers. 
Using numbers for the internal representation allows you to take advantage 
of some mathematical properties of the board layout when validating and 
making moves. Letters, on the other hand, are better for display because 
they take up only one character space. Some conversion functions are cov-
ered in “Rendering and Printing the Board” on page 120.

In the data structure, each position is associated with a map that reads 
something like this:

{:pegged true, :connections {6 3, 4 2}}

The meaning of :pegged is clear; it represents whether that position has 
a peg in it. :connections is a bit more cryptic. It’s a map where each key iden-
tifies a legal destination, and each value represents the position that would be 
jumped over. So pegs in position 1, for example, can jump to position 6 over 
position 3. This might seem backward, but you’ll learn the rationale for it 
later when you see how move validation is implemented.

Now that you’ve seen what the final map representing the board should 
look like, we can start exploring the functions that actually build up this 
map in the program. You won’t simply start assigning mutable states willy-
nilly to represent each position and whether it’s pegged or not. Instead, 
you’ll use nested recursive function calls to build up the final board posi-
tion by position. It’s analogous to the way you created the glamour shot 
caption earlier, deriving new data from input by passing an argument 
through a chain of functions to get your final result.

The first few expressions in this section of the code deal with trian-
gular numbers. Triangular numbers are generated by adding the first n 
natural numbers. The first triangular number is 1, the second is 3 (1 + 2), 
the third is 6 (1 + 2 + 3), and so on. These numbers line up nicely with the 
position numbers at the end of every row on the board, which will turn out 
to be a very useful property. First, you define the function tri*, which can 
create a lazy sequence of triangular numbers:

(defn tri*
  "Generates lazy sequence of triangular numbers"
  ([] (tri* 0 1))
  ([sum n]
     (let [new-sum (+ sum n)]
       (cons new-sum (lazy-seq (tri* new-sum (inc n)))))))

To quickly recap how this works, calling tri* with no arguments will 
recursively call (tri* 0 1). This returns a lazy list whose element is new-sum, 
which in this case evaluates to 1. The lazy list includes a recipe for gen-
erating the next element of the list when it’s requested, as described in 
Chapter 4.



Functional Programming   113

The next expression calls tri*, actually creating the lazy sequence and 
binding it to tri:

(def tri (tri*))

You can verify that it actually works:

(take 5 tri)
; => (1 3 6 10 15)

And the next few functions operate on the sequence of triangular 
numbers. triangular? figures out if its argument is in the tri lazy sequence. 
It works by using take-while to create a sequence of triangular numbers 
whose last element is a triangular number that’s less than or equal to the 
argument. Then it compares the last element to the argument:

(defn triangular?
  "Is the number triangular? e.g. 1, 3, 6, 10, 15, etc"
  [n]
  (= n (last (take-while #(>= n %) tri))))
(triangular? 5) 
; => false

(triangular? 6) 
; => true

Next, there’s row-tri, which takes a row number and gives you the trian-
gular number at the end of that row:

(defn row-tri
  "The triangular number at the end of row n"
  [n]
  (last (take n tri)))
(row-tri 1) 
; => 1

(row-tri 2) 
; => 3

(row-tri 3) 
; => 6

Lastly, there’s row-num, which takes a board position and returns the row 
that it belongs to:

(defn row-num
  "Returns row number the position belongs to: pos 1 in row 1,
  positions 2 and 3 in row 2, etc"
  [pos]
  (inc (count (take-while #(> pos %) tri))))
(row-num 1) 
; => 1



114   Chapter 5

(row-num 5) 
; => 3

After that comes connect, which is used to actually form a mutual con-
nection between two positions:

(defn connect
  "Form a mutual connection between two positions"
  [board max-pos pos neighbor destination]
  (if (<= destination max-pos)
    (reduce (fn [new-board [p1 p2]]
              (assoc-in new-board [p1 :connections p2] neighbor))
            board
            [[pos destination] [destination pos]])
    board))

(connect {} 15 1 2 4)
; => {1 {:connections {4 2}}
      4 {:connections {1 2}}}

The first thing connect does is check whether the destination is actu-
ally a position on the board by confirming that it’s less than the board’s 
max position. For example, if you have five rows, the max position is 15. 
However, when the game board is created, the connect function will be 
called with arguments like (connect {} 15 7 16 22). The if statement at the 
beginning of connect makes sure your program doesn’t allow such outra-
geous connections, and simply returns the unmodified board when you ask 
it to do something silly.

Next, connect uses recursion through reduce to progressively build up 
the final state of the board. In this example, you’re reducing over the 
nested vectors [[1 4] [4 1]]. This is what allows you to return an updated 
board with both pos and destination (1 and 4) pointing to each other in 
their connections.

The anonymous function passed to reduce uses a function, assoc-in, 
which you haven’t seen before. Whereas the function get-in lets you look 
up values in nested maps, assoc-in lets you return a new map with the given 
value at the specified nesting. Here are a couple of examples:

(assoc-in {} [:cookie :monster :vocals] "Finntroll")
; => {:cookie {:monster {:vocals "Finntroll"}}}

(get-in {:cookie {:monster {:vocals "Finntroll"}}} [:cookie :monster])
; => {:vocals "Finntroll"}

(assoc-in {} [1 :connections 4] 2)
; => {1 {:connections {4 2}}}

In these examples, you can see that new, nested maps are created to 
accommodate all the keys provided.



Functional Programming   115

Now we have a way to connect two positions, but how should the pro-
gram choose two positions to connect in the first place? That’s handled by 
connect-right, connect-down-left, and connect-down-right: 

(defn connect-right
  [board max-pos pos]
  (let [neighbor (inc pos)
        destination (inc neighbor)]
    (if-not (or (triangular? neighbor) (triangular? pos))
      (connect board max-pos pos neighbor destination)
      board)))

(defn connect-down-left
  [board max-pos pos]
  (let [row (row-num pos)
        neighbor (+ row pos)
        destination (+ 1 row neighbor)]
    (connect board max-pos pos neighbor destination)))

(defn connect-down-right
  [board max-pos pos]
  (let [row (row-num pos)
        neighbor (+ 1 row pos)
        destination (+ 2 row neighbor)]
    (connect board max-pos pos neighbor destination)))

These functions each take the board’s max position and a board posi-
tion and use a little triangle math to figure out which numbers to feed to 
connect. For example, connect-down-left will attempt to connect position 1 to 
position 4. In case you’re wondering why the functions connect-left, connect-
up-left, and connect-up-right aren’t defined, the reason is that the existing 
functions actually cover these cases. connect returns a board with the mutual 
connection established; when 4 connects right to 6, 6 connects left to 4. Here 
are a couple of examples:

(connect-down-left {} 15 1)
; => {1 {:connections {4 2}
      4 {:connections {1 2}}}}

(connect-down-right {} 15 3)
; => {3  {:connections {10 6}}
      10 {:connections {3 6}}}

In the first example, connect-down-left takes an empty board with a 
max position of 15 and returns a new board populated with the mutual 
connection between the 1 position and the position below and to the left 
of it. connect-down-right does something similar, returning a board popu-
lated with the mutual connection between 3 and the position below it and 
to its right.



116   Chapter 5

The next function, add-pos, is interesting because it actually reduces on 
a vector of functions, applying each in turn to build up the resulting board. 
But first it updates the board to indicate that a peg is in the given position:

(defn add-pos
  "Pegs the position and performs connections"
  [board max-pos pos]
  (let [pegged-board (assoc-in board [pos :pegged] true)]
    (reduce (fn [new-board connection-creation-fn]
              (connection-creation-fn new-board max-pos pos))
            pegged-board
            [connect-right connect-down-left connect-down-right])))

(add-pos {} 15 1)
{1 {:connections {6 3, 4 2}, :pegged true}
 4 {:connections {1 2}}
 6 {:connections {1 3}}}

It’s like this function is first saying, in the pegged-board binding, “Add 
a peg to the board at position X.” Then, in reduce, it says, “Take the board 
with its new peg at position X, and try to connect position X to a legal, 
rightward position. Take the board that results from that operation, and try 
to connect position X to a legal, down-left position. Finally, take the board 
that results from that operation, and try to connect position X to a legal, 
down-right position. Return the resulting board.”

Reducing over functions like this is another way of composing func-
tions. To illustrate, here’s another way of defining the clean function in 
Listing 5-1 (page 103):

(defn clean
  [text]
  (reduce (fn [string string-fn] (string-fn string))
          text
          [s/trim #(s/replace % #"lol" "LOL")]))

This redefinition of clean reduces a vector of functions by applying the 
first function, s/trim, to an initial string, then applying the next function, 
the anonymous function #(s/replace % #"lol" "LOL"), to the result.

Reducing over a collection of functions is not a technique you’ll use 
often, but it’s occasionally useful, and it demonstrates the versatility of func-
tional programming.

Last among our board creation functions is new-board:

(defn new-board
  "Creates a new board with the given number of rows"
  [rows]
  (let [initial-board {:rows rows}
        max-pos (row-tri rows)]
    (reduce (fn [board pos] (add-pos board max-pos pos))
            initial-board
            (range 1 (inc max-pos)))))



Functional Programming   117

The code first creates the initial, empty board and gets the max position. 
Assuming that you’re using five rows, the max position will be 15. Next, the 
function uses (range 1 (inc max-pos)) to get a list of numbers from 1 to 15, 
other wise known as the board’s positions. Finally, it reduces over the list of 
positions. Each iteration of the reduction calls (add-pos board max-pos pos), 
which, as you saw earlier, takes an existing board and returns a new one 
with the position added.

Moving Pegs
The next section of code validates and performs peg moves. Many of 
the functions (pegged?, remove-peg, place-peg, move-peg) are simple, self-
explanatory one-liners:

(defn pegged?
  "Does the position have a peg in it?"
  [board pos]
  (get-in board [pos :pegged]))

(defn remove-peg
  "Take the peg at given position out of the board"
  [board pos]
  (assoc-in board [pos :pegged] false))

(defn place-peg
  "Put a peg in the board at given position"
  [board pos]
  (assoc-in board [pos :pegged] true))

(defn move-peg
  "Take peg out of p1 and place it in p2"
  [board p1 p2]
  (place-peg (remove-peg board p1) p2))

Let’s take a moment to appreciate how neat this code is. This is where 
you would usually perform mutation in an object-oriented program; after 
all, how else would you change the board? However, these are all pure 
functions, and they do the job admirably. I also like that you don’t need 
the overhead of classes to use these little guys. It feels somehow lighter to 
program like this.

Next up is valid-moves:

(defn valid-moves
  "Return a map of all valid moves for pos, where the key is the
  destination and the value is the jumped position"
  [board pos]
  (into {}
        (filter (fn [[destination jumped]]
                  (and (not (pegged? board destination))
                       (pegged? board jumped)))
                (get-in board [pos :connections]))))



118   Chapter 5

This code goes through each of the given position’s connections and 
tests whether the destination position is empty and the jumped position 
has a peg. To see this in action, you can create a board with the 4 position 
empty:

(def my-board (assoc-in (new-board 5) [4 :pegged] false))

Figure 5-4 shows what that board would look like.

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

Figure 5-4: A pegboard with the 4 position empty

Given this board, positions 1, 6, and 11 have valid moves, but all 
others don’t:

(valid-moves my-board 1)  ; => {4 2}
(valid-moves my-board 6)  ; => {4 5}
(valid-moves my-board 11) ; => {4 7}
(valid-moves my-board 5)  ; => {}
(valid-moves my-board 8)  ; => {}

You might be wondering why valid-moves returns a map instead of, say, 
a set or vector. The reason is that returning a map allows you to easily look 
up a destination position to check whether a specific move is valid, which is 
what valid-move? (the next function) does:

(defn valid-move?
  "Return jumped position if the move from p1 to p2 is valid, nil
  otherwise"
  [board p1 p2]
  (get (valid-moves board p1) p2))
  
(valid-move? my-board 8 4) ; => nil
(valid-move? my-board 1 4) ; => 2

Notice that valid-move? looks up the destination position from the map 
and then returns the position of the peg that would be jumped over. This 
is another nice benefit of having valid-moves return a map, because the 



Functional Programming   119

jumped position retrieved from the map is exactly what we want to pass on 
to the next function, make-move. When you take the time to construct a rich 
data structure, it’s easier to perform useful operations.

(defn make-move
  "Move peg from p1 to p2, removing jumped peg"
  [board p1 p2]
  (if-let [jumped (valid-move? board p1 p2)]
    (move-peg (remove-peg board jumped) p1 p2)))

if-let is a nifty way to say, “If an expression evaluates to a truthy 
value, then bind that value to a name the same way that I can in a let 
expression. Otherwise, if I’ve provided an else clause, perform that else 
clause; if I haven’t provided an else clause, return nil.” In this case, the test 
expression is (valid-move? board p1 p2), and you’re assigning the result to the 
name jumped if the result is truthy. That’s used in the call to move-peg, which 
returns a new board. You don’t supply an else clause, so if the move isn’t 
valid, the return value of the whole expression is nil.

Finally, the function can-move? is used to determine whether the game is 
over by finding the first pegged positions with moves available:

(defn can-move?
  "Do any of the pegged positions have valid moves?"
  [board]
  (some (comp not-empty (partial valid-moves board))
        (map first (filter #(get (second %) :pegged) board))))

The question mark at the end of this function name indicates it’s a 
predicate function, a function that’s meant to be used in Boolean expressions. 
Predicate is taken from predicate logic, which concerns itself with determin-
ing whether a statement is true or false. (You’ve already seen some built-in 
predicate functions, like empty? and every?.)

can-move? works by getting a sequence of all pegged positions with  
(map first (filter #(get (second %) :pegged) board)). You can break this 
down further into the filter and map function calls: because filter is a seq 
function, it converts board, a map, into a seq of two-element vectors (also 
called tuples), which looks something like this:

([1 {:connections {6 3, 4 2}, :pegged true}]
 [2 {:connections {9 5, 7 4}, :pegged true}])

The first element of the tuple is a position number, and the second is 
that position’s information. filter then applies the anonymous function 
#(get (second %) :pegged) to each of these tuples, filtering out the tuples 
where the position’s information indicates that the position is not currently 
housing a peg. Finally, the result is passed to map, which calls first on each 
tuple to grab just the position number from the tuples.

After you get a seq of pegged positions numbers, you call a predicate 
function on each one to find the first position that returns a truthy value. The 



120   Chapter 5

predicate function is created with (comp not-empty (partial valid-moves board)). 
The idea is to first return a map of all valid moves for a position and then test 
whether that map is empty.

First, the expression (partial valid-moves board) derives an anonymous 
function from valid-moves with the first argument, board, filled in using 
partial (because you’re using the same board each time you call valid-moves). 
The new function can take a position and return the map of all its valid 
moves for the current board.

Second, you use comp to compose this function with not-empty. This func-
tion is self-descriptive; it returns true if the given collection is empty and 
false otherwise.

What’s most interesting about this bit of code is that you’re using a 
chain of functions to derive a new function, similar to how you use chains 
of functions to derive new data. In Chapter 3, you learned that Clojure treats 
functions as data in that functions can receive functions as arguments and 
return them. Hopefully, this shows why that feature is fun and useful.

Rendering and Printing the Board
The first few expressions in the board representation and printing section 
just define constants:

(def alpha-start 97)
(def alpha-end 123)
(def letters (map (comp str char) (range alpha-start alpha-end)))
(def pos-chars 3)

The bindings alpha-start and alpha-end set up the beginning and end of 
the numerical values for the letters a through z. We use those to build up a 
seq of letters. char, when applied to an integer, returns the character cor-
responding to that integer, and str turns the char into a string. pos-chars is 
used by the function row-padding to determine how much spacing to add to 
the beginning of each row. The next few definitions, ansi-styles, ansi, and 
colorize output colored text to the terminal.

The functions render-pos, row-positions, row-padding, and render-row 
create strings to represent the board:

(defn render-pos
  [board pos]
  (str (nth letters (dec pos))
       (if (get-in board [pos :pegged])
         (colorize "0" :blue)
         (colorize "-" :red))))

(defn row-positions
  "Return all positions in the given row"
  [row-num]
  (range (inc (or (row-tri (dec row-num)) 0))
         (inc (row-tri row-num))))



Functional Programming   121

(defn row-padding
  "String of spaces to add to the beginning of a row to center it"
  [row-num rows]
  (let [pad-length (/ (* (- rows row-num) pos-chars) 2)]
    (apply str (take pad-length (repeat " ")))))

(defn render-row
  [board row-num]
  (str (row-padding row-num (:rows board))
       (clojure.string/join " " (map (partial render-pos board) 
                                     (row-positions row-num)))))

If you work from the bottom up, you can see that render-row calls each 
of the functions above it to return the string representation of the given 
row. Notice the expression (map (partial render-pos board) (row-positions 
row-num)). This demonstrates a good use case for partials by applying the 
same function multiple times with one or more arguments filled in, just like 
in the can-move? function shown earlier.

Notice too that render-pos uses a letter rather than a number to identify 
each position. This saves a little space when the board is displayed, because 
it allows only one character per position to represent a five-row board.

Finally, print-board merely iterates over each row number with doseq, 
printing the string representation of that row: 

(defn print-board
  [board]
  (doseq [row-num (range 1 (inc (:rows board)))]
    (println (render-row board row-num))))

You use doseq when you want to perform side-effecting operations (like 
printing to a terminal) on the elements of a collection. The vector that 
immediately follows the name doseq describes how to bind all the elements 
in a collection to a name one at a time so you can operate on them. In this 
instance, you’re assigning the numbers 1 through 5 (assuming there are 
five rows) to the name row-num so you can print each row.

Although printing the board technically falls under interaction, I wanted 
to show it here with the rendering functions. When I first started writing 
this game, the print-board function also generated the board’s string repre-
sentation. However, now print-board defers all rendering to pure functions, 
which makes the code easier to understand and decreases the surface area 
of our impure functions.

Player Interaction
The next collection of functions handles player interaction. First, there’s 
letter->pos, which converts a letter (which is how the positions are displayed 
and identified by players) to the corresponding position number:

(defn letter->pos
  "Converts a letter string to the corresponding position number"



122   Chapter 5

  [letter]
  (inc (- (int (first letter)) alpha-start)))

Next, the helper function get-input allows you to read and clean the 
player’s input. You can also provide a default value, which is used if the player 
presses enter without typing anything:

(defn get-input
  "Waits for user to enter text and hit enter, then cleans the input"
  ([] (get-input nil))
  ([default]
     (let [input (clojure.string/trim (read-line))]
       (if (empty? input)
         default
         (clojure.string/lower-case input)))))

The next function, characters-as-strings, is a tiny helper function used 
by prompt-move to take in a string and return a collection of letters with all 
nonalphabetic input discarded:

(characters-as-strings "a   b")
; => ("a" "b")

(characters-as-strings "a   cb")
; => ("a" "c" "b")

Next, prompt-move reads the player’s input and acts on it:

(defn prompt-move
  [board]
  (println "\nHere's your board:")
  (print-board board)
  (println "Move from where to where? Enter two letters:")
  (let [input (map letter->pos (characters-as-strings (get-input)))]
    (if-let [new-board (make-moveu board (first input) (second input))]
      (user-entered-valid-move new-board)
      (user-entered-invalid-move board))))

At u, make-move returns nil if the player’s move was invalid, and you use 
that information to inform her of her mistake with the user-entered-invalid-
move function. You pass the unmodified board to user-entered-invalid-move 
so that it can prompt the player with the board again. Here’s the function 
definition:

(defn user-entered-invalid-move
  "Handles the next step after a user has entered an invalid move"
  [board]
  (println "\n!!! That was an invalid move :(\n")
  (prompt-move board))



Functional Programming   123

However, if the move is valid, the new-board is passed off to user-entered-
valid-move, which hands control back to prompt-move if there are still moves to 
be made:

(defn user-entered-valid-move
  "Handles the next step after a user has entered a valid move"
  [board]
  (if (can-move? board)
    (prompt-move board)
    (game-over board)))

In our board creation functions, we saw how recursion was used to 
build up a value using immutable data structures. The same thing is hap-
pening here, only it involves two mutually recursive functions and some 
user input. No mutable attributes in sight!

What happens when the game is over? This is what happens:

(defn game-over
  "Announce the game is over and prompt to play again"
  [board]
  (let [remaining-pegs (count (filter :pegged (vals board)))]
    (println "Game over! You had" remaining-pegs "pegs left:")
    (print-board board)
    (println "Play again? y/n [y]")
    (let [input (get-input "y")]
      (if (= "y" input)
        (prompt-rows)
        (do
          (println "Bye!")
          (System/exit 0))))))

All that’s going on here is that the game tells you how you did, prints 
the final board, and prompts you to play again. If you select y, the game 
calls prompt-rows, which brings us to the final set of functions, those used to 
start a new game:

(defn prompt-empty-peg
  [board]
  (println "Here's your board:")
  (print-board board)
  (println "Remove which peg? [e]")
  (prompt-move (remove-peg board (letter->pos (get-input "e")))))

(defn prompt-rows
  []
  (println "How many rows? [5]")
  (let [rows (Integer. (get-input 5))
        board (new-board rows)]
    (prompt-empty-peg board)))



124   Chapter 5

You use prompt-rows to start a game, getting the player’s input on how 
many rows to include. Then you pass control on to prompt-empty-peg so the 
player can tell the game which peg to remove first. From there, the pro-
gram prompts you for moves until there aren’t any moves left.

Even though all of this program’s side effects are relatively harmless 
(all you’re doing is prompting and printing), sequestering them in their 
own functions like this is a best practice for functional programming. In 
general, you will reap more benefits from functional programming if you 
identify the bits of functionality that are referentially transparent and side-
effect free, and place those bits in their own functions. These functions are 
not capable of causing bizarre bugs in unrelated parts of your program. 
They’re easier to test and develop in the REPL because they rely only on the 
arguments you pass them, not on some complicated hidden state object.

summary
Pure functions are referentially transparent and side-effect free, which 
makes them easy to reason about. To get the most from Clojure, try to 
keep your impure functions to a minimum. In an immutable world, you 
use recursion instead of for/while loops, and function composition instead 
of successions of mutations. Pure functions allow powerful techniques like 
function composition functions and memoization. They’re also super fun!

exercises
One of the best ways to develop your functional programming skills is to 
try to implement existing functions. To that end, most of the following 
exercises suggest a function for you to implement, but don’t stop there; 
go through the Clojure cheat sheet (http://clojure.org/cheatsheet/) and 
pick more!

1. You used (comp :intelligence :attributes) to create a function that 
returns a character’s intelligence. Create a new function, attr, that you 
can call like (attr :intelligence) and that does the same thing.

2. Implement the comp function.

3. Implement the assoc-in function. Hint: use the assoc function and 
define its parameters as [m [k & ks] v].

4. Look up and use the update-in function.

5. Implement update-in.

http://clojure.org/cheatsheet/


6
o r g a n i z i n g  Y o u r  p r o j e C t :  

a  l i B r a r i a n ’ s  t a l e

Within each of us lives a librarian named 
Melvil, a fantastical creature who delights 

in the organizational arts. Day and night, 
Melvil yearns to bring order to your codebase. 

Fortunately, Clojure provides a suite of tools designed 
specifically to aid this homunculus in its constant 
struggle against the forces of chaos.

These tools help you organize your code by grouping together related 
functions and data. They also prevent name collisions so you don’t acciden-
tally overwrite someone else’s code or vice versa. Join me in a tale of sus-
pense and mystery as you learn how to use these tools and solve the heist of 
a lifetime! By the end of the saga, you’ll understand the following:

•	 What def does

•	 What namespaces are and how to use them

•	 The relationship between namespaces and the filesystem



126   Chapter 6

•	 How to use refer, alias, require, use, and ns

•	 How to organize Clojure projects using the filesystem

I’ll start with a high-level overview of Clojure’s organizational system, 
which works much like a library. Melvil quivers with excitement!

Your Project as a library
Real-world libraries store collections of objects, such as books, magazines, 
and DVDs. They use addressing systems, so when you’re given an object’s 
address, you can navigate to the physical space and retrieve the object.

Of course, no human being would be expected to know offhand what 
a book’s or DVD’s address is. That’s why libraries record the association 
between an object’s title and its address and provide tools for search-
ing these records. In ye olden times before computers, libraries provided 
card catalogs, which were cabinets filled with paper cards containing each 
book’s title, author, “address” (its Dewey decimal or Library of Congress 
number), and other info. 

For example, to find The Da Vinci Code, you would riffle through the 
title catalog (cards ordered by title) until you found the correct card. On 
that card you would see the address 813.54 (if it’s using the Dewey decimal 
system), navigate your library to find the shelf where The Da Vinci Code 
resides, and engage in the literary and/or hate-reading adventure of your 
lifetime.

It’s useful to imagine a similar setup in Clojure. I think of Clojure as 
storing objects (like data structures and functions) in a vast set of numbered 
shelves. No human being could know offhand which shelf an object is stored 
in. Instead, we give Clojure an identifier that it uses to retrieve the object.

For this to be successful, Clojure must maintain the associations 
between our identifiers and shelf addresses. It does this by using namespaces. 
Namespaces contain maps between human-friendly symbols and references 
to shelf addresses, known as vars, much like a card catalog.

Technically, namespaces are objects of type clojure.lang.Namespace, and 
you can interact with them just like you can with Clojure data structures. 
For example, you can refer to the current namespace with *ns*, and you can 
get its name with (ns-name *ns*):

(ns-name *ns*)
; => user

When you start the REPL, for example, you’re in the user namespace 
(as you can see here). The prompt shows the current namespace using 
something like user=>.

The idea of a current namespace implies that you can have more than 
one, and indeed Clojure allows you to create as many namespaces as you 
want (although technically, there might be an upper limit to the number of 
names you can create). In Clojure programs, you are always in a namespace. 



Organizing Your Project: A Librarian’s Tale    127

As for symbols, you’ve been using them this entire time without even 
realizing it. For example, when you write (map inc [1 2]), both map and inc 
are symbols. Symbols are data types within Clojure, and I’ll explain them 
thoroughly in the next chapter. For now, all you need to know is that when 
you give Clojure a symbol like map, it finds the corresponding var in the 
current namespace, gets a shelf address, and retrieves an object from that 
shelf for you—in this case, the function that map refers to. If you want to 
just use the symbol itself, and not the thing it refers to, you have to quote 
it. Quoting any Clojure form tells Clojure not to evaluate it but to treat it as 
data. The next few examples show what happens when you quote a form.

u inc
; => #<core$inc clojure.core$inc@30132014>

v 'inc
; => inc

w (map inc [1 2])
; => (2 3)

x '(map inc [1 2])
; => (map inc [1 2])

When you evaluate inc in the REPL at u, it prints out the textual repre-
sentation of the function that inc refers to. Next, you quote inc at v, so the 
result is the symbol inc. Then, you evaluate a familiar map application at w 
and get a familiar result. After that, you quote the entire list data structure 
at x, resulting in an unevaluated list that includes the map symbol, the inc 
symbol, and a vector.

Now that you know about Clojure’s organization system, let’s look at 
how to use it.

storing objects with def
The primary tool in Clojure for storing objects is def. Other tools like defn 
use def under the hood. Here’s an example of def in action:

(def great-books ["East of Eden" "The Glass Bead Game"])
; => #'user/great-books

great-books
; => ["East of Eden" "The Glass Bead Game"]

This code tells Clojure:

1. Update the current namespace’s map with the association between 
great-books and the var.

2. Find a free storage shelf.

3. Store ["East of Eden" "The Glass Bead Game"] on the shelf.



128   Chapter 6

4. Write the address of the shelf on the var.

5. Return the var (in this case, #'user/great-books).

This process is called interning a var. You can interact with a 
namespace’s map of symbols-to-interned-vars using ns-interns. Here’s 
how you’d get a map of interned vars:

(ns-interns *ns*)
; => {great-books #'user/great-books}

You can use the get function to get a specific var:

(get (ns-interns *ns*) 'great-books)
; => #'user/great-books

By evaluating (ns-map *ns*), you can also get the full map that the 
namespace uses for looking up a var when given a symbol. (ns-map *ns*) 
gives you a very large map that I won’t print here, but try it out! 

#'user/great-books is the reader form of a var. I’ll explain more about 
reader forms in Chapter 7. For now, just know that you can use #' to grab 
hold of the var corresponding to the symbol that follows; #'user/great-books 
lets you use the var associated with the symbol great-books within the user 
namespace. We can deref vars to get the objects they point to:

(deref #'user/great-books)
; => ["East of Eden" "The Glass Bead Game"]

This is like telling Clojure, “Get the shelf number from the var, go to 
that shelf number, grab what’s on it, and give it to me!”

But normally, you would just use the symbol:

great-books
; => ["East of Eden" "The Glass Bead Game"]

This is like telling Clojure, “Retrieve the var associated with great-books 
and deref that bad Jackson.”

So far so good, right? Well, brace yourself, because this idyllic paradise 
of organization is about to be turned upside down! Call def again with the 
same symbol:

(def great-books ["The Power of Bees" "Journey to Upstairs"])
great-books
; => ["The Power of Bees" "Journey to Upstairs"]

The var has been updated with the address of the new vector. It’s like 
you used white-out on the address on a card in the card catalog and then 
wrote a new address. The result is that you can no longer ask Clojure to find 
the first vector. This is referred to as a name collision. Chaos! Anarchy!



Organizing Your Project: A Librarian’s Tale    129

You may have experienced this in other pro-
gramming languages. JavaScript is notorious for 
it, and it happens in Ruby as well. It’s a problem 
because you can unintentionally overwrite your 
own code, and you also have no guarantee that 
a third-party library won’t overwrite your code. 
Melvil recoils in horror! Fortunately, Clojure 
allows you to create as many namespaces as you 
like so you can avoid these collisions.

Creating and switching to namespaces
Clojure has three tools for creating namespaces: the function create-ns, 
the function in-ns, and the macro ns. You’ll mostly use the ns macro in your 
Clojure files, but I’ll hold off on explaining it for a few pages because it 
combines many tools, and it’s easier to understand after I discuss each of 
the other tools.

create-ns takes a symbol, creates a namespace with that name if it 
doesn’t exist already, and returns the namespace:

user=> (create-ns 'cheese.taxonomy)
; => #<Namespace cheese.taxonomy>

You can use the returned namespace as an argument in a function call:

user=> (ns-name (create-ns 'cheese.taxonomy))
; => cheese-taxonomy

In practice, you’ll probably never use create-ns in your code, because 
it’s not very useful to create a namespace and not move into it. Using in-ns 
is more common because it creates the namespace if it doesn’t exist and 
switches to it, as shown in Listing 6-1.

user=> (in-ns 'cheese.analysis)
; => #<Namespace cheese.analysis>

Listing 6-1: Using in-ns to create a namespace and switch to it

Notice that your REPL prompt is now cheese.analysis>, indicating that 
you are indeed in the new namespace you just created. Now when you use 
def, it will store the named object in the cheese.analysis namespace.

But what if you want to use functions and data from other name-
spaces? To do that, you can use a fully qualified symbol. The general form 
is namespace/name:

cheese.analysis=> (in-ns 'cheese.taxonomy)
cheese.taxonomy=> (def cheddars ["mild" "medium" "strong" "sharp" "extra sharp"])
cheese.taxonomy=> (in-ns 'cheese.analysis)



130   Chapter 6

cheese.analysis=> cheddars
; => Exception: Unable to resolve symbol: cheddars in this context

This creates a new namespace, cheese.taxonomy, defines cheddars in that 
namespace, and then switches back to the cheese.analysis namespace. You’ll 
get an exception if you try to refer to the cheese.taxonomy namespace’s cheddars 
from within cheese.analysis, but using the fully qualified symbol works:

cheese.analysis=> cheese.taxonomy/cheddars
; => ["mild" "medium" "strong" "sharp" "extra sharp"]

Typing these fully qualified symbols can quickly become a nuisance. 
For instance, say I’m an extremely impatient academic specializing in 
semiotics-au-fromage, or the study of symbols as they relate to cheese.

Suddenly, the worst conceivable thing that could possibly happen 
happens! All across the world, sacred and historically important cheeses 
have gone missing. Wisconsin’s Standard Cheddar: gone! The Great Cheese 
Jars of Tutankhamun: stolen! The Cheese of Turin: replaced with a hoax 
cheese! This threatens to throw the world into total chaos for some rea-
son! Naturally, as a distinguished cheese researcher, I am honor-bound 
to solve this mystery. Meanwhile, I’m being chased by the Illuminati, the 
Freemasons, and the Foot Clan!

Because I’m an academic, I attempt to solve this mystery the best way I 
know how—by heading to the library and researching the shit out of it. My 
trusty assistant, Clojure, accompanies me. As we bustle from namespace to 
namespace, I shout at Clojure to hand me one thing after another.

But Clojure is kind of dumb and has a hard time figuring out what I’m 
referring to. From within the user namespace, I belt out, “join! Give me 
join!”—specks of spittle flying from my mouth. “RuntimeException: Unable to 
resolve symbol: join,” Clojure whines in response. “For the love of brie, just 
hand me clojure.string/join!” I retort, and Clojure dutifully hands me the 
function I was looking for.

My voice gets hoarse. I need some way to tell Clojure what objects to get 
me without having to use the fully qualified symbol every. damn. time.

Luckily, Clojure provides the refer and alias tools that let me yell at it 
more succinctly.

refer
refer gives you fine-grained control over how you refer to objects in other 
namespaces. Fire up a new REPL session and try the following. Keep in 
mind that it’s okay to play around with namespaces like this in the REPL, 
but you don’t want your Clojure files to look like this; the proper way to 
structure your files is covered in “Real Project Organization” on page 133.

user=> (in-ns 'cheese.taxonomy)
cheese.taxonomy=> (def cheddars ["mild" "medium" "strong" "sharp" "extra sharp"])
cheese.taxonomy=> (def bries ["Wisconsin" "Somerset" "Brie de Meaux" "Brie de Melun"])
cheese.taxonomy=> (in-ns 'cheese.analysis)



Organizing Your Project: A Librarian’s Tale    131

cheese.analysis=> (clojure.core/refer 'cheese.taxonomy)
cheese.analysis=> bries
; => ["Wisconsin" "Somerset" "Brie de Meaux" "Brie de Melun"]

cheese.analysis=> cheddars
; => ["mild" "medium" "strong" "sharp" "extra sharp"]

This code creates a cheese.taxonomy namespace and two vectors within 
it: cheddars and bries. Then it creates and moves to a new namespace called 
cheese.analysis. Calling refer with a namespace symbol lets you refer to the 
corresponding namespace’s objects without having to use fully qualified 
symbols. It does this by updating the current namespace’s symbol/object 
map. You can see the new entries like this:

cheese.analysis=> (clojure.core/get (clojure.core/ns-map clojure.core/*ns*) 'bries)
; => #'cheese.taxonomy/bries

cheese.analysis=> (clojure.core/get (clojure.core/ns-map clojure.core/*ns*) 'cheddars)
; => #'cheese.taxonomy/cheddars

It’s as if Clojure

1. Calls ns-interns on the cheese.taxonomy namespace

2. Merges that with the ns-map of the current namespace

3. Makes the result the new ns-map of the current namespace

When you call refer, you can also pass it the filters :only, :exclude, and 
:rename. As the names imply, :only and :exclude restrict which symbol/var 
mappings get merged into the current namespace’s ns-map. :rename lets you 
use different symbols for the vars being merged in. Here’s what would hap-
pen if we had modified the preceding example to use :only:

cheese.analysis=> (clojure.core/refer 'cheese.taxonomy :only ['bries])
cheese.analysis=> bries
; => ["Wisconsin" "Somerset" "Brie de Meaux" "Brie de Melun"]
cheese.analysis=> cheddars 
; => RuntimeException: Unable to resolve symbol: cheddars

And here’s :exclude in action:

cheese.analysis=> (clojure.core/refer 'cheese.taxonomy :exclude ['bries])
cheese.analysis=> bries
; => RuntimeException: Unable to resolve symbol: bries
cheese.analysis=> cheddars 
; => ["mild" "medium" "strong" "sharp" "extra sharp"]

Lastly, a :rename example:

cheese.analysis=> (clojure.core/refer 'cheese.taxonomy :rename {'bries 'yummy-bries})
cheese.analysis=> bries
; => RuntimeException: Unable to resolve symbol: bries



132   Chapter 6

cheese.analysis=> yummy-bries
; => ["Wisconsin" "Somerset" "Brie de Meaux" "Brie de Melun"]

Notice that in these last examples we have to use the fully qualified 
names of all the objects in clojure.core, like clojure.core/ns-map and clojure 
.core/refer. We didn’t have to do that in the user namespace. That’s because 
the REPL automatically refers clojure.core within the user namespace. You 
can make your life easier by evaluating (clojure.core/refer-clojure) when 
you create a new namespace; this will refer the clojure.core namespace, 
and I’ll be using it from now on. Instead of seeing clojure.core/refer in the 
examples, you’ll only see refer.

Another thing to notice is that you have complete freedom over how 
you organize your functions and data across namespaces. This lets you sen-
sibly group related functions and data together in the same namespace.

Sometimes you may want a function to be available only to other functions 
within the same namespace. Clojure allows you to define private functions 
using defn-:

(in-ns 'cheese.analysis)
;; Notice the dash after "defn"
(defn- private-function
  "Just an example function that does nothing"
  [])

If you try to call this function from another namespace or refer it, 
Clojure will throw an exception. You can see this when you evaluate the 
code at u and v:

cheese.analysis=> (in-ns 'cheese.taxonomy)
cheese.taxonomy=> (clojure.core/refer-clojure)

u cheese.taxonomy=> (cheese.analysis/private-function)
v cheese.taxonomy=> (refer 'cheese.analysis :only ['private-function])

As you can see, even if you explicitly refer the function, you can’t use 
the function from another namespace, because you made it private. (If you 
want to be tricky, you can still access the private var using the arcane syntax 
@#'some/private-var, but you’ll rarely want to do that.)

alias
Compared to refer, alias is relatively simple. All it does is let you shorten a 
namespace name for using fully qualified symbols:

cheese.analysis=> (clojure.core/alias 'taxonomy 'cheese.taxonomy)
cheese.analysis=> taxonomy/bries
; => ["Wisconsin" "Somerset" "Brie de Meaux" "Brie de Melun"]

This code lets us use call symbols from the cheese.taxonomy namespace 
with the shorter alias taxonomy. 



Organizing Your Project: A Librarian’s Tale    133

refer and alias are your two basic tools for referring to objects outside 
your current namespace! They’re great aids to REPL development.

However, it’s unlikely that you’d create your entire program in the 
REPL. In the next section, I’ll cover everything you need to know to orga-
nize a real project with source code living on the filesystem.

real Project organization
Now that I’ve covered the building blocks of Clojure’s organization system, 
I’ll show you how to use them in real projects. I’ll discuss the relationship 
between file paths and namespace names, explain how to load a file with 
require and use, and show how to use ns to set up a namespace.

The Relationship Between File Paths and Namespace Names
To kill two birds with one stone (or feed two birds with one seed, depend-
ing on how much of a hippie you are), I’ll cover more on namespaces while 
we work on catching the pesky international cheese thief by mapping the 
locations of his heists. Run the following:

lein new app the-divine-cheese-code

This should create a directory structure that looks like this:

| .gitignore
| doc
| | intro.md
| project.clj
| README.md
| resources
| src
| | the_divine_cheese_code
| | | core.clj
| test
| | the_divine_cheese_code
| | | core_test.clj

Now, open src/the_divine_cheese_code/core.clj. You should see this on the 
first line:

(ns the-divine-cheese-code.core
  (:gen-class))

ns is the primary way to create and manage namespaces within Clojure. 
I’ll explain it in full shortly. For now, though, just know that this line is very 
similar to the in-ns function we used in Listing 6-1. It creates a namespace 
if it doesn’t exist and then switches to it. I also cover (:gen-class) in more 
detail in Chapter 12.



134   Chapter 6

The name of the namespace is the-divine-cheese-code.core. In Clojure, 
there’s a one-to-one mapping between a namespace name and the path 
of the file where the namespace is declared, according to the following 
conventions:

•	 When you create a directory with lein (as you did here), the source 
code’s root is src by default. 

•	 Dashes in namespace names correspond to underscores in the file-
system. So the-divine-cheese-code is mapped to the_divine_cheese_code on 
the filesystem.

