

Artificial Intelligence
Machine Learning

and
Deep Learning

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and its companion files (the “Work”), you agree that
this license grants permission to use the contents contained herein, but does not give
you the right of ownership to any of the textual content in the book or ownership to
any of the information, files, or products contained in it. This license does not permit
uploading of the Work onto the Internet or on a network (of any kind) without the
written consent of the Publisher. Duplication or dissemination of any text, code, simu-
lations, images, etc. contained herein is limited to and subject to licensing terms for
the respective products, and permission must be obtained from the Publisher or the
owner of the content, etc., in order to reproduce or network any portion of the textual
material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved
in the creation, writing, production, accompanying algorithms, code, or computer
programs (“the software”), and any accompanying Web site or software of the Work,
cannot and do not warrant the performance or results that might be obtained by using
the contents of the Work. The author, developers, and the Publisher have used their
best efforts to insure the accuracy and functionality of the textual material and/or pro-
grams contained in this package; we, however, make no warranty of any kind, express
or implied, regarding the performance of these contents or programs. The Work is
sold “as is” without warranty (except for defective materials used in manufacturing
the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replace-
ment of the book and only at the discretion of the Publisher. The use of “implied
warranty” and certain “exclusions” vary from state to state, and might not apply to the
purchaser of this product.

Companion files also available for downloading from the publisher by writing to
info@merclearning.com.

Artificial Intelligence
Machine Learning

and
Deep Learning

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Oswald Campesato

Copyright © 2020 by Mercury Learning and Information LLC.
All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic
display or mechanical display, including, but not limited to, photocopy, recording, Internet
postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

O. Campesato. Artificial Intelligence, Machine Learning and Deep Learning.
ISBN: 978-1-68392-467-8

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.

Library of Congress Control Number: 2019957226

202122321	 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc. For additional information, please contact the Customer Service
Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at authorcloudware.com and other digital
vendors. The sole obligation of Mercury Learning and Information to the purchaser is to
replace the book, based on defective materials or faulty workmanship, but not based on the
operation or functionality of the product.

I’d like to dedicate this book to my parents –
may this bring joy and happiness into their lives.

I’d like to dedicate this book to my parents –
may this bring joy and happiness into their lives.

Preface� xv

Chapter 1: Introduction to AI� 1
	 What is Artificial Intelligence? � 2

Strong AI versus Weak AI � 4
	 The Turing Test� 5

Definition of the Turing Test� 5
An Interrogator Test� 6

	 Heuristics� 6
Genetic Algorithms� 8

	 Knowledge Representation� 8
Logic-based Solutions� 9
Semantic Networks� 9

	 AI and Games� 10
The Success of AlphaZero� 11

	 Expert Systems � 12
	 Neural Computing� 13
	 Evolutionary Computation� 14
	 Natural Language Processing� 14
	 Bioinformatics� 17
	 Major Parts of AI � 18

Machine Learning� 18
Deep Learning � 19
Reinforcement Learning � 19
Robotics� 20

	 Code Samples� 21
	 Summary� 22

CONTENTS

viii • Contents

Chapter 2: Introduction to Machine Learning� 23
	 What is Machine Learning?� 24

Types of Machine Learning� 24
	 Types of Machine Learning Algorithms� 26

Machine Learning Tasks� 28
	 Feature Engineering, Selection, and Extraction� 30
	 Dimensionality Reduction� 31

PCA� 32
Covariance Matrix� 33

	 Working with Datasets� 33
Training Data Versus Test Data� 34
What Is Cross-validation?� 34

	 What Is Regularization?� 34
ML and Feature Scaling� 35
Data Normalization vs Standardization� 35

	 The Bias-Variance Tradeoff� 35
	 Metrics for Measuring Models� 36

Limitations of R-Squared� 36
Confusion Matrix� 37
Accuracy vs Precision vs Recall� 37
The ROC Curve� 38

	 Other Useful Statistical Terms� 38
What Is an F1 Score?� 38
What Is a p-value?� 39

	 What Is Linear Regression? � 39
Linear Regression vs Curve-Fitting� 40
When Are Solutions Exact Values?� 40
What Is Multivariate Analysis?� 41

	 Other Types of Regression� 42
	 Working with Lines in the Plane (optional)� 43
	 Scatter Plots with NumPy and Matplotlib (1)� 46

Why the “Perturbation Technique” Is Useful � 48
	 Scatter Plots with NumPy and Matplotlib (2)� 48
	 A Quadratic Scatterplot with NumPy and Matplotlib� 49
	 The Mean Squared Error (MSE) Formula� 51

A List of Error Types� 51
Non-linear Least Squares � 52

	 Calculating the MSE Manually� 52
	 Approximating Linear Data with np.linspace() � 54
	 Calculating MSE with np.linspace() API� 55
	 Linear Regression with Keras� 57
	 Summary� 62

Contents • ix

Chapter 3: Classifiers in Machine Learning� 63
	 What Is Classification?� 64

What Are Classifiers?� 64
Common Classifiers� 65
Binary vs MultiClass Classification� 65
MultiLabel Classification� 66

	 What Are Linear Classifiers?� 66
	 What Is kNN?� 67

How to Handle a Tie in kNN� 67
	 What Are Decision Trees?� 68
	 What Are Random Forests?� 73
	 What Are SVMs?� 74

Tradeoffs of SVMs� 74
	 What Is Bayesian Inference?� 75

Bayes Theorem� 75
Some Bayesian Terminology� 76
What Is MAP?� 77
Why Use Bayes’ Theorem?� 77

	 What Is a Bayesian Classifier?� 77
Types of Naïve Bayes Classifiers� 78

	 Training Classifiers� 78
	 Evaluating Classifiers� 79
	 What Are Activation Functions?� 80

Why do We Need Activation Functions?� 81
How Do Activation Functions Work?� 81

	 Common Activation Functions� 82
Activation Functions in Python� 83
Keras Activation Functions� 84

	 The ReLU and ELU Activation Functions� 84
The Advantages and Disadvantages of ReLU� 85
ELU� 85

	 Sigmoid, Softmax, and Hardmax Similarities� 86
Softmax� 86
Softplus� 86
Tanh� 86

	 Sigmoid, Softmax, and HardMax Differences� 87
	 What Is Logistic Regression?� 87

Setting a Threshold Value� 88
Logistic Regression: Important Assumptions� 89
Linearly Separable Data� 89

	 Keras, Logistic Regression, and Iris Dataset� 89
	 Summary� 93

x • Contents

Chapter 4: Deep Learning Introduction � 95
	 Keras and the XOR Function� 96
	 What Is Deep Learning?� 98

What Are Hyper Parameters?� 100
Deep Learning Architectures� 101
Problems that Deep Learning Can Solve� 101
Challenges in Deep Learning� 102

	 What Are Perceptrons?� 103
Definition of the Perceptron Function� 104
A Detailed View of a Perceptron� 104

	 The Anatomy of an Artificial Neural Network (ANN)� 105
Initializing Hyperparameters of a Model� 107
The Activation Hyperparameter� 107

	 The Loss Function Hyperparameter� 108
	 The Optimizer Hyperparameter� 108

The Learning Rate Hyperparameter� 109
The Dropout Rate Hyperparameter� 109

	 What Is Backward Error Propagation?� 109
	 What Is a Multilayer Perceptron (MLP)?� 110

Activation Functions� 111
	 How Are Datapoints Correctly Classified?� 112
	 A High-Level View of CNNs� 113

A Minimalistic CNN� 114
	 The Convolutional Layer (Conv2D)� 114
	 The ReLU Activation Function� 115

The Max Pooling Layer� 115
	 Displaying an Image in the MNIST Dataset� 118
	 Keras and the MNIST Dataset� 119
	 Keras, CNNs, and the MNIST Dataset� 122
	 Analyzing Audio Signals with CNNs� 125
	 Summary� 126

Chapter 5: Deep Learning: RNNs and LSTMs� 127
	 What Is an RNN?� 128

Anatomy of an RNN� 129
What Is BPTT?� 130

	 Working with RNNs and Keras� 130
	 Working with Keras, RNNs, and MNIST � 132
	 Working with TensorFlow and RNNs (Optional)� 135
	 What Is an LSTM?� 139

Anatomy of an LSTM� 139
Bidirectional LSTMs� 140

Contents • xi

LSTM Formulas� 141
LSTM Hyperparameter Tuning� 142

	 Working with TensorFlow and LSTMs (Optional)� 142
	 What Are GRUs?� 147
	 What Are Autoencoders?� 147

Autoencoders and PCA� 150
What Are Variational Autoencoders?� 150

	 What Are GANs?� 151
Can Adversarial Attacks Be Stopped?� 152

	 Creating a GAN� 153
A High-Level View of GANs� 156
The VAE-GAN Model� 157

	 Summary � 157

Chapter 6: NLP and Reinforcement Learning� 159
	 Working with NLP (Natural Language Processing)� 160

NLP Techniques� 160
The Transformer Architecture and NLP� 161
Transformer-XL Architecture� 162
Reformer Architecture� 163
NLP and Deep Learning� 163
Data Preprocessing Tasks in NLP� 163

	 Popular NLP Algorithms� 164
What Is an n-gram?� 164
What Is a skip-gram?� 165
What Is BoW?� 165
What Is Term Frequency?� 166
What Is Inverse Document Frequency (idf)?� 167
What Is tf-idf?� 167

	 What Are Word Embeddings?� 168
	 ELMo, ULMFit, OpenAI, BERT, and ERNIE 2.0� 169
	 What Is Translatotron?� 171
	 Deep Learning and NLP� 172
	 NLU versus NLG� 172
	 What Is Reinforcement Learning (RL)?� 173

Reinforcement Learning Applications� 174
NLP and Reinforcement Learning� 175
Values, Policies, and Models in RL� 175

	 From NFAs to MDPs� 176
What Are NFAs?� 177
What Are Markov Chains?� 177
Markov Decision Processes (MDPs)� 178

xii • Contents

	 The Epsilon-Greedy Algorithm� 180
	 The Bellman Equation� 181

Other Important Concepts in RL� 182
	 RL Toolkits and Frameworks� 183

TF-Agents� 183
	 What Is Deep Reinforcement Learning (DRL)?� 184
	 Summary� 185

Appendix A: Introduction to Keras� 187
	 What Is Keras? � 187

Working with Keras Namespaces in TF 2� 188
Working with the tf.keras.layers Namespace� 189
Working with the tf.keras.activations Namespace� 190
Working with the keras.tf.datasets Namespace� 190
Working with the tf.keras.experimental Namespace� 191
Working with Other tf.keras Namespaces� 191
TF 2 Keras versus “Standalone” Keras� 192

	 Creating a Keras-based Model� 192
	 Keras and Linear Regression� 195
	 Keras, MLPs, and MNIST� 198
	 Keras, CNNs, and cifar10� 201
	 Resizing Images in Keras� 204
	 Keras and Early Stopping (1)� 205
	 Keras and Early Stopping (2)� 208
	 Keras and Metrics� 211
	 Saving and Restoring Keras Models� 212
	 Summary� 216

Appendix B: Introduction to TF 2� 217
	 What Is TF 2? � 218

TF 2 Use Cases� 220
TF 2 Architecture: The Short Version� 220
TF 2 Installation� 221
TF 2 and the Python REPL� 222

	 Other TF 2-based Toolkits� 222
	 TF 2 Eager Execution� 224
	 TF 2 Tensors, Data Types, and Primitive Types� 224

TF 2 Data Types� 224
TF 2 Primitive Types� 225

	 Constants in TF 2� 226
	 Variables in TF 2� 227

Contents • xiii

	 The tf.rank() API� 229
	 The tf.shape() API� 230
	 Variables in TF 2 (Revisited)� 231

TF 2 Variables vs Tensors � 233
	 What Is @tf.function in TF 2?� 233

How Does @tf.function Work?� 233
A Caveat About @tf.function in TF 2� 234
The tf.print() Function and Standard Error� 236

	 Working with @tf.function in TF 2� 236
An Example Without @tf.function� 236
An Example With @tf.function� 237
Overloading Functions with @tf.function� 238
What Is AutoGraph in TF 2?� 239

	 Arithmetic Operations in TF 2� 240
	 Caveats for Arithmetic Operations in TF 2� 241
	 TF 2 and Built-in Functions � 242
	 Calculating Trigonometric Values in TF 2� 244
	 Calculating Exponential Values in TF 2� 245
	 Working with Strings in TF 2� 246
	 Working with Tensors and Operations in TF 2� 247
	 Second-Order Tensors in TF 2 (1)� 249
	 2nd Order Tensors in TF 2 (2)� 250
	 Multiplying Two Second-Order Tensors in TF 2� 251
	 Convert Python Arrays to TF Tensors� 252

Conflicting Types in TF 2� 252
	 Differentiation and tf.GradientTape in TF 2� 253
	 Examples of tf.GradientTape� 254

Using the watch() Method of tf.GradientTape� 255
Using Nested Loops with tf.GradientTape� 255
Other Tensors with tf.GradientTape� 256
A Persistent Gradient Tape� 257

	 Google Colaboratory� 258
	 Other Cloud Platforms� 260

GCP SDK� 260
	 Summary� 261

Appendix C: Introduction to Pandas� 263
	 What Is Pandas? � 264

Pandas Dataframes� 264
Dataframes and Data Cleaning Tasks� 265

	 A Labeled Pandas Dataframe � 265

	 Pandas Numeric DataFrames� 267
	 Pandas Boolean DataFrames� 268

Transposing a Pandas Dataframe� 269
	 Pandas Dataframes and Random Numbers � 270
	 Combining Pandas DataFrames (1)� 271
	 Combining Pandas DataFrames (2)� 272
	 Data Manipulation with Pandas Dataframes (1)� 273
	 Data Manipulation with Pandas DataFrames (2)� 274
	 Data Manipulation with Pandas Dataframes (3)� 275
	 Pandas DataFrames and CSV Files� 277
	 Pandas DataFrames and Excel Spreadsheets (1)� 281
	 Pandas DataFrames and Excel Spreadsheets (2)� 282
	 Reading Data Files with Different Delimiters� 284
	 Transforming Data with the sed Command (Optional)� 285
	 Select, Add, and Delete Columns in DataFrames� 287
	 Pandas DataFrames and Scatterplots� 289
	 Pandas DataFrames and Histograms� 290
	 Pandas DataFrames and Simple Statistics� 292
	 Standardizing Pandas DataFrames� 294
	 Pandas DataFrames, NumPy Functions, and Large Datasets� 296
	 Working with Pandas Series� 297

From ndarray� 298
Pandas DataFrame from Series� 299

	 Useful One-line Commands in Pandas � 299
	 What Is Jupyter?� 301

Jupyter Features� 302
Launching Jupyter from the Command Line� 302
JupyterLab� 303
Develop JupyterLab Extensions� 303

	 Summary� 304

Index� 305

xiv • Contents

What Is the Goal?

The goal of this book is to introduce advanced beginners to basic machine
learning and deep learning concepts and algorithms. It is intended to be a
fast-paced introduction to various “core” features of machine learning and
deep learning, with code samples that are included in a university course.
The material in the chapters illustrates how to solve some tasks using Keras,
after which you can do further reading to deepen your knowledge.

This book will also save you the time required to search for code sam-
ples, which is a potentially time-consuming process. In any case, if you’re
not sure whether or not you can absorb the material presented here, then
glance through the code samples to get a feel for the level of complexity.

At the risk of stating the obvious, please keep in mind the following
point: you will not become an expert in machine learning or deep learning
by reading this book.

What Will I Learn from This Book?

The first chapter contains a very short introduction to AI, followed by a
chapter devoted to Pandas for managing the contents of datasets. The third
chapter introduces you to machine learning concepts (supervised and unsu-
pervised learning), types of tasks (regression, classification, and clustering),

PREFACE: THE ML AND DL
LANDSCAPE

xvi • Preface

and linear regression (the second half of the chapter). The fourth chapter
is devoted to classification algorithms, such as kNN, Naïve Bayes, decision
trees, random forests, and SVM (Support Vector Machines).

The fifth chapter introduces deep learning and delves into CNNs
(Convolutional Neural Networks). The sixth chapter covers deep learning
architectures such as RNNs (recurrent neural networks) and LSTMs (Long
Short Term Memory).

The sixth chapter introduces you to aspects of NLP (Natural Language
Processing, with some basic concepts and algorithms, followed by RL (Re-
inforcement Learning) and the Bellman equation. The first appendix cov-
ers Keras, whereas the second appendix covers TensorFlow 2.0.

Another point: although Jupyter is popular, all the code samples in this
book are Python scripts. However, you can quickly learn the useful features
of Jupyter through various online tutorials. In addition, it’s worth looking at
Google Colaboratory that is entirely online and is based on Jupyter note-
books, along with free GPU usage.

How Much Keras Knowledge Is Needed for this Book?

Some exposure to Keras is helpful, and you can read the appendix if
Keras is new to you. If you also want to learn about Keras and logistic
regression, there is an example in Chapter 3. This example requires some
theoretical knowledge involving activation functions, optimizers, and cost
functions, all of which are discussed in Chapter 4.

Please keep in mind that Keras is well-integrated into TensorFlow 2
(in the tf.keras namespace), and it provides a layer of abstraction over
“pure” TensorFlow that will enable you to develop prototypes more quickly.

Do I Need to Learn the Theory Portions of this Book?

Once again, the answer depends on the extent to which you plan to become
involved in machine learning. In addition to creating a model, you will use vari-
ous algorithms to see which ones provide the level of accuracy (or some other
metric) that you need for your project. If you fall short, the theoretical aspects
of machine learning can help you perform a “forensic” analysis of your model
and your data, and ideally assist in determining how to improve your model.

Preface • xvii

How Were the Code Samples Created?

The code samples in this book were created and tested using Python 3 and
Keras that’s built into TensorFlow 2 on a MacBook Pro with OS X 10.12.6
(MacOS Sierra). Regarding their content: the code samples are derived pri-
marily from the author for his Deep Learning and Keras graduate course.
In some cases there are code samples that incorporate short sections of
code from discussions in online forums. The key point to remember is that
the code samples follow the “Four Cs”: they must be Clear, Concise, Com-
plete, and Correct to the extent that it’s possible to do so, given the size of
this book.

What Are the Technical Prerequisites for This Book?

You need some familiarity with Python, and also know how to launch
Python code from the command line (in a Unix-like environment for Mac
users). In addition, a mixture of basic linear algebra (vectors and matri-
ces), probability/statistics, (mean, median, standard deviation) and basic
concepts in calculus (such as derivatives) will help you master the mate-
rial. Some knowledge of NumPy and Matplotlib is also helpful, and the
assumption is that you are familiar with basic functionality (such as NumPy
arrays).

One other prerequisite is important for understanding the code sam-
ples in the second half of this book: some familiarity with neural networks,
which includes the concept of hidden layers and activation functions
(even if you don’t fully understand them). Knowledge of cross entropy is
also helpful for some of the code samples.

What Are the Non-technical Prerequisites for This Book?

Although the answer to this question is more difficult to quantify,
it’s very important to have a strong desire to learn about machine learn-
ing, along with the motivation and discipline to read and understand the
code samples.

Even simple machine language APIs can be a challenge to under-
stand them at first encounter, so be prepared to read the code samples
several times.

xviii • Preface

How Do I Set up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is to
use Finder to navigate to Applications > Utilities and then double
click on the Utilities application. Next, if you already have a command
shell available, you can launch a new command shell by typing the following
command:

open/Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on
a MacBook from a command shell that is already visible simply by click-
ing command+n in that command shell, and your Mac will launch another
command shell.

If you are a PC user, you can install Cygwin (open source https://cyg-
win.com/) that simulates bash commands, or use another toolkit such as
MKS (a commercial product). Please read the online documentation that
describes the download and installation process. Note that custom aliases
are not automatically set if they are defined in a file other than the main
start-up file (such as .bash_login).

Companion Files

All of the code samples and figures in this book may be obtained for down-
load by writing to the publisher at info@merclearning.com.

What Are the “Next Steps” after Finishing this Book?

The answer to this question varies widely, mainly because the answer
depends heavily on your objectives. The best answer is to try a new tool or
technique from the book out on a problem or task you care about, profes-
sionally or personally. Precisely what that might be depends on who you
are, as the needs of a data scientist, manager, student or developer are all
different. In addition, keep what you learned in mind as you tackle new
challenges.

� O. Campesato
� San Francisco, CA

C H A P T E R 1
INTRODUCTION TO AI

This chapter provides a gentle introduction to AI, primarily as a broad
overview of this diverse topic. Unlike the other chapters in this book, this
introductory chapter is chapter is “light” in terms of technical content.
However, it’s easy to read and also worth skimming through its contents.
Machine learning and deep learning are briefly introduced toward the
end of this chapter, both of which are discussed in more detail in subse-
quent chapters.

Keep in mind that many AI-focused books tend to discuss AI from the
perspective of computer science and a discussion of traditional algorithms
and data structures. By contrast, this book treats AI as an “umbrella” for
machine learning and deep learning, and therefore it’s discussed in a cur-
sory manner as a precursor to the other chapters.

The first part of this chapter starts with a discussion regarding the term
artificial intelligence, various potential ways to determine the presence of
intelligence, as well as the difference between Strong AI and Weak AI.
You will also learn about the Turing Test, which is a well-known test for
intelligence.

The second part of this chapter discusses some AI uses-cases and the
early approaches to neural computing, evolutionary computation, NLP, and
bioinformatics.

The third part of this chapter introduces you to major subfields of AI,
which include natural language processing (with NLU and NLG), machine
learning, deep learning, reinforcement learning, and deep reinforcement
learning.

2 • Artificial Intelligence, Machine Learning, Deep Learning

Although code-specific samples are not discussed in this chapter, the
companion files for this chapter do contain a Java-based code sample for
solving the Red Donkey problem, and also a Python-based code sample
(that requires Python 2.x) for solving Rubik’s Cube.

What Is Artificial Intelligence?

The literal meaning of the word artificial is synthetic, which often has a neg-
ative connotation of being an inferior substitute. However, artificial objects
(e.g., flowers) can closely approximate their counterparts, and sometimes
they can be advantageous when they do not have any maintenance require-
ments (sunshine, water, and so forth).

By contrast, a definition for intelligence is more elusive than a defini-
tion of the word artificial. R. Sternberg, in a text on human consciousness,
provides the following useful definition: “Intelligence is the cognitive abil-
ity of an individual to learn from experience, to reason well, to remember
important information, and to cope with the demands of daily living.”

You probably remember standardized tests with questions that ask for
the next number in a given sequence, such as 1, 3, 6, 10, 15, 21. The first thing
to observe is that the gap between successive numbers increases by one: from
1 to 3, the increase is two, whereas from 3 to 6, it is three, and so on. Based
on this pattern, the plausible response is 28. Such questions are designed to
measure our proficiency at identifying salient features in patterns.

Incidentally, there can be multiple answers to a “next-in-sequence”
numeric problem. For example, the sequence 2, 4, 8 might suggest 16 as the
next number in this sequence, which is correct if the generating formula is
2^n. However, if the generating formula is 2^n + (n-1)*(n-2)*(n-3),
then the next number in the sequence is 22 (not 16). There are many for-
mulas that can match 2, 4, and 8 as the initial sequence of numbers, and yet
the next number can be different from 16 or 22.

Let’s return to R. Sternberg’s definition for intelligence, and consider
the following questions:

•	 How do you decide if someone (something?) is intelligent?

•	 Are animals intelligent?

•	 If animals are intelligent, how do you measure their intelligence?

Introduction to AI • 3

We tend to assess people’s intelligence through interaction with them: we
ask questions and observe their answers. Although this method is indirect,
we often rely on this method to gauge other people’s intelligence.

In the case of animal intelligence, we also observe their behavior to
make an assessment. Clever Hans was a famous horse that lived in Berlin,
Germany, circa 1900, and allegedly had a proficiency in arithmetic, such as
adding numbers and calculating square roots.

In reality, Hans was able to identify human emotions and, in conjunction
with his astute hearing, he could sense the reaction of audience members as
Hans came closer to a correct answer. Interestingly, Hans performed poorly
without the presence of an audience. You might be reluctant to attribute
Clever Hans’s actions to intelligence; however, review Sternberg’s defini-
tion before reaching a conclusion.

As another example, some creatures exhibit intelligence only in groups.
Although ants are simple insects, and their isolated behavior would hardly
warrant inclusion in a text on AI, ant colonies exhibit extraordinary solu-
tions to complex problems. In fact, ants can figure out the optimal route
from a nest to a food source, how to carry heavy objects, and how to form
bridges. Thus, a collective intelligence arises from effective communication
among individual insects.

The ratios of brain mass and brain-to-body mass are indicators
of intelligence, and dolphins compare favorably with humans in both
metrics. Breathing in dolphins is under voluntary control, which could
account for excess brain mass, as well as the fact that alternate halves
of a dolphin’s brain take turns sleeping. Dolphins score well on animal
self-awareness tests such as the mirror test, in which they recognize that
the image in the mirror is actually their own image. They can also per-
form complex tricks, as visitors to Sea World can testify. This illustrates
the ability of dolphins to remember and perform complex sequences of
physical motions.

The use of tools is another litmus test for intelligence and is often used
to separate homo erectus from earlier ancestors of human beings. Dolphins
also share this trait with humans: dolphins use deep-sea sponges to protect
their spouts while foraging for food. Thus, intelligence is not an attribute
possessed by humans alone. Many living forms possess some degree of
intelligence.

4 • Artificial Intelligence, Machine Learning, Deep Learning

Now consider the following question: can inanimate objects, such as
computers, possess intelligence? The declared goal of artificial Intelligence
is to create computer software and/or hardware systems that exhibit think-
ing comparable to that of humans, in other words, to display characteristics
usually associated with human intelligence.

What about the capacity to think, and can machines think? Keep in mind
the distinction between thinking and intelligence. Thinking is the facility to
reason, analyze, evaluate, and formulate ideas and concepts. Therefore, not
every being capable of thinking is intelligent. Intelligence is perhaps akin to
efficient and effective thinking.

Many people approach this issue with biases, saying that computers are
made of silicon and power supplies and therefore are not capable of think-
ing. At the other extreme, computers perform much faster than humans and
therefore must be more intelligent than humans. The truth is most likely
somewhere between these two extremes. As we have discussed, different
animal species possess intelligence to varying degrees. However, we are
more interested in a test to ascertain the existence of machine intelligence
than in developing standardized IQ tests for animals. Perhaps Raphael put
it best: artificial intelligence is the science of making machines do things
that would require intelligence if done by man.

Strong AI versus Weak AI
Currently there are two main camp regarding AI. The weak AI approach
is associated with the Massachusetts Institute of Technology, and it views
any system that exhibits intelligent behavior as an example of AI. This camp
focuses on whether a program performs correctly, regardless of whether
the artifact performs its task in the same way humans do. The results of AI
projects in electrical engineering, robotics, and related fields are primarily
concerned with satisfactory performance.

The other approach to AI is called biological plausibility, and it’s associ-
ated with Carnegie-Mellon University. According to this approach, when an
artifact exhibits intelligent behavior, its performance should be based upon
the same methodologies used by humans. For instance, consider a system
capable of hearing: proponents of strong AI might aim to achieve success by
simulating the human hearing system, whereas weak AI proponents would
be concerned merely with the system’s performance. This simulation would
include the equivalents to cochlea, hearing canal, eardrum, and other parts
of the ear, each performing its required tasks in the system.

Introduction to AI • 5

Hence, proponents of weak AI measure the success of the systems that
they build based on their performance alone. They maintain that the raison
d’etre of AI research is to solve difficult problems regardless of how they
are actually solved.

On the other hand, proponents of strong AI are concerned with the
structure of the systems they build. They maintain that by sheer dint of
possessing heuristics, algorithms, and knowledge of AI programs, computers
can possess a sense of consciousness and intelligence. As you know,
Hollywood has produced various movies (e.g., I, Robot and Blade Runner)
that belong to the strong AI camp.

The Turing Test

The previous section posed three questions, and the first two questions
have already been addressed: how do you determine intelligence, and are
animals intelligent? The answer to the second question is not necessarily yes
or no. Some people are smarter than others and some animals are smarter
than others. The question of machine intelligence is equally problematic.

Alan Turing sought to answer the question of intelligence in opera-
tional terms. He wanted to separate functionality (what something does)
from implementation (how something is built). He devised something that’s
called the Turing Test, which is discussed in the next section.

Definition of the Turing Test
Alan Turing proposed two imitation games, in which one person or entity
behaves as if he were another. In the first game, a person (called an interro-
gator) is in a room with a curtain that runs across the center of the room. On
the other side of the curtain is a person, and the interrogator must deter-
mine whether it is a man or a woman. The interrogator (whose gender is
irrelevant) accomplishes this task by asking a series of questions.

This game assumes that the man will perhaps lie in his responses,
but the woman is always truthful. In order that the interrogator cannot
determine gender from voice, communication is via computer rather than
through spoken words. If it is a man on the other side of the curtain, and he
is successful in deceiving the interrogator, then he wins the imitation game.

In Turing’s original format for this test, both a man and a woman were
seated behind a curtain and the interrogator had to identify both correctly.

6 • Artificial Intelligence, Machine Learning, Deep Learning

Turing might have based this test on a game that was popular during this
period, which may even have been the impetus behind his machine intel-
ligence test.

Additional interesting updates regarding the Turing test are discussed
in these two links:

https://futurism.com/the-byte/scientists-invented-new-turing-test

https://theconversation.com/our-turing-test-for-androids-will-judge-
how-lifelike-humanoid-robots-can-be-120696

In case you didn’t already know, Erich Fromm was a well-known soci-
ologist and psychoanalyst in the twentieth century who believed that men
and women are equal but not necessarily the same. For instance, the gen-
ders might differ in their knowledge of colors, flowers, or the amount of
time spent shopping. What does distinguishing a man from a woman have
to do with the question of intelligence? Turing understood that there might
be different types of thinking, and it is important to both understand these
differences and to be tolerant of them.

An Interrogator Test
This second game is more appropriate to the study of AI. Once again, an
interrogator is in a room with a curtain. This time, a computer or a person
is behind the curtain, and the machine plays the role of the male and could
also find it convenient on occasion to lie.

The person, on the other hand, is consistently truthful. The interroga-
tor asks questions and then evaluates the responses to determine whether
she is communicating with a person or a machine. If the computer is suc-
cessful in deceiving the interrogator, it passes the Turing Test and is thereby
considered intelligent.

Heuristics

Heuristics can be very useful, and AI applications often rely on the appli-
cation of heuristics. A heuristic is essentially a “rule of thumb” for solving
a problem. In other words, a heuristic is a set of guidelines that often
works to solve a problem. Contrast a heuristic with an algorithm, which is
a prescribed set of rules to solve a problem and whose output is entirely
predictable.

Introduction to AI • 7

A heuristic is a technique for finding an approximate solution that
can be used when other methods are too time-consuming or too complex
(or both). With a heuristic, a favorable outcome is likely but not guaranteed,
and heuristic methods were especially popular in the early days of AI.

Various heuristics appear in daily life. For example, many people prefer
using heuristics instead of asking for driving directions. For instance, when
exiting a highway at night, sometimes it’s difficult to find the route back to
the main thoroughfare. One heuristic that could prove helpful is to proceed
in the direction with more streetlights whenever they come to a fork in
the road. You might have a favorite ploy for recovering a dropped contact
lens or for finding a parking space in a crowded shopping mall. Both are
examples of heuristics.

AI problems tend to be large and computationally complex, and fre-
quently they cannot be solved via straightforward algorithms. AI problems
and their domains tend to embody a large amount of human expertise,
especially if tackled by strong AI methods. Some types of problems are
better solved using AI, whereas others are more suitable for traditional
computer science approaches involving simple decision-making or exact
computations to produce solutions. Let us consider a few examples:

•	 Medical diagnosis

•	 Shopping using a cash register with barcode scanning

•	 ATMs

•	 Two-person games such as chess and checkers

Medical diagnosis is a field of science that has benefited for many years
from AI-based contributions, particularly through the development of
expert systems. Expert systems are typically built in domains where there
is considerable human expertise and where there exist many rules that are
often of the form: if-condition-then-action. As a trivial example: if you have
a headache, then take two aspirins and call me in the morning.

In particular, expert systems became very popular (and very useful)
because they can store far more rules than humans can hold in their head.
Expert systems are among the most successful AI techniques for produc-
ing results that are comprehensive and effective. In fact, expert systems
can help humans make more accurate decisions (and even “challenge”
incorrect choices).

8 • Artificial Intelligence, Machine Learning, Deep Learning

Genetic Algorithms
One promising paradigm is Darwin’s theory of evolution, which involves
natural selection that occurs in nature at a rate of thousands or millions of
years. By contrast, evolution inside a computer proceeds much faster than
natural selection.

A genetic algorithm is a heuristic that “mimics” the process of natural
selection, which involves selecting the fittest individuals for reproduction to
sire the offspring of the subsequent generation.

Let’s compare and contrast the use of AI with the process of evolution
in the plant and animal world, in which species adapt to their environments
through the genetic operators of natural selection, reproduction, mutation,
and recombination.

Genetic algorithms (GA) are a specific methodology from the gen-
eral field known as evolutionary computation, which is that branch of AI
wherein proposed solutions to a problem adapt much as animal creatures
adapt to their environments in the real world.

In case you’re interested, the following link contains some interesting
details regarding genetic algorithms:

https://en.wikipedia.org/wiki/Genetic_algorithm

Knowledge Representation

The issue of representation becomes important when we consider
AI-related problems. AI systems that acquire and store knowledge in order
to process it and produce intelligent results also need the ability to identify
and represent that knowledge. The choice of a representation is intrinsic to
the nature of problem solving and understanding.

As George Polya (a famous mathematician) remarked, a good repre-
sentation choice is almost as important as the algorithm or solution plan
devised for a particular problem. Good and natural representations facili-
tate fast and comprehensible solutions.

As an example of a representation choice, consider the well-known
Missionaries and Cannibals Problem, where the goal is to transfer three
missionaries and three cannibals from the west bank to the east bank of a
river with a boat. At any point during the transitions from west to east, you

Introduction to AI • 9

can see the solution path by selecting an appropriate representation. There
are two constraints in this problem: the boat can hold no more than two
people at any time and the cannibals on any bank can never outnumber the
number of missionaries.

A solution for this problem (as well as the related “jealous husbands”
problem) is here:

https:/ /en.wikipedia.org/wiki/Missionaries_and_cannibals_
problem#targetText=The%20missionaries%20and%20cannibals%20
problem,an%20example%20of%20problem%20representation

Logic-based Solutions
AI researchers have used a logic-based approach for knowledge representa-
tion and problem-solving technique. A seminal example of using logic for
this purpose is Terry Winograd’s Blocks World (1972), in which a robot arm
interacts with blocks on a tabletop. This program encompassed issues of
language understanding and scene analysis as well as other aspects of AI.

In addition, production rules and production systems are used to con-
struct many successful expert systems. The appeal of production rules and
expert systems is based on the feasibility of representing heuristics clearly
and concisely. Thousands of expert systems have been built incorporating
this methodology.

Semantic Networks
Semantic networks are another graphical, though complex, representa-
tion of knowledge. Semantic networks precede object-oriented languages,
which use inheritance (wherein an object from a particular class inherits
many of the properties of a superclass).

Much of the work employing semantic networks has focused on repre-
senting the knowledge and structure of language. Examples include Stuart
Shapiro SNePS (Semantic Net Processing System) and the work of Roger
Schank in natural language processing.

Additional alternatives exist for knowledge representation: graphical
approaches offer greater appeal to the senses, such as vision, space, and
motion. Possibly the earliest graphical approaches were state-space repre-
sentations, which display all the possible states of a system.

10 • Artificial Intelligence, Machine Learning, Deep Learning

AI and Games

Since the middle of the twentieth century and the advent of comput-
ers, significant progress in computer science and proficiency in pro-
gramming techniques was acquired through the challenges of training
computers to play and master complex board games. Some examples of
games whose play by computer have benefitted from the application of
AI insights and methodologies have included chess, checkers, Go, and
Othello.

Games have spurred the development and interest in AI. Early efforts
were highlighted by the efforts of Arthur Samuel in 1959 on the game of
checkers. His program was based on tables of fifty heuristics and was used
to play against different versions of itself. The losing program in a series
of matches would adopt the heuristics of the winning program. It played
strong checkers, but never mastered the game.

People have been trying to train machines to play strong chess for sev-
eral centuries. The infatuation with chess machines probably stems from
the generally accepted view that it requires intelligence to play chess well.

In 1959, Newell, Simon, and Shaw developed the first real chess
program, which followed the Shannon-Turing Paradigm. Richard
Greenblatt’s program was the first to play club-level chess. Computer
chess programs improved steadily in the 1970s until, by the end of that
decade, they reached the Expert level (equivalent to the top 1% of chess
tournament players).

In 1983, Ken Thompson’s Belle was the first program to officially
achieve the Master level. This was followed by the success of Hitech, from
Carnegie-Mellon University, which successfully accomplished a major
milestone as the first Senior Master (over 2400-rated) program. Shortly
thereafter the program Deep Thought (also from Carnegie-Mellon) was
developed and became the first program capable of beating Grandmasters
on a regular basis.

Deep Thought evolved into Deep Blue when IBM took over the project
in the 1990s, and Deep Blue played a six-game match with World Cham-
pion Garry Kasparov, who saved mankind by winning a match in Philadel-
phia in 1996. In 1997, however, against Deeper Blue, the successor of Deep
Blue, Kasparov lost, and the chess world was shaken.

Introduction to AI • 11

In subsequent six-game matches against Kasparov, Kramnik, and other
World Championship-level players, programs have fared well, but these
were not World Championship Matches. Although it is generally agreed
that these programs might still be slightly inferior to the best human play-
ers, most would be willing to concede that top programs play chess indis-
tinguishably from the most accomplished humans (if one is thinking of the
Turing Test).

In 1989, Jonathan Schaeffer, at the University of Alberta in Edmon-
ton, began his long-term goal of conquering the game of checkers with
his program Chinook. In a forty-game match in 1992 against longtime
Checkers World Champion Marion Tinsley, Chinook lost four‚ with
thirty-four draws. In 1994 their match was tied after six games, when
Tinsley had to forfeit because of health reasons. Since that time, Schaef-
fer and his team have been working to solve checkers from both the
end of the game (all eight-pieces and fewer endings) as well as from the
beginning.

Other games that use AI techniques include backgammon, poker,
bridge, Othello, and Go (often called the new drosophila).

The Success of AlphaZero
Google created AlphaZero, which is an AI-based software program that
used self-play to learn how to play games. AlphaZero is the successor to
Alpha Go that defeated the world’s best human Go player in 2016. AlphaZ-
ero easily defeated Alpha Go in the game of Go.

Moreover, after learning the rules of chess, AlphaZero trained itself
(again using self-play) and within a single day became the top chess player
in the world. AlphaZero can defeat any human chess player as well as any
chess-playing computer program.

The really interesting point is that AlphaZero developed its own strat-
egy for playing chess, which not only differs from humans, but also involves
chess moves that are considered counterintuitive.

Unfortunately, AlphaZero is unable to tell us how it developed a strat-
egy that is superior to any previously developed approach for playing chess.
Since AlphaZero is 100% self-taught and is the top-ranked chess player in
the world, does AlphaZero qualify as intelligent?

12 • Artificial Intelligence, Machine Learning, Deep Learning

Expert Systems

Expert systems are one of the areas that have been investigated for almost
as long as AI itself has existed. It is one discipline that AI can claim as a
great success. Expert systems have many characteristics that make them
desirable for AI research and development. These include separation of
the knowledge base from the inference engine, being more than the sum of
any or all of their experts, relationship of knowledge to search techniques,
reasoning, and uncertainty.

One of the earliest and most often referenced systems was heuristic
DENDRAL. Its purpose was to identify unknown chemical compounds
on the basis of their mass spectrographs. DENDRAL was developed at
Stanford University with the goal of performing a chemical analysis of the
Martian soil. It was one of the first systems to illustrate the feasibility of
encoding domain-expert knowledge in a particular discipline.

Perhaps the most famous expert system is MYCIN, also from Stanford
University (1984). Mycin was developed to facilitate the investigation of
infectious blood diseases. Even more important than its domain, however,
was the example that Mycin established for the design of all subsequent
knowledge-based systems. It had over 400 rules, which were eventually
used to provide a training dialogue for residents at the Stanford hospital.

In the 1970s, PROSPECTOR (also at Stanford University) was
developed for mineral exploration. PROSPECTOR was also an early
and valuable example of the use of inference networks.

Other famous and successful systems that followed in the 1970s were
XCON (with some 10,000 rules), which was developed to help configure
electrical circuit boards on VAX computers; GUIDON, a tutoring system
that was an offshoot of Mycin; TEIRESIAS, a knowledge acquisition tool
for Mycin; and HEARSAY I and II, the premier examples of speech under-
standing using the Blackboard Architecture.

The AM (Artificial Mathematician) system of Doug Lenat was another
important result of research and development efforts in the 1970s, as well
as the Dempster-Schafer Theory for reasoning under uncertainty, together
with Zadeh’s work in fuzzy logic.

Since the 1980s, thousands of expert systems have been developed in
such areas as configuration, diagnosis, instruction, monitoring, planning,

Introduction to AI • 13

prognosis, remedy, and control. Today, in addition to stand-alone expert sys-
tems, many expert systems have been embedded into other software systems
for control purposes, including those in medical equipment and automobiles
(for example, when should traction control engage in an automobile?).

In addition, many expert systems shells, such as Emycin, OPS, EXSYS,
and CLIPS, have become industry standards. Many knowledge representa-
tion languages have also been developed. Today, numerous expert systems
work behind the scenes to enhance day-to-day experiences, such as the
online shopping cart.

Neural Computing

McCulloch and Pitts conducted early research in neural computing because
they were trying to understand the behavior of animal nervous systems.
Their model of artificial neural networks (ANN) had one serious drawback:
it did not include a mechanism for learning.

Frank Rosenblatt developed an iterative algorithm known as the Per-
ceptron Learning Rule for finding the appropriate weights in a single-lay-
ered network (a network in which all neurons are directly connected to
inputs). Research in this burgeoning discipline might have been severely
hindered by the pronouncement by Minsky and Papert that certain prob-
lems could not be solved by single-layer perceptrons, such as the exclu-
sive OR (XOR) function. Federal funding for neural network research was
severely curtailed immediately after this proclamation.

The field witnessed a second flurry of activity in the early 1980s with
the work of Hopfield. His asynchronous network model (Hopfield net-
works) used an energy function to approximate solutions to NP-complete
problems.

The mid-1980s also witnessed the discovery of back propagation (usu-
ally called backprop), a learning algorithm appropriate for multilayered
networks. Back propagation-based networks are routinely employed to pre-
dict Dow Jones averages and to read printed material in optical character
recognition systems.

Neural networks are also used in control systems. ALVINN was a
project at Carnegie Mellon University in which a back propagation net-
work senses the highway and assists in the steering of a Navlab vehicle.

14 • Artificial Intelligence, Machine Learning, Deep Learning

One immediate application of this work was to warn a driver impaired by
lack of sleep, excess of alcohol, or other conditions whenever the vehicle
strayed from its highway lane. Looking toward the future, it is hoped that,
someday, similar systems will drive vehicles so that we are free to read
newspapers and talk on our cell phones to take advantage of the extra
free time.

Evolutionary Computation

Genetic algorithms are more generally classified as evolutionary computa-
tion. Genetic algorithms use probability and parallelism to solve combina-
torial problems (also called optimization problems), which is an approach
developed by John Holland.

However, evolutionary computation is not solely concerned with opti-
mization problems. Rodney Brooks was formerly the director of the MIT
Computer Science and AI Laboratory. His approach to the successful cre-
ation of a human-level Artificial Intelligence, which he aptly cites as the
holy grail of AI research, renounces reliance on the symbol-based approach.
This latter approach relies upon the use of heuristics and representational
paradigms.

In his view, intelligent systems can be designed in multiple layers in
which higher leveled layers rely upon those layers beneath them. For
example, if you wanted to build a robot capable of avoiding obstacles, the
obstacle avoidance routine would be built upon a lower layer, which would
merely be responsible for robotic locomotion.

Brooks maintains that intelligence emerges through the interaction
of an agent with its environment. He is perhaps most well known for the
insectlike robots built in his lab that embody this philosophy of intelligence,
wherein a community of autonomous robots interact with their environ-
ment and with each other.

Natural Language Processing

If we wish to build intelligent systems, it seems natural to ask that our sys-
tems possess a language-understanding facility. This is an axiom that was
well understood by many early practitioners. Eliza is one well-known early
application program, which was developed by Joseph Weizenbaum‚ an MIT

Introduction to AI • 15

computer scientist who worked with Kenneth Colby (a Stanford University
psychiatrist).

Eliza was intended to imitate the role played by a psychiatrist of the
Carl Rogers School. For instance, if the user typed in “I feel tired,” Eliza
was a back propagation application that learned the correct pronunciation
for English text. It was claimed to pronounce English sounds with 95%
accuracy. Obviously, problems arose because of inconsistencies inherent in
the pronunciation of English words, such as rough and through, and the
pronunciation of words derived from other languages, such as pizza and
fizzy.

Terry Winograd wrote another well-known program that was named
after the second set of these letters of the pair ETAOIN SHRDLU, which
are the most frequently used letters in the English language on linotype
machines. Winograd’s program might respond with, “You say you feel tired.
Tell me more.” The “conversation” would continue in this manner, with
the machine contributing little or nothing in terms of originality to the dia-
logue. A live psychoanalyst might behave in this fashion in the hope that
the patient would discover their true (perhaps hidden) feelings and frustra-
tions. Meanwhile, Eliza is merely using pattern matching to feign human-
like interaction.

Curiously, Weizenbaum was disturbed by the avid interest that his stu-
dents (and the public in general) took in interacting with Eliza, even though
they were fully aware that Eliza was only a program. Meanwhile, Colby
remained dedicated to the project and went on to author a successful pro-
gram called DOCTOR.

Although Eliza has contributed little to natural language processing
(NLP), it is software that pretends to possess what is perhaps our last ves-
tige of specialness‚ our ability to feel emotions. What will happen when the
line between a human and machine (example: android) becomes less clear‚
perhaps in some fifty years‚ and these androids will be less mortal and more
like immortals?

More recently, several MIT robots, including Cog, Kismet, and
Paro, have been developed with the uncanny ability to feign human
emotions and evoke emotional responses from those with whom they
interact. Turkle has studied the relationships that children and older
persons in nursing homes have formed with these robots; relationships
that involve genuine emotion and caring. Turkle speaks of the need to

16 • Artificial Intelligence, Machine Learning, Deep Learning

perhaps redefine the word relationship to include the encounters that
people have with these so-called relational artifacts. She remains confi-
dent, however, that such relationships will never replace the bonds that
can only occur between human beings who must confront their mortal-
ity on a daily basis.

Winograd’s Blocks World involved a robot arm that was able to achieve
various goals. For example, if SHRDLU was asked to lift a red block upon
which there was a small green block, it knew that it must remove the green
block before it could lift the red one. Unlike Eliza, SHRDLU was able to
understand English commands and respond to them appropriately.

HEARSAY, an ambitious program in speech recognition, employed a
blackboard architecture wherein independent knowledge sources (agents)
for various components of language, such as phonetics and phrases, could
freely communicate. Both syntax and semantics were used to prune improb-
able word combinations.

The HWIM (pronounced “whim” and short for Hear What I Mean)
Project used augmented transition networks to understand spoken lan-
guage. It had a vocabulary of 1,000 words dealing with travel budget man-
agement. Perhaps this project was too ambitious in scope because it did not
perform as well as HEARSAY II.

Parsing played an integral part in the success of these natural language
programs. SHRDLU employed a context-free grammar to help parse Eng-
lish commands. Context-free grammars provide a syntactic structure for
dealing with strings of symbols. However, to effectively process natural lan-
guages, semantics must be considered as well.

A parse tree provides the relationship between the words that compose
a sentence. For example, many sentences can be broken down into both a
subject and a predicate. Subjects can be broken down perhaps into a noun
phrase followed by a prepositional phrase and so on. Essentially, a parse
tree gives the semantics that is the meaning of the sentence.

Each of the these early language processing systems employed world
knowledge to some extent. However, in the late 1980s the greatest stumbling
block for progress in NLP was the problem of common sense knowledge.
For example, although many successful programs were built in particular
areas of NLP and AI, these were often criticized as microworlds, meaning
that the programs did not have general, real-world knowledge or common

Introduction to AI • 17

sense. For example, a program might know a lot about a particular scenario,
such as ordering food in a restaurant, but it would have no knowledge of
whether the waiter or waitress was alive or whether they would ordinarily
be wearing any clothing. During the past twenty-five years, Douglas Lenat
of MCC in Austin, Texas, has been building the largest repository of com-
mon-sense knowledge to address this issue.

NLP has undergone some interesting developments. After its initial
stage (as described earlier in this section), NLP relied on statistics to gov-
ern the parse trees for sentences. Charniak describes how context-free
grammars (CFGs) can be augmented such that each rule has an associated
probability. These associated probabilities could be taken from the Penn
Treebank, which contains more than one million words of English text that
have been parsed manually, mostly from the Wall Street Journal. Charniak
demonstrated how this statistical approach successfully obtained a parse for
a sentence from the front page of the New York Times (no trivial feat, even
for most humans).

The next step in the evolution of NLP involves deep-learning archi-
tectures called RNNs, LSTMs, and bidirectional LSTMs, which are dis-
cussed in Chapter 5. The most recent architecture is called a transformer,
which was developed by Google in 2017. BERT is based on transformers
(as well as “attention”) and is one of the most powerful open-source systems
currently available for solving NLP tasks. Yet another approach for NLP
involves Deep Reinforcement Learning (discussed briefly in Chapter 6).

Bioinformatics

Bioinformatics is the nascent discipline that concerns the application of the
algorithms and techniques of computer science to molecular biology. It is
mainly concerned with the management and analysis of biological data. In
structural genomics, one attempts to specify a structure for each observed
protein. Automated discovery and data mining could help in this pursuit.

Juristica and Glasgow demonstrate how case-based reasoning could
assist in the discovery of the representative structure for each pro-
tein. In their 2004 survey article in the AAAI special issue on AI and
Bioinformatics, Glasgow, Jurisica, and Rost note: “Possibly the most
rapidly growing area of recent activity in bioinformatics is the analysis
of microarray data.”

18 • Artificial Intelligence, Machine Learning, Deep Learning

Microbiologists are overwhelmed with both the variety and quantity
of data available to them. They are being asked to comprehend molecu-
lar sequence, structure, and data based solely on huge databases. Many
researchers believe that AI techniques from knowledge representation and
machine learning will prove beneficial as well.

The next portion of this chapter provides a quick introduction to the
major parts of AI, which include machine learning and deep learning.

Major Parts of AI

The subsequent chapters in this book delve into various important parts of
AI, which include:

•	 ML (Machine Learning)

•	 DL (Deep Learning)

•	 NLP (Natural Language Processing)

•	 RL (Reinforcement Learning)

•	 DRL (Deep Reinforcement Learning)

Traditional AI (twentieth century) is based on collections of rules, which
led to expert systems in the 1980s. Traditional AI also involved LISP, which
was created by John McCarthy (one of the members of the first official AI
meeting in 1956).

Traditional AI is primarily a set of rules in conjunction with conditional
logic, which is also true for the powerful expert systems that were devel-
oped in the 1980s. However, a rule-based system for making decisions can
involve thousands of rules. Even simple objects require many rules: try to
come up with a set of rules that define a chair, a table, or even just an apple.
Traditional AI has some significant limitations, mainly because of the num-
ber of rules that are required.

Machine Learning
Around the middle of the twentieth century machine learning (a subset
of AI) relied primarily on data to optimize and “learn” how to perform
tasks, often accompanied by new or improved algorithms, such as linear
regression, k-NN, decision trees, random forests, and SVMs; with the
exception of linear regression, all the other algorithms are classifiers.

Introduction to AI • 19

As you will see, machine learning is a diverse and vibrant field that
includes other subfields.

Since data (instead of rules) is so important in machine learning, it’s
typically one of the following types:

•	 Supervised learning (lots of labeled data)

•	 Semi-supervised learning (lots of partially labeled data)

•	 Unsupervised learning: lots of data, clustering

•	 Reinforcement learning: trial, feedback, and improvement

According to Andrew Ng (the cofounder of Coursera), “99% of all machine
learning is supervised.”

In addition to categorizing data, machine learning algorithms can be
categorized into the following major types:

•	 Classifiers (for images, spam, fraud, etc.)

•	 Regression (stock price, housing price, etc.)

•	 Clustering (unsupervised classifiers)

Deep Learning
One important subfield of machine learning is deep learning, which also
has its roots in the middle of the twentieth century. Deep-learning archi-
tectures rely on the perceptron as the basis of neural networks, often involv-
ing large or massive datasets. Such architectures also involve heuristics and
empirical results. Nowadays deep learning can surpass humans for some
image classification.

While machine learning involves MLPs (multilayer perceptrons), deep
learning introduces deep neural networks, with new algorithms and new
architectures (e.g., convolutional neural networks, RNNs, and LSTMs).

Reinforcement Learning
Reinforcement learning (also a subset of machine learning) involves trial-
and-error in order to maximize a reward for a so-called agent. Deep rein-
forcement learning combines the strengths of deep learning with reinforce-
ment learning. In particular, the agent in reinforcement learning is replaced
with a neural network.

20 • Artificial Intelligence, Machine Learning, Deep Learning

Deep reinforcement learning has applications in many diverse fields,
and three of the most popular are:

•	 Games (Go, Chess, etc.)

•	 Robotics

•	 NLP

Some well-known and successful examples of the use of reinforcement
learning in games include:

•	 Alpha Go (hybrid RL)

•	 Alpha Zero (complete RL)

•	 Often involve Greedy algorithms

•	 Deep RL: Combines Deep Learning and RL

Robotics
Robots have entered our personal and professional lives in myriad ways,
including:

•	 Surgery (assisting surgeons)

•	 Radiology (detecting cancer)

•	 Drug mismanagement

•	 Comparative theories of religion

•	 Law/real estate/military/science

•	 Comedy (including stand-up)

•	 Music (conducting orchestras)

•	 Restaurants (gourmet meals)

•	 Coordinated dancing teams

•	 Many other fields

Robot truck drivers are displacing jobs, but they also have advantages: their
only cost is the upkeep of the machinery. In addition, robots aren’t distracted
the way that humans are, they don’t engage in activities that contribute to acci-
dents, and they don’t require salaries or any sort of time off. Yet despite the sur-
prising achievements of robots, Star Trek’s character Data is still just a dream.

Introduction to AI • 21

NLP is an area of computer science and AI that involves interaction
between computers and human languages. In the early days, NLP involved
rule-based techniques or statistical techniques. NLP and machine learn-
ing can process/analyze volumes of natural language data, where computer
programs perform that processing.

There are many NLP tasks that are solved with machine learning tech-
niques. Some areas of interest that involve NLP include:

•	 Translating between languages

•	 Finding meaningful information from text

•	 Summarizing documents

•	 Detecting hate speech

Despite all the advances and advantages of machine learning, et al., there
are issues that need to be resolved. One issue is occupational bias: an AI
system inferred that white males were doctors and white females were
housewives. Another issue involves detecting gender bias. For example, in
Wikipedia (circa 2018) 18% of its biographies are of women, while 84% to
90% of Wikipedia editors are male.

Yet another issue, analyzed in the following article, involves data bias
versus algorithmic bias:

https://www.forbes.com/sites/charlestowersclark/2018/09/19/can-we-
make-artificial-intelligence-accountable

Finally, there is the question of the interaction of AI and ethics, which
includes some thought-provoking questions (such as unemployment and robot
rights). The following article contains an extensive list of ethical questions:

https://www.weforum.org/agenda/2016/10/top-10-ethical-issues-in-
artificial-intelligence/

Code Samples

The companion disc contains the following files:

•	 RubiksCube.py

•	 Board.java

•	 Search.java

22 • Artificial Intelligence, Machine Learning, Deep Learning

The Python file is a solution for Rubik’s Cube, and the two Java files are for
the solution to the Red Donkey problem.

In order to run a Java program, download the Java Runtime Environ-
ment (JRE) here:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

In order to compile and run a Java program, download the Java SDK
here:

https://www.java.com/en/

If you do not have Python installed, the Python-related download is
here:

http://www.python.org/getit/

If you do not have Java installed, you can find online for instructions
doing so, as well as instructions for compiling and launching Java code.

Summary

In this chapter, you learned about AI, strong versus weak AI, and the Turing
Test for intelligence. Then you learned about heuristics and their useful-
ness in algorithms, followed by genetic algorithms, and knowledge repre-
sentation. Next you saw how AI was initially applied to diverse areas such as
games and expert systems.

You also learned about the early approaches to neural computing, evo-
lutionary computation, NLP, and bioinformatics. In addition, you got an
introduction to the major subfields of AI, which include natural language
processing, machine learning, deep learning, reinforcement learning, and
deep reinforcement learning.

C H A P T E R 2
INTRODUCTION TO
MACHINE LEARNING

This chapter introduces numerous concepts in machine learning, such as
feature selection, feature engineering, data cleaning, training sets, and test
sets.

The first part of this chapter briefly discusses machine learning and the
sequence of steps that are typically required in order to prepare a dataset.
These steps include “feature selection” or “feature extraction” that can be
performed using various algorithms.

The second section describes the types of data that you can encounter,
issues that can arise with the data in datasets, and how to rectify them. You
will also learn about the difference between “hold out” and “k-fold” when
you perform the training step.

