


Artificial Intelligence 
Machine Learning 

and 
Deep Learning



LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and its companion files (the “Work”), you agree that 
this license grants permission to use the contents contained herein, but does not give 
you the right of ownership to any of the textual content in the book or ownership to 
any of the information, files, or products contained in it. This license does not permit 
uploading of the Work onto the Internet or on a network (of any kind) without the 
written consent of the Publisher. Duplication or dissemination of any text, code, simu-
lations, images, etc. contained herein is limited to and subject to licensing terms for 
the respective products, and permission must be obtained from the Publisher or the 
owner of the content, etc., in order to reproduce or network any portion of the textual 
material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved 
in the creation, writing, production, accompanying algorithms, code, or computer 
programs (“the software”), and any accompanying Web site or software of the Work, 
cannot and do not warrant the performance or results that might be obtained by using 
the contents of the Work. The author, developers, and the Publisher have used their 
best efforts to insure the accuracy and functionality of the textual material and/or pro-
grams contained in this package; we, however, make no warranty of any kind, express 
or implied, regarding the performance of these contents or programs. The Work is 
sold “as is” without warranty (except for defective materials used in manufacturing 
the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone 
involved in the composition, production, and manufacturing of this work will not be 
liable for damages of any kind arising out of the use of (or the inability to use) the 
algorithms, source code, computer programs, or textual material contained in this 
publication. This includes, but is not limited to, loss of revenue or profit, or other 
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replace-
ment of the book and only at the discretion of the Publisher. The use of “implied 
warranty” and certain “exclusions” vary from state to state, and might not apply to the 
purchaser of this product.

Companion files also available for downloading from the publisher by writing to 
info@merclearning.com.



Artificial Intelligence 
Machine Learning 

and 
Deep Learning

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Oswald Campesato



Copyright © 2020 by Mercury Learning and Information LLC. 
All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any 
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic 
display or mechanical display, including, but not limited to, photocopy, recording, Internet 
postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

O. Campesato. Artificial Intelligence, Machine Learning and Deep Learning.
ISBN: 978-1-68392-467-8

The publisher recognizes and respects all marks used by companies, manufacturers, and 
developers as a means to distinguish their products. All brand names and product names 
mentioned in this book are trademarks or service marks of their respective companies. Any 
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to 
infringe on the property of others.

Library of Congress Control Number: 2019957226

202122321	 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,  
corporations, etc. For additional information, please contact the Customer Service  
Dept. at 800-232-0223(toll free). 

All of our titles are available in digital format at authorcloudware.com and other digital 
vendors. The sole obligation of Mercury Learning and Information to the purchaser is to 
replace the book, based on defective materials or faulty workmanship, but not based on the 
operation or functionality of the product.

I’d like to dedicate this book to my parents – 
may this bring joy and happiness into their lives.



I’d like to dedicate this book to my parents – 
may this bring joy and happiness into their lives.





Preface� xv

Chapter 1:  Introduction to AI� 1
	 What is Artificial Intelligence? � 2

Strong AI versus Weak AI � 4
	 The Turing Test� 5

Definition of the Turing Test� 5
An Interrogator Test� 6

	 Heuristics� 6
Genetic Algorithms� 8

	 Knowledge Representation� 8
Logic-based Solutions� 9
Semantic Networks� 9

	 AI and Games� 10
The Success of AlphaZero� 11

	 Expert Systems � 12
	 Neural Computing� 13
	 Evolutionary Computation� 14
	 Natural Language Processing� 14
	 Bioinformatics� 17
	 Major Parts of AI � 18

Machine Learning� 18
Deep Learning � 19
Reinforcement Learning � 19
Robotics� 20

	 Code Samples� 21
	 Summary� 22

CONTENTS



viii • Contents

Chapter 2:  Introduction to Machine Learning� 23
	 What is Machine Learning?� 24

Types of Machine Learning� 24
	 Types of Machine Learning Algorithms� 26

Machine Learning Tasks� 28
	 Feature Engineering, Selection, and Extraction� 30
	 Dimensionality Reduction� 31

PCA� 32
Covariance Matrix� 33

	 Working with Datasets� 33
Training Data Versus Test Data� 34
What Is Cross-validation?� 34

	 What Is Regularization?� 34
ML and Feature Scaling� 35
Data Normalization vs Standardization� 35

	 The Bias-Variance Tradeoff� 35
	 Metrics for Measuring Models� 36

Limitations of R-Squared� 36
Confusion Matrix� 37
Accuracy vs Precision vs Recall� 37
The ROC Curve� 38

	 Other Useful Statistical Terms� 38
What Is an F1 Score?� 38
What Is a p-value?� 39

	 What Is Linear Regression? � 39
Linear Regression vs Curve-Fitting� 40
When Are Solutions Exact Values?� 40
What Is Multivariate Analysis?� 41

	 Other Types of Regression� 42
	 Working with Lines in the Plane (optional)� 43
	 Scatter Plots with NumPy and Matplotlib (1)� 46

Why the “Perturbation Technique” Is Useful � 48
	 Scatter Plots with NumPy and Matplotlib (2)� 48
	 A Quadratic Scatterplot with NumPy and Matplotlib� 49
	 The Mean Squared Error (MSE) Formula� 51

A List of Error Types� 51
Non-linear Least Squares � 52

	 Calculating the MSE Manually� 52
	 Approximating Linear Data with np.linspace() � 54
	 Calculating MSE with np.linspace() API� 55
	 Linear Regression with Keras� 57
	 Summary� 62



Contents • ix

Chapter 3:  Classifiers in Machine Learning� 63
	 What Is Classification?� 64

What Are Classifiers?� 64
Common Classifiers� 65
Binary vs MultiClass Classification� 65
MultiLabel Classification� 66

	 What Are Linear Classifiers?� 66
	 What Is kNN?� 67

How to Handle a Tie in kNN� 67
	 What Are Decision Trees?� 68
	 What Are Random Forests?� 73
	 What Are SVMs?� 74

Tradeoffs of SVMs� 74
	 What Is Bayesian Inference?� 75

Bayes Theorem� 75
Some Bayesian Terminology� 76
What Is MAP?� 77
Why Use Bayes’ Theorem?� 77

	 What Is a Bayesian Classifier?� 77
Types of Naïve Bayes Classifiers� 78

	 Training Classifiers� 78
	 Evaluating Classifiers� 79
	 What Are Activation Functions?� 80

Why do We Need Activation Functions?� 81
How Do Activation Functions Work?� 81

	 Common Activation Functions� 82
Activation Functions in Python� 83
Keras Activation Functions� 84

	 The ReLU and ELU Activation Functions� 84
The Advantages and Disadvantages of ReLU� 85
ELU� 85

	 Sigmoid, Softmax, and Hardmax Similarities� 86
Softmax� 86
Softplus� 86
Tanh� 86

	 Sigmoid, Softmax, and HardMax Differences� 87
	 What Is Logistic Regression?� 87

Setting a Threshold Value� 88
Logistic Regression: Important Assumptions� 89
Linearly Separable Data� 89

	 Keras, Logistic Regression, and Iris Dataset� 89
	 Summary� 93



x • Contents

Chapter 4:  Deep Learning Introduction � 95
	 Keras and the XOR Function� 96
	 What Is Deep Learning?� 98

What Are Hyper Parameters?� 100
Deep Learning Architectures� 101
Problems that Deep Learning Can Solve� 101
Challenges in Deep Learning� 102

	 What Are Perceptrons?� 103
Definition of the Perceptron Function� 104
A Detailed View of a Perceptron� 104

	 The Anatomy of an Artificial Neural Network (ANN)� 105
Initializing Hyperparameters of a Model� 107
The Activation Hyperparameter� 107

	 The Loss Function Hyperparameter� 108
	 The Optimizer Hyperparameter� 108

The Learning Rate Hyperparameter� 109
The Dropout Rate Hyperparameter� 109

	 What Is Backward Error Propagation?� 109
	 What Is a Multilayer Perceptron (MLP)?� 110