•	 The component preceding a period (.) in a namespace name corre-
sponds to a directory. For example, since the-divine-cheese-code.core is 
the namespace name, the_divine_cheese_code is a directory.

•	 The final component of a namespace corresponds to a file with the .clj 
extension; core is mapped to core.clj.

Your project will have one more namespace, the-divine-cheese-code 
.visualization.svg. Go ahead and create the file for it now:

mkdir src/the_divine_cheese_code/visualization
touch src/the_divine_cheese_code/visualization/svg.clj

Notice that the filesystem path follows these conventions. With the rela-
tionship between namespaces and the filesystem down, let’s look at require 
and use.

Requiring and Using Namespaces
The code in the the-divine-cheese-code.core namespace will use the func-
tions in the namespace the-divine-cheese-code.visualization.svg to create 
SVG markup. To use svg’s functions, core will have to require it. But first, let’s 
add some code to svg.clj. Make it look like this (you’ll add more later):

(ns the-divine-cheese-code.visualization.svg)

(defn latlng->point
  "Convert lat/lng map to comma-separated string" 
  [latlng]
  (str (:lng latlng) "," (:lat latlng)))

(defn points
  [locations]
  (clojure.string/join " " (map latlng->point locations)))

This defines two functions, latlng->point and points, which you’ll use 
to convert a seq of latitude/longitude coordinates into a string of points. 
To use this code from the core.clj file, you have to require it. require takes a 
symbol designating a namespace and ensures that the namespace exists and 
is ready to be used; in this case, when you call (require 'the-divine-cheese 
-code.visualization.svg), Clojure reads and evaluates the corresponding file. 



Organizing Your Project: A Librarian’s Tale    135

By evaluating the file, it creates the the-divine-cheese-code.visualization 
.svg namespace and defines the functions latlng->point and points within 
that namespace. Even though the file svg.clj is in your project’s directory, 
Clojure doesn’t automatically evaluate it when it runs your project; you have 
to explicitly tell Clojure that you want to use it.

After requiring the namespace, you can refer it so that you don’t have to 
use fully qualified names to reference the functions. Go ahead and require 
the-divine-cheese-code.visualization.svg and add the heists seq to make 
core.clj match the listing:

(ns the-divine-cheese-code.core)
;; Ensure that the SVG code is evaluated
(require 'the-divine-cheese-code.visualization.svg)
;; Refer the namespace so that you don't have to use the 
;; fully qualified name to reference svg functions
(refer 'the-divine-cheese-code.visualization.svg)

(def heists [{:location "Cologne, Germany"
              :cheese-name "Archbishop Hildebold's Cheese Pretzel"
              :lat 50.95
              :lng 6.97}
             {:location "Zurich, Switzerland"
              :cheese-name "The Standard Emmental"
              :lat 47.37
              :lng 8.55}
             {:location "Marseille, France"
              :cheese-name "Le Fromage de Cosquer"
              :lat 43.30
              :lng 5.37}
             {:location "Zurich, Switzerland"
              :cheese-name "The Lesser Emmental"
              :lat 47.37
              :lng 8.55}
             {:location "Vatican City"
              :cheese-name "The Cheese of Turin"
              :lat 41.90
              :lng 12.45}])

(defn -main
  [& args]
  (println (points heists)))

Now you have a seq of heist locations to work with and you can use 
functions from the visualization.svg namespace. The main function simply 
applies the points function to heists. If you run the project with lein run, 
you should see this:

50.95,6.97 47.37,8.55 43.3,5.37 47.37,8.55 41.9,12.45

Hooray! You’re one step closer to catching that purloiner of the 
fermented curd! Using require successfully loaded the-divine-cheese-code 
.visualization.svg for use.



136   Chapter 6

The details of require are actually a bit complicated, but for practical 
purposes you can think of require as telling Clojure the following:

1. Do nothing if you’ve already called require with this symbol (the-divine 
-cheese-code.visualization.svg). 

2. Otherwise, find the file that corresponds to this symbol using the rules 
described in “The Relationship Between File Paths and Namespace 
Names” on page 133. In this case, Clojure finds src/the_divine_cheese_
code/visualization/svg.clj.

Read and evaluate the contents of that file. Clojure expects the file to 
declare a namespace corresponding to its path (which ours does).

require also lets you alias a namespace when you require it, using :as or 
alias. This:

(require '[the-divine-cheese-code.visualization.svg :as svg])

is equivalent to this:

(require 'the-divine-cheese-code.visualization.svg)
(alias 'svg 'the-divine-cheese-code.visualization.svg)

You can now use the aliased namespace:

(svg/points heists)
; => "50.95,6.97 47.37,8.55 43.3,5.37 47.37,8.55 41.9,12.45"

Clojure provides another shortcut. Instead of calling require and refer 
separately, the function use does both. It’s frowned upon to use use in pro-
duction code, but it’s handy when you’re experimenting in the REPL and 
you want to quickly get your hands on some functions. For example, this:

(require 'the-divine-cheese-code.visualization.svg)
(refer 'the-divine-cheese-code.visualization.svg)

is equivalent to this:

(use 'the-divine-cheese-code.visualization.svg)

You can alias a namespace with use just like you can with require. This:

(require 'the-divine-cheese-code.visualization.svg)
(refer 'the-divine-cheese-code.visualization.svg)
(alias 'svg 'the-divine-cheese-code.visualization.svg)

is equivalent to the code in Listing 6-2, which also shows aliased namespaces 
being used in function calls.



Organizing Your Project: A Librarian’s Tale    137

(use '[the-divine-cheese-code.visualization.svg :as svg])
(= svg/points points)
; => true

(= svg/latlng->point latlng->point)
; => true

Listing 6-2: Sometimes it’s handy to both use and alias a namespace.

It may seem redundant to alias a namespace with use here because use 
already refers the namespace (which lets you simply call points instead of 
svg/points). In certain situations, though, it’s handy because use takes the 
same options as refer (:only, :exclude, :as, and :rename). You might want to 
alias a namespace with use when you’ve skipped referring a symbol. You 
could use this:

(require 'the-divine-cheese-code.visualization.svg)
(refer 'the-divine-cheese-code.visualization.svg :as :only ['points])

Or you could use the use form in Listing 6-3 (which also includes 
examples of how you can call functions).

(use '[the-divine-cheese-code.visualization.svg :as svg :only [points]])
(refer 'the-divine-cheese-code.visualization.svg :as :only ['points])
(= svg/points points)
; => true

;; We can use the alias to reach latlng->point
svg/latlng->point
; This doesn't throw an exception

;; But we can't use the bare name
latlng->point
; This does throw an exception!

Listing 6-3: Aliasing a namespace after you use it lets you refer to symbols that you excluded.

If you try Listing 6-3 in a REPL and latlng->point doesn’t throw an 
exception, it’s because you referred latlng->point in Listing 6-2. You’ll need 
to restart your REPL session for the code to behave as shown in Listing 6-3.

The takeaway here is that require and use load files and optionally alias 
or refer their namespaces. As you write Clojure programs and read code 
written by others, you might encounter even more ways of writing require 
and use, at which point it’ll make sense to read Clojure’s API docs (http://
clojure.org/libs/) to understand what’s going on. However, what you’ve learned 
so far about require and use should cover 95.3 percent of your needs.

http://clojure.org/libs/
http://clojure.org/libs/


138   Chapter 6

The ns Macro
Now it’s time to look at the ns macro. The tools covered so far—in-ns, refer, 
alias, require, and use—are most often used when you’re playing in the 
REPL. In your source code files, you’ll typically use the ns macro because 
it allows you to use the tools described so far succinctly and provides other 
useful functionality. In this section, you’ll learn about how one ns call can 
incorporate require, use, in-ns, alias, and refer.

One useful task ns does is refer the clojure.core namespace by default. 
That’s why you can call println from within the-divine-cheese-code.core with-
out using the fully qualified name, clojure.core/println.

You can control what gets referred from clojure-core with :refer-clojure, 
which takes the same options as refer:

(ns the-divine-cheese-code.core
  (:refer-clojure :exclude [println]))

If you called this at the beginning of divine_cheese_code.core.clj, it would 
break your code, forcing you to use clojure.core/println within the -main 
function.

Within ns, the form (:refer-clojure) is called a reference. This might look 
weird to you. Is this reference a function call? A macro? What is it? You’ll 
learn more about the underlying machinery in Chapter 7. For now, you just 
need to understand how each reference maps to function calls. For example, 
the preceding code is equivalent to this:

(in-ns 'the-divine-cheese-code.core)
(refer 'clojure.core :exclude ['println])

There are six possible kinds of references within ns:

•	 (:refer-clojure)

•	 (:require)

•	 (:use)

•	 (:import)

•	 (:load)

•	 (:gen-class)

(:import) and (:gen-class) are covered in Chapter 12. I won’t cover (:load) 
because it is seldom used.

(:require) works a lot like the require function. For example, this:

(ns the-divine-cheese-code.core
  (:require the-divine-cheese-code.visualization.svg))

is equivalent to this:

(in-ns 'the-divine-cheese-code.core)
(require 'the-divine-cheese-code.visualization.svg)



Organizing Your Project: A Librarian’s Tale    139

Notice that in the ns form (unlike the in-ns function call), you don’t have 
to quote your symbol with '. You never have to quote symbols within ns.

You can also alias a library that you require within ns, just like when you 
call the function. This:

(ns the-divine-cheese-code.core
  (:require [the-divine-cheese-code.visualization.svg :as svg]))

is equivalent to this:

(in-ns 'the-divine-cheese-code.core)
(require ['the-divine-cheese-code.visualization.svg :as 'svg])

You can require multiple libraries in a (:require) reference as 
follows. This:

(ns the-divine-cheese-code.core
  (:require [the-divine-cheese-code.visualization.svg :as svg]
            [clojure.java.browse :as browse]))

is equivalent to this:

(in-ns 'the-divine-cheese-code.core)
(require ['the-divine-cheese-code.visualization.svg :as 'svg])
(require ['clojure.java.browse :as 'browse])

However, one difference between the (:require) reference and the 
require function is that the reference also allows you to refer names. This:

(ns the-divine-cheese-code.core
  (:require [the-divine-cheese-code.visualization.svg :refer [points]]))

is equivalent to this:

(in-ns 'the-divine-cheese-code.core)
(require 'the-divine-cheese-code.visualization.svg)
(refer 'the-divine-cheese-code.visualization.svg :only ['points])

You can also refer all symbols (notice the :all keyword):

(ns the-divine-cheese-code.core
  (:require [the-divine-cheese-code.visualization.svg :refer :all]))

which is the same as doing this:

(in-ns 'the-divine-cheese-code.core)
(require 'the-divine-cheese-code.visualization.svg)
(refer 'the-divine-cheese-code.visualization.svg)



140   Chapter 6

This is the preferred way to require code, alias namespaces, and refer 
symbols. It’s recommended that you not use (:use), but since it’s likely that 
you’ll come across it, it’s good to know how it works. You know the drill. This:

(ns the-divine-cheese-code.core
  (:use clojure.java.browse))

does this:

(in-ns 'the-divine-cheese-code.core)
(use 'clojure.java.browse)

whereas this:

(ns the-divine-cheese-code.core
  (:use [clojure.java browse io]))

does this:

(in-ns 'the-divine-cheese-code.core)
(use 'clojure.java.browse)
(use 'clojure.java.io)

Notice that when you follow :use with a vector, it takes the first symbol 
as the base and then calls use with each symbol that follows.

Oh my god, that’s it! Now you can use ns like a pro! And you’re going 
to need to, dammit, because that voleur des fromages (as they probably say in 
French) is still running amok! Remember him/her?!

to Catch a Burglar
We can’t allow this plunderer of parmesan to make off with any more cheese! 
It’s time to finish drawing lines based on the coordinates of the heists! That 
will surely reveal something!

Using the latitude coordinates for each heist, you’ll connect the dots in 
an SVG image. But if you draw lines using the given coordinates, the result 
won’t look right for two reasons. First, latitude coordinates ascend from 
south to north, whereas SVG y-coordinates ascend from top to bottom. 
In other words, you need to flip the coordinates or the drawing will be 
upside down.

Second, the drawing will be very small. To fix that, you’ll zoom in on 
it by translating and scaling it. It’s like turning a drawing that looks like 
Figure 6-1a into Figure 6-1b.



Organizing Your Project: A Librarian’s Tale    141

(0, 0)

(0, 0)

a) b)

Figure 6-1: Flipping, translating, and scaling latitude coordinates  
to make an SVG image.

Honestly, this is all completely arbitrary and it’s no longer directly related 
to code organization, but it’s fun and I think you’ll have a good time going 
through the code! Make your svg.clj file match Listing 6-4:

(ns the-divine-cheese-code.visualization.svg
  (:require [clojure.string :as s])
  (:refer-clojure :exclude [min max]))

u (defn comparator-over-maps
  [comparison-fn ks]
  (fn [maps]

v     (zipmap ks
w             (map (fn [k] (apply comparison-fn (map k maps)))

                 ks))))

x (def min (comparator-over-maps clojure.core/min [:lat :lng]))
(def max (comparator-over-maps clojure.core/max [:lat :lng]))

Listing 6-4: Constructing map comparison functions

You define the comparator-over-maps function at u. This is probably the 
trickiest bit, so bear with me. comparator-over-maps is a function that returns a 
function. The returned function compares the values for the keys provided 
by the ks parameter using the supplied comparison function, comparison-fn.

You use comparator-over-maps to construct the min and max functions x, 
which you’ll use to find the top-left and bottom-right corners of our draw-
ing. Here’s min in action:

(min [{:a 1 :b 3} {:a 5 :b 0}])
; => {:a 1 :b 0}

When you call min, it calls zipmap v, which takes two arguments, both 
seqs, and returns a new map. The elements of the first seq become the keys, 
and the elements of the second seq become the values:

(zipmap [:a :b] [1 2])
; => {:a 1 :b 2}



142   Chapter 6

At v, the first argument to zipmap is ks, so the elements of ks will be the 
keys of the returned map. The second argument is the result of the map 
call at w. That map call actually performs the comparison.

Finally, at x you use comparator-over-maps to create the comparison func-
tions. If you think of the drawing as being inscribed in a rectangle, min is the 
corner of the rectangle closest to (0, 0) and max is the corner farthest from it.

Here’s the next part of the code:

y (defn translate-to-00
  [locations]
  (let [mincoords (min locations)]
    (map #(merge-with - % mincoords) locations)))

 (defn scale
  [width height locations]
  (let [maxcoords (max locations)
        ratio {:lat (/ height (:lat maxcoords))
               :lng (/ width (:lng maxcoords))}]
    (map #(merge-with * % ratio) locations)))

translate-to-00, defined at y, works by finding the min of our locations 
and subtracting that value from each location. It uses merge-with, which 
works like this:

(merge-with - {:lat 50 :lng 10} {:lat 5 :lng 5})
; => {:lat 45 :lng 5}

Then we define the function scale at , which multiplies each point 
by the ratio between the maximum latitude and longitude and the desired 
height and width.

Here’s the rest of the code for svg.clj:

(defn latlng->point
  "Convert lat/lng map to comma-separated string" 
  [latlng]
  (str (:lng latlng) "," (:lat latlng)))

(defn points
  "Given a seq of lat/lng maps, return string of points joined by space"
  [locations]
  (s/join " " (map latlng->point locations)))

(defn line
  [points]
  (str "<polyline points=\"" points "\" />"))

(defn transform
  "Just chains other functions"
  [width height locations]
  (->> locations
       translate-to-00
       (scale width height)))



Organizing Your Project: A Librarian’s Tale    143

(defn xml
  "svg 'template', which also flips the coordinate system"
  [width height locations]
  (str "<svg height=\"" height "\" width=\"" width "\">"
       ;; These two <g> tags flip the coordinate system
       "<g transform=\"translate(0," height ")\">"
       "<g transform=\"scale(1,-1)\">"
       (-> (transform width height locations)
           points
           line)
       "</g></g>"
       "</svg>"))

The functions here are pretty straightforward. They just take 
{:lat x :lng y} maps and transform them so that an SVG can be created. 
latlng->point returns a string that can be used to define a point in SVG 
markup. points converts a seq of lat/lng maps into a space-separated 
string of points. line returns the SVG markup for a line that connects all 
given space-separated strings of points. transform takes a seq of locations, 
translates them so they start at the point (0, 0), and scales them to the 
given width and height. Finally, xml produces the markup for displaying 
the given locations using SVG.

With svg.clj all coded up, now make core.clj look like this:

(ns the-divine-cheese-code.core
  (:require [clojure.java.browse :as browse]
            [the-divine-cheese-code.visualization.svg :refer [xml]])
  (:gen-class))

(def heists [{:location "Cologne, Germany"
              :cheese-name "Archbishop Hildebold's Cheese Pretzel"
              :lat 50.95
              :lng 6.97}
             {:location "Zurich, Switzerland"
              :cheese-name "The Standard Emmental"
              :lat 47.37
              :lng 8.55}
             {:location "Marseille, France"
              :cheese-name "Le Fromage de Cosquer"
              :lat 43.30
              :lng 5.37}
             {:location "Zurich, Switzerland"
              :cheese-name "The Lesser Emmental"
              :lat 47.37
              :lng 8.55}
             {:location "Vatican City"
              :cheese-name "The Cheese of Turin"
              :lat 41.90
              :lng 12.45}])



144   Chapter 6

(defn url
  [filename]
  (str "file:///"
       (System/getProperty "user.dir")
       "/"
       filename))

(defn template
  [contents]
  (str "<style>polyline { fill:none; stroke:#5881d8; stroke-width:3}</style>"
       contents))

(defn -main
  [& args]
  (let [filename "map.html"]
    (->> heists
         (xml 50 100)
         template
         (spit filename))
    (browse/browse-url (url filename))))

Nothing too complicated is going on here. Within 
-main you build up the drawing using the xml and template 
functions, write the drawing to a file with spit, and then 
open it with browse/browse-url. You should try that now! 
Run lein run and you’ll see something that looks like 
Figure 6-2.

Wait a minute . . . that looks a lot like . . . that looks 
a lot like a lambda. Clojure’s logo is a lambda . . . oh my 
god! Clojure, it was you this whole time!

summary
You learned a lot in this chapter. At this point, you should have all the tools 
you need to start organizing your projects. You now know that namespaces 
organize maps between symbols and vars, and that vars are references to 
Clojure objects (data structures, functions, and so on). def stores an object 
and updates the current namespace with a map between a symbol and a var 
that points to the object. You can create private functions with defn-.

Clojure lets you create namespaces with create-ns, but often it’s more 
useful to use in-ns, which switches to the namespace as well. You’ll probably 
only use these functions in the REPL. When you’re in the REPL, you’re 
always in the current namespace. When you’re defining namespaces in a file 
rather than the REPL, you should use the ns macro, and there’s a one-to-
one relationship between a namespace and its path on the filesystem.

Figure 6-2: The 
final SVG of the 
heist pattern!



Organizing Your Project: A Librarian’s Tale    145

You can refer to objects in other namespaces by using the fully quali-
fied name, like cheese.taxonomy/cheddars. refer lets you use names from other 
namespaces without having to fully qualify them, and alias lets you use a 
shorter name for a namespace when you’re writing out a fully qualified name.

require and use ensure that a namespace exists and is ready to be used, 
and optionally let you refer and alias the corresponding namespaces. You 
should use ns to call require and use in your source files. https://gist.github.com/
ghoseb/287710/ is a great reference for all the vagaries of using ns.

Lastly and most importantly, it ain’t easy being cheesy.

https://gist.github.com/ghoseb/287710/
https://gist.github.com/ghoseb/287710/




7
C l o j u r e  a l C h e m Y:  r e a D i n g , 

e v a l u a t i o n ,  a n D  m a C r o s

The philosopher’s stone, along with the 
elixir of life and Viagra, is one of the most 

well-known specimens of alchemical lore, 
pursued for its ability to transmute lead into gold. 

Clojure, however, offers a tool that makes the philos-
opher’s stone look like a mere trinket: the macro. 
Macros allow you to transform arbitrary expressions into valid Clojure, so 
you can extend the language itself to fit your needs. And you don’t even 
have to be a wizened old dude or lady in a robe to use them!

To get just a sip of this power, consider this trivial macro:

(defmacro backwards
  [form]
  (reverse form))

(backwards (" backwards" " am" "I" str))
; => "I am backwards"



148   Chapter 7

The backwards macro allows Clojure to successfully evaluate the expres-
sion (" backwards" " am" "I" str), even though it doesn’t follow Clojure’s 
built-in syntax rules, which require an expression’s operand to appear 
first (not to mention the rule that an expression not be written in reverse 
order). Without backwards, the expression would fail harder than millen-
nia of alchemists ironically spending their entire lives pursuing an impos-
sible means of achieving immortality. With backwards, you’ve created your own 
syntax! You’ve extended Clojure so you can write code however you please! 
Better than turning lead into gold, I tell you!

This chapter gives you the conceptual foundation you need to go mad 
with power writing your own macros. It explains the elements of Clojure’s 
evaluation model: the reader, the evaluator, and the macro expander. It’s like 
the periodic table of Clojure elements. Think of how the periodic table 
reveals the properties of atoms: elements in the same column behave simi-
larly because they have the same nuclear charge. Without the periodic table 
and its underlying theory, we’d be in the same position as the alchemists 
of yore, mixing stuff together randomly to see what blows up. But with a 
deeper understanding of the elements, you can see why stuff blows up and 
learn how to blow stuff up on purpose.

an overview of Clojure’s evaluation model
Clojure (like all Lisps) has an evaluation model that differs from most 
other languages: it has a two-phase system where it reads textual source 
code, producing Clojure data structures. These data structures are then 
evaluated: Clojure traverses the data structures and performs actions like 
function application or var lookup based on the type of the data struc-
ture. For example, when Clojure reads the text (+ 1 2), the result is a list 
data structure whose first element is a + symbol, followed by the numbers 1 
and 2. This data structure is passed to Clojure’s evaluator, which looks up 
the function corresponding to + and applies that function to 1 and 2.

Languages that have this relationship between source code, data, 
and evaluation are called homoiconic. (Incidentally, if you say homoiconic 
in front of your bathroom mirror three 
times with the lights out, the ghost of John 
McCarthy appears and hands you a paren-
thesis.) Homoiconic languages empower you 
to reason about your code as a set of data 
structures that you can manipulate program-
matically. To put this into context, let’s take a 
jaunt through the land of compilation.

Programming languages require a 
compiler or interpreter for translating the 
code you write, which consists of Unicode 
characters, into something else: machine 
instructions, code in another programming 
language, whatever. During this process, the 



Clojure Alchemy: Reading, Evaluation, and Macros   149

compiler constructs an abstract syntax tree (AST), which is a data structure 
that represents your program. You can think of the AST as the input to the 
evaluator, which you can think of as a function that traverses the tree to pro-
duce the machine code or whatever as its output. 

So far this sounds a lot like what I described for Clojure. However, in 
most languages the AST’s data structure is inaccessible within the program-
ming language; the programming language space and the compiler space 
are forever separated, and never the twain shall meet. Figure 7-1 shows how 
you might visualize the compilation process for an expression in a non-Lisp 
programming language.

1 + 6 * 7

Not accessible 
in program

Evaluator

Parser & Lexer

100011 00011

Text gets parsed and lexed...

...which pops out a happy little AST.

This goes to the evaluator...

...which makes machine code or whatever.

Figure 7-1: Evaluation in a non-Lisp programming language

But Clojure is different, because Clojure is a Lisp and Lisps are hotter 
than a stolen tamale. Instead of evaluating an AST that’s represented as 
some inaccessible internal data structure, Lisps evaluate native data struc-
tures. Clojure still evaluates tree structures, but the trees are structured 
using Clojure lists and the nodes are Clojure values.

Lists are ideal for constructing tree structures. The first element of a list 
is treated as the root, and each subsequent element is treated as a branch. 
To create a nested tree, you can just use nested lists, as shown in Figure 7-2.



150   Chapter 7

The first element is treated as the root.

Subsequent elements are treated as branches.

Nested lists are treated as nested trees.

(+ 1 2)

(+ 1 (* 6 7))

Figure 7-2: Lists can easily be treated as trees.

First, Clojure’s reader converts the text (+ 1 (* 6 7)) into a nested list. 
(You’ll learn more about the reader in the next section.) Then, Clojure’s 
evaluator takes that data as input and produces a result. (It also com-
piles Java Virtual Machine ( JVM) bytecode, which you’ll learn about in 
Chapter 12. For now, we’ll just focus on the evaluation model on a concep-
tual level.)

With this in mind, Figure 7-3 shows what Clojure’s evaluation process 
looks like.

s -e x pr e ssions

In your Lisp adventures, you’ll come across resources that explain that Lisps 
evaluate s-expressions . I avoid that term here because it’s ambiguous: you’ll 
see it used to refer to both the actual data object that gets evaluated and the 
source code that represents that data . Using the same term for two different 
components of Lisp evaluation (code and data) obscures what’s important: your 
text represents native data structures, and Lisps evaluate native data structures, 
which is unique and awesome . For a great treatment of s-expressions, check 
out http://www.gigamonkeys.com/book/syntax-and-semantics.html .



Clojure Alchemy: Reading, Evaluation, and Macros   151

(+ 1 (* 6 7))

Totally accessible 
in program!

Evaluator

Reader

Text goes to the reader...

...which pops out a happy little Clojure list.

This goes to the evaluator...

...which returns a value.

Figure 7-3: Evaluation in Clojure

However, the evaluator doesn’t actually care where its input comes 
from; it doesn’t have to come from the reader. As a result, you can send 
your program’s data structures directly to the Clojure evaluator with eval. 
Behold!

(def addition-list (list + 1 2))
(eval addition-list)
; => 3

That’s right, baby! Your program just evaluated a Clojure list. You’ll 
read all about Clojure’s evaluation rules soon, but briefly, this is what 
happened: when Clojure evaluated the list, it looked up the list that 
addition-list refers to; then it looked up the function corresponding to 
the + symbol; and then it called that function with 1 and 2 as arguments, 
returning 3. The data structures of your running program and those 



152   Chapter 7

of the evaluator live in the same space, and the upshot is that you can use 
the full power of Clojure and all the code you’ve written to construct data 
structures for evaluation:

(eval (concat addition-list [10]))
; => 13

(eval (list 'def 'lucky-number (concat addition-list [10])))
; => #'user/lucky-number

lucky-number
; => 13

Figure 7-4 shows the lists you sent to the evaluator in these two 
examples.

(concat addition-list [10])

(list 'def 'lucky-number (concat addition-list [10]))

Figure 7-4: The lists you evaluated

Your program can talk directly to its own evaluator, using its own func-
tions and data to modify itself as it runs! Are you going mad with power yet? 
I hope so! Hold on to some of your sanity, though, because there’s still 
more to learn.

So Clojure is homoiconic: it represents abstract syntax trees using lists, 
and you write textual representations of lists when you write Clojure code. 
Because the code you write represents data structures that you’re used to 
manipulating and the evaluator consumes those data structures, it’s easy to 
reason about how to programmatically modify your program.

Macros are what allow you to perform those manipulations easily. The 
rest of this chapter covers Clojure’s reader and evaluation rules in detail to 
give you a precise understanding of how macros work.



Clojure Alchemy: Reading, Evaluation, and Macros   153

the reader
The reader converts the textual source code you save in a file or enter in the 
REPL into Clojure data structures. It’s like a translator between the human 
world of Unicode characters and Clojure’s world of lists, vectors, maps, sym-
bols, and other data structures. In this section, you’ll interact directly with 
the reader and learn how a handy feature, the reader macro, lets you write 
code more succinctly.

Reading
To understand reading, let’s first take a close look at how Clojure handles 
the text you type in the REPL. First, the REPL prompts you for text:

user=>

Then you enter a bit of text. Maybe something like this:

user=> (str "To understand what recursion is," " you must first understand recursion.")

That text is really just a sequence of Unicode characters, but it’s meant 
to represent a combination of Clojure data structures. This textual repre-
sentation of data structures is called a reader form. In this example, the form 
represents a list data structure that contains three more forms: the str 
symbol and two strings.

Once you type those characters into the prompt and press enter, that 
text goes to the reader (remember REPL stands for read-eval-print-loop). 
Clojure reads the stream of characters and internally produces the corre-
sponding data structures. It then evaluates the data structures and prints 
the textual representation of the result:

"To understand what recursion is, you must first understand recursion."

Reading and evaluation are discrete processes that you can perform 
independently. One way to interact with the reader directly is by using the 
read-string function. read-string takes a string as an argument and processes 
it using Clojure’s reader, returning a data structure:

(read-string "(+ 1 2)")
; => (+ 1 2)

(list? (read-string "(+ 1 2)"))
; => true

(conj (read-string "(+ 1 2)") :zagglewag)
; => (:zagglewag + 1 2)

In the first example, read-string reads the string representation of a list 
containing a plus symbol and the numbers 1 and 2. The return value is an 
actual list, as proven by the second example. The last example uses conj to 



154   Chapter 7

prepend a keyword to the list. The takeaway is that reading and evaluating 
are independent of each other. You can read text without evaluating it, and 
you can pass the result to other functions. You can also evaluate the result, 
if you want:

(eval (read-string "(+ 1 2)"))
; => 3

In all the examples so far, there’s been a one-to-one relationship 
between the reader form and the corresponding data structures. Here are 
more examples of simple reader forms that directly map to the data struc-
tures they represent:

() A list reader form

str A symbol reader form

[1 2] A vector reader form containing two number reader forms

{:sound "hoot"} A map reader form with a keyword reader form and 
string reader form

However, the reader can employ more complex behavior when convert-
ing text to data structures. For example, remember anonymous functions?

(#(+ 1 %) 3)
; => 4

Well, try this out:

(read-string "#(+ 1 %)")
; => (fn* [p1__423#] (+ 1 p1__423#))

Whoa! This is not the one-to-one mapping that we’re used to. Reading 
#(+ 1 %) somehow resulted in a list consisting of the fn* symbol, a vector con-
taining a symbol, and a list containing three elements. What just happened?

Reader Macros
I’ll answer my own question: the reader used a reader macro to transform 
#(+ 1 %). Reader macros are sets of rules for transforming text into data 
structures. They often allow you to represent data structures in more com-
pact ways because they take an abbreviated reader form and expand it 
into a full form. They’re designated by macro characters, like ' (the single 
quote), #, and @. They’re also completely different from the macros we’ll 
get to later. So as not to get the two confused, I’ll always refer to reader 
macros using the full term reader macros.

For example, you can see how the quote reader macro expands the 
single quote character here:

(read-string "'(a b c)")
; => (quote (a b c))



Clojure Alchemy: Reading, Evaluation, and Macros   155

When the reader encounters the single quote, it expands it to a list 
whose first member is the symbol quote and whose second member is the 
data structure that followed the single quote. The deref reader macro works 
similarly for the @ character:

(read-string "@var")
; => (clojure.core/deref var)

Reader macros can also do crazy stuff like cause text to be ignored. The 
semicolon designates the single-line comment reader macro:

(read-string "; ignore!\n(+ 1 2)")
; => (+ 1 2)

And that’s the reader! Your humble companion, toiling away at trans-
forming text into data structures. Now let’s look at how Clojure evaluates 
those data structures.

the evaluator
You can think of Clojure’s evaluator as a function that takes a data structure 
as an argument, processes the data structure using rules corresponding to 
the data structure’s type, and returns a result. To evaluate a symbol, Clojure 
looks up what the symbol refers to. To evaluate a list, Clojure looks at the 
first element of the list and calls a function, macro, or special form. Any 
other values (including strings, numbers, and keywords) simply evaluate 
to themselves.

For example, let’s say you’ve typed (+ 1 2) in the 
REPL. Figure 7-5 shows a diagram of the data struc-
ture that gets sent to the evaluator.

Because it’s a list, the evaluator starts by evaluating 
the first element in the list. The first element is the plus 
symbol, and the evaluator resolves that by returning 
the corresponding function. Because the first element 
in the list is a function, the evaluator evaluates each of 
the operands. The operands 1 and 2 evaluate to them-
selves because they’re not lists or symbols. Then the 
evaluator calls the addition function with 1 and 2 as 
the operands, and returns the result.

The rest of this section explains the evaluator’s rules for each kind of 
data structure more fully. To show how the evaluator works, we’ll just run 
each example in the REPL. Keep in mind that the REPL first reads your 
text to get a data structure, then sends that data structure to the evaluator, 
and then prints the result as text.

Figure 7-5: The 
data structure for 
(+ 1 2)



156   Chapter 7

Data 

I write about how Clojure evaluates data structures in this chapter, but that’s 
imprecise . Technically, data structure refers to some kind of collection, like 
a linked list or b-tree, or whatever, but I also use the term to refer to scalar 
(singular, noncollection) values like symbols and numbers . I considered using 
the term data objects but didn’t want to imply object-oriented programming, 
or using just data but didn’t want to confuse that with data as a concept . So, 
data structure it is, and if you find this offensive, I will give you a thousand 
apologies, thoughtfully organized in a Van Emde Boas tree .

These Things Evaluate to Themselves
Whenever Clojure evaluates data structures that aren’t a list or symbol, the 
result is the data structure itself:

true
; => true

false
; => false

{}
; => {}

:huzzah
; => :huzzah

Empty lists evaluate to themselves, too:

()
; => ()

Symbols
One of your fundamental tasks as a programmer is creating abstractions by 
associating names with values. You learned how to do this in Chapter 3 by 
using def, let, and function definitions. Clojure uses symbols to name func-
tions, macros, data, and anything else you can use, and evaluates them by 
resolving them. To resolve a symbol, Clojure traverses any bindings you’ve 
created and then looks up the symbol’s entry in a namespace mapping, 
which you learned about in Chapter 6. Ultimately, a symbol resolves to 
either a value or a special form—a built-in Clojure operator that provides 
fundamental behavior. 



Clojure Alchemy: Reading, Evaluation, and Macros   157

In general, Clojure resolves a symbol by:

1. Looking up whether the symbol names a special form. If it doesn’t . . .  

2. Looking up whether the symbol corresponds to a local binding. If it 
doesn’t . . .

3. Trying to find a namespace mapping introduced by def. If it doesn’t . . .

4. Throwing an exception

Let’s first look at a symbol resolving to a special form. Special forms, 
like if, are always used in the context of an operation; they’re always the 
first element in a list:

(if true :a :b)
; => :a

In this case, if is a special form and it’s being used as an operator. 
If you try to refer to a special form outside of this context, you’ll get an 
exception:

if
; => CompilerException java.lang.RuntimeException: Unable to resolve symbol: 
if in this context, compiling:(NO_SOURCE_PATH:0:0) 

Next, let’s evaluate some local bindings. A local binding is any associa-
tion between a symbol and a value that wasn’t created by def. In the next 
example, the symbol x is bound to 5 using let. When the evaluator resolves 
x, it resolves the symbol x to the value 5:

(let [x 5]
  (+ x 3))
; => 8

Now if we create a namespace mapping of x to 15, Clojure resolves it 
accordingly:

(def x 15)
(+ x 3)
; => 18

In the next example, x is mapped to 15, but we introduce a local bind-
ing of x to 5 using let. So x is resolved to 5:

(def x 15)
(let [x 5]
  (+ x 3))
; => 8



158   Chapter 7

You can nest bindings, in which case the most recently defined binding 
takes precedence:

(let [x 5]
  (let [x 6]
    (+ x 3)))
; => 9

Functions also create local bindings, binding parameters to arguments 
within the function body. In this next example, exclaim is mapped to a func-
tion. Within the function body, the parameter name exclamation is bound to 
the argument passed to the function:

(defn exclaim
  [exclamation]
  (str exclamation "!"))

(exclaim "Hadoken")
; => "Hadoken!"

Finally, in this last example, map and inc both refer to functions:

(map inc [1 2 3])
; => (2 3 4)

When Clojure evaluates this code, it first evaluates the map symbol, look-
ing up the corresponding function and applying it to its arguments. The 
symbol map refers to the map function, but it shouldn’t be confused with the 
function itself. The map symbol is still a data structure, the same way that the 
string "fried salad" is a data structure, but it’s not the same as the function 
itself:

(read-string ("+"))
; => +

(type (read-string "+"))
; => clojure.lang.Symbol

(list (read-string "+") 1 2)
; => (+ 1 2)

In these examples, you’re interacting with the plus symbol, +, as a data 
structure. You’re not interacting with the addition function that it refers to. 
If you evaluate it, Clojure looks up the function and applies it:

(eval (list (read-string "+") 1 2))
; => 3

On their own, symbols and their referents don’t actually do anything; 
Clojure performs work by evaluating lists.



Clojure Alchemy: Reading, Evaluation, and Macros   159

Lists
If the data structure is an empty list, it evaluates to an empty list:

(eval (read-string "()"))
; => ()

Otherwise, it is evaluated as a call to the first element in the list. The 
way the call is performed depends on the nature of that first element.

Function Calls

When performing a function call, each operand is fully evaluated and 
then passed to the function as an argument. In this example, the + symbol 
resolves to a function:

(+ 1 2)
; => 3

Clojure sees that the list’s head is a function, so it proceeds to evaluate 
the rest of the elements in the list. The operands 1 and 2 both evaluate to 
themselves, and after they’re evaluated, Clojure applies the addition func-
tion to them.

You can also nest function calls:

(+ 1 (+ 2 3))
; => 6

Even though the second argument is a list, Clojure follows the same 
process here: look up the + symbol and evaluate each argument. To evaluate 
the list (+ 2 3), Clojure resolves the first member to the addition function 
and proceeds to evaluate each of the arguments. In this way, evaluation is 
recursive.

Special Forms

You can also call special forms. In general, special forms are special because 
they implement core behavior that can’t be implemented with functions. 
For example:

(if true 1 2)
; => 1

Here, we ask Clojure to evaluate a list beginning with the symbol if. 
That if symbol gets resolved to the if special form, and Clojure calls that 
special form with the operands true, 1, and 2.

Special forms don’t follow the same evaluation rules as normal func-
tions. For example, when you call a function, each operand gets evaluated. 



160   Chapter 7

However, with if you don’t want each operand to be evaluated. You only 
want certain operands to be evaluated, depending on whether the condi-
tion is true or false.

Another important special form is quote. You’ve seen lists represented 
like this:

'(a b c)

As you saw in “The Reader” on page 153, this invokes a reader macro 
so that we end up with this:

(quote (a b c))

Normally, Clojure would try to resolve the a symbol and then call it 
because it’s the first element in a list. The quote special form tells the evalu-
ator, “Instead of evaluating my next data structure like normal, just return 
the data structure itself.” In this case, you end up with a list consisting 
of the symbols a, b, and c.

def, let, loop, fn, do, and recur are all special forms as well. You can see 
why: they don’t get evaluated the same way as functions. For example, nor-
mally when the evaluator evaluates a symbol, it resolves that symbol, but 
def and let obviously don’t behave that way. Instead of resolving symbols, 
they actually create associations between symbols and values. So the evalu-
ator receives a combination of data structures from the reader, and it goes 
about resolving the symbols and calling the functions or special forms at 
the beginning of each list. But there’s more! You can also place a macro 
at the beginning of a list instead of a function or a special form, and this 
can give you tremendous power over how the rest of the data structures 
are evaluated.

Macros
Hmm . . . Clojure evaluates data structures—the same data structures that 
we write and manipulate in our Clojure programs. Wouldn’t it be awesome 
if we could use Clojure to manipulate the data structures that Clojure eval-
uates? Yes, yes it would! And guess what? You can do this with macros! Did 
your head just explode? Mine did!