The third part of this chapter briefly discusses the basic concepts
involved in linear regression. Although linear regression was developed
more than 200 years ago, this technique is still one of the “core” techniques
for solving (albeit simple) problems in statistics and machine learning. In
fact, the technique known as “Mean Squared Error” (MSE) for finding a
best-fitting line for data points in a 2D plane (or a hyperplane for higher
dimensions) is implemented in Python and TensorFlow in order to mini-
mize so-called “cost” functions that are discussed later.

The fourth section in this chapter contains additional code samples
involving linear regression tasks using standard techniques in NumPy.
Hence, if you are comfortable with this topic, you can probably skim quickly

24 • Artificial Intelligence, Machine Learning, Deep Learning

through the first two sections of this chapter. The third section shows you
how to solve linear regression using Keras.

One point to keep in mind is that some algorithms are mentioned with-
out delving into details about them. For instance, the section pertaining
to supervised learning contains a list of algorithms that appear later in the
chapter in the section that pertains to classification algorithms. The algo-
rithms that are displayed in bold in a list are the algorithms that are of
greater interest for this book. In some cases the algorithms are discussed
in greater detail in the next chapter; otherwise, you can perform an online
search for additional information about the algorithms that are not dis-
cussed in detail in this book.

What is Machine Learning?

In high level terms, machine learning is a subset of AI that can solve tasks
that are infeasible or too cumbersome with “traditional” programming
languages. A spam filter for email is an early example of machine learning.
Machine learning generally supersedes the accuracy of older algorithms.

Despite the variety of machine learning algorithms, the data is arguably
more important than the selected algorithm. Many issues can arise with
data, such as insufficient data, poor quality of data, incorrect data, missing
data, irrelevant data, duplicate data values, and so forth. Later in this chap-
ter you will see techniques that address many of these data-related issues.

If you are unfamiliar with machine learning terminology, a dataset is
a collection of data values, which can be in the form of a CSV file or a
spreadsheet. Each column is called a feature, and each row is a datapoint
that contains a set of specific values for each feature. If a dataset contains
information about customers, then each row pertains to a specific customer.

Types of Machine Learning
There are three main types of machine learning (combinations of these are
also possible) that you will encounter:

•	 Supervised learning

•	 Unsupervised learning

•	 Semi-supervised learning

Introduction to Machine Learning • 25

Supervised learning means that the datapoints in a dataset have a label that
identifies its contents. For example, the MNIST dataset contains 28x28 PNG
files, each of which contains a single hand-drawn digit (i.e. 0 through 9
inclusive). Every image with the digit 0 has the label 0; every image with
the digit 1 has the label 1; all other images are labeled according to the digit
that is displayed in those images.

As another example, the columns in the Titanic dataset are features
about passengers, such as their gender, the cabin class, the price of
their ticket, whether or not the passenger survived, and so forth. Each
row contains information about a single passenger, including the value
1 if the passenger survived. The MNIST dataset and the Titanic data-
set involve classification tasks: the goal is to train a model based on a
training dataset and then predict the class of each row in a test
dataset.

In general, the datasets for classification tasks have a small number of
possible values: one of nine digits in the range of 0 through 9, one of four
animals (dog, cat, horse, giraffe), one of two values (survived versus per-
ished, purchased versus not purchased). As a rule of thumb, if the number
of outcomes can be displayed “reasonably well” in a drop-down list, then it’s
probably a classification task.

In the case of a dataset that contains real estate data, each row contains
information about a specific house, such as the number of bedrooms, the
square feet of the house, the number of bathrooms, the price of the house,
and so forth. In this dataset the price of the house is the label for each row.
Notice that the range of possible prices is too large to fit “reasonably well”
in a drop-down list. A real estate dataset involves a regression task: the goal
is to train a model based on a training dataset and then predict the price of
each house in a test dataset.

Unsupervised learning involves unlabeled data, which is typically the
case for clustering algorithms (discussed later). Some important unsuper-
vised learning algorithms that involve clustering are listed below:

•	 k-Means

•	 Hierarchical Cluster Analysis (HCA)

•	 Expectation Maximization

26 • Artificial Intelligence, Machine Learning, Deep Learning

Some important unsupervised learning algorithms that involve dimen-
sionality reduction (discussed in more detail later) are listed below:

•	 PCA (Principal Component Analysis)

•	 Kernel PCA

•	 LLE (Locally Linear Embedding)

•	 t-SNE (t-distributed Stochastic Neighbor Embedding)

There is one more very important unsupervised task called anomaly
detection. This task is relevant for fraud detection and detecting outliers
(discussed later in more detail).

Semi-supervised learning is a combination of supervised and unsu-
pervised learning: some datapoints are labeled and some are unlabeled.
One technique involves using the labeled data in order to classify (i.e.,
label) the unlabeled data, after which you can apply a classification
algorithm.

Types of Machine Learning Algorithms

There are three main types of machine learning algorithms:

•	 Regression (ex: linear regression)

•	 Classification (ex: k-Nearest-Neighbor)

•	 Clustering (ex: kMeans)

Regression is a supervised learning technique to predict numerical quanti-
ties. An example of a regression task is predicting the value of a particular
stock. Note that this task is different from predicting whether the value of
a particular stock will increase or decrease tomorrow (or some other future
time period). Another example of a regression task involves predicting the
cost of a house in a real estate dataset. Both of these tasks are examples of
a regression task.

Regression algorithms in machine learning include linear regression
and generalized linear regression (also called multivariate analysis in tradi-
tional statistics).

Classification is also a supervised learning technique, but it’s for pre-
dicting categorical quantities. An example of a classification task is detecting

Introduction to Machine Learning • 27

the occurrence of spam, fraud, or determining the digit in a PNG file (such
as the MNIST dataset). In this case, the data is already labeled, so you can
compare the prediction with the label that was assigned to the given PNG.

Classification algorithms in machine learning include the following list
of algorithms (they are discussed in greater detail in the next chapter):

•	 Decision Trees (a single tree)

•	 Random Forests (multiple trees)

•	 kNN (k Nearest Neighbor)

•	 Logistic regression (despite its name)

•	 Naïve Bayes

•	 SVM (Support Vector Machines)

Some machine learning algorithms (such as SVMs, random forests, and
kNN) support regression as well as classification. In the case of SVMs, the
scikit-learn implementation of this algorithm provides two APIs: SVC for
classification and SVR for regression.

Each of the preceding algorithms involves a model that is trained on a
dataset, after which the model is used to make a prediction. By contrast, a
random forest consists of multiple independent trees (the number is speci-
fied by you), and each tree makes a prediction regarding the value of a
feature. If the feature is numeric, take the mean or the mode (or perform
some other calculation) in order to determine the “final” prediction. If the
feature is categorical, use the mode (i.e., the most frequently occurring
class) as the result; in the case of a tie you can select one of them in a ran-
dom fashion.

Incidentally, the following link contains more information regarding
the kNN algorithm for classification as well as regression:

http://saedsayad.com/k_nearest_neighbors_reg.htm

Clustering is an unsupervised learning technique for grouping similar
data together. Clustering algorithms put data points in different clusters
without knowing the nature of the data points. After the data has been
separated into different clusters, you can use the SVM (Support Vector
Machine) algorithm to perform classification.

28 • Artificial Intelligence, Machine Learning, Deep Learning

Clustering algorithms in machine learning include the following (some
of which are variations of each other):

•	 k-Means

•	 Meanshift

•	 Hierarchical Cluster Analysis (HCA)

•	 Expectation Maximization

Keep in mind the following points. First, the value of k in k-Means is a
hyper parameter, and it’s usually an odd number to avoid ties between
two classes. Next, the meanshift algorithm is a variation of the k-Means
algorithm that does not require you to specify a value for k. In fact, the
meanshift algorithm determines the optimal number of clusters.
However, this algorithm does not scale well for large datasets.

Machine Learning Tasks
Unless you have a dataset that has already been sanitized, you need to
examine the data in a dataset to make sure that it’s in a suitable condition.
The data preparation phase involves 1) examining the rows (“data clean-
ing”) to ensure that they contain valid data (which might require domain-
specific knowledge), and 2) examining the columns (feature selection or
feature extraction) to determine if you can retain only the most important
columns.

A high-level list of the sequence of machine learning tasks (some of
which might not be required) is shown below:

•	 Obtain a dataset

•	 Data cleaning

•	 Feature selection

•	 Dimensionality reduction

•	 Algorithm selection

•	 Train-versus-test data

•	 Training a model

•	 Testing a model

Introduction to Machine Learning • 29

•	 Fine-tuning a model

•	 Obtain metrics for the model

First, you obviously need to obtain a dataset for your task. In the ideal sce-
nario, this dataset already exists; otherwise, you need to cull the data from
one or more data sources (e.g., a CSV file, a relational database, a no-SQL
database, a Web service, and so forth).

Second, you need to perform data cleaning, which you can do via the
following techniques:

•	 Missing Value Ratio

•	 Low Variance Filter

•	 High Correlation Filter

In general, data cleaning involves checking the data values in a dataset in
order to resolve one or more of the following:

•	 Fix incorrect values

•	 Resolve duplicate values

•	 Resolve missing values

•	 Decide what to do with outliers

Use the Missing Value Ratio technique if the dataset has too many missing
values. In extreme cases, you might be able to drop features with a large
number of missing values. Use the Low Variance filter technique to identify
and drop features with constant values from the dataset. Use the High Cor-
relation filter technique to find highly correlated features, which increase
multicollinearity in the dataset: such features can be removed from a data-
set (but check with your domain expert before doing so).

Depending on your background and the nature of the dataset, you
might need to work with a domain expert, which is a person who has a deep
understanding of the contents of the dataset.

For example, you can use a statistical value (mean, mode, and so forth) to
replace incorrect values with suitable values. Duplicate values can be handled
in a similar fashion. You can replace missing numeric values with zero, the min-
imum, the mean, the mode, or the maximum value in a numeric column. You
can replace missing categorical values with the mode of the categorical column.

30 • Artificial Intelligence, Machine Learning, Deep Learning

If a row in a dataset contains a value that is an outlier, you have three
choices:

•	 Delete the row

•	 Keep the row

•	 Replace the outlier with some other value (mean?)

When a dataset contains an outlier, you need to make a decision based on
domain knowledge that is specific to the given dataset.

Suppose that a dataset contains stock-related information. As you know,
there was a stock market crash in 1929, which you can view as an outlier.
Such an occurrence is rare, but it can contain meaningful information.
Incidentally, the source of wealth for some families in the 20th century was
based on buying massive amounts of stock are very low prices during the
Great Depression.

Feature Engineering, Selection, and Extraction

In addition to creating a dataset and “cleaning” its values, you also need to
examine the features in that dataset to determine whether or not you can
reduce the dimensionality (i.e., the number of columns) of the dataset. The
process for doing so involves three main techniques:

•	 Feature engineering

•	 Feature selection

•	 Feature extraction (aka feature projection)

Feature engineering is the process of determining a new set of features that
are based on a combination of existing features in order to create a mean-
ingful dataset for a given task. Domain expertise is often required for this
process, even in cases of relatively simple datasets. Feature engineering can
be tedious and expensive, and in some cases you might consider using auto-
mated feature learning. After you have created a dataset, it’s a good idea to
perform feature selection or feature extraction (or both) to ensure that you
have a high quality dataset.

Feature selection is also called variable selection, attribute selection
or variable subset selection. Feature selection involves selecting the sub-
set of relevant features in a dataset. In essence, feature selection involves

Introduction to Machine Learning • 31

selecting the “most important” features in a dataset, which provides these
advantages:

•	 Reduced training time

•	 Simpler models are easier to interpret

•	 Avoidance of the curse of dimensionality

•	 Better generalization due to a reduction in overfitting (“reduction of
variance”)

Feature selection techniques are often used in domains where there are
many features and comparatively few samples (or data points). Keep in
mind that a low-value feature can be redundant or irrelevant, which are
two different concepts. For instance, a relevant feature might be redundant
when it’s combined with another strongly correlated feature.

Feature selection can involve three strategies: the filter strategy (e.g.
information gain), the wrapper strategy (e.g. search guided by accuracy),
and the embedded strategy (prediction errors are used to determine
whether features are included or excluded while developing a model). One
other interesting point is that feature selection can also be useful for regres-
sion as well as classification tasks.

Feature extraction creates new features from functions that produce
combinations of the original features. By contrast, feature selection involves
determining a subset of the existing features.

Feature selection and feature extraction both result in dimensionality
reduction for a given dataset, which is the topic of the next section.

Dimensionality Reduction

Dimensionality Reduction refers to algorithms that reduce the number of
features in a dataset: hence the term “dimensionality reduction.” As you
will see, there are many techniques available, and they involve either fea-
ture selection or feature extraction.

Algorithms that use feature selection to perform dimensionality reduc-
tion are listed here:

•	 Backward Feature Elimination

•	 Forward Feature Selection

32 • Artificial Intelligence, Machine Learning, Deep Learning

•	 Factor Analysis

•	 Independent Component Analysis

Algorithms that use feature extraction to perform dimensionality reduction
are listed here:

•	 Principal component analysis (PCA)

•	 Non-negative matrix factorization (NMF)

•	 Kernel PCA

•	 Graph-based kernel PCA

•	 Linear discriminant analysis (LDA)

•	 Generalized discriminant analysis (GDA)

•	 Autoencoder

The following algorithms combine feature extraction and dimensionality
reduction:

•	 Principal component analysis (PCA)

•	 Linear discriminant analysis (LDA)

•	 Canonical correlation analysis (CCA)

•	 Non-negative matrix factorization (NMF)

These algorithms can be used during a pre-processing step before using
clustering or some other algorithm (such as kNN) on a dataset.

One other group of algorithms involves methods based on projections,
which includes t-Distributed Stochastic Neighbor Embedding (t-SNE) as
well as UMAP.

This chapter discusses PCA, and you can perform an online search to
find more information about the other algorithms.

PCA
Principal Components are new components that are linear combinations of
the initial variables in a dataset. In addition, these components are uncor-
related and the most meaningful or important information is contained in
these new components.

Introduction to Machine Learning • 33

There are two advantages to PCA: 1) reduced computation time due to
far fewer features and 2) the ability to graph the components when there are
at most three components. If you have four or five components, you won’t be
able to display them visually, but you could select subsets of three components
for visualization, and perhaps gain some additional insight into the dataset.

PCA uses the variance as a measure of information: the higher the variance,
the more important the component. In fact, just to jump ahead slightly: PCA
determines the eigenvalues and eigenvectors of a covariance matrix (discussed
later), and constructs a new matrix whose columns are eigenvectors, ordered
from left-to-right based on the maximum eigenvalue in the left-most column,
decreasing until the right-most eigenvector also has the smallest eigenvalue.

Covariance Matrix
As a reminder, the statistical quantity called the variance of a random vari-
able X is defined as follows:

variance(x) = [SUM (x – xbar)*(x-xbar)]/n

A covariance matrix C is an nxn matrix whose values on the main diagonal
are the variance of the variables X1, X2, . . ., Xn. The other values of
C are the covariance values of each pair of variables Xi and Xj.

The formula for the covariance of the variables X and Y is a generaliza-
tion of the variance of a variable, and the formula is shown here:

covariance(X, Y) = [SUM (x – xbar)*(y-ybar)]/n

Notice that you can reverse the order of the product of terms (multiplica-
tion is commutative), and therefore the covariance matrix C is a symmetric
matrix:

covariance(X, Y) = covariance(Y,X)

PCA calculates the eigenvalues and the eigenvectors of the covariance
matrix A.

Working with Datasets

In addition to data cleaning, there are several other steps that you need
to perform, such as selecting training data versus test data, and deciding
whether to use “hold out” or cross-validation during the training process.
More details are provided in the subsequent sections.

34 • Artificial Intelligence, Machine Learning, Deep Learning

Training Data Versus Test Data
After you have performed the tasks described earlier in this chapter (i.e.,
data cleaning and perhaps dimensionality reduction), you are ready to split
the dataset into two parts. The first part is the training set, which is used
to train a model, and the second part is the test set, which is used for
“inferencing” (another term for making predictions). Make sure that you
conform to the following guidelines for your test sets:

•	 The set is large enough to yield statistically meaningful results

•	 It’s representative of the data set as a whole

•	 Never train on test data

•	 Never test on training data

What Is Cross-validation?
The purpose of cross-validation is to test a model with non- overlapping test
sets, which is performed in the following manner:

•	 Step 1) Split the data into k subsets of equal size

•	 Step 2) Select one subset for testing and the others for training

•	 Step 3) Repeat step 2 for the other k-1 subsets

This process is called k-fold cross-validation, and the overall error estimate
is the average of the error estimates. A standard method for evaluation
involves ten-fold cross-validation. Extensive experiments have shown that
10 subsets is the best choice to obtain an accurate estimate. In fact, you can
repeat ten-fold cross-validation ten times and compute the average of the
results, which helps to reduce the variance.

The next section discusses regularization, which is an important yet optional
topic if you are primarily interested in TF 2 code. If you plan to become profi-
cient in machine learning, you will need to learn about regularization.

What Is Regularization?

Regularization helps to solve overfitting problem, which occurs when a
model performs well on training data but poorly on validation or test data.

Regularization solves this problem by adding a penalty term to the cost
function, thereby controlling the model complexity with this penalty term.

Introduction to Machine Learning • 35

Regularization is generally useful for:

•	 Large number of variables

•	 Low ratio of (# observations)/(# of variables)

•	 High multi-collinearity

There are two main types of regularization: L1 Regularization (which is
related to MAE, or the absolute value of differences) and L2 Regulariza-
tion (which is related to MSE, or the square of differences). In general, L2
performs better than L1, and it’s efficient in terms of computation.

ML and Feature Scaling
Feature Scaling standardizes the range of features of data. This step is
performed during the data preprocessing step, in part because gradient
descent benefits from feature scaling.

The assumption is that the data conforms to a standard normal distribu-
tion, and standardization involves subtracting the mean and divide by the
standard deviation for every data point, which results in a N(0,1) normal
distribution.

Data Normalization vs Standardization
Data normalization is a linear scaling technique. Let’s assume that a dataset
has the values {X1, X2, . . . , Xn} along with the following terms:

Minx = minimum of Xi values

Maxx = maximum of Xi values

Now calculate a set of new Xi values as follows:

Xi = (Xi – Minx)/[Maxx – Minx]

The new Xi values are now scaled so that they are between 0 and 1.

The Bias-Variance Tradeoff

Bias in machine learning can be due to an error from wrong assumptions
in a learning algorithm. High bias might cause an algorithm to miss rel-
evant relations between features and target outputs (underfitting). Predic-
tion bias can occur because of “noisy” data, an incomplete feature set, or a
biased training sample.

36 • Artificial Intelligence, Machine Learning, Deep Learning

Error due to bias is the difference between the expected (or average)
prediction of your model and the correct value that you want to predict.
Repeat the model building process multiple times, and gather new data
each time, and also perform an analysis to produce a new model. The
resulting models have a range of predictions because the underlying data
sets have a degree of randomness. Bias measures the extent to the predic-
tions for these models are from the correct value.

Variance in machine learning is the expected value of the squared devia-
tion from the mean. High variance can/might cause an algorithm to model
the random noise in the training data, rather than the intended outputs (aka
overfitting).

Adding parameters to a model increases its complexity, increases the
variance, and decreases the bias. Dealing with bias and variance is dealing
with underfitting and overfitting.

Error due to variance is the variability of a model prediction for a given
data point. As before, repeat the entire model building process, and the
variance is the extent to which predictions for a given point vary among dif-
ferent “instances” of the model.

Metrics for Measuring Models

One of the most frequently used metrics is R-squared, which measures how
close the data is to the fitted regression line (regression coefficient). The
R-squared value is always a percentage between 0 and 100%. The value
0% indicates that the model explains none of the variability of the response
data around its mean. The value 100% indicates that the model explains all
the variability of the response data around its mean. In general, a higher
R-squared value indicates a better model.

Limitations of R-Squared
Although high R-squared values are preferred, they are not necessarily
always good values. Similarly, low R-squared values are not always bad. For
example, an R-squared value for predicting human behavior is often less
than 50%. Moreover, R-squared cannot determine whether the coefficient
estimates and predictions are biased. In addition, an R-squared value does
not indicate whether a regression model is adequate. Thus, it’s possible to
have a low R-squared value for a good model, or a high R-squared value

Introduction to Machine Learning • 37

for a poorly fitting model. Evaluate R-squared values in conjunction with
residual plots, other model statistics, and subject area knowledge.

Confusion Matrix
In its simplest form, a confusion matrix (also called an error matrix) is a type
of contingency table with two rows and two columns that contains the # of
false positives, false negatives, true positives, and true negatives. The four
entries in a 2x2 confusion matrix can be labeled as follows:

TP: True Positive
FP: False Positive
TN: True Negative
FN: False Negative

The diagonal values of the confusion matrix are correct, whereas the off-
diagonal values are incorrect predictions. In general a lower FP value is
better than a FN value. For example, an FP indicates that a healthy person
was incorrectly diagnosed with a disease, whereas an FN indicates that an
unhealthy person was incorrectly diagnosed as healthy.

Accuracy vs Precision vs Recall
A 2x2 confusion matrix has four entries that that represent the various com-
binations of correct and incorrect classifications. Given the definitions in
the preceding section, the definitions of precision, accuracy, and recall are
given by the following formulas:

precision = TP/(TN + FP)
accuracy = (TP + TN)/[P + N]
recall = TP/[TP + FN]

Accuracy can be an unreliable metric because it yields misleading results
in unbalanced data sets. When the number of observations in different
classes are significantly different, it gives equal importance to both false
positive and false negative classifications. For example, declaring cancer
as benign is worse than incorrectly informing patients that they are suf-
fering from cancer. Unfortunately, accuracy won’t differentiate between
these two cases.

Keep in mind that the confusion matrix can be an nxn matrix and not
just a 2x2 matrix. For example, if a class has 5 possible values, then the
confusion matrix is a 5x5 matrix, and the numbers on the main diagonal are
the “true positive” results.

38 • Artificial Intelligence, Machine Learning, Deep Learning

The ROC Curve
The ROC (receiver operating characteristic) curve is a curve that plots the
TPR, which is the true positive rate (i.e., the recall) against the FPR, which
is the false positive rate). Note that the TNR (the true negative rate) is also
called the specificity.

The following link contains a Python code sample using SKLearn and
the Iris dataset, and also code for plotting the ROC:

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

The following link contains an assortment of Python code samples for
plotting the ROC:

https://stackoverflow.com/questions/25009284/how-to-plot-roc-curve-
in-python

Other Useful Statistical Terms

Machine learning relies on a number of statistical quantities in order to
assess the validity of a model, some of which are listed here:

•	 RSS

•	 TSS

•	 R-2

•	 F1 score

•	 p-value

The definitions of RSS, TSS, and R^2 are shown below, where y^ is the
y-coordinate of a point on a best-fitting line and y_ is the mean of the
y-values of the points in the dataset:

RSS = sum of squares of residuals (y - y^)**2
TSS = toal sum of squares (y - y_)**2
R^2 = 1 - RSS/TSS

What Is an F1 Score?
The F1 score is a measure of the accuracy of a test, and it’s defined as the
harmonic mean of precision and recall. Here are the relevant formulas,
where p is the precision and r is the recall:

p = (# �of correct positive results)/(# of all
positive results)

Introduction to Machine Learning • 39

r = (# �of correct positive results)/(# of all
relevant samples)

F1-score = 1/[((1/r) + (1/p))/2]
 = 2*[p*r]/[p+r]

The best value of an F1 score is 0 and the worse value is 0. Keep in mind
that an F1 score tends to be used for categorical classification problems,
whereas the R^2 value is typically for regression tasks (such as linear
regression).

What Is a p-value?
The p-value is used to reject the null hypothesis if the p-value is small
enough (< 0.005) which indicates a higher significance. Recall that the null
hypothesis states that there is no correlation between a dependent variable
(such as y) and an independent variable (such as x). The threshold value for
p is typically 1% or 5%.

There is no straightforward formula for calculating p-values, which
are values that are always between 0 and 1. In fact, p-values are sta-
tistical quantities to evaluate the so-called “null hypothesis,” and they
are calculated by means of p-value tables or via spreadsheet/statistical
software.

What Is Linear Regression?

The goal of linear regression is to find the best fitting line that “rep-
resents” a dataset. Keep in mind two key points. First, the best fitting
line does not necessarily pass through all (or even most of) the points in
the dataset. The purpose of a best fitting line is to minimize the vertical
distance of that line from the points in dataset. Second, linear regres-
sion does not determine the best-fitting polynomial: the latter involves
finding a higher-degree polynomial that passes through many of the
points in a dataset.

Moreover, a dataset in the plane can contain two or more points that lie
on the same vertical line, which is to say that those points have the same x
value. However, a function cannot pass through such a pair of points: if two
points (x1,y1) and (x2,y2) have the same x value then they must have
the same y value (i.e., y1=y2). On the other hand, a function can have two
or more points that lie on the same horizontal line.

40 • Artificial Intelligence, Machine Learning, Deep Learning

Now consider a scatter plot with many points in the plane that are
sort of “clustered” in an elongated cloud-like shape: a best-fitting line will
probably intersect only limited number of points (in fact, a best-fitting line
might not intersect any of the points).

One other scenario to keep in mind: suppose a dataset contains
a set of points that lie on the same line. For instance, let’s say the x
values are in the set {1,2,3,...,10} and the y values are in the set
{2,4,6,...,20}. Then the equation of the best-fitting line is y=2*x+0.
In this scenario, all the points are collinear, which is to say that they lie
on the same line.

Linear Regression vs Curve-Fitting
Suppose a dataset consists of n data points of the form (x, y), and no two of
those data points have the same x value. Then according to a well-known
result in mathematics, there is a polynomial of degree less than or equal to
n-1 that passes through those n points (if you are really interested, you can
find a mathematical proof of this statement in online articles). For example,
a line is a polynomial of degree one and it can intersect any pair of non-
vertical points in the plane. For any triple of points (that are not all on the
same line) in the plane, there is a quadratic equation that passes through
those points.

In addition, sometimes a lower degree polynomial is available. For
instance, consider the set of 100 points in which the x value equals the
y value: in this case, the line y = x (which is a polynomial of degree one)
passes through all 100 points.

However, keep in mind that the extent to which a line “represents”
a set of points in the plane depends on how closely those points can be
approximated by a line, which is measured by the variance of the points
(the variance is a statistical quantity). The more collinear the points, the
smaller the variance; conversely, the more “spread out” the points are, the
larger the variance.

When Are Solutions Exact Values?
Although statistics-based solutions provide closed-form solutions for lin-
ear regression, neural networks provide approximate solutions. This is due
to the fact that machine learning algorithms for linear regression involve
a sequence of approximations that “converges” to optimal values, which

Introduction to Machine Learning • 41

means that machine learning algorithms produce estimates of the exact
values. For example, the slope m and y-intercept b of a best-fitting line for
a set of points a 2D plane have a closed-form solution in statistics, but they
can only be approximated via machine learning algorithms (exceptions do
exist, but they are rare situations).

Keep in mind that even though a closed-form solution for
“traditional” linear regression provides an exact value for both m and
b, sometimes you can only use an approximation of the exact value.
For instance, suppose that the slope m of a best-fitting line equals the
square root of 3 and the y-intercept b is the square root of 2. If you plan
to use these values in source code, you can only work with an approxi-
mation of these two numbers. In the same scenario, a Neural Network
computes approximations for m and b, regardless of whether or not
the exact values for m and b are irrational, rational, or integer values.
However, machine learning algorithms are better suited for complex,
non-linear, multi-dimensional datasets, which is beyond the capacity of
linear regression.

As a simple example, suppose that the closed form solution for a linear
regression problem produces integer or rational values for both m and b.
Specifically, let’s suppose that a closed form solution yields the values 2.0
and 1.0 for the slope and y-intercept, respectively, of a best-fitting line. The
equation of the line looks like this:

y = 2.0 * x + 1.0

However, the corresponding solution from training a neural network
might produce the values 2.0001 and 0.9997 for the slope m and the
y-intercept b, respectively, as the values of m and b for a best-fitting
line. Always keep this point in mind, especially when you are training
a Neural Network.

What Is Multivariate Analysis?
Multivariate analysis generalizes the equation of a line in the Euclidean
plane to higher dimensions, and it’s called a hyper plane instead of a line.
The generalized equation has the following form:

y = w1*x1 + w2*x2 + . . . + wn*xn + b

In the case of 2D linear regression, you only need to find the value of
the slope (m) and the y-intercept (b), whereas in multivariate analysis you

42 • Artificial Intelligence, Machine Learning, Deep Learning

need to find the values for w1, w2, . . ., wn. Note that multivariate
analysis is a term from statistics, and in machine learning it’s often referred
to as “generalized linear regression.”

Keep in mind that most of the code samples in this book that pertain to
linear regression involve 2D points in the Euclidean plane.

Other Types of Regression

Linear regression finds the best fitting line that “represents” a dataset, but
what happens if a line in the plane is not a good fit for the dataset? This is a
relevant question when you work with datasets.

Some alternatives to linear regression include quadratic equations,
cubic equations, or higher-degree polynomials. However, these alternatives
involve trade-offs, as we’ll discuss later.

Another possibility is a sort of hybrid approach that involves piece-wise
linear functions, which comprises a set of line segments. If contiguous line
segments are connected then it’s a piece-wise linear continuous function;
otherwise it’s a piece-wise linear discontinuous function.

Thus, given a set of points in the plane, regression involves addressing
the following questions:

•	 What type of curve fits the data well? How do we know?

•	 Does another type of curve fit the data better?

•	 What does “best fit” mean?

One way to check if a line fits the data involves a visual check, but this
approach does not work for data points that are higher than two dimen-
sions. Moreover, this is a subjective decision, and some sample datasets
are displayed later in this chapter. By visual inspection of a dataset,
you might decide that a quadratic or cubic (or even higher degree)
polynomial has the potential of being a better fit for the data. However,
visual inspection is probably limited to points in a 2D plane or in three
dimensions.

Let’s defer the non-linear scenario and let’s make the assumption that
a line would be a good fit for the data. There is a well-known technique for
finding the “best fitting” line for such a dataset that involves minimizing the
Mean Squared Error (MSE) that we’ll discuss later in this chapter.

Introduction to Machine Learning • 43

The next section provides a quick review of linear equations in
the plane, along with some images that illustrate examples of linear
equations.

Working with Lines in the Plane (optional)

This section contains a short review of lines in the Euclidean plane, so you
can skip this section if you are comfortable with this topic. A minor point
that’s often overlooked is that lines in the Euclidean plane have infinite
length. If you select two distinct points of a line, then all the points between
those two selected points is a line segment. A ray is a “half infinite” line:
when you select one point as an endpoint, then all the points on one side of
the line constitutes a ray.

For example, the points in the plane whose y-coordinate is 0 is a line
and also the x-axis, whereas the points between (0,0) and (1,0) on the x-axis
form a line segment. In addition, the points on the x-axis that are to the
right of (0,0) form a ray, and the points on the x-axis that are to the left of
(0,0) also form a ray.

For simplicity and convenience, in this book we’ll use the terms
“line” and “line segment” interchangeably, and now let’s delve into the
details of lines in the Euclidean plane. Just in case you’re a bit fuzzy on
the details, here is the equation of a (non-vertical) line in the Euclidean
plane:

y = m*x + b

The value of m is the slope of the line and the value of b is the y-intercept
(i.e., the place where the line intersects the y-axis).

If need be, you can use a more general equation that can also represent
vertical lines, as shown here:

a*x + b*y + c = 0

However, we won’t be working with vertical lines, so we’ll stick with the
first formula.

Figure 2.1 displays three horizontal lines whose equations (from top to
bottom) are y = 3, y = 0, and y = -3, respectively.

44 • Artificial Intelligence, Machine Learning, Deep Learning

FIGURE 2.1 A Graph of Three Horizontal Line Segments.

Figure 2.2 displays two slanted lines whose equations are y = x and
y = -x, respectively.

FIGURE 2.2 A Graph of Two Diagonal Line Segments.

Introduction to Machine Learning • 45

Figure 2.3 displays two slanted parallel lines whose equations are
y = 2*x and y = 2*x + 3, respectively.

FIGURE 2.3 A Graph of Two Slanted Parallel Line Segments.

Figure 2.4 displays a piece-wise linear graph consisting of connected
line segments.

FIGURE 2.4 A Piece-wise Linear Graph of Line Segments.

46 • Artificial Intelligence, Machine Learning, Deep Learning

Now let’s turn our attention to generating quasi-random data using a
NumPy API, and then we’ll plot the data using Matplotlib.

Scatter Plots with NumPy and Matplotlib (1)

Listing 2.1 displays the contents of np_plot1.py that illustrates how
to use the Numpy randn() API to generate a dataset and then the
scatter() API in Matplotlib to plot the points in the dataset.

One detail to note is that all the adjacent horizontal values are equally
spaced, whereas the vertical values are based on a linear equation plus a
“perturbation” value. This “perturbation technique” (which is not a standard
term) is used in other code samples in this chapter in order to add a slightly
randomized effect when the points are plotted. The advantage of this tech-
nique is that the best-fitting values for m and b are known in advance, and
therefore we do not need to guess their values.

Listing 2.1: np_plot1.py

import numpy as np
import matplotlib.pyplot as plt

x = np.random.randn(15,1)
y = 2.5*x + 5 + 0.2*np.random.randn(15,1)

print("x:",x)
print("y:",y)

plt.scatter(x,y)
plt.show()

Listing 2.1 contains two import statements and then initializes the
array variable x with 15 random numbers between 0 and 1.

Next, the array variable y is defined in two parts: the first part is a linear
equation 2.5*x + 5 and the second part is a “perturbation” value that is
based on a random number. Thus, the array variable y simulates a set of
values that closely approximate a line segment.

This technique is used in code samples that simulate a line segment,
and then the training portion approximates the values of m and b for the

Introduction to Machine Learning • 47

best-fitting line. Obviously we already know the equation of the best fitting-line:
the purpose of this technique is to compare the trained values for the slope m
and y-intercept b with the known values (which in this case are 2.5 and 5).

A partial output from Listing 2.1 is here:

x: [[-1.42736308]
 [0.09482338]
 [-0.45071331]
 [0.19536304]
 [-0.22295205]
 // values omitted for brevity
y: [[1.12530514]
 [5.05168677]
 [3.93320782]
 [5.49760999]
 [4.46994978]
 // values omitted for brevity

Figure 2.5 displays a scatter plot of points based on the values of x and y.

FIGURE 2.5 A Scatter Plot of Points for a Line Segment.

48 • Artificial Intelligence, Machine Learning, Deep Learning

Why the “Perturbation Technique” Is Useful
You already saw how to use the “perturbation technique” and by way of
comparison, consider a dataset with the following points that are defined in
the Python array variables X and Y:

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]
Y = [0,0.15,0.54,0.51, 0.34,0.1,0.19,0.53,1.0,0.58]

If you need to find the best fitting line for the preceding dataset, how would
you guess the values for the slope m and the y-intercept b? In most cases,
you probably cannot guess their values. On the other hand, the “perturbation
technique” enables you to “jiggle” the points on a line whose value for the
slope m (and optionally the value for the y-intercept b) is specified in advance.

Keep in mind that the “perturbation technique” only works when you intro-
duce small random values that do not result in different values for m and b.

Scatter Plots with NumPy and Matplotlib (2)

The code in Listing 2.1 assigned random values to the variable x, whereas
a hard-coded value is assigned to the slope m. The y values are a hard-
coded multiple of the x values, plus a random value that is calculated via
the “perturbation technique”. Hence we do not know the value of the
y-intercept b.

In this section the values for trainX are based on the np.linspace()
API, and the values for trainY involve the “perturbation technique” that is
described in the previous section.

The code in this example simply prints the values for trainX and
trainY, which correspond to data points in the Euclidean plane. Listing
2.2 displays the contents of np_plot2.py that illustrates how to simulate a
linear dataset in NumPy.

Listing 2.2: np_plot2.py

import numpy as np

trainX = np.linspace(-1, 1, 11)
trainY = �4*trainX + np.random.randn(*trainX.shape)*0.5

print("trainX: ",trainX)
print("trainY: ",trainY)

Introduction to Machine Learning • 49

Listing 2.6 initializes the NumPy array variable trainX via the NumPy
linspace() API, followed by the array variable trainY that is defined in
two parts. The first part is the linear term 4*trainX and the second part
involves the “perturbation technique” that is a randomly generated num-
ber. The output from Listing 2.6 is here:

trainX: [�-1. -0.8 -0.6 -0.4 -0.2 0. 0.2 0.4
0.6 0.8 1.]

trainY: [�-3.60147459 -2.66593108 -2.26491189
-1.65121314 -0.56454605 0.22746004
0.86830728 1.60673482 2.51151543
3.59573877 3.05506056]	

The next section contains an example that is similar to Listing 2.2, using the
same “perturbation technique” to generate a set of points that approximate
a quadratic equation instead of a line segment.

A Quadratic Scatterplot with NumPy and Matplotlib

Listing 2.3 displays the contents of np_plot_quadratic.py that illus-
trates how to plot a quadratic function in the plane.

Listing 2.3: np_plot_quadratic.py

import numpy as np
import matplotlib.pyplot as plt

#see what happens with this set of values:
#x = np.linspace(-5,5,num=100)

x = np.linspace(-5,5,num=100)[:,None]
y = �-0.5 + 2.2*x +0.3*x**2 + 2*np.random.

randn(100,1)
print("x:",x)

plt.plot(x,y)
plt.show()

Listing 2.3 initializes the array variable x with the values that are gener-
ated via the np.linspace() API, which in this case is a set of 100 equally
spaced decimal numbers between -5 and 5. Notice the snippet [:,None] in

50 • Artificial Intelligence, Machine Learning, Deep Learning

the initialization of x, which results in an array of elements, each of which
is an array consisting of a single number.

The array variable y is defined in two parts: the first part is a quadratic
equation -0.5 + 2.2*x +0.3*x**2 and the second part is a “perturba-
tion” value that is based on a random number (similar to the code in Listing
2.1). Thus, the array variable y simulates a set of values that approximates a
quadratic equation. The output from Listing 2.3 is here:

x:
[[-5.]
 [-4.8989899]
 [-4.7979798]
 [-4.6969697]
 [-4.5959596]
 [-4.49494949]
 // values omitted for brevity
 [4.8989899]
 [5.]]

Figure 2.6 displays a scatter plot of points based on the values of x and y,
which have an approximate shape of a quadratic equation.

FIGURE 2.6 A Scatter Plot of Points for a Quadratic Equation.

Introduction to Machine Learning • 51

The Mean Squared Error (MSE) Formula

In plain English, the MSE is the sum of the squares of the difference
between an actual y value and the predicted y value, divided by the number
of points. Notice that the predicted y value is the y value that each point
would have if that point were actually on the best-fitting line.

Although the MSE is popular for linear regression, there are other error
types available, some of which are discussed briefly in the next section.

A List of Error Types
Although we will only discuss MSE for linear regression in this book, there
are other types of formulas that you can use for linear regression, some of
which are listed here:

•	 MSE

•	 RMSE

•	 RMSPROP

•	 MAE

The MSE is the basis for the preceding error types. For example, RMSE is
“Root Mean Squared Error,” which is the square root of MSE.

On the other hand, MAE is “Mean Absolute Error,” which is the sum
of the absolute value of the differences of the y terms (not the square of the
differences of the y terms), which is then divided by the number of terms.

The RMSProp optimizer utilizes the magnitude of recent gradients to
normalize the gradients. Specifically, RMSProp maintain a moving average
over the RMS (root mean squared) gradients, and then divides that term by
the current gradient.

Although it’s easier to compute the derivative of MSE, it’s also true that
MSE is more susceptible to outliers, whereas MAE is less susceptible to
outliers. The reason is simple: a squared term can be significantly larger
than the absolute value of a term. For example, if a difference term is 10,
then a squared term of 100 is added to MSE, whereas only 10 is added
to MAE. Similarly, if a difference term is -20, then a squared term 400
is added to MSE, whereas only 20 (which is the absolute value of -20) is
added to MAE.

52 • Artificial Intelligence, Machine Learning, Deep Learning

Non-linear Least Squares
When predicting housing prices, where the dataset contains a wide range
of values, techniques such as linear regression or random forests can cause
the model to overfit the samples with the highest values in order to reduce
quantities such as mean absolute error.

In this scenario, you probably want an error metric, such as relative
error, that reduces the importance of fitting the samples with the largest
values. This technique is called non-linear least squares, which may use a
log-based transformation of labels and predicted values.

The next section contains several code samples, the first of which
involves calculating the MSE manually, followed by an example that uses
NumPy formulas to perform the calculations. Finally, we’ll look at a Tensor-
Flow example for calculating the MSE.

Calculating the MSE Manually

This section contains two line graphs, both of which contain a line that
approximates a set of points in a scatter plot.

FIGURE 2.7 A Line Graph that Approximates Points of a Scatter Plot.

Introduction to Machine Learning • 53

Figure 2.7 displays a line segment that approximates a scatter plot of
points (some of which intersect the line segment). The MSE for the line in
Figure 2.7 is computed as follows:

MSE = (1*1 + (-1)*(-1) + (-1)*(-1) + 1*1)/7 = 4/7

Figure 2.8 displays a set of points and a line that is a potential candi-
date for best-fitting line for the data. The MSE for the line in Figure 2.8 is
computed as follows:

MSE = ((-2)*(-2) + 2*2)/7 = 8/7

FIGURE 2.8 A Line Graph that Approximates Points of a Scatter Plot.

Thus, the line in Figure 2.7 has a smaller MSE than the line in Figure 2.8,
which might have surprised you (or did you guess correctly?)

In these two figures we calculated the MSE easily and quickly, but in
general it’s significantly more difficult. For instance, if we plot 10 points in
the Euclidean plane that do not closely fit a line, with individual terms that
involve non-integer values, we would probably need a calculator.

A better solution involves NumPy functions, such as the np.linspace()
API, as discussed in the next section.

54 • Artificial Intelligence, Machine Learning, Deep Learning

Approximating Linear Data with np.linspace()

Listing 2.4 displays the contents of np_linspace1.py that illustrates how
to generate some data with the np.linspace() API in conjunction with
the “perturbation technique.”

Listing 2.4: np_linspace1.py

import numpy as np

trainX = np.linspace(-1, 1, 6)
trainY = �3*trainX+ np.random.randn(*trainX.

shape)*0.5

print("trainX: ", trainX)
print("trainY: ", trainY)

The purpose of this code sample is merely to generate and display a set
of randomly generated numbers. Later in this chapter we will use this code
as a starting point for an actual linear regression task.

Listing 2.4 starts with the definition of the array variable trainX that
is initialized via the np.linspace() API. Next, the array variable trainY
is defined via the “perturbation technique” that you have seen in previous
code samples. The output from Listing 2.4 is here:

trainX: [-1. -0.6 -0.2 0.2 0.6 1.]
trainY: [�-2.9008553 -2.26684745 -0.59516253

0.66452207 1.82669051 2.30549295]
trainX: [-1. -0.6 -0.2 0.2 0.6 1.]
trainY: [�-2.9008553 -2.26684745 -0.59516253

0.66452207 1.82669051 2.30549295]

Now that we know how to generate (x,y) values for a linear equation,
let’s learn how to calculate the MSE, which is discussed in the next
section.

The next example generates a set of data values using the
np.linspace() method and the np.random.randn() method in order
to introduces some randomness in the data points.

Introduction to Machine Learning • 55

Calculating MSE with np.linspace() API

The code sample in this section differs from many of the earlier code sam-
ples in this chapter: it uses a hard-coded array of values for X and also for Y
instead of the “perturbation” technique. Hence, you will not know the cor-
rect value for the slope and y-intercept (and you probably will not be able
to guess their correct values). Listing 2.5 displays the contents of plain_
linreg1.py that illustrates how to compute the MSE with simulated data.

Listing 2.5: plain_linreg1.py

import numpy as np
import matplotlib.pyplot as plt

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]
Y = [0,0.15,0.54,0.51,

0.34,0.1,0.19,0.53,1.0,0.58]

costs = []
#Step 1: Parameter initialization
W = 0.45
b = 0.75

for i in range(1, 100):
 #Step 2: Calculate Cost
 Y_pred = np.multiply(W, X) + b
 Loss_error = 0.5 * (Y_pred - Y)**2
 cost = np.sum(Loss_error)/10

 #Step 3: Calculate dW and db
 db = np.sum((Y_pred - Y))
 dw = np.dot((Y_pred - Y), X)
 costs.append(cost)

 #Step 4: Update parameters:
 W = W - 0.01*dw
 b = b - 0.01*db

 if i%10 == 0:
 print("Cost at", i,"iteration = ", cost)

(Continued)

56 • Artificial Intelligence, Machine Learning, Deep Learning

#Step 5: Repeat via a for loop with 1000 iterations

#Plot cost versus # of iterations
print("W = ", W,"& b = ", b)
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.show()

Listing 2.5 initializes the array variables X and Y with hard-coded values,
and then initializes the scalar variables W and b. The next portion of List-
ing 2.5 contains a for loop that iterates 100 times. After each iteration of
the loop, the variables Y_pred, Loss_error, and cost are calculated.
Next, the values for dw and db are calculated, based on the sum of the
terms in the array Y_pred-Y, and the inner product of Y_pred-y and X,
respectively.

Notice how W and b are updated: their values are decremented by the
term 0.01*dw and 0.01*db, respectively. This calculation ought to look
somewhat familiar: the code is programmatically calculating an approxi-
mate value of the gradient for W and b, both of which are multiplied by the
learning rate (the hard-coded value 0.01), and the resulting term is dec-
remented from the current values of W and b in order to produce a new
approximation for W and b. Although this technique is very simple, it does
calculate reasonable values for W and b.

The final block of code in Listing 2.5 displays the intermediate approxi-
mations for W and b, along with a plot of the cost (vertical axis) versus the
number of iterations (horizontal axis). The output from Listing 2.5 is here:

Cost at 10 iteration = 0.04114630674619492
Cost at 20 iteration = 0.026706242729839392
Cost at 30 iteration = 0.024738889446900423
Cost at 40 iteration = 0.023850565034634254
Cost at 50 iteration = 0.0231499048706651
Cost at 60 iteration = 0.02255361434242207
Cost at 70 iteration = 0.0220425055291673
Cost at 80 iteration = 0.021604128492245713
Cost at 90 iteration = 0.021228111750568435
W = 0.47256473531193927 & b = 0.19578262688662174

Introduction to Machine Learning • 57

Figure 2.9 displays a scatter plot of points generated by the code in
Listing 2.5.

FIGURE 2.9 MSE Values With Linear Regression.

The code sample plain-linreg2.py is similar to the code in Listing 2.5:
the difference is that instead of a single loop with 100 iterations, there is an
outer loop that execute 100 times, and during each iteration of the outer
loop, the inner loop also execute 100 times.

Linear Regression with Keras

The code sample in this section contains primarily Keras code in order to
perform linear regression. If you have read the previous examples in this
chapter, this section will be easier for you to understand because the steps
for linear regression are the same.

Listing 2.6 displays the contents of keras_linear_regression.py
that illustrates how to perform linear regression in Keras.

58 • Artificial Intelligence, Machine Learning, Deep Learning

Listing 2.6: keras_linear_regression.py

###
##############

#Keep in mind the following important points:
#1) �Always standardize both input features and

target variable:
#doing so only on input feature produces incorrect

predictions
#2) �Data might not be normally distributed: check

the data and
#based on the distribution apply StandardScaler,

MinMaxScaler,
#Normalizer or RobustScaler
###

##############

import tensorflow as tf
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_

split

df = pd.read_csv('housing.csv')
X = df.iloc[:,0:13]
y = df.iloc[:,13].values

mmsc = MinMaxScaler()
X = mmsc.fit_transform(X)
y = y.reshape(-1,1)
y = mmsc.fit_transform(y)

X_train, X_test, y_train, y_test = train_test_
split(X, y, test_size=0.3)

Introduction to Machine Learning • 59

this Python method creates a Keras model
def build_keras_model():
 model = tf.keras.models.Sequential()
 model.add(tf.keras.layers.Dense(units=13,

input_dim=13))
 model.add(tf.keras.layers.Dense(units=1))

 model.compile(optimizer='adam',loss='mean_
squared_error',metrics=['mae','accuracy'])

 return model

batch_size=32
epochs = 40

specify the Python method 'build_keras_model'
to create a Keras model

using the implementation of the scikit-learn
regressor API for Keras

model = �tf.keras.wrappers.scikit_learn.
KerasRegressor(build_fn=build_
keras_model, batch_size=batch_
size,epochs=epochs)

train ('fit') the model and then make
predictions:

model.fit(X_train, y_train)
y_pred = model.predict(X_test)
#print("y_test:",y_test)
#print("y_pred:",y_pred)

scatter plot of test values-vs-predictions
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred)
ax.plot([y_test.min(), y_test.max()], [y_test.

min(), y_test.max()], 'r*--')
ax.set_xlabel('Calculated')
ax.set_ylabel('Predictions')
plt.show()

60 • Artificial Intelligence, Machine Learning, Deep Learning

Listing 2.6 starts with multiple import statements and then initializes the
dataframe df with the contents of the CSV file housing.csv (a portion of
which is shown in Listing 2.7). Notice that the training set X is initialized
with the contents of the first 13 columns of the dataset housing.csv, and
the variable y contains the rightmost column of the dataset housing.csv.

The next section in Listing 2.6 uses the MinMaxScaler class to calcu-
late the mean and standard deviation, and then invokes the fit_trans-
form() method in order to update the X values and the y values so that
they have a mean of 0 and a standard deviation of 1.

Next, the build_keras_mode() Python method creates a Keras-
based model with two dense layers. Notice that the input layer has size 13,
which is the number of columns in the dataframe X. The next code snippet
compiles the model with an adam optimizer, the MSE loss function, and
also specifies the MAE and accuracy for the metrics. The compiled model
is then returned to the caller.

The next portion of Listing 2.6 initializes the batch_size variable to
32 and the epochs variable to 40, and specifies them in the code snippet
that creates the model, as shown here:

model =
tf.keras.wrappers.scikit_learn.

KerasRegressor(build_fn=build_keras_model,
batch_size=batch_size,epochs=epochs)

The short comment block that appears in Listing 2.6 explains the purpose
of the preceding code snippet, which constructs our Keras model.

The next portion of Listing 2.6 invokes the fit() method to train the
model and then invokes the predict() method on the X_test data to
calculate a set of predictions and initialize the variable y_pred with those
predictions.

The final portion of Listing 2.6 displays a scatter plot in which the hori-
zontal axis is the values in y_test (the actual values from the CSV file
housing.csv) and the vertical axis is the set of predicted values.

Figure 2.5 displays a scatter plot of points based on the test values and
the predictions for those test values.

Introduction to Machine Learning • 61

FIGURE 2.10 A Scatter Plot and a Best-Fitting Line.

Listing 2.7 displays the first four rows of the CSV file housing.csv
that is used in the Python code in Listing 2.6.

Listing 2.7: housing.csv

0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,
396.9,4.98,24

0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17
.8,396.9,9.14,21.6

0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17
.8,392.83,4.03,34.7

0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18
.7,394.63,2.94,33.4

62 • Artificial Intelligence, Machine Learning, Deep Learning

Summary

This chapter introduced you to machine learning and concepts such as fea-
ture selection, feature engineering, data cleaning, training sets, and test
sets. Next you learned about supervised, unsupervised, and semi-super-
vised learning. Then you learned regression tasks, classification tasks, and
clustering, as well as the steps that are typically required in order to prepare
a dataset. These steps include “feature selection” or “feature extraction”
that can be performed using various algorithms. Then you learned about
issue that can arise with the data in datasets, and how to rectify them.

In addition, you also learned about linear regression, along with a brief
description of how to calculate a best-fitting line for a dataset of values
in the Euclidean plane. You saw how to perform linear regression using
NumPy in order to initialize arrays with data values, along with a “perturba-
tion” technique that introduces some randomness for the y values. This
technique is useful because you will know the correct values for the slope
and y-intercept of the best-fitting line, which you can then compare with
the trained values.

You then learned how to perform linear regression in code samples that
involve Keras. In addition, you saw how to use Matplotlib in order to dis-
play line graphs for best-fitting lines and graphs that display the cost versus
the number of iterations during the training-related code blocks.

C H A P T E R 3
CLASSIFIERS IN MACHINE
LEARNING

This chapter presents numerous classification algorithms in machine
learning. This includes algorithms such as the kNN (k Nearest Neigh-
bor) algorithm, logistic regression (despite its name it is a classifier), deci-
sion trees, random forests, SVMs, and Bayesian classifiers. The emphasis
on algorithms is intended to introduce you to machine learning, which
includes a tree-based code sample that relies on scikit-learn. The
latter portion of this chapter contains Keras-based code samples for stan-
dard datasets.

Due to space constraints, this chapter does not cover other well-known
algorithms, such as Linear Discriminant Analysis and the kMeans algorithm
(which is for unsupervised learning and clustering). However, there are
many online tutorials available that discuss these and other algorithms in
machine learning.

With these points in mind, the first section of this chapter briefly dis-
cusses the classifiers that are mentioned in the introductory paragraph. The
second section of this chapter provides an overview of activation functions,
which will be very useful if you decide to learn about deep neural networks.
In this section you will learn how and why they are used in neural networks.
This section also contains a list of the TensorFlow APIs for activation func-
tions, followed by a description of some of their merits.

The third section introduces logistic regression, which relies on
the sigmoid function, which is also used in RNNs (Recurrent Neural

64 • Artificial Intelligence, Machine Learning, Deep Learning

Networks) and LSTMs (Long Short Term Memory). The fourth part of
this chapter contains a code sample involving Logistic Regression and the
MNIST dataset.

In order to give you some context, classifiers are one of three major
types of algorithms: regression algorithms (such as linear regression in
Chapter 4), classification algorithms (discussed in this chapter), and clus-
tering algorithms (such as kMeans, which is not discussed in this book).

Another point: the section pertaining to activation functions does involve
a basic understanding of hidden layers in a neural network. Depending on
your comfort level, you might benefit from reading some preparatory mate-
rial before diving into this section (there are many articles available online).

What Is Classification?

Given a dataset that contains observations whose class membership is
known, classification is the task of determining the class to which a new
datapoint belongs. Classes refer to categories and are also called targets
or labels. For example, spam detection in email service providers involves
binary classification (only two classes). The MNIST dataset contains a set
of images, where each image is a single digit, which means there are ten
labels. Some applications in classification include credit approval, medical
diagnosis, and target marketing.

What Are Classifiers?
In the previous chapter you learned that linear regression uses super-
vised learning in conjunction with numeric data: the goal is to train a
model that can make numeric predictions (e.g., the price of stock tomor-
row, the temperature of a system, its barometric pressure, and so forth).
By contrast, classifiers use supervised learning in conjunction with vari-
ous classes of data: the goal is to train a model that can make categorical
predictions.

For instance, suppose that each row in a dataset is a specific wine, and
each column pertains to a specific wine feature (tannin, acidity, and so
forth). Suppose further that there are five classes of wine in the dataset: for
simplicity, let's label them A, B, C, D, and E. Given a new data point, which
is to say a new row of data, a classifier for this dataset attempts to determine
the label for this wine.

Classifiers in Machine Learning • 65

Some of the classifiers in this chapter can perform categorical classifica-
tion and make numeric predictions (i.e., they can be used for regression as
well as classification).

Common Classifiers
Some of the most popular classifiers for machine learning are listed here (in
no particular order):

•	 Linear classifiers

•	 kNN

•	 Logistic regression

•	 Decision trees

•	 Random forests

•	 SVMs

•	 Bayesian classifiers

•	 CNNs (deep learning)

Keep in mind that different classifiers have different advantages and disad-
vantages, which often involve a trade-off between complexity and accuracy,
similar to algorithms in fields that are outside of AI.

In the case of deep learning, CNNs (Convolutional Neural Networks)
perform image classification, which makes them classifiers (they can also be
used for audio and text processing).

The next sections provide a brief description of these ML classifiers.

Binary vs MultiClass Classification
Binary classifiers work with datasets that have two classes, whereas multi-
class classifiers (sometimes called multinomial classifiers) distinguish more
than two classes. Random forest classifiers and naïve Bayes classifiers sup-
port multiple classes, whereas SVMs and linear classifiers can only be used
as binary classifiers (but multi-class extensions for SVM exist).

In addition, there are techniques for multiclass classification that
are based on binary classifiers: One-versus-All (OvA) and One-versus-
One (OvO).

66 • Artificial Intelligence, Machine Learning, Deep Learning

The OvA technique (also called one-versus-the-rest) involves mul-
tiple binary classifiers that are equal to the number of classes. For
example, if a dataset has five classes, then OvA uses five binary classi-
fiers, each of which detects one of the five classes. In order to classify
a datapoint in this dataset, select the binary classifier that has output
the highest score.

The OvO technique also involves multiple binary classifiers, but in this
case a binary classifier is used to train on a pair of classes. For instance, if
the classes are A, B, C, D, and E, then ten binary classifiers are required:
one for A and B, one for A and C, one for A and D, and so forth, until the
last binary classifier for D and E.

In general, if there are n classes, then n*(n-1)/2 binary classi-
fiers are required. Although the OvO technique requires considerably
more binary classifiers (e.g., 190 are required for 20 classes) than the
OvA technique (e.g., a mere 20 binary classifiers for 20 classes), the
OvO technique has the advantage that each binary classifier is only
trained on the portion of the dataset that pertains to its two chosen
classes.

MultiLabel Classification
Multilabel classification involves assigning multiple labels to an instance
from a dataset. Hence, multilabel classification generalizes multiclass classi-
fication (discussed in the previous section), where the latter involves assign-
ing a single label to an instance belonging to a dataset that has multiple
classes. An article involving multilabel classification that contains Keras-
based code is here:

https://medium.com/@vijayabhaskar96/multi-label-image-classifica-
tion-tutorial-with-keras-imagedatagenerator-cd541f8eaf24

You can also perform an online search for articles that involve SKLearn
or PyTorch for multilabel classification tasks.