Activation Functions� 111
	 How Are Datapoints Correctly Classified?� 112
	 A High-Level View of CNNs� 113

A Minimalistic CNN� 114
	 The Convolutional Layer (Conv2D)� 114
	 The ReLU Activation Function� 115

The Max Pooling Layer� 115
	 Displaying an Image in the MNIST Dataset� 118
	 Keras and the MNIST Dataset� 119
	 Keras, CNNs, and the MNIST Dataset� 122
	 Analyzing Audio Signals with CNNs� 125
	 Summary� 126

Chapter 5:  Deep Learning: RNNs and LSTMs� 127
	 What Is an RNN?� 128

Anatomy of an RNN� 129
What Is BPTT?� 130

	 Working with RNNs and Keras� 130
	 Working with Keras, RNNs, and MNIST � 132
	 Working with TensorFlow and RNNs (Optional)� 135
	 What Is an LSTM?� 139

Anatomy of an LSTM� 139
Bidirectional LSTMs� 140



Contents • xi

LSTM Formulas� 141
LSTM Hyperparameter Tuning� 142

	 Working with TensorFlow and LSTMs (Optional)� 142
	 What Are GRUs?� 147
	 What Are Autoencoders?� 147

Autoencoders and PCA� 150
What Are Variational Autoencoders?� 150

	 What Are GANs?� 151
Can Adversarial Attacks Be Stopped?� 152

	 Creating a GAN� 153
A High-Level View of GANs� 156
The VAE-GAN Model� 157

	 Summary � 157

Chapter 6:  NLP and Reinforcement Learning� 159
	 Working with NLP (Natural Language Processing)� 160

NLP Techniques� 160
The Transformer Architecture and NLP� 161
Transformer-XL Architecture� 162
Reformer Architecture� 163
NLP and Deep Learning� 163
Data Preprocessing Tasks in NLP� 163

	 Popular NLP Algorithms� 164
What Is an n-gram?� 164
What Is a skip-gram?� 165
What Is BoW?� 165
What Is Term Frequency?� 166
What Is Inverse Document Frequency (idf)?� 167
What Is tf-idf?� 167

	 What Are Word Embeddings?� 168
	 ELMo, ULMFit, OpenAI, BERT, and ERNIE 2.0� 169
	 What Is Translatotron?� 171
	 Deep Learning and NLP� 172
	 NLU versus NLG� 172
	 What Is Reinforcement Learning (RL)?� 173

Reinforcement Learning Applications� 174
NLP and Reinforcement Learning� 175
Values, Policies, and Models in RL� 175

	 From NFAs to MDPs� 176
What Are NFAs?� 177
What Are Markov Chains?� 177
Markov Decision Processes (MDPs)� 178



xii • Contents

	 The Epsilon-Greedy Algorithm� 180
	 The Bellman Equation� 181

Other Important Concepts in RL� 182
	 RL Toolkits and Frameworks� 183

TF-Agents� 183
	 What Is Deep Reinforcement Learning (DRL)?� 184
	 Summary� 185

Appendix A:  Introduction to Keras� 187
	 What Is Keras? � 187

Working with Keras Namespaces in TF 2� 188
Working with the tf.keras.layers Namespace� 189
Working with the tf.keras.activations Namespace� 190
Working with the keras.tf.datasets Namespace� 190
Working with the tf.keras.experimental Namespace� 191
Working with Other tf.keras Namespaces� 191
TF 2 Keras versus “Standalone” Keras� 192

	 Creating a Keras-based Model� 192
	 Keras and Linear Regression� 195
	 Keras, MLPs, and MNIST� 198
	 Keras, CNNs, and cifar10� 201
	 Resizing Images in Keras� 204
	 Keras and Early Stopping (1)� 205
	 Keras and Early Stopping (2)� 208
	 Keras and Metrics� 211
	 Saving and Restoring Keras Models� 212
	 Summary� 216

Appendix B:  Introduction to TF 2� 217
	 What Is TF 2? � 218

TF 2 Use Cases� 220
TF 2 Architecture: The Short Version� 220
TF 2 Installation� 221
TF 2 and the Python REPL� 222

	 Other TF 2-based Toolkits� 222
	 TF 2 Eager Execution� 224
	 TF 2 Tensors, Data Types, and Primitive Types� 224

TF 2 Data Types� 224
TF 2 Primitive Types� 225

	 Constants in TF 2� 226
	 Variables in TF 2� 227



Contents • xiii

	 The tf.rank() API� 229
	 The tf.shape() API� 230
	 Variables in TF 2 (Revisited)� 231

TF 2 Variables vs Tensors � 233
	 What Is @tf.function in TF 2?� 233

How Does @tf.function Work?� 233
A Caveat About @tf.function in TF 2� 234
The tf.print() Function and Standard Error� 236

	 Working with @tf.function in TF 2� 236
An Example Without @tf.function� 236
An Example With @tf.function� 237
Overloading Functions with @tf.function� 238
What Is AutoGraph in TF 2?� 239

	 Arithmetic Operations in TF 2� 240
	 Caveats for Arithmetic Operations in TF 2� 241
	 TF 2 and Built-in Functions � 242
	 Calculating Trigonometric Values in TF 2� 244
	 Calculating Exponential Values in TF 2� 245
	 Working with Strings in TF 2� 246
	 Working with Tensors and Operations in TF 2� 247
	 Second-Order Tensors in TF 2 (1)� 249
	 2nd Order Tensors in TF 2 (2)� 250
	 Multiplying Two Second-Order Tensors in TF 2� 251
	 Convert Python Arrays to TF Tensors� 252

Conflicting Types in TF 2� 252
	 Differentiation and tf.GradientTape in TF 2� 253
	 Examples of tf.GradientTape� 254

Using the watch() Method of tf.GradientTape� 255
Using Nested Loops with tf.GradientTape� 255
Other Tensors with tf.GradientTape� 256
A Persistent Gradient Tape� 257

	 Google Colaboratory� 258
	 Other Cloud Platforms� 260

GCP SDK� 260
	 Summary� 261

Appendix C:  Introduction to Pandas� 263
	 What Is Pandas? � 264

Pandas Dataframes� 264
Dataframes and Data Cleaning Tasks� 265

	 A Labeled Pandas Dataframe � 265



	 Pandas Numeric DataFrames� 267
	 Pandas Boolean DataFrames� 268

Transposing a Pandas Dataframe� 269
	 Pandas Dataframes and Random Numbers � 270
	 Combining Pandas DataFrames (1)� 271
	 Combining Pandas DataFrames (2)� 272
	 Data Manipulation with Pandas Dataframes (1)� 273
	 Data Manipulation with Pandas DataFrames (2)� 274
	 Data Manipulation with Pandas Dataframes (3)� 275
	 Pandas DataFrames and CSV Files� 277
	 Pandas DataFrames and Excel Spreadsheets (1)� 281
	 Pandas DataFrames and Excel Spreadsheets (2)� 282
	 Reading Data Files with Different Delimiters� 284
	 Transforming Data with the sed Command (Optional)� 285
	 Select, Add, and Delete Columns in DataFrames� 287
	 Pandas DataFrames and Scatterplots� 289
	 Pandas DataFrames and Histograms� 290
	 Pandas DataFrames and Simple Statistics� 292
	 Standardizing Pandas DataFrames� 294
	 Pandas DataFrames, NumPy Functions, and Large Datasets� 296
	 Working with Pandas Series� 297

From ndarray� 298
Pandas DataFrame from Series� 299

	 Useful One-line Commands in Pandas � 299
	 What Is Jupyter?� 301

Jupyter Features� 302
Launching Jupyter from the Command Line� 302
JupyterLab� 303
Develop JupyterLab Extensions� 303

	 Summary� 304

Index� 305

xiv • Contents



What Is the Goal?

The goal of this book is to introduce advanced beginners to basic machine 
learning and deep learning concepts and algorithms. It is intended to be a 
fast-paced introduction to various “core” features of machine learning and 
deep learning, with code samples that are included in a university course. 
The material in the chapters illustrates how to solve some tasks using Keras, 
after which you can do further reading to deepen your knowledge.  