To get an idea of what macros do, let’s look at some code. Say we want 
to write a function that makes Clojure read infix notation (such as 1 + 1) 
instead of its normal notation with the operator first (+ 1 1). This example 
is not a macro. Rather, it merely shows that you can write code using infix 
notation and then use Clojure to transform it so it will actually execute. 
First, create a list that represents infix addition:

(read-string "(1 + 1)")
; => (1 + 1)



Clojure Alchemy: Reading, Evaluation, and Macros   161

Clojure will throw an exception if you try to make it evaluate this list:

(eval (read-string "(1 + 1)"))
; => ClassCastException java.lang.Long cannot be cast to clojure.lang.IFn

However, read-string returns a list, and you can use Clojure to reorga-
nize that list into something it can successfully evaluate:

(let [infix (read-string "(1 + 1)")]
  (list (second infix) (first infix) (last infix)))
; => (+ 1 1)

If you eval this, it returns 2, just as you’d expect:

(eval
 (let [infix (read-string "(1 + 1)")]
   (list (second infix) (first infix) (last infix))))
; => 2

This is cool, but it’s also quite clunky. That’s where macros come in. 
Macros give you a convenient way to manipulate lists before Clojure evalu-
ates them. Macros are a lot like functions: they take arguments and return a 
value, just like a function would. They work on Clojure data structures, just 
like functions do. What makes them unique and powerful is the way they fit 
in to the evaluation process. They are executed in between the reader and 
the evaluator—so they can manipulate the data structures that the reader 
spits out and transform with those data structures before passing them to 
the evaluator.

Let’s look at an example:

(defmacro ignore-last-operand
  [function-call]
  (butlast function-call))

u (ignore-last-operand (+ 1 2 10))
; => 3

;; This will not print anything
(ignore-last-operand (+ 1 2 (println "look at me!!!")))
; => 3

At u the macro ignore-last-operand receives the list (+ 1 2 10) as its 
argument, not the value 13. This is very different from a function call, 
because function calls always evaluate all of the arguments passed in, so 
there is no possible way for a function to reach into one of its operands and 
alter or ignore it. By contrast, when you call a macro, the operands are not 
evaluated. In particular, symbols are not resolved; they are passed as sym-
bols. Lists are not evaluated either; that is, the first element in the list is not 
called as a function, special form, or macro. Rather, the unevaluated list 
data structure is passed in. 



162   Chapter 7

Another difference is that the data structure returned by a function is 
not evaluated, but the data structure returned by a macro is. The process of 
determining the return value of a macro is called macro expansion, and you 
can use the function macroexpand to see what data structure a macro returns 
before that data structure is evaluated. Note that you have to quote the 
form that you pass to macroexpand:

(macroexpand '(ignore-last-operand (+ 1 2 10)))
; => (+ 1 2)

(macroexpand '(ignore-last-operand (+ 1 2 (println "look at me!!!"))))
; => (+ 1 2)

As you can see, both expansions result in 
the list (+ 1 2). When this list is evaluated, as 
in the previous example, the result is 3.

Just for fun, here’s a macro for doing simple 
infix notation: 

(defmacro infix
  [infixed]
  (list (second infixed) 
        (first infixed) 
        (last infixed)))

(infix (1 + 2))
; => 3

The best way to think about this whole pro-
cess is to picture a phase between reading and 
evaluation: the macro expansion phase. Figure 7-6 
shows how you can visualize the entire evalua-
tion process for (infix (1 + 2)).

And that’s how macros fit into the evalua-
tion process. But why would you want to do this? 
The reason is that macros allow you to trans-
form an arbitrary data structure like (1 + 2) 
into one that can Clojure can evaluate, (+ 1 2). 
That means you can use Clojure to extend itself so 
you can write programs however you please. In 
other words, macros enable syntactic abstraction. 
Syntactic abstraction may sound a bit abstract 
(ha ha!), so let’s explore that a little.

(infix (1 + 2))

Reader

infix

Macro Expander

Evaluator

Figure 7-6: The full 
evaluation process for 
(infix (1 + 2))



Clojure Alchemy: Reading, Evaluation, and Macros   163

Syntactic Abstraction and the -> Macro
Often, Clojure code consists of a bunch of nested function calls. For 
example, I use the following function in one of my projects:

(defn read-resource
  "Read a resource into a string"
  [path]
  (read-string (slurp (clojure.java.io/resource path))))

To understand the function body, you have to find the innermost form, 
in this case (clojure.java.io/resource path), and then work your way out-
ward from right to left to see how the result of each function gets passed 
to another function. This right-to-left flow is opposite of what non-Lisp 
programmers are used to. As you get used to writing in Clojure, this kind 
of code gets easier and easier to understand. But if you want to translate 
Clojure code so you can read it in a more familiar, left-to-right, top-to-
bottom manner, you can use the built-in -> macro, which is also known 
as the threading or stabby macro. It lets you rewrite the preceding function 
like this:

(defn read-resource
  [path]
  (-> path
      clojure.java.io/resource
      slurp
      read-string))

You can read this as a pipeline that goes from top to bottom instead of 
from inner parentheses to outer parentheses. First, path gets passed to io/
resource, then the result gets passed to slurp, and finally the result of that 
gets passed to read-string.

These two ways of defining read-resource are entirely equivalent. 
However, the second one might be easier understand because we can 
approach it from top to bottom, a direction we’re used to. The -> also lets 
us omit parentheses, which means there’s less visual noise to contend with. 
This is a syntactic abstraction because it lets you write code in a syntax that’s 
different from Clojure’s built-in syntax but is preferable for human con-
sumption. Better than lead into gold!!!



164   Chapter 7

summary
In this chapter, you learned about Clojure’s evaluation process. First, 
the reader transforms text into Clojure data structures. Next, the macro 
expander transforms those data structures with macros, converting your 
custom syntax into syntactically valid data structures. Finally, those data 
structures get sent to the evaluator. The evaluator processes data structures 
based on their type: symbols are resolved to their referents; lists result in 
function, macro, or special form calls; and everything else evaluates to 
itself.

The coolest thing about this process is that it allows you to use Clojure 
to expand its own syntax. This process is made easier because Clojure is 
homoiconic: its text represents data structures, and those data structures 
represent abstract syntax trees, allowing you to more easily reason about 
how to construct syntax-expanding macros.

With all these new concepts in your brainacles, you’re now ready to 
blow stuff up on purpose, just like I promised. The next chapter will teach 
you everything you need to know about writing macros. Hold on to your 
socks or they’re liable to get knocked off!

exercises
These exercises focus on reading and evaluation. Chapter 8 has exercises 
for writing macros.

1. Use the list function, quoting, and read-string to create a list that, 
when evaluated, prints your first name and your favorite sci-fi movie.

2. Create an infix function that takes a list like (1 + 3 * 4 - 5) and trans-
forms it into the lists that Clojure needs in order to correctly evaluate 
the expression using operator precedence rules.



8
w r i t i n g  m a C r o s

When I was 18, I got a job as a night auditor 
at a hotel in Santa Fe, New Mexico, working 

four nights a week from 11 pm till 7 am. After 
a few months of this sleepless schedule, my emo-

tions took on a life of their own. One night, at about 
3 am, I was watching an infomercial for a product claiming to restore men’s 
hair. As I watched the story of a formerly bald individual, I became over-
whelmed with sincere joy. “At last!” my brain gushed. “This man has gotten 
the love and success he deserves! What an incredible product, giving hope 
to the hopeless!”

Since then I’ve found myself wondering if I could somehow re-create 
the emotional abandon and appreciation for life induced by chronic sleep 
deprivation. Some kind of potion, perhaps—a couple quaffs to unleash my 
inner Richard Simmons, but not for too long.

Just as a potion would allow me to temporarily alter my fundamental 
nature, macros allow you to modify Clojure in ways that just aren’t possible 
with other languages. With macros, you can extend Clojure to suit your 
problem space, building up the language.



166   Chapter 8

In this chapter, you’ll thoroughly 
examine how to write macros, start-
ing with basic examples and moving 
up in complexity. You’ll close by don-
ning your make-believe cap and using 
macros to validate customer orders in 
your imaginary online potion store.

By the end of the chapter, you’ll 
understand all the tools you’ll use to 
write macros: quote, syntax quote, 
unquote, unquote splicing (aka the 
piñata tool), and gensym. You’ll also 
learn about the dangers lying in wait 
for unsuspecting macro authors: 
double evaluation, variable capture, 
and macro infection.

macros are essential
Before you start writing macros, I want to help you put them in the proper 
context. Yes, macros are cooler than a polar bear’s toenails, but you shouldn’t 
think of macros as some esoteric tool you pull out when you feel like getting 
extra fancy with your code. In fact, macros allow Clojure to derive a lot of 
its built-in functionality from a tiny core of functions and special forms. 
Take when, for example. when has this general form:

(when boolean-expression
  expression-1
  expression-2
  expression-3
  ...
  expression-x)

You might think that when is a special form like if. Well guess what? It’s 
not! In most other languages, you can only create conditional expressions 
using special keywords, and there’s no way to create your own conditional 
operators. However, when is actually a macro. 

In this macro expansion, you can see that when is implemented in terms 
of if and do:

(macroexpand '(when boolean-expression
                expression-1
                expression-2
                expression-3))
; => (if boolean-expression
       (do expression-1
           expression-2
           expression-3))



Writing Macros   167

This shows that macros are an integral part of Clojure development—
they’re even used to provide fundamental operations. Macros aren’t reserved 
for exotic special cases; you should think of macro writing as just another tool 
in your tool satchel. As you learn to write your own macros, you’ll see how 
they allow you to extend the language even further so that it fits the shape 
of your particular problem domain.

anatomy of a macro
Macro definitions look much like function definitions. They have a name, 
an optional document string, an argument list, and a body. The body will 
almost always return a list. This makes sense because macros are a way of 
transforming a data structure into a form Clojure can evaluate, and Clojure 
uses lists to represent function calls, special form calls, and macro calls. You 
can use any function, macro, or special form within the macro body, and 
you call macros just like you would a function or special form.

As an example, here’s our old friend the infix macro:

(defmacro infix
  "Use this macro when you pine for the notation of your childhood"
  [infixed]
  (list (second infixed) (first infixed) (last infixed)))

This macro rearranges a list into the correct order for infix notation. 
Here’s an example:

(infix (1 + 1))
; => 2

One key difference between functions and macros is that function 
arguments are fully evaluated before they’re passed to the function, 
whereas macros receive arguments as unevaluated data. You can see this 
in the example. If you tried evaluating (1 + 1) on its own, you would get an 
exception. However, because you’re making a macro call, the unevaluated 
list (1 + 1) is passed to infix. Then the macro can use first, second, and 
last to rearrange the list so Clojure can evaluate it:

(macroexpand '(infix (1 + 1)))
; => (+ 1 1)

By expanding the macro, you can see that infix rearranges (1 + 1) into 
(+ 1 1). Handy!

You can also use argument destructuring in macro definitions, just like 
you can with functions:

(defmacro infix-2
  [[operand1 op operand2]]
  (list op operand1 operand2))



168   Chapter 8

Destructuring arguments lets you succinctly bind values to symbols 
based on their position in a sequential argument. Here, infix-2 takes a 
sequential data structure as an argument and destructures by position so 
the first value is named operand1, the second value is named op, and the 
third value is named operand2 within the macro.

You can also create multiple-arity macros, and in fact the fundamen-
tal Boolean operations and and or are defined as macros. Here’s and’s 
source code:

(defmacro and
  "Evaluates exprs one at a time, from left to right. If a form
  returns logical false (nil or false), and returns that value and
  doesn't evaluate any of the other expressions, otherwise it returns
  the value of the last expr. (and) returns true."
  {:added "1.0"}
  ([] true)
  ([x] x)
  ([x & next]
   `(let [and# ~x]
      (if and# (and ~@next) and#))))

There’s a lot of stuff going on in this example, including the symbols 
` and ~@, which you’ll learn about soon. What’s important to realize for now 
is that there are three macro bodies here: a 0-arity macro body that always 
returns true, a 1-arity macro body that returns the operand, and an n-arity 
macro body that recursively calls itself. That’s right: macros can be recur-
sive, and they also can use rest args (& next in the n-arity macro body), just 
like functions.

Now that you’re comfortable with the anatomy of macros, it’s time 
to strap yourself to your thinking mast Odysseus-style and learn to write 
macro bodies.

Building lists for evaluation
Macro writing is all about building a list for Clojure to evaluate, and it 
requires a kind of inversion to your normal way of thinking. For one, you’ll 
often need to quote expressions to get unevaluated data structures in your 
final list (we’ll get back to that in a moment). More generally, you’ll need to 
be extra careful about the difference between a symbol and its value. 

Distinguishing Symbols and Values
Say you want to create a macro that takes an expression and both prints and 
returns its value. (This differs from println in that println always returns 
nil.) You want your macro to return lists that look like this:

(let [result expression]
  (println result)
  result)



Writing Macros   169

Your first version of the macro might look like this, using the list func-
tion to create the list that Clojure should evaluate:

 (defmacro my-print-whoopsie
  [expression]
  (list let [result expression]
        (list println result)
        result))

However, if you tried this, you’d get the exception Can't take the value 
of a macro: #'clojure.core/let. What’s going on here?

The reason this happens is that your macro body tries to get the value 
that the symbol let refers to, whereas what you actually want to do is return 
the let symbol itself. There are other problems, too: you’re trying to get the 
value of result, which is unbound, and you’re trying to get the value of 
println instead of returning its symbol. Here’s how you would write the 
macro to do what you want:

(defmacro my-print
  [expression]
  (list 'let ['result expression]
        (list 'println 'result)
        'result))

Here, you’re quoting each symbol you want to use as a symbol by prefix-
ing it with the single quote character, '. This tells Clojure to turn off evalu-
ation for whatever follows, in this case preventing Clojure from trying to 
resolve the symbols and instead just returning the symbols. The ability to 
use quoting to turn off evaluation is central to writing macros, so let’s give 
the topic its own section.

Simple Quoting
You’ll almost always use quoting within your macros to obtain an unevalu-
ated symbol. Let’s go through a brief refresher on quoting and then see 
how you might use it in a macro.

First, here’s a simple function call with no quoting:

(+ 1 2)
; => 3

If we add quote at the beginning, it returns an unevaluated data 
structure:

(quote (+ 1 2))
; => (+ 1 2) 



170   Chapter 8

Here in the returned list, + is a symbol. If we evaluate this plus symbol, 
it yields the plus function:

+
; => #<core$_PLUS_ clojure.core$_PLUS_@47b36583>

Whereas if we quote the plus symbol, it just yields the plus symbol:

(quote +)
; => +

Evaluating an unbound symbol raises an exception:

sweating-to-the-oldies
; => Unable to resolve symbol: sweating-to-the-oldies in this context

But quoting the symbol returns a symbol regardless of whether the sym-
bol has a value associated with it:

(quote sweating-to-the-oldies)
; => sweating-to-the-oldies

The single quote character is a reader macro for (quote x):

'(+ 1 2)
; => (+ 1 2)

'dr-jekyll-and-richard-simmons
; => dr-jekyll-and-richard-simmons

You can see quoting at work in the when macro. This is when’s actual 
source code:

(defmacro when
  "Evaluates test. If logical true, evaluates body in an implicit do."
  {:added "1.0"}
  [test & body]
  (list 'if test (cons 'do body)))

Notice that the macro definition quotes both if and do. That’s because 
you want these symbols to be in the final list that when returns for evalua-
tion. Here’s an example of what that returned list might look like:

(macroexpand '(when (the-cows-come :home)
                (call me :pappy)
                (slap me :silly)))
; => (if (the-cows-come :home)
       (do (call me :pappy)
           (slap me :silly)))

mailto:clojure.core$_PLUS_@47b36583


Writing Macros   171

Here’s another example of source code for a built-in macro, this time 
for unless:

(defmacro unless
  "Inverted 'if'"
  [test & branches]
  (conj (reverse branches) test 'if))

Again, you have to quote if because you want the unevaluated symbol 
to be placed in the resulting list, like this one:

(macroexpand '(unless (done-been slapped? me)
                      (slap me :silly)
                      (say "I reckon that'll learn me")))
; => (if (done-been slapped? me)
       (say "I reckon that'll learn me")
       (slap me :silly))

In many cases, you’ll use simple quoting like this when writing macros, 
but most often you’ll use the more powerful syntax quote.

Syntax Quoting
So far, you’ve seen macros that build up lists by using the list function 
to create a list along with ' (quote), and functions that operate on lists 
like first, second, last, and so on. Indeed, you could write macros that way 
until the cows come home. Sometimes, though, it leads to tedious and 
verbose code. 

Syntax quoting returns unevaluated data structures, similar to normal 
quoting. However, there are two important differences. One difference is 
that syntax quoting will return the fully qualified symbols (that is, with the 
symbol’s namespace included). Let’s compare quoting and syntax quoting.

Quoting does not include a namespace if your code doesn’t include a 
namespace:

'+
; => +

Write out the namespace, and it’ll be returned by normal quote:

'clojure.core/+
; => clojure.core/+

Syntax quoting will always include the symbol’s full namespace:

`+
; => clojure.core/+



172   Chapter 8

Quoting a list recursively quotes all the elements:

'(+ 1 2)
; => (+ 1 2)

Syntax quoting a list recursively syntax quotes all the elements:

`(+ 1 2)
; => (clojure.core/+ 1 2)

The reason syntax quotes include the namespace is to help you avoid 
name collisions, a topic covered in Chapter 6.

The other difference between quoting and syntax quoting is that the 
latter allows you to unquote forms using the tilde, ~. It’s kind of like kryp-
tonite in that way: whenever Superman is around kryptonite, his powers dis-
appear. Whenever a tilde appears within a syntax-quoted form, the syntax 
quote’s power to return unevaluated, fully namespaced forms disappears. 
Here’s an example:

`(+ 1 ~(inc 1))
; => (clojure.core/+ 1 2)

Because it comes after the tilde, (inc 1) is evaluated instead of being 
quoted. Without the unquote, syntax quoting returns the unevaluated form 
with fully qualified symbols:

`(+ 1 (inc 1))
; => (clojure.core/+ 1 (clojure.core/inc 1))

If you’re familiar with string interpolation, you can think of syntax 
quoting/unquoting similarly. In both cases, you’re creating a kind of tem-
plate, placing a few variables within a larger, static structure. For example, 
in Ruby you can create the string "Churn your butter, Jebediah" through 
concatenation:

name = "Jebediah"
"Churn your butter, " + name + "!"

or through interpolation:

"Churn your butter, #{name}!"

In the same way that string interpolation leads to clearer and more 
concise code, syntax quoting and unquoting allow you to create lists more 
clearly and concisely. Compare using the list function, shown first, with 
using syntax quoting:

(list '+ 1 (inc 1))
; => (+ 1 2)



Writing Macros   173

`(+ 1 ~(inc 1))
; => (clojure.core/+ 1 2)

As you can see, the syntax-quote version is more concise. Also, its visual 
form is closer to the final form of the list, making it easier to understand.

using syntax Quoting in a macro
Now that you have a good handle on how syntax quoting works, take a look 
at the code-critic macro. You’re going to write a more concise version using 
syntax quoting.

(defmacro code-critic
  "Phrases are courtesy Hermes Conrad from Futurama"
  [bad good]
  (list 'do
        (list 'println
              "Great squid of Madrid, this is bad code:"
              (list 'quote bad))
        (list 'println
              "Sweet gorilla of Manila, this is good code:"
              (list 'quote good))))

(code-critic (1 + 1) (+ 1 1))
; => Great squid of Madrid, this is bad code: (1 + 1)
; => Sweet gorilla of Manila, this is good code: (+ 1 1)

Just looking at all those tedious repetitions of list and single quotes 
makes me cringe. But if you rewrite code-critic using syntax quoting, you 
can make it sleek and concise:

(defmacro code-critic
  "Phrases are courtesy Hermes Conrad from Futurama"
  [bad good]
  `(do (println "Great squid of Madrid, this is bad code:"
                (quote ~bad))
       (println "Sweet gorilla of Manila, this is good code:"
                (quote ~good))))

In this case, you want to quote everything except for the symbols 
good and bad. In the original version, you have to quote each piece individ-
ually and explicitly place it in a list in an unwieldy fashion, just to prevent 
those two symbols from being quoted. With syntax quoting, you can just 
wrap the entire do expression in a quote and simply unquote the two sym-
bols that you want to evaluate.

And thus concludes the introduction to the mechanics of writing a 
macro! Sweet sacred boa of Western and Eastern Samoa, that was a lot!

To sum up, macros receive unevaluated, arbitrary data structures 
as arguments and return data structures that Clojure evaluates. When 



174   Chapter 8

defining your macro, you can use argument destructuring just like you 
can with functions and let bindings. You can also write multiple-arity and 
recursive macros.

Most of the time, your macros will return lists. You can build up the list 
to be returned by using list functions or by using syntax quoting. Syntax 
quoting usually leads to code that’s clearer and more concise because it lets 
you create a template of the data structure you want to return that’s easier to 
parse visually. Whether you use syntax quoting or plain quoting, it’s impor-
tant to be clear about the distinction between a symbol and the value it eval-
uates to when building up your list. And if you want your macro to return 
multiple forms for Clojure to evaluate, make sure to wrap them in a do.

refactoring a macro and unquote splicing
That code-critic macro in the preceding section could still use some 
improvement. Look at the duplication! The two println calls are nearly 
identical. Let’s clean that up. First, let’s create a function to generate those 
println lists. Functions are easier to think about and play with than macros, 
so it’s often a good idea to move macro guts to helper functions:

(defn criticize-code
  [criticism code]
  `(println ~criticism (quote ~code)))

(defmacro code-critic
  [bad good]
  `(do ~(criticize-code "Cursed bacteria of Liberia, this is bad code:" bad)
       ~(criticize-code "Sweet sacred boa of Western and Eastern Samoa, this 
is good code:" good)))

Notice how the criticize-code function returns a syntax-quoted list. 
This is how you build up the list that the macro will return.

There’s more room for improvement, though. The code still has mul-
tiple, nearly identical calls to a function. In a situation like this where you 
want to apply the same function to a collection of values, it makes sense to 
use a seq function like map:

(defmacro code-critic
  [bad good]
  `(do ~(map #(apply criticize-code %)
             [["Great squid of Madrid, this is bad code:" bad]
              ["Sweet gorilla of Manila, this is good code:" good]])))

This is looking a little better. You’re mapping over each criticism/code 
pair and applying the criticize-code function to the pair. Let’s try to run 
the code:

(code-critic (1 + 1) (+ 1 1))
; => NullPointerException



Writing Macros   175

Oh no! That didn’t work at all! What happened? The problem is that 
map returns a list, and in this case, it returned a list of println expressions. 
We just want the result of each println call, but instead, this code sticks both 
results in a list and then tries to evaluate that list.

In other words, as it’s evaluating this code, Clojure gets to something 
like this:

(do
 ((clojure.core/println "criticism" '(1 + 1))
  (clojure.core/println "criticism" '(+ 1 1))))

then evaluates the first println call to give us this:

(do
 (nil
  (clojure.core/println "criticism" '(+ 1 1))))

and after evaluating the second println call, does this:

(do
 (nil nil))

This is the cause of the exception. println evaluates to nil, so we 
end up with something like (nil nil). nil isn’t callable, and we get a 
NullPointerException.

What an inconvenience! But as it happens, unquote splicing was invented 
precisely to handle this kind of situation. Unquote splicing is performed 
with ~@. If you merely unquote a list, this is what you get:

`(+ ~(list 1 2 3))
; => (clojure.core/+ (1 2 3))

However, if you use unquote splicing, this is what you get:

`(+ ~@(list 1 2 3))
; => (clojure.core/+ 1 2 3)

Unquote splicing unwraps a seqable data structure, placing its contents 
directly within the enclosing syntax-quoted data structure. It’s like the ~@ 
is a sledgehammer and whatever follows it is a piñata, and the result is the 
most terrifying and awesome party you’ve ever been to.

Anyway, if you use unquote splicing in your code critic, then everything 
will work great:

(defmacro code-critic
  [{:keys [good bad]}]
  `(do ~@(map #(apply criticize-code %)
              [["Sweet lion of Zion, this is bad code:" bad]
               ["Great cow of Moscow, this is good code:" good]])))



176   Chapter 8

(code-critic (1 + 1) (+ 1 1))
; => Sweet lion of Zion, this is bad code: (1 + 1)
; => Great cow of Moscow, this is good code: (+ 1 1)

Woohoo! You’ve successfully extracted repetitive code into a function 
and made your macro code cleaner. Sweet guinea pig of Winnipeg, that is 
good code!

things to watch out for
Macros have a couple of sneaky gotchas that you should be aware of. In 
this section, you’ll learn about some macro pitfalls and how to avoid them. 
I hope you haven’t unstrapped yourself from your thinking mast.

Variable Capture
Variable capture occurs when a macro introduces a binding that, unknown to 
the macro’s user, eclipses an existing binding. For example, in the follow-
ing code, a macro mischievously introduces its own let binding, and that 
messes with the code:

(def message "Good job!")
(defmacro with-mischief
  [& stuff-to-do]
  (concat (list 'let ['message "Oh, big deal!"])
          stuff-to-do))

(with-mischief
  (println "Here's how I feel about that thing you did: " message))
; => Here's how I feel about that thing you did: Oh, big deal!

The println call references the symbol message, which we think is bound 
to the string "Good job!". However, the with-mischief macro has created a 
new binding for message.

Notice that this macro didn’t use syntax quoting. Doing so would result 
in an exception:

(def message "Good job!")
(defmacro with-mischief
  [& stuff-to-do]
  `(let [message "Oh, big deal!"]
     ~@stuff-to-do))

(with-mischief
  (println "Here's how I feel about that thing you did: " message))
; Exception: Can't let qualified name: user/message



Writing Macros   177

This exception is for your own good: syntax quoting is designed to pre-
vent you from accidentally capturing variables within macros. If you want 
to introduce let bindings in your macro, you can use a gensym. The gensym 
function produces unique symbols on each successive call:

(gensym)
; => G__655

(gensym)
; => G__658

You can also pass a symbol prefix:

(gensym 'message)
; => message4760

(gensym 'message)
; => message4763

Here’s how you could rewrite with-mischief to be less mischievous:

(defmacro without-mischief
  [& stuff-to-do]
  (let [macro-message (gensym 'message)]
    `(let [~macro-message "Oh, big deal!"]
       ~@stuff-to-do
       (println "I still need to say: " ~macro-message))))

(without-mischief
  (println "Here's how I feel about that thing you did: " message))
; => Here's how I feel about that thing you did:  Good job!
; => I still need to say:  Oh, big deal! 

This example avoids variable capture by using gensym to create a 
new, unique symbol that then gets bound to macro-message. Within the 
syntax-quoted let expression, macro-message is unquoted, resolving to the 
gensym’d symbol. This gensym’d symbol is distinct from any symbols within 
stuff-to-do, so you avoid variable capture. Because this is such a common 
pattern, you can use an auto-gensym. Auto-gensyms are more concise and 
convenient ways to use gensyms:

`(blarg# blarg#)
(blarg__2869__auto__ blarg__2869__auto__)

`(let [name# "Larry Potter"] name#)
; => (clojure.core/let [name__2872__auto__ "Larry Potter"] name__2872__auto__)

In this example, you create an auto-gensym by appending a hash 
mark (or hashtag, if you must insist) to a symbol within a syntax-quoted 
list. Clojure automatically ensures that each instance of x# resolves to the 



178   Chapter 8

same symbol within the same syntax-quoted list, that each instance of y# 
resolves similarly, and so on.

gensym and auto-gensym are both used all the time when writing macros, 
and they allow you to avoid variable capture.

Double Evaluation
Another gotcha to watch out for when writing macros is double evaluation, 
which occurs when a form passed to a macro as an argument gets evaluated 
more than once. Consider the following:

(defmacro report
  [to-try]
  `(if ~to-try
     (println (quote ~to-try) "was successful:" ~to-try)
     (println (quote ~to-try) "was not successful:" ~to-try)))
     
;; Thread/sleep takes a number of milliseconds to sleep for
(report (do (Thread/sleep 1000) (+ 1 1)))

This code is meant to test its argument for truthiness. If the argument 
is truthy, it’s considered successful; if it’s falsey, it’s unsuccessful. The macro 
prints whether or not its argument was successful. In this case, you would 
actually sleep for two seconds because (Thread/sleep 1000) gets evaluated 
twice: once right after if and again when println gets called. This happens 
because the code (do (Thread/sleep 1000) (+ 1 1)) is repeated throughout 
the macro expansion. It’s as if you’d written this:

(if (do (Thread/sleep 1000) (+ 1 1))
  (println '(do (Thread/sleep 1000) (+ 1 1))
           "was successful:"
           (do (Thread/sleep 1000) (+ 1 1)))
  
  (println '(do (Thread/sleep 1000) (+ 1 1))
           "was not successful:"
           (do (Thread/sleep 1000) (+ 1 1))))

“Big deal!” your inner example critic says. Well, if your code did some-
thing like transfer money between bank accounts, this would be a very big 
deal. Here’s how you could avoid this problem:

(defmacro report
  [to-try]
  `(let [result# ~to-try]
     (if result#
       (println (quote ~to-try) "was successful:" result#)
       (println (quote ~to-try) "was not successful:" result#))))

By placing to-try in a let expression, you only evaluate that code once 
and bind the result to an auto-gensym’d symbol, result#, which you can now 
reference without reevaluating the to-try code.



Writing Macros   179

Macros All the Way Down
One subtle pitfall of using macros is that you can end up having to write 
more and more of them to get anything done. This is a consequence of the 
fact that macro expansion happens before evaluation.

For example, let’s say you wanted to doseq using the report macro. Instead 
of multiple calls to report:

(report (= 1 1))
; => (= 1 1) was successful: true

(report (= 1 2))
; => (= 1 2) was not successful: false

let’s iterate:

(doseq [code ['(= 1 1) '(= 1 2)]]
  (report code))
; => code was successful: (= 1 1)
; => code was successful: (= 1 2)

The report macro works fine when we pass it functions individually, but 
when we use doseq to iterate report over multiple functions, it’s a worthless 
failure. Here’s what a macro expansion for one of the doseq iterations would 
look like:

(if
 code
 (clojure.core/println 'code "was successful:" code)
 (clojure.core/println 'code "was not successful:" code))

As you can see, report receives the unevaluated symbol code in each 
iteration; however, we want it to receive whatever code is bound to at evalu-
ation time. But report, operating at macro expansion time, just can’t access 
those values. It’s like it has T. rex arms, with runtime values forever out of 
its reach.

To resolve this situation, we might write another macro, like this:

(defmacro doseq-macro
  [macroname & args]
  `(do
     ~@(map (fn [arg] (list macroname arg)) args)))

(doseq-macro report (= 1 1) (= 1 2))
; => (= 1 1) was successful: true
; => (= 1 2) was not successful: false



180   Chapter 8

If you are ever in this situation, take some time to rethink your 
approach. It’s easy to paint yourself into a corner, making it impossible to 
accomplish anything with run-of-the-mill function calls. You’ll be stuck 
having to write more macros instead. Macros are extremely powerful and 
awesome, and you shouldn’t be afraid to use them. They turn Clojure’s 
facilities for working with data into facilities for creating new languages 
informed by your programming problems. For some programs, it’s appro-
priate for your code to be like 90 percent macros. As awesome as they are, 
they also add new composition challenges. They only really compose with 
each other, so by using them, you might be missing out on the other kinds 
of composition (functional, object-oriented) available to you in Clojure.

We’ve now covered all the mechanics of writing a macro. Pat yourself on 
the back! It’s a pretty big deal!

To close out this chapter, it’s finally time to put on your pretending cap 
and work on that online potion store I talked about at the very beginning of 
the chapter.

Brews for the Brave and true
At the beginning of this chapter, I revealed a dream: to find some kind of 
drinkable that, once ingested, would temporarily give me the power and 
temperament of an ’80s fitness guru, freeing me from a prison of inhibition 
and self-awareness. I’m sure that someone some-
where will someday invent such an elixir, so we 
might as well get to work on a system for selling 
this mythical potion. Let’s call this hypothetical 
concoction the Brave and True Ale. The name 
just came to me for no reason whatsoever.

Before the orders come pouring in (pun! 
high-five!), we’ll need to have some validation 
in place. This section shows you a way to do this 
validation functionally and how to write the 
code that performs validations a bit more con-
cisely using a macro you’ll write called if-valid. 
This will help you understand a typical situation 
for writing your own macro. If you just want the 
macro definition, it’s okay to skip ahead to “if-
valid” on page 182.

Validation Functions
To keep things simple, we’ll just worry about validating the name and email 
for each order. For our store, I’m thinking we’ll want to have those order 
details represented like this:

(def order-details
  {:name "Mitchard Blimmons"
   :email "mitchard.blimmonsgmail.com"})



Writing Macros   181

 This particular map has an invalid email address (it’s missing the @ 
symbol), so this is exactly the kind of order that our validation code should 
catch! Ideally, we want to write code that produces something like this:

(validate order-details order-details-validations)
; => {:email ["Your email address doesn't look like an email address."]}

That is, we want to be able to call a function, validate, with the data that 
needs validation and a definition for how to validate it. The result should 
be a map where each key corresponds to an invalid field, and each value is a 
vector of one or more validation messages for that field. The following two 
functions do the job.

Let’s look at order-details-validations first. Here’s how you could repre-
sent validations:

(def order-details-validations
  {:name
   ["Please enter a name" not-empty]

   :email
   ["Please enter an email address" not-empty

    "Your email address doesn't look like an email address"
    #(or (empty? %) (re-seq #"@" %))]})

This is a map where each key is associated with a vector of error mes-
sage and validating function pairs. For example, :name has one validating 
function, not-empty; if that validation fails, you should get the "Please enter 
a name" error message.

Next, we need to write out the validate function. The validate function 
can be decomposed into two functions: one to apply validations to a single 
field and another to accumulate those error messages into a final map of 
error messages like {:email ["Your email address doesn't look like an email 
address."]}. Here’s a function called error-messages-for that applies valida-
tions to a single value:

(defn error-messages-for
  "Return a seq of error messages"
  [to-validate message-validator-pairs]
  (map first (filter #(not ((second %) to-validate))
                     (partition 2 message-validator-pairs))))

The first argument, to-validate, is the field you want to validate. The 
second argument, message-validator-pairs, should be a seq with an even 
number of elements. This seq gets grouped into pairs with (partition 2 
message-validator-pairs). The first element of the pair should be an error 
message, and the second element of the pair should be a function (just like 



182   Chapter 8

the pairs are arranged in order-details-validation). The error-messages-for 
function works by filtering out all error message and validation pairs where 
the validation function returns true when applied to to-validate. It then 
uses map first to get the first element of each pair, the error message. Here 
it is in action:

(error-messages-for "" ["Please enter a name" not-empty])
; => ("Please enter a name")

Now we need to accumulate these error messages in a map. 
Here’s the complete validate function, as well as the output when we 

apply it to our order-details and order-details-validations:

(defn validate
  "Returns a map with a vector of errors for each key"
  [to-validate validations]
  (reduce (fn [errors validation]
            (let [[fieldname validation-check-groups] validation
                  value (get to-validate fieldname)
                  error-messages (error-messages-for value validation-check-groups)]
              (if (empty? error-messages)
                errors
                (assoc errors fieldname error-messages))))
          {}
          validations))

(validate order-details order-details-validations)
; => {:email ("Your email address doesn't look like an email address")}

Success! This works by reducing over order-details-validations and asso-
ciating the error messages (if there are any) for each key of order-details 
into a final map of error messages.

if-valid
With our validation code in place, we can now validate records to our 
hearts’ content! Most often, validation will look something like this:

(let [errors (validate order-details order-details-validations)]
  (if (empty? errors)
    (println :success)
    (println :failure errors)))

The pattern is to do the following:

1. Validate a record and bind the result to errors

2. Check whether there were any errors

3. If there were, do the success thing, here (println :success)

4. Otherwise, do the failure thing, here (println :failure errors)



Writing Macros   183

I’ve actually used this validation code in real production websites. At 
first, I found myself repeating minor variations of the code over and over, 
a sure sign that I needed to introduce an abstraction that would hide the 
repetitive parts: applying the validate function, binding the result to some 
symbol, and checking whether the result is empty. To create this abstrac-
tion, you might be tempted to write a function like this:

(defn if-valid
  [record validations success-code failure-code]
  (let [errors (validate record validations)]
    (if (empty? errors)
      success-code
      failure-code)))

However, this wouldn’t work, because success-code and failure-code 
would get evaluated each time. A macro would work because macros let 
you control evaluation. Here’s how you’d use the macro:

(if-valid order-details order-details-validation errors
 (render :success)
 (render :failure errors))

This macro hides the repetitive details and helps you express your 
intention more succinctly. It’s like asking someone to give you the bottle 
opener instead of saying, “Please give me the manual device for remov-
ing the temporary sealant from a glass container of liquid.” Here’s the 
implementation:

(defmacro if-valid
  "Handle validation more concisely"
  [to-validate validations errors-name & then-else]
  `(let [~errors-name (validate ~to-validate ~validations)]
     (if (empty? ~errors-name)
       ~@then-else)))

This macro takes four arguments: to-validate, validations, errors-name, 
and the rest argument then-else. Using errors-name like this is a new strat-
egy. We want to have access to the errors returned by the validate function 
within the then-else statements. To do this, we tell the macro what symbol 
it should bind the result to. The following macro expansion shows how this 
works:

 (macroexpand
 '(if-valid order-details order-details-validations my-error-name
            (println :success)
            (println :failure my-error-name)))
(let*
 [my-error-name (user/validate order-details order-details-validations)]
 (if (clojure.core/empty? my-error-name)
  (println :success)
  (println :failure my-error-name)))



184   Chapter 8

The syntax quote abstracts the general form of the let/validate/if 
pattern you saw earlier. Then we use unquote splicing to unpack the if 
branches, which were packed into the then-else rest argument.

That’s pretty simple! After all this talk about macros and going through 
their mechanics in such detail, I bet you were expecting something more 
complicated. Sorry, friend. If you’re having a hard time coping with your 
disappointment, I know of a certain drink that will help.

summary
In this chapter, you learned how to write your own macros. Macros are 
defined very similarly to functions: they have arguments, a docstring, and a 
body. They can use argument destructuring and rest args, and they can be 
recursive. Your macros will almost always return lists. You’ll sometimes use 
list and seq functions for simple macros, but most of the time you’ll use the 
syntax quote, `, which lets you write macros using a safe template.

When you’re writing macros, it’s important to keep in mind the distinc-
tion between symbols and values: macros are expanded before code is eval-
uated and therefore don’t have access to the results of evaluation. Double 
evaluation and variable capture are two other subtle traps for the unwary, 
but you can avoid them through the judicious use of let expressions and 
gensyms.

Macros are fun tools that allow you to code with fewer inhibitions. 
By letting you control evaluation, macros give you a degree of freedom 
and expression that other languages simply don’t allow. Throughout your 
Clojure journey, you’ll probably hear people cautioning you against their 
use, saying things like “Macros are evil” and “You should never use macros.” 
Don’t listen to these prudes—at least, not at first! Go out there and have a 
good time. That’s the only way you’ll learn the situations where it’s appro-
priate to use macros. You’ll come out the other side knowing how to use 
macros with skill and panache.

exercises

1. Write the macro when-valid so that it behaves similarly to when. Here is an 
example of calling it: 

(when-valid order-details order-details-validation
 (println "It's a success!")
 (render :success))

When the data is valid, the println and render forms should be eval-
uated, and when-valid should return nil if the data is invalid.

2. You saw that and is implemented as a macro. Implement or as a macro.



Writing Macros   185

3. In Chapter 5 you created a series of functions (c-int, c-str, c-dex) to 
read an RPG character’s attributes. Write a macro that defines an arbi-
trary number of attribute-retrieving functions using one macro call. 
Here’s how you would call it:

(defattrs c-int :intelligence
          c-str :strength
          c-dex :dexterity)





Part III
a D v a n C e D  t o p i C s





9
t h e  s a C r e D  a r t  o f  C o n C u r r e n t 

a n D  p a r a l l e l  p r o g r a m m i n g

If I were the lord of a manor and you were 
my heir, I would sit you down on your 13th 

name day and tell you, “The world of com-
puting is changing, lass, and ye must be prepared 

for the new world of multi-core processors lest ye be 
trampled by it.

“Listen well: In recent years, CPU clock speeds have barely increased, 
but dual-core and quad-core computers have become common. The laws 
of physics are cruel and absolute, and they demand that increasing clock 
speed requires exponentially more power. The realm’s best engineers are 
unlikely to overcome this limitation anytime soon, if ever. Therefore, you 
can expect the trend of increasing cores on a single machine to continue—
as will the expectation that you as a programmer will know how to make 
the most of modern hardware.