What Are Linear Classifiers?

A linear classifier separates a dataset into two classes. A linear classifier is a
line for 2D points, a plane for 3D points, and a hyper plane (a generaliza-
tion of a plane) for higher dimensional points.

Classifiers in Machine Learning • 67

Linear classifiers are often the fastest classifiers, so they are often used
when the speed of classification is of high importance. Linear classifiers
usually work well when the input vectors are sparse (i.e., mostly zero
values) or when the number of dimensions is large.

What Is kNN?

The kNN (k Nearest Neighbor) algorithm is a classification algorithm. In
brief, data points that are near each other are classified as belonging to the
same class. When a new point is introduced, it's added to the class of the
majority of its nearest neighbor. For example, suppose that k equals 3, and
a new data point is introduced. Look at the class of its three nearest neigh-
bors: let's say they are A, A, and B. Then by majority vote, the new data
point is labeled as a data point of class A.

The kNN algorithm is essentially a heuristic and not a technique with
complex mathematical underpinnings, and yet it's still an effective and use-
ful algorithm.

Try the kNN algorithm if you want to use a simple algorithm or when
you believe that the nature of your dataset is highly unstructured. The kNN
algorithm can produce highly nonlinear decisions despite being very sim-
ple. You can use kNN in search applications where you are searching for
similar items.

Measure similarity by creating a vector representation of the items, and
then compare the vectors using an appropriate distance metric (such as
Euclidean distance).

Some concrete examples of kNN search include searching for semanti-
cally similar documents.

How to Handle a Tie in kNN
An odd value for k is less likely to result in a tie vote, but it's not impos-
sible. For example, suppose that k equals 7, and when a new data point is
introduced, its seven nearest neighbors belong to the set {A,B,A,B,A,B,C}.
As you can see, there is no majority vote, because there are 3 points in class
A, 3 points in class B, and 1 point in class C.

68 • Artificial Intelligence, Machine Learning, Deep Learning

There are several techniques for handling a tie in kNN:

•	 Assign higher weights to closer points

•	 Increase the value of k until a winner is determined

•	 Decrease the value of k until a winner is determined

•	 Randomly select one class

If you reduce k until it equals 1, it's still possible to have a tie vote: there
might be two points that are equally distant from the new point, so you
need a mechanism for deciding which of those two points to select as the
1-neighbor.

If there is a tie between classes A and B, then randomly select either
class A or class B. Another variant is to keep track of the tie votes, and alter-
nate round-robin style to ensure a more even distribution.

What Are Decision Trees?

Decision trees are another type of classification algorithm that involves a
treelike structure. In a generic tree, the placement of a data point is deter-
mined by simple conditional logic. As a simple illustration, suppose that a
dataset contains a set of numbers that represent ages of people, and let's
also suppose that the first number is 50. This number is chosen as the root
of the tree, and all numbers that are smaller than 50 are added on the left
branch of the tree, whereas all numbers that are greater than 50 are added
on the right branch of the tree.

For example, suppose we have the sequence of numbers is {50, 25, 70,
40}. Then we can construct a tree as follows: 50 is the root node; 25 is the
left child of 50; 70 is the right child of 50; and 40 is the right child of 20.
Each additional numeric value that we add to this dataset is processed to
determine which direction to proceed (left or right) at each node in the
tree.

Listing 3.1 displays the contents of sklearn_tree2.py that defines a
set of 2D points in the Euclidean plane, along with their labels, and then
predicts the label (i.e., the class) of several other 2D points in the Euclidean
plane.

Classifiers in Machine Learning • 69

Listing 3.1: sklearn_tree2.py

from sklearn import tree

X = pairs of 2D points and Y = the class of each
point

X = [[0, 0], [1, 1], [2,2]]
Y = [0, 1, 1]

tree_clf = tree.DecisionTreeClassifier()
tree_clf = tree_clf.fit(X, Y)

#predict the class of samples:
print("predict class of [-1., -1.]:")
print(tree_clf.predict([[-1., -1.]]))

print("predict class of [2., 2.]:")
print(tree_clf.predict([[2., 2.]]))

the percentage of training samples of the same
class

in a leaf note equals the probability of each
class

print("probability of each class in [2.,2.]:")
print(tree_clf.predict_proba([[2., 2.]]))

Listing 3.1 imports the tree class from sklearn and then initializes the
arrays X and y with data values. Next, the variable tree_clf is initialized as
an instance of the DecisionTreeClassifier class, after which it is trained
by invoking the fit() method with the values of X and y.

Now launch the code in Listing 3.3 and you will see the following
output:

predict class of [-1., -1.]:
[0]
predict class of [2., 2.]:
[1]
probability of each class in [2.,2.]:
[[0. 1.]]

70 • Artificial Intelligence, Machine Learning, Deep Learning

As you can see, the points [-1,-1] and [2,2] are correctly labeled with the
values 0 and 1, respectively, which is probably what you expected.

Listing 3.2 displays the contents of sklearn_tree3.py that extends
the code in Listing 3.1 by adding a third label, and also by predicting the
label of three points instead of two points in the Euclidean plane (the modi-
fications are shown in bold).

Listing 3.2: sklearn_tree3.py

from sklearn import tree

X = pairs of 2D points and Y = the class of each
point

X = [[0, 0], [1, 1], [2,2]]
Y = [0, 1, 2]

tree_clf = tree.DecisionTreeClassifier()
tree_clf = tree_clf.fit(X, Y)

#predict the class of samples:
print("predict class of [-1., -1.]:")
print(tree_clf.predict([[-1., -1.]]))

print("predict class of [0.8, 0.8]:")
print(tree_clf.predict([[0.8, 0.8]]))

print("predict class of [2., 2.]:")
print(tree_clf.predict([[2., 2.]]))

the percentage of training samples of the same
class

in a leaf note equals the probability of each
class

print("probability of each class in [2.,2.]:")
print(tree_clf.predict_proba([[2., 2.]]))

Classifiers in Machine Learning • 71

As you can see, the points [-1,-1], [0.8, 0.8], and [2,2] are correctly
labeled with the values 0, 1, and 2, respectively, which again is probably
what you expected.

Listing 3.3 displays a portion of the dataset partial_wine.csv, which
contains two features and a label column (there are three classes). The total
row count for this dataset is 178.

Listing 3.3: partial_wine.csv

predict class of [-1., -1.]:
[0]
predict class of [0.8, 0.8]:
[1]
predict class of [2., 2.]:
[2]
probability of each class in [2.,2.]:
[[0. 0. 1.]]

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

Importing the dataset
dataset = pd.read_csv('partial_wine.csv')

(Continued)

Now launch the code in Listing 3.2 and you will see the following output:

Alcohol, Malic acid, class
14.23,1.71,1
13.2,1.78,1
13.16,2.36,1
14.37,1.95,1
13.24,2.59,1
14.2,1.76,1

Listing 3.4 displays contents of tree_classifier.py that uses a deci-
sion tree in order to train a model on the dataset partial_wine.csv.

Listing 3.4: tree_classifier.py

72 • Artificial Intelligence, Machine Learning, Deep Learning

Listing 3.4 contains some import statements and then populates the
Pandas DataFrame dataset with the contents of the CSV file partial_
wine.csv. Next, the variable X is initialized with the first two columns
(and all the rows) of dataset, and the variable y is initialized with the third
column (and all the rows) of dataset.

X = dataset.iloc[:, [0, 1]].values
y = dataset.iloc[:, 2].values

split the dataset into a training set and a test set
from sklearn.model_selection import train_test_

split
X_train, X_test, y_train, y_test = train_test_

split(X, y, test_size = 0.25, random_state = 0)

Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

====> INSERT YOUR CLASSIFIER CODE HERE <====
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion='entropy

',random_state=0)
classifier.fit(X_train, y_train)
====> INSERT YOUR CLASSIFIER CODE HERE <====

predict the test set results
y_pred = classifier.predict(X_test)

generate the confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print("confusion matrix:")
print(cm)

Classifiers in Machine Learning • 73

Next, the variables X_train, X_test, y_train, y_test are popu-
lated with data from X and y using a 75/25 split proportion. Notice that the
variable sc (which is an instance of the StandardScalar class) performs a
scaling operation on the variables X_train and X_test.

The code block shown in bold in Listing 3.4 is where we create an
instance of the DecisionTreeClassifier class and then train the instance
with the data in the variables X_train and X_test.

The next portion of Listing 3.4 populates the variable y_pred with a
set of predictions that are generated from the data in the X_test variable.
The last portion of Listing 3.4 creates a confusion matrix based on the data
in y_test and the predicted data in y_pred.

Remember that all the diagonal elements of a confusion matrix are cor-
rect predictions (such as true positive and true negative); all the other cells
contain a numeric value that specifies the number of predictions that are
incorrect (such as false positive and false negative).

Now launch the code in Listing 3.4 and you will see the following out-
put for the confusion matrix in which there are thirty-six correct predictions
and nine incorrect predictions (with an accuracy of 80%):

confusion matrix:
[[13 1 2]
 [0 17 4]
 [1 1 6]]
from sklearn.metrics import confusion_matrix

There is a total of forty-five entries in the preceding 3x3 matrix, and
the diagonal entries are correctly identified labels. Hence the accuracy is
36/45 = 0.80.

What Are Random Forests?

Random Forests are a generalization of decision trees: this classification
algorithm involves multiple trees (the number is specified by you). If the
data involves making a numeric prediction, the average of the predictions
of the trees is computed. If the data involves a categorical prediction, the
mode of the predictions of the trees is determined.

74 • Artificial Intelligence, Machine Learning, Deep Learning

By way of analogy, random forests operate in a manner similar to financial
portfolio diversification: the goal is to balance the losses with higher gains.
Random forests use a majority vote to make predictions, which operates
under the assumption that selecting the majority vote is more likely to be
correct (and more often) than any individual prediction from a single tree.

You can easily modify the code in Listing 3.4 to use a random forest by
replacing the two lines shown in bold with the following code:

from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10,

criterion='entropy', random_state = 0)

Make this code change, launch the code, and examine the confusion matrix
to compare its accuracy with the accuracy of the decision tree in Listing 3.4.

What Are SVMs?

Support Vector Machines involve a supervised ML algorithm and can be
used for classification or regression problems. SVM can work with nonlin-
early separable data as well as linearly separable data. SVM uses a technique
called the kernel trick to transform data and then finds an optimal boundary
the transform involves higher dimensionality. This technique results in a
separation of the transformed data, after which it's possible to find a hyper-
plane that separates the data into two classes.

SVMs are more common in classification tasks than regression tasks.
Some use cases for SVMs include:

•	 Text classification tasks: category assignment

•	 Detecting spam/sentiment analysis

•	 Image recognition: aspect-based recognition, color-based classification

•	 Handwritten digit recognition (postal automation)

Tradeoffs of SVMs
Although SVMs are extremely powerful, there are tradeoffs involved. Some
of the advantages of SVMs are:

•	 has high accuracy

•	 works well on smaller cleaner datasets

Classifiers in Machine Learning • 75

•	 can be more efficient because it uses a subset of training points

•	 can be an alternative to CNNs in cases of limited datasets

•	 captures more complex relationships between data points

Despite the power of SVMS, there are some disadvantages of SVMs:

•	 not suited to larger datasets: training time can be high

•	 less effective on noisier datasets with overlapping classes

SVMs involve more parameters than decision trees and random forests

Suggestion: modify Listing 3.4 to use an SVM by replacing the two lines
shown in bold with the following two lines shown in bold:

from sklearn.svm import SVC
classifier = �SVC(kernel = 'linear',

random_state = 0)

You now have an SVM-based model, simply by making the previous code
update! Make the code change, then launch the code and examine the con-
fusion matrix in order to compare its accuracy with the accuracy of the deci-
sion tree model and the random forest model earlier in this chapter.

What Is Bayesian Inference?

Bayesian inference is an important technique in statistics that involves
statistical inference and Bayes' theorem to update the probability for a
hypothesis as more information becomes available. Bayesian inference is
often called Bayesian probability, and it's important in dynamic analysis of
sequential data.

Bayes Theorem
Given two sets A and B, let's define the following numeric values (all of
them are between 0 and 1):

P(A) = probability of being in set A
P(B) = probability of being in set B
P(Both) = probability of being in A intersect B
P(A|B) = probability of being in A (given you're in B)
P(B|A) = probability of being in B (given you're in A)

76 • Artificial Intelligence, Machine Learning, Deep Learning

Then the following formulas are also true:

P(A|B) = P(Both)/P(B) (#1)
P(B|A) = P(Both)/P(A) (#2)

Multiply the preceding pair of equations by the term that appears in the
denominator and we get these equations:

P(B)*P(A|B) = P(Both) (#3)
P(A)*P(B|A) = P(Both) (#4)

Now set the left-side of equations #3 and #4 equal to each another and that
gives us this equation:

P(B)*P(A|B) = P(A)*P(B|A) (#5)

Divide both sides of #5 by P(B) and we get this well-known equation:

P(A|B) = P(A)*P(A|B)/P(B) (#6)

Some Bayesian Terminology,
In the previous section, we derived the following relationship:

P(h|d) = (P(d|h) * P(h)) / P(d)

There is a name for each of the four terms in the preceding equation:

First, the posterior probability is P(h|d), which is the probability of
hypothesis h given the data d.

Second, P(d|h) is the probability of data d given that the hypothesis
h was true.

Third, the prior probability of h is P(h), which is the probability of
hypothesis h being true (regardless of the data).

Finally, P(d) is the probability of the data (regardless of the
hypothesis)

We are interested in calculating the posterior probability of P(h|d) from
the prior probability p(h) with P(d) and P(d|h).

Classifiers in Machine Learning • 77

What Is MAP?
The maximum a posteriori (MAP) hypothesis is the hypothesis with the
highest probability, which is the maximum probable hypothesis. This can
be written as follows:

MAP(h) = max(P(h|d))
or:

MAP(h) = max((P(d|h) * P(h)) / P(d))
or:

MAP(h) = max(P(d|h) * P(h))

Why Use Bayes’ Theorem?
Bayes Theorem describes the probability of an event based on the prior
knowledge of the conditions that might be related to the event. If we know
the conditional probability, we can use Bayes rule to find out the reverse
probabilities. The previous statement is the general representation of the
Bayes rule.

What Is a Bayesian Classifier?

A Naive Bayes Classifier is a probabilistic classifier inspired by the Bayes
theorem. An NB classifier assumes the attributes are conditionally indepen-
dent and it works well even when assumption is not true. This assumption
greatly reduces computational cost, and it's a simple algorithm to imple-
ment that only requires linear time. Moreover, a NB classifier easily scal-
able to larger datasets and good results are obtained in most cases. Other
advantages of a NB classifier include that it:

•	 can be used for Binary & Multiclass classification

•	 provides different types of NB algorithms

•	 is good choice for Text Classification problems

•	 is a popular choice for spam email classification

•	 can be easily trained on small datasets

78 • Artificial Intelligence, Machine Learning, Deep Learning

As you can probably surmise, NB classifiers do have some disadvantages,
such as:

•	 All features are assumed unrelated

•	 It cannot learn relationships between features

•	 It can suffer from the "zero probability problem"

The "zero probability problem" refers to the case when the conditional
probability is zero for an attribute, it fails to give a valid prediction. How-
ever, can be fixed explicitly using a Laplacian estimator.

Types of Naïve Bayes Classifiers
There are three major types of NB classifiers:

•	 Gaussian Naive Bayes

•	 MultinomialNB Naive Bayes

•	 Bernoulli Naive Bayes

Details of these classifiers are beyond the scope of this chapter, but you can
perform an online search for more information.

Training Classifiers

Some common techniques for training classifiers are:

•	 Holdout method

•	 k-fold cross-validation

The holdout method is the most common method, which starts by dividing
the dataset into two partitions called train and test (80% and 20%, respec-
tively). The train set is used for training the model, and the test data tests
its predictive power.

The k-fold cross-validation technique is used to verify that the model is
not over-fitted. The dataset is randomly partitioned into k mutually exclu-
sive subsets, where each partition has equal size. One partition is for testing
and the other partitions are for training. Iterate throughout the whole of
the k folds.

Classifiers in Machine Learning • 79

Evaluating Classifiers

Whenever you select a classifier for a dataset, it's obviously important to
evaluate the accuracy of that classifier. Some common techniques for evalu-
ating classifiers are:

•	 Precision and Recall

•	 ROC curve (Receiver Operating Characteristics)

Precision and recall are discussed in Chapter 2 and reproduced here for
your convenience. Let's define the following variables:

TP = the number of true positive results
FP = the number of false positive results
TN = the number of true negative results
FN = the number of false negative results

Then the definitions of precision, accuracy, and recall are given by the fol-
lowing formulas:

precision = TP/(TN + FP)
accuracy = (TP + TN)/[P + N]
recall = TP/[TP + FN]

The ROC curve (Receiver Operating Characteristics) is used for visual
comparison of classification models that shows the trade-off between the
true positive rate and the false positive rate. The area under the ROC curve
is a measure of the accuracy of the model. When a model is closer to the
diagonal, it is less accurate, and the model with perfect accuracy will have
an area of 1.0.

The ROC curve plots True Positive Rate versus False Positive Rate.
Another type of curve is the PR curve that plots Precision versus Recall.
When dealing with highly skewed datasets (strong class imbalance), Preci-
sion-Recall (PR) curves give better results.

Later in this chapter you will see many of the Keras-based classes
(located in the tf.keras.metrics namespace) that correspond to com-
mon statistical terms, which includes some of the terms in this section.

This concludes the portion of the chapter pertaining to statistical terms
and techniques for measuring the validity of a dataset. Now let's look at
activation functions in machine learning.

80 • Artificial Intelligence, Machine Learning, Deep Learning

What Are Activation Functions?

A one-sentence description: an activation function is (usually) a nonlinear
function that introduces nonlinearity into a neural network, thereby pre-
venting a “consolidation” of the hidden layers in neural network. Specifi-
cally, suppose that every pair of adjacent layers in a neural network involves
just a matrix transformation and no activation function. Such a network is a
linear system, which means that its layers can be consolidated into a much
smaller system.

First, the weights of the edges that connect the input layer with the
first hidden layer can be represented by a matrix: let’s call it W1. Next, the
weights of the edges that connect the first hidden layer with the second
hidden layer can also be represented by a matrix: let’s call it W2. Repeat this
process until we reach the edges that connect the final hidden layer with
the output layer: let’s call this matrix Wk. Since we do not have an activation
function, we can simply multiply the matrices W1, W2, …, Wk together and
produce one matrix: let’s call it W. We have now replaced the original neural
network with an equivalent neural network that contains one input layer, a
single matrix of weights W, and an output layer. In other words, we no longer
have our original multi-layered neural network!

Fortunately, we can prevent the previous scenario from happening
when we specify an activation function between every pair of adjacent
layers. In other words, an activation function at each layer prevents this
“matrix consolidation.” Hence, we can maintain all the intermediate hid-
den layers during the process of training the neural network.

For simplicity, let’s assume that we have the same activation func-
tion between every pair of adjacent layers (we’ll remove this assumption
shortly). The process for using an activation function in a neural network is
a two step, described as follows:

•	 Step 1. Start with an input vector x1 of numbers

•	 Step 2. Multiply x1 by the matrix of weights W1 that represents the
edges that connect the input layer with the first hidden layer: the
result is a new vector x2

•	 Step 3. Apply the activation function to each element of x2 to create
another vector x3

Classifiers in Machine Learning • 81

Now repeat steps 2 and 3, except that we use the starting vector x3 and the
weights matrix W2 for the edges that connect the first hidden layer with the
second hidden layer (or just the output layer if there is only one hidden
layer).

After completing the preceding process, we have preserved the neural
network, which means that it can be trained on a dataset. One other thing:
instead of using the same activation function at each step, you can replace
each activation function by a different activation function (the choice is
yours).

Why Do We Need Activation Functions?
The previous section outlines the process for transforming an input vector
from the input layer and then through the hidden layers until it reaches the
output layer. The purpose of activation functions in neural networks is vitally
important, so it's worth repeating here: activation functions “maintain” the
structure of neural networks and prevent them from being reduced to an
input layer and an output layer. In other words, if we specify a nonlinear
activation function between every pair of consecutive layers, then the neu-
ral network cannot be replaced with a neural network that contains fewer
layers unless you explicitly remove them.

Without a nonlinear activation function, we simply multiply a weight
matrix for a given pair of consecutive layers with the output vector that is
produced from the previous pair of consecutive layers. We repeat this simple
multiplication until we reach the output layer of the neural network. After
reaching the output layer, we have effectively replaced multiple matrices with
a single matrix that “connects” the input layer with the output layer.

How Do Activation Functions Work?
If this is the first time you have encountered the concept of an activa-
tion function, it’s probably confusing, so here’s an analogy that might be
helpful. Suppose you’re driving your car late at night and there’s nobody
else on the highway. You can drive at a constant speed for as long as
there are no obstacles (stop signs, traffic lights, and so forth). On the
other hand, suppose you drive into the parking lot of a large grocery
store. When you approach a speed bump you must slow down, cross the
speed bump, and increase speed again, and repeat this process for every
speed bump.

82 • Artificial Intelligence, Machine Learning, Deep Learning

Think of the nonlinear activation functions in a neural network as the
counterpart to the speed bumps: you simply cannot maintain a constant
speed, which (by analogy) means that you cannot first multiply all the weight
matrices together and “collapse” them into a single weight matrix. Another
analogy involves a road with multiple toll booths: you must slow down, pay
the toll, and then resume driving until you reach the next toll booth. These
are only analogies (and hence imperfect) to help you understand the need
for nonlinear activation functions.

Common Activation Functions

Although there are many activation functions (and you can define your own
if you know how to do so), here is a list of common activation functions,
followed by brief descriptions:

•	 Sigmoid

•	 Tanh

•	 ReLU

•	 ReLU6

•	 ELU

•	 SELU

The sigmoid activation function is based on Euler’s constant e, with a
range of values between 0 and 1, and its formula is shown here:

1/[1+e^(-x)]

The tanh activation function is also based on Euler’s constant e, and its
formula is shown here:

[e^x – e^(-x)]/[e^x+e^(-x)]

One way to remember the preceding formula is to note that the numer-
ator and denominator have the same pair of terms: they are separated by
a “-” sign in the numerator and a “+” sign in the denominator. The tanh
function has a range of values between -1 and 1.

The ReLU (Rectified Linear Unit) activation function is straightfor-
ward: if x is negative then ReLU(x) is 0; for all other values of x, ReLU(x)

Classifiers in Machine Learning • 83

equals x. ReLU6 is specific to TensorFlow, and it's a variation of ReLU(x):
the additional constraint is that ReLU(x) equals 6 when x >= 6 (hence its
name).

ELU is Exponential Linear Unit and it's the exponential “envelope” of
ReLU, which replaces the two linear segments of ReLU with an exponential
activation function that is differentiable for all values of x (including x = 0).

SELU is an acronym for Scaled Exponential Linear Unit, and it’s
slightly more complicated than the other activation functions (and used less
frequently). For a thorough explanation of these and other activation func-
tions (along with graphs that depict their shape), navigate to the following
Wikipedia link:

https://en.wikipedia.org/wiki/Activation_function

This link provides a long list of activation functions as well as their
derivatives.

Activation Functions in Python
Listing 3.5 displays contents of the file activations.py that contains the
formulas for various activation functions.

Listing 3.5: activations.py

import numpy as np

Python sigmoid example:
z = 1/(1 + np.exp(-np.dot(W, x)))

Python tanh example:
z = np.tanh(np.dot(W,x))

Python ReLU example:
z = np.maximum(0, np.dot(W, x))

Listing 3.5 contains Python code that use NumPy methods in order to
define a sigmoid function, a tanh function, and a ReLU function. Note
that you need to specify values for x and W in order to launch the code in
Listing 3.5.

84 • Artificial Intelligence, Machine Learning, Deep Learning

Keras Activation Functions

TensorFlow (and many other frameworks) provide implementations for
many activation functions, which saves you the time and effort from writing
your own implementation of activation functions.

Here is a list of TF 2/Keras APIs activation functions that are located
in the tf.keras.layers namespace:

•	 tf.keras.layers.leaky_relu

•	 tf.keras.layers.relu

•	 tf.keras.layers.relu6

•	 tf.keras.layers.selu

•	 tf.keras.layers.sigmoid

•	 tf.keras.layers.sigmoid_cross_entropy_with_logits

•	 tf.keras.layers.softmax

•	 tf.keras.layers.softmax_cross_entropy_with_logits_v2

•	 tf.keras.layers.softplus

•	 tf.keras.layers.softsign

•	 tf.keras.layers.softmax_cross_entropy_with_logits

•	 tf.keras.layers.tanh

•	 tf.keras.layers.weighted_cross_entropy_with_logits

The following subsections provide additional information regarding
some of the activation functions in the preceding list. Keep the follow-
ing point in mind: for simple neural networks, use ReLU as your first
preference.

The ReLU and ELU Activation Functions

Currently ReLU is often the “preferred” activation function: previously the
preferred activation function was tanh (and before tanh it was sigmoid).
ReLU behaves close to a linear unit and provides the best training accuracy
and validation accuracy.

Classifiers in Machine Learning • 85

ReLU is like a switch for linearity: it’s “off” if you don’t need it, and
its derivative is 1 when it’s active, which makes ReLU the simplest of all
the current activation functions. Note that the second derivative of the
function is 0 everywhere: it’s a very simple function that simplifies optimi-
zation. In addition, the gradient is large whenever you need large values,
and it never “saturates” (i.e., it does not shrink to zero on the positive
horizontal axis).

Rectified linear units and generalized versions are based on
the principle that linear models are easier to optimize. Use the
ReLU activation function or one of its related alternatives (discussed
later).

The Advantages and Disadvantages of ReLU
The following list contains the advantages of the ReLU activation
function:

•	 Does not saturate in the positive region

•	 Very efficient in terms of computation

•	 Models with ReLU typically converge faster those with other
activation functions

However, ReLU does have a disadvantage when the activation value
of a ReLU neuron becomes 0: then the gradients of the neuron will
also be 0 during back-propagation. You can mitigate this scenario by
judiciously assigning the values for the initial weights as well as the
learning rate.

ELU
ELU is an acronym for exponential linear unit that is based on ReLU:
the key difference is that ELU is differentiable at the origin (ReLU is
a continuous function but not differentiable at the origin). However,
keep in mind several points. First, ELUs trade computational efficiency
for immortality (immunity to dying): read the following paper for more
details: arxiv.org/abs/1511.07289. Secondly, RELUs are still popular and
preferred over ELU because the use of ELU introduces an additional
new hyper-parameter.

86 • Artificial Intelligence, Machine Learning, Deep Learning

Sigmoid, Softmax, and Hardmax Similarities

The sigmoid activation function has a range in (0,1), and it saturates and
kills gradients. Unlike the tanh activation function, sigmoid outputs are
not zero-centered. In addition, both sigmoid and softmax (discussed
later) are discouraged for vanilla feed forward implementation (see Chap-
ter 6 of the online book, Deep Learning by Ian Goodfellow et al.). How-
ever, the sigmoid activation function is still used in LSTMs (specifically
for the forget gate, input gate, and the output gate), GRUs (Gated Recur-
rent Units), and probabilistic models. Moreover, some autoencoders have
additional requirements that preclude the use of piecewise linear activa-
tion functions.

Softmax
The softmax activation function maps the values in a dataset to another
set of values that are between 0 and 1, and whose sum equals 1. Thus,
softmax creates a probability distribution. In the case of image classifica-
tion with Convolutional Neural Networks (CNNs), the softmax activation
function maps the values in the final hidden layer to the ten neurons in the
output layer. The index of the position that contains the largest probability
is matched with the index of the number 1 in the one-hot encoding of the
input image. If the index values are equal, then the image has been classi-
fied, otherwise it's considered a mismatch.

Softplus
The softplus activation function is a smooth (i.e., differentiable) approxi-
mation to the ReLU activation function. Recall that the origin is the only
nondifferentiable point of the ReLU function, which is smoothed by the
softmax activation whose equation is:

f(x) = ln(1 + e^x)

Tanh
The tanh activation function has a range in (-1,1), whereas the sigmoid
function has a range in (0,1). Both of these activations saturate, but unlike
the sigmoid neuron the tanh output is zero-centered. Therefore, in
practice the tanh nonlinearity is always preferred to the sigmoid non-
linearity.

Classifiers in Machine Learning • 87

The sigmoid and tanh activation functions appear in LSTMs
(sigmoid for the three gates and tanh for the internal cell state) as well
as GRUs (Gated Recurrent Units) during the calculations pertaining to
input gates, forget gates, and output gates (discussed in more detail in the
next chapter).

Sigmoid, Softmax, and HardMax Differences

This section briefly discusses some of the differences among these three
functions. First, the sigmoid function is used for binary classification in
logistic regression model, as well as the gates in LSTMs and GRUs. The
sigmoid function is used as activation function while building neural net-
works, but keep in mind that the sum of the probabilities is not necessarily
equal to 1.

Second, the softmax function generalizes the sigmoid function: it's
used for multiclassification in logistic regression model. The softmax func-
tion is the activation function for the fully connected layer in CNNs, which
is the rightmost hidden layer and the output layer. Unlike the sigmoid
function, the sum of the probabilities must equal 1. You can use either the
sigmoid function or softmax for binary (n=2) classification.

Third, the so-called hardmax function assigns 0 or 1 to output values
(similar to a step function). For example, suppose that we have three classes
{c1, c2, c3} whose scores are [1, 7, 2], respectively. The hardmax
probabilities are [0, 1, 0], whereas the softmax probabilities are [0.1,
0.7, 0.2]. Notice that the sum of the hardmax probabilities is 1, which
is also true of the sum of the softmax probabilities. However, the hard-
max probabilities are all-or-nothing, whereas the softmax probabilities are
analogous to receiving “partial credit.”

What Is Logistic Regression?

Despite its name, logistic regression is a classifier and a linear model
with a binary output. Logistic regression works with multiple indepen-
dent variables and involves a sigmoid function for calculating prob-
abilities. Logistic regression is essentially the result of applying the
sigmoid activation function to linear regression in order to perform binary
classification.

88 • Artificial Intelligence, Machine Learning, Deep Learning

Logistic regression is useful in a variety of unrelated fields. Such
fields include machine learning, various medical fields, and social sci-
ences. Logistic regression can be used to predict the risk of developing
a given disease, based on various observed characteristics of the patient.
Other fields that use logistic regression include engineering, marketing,
and economics.

Logistic regression can be binomial (only two outcomes for a depen-
dent variable), multinomial (three or more outcomes for a dependent
variable), or ordinal (dependent variables are ordered). For instance,
suppose that a dataset consists of data that belong either to class A or
to class B. If you are given a new data point, logistic regression predicts
whether that new data point belongs to class A or to class B. By contrast,
linear regression predicts a numeric value, such as the next-day value of
a stock.

Setting a Threshold Value
The threshold value is a numeric value that determines which data points
belong to class A and which points belong to class B. For instance, a pass/
fail threshold might be 0.70. A pass/fail threshold for passing a writing driv-
er's test in California is 0.85.

As another example, suppose that p = 0.5 is the cutoff probability. Then
we can assign class A to the data points that occur with probability > 0.5 and
assign class B to data points that occur with probability <= 0.5. Since there
are only two classes, we do have a classifier.

A similar (yet slightly different) scenario involves tossing a well-bal-
anced coin. We know that there is a 50% chance of throwing heads (let’s
label this outcome as class A) and a 50% chance of throwing tails (let's label
this outcome as class B). If we have a dataset that consists of labeled out-
comes, then we have the expectation that approximately 50% of them are
class A and class B.

On the other hand, we have no way to determine (in advance) what per-
centage of people will pass their written driver’s test, or the percentage of
people who will pass their course. Datasets containing outcomes for these
types of scenarios need to be trained, and logistic regression can be a suit-
able technique for doing so.

Classifiers in Machine Learning • 89

Logistic Regression: Important Assumptions
Logistic regression requires the observations to be independent of
each other. In addition, logistic regression requires little or no multi
collinearity among the independent variables. Logistic regression
handles numeric, categorical, and continuous variables and also
assumes linearity of independent variables and log odds, which is
defined as:

odds = p/(1-p) and logit = log(odds)

This analysis does not require the dependent and independent variables
to be related linearly; however, another requirement is that independent
variables are linearly related to the log odds.

Logistic regression is used to obtain odds ratio in the presence of more
than one explanatory variable. The procedure is quite similar to multiple
linear regression, with the exception that the response variable is binomial.
The result is the impact of each variable on the odds ratio of the observed
event of interest.

Linearly Separable Data
Linearly separable data is data that can be separated by a line (in 2D),
a plane (in 3D), or a hyperplane (in higher dimensions). Linearly
nonseparable data is data (clusters) that cannot be separated by a line
or a hyperplane. For example, the XOR function involves datapoints
that cannot be separated by a line. If you create a truth table for an
XOR function with two inputs, the points (0,0) and (1,1) belong to
class 0, whereas the points (0,1) and (1,0) belong to class 1 (draw
these points in a 2D plane to convince yourself). The solution involves
transforming the data in a higher dimension so that it becomes linearly
separable, which is the technique used in SVMS (discussed earlier in
this chapter).

Keras, Logistic Regression, and Iris Dataset

Listing 3.6 displays the contents of tf2-keras-iris.py that defines a
Keras-based model to perform logistic regression.

90 • Artificial Intelligence, Machine Learning, Deep Learning

Listing 3.6: tf2-keras-iris.py

import tensorflow as tf
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_

split
from sklearn.preprocessing import OneHotEncoder,

StandardScaler

iris = load_iris()
X = iris['data']
y = iris['target']

#you can view the data and the labels:
#print("iris data:",X)
#print("iris target:",y)

scale the X values so they are between 0 and 1
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_
split(X_scaled, y, test_size = 0.2)

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.

Dense(activation='relu', input_dim=4,
 units=4, kernel_initializer='uniform'))

model.add(tf.keras.layers.
Dense(activation='relu', units=4,

 kernel_initializer='uniform'))

Classifiers in Machine Learning • 91

model.add(tf.keras.layers.
Dense(activation='sigmoid', units=1,

 kernel_initializer='uniform'))
#model.add(tf.keras.layers.Dense(1,

activation='softmax'))

model.compile(optimizer='adam', loss='mean_
squared_error', metrics=['accuracy'])

model.fit(X_train, y_train, batch_size=10,
epochs=100)

Predicting values from the test set
y_pred = model.predict(X_test)

scatter plot of test values-vs-predictions
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred)
ax.plot([y_test.min(), y_test.max()], [y_test.

min(), y_test.max()], 'r*--')
ax.set_xlabel('Calculated')
ax.set_ylabel('Predictions')
plt.show()

Listing 3.6 starts with an assortment of import statements, and
then initializes the variable iris with the Iris dataset. The variable X
contains the first three columns (and all the rows) of the Iris dataset,
and the variable y contains the fourth column (and all the rows) of the
Iris dataset.

The next portion of Listing 3.6 initializes the training set and
the test set using an 80/20 data split. Next, the Keras-based model
contains three Dense layers, where the first two specify the relu acti-
vation function and the third layer specifies the sigmoid activation
function.

92 • Artificial Intelligence, Machine Learning, Deep Learning

The next portion of Listing 3.6 compiles the model, trains the model,
and then calculates the accuracy of the model via the test data. Launch the
code in Listing 3.6 and you will see the following output:

Train on 120 samples
Epoch 1/100
120/120 [==============================] - 0s

980us/sample - loss: 0.9819 - accuracy: 0.3167
Epoch 2/100
120/120 [==============================] - 0s

162us/sample - loss: 0.9789 - accuracy: 0.3083
Epoch 3/100
120/120 [==============================] - 0s

204us/sample - loss: 0.9758 - accuracy: 0.3083
Epoch 4/100
120/120 [==============================] - 0s

166us/sample - loss: 0.9728 - accuracy: 0.3083
Epoch 5/100
120/120 [==============================] - 0s

160us/sample - loss: 0.9700 - accuracy: 0.3083
// details omitted for brevity
Epoch 96/100
120/120 [==============================] - 0s

128us/sample - loss: 0.3524 - accuracy: 0.6500
Epoch 97/100
120/120 [==============================] - 0s

184us/sample - loss: 0.3523 - accuracy: 0.6500
Epoch 98/100
120/120 [==============================] - 0s

128us/sample - loss: 0.3522 - accuracy: 0.6500
Epoch 99/100
120/120 [==============================] - 0s

187us/sample - loss: 0.3522 - accuracy: 0.6500
Epoch 100/100
120/120 [==============================] - 0s

167us/sample - loss: 0.3521 - accuracy: 0.6500

Classifiers in Machine Learning • 93

Figure 3.1 displays a scatter plot of points based on the test values and the
predictions for those test values.

FIGURE 3.1 A Scatter Plot and a Best-Fitting Line.

The accuracy is admittedly poor (abysmal?), and yet it's quite possible
that you will encounter this type of situation. Experiment with a different
number of hidden layers and replace the final hidden layer with a Dense
layer that specifies a softmax activation function—or some other activa-
tion function—to see if this change improves the accuracy.

Summary

This chapter started with an explanation of classification and classifiers,
followed by a brief explanation of commonly used classifiers in machine
learning.

94 • Artificial Intelligence, Machine Learning, Deep Learning

Next you learned about activation functions, why they are important in
neural networks, and how they are used in neural networks. Then you saw
a list of the TensorFlow/Keras APIs for various activation functions, fol-
lowed by a description of some of their merits.

You also learned about Logistic regression that involves the sigmoid
activation function, followed by a Keras-based code sample involving logis-
tic regression.

C H A P T E R 4
DEEP LEARNING
INTRODUCTION

This chapter introduces you to deep learning, which includes MLPs (Mul-
tilayer Perceptrons), CNNs (Convolutional Neural Networks). Other deep
learning architectures, such as RNNs (Recurrent Neural Networks), and
LSTMs (Long Short Term Memory), are discussed in Chapter 5.

Most of the material in this chapter is descriptive content, along with
some Keras-based code samples that assume you have read the Keras
material in the previous chapters. This chapter is meant to be a cursory
introduction to a diverse set of topics, along with suitable links to additional
information.

If you are new to deep learning, many topics in this chapter will probably
require additional study in order to become comfortable with them: think of
this chapter as a modest step toward your mastery of deep learning.

The first portion of this chapter briefly discusses deep learning, the
problems it can solve, and the challenges for the future. The second part
of this chapter briefly introduces Perceptrons, which is essentially a core
building block for neural networks. In fact, ANNs, MLPs, RNNs, LSTMs, VAEs
are all based on multiple layers that contain multiple Perceptrons, along
with additional processing steps.

The third part of this chapter provides an introduction of CNNs, followed
by an example of training a Keras-based CNN with the MNIST dataset: this
code sample will make more sense if you have read the section pertaining
to activation functions in Chapter 5.

96 • Artificial Intelligence, Machine Learning, Deep Learning

Keras and the XOR Function

The XOR function is a well-known function that is not linear separable in
the plane. The truth table for the XOR (“exclusive OR”) function is straight-
forward: given two binary inputs, the output is 1 if at most one input is a 1;
otherwise, the output is 0. If we treat XOR as the name of a function with
two binary inputs, here are the outputs:

XOR(0,0) = 0
XOR(1,0) = 1
XOR(0,1) = 1
XOR(1,1) = 0

We can treat the output values as labels that are associated with the input
values. Specifically, the points (0,0) and (1,1) are in class 0 and the points
(1,0) and (0,1) are in class 1. Draw these points in the plane, and you will
have the four vertices of a unit square whose lower-left vertex is the origin.
Moreover, each pair of diagonal elements belongs to the same class, and
you cannot separate the points in class 0 from the points in class 1 with a
straight line in the Euclidean plane. Hence, the XOR function is not linearly
separable in the plane. If you’re skeptical, try to find a linear separator for
the XOR function in the Euclidean plane.

Listing 4.1 displays the contents of tf2_keras_xor.py that illustrates
how to create a Keras-based neural network to train the XOR function.

Listing 4.1: tf2_keras_xor.py

import tensorflow as tf
import numpy as np

Logical XOR operator and "truth" values:
x = np.array([[0., 0.],[0., 1.],[1., 0.],[1.,

1.]])
y = np.array([[0.], [1.], [1.], [0.]])

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(2, input_dim=2,

activation='relu'))
model.add(tf.keras.layers.Dense(1))

Deep Learning Introduction • 97

print("compiling model...")
model.compile(loss='mean_squared_error',

optimizer='adam')
print("fitting model...")
model.fit(x,y,verbose=0,epochs=1000)
pred = model.predict(x)

Test final prediction
print("Testing XOR operator")
p1 = np.array([[0., 0.]])
p2 = np.array([[0., 1.]])
p3 = np.array([[1., 0.]])
p4 = np.array([[1., 1.]])

print(p1,":", model.predict(p1))
print(p2,":", model.predict(p2))
print(p3,":", model.predict(p3))
print(p4,":", model.predict(p4))

Listing 4.1 initializes the NumPy array x with 4 pairs of numbers that
are the four combinations of 0 and 1, followed by the NumPy array y that
contains the logical OR of each pair of numbers in x.

The next portion of Listing 4.1 defines a Keras-based model with two
Dense layers. Next, the model is compiled, trained, and then the variable
pred is populated with a set of predictions based on the trained model.

The next code block initializes the points p1, p2, p3, and p4 and then
displays the values that are predicted for those points. The output from
launching the code in Listing 4.1 is here:

compiling model...
fitting model...
Testing XOR operator
[[0. 0.]] : [[0.36438465]]
[[0. 1.]] : [[1.0067574]]
[[1. 0.]] : [[0.36437267]]
[[1. 1.]] : [[0.15084022]]

98 • Artificial Intelligence, Machine Learning, Deep Learning

Experiment with different values for epochs and see how that affects
the predictions. Use the code in Listing 4.1 as a template for other logi-
cal functions. The only modification to Listing 4.1 that is required is the
replacement of the variable y in Listing 4.1 with the variable y that is speci-
fied as the labels for several other logic gates that are listed below.

The labels for the NOR function:

y = np.array([[1.], [0.], [0.], [1.]])

The labels for the OR function:

y = np.array([[0.], [1.], [1.], [1.]])

The labels for the XOR function:

y = np.array([[0.], [1.], [1.], [0.]])

The labels for the ANDR function:

y = np.array([[0.], [0.], [0.], [1.]])

mnist = tf.keras.datasets.mnist

The preceding code snippets are the only required code changes to List-
ing 4.1 in order to train a model for a different logical function. For your
convenience, the companion disc contains the following Keras-based code
samples for the preceding functions:

tf2_keras-nor.py
tf2_keras-or.py
tf2_keras-xor.py
tf2_keras-and.py

After you have finished working with the preceding samples, try the NAND
function, or create more complex combinations of these basic functions.

Now that you have seen an example of the limitations of a neural net-
work with a single hidden layer, the usefulness of architectures with mul-
tiple hidden layers makes more sense, as discussed in the next section.

What Is Deep Learning?

Deep learning is a subset of machine learning that focuses on neural
networks and algorithms for training neural networks. As you learned in
the introduction to this chapter, deep learning comprises many types of

Deep Learning Introduction • 99

neural networks, such as CNNs, RNNs, LSTMs, GRUs, Variational Autoencod-
ers (VAEs), and GANs. A deep learning model requires at least two hidden
layers in a neural network (very deep learning involves neural networks
with at least ten hidden layers).

From a high-level perspective, deep learning with supervised learning
involves defining a model (a.k.a. neural network) as well as:

•	 Making an estimate for a datapoint

•	 Calculating the loss or error of each estimate

•	 Reducing the error via gradient descent

In Chapter 3, you learned about linear regression in the context of machine
learning, which starts with initial values for m and b:

m = tf.Variable(0.)

b = tf.Variable(0.)

The training process involves finding the optimal values for m and b in the
following equation:

y = m*x + b

We want to calculate the dependent variable y given a value for the inde-
pendent variable x. In this case, the calculation is handled by the following
Python function:

def predict(x):

 y = m*x + b	

 return y

The loss is another name for the error of the current estimate, which can
be calculated via the following Python function that determines the MSE
value:

def squared_error(y_pred, y_actual):

 return tf.reduce_mean(tf.square(y_pred-y_actual))

We also need to initialize variables for the training data (often named
x_train and y_train) and the test-related data (often named x_test
and y_test), which is typically an 80/20 or 75/25 split between training

100 • Artificial Intelligence, Machine Learning, Deep Learning

data and test data. Then the training process invokes the preceding Python
functions in the following manner:

loss = squared_error(predict(x_train), y_train)

print("Loss:", loss.numpy())

Although the Python functions in this section are simple, they can be gen-
eralized to handle complex models, such as the models that are described
later in this chapter.

You can also solve linear regression via deep learning, which involves
the same code that you saw earlier in this section.

What Are Hyper Parameters?
Deep learning involves hyper parameters, which are sort of like knobs
and dials whose values are initialized by you prior to the actual train-
ing process. For instance, the number of hidden layers and the number
of neurons in hidden layers are examples of hyper parameters. You will
encounter many hyper parameters in deep learning models, some of
which are listed here:

•	 Number of hidden layers

•	 Number of neurons in hidden layers

•	 Weight initialization

•	 An activation function

•	 A cost function

•	 An optimizer

•	 A learning rate

•	 A dropout rate

The first three hyper parameters in the preceding list are required for the
initial set-up of a neural network. The fourth hyper parameter is required
for forward propagation. The next three hyper parameters (i.e., the cost
function, optimizer, and learning rate) are required in order to perform
backward error propagation (often called simply backprop) during super-
vised learning tasks. This step calculates a set of numbers that are used to
update the values of the weights in the neural network in order to improve
the accuracy of the neural network. The final hyper parameter is useful if

Deep Learning Introduction • 101

you need to reduce overfitting in your model. In general, the cost function
is the most complex of all these hyper parameters.

During back propagation, the vanishing gradient problem can occur
(i.e., the gradient value is very close to zero), after which some weights are
no longer updated, in which case the neural network is essentially inert
(and debugging this problem is generally nontrivial). Another consider-
ation: deciding whether or not a local minima is “good enough” and prefer-
able to expending the additional time and effort that is required to find an
absolute minima.

Deep Learning Architectures
As discussed previously, deep learning supports various architectures,
including MLPs, CNNs, RNNs, and LSTMs. Although there is overlap in
terms of the types of tasks that these architectures can solve, each one
has a specific reason for its creation. As you progress from MLPs to LSTMs,
the architectures become more complex. Sometimes combinations of these
architectures are well suited for solving tasks. For example, capturing video
and making predictions typically involves a CNN (for processing each input
image in a video sequence) and an LSTM to make predictions of the position
of objects that are in the video stream.

In addition, neural networks for NLP can contain one or more CNNs,
RNNs, LSTMs, and biLSTMs (bidirectional LSTMs). In particular, the combi-
nation of reinforcement learning with these architectures is called deep
reinforcement learning.

Although MLPs have been popular for a long time, they suffer from two
disadvantages: they are not scalable for computer vision tasks, and they are
somewhat difficult to train. On the other hand, CNNs do not require adja-
cent layers to be fully connected. Another advantage of CNNs is something
called translation invariance, which means that an image (such as a digit,
cat, dog, and so forth) is recognized as such, regardless of where it appears
in a bitmap.

Problems that Deep Learning Can Solve
As you know, back propagation involves updating the weights of the
edges between consecutive layers, which is performed in a right-to-
left fashion (i.e., from the output layer toward the input layer). The
updates involve the chain rule (a rule for computing derivatives)

102 • Artificial Intelligence, Machine Learning, Deep Learning

and an arithmetic product of parameters and gradient values. There
are two anomalous results that can occur: the product of terms
approaches zero (which is called the vanishing gradient problem) or
the product of terms becomes arbitrarily large (which is called the
exploding gradient problem). These problems arise with the sigmoid
activation function.

Deep learning can mitigate both problems via LSTMs. Deep learn-
ing models usually replace the sigmoid activation function with the
ReLU activation function. ReLU is a very simple continuous function
that is differentiable (with a value of 1 to the right of the y-axis and
a value of -1 to the left of the y-axis) everywhere except the origin.
Hence, it’s necessary to perform some tweaking to make things work
nicely at the origin.

Challenges in Deep Learning
Although deep learning is powerful and has produced impressive results in
many fields, there are some important ongoing challenges that are being
explored, including:

•	 Bias in algorithms

•	 Susceptibility to adversarial attacks

•	 Limited ability to generalize

•	 Lack of explainability

•	 Correlation but not causality

Algorithms can contain unintentional bias, and even if the bias is
removed, there can be unintentional bias in data. For example, one neu-
ral network was trained on a dataset containing pictures of Caucasian
males and females. The outcome of the training process “determined”
that males were physicians and that females were housewives and did
so with a high probability. The reason was simple: the dataset depicted
males and females almost exclusively in those two roles. The following
article contains more information regarding bias in algorithms:

https://www.technologyreview.com/s/612876/this-is-how-ai-bias-
really-happensand-why-its-so-hard-to-fix

Deep learning focuses on finding patterns in datasets, and gen-
eralizing those results is a more difficult task. There are some initia-

Deep Learning Introduction • 103

tives that attempt to provide explainability for the outcomes of neural
networks, but such work is still in its infancy. Deep learning finds pat-
terns and can determine correlation, but it’s incapable of determining
causality.

Now that you have a bird’s eye view of deep learning, let’s rewind and
discuss an important cornerstone of machine learning called the Percep-
tron, which is the topic of the next section.

What Are Perceptrons?

Recall from Chapter 4 that a model for linear regression involves an output
layer that contains a single neuron, whereas a multineuron output layer
is for classifiers (discussed in Chapter 3). DNNs (Deep Neural Networks)
contain at least two hidden layers, and they can solve logistic regression
problems and as well as classification problems. In fact, the output layer of
a model for classification problems consists of a set of probabilities (one for
each class in the dataset) whose sum equals 1.

Figure 4.1 displays a Perceptron with incoming edges that have numeric
weights.

FIGURE 4.1 An Example of a Perceptron.

104 • Artificial Intelligence, Machine Learning, Deep Learning

Image adapted from [Arunava Chakraborty, Source: https://towardsda-
tascience.com/the-perceptron-3af34c84838c]

The next section delves into the details of a perceptron, and how they
form the backbone of MLPs.

Definition of the Perceptron Function
A Perceptron involves a function f(x) where the following holds:

f(x) = 1 if w*x + b > 0 (otherwise f(x) = 0)

In the previous expression, w is a vector of weights, x is an input
vector, b is a vector of biases. The product w*x is the inner product of
the vectors w and x, and activating a Perceptron is an all-or-nothing
decision (e.g., a light bulb is either on or off, with no intermediate
states).

Notice that the function f(x) checks the value of the linear term
w*x+b, which is also specified in the sigmoid function for logistic regres-
sion. The same term appears as part of the calculation of the sigmoid value,
as shown here:

1/[1 + e^(w*x+b)]

Given a value for w*x+b, the preceding expression generates a numeric
value. However, in the general case, W is a weight matrix, and x and b are
vectors.

The next section digresses slightly in order to describe artificial neural
networks, after which we’ll discuss MLPs.

A Detailed View of a Perceptron
A neuron is essentially a building block for neural networks. In general,
each neuron receives multiple inputs (which are numeric values), each of
which is from a neuron that belongs to a previous layer in a neural net-
work. The weighted sum of the inputs is calculated and assigned to the
neuron.

Specifically, suppose that a neuron N' (N “prime”) receives inputs
whose weights are in the set {w1, w2, w3, . . . , wn}, where these numbers
specify the weights of the edges that are connected to neuron N'. Since
forward propagation involves a flow of data in a left-to-right fashion,
this means that the left endpoint of the edges is connected to neurons

Deep Learning Introduction • 105

{N1, N2, . . ., Nk} in a preceding layer, and the right endpoint of these
edges is N'. The weighted sum is calculated as follows:

x1*w1 + x2*w2 + . . . + xn*wn

After the weighted sum is calculated, it’s fed to an activation function that
calculates a second value. This step is required for artificial neural net-
works, and it’s explained later in the chapter. This process of calculating
a weighted sum is repeated for every neuron in a given layer, and then
the same process is repeated on the neurons in the next layer of a neural
network.

The entire process is called forward propagation, which is comple-
mented by the backward error propagation step (also called backprop).
During the backward error propagation step, new weight values are cal-
culated for the entire neural network. The combination of forward prop
and backward prop is repeated for each data point (e.g., each row of data
in a CSV file). The goal is to finish this training process so that the final-
ized neural network (also called a model) accurately represents the data in
a dataset and can also accurately predict values for the test data. Of course,
the accuracy of a neural network depends on the dataset in question, and
the accuracy can be higher than 99%.

The Anatomy of an Artificial Neural Network (ANN)

An ANN consists of an input layer, an output layer, and one or more hidden
layers. For each pair of adjacent layers in an ANN, neurons in the left layer
are connected with neurons in the right layer via an edge that has a numeric
weight. If all neurons in the left-side layer are connected to all neurons in
the right-side layer, it’s called an MLP (discussed later).

Keep in mind that the Perceptrons in an ANN are “stateless:” they do
not retain any information about previously processed data. Furthermore,
an ANN does not contain cycles (hence ANNs are acyclic). By contrast,
RNNs and LSTMs do retain state and they do have cycle-like behavior, as you
will see later in this chapter.

Incidentally, if you have a mathematics background, you might be
tempted to think of an ANN as a set of contiguous bipartite graphs in
which data flows from the input layer (think “multiple sources”) toward the
output layer (“the sink”). Unfortunately, this viewpoint doesn’t prove use-

106 • Artificial Intelligence, Machine Learning, Deep Learning

ful for understanding ANNs. A better way to understand ANNs is to think
of their structure as a combination of the hyper parameters in the
following list:

•	 The number of hidden layers

•	 The number of neurons in each hidden layer

•	 The initial weights of edges connecting pairs of neurons

•	 The activation function

•	 A cost (a.k.a. loss) function

•	 An optimizer (used with the cost function)

•	 The learning rate (a small number)

•	 The dropout rate (optional)

Figure 4.2 displays the contents of an ANN (there are many variations:
this is simply one example).

FIGURE 4.2 An Example of an ANN.

Image adapted from [Cburnett, Source: https://commons.wikimedia.
org/wiki/File:Artificial_neural_network.svg]

Deep Learning Introduction • 107

Since the output layer of the ANN in Figure 4.2 contains more than one
neuron, we know that it’s a model for a classification task.

Initializing Hyperparameters of a Model
The first three parameters in the list of bullet items in the previous sec-
tion are required for initializing the neural network. The hidden layers
are intermediate computational layers, each of which is composed of
neurons. The number of edges between each pair of adjacent layers is
flexible and determined by you. More information about network ini-
tialization is here:

http://www.deeplearning.ai/ai-notes/initialization/

The edges that connect neurons in each pair of adjacent layers
(including the input layer and the output layer) have numeric weights.
The initial values of these weights are often small random numbers
between 0 and 1. Keep in mind that the connections between adjacent
layers can affect the complexity of a model. The purpose of the training
process is to fine-tune edge weights in order to improve the accuracy
of a model.

An ANN is not necessarily fully connected, which is to say that
some edges between pairs of neurons in adjacent layers might be
missing. By contrast, neural networks such as CNNs share edges (and
their weights), which can make them more computationally feasible
(but even CNNs can require significant training time). Note that the
Keras tf.keras.layers.Dense() class handles the task of fully
connecting two adjacent layers. As discussed later, MLPs are fully con-
nected, which can greatly increase the training time for such a neural
network.

The Activation Hyperparameter
The fourth parameter is the activation function that is applied to weights
between each pair of consecutive layers. Neural networks with many lay-
ers typically involve different activation functions. For instance, CNNs use
the ReLU activation function on feature maps (created by applying filters
to an image), whereas the penultimate layer is connected to the output
layer via the softmax function (which is a generalization of the sigmoid
function).

108 • Artificial Intelligence, Machine Learning, Deep Learning

The Loss Function Hyperparameter

The fifth, sixth, and seventh hyper parameters are required for backward
error propagation that starts from the output layer and move in a right-
to-left toward the input layer. These hyper parameters perform the heavy
lifting of machine learning frameworks: they compute the updates to the
weights of the edges in neural networks.

The loss function is a function in multidimensional Euclidean space.
For example, the MSE loss function is a bowl-shaped loss function that has
a global minimum. In general, the goal is to minimize the MSE function in
order to minimize the loss, which in turn will help us maximize the accuracy
of a model (but this is not guaranteed for other loss functions). However,
sometimes a local minimum might be considered “good enough” instead of
finding a global minimum: you must make this decision (i.e., it’s not a purely
programmatic decision).

Alas, loss functions for larger datasets tend to be very complex, which
is necessary in order to detect potential patterns in datasets. Another loss
function is the cross-entropy function, which involves maximizing the likeli-
hood function (contrast this with MSE). Search for online articles (such as
Wikipedia) for more details about loss functions.

The Optimizer Hyperparameter

An optimizer is an algorithm that is chosen in conjunction with a loss
function, and its purpose is to converge to the minimum value of the
cost function during the training phase (see the comment in the previous
section regarding a local minimum). Different optimizers make different
assumptions regarding the way new approximations are calculated dur-
ing the training process. Some optimizers involve only the most recent
approximation, whereas other optimizers use a rolling average that takes
into account several previous approximations.

There are several well-known optimizers, including SGD, RMSprop,
Adagrad, Adadelta, and Adam. Check online for details regarding the
advantages and trade-offs of these optimizers.