This book will also save you the time required to search for code sam-
ples, which is a potentially time-consuming process. In any case, if you’re 
not sure whether or not you can absorb the material presented here, then 
glance through the code samples to get a feel for the level of complexity.

At the risk of stating the obvious, please keep in mind the following 
point: you will not become an expert in machine learning or deep learning 
by reading this book.

What Will I Learn from This Book?

The first chapter contains a very short introduction to AI, followed by a 
chapter devoted to Pandas for managing the contents of datasets. The third 
chapter introduces you to machine learning concepts (supervised and unsu-
pervised learning), types of tasks (regression, classification, and clustering), 
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and linear regression (the second half of the chapter). The fourth chapter 
is devoted to classification algorithms, such as kNN, Naïve Bayes, decision 
trees, random forests, and SVM (Support Vector Machines).

The fifth chapter introduces deep learning and delves into CNNs 
(Convolutional Neural Networks). The sixth chapter covers deep learning  
architectures such as RNNs (recurrent neural networks) and LSTMs (Long 
Short Term Memory).

The sixth chapter introduces you to aspects of NLP (Natural Language 
Processing, with some basic concepts and algorithms, followed by RL (Re-
inforcement Learning) and the Bellman equation. The first appendix cov-
ers Keras, whereas the second appendix covers TensorFlow 2.0.

Another point: although Jupyter is popular, all the code samples in this 
book are Python scripts. However, you can quickly learn the useful features 
of Jupyter through various online tutorials. In addition, it’s worth looking at 
Google Colaboratory that is entirely online and is based on Jupyter note-
books, along with free GPU usage.

How Much Keras Knowledge Is Needed for this Book?

Some exposure to Keras is helpful, and you can read the appendix if 
Keras is new to you. If you also want to learn about Keras and logistic 
regression, there is an example in Chapter 3. This example requires some 
theoretical knowledge involving activation functions, optimizers, and cost 
functions, all of which are discussed in Chapter 4.

Please keep in mind that Keras is well-integrated into TensorFlow 2 
(in the tf.keras namespace), and it provides a layer of abstraction over 
“pure” TensorFlow that will enable you to develop prototypes more quickly.

Do I Need to Learn the Theory Portions of this Book?

Once again, the answer depends on the extent to which you plan to become 
involved in machine learning. In addition to creating a model, you will use vari-
ous algorithms to see which ones provide the level of accuracy (or some other 
metric) that you need for your project. If you fall short, the theoretical aspects 
of machine learning can help you perform a “forensic” analysis of your model 
and your data, and ideally assist in determining how to improve your model.



Preface • xvii

How Were the Code Samples Created?

The code samples in this book were created and tested using Python 3 and 
Keras that’s built into TensorFlow 2 on a MacBook Pro with OS X 10.12.6 
(MacOS Sierra). Regarding their content: the code samples are derived pri-
marily from the author for his Deep Learning and Keras graduate course. 
In some cases there are code samples that incorporate short sections of 
code from discussions in online forums. The key point to remember is that 
the code samples follow the “Four Cs”: they must be Clear, Concise, Com-
plete, and Correct to the extent that it’s possible to do so, given the size of 
this book.

What Are the Technical Prerequisites for This Book?

You need some familiarity with Python, and also know how to launch 
Python code from the command line (in a Unix-like environment for Mac 
users). In addition, a mixture of basic linear algebra (vectors and matri-
ces), probability/statistics, (mean, median, standard deviation) and basic 
concepts in calculus (such as derivatives) will help you master the mate-
rial. Some knowledge of NumPy and Matplotlib is also helpful, and the 
assumption is that you are familiar with basic functionality (such as NumPy 
arrays). 

One other prerequisite is important for understanding the code sam-
ples in the second half of this book: some familiarity with neural networks, 
which includes the concept of hidden layers and activation functions 
(even if you don’t fully understand them). Knowledge of cross entropy is 
also helpful for some of the code samples.

What Are the Non-technical Prerequisites for This Book?

Although the answer to this question is more difficult to quantify, 
it’s very important to have a strong desire to learn about machine learn-
ing, along with the motivation and discipline to read and understand the 
code samples. 

Even simple machine language APIs can be a challenge to under-
stand them at first encounter, so be prepared to read the code samples 
several times.
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How Do I Set up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is to 
use Finder to navigate to Applications > Utilities and then double 
click on the Utilities application. Next, if you already have a command 
shell available, you can launch a new command shell by typing the following 
command:

open/Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on 
a MacBook from a command shell that is already visible simply by click-
ing command+n in that command shell, and your Mac will launch another 
command shell.

If you are a PC user, you can install Cygwin (open source https://cyg-
win.com/) that simulates bash commands, or use another toolkit such as 
MKS (a commercial product). Please read the online documentation that 
describes the download and installation process. Note that custom aliases 
are not automatically set if they are defined in a file other than the main 
start-up file (such as .bash_login). 

Companion Files

All of the code samples and figures in this book may be obtained for down-
load by writing to the publisher at info@merclearning.com.

What Are the “Next Steps” after Finishing this Book?

The answer to this question varies widely, mainly because the answer 
depends heavily on your objectives. The best answer is to try a new tool or 
technique from the book out on a problem or task you care about, profes-
sionally or personally. Precisely what that might be depends on who you 
are, as the needs of a data scientist, manager, student or developer are all 
different. In addition, keep what you learned in mind as you tackle new 
challenges.  

� O. Campesato
� San Francisco, CA



C H A P T E R 1
INTRODUCTION TO AI

This chapter provides a gentle introduction to AI, primarily as a broad 
overview of this diverse topic. Unlike the other chapters in this book, this 
introductory chapter is chapter is “light” in terms of technical content. 
However, it’s easy to read and also worth skimming through its contents. 
Machine learning and deep learning are briefly introduced toward the 
end of this chapter, both of which are discussed in more detail in subse-
quent chapters.

Keep in mind that many AI-focused books tend to discuss AI from the 
perspective of computer science and a discussion of traditional algorithms 
and data structures. By contrast, this book treats AI as an “umbrella” for 
machine learning and deep learning, and therefore it’s discussed in a cur-
sory manner as a precursor to the other chapters.

The first part of this chapter starts with a discussion regarding the term 
artificial intelligence, various potential ways to determine the presence of 
intelligence, as well as the difference between Strong AI and Weak AI.  
You will also learn about the Turing Test, which is a well-known test for 
intelligence.

The second part of this chapter discusses some AI uses-cases and the 
early approaches to neural computing, evolutionary computation, NLP, and 
bioinformatics.

The third part of this chapter introduces you to major subfields of AI, 
which include natural language processing (with NLU and NLG), machine 
learning, deep learning, reinforcement learning, and deep reinforcement 
learning.



2 • Artificial Intelligence, Machine Learning, Deep Learning

Although code-specific samples are not discussed in this chapter, the 
companion files for this chapter do contain a Java-based code sample for 
solving the Red Donkey problem, and also a Python-based code sample 
(that requires Python 2.x) for solving Rubik’s Cube.

What Is Artificial Intelligence?

The literal meaning of the word artificial is synthetic, which often has a neg-
ative connotation of being an inferior substitute. However, artificial objects 
(e.g., flowers) can closely approximate their counterparts, and sometimes 
they can be advantageous when they do not have any maintenance require-
ments (sunshine, water, and so forth).

By contrast, a definition for intelligence is more elusive than a defini-
tion of the word artificial. R. Sternberg, in a text on human consciousness, 
provides the following useful definition: “Intelligence is the cognitive abil-
ity of an individual to learn from experience, to reason well, to remember 
important information, and to cope with the demands of daily living.”