190   Chapter 9

“Learning to program in this new paradigm will be fun and fascinat-
ing, verily. But beware: it is also fraught with peril. You must learn concurrent 
and parallel programming, which is the sacred art of structuring your applica-
tion to safely manage multiple, simultaneously executing tasks.

“You begin your instruction in this art with an overview of concurrency 
and parallelism concepts. You’ll then study the three goblins that harry every 
practitioner: reference cells, mutual exclusion, and dwarven berserkers. 
And you’ll learn three tools that will aid you: futures, promises, and delays.”

And then I’d tap you on the shoulder with a keyboard, signaling that 
you were ready to begin.

Concurrency and Parallelism Concepts
Concurrent and parallel programming involves a lot of messy details at all 
levels of program execution, from the hardware to the operating system to 
programming language libraries to the code that springs from your heart 
and lands in your editor. But before you worry your head with any of those 
details, in this section I’ll walk through the high-level concepts that sur-
round concurrency and parallelism.

Managing Multiple Tasks vs. Executing Tasks Simultaneously
Concurrency refers to managing more than one task at the same time. Task 
just means “something that needs to get done,” and it doesn’t imply any-
thing regarding implementation in your hardware or software. We can illus-
trate concurrency with the song “Telephone” by Lady Gaga. Gaga sings,

I cannot text you with a drink in my hand, eh

Here, she’s explaining that she can only manage one task (drinking). 
She flat-out rejects the suggestion that she can manage more than one task. 
However, if she decided to process tasks concurrently, she would sing,

I will put down this drink to text you, then put my phone away 
and continue drinking, eh

In this hypothetical universe, Lady Gaga is managing two tasks: drink-
ing and texting. However, she is not executing both tasks at the same time. 
Instead, she’s switching between the two, or interleaving. Note that, while 
interleaving, you don’t have to fully complete a task before switching: Gaga 
could type one word, put down her phone, pick up her drink and take a sip, 
and then switch back to her phone and type another word.

Parallelism refers to executing more than one task at the same time. If 
Madame Gaga were to execute her two tasks in parallel, she would sing,

I can text you with one hand while I use the other to drink, eh

Parallelism is a subclass of concurrency: before you execute multiple 
tasks simultaneously, you first have to manage multiple tasks. 



The Sacred Art of Concurrent and Parallel Programming   191

Clojure has many features that allow you to achieve parallelism easily. 
While the Lady Gaga system achieves parallelism by simultaneously execut-
ing tasks on multiple hands, computer systems generally achieve parallelism 
by simultaneously executing tasks on multiple processors.

It’s important to distinguish parallelism from distribution. Distributed 
computing is a special version of parallel computing where the processors 
are in different computers and tasks are distributed to computers over a 
network. It’d be like Lady Gaga asking Beyoncé, “Please text this guy while 
I drink.” Although you can do distributed programming in Clojure with 
the aid of libraries, this book covers only parallel programming, and here 
I’ll use parallel to refer only to cohabiting processors. If you’re interested in 
distributed programming, check out Kyle Kingsbury’s Call Me Maybe series 
at https://aphyr.com/.

Blocking and Asynchronous Tasks
One of the major use cases for concurrent programming is for blocking 
operations. Blocking really just means waiting for an operation to finish. 
You’ll most often hear it used in relation to I/O operations, like reading a 
file or waiting for an HTTP request to finish. Let’s examine this using the 
concurrent Lady Gaga example.

If Lady Gaga texts her interlocutor and then stands there with her 
phone in her hand, staring at the screen for a response and not drinking, 
then you would say that the read next text message operation is blocking and 
that these tasks are executing synchronously.

If, instead, she tucks her phone away so she can drink until it alerts her 
by beeping or vibrating, then the read next text message task is not blocking 
and you would say she’s handling the task asynchronously.

Concurrent Programming and Parallel Programming
Concurrent programming and parallel programming refer to techniques 
for decomposing a task into subtasks that can execute in parallel and man-
aging the risks that arise when your program executes more than one task 
at the same time. For the rest of the chapter, I’ll use the two terms inter-
changeably because the risks are pretty much the same for both.

To better understand those risks and how Clojure helps you avoid them, 
let’s examine how concurrency and parallelism are implemented in Clojure.

Clojure Implementation: jvm threads
I’ve been using the term task in an abstract sense to refer to a series of 
related operations without regard for how a computer might implement 
the task concept. For example, texting is a task that consists of a series of 
related operations that are totally separate from the operations involved in 
pouring a drink into your face.

https://aphyr.com/


192   Chapter 9

In Clojure, you can think of your normal, serial code as a sequence of 
tasks. You indicate that tasks can be performed concurrently by placing 
them on JVM threads.

What’s a Thread?
I’m glad you asked! A thread is a subprogram. A program can have many 
threads, and each thread executes its own set of instructions while enjoying 
shared access to the program’s state.

Thread management functionality can exist at multiple levels in a com-
puter. For example, the operating system kernel typically provides system 
calls to create and manage threads. The JVM provides its own platform-
independent thread management functionality, and since Clojure programs 
run in the JVM, they use JVM threads. You’ll learn more about the JVM in 
Chapter 12.

You can think of a thread as an 
actual, physical piece of thread that 
strings together a sequence of instruc-
tions. In my mind, the instructions are 
marshmallows, because marshmallows 
are delicious. The processor executes 
these instructions in order. I picture this 
as an alligator consuming the instruc-
tions, because alligators love marsh-
mallows (true fact!). So executing a 
program looks like a bunch of marsh-
mallows strung out on a line with an alli-
gator traveling down the line and eating 
them one by one. Figure 9-1 shows this 
model for a single-core processor execut-
ing a single-threaded program.

Thread
Instructions

Processor “consuming” an instruction

Figure 9-1: Single-core processor executing a single- 
threaded program

A thread can spawn a new thread to execute tasks concurrently. In a 
single-processor system, the processor switches back and forth between the 
threads (interleaving). Here’s where potential concurrency issues get intro-
duced. Although the processor executes the instructions on each thread 
in order, it makes no guarantees about when it will switch back and forth 
between threads.



The Sacred Art of Concurrent and Parallel Programming   193

Figure 9-2 shows an illustration of two threads, A and B, and a timeline 
of how their instructions could be executed. I’ve shaded the instructions on 
thread B to help distinguish them from the instructions on thread A.

New thread, thread B

Original thread, thread A B1 B2 B3

A1 B1 B2 A2

A1 A2 A3 A4

B3Instruction execution timeline

Figure 9-2: Single-core processor executing two threads

Note that this is just one possible order of instruction execution. The 
processor could also have executed the instructions in the order A1, A2, A3, 
B1, A4, B2, B3 for example. This makes the program nondeterministic. You 
can’t know beforehand what the result will be because you can’t know the 
execution order, and different execution orders can yield different results.

This example shows concurrent execution on a single processor through 
interleaving, whereas a multi-core system assigns a thread to each core, allow-
ing the computer to execute more than one thread simultaneously. Each 
core executes its thread’s instructions in order, as shown in Figure 9-3.

Processor 2 execution order

Processor 1 execution order

B1 B2 B3

B1 B2 B3

A1 A2 A3 A4

A1 A2 A3 A4

Figure 9-3: Two threads, two processors

As with interleaving on a single core, there are no guarantees for the 
overall execution order, so the program is nondeterministic. When you add 
a second thread to a program, it becomes nondeterministic, and this makes 
it possible for your program to fall prey to three kinds of problems.

The Three Goblins: Reference Cells, Mutual Exclusion, and 
Dwarven Berserkers
There are three central challenges in concurrent programming, also 
known as the The Three Concurrency Goblins. To see why these are scary, 
imagine that the program in the image in Figure 9-3 includes the pseudo-
instructions in Table 9-1.



194   Chapter 9

table 9-1: Instructions for a Program with a  
Nondeterministic Outcome 

Id Instruction

A1 WRITE X = 0

A2 READ X

A3 WRITE X = X + 1

B1 READ X

B2 WRITE X = X + 1

If the processor follows the order A1, A2, A3, B1, B2, then X will have 
a value of 2, as you’d expect. But if it follows the order A1, A2, B1, A3, B2, 
X’s value will be 1, as you can see in Figure 9-4.

A1 A2 A3

B1 B2

read 0

write 0 read 0

write 0+1

write 0+1

Figure 9-4: Two threads interacting with  
a reference cell

We’ll call this the reference cell problem (the first Concurrency Goblin). 
The reference cell problem occurs when two threads can read and write 
to the same location, and the value at the location depends on the order of 
the reads and writes.

The second Concurrency Goblin is mutual exclusion. Imagine two 
threads, each trying to write a spell to a file. Without any way to claim 
exclusive write access to the file, the spell will end up garbled because the 
write instructions will be interleaved. Consider the following two spells:

By the power invested in me 
by the state of California, 
I now pronounce you man and wife

Thunder, lightning, wind, and rain, 
a delicious sandwich, I summon again

If you write these to a file without mutual exclusion, you could end up 
with this:

By the power invested in me 
by Thunder, lightning, wind, and rain, 



The Sacred Art of Concurrent and Parallel Programming   195

the state of California, 
I now pronounce you a delicious man sandwich, and wife 
I summon again

The third Concurrency Goblin is what I’ll call the dwarven berserker 
problem (aka deadlock). Imagine four berserkers sitting around a rough-
hewn, circular wooden table comforting each other. “I know I’m distant 
toward my children, but I just don’t know how to communicate with them,” 
one growls. The rest sip their coffee and nod knowingly, care lines creasing 
their eye places.

Now, as everyone knows, the dwarven berserker ritual for ending a com-
forting coffee klatch is to pick up their “comfort sticks” (double-bladed war 
axes) and scratch each other’s backs. One war axe is placed between each 
pair of dwarves, as shown in Figure 9-5.

Their ritual proceeds thusly:

1. Pick up the left war axe, when available.

2. Pick up the right war axe, when available.

3. Comfort your neighbor with vigorous swings of your “comfort sticks.”

4. Release both war axes.

5. Repeat.

“Comfort stick”
Dwarven berserker

Rough-hewn wooden table

Figure 9-5: Dwarven berserkers at a comforting coffee klatch

Following this ritual, it’s entirely possible that all the dwarven berserk-
ers will pick up their left comfort stick and then block indefinitely while 
waiting for the comfort stick to their right to become available, resulting in 
deadlock. (By the way, if you want to look into this phenomenon further, it’s 



196   Chapter 9

usually referred to as the dining philosophers problem, but that’s a more boring 
scenario.) This book doesn’t discuss deadlock in much detail, but it’s good 
to know the concept and its terminology.

Concurrent programming has its goblins, but with the right tools, it’s 
manageable and even fun. Let’s start looking at the right tools.

futures, delays, and Promises
Futures, delays, and promises are easy, lightweight tools for concurrent pro-
gramming. In this section, you’ll learn how each one works and how to use 
them together to defend against the reference cell Concurrency Goblin and 
the mutual exclusion Concurrency Goblin. You’ll discover that, although 
simple, these tools go a long way toward meeting your concurrency needs.

They do this by giving you more flexibility than is possible with serial 
code. When you write serial code, you bind together these three events:

•	 Task definition

•	 Task execution

•	 Requiring the task’s result

As an example, look at this hypothetical code, which defines a simple 
API call task:

(web-api/get :dwarven-beard-waxes)

As soon as Clojure encounters this task definition, it executes it. It 
also requires the result right now, blocking until the API call finishes. Part 
of learning concurrent programming is learning to identify when these 
chronological couplings aren’t necessary. Futures, delays, and promises 
allow you to separate task definition, task execution, and requiring the 
result. Onward!

Futures
In Clojure, you can use futures to define a task and place it on another 
thread without requiring the result immediately. You can create a future 
with the future macro. Try this in a REPL:

(future (Thread/sleep 4000)
        (println "I'll print after 4 seconds"))
(println "I'll print immediately")

Thread/sleep tells the current thread to just sit on its bum and do noth-
ing for the specified number of milliseconds. Normally, if you evaluated 
Thread/sleep in your REPL, you wouldn’t be able to evaluate any other state-
ments until the REPL was done sleeping; the thread executing your REPL 



The Sacred Art of Concurrent and Parallel Programming   197

would be blocked. However, future creates a new thread and places each 
expression you pass it on the new thread, including Thread/sleep, allowing 
the REPL’s thread to continue, unblocked.

You can use futures to run tasks on a separate thread and then forget 
about them, but often you’ll want to use the result of the task. The future 
function returns a reference value that you can use to request the result. 
The reference is like the ticket that a dry cleaner gives you: at any time you 
can use it to request your clean dress, but if your dress isn’t clean yet, you’ll 
have to wait. Similarly, you can use the reference value to request a future’s 
result, but if the future isn’t done computing the result, you’ll have to wait.

Requesting a future’s result is called dereferencing the future, and you 
do it with either the deref function or the @ reader macro. A future’s result 
value is the value of the last expression evaluated in its body. A future’s 
body executes only once, and its value gets cached. Try the following:

(let [result (future (println "this prints once")
                     (+ 1 1))]
  (println "deref: " (deref result))
  (println "@: " @result))
; => "this prints once"
; => deref: 2
; => @: 2

Notice that the string "this prints once" indeed prints only once, even 
though you dereference the future twice. This shows that the future’s body 
ran only once and the result, 2, got cached.

Dereferencing a future will block if the future hasn’t finished running, 
like so:

(let [result (future (Thread/sleep 3000)
                     (+ 1 1))]
  (println "The result is: " @result)
  (println "It will be at least 3 seconds before I print"))
; => The result is: 2
; => It will be at least 3 seconds before I print

Sometimes you want to place a time limit on how long to wait for a 
future. To do that, you can pass deref a number of milliseconds to wait 
along with the value to return if the deref times out:

(deref (future (Thread/sleep 1000) 0) 10 5)
; => 5

This code tells deref to return the value 5 if the future doesn’t return a 
value within 10 milliseconds.



198   Chapter 9

Finally, you can interrogate a future using realized? to see if it’s done 
running:

(realized? (future (Thread/sleep 1000)))
; => false

(let [f (future)]
  @f
  (realized? f))
; => true

Futures are a dead-simple way to sprinkle some concurrency on your 
program.

On their own, they give you the power to chuck tasks onto other 
threads, which can make your program more efficient. They also let your 
program behave more flexibly by giving you control over when a task’s 
result is required.

When you dereference a future, you indicate that the result is required 
right now and that evaluation should stop until the result is obtained. You’ll 
see how this can help you deal with the mutual exclusion problem in just 
a bit. Alternatively, you can ignore the result. For example, you can use 
futures to write to a log file asynchronously, in which case you don’t need 
to dereference the future to get any value back. 

The flexibility that futures give you is very cool. Clojure also allows you 
to treat task definition and requiring the result independently with delays 
and promises.

Delays
Delays allow you to define a task without having to execute it or require the 
result immediately. You can create a delay using delay:

(def jackson-5-delay
  (delay (let [message "Just call my name and I'll be there"]
           (println "First deref:" message)
           message)))

In this example, nothing is printed, because we haven’t yet asked the 
let form to be evaluated. You can evaluate the delay and get its result by 
dereferencing it or by using force. force behaves identically to deref in that it 
communicates more clearly that you’re causing a task to start as opposed to 
waiting for a task to finish:

(force jackson-5-delay)
; => First deref: Just call my name and I'll be there
; => "Just call my name and I'll be there"



The Sacred Art of Concurrent and Parallel Programming   199

Like futures, a delay is run only once and its result is cached. Subsequent 
dereferencing will return the Jackson 5 message without printing anything:

@jackson-5-delay
; => "Just call my name and I'll be there"

One way you can use a delay is to fire off a statement the first time one 
future out of a group of related futures finishes. For example, pretend your 
app uploads a set of headshots to a headshot-sharing site and notifies the 
owner as soon as the first one is up, as in the following:

(def gimli-headshots ["serious.jpg" "fun.jpg" "playful.jpg"])
(defn email-user
  [email-address]
  (println "Sending headshot notification to" email-address))
(defn upload-document
  "Needs to be implemented"
  [headshot]
  true)
(let [notify (delay u(email-user "and-my-axe@gmail.com"))]
  (doseq [headshot gimli-headshots]
    (future (upload-document headshot)
            v(force notify))))

In this example, you define a vector of headshots to upload 
(gimli-headshots) and two functions (email-user and upload-document) to 
pretend-perform the two operations. Then you use let to bind notify 
to a delay. The body of the delay, (email-user "and-my-axe@gmail.com") u, 
isn’t evaluated when the delay is created. Instead, it gets evaluated the 
first time one of the futures created by the doseq form evaluates (force 
notify) v. Even though (force notify) will be evaluated three times, the 
delay body is evaluated only once. Gimli will be grateful to know when the 
first headshot is available so he can begin tweaking it and sharing it. He’ll 
also appreciate not being spammed, and you’ll appreciate not facing his 
dwarven wrath.

This technique can help protect you from the mutual exclusion 
Concurrency Goblin—the problem of making sure that only one thread 
can access a particular resource at a time. In this example, the delay 
guards the email server resource. Because the body of a delay is guaran-
teed to fire only once, you can be sure that you will never run into a situ-
ation where two threads send the same email. Of course, no thread will 
ever be able to use the delay to send an email again. That might be too 
drastic a constraint for most situations, but in cases like this example, it 
works perfectly.

mailto:and-my-axe@gmail.com


200   Chapter 9

Promises
Promises allow you to express that you expect a result without having to 
define the task that should produce it or when that task should run. You 
create promises using promise and deliver a result to them using deliver. You 
obtain the result by dereferencing:

(def my-promise (promise))
(deliver my-promise (+ 1 2))
@my-promise
; => 3

Here, you create a promise and then deliver a value to it. Finally, you 
obtain the value by dereferencing the promise. Dereferencing is how 
you express that you expect a result, and if you had tried to dereference 
my-promise without first delivering a value, the program would block until 
a promise was delivered, just like with futures and delays. You can only 
deliver a result to a promise once. 

One use for promises is to find the first satisfactory element in a collec-
tion of data. Suppose, for example, that you’re gathering ingredients to make 
your parrot sound like James 
Earl Jones. Because James Earl 
Jones has the smoothest voice 
on earth, one of the ingredi-
ents is premium yak butter with 
a smoothness rating of 97 or 
greater. You have a budget of 
$100 for one pound.

You are a modern 
practitioner of the magico-
ornithological arts, so rather 
than tediously navigating each 
yak butter retail site, you create 
a script to give you the URL of 
the first yak butter that meets 
your needs.

The following code defines some yak butter products, creates a func-
tion to mock up an API call, and creates another function to test whether a 
product is satisfactory:

(def yak-butter-international
  {:store "Yak Butter International"
    :price 90
    :smoothness 90})
(def butter-than-nothing
  {:store "Butter Than Nothing"
   :price 150
   :smoothness 83})



The Sacred Art of Concurrent and Parallel Programming   201

;; This is the butter that meets our requirements
(def baby-got-yak
  {:store "Baby Got Yak"
   :price 94
   :smoothness 99})

(defn mock-api-call
  [result]
  (Thread/sleep 1000)
  result)

(defn satisfactory?
  "If the butter meets our criteria, return the butter, else return false"
  [butter]
  (and (<= (:price butter) 100)
       (>= (:smoothness butter) 97)
       butter))

The API call waits one second before returning a result to simulate the 
time it would take to perform an actual call.

To show how long it will take to check the sites synchronously, we’ll use 
some to apply the satisfactory? function to each element of the collection 
and return the first truthy result, or nil if there are none. When you check 
each site synchronously, it could take more than one second per site to 
obtain a result, as the following code shows: 

(time (some (comp satisfactory? mock-api-call)
            [yak-butter-international butter-than-nothing baby-got-yak]))
; => "Elapsed time: 3002.132 msecs"
; => {:store "Baby Got Yak", :smoothness 99, :price 94}

Here I’ve used comp to compose functions, and I’ve used time to print 
the time taken to evaluate a form. You can use a promise and futures to 
perform each check on a separate thread. If your computer has multiple 
cores, this could reduce the time it takes to about one second:

(time
 (let [butter-promise (promise)]
   (doseq [butter [yak-butter-international butter-than-nothing baby-got-yak]]
     (future (if-let [satisfactory-butter (satisfactory? (mock-api-call butter))]
               (deliver butter-promise satisfactory-butter))))
   (println "And the winner is:" @butter-promise)))
; => "Elapsed time: 1002.652 msecs"
; => And the winner is: {:store Baby Got Yak, :smoothness 99, :price 94}

In this example, you first create a promise, @butter-promise, and then 
create three futures with access to that promise. Each future’s task is to 
evaluate a yak butter site and to deliver the site’s data to the promise if it’s 
satisfactory. Finally, you dereference @butter-promise, causing the program 
to block until the site data is delivered. This takes about one second instead 



202   Chapter 9

of three because the site evaluations happen in parallel. By decoupling the 
requirement for a result from how the result is actually computed, you can 
perform multiple computations in parallel and save some time.

You can view this as a way to protect yourself from the reference cell 
Concurrency Goblin. Because promises can be written to only once, you 
prevent the kind of inconsistent state that arises from nondeterministic 
reads and writes.

You might be wondering what happens if none of the yak butter is satis-
factory. If that happens, the dereference would block forever and tie up the 
thread. To avoid that, you can include a timeout:

(let [p (promise)]
  (deref p 100 "timed out"))

This creates a promise, p, and tries to dereference it. The number 100 
tells deref to wait 100 milliseconds, and if no value is available by then, to 
use the timeout value, "timed out".

The last detail I should mention is that you can also use promises to 
register callbacks, achieving the same functionality that you might be used 
to in JavaScript. JavaScript callbacks are a way of defining code that should 
execute asynchronously once some other code finishes. Here’s how to do it 
in Clojure:

(let [ferengi-wisdom-promise (promise)]
  (future (println "Here's some Ferengi wisdom:" @ferengi-wisdom-promise))
  (Thread/sleep 100)
  (deliver ferengi-wisdom-promise "Whisper your way to success."))
; => Here's some Ferengi wisdom: Whisper your way to success.

This example creates a future that begins executing immediately. 
However, the future’s thread is blocking because it’s waiting for a value to 
be delivered to ferengi-wisdom-promise. After 100 milliseconds, you deliver 
the value and the println statement in the future runs.

Futures, delays, and promises are great, simple ways to manage concur-
rency in your application. In the next section, we’ll look at one more fun 
way to keep your concurrent applications under control.

Rolling Your Own Queue
So far you’ve looked at some simple ways to combine futures, delays, and 
promises to make your concurrent programs a little safer. In this section, 
you’ll use a macro to combine futures and promises in a slightly more com-
plex manner. You might not necessarily ever use this code, but it’ll show 
the power of these modest tools a bit more. The macro will require you to 
hold runtime logic and macro expansion logic in your head at the same 
time to understand what’s going on; if you get stuck, just skip ahead.



The Sacred Art of Concurrent and Parallel Programming   203

One characteristic The Three Concurrency Goblins have in common is 
that they all involve tasks concurrently accessing a shared resource—a vari-
able, a printer, a dwarven war axe—in an uncoordinated way. If you want 
to ensure that only one task will access a resource at a time, you can place 
the resource access portion of a task on a queue that’s executed serially. 
It’s kind of like making a cake: you and a friend can separately retrieve the 
ingredients (eggs, flour, eye of newt, what have you), but some steps you’ll 
have to perform serially. You have to prepare the batter before you put it in 
the oven. Figure 9-6 illustrates this strategy.

Split a task...

into a serial portion... and a concurrent portion.

Instead of running each whole task serially...

the concurrent portions can run in parallel...

reducing the overall time it takes for all tasks 
to complete.

Figure 9-6: Dividing tasks into a serial portion and a concurrent 
portion lets you safely make your code more efficient.

To implement the queuing macro, you’ll pay homage to the British, 
because they invented queues. You’ll use a queue to ensure that the custom-
ary British greeting “Ello, gov’na! Pip pip! Cheerio!” is delivered in the 
correct order. This demonstration will involve an abundance of sleeping, 
so here’s a macro to do that more concisely:

(defmacro wait
  "Sleep `timeout` seconds before evaluating body"
  [timeout & body]
  `(do (Thread/sleep ~timeout) ~@body))

All this code does is take whatever forms you give it and insert a call to 
Thread/sleep before them, all wrapped up in do.

The code in Listing 9-1 splits up tasks into a concurrent portion and a 
serialized portion:

(let [saying3 (promise)]
  (future (deliver saying3 (wait 100 "Cheerio!")))
  @(let [saying2 (promise)]
     (future (deliver saying2 (wait 400 "Pip pip!")))

u      @(let [saying1 (promise)]
        (future (deliver saying1 (wait 200 "'Ello, gov'na!")))



204   Chapter 9

        (println @saying1)
        saying1)
     (println @saying2)
     saying2)
  (println @saying3)
  saying3)

Listing 9-1: The expansion of an enqueue macro call

The overall strategy is to create a promise for each task (in this case, 
printing part of the greeting) to create a corresponding future that will 
deliver a concurrently computed value to the promise. This ensures that 
all of the futures are created before any of the promises are dereferenced, 
and it ensures that the serialized portions are executed in the correct 
order. The value of saying1 is printed first—"'Ello, gov'na!"—then the 
value of saying2, and finally saying3. Returning saying1 in a let block and 
dereferencing the let block at u ensures that you’ll be completely finished 
with saying1 before the code moves on to do anything to saying2, and this 
pattern is repeated with saying2 and saying3.

It might seem silly to dereference the let block, but doing so lets you 
abstract this code with a macro. And you will definitely want to use a macro, 
because writing out code like the previous example would drive you men-
tal (as the British would say). Ideally, the macro would work as shown in 
Listing 9-2:

(-> (enqueue usaying v(wait 200 "'Ello, gov'na!") w(println @saying))
   x(enqueue saying (wait 400 "Pip pip!") (println @saying))
    (enqueue saying (wait 100 "Cheerio!") (println @saying)))

Listing 9-2: This is how you’d use enqueue.

The macro lets you name the promise that gets created u, define how 
to derive the value to deliver that promise v, and define what to do with 
the promise w. The macro can also take another enqueue macro call as its 
first argument, which lets you thread it x. Listing 9-3 shows how you can 
define the enqueue macro. After defining enqueue, the code in Listing 9-2 will 
expand into the code in Listing 9-1, with all the nested let expressions:

(defmacro enqueue
u   ([q concurrent-promise-name concurrent serialized]
v    `(let [~concurrent-promise-name (promise)]

      (future (deliver ~concurrent-promise-name ~concurrent))
w       (deref ~q)

      ~serialized
      ~concurrent-promise-name))

x   ([concurrent-promise-name concurrent serialized]
   `(enqueue (future) ~concurrent-promise-name ~concurrent ~serialized)))

Listing 9-3: enqueue’s implementation



The Sacred Art of Concurrent and Parallel Programming   205

Notice first that this macro has two arities in order to supply a default 
value. The first arity u is where the real work is done. It has the parameter 
q, and the second arity does not. The second arity x calls the first with value 
(future) supplied for q; you’ll see why in a minute. At v, the macro returns a 
form that creates a promise, delivers its value in a future, dereferences what-
ever form is supplied for q, evaluates the serialized code, and finally returns 
the promise. q will usually be a nested let expression returned by another call 
to enqueue, like in Listing 9-2. If no value is supplied for q, the macro supplies 
a future so that the deref at w doesn’t cause an exception.

Now that we’ve written the enqueue macro, let’s try it out to see whether 
it reduces the execution time!

(time @(-> (enqueue saying (wait 200 "'Ello, gov'na!") (println @saying))
           (enqueue saying (wait 400 "Pip pip!") (println @saying))
           (enqueue saying (wait 100 "Cheerio!") (println @saying))))
; => 'Ello, gov'na!
; => Pip pip!
; => Cheerio!
; => "Elapsed time: 401.635 msecs"

Blimey! The greeting is delivered in the correct order, and you can see 
by the elapsed time that the “work” of sleeping was handled concurrently.

summary
It’s important for programmers like you to learn concurrent and parallel 
programming techniques so you can design programs that run efficiently 
on modern hardware. Concurrency refers to a program’s ability to carry 
out more than one task, and in Clojure you achieve this by placing tasks on 
separate threads. Programs execute in parallel when a computer has more 
than one CPU, which allows more than one thread to be executed at the 
same time.

Concurrent programming refers to the techniques used to manage three 
concurrency risks: reference cells, mutual exclusion, and deadlock. Clojure 
gives you three basic tools that help you mitigate those risks: futures, delays, 
and promises. Each tool lets you decouple the three events of defining a task, 
executing a task, and requiring a task’s result. Futures let you define a task 
and execute it immediately, allowing you to require the result later or never. 
Futures also cache their results. Delays let you define a task that doesn’t 
get executed until later, and a delay’s result gets cached. Promises let you 
express that you require a result without having to know about the task that 
produces that result. You can only deliver a value to a promise once. 

In the next chapter, you’ll explore the philosophical side of concurrent 
programming and learn more sophisticated tools for managing the risks.



206   Chapter 9

exercises

1. Write a function that takes a string as an argument and searches for 
it on Bing and Google using the slurp function. Your function should 
return the HTML of the first page returned by the search.

2. Update your function so it takes a second argument consisting of the 
search engines to use.

3. Create a new function that takes a search term and search engines as 
arguments, and returns a vector of the URLs from the first page of 
search results from each search engine.



10
C l o j u r e  m e t a p h Y s i C s :  

a t o m s ,  r e f s ,  v a r s ,  a n D 
C u D D l e  z o m B i e s

The Three Concurrency Goblins are all 
spawned from the same pit of evil: shared 

access to mutable state. You can see this in 
the reference cell discussion in Chapter 9. When two 
threads make uncoordinated changes to the reference 
cell, the result is unpredictable.

Rich Hickey designed Clojure to specifically address the problems that 
develop from shared access to mutable state. In fact, Clojure embodies a 
very clear conception of state that makes it inherently safer for concurrency 
than most popular programming languages. It’s safe all the way down to its 
meta-freakin-physics.

In this chapter, you’ll learn about Clojure’s underlying metaphysics, as 
compared to the metaphysics of typical object-oriented (OO) languages. 
Learning this philosophy will prepare you to handle Clojure’s remaining 
concurrency tools, the atom, ref, and var reference types. (Clojure has one 
additional reference type, agents, which this book doesn’t cover.) Each of 



208   Chapter 10

these types enables you to safely perform state-modifying operations con-
currently. You’ll also learn about easy ways to make your program more effi-
cient without introducing state at all.

Metaphysics attempts to answer two basic questions in the broadest 
possible terms:

•	 What is there?

•	 What is it like?

To draw out the differences between Clojure and OO languages, I’ll 
explain two different ways of modeling a cuddle zombie. Unlike a regular 
zombie, a cuddle zombie does not want to devour your brains. It only wants 
to spoon you and maybe smell your neck. That makes its undead, shuffling, 
decaying state all the more tragic. How could you try to kill something that 
only wants love? Who’s the real monster here?

object-oriented metaphysics
OO metaphysics treats the cuddle zombie as an object that exists in the 
world. The object has properties that may change over time, but it’s still 
treated as a single, constant object. If that seems like a totally obvious, 
uncontroversial approach to zombie metaphysics, you probably haven’t 
spent hours in an intro philosophy class arguing about what it means for a 
chair to exist and what really makes it a chair in the first place. 

The tricky part is that the cuddle zombie is always changing. Its body 
slowly deteriorates. Its undying hunger for cuddles grows fiercer with 
time. In OO terms, we would say that the cuddle zombie is an object with 
mutable state and that its state is ever fluctuating. But no matter how much 
the zombie changes, we still identify it as the same zombie. Here’s how you 
might model and interact with a cuddle zombie in Ruby:

class CuddleZombie
  # attr_accessor is just a shorthand way for creating getters and
  # setters for the listed instance variables
  attr_accessor :cuddle_hunger_level, :percent_deteriorated

  def initialize(cuddle_hunger_level = 1, percent_deteriorated = 0)
    self.cuddle_hunger_level = cuddle_hunger_level
    self.percent_deteriorated = percent_deteriorated
  end
end

fred = CuddleZombie.new(2, 3)
fred.cuddle_hunger_level  # => 2
fred.percent_deteriorated # => 3

fred.cuddle_hunger_level = 3
fred.cuddle_hunger_level # => 3



Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies    209

In this example, you create a cuddle zombie, fred, with two attri-
butes: cuddle_hunger_level and percent_deteriorated. fred starts out with a 
cuddle_hunger_level of just 2, but you can change it to whatever you want 
and it’s still good ol’ Fred, the same cuddle zombie. In this case, you 
changed its cuddle_hunger_level to 3.

You can see that this object is just a fancy reference cell. It’s subject to 
the same nondeterministic results in a multithreaded environment. For 
example, if two threads try to increment Fred’s hunger level with something 
like fred.cuddle_hunger_level = fred.cuddle_hunger_level + 1, one of the incre-
ments could be lost, just like in the example with two threads writing to X 
in “The Three Goblins: Reference 
Cells, Mutual Exclusion, and 
Dwarven Berserkers” on page 193.

Even if you’re only performing 
reads on a separate thread, the pro-
gram will still be nondeterministic. 
For example, suppose you’re con-
ducting research on cuddle zombie 
behavior. You want to log a zombie’s 
hunger level whenever it reaches 
50 percent deterioration, but you 
want to do this on another thread to 
increase performance, using code 
like that in Listing 10-1:

if fred.percent_deteriorated >= 50
  Thread.new { database_logger.log(fred.cuddle_hunger_level) }
end

Listing 10-1: This Ruby code isn’t safe for concurrent execution.

The problem is that another thread could change fred before the write 
actually takes place.

For example, Figure 10-1 shows two threads executing from top to 
bottom. In this situation, it would be correct to write 5 to the database, but 
10 gets written instead.

write cuddle_hunger_level = 5

read percent_deteriorated

write cuddle_hunger_level = 10

read cuddle_hunger_level

write cuddle_hunger_level = 10

fred

database

Figure 10-1: Logging inconsistent cuddle zombie data



210   Chapter 10

This would be unfortunate. You don’t want your data to be inconsistent 
when you’re trying to recover from the cuddle zombie apocalypse. However, 
there’s no way to retain the state of an object at a specific moment in time.

Additionally, in order to change the cuddle_hunger_level and percent_
deteriorated simultaneously, you must be extra careful. Otherwise, it’s pos-
sible for fred to be viewed in an inconsistent state, because another thread 
might read the fred object in between the two changes that you intend to be 
simultaneous, like so:

fred.cuddle_hunger_level = fred.cuddle_hunger_level + 1
# At this time, another thread could read fred's attributes and
# "perceive" fred in an inconsistent state unless you use a mutex
fred.percent_deteriorated = fred.percent_deteriorated + 1

This is another version of the mutual exclusion problem. In object-
oriented programming (OOP), you can manually address this problem with 
a mutex, which ensures that only one thread can access a resource (in this 
case, the fred object) at a time for the duration of the mutex.

The fact that objects are never stable doesn’t stop us from treating them 
as the fundamental building blocks of programs. In fact, this is considered 
an advantage of OOP. It doesn’t matter how the state changes; you can still 
interact with a stable interface and everything will work as it should. This 
conforms to our intuitive sense of the world. A piece of wax is still the same 
piece of wax even if its properties change: if I change its color, melt it, and 
pour it on the face of my enemy, I’d still think of it as the same wax object I 
started with.

Also, in OOP, objects do things. They act on each other, changing 
state as the program runs. Again, this conforms to our intuitive sense of 
the world: change is the result of objects acting on each other. A Person 
object pushes on a Door object and enters a House object.

Clojure metaphysics
In Clojure metaphysics, we would say that we never encounter the same 
cuddle zombie twice. The cuddle zombie is not a discrete thing that exists 
in the world independent of its mutations: it’s actually a succession of values.

The term value is used often by Clojurists, and its specific meaning 
might differ from what you’re used to. Values are atomic in the sense that 
they form a single irreducible unit or component in a larger system; they’re 
indivisible, unchanging, stable entities. Numbers are values: it wouldn’t 
make sense for the number 15 to mutate into another number. When you 
add or subtract from 15, you don’t change the number 15; you just wind up 
with a different number. Clojure’s data structures are also values because 
they’re immutable. When you use assoc on a map, you don’t modify the 
original map; instead, you derive a new map.



Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies    211

So a value doesn’t change, but you can apply a process to a value to pro-
duce a new value. For example, say we start with a value F1, and then we 
apply the Cuddle Zombie process to F1 to produce the value F2. The process 
then gets applied to the value F2 to produce the value F3, and so on.

This leads to a different conception of identity. Instead of understand-
ing identity as inherent to a changing object, as in OO metaphysics, Clojure 
metaphysics construes identity as something we humans impose on a succes-
sion of unchanging values produced by a process over time. We use names 
to designate identities. The name Fred is a handy way to refer to a series of 
individual states F1, F2, F3, and so on. From this viewpoint, there’s no such 
thing as mutable state. Instead, state means the value of an identity at a 
point in time.

Rich Hickey has used the analogy of phone numbers to explain state. 
Alan’s phone number has changed 10 times, but we will always call these 
numbers by the same name, Alan’s phone number. Alan’s phone number five 
years ago is a different value than Alan’s phone number today, and both are 
two states of Alan’s phone number identity.

This makes sense when you consider that in your programs you are 
dealing with information about the world. Rather than saying that infor-
mation has changed, you would say you’ve received new information. At 
12:00 pm on Friday, Fred the Cuddle Zombie was in a state of 50 percent 
decay. At 1:00 pm, he was 60 percent decayed. These are both facts that you 
can process, and the introduction of a new fact does not invalidate a previ-
ous fact. Even though Fred’s decay increased from 50 percent to 60 percent, 
it’s still true that at 12:00 pm he was in a state of 50 percent decay. 

Figure 10-2 shows how you might visualize values, process, identity, and 
state.

Cuddle Zombie Process

Imposed “Fred” identity

Fred states

Process creates 
new states

F1 F2 F3

Figure 10-2: Values, process, identity, and state

These values don’t act on each other, and they can’t be changed. They 
can’t do anything. Change only occurs when a) a process generates a new 
value and b) we choose to associate the identity with the new value.

To handle this sort of change, Clojure uses reference types. Reference 
types let you manage identities in Clojure. Using them, you can name an 
identity and retrieve its state. Let’s look at the simplest of these, the atom.



212   Chapter 10

atoms
Clojure’s atom reference type allows you to endow a succession of related 
values with an identity. Here’s how you create one:

(def fred (atom {:cuddle-hunger-level 0
                 :percent-deteriorated 0}))

This creates a new atom and binds it to the name fred. This atom refers 
to the value {:cuddle-hunger-level 0 :percent-deteriorated 0}, and you would 
say that that’s its current state. 

To get an atom’s current state, you dereference it. Here’s Fred’s current 
state: 

@fred
; => {:cuddle-hunger-level 0, :percent-deteriorated 0}

Unlike futures, delays, and promises, dereferencing an atom (or any 
other reference type) will never block. When you dereference futures, delays, 
and promises, it’s like you’re saying “I need a value now, and I will wait until 
I get it,” so it makes sense that the operation would block. However, when 
you dereference a reference type, it’s like you’re saying “give me the value 
I’m currently referring to,” so it makes sense that the operation doesn’t block, 
because it doesn’t have to wait for anything.

In the Ruby example in Listing 10-1, we saw how object data could 
change while you try to log it on a separate thread. There’s no danger of 
that happening when using atoms to manage state, because each state is 
immutable. Here’s how you could log a zombie’s state with println:

(let [zombie-state @fred]
  (if (>= (:percent-deteriorated zombie-state) 50)
    (future (println (:percent-deteriorated zombie-state)))))

The problem with the Ruby example in Listing 10-1 was that it took two 
steps to read the zombie’s two attributes, and some other thread could have 
changed those attributes in between the two steps. However, by using atoms 
to refer to immutable data structures, you only have to perform one read, 
and the data structure returned won’t get altered by another thread.