Deep Learning Introduction • 109

The Learning Rate Hyperparameter
The learning rate is a small number, often between 0.001 and 0.05, which
affects the magnitude of number that is added to the current weight of an
edge in order to train the model with these updated weights. The learning
rate has a sort of throttling effect. If the value is too large, the new approxi-
mation might overshoot the optimal point; if it’s too small, the training time
can increase significantly. By analogy, imagine you are in a passenger jet and
you’re 100 miles away from an airport. The speed of the airplane decreases
as you approach the airport, which corresponds to decreasing the learning
rate in a neural network.

The Dropout Rate Hyperparameter
The dropout rate is the eighth hyper parameter, which is a decimal value
between 0 and 1, typically between 0.2 and 0.5. Multiply this decimal
value with 100 to determine the percentage of randomly selected neu-
rons to ignore during each forward pass in the training process. For
example, if the dropout rate is 0.2, then 20% of the neurons are selected
randomly and ignored during each step of the forward propagation.
A different set of neurons is randomly selected whenever a new data-
point is processed in the neural network. Note that the neurons are not
removed from the neural network: they still exist, and ignoring them
during forward propagation has the effect of thinning the neural net-
work. In TF 2 the tf.keras.layers.Dropout class performs the task
of thinning a neural network.

There are additional hyper parameters that you can specify, but they
are optional and not required in order to understand ANNs.

What Is Backward Error Propagation?

An ANN is typically drawn in a left-to-right fashion, where the left-most
layer is the input layer. The output from each layer becomes the input for
the next layer. The term forward propagation refers to supplying values to
the input layer and progress through the hidden layers toward the output
layer. The output layer contains the results (which are estimated numeric
values) of the forward pass through the model.

110 • Artificial Intelligence, Machine Learning, Deep Learning

Here is a key point: backward error propagation involves the cal-
culation of numbers that are used to update the weights of the edges in
the neural network. The update process is performed by means of a loss
function (and an optimizer and a learning rate), starting from the output
layer (the right-most layer) and then moving in a right-to-left fashion
in order to update the weights of the edges between consecutive lay-
ers. This procedure trains the neural network, which involves reducing
the loss between the estimated values at the output layer and the true
values (in the case of supervised learning). This procedure is repeated
for each data point in the training portion of the dataset. Processing the
dataset is called an epoch, and many times a neural network is trained
via multiple epochs.

The previous paragraph did not explain what the loss function is or
how it’s chosen: that’s because the loss function and the optimizer and the
learning rate are hyper parameters that are discussed in previous sections.
However, two commonly used loss functions are MSE and cross entropy; a
commonly used optimizer is Adam optimizer (and SGD and RMSprop and
others); and a common value for the learning rate is 0.01.

What Is a Multilayer Perceptron (MLP)?

A multilayer perceptron (MLP) is a feed forward artificial neural network
that consists of at least three layers of nodes: an input layer, a hidden layer,
and an output layer. An MLP is fully connected: given a pair of adjacent lay-
ers, every node in the left layer is connected to every node in the right layer.
Apart from the nodes in the input layer, each node is a neuron and each
layer of neurons involves a nonlinear activation function. In addition, MLPs
use a technique called backward error propagation (or simply back prop)
for training, which is also true for CNNs (Convolutional Neural Networks).

Figure 4.3 displays the contents of an MLP with two hidden layers.

One point to keep in mind: the nonlinear activation function of an MLP
differentiates an MLP from a linear perceptron. In fact, an MLP can handle
data that is not linearly separable. For instance, the OR function and the
AND function involve linearly separable data, so they can be represented
via a linear perceptron. On the other hand, the XOR function involves data
that is not linearly separable, and therefore requires a neural network such
as an MLP.

Deep Learning Introduction • 111

FIGURE 4.3 An Example of an MLP.

Activation Functions
An MLP without an activation function between any adjacent pair of layers is
a linear system: at each layer, simply multiply the vector from the previous
layer with the current matrix (which connects the current layer to the next
layer) to produce another vector.

On the other hand, it’s straightforward to multiply a set of matrices to
produce a single matrix. Since a neural network without activation func-
tions is a linear system, we can multiply those matrices (one matrix for each
pair of adjacent layers) together to produce a single matrix: the original
neural network is thereby reduced to a two-layer neural network consisting
of an input layer and an output layer, which defeats the purpose of having a
multilayered neural network.

In order to prevent such a reduction of the layers of a neural network,
an MLP must include a nonlinear activation function between adjacent lay-
ers (this is also true of any other deep neural network). The choice of non-
linear activation function is typically sigmoid, tanh (which is a hyperbolic
tangent function), or ReLU (Rectified Linear Unit).

The output of the sigmoid function ranges from 0 to 1, which has
the effect of “squashing” the data values. Similarly, the output of the tanh

112 • Artificial Intelligence, Machine Learning, Deep Learning

function ranges from -1 to 1. However, the ReLU activation function (or one
of its variants) is preferred for ANNs and CNNs, whereas sigmoid and tanh
are used in LSTMs.

Several upcoming sections contain the details of constructing an MLP,
such as how to initialize the weights of an MLP, storing weights and biases,
and how to train a neural network via backward error propagation.

How Are Datapoints Correctly Classified?

As a point of reference: a datapoint refers to a row of data in a dataset,
which can be a dataset for real estate, a dataset of thumbnail images, or
some other type of dataset. Suppose that we want to train an MLP for a data-
set that contains four classes (a.k.a. labels). In this scenario, the output layer
must also contain four neurons, where the neurons have index values 0, 1,
2, and 3 (a ten-neuron output layer has index values from 0 to 9 inclusive).
The sum of the probabilities in the output layer always equals 1 because of
the softmax activation function that is used when transitioning from the
penultimate layer to the output layer.

The index value that has the largest probability is compared with the
index value one-hot encoding of the label of the current datapoint from the
dataset. If the index values are equal, then the NN has correctly classified
the current datapoint (otherwise it’s a mismatch).

For example, the MNIST dataset contains images of hand-drawn digits
from 0 through 9 inclusive, which means that a NN for the MNIST dataset
has ten outputs in the final layer, one for each digit. Suppose that an image
containing the digit 3 is currently being passed through the NN. The one-
hot encoding for 3 is [0,0,0,1,0,0,0,0,0,0], and the index value with
the largest value in the one-hot encoding is also 3. Now suppose that output
layer of the neural network after processing the digit 3 is the following vector
of values: [0.05,0.05,0.2,0.6,0.2,0.2,0.1,0.1,0.238]. As you can
see, the index value with the maximum value (which is 0.6) is also 3. In this
scenario, the neural network has correctly identified the input image.

A binary classifier involves two outcomes for handling tasks such as
determining spam/not-spam, fraud/not-fraud, stock increase/decrease (or
temperature, or barometric pressure), and so forth. Predicting the future
value of a stock price is a regression task, whereas predicting whether the
price will increase or decrease is a classification task.

Deep Learning Introduction • 113

In machine learning, the multilayer perceptron is a neural network for
supervised learning of binary classifiers (and it’s a type of linear classifier).
However, single layer Perceptrons are only capable of learning linearly
separable patterns. In fact, a famous book entitled Perceptrons by Marvin
Minsky and Seymour Papert (written in 1969) showed that it was impos-
sible for these classes of network to learn an XOR function. However, an XOR
function can be “learned” by a two-layer Perceptron.

A High-Level View of CNNs

CNNs are deep NNs (with one or more convolutional layers) that are well
suited for image classification, along with other use cases, such as audio and
NLP (Natural Language Processing).

Although MLPs were successfully used for image recognition, they do not
scale well because every pair of adjacent layers is fully connected, which in turn
can result in massive neural networks. For large images (or other large inputs)
the complexity becomes significant and adversely affects performance.

Figure 4.4 displays the contents of a CNN (there are many variations:
this is simply one example).

FIGURE 4.4 An Example of a CNN.

114 • Artificial Intelligence, Machine Learning, Deep Learning

Adapted from [Source: https://commons.wikimedia.org/w/index.
php?curid=45679374]

A Minimalistic CNN
A production quality CNN can be very complex, comprising many hid-
den layers. However, in this section we’re going to look at a minimalistic
CNN (essentially a “toy” neural network), which consists of the following
layers:

•	 Conv2D (a convolutional layer)

•	 ReLU (activation function)

•	 Max Pooling (reduction technique)

•	 Fully Connected (FC) Layer

•	 Softmax activation function

The next subsections briefly explain the purpose of each bullet point in the
preceding list of items.

The Convolutional Layer (Conv2D)

The convolutional layer is typically labeled as Conv2D in Python and TF
code. The Conv2D layer involves a set of filters, which are small square
matrices whose dimensions are often 3x3 but can also be 5x5, 7x7, or even
1x1. Each filter is scanned across an image (think of tricorders in Star
Trek movies), and at each step, an inner product is calculated with the
filter and the portion of the image that is currently underneath the filter.
The result of this scanning process is called a feature map that contains
real numbers.

Figure 4.5 displays a 7x7 grid of numbers and the inner product of a
3x3 filter with a 3x3 subregion that results in the number 4 that appears in
the feature map.

Deep Learning Introduction • 115

FIGURE 4.5 Performing a Convolution.

The ReLU Activation Function

After each feature map is created, it’s possible that some of the values in
the feature map are negative. The purpose of the ReLU activation function
is to replace negative values (if any) with zero. Recall the definition of the
ReLU function:

ReLU(x) = x if x >=0 and ReLU(x) = 0 if x < 0

If you draw a 2D graph of ReLU, it consists of two parts: the horizontal axis
for x less than zero and the identity function (which is a line) in the first
quadrant for x greater than or equal to 0.

The Max Pooling Layer
The third step involves max pooling, which is simple to perform: after pro-
cessing the feature map with the ReLU activation function in the previous
step, partition the updated feature map into 2x2 rectangles, and select the
largest value from each of those rectangles. The result is a smaller array that

116 • Artificial Intelligence, Machine Learning, Deep Learning

contains 25% of the feature map (i.e., 75% of the numbers are discarded).
There are several algorithms that you can use to perform this extraction: the
average of the numbers in each square; the square root of the sum of the
squares of the numbers in each square; or the maximum number in each
square.

In the case of CNNs, the algorithm for Max Pooling selects the maxi-
mum number from each 2x2 rectangle. Figure 4.6 displays the result of
Max Pooling in a CNN.

FIGURE 4.6 An Example of Max Pooling in a CNN.

As you can see, the result is a small square array whose size is only 25%
of the previous feature map. This sequence is performed for each filter in
the set of filters that were chosen in the Conv2D layer. This set can have 8,
16, 32, or more filters.

If you feel puzzled or skeptical about this technique, consider the anal-
ogy involving compression algorithms, which can be divided into two types:
lossy and lossless. In case you didn’t already know, JPEG is a lossy algorithm
(i.e., data is lost during the compression process), and yet it works just fine for
compressing images. If it’s helpful, think of max pooling as the counterpart

Deep Learning Introduction • 117

to lossy compression algorithms, and perhaps that will persuade you of the
efficacy of this algorithm.

At the same time, your skepticism is valid. In fact, Geoffrey Hinton
(often called the godfather of deep learning) proposed a replacement for
max pooling called capsule networks. This architecture is more complex
and more difficult to train, and beyond the scope of this book (you can find
online tutorials that discuss capsule networks in detail). However, capsule
networks tend to be more resistant to GANs (Generative Adversarial Net-
works).

Repeat the previous sequence of steps (as in LeNet), and then per-
form a rather nonintuitive action: flatten all these small arrays so that
they are one-dimensional vectors, and concatenate these vectors into
one (very long) vector. The resulting vector is then fully connected with
the output layer, where the latter consists of 10 “buckets.” In the case
of MNIST, these placeholders are for the digits from 0 to 9 inclusive.
Note that the Keras class tf.keras.layers.Flatten performs this
flattening process.

The softmax activation function is applied to the long vector of
numbers in order to populate the 10 buckets of the output layer. The
result: the 10 buckets are populated with a set of non-zero (and non-
negative) numbers whose sum equals one. Find the index of the bucket
containing the largest number and compare this number with the index
of the one-hot encoded label associated with the image that was just
processed. If the index values are equal, then the image was success-
fully identified.

More complex CNNs involve multiple Conv2D layers, multiple FC (fully
connected) layers, different filter sizes, and techniques for combining pre-
vious layers (such as ResNet) to boost the data values’ current layer. Addi-
tional information about CNNs is here: https://en.wikipedia.org/wiki/Convo-
lutional_neural_network.

Now that you have a high-level understanding of CNNs, let’s look at a
code sample that illustrates an image in the MNIST dataset (and the pixel
values of that image), followed by two code samples that use Keras to train
a model on the MNIST dataset.

118 • Artificial Intelligence, Machine Learning, Deep Learning

Displaying an Image in the MNIST Dataset

Listing 4.2 displays the contents of tf2_keras_mnist_digit.py that
illustrates how to create a neural network in TensorFlow that processes the
MNIST dataset.

Listing 4.2: tf2_keras_mnist_digit.py

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(X_train, y_train), (X_test, y_test) = mnist.
load_data()

print("X_train.shape:",X_train.shape)
print("X_test.shape: ",X_test.shape)

first_img = X_train[0]

uncomment this line to see the pixel values
#print(first_img)

import matplotlib.pyplot as plt
plt.imshow(first_img, cmap='gray')
plt.show()

Listing 4.2 starts with some import statements and then populates
the training data and test data from the MNIST dataset. The variable
first_img is initialized as the first entry in the X_train array, which is
the first image in the training dataset. The final block of code in Listing
4.2 displays the pixel values for the first image. The output from Listing
4.2 is here:

X_train.shape: (60000, 28, 28)

X_test.shape: (10000, 28, 28)

Deep Learning Introduction • 119

Figure 4.7 displays the contents of the first image in the MNIST dataset.

FIGURE 4.7 The First Image in the MNIST Dataset.

Keras and the MNIST Dataset

When you read code samples that contain Keras-based models that use the
MNIST dataset, the models use a different API in the input layer.

Specifically, a model that is not a CNN flattens the input images into a
one-dimensional vector via the tf.keras.layers.Flatten() API, an
example of which is here (see Listing 4.3 for details):

tf.keras.layers.Flatten(input_shape=(28,28))

On the other hand, a CNN uses the tf.keras.layers.Conv2D()
API, an example of which is here (see Listing 4.4 for details):

tf.�keras.layers.Conv2D(32,(3,3),activation='relu',in
put_shape=(28,28,1))

120 • Artificial Intelligence, Machine Learning, Deep Learning

Listing 4.3 displays the contents of keras_mnist.py that illustrates
how to create a Keras-based neural network in TensorFlow that processes
the MNIST dataset.

Listing 4.3: keras_mnist.py

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_

data()

x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(512, activation=tf.

nn.relu),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation=tf.

nn.softmax)
])

model.summary()

model.compile(optimizer='adam',
 loss='sparse_categorical_

crossentropy',
 metrics=[‘accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Listing 4.3 starts with some import statements and then initializes
the variable mnist as a reference to the built-in MNIST dataset. Next, the
training-related and test-related variables are initialized with their respec-
tive portions of the MNIST dataset, followed by a scaling transformation for
x_train and x_test.

Deep Learning Introduction • 121

The next portion of Listing 4.3 defines a very simple Keras-based
model with four layers that are created from classes in the tf.keras.
layers package. The next code snippet displays a summary of the model
definition, as shown here:

Model: "sequential"

Layer (type) Output Shape Param #
flatten (Flatten) (None, 784) 0
dense (Dense) (None, 512) 401920
dropout (Dropout) (None, 512) 0
dense_1 (Dense) (None, 10) 5130

Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0

The remaining portion of Listing 4.3 compiles, fits, and evaluates the model,
which produces the following output:

Epoch 1/5

60000/60000 [==============================] - 14s
225us/step - loss: 0.2186 - acc: 0.9360

Epoch 2/5

60000/60000 [==============================] - 14s
225us/step - loss: 0.0958 - acc: 0.9704

Epoch 3/5

60000/60000 [==============================] - 14s
232us/step - loss: 0.0685 - acc: 0.9783

Epoch 4/5

60000/60000 [==============================] - 14s
227us/step - loss: 0.0527 - acc: 0.9832

Epoch 5/5

60000/60000 [==============================] - 14s
225us/step - loss: 0.0426 - acc: 0.9861

10000/10000 [==============================] - 1s
59us/step

122 • Artificial Intelligence, Machine Learning, Deep Learning

As you can see, the final accuracy for this model is 98.6%, which is a
respectable value.

Keras, CNNs, and the MNIST Dataset

Listing 4.4 displays the contents of keras_cnn_mnist.py that illustrates
how to create a Keras-based neural network in TensorFlow that processes
the MNIST dataset.

Listing 4.4: keras_cnn_mnist.py

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_
labels) = tf.keras.datasets.mnist.load_data()

train_images = train_images.reshape((60000, 28, 28,
1))

test_images = test_images.reshape((10000, 28, 28, 1))

Normalize pixel values: from the range 0-255 to
the range 0-1

train_images, test_images = train_images/255.0,
test_images/255.0

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32, (3, 3),

activation='relu', input_shape=(28, 28, 1)))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(64, (3, 3),

activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(64, (3, 3),

activation='relu'))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64,

activation='relu'))

Deep Learning Introduction • 123

model.add(tf.keras.layers.Dense(10,
activation='softmax'))

model.summary()

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=[‘accuracy'])

model.fit(train_images, train_labels, epochs=1)
test_loss, test_acc = model.evaluate(test_images,

test_labels)
print(test_acc)

predict the label of one image
test_image = np.expand_dims(test_images[300],

axis = 0)
plt.imshow(test_image.reshape(28,28))
plt.show()

result = model.predict(test_image)
print("result:", result)
print("result.argmax():", result.argmax())

Listing 4.4 initializes the training data and labels, as well as the test
data and labels, via the load_data() function. Next, the images are
reshaped so that they are 28x28 images, and then the pixel values are
rescaled from the range 0-255 (all integers) to the range 0-1 (decimal
values).

The next portion of Listing 4.4 uses the Keras Sequential() API
to define a Keras-based model called model, which contains two pairs of
Conv2D and MaxPooling2D layers, followed by the Flatten layer, and
then two consecutive Dense layers.

Next, the model is compiled, trained, and evaluated via the compile(),
fit(), and evaluate() methods, respectively. The final portion of Listing
4.4 successfully predicts the image whose label is 4, which is then displayed

124 • Artificial Intelligence, Machine Learning, Deep Learning

via Matplotlib. Launch the code in Listing 4.4 and you will see the fol-
lowing output on the command line:

Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 26, 26, 32) 320
max_pooling2d
(MaxPooling2D)

(None, 13, 13, 32) 0

conv2d_1 (Conv2D) (None, 11, 11, 64) 18496

max_pooling2d_1
(MaxPooling2

(None, 5, 5, 64) 0

conv2d_2 (Conv2D) (None, 3, 3, 64) 36928

flatten (Flatten) (None, 576) 0

dense (Dense) (None, 64) 36928

dense_1 (Dense) (None, 10) 650

Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0

60000/60000 [==============================] - 54s
907us/sample - loss: 0.1452 - accuracy: 0.9563

10000/10000 [==============================] - 3s
297us/sample - loss: 0.0408 - accuracy: 0.9868

0.9868

Using TensorFlow backend.

result: [[6.2746993e-05 1.7837329e-03 3.8957372e-04
4.6143982e-06 9.9723744e-01

 1.5522403e-06 1.9182076e-04 3.0044283e-04
2.2602901e-05 5.3929521e-06]]

result.argmax(): 4

Figure 4.8 displays the image that is displayed when you launch the
code in Listing 4.4.

You might be asking yourself how the model in Listing 4.4 can achieve
such high accuracy when every input image is flattened into a one-dimen-
sional vector, which loses the adjacency information that is available in

Deep Learning Introduction • 125

a two-dimensional image. Before CNNs became popular, one technique
involved using MLPs and another technique involved SVMs as models for
images. In fact, if you don’t have enough images to train a model, you can
still use an SVM. Another option is to generate synthetic data using a GAN
(which was its original purpose).

FIGURE 4.8 An Image in the MNIST Dataset.

Analyzing Audio Signals with CNNs

In addition to image classification, you can train CNNs with audio signals,
which can be converted from analog to digital. Audio signals have vari-
ous numeric parameters (such as decibel level and voltage level) that are
described here:

https://en.wikipedia.org/wiki/Audio_signal

126 • Artificial Intelligence, Machine Learning, Deep Learning

If you have a set of audio signals, the numeric values of their associ-
ated parameters become the dataset for a CNN. Remember that CNNs have
no understanding of the numeric input values: the numeric values are
processed in the same fashion, regardless of the source of the numeric
values.

One use case involves a microphone outside of a building detects and
identifies various sounds. Obviously it’s important to identify the sound of a
backfire from a vehicle versus the sound of a gunshot. In the latter case, the
police would be notified about a potential crime. There are companies that
use CNNs to identify different types of sounds; other companies are explor-
ing the use of RNNs and LSTMs instead of CNNs.

Summary

In this chapter, you got a brief introduction to deep learning, how it
differs from machine learning, and some of the problems it can solve. You
learned about the challenges that exist in deep learning, which includes bias
in algorithms, susceptibility to adversarial attacks, limited ability to general-
ize, lack of explainability in neural networks, and the lack of causality.

Next you learned about the XOR function, which is an example of a non-
linearly separable set of four points in the plane. Despite its simplicity in
the 2D case, the XOR function cannot be solved with a single-layer shallow
network: instead, two hidden layers are required. Next you learned about
Perceptrons, which is essentially a core building block for neural networks.

You also saw a Keras-based code sample for training a neural network
on the MNIST dataset. In addition, you learned how CNNs are constructed,
along with a Keras-based code sample for training a CNN with the MNIST
dataset: this code sample will make more sense after you have read the
section pertaining to activation functions in Chapter 3.

C H A P T E R 5
DEEP LEARNING: RNNs
AND LSTMs

This chapter extends the introduction from Chapter 4 by discussing RNNs
(recurrent neural networks) and LSTMs (long short term memory). Although
most of this chapter contains descriptive content regarding these architec-
tures, there are Keras-based code samples. Hence, this would be a good
point to read the Keras material in the associated appendix in case you
haven’t already done so.

The first part of this chapter introduces you to the architecture of RNNs,
BPTT (back propagation through time), and a short Keras-based code
sample. As you will see, RNNs can keep track of information from earlier
time periods, which makes them useful for a variety of tasks, including NLP
tasks.

The second part of this chapter introduces you to the architecture of
LSTMs, which are more complex than RNNs. Specifically, LSTMs includes a
forget gate, an input gate, and an output gate, as well as a long-term mem-
ory cell. You will also learn about the advantages of LSTMs over RNNs. In
addition, you will be exposed to bidirectional LSTMs that are used in some
well-known NLP-related models (see Chapter 6).

The third part of this chapter introduces you to the architecture of
autoencoders and the rationale for using them, as well as an introduction to
variational autoencoders.

Please keep in mind that the code samples in this chapter assume that
you have some familiarity with Keras (discussed in Appendix A).

128 • Artificial Intelligence, Machine Learning, Deep Learning

What Is an RNN?

An RNN is a Recurrent Neural Network, which is a type of architecture that
was developed during the 1980s. RNNs are suitable for datasets that contain
sequential data as well as for NLP tasks, such as language modeling, text
generation, or autocompletion of sentences. In fact, you might be surprised
to learn that you can even perform image classification (such as MNIST) via
an RNN. Figure 5.1 displays the contents of a simple RNN.

FIGURE 5.1 An Example of an RNN.

Image adapted from [Source: https://commons.wikimedia.org/w/index.
php?curid=60109157]

In addition to simple RNNs there are more powerful constructs such as
LSTMs and GRUs. A basic RNN has the simplest type of feedback mechanism
(described later) and involves a sigmoid activation function.

RNNs (which includes LSTMs and GRUs) differ from ANNs in several
important ways, as listed here:

•	 Statefulness (all RNNs)

•	 Feedback mechanism (all RNNs)

•	 A sigmoid or tanh activation function

•	 Multiple gates (LSTMs and GRUs)

Deep Learning: RNNs and LSTMs • 129

•	 BPTT (Back Propagation Through Time)

•	 Truncated BPTT (simple RNNs)

First, ANNs and CNNs are essentially stateless, whereas RNNs are stateful
because they have internal state. Hence, RNNs can process more complex
sequences of inputs, which makes them suitable for tasks such as handwrit-
ing recognition and or speech recognition.

Anatomy of an RNN
Consider the RNN in Figure 5.1. Suppose that the sequence of inputs is
labeled x1, x2, x3, ... , x(t), and also that the sequence of hidden states
is labeled h1, h2, h3, ..., h(t). Note that each input sequence and hidden
state is a 1xn vector, where n is the number of features.

At time period t, the input is based on a combination of h(t-1) and
x(t), after which an activation function is applied to this combination
(which can also involve adding a bias vector).

Another difference is the feedback mechanism for RNNs that occurs
between consecutive time periods. Specifically, the output at a previous
time period is combined with the new input of the current time period in
order to calculate the new internal state. Let’s use the sequence {h(0),
h(1), h(2), . . . h(t-1), h(t)} to represent the set of internal states
of an RNN during time periods {0, 1, 2, … , t-1, t} and let’s also suppose
that the sequence {x(0) , x(1), x(2), ... , x(t-1), x(t)} is the inputs
during the same time periods.

The fundamental relationship for an RNN at time period t is here:

h(t) = f(W*x(t) + U*h(t-1))

In the preceding formula, W and U are weight matrices and f is typically the
tanh activation function.

Here is a code snippet of a TF 2 Keras-based model that is based on
the tf.keras.layers.SimpleRNN class:

import tensorflow as tf
...
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.SimpleRNN(5, input_

shape=(1,2), batch_input_shape=[1,1,2],
stateful=True))

...

130 • Artificial Intelligence, Machine Learning, Deep Learning

Perform an online search for more information and code samples
involving Keras and RNNs.

What Is BPTT?
BPTT (back propagation through time) in RNNs is the counterpart to back-
prop for CNNs. The weight matrices of RNNs are updated during BPTT in
order to train the neural network.

However, there is a problem called the exploding gradient that can
occur in RNNs, which is to say that the gradient becomes arbitrary large
(versus the gradient becoming arbitrary small in the so-called vanishing
gradient scenario). One way to deal with the exploding gradient problem
is to use a truncated BPTT, which means that BPTT is computed for a
small number of steps instead of all time steps. Another technique is to
specify a maximum value for the gradient, which involves simple condi-
tional logic.

The good news is that there is another way to overcome both the explod-
ing gradient and vanishing gradient problem, which involves LSTMs that are
discussed later in this chapter.

Working with RNNs and Keras

Listing 5.1 displays the contents of keras_rnn_model.py that illustrates
how to create a simple Keras-based RNN model.

Listing 5.1: keras_rnn_model.py

import tensorflow as tf

timesteps = 30
input_dim = 12

number of units in RNN cell
units = 512

number of classes to be identified
n_classes = 5

Deep Learning: RNNs and LSTMs • 131

Listing 5.1 first initializes the variables timesteps (the number of
time steps), input_dim (the number of elements in each input vector of
numbers), units (the number of hidden units in the RNN neuron), and
n_classes (the number of classes in the dataset).

The next portion of Listing 5.1 creates a Keras-based model that looks
similar to earlier Keras-based models, with the exception of the code snip-
pet for the RNN layer, as shown here:

model.add(tf.keras.layers.SimpleRNN(units=units,

 dropout=0.2,

 input_shape=(timesteps, input_dim)))

As you can see, the preceding code snippet adds an instance of the
SimpleRNN class as well as the variables that are defined in the preceding
code block.

The final portion of code invokes the compile() method, followed by
the summary() method to display the structure of the model.

Keras Sequential model with RNN and Dense layer
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.SimpleRNN(units=units,
 dropout=0.2,
 input_shape=(timesteps, input_dim)))
model.add(tf.keras.layers.Dense(n_classes,

activation='softmax'))

model loss function and optimizer
model.compile(loss='categorical_crossentropy',
 optimizer=tf.keras.optimizers.Adam(),
 metrics=['accuracy'])

model.summary()

132 • Artificial Intelligence, Machine Learning, Deep Learning

Launch the code in Listing 5.1 and you will see the following output:

Model: "sequential"

Layer (type)
Output Shape
Shape

Param #

simple_rnn
(SimpleRNN)

(None, 512) 268800

dense (Dense) (None, 5) 2565

Total params: 271,365
Trainable params: 271,365
Non-trainable params: 0

Now that you see how easy it is to create an RNN-based model in Keras,
let’s look at an example of an RNN-based model in Keras that will be
trained on the MNIST dataset, which is the topic of the next section.

Working with Keras, RNNs, and MNIST

Listing 5.2 displays the contents of keras_rnn_mnist.py that illustrates
how to create a simple Keras-based RNN model that is trained on the
MNIST dataset.

Listing 5.2: keras_rnn_mnist.py

#Simple RNN and MNIST dataset
import tensorflow as tf
import numpy as np

instantiate mnist and load data:
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.

load_data()

one-hot encoding for all labels to create 1x10
vectors that are compared with the final layer:
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)

Deep Learning: RNNs and LSTMs • 133

resize and normalize the 28x28 images:
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size,

image_size])
x_test = np.reshape(x_test, [-1, image_size,

image_size])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

initialize some hyper- parameters:
input_shape = (image_size, image_size)
batch_size = 128
hidden_units = 128
dropout_rate = 0.3

RNN-based Keras model with 128 hidden units:
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.SimpleRNN(units=hidden_

units,
 dropout=dropout_rate,
 input_shape=input_shape))
model.add(tf.keras.layers.Dense(num_labels))
model.add(tf.keras.layers.Activation('softmax'))
model.summary()

model.compile(loss='categorical_crossentropy',
 optimizer='sgd',
 metrics=['accuracy'])

train the network on the training data:
model.fit(x_train, y_train, epochs=8, batch_

size=batch_size)

#calculate and then display the accuracy:
loss, acc = model.evaluate(x_test, y_test, batch_

size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

134 • Artificial Intelligence, Machine Learning, Deep Learning

Listing 5.2 contains the usual import statements, followed by the
initialization of the mnist variable as a reference to the MNIST dataset,
after which the four variables for the training data and the test data are
initialized.

The next portion of Listing 5.2 ensures that the training images and test
images are resized as 28x28 images, after which the pixel values (which are
in the range of 0 to 255) in these images are scaled down so that they are in
the range of 0 to 1. The next portion of Listing 5.2 is very similar to Listing
5.1: some hyper parameters are initialized and then an RNN-based model
in Keras is created.

At this point we have new code, starting with the code snippet
that saves the model structure in the rnn-mnist.png file. A second
new code block invokes the compile() method to synch up the model
with the training data, followed by the fit() method that trains the
model.

The final portion of Listing 5.2 evaluates the trained model on
the test data and displays the values of loss and acc that correspond
to the loss and the accuracy, respectively, of the model on the test
data. Launch the code in Listing 5.2 and you will see the following
output:

Model: "sequential"

Layer (type) Output Shape Param #
simple_rnn
(SimpleRNN)

(None, 256) 72960

dense (Dense) (None, 10) 2570
activation
(Activation)

(None, 10) 0

Total params: 75,530
Trainable params: 75,530
Non-trainable params: 0

Epoch 1/5
60000/60000 [==============================] - 33s

542us/sample - loss: 0.8198 - accuracy: 0.7605

Deep Learning: RNNs and LSTMs • 135

Epoch 2/5
 6528/60000 [==>...........................] - ETA:

27s - loss: 0.4661 - accuracy: 0.8627
60000/60000 [==============================] - 34s

559us/sample - loss: 0.3724 - accuracy: 0.8917
Epoch 3/5
60000/60000 [==============================] - 33s

545us/sample - loss: 0.2764 - accuracy: 0.9183
Epoch 4/5
60000/60000 [==============================] - 33s

545us/sample - loss: 0.2269 - accuracy: 0.9327
Epoch 5/5
60000/60000 [==============================] - 34s

561us/sample - loss: 0.1983 - accuracy: 0.9407
10000/10000 [==============================] - 2s

237us/sample - loss: 0.1396 - accuracy: 0.9577
Test accuracy: 95.8%

Working with TensorFlow and RNNs (Optional)

The code sample in this section is optional because it’s based on Tensor-
Flow 1.x. As this book goes to print, Google released TensorFlow 2, after
which TensorFlow 1.x becomes legacy code that will be supported for one
additional year. Keep this in mind when you encounter any other code sam-
ples in this book that involve TensorFlow 1.x.

However, this code sample does provide some low-level details regard-
ing the output and the state for each hidden layer in an RNN neuron, which
can give you some insight into how the calculations are performed and the
values that are generated. Keep in mind that the data for the two time steps
is simulated, which is to say that the data does not reflect any meaningful
use case. The purpose of the simplified data is to help you focus on the way
in which calculations are performed.

Listing 5.3 displays the contents of dynamic_rnn_2TP.py
that illustrates how to create a simple TensorFlow-based RNN
model.

136 • Artificial Intelligence, Machine Learning, Deep Learning

Listing 5.3: dynamic_rnn_2TP.py

import tensorflow as tf
import numpy as np

n_steps = 2 # number of time steps
n_inputs = 3 # number of inputs per time unit
n_neurons = 5 # number of hidden units

X_batch = np.array([
 # t = 0 t = 1
 [[0, 1, 2], [9, 8, 7]], # instance 0
 [[3, 4, 5], [0, 0, 0]], # instance 1
 [[6, 7, 8], [6, 5, 4]], # instance 2
 [[9, 0, 1], [3, 2, 1]], # instance 3
])

#sequence_length <= # of elements in each batch
seq_length_batch = np.array([2, 1, 2, 2])

X = tf.placeholder(dtype=tf.float32, shape=[None,
n_steps, n_inputs])

seq_length = tf.placeholder(tf.int32, [None])

basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_
units=n_neurons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X,
sequence_length=seq_length, dtype=tf.float32)

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())
 outputs_val, states_val = sess.run([outputs,

states],
 feed_dict={X:X_batch, seq_

length:seq_length_batch})

 print("�X_batch shape:", X_batch.shape)
(4,2,3)

 print("�outputs_val shape:", outputs_val.shape)
(4,2,5)

Deep Learning: RNNs and LSTMs • 137

Listing 5.3 starts by initializing n_steps (the number of time steps), n_
inputs (the number of inputs), and n_neurons (the number of neurons)
to 2, 3, and 5, respectively.

Next the NumPy array X_batch is a 4x2x3 array that is initialized with inte-
gers. As you can see from the comment line, the first column of values are for
time step 0, and the second column of values are for the time step 1. You can also
think of each row of data in X_batch as an instance of data for both time steps.

Next, the variable seq_length_batch is a one-dimensional vector of
integers, each of which specifies that number of time steps that appear to
the left of a vector consisting of purely zero values. As you can see, this vec-
tor contains the value 2 for instances number 0, 2, and 3, and the value 0
for instance number 1.

The next portion of Listing 5.3 defines the placeholder X that can hold an
arbitrary number of arrays whose shape is [n_steps, n_inputs]. Now we’re
ready to define an RNN cell and specify its outputs and states, as shown here:

basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_
units=n_neurons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X,
sequence_length=seq_length, dtype=tf.float32)

 print("�states_val shape:", states_val.shape)
(4,5)

 print("outputs_val:",outputs_val)
 print("----------------------------\n")
 print("states_val: ",states_val)

###
##################

outputs => output of ALL RNN states
states => output of LAST ACTUAL RNN state

(ignores zero vector)
state = output[1] for full sequences
state = output[0] for short sequences
###

##################

138 • Artificial Intelligence, Machine Learning, Deep Learning

The key point to remember is that the final output value from the right-
most hidden unit is the value that is passed to the next neuron.

Launch the code in Listing 5.3 and you will see the following output,
where the value of interest is shown in bold:

#----------------------------
#outputs_val:
#[[[-0.09700205 0.7671716 0.6775758 0.01522888

0.5460828]
[0.92776424 -0.5916748 0.67824966 0.99423325

0.9999991]]
#
[[0.24040672 0.81568515 0.8890421 0.780813

0.99762475]
[0. 0. 0. 0. 0.

]]
#
[[0.5282535 0.8549201 0.9647311 0.9692446

0.99999046]
[0.9725177 -0.7165484 0.46688017 0.9411293

0.9999323]]
#
[[0.81080747 -0.9926888 0.56612366 0.9561879

0.9997731]
[0.48786768 -0.7099759 -0.7283263 0.76442945

0.9971904]]]
#----------------------------
#states_val:
#[[0.92776424 -0.5916748 0.67824966 0.99423325

0.9999991]
[0.24040672 0.81568515 0.8890421 0.780813

0.99762475]
[0.9725177 -0.7165484 0.46688017 0.9411293

0.9999323]
[0.48786768 -0.7099759 -0.7283263 0.76442945

0.9971904]]
#----------------------------

Deep Learning: RNNs and LSTMs • 139

In the preceding output, notice that the row count of the rows shown in
bold are 2, 1, 2, 2, which is exactly the same as the values in seq_length_
batch. As you can see, these highlighted rows appear (also in bold) in the
array labeled states_val.

Listing 5.3 is a very small and artificial example of an RNN, and hope-
fully this example gives you a better understanding of the inner workings
of an RNN. There are many variants of RNNs, and you can read about some
of them here:

https://en.wikipedia.org/wiki/Recurrent_neural_network

What Is an LSTM?

LSTMs are a special type of RNN, and they are well suited for many use cases,
including NLP, speech recognition, and handwriting recognition. LSTMs
are well suited for handling something called long term dependency, which
refers to the distance gap between relevant information and the location
where that information is required. This situation arises when information
in one section of a document needs to be linked to information that is in a
more distant location of the document.

LSTMs were developed in 1997 and went on to exceed the accuracy
performance of state-of-the-art algorithms. LSTMs also began revolu-
tionizing speech recognition (circa 2007). Then in 2009 an LSTM won
pattern recognition contests, and in 2014, Baidu used RNNs to exceed
speech recognition records. Navigate to the following link in order to
see an example of an LSTM: https://commons.wikimedia.org/w/index.
php?curid=60149410

Anatomy of an LSTM
LSTMs are stateful and they contain three gates (forget gate, input gate,
and an output gate) that involve a sigmoid function, and also a cell state
that involves the tanh activation function. At time period t the input
to an LSTM is based on a combination of the two vectors h(t-1) and
x(t). This pair of inputs is combined, after which a sigmoid activa-
tion function is applied to this combination (which can also include a
bias vector) in the case of the forget gate, input gate, and the output
gate.

140 • Artificial Intelligence, Machine Learning, Deep Learning

The processing that occurs at time step t is the short term mem-
ory of an LSTM. The internal cell state of LSTMs maintains long term
memory. Updating the internal cell state involves the tanh activation
function, whereas the other gates use the sigmoid activation function,
as mentioned in the previous paragraph. Here is a TF 2 code block that
defines Keras-based model for an LSTM:

import tensorflow as tf
. . .
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.LSTMCell(6,batch_input_

shape=(1,1,1),kernel_initializer='ones',statefu
l=True))

model.add(tf.keras.layers.Dense(1))
. . .

You can learn about the difference between an LSTM and an LSTMCell
here:

https://stackoverflow.com/questions/48187283/whats-the-difference-
between-lstm-and-lstmcell

In case you’re interested, additional information about LSTMs and also
how to define a custom LSTM cell is here:

https://en.wikipedia.org/wiki/Recurrent_neural_network

https://stackoverflow.com/questions/54231440/define-custom-lstm-cell-
in-keras

Bidirectional LSTMs
In addition to one-directional LSTMs, you can also define a bidirectional
LSTM that consists of two regular LSTMs: one LSTM for the forward direc-
tion and one LSTM in the backward or opposite direction. You might be
surprised to discover that bidirectional LSTMs are well suited for solving
NLP tasks.

For instance, ELMo is a deep word representation for NLP tasks that
uses bidirectional LSTMs. An even newer architecture in the NLP world
is called a transformer, and bidirectional transformers are used in BERT,
which is a very well-known system (released by Google in 2018) that can
solve complex NLP problems.

Deep Learning: RNNs and LSTMs • 141

The following TF 2 code block contains a Keras-based model that
involves bidirectional LSTMs:

import tensorflow as tf
. . .
model = Sequential()
model.add(Bidirectional(LSTM(10, return_

sequences=True), input_shape=(5,10)))
model.add(Bidirectional(LSTM(10)))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',

optimizer='rmsprop')
. . .

The previous code block contains two bidirectional LSTM cells, both of
which are shown in bold.

LSTM Formulas
The formulas for LSTMs are more complex than the update formula for a
simple RNN, but there are some patterns that can help you understand those
formulas.

Navigate to the following link in order to see the formulas for an LSTM:

https://en.wikipedia.org/wiki/Long_short-term_memory#cite_note-
lstm1997-1]

The formulas show you how the new weights are calculated for the
forget gate f, the input gate i, and the output gate i during time step t. In
addition, the preceding link shows you how the new internal state and the
hidden state (both at time step t) are calculated.

Notice the pattern for gates f, i, and o: all of them calculate the sum of
two terms, each of which is a product involving x(t) and h(t), after which
the sigmoid function is applied to that sum. Specifically, here’s the formula
for the forget gate at time t:

f(t) = sigma(W(f)*x(t) + U(f)*h(t) + b(f))

In the preceding formula, W(f), U(f), and b(f) are the weight matrices
associated with x(t), the weight matrix associated with h(t), and the bias
vector for the forget gate f, respectively.

142 • Artificial Intelligence, Machine Learning, Deep Learning

Notice that the calculations for i(t) and o(t) have the same pattern as the
calculation for f(t).The difference is that i(t) has the matrices W(i) and
U(i), whereas o(t) has the matrices W(o) and U(o). Thus, f(t), i(t),
and o(t) have a parallel construction.

The calculations for c(t), i(t), and h(t) are based on the values for
f(t), i(t), and o(t), as shown here:

c(t) = f(t) * c(t-1) + i(t) * tanh(c'(t))
c'(t) = sigma(W(c) * x(t) + U(c) * h(t-1))
h(t) = o(t) * tanh(c(t))

The final state of an LSTM is a one-dimensional vector that contains the out-
put from all the other layers in the LSTM. If you have a model that contains
multiple LSTMs, the final state vector for a given LSTM becomes the input
for the next LSTM in that model.

LSTM Hyperparameter Tuning
LSTMs are also prone to overfitting, and here is a list of things to consider if
you are manually optimizing hyper parameters for LSTMs:

•	 Overfitting (use regularization such as L1 or L2)

•	 Larger networks are more prone to overfitting

•	 More data tends to reduce overfitting

•	 Train the networks over multiple epochs

•	 The learning rate is vitally important

•	 It can be helpful to stack layers

•	 Use softsign instead of softmax for LSTMs

•	 RMSprop, AdaGrad, or momentum are good choices

•	 Xavier weight initialization
Perform an online search to obtain more information about the optimizers
in the preceding list.

Working with TensorFlow and LSTMs (Optional)

Listing 5.4 displays the contents of dynamic_lstm_2TP.py that illustrates
how to create a simple LSTM model with TensorFlow 1.x code.

Deep Learning: RNNs and LSTMs • 143

Listing 5.4: dynamic_lstm_2TP.py

import tensorflow as tf
import numpy as np

n_steps = 2 # number of time steps
n_inputs = 3 # number of inputs per time unit
n_neurons = 5 # number of hidden units

X_batch = np.array([
 # t = 0 t = 1
 [[0, 1, 2], [9, 8, 7]], # instance 0
 [[3, 4, 5], [0, 0, 0]], # instance 1
 [[6, 7, 8], [6, 5, 4]], # instance 2
 [[9, 0, 1], [3, 2, 1]], # instance 3
])

seq_length_batch = np.array([2, 1, 2, 2])

X = �tf.placeholder(dtype=tf.float32,shape=[None,
n_steps,n_inputs])

seq_length = tf.placeholder(tf.int32, [None])

basic_cell = tf.nn.rnn_cell.BasicLSTMCell(num_
units=n_neurons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X,
sequence_length=seq_length, dtype=tf.float32)

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())
 outputs_val, states_val = sess.run([outputs,

states],
 feed_dict={X:X_batch, seq_

length:seq_length_batch})

 print("�X_batch shape:", X_batch.shape)
(4,2,3)

(Continued)

144 • Artificial Intelligence, Machine Learning, Deep Learning

The first half of Listing 5.4 is identical to the first half of Listing 5.3, and
the first line of code that is different involves defining basic_cell as an
LSTM (shown in bold), which is reproduced here:

basic_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=n_
neurons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X,
sequence_length=seq_length, dtype=tf.float32)

Notice that outputs and states in Listing 5.4 are initialized in exactly
the same fashion as shown in Listing 5.3. The next portion of code is a
tf.Session() code block that is the training loop.

Another difference to notice in Listing 5.4: during each computation in
the training loop: states_val is actually an instance of LSTMStatesTu-
ple, whereas states_val in Listing 5.3 is a 4x5 tensor. Launch the code
in Listing 5.4 and you will see the following output:

 print("�outputs_val shape:", outputs_val.shape)
(4,2,5)

 print("�states: ", states_val)
LSTMStateTuple(...)

 print("outputs_val:",outputs_val)
 print("----------------------------\n")
 print("states_val: ",states_val)

('X_batch shape:', (4, 2, 3))
('outputs_val shape:', (4, 2, 5))

('states: ', LSTMStateTuple(c=array(
 [[-1.0492262 , -0.1059267 , -0.27163735,

-0.64399946, 0.06018598],
 [-0.7445494 , 0.00723887, -0.11805946,

-0.26550752, 0.21816696],
 [-1.4126835 , 0.05187892, -0.07408151,

-0.66379607, 0.1348486],
 [-0.5987958 , 0.24536057, -0.16916996,

-0.8177415 , 0.39747238]],

Deep Learning: RNNs and LSTMs • 145

 dtype=float32), h=array(
 [[-7.33636796e-01, -6.07701950e-02,

-1.40444040e-01,
 -2.65002381e-02, 5.37334010e-04],
 [-4.83454257e-01, 3.39480606e-03,

-3.36034223e-02,
 -2.59866733e-02, 4.49425131e-02],
 [-7.36429453e-01, 2.63450593e-02,

-4.42487188e-02,
 -1.05846934e-01, 5.22684120e-03],
 [-3.73311013e-01, 1.35892674e-01,

-9.72046256e-02,
 -2.79455721e-01, 5.36275432e-02]],

dtype=float32)))

('outputs_val:', array([
 [[-1.39581457e-01, -8.17378387e-02,

-8.70967656e-02,
 -3.05497926e-02, 1.16406225e-01],
 [-7.33636796e-01, -6.07701950e-02,

-1.40444040e-01,
 -2.65002381e-02, 5.37334010e-04]],

 [[-4.83454257e-01, 3.39480606e-03,
-3.36034223e-02,

 -2.59866733e-02, 4.49425131e-02],
 [0.00000000e+00, 0.00000000e+00,

0.00000000e+00,
 0.00000000e+00, 0.00000000e+00]],

 [[-6.21303201e-01, 4.13885061e-03,
-6.17417134e-03,

 -8.89408588e-03, 4.83810157e-03],
 [-7.36429453e-01, 2.63450593e-02,

-4.42487188e-02,
 -1.05846934e-01, 5.22684120e-03]],

(Continued)

146 • Artificial Intelligence, Machine Learning, Deep Learning

 [[-�1.01410240e-01, 4.99857590e-02,
-9.47358180e-03,

 -3.74739647e-01, 9.64458846e-03],
 [-�3.73311013e-01, 1.35892674e-01,

-9.72046256e-02,
 -�2.79455721e-01, 5.36275432e-02]]],

dtype=float32))

('states_val: ', LSTMStateTuple(c=array(
 [[-1.0492262 , -0.1059267 , -0.27163735,

-0.64399946, 0.06018598],
 [-0.7445494 , 0.00723887, -0.11805946,

-0.26550752, 0.21816696],
 [-1.4126835 , 0.05187892, -0.07408151,

-0.66379607, 0.1348486],
 [-0.5987958 , 0.24536057, -0.16916996,

-0.8177415 , 0.39747238]],
 dtype=float32), h=array(
 [[-�7.33636796e-01, -6.07701950e-02,

-1.40444040e-01,
 -2.65002381e-02, 5.37334010e-04],
 [-�4.83454257e-01, 3.39480606e-03,

-3.36034223e-02,
 -2.59866733e-02, 4.49425131e-02],
 [-�7.36429453e-01, 2.63450593e-02,

-4.42487188e-02,
 -1.05846934e-01, 5.22684120e-03],
 [-�3.73311013e-01, 1.35892674e-01,

-9.72046256e-02,
 -�2.79455721e-01, 5.36275432e-02]],

dtype=float32)))

There are two things in particular to notice about the output. First,
examine the middle portion displayed in bold in the preceding output, and
notice that these are the same values that are displayed in the final output
block in the output section labeled states_val.

Deep Learning: RNNs and LSTMs • 147

Next, the second code block that is displayed in bold contains two vec-
tors: a non-zero vector followed by a zero vector, which corresponds to the
data labeled instance 1 in Listing 5.4.

What Are GRUs?

A GRU (Gated Recurrent Unit) is an RNN that is a simplified type of LSTM.
The key difference between a GRU and an LSTM: a GRU has two gates (reset
and update gates) whereas an LSTM has three gates (reset, output and forget
gates). The reset gate in a GRU performs the functionality of the input gate
and the forget gate of an LSTM.

Keep in mind that GRUs and LSTMs both have the goal of tracking long-
term dependencies effectively, and they both address the problem of van-
ishing gradients and exploding gradients. Navigate to the following link in
order to see an example of a GRU:

https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_
base_type.svg

Navigate to the following link in order to see the formulas for a GRU
(which are similar to the formulas for an LSTM):

https://en.wikipedia.org/wiki/Gated_recurrent_unit

What Are Autoencoders?

An autoencoder (AE) is a neural network that is similar to an MLP where
the output layer is the same as the input layer. The simplest type of AE
contains a single hidden layer that has fewer neurons than either the
input layer or the output layer. However, there are many different types
of AEs in which there are multiple hidden layers, sometimes containing
more neurons than the input layer (and sometimes containing fewer
neurons).

An AE uses unsupervised learning and back propagation to learn an
efficient data encoding. Their purpose is dimensionality reduction: AEs
set the input values equal to the inputs and then try to find the identity
function. Figure 5.2 displays a simple AE that involves a single hidden
layer.

148 • Artificial Intelligence, Machine Learning, Deep Learning

FIGURE 5.2 A Basic Autoencoder.

Image adapted from [Philippe Remy, Source: http://philipperemy.
github.io/anomaly-detection/

In essence, a basic AE compresses the input to an “intermediate” vec-
tor with fewer dimensions than the input data, and then transforms that
vector into a tensor with the same shape as the input. Several use cases for
AEs are listed below:

•	 Document retrieval

•	 Classification

•	 Anomaly detection

•	 Adversarial autoencoders

•	 Image denoising (generating clear images)

An example of using TensorFlow and Keras with an autoencoder in order
to perform fraud detection is here:

https://www.datascience.com/blog/fraud-detection-with-tensorflow

Deep Learning: RNNs and LSTMs • 149

AEs can also be used for feature extraction because they can yield
better results than PCA. Keep in mind that AEs are data-specific, which
means that they only work with similar data. However, they differ from
image compression (and are mediocre for data compression). For example,
an autoencoder trained on faces would work poorly on pictures of trees. In
summary, an AE involves:

•	 “squeezing” the input to a smaller layer

•	 learning a representation for a set of data

•	 is done typically for dimensionality reduction (PCA)

•	 keeping only the middle “compressed” layer

As a high-level example, consider a 10x10 image (100 pixels), and an AE
that has 100 neurons (10x10 pixels), a hidden layer with 50 neurons, and an
output layer with 100 neurons. Hence, the AE compresses 100 neurons to
50 neurons.

As you saw earlier, there are numerous variations of the basic AE, some
of which are listed below:

•	 LSTM autoencoders

•	 Denoising autoencoders

•	 Contractive autoencoders

•	 Sparse autoencoders

•	 Stacked autoencoders

•	 Deep autoencoders

•	 Linear autoencoders

If you’re interested, the following link contains a wide assortment of auto-
encoders, including those that are mentioned in this section:

https://www.google.com/search?sa=X&q=Autoencoder&tbm=isch&so
urce=univ&ved=2ahUKEwjo-8zRrIniAhUGup4KHVgvC10QiR56BAgME
BY&biw=967&bih=672

150 • Artificial Intelligence, Machine Learning, Deep Learning

Perform an online search for code samples and more details regarding
AEs and their associated use cases.

Autoencoders and PCA
The optimal solution to an autoencoder is strongly related to principal com-
ponent analysis (PCA) if the autoencoder involves linear activations or only
a single sigmoid hidden layer.

The weights of an autoencoder with a single hidden layer of size p
(where p is less than the size of the input) span the same vector subspace as
the one spanned by the first p principal components.

The output of the autoencoder is an orthogonal projection onto
this subspace. The autoencoder weights are not equal to the princi-
pal components, and are generally not orthogonal, yet the principal
components may be recovered from them using the singular value
decomposition.

What Are Variational Autoencoders?
In very brief terms, a Variational autoencoder is sort of an enhanced regular
autoencoder in which the left side acts as an encoder, and the right side acts
as a decoder. Both sides have a probability distribution associated with the
encoding and decoding process.

In addition, both the encoder and the decoder are actually neural
networks. The input for the encoder is a vector x of numeric values,
and its output is a hidden representation z that has weights and biases.
The decoder has input a (i.e., the output of the encoder), and its output
is the parameters of a probability distribution of the data, which also
has weights and biases. Note that the probability distributions for the
encoder and the decoder are different. If you want to learn more about
VAEs, navigate to the Wikipedia page that discusses VAEs in a detailed
fashion:

ht tps : / / en .wik iped ia .org /wik i /Autoencoder#Var ia t iona l_
autoencoder_.28VAE.29

Figure 5.3 displays a high-level and simplified VAE that involves a sin-
gle hidden layer.

Deep Learning: RNNs and LSTMs • 151

FIGURE 5.3 A Variational Autoencoder.

Another interesting model architecture is a combination of a CNN and a
VAE, which you can read about here:

https://towardsdatascience.com/gans-vs-autoencoders-comparison-of-
deep-generative-models-985cf15936ea

In the next section, you will learn about GANs and how to combine a
VAE with a GAN.

What Are GANs?

A GAN is an acronym for Generative Adversarial Network whose original
purpose was to generate synthetic data, typically for augmenting small data-
sets or unbalanced datasets. One use case pertains to missing persons: sup-
ply the available images of those persons to a GAN in order to generate
an image of how those people might look today. There are many other use
cases for GANs, some of which are listed here:

•	 Generating art

•	 Creating fashion styles

152 • Artificial Intelligence, Machine Learning, Deep Learning

•	 Improving images of low quality

•	 Creating “artificial” faces

•	 Reconstructing incomplete/damaged images

Ian Goodfellow (PhD in Machine Learning from the University of Mon-
treal) created GANs in 2014. Yann LeCun (AI research director at Face-
book) called adversarial training “the most interesting idea in the last 10
years in ML.” Incidentally, Yann LeCun was one of the three recipients
of the Turing Award in 2019, along with Yoshua Bengio and Geoffrey
Hinton.

GANs are becoming increasingly common and people are finding cre-
ative (unexpected?) uses for them. Alas, GANs have been used for nefarious
purposes, such as circumventing since image-recognition systems. GANs can
generate counterfeit images from valid images by changing the pixel values
in order to deceive neural networks. Since those systems rely on pixel pat-
terns, they can be deceived via adversarial images, which are images whose
pixel values have been altered.

Navigate to the following link in order to see an example of a GAN that
distorts the image of a panda: https://arxiv.org/pdf/1412.6572.pdf

An article that delves into details of adversarial examples (including the
misclassified panda) is here:

https://openai.com/blog/adversarial-example-research/

According to an MIT paper, the modified values that trigger mis-
classifications exploit precise patterns that the image system associates
with specific objects. The researchers noticed that data sets contain two
types of correlations: patterns that are correlated with the dataset data,
and nongeneralizable patterns in the dataset data. GANs successfully
exploit the latter correlations in order to deceive image-recognition
systems. Details of the MIT paper are here: https://gandissect.csail.
mit.edu.

Can Adversarial Attacks Be Stopped?
Unfortunately, there are no long-term solutions to adversarial attacks,
and given their nature, it might never be possible to completely
defend against them. Although various techniques are being
developed to thwart adversarial attacks, their effectiveness tends to be

Deep Learning: RNNs and LSTMs • 153

short-lived: new GANs are created that can outwit those techniques.
The following article contains more information about adversarial
attacks:

https://www.technologyreview.com/s/613170/emtech-digital-dawn-
song-adversarial-machine-learning

Interestingly, GANs can have problems in terms of convergence, just like
other neural networks. One technique for addressing this problem is called
minibatch discrimination, details of which are here:

https://www.inference.vc/understanding-minibatch-discrimination-
in-gans/

Please note that the preceding link involves Kullback Leibler Diver-
gence and JS Divergence, which are more advanced topics. The preceding
blog post also contains a link to the following Jupyter notebook:

https://gist.github.com/fhuszar/a91c7d0672036335c1783d02c3a3dfe5

If you’re interested in working with GANs, this GitHub link contains
Python and TensorFlow code samples for constructing attacks and defenses:

https://github.com/tensorflow/cleverhans

Creating a GAN

A GAN has two main parts: a generator and a discriminator. The gen-
erator can have a CNN-like architecture for the purpose of generating
images, whereas the discriminator can have a CNN-like architecture in
order to detect whether or not an image (provided by the generator)
is real or fake. By way of analogy, a generator is analogous to a person
who makes counterfeit money, and a discriminator is analogous to a law
enforcement officer who tries to distinguish between valid currency and
counterfeit currency.