You probably remember standardized tests with questions that ask for 
the next number in a given sequence, such as 1, 3, 6, 10, 15, 21. The first thing 
to observe is that the gap between successive numbers increases by one: from 
1 to 3, the increase is two, whereas from 3 to 6, it is three, and so on. Based 
on this pattern, the plausible response is 28. Such questions are designed to 
measure our proficiency at identifying salient features in patterns. 

Incidentally, there can be multiple answers to a “next-in-sequence” 
numeric problem. For example, the sequence 2, 4, 8 might suggest 16 as the 
next number in this sequence, which is correct if the generating formula is 
2^n. However, if the generating formula is 2^n + (n-1)*(n-2)*(n-3), 
then the next number in the sequence is 22 (not 16). There are many for-
mulas that can match 2, 4, and 8 as the initial sequence of numbers, and yet 
the next number can be different from 16 or 22.

Let’s return to R. Sternberg’s definition for intelligence, and consider 
the following questions:

•	 How do you decide if someone (something?) is intelligent?

•	 Are animals intelligent?

•	 If animals are intelligent, how do you measure their intelligence?
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We tend to assess people’s intelligence through interaction with them: we 
ask questions and observe their answers. Although this method is indirect, 
we often rely on this method to gauge other people’s intelligence. 

In the case of animal intelligence, we also observe their behavior to 
make an assessment. Clever Hans was a famous horse that lived in Berlin, 
Germany, circa 1900, and allegedly had a proficiency in arithmetic, such as 
adding numbers and calculating square roots. 

In reality, Hans was able to identify human emotions and, in conjunction 
with his astute hearing, he could sense the reaction of audience members as 
Hans came closer to a correct answer. Interestingly, Hans performed poorly 
without the presence of an audience. You might be reluctant to attribute 
Clever Hans’s actions to intelligence; however, review Sternberg’s defini-
tion before reaching a conclusion.

As another example, some creatures exhibit intelligence only in groups. 
Although ants are simple insects, and their isolated behavior would hardly 
warrant inclusion in a text on AI, ant colonies exhibit extraordinary solu-
tions to complex problems. In fact, ants can figure out the optimal route 
from a nest to a food source, how to carry heavy objects, and how to form 
bridges. Thus, a collective intelligence arises from effective communication 
among individual insects. 

The ratios of brain mass and brain-to-body mass are indicators 
of intelligence, and dolphins compare favorably with humans in both 
metrics. Breathing in dolphins is under voluntary control, which could 
account for excess brain mass, as well as the fact that alternate halves 
of a dolphin’s brain take turns sleeping. Dolphins score well on animal 
self-awareness tests such as the mirror test, in which they recognize that 
the image in the mirror is actually their own image. They can also per-
form complex tricks, as visitors to Sea World can testify. This illustrates 
the ability of dolphins to remember and perform complex sequences of 
physical motions. 

The use of tools is another litmus test for intelligence and is often used 
to separate homo erectus from earlier ancestors of human beings. Dolphins 
also share this trait with humans: dolphins use deep-sea sponges to protect 
their spouts while foraging for food. Thus, intelligence is not an attribute 
possessed by humans alone. Many living forms possess some degree of 
intelligence. 
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Now consider the following question: can inanimate objects, such as 
computers, possess intelligence? The declared goal of artificial Intelligence 
is to create computer software and/or hardware systems that exhibit think-
ing comparable to that of humans, in other words, to display characteristics 
usually associated with human intelligence. 

What about the capacity to think, and can machines think? Keep in mind 
the distinction between thinking and intelligence. Thinking is the facility to 
reason, analyze, evaluate, and formulate ideas and concepts. Therefore, not 
every being capable of thinking is intelligent. Intelligence is perhaps akin to 
efficient and effective thinking. 

Many people approach this issue with biases, saying that computers are 
made of silicon and power supplies and therefore are not capable of think-
ing. At the other extreme, computers perform much faster than humans and 
therefore must be more intelligent than humans. The truth is most likely 
somewhere between these two extremes. As we have discussed, different 
animal species possess intelligence to varying degrees. However, we are 
more interested in a test to ascertain the existence of machine intelligence 
than in developing standardized IQ tests for animals. Perhaps Raphael put 
it best: artificial intelligence is the science of making machines do things 
that would require intelligence if done by man.

Strong AI versus Weak AI 
Currently there are two main camp regarding AI. The weak AI approach 
is associated with the Massachusetts Institute of Technology, and it views 
any system that exhibits intelligent behavior as an example of AI. This camp 
focuses on whether a program performs correctly, regardless of whether 
the artifact performs its task in the same way humans do. The results of AI 
projects in electrical engineering, robotics, and related fields are primarily 
concerned with satisfactory performance. 

The other approach to AI is called biological plausibility, and it’s associ-
ated with Carnegie-Mellon University. According to this approach, when an 
artifact exhibits intelligent behavior, its performance should be based upon 
the same methodologies used by humans. For instance, consider a system 
capable of hearing: proponents of strong AI might aim to achieve success by 
simulating the human hearing system, whereas weak AI proponents would 
be concerned merely with the system’s performance. This simulation would 
include the equivalents to cochlea, hearing canal, eardrum, and other parts 
of the ear, each performing its required tasks in the system. 
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Hence, proponents of weak AI measure the success of the systems that 
they build based on their performance alone. They maintain that the raison 
d’etre of AI research is to solve difficult problems regardless of how they 
are actually solved.

On the other hand, proponents of strong AI are concerned with the 
structure of the systems they build. They maintain that by sheer dint of  
possessing heuristics, algorithms, and knowledge of AI programs, computers  
can possess a sense of consciousness and intelligence. As you know,  
Hollywood has produced various movies (e.g., I, Robot and Blade Runner) 
that belong to the strong AI camp.

The Turing Test

The previous section posed three questions, and the first two questions 
have already been addressed: how do you determine intelligence, and are 
animals intelligent? The answer to the second question is not necessarily yes 
or no. Some people are smarter than others and some animals are smarter 
than others. The question of machine intelligence is equally problematic.

Alan Turing sought to answer the question of intelligence in opera-
tional terms. He wanted to separate functionality (what something does) 
from implementation (how something is built). He devised something that’s 
called the Turing Test, which is discussed in the next section.

Definition of the Turing Test
Alan Turing proposed two imitation games, in which one person or entity 
behaves as if he were another. In the first game, a person (called an interro-
gator) is in a room with a curtain that runs across the center of the room. On 
the other side of the curtain is a person, and the interrogator must deter-
mine whether it is a man or a woman. The interrogator (whose gender is 
irrelevant) accomplishes this task by asking a series of questions. 

This game assumes that the man will perhaps lie in his responses, 
but the woman is always truthful. In order that the interrogator cannot 
determine gender from voice, communication is via computer rather than 
through spoken words. If it is a man on the other side of the curtain, and he 
is successful in deceiving the interrogator, then he wins the imitation game. 

In Turing’s original format for this test, both a man and a woman were 
seated behind a curtain and the interrogator had to identify both correctly. 
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Turing might have based this test on a game that was popular during this 
period, which may even have been the impetus behind his machine intel-
ligence test.

Additional interesting updates regarding the Turing test are discussed 
in these two links:

https://futurism.com/the-byte/scientists-invented-new-turing-test

https://theconversation.com/our-turing-test-for-androids-will-judge-
how-lifelike-humanoid-robots-can-be-120696

In case you didn’t already know, Erich Fromm was a well-known soci-
ologist and psychoanalyst in the twentieth century who believed that men 
and women are equal but not necessarily the same. For instance, the gen-
ders might differ in their knowledge of colors, flowers, or the amount of 
time spent shopping. What does distinguishing a man from a woman have 
to do with the question of intelligence? Turing understood that there might 
be different types of thinking, and it is important to both understand these 
differences and to be tolerant of them. 

An Interrogator Test
This second game is more appropriate to the study of AI. Once again, an 
interrogator is in a room with a curtain. This time, a computer or a person 
is behind the curtain, and the machine plays the role of the male and could 
also find it convenient on occasion to lie. 