To update the atom so that it refers to a new state, you use swap!. This 
might seem contradictory, because I said that atomic values are unchang-
ing. Indeed, they are! But now we’re working with the atom reference type, a 
construct that refers to atomic values. The atomic values don’t change, but 
the reference type can be updated and assigned a new value.

swap! receives an atom and a function as arguments. It applies the func-
tion to the atom’s current state to produce a new value, and then it updates 



Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies    213

the atom to refer to this new value. The new value is also returned. Here’s 
how you might increase Fred’s cuddle hunger level by one:

(swap! fred
       (fn [current-state]
         (merge-with + current-state {:cuddle-hunger-level 1})))
; => {:cuddle-hunger-level 1, :percent-deteriorated 0}

Dereferencing fred will return the new state:

@fred
; => {:cuddle-hunger-level 1, :percent-deteriorated 0}

Unlike Ruby, it’s not possible for fred to be in an inconsistent state, 
because you can update the hunger level and deterioration percentage 
at the same time, like this:

(swap! fred
       (fn [current-state]
         (merge-with + current-state {:cuddle-hunger-level 1
                                      :percent-deteriorated 1})))
; => {:cuddle-hunger-level 2, :percent-deteriorated 1}

This code passes swap! a function that takes only one argument, current-
state. You can also pass swap! a function that takes multiple arguments. For 
example, you could create a function that takes two arguments, a zombie 
state and the amount by which to increase its cuddle hunger level:

(defn increase-cuddle-hunger-level
  [zombie-state increase-by]
  (merge-with + zombie-state {:cuddle-hunger-level increase-by}))

Let’s test increase-cuddle-hunger-level out real quick on a zombie state. 

(increase-cuddle-hunger-level @fred 10)
; => {:cuddle-hunger-level 12, :percent-deteriorated 1}

Note that this code doesn’t actually update fred, because we’re not 
using swap! We’re just making a normal function call to increase-cuddle-
hunger-level, which returns a result.

Now call swap! with the additional arguments, and @fred will be 
updated, like this:

(swap! fred increase-cuddle-hunger-level 10)
; => {:cuddle-hunger-level 12, :percent-deteriorated 1}

@fred
; => {:cuddle-hunger-level 12, :percent-deteriorated 1}



214   Chapter 10

Or you could express the whole thing using Clojure’s built-in functions. 
The update-in function takes three arguments: a collection, a vector for 
identifying which value to update, and a function to update that value. It 
can also take additional arguments that get passed to the update function. 
Here are a couple of examples:

(update-in {:a {:b 3}} [:a :b] inc)
; => {:a {:b 4}}

(update-in {:a {:b 3}} [:a :b] + 10)
; => {:a {:b 13}}

In the first example, you’re updating the map {:a {:b 3}}. Clojure uses 
the vector [:a :b] to traverse the nested maps; :a yields the nested map 
{:b 3}, and :b yields the value 3. Clojure applies the inc function to 3 and 
returns a new map with 3 replaced by 4. The second example is similar. The 
only difference is that you’re using the addition function and you’re supply-
ing 10 as an additional argument; Clojure ends up calling (+ 3 10).

Here’s how you can use the update-in function to change Fred’s state:

(swap! fred update-in [:cuddle-hunger-level] + 10)
; => {:cuddle-hunger-level 22, :percent-deteriorated 1}

By using atoms, you can retain past state. You can dereference an atom 
to retrieve State 1, and then update the atom, creating State 2, and still 
make use of State 1:

(let [num (atom 1)
      s1 @num]
  (swap! num inc)
  (println "State 1:" s1)
  (println "Current state:" @num))
; => State 1: 1
; => Current state: 2

This code creates an atom named num, retrieves its state, updates its 
state, and then prints its past state and its current state, showing that I 
wasn’t trying to trick you when I said you can retain past state, and there-
fore you can trust me with all manner of things—including your true name, 
which I promise to utter only to save you from mortal danger.

This is all interesting and fun, but what happens if two separate threads 
call (swap! fred increase-cuddle-hunger-level 1)? Is it possible for one of the 
increments to get lost the way it did in the Ruby example at Listing 10-1?

The answer is no! swap! implements compare-and-set semantics, meaning 
it does the following internally:

1. It reads the current state of the atom.

2. It then applies the update function to that state.



Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies    215

3. Next, it checks whether the value it read in step 1 is identical to the 
atom’s current value.

4. If it is, then swap! updates the atom to refer to the result of step 2.

5. If it isn’t, then swap! retries, going through the process again with step 1.

This process ensures that no swaps will ever get lost.
One detail to note about swap! is that atom updates happen synchro-

nously; they will block their thread. For example, if your update function 
calls Thread/sleep 1000 for some reason, the thread will block for at least a 
second while swap! completes.

Sometimes you’ll want to update an atom without checking its current 
value. For example, you might develop a serum that sets a cuddle zombie’s 
hunger level and deterioration back to zero. For those cases, you can use 
the reset! function:

(reset! fred {:cuddle-hunger-level 0
              :percent-deteriorated 0})

And that covers all the core functionality of atoms! To recap: atoms 
implement Clojure’s concept of state. They allow you to endow a series of 
immutable values with an identity. They offer a solution to the reference 
cell and mutual exclusion problems through their compare-and-set seman-
tics. They also allow you to work with past states without fear of them mutat-
ing in place.

In addition to these core features, atoms also share two features with 
the other reference types. You can attach both watches and validators to 
atoms. Let’s look at those now.

watches and validators
Watches allow you to be super creepy and check in on your reference types’ 
every move. Validators allow you to be super controlling and restrict what 
states are allowable. Both watches and validators are plain ol’ functions.

Watches
A watch is a function that takes four arguments: a key, the reference being 
watched, its previous state, and its new state. You can register any number of 
watches with a reference type.

Let’s say that a zombie’s shuffle speed (measured in shuffles per hour, 
or SPH) is dependent on its hunger level and deterioration. Here’s how 
you’d calculate it, multiplying the cuddle hunger level by how whole it is:

(defn shuffle-speed
  [zombie]
  (* (:cuddle-hunger-level zombie)
     (- 100 (:percent-deteriorated zombie))))



216   Chapter 10

Let’s also say that you want to be alerted whenever a zombie’s shuffle 
speed reaches the dangerous level of 5,000 SPH. Otherwise, you want to be 
told that everything’s okay. Here’s a watch function you could use to print a 
warning message if the SPH is above 5,000 and print an all’s-well message 
otherwise:

(defn shuffle-alert
  [key watched old-state new-state]
  (let [sph (shuffle-speed new-state)]
    (if (> sph 5000)
      (do
        (println "Run, you fool!")
        (println "The zombie's SPH is now " sph)
        (println "This message brought to your courtesy of " key))
      (do
        (println "All's well with " key)
        (println "Cuddle hunger: " (:cuddle-hunger-level new-state))
        (println "Percent deteriorated: " (:percent-deteriorated new-state))
        (println "SPH: " sph)))))

Watch functions take four arguments: a key that you can use for report-
ing, the atom being watched, the state of the atom before its update, and 
the state of the atom after its update. This watch function calculates the 
shuffle speed of the new state and prints a warning message if it’s too high 
and an all’s-well message when the shuffle speed is safe, as mentioned 
above. In both sets of messages, the key is used to let you know the source 
of the message.

You can attach this function to fred with add-watch. The general form of 
add-watch is (add-watch ref key watch-fn). In this example, we’re resetting fred’s 
state, adding the shuffle-alert watch function, and then updating fred’s state 
a couple of times to trigger shuffle-alert: 

(reset! fred {:cuddle-hunger-level 22
              :percent-deteriorated 2})
(add-watch fred :fred-shuffle-alert shuffle-alert)
(swap! fred update-in [:percent-deteriorated] + 1)
; => All's well with  :fred-shuffle-alert
; => Cuddle hunger:  22
; => Percent deteriorated:  3
; => SPH:  2134

(swap! fred update-in [:cuddle-hunger-level] + 30)
; => Run, you fool!
; => The zombie's SPH is now 5044
; => This message brought to your courtesy of :fred-shuffle-alert

This example watch function didn’t use watched or old-state, but they’re 
there for you if the need arises. Now let’s cover validators.



Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies    217

Validators
Validators let you specify what states are allowable for a reference. For 
example, here’s a validator that you could use to ensure that a zombie’s 
:percent-deteriorated is between 0 and 100:

(defn percent-deteriorated-validator
  [{:keys [percent-deteriorated]}]
  (and (>= percent-deteriorated 0)
       (<= percent-deteriorated 100)))

As you can see, the validator takes only one argument. When you 
add a validator to a reference, the reference is modified so that, whenever 
it’s updated, it will call this validator with the value returned from the 
update function as its argument. If the validator fails by returning false 
or throwing an exception, the reference won’t change to point to the new 
value.

You can attach a validator during atom creation:

(def bobby
  (atom
   {:cuddle-hunger-level 0 :percent-deteriorated 0}
    :validator percent-deteriorated-validator))
(swap! bobby update-in [:percent-deteriorated] + 200)
; This throws "Invalid reference state"

In this example, percent-deteriorated-validator returned false and the 
atom update failed. 

You can throw an exception to get a more descriptive error message:

(defn percent-deteriorated-validator
  [{:keys [percent-deteriorated]}]
  (or (and (>= percent-deteriorated 0)
           (<= percent-deteriorated 100))
      (throw (IllegalStateException. "That's not mathy!"))))
(def bobby
  (atom
   {:cuddle-hunger-level 0 :percent-deteriorated 0}
    :validator percent-deteriorated-validator))
(swap! bobby update-in [:percent-deteriorated] + 200)
; This throws "IllegalStateException That's not mathy!"

Pretty great! Now let’s look at refs.



218   Chapter 10

refs
Atoms are ideal for managing the state of independent identities. Sometimes, 
though, we need to express that an event should update the state of more 
than one identity simultaneously. Refs are the perfect tool for this scenario.

A classic example of this is recording 
sock gnome transactions. As we all know, sock 
gnomes take a single sock from every clothes 
dryer around the world. They use these socks 
to incubate their young. In return for this 
“gift,” sock gnomes protect your home from 
El Chupacabra. If you haven’t been visited 
by El Chupacabra lately, you have sock gnomes 
to thank.

To model sock transfers, we need to express 
that a dryer has lost a sock and a gnome has 
gained a sock simultaneously. One moment the 
sock belongs to the dryer; the next it belongs 
to the gnome. The sock should never appear to 
belong to both the dryer and the gnome, nor 
should it appear to belong to neither.

Modeling Sock Transfers
You can model this sock transfer with refs. Refs allow you to update the 
state of multiple identities using transaction semantics. These transactions 
have three features:

•	 They are atomic, meaning that all refs are updated or none of them are.

•	 They are consistent, meaning that the refs always appear to have valid 
states. A sock will always belong to a dryer or a gnome, but never both 
or neither.

•	 They are isolated, meaning that transactions behave as if they executed 
serially; if two threads are simultaneously running transactions that 
alter the same ref, one transaction will retry. This is similar to the 
compare-and-set semantics of atoms.

You might recognize these as the A, C, and I in the ACID properties of 
database transactions. You can think of refs as giving you the same concur-
rency safety as database transactions, only with in-memory data.

Clojure uses software transactional memory (STM) to implement this 
behavior. STM is very cool, but when you’re starting with Clojure, you don’t 
need to know much about it; you just need to know how to use it, which is 
what this section shows you.

Let’s start transferring some socks! First, you’ll need to code up some 
sock- and gnome-creation technology. The following code defines some 
sock varieties, then defines a couple of helper functions: sock-count will be 



Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies    219

used to help keep track of how many of each kind of sock belongs to either 
a gnome or a dryer, and generate-sock-gnome creates a fresh, sockless gnome:

(def sock-varieties
  #{"darned" "argyle" "wool" "horsehair" "mulleted"
    "passive-aggressive" "striped" "polka-dotted"
    "athletic" "business" "power" "invisible" "gollumed"})

(defn sock-count
  [sock-variety count]
  {:variety sock-variety
   :count count})

(defn generate-sock-gnome
  "Create an initial sock gnome state with no socks"
  [name]
  {:name name
   :socks #{}})

Now you can create your actual refs. The gnome will have 0 socks. The 
dryer, on the other hand, will have a set of sock pairs generated from the 
set of sock varieties. Here are our refs:

(def sock-gnome (ref (generate-sock-gnome "Barumpharumph")))
(def dryer (ref {:name "LG 1337"
                 :socks (set (map #(sock-count % 2) sock-varieties))}))

You can dereference refs just like you can dereference atoms. In this 
example, the order of your socks will probably be different because we’re 
using an unordered set:

(:socks @dryer)
; => #{{:variety "passive-aggressive", :count 2} {:variety "power", :count 2}
       {:variety "athletic", :count 2} {:variety "business", :count 2}
       {:variety "argyle", :count 2} {:variety "horsehair", :count 2}
       {:variety "gollumed", :count 2} {:variety "darned", :count 2}
       {:variety "polka-dotted", :count 2} {:variety "wool", :count 2}
       {:variety "mulleted", :count 2} {:variety "striped", :count 2}
       {:variety "invisible", :count 2}}

Now everything’s in place to perform the transfer. We’ll want to modify 
the sock-gnome ref to show that it has gained a sock and modify the dryer 
ref to show that it’s lost a sock. You modify refs using alter, and you must 
use alter within a transaction. dosync initiates a transaction and defines its 
extent; you put all transaction operations in its body. Here we use these 
tools to define a steal-sock function, and then call it on our two refs:

(defn steal-sock
  [gnome dryer]
  (dosync



220   Chapter 10

   (when-let [pair (some #(if (= (:count %) 2) %) (:socks @dryer))]
     (let [updated-count (sock-count (:variety pair) 1)]
       (alter gnome update-in [:socks] conj updated-count)
       (alter dryer update-in [:socks] disj pair)
       (alter dryer update-in [:socks] conj updated-count)))))
(steal-sock sock-gnome dryer)

(:socks @sock-gnome)
; => #{{:variety "passive-aggressive", :count 1}}

Now the gnome has one passive-aggressive sock, and the dryer has one 
less (your gnome may have stolen a different sock because the socks are 
stored in an unordered set). Let’s make sure all passive-aggressive socks are 
accounted for:

(defn similar-socks
  [target-sock sock-set]
  (filter #(= (:variety %) (:variety target-sock)) sock-set))

(similar-socks (first (:socks @sock-gnome)) (:socks @dryer))
; => ({:variety "passive-aggressive", :count 1})

There are a couple of details to note here: when you alter a ref, the 
change isn’t immediately visible outside of the current transaction. This 
is what lets you call alter on the dryer twice within a transaction without 
worry ing about whether dryer will be read in an inconsistent state. Similarly, 
if you alter a ref and then deref it within the same transaction, the deref will 
return the new state. 

Here’s an example to demonstrate this idea of in-transaction state:

(def counter (ref 0))
(future
  (dosync
   (alter counter inc)
   (println @counter)
   (Thread/sleep 500)
   (alter counter inc)
   (println @counter)))
(Thread/sleep 250)
(println @counter)

This prints 1, 0 , and 2, in that order. First, you create a ref, counter, 
which holds the number 0. Then you use future to create a new thread to 
run a transaction on. On the transaction thread, you increment the counter 
and print it, and the number 1 gets printed. Meanwhile, the main thread 
waits 250 milliseconds and prints the counter’s value, too. However, the 
value of counter on the main thread is still 0—the main thread is outside 
of the transaction and doesn’t have access to the transaction’s state. It’s 
like the transaction has its own private area for trying out changes to the 
state, and the rest of the world can’t know about them until the transaction 



Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies    221

is done. This is further illustrated in the transaction code: after it prints 
the first time, it increments the counter again from 1 to 2 and prints the 
result, 2.

The transaction will try to commit its changes only when it ends. The 
commit works similarly to the compare-and-set semantics of atoms. Each 
ref is checked to see whether it’s changed since you first tried to alter it. 
If any of the refs have changed, then none of the refs is updated and the 
transaction is retried. For example, if Transaction A and Transaction B are 
both attempted at the same time and events occur in the following order, 
Transaction A will be retried:

1. Transaction A: alter gnome

2. Transaction B: alter gnome

3. Transaction B: alter dryer

4. Transaction B: alter dryer

5. Transaction B: commit—successfully updates gnome and dryer

6. Transaction A: alter dryer

7. Transaction A: alter dryer

8. Transaction A: commit—fails because dryer and gnome have changed; 
retries.

And there you have it! Safe, easy, concurrent coordination of state 
changes. But that’s not all! Refs have one more trick up their suspiciously 
long sleeve: commute.

commute
commute allows you to update a ref’s state within a transaction, just like alter. 
However, its behavior at commit time is completely different. Here’s how 
alter behaves:

1. Reach outside the transaction and read the ref’s current state.

2. Compare the current state to the state the ref started with within the 
transaction.

3. If the two differ, make the transaction retry.

4. Otherwise, commit the altered ref state.

commute, on the other hand, behaves like this at commit time:

1. Reach outside the transaction and read the ref’s current state.

2. Run the commute function again using the current state.

3. Commit the result.

As you can see, commute doesn’t ever force a transaction retry. This can 
help improve performance, but it’s important that you only use commute 
when you’re sure that it’s not possible for your refs to end up in an invalid 
state. Let’s look at examples of safe and unsafe uses of commute.



222   Chapter 10

Here’s an example of a safe use. The sleep-print-update function returns 
the updated state but also sleeps the specified number of milliseconds so 
we can force transaction overlap. It prints the state that it’s attempting to 
update so we can gain insight into what’s going on:

(defn sleep-print-update
  [sleep-time thread-name update-fn]
  (fn [state]
    (Thread/sleep sleep-time)
    (println (str thread-name ": " state))
    (update-fn state)))
(def counter (ref 0))
(future (dosync (commute counter (sleep-print-update 100 "Thread A" inc))))
(future (dosync (commute counter (sleep-print-update 150 "Thread B" inc))))

Here’s a timeline of what prints:

Thread A: 0 | 100ms
Thread B: 0 | 150ms
Thread A: 0 | 200ms 
Thread B: 1 | 300ms

Notice that the last printed line reads Thread B: 1. That means that 
sleep-print-update receives 1 as the argument for state the second time it 
runs. That makes sense, because Thread A has committed its result by that 
point. If you dereference counter after the transactions run, you’ll see that 
the value is 2.

Now, here’s an example of unsafe commuting:

(def receiver-a (ref #{}))
(def receiver-b (ref #{}))
(def giver (ref #{1}))
(do (future (dosync (let [gift (first @giver)]
                      (Thread/sleep 10)
                      (commute receiver-a conj gift)
                      (commute giver disj gift))))
    (future (dosync (let [gift (first @giver)]
                      (Thread/sleep 50)
                      (commute receiver-b conj gift)
                      (commute giver disj gift)))))

@receiver-a
; => #{1}

@receiver-b
; => #{1}

@giver
; => #{}

The 1 was given to both receiver-a and receiver-b, and you’ve ended up 
with two instances of 1, which isn’t valid for your program. What’s different 



Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies    223

about this example is that the functions that are applied, essentially #(conj 
% gift) and #(disj % gift), are derived from the state of giver. Once giver 
changes, the derived functions produce an invalid state, but commute doesn’t 
care that the resulting state is invalid and commits the result anyway. The 
lesson here is that although commute can help speed up your programs, you 
have to be judicious about when to use it.

Now you’re ready to start using refs safely and sanely. Refs have a few 
more nuances that I won’t cover here, but if you’re curious about them, you 
can research the ensure function and the phenomenon write skew. 

On to the final reference type that this book covers: vars.

vars
You’ve already learned a bit about vars in Chapter 6. To recap briefly, vars 
are associations between symbols and objects. You create new vars with def.

Although vars aren’t used to manage state in the same way as atoms and 
refs, they do have a couple of concurrency tricks: you can dynamically bind 
them, and you can alter their roots. Let’s look at dynamic binding first.

Dynamic Binding
When I first introduced def, I implored you to treat it as if it’s defining a 
constant. It turns out that vars are a bit more flexible than that: you can 
create a dynamic var whose binding can be changed. Dynamic vars can be 
useful for creating a global name that should refer to different values in dif-
ferent contexts.

Creating and Binding Dynamic Vars

First, create a dynamic var:

(def ^:dynamic *notification-address* "dobby@elf.org")

Notice two important details here. First, you use ^:dynamic to signal to 
Clojure that a var is dynamic. Second, the var’s name is enclosed by aster-
isks. Lispers call these earmuffs, which is adorable. Clojure requires you to 
enclose the names of dynamic vars in earmuffs. This helps signal the var’s 
dynamicaltude to other programmers.

Unlike regular vars, you can temporarily change the value of dynamic 
vars by using binding:

(binding [*notification-address* "test@elf.org"]
  *notification-address*)
; => "test@elf.org"

You can also stack bindings ( just like you can with let):

(binding [*notification-address* "tester-1@elf.org"]
  (println *notification-address*)



224   Chapter 10

  (binding [*notification-address* "tester-2@elf.org"]
    (println *notification-address*))
  (println *notification-address*))
; => tester-1@elf.org
; => tester-2@elf.org
; => tester-1@elf.org

Now that you know how to dynamically bind a var, let’s look at a real-
world application.

Dynamic Var Uses

Let’s say you have a function that sends a notification email. In this example, 
we’ll just return a string but pretend that the function actually sends the 
email:

(defn notify
  [message]
  (str "TO: " *notification-address* "\n"
       "MESSAGE: " message))
(notify "I fell.")
; => "TO: dobby@elf.org\nMESSAGE: I fell."

What if you want to test this function without spamming Dobby every 
time your specs run? Here comes binding to the rescue:

(binding [*notification-address* "test@elf.org"]
  (notify "test!"))
; => "TO: test@elf.org\nMESSAGE: test!"

Of course, you could have just defined notify to take an email address 
as an argument. In fact, that’s often the right choice. Why would you want 
to use dynamic vars instead?

Dynamic vars are most often used to name a resource that one or 
more functions target. In this example, you can view the email address as 
a resource that you write to. In fact, Clojure comes with a ton of built-in 
dynamic vars for this purpose. *out*, for example, represents the standard 
output for print operations. In your program, you could re-bind *out* so 
that print statements write to a file, like so:

(binding [*out* (clojure.java.io/writer "print-output")]
  (println "A man who carries a cat by the tail learns 
something he can learn in no other way.
-- Mark Twain"))
(slurp "print-output")
; => A man who carries a cat by the tail learns
     something he can learn in no other way.
     -- Mark Twain



Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies    225

This is much less burdensome than passing an output destination to 
every invocation of println. Dynamic vars are a great way to specify a com-
mon resource while retaining the flexibility to change it on an ad hoc basis.

Dynamic vars are also used for configuration. For example, the built-
in var *print-length* allows you to specify how many items in a collection 
Clojure should print:

(println ["Print" "all" "the" "things!"])
; => [Print all the things!]

(binding [*print-length* 1]
  (println ["Print" "just" "one!"]))
; => [Print ...]

Finally, it’s possible to set! dynamic vars that have been bound. Whereas 
the examples you’ve seen so far allow you to convey information in to a 
function without having to pass in the infor-
mation as an argument, set! allows you con-
vey information out of a function without 
having to return it as an argument.

For example, let’s say you’re a telepath, 
but your mind-reading powers are a bit 
delayed. You can read people’s thoughts 
only after the moment when it would have 
been useful for you to know them. Don’t 
feel too bad, though; you’re still a telepath, 
which is awesome. Anyway, say you’re try-
ing to cross a bridge guarded by a troll who 
will eat you if you don’t answer his riddle. 
His riddle is “What number between 1 and 
2 am I thinking of?” In the event that the 
troll devours you, you can at least die know-
ing what the troll was actually thinking.

In this example, you create the 
dynamic var *troll-thought* to convey 
the troll’s thought out of the troll-riddle 
function: 

(def ^:dynamic *troll-thought* nil)
(defn troll-riddle
  [your-answer]
  (let [number "man meat"]

u     (when (thread-bound? #'*troll-thought*)
v       (set! *troll-thought* number))

    (if (= number your-answer)
      "TROLL: You can cross the bridge!"
      "TROLL: Time to eat you, succulent human!")))



226   Chapter 10

(binding [*troll-thought* nil]
  (println (troll-riddle 2))
  (println "SUCCULENT HUMAN: Oooooh! The answer was" *troll-thought*))

; => TROLL: Time to eat you, succulent human!
; => SUCCULENT HUMAN: Oooooh! The answer was man meat

You use the thread-bound? function at u to check that the var has been 
bound, and if it has, you set! *troll-thought* to the troll’s thought at v.

The var returns to its original value outside of binding:

*troll-thought*
; => nil

Notice that you have to pass #'*troll-thought* (including #'), not 
*troll-thought*, to the function thread-bound?. This is because thread-bound? 
takes the var itself as an argument, not the value it refers to. 

Per-thread Binding

One final point to note about binding: if you access a dynamically bound 
var from within a manually created thread, the var will evaluate to the orig-
inal value. If you’re new to Clojure (and Java), this feature won’t be immedi-
ately relevant; you can probably skip this section and come back to it later.

Ironically, this binding behavior prevents us from easily creating a fun 
demonstration in the REPL, because the REPL binds *out*. It’s as if all the 
code you run in the REPL is implicitly wrapped in something like (binding 
[*out* repl-printer] your-code. If you create a new thread, *out* won’t be 
bound to the REPL printer.

The following example uses some basic Java interop. Even if it looks 
unfamiliar, the gist of the following code should be clear, and you’ll learn 
exactly what’s going on in Chapter 12.

This code prints output to the REPL:

(.write *out* "prints to repl")
; => prints to repl

The following code doesn’t print output to the REPL, because *out* is 
not bound to the REPL printer:

(.start (Thread. #(.write *out* "prints to standard out")))

You can work around this by using this goofy code:

(let [out *out*]
  (.start
   (Thread. #(binding [*out* out]
               (.write *out* "prints to repl from thread")))))



Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies    227

Or you can use bound-fn, which carries all the current bindings to the 
new thread:

(.start (Thread. (bound-fn [] (.write *out* "prints to repl from thread"))))

The let binding captures *out* so we can then rebind it in the child 
thread, which is goofy as hell. The point is that bindings don’t get passed 
on to manually created threads. They do, however, get passed on to futures. 
This is called binding conveyance. Throughout this chapter, we’ve been print-
ing from futures without any problem, for example.

That’s it for dynamic binding. Let’s turn our attention to the last var 
topic: altering var roots.

Altering the Var Root
When you create a new var, the initial value that you supply is its root:

(def power-source "hair")

In this example, "hair" is the root value of power-source. Clojure lets you 
permanently change this root value with the function alter-var-root:

(alter-var-root #'power-source (fn [_] "7-eleven parking lot"))
power-source
; => "7-eleven parking lot"

Just like when using swap! to update an atom or alter! to update a ref, 
you use alter-var-root along with a function to update the state of a var. 
In this case, the function is just returning a new string that bears no rela-
tion to the previous value, unlike the alter! examples where we used inc to 
derive a new number from the current number.

You’ll hardly ever want to do this. You especially don’t want to do this to 
perform simple variable assignment. If you did, you’d be going out of your 
way to create the binding as a mutable variable, which goes against Clojure’s 
philosophy; it’s best to use the functional programming techniques you 
learned in Chapter 5.

You can also temporarily alter a var’s root with with-redefs. This works 
similarly to binding except the alteration will appear in child threads. 
Here’s an example:

(with-redefs [*out* *out*]
        (doto (Thread. #(println "with redefs allows me to show up in the REPL"))
          .start
          .join))

Using with-redefs may be more appropriate than using bindings for set-
ting up a test environment. It’s also more widely applicable, in that you can 
use it for any var, not just dynamic ones.

Now you know all about vars! Try not to hurt yourself or anyone you 
know with them.



228   Chapter 10

stateless Concurrency and Parallelism with pmap
So far, this chapter has focused on tools that are designed to mitigate 
the risks inherent in concurrent programming. You’ve learned about the 
dangers born of shared access to mutable state and how Clojure implements 
a reconceptualization of state that helps you write concurrent programs 
safely.

Often, though, you’ll want to concurrent-ify tasks that are completely 
independent of each other. There is no shared access to a mutable state; 
therefore, there are no risks to running the tasks concurrently and you 
don’t have to bother with using any of the tools I’ve just been blabbing on 
about.

As it turns out, Clojure makes it easy for you to write code for achieving 
stateless concurrency. In this section, you’ll learn about pmap, which gives 
you concurrency performance benefits virtually for free.

map is a perfect candidate for parallelization: when you use it, all you’re 
doing is deriving a new collection from an existing collection by applying 
a function to each element of the existing collection. There’s no need to 
maintain state; each function application is completely independent. Clojure 
makes it easy to perform a parallel map with pmap. With pmap, Clojure handles 
the running of each application of the mapping function on a separate 
thread.

To compare map and pmap, we need a lot of example data, and to gener-
ate this data, we’ll use the repeatedly function. This function takes another 
function as an argument and returns a lazy sequence. The elements of the 
lazy sequence are generated by calling the passed function, like this:

(defn always-1
  []
  1)
(take 5 (repeatedly always-1))
; => (1 1 1 1 1)

Here’s how you’d create a lazy seq of random numbers between 0 and 9:

(take 5 (repeatedly (partial rand-int 10)))
; => (1 5 0 3 4)

Let’s use repeatedly to create example data that consists of a sequence 
of 3,000 random strings, each 7,000 characters long. We’ll compare map and 
pmap by using them to run clojure.string/lowercase on the orc-names sequence 
created here:

(def alphabet-length 26)

;; Vector of chars, A-Z
(def letters (mapv (comp str char (partial + 65)) (range alphabet-length)))



Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies    229

(defn random-string
  "Returns a random string of specified length"
  [length]
  (apply str (take length (repeatedly #(rand-nth letters)))))
  
(defn random-string-list
  [list-length string-length]
  (doall (take list-length (repeatedly (partial random-string string-length)))))

(def orc-names (random-string-list 3000 7000))

Because map and pmap are lazy, we have to force them to be realized. 
We don’t want the result to be printed to the REPL, though, because that 
would take forever. The dorun function does just what we need: it realizes 
the sequence but returns nil:

(time (dorun (map clojure.string/lower-case orc-names)))
; => "Elapsed time: 270.182 msecs"

(time (dorun (pmap clojure.string/lower-case orc-names)))
; => "Elapsed time: 147.562 msecs"

The serial execution with map took about 1.8 times longer than pmap, 
and all you had to do was add one extra letter! Your performance may be 
even better, depending on the number of cores your computer has; this 
code was run on a dual-core machine.

You might be wondering why the parallel version didn’t take exactly 
half as long as the serial version. After all, it should take two cores only half 
as much time as a single core, shouldn’t it? The reason is that there’s always 
some overhead involved with creating and coordinating threads. Sometimes, 
in fact, the time taken by this overhead can dwarf the time of each function 
application, and pmap can actually take longer than map. Figure 10-3 shows how 
you can visualize this.

Time it takes to perform one mapping

Time taken for parallelization overhead

Serial mapping

pmap, 2 cores

Units of time taken
0 8 16 24

Figure 10-3: Parallelization overhead can dwarf task time, resulting 
in a performance decrease.



230   Chapter 10

We can see this effect at work if we run a function on 20,000 abbreviated 
orc names, each 300 characters long:

(def orc-name-abbrevs (random-string-list 20000 300))
(time (dorun (map clojure.string/lower-case orc-name-abbrevs)))
; => "Elapsed time: 78.23 msecs"
(time (dorun (pmap clojure.string/lower-case orc-name-abbrevs)))
; => "Elapsed time: 124.727 msecs"

Now pmap actually takes 1.6 times longer.
The solution to this problem is to increase the grain size, or the 

amount of work done by each parallelized task. In this case, the task is to 
apply the mapping function to one element of the collection. Grain size 
isn’t measured in any standard unit, but you’d say that the grain size of 
pmap is one by default. Increasing the grain size to two would mean that 
you’re applying the mapping function to two elements instead of one, so 
the thread that the task is on is doing more work. Figure 10-4 shows how 
an increased grain size can improve performance.

Time it takes to perform one mapping

Time taken for parallelization overhead

Serial mapping

pmap, grain size 8, 2 cores

pmap, grain size 1, 2 cores

Units of time taken
0 8 16 24

Figure 10-4: Visualizing grain size in relation to parallelization overhead

To actually accomplish this in Clojure, you can increase the grain size 
by making each thread apply clojure.string/lower-case to multiple elements 
instead of just one, using partition-all. partition-all takes a seq and divides 
it into seqs of the specified length:

(def numbers [1 2 3 4 5 6 7 8 9 10])
(partition-all 3 numbers)
; => ((1 2 3) (4 5 6) (7 8 9) (10))

Now suppose you started out with code that looked like this:

(pmap inc numbers)



Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies    231

In this case, the grain size is one because each thread applies inc to an 
element. 

Now suppose you changed the code to this:

(pmap (fn [number-group] (doall (map inc number-group)))
      (partition-all 3 numbers))
; => ((2 3 4) (5 6 7) (8 9 10) (11))

There are a few things going on here. First, you’ve now increased the 
grain size to three because each thread now executes three applications of 
the inc function instead of one. Second, notice that you have to call doall 
within the mapping function. This forces the lazy sequence returned by 
(map inc number-group) to be realized within the thread. Third, we need to 
ungroup the result. Here’s how we can do that:

(apply concat
       (pmap (fn [number-group] (doall (map inc number-group)))
             (partition-all 3 numbers)))

Using this technique, we can increase the grain size of the orc 
name lowercase-ification so each thread runs clojure.string/lower-case 
on 1,000 names instead of just one:

(time
 (dorun
  (apply concat
         (pmap (fn [name] (doall (map clojure.string/lower-case name)))
               (partition-all 1000 orc-name-abbrevs)))))
; => "Elapsed time: 44.677 msecs"

Once again the parallel version takes nearly half the time. Just for fun, 
we can generalize this technique into a function called ppmap, for partitioned 
pmap. It can receive more than one collection, just like map:

(defn ppmap
  "Partitioned pmap, for grouping map ops together to make parallel
  overhead worthwhile"
  [grain-size f & colls]
  (apply concat
   (apply pmap
          (fn [& pgroups] (doall (apply map f pgroups)))
          (map (partial partition-all grain-size) colls))))
(time (dorun (ppmap 1000 clojure.string/lower-case orc-name-abbrevs)))
; => "Elapsed time: 44.902 msecs"

I don’t know about you, but I think this stuff is just fun. For even more 
fun, check out the clojure.core.reducers library (http://clojure.org/reducers/). 
This library provides alternative implementations of seq functions like map 
and reduce that are usually speedier than their cousins in clojure.core. The 

http://clojure.org/reducers/


232   Chapter 10

trade-off is that they’re not lazy. Overall, the clojure.core.reducers library 
offers a more refined and composable way of creating and using functions 
like ppmap.

summary
In this chapter, you learned more than most people know about safely 
handling concurrent tasks. You learned about the metaphysics that under-
lies Clojure’s reference types. In Clojure metaphysics, state is the value of an 
identity at a point in time, and identity is a handy way to refer to a succes-
sion of values produced by some process. Values are atomic in the same way 
numbers are atomic. They’re immutable, and this makes them safe to work 
with concurrently; you don’t have to worry about other threads changing 
them while you’re using them.

The atom reference type allows you to create an identity that you can 
safely update to refer to new values using swap! and reset!. The ref reference 
type is handy when you want to update more than one identity using trans-
action semantics, and you update it with alter! and commute!.

Additionally, you learned how to increase performance by perform-
ing stateless data transformations with pmap and the core.reducers library. 
Woohoo!

exercises

1. Create an atom with the initial value 0, use swap! to increment it a 
couple of times, and then dereference it.

2. Create a function that uses futures to parallelize the task of download-
ing random quotes from http://www.braveclojure.com/random-quote using 
(slurp "http://www.braveclojure.com/random-quote"). The futures should 
update an atom that refers to a total word count for all quotes. The 
function will take the number of quotes to download as an argument 
and return the atom’s final value. Keep in mind that you’ll need to 
ensure that all futures have finished before returning the atom’s final 
value. Here’s how you would call it and an example result:

(quote-word-count 5)
; => {"ochre" 8, "smoothie" 2}

3. Create representations of two characters in a game. The first character 
has 15 hit points out of a total of 40. The second character has a heal-
ing potion in his inventory. Use refs and transactions to model the con-
sumption of the healing potion and the first character healing.

http://www.braveclojure.com/random-quote
http://www.iheartquotes.com/api/v1/random
http://www.iheartquotes.com/api/v1/random


11
m a s t e r i n g  C o n C u r r e n t 

p r o C e s s e s  w i t h  C o r e . a s Y n C

One day, while you are walking down the 
street, you will be surprised, intrigued, and 

a little disgusted to discover a hot dog vend-
ing machine. Your scalp tingling with guilty curios-

ity, you won’t be able to help yourself from pulling out 
three dollars and seeing if this contraption actually 
works. After accepting your money with a click and a 
whir, it pops out a fresh hot dog, bun and all.

The vending machine exhibits simple behavior: when it receives money, 
it releases a hot dog and then gets ready for the next purchase. When it’s 
out of hot dogs, it stops. All around us are hot dog vending machines in 
different guises—independent entities concurrently responding to events 
in the world. The espresso machine at your favorite coffee shop, the pet 
hamster you loved as a child—everything can be deconstructed into a set 
of behaviors that follow the general form “when x happens, do y.” Even the 
programs we write are just glorified hot dog vending machines, each one an 



234   Chapter 11

independent process waiting for the 
next event, whether it’s a keystroke, 
a timeout, or the arrival of data on a 
socket.

Clojure’s core.async library allows 
you to create multiple independent 
processes within a single program. 
This chapter describes a useful model 
for thinking about this style of pro-
gramming as well as the practical 
details you need to know to actually 
write code. You’ll learn how to use 
channels to communicate between 
independent processes created by 
go blocks and thread; a bit about how 
Clojure manages threads efficiently 
with parking and blocking; how to use 
alts!!; and a more straight forward way 
of creating queues. Finally, you’ll learn 
how to kick callbacks in the butt with 
process pipelines.

getting started with Processes
At the heart of core.async is the process, a concurrently running unit of logic 
that responds to events. The process corresponds to our mental model of 
the real world: entities interact with and respond to each other indepen-
dently without some kind of central control mechanism pulling the strings. 
You put your money in the machine, and out comes a hot dog, all without 
the Illuminati or Big Brother orchestrating the whole thing. This differs 
from the view of concurrency you’ve been exploring so far, where you’ve 
defined tasks that are either mere extensions of the main thread of control 
(for example, achieving data parallelism with pmap) or tasks that you have 
no interest in communicating with (like one-off tasks created with future).

It might be strange to think of a vending machine as a process: vend-
ing machines are noun-y and thing-y, and processes are verb-y and do-y. 
To get in the right mindset, try defining real-world objects as the sum of 
their event-driven behavior. When a seed gets watered, it sprouts; when 
a mother looks at her newborn child, she feels love; and when you watch 
Star Wars Episode I, you are filled with anger and despair. If you want to get 
super philosophical, consider whether it’s possible to define every thing’s 
essence as the set of the events it recognizes and how it responds. Is reality 
just the composition of hot dog vending machines?



Mastering Concurrent Processes with core.async   235

Anyway, enough of my yakking! Let’s move from the theoretical to the 
concrete by creating some simple processes. First, create a new Leiningen 
project called playsync with lein new app playsync. Then, open the file project.clj 
and add core.async to the :dependencies vector so it reads as follows:

[[org.clojure/clojure "1.7.0"]
[org.clojure/core.async "0.1.346.0-17112a-alpha"]]

n o t e  It’s possible that the core.async version has advanced since I wrote this. For the latest 
version, check the core.async GitHub project page. But for the purpose of these exer-
cises, please use the version listed here.

Next, open src/playsync/core.clj and make it look like this:

(ns playsync.core
  (:require [clojure.core.async
             :as a
             :refer [>! <! >!! <!! go chan buffer close! thread
                     alts! alts!! timeout]]))

Now when you open this in a REPL, you’ll have the most frequently 
used core.async functions at your disposal. Great! Before creating some-
thing as sophisticated and revolutionary as a hot dog vending machine, 
create a process that simply prints the message it receives:

(def echo-chan (chan))
(go (println (<! echo-chan)))
(>!! echo-chan "ketchup")
; => true
; => ketchup

At the first line of code, you used the chan function to create a channel 
named echo-chan. Channels communicate messages. You can put messages on 
a channel and take messages off a channel. Processes wait for the completion 
of put and take—these are the events that processes respond to. You can 
think of processes as having two rules: 1) when trying to put a message on a 
channel or take a message off of it, wait and do nothing until the put or take 
succeeds, and 2) when the put or take succeeds, continue executing.