The generator (which has previously been initialized) sends fake
images to the discriminator (already trained but no longer updateable)
for analysis. If the discriminator is highly accurate in terms of detecting
real and fake images, then the generator needs to be modified in order
to improve the quality of fake images that are produced. The modifi-
cation to the generator is performed by backward error propagation.
On the other hand, if the discriminator performs poorly, then the

154 • Artificial Intelligence, Machine Learning, Deep Learning

generator is generating high quality fake images, and therefore the gen-
erator does not require significant modification.

Listing 5.5 displays the contents of keras_create_gan.py that
defines a Python function for creating a GAN.

Listing 5.4: keras_create_gan.py

import tensorflow as tf

def build_generator(img_shape, z_dim):
 model = tf.keras.models.Sequential()
 # Fully connected layer
 model.add(tf.keras.layers.Dense(128, input_dim=z_dim))
 # Leaky ReLU activation
 model.add(tf.keras.layers.

LeakyReLU(alpha=0.01))
 # Output layer with tanh activation
 model.add(tf.keras.layers.Dense(28 * 28 * 1,

activation='tanh'))
 # Reshape the Generator output to image dimensions
 model.add(tf.keras.layers.Reshape(img_shape))
 return model

def build_discriminator(img_shape):
 model = tf.keras.models.Sequential()
 # Flatten the input image
 model.add(tf.keras.layers.Flatten(input_

shape=img_shape))
 # Fully connected layer
 model.add(tf.keras.layers.Dense(128))
 # Leaky ReLU activation
 model.add(tf.keras.layers.

LeakyReLU(alpha=0.01))
 # Output layer with sigmoid activation
 model.add(tf.keras.layers.Dense(1,

activation='sigmoid'))
 return model

Deep Learning: RNNs and LSTMs • 155

def build_gan(generator, discriminator):
 # ensure that the discriminator is not trainable
 discriminator.trainable = False
 # the GAN connects the generator and descriminator
 gan = tf.keras.models.Sequential()

 # start with the generator:
 gan.add(generator)

 # then add the discriminator:
 gan.add(discriminator)

 # compile gan
 opt = tf.keras.optimizers.Adam(lr=0.0002,

beta_1=0.5)
 gan.compile(loss='binary_crossentropy',

optimizer=opt)
 return gan

gen = build_generator(...)
dis = build_discriminator(...)
gan = build_gan(gen, dis)

As you can see, the Python function in Listing 5.5 contains three
Python methods for build_generator(), build_discriminator(),
and build_gan() for creating a generator, a discriminator, and a GAN,
respectively.

The GAN is initialized with a generator and then a discriminator, both
of which are parameters for this function. Notice that the discriminator in
the build_gan() method is not trainable, which is ensured with this code
snippet:

discriminator.trainable = False

156 • Artificial Intelligence, Machine Learning, Deep Learning

Another point to notice is that the preceding Python functions do not
create CNN-like architectures. A different way to create a discriminator is
shown in the following code block (details are omitted):

dis = build_discriminator(...)
gen_model = tf.keras.models.Sequential()
gen_model.add(tf.keras.layers.Dense(...)
gen_model.add(tf.keras.layers.

LeakyReLU(alpha=0.2))
gen_model.add(tf.keras.layers.Reshape(...)

code for upsampling
gen_model.add(tf.keras.layers.Conv2DTranspose(...)
gen_model.add(tf.keras.layers.LeakyReLU(...)
...
gen_model.add(tf.keras.layers.Reshape(...)
gen_model.add(tf.keras.layers.LeakyReLU(...)

output layer
gen_model.add(tf.keras.layers.Conv2D(...))

The preceding code block involves the Conv2D() class and the Leaky-
ReLU() class (similar to ReLU), but notice there is no max pooling layer.
Check online documentation for an explanation of upsampling and the
purpose of the TensorFlow/Keras classes LeakyReLU() and
Conv2DTranspose().

A High-Level View of GANs
There are numerous types of GANs, such as DCGANs (Deep Convolu-
tional GANs), cGANs (Conditional GANs), and StyleGANs. In general,
creating GANs involves the following high-level sequence of steps:

•	 Step 1) Select a dataset (ex: MNIST or cifar10)

•	 Step 2) Define and train the Discriminator Model

•	 Step 3) Define and use the Generator Model

•	 Step 4) Train the Generator Model

•	 Step 5) Evaluate GAN Model performance

•	 Step 6) Use the final Generator Model

Deep Learning: RNNs and LSTMs • 157

Although GANs can be similar to CNNs, there are some important differ-
ences in the layers that are used. First, the convolution layer in GANs often
has a stride of (2, 2), which is to say that the convolutional filter moves two
columns at a time, and then shifts downward two rows at a time. Next,
GANs contain a LeakyReLU activation function that is slightly different
from the ReLU activation functions. Third, GANs do not have a max pool-
ing layer.

In addition, GANs also involve the concept of upscaling, which in a
sense is like the opposite of downscaling (i.e., max pooling). Perform an
online search for more information regarding the details of GANs.

The VAE-GAN Model
Another interesting model is the VAE-GAN model, which is a hybrid of a
VAE and a GAN, and details about this model are here:

https://towardsdatascience.com/gans-vs-autoencoders-comparison-of-
deep-generative-models-985cf15936ea

According to the preceding link, GANs are superior to VAEs, but they
are also difficult to work with and require a lot of data and tuning. If you’re
interested, a GAN tutorial (by the same author) is available here:

https://github.com/mrdragonbear/GAN-Tutorial

Summary

In this chapter, you learned about the architecture of an RNN, some tasks
that you can solve due to its stateful architecture, followed by a Keras-
based code sample. Next you saw the architecture of an LSTM, as well as a
basic code sample.

In addition, you saw a TensorFlow 1.x code sample for an LSTM cell
whose output shows you the path of some of the internal calculations that
are performed. In addition, you learned about Variational Autoencoders
and some of their use cases.

Finally, you got an introduction to GANs, a high-level description of how
to construct them, and also how they are trained.

C H A P T E R 6
NLP AND REINFORCEMENT
LEARNING

This chapter provides a casual introduction to NLP (Natural Language
Processing) and Reinforcement Learning (RL). Both topics can easily fill
entire books, often involving complex topics, which means that this chap-
ter provides a limited introduction to these topics. If you want to acquire a
thorough grasp of BERT (discussed briefly later in the chapter), you need to
learn about attention and the transformer architecture. Similarly, if you want
to acquire a solid understanding of deep reinforcement learning, then you
need to understand deep learning architectures. After you finish reading the
cursory introduction to NLP and RL in this chapter, you can find additional
online information about the facets of NLP or RL that interest you.

The first section discusses NLP, along with some code samples in
Keras. This section also discusses NLU (Natural Language Understand-
ing) and NLG (Natural Language Generation).

The second section introduces Reinforcement Learning, along with a
description of the types of tasks that are well suited to RL. You will learn
about the nchain task and the epsilon-greedy algorithm that can solve prob-
lems that you cannot solve using a pure greedy algorithm. In this section
you will also learn about the Bellman equation, which is a cornerstone of
reinforcement learning.

The third section discusses the TF-Agents toolkit from Google, deep
reinforcement learning (deep learning combined with reinforcement learn-
ing), and the Google Dopamine toolkit.

160 • Artificial Intelligence, Machine Learning, Deep Learning

Working with NLP (Natural Language Processing)

This section highlights some concepts in NLP, and depending on your back-
ground, you might need to perform an online search to learn more about
some of the concepts (try Wikipedia). Although the concepts are treated in
a very superficial manner, you will know what to pursue in order to further
your study of NLP.

NLP is currently the focus of significant interest in the machine learn-
ing community. Some of the use cases for NLP are listed here:

•	 Chatbots

•	 Search (text and audio)

•	 Text classification

•	 Sentiment analysis

•	 Recommendation systems

•	 Question answering

•	 Speech recognition

•	 NLU (Natural Language Understanding)

•	 NLG (Natural Language Generation)

You encounter many of these use cases in everyday life: when you visit web
pages, or perform an online search for books, or recommendations regard-
ing movies.

NLP Techniques
The earliest approach for solving NLP tasks involved rule-based approaches,
which dominated the industry for decades. Examples of techniques using
rule-based approaches include Regular Expressions (RegExs) and Context
Free Grammars (CFGs). RegExs are sometimes used in order to remove
HTML tags from text that has been scraped from a web page or unwanted
special characters from a document.

The second approach involved training a machine learning model
with some data that is based on some user-defined features. This tech-
nique requires a considerable amount of feature engineering (a nontrivial
task), and includes analyzing the text to remove undesired and superfluous

NLP and Reinforcement Learning • 161

content (including stop words), as well as transforming the words (e.g., con-
verting uppercase to lowercase).

The most recent approach involves deep learning, whereby a neural
network learns the features instead of relying on humans to perform fea-
ture engineering. One of the key ideas involves mapping words to numbers,
which enables us to map sentences to vectors of numbers. After transform-
ing documents to vectors, we can perform a myriad of operations on those
vectors. For example, we can use the notion of vector spaces to define vec-
tor space models, where the distance between two vectors can be measured
by the angle between them (related to cosine similarity). If two vectors are
close to each other, then it’s likelier that the corresponding sentences are
similar in meaning. Their similarity is based on the distributional hypothesis,
which asserts that words in the same contexts tend to have similar meanings.

A nice article that discusses vector representations of words, along with
links to code samples, is here:

https://www.tensorflow.org/tutorials/representation/word2vec

The Transformer Architecture and NLP
In 2017, Google introduced the Transformer Neural Network architec-
ture, which is based on a self-attention mechanism that is well suited for
language understanding.

Google showed that the Transformer outperforms earlier bench-
marks for both RNNs and CNNs involving the translation of academic Eng-
lish to German as well as English to French. Moreover, the Transformer
required less computation to train and also improved the training time by
as much as an order of magnitude.

The Transformer can process the sentence “I arrived at the bank after
crossing the river” and correctly determine that the word “bank” refers to
the shore of a river and not a financial institution. The Transformer makes
this determination in a single step by making the association between bank
and river. As another example, the Transformer can determine the differ-
ent meanings of it in these two sentences:

“The horse did not cross the street because it was too tired.”

“The horse did not cross the street because it was too narrow.”

The Transformer computes the next representation for a given word
by comparing the word to every other word in the sentence, which results

162 • Artificial Intelligence, Machine Learning, Deep Learning

in an attention score for the words in the sentence. The Transformer uses
these scores to determine the extent to which other words will contribute
to the next representation of a given word.

The result of these comparisons is an attention score for every other
word in the sentence. As a result, river received a high attention score when
computing a new representation for bank.

Although LSTMs and bidirectional LSTMs are heavily utilized in NLP
tasks, the Transformer has gained a lot of traction in the AI community,
not only for translation between languages, but also the fact that for some
tasks it can outperform both RNNs and CNNs. The Transformer architec-
ture requires much less computation time in order to train a model, which
explain why some people believe that the Transformer has already begun
to supplant RNNs and LSTMs.

The following link contains a TF 2 code sample of a Transformer
neural network that you can launch in Google Colaboratory:

https://www.tensorflow.org/alpha/tutorials/text/transformer

Another interesting and recent architecture is called Attention Aug-
mented Convolutional Networks, which is a combination of CNNs with self-
attention. This combination achieves better accuracy than pure CNNs, and
you can find more details in this paper: https://arxiv.org/abs/1904.09925

Transformer-XL Architecture
The Transformer-XL combines a Transformer architecture with

two techniques called Recurrence Mechanism and Relative Positional
Encoding to obtain better results than a Transformer. Transformer-XL
works with word-level and character-level language modeling.

The Transformer-XL and Transformer both process the first seg-
ment of tokens, and the former also keeps the outputs of the hidden layers.
Consequently, each hidden layer receives two inputs from the previous hid-
den layer, and then concatenates them to provide additional information to
the neural network.

According to the following article, Transformer-XL significantly out-
performs Transformer, and its dependency is 80% longer than “vanilla”
RNNs:

https://hub.packtpub.com/transformer-xl-a-google-architecture-with-
80-longer-dependency-than-rnns/

NLP and Reinforcement Learning • 163

Reformer Architecture
Recently the Reformer architecture was released, which uses two tech-
niques to improve the efficiency (i.e., lower memory and faster perfor-
mance on long sequences) of the Transformer architecture. As a result,
the Reformer architecture also has lower complexity than the Trans-
former. More details regarding the Reformer are here:

https://openreview.net/pdf?id=rkgNKkHtvB

Some Reformer-related code is here: https://pastebin.com/62r5FuEW

NLP and Deep Learning
The NLP models that use deep learning can comprise CNNs, RNNs, LSTMs,
and bidirectional LSTMs. For example, Google released BERT in 2018, which
is an extremely powerful framework for NLP. BERT is quite sophisticated
and involves bidirectional transformers and so-called attention (discussed
briefly later in this chapter).

Deep learning for NLP often yields higher accuracy than other tech-
niques, but keep in mind that sometimes it’s not as fast as rule-based and
classical machine learning methods. In case you’re interested, a code sam-
ple that uses TensorFlow and RNNs for text classification is here:

https://www.tensorflow.org/alpha/tutorials/text/text_classification_rnn

A code sample that uses TensorFlow and RNNs for text generation is here:

https://www.tensorflow.org/alpha/tutorials/text/text_generation

Data Preprocessing Tasks in NLP
There are some common preprocessing tasks that are performed on docu-
ments, as listed below:

•	 [1] Lowercasing

•	 [1] Noise removal

•	 [2] Normalization

•	 [3] Text enrichment

•	 [3] Stopword removal

•	 [3] Stemming

•	 [3] Lemmatization

164 • Artificial Intelligence, Machine Learning, Deep Learning

The preceding tasks can be classified as follows:

•	 [1]: Mandatory tasks

•	 [2]: Recommended tasks

•	 [3]: Task dependent

In brief, preprocessing tasks involve at least the removal of redundant
words (a, the, and so forth), removing the endings of words (running, runs,
and ran are treated the same as run), and converting text from uppercase
to lowercase.

Popular NLP Algorithms

Some of the popular NLP algorithms are listed below, and in some cases
they are the foundation for more sophisticated NLP toolkits:

•	 BoW: Bag of Words

•	 n-grams and skip-grams

•	 TF-IDF: basic algorithm in extracting keywords

•	 Word2Vector (Google): O/S project to describe text

•	 GloVe (Stanford NLP Group)

•	 LDA: text classification

•	 CF (collaborative filtering): an algorithm in news recommend system
(Google News and Yahoo News)

The topics in the first half of the preceding list are discussed briefly in sub-
sequent sections.

What Is an n-gram?
An n-gram is a technique for creating a vocabulary that is based on adjacent
words that are grouped together. This technique retains some word posi-
tions (unlike BoW). You need to specify the value of “n” that in turn speci-
fies the size of the group.

The idea is simple: for each word in a sentence, construct a vocabulary
term that contains the n words on the left side of the given word and n

NLP and Reinforcement Learning • 165

words that are on the right side of the given word. As a simple example,
“This is a sentence” has the following 2-grams:

(this, is), (is, a), (a, sentence)

As another example, we can use the same sentence “This is a sentence” to
determine its 3-grams:

(this, is, a), (is, a, sentence)

The notion of n-grams is surprisingly powerful, and it’s used heavily in pop-
ular open source toolkits such as ELMo and BERT when they pretrain their
models.

What Is a skip-gram?
Given a word in a sentence, a skip gram creates a vocabulary term by con-
structing a list that contains the n words on both sides of a given word,
followed by the word itself. For example, consider the following sentence:

the quick brown fox jumped over the lazy dog

A skip-gram of size 1 yields the following vocabulary terms:

([the,brown], quick), ([quick,fox], brown),
([brown,jumped], fox),...

A skip-gram of size 2 yields the following vocabulary terms:

([the,quick,fox,jumped], brown),
([quick,brown,jumped,over], fox), ([brown,fox,over,the],
jumped),...

More details regarding skip-grams are discussed here:

https://www.tensorflow.org/tutorials/representation/word2vec#the_
skip-gram_model

What Is BoW?
BoW (Bag of Words) assigns a numeric value to each word in a sentence
and treats those words as a set (or bag). Hence, BoW does not keep track of
adjacent words, so it’s a very simple algorithm.

Listing 6.1 displays the contents of the Python script bow_to_vector.
py that illustrates how to use the BoW algorithm.

166 • Artificial Intelligence, Machine Learning, Deep Learning

Listing 6.1: bow_to_vector.py

VOCAB = ['dog', 'cheese', 'cat', 'mouse']
TEXT1 = 'the mouse ate the cheese'
TEXT2 = 'the horse ate the hay'

def to_bow(text):
 words = text.split(" ")
 return [1 if w in words else 0 for w in VOCAB]

print("VOCAB: ",VOCAB)
print("TEXT1:",TEXT1)
print("BOW1: ",to_bow(TEXT1)) # [0, 1, 0, 1]
print("")

print("TEXT2:",TEXT2)
print("BOW2: ",to_bow(TEXT2)) # [0, 0, 0, 0]

Listing 6.6 initializes a list VOCAB and two text strings TEXT1 and TEXT2.
The next portion of Listing 6.6 defines the Python function to_bow() that
returns an array containing 0s and 1s: if a word in the current sentence
appears in the vocabulary, then a 1 is returned (otherwise a 0 is returned).
The last portion of Listing 6.6 invokes the Python function with two differ-
ent sentences. The output from launching the code in Listing 6.6 is here:

('VOCAB: ', ['dog', 'cheese', 'cat', 'mouse'])
('TEXT1:', 'the mouse ate the cheese')
('BOW1: ', [0, 1, 0, 1])

('TEXT2:', 'the horse ate the hay')
('BOW2: ', [0, 0, 0, 0])
fitting model...

What Is Term Frequency?
Term frequency is the number of times that a word appears in a document,
which can vary among different documents. Consider the following simple
example that consists of two “documents” Doc1 and Doc2:

Doc1 = "This is a short sentence"

Doc2 = "yet another short sentence"

NLP and Reinforcement Learning • 167

The term frequency for the word is and the word short is given below:

tf(is) = 1/5 for doc1

tf(is) = 0 for doc2

tf(short) = 1/5 for doc1

tf(short) = 1/4 for doc2

The preceding values will be used in the calculation of tf-idf that is
explained in a later section.

What Is Inverse Document Frequency (idf)?
Given a set of N documents and given a word in a document, let’s define dc
and idf of each word as follows:

dc = # of documents containing a given word

idf = log(N/dc)

Now let’s use the same two documents Doc1 and Doc2 from a previous
section:

Doc1 = "This is a short sentence"

Doc2 = "yet another short sentence"

The calculations of the idf value for the word is and the word short are
shown here:

idf(is) = log(2/1) = log(2)

idf(short) = log(2/2) = 0

The following link provides more detailed information about inverse docu-
ment frequency: https://en.wikipedia.org/wiki/Tf–idf#Example_of_tf–idf.

What Is tf-idf?
The term tf-idf is an abbreviation for Term Frequency, Inverse Docu-
ment Frequency, and it’s the product of the tf value and the idf value of
a word, as shown here:

tf-idf = tf * idf

A high frequency word has a higher tf value but a lower idf value. In
general, “rare” words are more relevant than “popular” ones, so they
help to extract relevance. For example, suppose you have a collection

168 • Artificial Intelligence, Machine Learning, Deep Learning

of ten documents (real documents, not the toy documents we used
earlier). The word the occurs frequently in English sentences, but it
does not provide any indication of the topics in any of the documents.
On the other hand, if you determine that the word universe appears
multiple times in a single document, this information can provide
some indication of the theme of that document, and with the help
of NLP techniques, assist in determining the topic (or topics) in that
document.

What Are Word Embeddings?

An embedding is a fixed-length vector to encode and represent an entity
(document, sentence, word, graph). Each word is represented by a real-
valued vector, which can result in hundreds of dimensions. Furthermore,
such an encoding can result in sparse vectors: one example is one-hot
encoding, where one position has the value 1 and all other positions have
the value 0.

Three popular word embedding algorithms are Word2vec, GloVe, and
FastText. Keep in mind that these three algorithms involve unsupervised
approaches. They are also based on the distributional hypothesis: words
in the same contexts tend to have similar meanings: https://aclweb.org/
aclwiki/Distributional_Hypothesis.

A good article regarding Word2Vec in TensorFlow is here:

https://towardsdatascience.com/learn-word2vec-by-implementing-it-
in-tensorflow-45641adaf2ac

This article is useful if you want to see Word2Vec with FastText in gen-
sim:

https://towardsdatascience.com/word-embedding-with-word2vec-and-
fasttext-a209c1d3e12c

Another good article, and this one pertains to the skip-gram model:

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-in-
tuition-78614e4d6e0b

A useful article that describes how FastText works under the hood:

https://towardsdatascience.com/fasttext-under-the-hood-11efc57b2b3

NLP and Reinforcement Learning • 169

Along with the preceding popular algorithms there are also some popu-
lar embedding models, some of which are listed below:

•	 Baseline Averaged Sentence Embeddings

•	 Doc2Vec

•	 Neural-Net Language Models

•	 Skip-Thought Vectors

•	 Quick-Thought Vectors

•	 InferSent

•	 Universal Sentence Encoder

Perform an online search for more information about the preceding embed-
ding models.

ELMo, ULMFit, OpenAI, BERT, and ERNIE 2.0

During 2018 there were some significant advances in NLP-related research,
resulting in the following toolkits and frameworks:

•	 ELMo: released in 02/2018

•	 ULMFit: released in 05/2018

•	 OpenAI: released in 06/2018

•	 BERT: released in 10/2018

•	 MT-DNN: released in 01/2019

•	 ERNIE 2.0: released in 08/2019

ELMo is an acronym for Embeddings from Language Models, which pro-
vides Deep Contextualized Word Representations and state-of-the-art con-
textual word vectors, resulting in noticeable improvements in word embed-
dings.

Jeremy Howard and Sebastian Ruder created ULMFit (Universal Lan-
guage Model Fine-tuning), which is a transfer learning method that can be
applied to any task in NLP. ULMFit significantly outperforms the state-of-
the-art on six text classification tasks, reducing the error by 18–24% on the
majority of datasets.

170 • Artificial Intelligence, Machine Learning, Deep Learning

Furthermore, with only 100 labeled examples, it matches the perfor-
mance of training from scratch on 100x more data. ULMFit is download-
able from GitHub:

https://github.com/jannenev/ulmfit-language-model

OpenAI developed GPT-2 (a successor to GPT), which is a model that
was trained to predict the next word in 40GB of Internet text. OpenAI
chose not to release the trained model due to concerns regarding malicious
applications of their technology.

GPT-2 is a large transformer-based language model with 1.5 bil-
lion parameters, trained on a dataset of 8 million web pages (curated by
humans), with an emphasis on diversity of content. GPT-2 is trained to
predict the next word, given all the previous words within some text. The
diversity of the dataset causes this goal to contain naturally occurring dem-
onstrations of many tasks across diverse domains. GPT-2 is a direct scale-up
of GPT, with more than 10X the parameters and trained on more than 10X
the amount of data.

BERT is an acronym for Bidirectional Encoder Representations from
Transformers. BERT can pass this simple English test (i.e., BERT can deter-
mine the correct choice among multiple choices):

On stage, a woman takes a seat at the piano. She:

a) sits on a bench as her sister plays with the doll.

b) smiles with someone as the music plays.

c) is in the crowd, watching the dancers.

d) nervously sets her fingers on the keys.

Details of BERT and this English test are here:

https://www.lyrn.ai/2018/11/07/explained-bert-state-of-the-art-lan-
guage-model-for-nlp/

The BERT (TensorFlow) source code is available here on GitHub:

https://github.com/google-research/bert

https://github.com/hanxiao/bert-as-service

NLP and Reinforcement Learning • 171

Another interesting development is MT-DNN from Microsoft, which
asserts that MT-DNN can outperform Google BERT:

https://medium.com/syncedreview/microsofts-new-mt-dnn-outper-
forms-google-bert-b5fa15b1a03e

A Jupyter notebook with BERT is available, and you need the following
in order to run the notebook in Google Colaboratory:

•	 A GCP (Google Compute Engine) account

•	 A GCS (Google Cloud Storage) bucket

Here is the link to the notebook in Google Colaboratory:

https://colab.research.google.com/github/tensorflow/tpu/blob/master/
tools/colab/bert_finetuning_with_cloud_tpus.ipynb

In March 2019, Baidu open sourced ERNIE 1.0 (Enhanced Repre-
sentation through kNowledge IntEgration) that (according to Baidu) out-
performed BERT in tasks involving Chinese language understanding. In
August, 2019 Baidu open sourced ERNIE 2.0, which is downloadable here:

https://github.com/PaddlePaddle/ERNIE/

An article with additional information about ERNIE 2.0 (including its
architecture) is here:

https://hub.packtpub.com/baidu-open-sources-ernie-2-0-a-continual-
pre-training-nlp-model-that-outperforms-bert-and-xlnet-on-16-nlp-tasks/

What Is Translatotron?

Translatotron is an End-to-End Speech-to-Speech Translation Model (from
Google) whose output retains the original speaker’s voice; moreover, it’s
trained with less data.

Speech-to-speech translation systems have been developed over the
past several decades with the goal of helping people who speak different
languages to communicate with each other. Such systems have three parts:

•	 Automatic speech recognition to transcribe the source speech as text

•	 Machine translation to translate the transcribed text into the target language

•	 Text-to-speech synthesis (TTS) to generate speech in the target
language from the translated text

172 • Artificial Intelligence, Machine Learning, Deep Learning

The preceding approach has been successful in commercial products
(including Google Translate). However, Translatatron does not require sep-
arate stages, resulting in the following advantages:

•	 Faster inference speed

•	 Avoiding compounding errors between recognition and translation

•	 Easier to retain the voice of the original speaker after translation

•	 Better handling of untranslated words (names and proper nouns)

This concludes the portion of this chapter that pertains to NLP. Another
area of great interest in the AI community is Reinforcement Learning,
which is introduced later in this chapter.

Deep Learning and NLP

In Chapter 4, you learned about CNNs and how they are well suited for
image classification tasks. You might be surprised to discover that CNNs
also work with NLP tasks. However, you must first map each word in a
dictionary (which can be a subset of the words in English or some other
language) to numeric values and then construct a vector of numeric values
from the words in a sentence. A document can be transformed into a set of
numeric vectors (involving various techniques that are not discussed here)
in order to create a dataset that’s suitable for input to a CNN.

Another option involves the use of RNNs and LSTMs instead of CNNs for
NLP-related tasks. By contrast, a bidirectional transformer is the basis for
in BERT (Bidirectional Encoder Representations from Transformers). The
Google AI team developed BERT (open sourced in 2018) and it’s considered
a breakthrough in its ability to solve NLP problems. The source code is here:
https://github.com/google-research/bert

NLU versus NLG

NLU is an acronym for Natural Language Understanding. NLU pertains to
machine reading comprehension, and it’s considered a difficult problem. At
the same time, NLU is relevant to machine translation, question answering,
and text categorization (among others). NLU attempts to discern the mean-
ing of fragmented sentences and run-on sentences, after which some type
of action can be performed (e.g., respond to voice queries).

NLP and Reinforcement Learning • 173

NLG is an acronym for Natural Language Generation, which involves
generating documents. The Markov chain (discussed later in this chapter)
was one of the first algorithms for natural language generation. Another
technique involves RNNs (discussed in Chapter 5) that can retain some his-
tory of previous words, and the probability of the next word in a sequence is
calculated. Recall that RNNs suffer from limited memory, which limits the
length of the sentences that can be generated. A third technique involves
LSTMs, which can maintain state for a long period of time and also avoid
the exploding gradient problem.

Recently (circa 2017) Google introduced the transformer architec-
ture, which involves a stack of encoders for processing inputs and a set
of decoders to produce generated sentences. A transformer-based archi-
tecture is more efficient than an LSTM because a transformer requires
a small and fixed number of steps in order to apply the so-called self-
attention mechanism in order to simulate the relationship among all the
words in a sentence.

In fact, the transformer differs from previous models in one important
way: it uses the representation of all words in context without compressing
all the information into a single fixed-length representation. This technique
enables a transformer to handle longer sentences without high computa-
tional costs.

The transformer architecture is the foundation for the GPT-2 language
model (from OpenAI). The model learns to predict the next word in a sen-
tence by focusing on words that were previously seen in the model and
related to predicting the next word. In 2018, Google released the BERT
architecture for NLP, which is based on transformers with a two-way
encoder representation.

What Is Reinforcement Learning (RL)?

Reinforcement Learning is a subset of machine learning that attempts
to find the maximum reward for a so-called agent that interacts with
an environment. RL is suitable for solving tasks that involve deferred
rewards, especially when those rewards are greater than intermediate
rewards.

In fact, RL can handle tasks that involve a combination of negative,
zero, and positive rewards. For example, if you decide to leave your job

174 • Artificial Intelligence, Machine Learning, Deep Learning

in order to attend school on a full-time basis, you are spending money (a
negative reward) with the belief that your investment of time and money
will lead to a higher-paying position (a positive reward) that outweighs the
cost of school and lost earnings.

One thing that might surprise you is that Reinforcement Learning
agents are susceptible to GANs. Chapter 5 contains a section devoted to
GANs, and you can find additional details (along with related links) in this
article:

https://openai.com/blog/adversarial-example-research/

Reinforcement Learning Applications
There are many RL applications, some of which are listed here:

•	 Game theory

•	 Control theory

•	 Operations research

•	 Information theory

•	 Simulation-based optimization

•	 Multiagent systems

•	 Swarm intelligence

•	 Statistics and genetic algorithms

•	 Resources management in computer clusters

•	 Traffic light control (congestion problems)

•	 Robotics operations

•	 Autonomous cars/helicopters

•	 Web System Configuration/web-page indexing

•	 Personalized recommendations

•	 Bidding and advertising

NLP and Reinforcement Learning • 175

•	 Robot-legged locomotion

•	 Marketing strategy selection

•	 Factory control

RL refers to goal-oriented algorithms for reaching a complex goal, such as
winning games that involve multiple moves (e.g., chess or Go). RL algo-
rithms are penalized for incorrect decisions and rewarded for correct deci-
sions: this reward mechanism is reinforcement.

NLP and Reinforcement Learning
More recently Reinforcement Learning with NLP has become a suc-
cessful area of research. One technique for NLP-related tasks involves
RNN-based encoder-decoder models that have achieved good results for
short input and output sequences. Another technique involves a neu-
ral network, supervised word prediction, and Reinforcement Learning.
This particular combination avoids exposure bias, which can occur in
models that use only supervised learning. More details are here: https://
arxiv.org/pdf/1705.04304.pdf

Yet another interesting technique involves Deep Reinforcement
Learning (i.e., DL combined with RL) with NLP. In case you don’t
already know, DRL has achieved success in various areas, such as Atari
games, defeating Lee Sedol (the world champion Go player), and robot-
ics. In addition, DRL is also applicable to NLP-related tasks, which
involves the key challenge of designing of a suitable model. Perform
an online search for more information about solving NLP-related tasks
with RL and DRL.

Values, Policies, and Models in RL
There are three main approaches in Reinforcement Learning. Value-based
RL estimates the optimal value function Q(s,a), which is the maximum
value achievable under any policy. Policy-based RL searches directly for
the optimal policy π, which is the policy achieving maximum future reward.
Model-based RL builds a model of the environment and plans (by looka-
head) using the model.

176 • Artificial Intelligence, Machine Learning, Deep Learning

In addition to the preceding approaches to RL (value functions, poli-
cies, and models), you will need to learn the following RL concepts:

•	 MDPs (Markov Decision Processes)

•	 A policy (a sequence of actions)

•	 The state/value function

•	 The action/value function

•	 Bellman equation (for calculating rewards)

The RL material in this chapter only addresses the following list of topics
(after which you can learn the concepts in the previous list):

•	 NFAs (Non-Deterministic Finite Automata)

•	 Markov Chains

•	 MDPs (Markov Decision Processes)

•	 Epsilon-Greedy Algorithm

•	 Bellman Equation

Another key point: almost all RL problems can be formulated as Markov
Decision Processes, which in turn are based on Markov Chains. Let’s take a
look at NFAs and Markov Chains and then we can define Markov Decision
Processes.

From NFAs to MDPs

Let’s start with the two-minute summary. The underlying structure for an
MDP is an NFA (nondeterministic finite automata), which is studied in
great detail in an automata theory course (as part of a computer science
degree). An NFA is a collection of states and transitions, each of which
has equal probability. An NFA also has a start state and one or more end
states.

Now add probabilities to transitions in an NFA, in such a way that the
sum of the probabilities of the outgoing transitions of any state equals one.
The result is a Markov Chain. A Markov Decision Process is a Markov
Chain with several additional properties.

NLP and Reinforcement Learning • 177

The following subsections expand the two-minute summary by provid-
ing additional explanatory details.

What Are NFAs?
An NFA is a Non Deterministic Finite Automata, which is a generalization
of a DFA (Deterministic Finite Automata). Figure 6.1 displays an example
of a NFA.

FIGURE 6.1 An Example of an NFA.

Image adapted from [Source: https://math.stackexchange.com/ques-
tions/1240601/what-is-the-easiest-way-to-determine-the-accepted-lan-
guage-of-a-deterministic-fi?rq=1]

An NFA enables you to define multiple transitions from a given state to
other states. By way of analogy, consider the location of many (most?) gas
stations. Usually they are located at an intersection of two streets, which
means there are at least two entrances to the gas station. After you make
your purchase, you can exit from the same entrance or from the second
entrance. In some cases, you might even be able to exit from one location
and return to the gas station from the other entrance: this would be compa-
rable to a loop transition of a state in a state machine.

The next step involves adding probabilities to NFAs in order to create a
Markov Chain, which is described in more detail in the next section.

What Are Markov Chains?
Markov Chains are NFAs with an additional constraint: the sum of the prob-
abilities of the outgoing edges of every state equals one. Figure 6.2 displays
a Markov Chain.

178 • Artificial Intelligence, Machine Learning, Deep Learning

FIGURE 6.2 An Example of a Markov Chain.

Image adapted from [Source: https://en.wikipedia.org/wiki/Markov_
chain]

As you can see in Figure 6.2, a Markov Chain is an NFA because a state
can have multiple transitions. The constraint involving probabilities ensures
that we can perform statistical sampling in MDPs that are described in the
next section.

Markov Decision Processes (MDPs)
In high-level terms, a Markov Decision Process is a method that samples
from a complex distribution to infer its properties. More specifically, MDPs
are an extension of Markov chains, which involves the addition of actions
(allowing choice) and rewards (giving motivation). Conversely, if only one
action exists for each state (e.g. “wait”) and all rewards are the same (e.g.
“zero”), an MDP reduces to a Markov chain. Figure 6.3 displays an example
of an MDP.

NLP and Reinforcement Learning • 179

FIGURE 6.3 An Example of an MDP.

Thus, an MDP consists of a set of states and actions, as well as the
rules for transitioning from one state to another. One episode of this
process (e.g., a single “game”) produces a finite sequence of states,
actions, and rewards. A key property of MDPs: history does not affect
future decisions. In other words, the process of selecting the next
state is independent of everything that happened before reaching the
current state.

MDPs are nondeterministic search problems that are solved via dynamic
programming and RL, where outcomes are partly random and partly under
control. As you learned earlier in this section, almost all RL problems can
be formulated as MDPs; consequently, RL can solve tasks that cannot be
solved by greedy algorithms. However, the epsilon-greedy algorithm is a
clever algorithm that can solve such tasks. In addition, the Bellman Equa-
tion enables us to compute rewards for states. Both are discussed in subse-
quent sections.

180 • Artificial Intelligence, Machine Learning, Deep Learning

The Epsilon-Greedy Algorithm

There are three fundamental problems that arise in Reinforcement Learning:

•	 The exploration-exploitation tradeoff

•	 The problem of delayed reward (credit assignment)

•	 The need to generalize

The term exploration refers to trying something new or different, whereas
the term exploitation refers to leveraging existing knowledge or informa-
tion. For instance, going to a favorite restaurant is an example of exploita-
tion (you are exploiting your knowledge of good restaurants), whereas going
to an untried restaurant is an example of exploration (you are exploring a
new venue). When people move to a new city, they tend to explore new
restaurants in that new city; on the other hand, people who are moving out
from the city where they currently reside will tend to exploit their knowl-
edge of good restaurants just before they move to a new city.

In general, exploration refers to making random choices, whereas
exploitation refers to using a greedy algorithm. The epsilon-greedy algo-
rithm is an example of exploration and exploitation, where the epsilon por-
tion of the algorithm refers to making random selections, and exploitation
involves a greedy algorithm.

An example of a simple task that can be solved via the epsilon-greedy
algorithm is Open AI Gym’s NChain environment, as shown in Figure 6.4.

FIGURE 6.4 The Open AI Gym’s NChain Environment.

NLP and Reinforcement Learning • 181

Image adapted from [http://ceit.aut.ac.ir/~shiry/lecture/machine-learn-
ing/papers/BRL-2000.pdf]

Each state in Figure 6.4 has two actions, and each action has an associated
reward. For each state, its forward action has reward 0, whereas its backward
action has reward 3. Since a greedy algorithm will always select the larger reward
at any state, this means that the backward action is always selected. Hence, we
can never move toward the final state 4 that has a reward of 10. Indeed, we can
never leave state 0 (the initial state) if we adhere to the greedy algorithm.

Here is the key question: how do we go from the initial state 0 to the
final state, which contains a large reward? We need a modified or hybrid
algorithm in order to go through intermediate low-reward states that lead
to the high reward state.

The hybrid algorithm is simple to describe: adhere to the greedy algo-
rithm about 90% of the time and randomly select a state for the remaining
10% of the time. This technique is simple, elegant, and effective, and it’s
called the epsilon-greedy algorithm (there are additional details required
for a complete implementation).

Incidentally, a Python-based solution for OpenAI’s NChain task is here:

https://github.com/openai/gym/blob/master/gym/envs/toy_text/nchain.py

Another central concept in Reinforcement Learning involves the Bell-
man Equation, which is the topic of the next section.

The Bellman Equation

The Bellman equations are named after Richard Bellman, who derived
these equations that are ubiquitous in Reinforcement Learning. There are
several Bellman equations, including one for the state value function and
one for the action value function. Figure 6.5 displays the Bellman equation
for the state value function.

FIGURE 6.5 The Bellman Equation.

182 • Artificial Intelligence, Machine Learning, Deep Learning

As you can see in Figure 6.5, the value of a given state depends on
the discounted value of future states. The following analogy might help
you understand the purpose of the discounted value called gamma in
this equation. Suppose that you have USD 100 that you invest at a 5%
annual interest rate. After one year you will have USD 105 (=100 +
5%*100 = 100*(1+0.05)), after two years you will have USD 110.25
(=100*(1+0.05)*(1+0.05)), and so forth.

Conversely, if you have a future value of USD 100 (with a 5% annual
investment rate) that is two years in the future, what is its present value?
The answer involves dividing 100 by powers of (1+0.05). Specifically,
the present value of USD 100 from two years in the future equals 100/
[(1+0.05)*(1+0.05)].

In analogous fashion, the Bellman equation enables us to calculate the
current value of a state by calculating the discounted reward of subsequent
states. The discount factor is called gamma, and it’s often a value between
0.9 and 0.99. In the preceding example involving USD 100, the value of
gamma is 0.9523.

Other Important Concepts in RL
After you have studied the basic concepts in RL, you can delve into the
topics that are listed below:

•	 Policy Gradient (rules for “best” actions)

•	 Q-value

•	 Monte Carlo

•	 Dynamic programming

•	 Temporal Difference (TD)

•	 Q-learning

•	 Deep Q Network

The preceding topics are explained in online articles (suggestion: use Wiki-
pedia as a starting point for RL concepts), and they will be much more
relevant after you grasp the introductory concepts in RL that are discussed
in earlier sections. Be prepared to spend some time learning these topics
because some of them are quite challenging in nature.

NLP and Reinforcement Learning • 183

RL Toolkits and Frameworks

There are many toolkits and libraries for Reinforcement Learning, typically
based on Python, Keras, Torch, or Java. Some of them are listed here:

•	 OpenAI gym: A toolkit for developing and comparing reinforcement
learning algorithms

•	 OpenAI universe: A software platform for measuring and training an
AI’s general intelligence across the world’s supply of games, websites
and other applications

•	 DeepMind Lab: A customizable 3D platform for agent-based AI
research

•	 rllab: A framework for developing and evaluating reinforcement
learning algorithms, fully compatible with OpenAI Gym

•	 TensorForce: Practical deep reinforcement learning on TensorFlow
with Gitter support and OpenAI Gym/Universe/DeepMind Lab
integration

•	 tf-TRFL: A library built on top of TensorFlow that exposes several
useful building blocks for implementing RL agents

•	 OpenAI lab: An experimentation system for RL using OpenAI Gym,
Tensorflow, and Keras

•	 MAgent: A platform for Many-agent Reinforcement Learning

•	 Intel Coach: A Python reinforcement learning research framework
containing implementation of many state-of-the-art algorithms

As you can see from the preceding list, there is a considerable variety of
available RL toolkits, and visit their homepages to determine which ones
have the features that meet your specific requirements.

TF-Agents
Google created the TF-Agents library for RL in TensorFlow. Google TF-
Agents is open source and downloadable from Github:

https://github.com/tensorflow/agents

The core elements of RL algorithms are implemented as agents. An
agent encompasses two main responsibilities: defining a policy to interact

184 • Artificial Intelligence, Machine Learning, Deep Learning

with the environment, and how to learn/train that policy from collected
experience. TF-Agents implements the following algorithms:

•	 DQN: Human level control through deep reinforcement learning
(Mnih et al., 2015)

•	 DDQN: Deep Reinforcement Learning with Double Q-learning
(Hasselt et al., 2015)

•	 DDPG: Continuous control with deep reinforcement learning
(Lillicrap et al., 2015)

•	 TD3: Addressing Function Approximation Error in Actor-Critic
Methods (Fujimoto et al., 2018)

•	 REINFORCE: Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning (Williams, 1992)

•	 PPO: Proximal Policy Optimization Algorithms (Schulman et al., 2017)

•	 SAC: Soft Actor Critic (Haarnoja et al., 2018)

Before you can use TF-Agents, first install the nightly build version of TF-
Agents with this command (pip or pip3):

the --upgrade flag ensures you'll get the latest
version

pip install --user --upgrade tf-nightly
pip install --user --upgrade tf-agents-nightly #

requires tf-nightly

There are end-to-end examples training agents under each agent directory,
an example of which is here for DQN:

tf_agents/agents/dqn/examples/v1/train_eval_gym.py

Keep in mind that TF-Agents is in prerelease status and therefore under
active development, which means that interfaces may change at any time.

What Is Deep Reinforcement Learning (DRL)?

Deep Reinforcement Learning is a surprisingly effective combination of
deep learning and RL that has shown remarkable results in a variety of
tasks. For example, DRL has won game competitions such as Go (Alpha Go

NLP and Reinforcement Learning • 185

versus world champion Lee Sedol) and even prevailed in the complexity of
StarCraft (AlphaStar of DeepMind) and Dota.

With the release of ELMo and BERT in 2018 (discussed earlier in this
chapter), DRL made significant advances in NLP with these toolkits, sur-
passing previous benchmarks in NLP.

Google released the Dopamine toolkit for DRL, which is downloadable
here from GitHub: https://github.com/google/dopamine.

The keras-rl toolkit supports state-of-the-art Deep RL algorithms in
Keras, which are also designed for compatibility with OpenAI (discussed
earlier in this Appendix). This toolkit includes the following:

•	 Deep Q Learning (DQN)

•	 Double DQN

•	 Deep Deterministic Policy Gradient (DDPG)

•	 Continuous DQN (CDQN or NAF)

•	 Cross-Entropy Method (CEM)

•	 Dueling network DQN (Dueling DQN)

•	 Deep SARSA

•	 Asynchronous Advantage Actor-Critic (A3C)

•	 Proximal Policy Optimization Algorithms (PPO)

Please keep in mind that the details of the algorithms in the preceding list
require a decent understanding of Reinforcement Learning. The keras-rl
toolkit is downloadable here from GitHub: https://github.com/keras-rl/
keras-rl

Summary

This chapter introduced you to NLP, along with some code samples in
Keras, as well as NLU (Natural Language Understanding) and NLG (Nat-
ural Language Generation). In addition, you learned about some basic con-
cepts in NLP, such as n-grams, BoW, tf-idf, and word embeddings.

Then you got an introduction to Reinforcement Learning, along with
a description of the types of tasks that are well-suited to RL. You learned

186 • Artificial Intelligence, Machine Learning, Deep Learning

about the nchain task and the epsilon-greedy algorithm that can solve
problems that you cannot solve using a pure greedy algorithm. You also
learned about the Bellman equation, which is a cornerstone of reinforce-
ment learning.

Next, you were exposed to the TF-Agents toolkit from Google, deep
reinforcement learning (deep learning combined with reinforcement learn-
ing), and the Google Dopamine toolkit.

Congratulations! You have reached the end of this book, which has cov-
ered many machine learning concepts. You also learned about Keras, as
well as linear regression, logistic regression, and deep learning. You are
now in a good position to delve further into machine learning algorithms or
proceed with deep learning, and good luck in your journey!

A P P E N D I X A
INTRODUCTION TO KERAS

This appendix introduces you to Keras, along with code samples that illus-
trate how to define basic neural networks as well as and deep neural net-
works with various datasets with as MNIST and Cifar10.

The first part of this appendix briefly discusses some of the important
namespaces (such as tf.keras.layers) and their contents, as well as a
simple Keras-based model.

The second section contains an example of performing linear regres-
sion with Keras and a simple CSV file. You will also see a Keras-based
MLP neural network that is trained on the MNIST dataset.

The third section contains a simple example of training a neural network
with the cifar10 dataset. This code sample is similar to training a neural
network on the MNIST dataset, and requires a very small code change.

The final section contains two examples of Keras-based models that
perform early stopping, which is convenient when the model exhibits mini-
mal improvement (that is specified by you) during the training process.

What Is Keras?

If you are already comfortable with Keras, you can skim this section to
learn about the new namespaces and what they contain, and then pro-
ceed to the next section that contains details for creating a Keras-based
model.

188 • Artificial Intelligence, Machine Learning, Deep Learning

If you are new to Keras, you might be wondering why this section is
included in this appendix. First, Keras is well integrated into TF 2, and
it’s in the tf.keras namespace. Second, Keras is well suited for defin-
ing models to solve a myriad of tasks, such as linear regression and logis-
tic regression, as well as deep learning tasks involving CNNs, RNNs, and
LSTMs that are discussed in the Appendix.

The next several subsections contain lists of bullet items for various
Keras-related namespaces, and they will be very familiar if you have
worked with TF 1.x. If you are new to TF 2, you’ll see examples of some of
the classes in subsequent code samples.

Working with Keras Namespaces in TF 2
TF 2 provides the tf.keras namespace, which in turn contains the follow-
ing namespaces:

•	 tf.keras.layers

•	 tf.keras.models

•	 tf.keras.optimizers

•	 tf.keras.utils

•	 tf.keras.regularizers

The preceding namespaces contain various layers in Keras models, dif-
ferent types of Keras models, optimizers (Adam et al.), utility classes, and
regularizers (such as L1 and L2), respectively.

Currently there are three ways to create Keras-based models:

•	 The Sequential API

•	 The Functional API

•	 The Model API

The Keras-based code samples in this book use primarily the Sequen-
tial API (it’s the most intuitive and straightforward). The Sequential API
enables you to specify a list of layers, most of which are available in the
tf.keras.layers namespace (discussed later).

The Keras-based models that use the functional API involve specifying
layers that are passed as function-like elements in a pipeline-like fashion.
Although the functional API provides some additional flexibility, you will

Introduction to Keras  • 189

probably use the Sequential API to define Keras-based models if you are
a TF 2 beginner.

The model-based API provides the greatest flexibility, and it involves
defining a Python class that encapsulates the semantics of your Keras
model. This class is a subclass of the tf.model.Model class, and you
must implement the two methods __init__ and call in order to define a
Keras model in this subclass.

Perform an online search for more details regarding the Functional
API and the Model API.

Working with the tf.keras.layers Namespace
The most common (and also the simplest) Keras-based model is the
Sequential() class that is in the tf.keras.models namespace. This
model is comprised of various layers that belong to the tf.keras.layers
namespace, as shown here:

•	 tf.keras.layers.Conv2D()

•	 tf.keras.layers.MaxPooling2D()

•	 tf.keras.layers.Flatten()

•	 tf.keras.layers.Dense()

•	 tf.keras.layers.Dropout()

•	 tf.keras.layers.BatchNormalization()

•	 tf.keras.layers.embedding()

•	 tf.keras.layers.RNN()

•	 tf.keras.layers.LSTM()

•	 tf.keras.layers.Bidirectional (ex: BERT)

The Conv2D() and MaxPooling2D() classes are used in Keras-based
models for CNNs, which are discussed in Chapter 5. Generally speaking,
the next six classes in the preceding list can appear in models for CNNs as
well as models for machine learning. The RNN() class is for simple RNNS
and the LSTM class is for LSTM-based models. The Bidirectional()
class is a bidirectional LSTM that you will often see in models for solv-
ing NLP (Natural Language Processing) tasks. Two very important NLP

190 • Artificial Intelligence, Machine Learning, Deep Learning

frameworks that use bidirectional LSTMs were released as open source (on
GitHub) in 2018: ELMo from Facebook and BERT from Google.

Working with the tf.keras.activations Namespace
Machine learning and deep learning models require activation functions.
For Keras-based models, the activation functions are in the tf.keras.
activations namespace, some of which are listed here:

•	 tf.keras.activations.relu

•	 tf.keras.activations.selu

•	 tf.keras.activations.linear

•	 tf.keras.activations.elu

•	 tf.keras.activations.sigmoid

•	 tf.keras.activations.softmax

•	 tf.keras.activations.softplus

•	 tf.keras.activations.tanh

•	 Others …

The ReLU/SELU/ELU functions are closely related, and they often appear in
ANNs (Artificial Neural Networks) and CNNs. Before the relu() function
became popular, the sigmoid() and tanh() functions were used in ANNs
and CNNs. However, they are still important and they are used in various
gates in GRUs and LSTMs. The softmax() function is typically used in the
pair of layers consisting of the rightmost hidden layer and the output layer.

Working with the keras.tf.datasets Namespace
For your convenience, TF 2 provides a set of built-in datasets in the
tf.keras.datasets namespace, some of which are listed here:

•	 tf.keras.datasets.boston_housing

•	 tf.keras.datasets.cifar10

•	 tf.keras.datasets.cifar100

•	 tf.keras.datasets.fashion_mnist

•	 tf.keras.datasets.imdb

Introduction to Keras  • 191

•	 tf.keras.datasets.mnist

•	 tf.keras.datasets.reuters

The preceding datasets are popular for training models with small datasets.
The mnist dataset and fashion_mnist dataset are both popular when
training CNNs, whereas the boston_housing dataset is popular for linear
regression. The Titanic dataset is also popular for linear regression, but
it’s not currently supported as a default dataset in the tf.keras.datas-
ets namespace.

Working with the tf.keras.experimental Namespace
The contrib namespace in TF 1.x has been deprecated in TF 2, and its
successor is the tf.keras.experimental namespace, which contains
the following classes (among others):

•	 tf.keras.experimental.CosineDecay

•	 tf.keras.experimental.CosineDecayRestarts

•	 tf.keras.experimental.LinearCosineDecay

•	 tf.keras.experimental.NoisyLinearCosineDecay

•	 tf.keras.experimental.PeepholeLSTMCell

If you are a beginner, you probably won’t use any of the classes in the pre-
ceding list. Although the PeepholeLSTMCell class is a variation of the
LSTM class, there are limited use cases for this class.

Working with Other tf.keras Namespaces
TF 2 provides a number of other namespaces that contain useful classes,
some of which are listed here:

•	 tf.keras.callbacks	 (early stopping)

•	 tf.keras.optimizers	 (Adam et al)

•	 tf.keras.regularizers	 (L1 and L2)

•	 tf.keras.utils	     (to_categorical)

The tf.keras.callbacks namespace contains a class that you can use
for early stopping, which is to say that it’s possible to terminate the training
process if there is insufficient reduction in the cost function in two succes-
sive iterations.

192 • Artificial Intelligence, Machine Learning, Deep Learning

The tf.keras.optimizers namespace contains the various optimiz-
ers that are available for working in conjunction with cost functions, which
includes the popular Adam optimizer.

The tf.keras.regularizers namespace contains two popular reg-
ularizers: the L1 regularizer (also called LASSO in machine learning) and
the L2 regularizer (also called the Ridge regularizer in machine learning).
L1 is for MAE (Mean Absolute Error) and L2 is for MSE (Mean Squared
Error). Both regularizers act as “penalty” terms that are added to the cho-
sen cost function in order to reduce the influence of features in a machine
learning model. Note that LASSO can drive values to zero, with the result
that features are actually eliminated from a model, and hence is related to
something called feature selection in machine learning.

The tf.keras.utils namespace contains an assortment of functions,
including the to_categorical() function for converting a class vector
into a binary class.

Although there are other namespaces in TF 2, the classes listed in all
the preceding subsections will probably suffice for the majority of your
tasks if you are a beginner in TF 2 and machine learning.

TF 2 Keras versus “Standalone” Keras
The original Keras is actually a specification, with various backend frame-
works such as TensorFlow, Theano, and CNTK. Currently Keras stand-
alone does not support TF 2, whereas the implementation of Keras in
tf.keras has been optimized for performance.

Keras standalone will live in perpetuity in the keras.io package,
which is discussed in detail at the Keras website: keras.io.

Now that you have a high-level view of the TF 2 namespaces for Keras
and the classes that they contain, let’s find out how to create a Keras-based
model, which is the subject of the next section.

Creating a Keras-based Model

The following list of steps describe the high-level sequence involved in cre-
ating, training, and testing a Keras model:

•	 Step 1: Determine a model architecture (the number of hidden layers,
various activation functions, and so forth)

Introduction to Keras  • 193

•	 Step 2: Invoke the compile() method

•	 Step 3: Invoke the fit() method to train the model

•	 Step 4: Invoke the evaluate() method to evaluate the trained model

•	 Step 5: Invoke the predict() method to make predictions

Step 1 involves determining the values of a number of hyperparameters,
including:

•	 The number of hidden layers

•	 The number of neurons in each hidden layer

•	 The initial values of the weights of edges

•	 The cost function

•	 The optimizer

•	 The learning rate

•	 The dropout rate

•	 The activation function(s)

Steps 2 through 4 involve the training data, whereas step 5 involves the test
data, which are included in the following more detailed sequence of steps
for the preceding list:

•	 Specify a dataset (if necessary, convert data to numeric data)

•	 Split the dataset into training data and test data (usually 80/20 split)

•	 Define the Keras model (such as the tf.keras.models.
Sequential() API)

•	 Compile the Keras model (the compile() API)

•	 Train (fit) the Keras model (the fit() API)

•	 Make a prediction (the prediction() API)

Note that the preceding bullet items skip some steps that are part of a real
Keras model, such as evaluating the Keras model on the test data, as well
as dealing with issues such as overfitting.

The first bullet item states that you need a dataset, which can be as sim-
ple as a CSV file with 100 rows of data and just 3 columns (or even smaller).

194 • Artificial Intelligence, Machine Learning, Deep Learning

In general, a dataset is substantially larger: it can be a file with 1,000,000
rows of data and 10,000 columns in each row. We’ll look at a concrete data-
set in a subsequent section.

Next, a Keras model is in the tf.keras.models namespace, and the
simplest (and also very common) Keras model is tf.keras.models.
Sequential. In general, a Keras model contains layers that are in the
tf.keras.layers namespace, such as tf.keras.Dense (which means
that two adjacent layers are completely connected).

The activation functions that are referenced in Keras layers are in
the tf.nn namespace, such as the tf.nn.ReLU for the ReLU activation
function.

Here’s a code block of the Keras model that’s described in the preced-
ing paragraphs (which covers the first four bullet points):

import tensorflow as tf
model = tf.keras.models.Sequential([
 tf.keras.layers.Dense(512, activation=tf.

nn.relu),
])

We have three more bullet items to discuss, starting with the compilation
step. Keras provides a compile() API for this step, an example of which
is here:

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

Next we need to specify a training step, and Keras provides the fit() API
(as you can see, it’s not called train()), an example of which is here:

model.fit(x_train, y_train, epochs=5)

The final step is the prediction that is performed via the predict() API,
an example of which is here:

pred = model.predict(x)

Keep in mind that the evaluate() method is used for evaluating an
trained model, and the output of this method is accuracy or loss. On the
other hand, the predict() method makes predictions from the input
data.

Introduction to Keras  • 195

Listing A.1 displays the contents of tf2_basic_keras.py that
combines the code blocks in the preceding steps into a single code
sample.

Listing A.1: tf2_basic_keras.py

import tensorflow as tf

NOTE: we need the train data and test data

model = tf.keras.models.Sequential([
 tf.keras.layers.Dense(1, activation=tf.

nn.relu),
])

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Listing A.1 contains no new code, and we’ve essentially glossed over
some of the terms such as the optimizer (an algorithm that is used in con-
junction with a loss function), the loss (the type of loss function) and the
metrics (how to evaluate the efficacy of a model).

The explanations for these details cannot be condensed into a few para-
graphs (alas), but the good news is that you can find a plethora of detailed
online blog posts that discuss these terms.