The person, on the other hand, is consistently truthful. The interroga-
tor asks questions and then evaluates the responses to determine whether 
she is communicating with a person or a machine. If the computer is suc-
cessful in deceiving the interrogator, it passes the Turing Test and is thereby 
considered intelligent. 

Heuristics

Heuristics can be very useful, and AI applications often rely on the appli-
cation of heuristics. A heuristic is essentially a “rule of thumb” for solving 
a problem. In other words, a heuristic is a set of guidelines that often 
works to solve a problem. Contrast a heuristic with an algorithm, which is 
a prescribed set of rules to solve a problem and whose output is entirely 
predictable. 
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A heuristic is a technique for finding an approximate solution that 
can be used when other methods are too time-consuming or too complex  
(or both). With a heuristic, a favorable outcome is likely but not guaranteed, 
and heuristic methods were especially popular in the early days of AI.

Various heuristics appear in daily life. For example, many people prefer 
using heuristics instead of asking for driving directions. For instance, when 
exiting a highway at night, sometimes it’s difficult to find the route back to 
the main thoroughfare. One heuristic that could prove helpful is to proceed 
in the direction with more streetlights whenever they come to a fork in 
the road. You might have a favorite ploy for recovering a dropped contact 
lens or for finding a parking space in a crowded shopping mall. Both are 
examples of heuristics.

AI problems tend to be large and computationally complex, and fre-
quently they cannot be solved via straightforward algorithms. AI problems 
and their domains tend to embody a large amount of human expertise, 
especially if tackled by strong AI methods. Some types of problems are  
better solved using AI, whereas others are more suitable for traditional 
computer science approaches involving simple decision-making or exact 
computations to produce solutions. Let us consider a few examples:

•	 Medical diagnosis

•	 Shopping using a cash register with barcode scanning

•	 ATMs

•	 Two-person games such as chess and checkers

Medical diagnosis is a field of science that has benefited for many years 
from AI-based contributions, particularly through the development of 
expert systems. Expert systems are typically built in domains where there 
is considerable human expertise and where there exist many rules that are 
often of the form: if-condition-then-action. As a trivial example: if you have 
a headache, then take two aspirins and call me in the morning. 

In particular, expert systems became very popular (and very useful) 
because they can store far more rules than humans can hold in their head. 
Expert systems are among the most successful AI techniques for produc-
ing results that are comprehensive and effective. In fact, expert systems 
can help humans make more accurate decisions (and even “challenge” 
incorrect choices).
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Genetic Algorithms
One promising paradigm is Darwin’s theory of evolution, which involves 
natural selection that occurs in nature at a rate of thousands or millions of 
years. By contrast, evolution inside a computer proceeds much faster than 
natural selection.

A genetic algorithm is a heuristic that “mimics” the process of natural 
selection, which involves selecting the fittest individuals for reproduction to 
sire the offspring of the subsequent generation.

Let’s compare and contrast the use of AI with the process of evolution 
in the plant and animal world, in which species adapt to their environments 
through the genetic operators of natural selection, reproduction, mutation, 
and recombination. 

Genetic algorithms (GA) are a specific methodology from the gen-
eral field known as evolutionary computation, which is that branch of AI 
wherein proposed solutions to a problem adapt much as animal creatures 
adapt to their environments in the real world. 

In case you’re interested, the following link contains some interesting 
details regarding genetic algorithms:

https://en.wikipedia.org/wiki/Genetic_algorithm 

Knowledge Representation

The issue of representation becomes important when we consider  
AI-related problems. AI systems that acquire and store knowledge in order 
to process it and produce intelligent results also need the ability to identify 
and represent that knowledge. The choice of a representation is intrinsic to 
the nature of problem solving and understanding. 

As George Polya (a famous mathematician) remarked, a good repre-
sentation choice is almost as important as the algorithm or solution plan 
devised for a particular problem. Good and natural representations facili-
tate fast and comprehensible solutions. 

As an example of a representation choice, consider the well-known 
Missionaries and Cannibals Problem, where the goal is to transfer three 
missionaries and three cannibals from the west bank to the east bank of a 
river with a boat. At any point during the transitions from west to east, you 
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can see the solution path by selecting an appropriate representation. There 
are two constraints in this problem: the boat can hold no more than two 
people at any time and the cannibals on any bank can never outnumber the 
number of missionaries. 

A solution for this problem (as well as the related “jealous husbands” 
problem) is here:

https:/ /en.wikipedia.org/wiki/Missionaries_and_cannibals_
problem#targetText=The%20missionaries%20and%20cannibals%20
problem,an%20example%20of%20problem%20representation

Logic-based Solutions
AI researchers have used a logic-based approach for knowledge representa-
tion and problem-solving technique. A seminal example of using logic for 
this purpose is Terry Winograd’s Blocks World (1972), in which a robot arm 
interacts with blocks on a tabletop. This program encompassed issues of 
language understanding and scene analysis as well as other aspects of AI. 

In addition, production rules and production systems are used to con-
struct many successful expert systems. The appeal of production rules and 
expert systems is based on the feasibility of representing heuristics clearly 
and concisely. Thousands of expert systems have been built incorporating 
this methodology.

Semantic Networks
Semantic networks are another graphical, though complex, representa-
tion of knowledge. Semantic networks precede object-oriented languages, 
which use inheritance (wherein an object from a particular class inherits 
many of the properties of a superclass).

Much of the work employing semantic networks has focused on repre-
senting the knowledge and structure of language. Examples include Stuart 
Shapiro SNePS (Semantic Net Processing System) and the work of Roger 
Schank in natural language processing.

Additional alternatives exist for knowledge representation: graphical 
approaches offer greater appeal to the senses, such as vision, space, and 
motion. Possibly the earliest graphical approaches were state-space repre-
sentations, which display all the possible states of a system.
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AI and Games

Since the middle of the twentieth century and the advent of comput-
ers, significant progress in computer science and proficiency in pro-
gramming techniques was acquired through the challenges of training 
computers to play and master complex board games. Some examples of 
games whose play by computer have benefitted from the application of 
AI insights and methodologies have included chess, checkers, Go, and 
Othello.

Games have spurred the development and interest in AI. Early efforts 
were highlighted by the efforts of Arthur Samuel in 1959 on the game of 
checkers. His program was based on tables of fifty heuristics and was used 
to play against different versions of itself. The losing program in a series 
of matches would adopt the heuristics of the winning program. It played 
strong checkers, but never mastered the game. 

People have been trying to train machines to play strong chess for sev-
eral centuries. The infatuation with chess machines probably stems from 
the generally accepted view that it requires intelligence to play chess well. 

In 1959, Newell, Simon, and Shaw developed the first real chess 
program, which followed the Shannon-Turing Paradigm. Richard 
Greenblatt’s program was the first to play club-level chess. Computer 
chess programs improved steadily in the 1970s until, by the end of that 
decade, they reached the Expert level (equivalent to the top 1% of chess 
tournament players). 

In 1983, Ken Thompson’s Belle was the first program to officially 
achieve the Master level. This was followed by the success of Hitech, from 
Carnegie-Mellon University, which successfully accomplished a major 
milestone as the first Senior Master (over 2400-rated) program. Shortly 
thereafter the program Deep Thought (also from Carnegie-Mellon) was 
developed and became the first program capable of beating Grandmasters 
on a regular basis.

Deep Thought evolved into Deep Blue when IBM took over the project 
in the 1990s, and Deep Blue played a six-game match with World Cham-
pion Garry Kasparov, who saved mankind by winning a match in Philadel-
phia in 1996. In 1997, however, against Deeper Blue, the successor of Deep 
Blue, Kasparov lost, and the chess world was shaken. 
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In subsequent six-game matches against Kasparov, Kramnik, and other 
World Championship-level players, programs have fared well, but these 
were not World Championship Matches. Although it is generally agreed 
that these programs might still be slightly inferior to the best human play-
ers, most would be willing to concede that top programs play chess indis-
tinguishably from the most accomplished humans (if one is thinking of the 
Turing Test).