On the next line, you used go to create a new process. Everything 
within the go expression—called a go block—runs concurrently on a sepa-
rate thread. Go blocks run your processes on a thread pool that contains a 
number of threads equal to two plus the number of cores on your machine, 
which means your program doesn’t have to create a new thread for each 
process. This often results in better performance because you avoid the 
overhead associated with creating threads.

In this case, the process (println (<! echo-chan)) expresses “when I 
take a message from echo-chan, print it.” The process is shunted to another 
thread, freeing up the current thread and allowing you to continue inter-
acting with the REPL.



236   Chapter 11

In the expression (<! echo-chan), <! is the take function. It listens to the 
channel you give it as an argument, and the process it belongs to waits until 
another process puts a message on the channel. When <! retrieves a value, 
the value is returned and the println expression is executed.

The expression (>!! echo-chan "ketchup") puts the string "ketchup" on 
echo-chan and returns true. When you put a message on a channel, the pro-
cess blocks until another process takes the message. In this case, the REPL 
process didn’t have to wait at all, because there was already a process listen-
ing to the channel, waiting to take something off it. However, if you do the 
following, your REPL will block indefinitely:

(>!! (chan) "mustard")

You’ve created a new channel and put something on it, but there’s no 
process listening to that channel. Processes don’t just wait to receive mes-
sages; they also wait for the messages they put on a channel to be taken.

Buffering
It’s worth noting that the previous exercise contained two processes: the 
one you created with go and the REPL process. These processes don’t have 
explicit knowledge of each other, and they act independently. 

Let’s imagine that these processes take place in a diner. The REPL is 
the ketchup chef, and when he’s done with a batch, he belts out, “Ketchup!” 
It’s entirely possible that the rest of the staff is outside admiring the latest 
batch of oregano in their organic garden, and the chef just sits and waits 
until someone shows up to take his ketchup. On the flip side, the go pro-
cess represents one of the staff, and he’s waiting patiently for something to 
respond to. It could be that nothing ever happens, and he just waits indefi-
nitely until the restaurant closes.

This situation seems a little silly: what self-respecting ketchup chef 
would just sit and wait for someone to take his latest batch before making 
more ketchup? To avoid this tragedy, you can create buffered channels:

(def echo-buffer (chan 2))
(>!! echo-buffer "ketchup")
; => true
(>!! echo-buffer "ketchup")
; => true
(>!! echo-buffer "ketchup")
; This blocks because the channel buffer is full

(Be careful evaluating the last (>!! echo-buffer "ketchup") because it will 
block your REPL. If you’re using a Leiningen REPL, ctrl-c will unblock it.)

In this case, you’ve created a channel with buffer size 2. That means 
you can put two values on the channel without waiting, but putting a third 
one on means the process will wait until another process takes a value 
from the channel. You can also create sliding buffers with sliding-buffer, 



Mastering Concurrent Processes with core.async   237

which drops values in a first-in, first-out fashion; and dropping buffers with 
dropping-buffer, which discards values in a last-in, first-out fashion. Neither 
of these buffers will ever cause >!! to block.

By using buffers, the master ketchup chef can keep whipping up 
batches of mouthwatering ketchup without having to wait for his staff to 
take them away. If he’s using a regular buffer, it’s like he has a shelf to put 
all his ketchup batches on; once the shelf is full, he’ll still have to wait for 
space to open up. If he’s using a sliding buffer, he’d throw away the oldest 
batch of ketchup when the shelf is full, slide all the ketchup down, and 
put the new batch in the vacant space. With a dropping buffer, he’d just 
knock the freshest batch off of the shelf and put his new batch in that space.

Buffers are just elaborations of the core model: processes are indepen-
dent, concurrently executing units of logic that respond to events. You can 
create processes with go blocks and communicate events over channels.

Blocking and Parking 
You may have noticed that the take function <! used only one exclamation 
point, whereas the put function >!! used two. In fact, both put and take 
have one-exclamation-point and two-exclamation-point varieties. When 
do you use which? The simple answer is that you can use one exclamation 
point inside go blocks, but you have to use two exclamation points outside 
of them:

Inside go block outside go block

put >! or >!! >!!

take <! or <!! <!!

It all comes down to efficiency. Because go blocks use a thread pool 
with a fixed size, you can create 1,000 go processes but use only a handful 
of threads:

(def hi-chan (chan))
(doseq [n (range 1000)]
  (go (>! hi-chan (str "hi " n))))

To understand how Clojure accomplishes this, we need to explore how 
processes wait. Waiting is a key aspect of working with core.async processes: 
we’ve already established that put waits until another process does a take on 
the same channel, and vice versa. In this example, 1,000 processes are wait-
ing for another process to take from hi-chan.

There are two varieties of waiting: parking and blocking. Blocking is the 
kind of waiting you’re familiar with: a thread stops execution until a task 
is complete. Usually this happens when you’re doing some kind of I/O 
operation. The thread remains alive but doesn’t do any work, so you have 
to create a new thread if you want your program to continue working. In 
Chapter 9, you learned how to do this with future.



238   Chapter 11

Parking frees up the thread so it can keep doing work. Let’s say you have 
one thread and two processes, Process A and Process B. Process A is running 
on the thread and then waits for a put or take. Clojure moves Process A off 
the thread and moves Process B onto the thread. If Process B starts waiting 
and Process A’s put or take has finished, then Clojure will move Process B off 
the thread and put Process A back on it. Parking allows the instructions from 
multiple processes to interleave on a single thread, similar to the way that 
using multiple threads allows interleaving on a single core. The implementa-
tion of parking isn’t important; suffice it to say that it’s only possible within go 
blocks, and it’s only possible when you use >! and <!, or parking put and park-
ing take. >!! and <!! are blocking put and blocking take.

thread
There are definitely times when you’ll want to use blocking instead of park-
ing, like when your process will take a long time before putting or taking, 
and for those occasions you should use thread:

(thread (println (<!! echo-chan)))
(>!! echo-chan "mustard")
; => true
; => mustard

thread acts almost exactly like future: it creates a new thread and exe-
cutes a process on that thread. Unlike future, instead of returning an object 
that you can dereference, thread returns a channel. When thread’s process 
stops, the process’s return value is put on the channel that thread returns:

(let [t (thread "chili")]
  (<!! t))
; => "chili"

In this case, the process doesn’t wait for any events; instead, it stops 
immediately. Its return value is "chili", which gets put on the channel that’s 
bound to t. We take from t, returning "chili".

The reason you should use thread instead of a go block when you’re per-
forming a long-running task is so you don’t clog your thread pool. Imagine 
you’re running four processes that download humongous files, save them, 
and then put the file paths on a channel. While the processes are down-
loading files and saving these files, Clojure can’t park their threads. It can 
park the thread only at the last step, when the process puts the files’ paths 
on a channel. Therefore, if your thread pool has only four threads, all four 
threads will be used for downloading, and no other process will be allowed 
to run until one of the downloads finishes.

go, thread, chan, <!, <!!, >!, and >!! are the core tools you’ll use for creating 
and communicating with processes. Both put and take will cause a process to 
wait until its complement is performed on the given channel. go allows you to 
use the parking variants of put and take, which could improve performance. 



Mastering Concurrent Processes with core.async   239

You should use the blocking variants, along with thread, if you’re performing 
long-running tasks before the put or take.

And that should give you everything you need to fulfill your heart’s 
desire and create a machine that turns money into hot dogs. 

the hot dog machine Process You’ve Been longing for
Behold, your dreams made real! 

(defn hot-dog-machine
  []
  (let [in (chan)
        out (chan)]
    (go (<! in)
        (>! out "hot dog"))
    [in out]))

This function creates an in channel for receiving money and an out 
channel for dispensing a hot dog. It then creates an asynchronous process 
with go, which waits for money and then dispenses a hot dog. Finally, it 
returns the in and out channels as a vector.

Time for a hot dog! 

(let [[in out] (hot-dog-machine)]
  (>!! in "pocket lint")
  (<!! out))
; => "hot dog"

In this snippet, you use destructuring (covered in Chapter 3) with 
let to bind the in and out channels to the in and out symbols. You then 
put "pocket lint" on the in channel. The hot dog machine process waits 
for something, anything, to arrive on the in channel; once "pocket lint" 
arrives, the hot dog machine process resumes execution, putting "hot dog" 
on the out channel.

Wait a minute . . . that’s not right. I mean, yay, free hot dogs, but 
someone’s bound to get upset that the machine’s accepting pocket lint as 
payment. Not only that, but this machine will only dispense one hot dog 
before shutting down. Let’s alter the hot dog machine function so that 
you can specify how many hot dogs it has and so it only dispenses a hot 
dog when you give it the number 3:

(defn hot-dog-machine-v2
  [hot-dog-count]
  (let [in (chan)
        out (chan)]
    (go (loop [hc hot-dog-count]
          (if (> hc 0)
            (let [input (<! in)]
             u(if (= 3 input)
                (do (>! out "hot dog")



240   Chapter 11

                    (recur (dec hc)))
                (do (>! out "wilted lettuce")
                    (recur hc))))
           v(do (close! in)
                (close! out)))))
    [in out]))

There’s a lot more code here, but the strategy is straightforward. The 
new function hot-dog-machine-v2 allows you to specify the hot-dog-count. 
Within the go block at u, it dispenses a hot dog only if the number 3 
(meaning three dollars) is placed on the in channel; otherwise, it dis-
penses wilted lettuce, which is definitely not a hot dog. Once a process 
has taken the output, the hot dog machine process loops back with an 
updated hot dog count and is ready to receive money again.

When the machine process runs out of hot dogs, the process closes the 
channels at v. When you close a channel, you can no longer perform puts 
on it, and once you’ve taken all values off a closed channel, any subsequent 
takes will return nil.

Let’s give the upgraded hot dog machine a go in Listing 11-1 by putting 
in money and pocket lint:

(let [[in out] (hot-dog-machine-v2 2)]
  (>!! in "pocket lint")
  (println (<!! out))

  (>!! in 3)
  (println (<!! out))

  (>!! in 3)
  (println (<!! out))

  (>!! in 3)
  (<!! out))
; => wilted lettuce
; => hotdog
; => hotdog
; => nil

Listing 11-1: Interacting with a robust hot dog vending machine process

First, we try the ol’ pocket lint trick and get wilted lettuce. Next, we 
put in 3 dollars twice and get a hot dog both times. Then, we try to put in 
another 3 dollars, but that’s ignored because the channel is closed; the 
number 3 is not put on the channel. When we try to take from the out 
channel, we get nil, again because the channel is closed. You might notice 
a couple of interesting details about hot-dog-machine-v2. First, it does a put 
and a take within the same go block. This isn’t that unusual, and it’s one 
way you can create a pipeline of processes: just make the in channel of one 
process the out channel of another. The following example does just that, 



Mastering Concurrent Processes with core.async   241

passing a string through a series of processes that perform transformations 
until the string finally gets printed by the last process: 

(let [c1 (chan)
      c2 (chan)
      c3 (chan)]
  (go (>! c2 (clojure.string/upper-case (<! c1))))
  (go (>! c3 (clojure.string/reverse (<! c2))))
  (go (println (<! c3)))
  (>!! c1 "redrum"))
; => MURDER

I’ll have more to say about process pipelines and how you can use them 
instead of callbacks toward the end of the chapter. 

Back to Listing 11-1! Another thing to note is that the hot dog machine 
doesn’t accept more money until you’ve dealt with whatever it’s dispensed. 
This allows you to model state-machine-like behavior, where the comple-
tion of channel operations triggers state transitions. For example, you can 
think of the vending machine as having two states: ready to receive money 
and dispensed item. Inserting money and taking the item trigger transitions 
between the two.

alts!!
The core.async function alts!! lets you use the result of the first successful 
channel operation among a collection of operations. We did something 
similar to this with delays and futures in “Delays” on page 198. In that 
example, we uploaded a set of headshots to a headshot-sharing site and 
notified the headshot owner when the first photo was uploaded. Here’s how 
you’d do the same with alts!!:

(defn upload
  [headshot c]
  (go (Thread/sleep (rand 100))
      (>! c headshot)))

u (let [c1 (chan)
      c2 (chan)
      c3 (chan)]
  (upload "serious.jpg" c1)
  (upload "fun.jpg" c2)
  (upload "sassy.jpg" c3)

v   (let [[headshot channel] (alts!! [c1 c2 c3])]
    (println "Sending headshot notification for" headshot)))
; => Sending headshot notification for sassy.jpg

Here, the upload function takes a headshot and a channel, and creates 
a new process that sleeps for a random amount of time (to simulate the 



242   Chapter 11

upload) and then puts the headshot on the channel. The let bindings and 
upload function calls beginning at u should make sense: we create three 
channels and then use them to perform the uploads.

Things get interesting at v. The alts!! function takes a vector of 
channels as its argument. This is like saying, “Try to do a blocking take on 
each of these channels simultaneously. As soon as a take succeeds, return 
a vector whose first element is the value taken and whose second element 
is the winning channel.” In this case, the channel associated with sassy.jpg 
received a value first. The other channels are still available if you want to 
take their values and do something with them. All alts!! does is take a value 
from the first channel to have a value; it doesn’t touch the other channels.

One cool aspect of alts!! is that you can give it a timeout channel, which 
waits the specified number of milliseconds and then closes. It’s an elegant 
mechanism for putting a time limit on concurrent operations. Here’s how 
you could use it with the upload service:

(let [c1 (chan)]
  (upload "serious.jpg" c1)
  (let [[headshot channel] (alts!! [c1 (timeout 20)])]
    (if headshot
      (println "Sending headshot notification for" headshot)
      (println "Timed out!"))))
; => Timed out!

In this case, we set the timeout to 20 milliseconds. Because the upload 
didn’t finish in that time frame, we got a timeout message.

You can also use alts!! to specify put operations. To do that, place a 
vector inside the vector you pass to alts!!, like at u in this example:

(let [c1 (chan)
      c2 (chan)]
  (go (<! c2))

u   (let [[value channel] (alts!! [c1 [c2 "put!"]])]
    (println value)
    (= channel c2)))
; => true
; => true

Here you’re creating two channels and then creating a process that’s 
waiting to perform a take on c2. The vector that you supply to alts!! tells it, 
“Try to do a take on c1 and try to put "put!" on c2. If the take on c1 finishes 
first, return its value and channel. If the put on c2 finishes first, return true 
if the put was successful and false otherwise.” Finally, the result of value 
(which is true, because the c2 channel was open) prints and shows that the 
channel returned was indeed c2.

Like <!! and >!!, alts!! has a parking alternative, alts!, which you can 
use inside go blocks. alts! is a nice way to exercise some choice over which 
of a group of channels you put or take from. It still performs puts and takes, 
so the same reasons to use the parking or blocking variation apply.



Mastering Concurrent Processes with core.async   243

And that covers the core.async basics! The rest of the chapter explains 
two common patterns for coordinating processes.

Queues
In “Rolling Your Own Queue” on page 202, you wrote a macro that let you 
queue futures. Processes let you use a similar technique in a more straight-
forward manner. Let’s say you want to get a bunch of random quotes from a 
website and write them to a single file. You want to make sure that only one 
quote is written to a file at a time so the text doesn’t get interleaved, so you 
put your quotes on a queue. Here’s the full code:

(defn append-to-file
  "Write a string to the end of a file"
  [filename s]
  (spit filename s :append true))

(defn format-quote
  "Delineate the beginning and end of a quote because it's convenient"
  [quote]
  (str "=== BEGIN QUOTE ===\n" quote "=== END QUOTE ===\n\n"))

(defn random-quote
  "Retrieve a random quote and format it"
  []
  (format-quote (slurp "http://www.braveclojure.com/random-quote")))

(defn snag-quotes
  [filename num-quotes]
  (let [c (chan)]
    (go (while true (append-to-file filename (<! c))))
    (dotimes [n num-quotes] (go (>! c (random-quote))))))

The functions append-to-file, format-quote, and random-quote have doc-
strings that explain what they do. snag-quotes is where the interesting 
work happens. First, it creates a channel that’s shared between the quote-
producing processes and the quote-consuming process. Then it creates 
a process that uses while true to create an infinite loop. On every itera-
tion of the loop, it waits for a quote to arrive on c and then appends it to 
a file. Finally, snag-quotes creates a num-quotes number of processes that 
fetch a quote and then put it on c. If you evaluate (snag-quotes "quotes" 2) 
and check the quotes file in the directory where you started your REPL, it 
should have two quotes:

=== BEGIN QUOTE ===
Nobody's gonna believe that computers are intelligent until they start
coming in late and lying about it.
=== END QUOTE ===



244   Chapter 11

=== BEGIN QUOTE ===
Give your child mental blocks for Christmas.
=== END QUOTE ===

This kind of queuing differs from the example in Chapter 9. In that 
example, each task was handled in the order it was created. Here, each 
quote-retrieving task is handled in the order that it finishes. In both cases, 
you ensure that only one quote at a time is written to a file.

escape Callback hell with Process Pipelines
In languages without channels, you need to express the idea “when x 
happens, do y” with callbacks. In a language like JavaScript, callbacks are a 
way to define code that executes asynchronously once other code finishes. 
If you’ve worked with JavaScript, you’ve probably spent some time wallow-
ing in callback hell. 

The reason it’s called callback hell is that it’s very easy to create depen-
dencies among layers of callbacks that aren’t immediately obvious. They 
end up sharing state, making it difficult to reason about the state of the 
overall system as the callbacks get triggered. You can avoid this depressing 
outcome by creating a process pipeline. That way, each unit of logic lives 
in its own isolated process, and all communication between units of logic 
occurs through explicitly defined input and output channels. 

In the following example, we create three infinitely looping processes 
connected through channels, passing the out channel of one process as the 
in channel of the next process in the pipeline:

(defn upper-caser
  [in]
  (let [out (chan)]
    (go (while true (>! out (clojure.string/upper-case (<! in)))))
    out))

(defn reverser
  [in]
  (let [out (chan)]
    (go (while true (>! out (clojure.string/reverse (<! in)))))
    out))

(defn printer
  [in]
  (go (while true (println (<! in)))))

(def in-chan (chan))
(def upper-caser-out (upper-caser in-chan))
(def reverser-out (reverser upper-caser-out))
(printer reverser-out)



Mastering Concurrent Processes with core.async   245

(>!! in-chan "redrum")
; => MURDER

(>!! in-chan "repaid")
; => DIAPER

By handling events using processes like this, it’s easier to reason about 
the individual steps of the overall data transformation system. You can look 
at each step and understand what it does without having to refer to what 
might have happened before it or what might happen after it; each process 
is as easy to reason about as a pure function.

additional resources
Clojure’s core.async library was largely inspired by Go’s concurrency model, 
which is based on the work by Tony Hoare in Communicating Sequential 
Processes and is available at http://www.usingcsp.com/.

Rob Pike, co-creator of Go, has a good talk on concurrency, which is 
available at https://www.youtube.com/watch?v=f6kdp27TYZs.

ClojureScript, also known as the best thing to happen to the browser, 
uses core.async. No more callback hell! You can learn about ClojureScript 
at https://github.com/clojure/clojurescript.

Finally, check out the API docs at http://clojure.github.io/core.async/.

summary
In this chapter, you learned about how core.async allows you to create con-
current processes that respond to the put and take communication events 
on channels. You learned about how to use go and thread to create concur-
rent processes that wait for communication events by parking and blocking. 
You also learned how to create process pipelines by making the out channel 
of one process the in channel of another, and how this allows you to write 
code that’s way more intelligible than nested callbacks. Finally, you medi-
tated on whether or not you’re just a fancy hot dog vending machine.

http://www.usingcsp.com/
https://www.youtube.com/watch?v=f6kdp27TYZs
https://www.youtube.com/watch?v=f6kdp27TYZs
https://www.youtube.com/watch?v=f6kdp27TYZs
https://github.com/clojure/clojurescript
http://clojure.github.io/core.async/




12
w o r k i n g  w i t h  t h e  j v m

There comes a day in every Clojurist’s life 
when she must venture forth from the sanc-

tuary of pure functions and immutable data 
structures into the wild, barbaric Land of Java. 

This treacherous journey is necessary because Clojure 
is hosted on the Java Virtual Machine ( JVM), which 
grants it three fundamental characteristics. First, you run Clojure applica-
tions the same way you run Java applications. Second, you need to use Java 
objects for core functionality like reading files and working with dates. Third, 
Java has a vast ecosystem of useful libraries, and you’ll need to know a bit 
about Java to use them. 

In this way, Clojure is a bit like a utopian community plunked down in 
the middle of a dystopian country. Obviously you’d prefer to interact with 
other utopians, but every once in a while you need to talk to the locals in 
order to get things done.



248   Chapter 12

This chapter is like a cross between a phrase book and cultural intro-
duction for the Land of Java. You’ll learn what the JVM is, how it runs pro-
grams, and how to compile programs for it. This chapter will also give you 
a brief tour of frequently used Java classes and methods, and explain how 
to interact with them using Clojure. You’ll learn how to think about and 
understand Java so you can incorporate any Java library into your Clojure 
programs.

To run the examples in this chapter, you’ll need to have the Java 
Development Kit ( JDK) version 1.6 or later installed on your computer. 
You can check by running javac -version at your terminal. You should see 
something like java 1.8.0_40; if you don’t, visit http://www.oracle.com/ to 
download the latest JDK. 

the jvm
Developers use the term JVM to refer to a few different things. You’ll 
hear them say, “Clojure runs on the JVM,” and you’ll also hear, “Clojure 
programs run in a JVM.” In the first case, JVM refers to an abstraction—
the general model of the Java Virtual Machine. In the second, it refers 
to a process—an instance of a running program. We’ll focus on the JVM 
model, but I’ll point out when we’re talking about running JVM processes.

To understand the JVM, let’s step back and review how plain ol’ com-
puters work. Deep in the cockles of a computer’s heart is its CPU, and the 
CPU’s job is to execute operations like add and unsigned multiply. You’ve 
probably heard about programmers encoding these instructions on punch 
cards, in lightbulbs, in the sacred cracks of a tortoise shell, or whatever, 
but nowadays these operations are represented in assembly language by 
mnemonics like ADD and MUL. The CPU architecture (x86, ARMv7, and 
what have you) determines what operations are available as part of the 
architecture’s instruction set.

Because it’s no fun to program in assembly language, people have 
invented higher-level languages like C and C++, which are compiled into 
instructions that a CPU will understand. Broadly speaking, the process is:

1. The compiler reads source code.

2. The compiler outputs a file containing machine instructions.

3. The CPU executes those instructions.

Notice in Figure 12-1 that, ultimately, you have to translate programs 
into instructions that a CPU will understand, and the CPU doesn’t care 
which programming language you use to produce those instructions.

The JVM is analogous to a computer in that it also needs to translate 
code into low-level instructions, called Java bytecode. However, as a virtual 
machine, this translation is implemented as software rather than hardware. 
A running JVM executes bytecode by translating it on the fly into machine 
code that its host will understand, a process called just-in-time compilation. 

http://www.oracle.com/technetwork/java/javase/downloads/index.html


Working with the JVM   249

Compiler reads source code

Compiler outputs machine instructions

CPU executes instructions

hi.c

Compiler

hi.o

CPU

Figure 12-1: A high-level overview of how a  
C program is translated into machine code

For a program to run on the JVM, it must get compiled to Java byte-
code. Usually, when you compile programs, the resulting bytecode is saved 
in a .class file. Then you’ll package these files in Java archive files ( JAR files). 
And just like how a CPU doesn’t care which programming language you 
use to generate machine instructions, the JVM doesn’t care how you create 
bytecode. It doesn’t care if you use Scala, JRuby, Clojure, or even Java to 
create Java bytecode. Generally speaking, the process looks like that shown 
in Figure 12-2.

1. The Java compiler reads source code.

2. The compiler outputs bytecode, often to a JAR file.

3. JVM executes the bytecode.

4. The JVM sends machine instructions to the CPU.

When someone says that Clojure runs on the JVM, one of the things 
they mean is that Clojure programs get compiled to Java bytecode and JVM 
processes execute them. From an operations perspective, this means you 
treat Clojure programs the same as Java programs. You compile them to 
JAR files and run them using the java command. If a client needs a pro-
gram that runs on the JVM, you could secretly write it in Clojure instead of 
Java and they would be none the wiser. From the outside, you can’t tell the 
difference between a Java and a Clojure program any more than you can 
tell the difference between a C and a C++ program. Clojure allows you to 
be productive and sneaky.



250   Chapter 12

Compiler reads source code

Compiler outputs bytecode

JVM executes bytecode

hi.java

Java
compiler

hi.jar

JVM

CPU

hi.o

Compiler

hi.c

JVM sends machine instructions to CPU

Figure 12-2: Java programs produce JVM bytecode, but the JVM still  
has to produce machine instructions, just like a C compiler.

writing, Compiling, and running a java Program
Let’s look at how a real Java program works. In this section, you’ll learn 
about the object-oriented paradigm that Java uses. Then, you’ll build a 
simple pirate phrase book using Java. This will help you feel more comfort-
able with the JVM, it will prepare you for the upcoming section on Java 
interop (writing Clojure code that uses Java classes, objects, and methods 
directly), and it’ll come in handy should a scallywag ever attempt to scuttle 
your booty on the high seas. To tie all the information together, you’ll take 
a peek at some of Clojure’s Java code at the end of the chapter.

Object-Oriented Programming in the World’s Tiniest Nutshell
Java is an object-oriented language, so you need to understand how 
object-oriented programming (OOP) works if you want to understand 
what’s happening when you use Java libraries or write Java interop code 
in your Clojure programming. You’ll also find object-oriented terminol-
ogy in Clojure documentation, so it’s important to learn these concepts. 
If you’re OOP savvy, feel free to skip this section. For those who need the 
two-minute lowdown, here it is: the central players in OOP are classes, 
objects, and methods.

I think of objects as really, really, ridiculously dumb androids. They’re 
the kind of android that would never inspire philosophical debate about the 
ethics of forcing sentient creatures into perpetual servitude. These androids 



Working with the JVM   251

only do two things: they respond to commands and they maintain data. 
In my imagination they do this by writing stuff down on little Hello Kitty 
clipboards.

Imagine a factory that makes these androids. Both the set of com-
mands the android understands and the set of data it maintains are deter-
mined by the factory that makes the android. In OOP terms, the factories 
correspond to classes, the androids correspond to objects, and the com-
mands correspond to methods. For example, you might have a ScaryClown 
factory (class) that produces androids (objects) that respond to the com-
mand (method) makeBalloonArt. The android keeps track of the number 
of balloons it has, and then updates that number whenever the number of 
balloons changes. It can report that number with balloonCount and receive 
any number of balloons with receiveBalloons. Here’s how you might inter-
act with a Java object representing Belly Rubs the Clown:

ScaryClown bellyRubsTheClown = new ScaryClown();
bellyRubsTheClown.balloonCount();
// => 0

bellyRubsTheClown.receiveBalloons(2);
bellyRubsTheClown.balloonCount();
// => 2

bellyRubsTheClown.makeBalloonArt();
// => "Belly Rubs makes a balloon shaped like a clown, because Belly Rubs
// => is trying to scare you and nothing is scarier than clowns."

This example shows you how to create a new object, bellyRubsTheClown, 
using the ScaryClown class. It also shows you how to call methods (such as 
balloonCount, receiveBalloons, and makeBalloonArt) on the object, presumably 
so you can terrify children.

One final aspect of OOP that you should know, or at least how it’s 
implemented in Java, is that you can also send commands to the factory. 
In OOP terms, you would say that classes also have methods. For example, 
the built-in class Math has many class methods, including Math.abs, which 
returns the absolute value of a number:

Math.abs(-50)
// => 50

I hope those clowns weren’t too traumatizing for you. Now let’s put your 
OOP knowledge to work!

Ahoy, World
Go ahead and create a new directory called phrasebook. In that directory, 
create a file called PiratePhrases.java, and write the following:

public class PiratePhrases
{



252   Chapter 12

    public static void main(String[] args)
    {
        System.out.println("Shiver me timbers!!!");
    }
}

This very simple program will print the phrase “Shiver me timbers!!!” 
(which is how pirates say “Hello, world!”) to your terminal when you run 
it. It consists of a class, PiratePhrases, and a static method belonging to that 
class, main. Static methods are essentially class methods.

In your terminal, compile the PiratePhrases source code with the com-
mand javac PiratePhrases.java. If you typed everything correctly and you’re 
pure of heart, you should see a file named PiratePhrases.class:

$ ls
PiratePhrases.class PiratePhrases.java

You’ve just compiled your first Java program, me matey! Now run it with 
java PiratePhrases. You should see this:

Shiver me timbers!!!

What’s happening here is you used the Java compiler, javac, to create a 
Java class file, PiratePhrases.class. This file is packed with oodles of Java byte-
code (well, for a program this size, maybe only one oodle).

When you ran java PiratePhrases, the JVM first looked at your class-
path for a class named PiratePhrases. The classpath is the list of filesystem 
paths that the JVM searches to find a file that defines a class. By default, 
the classpath includes the directory you’re in when you run java. Try run-
ning java -classpath /tmp PiratePhrases and you’ll get an error, even though 
PiratePhrases.class is right there in your current directory. 

n o t e  You can have multiple paths on your classpath by separating them with colons if 
you’re on a Mac or running Linux, or semicolons if you’re using Windows. For 
example, the classpath /tmp:/var/maven:. includes the /tmp, /var/maven, and . 
directories.

In Java, you’re allowed only one public class per file, and the file-
name must match the class name. This is how java knows to try looking in 
PiratePhrases.class for the PiratePhrases class’s bytecode. After java found the 
bytecode for the PiratePhrases class, it executed that class’s main method. Java’s 
similar to C in that whenever you say “run something, and use this class as 
your entry point,” it will always run that class’s main method; therefore, that 
method must be public, as you can see in the PiratePhrases’s source code.

In the next section you’ll learn how to handle program code that spans 
multiple files, and how to use Java libraries. 



Working with the JVM   253

Packages and Imports
To see how to work with multi-file programs and Java libraries, we’ll com-
pile and run a program. This section has direct implications for Clojure 
because you’ll use the same ideas and terminology to interact with Java 
libraries.

Let’s start with a couple of definitions:

package Similar to Clojure’s namespaces, packages provide code orga-
nization. Packages contain classes, and package names correspond to 
filesystem directories. If a file has the line package com.shapemaster in it, 
the directory com/shapemaster must exist somewhere on your classpath. 
Within that directory will be files defining classes.

import Java allows you to import classes, which basically means that 
you can refer to them without using their namespace prefix. So if you 
have a class in com.shapemaster named Square, you could write import 
com.shapemaster.Square; or import com.shapemaster.*; at the top of a .java 
file to use Square in your code instead of com.shapemaster.Square.

Let’s try using package and import. For this example, you’ll create a 
package called pirate_phrases that has two classes, Greetings and Farewells. 
To start, navigate to your phrasebook and within that directory create 
another directory, pirate_phrases. It’s necessary to create pirate_phrases 
because Java package names correspond to filesystem directories. Then, 
create Greetings.java within the pirate_phrases directory:

u package pirate_phrases;

public class Greetings
{
    public static void hello()
    {
        System.out.println("Shiver me timbers!!!");
    }
}

At u, package pirate_phrases; indicates that this class will be part of the 
pirate_phrases package. Now create Farewells.java within the pirate_phrases 
directory:

package pirate_phrases;

public class Farewells
{
    public static void goodbye()
    {
        System.out.println("A fair turn of the tide ter ye thar, ye 
magnificent sea friend!!");
    }
}



254   Chapter 12

Now create PirateConversation.java in the phrasebook directory:

import pirate_phrases.*;

public class PirateConversation
{
    public static void main(String[] args)
    {
        Greetings greetings = new Greetings();
        greetings.hello();

        Farewells farewells = new Farewells();
        farewells.goodbye();
    }
}

The first line, import pirate_phrases.*;, imports all classes in the pirate_
phrases package, which contains the Greetings and Farewells classes. 

If you run javac PirateConversation.java within the phrasebook directory 
followed by java PirateConversation, you should see this:

Shiver me timbers!!!
A fair turn of the tide ter ye thar, ye magnificent sea friend!!

And thar she blows, dear reader. Thar she blows indeed.
Note that, when you’re compiling a Java program, Java searches your 

classpath for packages. Try typing the following:

cd pirate_phrases
javac ../PirateConversation.java

You’ll get this: 

../PirateConversation.java:1: error: package pirate_phrases does not exist
import pirate_phrases.*;
^

Boom! The Java compiler just told you to hang your head in shame and 
maybe weep a little.

Why? It thinks that the pirate_phrases package doesn’t exist. But that’s 
stupid, right? You’re in the pirate_phrases directory!

What’s happening here is that the default classpath only includes the 
current directory, which in this case is pirate_phrases. javac is trying to find 
the directory phrasebook/pirate_phrases/pirate_phrases, which doesn’t exist. 
When you run javac ../PirateConversation.java from within the phrasebook 
directory, javac tries to find the directory phrasebook/pirate_phrases, which 
does exist. Without changing directories, try running javac -classpath ../ 
../PirateConversation.java. Shiver me timbers, it works! This works because 



Working with the JVM   255

you manually set the classpath to the parent directory of pirate_phrases, 
which is phrasebook. From there, javac can successfully find the pirate_phrases 
directory.

In summary, packages organize code and require a matching directory 
structure. Importing classes allows you to refer to them without having to 
prepend the entire class’s package name. javac and Java find packages using 
the classpath.

jar files
JAR files allow you to bundle all your .class files into one single file. Navigate 
to your phrasebook directory and run the following:

jar cvfe conversation.jar PirateConversation PirateConversation.class
pirate_phrases/*.class
java -jar conversation.jar

This displays the pirate conversation correctly. You bundled all the 
class files into conversation.jar. Using the e flag, you also indicated that the 
PirateConversation class is the entry point. The entry point is the class that 
contains the main method that should be executed when the JAR as a whole 
runs, and jar stores this information in the file META-INF/MANIFEST.MF 
within the JAR file. If you were to read that file, it would contain this line:

Main-Class: PirateConversation

By the way, when you execute JAR files, you don’t have to worry 
which directory you’re in, relative to the file. You could change to the 
pirate_phrases directory and run java -jar ../conversation.jar, and it would 
work fine. The reason is that the JAR file maintains the directory structure. 
You can see its contents with jar tf conversation.jar, which outputs this:

META-INF/
META-INF/MANIFEST.MF
PirateConversation.class
pirate_phrases/Farewells.class
pirate_phrases/Greetings.class

You can see that the JAR file includes the pirate_phrases directory. One 
more fun fact about JARs: they’re really just ZIP files with a .jar extension. 
You can treat them the same as any other ZIP file.

clojure.jar
Now you’re ready to see how Clojure works under the hood! Download the 
1.7.0 stable release and run it:

java -jar clojure-1.7.0.jar

http://central.maven.org/maven2/org/clojure/clojure/1.6.0/clojure-1.6.0.jar
http://central.maven.org/maven2/org/clojure/clojure/1.6.0/clojure-1.6.0.jar


256   Chapter 12

You should see the most soothing of sights, the Clojure REPL. How did 
it actually start up? Let’s look at META-INF/MANIFEST.MF in the JAR file:

Manifest-Version: 1.0
Archiver-Version: Plexus Archiver
Created-By: Apache Maven
Built-By: hudson
Build-Jdk: 1.7.0_20
Main-Class: clojure.main

It looks like clojure.main is specified as the entry point. Where does this 
class come from? Well, have a look at clojure/main.java on GitHub at https://
github.com/clojure/clojure/blob/master/src/jvm/clojure/main.java:

/**
 *   Copyright (c) Rich Hickey. All rights reserved.
 *   The use and distribution terms for this software are covered by the
 *   Eclipse Public License 1.0 (http://opensource.org/licenses/eclipse-1.0.php)
 *   which can be found in the file epl-v10.html at the root of this distribution.
 *   By using this software in any fashion, you are agreeing to be bound by
 *   the terms of this license.
 *   You must not remove this notice, or any other, from this software.
 **/

package clojure;

import clojure.lang.Symbol;
import clojure.lang.Var;
import clojure.lang.RT;

public class main{

final static private Symbol CLOJURE_MAIN = Symbol.intern("clojure.main");
final static private Var REQUIRE = RT.var("clojure.core", "require");
final static private Var LEGACY_REPL = RT.var("clojure.main", "legacy-repl");
final static private Var LEGACY_SCRIPT = RT.var("clojure.main", "legacy-script");
final static private Var MAIN = RT.var("clojure.main", "main");

public static void legacy_repl(String[] args) {
    REQUIRE.invoke(CLOJURE_MAIN);
    LEGACY_REPL.invoke(RT.seq(args));
}

public static void legacy_script(String[] args) {
    REQUIRE.invoke(CLOJURE_MAIN);
    LEGACY_SCRIPT.invoke(RT.seq(args));
}

public static void main(String[] args) {
    REQUIRE.invoke(CLOJURE_MAIN);
    MAIN.applyTo(RT.seq(args));
}
}

https://github.com/clojure/clojure/blob/master/src/jvm/clojure/main.java
https://github.com/clojure/clojure/blob/master/src/jvm/clojure/main.java


Working with the JVM   257

As you can see, the file defines a class named main. It belongs to the 
package clojure and defines a public static main method, and the JVM is 
completely happy to use it as an entry point. Seen this way, Clojure is a JVM 
program just like any other.

This wasn’t meant to be an in-depth Java tutorial, but I hope that it 
helped clarify what programmers mean when they talk about Clojure “run-
ning on the JVM” or being a “hosted” language. In the next section, you’ll 
continue to explore the magic of the JVM as you learn how to use addi-
tional Java libraries within your Clojure project.

Clojure app jars
You now know how Java runs Java JARs, but how does it run Clojure apps 
bundled as JARs? After all, Clojure applications don’t have classes, do they?

As it turns out, you can make the Clojure compiler generate a class for 
a namespace by putting the (:gen-class) directive in the namespace dec-
laration. (You can see this in the very first Clojure program you created, 
clojure-noob in Chapter 1. Remember that program, little teapot?) This 
means that the compiler produces the bytecode necessary for the JVM 
to treat the namespace as if it defines a Java class.

You set the namespace of the entry point for your program in the pro-
gram’s project.clj file, using the :main attribute. For clojure-noob, you should 
see :main ^:skip-aot clojure-noob.core. When Leiningen compiles this file, it 
will add a meta-inf/manifest.mf file that contains the entry point to the result-
ing JAR file.

So, if you define a -main function in a namespace and include the 
(:gen-class) directive, and also set :main in your project.clj file, your program 
will have everything it needs for Java to run it when it gets compiled as a 
JAR. You can try this out in your terminal by navigating to your clojure-noob 
directory and running this:

lein uberjar
java -jar target/uberjar/clojure-noob-0.1.0-SNAPSHOT-standalone.jar

You should see two messages printed out: “Cleanliness is next to god-
liness” and “I’m a little teapot!” Note that you don’t need Leiningen to run 
the JAR file; you can send it to friends and neighbors and they can run it as 
long as they have Java installed.

java Interop
One of Rich Hickey’s design goals for Clojure was to create a practical 
language. For that reason, Clojure was designed to make it easy for you to 
interact with Java classes and objects, meaning you can use Java’s extensive 
native functionality and its enormous ecosystem. The ability to use Java 
classes, objects, and methods is called Java interop. In this section, you’ll 
learn how to use Clojure’s interop syntax, how to import Java packages, 
and how to use the most frequently used Java classes.



258   Chapter 12

Interop Syntax
Using Clojure’s interop syntax, interacting with Java objects and classes is 
straightforward. Let’s start with object interop syntax.

You can call methods on an object using (.methodName object). For 
example, because all Clojure strings are implemented as Java strings, you 
can call Java methods on them:

(.toUpperCase "By Bluebeard's bananas!")
; => "BY BLUEBEARD'S BANANAS!"

u (.indexOf "Let's synergize our bleeding edges" "y") 
; => 7

These are equivalent to this Java:

"By Bluebeard's bananas!".toUpperCase()
"Let's synergize our bleeding edges".indexOf("y")

Notice that Clojure’s syntax allows you to pass arguments to Java 
methods. In this example, at u you passed the argument "y" to the indexOf 
method.