Keras and Linear Regression

This section contains a simple example of creating a Keras-based model
in order to solve a task involving linear regression: given a positive number
representing kilograms of pasta, predict its corresponding price. Listing A.2
displays the contents of pasta.csv and Listing A.3 displays the contents of
keras_pasta.py that performs this task.

196 • Artificial Intelligence, Machine Learning, Deep Learning

Listing A.2: pasta.csv

weight,price
5,30
10,45
15,70
20,80
25,105
30,120
35,130
40,140
50,150

Listing A.3: keras_pasta.py

import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

price of pasta per kilogram
df = pd.read_csv("pasta.csv")

weight = df['weight']
price = df['price']

model = tf.keras.models.Sequential([
 tf.keras.layers.Dense(units=1,input_shape=[1])
])

MSE loss function and Adam optimizer
model.compile(loss='mean_squared_error',
 �optimizer=tf.keras.optimizers.Adam(0.1))

train the model
history = model.fit(weight, price, epochs=100,

verbose=False)

graph the # of epochs versus the loss
plt.xlabel('Number of Epochs')
plt.ylabel("Loss Values")

Introduction to Keras  • 197

Listing A.3 initializes the Pandas Dataframe df with the contents
of the CSV file pasta.csv, and then initializes the variables weight and
cost with the first and second columns, respectively, of df.

The next portion of Listing A.3 defines a Keras-based model that con-
sists of a single Dense layer. This model is compiled and trained, and then
a graph is displayed that shows the number of epochs on the horizontal
axis and the corresponding value of the loss function for the vertical axis.
Launch the code in Listing A.3 and you will see the following output:

Cost for 11kg: [[41.727108]]

Cost for 45kg: [[159.02121]]

Figure A.1 displays a graph of epochs versus loss during the training
process.

FIGURE A.1 A Graph of Epochs versus Loss.

plt.plot(history.history['loss'])
plt.show()

print("Cost for 11kg:",model.predict([11.0]))
print("Cost for 45kg:",model.predict([45.0]))

198 • Artificial Intelligence, Machine Learning, Deep Learning

Keras, MLPs, and MNIST

This section contains a simple example of creating a Keras-based MLP
neural network that will be trained with the MNIST dataset. Listing A.4
displays the contents of keras_mlp_mnist.py that performs this task.

Listing A.4: keras_mlp_mnist.py

import tensorflow as tf
import numpy as np

instantiate mnist and load data:
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

one-hot encoding for all labels to create 1x10
vectors that are compared with the final layer:
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)

image_size = x_train.shape[1]
input_size = image_size * image_size

resize and normalize the 28x28 images:
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test = np.reshape(x_test, [-1, input_size])
x_test = x_test.astype('float32') / 255

initialize some hyper-parameters:
batch_size = 128
hidden_units = 128
dropout_ratea = 0.20

define a Keras-based model:
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(hidden_units,

input_dim=input_size))
model.add(tf.keras.layers.Activation('relu'))

Introduction to Keras  • 199

Listing A.4 contains the usual import statements and then initializes
the variable mnist as a reference to the MNIST dataset. The next portion
of Listing A.4 contains some typical code that populates the training dataset
and the test dataset and converts the labels to numeric values via the tech-
nique known as one-hot encoding.

Next, several hyperparameters are initialized, and a Keras-based
model is defined that specifies three Dense layers and the relu activation
function. This model is compiled and trained, and the accuracy on the test
dataset is computed and then displayed. Launch the code in Listing A.4 and
you will see the following output:

Model: “sequential”

Layer (type)
Output Shape
Shape

Param #

dense (Dense) (None, 256) 200960
activation
(Activation)

(None, 256) 0

model.add(tf.keras.layers.Dropout(dropout_rate))
model.add(tf.keras.layers.Dense(hidden_units))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dense(10))
model.add(tf.keras.layers.Activation('softmax'))

model.summary()

model.compile(loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])

train the network on the training data:
model.fit(x_train, y_train, epochs=10, batch_

size=batch_size)

calculate and then display the accuracy:
loss, acc = model.evaluate(x_test, y_test, batch_

size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

200 • Artificial Intelligence, Machine Learning, Deep Learning

dropout (Dropout) (None, 256) 0
dense_1 (Dense) (None, 256) 65792
activation_1
(Activation)

(None, 256) 0

dropout_1 (Dropout) (None, 256) 0
dense_2 (Dense) (None, 10) 2570
activation_2
(Activation)

(None, 10) 0

Total params: 269,322
Trainable params: 269,322
Non-trainable params: 0

Train on 60000 samples
Epoch 1/10
60000/60000 [==============================] - 4s

74us/sample - loss: 0.4281 - accuracy: 0.8683
Epoch 2/10
60000/60000 [==============================] - 4s

66us/sample - loss: 0.1967 - accuracy: 0.9417
Epoch 3/10
60000/60000 [==============================] - 4s

63us/sample - loss: 0.1507 - accuracy: 0.9547
Epoch 4/10
60000/60000 [==============================] - 4s

63us/sample - loss: 0.1298 - accuracy: 0.9600
Epoch 5/10
60000/60000 [==============================] - 4s

60us/sample - loss: 0.1141 - accuracy: 0.9651
Epoch 6/10
60000/60000 [==============================] - 4s

66us/sample - loss: 0.1037 - accuracy: 0.9677
Epoch 7/10
60000/60000 [==============================] - 4s

61us/sample - loss: 0.0940 - accuracy: 0.9702
Epoch 8/10
60000/60000 [==============================] - 4s

61us/sample - loss: 0.0897 - accuracy: 0.9718

Introduction to Keras  • 201

Keras, CNNs, and cifar10

This section contains a simple example of training a neural network with
the cifar10 dataset. This code sample is similar to training a neural network
on the MNIST dataset and requires a very small code change.

Keep in mind that images in MNIST have dimensions 28x28, whereas
images in cifar10 have dimensions 32x32. Always ensure that images have
the same dimensions in a dataset, otherwise the results can be unpredictable.

Note: make sure that the images in your dataset have the same dimensions

Listing A.5 displays the contents of keras_cnn_cifar10.py that
trains a CNN with the cifar10 dataset.

Listing A.5: keras_cnn_cifar10.py

Epoch 9/10
60000/60000 [==============================] - 4s

62us/sample - loss: 0.0830 - accuracy: 0.9747
Epoch 10/10
60000/60000 [==============================] - 4s

64us/sample - loss: 0.0805 - accuracy: 0.9748
10000/10000 [==============================] - 0s

39us/sample - loss: 0.0654 - accuracy: 0.9797

Test accuracy: 98.0%

import tensorflow as tf

batch_size = 32
num_classes = 10
epochs = 100
num_predictions = 20

cifar10 = tf.keras.datasets.cifar10

The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.

load_data()

(Continued)

202 • Artificial Intelligence, Machine Learning, Deep Learning

print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

Convert class vectors to binary class matrices
y_train = tf.keras.utils.to_categorical(y_train,

num_classes)
y_test = tf.keras.utils.to_categorical(y_test,

num_classes)

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32, (3, 3),

padding='same',
 input_shape=x_train.shape[1:]))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Conv2D(32, (3, 3)))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_

size=(2, 2)))
model.add(tf.keras.layers.Dropout(0.25))

you can also duplicate the preceding code block here

model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(512))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(num_classes))
model.add(tf.keras.layers.Activation('softmax'))

use RMSprop optimizer to train the model
model.compile(loss='categorical_crossentropy',
 optimizer=opt,
 metrics=['accuracy'])

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255

Introduction to Keras  • 203

Listing A.5 contains the usual import statement and then initializes
the variable cifar10 as a reference to the cifar10 dataset. The next sec-
tion of code is similar to the contents of Listing A.4: the main difference is
that this Keras-based model defines a CNN instead of an MLP. Hence, the
first layer is a convolutional layer, as shown here:

model.add(tf.keras.layers.Conv2D(32, (3, 3),
padding='same',

 input_shape=x_train.shape[1:]))

Note that a vanilla CNN involves a convolutional layer (which is the
purpose of the preceding code snippet), followed by the ReLU activation
function, and a max pooling layer, both of which are displayed in Listing
A.5. In addition, the final layer of the Keras model is the softmax activa-
tion function, which converts the 10 numeric values in the fully connected
layer to a set of 10 non-negative numbers between 0 and 1, whose sum
equals 1 (this gives us a probability distribution).

This model is compiled and trained, and then evaluated on the test
dataset. The last portion of Listing A.5 displays the value of the test-related
loss and accuracy, both of which are calculated during the preceding evalu-
ation step. Launch the code in Listing A.5 and you will see the following
output (note that the code was stopped after partially completing the sec-
ond epoch):

x_train shape: (50000, 32, 32, 3)
50000 train samples
10000 test samples

x_test /= 255

model.fit(x_train, y_train,
 batch_size=batch_size,
 epochs=epochs,
 validation_data=(x_test, y_test),
 shuffle=True)

evaluate and display results from test data
scores = model.evaluate(x_test, y_test,

verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])

204 • Artificial Intelligence, Machine Learning, Deep Learning

Epoch 1/100
50000/50000 [==============================] -

285s 6ms/sample - loss: 1.7187 - accuracy:
0.3802 - val_loss: 1.4294 - val_accuracy:
0.4926

Epoch 2/100
 1888/50000 [>.............................] -

ETA: 4:39 - loss: 1.4722 - accuracy: 0.4635

Resizing Images in Keras

Listing A.6 displays the contents of keras_resize_image.py that illus-
trates how to resize an image in Keras.

Listing A.6: keras_resize_image.py

import tensorflow as tf
import numpy as np
import imageio
import matplotlib.pyplot as plt

use any image that has 3 channels
inp = tf.keras.layers.Input(shape=(None, None, 3))
out = tf.keras.layers.Lambda(lambda image:

tf.image.resize(image, (128, 128)))(inp)

model = tf.keras.Model(inputs=inp, outputs=out)
model.summary()

read the contents of a PNG or JPG
X = imageio.imread('sample3.png')

out = model.predict(X[np.newaxis, ...])

fig, axes = plt.subplots(nrows=1, ncols=2)
axes[0].imshow(X)
axes[1].imshow(np.int8(out[0,...]))

plt.show()

Introduction to Keras  • 205

Listing A.6 contains the usual import statements and then initial-
izes the variable inp so that it can accommodate a color image, followed
by the variable out that is the result of resizing inp so that it has dimen-
sions 28x23. Next, inp and out are specified as the values of inputs
and outputs, respectively, for the Keras model, as shown in this code
snippet:

model = tf.keras.Model(inputs=inp, outputs=out)

Next, the variable X is initialized as a reference to the result of reading
the contents of the image sample3.png. The remainder of Listing A.6
involves displaying two images: the original image and the resized image.
Launch the code in Listing A.6 and you will see a graph of an image and its
resized image as shown in Figure A.2.

FIGURE A.2 A Graph of an Image and its Resized Image.

Keras and Early Stopping (1)

After specifying the training set and the test set from a dataset, you also
decide on the number of training epochs. A value that’s too large can lead to
overfitting, whereas a value that’s too small can lead to underfitting. More-
over, model improvement can diminish and subsequent training iterations
become redundant.

206 • Artificial Intelligence, Machine Learning, Deep Learning

Early stopping is a technique that allows you to specify a large
value for the number of epochs, and yet the training will stop
if the model performance improvement drops below a threshold
value.

There are several ways that you can specify early stopping, and they
involve the concept of a callback function. Listing A.7 displays the contents
of tf2_keras_callback.py that performs early stopping via a callback
mechanism.

Listing A.7: tf2_keras_callback.py

import tensorflow as tf
import numpy as np

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation

	 ='relu'))
model.add(tf.keras.layers.Dense(64, activation

	 ='relu'))
model.add(tf.keras.layers.Dense(10, activation

	 ='softmax'))

model.compile(optimizer=tf.keras.optimizers.
Adam(0.01),

 loss='mse',		 # mean squared error
 metrics=['mae'])	 # mean absolute error

data = np.random.random((1000, 32))
labels = np.random.random((1000, 10))

val_data = np.random.random((100, 32))
val_labels = np.random.random((100, 10))

callbacks = [
 # stop training if "val_loss" stops improving

for over 2 epochs
 tf.keras.callbacks.EarlyStopping(patience=2,

monitor='val_loss'),
 # write TensorBoard logs to the ./logs directory

Introduction to Keras  • 207

Listing A.7 defines a Keras-based model with three hidden layers
and then compiles the model. The next portion of Listing A.7 uses the
np.random.random function in order to initialize the variables data,
labels, val_data, and val_labels.

The interesting code involves the definition of the callbacks
variable that specifies tf.keras.callbacks.EarlyStopping class
with a value of 2 for patience, which means that the model will stop
training if there is an insufficient reduction in the value of val_loss.
The callbacks variable includes the tf.keras.callbacks.
TensorBoard class to specify the logs subdirectory as the location for
the TensorBoard files.

Next, the model.fit() method is invoked with a value of 50
for epochs (shown in bold), followed by the model.evaluate()
method. Launch the code in Listing A.7 and you will see the following
output:

 tf.keras.callbacks.TensorBoard(log_dir='./logs')
]

model.fit(data, labels, batch_size=32, epochs=50,
callbacks=callbacks,

 validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)

Epoch 1/50
1000/1000 [==============================] - 0s

354us/sample - loss: 0.2452 - mae: 0.4127 - val_
loss: 0.2517 - val_mae: 0.4205

Epoch 2/50
1000/1000 [==============================] - 0s

63us/sample - loss: 0.2447 - mae: 0.4125 - val_
loss: 0.2515 - val_mae: 0.4204

Epoch 3/50
1000/1000 [==============================] - 0s

63us/sample - loss: 0.2445 - mae: 0.4124 - val_
loss: 0.2520 - val_mae: 0.4209

208 • Artificial Intelligence, Machine Learning, Deep Learning

Notice that the code stopped training after four epochs, even though 50
epochs are specified in the code.

Keras and Early Stopping (2)

The previous section contains a code sample with minimalistic functionality
with respect to the use of callback functions in Keras. However, you can
also define a custom class that provides finer-grained functionality that uses
a callback mechanism.

Listing A.8 displays the contents of tf2_keras_callback2.py that
performs early stopping via a callback mechanism (the new code is shown
in bold).

Listing A.8: tf2_keras_callback2.py

import tensorflow as tf
import numpy as np

model = tf.keras.Sequential()
model.add(�tf.keras.layers.Dense(64, activation

='relu'))
model.add(�tf.keras.layers.Dense(64, activation

='relu'))
model.add(�tf.keras.layers.Dense(10, activation

='softmax'))

model.compile(optimizer=tf.keras.optimizers.
Adam(0.01),

Epoch 4/50
1000/1000 [==============================] - 0s

68us/sample - loss: 0.2444 - mae: 0.4123 - val_
loss: 0.2519 - val_mae: 0.4205

1000/1000 [==============================] - 0s
37us/sample - loss: 0.2437 - mae: 0.4119

(1000, 10)

Introduction to Keras  • 209

 loss='mse',		 # mean squared error
 metrics=['mae'])	 # mean absolute error

data = np.random.random((1000, 32))
labels = np.random.random((1000, 10))

val_data = np.random.random((100, 32))
val_labels = np.random.random((100, 10))

class MyCallback(tf.keras.callbacks.Callback):
 def on_train_begin(self, logs={}):
 print(“on_train_begin”)

 def on_train_end(self, logs={}):
 print(“on_train_begin”)
 return

 def on_epoch_begin(self, epoch, logs={}):
 print(“on_train_begin”)
 return

 def on_epoch_end(self, epoch, logs={}):
 print(“on_epoch_end”)
 return

 def on_batch_begin(self, batch, logs={}):
 print(“on_batch_begin”)
 return

 def on_batch_end(self, batch, logs={}):
 print(“on_batch_end”)
 return

callbacks = [MyCallback()]

model.fit(�data, labels, batch_size=32, epochs=50,
callbacks=callbacks,

 validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)

210 • Artificial Intelligence, Machine Learning, Deep Learning

The new code in Listing A.8 differs from Listing A.7 is limited to the
code block that is displayed in bold. This new code defines a custom Python
class with several methods, each of which is invoked during the appropri-
ate point during the Keras lifecycle execution. The six methods consist of
three pairs of methods for the start event and end event associated with
training, epochs, and batches, as listed here:

•	 def on_train_begin()

•	 def on_train_end()

•	 def on_epoch_begin()

•	 def on_epoch_end()

•	 def on_batch_begin()

•	 def on_batch_end()
The preceding methods contain just a print() statement in Listing A.8,
and you can insert any code you wish in any of these methods. Launch the
code in Listing A.8 and you will see the following output:

on_train_begin
on_train_begin
Epoch 1/50
on_batch_begin
on_batch_end
 32/1000 [..............................] - ETA:

4s - loss: 0.2489 - mae: 0.4170on_batch_begin
on_batch_end
on_batch_begin on_batch_end
// details omitted for brevity
on_batch_begin
on_batch_end
on_batch_begin
on_batch_end
992/1000 [============================>.] - ETA: 0s

- loss: 0.2468 - mae: 0.4138on_batch_begin
on_batch_end
on_epoch_end
1000/1000 [==============================] - 0s

335us/sample - loss: 0.2466 - mae: 0.4136 - val_
loss: 0.2445 - val_mae: 0.4126

Introduction to Keras  • 211

on_train_begin
Epoch 2/50
on_batch_begin
on_batch_end
 32/1000 [..............................] - ETA: 0s

- loss: 0.2465 - mae: 0.4133on_batch_begin
on_batch_end
on_batch_begin
on_batch_end
// details omitted for brevity
on_batch_end
on_epoch_end
1000/1000 [==============================] - 0s

51us/sample - loss: 0.2328 - mae: 0.4084 - val_
loss: 0.2579 - val_mae: 0.4241

on_train_begin
 32/1000 [..............................] - ETA: 0s

- loss: 0.2295 - mae: 0.4030
1000/1000 [==============================] - 0s

22us/sample - loss: 0.2313 - mae: 0.4077
(1000, 10)

Keras and Metrics

Many Keras-based models only specify accuracy as the metric for evaluat-
ing a trained model, as shown here:

model.compile(optimizer='adam',
   loss='sparse_categorical_crossentropy',
   metrics=[‘accuracy’])

However, there are many other built-in metrics available, each of which
is encapsulated in a Keras class in the tf.keras.metrics namespace.
A list of many such metrics are displayed in the following list:

•	 class Accuracy: how often predictions matches labels

•	 class BinaryAccuracy: how often predictions matches labels

•	 class CategoricalAccuracy: how often predictions matches labels

212 • Artificial Intelligence, Machine Learning, Deep Learning

•	 class FalseNegatives: the number of false negatives

•	 class FalsePositives: the number of false positives

•	 class Mean: the (weighted) mean of the given values

•	 class Precision: the precision of the predictions wrt the labels

•	 class Recall: the recall of the predictions wrt the labels

•	 class TrueNegatives: the number of true negatives

•	 class TruePositives: the number of true positives
Earlier in this chapter you learned about the confusion matrix that
provides numeric values for TP, TN, FP, and FN; each of these val-
ues has a corresponding Keras class TruePositive, TrueNega-
tive, FalsePositive, and FalseNegative, respectively. Perform
an online search for code samples that use the metrics in the preceding
list.

Saving and Restoring Keras Models

Listing A.9 displays the contents of tf2_keras_save_model.py that cre-
ates, trains, and saves a Keras-based model, then creates a new model that
is populated with the data from the saved model.

Listing A.8: tf2_keras_save_model.py

import tensorflow as tf
import os

def create_model():
 model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(512, activation=tf.

nn.relu),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation=tf.

nn.softmax)
])

 model.compile(optimizer=tf.keras.optimizers.
Adam(),

Introduction to Keras  • 213

 loss=tf.keras.losses.sparse_
categorical_crossentropy,

 metrics=['accuracy'])

 return model

Create a basic model instance
model = create_model()
model.summary()

checkpoint_path = "checkpoint/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)

Create checkpoint callback
cp_callback = tf.keras.callbacks.

ModelCheckpoint(checkpoint_path,
save_weights_only=True, verbose=1)

=> model #1: create the first model
model = create_model()

mnist = tf.keras.datasets.mnist
(X_train, y_train),(X_test, y_test) = mnist.load_

data()

X_train, X_test = X_train / 255.0, X_test / 255.0
print("X_train.shape:",X_train.shape)

model.fit(X_train, y_train, epochs = 2,
 validation_data = (X_test,y_test),
 callbacks = [cp_callback]) # pass

callback to training
=> model #2: create a new model and load saved

model
model = create_model()
loss, acc = model.evaluate(X_test, y_test)
print("Untrained model, accuracy: {:5.2f}%".

format(100*acc))

model.load_weights(checkpoint_path)
loss,acc = model.evaluate(X_test, y_test)
print("Restored model, accuracy: {:5.2f}%".

format(100*acc))

214 • Artificial Intelligence, Machine Learning, Deep Learning

Listing A.8 starts with the create_model() Python function that creates
and compiles a Keras-based model. The next portion of Listing A.8 defines
the location of the file that will be saved as well as the checkpoint callback,
as shown here:

checkpoint_path = "checkpoint/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)

Create checkpoint callback
cp_callback = tf.keras.callbacks.

ModelCheckpoint(checkpoint_path,
save_weights_only=True, verbose=1)

The next portion of Listing A.8 trains the current model using the MNIST
dataset, and also specifies cp_callback so that the model can be saved.

The final code block in Listing A.8 creates a new Keras-based model
by invoking the Python method create_model() again, evaluating this
new model on the test-related data, and displaying the value of the accu-
racy. Next, the model is loaded with the saved model weights via the load_
weights() API. The relevant code block is reproduced here:

model = create_model()
loss, acc = model.evaluate(X_test, y_test)
print("Untrained model, accuracy: {:5.2f}%".

format(100*acc))

model.load_weights(checkpoint_path)
loss,acc = model.evaluate(X_test, y_test)
print("Restored model, accuracy: {:5.2f}%".

format(100*acc))

Now launch the code in Listing A.8 and you will see the following output:

on_train_begin
Model: “sequential”

Layer (type) Output Shape Param #
flatten (Flatten) (None, 784) 0
dense (Dense) (None, 512) 401920
dropout (Dropout) (None, 512) 0
dense_1 (Dense) (None, 10) 5130

Introduction to Keras  • 215

Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0

Train on 60000 samples, validate on 10000 samples
Epoch 1/2
59840/60000 [============================>.] - ETA:

0s - loss: 0.2173 - accuracy: 0.9351
Epoch 00001: saving model to checkpoint/cp.ckpt
60000/60000 [==============================] - 10s

168us/sample - loss: 0.2170 - accuracy: 0.9352 -
val_loss: 0.0980 - val_accuracy: 0.9696

Epoch 2/2
59936/60000 [============================>.] - ETA:

0s - loss: 0.0960 - accuracy: 0.9707
Epoch 00002: saving model to checkpoint/cp.ckpt
60000/60000 [==============================] - 10s

174us/sample - loss: 0.0959 - accuracy: 0.9707 -
val_loss: 0.0735 - val_accuracy: 0.9761

10000/10000 [==============================] - 1s
86us/sample - loss: 2.3986 - accuracy: 0.0777

Untrained model, accuracy: 7.77%
10000/10000 [==============================] - 1s

67us/sample - loss: 0.0735 - accuracy: 0.9761
Restored model, accuracy: 97.61%

The directory where you launched this code sample contains a new
subdirectory called checkpoint whose contents are shown here:

-rw-r--r-- 1 owner staff 1222 Aug 17 14:34
cp.ckpt.index

-rw-r--r-- 1 owner staff 4886716 Aug 17 14:34
cp.ckpt.data-00000-of-00001

-rw-r--r-- 1 owner staff 71 Aug 17 14:34
checkpoint

216 • Artificial Intelligence, Machine Learning, Deep Learning

Summary

This appendix introduced you to some of the features of Keras and an
assortment of Keras-based code samples involving basic neural networks
with the MNIST and Cifar10 datasets. You learned about some of the
important namespaces (such as tf.keras.layers) and their contents.

Next, you saw an example of performing linear regression with Keras
and a simple CSV file. Then you learned how to create a Keras-based MLP
neural network that is trained on the MNIST dataset.

In addition, you saw examples of Keras-based models that perform
early stopping, which is convenient when the model exhibits minimal
improvement (that is specified by you) during the training process.

A P P E N D I X B
INTRODUCTION TO TF 2

Welcome to TensorFlow 2! This appendix introduces you to various features
of TensorFlow 2 (abbreviated as TF 2), as well as some of the TF 2 tools and
projects that are covered under the TF 2 umbrella. You will see TF 2 code
samples that illustrate new TF 2 features (such as tf.GradientTape and
the @tf.function decorator), plus an assortment of code samples that
illustrate how to write code the TF 2 way.

Despite the simplicity of many topics in this appendix, they provide you
with a foundation for TF 2. This appendix prepares you for complex code,
which delves into frequently used TF 2 APIs that you will encounter in
other chapters of this book.

Keep in mind that the TensorFlow 1.x releases are considered legacy
code after the production release of TF 2. Google will provide only secu-
rity-related updates for TF 1.x (i.e., no new code development), and sup-
port TensorFlow 1.x for at least another year beyond the initial production
release of TF 2. For your convenience, TensorFlow provides a conversion
script to facilitate the automatic conversion of TensorFlow 1.x code to TF 2
code in many cases (details provided later in this chapter).

As you saw in the preface, this appendix contains several sections
regarding TF 1.x, all of which are placed near the end of this chapter. If you
do not have TF 1.x code, obviously these sections are optional (and they are
labeled as such).

218 • Artificial Intelligence, Machine Learning, Deep Learning

The first part of this appendix briefly discusses some TF 2 features and
some of the tools that are included under the TF 2 umbrella. The second
section of this appendix shows you how to write TF 2 code involving TF
constants and TF variables.

The third section digresses a bit: you will learn about the new TF 2
Python function decorator @tf.function that is used in many code
samples in this chapter. Although this decorator is not always required, it’s
important to become comfortable with this feature, and there are some
nonintuitive caveats regarding its use that are discussed in this section.

The fourth section of this appendix shows you how to perform typical
arithmetic operations in TF 2, how to use some of the built-in TF 2 functions,
and how to calculate trigonometric values. If you need to perform scientific
calculations, see the code samples that pertain to the type of precision that
you can achieve with floating point numbers in TF 2. This section also shows
you how to use for loops and how to calculate exponential values.

The fifth section contains TF 2 code samples involving arrays, such as
creating an identity matrix, a constant matrix, a random uniform matrix,
and a truncated normal matrix, along with an explanation about the differ-
ence between a truncated matrix and a random matrix. This section also
shows you how to multiply second-order tensors in TF 2 and how to convert
Python arrays to second-order tensors in TF 2. The sixth section contains
code samples that illustrate how to use some of the new features of TF 2,
such as tf.GradientTape.

Although the TF 2 code samples in this book use Python 3.x, it’s pos-
sible to modify the code samples in order to run under Python 2.7. Also
make note of the following convention in this book (and only this book): TF
1.x files have a “tf_” prefix and TF 2 files have a “tf2_” prefix.

With all that in mind, the next section discusses a few details of TF 2,
its architecture, and some of its features.

What Is TF 2?

TF 2 is an open source framework from Google that is the newest version
of TensorFlow. The TF 2 framework is a modern framework that’s well
suited for machine learning and deep learning, and it’s available through an
Apache license. Interestingly, TensorFlow surprised many people, perhaps
even members of the TF team, in terms of the creativity and plethora of

Introduction to TF 2  • 219

use cases for TF in areas such as art, music, and medicine. For a variety of
reasons, the TensorFlow team created TF 2 with the goal of consolidating
the TF APIs, eliminating duplication of APIs, enabling rapid prototyping,
and making debugging an easier experience.

There is good news if you are a fan of Keras: improvements in TF 2 are
partially due to the adoption of Keras as part of the core functionality of
TF 2. In fact, TF 2 extends and optimizes Keras so that it can take advan-
tage of all the advanced features in TF 2.

If you work primarily with deep learning models (CNNs, RNNs,
LSTMs, and so forth), you’ll probably use some of the classes in the
tf.keras namespace, which is the implementation of Keras in TF 2.
Moreover, tf.keras.layers provides several standard layers for neural
networks. As you’ll see later, there are several ways to define Keras-based
models, via the tf.keras.Sequential class, a functional style definition,
and via a subclassing technique. Alternatively, you can still use lower-level
operations and automatic differentiation if you wish to do so.

Furthermore, TF 2 removes duplicate functionality, provides a more
intuitive syntax across APIs, as well as compatibility throughout the TF 2
ecosystem. TF 2 even provides a backward compatibility module called
tf.compat.v1 (which does not include tf.contrib), and a conversion
script tf_upgrade_v2 to help users migrate from TF 1.x to TF 2.

Another significant change in TF 2 is eager execution as the default mode
(not deferred execution), with new features such as the @tf.function
decorator and TF 2 privacy-related features. Here is a condensed list of
some TF 2 features and related technologies:

•	 Support for tf.keras: a specification for high-level code for ML
and DL

•	 Tensorflow.js v1.0: TF in modern browsers

•	 TensorFlow Federated: an open source framework for ML and
decentralized data

•	 Ragged Tensors: nested variable-length (“uneven”) lists

•	 TensorFlow Probability: probabilistic models combined with deep
learning

•	 Tensor2Tensor: a library of DL models and datasets

220 • Artificial Intelligence, Machine Learning, Deep Learning

TF 2 also supports a variety of programming languages and hardware
platforms, including:

•	 Support for Python, Java, C++

•	 Desktop, server, mobile device (TF Lite)

•	 CPU/GPU/TPU support

•	 Linux and Mac OS X support

•	 VM for Windows

Navigate to the TF 2 home page, where you will find links to many resources
for TF 2: https://www.tensorflow.org

TF 2 Use Cases
TF 2 is designed to solve tasks that arise in a plethora of use cases, some of
which are listed here:

•	 Image recognition

•	 Computer vision

•	 Voice/sound recognition

•	 Time series analysis

•	 Language detection

•	 Language translation

•	 Text-based processing

•	 Handwriting recognition

The preceding list of use cases can be solved in TF 1.x as well as TF 2, and
in the latter case, the code tends to be simpler and cleaner compared to
their TF 1.x counterpart.

TF 2 Architecture: The Short Version
TF 2 is written in C++ and supports operations involving primitive val-

ues and tensors (discussed later). The default execution mode for TF 1.x
is deferred execution whereas TF 2 uses eager execution (think immediate
mode). Although TF 1.4 introduced eager execution, the vast majority of
TF 1.x code samples that you will find online use deferred execution.

Introduction to TF 2  • 221

TF 2 supports arithmetic operations on tensors (i.e., multidimensional
arrays with enhancements) as well as conditional logic, “for” loops, and
“while” loops. Although it’s possible to switch between eager execution
mode and deferred mode in TF 2, all the code samples in this book use
eager execution mode.

Data visualization is handled via TensorBoard (discussed in Chapter 2)
that is included as part of TF 2. As you will see in the code samples in this
book, TF 2 APIs are available in Python and can therefore be embedded in
Python scripts.

So, enough already with the high-level introduction: let’s learn how to
install TF 2, which is the topic of the next section.

TF 2 Installation
Install TensorFlow by issuing the following command from the command
line:

pip install tensorflow==2.0.0-beta1

When a production release of TF 2 is available, you can issue the following
command from the command line (which will be the most current version
of TF 2):

pip install --upgrade tensorflow

If you want to install a specific version (let’s say version 1.13.1) of Ten-
sorFlow, type the following command:

pip install --upgrade tensorflow==1.13.1

You can also downgrade the installed version of TensorFlow. For example,
if you have installed version 1.13.1 and you want to install version 1.10,
specify the value 1.10 in the preceding code snippet. TensorFlow will
uninstall your current version and install the version that you specified
(i.e., 1.10).

As a sanity check, create a Python script with the following three lines
of code to determine the version number of TF that is installed on your
machine:

import tensorflow as tf

print("TF Version:",tf.__version__)

print("eager execution:",tf.executing_eagerly())

222 • Artificial Intelligence, Machine Learning, Deep Learning

Launch the preceding code and you ought to see something similar to the
following output:

TF version: 2.0.0-beta1
eager execution: True

As a simple example of TF 2 code, place this code snippet in a text file:

import tensorflow as tf
print("1 + 2 + 3 + 4 =", tf.reduce_sum([1, 2, 3, 4]))
Launch the preceding code from the command line and you should see

the following output:

1 + 2 + 3 + 4 = tf.Tensor(10, shape=(), dtype=int32)

TF 2 and the Python REPL
In case you aren’t already familiar with the Python REPL (read-eval-print-
loop), it’s accessible by opening a command shell and then typing the
following command:

python
As a simple illustration, access TF 2-related functionality in the REPL by
importing the TF 2 library as follows:

>>> import tensorflow as tf
Now check the version of TF 2 that is installed on your machine with this
command:

>>> print('TF version:',tf.__version__)

The output of the preceding code snippet is shown here (the number that
you see depends on which version of TF 2 that you installed):

TF version: 2.0.0-beta1

Although the REPL is useful for short code blocks, the TF 2 code sam-
ples in this book are Python scripts that you can launch with the Python
executable.

Other TF 2-based Toolkits

In addition to providing support for TF 2-based code on multiple devices,
TF 2 provides the following toolkits:

•	 TensorBoard for visualization (included as part of TensorFlow)

•	 TensorFlow Serving (hosting on a server)

Introduction to TF 2  • 223

•	 TensorFlow Hub

•	 TensorFlow Lite (for mobile applications)

•	 Tensorflow.js (for Web pages and NodeJS)

TensorBoard is a graph visualization tool that runs in a browser. Launch
TensorBoard from the command line as follows: open a command shell and
type the following command to access a saved TF graph in the subdirectory
/tmp/abc (or a directory of your choice):

tensorboard –logdir /tmp/abc

Note that there are two consecutive dashes (“-”) that precede the logdir
parameter in the preceding command. Now launch a browser session and
navigate to this URL: localhost:6006

After a few moments you will see a visualization of the TF 2 graph
that was created in your code and then saved in the directory /tmp/
abc.

TensorFlow Serving is a cloud-based flexible, high-performance serving
system for ML models that is designed for production environments. Ten-
sorFlow Serving makes it easy to deploy new algorithms and experiments,
while keeping the same server architecture and APIs. More information is
here: https://www.TF 2.org/serving/

TensorFlow Lite was specifically created for mobile development
(both Android and iOS). Please keep in mind that TensorFlow Lite
supersedes TF 2 Mobile, which was an earlier SDK for developing
mobile applications. TensorFlow Lite (which also exists for TF 1.x) sup-
ports on-device ML inference with low latency and a small binary size.
Moreover, TensorFlow Lite supports hardware acceleration with the
Android Neural Networks API. More information about TensorFlow
Lite is here:

https://www.tensorflow.org/lite/

A more recent addition is tensorflow.js that provides JavaScript
APIs to access TensorFlow in a Web page. The tensorflow.js toolkit
was previously called deeplearning.js. You can also use tensorflow.
js with NodeJS. More information about tensorflow.js is here: https://
js.tensorflow.org.

224 • Artificial Intelligence, Machine Learning, Deep Learning

TF 2 Eager Execution

TF 2 eager execution mode makes TF 2 code much easier to write com-
pared to TF 1.x code (which used deferred execution mode). You might
be surprised to discover that TF introduced eager execution as an alter-
native to deferred execution in version 1.4.1, but this feature was vastly
underutilized. With TF 1.x code, TensorFlow creates a dataflow graph that
consists of 1) a set of tf.Operation objects that represent units of compu-
tation, and 2) tf.Tensor objects that represent the units of data that flow
between operations.

On the other hand, TF 2 evaluates operations immediately without
instantiating a Session object or a creating a graph. Operations return con-
crete values instead of creating a computational graph. TF 2 eager execu-
tion is based on Python control flow instead of graph control flow. Arith-
metic operations are simpler and intuitive, as you will see in code samples
later in this chapter. Moreover, TF 2 eager execution mode simplifies the
debugging process. However, keep in mind that there isn’t a 1:1 relation-
ship between a graph and eager execution.

TF 2 Tensors, Data Types, and Primitive Types

In simplified terms, a TF 2 tensor is an n-dimensional array that is similar
to a NumPy ndarray. A TF 2 tensor is defined by its dimensionality, as
illustrated here:

scalar number:		 a zeroth-order tensor
vector:			 a first-order tensor
matrix:			 a second-order tensor
3-dimensional array:	 a 3rd order tensor

The next section discusses some of the data types that are available in TF 2,
followed by a section that discusses TF 2 primitive types.

TF 2 Data Types
TF 2 supports the following data types (similar to the supported data types
in TensorFlow 1.x):

•	 tf.float32

•	 tf.float64

Introduction to TF 2  • 225

•	 tf.int8

•	 tf.int16

•	 tf.int32

•	 tf.int64

•	 tf.uint8

•	 tf.string

•	 tf.bool

The data types in the preceding list are self-explanatory: two floating point
types, four integer types, one unsigned integer type, one string type, and
one Boolean type. As you can see, there is a 32-bit and a 64-bit floating
point type, and integer types that range from 8-bit through 64-bit.

TF 2 Primitive Types
TF 2 supports tf.constant() and tf.Variable() as primitive types.
Notice the capital V in tf.Variable(): this indicates a TF 2 class (which
is not the case for lowercase initial letter such as tf.constant()).

A TF 2 constant is an immutable value, and a simple example is shown
here:

aconst = tf.constant(3.0)

A TF 2 variable is a trainable value in a TF 2 graph. For example, the slope m
and y-intercept b of a best-fitting line for a dataset consisting of points in
the Euclidean plane are two examples of trainable values. Some examples
of TF variables are shown here:

b = tf.Variable(3, name="b")
x = tf.Variable(2, name="x")
z = tf.Variable(5*x, name="z")

W = tf.Variable(20)
lm = tf.Variable(W*x + b, name="lm")

Notice that b, x, and z are defined as TF variables. In addition, b and x are
initialized with numeric values, whereas the value of the variable z is an
expression that depends on the value of x (which equals 2).

226 • Artificial Intelligence, Machine Learning, Deep Learning

Constants in TF 2

Here is a short list of some properties of TF 2 constants:

•	 They are initialized during their definition

•	 They are cannot change its value (“immutable”)

•	 They are can specify its name (optional)

•	 Their type is required (ex: tf.float32)

•	 They are not modified during training

Listing B.1 displays the contents of tf2_constants1.py that illustrates
how to assign and print the values of some TF 2 constants.

Listing B.1: tf2_constants1.py

import tensorflow as tf

scalar = tf.constant(10)
vector = tf.constant([1,2,3,4,5])
matrix = tf.constant([[1,2,3],[4,5,6]])
cube = tf.consta

nt([[[1],[2],[3]],[[4],[5],[6]],[[7],[8],[9]]])

print(scalar.get_shape())
print(vector.get_shape())
print(matrix.get_shape())
print(cube.get_shape())

Listing B.1 contains four tf.constant() statements that define TF 2
tensors of dimension 0, 1, 2, and 3, respectively. The second part of Listing
B.1 contains four print() statements that display the shape of the four TF
2 constants that are defined in the first section of Listing B.1. The output
from Listing B.1 is here:

()
(5,)
(2, 3)
(3, 3, 1)

Introduction to TF 2  • 227

Listing B.2 displays the contents of tf2_constants2.py that
illustrates how to assign values to TF 2 constants and then print those
values.

Listing B.2: tf2_constants2.py

import tensorflow as tf

x = tf.constant(5,name="x")
y = tf.constant(8,name="y")

@tf.function
def calc_prod(x, y):
 z = 2*x + 3*y
 return z

result = calc_prod(x, y)
print('result =',result)

Listing B.2 defines a decorated (shown in bold) Python function
calc_prod()with TF 2 code that would otherwise be included in a TF 1.x
tf.Session() code block. Specifically, z would be included in a sess.
run() statement, along with a feed_dict that provides values for x and y.
Fortunately, a decorated Python function in TF 2 makes the code look like
normal Python code.

Variables in TF 2

TF 2.0 eliminates global collections and their associated APIs, such as
tf.get_variable, tf.variable_scope, and tf.initializers.
global_variables. Whenever you need a tf.Variable in TF 2, con-
struct and initialize it directly, as shown here:

tf.Variable(tf.random.normal([2, 4])

Listing B.3 displays the contents of tf2_variables.py that illustrates
how to compute values involving TF constants and variables in a with code
block.

228 • Artificial Intelligence, Machine Learning, Deep Learning

Listing B.3: tf2_variables.py

import tensorflow as tf

v = tf.Variable([[1., 2., 3.], [4., 5., 6.]])
print("v.value():", v.value())
print("")
print("v.numpy():", v.numpy())
print("")

v.assign(2 * v)
v[0, 1].assign(42)
v[1].assign([7., 8., 9.])
print("v:",v)
print("")

try:
 v [1] = [7., 8., 9.]
except TypeError as ex:
 print(ex)

Listing B.3 defines a TF 2 variable v and prints its value. The next
portion of Listing B.3 updates the value of v and prints its new value. The
last portion of Listing B.3 contains a try/except block that attempts to
update the value of v[1]. The output from Listing B.3 is here:

v.value(): tf.Tensor(
[[1. 2. 3.]
 [4. 5. 6.]], shape=(2, 3), dtype=float32)

v.numpy(): [[1. 2. 3.]
 [4. 5. 6.]]

v: <tf.Variable 'Variable:0' shape=(2, 3)
dtype=float32, numpy=

array([[2., 42., 6.],
 [7., 8., 9.]], dtype=float32)>

'ResourceVariable' object does not support item
assignment

Introduction to TF 2  • 229

This concludes the quick tour involving TF 2 code that contains vari-
ous combinations of TF constants and TF variables. The next few sections
delve into more details regarding the TF primitive types that you saw in the
preceding sections.

The tf.rank() API

The rank of a TF 2 tensor is the dimensionality of the tensor, whereas the
shape of a tensor is the number of elements in each dimension. Listing B.4
displays the contents of tf2_rank.py that illustrates how to find the rank
of TF 2 tensors.

Listing B.4: tf2_rank.py

import tensorflow as tf # tf2_rank.py

A = tf.constant(3.0)
B = tf.fill([2,3], 5.0)
C = tf.constant([3.0, 4.0])

@tf.function
def show_rank(x):
 return tf.rank(x)

print('A:',show_rank(A))
print('B:',show_rank(B))
print('C:',show_rank(C))

Listing B.4 contains familiar code for defining the TF constant A, fol-
lowed by the TF tensor B, which is a 2x3 tensor in which every element
has the value 5. The TF tensor C is a 1x2 tensor with the values 3.0 and 4.0.

The next code block defines the decorated Python function show_
rank() that returns the rank of its input variable. The final section invokes
show_rank() with A and then with B. The output from Listing B.4 is here:

A: tf.Tensor(0, shape=(), dtype=int32)
B: tf.Tensor(2, shape=(), dtype=int32)
C: tf.Tensor(1, shape=(), dtype=int32)

230 • Artificial Intelligence, Machine Learning, Deep Learning

The tf.shape() API

The shape of a TF 2 tensor is the number of elements in each dimension
of a given tensor.

Listing B.5 displays the contents of tf2_getshape.py that illustrates
how to find the shape of TF 2 tensors.

Listing B.5: tf2_getshape.py

import tensorflow as tf

a = tf.constant(3.0)
print("a shape:",a.get_shape())

b = tf.fill([2,3], 5.0)
print("b shape:",b.get_shape())

c = tf.constant([[1.0,2.0,3.0], [4.0,5.0,6.0]])
print("c shape:",c.get_shape())

Listing B.5 contains the definition of the TF constant a whose
value is 3.0. Next, the TF variable b is initialized as a 1x2 vector with
the value [[2,3], 5.0], followed by the constant c whose value is
[[1.0,2.0,3.0],[4.0,5.0,6.0]]. The thrree print() statements
display the values of a, b, and c. The output from Listing B.5 is here:

a shape: ()
b shape: (2, 3)
c shape: (2, 3)

Shapes that specify a 0-D Tensor (scalar) are numbers (9, -5, 2.34, and so
forth), [], and (). As another example, Listing B.6 displays the contents of
tf2_shapes.py that contains an assortment of tensors and their shapes.

Listing B.6: tf2_shapes.py

import tensorflow as tf

list_0 = []
tuple_0 = ()
print("list_0:",list_0)
print("tuple_0:",tuple_0)

Introduction to TF 2  • 231

Listing B.6 contains simple lists and tuples of various dimensions in
order to illustrate the difference between these two types. The output from
Listing B.6 is probably what you would expect, and it’s shown here:

list_0: []
tuple_0: ()
list_1: [3]
tuple_1: 3
list_2: [3, 7]
tuple_2: (3, 7)
any_list1: [None]
any_tuple1: None
any_list2: [7, None]
any_list3: [7, None, None]

Variables in TF 2 (Revisited)

TF 2 variables can be updated during backward error propagation. TF 2
variables can also be saved and then restored at a later point in time. The
following list contains some properties of TF 2 variables:

•	 The initial value is optional

•	 They must be initialized before graph execution

list_1 = [3]
tuple_1 = (3)
print("list_1:",list_1)
print("tuple_1:",tuple_1)

list_2 = [3, 7]
tuple_2 = (3, 7)
print("list_2:",list_2)
print("tuple_2:",tuple_2)

any_list1 = [None]
any_tuple1 = (None)
print("any_list1:",any_list1)
print("any_tuple1:",any_tuple1)

any_list2 = [7,None]
any_list3 = [7,None,None]
print("any_list2:",any_list2)
print("any_list3:",any_list3)

232 • Artificial Intelligence, Machine Learning, Deep Learning

•	 They are updated during training

•	 They are constantly recomputed

•	 They hold values for weights and biases

•	 They have an in-memory buffer (saved/restored from disk)

Here are some simple examples of TF 2 variables:

b = tf.Variable(3, name='b')
x = tf.Variable(2, name='x')
z = tf.Variable(5*x, name="z")

W = tf.Variable(20)
lm = tf.Variable(W*x + b, name="lm")

Notice that the variables b, x, and W specify constant values, whereas the
variables z and lm specify expressions that are defined in terms of other
variables. If you are familiar with linear regression, you undoubtedly noticed
that the variable lm (“linear model”) defines a line in the Euclidean plane.
Other properties of TF 2 variables are listed below:

•	 They have a tensor that’s updateable via operations

•	 They exist outside the context of session.run

•	 They are like a regular variable

•	 They hold the learned model parameters

•	 Their variables can be shared (or non-trainable)

•	 They are used for storing/maintaining state

•	 They internally store a persistent tensor

•	 You can read/modify the values of the tensor

•	 Multiple workers see the same values for tf.Variables

•	 They are the best way to represent shared, persistent state manipulated
by your program

TF 2 also provides the method tf.assign() in order to modify values of
TF 2 variables; be sure to read the relevant code sample later in this chapter
so that you learn how to use this API correctly.

Introduction to TF 2  • 233

TF 2 Variables vs Tensors
Keep in mind the following distinction between TF variables and TF
tensors:

TF variables represent your model’s trainable parameters (ex: weights
and biases of a neural network), whereas TF tensors represents the data
fed into your model and the intermediate representations of that data as it
passes through your model.

In the next section, you will learn about the @tf.function decorator
for Python functions and how it can improve performance.

What Is @tf.function in TF 2?

TF 2 introduced the @tf.function decorator for Python functions that
defines a graph and performs session execution: it’s sort of a successor to
tf.Session() in TF 1.x. Since graphs can still be useful, @tf.function
transparently converts Python functions into functions that are backed by
graphs. This decorator also converts tensor-dependent Python control flow
into TF control flow and adds control dependencies to order read and write
operations to TF 2 state. Remember that @tf.function works best with
TF 2 operations instead of NumPy operations or Python primitives.

In general, you won’t need to decorate functions with @tf.function; use
it to decorate high-level computations, such as one step of training, or the
forward pass of a model.

Although TF 2 eager execution mode facilitates a more intuitive user
interface, this ease-of-use can be at the expense of decreased performance.
Fortunately, the @tf.function decorator is a technique for generating
graphs in TF 2 code that execute more quickly than eager execution mode.

The performance benefit depends on the type of operations that
are performed: matrix multiplication does not benefit from the use of @
tf.function, whereas optimizing a deep neural network can benefit from
@tf.function.

How Does @tf.function Work?
Whenever you decorate a Python function with @tf.function, TF 2 auto-
matically builds the function in graph mode. If a Python function that is
decorated with @tf.function invokes other Python functions that are

234 • Artificial Intelligence, Machine Learning, Deep Learning

not decorated with @tf.function, then the code in those nondecorated
Python functions will also be included in the generated graph.

Another point to keep in mind is that a tf.Variable in eager mode
is actually a plain Python object: this object is destroyed when it’s out
of scope. On the other hand, a tf.Variable object defines a persis-
tent object if the function is decorated via @tf.function. In this sce-
nario, eager mode is disabled and the tf.Variable object defines a
node in a persistent TF 2 graph. Consequently, a function that works
in eager mode without annotation can fail when it is decorated with
@tf.function.

A Caveat About @tf.function in TF 2
If constants are defined before the definition of a decorated Python function,
you can print their values inside the function using the Python print()
function. On the other hand, if constants are defined inside the definition of
a decorated Python function, you can print their values inside the function
using the TF 2 tf.print() function. Consider this code block:

import tensorflow as tf

a = tf.add(4, 2)

@tf.function
def compute_values():
 print(a) # 6

compute_values()

output:
tf.Tensor(6, shape=(), dtype=int32)

As you can see, the correct result is displayed (shown in bold). However, if
you define constants inside a decorated Python function, the output con-
tains types and attributes but not the execution of the addition operation.
Consider the following code block:

import tensorflow as tf

@tf.function
def compute_values():

Introduction to TF 2  • 235

 a = tf.add(4, 2)
 print(a)

compute_values()

output:
Tensor("Add:0", shape=(), dtype=int32)

The zero in the preceding output is part of the tensor name and not an
outputted value. Specifically, Add:0 is output zero of the tf.add() opera-
tion. Any additional invocation of compute_values() prints nothing. If
you want actual results, one solution is to return a value from the function,
as shown here:

import tensorflow as tf

@tf.function
def compute_values():
 a = tf.add(4, 2)
 return a

 result = compute_values()
print("result:", result)

The output from the preceding code block is here:

result: tf.Tensor(6, shape=(), dtype=int32)

A second solution involves the TF tf.print() function instead of the
Python print() function, as shown in bold in this code block:

@tf.function
def compute_values():
 a = tf.add(4, 2)
 tf.print(a)

A third solution is to cast the numeric values to Tensors if they do not affect
the shape of the generated graph, as shown here:

import tensorflow as tf

@tf.function
def compute_values():
 a = tf.add(tf.constant(4), tf.constant(2))

236 • Artificial Intelligence, Machine Learning, Deep Learning

 return a

result = compute_values()
print("result:", result)

The tf.print() Function and Standard Error
There is one more detail to remember: the Python print() function sends
output to something called standard output that is associated with a file
descriptor whose value is 1; on the other hand, tf.print() sends output
to standard error that is associated with a file descriptor whose value is 2.
In programming languages such as C, only errors are sent to standard error,
so keep in mind that the behavior of tf.print() differs from the conven-
tion regarding standard out and standard error. The following code snippets
illustrate this difference:

python3 file_with_print.py 1>print_output
python3 file_with_tf.print.py 2>tf.print_output

If your Python file contains both print() and tf.print() you can cap-
ture the output as follows:

python3 both_prints.py 1>print_output 2>tf.print_output

However, keep in mind that the preceding code snippet might also redirect
real error messages to the file tf.print_output.

Working with @tf.function in TF 2

The preceding section explained how the output will differ depending on
whether you use the Python print() function versus the tf.print()
function in TF 2 code, where the latter function also sends output to stan-
dard error instead of standard output.

This section contains several examples of the @tf.function deco-
rator in TF 2 to show you some nuances in behavior that depend on
where you define constants and whether you use the tf.print()
function or the Python print() function. Also keep in mind the
comments in the previous section regarding @tf.function, as well as the
fact that you don’t need to use @tf.function in all your Python functions.

An Example Without @tf.function
Listing B.7 displays the contents of tf2_simple_function.py that illus-
trates how to define a Python function with TF 2 code.

Introduction to TF 2  • 237

Listing B.7: tf2_simple_function.py

import tensorflow as tf

def func():
 a = tf.constant([[10,10],[11.,1.]])
 b = tf.constant([[1.,0.],[0.,1.]])
 c = tf.matmul(a, b)
 return c

print(func().numpy())

The code in Listing B.7 is straightforward: a Python function
func() defines two TF 2 constants, computes their product, and
returns that value.

Since TF 2 works in eager mode by default, the Python function
func() is treated as a normal function. Launch the code and you will see
the following output:

[[20. 30.]
 [22. 3.]]

An Example With @tf.function
Listing B.8 displays the contents of tf2_at_function.py that illustrates
how to define a decorated Python function with TF code.

Listing B.8: tf2_at_function.py

import tensorflow as tf

@tf.function
def func():
 a = tf.constant([[10,10],[11.,1.]])
 b = tf.constant([[1.,0.],[0.,1.]])
 c = tf.matmul(a, b)
 return c

print(func().numpy())

238 • Artificial Intelligence, Machine Learning, Deep Learning

Listing B.8 defines a decorated Python function: the rest of the code is
identical to Listing B.7. However, because of the @tf.function annota-
tion, the Python func() function is wrapped in a tensorflow.python.
eager.def_function.Function object. The Python function is assigned
to the .python_function property of the object.

When func() is invoked, the graph construction begins. Only the
Python code is executed, and the behavior of the function is traced so that
TF 2 can collect the required data to construct the graph. The output is
shown here:

[[20. 30.]
 [22. 3.]]

Overloading Functions with @tf.function
If you have worked with programming languages such as Java and C++,
you are already familiar with the concept of overloading a function. If this
term is new to you, the idea is simple: an overloaded function is a function
that can be invoked with different data types. For example, you can define
an overloaded add function that can add two numbers as well as add (i.e.,
concatenate) two strings.

If you’re curious, overloaded functions in various programming lan-
guages are implemented via name mangling, which means that the signa-
ture (the parameters and their data types for the function) are appended
to the function name in order to generate a unique function name. This
happens under the hood, which means that you don’t need to worry about
the implementation details.

Listing B.9 displays the contents of tf2_overload.py that illustrates
how to define a decorated Python function that can be invoked with differ-
ent data types.

Listing B.9: tf2_overload.py

import tensorflow as tf

@tf.function
def add(a):
 return a + a

Introduction to TF 2  • 239

Listing B.9 defines a decorated Python function add() is preceded by a
@tf.function decorator. This function can be invoked by passing an inte-
ger, a decimal value, or a TF 2 tensor and the correct result is calculated.
Launch the code and you will see the following output:

print("Add 1: ", add(1))
print("Add 2.3: ", add(2.3))
print("Add string tensor:", add(tf.

constant("abc")))

c = add.get_concrete_function(tf.
TensorSpec(shape=None, dtype=tf.string))

c(a=tf.constant("a"))

Add 1: tf.Tensor(2, shape=(), dtype=int32)
Add 2.3: tf.Tensor(4.6, shape=(), dtype=float32)
Add string tensor: �tf.Tensor(b'abcabc', shape=(),

dtype=string)
c: <tensorflow.python.eager.function.

ConcreteFunction object at 0x1209576a0>

What Is AutoGraph in TF 2?
AutoGraph refers to the conversion from Python code to its graph repre-
sentation, which is a significant new feature in TF 2. In fact, AutoGraph is
automatically applied to functions that are decorated with @tf.function;
this decorator creates callable graphs from Python functions.

AutoGraph transforms a subset of Python syntax into its portable, high-
performance and language agnostic graph representation, thereby bridg-
ing the gap between TF 1.x and TF 2.0. In fact, AutoGraph allows you to
inspect its auto-generated code with this code snippet. For example, if you
define a Python function called my_product(), you can inspect its auto-
generated code with this snippet:

print(tf.autograph.to_code(my_product))

In particular, the Python for/while construct in implemented in TF 2
via tf.while_loop (break and continue are also supported). The Python

240 • Artificial Intelligence, Machine Learning, Deep Learning

if construct is implemented in TF 2 via tf.cond. The “for _ in data-
set” is implemented in TF 2 via dataset.reduce.

AutoGraph also has some rules for converting loops. A for loop is
converted if the iterable in the loop is a Tensor, and a while loop is con-
verted if the while condition depends on a Tensor. If a loop is converted,
it will be dynamically unrolled with tf.while_loop, as well as the spe-
cial case of a for x in tf.data.Dataset (the latter is transformed
into tf.data.Dataset.reduce). If a loop is not converted, it will be
statically unrolled.

AutoGraph supports control flow that is nested arbitrarily deep, so you
can implement many types of ML programs. Check the online documenta-
tion for more information regarding AutoGraph.

Arithmetic Operations in TF 2

Listing B.10 displays the contents of tf2_arithmetic.py that
illustrates how to perform arithmetic operations in a TF 2.

Listing B.10: tf2_arithmetic.py

import tensorflow as tf

@tf.function # repłace print() with tf.print()
def compute_values():
 a = tf.add(4, 2)
 b = tf.subtract(8, 6)
 c = tf.multiply(a, 3)
 d = tf.math.divide(a, 6)

 print(a) # 6
 print(b) # 2
 print(c) # 18
 print(d) # 1

compute_values()

Listing B.10 defines the decorated Python function compute_val-
ues() with simple code for computing the sum, difference, product,
and quotient of two numbers via the tf.add(), tf.subtract(),

Introduction to TF 2  • 241

tf.multiply(), and the tf.math.divide() APIs, respectively.
The four print() statements display the values of a, b, c, and d. The out-
put from Listing B.10 is here:

tf.Tensor(6, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor(18, shape=(), dtype=int32)
tf.Tensor(1.0, shape=(), dtype=float64)

Caveats for Arithmetic Operations in TF 2

As you can probably surmise, you can also perform arithmetic operations
involves TF 2 constants and variables. Listing B.11 displays the contents of
tf2_const_var.py that illustrates how to perform arithmetic operations
involving a TF 2 constant and a variable.