In 1989, Jonathan Schaeffer, at the University of Alberta in Edmon-
ton, began his long-term goal of conquering the game of checkers with 
his program Chinook. In a forty-game match in 1992 against longtime 
Checkers World Champion Marion Tinsley, Chinook lost four‚ with 
thirty-four draws. In 1994 their match was tied after six games, when 
Tinsley had to forfeit because of health reasons. Since that time, Schaef-
fer and his team have been working to solve checkers from both the 
end of the game (all eight-pieces and fewer endings) as well as from the 
beginning.

Other games that use AI techniques include backgammon, poker, 
bridge, Othello, and Go (often called the new drosophila).

The Success of AlphaZero
Google created AlphaZero, which is an AI-based software program that 
used self-play to learn how to play games. AlphaZero is the successor to 
Alpha Go that defeated the world’s best human Go player in 2016. AlphaZ-
ero easily defeated Alpha Go in the game of Go.

Moreover, after learning the rules of chess, AlphaZero trained itself 
(again using self-play) and within a single day became the top chess player 
in the world. AlphaZero can defeat any human chess player as well as any 
chess-playing computer program.

The really interesting point is that AlphaZero developed its own strat-
egy for playing chess, which not only differs from humans, but also involves 
chess moves that are considered counterintuitive.

Unfortunately, AlphaZero is unable to tell us how it developed a strat-
egy that is superior to any previously developed approach for playing chess. 
Since AlphaZero is 100% self-taught and is the top-ranked chess player in 
the world, does AlphaZero qualify as intelligent?
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Expert Systems

Expert systems are one of the areas that have been investigated for almost 
as long as AI itself has existed. It is one discipline that AI can claim as a 
great success. Expert systems have many characteristics that make them 
desirable for AI research and development. These include separation of 
the knowledge base from the inference engine, being more than the sum of 
any or all of their experts, relationship of knowledge to search techniques, 
reasoning, and uncertainty.

One of the earliest and most often referenced systems was heuristic 
DENDRAL. Its purpose was to identify unknown chemical compounds 
on the basis of their mass spectrographs. DENDRAL was developed at 
Stanford University with the goal of performing a chemical analysis of the 
Martian soil. It was one of the first systems to illustrate the feasibility of 
encoding domain-expert knowledge in a particular discipline.

Perhaps the most famous expert system is MYCIN, also from Stanford 
University (1984). Mycin was developed to facilitate the investigation of 
infectious blood diseases. Even more important than its domain, however, 
was the example that Mycin established for the design of all subsequent 
knowledge-based systems. It had over 400 rules, which were eventually 
used to provide a training dialogue for residents at the Stanford hospital. 

In the 1970s, PROSPECTOR (also at Stanford University) was 
developed for mineral exploration. PROSPECTOR was also an early 
and valuable example of the use of inference networks.

Other famous and successful systems that followed in the 1970s were 
XCON (with some 10,000 rules), which was developed to help configure 
electrical circuit boards on VAX computers; GUIDON, a tutoring system 
that was an offshoot of Mycin; TEIRESIAS, a knowledge acquisition tool 
for Mycin; and HEARSAY I and II, the premier examples of speech under-
standing using the Blackboard Architecture.

The AM (Artificial Mathematician) system of Doug Lenat was another 
important result of research and development efforts in the 1970s, as well 
as the Dempster-Schafer Theory for reasoning under uncertainty, together 
with Zadeh’s work in fuzzy logic.

Since the 1980s, thousands of expert systems have been developed in 
such areas as configuration, diagnosis, instruction, monitoring, planning, 
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prognosis, remedy, and control. Today, in addition to stand-alone expert sys-
tems, many expert systems have been embedded into other software systems 
for control purposes, including those in medical equipment and automobiles 
(for example, when should traction control engage in an automobile?).

In addition, many expert systems shells, such as Emycin, OPS, EXSYS, 
and CLIPS, have become industry standards. Many knowledge representa-
tion languages have also been developed. Today, numerous expert systems 
work behind the scenes to enhance day-to-day experiences, such as the 
online shopping cart. 

Neural Computing

McCulloch and Pitts conducted early research in neural computing because 
they were trying to understand the behavior of animal nervous systems. 
Their model of artificial neural networks (ANN) had one serious drawback: 
it did not include a mechanism for learning.

Frank Rosenblatt developed an iterative algorithm known as the Per-
ceptron Learning Rule for finding the appropriate weights in a single-lay-
ered network (a network in which all neurons are directly connected to 
inputs). Research in this burgeoning discipline might have been severely 
hindered by the pronouncement by Minsky and Papert that certain prob-
lems could not be solved by single-layer perceptrons, such as the exclu-
sive OR (XOR) function. Federal funding for neural network research was 
severely curtailed immediately after this proclamation.

The field witnessed a second flurry of activity in the early 1980s with 
the work of Hopfield. His asynchronous network model (Hopfield net-
works) used an energy function to approximate solutions to NP-complete 
problems. 

The mid-1980s also witnessed the discovery of back propagation (usu-
ally called backprop), a learning algorithm appropriate for multilayered 
networks. Back propagation-based networks are routinely employed to pre-
dict Dow Jones averages and to read printed material in optical character 
recognition systems. 

Neural networks are also used in control systems. ALVINN was a 
project at Carnegie Mellon University in which a back propagation net-
work senses the highway and assists in the steering of a Navlab vehicle. 
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One immediate application of this work was to warn a driver impaired by 
lack of sleep, excess of alcohol, or other conditions whenever the vehicle 
strayed from its highway lane. Looking toward the future, it is hoped that, 
someday, similar systems will drive vehicles so that we are free to read 
newspapers and talk on our cell phones to take advantage of the extra  
free time.

Evolutionary Computation

Genetic algorithms are more generally classified as evolutionary computa-
tion. Genetic algorithms use probability and parallelism to solve combina-
torial problems (also called optimization problems), which is an approach 
developed by John Holland.

However, evolutionary computation is not solely concerned with opti-
mization problems. Rodney Brooks was formerly the director of the MIT 
Computer Science and AI Laboratory. His approach to the successful cre-
ation of a human-level Artificial Intelligence, which he aptly cites as the 
holy grail of AI research, renounces reliance on the symbol-based approach. 
This latter approach relies upon the use of heuristics and representational 
paradigms. 

In his view, intelligent systems can be designed in multiple layers in 
which higher leveled layers rely upon those layers beneath them. For 
example, if you wanted to build a robot capable of avoiding obstacles, the 
obstacle avoidance routine would be built upon a lower layer, which would 
merely be responsible for robotic locomotion. 

Brooks maintains that intelligence emerges through the interaction 
of an agent with its environment. He is perhaps most well known for the 
insectlike robots built in his lab that embody this philosophy of intelligence, 
wherein a community of autonomous robots interact with their environ-
ment and with each other.

Natural Language Processing

If we wish to build intelligent systems, it seems natural to ask that our sys-
tems possess a language-understanding facility. This is an axiom that was 
well understood by many early practitioners. Eliza is one well-known early 
application program, which was developed by Joseph Weizenbaum‚ an MIT 
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computer scientist who worked with Kenneth Colby (a Stanford University 
psychiatrist). 

Eliza was intended to imitate the role played by a psychiatrist of the 
Carl Rogers School. For instance, if the user typed in “I feel tired,” Eliza 
was a back propagation application that learned the correct pronunciation 
for English text. It was claimed to pronounce English sounds with 95% 
accuracy. Obviously, problems arose because of inconsistencies inherent in 
the pronunciation of English words, such as rough and through, and the 
pronunciation of words derived from other languages, such as pizza and 
fizzy. 

Terry Winograd wrote another well-known program that was named 
after the second set of these letters of the pair ETAOIN SHRDLU, which 
are the most frequently used letters in the English language on linotype 
machines. Winograd’s program might respond with, “You say you feel tired. 
Tell me more.” The “conversation” would continue in this manner, with 
the machine contributing little or nothing in terms of originality to the dia-
logue. A live psychoanalyst might behave in this fashion in the hope that 
the patient would discover their true (perhaps hidden) feelings and frustra-
tions. Meanwhile, Eliza is merely using pattern matching to feign human-
like interaction. 