You can also call static methods on classes and access classes’ static 
fields. Observe!

u (java.lang.Math/abs -3) 
; => 3

v java.lang.Math/PI 
; => 3.141592653589793

At u you called the abs static method on the java.lang.Math class, and 
at v you accessed that class’s PI static field.

All of these examples (except java.lang.Math/PI) use macros that 
expand to use the dot special form. In general, you won’t need to use the 
dot special form unless you want to write your own macros to interact with 
Java objects and classes. Nevertheless, here is each example followed by its 
macroexpansion:

(macroexpand-1 '(.toUpperCase "By Bluebeard's bananas!"))
; => (. "By Bluebeard's bananas!" toUpperCase)

(macroexpand-1 '(.indexOf "Let's synergize our bleeding edges" "y"))
; => (. "Let's synergize our bleeding edges" indexOf "y")

(macroexpand-1 '(Math/abs -3))
; => (. Math abs -3)

This is the general form of the dot operator:

(. object-expr-or-classname-symbol method-or-member-symbol optional-args*)



Working with the JVM   259

The dot operator has a few more capabilities, and if you’re interested 
in exploring it further, you can look at clojure.org’s documentation on Java 
interop at http://clojure.org/java_interop#Java%20Interop-The%20Dot%20
special%20form.

Creating and Mutating Objects
The previous section showed you how to call methods on objects that 
already exist. This section shows you how to create new objects and how 
to interact with them.

You can create a new object in two ways: (new ClassName optional-args*) 
and (ClassName. optional-args*):

(new String)
; => ""

(String.)
; => ""

(String. "To Davey Jones's Locker with ye hardies")
; => "To Davey Jones's Locker with ye hardies"

Most people use the dot version, (ClassName.).
To modify an object, you call methods on it like you did in the previous 

section. To investigate this, let’s use java.util.Stack. This class represents a 
last-in, first-out (LIFO) stack of objects, or just stack. Stacks are a common 
data structure, and they’re called stacks because you can visualize them as 
a physical stack of objects, say, a stack of gold coins that you just plundered. 
When you add a coin to your stack, you add it to the top of the stack. When 
you remove a coin, you remove it from the top. Thus, the last object added 
is the first object removed.

Unlike Clojure data structure, Java stacks are mutable. You can add 
items to them and remove items, changing the object instead of deriving a 
new value. Here’s how you might create a stack and add an object to it:

(java.util.Stack.)
; => []

u (let [stack (java.util.Stack.)] 
  (.push stack "Latest episode of Game of Thrones, ho!")
  stack)
; => ["Latest episode of Game of Thrones, ho!"]

There are a couple of interesting details here. First, you need to create 
a let binding for stack like you see at u and add it as the last expression 
in the let form. If you didn’t do that, the value of the overall expression 
would be the string "Latest episode of Game of Thrones, ho!" because that’s 
the return value of push.

Second, Clojure prints the stack with square brackets, the same textual 
representation it uses for a vector, which could throw you because it’s not 

http://clojure.org/java_interop#Java Interop-The Dot special form
http://clojure.org/java_interop#Java%20Interop-The%20Dot%20special%20form
http://clojure.org/java_interop#Java%20Interop-The%20Dot%20special%20form


260   Chapter 12

a vector. However, you can use Clojure’s seq functions for reading a data 
structure, like first, on the stack:

(let [stack (java.util.Stack.)]
  (.push stack "Latest episode of Game of Thrones, ho!")
  (first stack))
; => "Latest episode of Game of Thrones, ho!"

But you can’t use functions like conj and into to add elements to the 
stack. If you do, you’ll get an exception. It’s possible to read the stack using 
Clojure functions because Clojure extends its abstractions to java.util.Stack, 
a topic you’ll learn about in Chapter 13.

Clojure provides the doto macro, which allows you to execute multiple 
methods on the same object more succinctly:

(doto (java.util.Stack.)
  (.push "Latest episode of Game of Thrones, ho!")
  (.push "Whoops, I meant 'Land, ho!'"))
; => ["Latest episode of Game of Thrones, ho!" "Whoops, I meant 'Land, ho!'"]

The doto macro returns the object rather than the return value of any 
of the method calls, and it’s easier to understand. If you expand it using 
macroexpand-1, you can see its structure is identical to the let expression you 
just saw in an earlier example:

(macroexpand-1
 '(doto (java.util.Stack.)
    (.push "Latest episode of Game of Thrones, ho!")
    (.push "Whoops, I meant 'Land, ho!'")))
; => (clojure.core/let
      [G__2876 (java.util.Stack.)]
      (.push G__2876 "Latest episode of Game of Thrones, ho!")
      (.push G__2876 "Whoops, I meant 'Land, ho!'")
      G__2876)

Convenient!

Importing
In Clojure, importing has the same effect as it does in Java: you can use 
classes without having to type out their entire package prefix:

(import java.util.Stack)
(Stack.)
; => []

You can also import multiple classes at once using this general form:

(import [package.name1 ClassName1 ClassName2]
        [package.name2 ClassName3 ClassName4])



Working with the JVM   261

Here’s an example:

(import [java.util Date Stack]
        [java.net Proxy URI])

(Date.)
; => #inst "2016-09-19T20:40:02.733-00:00"

But usually, you’ll do all your importing in the ns macro, like this:

(ns pirate.talk
  (:import [java.util Date Stack]
           [java.net Proxy URI]))

The two different methods of importing classes have the same results, 
but the second is usually preferable because it’s convenient for people read-
ing your code to see all the code involving naming in the ns declaration.

And that’s how you import classes! Pretty easy. To make life even 
easier, Clojure automatically imports the classes in java.lang, including 
java.lang.String and java.lang.Math, which is why you were able to use 
String without a preceding package name.

Commonly used java Classes
To round out this chapter, let’s take a quick tour of the Java classes that 
you’re most likely to use.

The System Class
The System class has useful class fields and methods for interacting with the 
environment that your program’s running in. You can use it to get environ-
ment variables and interact with the standard input, standard output, and 
error output streams.

The most useful methods and members are exit, getenv, and getProperty. 
You might recognize System/exit from Chapter 5, where you used it to exit 
the Peg Thing game. System/exit terminates the current program, and you 
can pass it a status code as an argument. If you’re not familiar with status 
codes, I recommend Wikipedia’s “Exit status” article at http://en.wikipedia.org/
wiki/Exit_status.

System/getenv will return all of your system’s environment variables as 
a map:

(System/getenv)
{"USER" "the-incredible-bulk"
 "JAVA_ARCH" "x86_64"}

One common use for environment variables is to configure your 
program.

file:///C:/Users/user/Documents/NSP/BOOKS/PRODUCTION/Clojure%20for%20the%20Brave%20and%20True/toLO/functional-programming
http://en.wikipedia.org/wiki/Exit_status
http://en.wikipedia.org/wiki/Exit_status


262   Chapter 12

The JVM has its own list of properties separate from the computer’s 
environment variables, and if you need to read them, you can use System/
getProperty:

u (System/getProperty "user.dir")
; => "/Users/dabulk/projects/dabook"

v (System/getProperty "java.version")
; => "1.7.0_17"

The first call at u returned the directory that the JVM started from, 
and the second call at v returned the version of the JVM.

The Date Class
Java has good tools for working with dates. I won’t go into too much detail 
about the java.util.Date class because the online API documentation 
(available at http://docs.oracle.com/javase/7/docs/api/java/util/Date.html) is 
thorough. As a Clojure developer, you should know three features of this 
date class. First, Clojure allows you to represent dates as literals using a 
form like this:

#inst "2016-09-19T20:40:02.733-00:00"

Second, you need to use the java.util.DateFormat class if you want 
to customize how you convert dates to strings or if you want to convert 
strings to dates. Third, if you’re doing tasks like comparing dates or try-
ing to add minutes, hours, or other units of time to a date, you should use 
the immensely useful clj-time library (which you can check out at https://
github.com/clj-time/clj-time).

files and Input/output
In this section you’ll learn about Java’s approach to input/output (IO) 
and how Clojure simplifies it. The clojure.java.io namespace provides 
many handy functions for simplifying IO (https://clojure.github.io/clojure/
clojure.java.io-api.html). This is great because Java IO isn’t exactly straight-
forward. Because you’ll probably want to perform IO at some point dur-
ing your programming career, let’s start wrapping your mind tentacles 
around it.

IO involves resources, be they files, sockets, buffers, or whatever. Java 
has separate classes for reading a resource’s contents, for writings its con-
tents, and for interacting with the resource’s properties.

For example, the java.io.File class is used to interact with a file’s 
properties:

(let [file (java.io.File. "/")]
u   (println (.exists file))  

http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
https://github.com/clj-time/clj-time
https://github.com/clj-time/clj-time
https://github.com/clj-time/clj-time
https://clojure.github.io/clojure/clojure.java.io-api.html


Working with the JVM   263

v   (println (.canWrite file)) 
w   (println (.getPath file))) 

; => true
; => false
; => /

Among other tasks, you can use it to check whether a file exists, to get 
the file’s read/write/execute permissions, and to get its filesystem path, 
which you can see at u, v, and w, respectively.

Reading and writing are noticeably missing from this list of capabili-
ties. To read a file, you could use the java.io.BufferedReader class or per-
haps java.io.FileReader. Likewise, you 
can use the java.io.BufferedWriter or 
java.io.FileWriter class for writing. 
Other classes are available for read-
ing and writing as well, and which 
one you choose depends on your 
specific needs. Reader and writer 
classes all have the same base set of 
methods for their interfaces; readers 
implement read, close, and more, while 
writers implement append, write, close, 
and flush. Java gives you a variety of IO 
tools. A cynical person might say that 
Java gives you enough rope to hang 
yourself, and if you find such a person, I hope you give them a hug.

Either way, Clojure makes reading and writing easier for you because it 
includes functions that unify reading and writing across different kinds of 
resources. For example, spit writes to a resource, and slurp reads from one. 
Here’s an example of using them to write and read a file:

(spit "/tmp/hercules-todo-list"
"- kill dat lion brov
- chop up what nasty multi-headed snake thing")

(slurp "/tmp/hercules-todo-list")

; => "- kill dat lion brov
      - chop up what nasty multi-headed snake thing"

You can also use these functions with objects representing resources 
other than files. The next example uses a StringWriter, which allows you to 
perform IO operations on a string:

(let [s (java.io.StringWriter.)]
  (spit s "- capture cerynian hind like for real")
  (.toString s))
; => "- capture cerynian hind like for real"



264   Chapter 12

You can also read from a StringReader using slurp:

(let [s (java.io.StringReader. "- get erymanthian pig what with the tusks")]
  (slurp s))
; => "- get erymanthian pig what with the tusks"

In addition, you can use the read and write methods for resources. It 
doesn’t really make much difference which you use; spit and slurp are con-
venient because they work with just a string representing a filesystem path 
or a URL.

The with-open macro is another convenience: it implicitly closes a 
resource at the end of its body, ensuring that you don’t accidentally tie up 
resources by forgetting to manually close the resource. The reader function 
is a handy utility that, according to the clojure.java.io API docs, “attempts 
to coerce its argument to an open java.io.Reader.” This is convenient when 
you don’t want to use slurp, because you don’t want to try to read a resource 
in its entirety and you don’t want to figure out which Java class you need to 
use. You could use reader along with with-open and the line-seq function if 
you’re trying to read a file one line at a time. Here’s how you could print 
just the first item of the Hercules to-do list:

(with-open [todo-list-rdr (clojure.java.io/reader "/tmp/hercules-todo-list")]
  (println (first (line-seq todo-list-rdr))))
; => - kill dat lion brov

That should be enough for you to get started with IO in Clojure. If you’re 
trying to do more sophisticated tasks, definitely check out the clojure.java.io 
docs, the java.nio.file package docs, or the java.io package docs.

resources

•	 “The Java Virtual Machine and Compilers Explained”: https://www 
.youtube.com/watch?v=XjNwyXx2os8

•	 clojure.java.io: https://clojure.github.io/clojure/clojure.java.io-api.html

•	 clojure.org Java interop documentation: http://clojure.org/java_interop

•	 Wikipedia’s “Exit status” article: http://en.wikipedia.org/wiki/Exit_status

summary
In this chapter, you learned what it means for Clojure to be hosted on the 
JVM. Clojure programs get compiled to Java bytecode and executed within 
a JVM process. Clojure programs also have access to Java libraries, and you 
can easily interact with them using Clojure’s interop facilities.

https://clojure.github.io/clojure/clojure.java.io-api.html
http://docs.oracle.com/javase/7/docs/api/java/nio/file/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/nio/file/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/nio/file/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/io/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/io/package-summary.html
https://www.youtube.com/watch?v=XjNwyXx2os8
https://www.youtube.com/watch?v=XjNwyXx2os8
https://clojure.github.io/clojure/clojure.java.io-api.html
http://clojure.org/java_interop
http://en.wikipedia.org/wiki/Exit_status
https://www.youtube.com/watch?v=XjNwyXx2os8


13
C r e a t i n g  a n D  e x t e n D i n g 

a B s t r a C t i o n s  w i t h  m u l t i m e t h o D s , 
p r o t o C o l s ,  a n D  r e C o r D s

Take a minute to contemplate how great 
it is to be one of Mother Nature’s top-of-

the-line products: a human. As a human, 
you get to gossip on social media, play Dungeons 

and Dragons, and wear hats. Perhaps more impor-
tant, you get to think and communicate in terms of 
abstractions.

The ability to think in terms of abstractions is truly one of the best 
human features. It lets you circumvent your cognitive limits by tying 
together disparate details into a neat conceptual package that you can 
hold in your working memory. Instead of having to think the clunky 
thought “squeezable honking red ball nose adornment,” you only need 
the concept “clown nose.” 

In Clojure, an abstraction is a collection of operations, and data types 
implement abstractions. For example, the seq abstraction consists of 



266   Chapter 13

operations like first and rest, and the vector data type is an implementa-
tion of that abstraction; it responds to all of the seq operations. A specific 
vector like [:seltzer :water] is an instance of that data type.

The more a programming language lets you think and write in terms 
of abstractions, the more productive you will be. For example, if you learn 
that a data structure is an instance of the seq abstraction, you can instantly 
call forth a large web of knowledge about what functions will work with the 
data structure. As a result, you spend time actually using the data structure 
instead of constantly looking up documentation on how it works. By the 
same token, if you extend a data structure to work with the seq abstraction, 
you can use the extensive library of seq functions on it.

In Chapter 4, you learned that Clojure is written in terms of abstrac-
tions. This is powerful because in Clojure you can focus on what you can 
actually do with data structures and not worry about the nitty-gritty of 
implementation. This chapter introduces you to the world of creating 
and implementing your own abstractions. You’ll learn the basics of multi-
methods, protocols, and records.

Polymorphism
The main way we achieve abstraction in Clojure is by associating an 
operation name with more than one algorithm. This technique is called 
poly morphism. For example, the algorithm for performing conj on a list is 
different from the one for vectors, but we unify them under the same name 
to indicate that they implement the same concept, namely, add an element to 
this data structure.

Because Clojure relies on Java’s standard library for many of its data 
types, a little Java is used in this chapter. For example, Clojure strings are 
just Java strings, instances of the Java class java.lang.String. To define your 
own data types in Java, you use classes. Clojure provides additional type 
constructs: records and types. This book only covers records.

Before we learn about records, though, let’s look at multimethods, our 
first tool for defining polymorphic behavior.

Multimethods
Multimethods give you a direct, flexible way to introduce polymorphism 
into your code. Using multimethods, you associate a name with multiple 
implementations by defining a dispatching function, which produces dispatch-
ing values that are used to determine which method to use. The dispatching 
function is like the host at a restaurant. The host will ask you questions like 
“Do you have a reservation?” and “Party size?” and then seat you accord-
ingly. Similarly, when you call a multimethod, the dispatching function 
will interrogate the arguments and send them to the right method, as this 
example shows:

(ns were-creatures)
u (defmulti full-moon-behavior (fn [were-creature] (:were-type were-creature)))



Creating and Extending Abstractions with Multimethods, Protocols, and Records   267

v (defmethod full-moon-behavior :wolf
  [were-creature]
  (str (:name were-creature) " will howl and murder"))

w (defmethod full-moon-behavior :simmons
  [were-creature]
  (str (:name were-creature) " will encourage people and sweat to the oldies"))

(full-moon-behavior {:were-type :wolf
x                      :name "Rachel from next door"})

; => "Rachel from next door will howl and murder"

(full-moon-behavior {:name "Andy the baker"
y                      :were-type :simmons})

; => "Andy the baker will encourage people and sweat to the oldies"

This multimethod shows how you might define the full moon behavior 
of different kinds of were-creatures. Everyone knows that a werewolf turns 
into a wolf and runs around howling and murdering people. A lesser-
known species of were-creature, 
the were-Simmons, turns into 
Richard Simmons, power perm 
and all, and runs around encour-
aging people to be their best and 
sweat to the oldies. You do not 
want to get bitten by either, lest 
you turn into one.

We create the multimethod 
at u. This tells Clojure, “Hey, 
create a new multimethod named 
full-moon-behavior. Whenever 
someone calls full-moon-behavior, 
run the dispatching function 
(fn [were-creature] (:were-type 

were-creature)) on the arguments. 
Use the result of that function, aka 
the dispatching value, to decide 
which specific method to use!” 

Next, we define two methods, one for when the value returned by 
the dispatching function is :wolf at v, and one for when it’s :simmons at w. 
Method definitions look a lot like function definitions, but the major dif-
ference is that the method name is immediately followed by the dispatch 
value. :wolf and :simmons are both dispatch values. This is different from a 
dispatching  value, which is what the dispatching function returns. The full 
dispatch sequence goes like this:

1. The form (full-moon-behavior {:were-type :wolf :name "Rachel from next 
door"}) is evaluated.

2. full-moon-behavior’s dispatching function runs, returning :wolf as the 
dispatching value.



268   Chapter 13

3. Clojure compares the dispatching value :wolf to the dispatch values of 
all the methods defined for full-moon-behavior. The dispatch values are 
:wolf and :simmons.

4. Because the dispatching value :wolf is equal to the dispatch value :wolf, 
the algorithm for :wolf runs.

Don’t let the terminology trip you up! The main idea is that the dis-
patching function returns some value, and this value is used to determine 
which method definition to use.

Back to our example! Next we call the method twice. At x, the dis-
patching function returns the value :wolf and the corresponding method is 
used, informing you that "Rachel from next door will howl and murder". At , 
the function behaves similarly, except :simmons is the dispatching value.

You can define a method with nil as the dispatch value:

(defmethod full-moon-behavior nil
  [were-creature]
  (str (:name were-creature) " will stay at home and eat ice cream"))

(full-moon-behavior {:were-type nil
                     :name "Martin the nurse"})
; => "Martin the nurse will stay at home and eat ice cream"

When you call full-moon-behavior this time, the argument you give it has 
nil for its :were-type, so the method corresponding to nil gets evaluated and 
you’re informed that "Martin the nurse will stay at home and eat ice cream".

You can also define a default method to use if no other methods match 
by specifying :default as the dispatch value. In this example, the :were-type 
of the argument given doesn’t match any of the previously defined methods, 
so the default method is used:

(defmethod full-moon-behavior :default
  [were-creature]
  (str (:name were-creature) " will stay up all night fantasy footballing"))

(full-moon-behavior {:were-type :office-worker
                     :name "Jimmy from sales"})
; => "Jimmy from sales will stay up all night fantasy footballing"

One cool thing about multimethods is that you can always add 
new methods. If you publish a library that includes the were-creatures 
namespace, other people can continue extending the multimethod to 
handle new dispatch values. This example shows that you’re creating your 
own random namespace and including the were-creatures namespace, and 
then defining another method for the full-moon-behavior multimethod:

(ns random-namespace
  (:require [were-creatures]))
(defmethod were-creatures/full-moon-behavior :bill-murray
  [were-creature]



Creating and Extending Abstractions with Multimethods, Protocols, and Records   269

  (str (:name were-creature) " will be the most likeable celebrity"))
(were-creatures/full-moon-behavior {:name "Laura the intern" 
                                    :were-type :bill-murray})
; => "Laura the intern will be the most likeable celebrity"

Your dispatching function can return arbitrary values using any or all 
of its arguments. The next example defines a multimethod that takes two 
arguments and returns a vector containing the type of each argument. It 
also defines an implementation of that method, which will be called when 
each argument is a string:

(ns user)
(defmulti types (fn [x y] [(class x) (class y)]))
(defmethod types [java.lang.String java.lang.String]
  [x y]
  "Two strings!")

(types "String 1" "String 2")
; => "Two strings!"

Incidentally, this is why they’re called multimethods: they allow dis-
patch on multiple arguments. I haven’t used this feature very often, but I 
could see it being used in a role-playing game to write methods that are 
dispatched according to, say, a mage’s major school of magic and his magic 
specialization. Either way, it’s better to have it and not need it than need it 
and not have it.

n o t e  Multimethods also allow hierarchical dispatching. Clojure lets you build custom 
hierarchies, which I won’t cover, but you can learn about them by reading the docu-
mentation at http://clojure.org/multimethods/. 

Protocols
Approximately 93.58 percent of the time, you’ll want to dispatch to methods 
according to an argument’s type. For example, count needs to use a differ-
ent method for vectors than it does for maps or for lists. Although it’s pos-
sible to perform type dispatch with multimethods, protocols are optimized 
for type dispatch. They’re more efficient than multimethods, and Clojure 
makes it easy for you to succinctly specify protocol implementations.

A multimethod is just one polymorphic operation, whereas a protocol is 
a collection of one or more polymorphic operations. Protocol operations are 
called methods, just like multimethod operations. Unlike multimethods, 
which perform dispatch on arbitrary values returned by a dispatching func-
tion, protocol methods are dispatched based on the type of the first argu-
ment, as shown in this example:

(ns data-psychology)
u(defprotocol vPsychodynamics
  w"Plumb the inner depths of your data types"

http://clojure.org/multimethods/


270   Chapter 13

  x(thoughts [x] "The data type's innermost thoughts")
  y(feelings-about [x] [x y] "Feelings about self or other"))

First, there’s defprotocol at u. This takes a name, Psychodynamics v, and 
an optional docstring, "Plumb the inner depths of your data types" w. Next 
are the method signatures. A method signature consists of a name, an argu-
ment specification, and an optional docstring. The first method signature 
is named thoughts x and can take only one argument. The second is named 
feelings-about y and can take one or two arguments. Protocols do have one 
limitation: the methods can’t have rest arguments. So a line like the follow-
ing isn’t allowed:

(feelings-about [x] [x & others])

By defining a protocol, you’re defining an abstraction, but you haven’t 
yet defined how that abstraction is implemented. It’s like you’re reserving 
names for behavior (in this example, you’re reserving thoughts and feelings), 
but you haven’t defined what exactly the behavior should be. If you were 
to evaluate (thoughts "blorb"), you would get an exception that reads, 
“No implementation of method: thoughts of protocol: data-psychology/
Psychodynamics found for class: java.lang.String.” Protocols dispatch on 
the first argument’s type, so when you call (thoughts "blorb"), Clojure tries 
to look up the implementation of the thoughts method for strings, and fails.

You can fix this sorry state of affairs by extending the string data type to 
implement the Psychodynamics protocol:

u (extend-type java.lang.String
v   Psychodynamics
w   (thoughts [x] (str x " thinks, 'Truly, the character defines the data type'")
x   (feelings-about

    ([x] (str x " is longing for a simpler way of life"))
    ([x y] (str x " is envious of " y "'s simpler way of life"))))

(thoughts "blorb")
y ; => "blorb thinks, 'Truly, the character defines the data type'"

(feelings-about "schmorb")
; => "schmorb is longing for a simpler way of life"

(feelings-about "schmorb" 2)
; => "schmorb is envious of 2's simpler way of life"

extend-type is followed by the name of the class or type you want to 
extend and the protocol you want it to support—in this case, you specify 
the class java.lang.String at u and the protocol you want it to support, 
Psychodynamics, at v. After that, you provide an implementation for both the 
thoughts method at w and the feelings-about method at x. If you’re extend-
ing a type to implement a protocol, you have to implement every method 
in the protocol or Clojure will throw an exception. In this case, you can’t 
implement just thoughts or just feelings; you have to implement both.



Creating and Extending Abstractions with Multimethods, Protocols, and Records   271

Notice that these method implementations don’t begin with defmethod 
like multimethods do. In fact, they look similar to function definitions, 
except without defn. To define a method implementation, you write a form 
that starts with the method’s name, like thoughts, then supply a vector of 
parameters and the method’s body. These methods also allow arity over-
loading, just like functions, and you define multiple-arity method imple-
mentations similarly to multiple-arity functions. You can see this in the 
feelings-about implementation at x.

After you’ve extended the java.lang.String type to implement the 
Psychodynamics protocol, Clojure knows how to dispatch the call (thoughts 
"blorb"), and you get the string "blorb thinks, 'Truly, the character defines 
the data type'" at y.

What if you want to provide a default implementation, like you did 
with multimethods? To do that, you can extend java.lang.Object. This 
works because every type in Java (and hence, Clojure) is a descendant of 
java.lang.Object. If that doesn’t quite make sense (perhaps because you’re 
not familiar with object-oriented programming), don’t worry about it—just 
know that it works. Here’s how you would use this technique to provide a 
default implementation for the Psychodynamics protocol:

(extend-type java.lang.Object
  Psychodynamics
  (thoughts [x] "Maybe the Internet is just a vector for toxoplasmosis")
  (feelings-about
    ([x] "meh")
    ([x y] (str "meh about " y))))
  
(thoughts 3)
; => "Maybe the Internet is just a vector for toxoplasmosis"

(feelings-about 3)
; => "meh"

(feelings-about 3 "blorb")
; => "meh about blorb"

Because we haven’t defined a Psychodynamics implementation for num-
bers, Clojure dispatches calls to thoughts and feelings to the implementation 
defined for java.lang.Object.

Instead of making multiple calls to extend-type to extend multiple types, 
you can use extend-protocol, which lets you define protocol implementations 
for multiple types at once. Here’s how you’d define the preceding protocol 
implementations:

(extend-protocol Psychodynamics
  java.lang.String
  (thoughts [x] "Truly, the character defines the data type")
  (feelings-about
    ([x] "longing for a simpler way of life")
    ([x y] (str "envious of " y "'s simpler way of life")))
  



272   Chapter 13

  java.lang.Object
  (thoughts [x] "Maybe the Internet is just a vector for toxoplasmosis")
  (feelings-about
    ([x] "meh")
    ([x y] (str "meh about " y))))

You might find this technique more convenient than using extend-type. 
Then again, you might not. How does extend-type make you feel? How about 
extend-protocol? Come sit down on this couch and tell me all about it.

It’s important to note that a protocol’s methods “belong” to the 
namespace that they’re defined in. In these examples, the fully quali-
fied names of the Psychodynamics methods are data-psychology/thoughts and 
data-psychology/feelings-about. If you have an object-oriented background, 
this might seem weird because methods belong to data types in OOP. 
But don’t freak out! It’s just another way that Clojure gives primacy to 
abstractions. One consequence of this fact is that, if you want two differ-
ent protocols to include methods with the same name, you’ll need to put 
the protocols in different namespaces.

records
Clojure allows you to create records, which are custom, maplike data types. 
They’re maplike in that they associate keys with values, you can look up 
their values the same way you can with maps, and they’re immutable like 
maps. They’re different in that you specify fields for records. Fields are slots 
for data; using them is like specifying which keys a data structure should 
have. Records are also different from maps in that you can extend them to 
implement protocols.

To create a record, you use defrecord to specify its name and fields:

(ns were-records)
(defrecord WereWolf [name title])

This record’s name is WereWolf, and its two fields are name and title. You 
can create an instance of this record in three ways:

u (WereWolf. "David" "London Tourist")
; => #were_records.WereWolf{:name "David", :title "London Tourist"}

v (->WereWolf "Jacob" "Lead Shirt Discarder")
; => #were_records.WereWolf{:name "Jacob", :title "Lead Shirt Discarder"}

w (map->WereWolf {:name "Lucian" :title "CEO of Melodrama"})
; => #were_records.WereWolf{:name "Lucian", :title "CEO of Melodrama"}

At u, we create an instance the same way we’d create a Java object, 
using the class instantiation interop call. (Interop refers to the ability to 



Creating and Extending Abstractions with Multimethods, Protocols, and Records   273

interact with native Java constructs within Clojure.) Notice that the argu-
ments must follow the same order as the field definition. This works 
because records are actually Java classes under the covers. 

The instance at v looks nearly identical to the one at u, but the key 
difference is that ->WereWolf is a function. When you create a record, the 
factory functions ->RecordName and map->RecordName are created automatically. 
At w, map->WereWolf takes a map as an argument with keywords that corre-
spond to the record type’s fields and returns a record.

If you want to use a record type in another namespace, you’ll have to 
import it, just like you did with the Java classes in Chapter 12. Be careful to 
replace all dashes in the namespace with underscores. This brief example 
shows how you’d import the WereWolf record type in another namespace:

(ns monster-mash
  (:import [were_records WereWolf]))
(WereWolf. "David" "London Tourist")
; => #were_records.WereWolf{:name "David", :title "London Tourist"}

Notice that were_records has an underscore, not a dash.
You can look up record values in the same way you look up map values, 

and you can also use Java field access interop:

(def jacob (->WereWolf "Jacob" "Lead Shirt Discarder"))
u (.name jacob) 

; => "Jacob"

v (:name jacob) 
; => "Jacob"

w (get jacob :name) 
; => "Jacob"

The first example, (.name jacob) at u, uses Java interop, and the 
examples at v and w access :name the same way you would with a map.

When testing for equality, Clojure will check that all fields are equal 
and that the two comparands have the same type:

u (= jacob (->WereWolf "Jacob" "Lead Shirt Discarder"))
; => true

v (= jacob (WereWolf. "David" "London Tourist"))
; => false

w (= jacob {:name "Jacob" :title "Lead Shirt Discarder"})
; => false

The test at u returns true because jacob and the newly created record 
are of the same type and their fields are equal. The test at v returns false 
because the fields aren’t equal. The final test at w returns false because the 
two comparands don’t have the same type: jacob is a WereWolf record, and 
the other argument is a map.



274   Chapter 13

Any function you can use on a map, you can also use on a record:

(assoc jacob :title "Lead Third Wheel")
; => #were_records.WereWolf{:name "Jacob", :title "Lead Third Wheel"}

However, if you dissoc a field, the result’s type will be a plain ol’ Clojure 
map; it won’t have the same data type as the original record:

(dissoc jacob :title)
; => {:name "Jacob"} <- that's not a were_records.WereWolf

This matters for at least two reasons: first, accessing map values is 
slower than accessing record values, so watch out if you’re building a high-
performance program. Second, when you create a new record type, you 
can extend it to implement a protocol, similar to how you extended a type 
using extend-type earlier. If you dissoc a record and then try to call a protocol 
method on the result, the record’s protocol method won’t be called.

Here’s how you would extend a protocol when defining a record:

u (defprotocol WereCreature
v   (full-moon-behavior [x]))

w (defrecord WereWolf [name title]
  WereCreature
  (full-moon-behavior [x]
    (str name " will howl and murder")))

(full-moon-behavior (map->WereWolf {:name "Lucian" :title "CEO of Melodrama"}))
; => "Lucian will howl and murder"

We’ve created a new protocol, WereCreature u, with one method, 
full-moon-behavior v. At w, defrecord implements WereCreature for WereWolf. 
The most interesting part of the full-moon-behavior implementation is that 
you have access to name. You also have access to title and any other fields 
that might be defined for your record. You can also extend records using 
extend-type and extend-protocol.

When should you use records, and when should you use maps? In gen-
eral, you should consider using records if you find yourself creating maps 
with the same fields over and over. This tells you that that set of data repre-
sents information in your application’s domain, and your code will commu-
nicate its purpose better if you provide a name based on the concept you’re 
trying to model. Not only that, but record access is more performant than 
map access, so your program will become a bit more efficient. Finally, if you 
want to use protocols, you’ll need to create a record.



Creating and Extending Abstractions with Multimethods, Protocols, and Records   275

further study
Clojure offers other tools for working with abstractions and data types. 
These tools, which I consider advanced, include deftype, reify, and proxy. If 
you’re interested in learning more, check out the documentation on data 
types at http://clojure.org/datatypes/.

summary
One of Clojure’s design principles is to write to abstractions. In this chap-
ter, you learned how to define your own abstractions using multimethods 
and prototypes. These constructs provide polymorphism, allowing the same 
operation to behave differently based on the arguments it’s given. You also 
learned how to create and use your own associative data types with defrecord 
and how to extend records to implement protocols.

When I first started learning Clojure, I was pretty shy about using multi-
methods, protocols, and records. However, they are used often in Clojure 
libraries, so it’s good to know how they work. Once you get the hang of 
them, they’ll help you write cleaner code.

exercises

1. Extend the full-moon-behavior multimethod to add behavior for your 
own kind of were-creature.

2. Create a WereSimmons record type, and then extend the WereCreature 
protocol.

3. Create your own protocol, and then extend it using extend-type and 
extend-protocol.

4. Create a role-playing game that implements behavior using multiple 
dispatch.

http://clojure.org/datatypes/




a
B u i l D i n g  a n D  D e v e l o p i n g 

w i t h  l e i n i n g e n

Writing software in any language involves 
generating artifacts, which are executable 

files or library packages that are meant to 
be deployed or shared. It also involves manag-

ing dependent artifacts, also called dependencies, by 
ensuring that they’re loaded into the project you’re 
building. The most popular tool among Clojurists for managing artifacts is 
Leiningen, and this appendix will show you how to use it. You’ll also learn 
how to use Leiningen to totally enhancify your development experience 
with plug-ins.

the artifact ecosystem
Because Clojure is hosted on the Java Virtual Machine ( JVM), Clojure 
artifacts are distributed as JAR files (covered in Chapter 12). Java land 
already has an entire artifact ecosystem for handling JAR files, and 
Clojure uses it. Artifact ecosystem isn’t an official programming term; I use 



278   Appendix A

it to refer to the suite of tools, resources, and conventions used to iden-
tify and distribute artifacts. Java’s ecosystem grew up around the Maven 
build tool, and because Clojure uses this ecosystem, you’ll often see refer-
ences to Maven. Maven is a huge tool that can perform all kinds of wacky 
project management tasks. Thankfully, you don’t need to get your PhD 
in Mavenology to be an effective Clojurist. The only feature you need to 
know is that Maven specifies a pattern for identifying artifacts that Clojure 
projects adhere to, and it also specifies how to host these artifacts in Maven 
repositories, which are just servers that store artifacts for distribution.

Identification
Maven artifacts need a group ID, an artifact ID, and a version. You can specify 
these for your project in the project.clj file. Here’s what the first line of project.clj 
looks like for the clojure-noob project you created in Chapter 1:

(defproject clojure-noob "0.1.0-SNAPSHOT"

clojure-noob is both the group ID and the artifact ID of your project, 
and "0.1.0-SNAPSHOT" is its version. In general, versions are permanent; if 
you deploy an artifact with version 0.1.0 to a repository, you can’t make 
changes to the artifact and deploy it using the same version number. You’ll 
need to change the version number. (Many programmers like the Semantic 
Versioning system, which you can read about at http://semver.org/.) If you 
want to indicate that the version is a work in progress and you plan to keep 
updating it, you can append -SNAPSHOT to your version number.

If you want your group ID to be different from your artifact ID, you can 
separate the two with a slash, like so:

(defproject group-id/artifact-id "0.1.0-SNAPSHOT"

Often, developers will use their company name or their GitHub user-
name as the group ID.

Dependencies
Your project.clj file also includes a line that looks like this, which lists your 
project’s dependencies:

  :dependencies [[org.clojure/clojure "1.7.0"]]

If you want to use a library, add it to this dependency vector using the 
same naming schema that you use to name your project. For example, if you 
want to easily work with dates and times, you could add the clj-time library, 
like this:

  :dependencies [[org.clojure/clojure "1.7.0"]
                 [clj-time "0.9.0"]]

http://semver.org/


Building and Developing with Leiningen   279

The next time you start your project, either by running it or by starting 
a REPL, Leiningen will automatically download clj-time and make it avail-
able within your project. 

The Clojure community has created a multitude of useful librar-
ies, and a good place to look for them is the Clojure Toolbox at http://
www.clojure-toolbox.com, which categorizes projects according to their 
purpose. Nearly every Clojure library provides its identifier at the top of 
its README, making it easy for you to figure out how to add it to your 
Leiningen dependencies.

Sometimes you might want to use a Java library, but the identifier 
isn’t as readily available. If you want to add Apache Commons Email, for 
example, you have to search online until you find a web page that contains 
something like this:

<dependency>
    <groupId>org.apache.commons</groupId>
    <artifactId>commons-email</artifactId>
    <version>1.3.3</version>
</dependency>

This XML is how Java projects communicate their Maven identifier. 
To add it your Clojure project, you’d change your :dependencies vector so it 
looks like this:

  :dependencies [[org.clojure/clojure "1.7.0"]
                 [clj-time "0.9.0"]
                 [org.apache.commons/commons-email "1.3.3"]]

The main Clojure repository is Clojars (https://clojars.org/), and the 
main Java repository is The Central Repository (http://search.maven.org/), 
which is often referred to as just Central in the same way that San Francisco 
residents refer to San Francisco as the city. You can use these sites to find 
libraries and their identifiers.

To deploy your own projects to Clojars, all you have to do is create an 
account there and run lein deploy clojars in your project. This task gener-
ates everything necessary for a Maven artifact to be stored in a repository, 
including a POM file (which I won’t go into) and a JAR file. Then it uploads 
them to Clojars.

Plug-Ins
Leiningen lets you use plug-ins, which are libraries that help you when 
you’re writing code. For example, the Eastwood plug-in is a Clojure lint 
tool; it identifies poorly written code. You’ll usually want to specify your 
plug-ins in the file $HOME/.lein/profiles.clj. To add Eastwood, you’d change 
profiles.clj to look like this:

{:user {:plugins [[jonase/eastwood "0.2.1"]] }}

http://www.clojure-toolbox.com
http://www.clojure-toolbox.com
http://clojars.org/
https://clojars.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/


280   Appendix A

This enables an eastwood Leiningen task for all your projects, which you 
can run with lein eastwood at the project’s root.

Leiningen’s GitHub project page has excellent documentation on how 
to use profiles and plug-ins, and it includes a handy list of plug-ins.

summary
This appendix focused on the aspects of project management that are 
important but that are difficult to find out about, like what Maven is and 
Clojure’s relationship to it. It showed you how to use Leiningen to name 
your project, specify dependencies, and deploy to Clojars. Leiningen offers 
a lot of functionality for software development tasks that don’t involve 
actually writing your code. If you want to find out more, check out the 
Leiningen tutorial online at https://github.com/technomancy/leiningen/blob/
stable/doc/TUTORIAL.md/.

https://github.com/technomancy/leiningen/blob/stable/doc/TUTORIAL.md/
https://github.com/technomancy/leiningen/blob/stable/doc/TUTORIAL.md/


B
B o o t,  t h e  f a n C Y  C l o j u r e 

B u i l D  f r a m e w o r k

Boot is an alternative to Leiningen that 
provides the same functionality. Leiningen’s 

more popular (as of the summer of 2015), 
but I personally like to work with Boot because 

it’s easier to extend. This appendix explains Boot’s 
underlying concepts and guides you through writ-
ing your first Boot tasks. If you’re interested in using 
Boot to build projects right this second, check out its 
GitHub README (https://github.com/boot-clj/boot/) and 
its wiki (https://github.com/boot-clj/boot/wiki/).

n o t e  As of this writing, Boot has limited support for Windows. The Boot team welcomes 
contributions!

https://github.com/boot-clj/boot/
https://github.com/boot-clj/boot/wiki


282   Appendix B

Boot’s abstractions
Created by Micha Niskin and Alan Dipert, Boot is a fun and powerful addi-
tion to the Clojure tooling landscape. On the surface, it’s a convenient way 
to build Clojure applications and run Clojure tasks from the command line. 
Dig a little deeper and you’ll see that Boot is like the Lisped-up lovechild of 
Git and Unix in that it provides abstractions that make it more pleasant to 
write code that exists at the intersection of your operating system and your 
application.