Listing B.11: tf2_const_var.py

import tensorflow as tf

v1 = tf.Variable([4.0, 4.0])
c1 = tf.constant([1.0, 2.0])

diff = tf.subtract(v1,c1)
print("diff:",diff)

Listing B.11 computes the difference of the TF variable v1 and the TF
constant c1, and the output is shown here:

diff: tf.Tensor([3. 2.], shape=(2,), dtype=float32)

However, if you update the value of v1 and then print the value of diff, it
will not change. You must reset the value of diff, just as you would in other
imperative programming languages.

Listing B.12 displays the contents of tf2_const_var2.py that illus-
trates how to perform arithmetic operations involving a TF 2 constant and
a variable.

242 • Artificial Intelligence, Machine Learning, Deep Learning

Listing B.12: tf2_const_var2.py

import tensorflow as tf

v1 = tf.Variable([4.0, 4.0])
c1 = tf.constant([1.0, 2.0])

diff = tf.subtract(v1,c1)
print("diff1:",diff.numpy())

diff is NOT updated:
v1.assign([10.0, 20.0])
print("diff2:",diff.numpy())

diff is updated correctly:
diff = tf.subtract(v1,c1)
print("diff3:",diff.numpy())

import tensorflow as tf

PI = 3.141592

@tf.function # repłace print() with tf.print()
def math_values():
 print(tf.math.divide(12,8))

Listing B.12 recomputes the value of diff in the final portion of List-
ing B.11, after which it has the correct value. The output is shown here:

diff1: [3. 2.]
diff2: [3. 2.]
diff3: [9. 18.]

TF 2 and Built-in Functions

Listing B.13 displays the contents of tf2_math_ops.py that illustrates
how to perform additional arithmetic operations in a TF graph.

Listing B.13: tf2_math_ops.py

Introduction to TF 2  • 243

Listing B.13 contains a hard-coded approximation for PI, followed by
the decorated Python function math_values() with five print() state-
ments that display various arithmetic results. Note, in particular, the third
output value is a very small number (the correct value is zero). The output
from Listing B.13 is here:

1.5
tf.Tensor(2.0,			 shape=(), dtype=float32)
tf.Tensor(6.2783295e-07,	 shape=(), dtype=float32)
tf.Tensor(-1.0,		 shape=(), dtype=float32)
tf.Tensor(0.99999964,	 shape=(), dtype=float32)

Listing B.14 displays the contents of tf2_math-ops_pi.py that illustrates
how to perform arithmetic operations in TF 2.

Listing B.14: tf2_math_ops_pi.py

 print(tf.math.floordiv(20.0,8.0))
 print(tf.sin(PI))
 print(tf.cos(PI))
 print(tf.math.divide(tf.sin(PI/4.),

tf.cos(PI/4.)))

math_values()

import tensorflow as tf
import math as m

PI = tf.constant(m.pi)

@tf.function # repłace print() with tf.print()
def math_values():
 print(tf.math.divide(12,8))
 print(tf.math.floordiv(20.0,8.0))
 print(tf.sin(PI))
 print(tf.cos(PI))
 print(tf.math.divide(tf.sin(PI/4.),

tf.cos(PI/4.)))

math_values()

244 • Artificial Intelligence, Machine Learning, Deep Learning

Listing B.14 is almost identical to the code in Listing B.13: the
only difference is that Listing B.14 specifies a hard-coded value for
PI, whereas Listing B.14 assigns m.pi to the value of PI. As a result,
the approximated value is one decimal place closer to the correct value
of zero. The output from Listing B.14 is here, and notice how the
output format differs from Listing B.13 due to the Python print()
function:

1.5
tf.Tensor(2.0,			 shape=(), dtype=float32)
tf.Tensor(-8.742278e-08,	 shape=(), dtype=float32)
tf.Tensor(-1.0,		 shape=(), dtype=float32)
tf.Tensor(1.0,			 shape=(), dtype=float32)

Calculating Trigonometric Values in TF 2

Listing B.15 displays the contents of tf2_trig_values.py that illustrates
how to compute values involving trigonometric functions in TF 2.

Listing B.15: tf2_trig_values.py

import tensorflow as tf
import math as m

PI = tf.constant(m.pi)

a = tf.cos(PI/3.)
b = tf.sin(PI/3.)
c = 1.0/a # sec(60)
d = 1.0/tf.tan(PI/3.) # cot(60)

@tf.function # this decorator is okay
def math_values():
 print("a:",a)
 print("b:",b)
 print("c:",c)
 print("d:",d)

math_values()

Introduction to TF 2  • 245

Listing B.14 is straightforward: there are several of the same TF 2
APIs that you saw in Listing B.13. In addition, Listing B.14 contains the
tf.tan() API, which computes the tangent of a number (in radians). The
output from Listing B.14 is here:

a: tf.Tensor(0.49999997, shape=(), dtype=float32)
b: tf.Tensor(0.86602545, shape=(), dtype=float32)
c: tf.Tensor(2.0000002, shape=(), dtype=float32)
d: tf.Tensor(0.57735026, shape=(), dtype=float32)

Calculating Exponential Values in TF 2

Listing B.15 displays the contents of tf2_exp_values.py that illustrates
how to compute values involving additional trigonometric functions in TF 2.

Listing B.15: tf2_exp_values.py

import tensorflow as tf

a = tf.exp(1.0)
b = tf.exp(-2.0)
s1 = tf.sigmoid(2.0)
s2 = 1.0/(1.0 + b)
t2 = tf.tanh(2.0)

@tf.function # this decorator is okay
def math_values():
 print('a: ', a)
 print('b: ', b)
 print('s1:', s1)
 print('s2:', s2)
 print('t2:', t2)

math_values()

Listing B.15 starts with the TF 2 APIs tf.exp(), tf.sigmoid(), and
tf.tanh() that compute the exponential value of a number, the sigmoid
value of a number, and the hyperbolic tangent of a number, respectively.
The output from Listing B.15 is here:

a: tf.Tensor(2.7182817, shape=(), dtype=float32)
b: tf.Tensor(0.13533528, shape=(), dtype=float32)

246 • Artificial Intelligence, Machine Learning, Deep Learning

s1: tf.Tensor(0.880797, shape=(), dtype=float32)
s2: tf.Tensor(0.880797, shape=(), dtype=float32)
t2: tf.Tensor(0.9640276, shape=(), dtype=float32)

Working with Strings in TF 2

Listing B.16 displays the contents of tf2_strings.py that illustrates how
to work with strings in TF 2.

Listing B.16: tf2_strings.py

import tensorflow as tf

x1 = tf.constant("café")
print("x1:",x1)
tf.strings.length(x1)
print("")

len1 = tf.strings.length(x1, unit="UTF8_CHAR")
len2 = tf.strings.unicode_decode(x1, "UTF8")

print("len1:",len1.numpy())
print("len2:",len2.numpy())
print("")

String arrays
x2 = tf.constant(["Café", "Coffee", "caffè",

"咖啡"])
print("x2:",x2)
print("")

len3 = tf.strings.length(x2, unit="UTF8_CHAR")
print("len2:",len3.numpy())
print("")

r = tf.strings.unicode_decode(x2, "UTF8")
print("r:",r)

Listing B.16 defines the TF 2 constant x1 as a string that contains an
accent mark. The first print() statement displays the first three characters
of x1, followed by a pair of hexadecimal values that represent the accented e
character. The second and third print() statements display the number of
characters in x1, followed by the UTF8 sequence for the string x1.

Introduction to TF 2  • 247

The next portion of Listing B.16 defines the TF 2 constant x2 as a first-
order TF 2 tensor that contains four strings. The next print() statement
displays the contents of x2, using UTF8 values for characters that contain
accent marks.

The final portion of Listing B.16 defines r as the Unicode values for the
characters in the string x2. The output from Listing B.14 is here:

x1: tf.Tensor(b'caf\xc3\xa9', shape=(),
dtype=string)

len1: 4
len2: [99 97 102 233]

x2: tf.Tensor([b'Caf\xc3\xa9' b'Coffee' b'caff\xc3\
xa8' b'\xe5\x92\x96\xe5\x95\xa1'], shape=(4,),
dtype=string)

len2: [4 6 5 2]

r: <tf.RaggedTensor [[67, 97, 102, 233], [67, 111,
102, 102, 101, 101], [99, 97, 102, 102, 232],
[21654, 21857]]>

Chapter 2 contains a complete code sample with more examples of a
RaggedTensor in TF 2.

Working with Tensors and Operations in TF 2

Listing B.17 displays the contents of tf2_tensors_operations.py that
illustrates how to use various operators with tensors in TF 2.

Listing B.17: tf2_tensors_operations.py

import tensorflow as tf

x = tf.constant([[1., 2., 3.], [4., 5., 6.]])

print("x:", x)
print("")
print("x.shape:", x.shape)
print("")
print("x.dtype:", x.dtype)

(Continued)

248 • Artificial Intelligence, Machine Learning, Deep Learning

print("")
print("x[:, 1:]:", x[:, 1:])
print("")
print("x[..., 1, tf.newaxis]:", x[..., 1,

tf.newaxis])
print("")
print("x + 10:", x + 10)
print("")
print("tf.square(x):", tf.square(x))
print("")
print("x @ tf.transpose(x):", x @ tf.transpose(x))

m1 = tf.constant([[1., 2., 4.], [3., 6., 12.]])
print("m1: ", m1 + 50)
print("m1 + 50: ", m1 + 50)
print("m1 * 2: ", m1 * 2)
print("tf.square(m1): ", tf.square(m1))

Listing B.17 defines the TF tensor x that contains a 2x3 array of real
numbers. The bulk of the code in Listing B.17 illustrates how to display
properties of x by invoking x.shape and x.dtype, as well as the TF func-
tion tf.square(x). The output from Listing B.17 is here:

x: tf.Tensor(
[[1. 2. 3.]
 [4. 5. 6.]], shape=(2, 3), dtype=float32)

x.shape: (2, 3)

x.dtype: <dtype: 'float32'>

x[:, 1:]: tf.Tensor(
[[2. 3.]
 [5. 6.]], shape=(2, 2), dtype=float32)

x[..., 1, tf.newaxis]: tf.Tensor(
[[2.]
 [5.]], shape=(2, 1), dtype=float32)

x + 10: tf.Tensor(
[[11. 12. 13.]
 [14. 15. 16.]], shape=(2, 3), dtype=float32)

Introduction to TF 2  • 249

Second-Order Tensors in TF 2 (1)

Listing B.18 displays the contents of tf2_elem2.py that illustrates how to
define a second-order TF tensor and access elements in that tensor.

Listing B.18: tf2_elem2.py

tf.square(x): tf.Tensor(
[[1. 4. 9.]
 [16. 25. 36.]], shape=(2, 3), dtype=float32)

x @ tf.transpose(x): tf.Tensor(
[[14. 32.]
 [32. 77.]], shape=(2, 2), dtype=float32)

m1: tf.Tensor(
[[51. 52. 54.]
 [53. 56. 62.]], shape=(2, 3), dtype=float32)

m1 + 50: tf.Tensor(
[[51. 52. 54.]
 [53. 56. 62.]], shape=(2, 3), dtype=float32)

m1 * 2: tf.Tensor(
[[2. 4. 8.]
 [6. 12. 24.]], shape=(2, 3), dtype=float32)

tf.square(m1): tf.Tensor(
[[1. 4. 16.]
 [9. 36. 144.]], shape=(2, 3), dtype=float32)

import tensorflow as tf

arr2 = tf.constant([[1,2],[2,3]])

@tf.function
def compute_values():
 print('arr2: ',arr2)
 print('[0]: ',arr2[0])
 print('[1]: ',arr2[1])

compute_values()

250 • Artificial Intelligence, Machine Learning, Deep Learning

Listing B.18 contains the TF constant arr1 that is initialized with the
value [[1,2],[2,3]]. The three print() statements display the value of
arr1, the value of the element whose index is 1, and the value of the ele-
ment whose index is [1,1]. The output from Listing B.18 is here:

arr2: tf.Tensor(
[[1 2]
 [2 3]], shape=(2, 2), dtype=int32)
[0]: tf.Tensor([1 2], shape=(2,), dtype=int32)
[1]: tf.Tensor([2 3], shape=(2,), dtype=int32)

2nd Order Tensors in TF 2 (2)

Listing B.19 displays the contents of tf2_elem3.py that illustrates how to
define a second-order TF 2 tensor and access elements in that tensor.

Listing B.19: tf2_elem3.py

import tensorflow as tf

arr3 = tf.constant([[[1,2],[2,3]],[[3,4],[5,6]]])

@tf.function # repłace print() with tf.print()
def compute_values():
 print('arr3: ',arr3)
 print('[1]: ',arr3[1])
 print('[1,1]: ',arr3[1,1])
 print('[1,1,0]:',arr3[1,1,0])

compute_values()

Listing B.19 contains the TF constant arr3 that is initialized with
the value [[[1,2],[2,3]],[[3,4],[5,6]]]. The four print() state-
ments display the value of arr3, the value of the element whose index
is 1, the value of the element whose index is [1,1], and the value of the
element whose index is [1,1,0]. The output from Listing B.19 (adjusted
slightly for display purposes) is here:

arr3: tf.Tensor(
[[[1 2]
 [2 3]]

 [[3 4]

Introduction to TF 2  • 251

 [5 6]]], shape=(2, 2, 2), dtype=int32)
[1]: tf.Tensor(
[[3 4]
 [5 6]], shape=(2, 2), dtype=int32)
[1,1]: tf.Tensor([5 6], shape=(2,), dtype=int32)
[1,1,0]: tf.Tensor(5, shape=(), dtype=int32)

Multiplying Two Second-Order Tensors in TF 2

Listing B.20 displays the contents of tf2_mult.py that illustrates how to
multiply second-order tensors in TF 2.

Listing B.20: tf2_mult.py

import tensorflow as tf

m1 = tf.constant([[3., 3.]])		 # 1x2
m2 = tf.constant([[2.],[2.]])	 # 2x1
p1 = tf.matmul(m1, m2)			 # 1x1

@tf.function
def compute_values():
 print('m1:',m1)
 print('m2:',m2)
 print('p1:',p1)

compute_values()

Listing B.20 contains two TF constant m1 and m2 that are initialized
with the value [[3., 3.]] and [[2.],[2.]]. Due to the nested square
brackets, m1 has shape 1x2, whereas m2 has shape 2x1. Hence, the prod-
uct of m1 and m2 has shape (1,1).

The three print() statements display the value of m1, m2, and p1. The
output from Listing B.20 is here:

m1: tf.Tensor([[3. 3.]], shape=(1, 2), dtype=float32)
m2: tf.Tensor(
[[2.]
 [2.]], shape=(2, 1), dtype=float32)
p1: tf.Tensor([[12.]], shape=(1, 1), dtype=float32)

252 • Artificial Intelligence, Machine Learning, Deep Learning

Convert Python Arrays to TF Tensors

Listing B.21 displays the contents of tf2_convert_tensors.py that
illustrates how to convert a Python array to a TF 2 tensor.

Listing B.21: tf2_convert_tensors.py

import tensorflow as tf
import numpy as np

x1 = np.array([[1.,2.],[3.,4.]])
x2 = tf.convert_to_tensor(value=x1, dtype=tf.

float32)

print ('x1:',x1)
print ('x2:',x2)

import tensorflow as tf

try:
 tf.constant(1) + tf.constant(1.0)
except tf.errors.InvalidArgumentError as ex:
 print(ex)

Listing B.21 is straightforward, starting with an import statement for
TensorFlow and one for NumPy. Next, the x_data variable is a NumPy array,
and x is a TF tensor that is the result of converting x_data to a TF tensor.
The output from Listing B.21 is here:

x1: [[1. 2.]
 [3. 4.]]
x2: tf.Tensor(
[[1. 2.]
 [3. 4.]], shape=(2, 2), dtype=float32)

Conflicting Types in TF 2
Listing B.22 displays the contents of tf2_conflict_types.py that illus-
trates what happens when you try to combine incompatible tensors in TF 2.

Listing B.22: tf2_conflict_types.py

Introduction to TF 2  • 253

Listing B.22 contains two try/except blocks. The first block adds two
constants 1 and 1.0, which are compatible. The second block attempts to
add the value 1.0 that’s declared as a tf.float64 with 1.0, which are not
compatible tensors. The output from Listing B.22 is here:

cannot compute Add as input #1(zero-based) was expected
to be a int32 tensor but is a float tensor [Op:Add] name: add/

cannot compute Add as input #1(zero-based) was expected to
be a double tensor but is a float tensor [Op:Add] name: add/

Differentiation and tf.GradientTape in TF 2

Automatic differentiation (i.e., calculating derivatives) is useful for imple-
menting ML algorithms such as back propagation for training various types
of NNs (Neural Networks). During eager execution, the TF 2 context man-
ager tf.GradientTape traces operations for computing gradients. This
context manager provides a watch() method for specifying a tensor that
will be differentiated (in the mathematical sense of the word).

The tf.GradientTape context manager records all forward-pass oper-
ations on a “tape.” Next, it computes the gradient by playing the tape back-
ward, and then discards the tape after a single gradient computation. Thus,
a tf.GradientTape can only compute one gradient: subsequent invoca-
tions throw a runtime error. Keep in mind that the tf.GradientTape
context manager only exists in eager mode.

Why do we need the tf.GradientTape context manager? Consider
deferred execution mode, where we have a graph in which we know how
nodes are connected. The gradient computation of a function is performed
in two steps: 1) backtracking from the output to the input of the graph, and
2) computing the gradient to obtain the result.

By contrast, in eager execution the only way to compute the gradi-
ent of a function using automatic differentiation is to construct a graph.
After constructing the graph of the operations executed within the

try:
 tf.constant(1.0, dtype=tf.float64) +

tf.constant(1.0)
except tf.errors.InvalidArgumentError as ex:
 print(ex)

254 • Artificial Intelligence, Machine Learning, Deep Learning

tf.GradientTape context manager on some watchable element (such
as a variable), we can instruct the tape to compute the required gradient.
If you want a more detailed explanation, the tf.GradientTape docu-
mentation page contains an example that explains how and why tapes are
needed.

The default behavior for tf.GradientTape is to play once and then
discard. However, it’s possible to specify a persistent tape, which means
that the values are persisted and therefore the tape can be played multiple
times. The next section contains several examples of tf.GradientTape,
including an example of a persistent tape.

Examples of tf.GradientTape

Listing B.23 displays the contents of tf2_gradient_tape1.py that illus-
trates how to invoke tf.GradientTape in TF 2. This example is one of the
simplest examples of using tf.GradientTape in TF 2.

Listing B.23: tf2_gradient_tape1.py

import tensorflow as tf

w = tf.Variable([[1.0]])

with tf.GradientTape() as tape:
 loss = w * w

grad = tape.gradient(loss, w)
print("grad:",grad)

Listing B.23 defines the variable w, followed by a with statement that
initializes the variable loss with expression w*w. Next, the variable grad is
initialized with the derivative that is returned by the tape, and then evalu-
ated with the current value of w.

As a reminder, if we define the function z = w*w, then the first deriva-
tive of z is the term 2*w , and when this term is evaluated with the value of
1.0 for w, the result is 2.0. Launch the code in Listing B.23 and you will see
the following output:

grad: tf.Tensor([[2.]], shape=(1, 1), dtype=float32)

Introduction to TF 2  • 255

Using the watch() Method of tf.GradientTape
Listing B.24 displays the contents of tf2_gradient_tape2.py that also
illustrates the use of tf.GradientTape with the watch() method in TF 2.

Listing B.24: tf2_gradient_tape2.py

import tensorflow as tf

x = tf.constant(3.0)

with tf.GradientTape() as g:
 g.watch(x)
 y = 4 * x * x

dy_dx = g.gradient(y, x)

Listing B.24 contains a similar with statement as Listing B.23, but this
time a watch() method is also invoked to watch the tensor x. As you saw
in the previous section, if we define the function y = 4*x*x, then the first
derivative of y is the term 8*x; when the latter term is evaluated with the
value 3.0, the result is 24.0.

Launch the code in Listing B.24 and you will see the following output:
dy_dx: tf.Tensor(24.0, shape=(), dtype=float32)

Using Nested Loops with tf.GradientTape
Listing B.25 displays the contents of tf2_gradient_tape3.py that also
illustrates how to define nested loops with tf.GradientTape in order to
calculate the first and the second derivative of a tensor in TF 2.

Listing B.25: tf2_gradient_tape3.py

import tensorflow as tf

x = tf.constant(4.0)
with tf.GradientTape() as t1:
 with tf.GradientTape() as t2:
 t1.watch(x)
 t2.watch(x)
 z = x * x * x
 dz_dx = t2.gradient(z, x)
d2z_dx2 = t1.gradient(dz_dx, x)

(Continued)

256 • Artificial Intelligence, Machine Learning, Deep Learning

The first portion of Listing B.25 contains a nested loop, where the outer
loop calculates the first derivative and the inner loop calculates the second
derivative of the term x*x*x when x equals 4. The second portion of List-
ing B.25 contains another nested loop that produces the same output with
slightly different syntax.

In case you’re a bit rusty regarding derivatives, the next code block
shows you a function z, its first derivative z', and its second derivative
z'':

z = x*x*x
z' = 3*x*x
z'' = 6*x

When we evaluate z, z', and z'' with the value 4.0 for x, the result is
64.0, 48.0, and 24.0, respectively. Launch the code in Listing B.25 and you
will see the following output:

First dz_dx: tf.Tensor(48.0, shape=(), dtype=float32)
Second d2z_dx2: tf.Tensor(24.0, shape=(), dtype=float32)
First dz_dx: tf.Tensor(48.0, shape=(), dtype=float32)
Second d2z_dx2: tf.Tensor(24.0, shape=(), dtype=float32)

Other Tensors with tf.GradientTape
Listing B.26 displays the contents of tf2_gradient_tape4.py
that illustrates how to use tf.GradientTape in order to calculate
the first derivative of an expression that depends on a 2x2 tensor in
TF 2.

print("First dz_dx: ",dz_dx)
print("Second d2z_dx2:",d2z_dx2)

x = tf.Variable(4.0)
with tf.GradientTape() as t1:
 with tf.GradientTape() as t2:
 z = x * x * x
 dz_dx = t2.gradient(z, x)
d2z_dx2 = t1.gradient(dz_dx, x)

print("First dz_dx: ",dz_dx)
print("Second d2z_dx2:",d2z_dx2)

Introduction to TF 2  • 257

Listing B.26: tf2_gradient_tape4.py

import tensorflow as tf

x = tf.ones((3, 3))

with tf.GradientTape() as t:
 t.watch(x)
 y = tf.reduce_sum(x)
 print("y:",y)
 z = tf.multiply(y, y)
 print("z:",z)
 z = tf.multiply(z, y)
 print("z:",z)

the derivative of z with respect to y
dz_dy = t.gradient(z, y)
print("dz_dy:",dz_dy)

In Listing B.26, y equals the sum of the elements in the 3x3 tensor x,
which is 9.

Next, z is assigned the term y*y and then multiplied again by y, so the
final expression for z (and its derivative) is here:

z = y*y*y
z' = 3*y*y

When z’ is evaluated with the value 9 for y, the result is 3*9*9, which equals
243. Launch the code in Listing B.26 and you will see the following output
(slightly reformatted for readability):

y: tf.Tensor(9.0,		 shape=(), dtype=float32)
z: tf.Tensor(81.0,		 shape=(), dtype=float32)
z: tf.Tensor(729.0,		 shape=(), dtype=float32)
dz_dy: tf.Tensor(243.0,	 shape=(), dtype=float32)

A Persistent Gradient Tape
Listing B.27 displays the contents of tf2_gradient_tape5.py that
illustrates how to define a persistent gradient tape in order to with
tf.GradientTape in order to calculate the first derivative of a tensor in
TF 2.

258 • Artificial Intelligence, Machine Learning, Deep Learning

Listing B.27: tf2_gradient_tape5.py

import tensorflow as tf

x = tf.ones((3, 3))

with tf.GradientTape(persistent=True) as t:
 t.watch(x)
 y = tf.reduce_sum(x)
 print("y:",y)
 w = tf.multiply(y, y)
 print(“w:”,w)
 z = tf.multiply(y, y)
 print("z:",z)
 z = tf.multiply(z, y)
 print("z:",z)

the derivative of z with respect to y
dz_dy = t.gradient(z, y)
print("dz_dy:",dz_dy)
dw_dy = t.gradient(w, y)
print(“dw_dy:”,dw_dy)

Listing B.27 is almost the same as Listing B.26: the new sections are
displayed in bold. Note that w is the term y*y and therefore the first deriva-
tive w ‘ is 2*y. Hence, the values for w and w ‘ are 81 and 18, respectively,
when they are evaluated with the value 9.0. Launch the code in Listing B.27
and you will see the following output (slightly reformatted for readability),
where the new output is shown in bold:

y: tf.Tensor(9.0,		 shape=(), dtype=float32)
w: tf.Tensor(81.0,		 shape=(), dtype=float32)
z: tf.Tensor(81.0,		 shape=(), dtype=float32)
z: tf.Tensor(729.0,		 shape=(), dtype=float32)
dz_dy: tf.Tensor(243.0,	 shape=(), dtype=float32)
dw_dy: tf.Tensor(18.0,	 shape=(), dtype=float32)

Google Colaboratory

Depending on the hardware, GPU-based TF 2 code is typically at least fif-
teen times faster than CPU-based TF 2 code. However, the cost of a good
GPU can be a significant factor. Although NVIDIA provides GPUs, those

Introduction to TF 2  • 259

consumer-based GPUs are not optimized for multi-GPU support (which is
supported by TF 2).

Fortunately, Google Colaboratory is an affordable alternative that pro-
vides free GPU and TPU support, and also runs as a Jupyter notebook
environment. In addition, Google Colaboratory executes your code in the
cloud and involves zero configuration, and it’s available here:

https://colab.research.google.com/notebooks/welcome.ipynb

This Jupyter notebook is suitable for training simple models and test-
ing ideas quickly. Google Colaboratory makes it easy to upload local files,
install software in Jupyter notebooks, and even connect Google Colabora-
tory to a Jupyter runtime on your local machine.

Some of the supported features of Colaboratory include TF 2 execution
with GPUs, visualization using Matplotlib, and the ability to save a copy of
your Google Colaboratory notebook to Github by using File > Save a
copy to GitHub.

Moreover, you can load any .ipynb on GitHub by just adding the path to
the URL colab.research.google.com/github/ (see the Colaboratory
website for details).

Google Colaboratory has support for other technologies such as HTML
and SVG, enabling you to render SVG-based graphics in notebooks that are in
Google Colaboratory. One point to keep in mind: any software that you install
in a Google Colaboratory notebook is only available on a per-session basis: if
you log out and log in again, you need to perform the same installation steps
that you performed during your earlier Google Colaboratory session.

As mentioned earlier, there is one other very nice feature of Google
Colaboratory: you can execute code on a GPU for up to twelve hours per
day for free. This free GPU support is extremely useful for people who
don’t have a suitable GPU on their local machine (which is probably the
majority of users), and now they launch TF 2 code to train neural networks
in less than twenty or thirty minutes that would otherwise require multiple
hours of CPU-based execution time.

In case you’re interested, you can launch Tensorboard inside a Google
Colaboratory notebook with the following command (replace the specified
directory with your own location):

%tensorboard --logdir /logs/images

260 • Artificial Intelligence, Machine Learning, Deep Learning

Keep in mind the following details about Google Colaboratory. First,
whenever you connect to a server in Google Colaboratory, you start what’s
known as a session. You can execute the code in a session with a GPU or a
TPU, and you can execute your code without any time limit for your session.
However, if you select the GPU option for your session, only the first twelve
hours of GPU execution time are free. Any additional GPU time during that
same session incurs a small charge (see the website for those details).

The other point to keep in mind is that any software that you install in
a Jupyter notebook during a given session will not be saved when you exit
that session. For example, the following code snippet installs TFLearn in a
Jupyter notebook:

!pip install tflearn

When you exit the current session and at some point later you start a new
session, you need to install TFLearn again, as well as any other software
(such as Github repositories) that you also installed in any previous session.

Incidentally, you can also run TF 2 code and TensorBoard in Google
Colaboratory, with support for CPUs and GPUs (and support for TPUs will
be available later). Navigate to this link for more information:

https://www.tensorflow.org/tensorboard/r2/tensorboard_in_notebooks

Other Cloud Platforms

GCP (Google Cloud Platform) is a cloud-based service that enables you
to train TF 2 code in the cloud. GCP provides deep learning DL images
(similar in concept to Amazon AMIs) that are available here:

https://cloud.google.com/deep-learning-vm/docs

The preceding link provides documentation and a link to DL images
based on different technologies, including TF 2 and PyTorch, with GPU
and CPU versions of those images. Along with support for multiple versions
of Python, you can work in a browser session or from the command line.

GCP SDK
Install GCloud SDK on a Mac-based laptop by downloading the software at
this link: https://cloud.google.com/sdk/docs/quickstart-macos

You will also receive USD 300 worth of credit (over one year) if you
have never used Google cloud.

Introduction to TF 2  • 261

Summary

This chapter introduced you to TF 2, a very brief view of its architecture,
and some of the tools that are part of the TF 2 family. Then you learned
how to write basic Python scripts containing TF 2 code with TF constants
and variables. You also learned how to perform arithmetic operations and
some built-in TF functions.

Next, you learned how to calculate trigonometric values, how to use for
loops, and how to calculate exponential values. You also saw how to perform
various operations on second-order TF 2 tensors. In addition, you saw code
samples that illustrate how to use some of the new features of TF 2, such as
the @tf.function decorator and tf.GradientTape.

Then you got an introduction to Google Colaboratory, which is a cloud-
based environment for machine learning and deep learning. This environ-
ment is based on Jupyter notebooks, with support for Python and various
other languages. Google Colaboratory also provides up to twelve hours of
free GPU use on a daily basis, which is a very nice feature.

A P P E N D I X C
INTRODUCTION TO
PANDAS

This appendix starts with an introduction to the Pandas package for Python
that provides a rich and powerful set of APIs for managing datasets. These
APIs are very useful for machine learning and deep learning tasks that
involve dynamically slicing and dicing subsets of datasets.

The first part of this appendix briefly describes Pandas and some of
its useful features. This section contains code samples that illustrate some
nice features of DataFrames and a brief discussion of series, which are
two of the main features of Pandas. The second part of this appendix dis-
cusses various types of DataFrames that you can create, such as numeric
and Boolean DataFrames. In addition, you will see examples of creating
DataFrames with NumPy functions and random numbers.

The second section of this appendix shows you how to manipulate the
contents of DataFrames with various operations. In particular, you will also
see code samples that illustrate how to create Pandas DataFrames from
CSV files, Excel spreadsheets, and data that is retrieved from a URL. The
third section of this appendix gives you an overview of important data clean-
ing tasks that you can perform with Pandas APIs.

The final section of this appendix introduces you to Jupyter, which is
a Python-based application for displaying and executing Python code in a
browser. You will also learn about the Google Colaboratory environment,
which is fully online and supports Jupyter notebooks and provides 12
hours of daily GPU usage for free.

264 • Artificial Intelligence, Machine Learning, Deep Learning

After you have completed this appendix, glance through the following
blog post that discusses an initiative for parallelizing Pandas, as well as a chart
containing the most frequently used Pandas APIs in Kaggle competitions:

https://rise.cs.berkeley.edu/blog/pandas_on-ray-early-lessons

What Is Pandas?

Pandas is a Python package that is compatible with other Python packages,
such as NumPy, Matplotlib, and so forth. Install Pandas by opening a
command shell and invoking this command for Python 2.x:

pip install pandas

Launch this command to install Pandas for Python 3.x:

pip3 install pandas

In many ways the Pandas package has the semantics of a spreadsheet,
and it also works with xls, xml, html, csv file types. Pandas pro-
vides a data type called a DataFrame (similar to a Python dictionary) with
extremely powerful functionality, which is discussed in the next section.

Pandas DataFrames support a variety of input types, such as ndar-
rays, lists, dicts, or Series. Pandas also provides another data type
called Pandas Series (not discussed in this appendix), this data structure
provides another mechanism for managing data (search online for more
details).

Pandas Dataframes
In simplified terms, a Pandas DataFrame is a two-dimensional data struc-
ture, and it’s convenient to think of the data structure in terms of rows and
columns. DataFrames can be labeled (rows as well as columns), and the
columns can contain different data types.

By way of analogy, it might be useful to think of a DataFrame as the
counterpart to a spreadsheet, which makes it a very useful data type in
Pandas related Python scripts. The source of the dataset can be a data file,
database tables, web service, and so forth. Pandas DataFrame features
include:

•	 Data Frame Methods

•	 Data Frame Statistics

Introduction to Pandas   • 265

•	 Grouping, Pivoting, and Reshaping

•	 Dealing with Missing Data

•	 Joining Data Frames

Dataframes and Data Cleaning Tasks
The specific tasks that you need to perform depend on the structure and
contents of a dataset. In general, you will perform a workflow with the fol-
lowing steps (not necessarily always in this order), all of which can be per-
formed with a Pandas DataFrame:

•	 Read data into a dataframe

•	 Display top of dataframe

•	 Display column data types

•	 Display non-missing values

•	 Replace NA with a value

•	 Iterate through the columns

•	 Statistics for each column

•	 Find Missing Values

•	 Total missing values

•	 Percentage of missing values

•	 Sort table values

•	 Print summary information

•	 Columns with > 50% missing

•	 Rename columns.

A Labeled Pandas Dataframe

Listing C.1 displays the contents of pandas_labeled_df.py that illus-
trates how to define a Pandas DataFrame whose rows and columns are
labeled.

266 • Artificial Intelligence, Machine Learning, Deep Learning

Listing C.1: pandas_labeled_df.py

import numpy
import pandas

myarray = �numpy.array([[10,30,20],
[50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']
colnames = ['January', 'February', 'March']

mydf = �Pandas.DataFrame(myarray, index=rownames,
columns=colnames)

print(mydf)
print(mydf.describe())

Listing C.1 contains two import statements followed by the variable
myarray, which is a 3x3 NumPy array of numbers. The variables rownames
and colnames provide names for the rows and columns, respectively, of
the data in myarray. Next, the variable mydf is initialized as a Pandas
DataFrame with the specified datasource (i.e., myarray).

You might be surprised to see that the first portion of the output below
requires a single print statement (which simply displays the contents
of mydf). The second portion of the output is generated by invoking the
describe() method that is available for any NumPy DataFrame. The
describe() method is very useful: you will see various statistical quanti-
ties, such as the mean, standard deviation minimum, and maximum per-
formed column-wise (not row-wise), along with values for the 25th, 50th,
and 75th percentiles. The output of Listing C.1 is here:

 January February March
apples 10 30 20
oranges 50 40 60
beer 1000 2000 3000

 January February March
count 3.000000 3.000000 3.000000
mean 353.333333 690.000000 1026.666667
std 560.386771 1134.504297 1709.073823
min 10.000000 30.000000 20.000000
25% 30.000000 35.000000 40.000000
50% 50.000000 40.000000 60.000000
75% 525.000000 1020.000000 1530.000000
max 1000.000000 2000.000000 3000.000000

Introduction to Pandas   • 267

Pandas Numeric DataFrames

Listing C.2 displays the contents of pandas_numeric_df.py that illus-
trates how to define a Pandas DataFrame whose rows and columns are
numbers (but the column labels are characters).

Listing C.2: pandas_numeric_df.py>

import pandas as pd

df1 = �pd.DataFrame(np.random.randn(10, 4),columns
=['A','B','C','D'])

df2 = �pd.DataFrame(np.random.randn(7, 3), columns
=['A','B','C'])

df3 = df1 + df2

 A B C D
0 0.0457 -0.0141 1.3809 NaN
1 -0.9554 -1.5010 0.0372 NaN
2 -0.6627 1.5348 -0.8597 NaN
3 -2.4529 1.2373 -0.1337 NaN
4 1.4145 1.9517 -2.3204 NaN
5 -0.4949 -1.6497 -1.0846 NaN
6 -1.0476 -0.7486 -0.8055 NaN
7 NaN NaN NaN NaN
8 NaN NaN NaN NaN
9 NaN NaN NaN NaN

The essence of Listing C.2 involves initializing the DataFrames df1
and df2, and then defining the DataFrame df3 as the sum of df1 and
df2. The output from Listing C.2 is here:

Keep in mind that the default behavior for operations involving
a DataFrame and Series is to align the Series index on the
DataFrame columns; this results in a row-wise output. Here is a simple
illustration:

names = pd.Series(['SF', 'San Jose', 'Sacramento'])
sizes = pd.Series([852469, 1015785, 485199])

df = �pd.DataFrame({ 'Cities': names, 'Size': sizes })

268 • Artificial Intelligence, Machine Learning, Deep Learning

df = pd.DataFrame({ 'City name': names,'sizes':
sizes })

print(df)
The output of the preceding code block is here:

 City name sizes
0 SF 852469
1 San Jose 1015785
2 Sacramento 485199

Pandas Boolean DataFrames

Pandas supports Boolean operations on DataFrames, such as the logical
or, the logical and, and the logical negation of a pair of DataFrames. List-
ing C.3 displays the contents of pandas_boolean_df.py that illustrates
how to define a Pandas DataFrame whose rows and columns are Boolean
values.

Listing C.3: pandas_boolean_df.py

import pandas as pd

df1 = �pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] },
dtype=bool)

df2 = �pd.DataFrame({'a' : [0, 1, 1], 'b' : [1, 1, 0] },
dtype=bool)

print("df1 & df2:")
print(df1 & df2)

print("df1 | df2:")
print(df1 | df2)

print("df1 ^ df2:")
print(df1 ^ df2)

Listing C.3 initializes the DataFrames df1 and df2, and then com-
putes df1 & df2, df1 | df2, df1 ^ df2, which represent the logical AND,

Introduction to Pandas   • 269

the logical OR, and the logical negation, respectively, of df1 and df2. The
output from launching the code in Listing C.3 is here:

df1 & df2:
 a b
0 False False
1 False True
2 True False
df1 | df2:
 a b
0 True True
1 True True
2 True True
df1 ^ df2:
 a b
0 True True
1 True False
2 False True

Transposing a Pandas Dataframe
The T attribute (as well as the transpose function) enables you to generate
the transpose of a Pandas DataFrame, similar to a NumPy ndarray.

For example, the following code snippet defines a Pandas dataFrame
df1 and then displays the transpose of df1:

df1 = �pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] },
dtype=int)

print("df1.T:")
print(df1.T)

The output is here:

df1.T:
 0 1 2
a 1 0 1
b 0 1 1

The following code snippet defines Pandas dataFrames df1 and df2
and then displays their sum:

df1 = �pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] },
dtype=int)

270 • Artificial Intelligence, Machine Learning, Deep Learning

df2 = �pd.DataFrame({'a' : [3, 3, 3], 'b' : [5, 5, 5] },
dtype=int)

print("df1 + df2:")
print(df1 + df2)

The output is here:

df1 + df2:
 a b
0 4 5
1 3 6
2 4 6

Pandas Dataframes and Random Numbers

Listing C.4 displays the contents of pandas_random_df.py that illustrates
how to create a Pandas DataFrame with random numbers.

Listing C.4: pandas_random_df.py

import pandas as pd
import numpy as np

df = �pd.DataFrame(np.random.randint(1, 5, size=(5, 2)),
columns=['a','b'])

df = df.append(df.agg(['sum', 'mean']))

print("Contents of dataframe:")
print(df)

Listing C.4 defines the Pandas DataFrame df that consists of five
rows and two columns of random integers between 1 and 5. Notice that
the columns of df are labeled a and b. In addition, the next code snippet
appends two rows consisting of the sum and the mean of the numbers in
both columns. The output of Listing C.4 is here:

a b
0 1.0 2.0
1 1.0 1.0
2 4.0 3.0
3 3.0 1.0
4 1.0 2.0
sum 10.0 9.0
mean 2.0 1.8

Introduction to Pandas   • 271

Combining Pandas DataFrames (1)

Listing C.5 displays the contents of pandas_combine_df.py that illus-
trates how to combine Pandas DataFrames.

Listing C.5: pandas_combine_df.py

import pandas as pd
import numpy as np

df = pd.DataFrame({'foo1' : np.random.randn(5),
 'foo2' : np.random.randn(5)})

print("contents of df:")
print(df)

print("contents of foo1:")
print(df.foo1)

print("contents of foo2:")
print(df.foo2)

Listing C.5 defines the Pandas DataFrame df that consists of five
rows and two columns (labeled “foo1” and “foo2”) of random real num-
bers between 0 and 5. The next portion of Listing C.5 displays the contents
of df and foo1. The output of Listing C.5 is here:

contents of df:
 foo1 foo2
0 0.274680 -0.848669
1 -0.399771 -0.814679
2 0.454443 -0.363392
3 0.473753 0.550849
4 -0.211783 -0.015014

contents of foo1:
0 0.256773
1 1.204322
2 1.040515
3 -0.518414
4 0.634141

272 • Artificial Intelligence, Machine Learning, Deep Learning

Name: foo1, dtype: float64
contents of foo2:
0 -2.506550
1 -0.896516
2 -0.222923
3 0.934574
4 0.527033
Name: foo2, dtype: float64

Combining Pandas DataFrames (2)

Pandas supports the “concat” method in DataFrames in order to concat-
enate DataFrames. Listing C.6 displays the contents of concat_frames.
py that illustrates how to combine two Pandas DataFrames.

Listing C.6: concat_frames.py

import pandas as pd

can_weather = pd.DataFrame({
 "city": ["Vancouver","Toronto","Montreal"],
 "temperature": [72,65,50],
 "humidity": [40, 20, 25]
})

us_weather = pd.DataFrame({
 "city": ["SF","Chicago","LA"],
 "temperature": [60,40,85],
 "humidity": [30, 15, 55]
})

df = pd.concat([can_weather, us_weather])
print(df)

The first line in Listing C.6 is an import statement, followed by the
definition of the Pandas dataframes can_weather and us_weather
that contain weather-related information for cities in Canada and
the USA, respectively. The Pandas dataframe df is the concatenation

Introduction to Pandas   • 273

of can_weather and us_weather. The output from Listing C.6
is here:

0		 Vancouver		 40		 72
1		 Toronto		 20		 65
2		 Montreal		 25		 50
0		 SF			 30		 60
1		 Chicago		 15		 40
2		 LA			 55		 85

Data Manipulation with Pandas Dataframes (1)

As a simple example, suppose that we have a two-person company that
keeps track of income and expenses on a quarterly basis, and we want to
calculate the profit/loss for each quarter and the overall profit/loss.

Listing C.7 displays the contents of pandas_quarterly_df1.py that
illustrates how to define a Pandas DataFrame consisting of income-related
values.

Listing C.7: pandas_quarterly_df1.py

import pandas as pd

summary = {
 'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
 'Cost': [23500, 34000, 57000, 32000],
 'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)

print("Entire Dataset:\n",df)
print("Quarter:\n",df.Quarter)
print("Cost:\n",df.Cost)
print("Revenue:\n",df.Revenue)

Listing C.7 defines the variable summary that contains hard-coded quar-
terly information about cost and revenue for our two-person company. In
general, these hard-coded values would be replaced by data from another
source (such as a CSV file), so think of this code sample as a simple way to
illustrate some of the functionality that is available in Pandas DataFrames.

274 • Artificial Intelligence, Machine Learning, Deep Learning

The variable df is a Pandas DataFrame based on the data in the sum-
mary variable. The three print statements display the quarters, the cost
per quarter, and the revenue per quarter.

The output from Listing C.7 is here:

Entire Dataset:
		 Cost		 Quarter	 Revenue
0		 23500		 Q1		 40000
1		 34000		 Q2		 60000
2		 57000		 Q3		 50000
3				 Q4		 30000
Quarter:
0		 Q1
1		 Q2
2		 Q3
3		 Q4
Name: Quarter, dtype: object
Cost:
0		 23500
1		 34000
2		 57000
3		 32000
Name: Cost, dtype: int64
Revenue:
0		 40000
1		 60000
2		 50000
3		 30000
Name: Revenue, dtype: int64

Data Manipulation with Pandas DataFrames (2)

In this section, let’s suppose that we have a two-person company that keeps
track of income and expenses on a quarterly basis, and we want to calculate
the profit/loss for each quarter and the overall profit/loss.

Listing C.8 displays the contents of pandas_quarterly_df1.py that
illustrates how to define a Pandas DataFrame consisting of income-related
values.

Introduction to Pandas   • 275

Listing C.8: pandas_quarterly_df2.py

import pandas as pd

summary = {
 'Quarter':	 ['Q1', 'Q2', 'Q3', 'Q4'],
 'Cost':	 [-23500, -34000, -57000, -32000],
 'Revenue':	 [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)
print("First Dataset:\n",df)

df['Total'] = df.sum(axis=1)	
print("Second Dataset:\n",df)

Listing C.8 defines the variable summary that contains quarterly infor-
mation about cost and revenue for our two-person company. The variable
df is a Pandas DataFrame based on the data in the summary variable.
The three print statements display the quarters, the cost per quarter, and
the revenue per quarter.

The output from Listing C.8 is here:

First Dataset:
 Cost	  Quarter		 Revenue
0	 -23500	 Q1		 40000
1	 -34000	 Q2		 60000
2	 -57000	 Q3		 50000
3	 -32000	 Q4		 30000
Second Dataset:
 Cost	  Quarter		 Revenue	 Total
0	 -23500	 Q1		 40000		 16500
1	 -34000	 Q2		 60000		 26000
2	 -57000	 Q3		 50000		 -7000
3	 -32000	 Q4		 30000		 -2000

Data Manipulation with Pandas Dataframes (3)

Let’s start with the same assumption as the previous section: we have a two-
person company that keeps track of income and expenses on a quarterly
basis, and we want to calculate the profit/loss for each quarter and the over-
all profit/loss. In addition, we want to compute column totals and row totals.

276 • Artificial Intelligence, Machine Learning, Deep Learning

Listing C.9 displays the contents of pandas_quarterly_df1.py that
illustrates how to define a Pandas DataFrame consisting of income-related
values.

Listing C.9: pandas_quarterly_df3.py

import pandas as pd

summary = {
 'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
 'Cost': [-23500, -34000, -57000, -32000],
 'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)
print("First Dataset:\n",df)

df['Total'] = df.sum(axis=1)
df.loc['Sum'] = df.sum()
print("Second Dataset:\n",df)

or df.loc['avg'] / 3
#df.loc['avg'] = df[:3].mean()
#print("Third Dataset:\n",df)

Listing C.9 defines the variable summary that contains quarterly
information about cost and revenue for our two-person company. The
variable df is a Pandas DataFrame based on the data in the summary
variable. The three print statements display the quarters, the cost
per quarter, and the revenue per quarter. The output from Listing C.9
is here:

First Dataset:
 Cost	  Quarter		 Revenue
0	 -23500	 Q1		 40000
1	 -34000	 Q2		 60000
2	 -57000	 Q3		 50000
3	 -32000	 Q4		 30000

Introduction to Pandas   • 277

Second Dataset:
 Cost	  Quarter		 Revenue	 Total
0	 -23500	 Q1		 40000		 16500
1	 -34000	 Q2		 60000		 26000
2	 -57000	 Q3		 50000		 -7000
3	 -32000	 Q4		 30000		 -2000

Sum -146500 Q1Q2Q3Q4		 180000	 33500

Pandas DataFrames and CSV Files

The code samples in several earlier sections contain hard-coded data inside
the Python scripts. However, it’s also very common to read data from a CSV
file. You can use the Python CSV.reader() function, the NumPy load-
txt() function, or the Pandas function read_csv() function (shown in
this section) to read the contents of CSV files.

Listing C.10 displays the contents of the CSV file weather_data.csv and
Listing C.11 displays the contents of weather_data.py that illustrates
how to read a CSV file, initialize a Pandas DataFrame with the contents
of that CSV file, and display various subsets of the data in the Pandas
DataFrames.

Listing C.10: weather_data.csv

day,temperature,windspeed,event
7/1/2018,42,16,Rain
7/2/2018,45,3,Sunny
7/3/2018,78,12,Snow
7/4/2018,74,9,Snow
7/5/2018,42,24,Rain
7/6/2018,51,32,Sunny

Listing C.11: weather_data.py

import pandas as pd

df = pd.read_csv("weather_data.csv")

print(df)
print(df.shape) # rows, columns

(Continued)

278 • Artificial Intelligence, Machine Learning, Deep Learning

Listing C.11 invokes the Pandas read_csv() function to read the
contents of the CSV file weather_data.csv, followed by a set of Python
print() statements that display various portions of the CSV file.

The output from Listing C.11 is here:

 day temperature windspeed	 event
0 7/1/2018 42 16		 Rain
1 7/2/2018 45 3		 Sunny
2 7/3/2018 78 12		 Snow
3 7/4/2018 74 9		 Snow
4 7/5/2018 42 24		 Rain
5 7/6/2018 51 32		 Sunny
(6, 4)
 day temperature windspeed	 event
0 7/1/2018 42 16		 Rain
1 7/2/2018 45 3		 Sunny
2 7/3/2018 78 12		 Snow
3 7/4/2018 74 9		 Snow
4 7/5/2018 42 24		 Rain

 day temperature windspeed	 event
1 7/2/2018 45 3		 Sunny
2 7/3/2018 78 12		 Snow
3 7/4/2018 74 9		 Snow
4 7/5/2018 42 24		 Rain
5 7/6/2018 51 32		 Sunny

 day temperature windspeed	 event
1 7/2/2018 45 3		 Sunny
2 7/3/2018 78 12		 Snow

print(df.head()) # df.head(3)
print(df.tail())
print(df[1:3])
print(df.columns)
print(type(df['day']))
print(df[['day','temperature']])
print(df['temperature'].max())

Introduction to Pandas   • 279

Index(['day', 'temperature', 'windspeed', 'event'],
dtype='object')

<class 'pandas.core.series.Series'>
 day temperature
0 7/1/2018 42
1 7/2/2018 45
2 7/3/2018 78
3 7/4/2018 74
4 7/5/2018 42
5 7/6/2018 51
78

In some situations you might need to apply Boolean conditional logic to
filter out some rows of data, based on a conditional condition that’s applied
to a column value.

Listing C.12 displays the contents of the CSV file people.csv and List-
ing C.13 displays the contents of people_pandas.py that illustrates how to
define a Pandas DataFrame that reads the CSV file and manipulates the data.

Listing C.12: people.csv

fname,lname,age,gender,country
john,smith,30,m,usa
jane,smith,31,f,france
jack,jones,32,f,france
dave,stone,33,f,france
sara,stein,34,f,france
eddy,bower,35,f,france

import pandas as pd

df = pd.read_csv('people.csv')
df.info()
print('fname:')
print(df['fname'])
print('------------')
print('age over 33:')

Listing C.13: people_pandas.py

(Continued)

280 • Artificial Intelligence, Machine Learning, Deep Learning

Listing C.13 populate the Pandas dataframe df with the contents of
the CSV file people.csv. The next portion of Listing C.13 displays the
structure of df, followed by the first names of all the people. The next por-
tion of Listing C.13 displays a tabular list of six rows containing either True
or False depending on whether a person is over 33 or at most 33, respec-
tively. The final portion of Listing C.13 displays a tabular list of two rows
containing all the details of the people who are over 33. The output from
Listing C.13 is here:

print(df['age'] > 33)
print('------------')
print('age over 33:')
myfilter = df['age'] > 33
print(df[myfilter])

myfilter = df['age'] > 33
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 5 columns):
fname 6 non-null object
lname 6 non-null object
age 6 non-null int64
gender 6 non-null object
country 6 non-null object
dtypes: int64(1), object(4)
memory usage: 320.0+ bytes
fname:
0 john
1 jane
2 jack
3 dave
4 sara
5 eddy
Name: fname, dtype: object

age over 33:
0 False
1 False

Introduction to Pandas   • 281

Pandas DataFrames and Excel Spreadsheets (1)

Listing C.14 displays the contents of people_xlsx.py that illustrates how
to read data from an Excel spreadsheet and create a Pandas DataFrame
with that data.

Listing C.14: people_xlsx.py

2 False
3 False
4 True
5 True
Name: age, dtype: bool

age over 33:
 fname lname age gender country
4 sara stein 34 f france
5 eddy bower 35 m france

import pandas as pd

df = pd.read_excel("people.xlsx")
print("Contents of Excel spreadsheet:")
print(df)

Listing C.14 is straightforward: the Pandas dataframe df is ini-
tialized with the contents of the spreadsheet people.xlsx (whose
contents are the same as people.csv displayed in Listing C.12) via
the Pandas function read_excel(). The output from Listing C.14
is here:

 fname lname age gender country
0 john smith 30 m usa
1 jane smith 31 f france
2 jack jones 32 f france
3 dave stone 33 f france
4 sara stein 34 f france
5 eddy bower 35 f france

282 • Artificial Intelligence, Machine Learning, Deep Learning

Pandas DataFrames and Excel Spreadsheets (2)

Listing C.15 displays the contents of employees_xlsx.py that illus-
trates how to read data from an Excel spreadsheet and create a Pandas
DataFrame with that data.

Listing C.15: employees_xlsx.py

import pandas as pd

df = pd.read_excel("employees.xlsx")
print("Contents of Excel spreadsheet:")
print(df)

print("Q1 sum, mean, min, max:")
print(df["q1"].sum(), df["q1"].mean(),df["q1"].

min(),df["q1"].max())

print("Q2 sum, mean, min, max:")
print(df["q2"].sum(), df["q2"].mean(),df["q2"].

min(),df["q2"].max())

print("Q3 sum, mean, min, max:")
print(df["q3"].sum(), df["q3"].mean(),df["q3"].

min(),df["q3"].max())

print("Q4 sum, mean, min, max:")
print(df["q4"].sum(), df["q4"].mean(),df["q4"].

min(),df["q4"].max())

sum_col=df[["q1","q2","q3","q4"]].sum()
print("Quarter totals:")
print(sum_col)
df = pd.read_excel("people.xlsx")
print("Contents of Excel spreadsheet:")
print(df)

Listing C.15 starts by reading the contents of the spreadsheet people.
xlsx (whose contents are the same as people.csv displayed in Listing
C.12) into the Pandas dataframe df, just as you saw in Listing C.14. The
rest of Listing C.15 displays various statistical values, such as the sum, mean,

Introduction to Pandas   • 283

min, and max values of quarter 1, quarter 2, quarter 3, and quarter 4. The
output from Listing C.15 is here:

Contents of Excel spreadsheet:

id fname lname gender title q1

0 1000 john smith m marketing 20000

1 2000 jane smith f developer 30000

2 3000 jack jones m sales 10000

3 4000 dave stone m support 15000

4 5000 sara stein f analyst 25000

5 6000 eddy bower m developer 14000

q2 q3 q4 country

0 12000 18000 25000 usa

1 15000 11000 35000 france

2 19000 12000 15000 usa

3 17000 14000 18000 france

4 22000 18000 28000 italy

5 32000 28000 10000 france

Q1 sum, mean, min, max:
114000 19000.0 10000 30000
Q2 sum, mean, min, max:
117000 19500.0 12000 32000
Q3 sum, mean, min, max:
101000 16833.333333333332 11000 28000
Q4 sum, mean, min, max:
131000 21833.333333333332 10000 35000
Quarter totals:
q1 114000
q2 117000
q3 101000
q4 131000
dtype: int64

284 • Artificial Intelligence, Machine Learning, Deep Learning

Contents of Excel spreadsheet:
	 fname	lname	  age	 gender   country
0	 john	 smith	  30	  m		 usa
1	 jane	 smith	  31	  f		 france
2	 jack	 jones	  32	  f		 france
3	 dave	 stone	  33	  f		 france
4	 sara	 stein	  34	  f		 france

Reading Data Files with Different Delimiters

This section contains an example of reading a text file that contains differ-
ent delimiters: some rows use a space as a delimiter, whereas other rows
start with a space and use a colon “:” as well as a space as a separator.

Listing C.16 displays the contents of multiple_delims.dat that
contains data rows with different delimiters, followed by Listing C.17 that
displays the contents of multiple_delims.py that read the contents of
multiple_delims.dat into a Pandas DataFrame.

Listing C.16: multiple_delims.dat

c stuff
c more header
c begin data
 1 1:.5
 1 2:6.5
 1 3:5.3

import pandas as pd

df = pd.read_csv('multidelim.dat', skiprows=3,
 names=['a', 'b', 'c'],
 sep=' |:', engine='python')

print("dataframe:")
print(df)
print(data.head())

Listing C.17: multiple_delims.py

Listing C.17 invokes the Pandas read_csv() function to read the
contents of multidelim.dat into the Pandas dataframe df. Compare

Introduction to Pandas   • 285

the output shown below with the contents of Listing C.16 to understand
the code in Listing C.17:

dataframe:
 a b c
0 1 1 0.5
1 1 2 6.5
2 1 3 5.3

Transforming Data with the sed Command (Optional)

The preceding section contains an example of a data file with differ-
ent delimiters, but there is a limitation: the first set of rows must have
the same type and the second set of rows must also be of the same type.

However, you might have a more heterogeneous dataset with a set of
rows in random order, where each row contains multiple delimiters. The
solution in this section involves three files: an initial randomized dataset
multiple_delims2.dat, a shell script multiple_delims2.sh for cre-
ating a clean dataset called multiple_delims2b.dat, and a Python script
multiple_delims2.py that reads the data in multiple_delims2b.
dat into a Pandas DataFrame.