Curiously, Weizenbaum was disturbed by the avid interest that his stu-
dents (and the public in general) took in interacting with Eliza, even though 
they were fully aware that Eliza was only a program. Meanwhile, Colby 
remained dedicated to the project and went on to author a successful pro-
gram called DOCTOR. 

Although Eliza has contributed little to natural language processing 
(NLP), it is software that pretends to possess what is perhaps our last ves-
tige of specialness‚ our ability to feel emotions. What will happen when the 
line between a human and machine (example: android) becomes less clear‚ 
perhaps in some fifty years‚ and these androids will be less mortal and more 
like immortals? 

More recently, several MIT robots, including Cog, Kismet, and 
Paro, have been developed with the uncanny ability to feign human 
emotions and evoke emotional responses from those with whom they 
interact. Turkle has studied the relationships that children and older 
persons in nursing homes have formed with these robots; relationships 
that involve genuine emotion and caring. Turkle speaks of the need to 
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perhaps redefine the word relationship to include the encounters that 
people have with these so-called relational artifacts. She remains confi-
dent, however, that such relationships will never replace the bonds that 
can only occur between human beings who must confront their mortal-
ity on a daily basis.

Winograd’s Blocks World involved a robot arm that was able to achieve 
various goals. For example, if SHRDLU was asked to lift a red block upon 
which there was a small green block, it knew that it must remove the green 
block before it could lift the red one. Unlike Eliza, SHRDLU was able to 
understand English commands and respond to them appropriately.

HEARSAY, an ambitious program in speech recognition, employed a 
blackboard architecture wherein independent knowledge sources (agents) 
for various components of language, such as phonetics and phrases, could 
freely communicate. Both syntax and semantics were used to prune improb-
able word combinations.

The HWIM (pronounced “whim” and short for Hear What I Mean) 
Project used augmented transition networks to understand spoken lan-
guage. It had a vocabulary of 1,000 words dealing with travel budget man-
agement. Perhaps this project was too ambitious in scope because it did not 
perform as well as HEARSAY II.

Parsing played an integral part in the success of these natural language 
programs. SHRDLU employed a context-free grammar to help parse Eng-
lish commands. Context-free grammars provide a syntactic structure for 
dealing with strings of symbols. However, to effectively process natural lan-
guages, semantics must be considered as well.

A parse tree provides the relationship between the words that compose 
a sentence. For example, many sentences can be broken down into both a 
subject and a predicate. Subjects can be broken down perhaps into a noun 
phrase followed by a prepositional phrase and so on. Essentially, a parse 
tree gives the semantics that is the meaning of the sentence.

Each of the these early language processing systems employed world 
knowledge to some extent. However, in the late 1980s the greatest stumbling 
block for progress in NLP was the problem of common sense knowledge. 
For example, although many successful programs were built in particular 
areas of NLP and AI, these were often criticized as microworlds, meaning 
that the programs did not have general, real-world knowledge or common 
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sense. For example, a program might know a lot about a particular scenario, 
such as ordering food in a restaurant, but it would have no knowledge of 
whether the waiter or waitress was alive or whether they would ordinarily 
be wearing any clothing. During the past twenty-five years, Douglas Lenat 
of MCC in Austin, Texas, has been building the largest repository of com-
mon-sense knowledge to address this issue.

NLP has undergone some interesting developments. After its initial 
stage (as described earlier in this section), NLP relied on statistics to gov-
ern the parse trees for sentences. Charniak describes how context-free 
grammars (CFGs) can be augmented such that each rule has an associated 
probability. These associated probabilities could be taken from the Penn 
Treebank, which contains more than one million words of English text that 
have been parsed manually, mostly from the Wall Street Journal. Charniak 
demonstrated how this statistical approach successfully obtained a parse for 
a sentence from the front page of the New York Times (no trivial feat, even 
for most humans).

The next step in the evolution of NLP involves deep-learning archi-
tectures called RNNs, LSTMs, and bidirectional LSTMs, which are dis-
cussed in Chapter 5. The most recent architecture is called a transformer, 
which was developed by Google in 2017. BERT is based on transformers 
(as well as “attention”) and is one of the most powerful open-source systems 
currently available for solving NLP tasks. Yet another approach for NLP 
involves Deep Reinforcement Learning (discussed briefly in Chapter 6).

Bioinformatics

Bioinformatics is the nascent discipline that concerns the application of the 
algorithms and techniques of computer science to molecular biology. It is 
mainly concerned with the management and analysis of biological data. In 
structural genomics, one attempts to specify a structure for each observed 
protein. Automated discovery and data mining could help in this pursuit.

Juristica and Glasgow demonstrate how case-based reasoning could 
assist in the discovery of the representative structure for each pro-
tein. In their 2004 survey article in the AAAI special issue on AI and  
Bioinformatics, Glasgow, Jurisica, and Rost note: “Possibly the most 
rapidly growing area of recent activity in bioinformatics is the analysis 
of microarray data.”
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Microbiologists are overwhelmed with both the variety and quantity 
of data available to them. They are being asked to comprehend molecu-
lar sequence, structure, and data based solely on huge databases. Many 
researchers believe that AI techniques from knowledge representation and 
machine learning will prove beneficial as well.

The next portion of this chapter provides a quick introduction to the 
major parts of AI, which include machine learning and deep learning.

Major Parts of AI 

The subsequent chapters in this book delve into various important parts of 
AI, which include:

•	 ML (Machine Learning)

•	 DL (Deep Learning)

•	 NLP (Natural Language Processing)

•	 RL (Reinforcement Learning)

•	 DRL (Deep Reinforcement Learning)

Traditional AI (twentieth century) is based on collections of rules, which 
led to expert systems in the 1980s. Traditional AI also involved LISP, which 
was created by John McCarthy (one of the members of the first official AI 
meeting in 1956).

Traditional AI is primarily a set of rules in conjunction with conditional 
logic, which is also true for the powerful expert systems that were devel-
oped in the 1980s. However, a rule-based system for making decisions can 
involve thousands of rules. Even simple objects require many rules: try to 
come up with a set of rules that define a chair, a table, or even just an apple. 
Traditional AI has some significant limitations, mainly because of the num-
ber of rules that are required. 

Machine Learning
Around the middle of the twentieth century machine learning (a subset 
of AI) relied primarily on data to optimize and “learn” how to perform 
tasks, often accompanied by new or improved algorithms, such as linear 
regression, k-NN, decision trees, random forests, and SVMs; with the 
exception of linear regression, all the other algorithms are classifiers.  
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As you will see, machine learning is a diverse and vibrant field that 
includes other subfields.

Since data (instead of rules) is so important in machine learning, it’s 
typically one of the following types:

•	 Supervised learning (lots of labeled data)

•	 Semi-supervised learning (lots of partially labeled data)

•	 Unsupervised learning: lots of data, clustering

•	 Reinforcement learning: trial, feedback, and improvement

According to Andrew Ng (the cofounder of Coursera), “99% of all machine 
learning is supervised.”

In addition to categorizing data, machine learning algorithms can be 
categorized into the following major types:

•	 Classifiers (for images, spam, fraud, etc.)

•	 Regression (stock price, housing price, etc.)

•	 Clustering (unsupervised classifiers)

Deep Learning
One important subfield of machine learning is deep learning, which also 
has its roots in the middle of the twentieth century. Deep-learning archi-
tectures rely on the perceptron as the basis of neural networks, often involv-
ing large or massive datasets. Such architectures also involve heuristics and 
empirical results. Nowadays deep learning can surpass humans for some 
image classification.

While machine learning involves MLPs (multilayer perceptrons), deep 
learning introduces deep neural networks, with new algorithms and new 
architectures (e.g., convolutional neural networks, RNNs, and LSTMs).