Unix provides abstractions that we’re all familiar with to the point 
where we take them for granted. (Would it kill you to take your computer 
out to a nice restaurant once in a while?) The process abstraction lets you 
reason about programs as isolated units of logic that can be easily com-
posed into a stream-processing pipeline through the STDIN and STDOUT 
file descriptors. These abstractions make certain kinds of operations, like 
text processing, very straightforward.

Similarly, Boot provides abstractions that make it easy to compose 
independent operations into the kinds of complex, coordinated operations 
that build tools end up doing, like converting ClojureScript into JavaScript. 
Boot’s task abstraction lets you easily define units of logic that communi-
cate through filesets. The fileset abstraction keeps track of the evolving build 
context and provides a well-defined, reliable method of task coordination.

That’s a lot of high-level description, which hopefully has hooked your 
attention. But I would be ashamed to leave you with a plateful of metaphors. 
Oh no, dear reader, that was only the appetizer. Throughout the rest of this 
appendix, you’ll learn how to build your own Boot tasks. Along the way, 
you’ll discover that build tools can actually have a conceptual foundation.

tasks
Like make, rake, grunt, and other build tools of yore, Boot lets you define 
tasks. Tasks are named operations that take command line options dis-
patched by some intermediary program (make, rake, Boot). 

Boot provides the dispatching program, boot, and a Clojure library that 
makes it easy for you to define named operations and their command line 
options with the deftask macro. To see what all the fuss is about, let’s create 
your first task. Normally, programming tutorials encourage you to write 
code that prints “Hello World,” but I like my examples to have real-world 
utility, so your task is to print “My pants are on fire!” This information 
is objectively more useful. First, install Boot; then create a new directory 
named boot-walkthrough, navigate to that directory, create a file named 
build.boot, and write this:

(deftask fire
  "Prints 'My pants are on fire!'"
  []
  (println "My pants are on fire!"))



Boot, the Fancy Clojure Build Framework   283

Now run this task from the command line with boot fire; you should 
see the message you wrote printed to your terminal. This task demonstrates 
two out of the three task components: the task is named (fire), and it’s 
dispatched by boot. This is super cool. You’ve essentially created a Clojure 
shell script, stand-alone Clojure code that you can run from the command 
line with ease. No project.clj, directory structure, or namespaces needed!

Let’s extend the example to demonstrate how you’d write command 
line options:

(deftask fire
  "Announces that something is on fire"
  [t thing     THING str  "The thing that's on fire"
   p pluralize       bool "Whether to pluralize"]
  (let [verb (if pluralize "are" "is")]
    (println "My" thing verb "on fire!")))

Try running the task like so:

boot fire -t heart
# => My heart is on fire!

boot fire -t logs -p
# => My logs are on fire!

In the first instance, either you’re newly in love or you need to be 
rushed to the emergency room. In the second, you are a Boy Scout awk-
wardly expressing your excitement over meeting the requirements for a 
merit badge. In both instances, you were able to easily specify options for 
the task.

This refinement of the fire task introduced two command line options, 
thing and pluralize. Both options are defined using a domain-specific language 
(DSL). DSLs are their own topic, but briefly, the term refers to mini-languages 
that you can use within a larger program to write compact, expressive code 
for narrowly defined domains (like defining options).

In the option thing, t specifies its short name, and thing specifies its 
long name. THING is a bit complicated, and I’ll get to it in a second. str speci-
fies the option’s type, and Boot uses that to validate the argument and con-
vert it. "The thing that's on fire" is the documentation for the option. You 
can view a task’s documentation in the terminal with boot task-name -h:

boot fire -h
# Announces that something is on fire
# 
# Options:
#   -h, --help         Print this help info.
#   -t, --thing THING  Set the thing that's on fire to THING.
#   -p, --pluralize    Whether to pluralize

Pretty groovy! Boot makes it very easy to write code that’s meant to be 
invoked from the command line.



284   Appendix B

Now, let’s look at THING. THING is an optarg, and it indicates that this 
option expects an argument. You don’t have to include an optarg when 
you’re defining an option (notice that the pluralize option has no optarg). 
The optarg doesn’t have to correspond to the full name of the option; you 
could replace THING with BILLY_JOEL or whatever you want and the task would 
work the same. You can also designate complex options using the optarg. 
(Visit https://github.com/boot-clj/boot/wiki/Task-Options-DSL#complex-options for 
Boot’s documentation on the subject.) Basically, complex options allow you 
to specify that option arguments should be treated as maps, sets, vectors, or 
even nested collections. It’s pretty powerful.

Boot provides you with all the tools you could ask for to build command 
line interfaces with Clojure. And you’ve only just started learning about it!

the rePl
Boot comes with a number of useful built-in tasks, including a REPL 
task. Run boot repl to fire up that puppy. The Boot REPL is similar to 
Leiningen’s in that it handles loading your project code so you can play 
around with it. You might not think this applies to the project you’ve been 
writing because you’ve only written tasks, but you can actually run tasks in 
the REPL (I’ve omitted the boot.user=> prompt). You can specify options 
using a string:

(fire "-t" "NBA Jam guy")
; My NBA Jam guy is on fire!
; => nil

Notice that the option’s value comes right after the option. 
You can also specify an option using a keyword:

(fire :thing "NBA Jam guy")
; My NBA Jam guy is on fire!
; => nil

You can also combine options:

(fire "-p" "-t" "NBA Jam guys")
; My NBA Jam guys are on fire!
; => nil

(fire :pluralize true :thing "NBA Jam guys")
; My NBA Jam guys are on fire!
; => nil

And of course, you can use deftask in the REPL as well—it’s just Clojure, 
after all. The takeaway is that Boot lets you interact with your tasks as Clojure 
functions, because that’s what they are.

https://github.com/boot-clj/boot/wiki/Task-Options-DSL#complex-options
https://github.com/boot-clj/boot/wiki/Task-Options-DSL#complex-options


Boot, the Fancy Clojure Build Framework   285

Composition and Coordination
If what you’ve seen so far was all that Boot had to offer, it’d be a pretty swell 
tool, but it wouldn’t be very different from other build tools. One feature 
that sets Boot apart is how it lets you compose tasks. For comparison’s sake, 
here’s an example Rake invocation (Rake is the premier Ruby build tool):

rake db:create db:migrate db:seed

This code will create a database, run migrations on it, and populate it 
with seed data when run in a Rails project. However, worth noting is that 
Rake doesn’t provide any way for these tasks to communicate with each 
other. Specifying multiple tasks is just a convenience, saving you from hav-
ing to run rake db:create; rake db:migrate; rake db:seed. If you want to access 
the result of Task A within Task B, the build tool doesn’t help you; you have 
to manage that coordination yourself. Usually, you’ll do this by shoving the 
result of Task A into a special place on the filesystem and then making sure 
Task B reads that special place. This looks like programming with mutable, 
global variables, and it’s just as brittle.

Handlers and Middleware
Boot addresses this task communication problem by treating tasks as middle-
ware factories. If you’re familiar with Ring, Boot’s tasks work very similarly, 
so feel free to skip to “Tasks Are Middleware Factories” on page 287. If 
you’re not familiar with the concept of middleware, allow me to explain! 
Middleware refers to a set of conventions that programmers adhere to so they 
can flexibly create domain-specific function pipelines. That’s pretty dense, 
so let’s un-dense it. I’ll discuss the flexible part in this section and cover 
domain-specific in “Filesets” on page 288.

To understand how the middleware approach differs from run-of-
the-mill function composition, here’s an example of composing everyday 
functions:

(def strinc (comp str inc))
(strinc 3)
; => "4"

There’s nothing interesting about this function composition. In fact, 
this function composition is so unremarkable that it strains my abilities as a 
writer to actually say anything about it. There are two functions, each does 
its own thing, and now they’ve been composed into one. Whoop-dee-doo!

Middleware introduces an extra step to function composition, giving 
you more flexibility in defining your function pipeline. Suppose, in the 

db:seed


286   Appendix B

preceding example, that you wanted to return "I don't like the number X" 
for arbitrary numbers but return a string-ified number for everything else. 
Here’s how you could do that:

(defn whiney-str
  [rejects]
  {:pre [(set? rejects)]}
  (fn [x]
    (if (rejects x)
      (str "I don't like " x)
      (str x))))

(def whiney-strinc (comp (whiney-str #{2}) inc))
(whiney-strinc 1)
; => "I don't like 2"

Now let’s take it one step further. What if you want to decide whether or 
not to call inc in the first place? Listing B-1 shows how you could do that:

(defn whiney-middleware
  [next-handler rejects]
  {:pre [(set? rejects)]}
  (fn [x]

u     (if (= x 1)
      "I'm not going to bother doing anything to that"
      (let [y (next-handler x)]
        (if (rejects y)
          (str "I don't like " y)
          (str y))))))

(def whiney-strinc (whiney-middleware inc #{2}))
(whiney-strinc 1)
; => "I don't like 2"

Listing B-1: The middleware approach to function composition lets you introduce choice

Here, instead of using comp to create your function pipeline, you pass 
the next function in the pipeline as the first argument to the middle-
ware function. In this case, you’re passing inc as the first argument to 
whiney-middleware as next-handler. whiney-middleware then returns an anony-
mous function that closes over inc and has the ability to choose whether 
to call it or not. You can see this choice at u.

We say that a middleware takes a handler as its first argument and 
returns a handler. In this example, whiney-middleware takes a handler as 
its first argument, inc, and it returns another handler, the anonymous 
function with x as its only argument. Middleware can also take extra 
arguments, like rejects, that act as configuration. The result is that the 
handler returned by the middleware can behave more flexibly (thanks 
to configuration), and it has more control over the function pipeline 
(because it can choose whether or not to call the next handler).



Boot, the Fancy Clojure Build Framework   287

Tasks Are Middleware Factories
Boot takes this pattern of making function composition more flexible 
one step further by separating middleware configuration from handler 
creation. First, you create a function that takes n configuration argu-
ments. This is the middleware factory, and it returns a middleware function. 
The middleware function expects one argument, the next handler, and 
it returns a handler, just like in the preceding example. Here’s a whiney 
middleware factory:

(defn whiney-middleware-factory
  [rejects]
  {:pre [(set? rejects)]}
  (fn [handler]
    (fn [x]
      (if (= x 1)
        "I'm not going to bother doing anything to that"
        (let [y (handler x)]
          (if (rejects y)
            (str "I don't like " y " :'(")
            (str y)))))))

(def whiney-strinc ((whiney-middleware-factory #{3}) inc))

As you can see, this code is nearly identical to Listing B-1. The change 
is that the topmost function, whiney-middleware-factory, now only accepts 
one argument, rejects. It returns an anonymous function, the middleware, 
which expects one argument, a handler. The rest of the code is the same.

In Boot, tasks can act as middleware factories. To show this, let’s split 
the fire task into two tasks: what and fire (see Listing B-2). what lets you 
specify an object and whether it’s plural, and fire announces that it’s on 
fire. This is great modular software engineering because it allows you to 
add other tasks, like gnomes, to announce that a thing is being overrun with 
gnomes, which is just as objectively useful. (As an exercise, try creating the 
gnome task. It should compose with the what task, just as fire does.)

(deftask what
  "Specify a thing"
  [t thing     THING str  "An object"
   p pluralize       bool "Whether to pluralize"]
  (fn middleware [next-handler]

u     (fn handler [fileset]
      (next-handler (merge fileset {:thing thing :pluralize pluralize})))))

(deftask fire
  "Announce a thing is on fire"
  []
  (fn middleware [next-handler]

v     (fn handler [fileset]
      (let [verb (if (:pluralize fileset) "are" "is")]



288   Appendix B

        (println "My" (:thing fileset) verb "on fire!")
        fileset))))

Listing B-2: The full code for composable Boot tasks that announce something’s on fire

Here’s how you’d run this on the command line:

boot what -t "pants" -p – fire

And here’s how you’d run it in the REPL:

(boot (what :thing "pants" :pluralize true) (fire))

Wait a minute, what’s that boot call doing there? And what’s with 
fileset at u and v? In Micha’s words, “The boot macro takes care of setup 
and cleanup (creating the initial fileset, stopping servers started by tasks, 
things like that). Tasks are functions, so you can call them directly, but if 
they use the fileset, they will fail unless you call them via the boot macro.” 
Let’s take a closer look at filesets.

filesets
Earlier I mentioned that middleware is for creating domain-specific function 
pipelines. All that means is that each handler expects to receive domain-
specific data and returns domain-specific data. With Ring, for example, 
each handler expects to receive a request map representing the HTTP 
request, which might look something like this:

{:server-port 80
 :request-method :get
 :scheme :http}

Each handler can choose to modify this request map in some way 
before passing it on to the next handler, say, by adding a :params key with a 
nice Clojure map of all query string and POST parameters. Ring handlers 
return a response map, which consists of the keys :status, :headers, and :body, 
and once again each handler can transform this data in some way before 
returning it to its parent handler.

In Boot, each handler receives and returns a fileset. The fileset abstrac-
tion lets you treat files on your filesystem as immutable data, and this is a 
great innovation for build tools because building projects is so file-centric. 
For example, your project might need to place temporary, intermediary 
files on the filesystem. Usually, with most build tools, these files get placed 
in some specially named place, say, project/target/tmp. The problem with this 
is that project/target/tmp is effectively a global variable, and other tasks can 
accidentally muck it up.



Boot, the Fancy Clojure Build Framework   289

Boot’s fileset abstraction solves this problem by adding a layer of indi-
rection on top of the filesystem. Let’s say Task A creates File X and tells 
the fileset to store it. Behind the scenes, the fileset stores the file in an 
anonymous, temporary directory. The fileset then gets passed to Task B, 
and Task B modifies File X and asks the fileset to store the result. Behind 
the scenes, a new file, File Y, is created and stored, but File X remains 
untouched. In Task B, an updated fileset is returned. This is the equiva-
lent of doing assoc-in with a map: Task A can still access the original file-
set and the files it references.

And you didn’t even use any of this cool file management functionality 
in the what and fire tasks in Listing B-2! Nevertheless, when Boot composes 
tasks, it expects handlers to receive and return fileset records. Therefore, 
to convey your data across tasks, you sneakily added it to the fileset record 
using (merge fileset {:thing thing :pluralize pluralize}).

Although that covers the basic concept of a middleware factory, you’ll 
need to learn a bit more to take full advantage of filesets. The mechanics of 
working with filesets are all explained in the fileset wiki (https://github.com/
boot-clj/boot/wiki/Filesets). In the meantime, I hope this information gave you 
a good conceptual overview!

next steps
The point of this appendix was to explain the concepts behind Boot. 
However, Boot also has a bunch of other functions, like set-env! and 
task-options!, that make your programming life easier when you’re actually 
using it. It offers amazing magical features, like providing classpath isola-
tion so you can run multiple projects using one JVM, and letting you add 
new dependencies to your project without having to restart your REPL. If 
Boot tickles your fancy, check out its README for more information on 
real-world usage. Also, its wiki provides top-notch documentation.

https://github.com/boot-clj/boot/wiki/Filesets
https://github.com/boot-clj/boot/wiki/Filesets




f a r e w e l l !

As Semisonic’s hit ’90s song “Closing 
Time” teaches us, every new beginning 

comes from some other beginning’s end. 
Congratulations, noble reader, on completing 

this Clojure journey. I hope you’ve found it rewarding, 
and I hope you’re looking forward to more!

And believe me, there’s so much more. One of the things I like most 
about Clojure is that there’s an entire world to explore. Logic program-
ming, parsers, type systems—name a fun realm of computer science, and 
you can investigate it with Clojure. I leave you with my humble suggestions 
of where to go next.

If you want to get a broad overview of the Clojure ecosystem, check out 
http://www.clojure-toolbox.com/, which lists hundreds of Clojure projects orga-
nized by the problem they solve.

If you’re interested in web programming, a great place to start is the 
Luminus framework (http://www.luminusweb.net/). The documentation is 
excellent, and you’ll have a website running in no time.

http://www.clojure-toolbox.com/
http://www.clojure-toolbox.com/
http://www.luminusweb.net/


292   Farewell!

To stay up-to-date with Clojure news, a great resource is Eric 
Normand’s Clojure Gazzette (http://www.clojuregazette.com/). There’s also 
the Clojure mailing list, of course (https://groups.google.com/forum/#!forum/
clojure) and the Clojure subreddit is a helpful, friendly place, too (http://www.
reddit.com/r/clojure).

If Twitter is your social media outlet of choice, then @swannodette 
(David Nolen), @gigasquid (Carin Meier), @puredanger (Alex Miller), 
@ztellman (Zach Tellman), @bbatsov (Bozhidar Batsov), and @stuartsierra 
(Stuart Sierra) are your huckleberries. You could also follow me, 
@nonrecursive!

Farewell, little teacup, and have fun Clojuring!

http://www.clojuregazette.com/
http://www.clojuregazette.com/
https://groups.google.com/forum/#!forum/clojure
https://groups.google.com/forum/#!forum/clojure
http://www.reddit.com/r/clojure
http://www.reddit.com/r/clojure
http://twitter.com/swannodette?lang=en
http://twitter.com/gigasquid
http://twitter.com/puredanger?lang=en
http://twitter.com/ztellman
https://twitter.com/bbatsov
http://twitter.com/stuartsierra
http://twitter.com/nonrecursive


Symbols
+ (addition operator), 36–37
@, 155, 197
>!! (blocking put), 235–238
<!! (blocking take), 235–238
. (dot operator), 258–259
= (equality operator), 39
#', 128
>! (parking put), 235–238
<! (parking take), 235–238
' (quote) reader macro, 154–155
& (rest parameter), 54

a
abstractions, 265–266

implementing, 270
through indirection, 77
with macros, 183

abstract syntax tree (AST), 149
add-watch, 216
alias, 132
alter, 219–221
alter-var-root function, 227
and (Boolean operator), 40

source code, 168
apply function, 91
architecture, of code, 110
arity, 52–54

overloading, 52–53
artifact ecosystem, 277–280
artifacts, 277
assoc-in, 114
AST (abstract syntax tree), 149
asynchronous tasks, 191
atomic values, 210
atoms, 212–217
auto-gensym, 177–178

B
binding

with def, 40–41
dynamic vars, 223–227
with let, 61–63
local, 157–158

blocking, 191
blocking put (>!!), 235–238
blocking take (<!!), 235–238
Boolean

expressions, 39–40
forms, 37–38
operators, 40
values, 39

Boot
classpath isolation, 289
composition, 285–288
deftask, 282
documentation, 283
filesets, 282, 288–289
middleware, 285–286
middleware factories, 285, 

287–288
optarg, 284
REPL, 284
tasks, 282–284

bound-fn, 227
Brave and True Ale example, 180

C
callbacks

hell, 244
with promises, 202

Central Repository, 279
chan, 235
channels, 235–237

buffering, 236–237
timeout, 242

i n D e x



294   Index

char, 120
cheese heist, 130, 140–144
CIDER package, 23–28

handling errors, 27–28
installation, 23
key bindings, 25–27
starting, 23

class instantiation, 272
classpath, 252
Clojars repository, 279
Clojure

compiler, 4
hosted language, 4
metaphysics, 210–211

clojure.jar, 255–257
closures, 58
collection abstraction, 88–90
command-line interaction, 121–124
comma-separated values (CSV), 93
commute, 221–223
compare-and-set, 214–215
comp function, 105–106, 120
compilation, 248–252
complement function, 92–93
concat function, 84
concurrency, 190–196

dining philosophers 
problem, 195–196

dwarven berserker problem, 195
mutual exclusion problem, 

194–195, 210
preventing with delays, 199

nondeterministic execution, 
208–210

queues, 243–244
reference cell problem, 193–194, 

207, 209
preventing with 

promises, 202
stateless, 228–232
tasks, 190
The Three Concurrency 

Goblins, 193–196
conj function, 45, 46, 47, 90
cons function, 74–77
contains? function, 47

control flow, 37–40
Boolean expressions, 39–40
do operator, 38
if expression, 37–38
when operator, 38–39

core.async
alts!, 235, 242
alts!!, 235, 241–243
blocking, 237–238
buffering, 236–237
events, 233
hot dog vending machine 

example, 239–241
parking, 237–238
pipelines, 240, 244–245
put, 235–238
queues, 243–244
take, 235–238
thread, 238–239
timeout channels, 235, 242
waiting, 235–238

create-ns, 129
CSV (comma-separated values), 93
cuddle zombie, 208

D
data structures, 41–48

immutable, 42, 100–105, 210
keywords, 44–45
lists, 45–46
maps, 43–44
numbers, 42
sets, 46–47
simplicity, 48
strings, 42–43
vectors, 45

data types, 265–266
extending, 270
instances, 266

def

naming values, 40–41
storing objects, 127–129

defprotocol, 270
defrecord, 272
deftype, 275
delays, 196, 198–199



Index   295

deliver, 200
dependencies, 277, 278–279
deref, 128, 197

reader macro, 155
timeout, 202

dereferencing
atoms, 212
delays, 198–199
futures, 191–198
promises, 200–202

destructuring, 54–56
dispatching function, 266, 267–268
dispatching value, 266, 267–268
dispatch value, 267–268
distributed computing, 191
domain-specific language 

(DSL), 283
do operator, 38
dorun function, 229
doseq, 121
dosync, 219–221
doto macro, 260
dot special form, 258
dot operator (.), 258–259
drop function, 81
drop-while function, 81–82
DSL (domain-specific 

language), 283
Dungeons and Dragons, 265
dynamic binding, 223–227

E
Eastwood plug-in (lint tool), 

279–280
editors, 9
El Chupacabra, 218
elisp, 11, 17, 19, 72
Emacs

buffers, 14–15
CIDER package, 23. See also 

CIDER package
configuration, 13
cursor, 20
customizing, 15–16
files, 15–17
frames, 24
help, 22

installation, 12–14
key bindings, 17
killing, 21–22
kill ring, 21–22
Lisp (elisp), 11, 19
mark, 20
minibuffer, 15
modes, 18–19

line, 18
major, 18
minor, 19

movement, 20
packages, 19
Paredit, 28–30. See also Paredit
point, 20
regions, 20
windows, 24
yank, 21

empty? function, 88
equality operator (=), 39
eval, 151
evaluation, 36

lists, 159–160
macros, 160–162
model, 148–152
rules, 155–162
to self, 156
symbols, 156

evaluator, 148, 149–152, 155
expression, 36

Boolean, 39–40
function, 98
if, 37–38

extend-protocol, 271, 274
extend-type, 270, 274

F
false (value), 39
falsey values, 39
fields, 272
file naming conventions, 134
filter function, 83
first function, 74
force, 198
forms, 36–37
fully qualified symbols, 171



296   Index

functional programming, 79, 97
immutable data structures, 

100–105
Peg Thing game, 108–124
pure functions, 98–100

functions, 48–59
anonymous, 57–58
arity, 52–54

overloading, 52–53
calls, 48–51, 159
composition, 103–105, 285
defining, 51–52
expression, 48
higher-order, 49
pure, 98–100, 105–107
rest parameters, 54

futures, 196–198, 202–205

G
gensym, 177–178
get function, 43–44, 45, 47
get-in function, 44
go blocks, 235–239
grain size, 230

H
Handy, Jack, 19
hash-map function, 43
hash-set, 46
head (of a sequence), 65
Hickey, Rich, 4
hierarchical dispatching, 269
hobbits

modeling, 59–61
targeting, 67–68

homoiconic languages, 148, 152
hot dog vending machine,  

239–243
humans, 265

I
identity (Clojure metaphysics), 211
identity function, 95
if expressions, 37–38
if-let, 119

immutable data structures, 
100–105, 210, 212

implementing abstractions, 74
importing

Java classes, 253–254
record types, 273

in-ns function, 129
installation

Emacs, 12–14
CIDER package, 23
packages, 19

Leiningen, 5
instance, of a data type, 266
interfaces, 77
interleaving, 190, 192–193
interning, 128
into function, 88–89

J
JAR files, 4, 249, 255
Java

bytecode, 4, 248–249, 252
classes, 273
classpath, 252, 254–255
entry point, 255
imports, 253–255
interop. See Java interop
JAR files, 4, 249, 255
main method, 252, 255, 257
packages, 253–255
stacks, 259–260

javac, 252
Java interop, 250, 257–261

creating objects, 259–260
Date class, 262
files, 262–264
importing, 260–261
input/output, 262–264
method calls, 258
mutating objects, 259–260
passing arguments, 258
syntax, 258–259
System class, 261–262

Java Virtual Machine ( JVM), 4, 
150, 248–249

threads, 191–193
just-in-time compilation, 248



Index   297

K
key functions, 84
keywords, 44–45

L
Lady Gaga, 190–191
lazy sequences, 84–88, 112

chunking, 86
defining, 87
efficiency, 84–87
infinite, 87–88
realizing, 84
repeatedly function, 87
repeat function, 87

Leiningen build tool, 5–8, 277–280
dependencies, 278–279
identification, 278
plug-ins, 279–280

let, 61–63
line-seq function, 264
linked list, 74–76
lint tool (Eastwood plug-in), 

279–280
Lisp, 4, 11, 36, 150
list function, 46
lists, 45–46

evaluation rules for, 159–160
literals, 36
local binding, 157–158
loop, 63–64

M
macroexpand, 162
macros, 147–185

argument destructuring, 
167–168

Brave and True Ale example, 
180–184

building lists for evaluation, 
168–173

calling, 50–51
characters, 154
defining, 167
distinguishing symbols and 

values, 168–169
evaluation rules for, 160–162

expansion, 162
gotchas, 176–180

composition, 179–180
double evaluation, 178
variable capture, 176–178

infection, 166
map function, 50, 73, 79–80
maps (data structure), 43–44

destructuring, 55
Maven, 278, 279
McCarthy, John, 148
McFishwich, 85
memoize function, 107
metaphysics, Clojure, 210–211
multimethods, 266–269

default, 268

N
names

in Clojure metaphysics, 211
collision, 128–129
for values, 40–41

namespaces, 126
aliasing, 136
create-ns, 129
creating and switching to, 

129–130
current, 126
in-ns, 129
ns macro, 126, 129, 138–140
ns-interns, 128
ns-map, 128
refer-clojure, 138
reference, 138
refering, 130–132, 135
requiring, 134–137
user, 126
using, 136–137

nil (value), 39, 47
nondeterministic execution, 193
not-empty, 120
ns macro, 126, 129, 138–140
ns-interns, 128
ns-map, 128
nth function, 46
numbers, 42



298   Index

O
object-oriented metaphysics, 

208–210
object-oriented programming, 104, 

250–251
classes, 251
methods, 251
objects, 250–251

operators, 36
addition (+), 36–37
Boolean

and, 40
or, 40

do, 38
dot (.), 258–259
equality (=), 39
when, 38–39

or (Boolean operator), 40

P
parallelism, 190–196. See also 

concurrency
Paredit, 28

barfing, 29–30
navigation, 30
slurping, 29
wrapping, 29

partial function, 91–92, 120
Peg Thing game, 108–124
Perlis, Alan, 48
philosophy (of Clojure), 48
plug-ins, 279–280
pmap, 228–232
polymorphism, 77, 266

multimethods, 266–269
protocols, 77, 269–272

predicate functions, 81–82, 119–120
processes, 234–239

blocking, 237–238
buffering, 236–237
parking, 237–238
thread, 238–239

programming to abstractions, 72
indirection, 77–78
linked lists, 74–77
sequences abstraction, 72–74

projects
building, 7
creating, 5–6
organizing, 133–140
running, 6

promises, 196, 200–205
protocols, 77, 269–272
proxy, 275
pure functions, 98–100, 117

Q
queues

macro, 202–205
processes, 243–244

quote, 160
quote (') reader macro, 154–155
quoting, 127, 169

simple, 169–171
syntax, 171–174
unquote splicing, 174–176
unquoting, 172, 175
with when, 170

r
reader, 148, 150, 153–155, 264

form, 128, 153
macros, 57, 153, 154–155

read-string function, 153–154
realized?, 198
records, 272–274
recur, 102–103
recursion, 100–103
reduce function, 66–67, 80–81, 114
reducers library, 231–232
refer, 130–132
reference types, 211

atoms, 212–215
referential transparency, 98–99
refs, 218–223
regular expressions, 64
reify, 275
repeatedly function, 87, 228
repeat function, 87
REPL, 7–9, 23–24

Boot, 284
repositories, 278



Index   299

require, 111, 134–137
rest function, 74–77

S
scope, 61
Semantic Versioning system, 278
sequence (seq), 73–74

abstraction, 72–77
function examples, 79–84
lazy, 84–88

sets, 46–47
s-expressions, 150
side effects, of functions, 98, 

99–100
Simmons, Richard, 165

were-Simmons, 267
simplicity, of data structures, 48
slurp function, 29, 94, 263
sock gnomes, 218–220
software transactional memory 

(STM), 218
some function, 83
sort-by function, 84
sort function, 84
special forms, 50–51, 156, 159–160
spit function, 144, 263
Stallman, Richard, 13
state, 207, 211, 212

mutable, 208–210
STM (software transactional 

memory), 218
strings, 42–43

concatenating, 43
pattern matching, 64

SVG, 140
swap!, 212–215
Swift, Taylor, 9
symbols, 126, 156–158

fully qualified, 129–130
resolving, 156–157

synchronous tasks, 191
syntactic abstraction, 162, 163
syntax, 36

Java interop, 258–259

t
tail call optimization, 102
tail (of a sequence), 65
take function, 81
take-while function, 81–82
telepath, 225
thread-bound? function, 226
threads, 191–193

delays, 198–199
futures, 196–198
nondeterministic programs, 193
promises, 200–202
spawning, 192

Thread/sleep, 196–197
Tick, The, 53
transactions, 218–221
troll, 225
true (value), 39
truthy values, 39
tuples, 119
types, 266

U
unless macro, 171
unquote splicing, 174–176
unquoting, 172, 175
use function, 136–137

V
validators, 217
values, 210–211
vampire 

data analysis, 93–96
food journal, 79–84

Vampire Diaries, The, 71
variable assignment, 101
vars, 126–129, 223–227

binding conveyance, 227
dynamic binding, 223–226
interning, 128
per-thread binding, 226–227
private, 132
reader form, 128
roots, 227



300   Index

vector function, 45
vectors, 45

W
watches, 215–216
were-Simmons, 267
when operator, 38–39, 166, 170
whitespace (to separate 

operands), 36
with-open, 264
with-redefs, 227

Y
yak butter, 200–202



RESOURCES
Visit https://www.nostarch.com/clojure/ for resources, errata, and more information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

Land Of LiSp
Learn to Program in Lisp,  
One Game at a Time!
by conrad barski, m.d.
october 2010, 504 pp., $49.95
isbn 978-1-59327-281-4

ELOqUEnt JavaSCRipt, 
2nd EditiOn
A Modern Introduction to  
Programming
by marijn haverbeke

december 2014, 472 pp., $39.95
isbn 978-1-59327-584-6

thE aRt Of R pROgRamming
A Tour of Statistical Software Design
by norman matloff

october 2011, 400 pp., $39.95
isbn 978-1-59327-384-2

aUtOmatE thE BORing StUff 
with pythOn
Practical Programming for  
Total Beginners
by al sweigart

april 2015, 504 pp., $29.95
isbn 978-1-59327-599-0

LEaRn yOU a haSkELL  
fOR gREat gOOd!
A Beginner’s Guide
by miran lipovač  a
april 2011, 400 pp., $44.95
isbn 978-1-59327-283-8

LEaRn yOU SOmE ERLang  
fOR gREat gOOd!
A Beginner’s Guide
by fred hébert

january 2013, 624 pp., $49.95
isbn 978-1-59327-435-1

More no-nonsense books from nO StaRCh pRESS

https://www.nostarch.com/clojure/


For weeks, months —nay!—from the very moment you 
were born, you’ve felt it calling to you. At long last you’ll 
be united with the programming language you’ve been 
longing for: Clojure!

As a Lisp-style functional programming language, Clojure lets you write robust 
and elegant code, and because it runs on the Java Virtual Machine, you can take 
advantage of the vast Java ecosystem. Clojure for the Brave and True offers 
a “dessert-first” approach: you’ll start play ing with real programs immediately, 
as you steadily acclimate to the abstract but powerful features of Lisp and 
functional programming. Inside you’ll find an offbeat, practical guide to Clojure, 
filled with quirky sample programs that catch cheese thieves and track glittery 
vampires.

l e a r n  h o w to
• Wield Clojure’s core functions
• Use Emacs for Clojure development
• Write macros to modify Clojure itself
• Use Clojure’s tools to simplify concurrency and parallel programming

Clojure for the Brave and True assumes no prior experience with Clojure, the 
Java Virtual Machine, or functional programming. Are you ready, brave reader, 
to meet your true destiny? Grab your best pair of parentheses—you’re about to 
embark on an epic journey into the world of Clojure!

Join the Ranks of noble CloJuRists CloJuRe 

bRave
  
tRue
learn the ultimate
language and
become a better
programmer

f o r  T h e

A n d

daniel higginbotham

shelve in :  P Ro g Ramming  la n guages/CloJuRe

about the authoR 
Daniel Higginbotham has been a professional programmer for 11 years, half of that at McKinsey & 
Company, where he used Clojure to build mobile and web applications. He has also contributed to 
the curriculum for ClojureBridge, an organization that offers free, beginner-friendly Clojure workshops 
for women. Daniel blogs about life and programming at http://flyingmachinestudios.com/, and can be 
found on Twitter, @nonrecursive. He lives in Durham, North Carolina, with his wife and four cats. 

Covers Clojure 1.7 
requires java 1.6 or later

Join the Ranks of noble CloJuRists

$34.95 ($40.95 CDN)

www.nostarch.com

THE F I NEST I N  
GEEK ENTERTAI N ME NT™ 

daniel higginbotham
Clo

Ju
R

e   b
R

av
e   tR

u
e

for
The

And


	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	Learning a New Programming Language: 
A Journey Through the Four Labyrinths
	How This Book Is Organized
	Part I: Environment Setup
	Part II: Language Fundamentals
	Part III: Advanced Topics

	The Code
	The Journey Begins!

	Part I: Environment Setup
	Chapter 1: Building, Running, and the REPL
	First Things First: What Is Clojure?
	Leiningen
	Creating a New Clojure Project
	Running the Clojure Project
	Building the Clojure Project
	Using the REPL

	Clojure Editors
	Summary

	Chapter 2: How to Use Emacs, an Excellent Clojure Editor
	Installation
	Configuration
	Emacs Escape Hatch
	Emacs Buffers
	Working with Files
	Key Bindings and Modes
	Emacs Is a Lisp Interpreter
	Modes
	Installing Packages

	Core Editing Terminology and Key Bindings
	Point
	Movement
	Selection with Regions
	Killing and the Kill Ring
	Editing and Help

	Using Emacs with Clojure
	Fire Up Your REPL!
	Interlude: Emacs Windows and Frames
	A Cornucopia of Useful Key Bindings
	How to Handle Errors
	Paredit

	Continue Learning
	Summary


	Part II: Language Fundamentals
	Chapter 3: Do Things: A Clojure Crash Course
	Syntax
	Forms
	Control Flow
	Naming Values with def

	Data Structures
	Numbers
	Strings
	Maps
	Keywords
	Vectors
	Lists
	Sets
	Simplicity

	Functions
	Calling Functions
	Function Calls, Macro Calls, and Special Forms
	Defining Functions
	Anonymous Functions
	Returning Functions

	Pulling It All Together
	The Shire’s Next Top Model
	let
	loop
	Regular Expressions
	Symmetrizer
	Better Symmetrizer with reduce
	Hobbit Violence

	Summary
	Exercises

	Chapter 4: Core Functions in Depth
	Programming to Abstractions
	Treating Lists, Vectors, Sets, and Maps as Sequences
	first, rest, and cons
	Abstraction Through Indirection

	Seq Function Examples
	map
	reduce
	take, drop, take-while, and drop-while
	filter and some
	sort and sort-by
	concat

	Lazy Seqs
	Demonstrating Lazy Seq Efficiency
	Infinite Sequences 

	The Collection Abstraction
	into
	conj

	Function Functions
	apply
	partial
	complement

	A Vampire Data Analysis Program for the FWPD
	Summary
	Exercises

	Chapter 5: Functional Programming
	Pure Functions: What and Why
	Pure Functions Are Referentially Transparent
	Pure Functions Have No Side Effects

	Living with Immutable Data Structures
	Recursion Instead of for/while
	Function Composition Instead of Attribute Mutation

	Cool Things to Do with Pure Functions
	comp
	memoize

	Peg Thing
	Playing
	Code Organization
	Creating the Board
	Moving Pegs
	Rendering and Printing the Board
	Player Interaction

	Summary
	Exercises

	Chapter 6: Organizing Your Project: A Librarian’s Tale
	Your Project as a Library
	Storing Objects with def
	Creating and Switching to Namespaces
	refer
	alias

	Real Project Organization
	The Relationship Between File Paths and Namespace Names
	Requiring and Using Namespaces
	The ns Macro

	To Catch a Burglar
	Summary

	Chapter 7: Clojure Alchemy: Reading, Evaluation, and Macros
	An Overview of Clojure’s Evaluation Model
	The Reader
	Reading
	Reader Macros

	The Evaluator
	These Things Evaluate to Themselves
	Symbols
	Lists
	Macros
	Syntactic Abstraction and the -> Macro

	Summary
	Exercises

	Chapter 8: Writing Macros
	Macros Are Essential
	Anatomy of a Macro
	Building Lists for Evaluation
	Distinguishing Symbols and Values
	Simple Quoting
	Syntax Quoting

	Using Syntax Quoting in a Macro
	Refactoring a Macro and Unquote Splicing
	Things to Watch Out For
	Variable Capture
	Double Evaluation
	Macros All the Way Down

	Brews for the Brave and True
	Validation Functions
	if-valid

	Summary
	Exercises


	Part III: Advanced Topics
	Chapter 9: The Sacred Art of Concurrent and Parallel Programming
	Concurrency and Parallelism Concepts
	Managing Multiple Tasks vs. Executing Tasks Simultaneously
	Blocking and Asynchronous Tasks
	Concurrent Programming and Parallel Programming

	Clojure Implementation: JVM Threads
	What’s a Thread?
	The Three Goblins: Reference Cells, Mutual Exclusion, and Dwarven Berserkers

	Futures, Delays, and Promises
	Futures
	Delays
	Promises
	Rolling Your Own Queue

	Summary
	Exercises

	Chapter 10: Clojure Metaphysics: Atoms, Refs, Vars, and Cuddle Zombies
	Object-Oriented Metaphysics
	Clojure Metaphysics
	Atoms
	Watches and Validators
	Watches
	Validators

	Refs
	Modeling Sock Transfers
	commute

	Vars
	Dynamic Binding
	Altering the Var Root

	Stateless Concurrency and Parallelism with pmap
	Summary
	Exercises

	Chapter 11: Mastering Concurrent Processes with core.async
	Getting Started with Processes
	Buffering
	Blocking and Parking 
	thread

	The Hot Dog Machine Process You’ve Been Longing For
	alts!!
	Queues
	Escape Callback Hell with Process Pipelines
	Additional Resources
	Summary

	Chapter 12: Working with the JVM
	The JVM
	Writing, Compiling, and Running a Java Program
	Object-Oriented Programming in the World’s Tiniest Nutshell
	Ahoy, World

	Packages and Imports
	JAR Files
	clojure.jar
	Clojure App JARs
	Java Interop
	Interop Syntax
	Creating and Mutating Objects
	Importing

	Commonly Used Java Classes
	The System Class
	The Date Class

	Files and Input/Output
	Resources 
	Summary

	Chapter 13: Creating and Extending Abstractions with Multimethods, Protocols, and Records
	Polymorphism
	Multimethods
	Protocols

	Records
	Further Study
	Summary
	Exercises


	Appendix A: Building and Developing with Leiningen
	The Artifact Ecosystem
	Identification
	Dependencies
	Plug-Ins

	Summary

	Appendix B: Boot, the Fancy Clojure Build Framework
	Boot’s Abstractions
	Tasks
	The REPL
	Composition and Coordination
	Handlers and Middleware
	Tasks Are Middleware Factories

	Filesets
	Next Steps

	Farewell!
	Index
	Resources