Listing C.18 displays the contents of multiple_delims2.dat that
contains a mixture of delimiters in multiple rows (in random order).

Listing C.18: multiple_delims2.dat

1000|Jane:Edwards^Sales
2000:Tom:Smith^Development
3000|Dave:Del Ray^Marketing
4000^Steven^Andrews:Marketing

inputfile="multiple_delims2.dat"
cat $inputfile | sed -e 's/:/,/' -e 's/|/,/' -e

's/\^/,/g'

Listing C.19 displays the contents of the shell script multiple_
delims.sh that transforms multiple_delims2.dat into the dataset
multiple_delims2b.dat, where the latter dataset has only a comma “,”
as a delimiter between columns in every row.

Listing C.19: multiple_delims2.sh

286 • Artificial Intelligence, Machine Learning, Deep Learning

Listing C.19 specifies the name of a text file whose contents are piped
to the Unix sed command that replaces all occurrences of the characters
“,”, “|”, and “^” with a comma “,”. The trailing g in the sed command
ensures that the replacement is performed globally. The resulting output
will contain only a “,” as a delimiter (shown in Listing C.18).

Open a command shell and navigate to the directory that contains the
shell script in Listing C.19 and execute the following pair of commands:

chmod +x multiple_delims2.sh

./multiple_delims2.sh > multiple_delims2b.dat

Listing C.20 displays the contents of multiple_delims2b.dat that
you created in the preceding step.

Listing C.20: multiple_delims2b.dat

1000,Jane,Edwards,Sales
2000,Tom,Smith,Development
3000,Dave,Del Ray,Marketing
4000,Steven,Andrews,Marketing

Listing C.21 displays the contents of multiple_delims2b.py that
reads the contents of multiple_delims2b.dat into a Pandas DataFrame.

Listing C.21: multiple_delims2b.py

import pandas as pd	

df = pd.read_csv('multiple_delims2b.dat',
 names=['a', 'b', 'c', 'd'],
 sep=',', engine='python')

print("dataframe:")
print(df)

Listing C.21 imports pandas and then initializes the variable df with
the contents of the text file multiple_delims2b.dat. The output from
launching the code in Listing C.21 is here:

dataframe:
 a b c d
0	 1000	  Jane	   Edwards	   Sales
1	 2000	  Tom	   Smith	   Development

Introduction to Pandas   • 287

2	 3000	  Dave	   Del Ray	   Marketing
3	 4000	  Steven  Andrews	   Marketing

Once again, the heavy lifting is performed by the cryptic-looking sed
command in the shell script multiple_delims2.sh, which is in appen-
dix 4 of the book Data Cleaning Pocket Primer (ISBN: 978-1683922179).
This book contains a detailed explanation of the sed command that will
enable you to understand the contents of multiple_delims2.sh, as well
as chapters that discuss the grep and awk commands and numerous exam-
ples of how to use them for various data cleaning tasks.

Select, Add, and Delete Columns in DataFrames

This section contains short code blocks that illustrate how to perform opera-
tions on a DataFrame that resemble the operations on a Python dictionary.
For example, getting, setting, and deleting columns works with the same
syntax as the analogous Python dict operations, as shown here:

df = �pd.DataFrame.from_dict(dict([('A',[1,2,3]),
('B',[4,5,6])]),

 orient='index', columns=['one',
'two', 'three'])

print(df)

The output from the preceding code snippet is here:

 one two three
A 1 2 3
B 4 5 6

Now look at the following sequence of operations on the contents of the
dataframe df:

df['three'] = df['one'] * df['two']
df['flag'] = df['one'] > 2
print(df)

The output from the preceding code block is here:

 one two three flag
a 1.0 1.0 1.0 False
b 2.0 2.0 4.0 False

288 • Artificial Intelligence, Machine Learning, Deep Learning

c 3.0 3.0 9.0 True
d NaN 4.0 NaN False

Columns can be deleted or popped like with a Python dict, as shown in
following code snippet:

del df['two']
three = df.pop('three')
print(df)

The output from the preceding code block is here:

 one flag
a 1.0 False
b 2.0 False
c 3.0 True
d NaN False

When inserting a scalar value, it will naturally be propagated to fill the column:

df['foo'] = 'bar'
print(df)

The output from the preceding code snippet is here:

 one flag foo
a 1.0 False bar
b 2.0 False bar
c 3.0 True bar
d NaN False bar

When inserting a Series that does not have the same index as the DataFrame,
it will be conformed to the index of the DataFrame:

df['one_trunc'] = df['one'][:2]
print(df)

The output from the preceding code snippet is here:

 one flag foo	 one_trunc
a 1.0 False bar 1.0
b 2.0 False bar 2.0
c 3.0 True bar NaN
d NaN False bar NaN

You can insert raw ndarrays but their length must match the length of the
index of the DataFrame.

Introduction to Pandas   • 289

Pandas DataFrames and Scatterplots

Listing C.22 displays the contents of pandas_scatter_df.py that illus-
trates how to generate a scatterplot from a Pandas DataFrame.

Listing C.22: pandas_scatter_df.py

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt	
from pandas import read_csv
from pandas.plotting import scatter_matrix

myarray = np.array([[10,30,20],
[50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']
colnames = ['January', 'February', 'March']

mydf = pd.DataFrame(myarray, index=rownames,
columns=colnames)

	
print(mydf)
print(mydf.describe())

scatter_matrix(mydf)
plt.show()

Listing C.22 starts with various import statements, followed by the def-
inition of the NumPy array myarray. Next, the variables myarray and
colnames are initialized with values for the rows and columns,
respectively. The next portion of Listing C.22 initializes the Pandas
DataFrame mydf so that the rows and columns are labeled in the out-
put, as shown here:

January February	 March
apples 10 30 20
oranges 50 40 60
beer 1000 2000 3000

290 • Artificial Intelligence, Machine Learning, Deep Learning

 January February March
count 3.000000 3.000000 3.000000
mean 353.333333 690.000000 1026.666667
std 560.386771 1134.504297 1709.073823
min 10.000000 30.000000 20.000000
25% 30.000000 35.000000 40.000000
50% 50.000000 40.000000 60.000000
75% 525.000000 1020.000000 1530.000000
max 1000.000000 2000.000000 3000.0000000

Pandas DataFrames and Histograms

Listing C.23 displays the contents of pandas_histograms.py that illus-
trates how to generate histograms from a Pandas DataFrame.

Listing C.23: pandas_histograms.py

import pandas as pd

df = pd.read_csv("housing.csv")

print(df.head())
print(df.info())
print(df.describe())

import matplotlib.pyplot as plt
df.hist(bins=50, figsize=(20,15))
#save_fig("housing_histograms")
plt.show()

Listing C.23 initializes the Pandas DataFrame df with the
contents of the CSV file housing.csv. Next, various portions of df are
displayed, such as the first five rows and information about the struc-
ture of df.

The next portion of Listing C.23 imports the plt class so that we can
display a scatterplot of the data in df: this is done by invoking the hist()

Introduction to Pandas   • 291

method of the df variable, followed by the plt.show() command that
actually displays the scatter plot. The output from Listing C.23 is here:

Unnamed:

0 price
lot
size

bed
rooms

bath
rms

stories
drive
way

rec
room\

0 1 42000.0 5850 3 1 2 yes no

1 2 38500.0 4000 2 1 1 yes no

2 3 49500.0 3060 3 1 1 yes no

3 4 60500.0 6650 3 1 2 yes yes

4 5 61000.0 6360 2 1 1 yes no

 fullbase gashw airco garagepl prefarea
0 yes no no 1 no
1 no no no 0 no
2 no no no 0 no
3 no no no 0 no
4 no no no 0 no

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 546 entries, 0 to 545
Data columns (total 13 columns):
Unnamed: 0 546 non-null int64
price 546 non-null float64
lotsize 546 non-null int64
bedrooms 546 non-null int64
bathrms 546 non-null int64
stories 546 non-null int64
driveway 546 non-null object
recroom 546 non-null object
fullbase 546 non-null object
gashw 546 non-null object
airco 546 non-null object
garagepl 546 non-null int64
prefarea 546 non-null object
dtypes: float64(1), int64(6), object(6)
memory usage: 55.5+ KB

292 • Artificial Intelligence, Machine Learning, Deep Learning

None
Unnamed:	

0 price
lot
size

bed
rooms

count 546.000000 546.000000 546.000000 546.000000

mean 273.500000 68121.597070 5150.265568 2.965201

std 157.760895 26702.670926 2168.158725 0.737388

min 1.000000 25000.000000 1650.000000 1.000000

25% 137.250000 49125.000000 3600.000000 2.000000

50% 273.500000 62000.000000 4600.000000 3.000000

75% 409.750000 82000.000000 6360.000000 3.000000

max 546.000000 190000.000000 16200.000000 6.000000

bathrms stories garagepl

count 546.000000 546.000000 546.000000

mean 1.285714 1.807692 0.692308

std 0.502158 0.868203 0.861307

min 1.000000 1.000000 0.000000

25% 1.000000 1.000000 0.000000

50% 1.000000 2.000000 0.000000

75% 2.000000 2.000000 1.000000

max 4.000000 4.000000 3.000000

Figure C.1 displays the histograms that are generated by launching the
code in Listing C.23.

Pandas DataFrames and Simple Statistics

Listing C.24 displays the contents of housing_stats.py that illustrates
how to gather basic statistics from data in a Pandas DataFrame.

Introduction to Pandas   • 293

FIGURE C.1 Histograms for the housing.csv Dataset.

Listing C.24: housing_stats.py

import pandas as pd

df = pd.read_csv("housing.csv")

minimum_bdrms = df["bedrooms"].min()
median_bdrms = df["bedrooms"].median()
maximum_bdrms = df["bedrooms"].max()

print("minimum # of bedrooms:",minimum_bdrms)
print("median # of bedrooms:",median_bdrms)
print("maximum # of bedrooms:",maximum_bdrms)
print("")

print("median values:",df.median().values)
print("")

(Continued)

294 • Artificial Intelligence, Machine Learning, Deep Learning

Listing C.24 initializes the Pandas DataFrame df with the contents
of the CSV file housing.csv. The next three variables are initialized with
the minimum, median, and maximum number of bedrooms, respectively,
and then these values are displayed.

The next portion of Listing C.24 initializes the variable prices with
the contents of the Prices column of the Pandas DataFrame df. Next, the
first five rows are printed via the prices.head() statement, followed by
the median value of the prices.

The final portion of Listing C.24 initializes the variable corr_matrix
with the contents of the correlation matrix for the Pandas DataFrame df,
and then displays its contents. The output from Listing C.24 is here:

Apples
10

Standardizing Pandas DataFrames

Listing C.25 displays the contents of pandas_standardize_df.py that
illustrates how to standardize data in a Pandas DataFrame.

prices = df["price"]
print("first 5 prices:")
print(prices.head())
print("")

median_price = df["price"].median()
print("median price:",median_price)
print("")

corr_matrix = df.corr()
print("correlation matrix:")
print(corr_matrix["price"].sort_

values(ascending=False))

Introduction to Pandas   • 295

Listing C.25: pandas_standardize_df.py

Standardize data (0 mean, 1 stdev)
from sklearn.preprocessing import StandardScaler
from pandas import read_csv
import numpy

url = 'https://goo.gl/bDdBiA'
names = ['preg','plas','pres','skin','test','mass',

'pedi','age','class']
dataframe = read_csv(url, names=names)
array = dataframe.values

separate array into input and output components
X = array[:,0:8]
Y = array[:,8]
scaler = StandardScaler().fit(X)
rescaledX = scaler.transform(X)

summarize transformed data
numpy.set_printoptions(precision=3)
print(rescaledX[0:5,:])

Listing C.25 imports the StandardScaler class from the Sklearn
package in order to rescale data values so that they have a mean of 0 and a
standard deviation of 1.

Next, the variable url is initialized with the location of a website that
returns CSV-based data. The names variable contains an array of column
names that are used to label the columns of the CSV-based data. Next, the
variable dataframe is initialized with the contents of the CSV-based data
(retrieved from the location specified by the url variable).

The next portion of Listing C.25 initializes the variable array with the
values in the variable dataframe. Next, the variable X is initialized with
the leftmost eight columns of every row in the variable array, and the vari-
able y is initialized with the data in the ninth column of the variable array.
The next portion of Listing C.25 invokes the fit method of the Standard-
Scaler class in order to fit the data contained in X, and the result is used

296 • Artificial Intelligence, Machine Learning, Deep Learning

to initialize the variable scaler. The next statement invokes the trans-
form() method on the contents of X and the results are used to initialize
the variable rescaledX, which concludes the required data transforma-
tions (finally!)

The final portion of Listing C.25 displays all the columns of the first five
rows of the variable scaler. The output from Listing C.25 is here:

minimum # of bedrooms: 1
median # of bedrooms: 3.0
maximum # of bedrooms: 6

median values: [2.735e+02 6.200e+04 4.600e+03
3.000e+00 1.000e+00 2.000e+00 0.000e+00]

first 5 prices:
0 42000.0
1 38500.0
2 49500.0
3 60500.0
4 61000.0
Name: price, dtype: float64

median price: 62000.0

correlation matrix:
price 1.000000
lotsize 0.535796
bathrms 0.516719
stories 0.421190
garagepl 0.383302
Unnamed: 0 0.376007
bedrooms 0.366447

Pandas DataFrames, NumPy Functions, and Large Datasets

Pandas DataFrames containing numeric data can be used in conjunction
with NumPy functions such as log, exp, and sqrt (and various other
NumPy functions). Example of such functions are shown here:

df.exp(df)
np.asarray(df)

Introduction to Pandas   • 297

matrix multiplication:
df.T.dot(df)

the dot method on Series implements dot product:

s1 = pd.Series(np.arange(5,10))
s1.dot(s1)

However, a Pandas DataFrame is not intended to be a direct replace-
ment for ndarray as some of its indexing semantics are quite different
from a matrix.

Another challenge that you might face: what do you do with large
datasets that exceed the memory of your machine? The solution involves
a chunking technique for reading portions of data into memory. Chunking
enables you to stream data from a file into a Pandas DataFrame, and you
can specify the number of rows in a chunk of data. An example of chunking
is shown here:

import pandas as pd
mydata = pd.DataFrame()

#Modify chunksize based on your requirements
for chunk in pd.read_csv('myfile.csv',

iterator=True, chunksize=5000):
 mydata = pd.concat([mydata, chunk], ignore_

index=True)

Working with Pandas Series

A Pandas Series is a one-dimensional labeled array that can be popu-
lated with any data type: integers, strings, floating point numbers, Python
objects, and so forth. The axis labels are collectively referred to as the
index.

Create a Pandas Series as shown here in the Python REPL:

>>> s = pd.Series(data, index=index)

The variable data in the preceding code snippet can be a scalar value,
a Python dict, an ndarray, and so forth. The variable index is a list of
axis labels, which consists of different possible values, as discussed in the
following subsections.

298 • Artificial Intelligence, Machine Learning, Deep Learning

From ndarray
If the variable data in the code snippet below is an ndarray, then index
must be the same length as the variable data:

>>> s = pd.Series(data, index=index)

However, if no index is passed, an index will be automatically created with
the values [0, ..., len(data) - 1]. Here is another example:

>>> s = pd.Series(np.random.randn(5), index=['a', 'b',
'c', 'd', 'e'])

>>> s

The output of the preceding code snippet in the Python REPL is here:

a 0.4691
b -0.2829
c -1.5091
d -1.1356
e 1.2121
dtype: float64
>> s.index

The output of the preceding code snippet in the Python REPL is here:

Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
>>> pd.Series(np.random.randn(5))

The output of the preceding code snippet in the Python REPL is here:

0 -0.1732
1 0.1192
2 -1.0442
3 -0.8618
4 -2.1046
dtype: float64

Note that Pandas supports nonunique index values. However, if you invoke
an operation that does not support duplicate index values, then an excep-
tion will be raised if you specify data that has duplicate index values.

Here is an example of a Python Series that is instantiated from a
Python dict:

>>> d = {'b' : 1, 'a' : 0, 'c' : 2}
>>> pd.Series(d)

Introduction to Pandas   • 299

The output in the Python REPL is here:

b 1
a 0
c 2
dtype: int64

Pandas DataFrame from Series
Listing C.26 displays the contents of pandas_df.py that illustrates how to
create a Pandas DataFrame with data from a Pandas Series.

Listing C.26: pandas_df.py

import pandas as pd

names = pd.Series(['SF', 'San Jose', 'Sacramento'])
sizes = pd.Series([852469, 1015785, 485199])

df = pd.DataFrame({ 'Cities': names, 'Size': sizes })
df = pd.DataFrame({ 'City name': names,'sizes': sizes })

print('df:',df)

Listing C.26 is straightforward: the first portion initializes the Pandas
Series names and sizes with cities, and zip codes, respectively. The next
portion of Listing C.26 creates the Pandas DataFrame df with the con-
tents of the series names and sizes. The output from Listing C.26 is here:

('df:',
 City name	 Sizes
0 SF	 852469
1 San Jose	 1015785
2 Sacramento	 485199)

Useful One-line Commands in Pandas

This section contains an eclectic mix of one-line commands in Pan-
das (some of which you have already seen in this appendix) that are
useful to know:

Save a data frame to a csv file (comma separated and without indices):

df.to_csv("data.csv", sep=",", index=False)

300 • Artificial Intelligence, Machine Learning, Deep Learning

List the column names of a DataFrame:

df.columns

Drop missing data from a DataFrame:

df.dropna(axis=0, how='any')

Replace missing data in a DataFrame:

df.replace(to_replace=None, value=None)

Check for NANs in a DataFrame:

pd.isnull(object)

Drop a feature in a DataFrame:

df.drop('feature_variable_name', axis=1)

Convert object type to float in a DataFrame:

pd.to_numeric(df["feature_name"], errors='coerce')

Convert data in a DataFrame to NumPy array:

df.as_matrix()

Display the first n rows of a dataframe:

df.head(n)

Get data by feature name in a DataFrame:

df.loc[feature_name]

Apply a function to a DataFrame: multiply all values in the “height”
column of the data frame by 3:

df["height"].apply(lambda height: 3 * height)

OR:

def multiply(x):

 return x * 3

df["height"].apply(multiply)

Rename the fourth column of the data frame as “height”:

df.rename(�columns = {df.columns[3]:'height'},
inplace=True)

Introduction to Pandas   • 301

Get the unique entries of the column “first” in a DataFrame:

df[""first"].unique()

Create a dataframe with columns “first” and “last” from an existing
DataFrame:

new_df = df[["name", "size"]]

Sort the data in a DataFrame:

df.sort_values(ascending = False)

Filter the data column named “size” to display only values equal to 7:

df[df["size"] == 7]

Select the first row of the “height” column in a DataFrame:

df.loc([0], ['height'])

This concludes the Pandas-related portion of the Appendix. The next
section contains a brief introduction to Jupyter, which is a Flask-based
Python application that enables you to execute Python code in a browser.
Instead of Python scripts, you will use Jupyter notebooks, which support
various interactive features for executing Python code. In addition, your
knowledge of Jupyter will be very useful when you decide to use Google
Colaboratory (discussed later) that also supports Jupyter notebooks in a
browser.

What Is Jupyter?

The Jupyter Notebook is an open-source web application for creating
and sharing documents. Moreover, such documents can contain a combina-
tion of code, equations, visualizations, and text. The Jupyter home page
is here:

http://jupyter.org/

Jupyter is popular among data scientists, Python developers, and
even physicists because it simplifies the sharing of code. Moreover, Google
Colaboratory (later in this appendix) supports Jupyter notebooks, along
with some extra functionality.

First let’s take a look at some Jupyter features that are discussed in
the next section.

302 • Artificial Intelligence, Machine Learning, Deep Learning

Jupyter Features
Jupyter has gained significant traction among various communities
because of its ease of use and useful functionality. Some of the features of
Jupyter include:

•	 support for multiple programming languages

•	 support for Python2 and Python3

•	 sharing notebooks

•	 importing notebooks

•	 download notebooks

•	 produce different types of output

•	 big data integration

•	 multiuser version

•	 user management and authentication

In particular, the Jupyter Notebook supports more than forty program-
ming languages, including Python, R, Julia, and Scala. Notebooks can be
easily shared via email, Dropbox, GitHub and the Jupyter Notebook
Viewer. Jupyter notebooks support interactive output that contains
a combination of HTML, images, videos, LaTeX, and custom MIME
types.

In addition, Jupyter notebooks support big data integration, such
as Apache Spark, where the data has been generated from Python, R and
Scala. A multiuser version of the Jupyter notebook is also available, and
it’s designed for companies, classrooms, and research labs. You can also
manage multiple users and authentication with OAuth and easily deploy
the Jupyter Notebook to all the users in your organization.

Launching Jupyter from the Command Line
Launching Jupyter from the command line is straightforward. First open
a command shell, then navigate to the directory that contains the Jupyter
notebook basic-stuff.ipynb, and then launch Jupyter with this com-
mand:

jupyter notebook

Introduction to Pandas   • 303

After a few moments a new browser session is automatically opened
and you will see a list of the files in the current directory.

JupyterLab
JupyterLab is an interactive development environment for notebooks con-
taining code and data, that also fully supports Jupyter notebooks. Jupy-
terLab also enables you to use text editors, terminals, data file viewers,
and other custom components side by side with notebooks in a tabbed work
area.

JupyterLab provides a high level of integration between notebooks,
documents, and activities, so that you can:

•	 drag-and-drop to reorder notebook cells and copy them between
notebooks.

•	 run code blocks interactively from text files (.py, .R, .md, .tex, etc.).

•	 link a code console to a notebook kernel to explore code
interactively without cluttering up the notebook with temporary
scratch work.

•	 edit popular file formats with live preview, such as Markdown, JSON,
CSV, Vega, VegaLite (and others)

Develop JupyterLab Extensions
While many JupyterLab users will install additional JupyterLab exten-
sions, some of you will want to develop your own. The extension develop-
ment API is evolving during the beta release series and will stabilize in
JupyterLab 1.0. To start developing a JupyterLab extension, see the
JupyterLab Extension Developer Guide and the TypeScript or JavaScript
extension templates.

JupyterLab itself is codeveloped on top of PhosphorJS, a new
Javascript library for building extensible, high-performance, desktop-
style web applications. In fact, JupyterLab supports modern JavaS-
cript technologies such as TypeScript, React, Lerna, Yarn, and webpack.
In addition, the combination of unit tests, documentation, consistent
coding standards, and user experience research helps them maintain a
high-quality application.

304 • Artificial Intelligence, Machine Learning, Deep Learning

Summary

This appendix introduced you to Pandas for creating labeled Dataframes
and displaying metadata of Pandas Dataframes. Then you learned how to
create Pandas Dataframes from various sources of data, such as random
numbers and hard-coded data values.

You also learned how to read Excel spreadsheets and perform numeric
calculations on that data, such as the min, mean, and max values in numeric
columns. Then you saw how to create Pandas Dataframes from data stored
in CSV files. Then you learned how to invoke a Web Service to retrieve
data and populate a Pandas Dataframe with that data. In addition, you
learned how to generate a scatterplot from data in a Pandas Dataframe.
Finally, you saw how to use Jupyter, which is a Python-based application
for displaying and executing Python code in a browser.

Index

A

Accuracy, 79, 93, 211
complexity and, 65
of decision tree model, 75
of neural network, 105
vs. precision vs. recall, 37

Activation functions, 80–82, 129
common, 82–83
exponential linear unit, 84–85
Keras, 84
LeakyReLU, 157
multilayer perceptron, 111–112
nonlinear, 110, 111
Perceptron, 104
preferred, 84
Python. See Python activation functions
in Python, 83
rectified linear unit, 84–85
ReLU, 102, 115–117, 157
sigmoid, 83, 86–87, 111
softmax, 86, 112, 117
softplus, 86
tanh, 83, 86, 111, 112
work, 81

Activation hyperparameter, 107
Adam optimizer, 110
Adversarial attacks, 152–153
Adversarial images, 152
Adversarial training, 152
Agents, 19, 173, 183
Algorithmic bias, data bias vs., 21
Algorithms, 24, 102

classification, 64
clustering, 25, 27–28

deep RL, 185
epsilon-greedy, 159, 180–181
genetic. See Genetic algorithm
types, 64

AlphaZero, success of, 11
ALVINN, 13
AM system. See Artificial Mathematician
system
AND function, 110
Android Neural Networks API, 223
Animal intelligence, 3
ANN. See Artificial neural networks
Anomaly detection, 26
API

Android Neural Networks, 223
tf.rank(), 229
tf.shape(), 230–231
tf.tan(), 245

Arithmetic operations, 224
in TensorFlow 2, 240–241

caveats for, 241–242
Array variable, 49, 50, 54
Artificial intelligence (AI), 1

bioinformatics, 17–18
code samples, 21–22
definition, 2–4
evolutionary computation, 14
expert systems, 7, 9, 12–13
and games, 10–11
genetic algorithm, 8
heuristics, 6–8
interrogator test, 5, 6
knowledge representation, 8–9
major parts of, 18–21

deep learning, 19

306 • Artificial Intelligence, Machine Learning, Deep Learning

machine learning, 18–19
reinforcement learning, 19–20
robotics, 20–21

natural language processing, 14–17
neural computing, 13–14
strong AI vs. weak AI, 4–5
turing test, 5–6

Artificial Mathematician (AM) system, 12
Artificial neural networks (ANNs), 13,
105–107, 128, 129, 190

Attention, 163
Attention Augmented Convolutional
Networks, 162

Attention score, 162
Attribute selection, 30
Audio signals with convolutional neural
networks, 125–126

Autoencoder (AE), 147–151
and principal component analysis, 150
variational, 150–151

AutoGraph, 239–240

B

Back propagation, 13, 100, 101, 102
Back propagation-based networks, 13, 15
Back propagation through time
(BPTT), 127, 130

Backward error propagation, 105, 108,
109–110. See also Back propagation

Bag of Words (BoW), 165–166
batch_size variable, 60
Bayesian inference, 75–77
Bayesian probability, 75
Bayesian terminology, 76
Bayes theorem, 75, 77
Bellman equations, 179, 181–182
BERT. See Bidirectional Encoder
Representations from Transformers

Best fitting line, 39, 40, 47, 62, 93
Bias-variance tradeoff, 35–36
Bidirectional() class, 189

Bidirectional Encoder Representations
from Transformers (BERT), 17, 163, 165,
169–171, 173

Bidirectional long short term memory
(bidirectional LSTMs), 17, 101, 140–141,
162, 190

bidirectional LSTMs. See Bidirectional Long
Short Term Memory

Bidirectional transformers, 163, 172
Binary classification, 64, 66

vs. multiclass classification, 65–66
Binary classifier, 112
Bioinformatics, 17–18
Biological plausibility, 4
Boolean operations on DataFrames, 268–270
boston_housing dataset, 191
BoW. See Bag of Words
bow_to_vector.py, 165–166
BPTT. See Back propagation through time
Brooks, Rodney, 14
build_gan() method, 155
build_keras_mode() method, 60
Built-in functions, 242–244

C

calc_prod(), 227
Callback function, 206, 208
callbacks variable, 207
Capsule networks, 117
CFGs. See Context-free grammars
cGANs. See Conditional GANs
checkpoint, 215
Chess program, 10
Chinook, 11
Cifar10 dataset, 203

keras and CNN, 201–204
Class, 64

Bidirectional(), 189
Conv2D(), 189
MaxPooling2D(), 189
RNN(), 189

Index • 307

Classical machine learning methods, 163
Classification algorithms, 26–27, 64, 103

activation functions, 80–82
Bayesian inference, 75–77
binary vs. multiclass, 65–66
classifiers, 64–65
decision trees, 68–73
evaluating, 79
k Nearest Neighbor algorithm for, 27
linear classifier, 66–67
multilabel, 66
naïve Bayes classifiers, 65, 77–78
support vector machines, 74–75
training, 78

Classifiers, 64–65, 87, 103
Clustering algorithms, 25, 27–28, 64
CNNs. See Convolutional neural networks
Code samples, xvii, 21–22
Collective intelligence, 3
Command line, Jupyter from, 302–303
Command shell, xviii
Companion files, xviii
compile()method, 131, 134, 194
compute_values(), 235, 240
concat_frames.py, 272
Concat method in DataFrames, 272
Conditional GANs (cGANs), 156
Confusion matrix, 37, 73, 75, 212
Constant, TensorFlow 2, 225–227
Context-free grammars (CFGs), 16, 160
contrib namespace, 191
Conv2D. See Convolutional layer
Conv2D()class, 156, 189
Conv2DTranspose (), 156
Convert Python arrays to TensorFlow 2,
252–253

Convolutional layer (Conv2D), 114–115,
117, 203

Convolutional neural networks (CNNs), 65,
86, 95, 101, 107, 110

analyzing audio signals with, 125–126
high-level view of, 113–114

keras and cifar10, 201–204
minimalistic, 114
production quality, 114

Core techniques, 23
Cost functions, 23
Covariance matrix, 33
create_model(), 214
Cross-validation, 34
CSV files, Pandas DataFrame and,
277–281
CSV.reader() function, 277
Curve-fitting, linear regression vs., 40
Cutoff probability, 88

D

Darwin’s theory of evolution, 8
Data (instead of rules), 19
Data bias vs. algorithmic bias, 21
Data cleaning tasks, 29, 265
DataFrames, 263, 264–265. See also
Pandas DataFrame

“concat” method in, 272
and data cleaning tasks, 265
Pandas Boolean, 268–270
Pandas Numeric, 267–268

Data manipulation, with Pandas
DataFrame, 273–277

Data normalization vs. standardization, 35
Datapoints, 112–113
Data preprocessing tasks, 163–164
Datasets, 24, 28, 67, 68, 296–297

boston_housing, 191
cifar10, 203
data values in, 28
fashion_mnist, 191
features in, 31
iris, 89–93
MNIST, 95, 112, 117
partial_wine.csv, 71
Titanic, 191
working with, 33–34

308 • Artificial Intelligence, Machine Learning, Deep Learning

Data types, TensorFlow 2 (TF 2), 224–225
Data visualization, 221
DCGANs. See Deep Convolutional GANs
DecisionTreeClassifier class, 69, 73
Decision trees, 68–73
Deep Blue, 10
Deep Convolutional GANs (DCGANs), 156
Deep learning (DL), xv, 19, 65, 98–103, 163

architectures, 101
backward error propagation, 109–110
challenges in, 102–103
convolutional layer, 114–115
convolutional neural networks.

See Convolutional neural networks
datapoints, 112–113
high-level view of CNNs, 113–114
hyperparameters. See Hyperparameters
Keras and XOR function, 96–98
models, 99, 219
multilayer perceptrons, 110–112
and natural language processing, 172
perceptrons, 103–105
problem solving, 101–102

deeplearning.js, 223
DeepMind Lab, 183
Deep Neural Networks (DNN), 103
Deep reinforcement learning (DRL), 19, 20,
101, 175, 184–185

algorithms, 185
Deep Thought, 10
Default execution mode, 220
Deferred execution mode, 220, 224
Dempster-Schafer Theory, 12
DENDRAL, 12
Dependent variables, 89, 99
describe() method, 266
Deterministic Finite Automata (DFA), 177
DFA. See Deterministic Finite Automata
Diagonal line segments, 44
dict operations, 287
Differentiation, 253–254
Dimensionality reduction, 26, 31–33

Discriminator, 153, 156
Distributional hypothesis, 161, 168
DL. See Deep learning
DNN. See Deep Neural Networks
DOCTOR, 15
Dopamine toolkit, 185
DRL. See Deep reinforcement learning
Dropout rate hyperparameter, 109
Duplicate values, 28
dynamic_lstm_2TP.py, 142–144
dynamic_rnn_2TP.py, 135–137

E

Eager execution mode, 220, 221
TensorFlow 2, 224

Early stopping, Keras and, 205–211, 216
ELMo. See Embeddings from Language
Models

ELU activation function. See Exponential
linear unit activation function

Email, 24
Embedded strategy, 31
Embedding, 168–169
Embeddings from Language Models
(ELMo), 165, 169–171, 185

End-to-End Speech-to-Speech Translation
Model, 171

English test, 170
Enhanced Representation through
knowledge IntEgration (ERNIE 2.0),
169–171

Environment, 184
Epochs, 98, 110

vs. Loss, 197
Epsilon-greedy algorithm, 159, 180–181
ERNIE 2.0. See Enhanced Representation
through kNowledge IntEgration

Error matrix. See Confusion matrix
Error types, 51
ETAOIN SHRDLU, 15

Index • 309

Euclidean distance, 67
Euclidean plane, 43

XOR function in, 96
Euler’s constant, 83
evaluate() method, 194
Evolutionary computation, 8, 14
Exact values, 40–41
Excel spreadsheets, Pandas DataFrame
and, 281–284

Exclusive OR (XOR) function, 13
Expert systems, 7, 9, 12–13
Exploding gradient problem, 102, 130
Exploitation, 180
Exploration, 180
Exponential linear unit (ELU) activation
function, 83–85

Exponential values, in TensorFlow 2, 245–246

F

fashion_mnist dataset, 191
Feature engineering, 30–31
Feature extraction, 23, 30–32, 149
Feature map, 113
Features, 24

in dataset, 31
Feature scaling, 35
Feature selection, 23, 30–31, 192
Filter strategy, 31
Financial portfolio diversification, 74
Finder, xviii
fit() method, 60, 69, 134, 194
fit_transform() method, 60
for loop, 239–240
Formulas, long short term memory, 141–142
Forward propagation process, 105, 109
Four Cs, xvii
Fraud detection, 148
F1 score, 38–39
Fully connected layer, 87
func() function, 238

Function(s)
AND, 110
activation. See Activation functions
cost, 23
CSV.reader(), 277
func(), 238
hardmax, 87
Keras, 96–98
np.random.random, 207
NumPy, 53
NumPy loadtxt(), 277
OR, 110
Pandas read_csv(), 278
read_csv(), 277
ReLU/SELU/ELU, 190
to_categorical(), 192
XOR, 89
XOR, 96–98, 110, 113

Functional API, 188

G

GA. See Genetic algorithm
Games, 10–11
GAN. See Generative Adversarial Networks
Gated Recurrent Units (GRUs), 87, 147
GCloud SDK, 260
GCP. See Google Cloud Platform
Generalized linear regression, 42
Generative Adversarial Networks (GAN),
117, 151–153

creating, 153–156
high-level view, 156–157

Generator, 153
Generic tree, 68
Genetic algorithm (GA), 8, 14
George Polya, 8
Goal-oriented algorithms, 175
Goodfellow, Ian, 152
Google AI team, 172
Google Cloud Platform (GCP), 260

SDK, 260
Google Colaboratory, 171, 258–260

310 • Artificial Intelligence, Machine Learning, Deep Learning

GPT-2 language, 170, 173
GPU, 258–260
Greedy algorithm, 180–181
GRUs. See Gated Recurrent Units
GUIDON, 12

H

Handwriting recognition, 129
HardMax differences, 87
hardmax function, 87
Hardmax similarities, 86–87
HEARSAY, 16
HEARSAY I and II, 12
Heuristics, 6–8
Hidden states, 129
High Correlation filter technique, 28
Hinton, Geoffrey, 117
hist() method, 290–291
Histograms, Pandas DataFrame and,
290–292

Holdout method, 78
Homo erectus, 3
Horizontal line segments, 44
housing.csv, 60, 61
Human hearing system, 4
HWIM project, 16
Hybrid algorithm, 181
Hyperparameters, 100–101, 106, 199

activation, 107
dropout rate, 109
initializing, model for, 107
learning rate, 109
long short term memory, 142
loss function, 108
optimizer, 108–109

Hyper plane, 41

I

idf. See Inverse Document Frequency
Image-recognition systems, 152
import statements, 46, 60, 72, 91, 120, 199, 289

Independent variables, 89, 99
Index value, 112
Installed version of TensorFlow, 221–222
Intel Coach, 183
Intelligent systems, 2, 14

litmus test for, 3
Interrogator test, 5, 6
Inverse Document Frequency (idf), 167
Iris dataset, 38, 89–93

J

Java program, 22
Java Runtime Environment (JRE), 22
JRE. See Java Runtime Environment
Jupyter

from command line, 302–303
features, 302
JupyterLab, 303
notebook, 259, 263, 301

JupyterLab, 303
extensions, 303

K

Kaggle competitions, 264
Keras, xvi , 24, 89–93, 127, 187–188

activation functions, 84
CNNs and, 122–125
CNNs, and cifar10, 201–204
creating, 192–195
and early stopping, 205–211
function, 96–98
lifecycle execution, 210
and linear regression, 57–61, 195–197
and metrics, 211–212
MLPs and MNIST, 198–201
and MNIST dataset, 119–125, 132–135
namespaces. See Namespaces
recurrent neural networks and, 130–135
resizing images in, 204–205
saving and restoring, 212–215
TensorFlow and, 148

Index • 311

keras_cnn_cifar10.py, 201–203
keras_cnn_mnist.py, 122–123
keras_create_gan.py, 154
keras_linear_regression.py,
58–59
keras_mlp_mnist.py, 198
keras_mnist.py, 120
keras_resize_image.py, 204
keras-rl toolkit, 185
keras_rnn_mnist.py, 132–133
keras_rnn_model.py, 130–131
Keras Sequential() API, 123
keras.tf.datasets namespaces,
190–191

Kernel trick, 74
k-fold cross-validation, 34
k-fold cross-validation technique, 78
k-Means, 28
kMeans algorithm, 63
k Nearest Neighbor (kNN) algorithm, 32, 63,
67–68

for classification, 27
handling a tie in, 67–68

kNN algorithm. See k Nearest Neighbor
algorithm

Knowledge-based systems, 12
Knowledge representation, 8–9

languages, 13
logic-based approach for, 9
semantic networks, 9

L

Labeled Pandas Dataframe, 265–266
LASSO regularizers, 192
LeakyReLU (), 156
LeakyReLU activation function, 157
Learning rate hyperparameter, 109
LeCun, Yann, 152
Linear classifier, 66–67
Linear data with np.linspace(), 54

Linear Discriminant Analysis, 63
Linearly separable data, 89
Linear model, 232
Linear regression, 23, 39–42, 52, 99, 100

with Keras, 57–61
Keras model and, 195–197
MSE values with, 57
vs. curve-fitting, 40

Line segment, 43
piece-wise linear graph of, 45
three horizontal, 44
two diagonal, 44
two slanted parallel, 45

Logic-based approach, 9
Logistic regression model, 63, 87–93
Long short term memory (LSTMs), 17, 64,
95, 101, 105, 127, 128, 139–142, 162, 173

anatomy of, 139–140
autoencoder, 147–151
bidirectional, 140–141
formulas, 141–142
gated recurrent unit, 147
hyperparameter tuning, 142
VAE-GAN model, 157
variational autoencoder, 150–151
working with TensorFlow and, 142–147

Long term dependency, 139
Loss function hyperparameter, 108
Low Variance filter technique, 28
LSTMs. See Long Short Term Memory

M

Mac, xviii
Machine intelligence test, 6
Machine learning (ML), xv, 18–19, 23, 24

bias-variance tradeoff, 35–36
dimensionality reduction, 31–33

covariance matrix, 33
principal component analysis, 32–33

feature engineering and extraction, 30–31
feature selection in, 30–32, 192
and feature scaling, 35

312 • Artificial Intelligence, Machine Learning, Deep Learning

LASSO regularizers, 192
linear regression, 39–42
metrics for measuring models, 36–38

accuracy vs. precision vs. recall, 37
confusion matrix, 37
R-squared value, 36–37

receiver operating characteristic curve, 38
regularization, 34–35
Ridge regularizers, 192
statistical terms, 38–39
tasks, 28–30
theoretical aspects, xvi
types, 24–26

semi-supervised learning, 26
supervised learning, 25
unsupervised learning, 25–26

working with datasets, 33–34
cross-validation, 34
training data vs. test data, 34

working with lines in the plane (optional),
43–46

Machine learning algorithms, 24
for linear regression, 40–41
types, 26–30

classification algorithms, 26–27
clustering algorithms, 27–28
regression, 26

MAgent, 183
MAP hypothesis. See Maximum a posteriori
hypothesis

Markov Chain, 173, 176–178
Markov Decision Process (MDP), 176–179
math_values(), 243
Matplotlib, 46–47
Matplotlib, xvii , 124
Matrix consolidation, 79
Maximum a posteriori (MAP) hypothesis, 77
MaxPooling2D()class, 189
Max pooling layer, 115–117
McCarthy, John, 18
MDP. See Markov Decision Process
Mean Absolute Error (MAE), 35, 51
meanshift algorithm, 28

Mean Squared Error (MSE), 23, 35, 42,
51–52, 99

calculating, 52–53
list of error types, 51
loss function, 108
non-linear least squares, 52
with np.linspace(), 55–57
values with linear regression, 57

Measuring models, metrics for, 36–38
Medical diagnosis, 7
Method

build_gan(), 155
compile(), 131, 134, 194
evaluate(), 194
fit(), 134, 194
hist(), 290–291
model.evaluate(), 207
model.fit(), 207
predict(), 194
summary(), 131
tf.assign(), 232
transform(), 296
watch(), 255

Minibatch discrimination, 153
Minimalistic convolutional Neural Networks,
114
MinMaxScaler class, 60
Mirror test, 3
Missing Value Ratio technique, 28
ML. See Machine learning
MLPs. See Multilayer perceptrons
MNIST dataset, 25, 27, 64, 95, 112, 117, 128,
191
CNNs and, 122–125
displaying an image in, 118–119
Keras and, 119–125
Keras, MLPs and, 198–201
working with Keras, RNNs, and,

132–135
model, 123, 125
Model-based API, 189
Model-based reinforcement learning, 175
model.evaluate() method, 207

Index • 313

model.fit() method, 207
MSE. See Mean Squared Error
MT-DNN, 171
Multiclass classification, binary vs., 65–66
Multilabel classification, 66
Multilayer perceptrons (MLPs), 19, 95, 101,
105, 107, 110–112
Keras and MNIST, 198–201

Multinomial classifiers, 65
Multiple binary classifiers, 66
Multiple independent trees, 27
Multiplying two second-order tensors, Ten-
sorFlow 2, 251

Multivariate analysis, 41–42
in traditional statistics, 26

MYCIN, 12
my_product(), 239

N

Naïve Bayes classifiers, 65, 77–78
types, 78

Namespaces, 188–189
contrib, 191
keras.tf.datasets, 190–191
other tf.keras, 191–192
in TF 2, 188–189
tf.keras.activations, 190
tf.keras.callbacks, 191
tf.keras.experimental, 191
tf.keras.layers, 189–190
tf.keras.metrics, 211
tf.keras.models, 189, 194
tf.keras.optimizers, 192
tf.keras.regularizers, 192
tf.keras.utils, 192
tf.nn, 194

Natural Language Generation (NLG), 159,
172–173, 185

Natural language processing (NLP), 1,
14–17, 21, 113, 159, 185, 189

algorithms, 164–168
data preprocessing tasks in, 163–164

deep learning and, 163, 172
ELMo, ULMFit, OpenAI, BERT, and

ERNIE 2.0, 169–171
embedding, 168–169
NFAs to MDPs, 176–179
NLU vs. NLG, 172–173
Reformer architecture, 163
and reinforcement learning.

See Reinforcement learning
tasks, 128
techniques, 160–161
transformer architecture and, 161–162
Transformer-XL architecture,

162–163
translatotron, 171–172
word embeddings, 168–169
working with, 160–164

Natural Language Understanding (NLU),
159, 172–173

Natural selection, 8
ndarray, 298–299
Nested loops, with tf.GradientTape,
255–256

Neural computing, 13–14
Neural networks, 13, 41, 79, 81, 95, 99, 107,
110

accuracy of, 105
nonlinear activation functions in, 82
in TensorFlow, 122

Neurons, 104, 107, 109
New drosophila, 11
NFA. See Nondeterministic finite automata
n-grams technique, 164–165
NLG. See Natural Language Generation
NLP. See Natural language processing
NLU. See Natural Language Understanding
Nondeterministic finite automata (NFA),
176–177

Nonlinear activation function, 81, 82, 110,
111

Non-linear least squares, 52
Nonnumeric classes of data, 64
Non-technical prerequisites, xvii

314 • Artificial Intelligence, Machine Learning, Deep Learning

np.linspace()API
linear data with, 54
MSE with, 55

np_plot_quadratic.py, 49
np.random.randn() method, 54
np.random.random function, 207
Null hypothesis, 39
NumPy, xvii, 23

array, 137
functions, 53, 296–297
and Matplotlib

quadratic scatterplot with, 49–50
scatter plots with, 46–49

methods, 83
operations, 233

NumPy DataFrame, 266
NumPy linspace(), 49
NumPy loadtxt() function, 277
NumPy ndarray, 224, 269
Numpy randn(), 46

O

One-hot encoding, 199
One-line commands in Pandas, 299–301
One-versus-All (OvA) technique, 66
One-versus-One (OvO) technique, 66
One-versus-the-rest. See One-versus-All
technique

OpenAI, 169–171, 170
OpenAI gym, 183
Open AI Gym’s NChain environment, 180–181
OpenAI lab, 183
OpenAI universe, 183
Operations, in TensorFlow 2, 247–249
Optimization problems, 14
Optimizer hyperparameter, 108–109
OR function, 110
OvA technique. See One-versus-All technique
Overloading functions, with @
tf.function, 238–239

OvO technique. See One-versus-One
technique

P

Pandas, 263, 304. See also Pandas
DataFrame

one-line commands in, 299–301
Pandas Boolean DataFrames, 268–270
Pandas DataFrame, 264–265

combining, 271–273
and CSV Files, 277–281
and data cleaning tasks, 265
data manipulation with, 273–277
and Excel spreadsheets, 281–284
features, 264
and histograms, 290–292
labeled, 265–266
NumPy functions, and large datasets,

296–297
and random numbers, 270
reading data files with different delimit-

ers, 284–285
and scatterplots, 289–290
select, add, and delete columns in,

287–288
from Series, 299
and simple statistics, 292–294
standardizing, 294–296
transposing, 269–270

pandas_labeled_df.py, 265–266
Pandas Numeric DataFrames, 267–268
Pandas read_csv() functions, 278
Pandas Series, 264, 297–299
Parallel construction, 142
Parse tree, 16, 17
PCA. See Principal component analysis
PeepholeLSTMCell class, 191
Perceptron activation function, 104
Perceptron Learning Rule, 13
Perceptrons, 103–105

in artificial neural network, 105
detailed view of, 104
function, 104

Persistent Gradient Tape, 257–258
“Perturbation technique,” 46, 48–50, 54, 55, 62

Index • 315

Piece-wise linear function, 42
plain_linreg1.py, 55–56
plt.show() command, 291
PNG file, 27
Policy, 183
Policy-based reinforcement learning, 175
Popular NLP algorithms, 164–168
Posterior probability, 76
Preceding approach, 172
Preceding code block, 156
Precision, 37, 79
Prediction bias, 35
predict()method, 60, 194
“Preferred” activation function, 84
prices.head() statements, 294
Primitive types, TensorFlow 2 (TF 2), 225
Principal component analysis (PCA),
32–33, 150
print() function, 234, 235, 244
print() statements, 210, 230, 241, 243,
246, 247, 250, 266, 274, 275, 276

Prior probability, 76
PROSPECTOR, 12
p-value, 39
Python, xvii

activation functions in. See Python
activation functions

Python activation functions, 83, 99, 100, 155, 166
add(), 239
create_model(), 214
decorator @tf.function, 218
func() function, 238
math_values(), 243
show_rank(), 229
@tf.function decorator for, 233

Python class, 189
Python file, 22
Python methods, 155

build_keras_mode(), 60
fit_transform() method, 60
predict() method, 60

Python read-eval-print-loop (REPL), 222

Q

Quadratic Scatterplot with NumPy and
Matplotlib, 49–50

R

RaggedTensor, 247
Random forest classifiers, 65
Random forests, 27, 52, 73–74
Random numbers, 270
Ray, 43
read_csv() function, 277
read_excel(), 281
Recall, 37, 79
Receiver operating characteristic (ROC)
curve, 38, 79

Rectified linear unit (ReLU), 111
Recurrence Mechanism, 162
Recurrent neural networks (RNNs), 17,
63–64, 95, 101, 105, 127, 128–129, 173

anatomy of, 129–130
autoencoder, 147–151
back propagation through time, 130
gated recurrent unit, 147
TensorFlow and, 163
VAE-GAN model, 157
variational autoencoder, 150–151
working with Keras and, 130–135
working with TensorFlow and, 135–139

Reformer architecture, 163
Regression

algorithms, 26, 64
types of, 42–43

Regular Expressions (RegExs), 160
Regularization, 34–35
Reinforcement learning (RL), 19–20, 101,
159, 173–174

applications, 174–175
Bellman equations, 181–182
NLP and, 175
toolkits and frameworks, 183–184
values, policies, and models, 175–176

316 • Artificial Intelligence, Machine Learning, Deep Learning

Relational artifacts, 16
Relative Positional Encoding, 162
ReLU. See Rectified Linear Unit; Rectified
linear unit
ReLU activation functions, 83–85, 102, 107,
115–117, 157, 190, 194, 199
REPL, 298, 299
Resizing images in Keras model, 204–205
ResNet, 117
Restoring, Keras model, 212–215
Ridge regularizers, 192
RL. See Reinforcement Learning
rllab, 183
RMSE. See Root Mean Squared Error
RMSProp, 51
RNN() class, 189
rnn-mnist.png file, 134
RNNs. See Recurrent neural networks
Robotics, 20–21
ROC curve. See Receiver operating charac-
teristic curve

Root Mean Squared Error (RMSE), 51
R-squared value, 36–37
Rule-based system, 18, 21

S

Saving, Keras model, 212–215
Scaled Exponential Linear Unit (SELU), 83
Scatterplots

with NumPy and Matplotlib, 46–49
Pandas DataFrame and, 289–290
of points, 47

Second-order tensors, in TensorFlow 2, 249–251
sed command, 285–287
Self-attention mechanism, 161
Self-awareness tests, 3
SELU. See Scaled Exponential Linear Unit
Semantic Net Processing System (SNePS), 9
Semi-supervised learning, 26
seq_length_batch, 137, 139

Sequential API, 188, 189
Sequential() class, 189
show_rank(), 229
SHRDLU, 16
sigmoid activation function, 83, 86–87,
102, 111, 140, 190
SimpleRNN class, 131
Simple statistics, Pandas DataFrame and,
292–294

Single-layered network, 13
Skip gram, 165
sklearn_tree2.py, 68, 69
Slanted parallel line segments, 45
SNePS. See Semantic Net Processing System
softmax activation function, 86, 93, 112,
117, 190, 203
softplus activation function, 86
Specificity, 38
Speech recognition, 129
Speech-to-speech translation systems, 171
Spreadsheet, 24
Stand-alone expert systems, 13
Standalone Keras, TF 2 Keras vs., 192
Standard error, 236
Standardization, data normalization vs., 35
Standardized IQ tests, 4
Standardizing Pandas DataFrame,
294–296
StandardScaler class, 73, 295, 296
StarCraft, 185
State-of-the-art algorithms, 139
Statistical terms, 38–39
Statistical value, 28
Strings, in TensorFlow 2, 246–247
Strong artificial intelligence, 7

vs. weak artificial intelligence, 4–5
StyleGANs, 156
summary() method, 131, 275
Supervised learning, 25
Support Vector Machines (SVM), 27, 74–75

tradeoffs of, 74–75

Index • 317

SVM. See Support Vector Machines
Symbol-based approach, 14

T

tanh activation function, 83, 86, 111, 140,
190

t-Distributed Stochastic Neighbor Embed-
ding (t-SNE), 32

TEIRESIAS, 12
Ten-fold cross-validation, 34
TensorBoard, 223
TensorBoard class, 207
TensorFlow, 23

and Keras, 148
and long short term memory, 142–147
neural networks in, 122
and recurrent neural networks, 135–139
reinforcement learning in, 183
and RNNs, 163

TensorFlow 2 (TF 2), xvi, 218–220
architecture, 220–221
arithmetic operations in, 240–241

caveats for, 241–242
AutoGraph, 239–240
and built-in functions, 242–244
conflicting types in, 252–253
constant, 225–227
convert Python arrays to, 252–253
data types, 224–225
differentiation and tf.GradientTape

in, 253–254
eager execution mode, 224
exponential values in, 245–246
installation, 221–222
multiplying two second-order tensors,

251
namespaces in, 188–189
primitive types, 225
and Python REPL, 222
rank, 229
second-order tensors in, 249–251
shape, 230–231

tensors, 224
tensors and operations in, 247–249
@tf.function decorator. See @
tf.function decorator

toolkits, 222–223
trigonometric values in, 244–245
use cases, 220
variables, 225, 227–229, 231–233

vs. tensors, 233
vs. “Standalone” Keras, 192
working with strings in, 246–247

tensorflow.js toolkit, 223
TensorFlow Lite, 223
tensorflow.python.eager.def_
function.Function object, 238

TensorFlow Serving, 223
TensorForce, 183
Tensors, in TensorFlow 2, 224, 247–249
Tensors, with tf.GradientTape,
256–257

Term frequency, 166–167
Term Frequency, Inverse Document Fre-
quency (tf-idf), 167–168

Test data
tests, 78
training data vs., 33, 34

Text-to-speech synthesis (TTS), 171
TF-Agents library, 183–184
tf.assign() method, 232
tf2_basic_keras.py, 195
tf.compat.v1, 219
tf.constant(), 225, 226
tf2_elem2.py, 249
@tf.function decorator, 218, 219, 233

Caveat about, 234–236
overloading functions with, 238–239
print() function vs., 236
for Python functions, 233
and standard error, 236
working with, 233–234, 236–238

tf.GradientTape, 253–254
decorator, 217, 218

318 • Artificial Intelligence, Machine Learning, Deep Learning

examples of, 254
nested loops with, 255–256
tensors with, 256–257
using watch() method of, 255

tf-idf. See Term Frequency, Inverse
Document Frequency
tf.keras.activations
namespaces, 190
tf2_keras_callback.py, 206–207
tf2_keras_callback2.py, 208–209
tf.keras.callbacks namespaces, 191
tf.keras.datasets namespaces,
190–191
tf.keras.Dense, 194
tf.keras.experimental
namespaces, 191
tf.keras.layers.Conv2D(), 119
tf.keras.layers.Flatten(), 119
tf.keras.layers namespace, 189–190,
219
tf.keras.layers.SimpleRNN
class, 129
tf.keras.metrics namespaces, 211
tf2_keras_mnist_digit.py, 118
tf.keras.models namespaces, 189, 194
tf.keras namespace, 188
tf.keras.optimizers namespaces, 192
tf.keras.regularizers
namespaces, 192
tf2_keras_save_model.py, 212–213
tf.keras.Sequential, 219
tf.keras.utils namespaces, 192
tf.model.Model class, 189
tf.nn namespaces, 194
tf.nn.ReLU, 194
tf.print() function, 234
tf.rank() API, 229
tf.Session() code block, 144
tf.shape()API, 230–231
tf.tan() API, 245
tf2_tensors_operations.py, 247–249

tf-TRFL, 183
tf_upgrade_v2, 219
tf.Variable(), 225
Threshold value, 88
Titanic dataset, 25
Titanic dataset, 191
to_bow(), 166
to_categorical() functions, 192
Toolkits, TensorFlow 2 (TF 2), 222–223
Tradeoffs of support vector machines, 74–75
Traditional artificial intelligence, 18
“Traditional” linear regression, 41
“Traditional” programming languages, 24
Training data vs. test data, 33, 34
Training process, 100, 102
Train set, 78
Transfer learning method, 169
Transformer architecture, 140, 161–163, 173
Transformers, 17
Transformer-XL architecture, 162–163
Transforming data, 285–287
transform() method, 296
Translation invariance, 101
Translatotron, 171–172
Transposing, Pandas DataFrame, 269–270
tree_classifier.py, 71–72
Trigonometric values, in TensorFlow 2, 244–245
Truncated BPTT, 130
t-SNE. See t-Distributed Stochastic Neigh-
bor Embedding

TTS. See Text-to-speech synthesis
Turing test

definition, 5–6
interrogator test, 6

U

ULMFit. See Universal Language Model
Fine-tuning

Universal Language Model Fine-tuning
(ULMFit), 169–171

Index • 319

Unsupervised learning, 25–26, 27
Use cases, TensorFlow 2 (TF 2), 220
Utilities application, xviii

V

VAE-GAN model, 157
VAEs. See Variational Autoencoders
Vanishing gradient problem, 101, 102
Vanishing gradient scenario, 130
Variable

TensorFlow 2, 225, 227–229
tree_clf, 69

Variable selection, 30
Variable subset selection, 30
Variance, 36, 40

error due to, 36
as measure of information, 33
of random variable, 33

Variational autoencoder, 150–151
Variational Autoencoders (VAEs), 99

W

watch() method, 255
Weak artificial intelligence approach, 4–5
Weighted sum, 105
Weizenbaum, Joseph, 14–15
while loop, 239–240
Winograd, Terry, 15–16
with statements, 254, 255
Word embedding algorithms, 168–169
Wrapper strategy, 31

X

XCON, 12
XOR function, 89, 96–98, 110, 113

Z

Zero probability problem, 78

	Preface: The ML and DL Landscape
	Chapter 1: Introduction to AI
	Chapter 2: Introduction to Machine Learning
	Chapter 3: Classifiers in Machine Learning
	Chapter 4: Deep Learning Introduction
	Chapter 5: Deep Learning: RNNs and LSTMs
	Chapter 6: NLP and Reinforcement Learning
	Appendix A: Introduction to Keras
	Appendix B: Introduction to TF 2
	Appendix C: Introduction to Pandas
	Index