Reinforcement Learning
Reinforcement learning (also a subset of machine learning) involves trial-
and-error in order to maximize a reward for a so-called agent. Deep rein-
forcement learning combines the strengths of deep learning with reinforce-
ment learning. In particular, the agent in reinforcement learning is replaced 
with a neural network.
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Deep reinforcement learning has applications in many diverse fields, 
and three of the most popular are:

•	 Games (Go, Chess, etc.)

•	 Robotics

•	 NLP

Some well-known and successful examples of the use of reinforcement 
learning in games include:

•	 Alpha Go (hybrid RL)

•	 Alpha Zero (complete RL)

•	 Often involve Greedy algorithms

•	 Deep RL: Combines Deep Learning and RL

Robotics
Robots have entered our personal and professional lives in myriad ways, 
including:

•	 Surgery (assisting surgeons)

•	 Radiology (detecting cancer)

•	 Drug mismanagement

•	 Comparative theories of religion

•	 Law/real estate/military/science

•	 Comedy (including stand-up)

•	 Music (conducting orchestras)

•	 Restaurants (gourmet meals)

•	 Coordinated dancing teams

•	 Many other fields

Robot truck drivers are displacing jobs, but they also have advantages: their 
only cost is the upkeep of the machinery. In addition, robots aren’t distracted 
the way that humans are, they don’t engage in activities that contribute to acci-
dents, and they don’t require salaries or any sort of time off. Yet despite the sur-
prising achievements of robots, Star Trek’s character Data is still just a dream.
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NLP is an area of computer science and AI that involves interaction 
between computers and human languages. In the early days, NLP involved 
rule-based techniques or statistical techniques. NLP and machine learn-
ing can process/analyze volumes of natural language data, where computer 
programs perform that processing.

There are many NLP tasks that are solved with machine learning tech-
niques. Some areas of interest that involve NLP include:

•	 Translating between languages

•	 Finding meaningful information from text

•	 Summarizing documents

•	 Detecting hate speech

Despite all the advances and advantages of machine learning, et al., there 
are issues that need to be resolved. One issue is occupational bias: an AI 
system inferred that white males were doctors and white females were 
housewives. Another issue involves detecting gender bias. For example, in 
Wikipedia (circa 2018) 18% of its biographies are of women, while 84% to 
90% of Wikipedia editors are male.

Yet another issue, analyzed in the following article, involves data bias 
versus algorithmic bias:

https://www.forbes.com/sites/charlestowersclark/2018/09/19/can-we-
make-artificial-intelligence-accountable

Finally, there is the question of the interaction of AI and ethics, which 
includes some thought-provoking questions (such as unemployment and robot 
rights). The following article contains an extensive list of ethical questions:

https://www.weforum.org/agenda/2016/10/top-10-ethical-issues-in-
artificial-intelligence/

Code Samples

The companion disc contains the following files:

•	 RubiksCube.py

•	 Board.java

•	 Search.java
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The Python file is a solution for Rubik’s Cube, and the two Java files are for 
the solution to the Red Donkey problem.

In order to run a Java program, download the Java Runtime Environ-
ment (JRE) here:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

In order to compile and run a Java program, download the Java SDK 
here:

https://www.java.com/en/

If you do not have Python installed, the Python-related download is 
here:

http://www.python.org/getit/

If you do not have Java installed, you can find online for instructions 
doing so, as well as instructions for compiling and launching Java code.

Summary

In this chapter, you learned about AI, strong versus weak AI, and the Turing 
Test for intelligence. Then you learned about heuristics and their useful-
ness in algorithms, followed by genetic algorithms, and knowledge repre-
sentation. Next you saw how AI was initially applied to diverse areas such as 
games and expert systems.

You also learned about the early approaches to neural computing, evo-
lutionary computation, NLP, and bioinformatics. In addition, you got an 
introduction to the major subfields of AI, which include natural language 
processing, machine learning, deep learning, reinforcement learning, and 
deep reinforcement learning.



C H A P T E R 2
INTRODUCTION TO  
MACHINE LEARNING

This chapter introduces numerous concepts in machine learning, such as 
feature selection, feature engineering, data cleaning, training sets, and test 
sets. 

The first part of this chapter briefly discusses machine learning and the 
sequence of steps that are typically required in order to prepare a dataset. 
These steps include “feature selection” or “feature extraction” that can be 
performed using various algorithms. 

The second section describes the types of data that you can encounter, 
issues that can arise with the data in datasets, and how to rectify them. You 
will also learn about the difference between “hold out” and “k-fold” when 
you perform the training step.

The third part of this chapter briefly discusses the basic concepts 
involved in linear regression. Although linear regression was developed 
more than 200 years ago, this technique is still one of the “core” techniques 
for solving (albeit simple) problems in statistics and machine learning. In 
fact, the technique known as “Mean Squared Error” (MSE) for finding a 
best-fitting line for data points in a 2D plane (or a hyperplane for higher 
dimensions) is implemented in Python and TensorFlow in order to mini-
mize so-called “cost” functions that are discussed later.

The fourth section in this chapter contains additional code samples 
involving linear regression tasks using standard techniques in NumPy. 
Hence, if you are comfortable with this topic, you can probably skim quickly 
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through the first two sections of this chapter. The third section shows you 
how to solve linear regression using Keras.

One point to keep in mind is that some algorithms are mentioned with-
out delving into details about them. For instance, the section pertaining 
to supervised learning contains a list of algorithms that appear later in the 
chapter in the section that pertains to classification algorithms. The algo-
rithms that are displayed in bold in a list are the algorithms that are of 
greater interest for this book. In some cases the algorithms are discussed 
in greater detail in the next chapter; otherwise, you can perform an online 
search for additional information about the algorithms that are not dis-
cussed in detail in this book.

What is Machine Learning?

In high level terms, machine learning is a subset of AI that can solve tasks 
that are infeasible or too cumbersome with “traditional” programming 
languages. A spam filter for email is an early example of machine learning. 
Machine learning generally supersedes the accuracy of older algorithms. 

Despite the variety of machine learning algorithms, the data is arguably 
more important than the selected algorithm. Many issues can arise with 
data, such as insufficient data, poor quality of data, incorrect data, missing 
data, irrelevant data, duplicate data values, and so forth. Later in this chap-
ter you will see techniques that address many of these data-related issues.

If you are unfamiliar with machine learning terminology, a dataset is 
a collection of data values, which can be in the form of a CSV file or a 
spreadsheet. Each column is called a feature, and each row is a datapoint 
that contains a set of specific values for each feature. If a dataset contains 
information about customers, then each row pertains to a specific customer.

Types of Machine Learning
There are three main types of machine learning (combinations of these are 
also possible) that you will encounter:

•	 Supervised learning

•	 Unsupervised learning

•	 Semi-supervised learning
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Supervised learning means that the datapoints in a dataset have a label that 
identifies its contents. For example, the MNIST dataset contains 28x28 PNG 
files, each of which contains a single hand-drawn digit (i.e. 0 through 9 
inclusive). Every image with the digit 0 has the label 0; every image with 
the digit 1 has the label 1; all other images are labeled according to the digit 
that is displayed in those images. 

As another example, the columns in the Titanic dataset are features 
about passengers, such as their gender, the cabin class, the price of 
their ticket, whether or not the passenger survived, and so forth. Each 
row contains information about a single passenger, including the value 
1 if the passenger survived. The MNIST dataset and the Titanic data-
set involve classification tasks: the goal is to train a model based on a  
training dataset and then predict the class of each row in a test  
dataset.

In general, the datasets for classification tasks have a small number of 
possible values: one of nine digits in the range of 0 through 9, one of four 
animals (dog, cat, horse, giraffe), one of two values (survived versus per-
ished, purchased versus not purchased). As a rule of thumb, if the number 
of outcomes can be displayed “reasonably well” in a drop-down list, then it’s 
probably a classification task.

In the case of a dataset that contains real estate data, each row contains 
information about a specific house, such as the number of bedrooms, the 
square feet of the house, the number of bathrooms, the price of the house, 
and so forth. In this dataset the price of the house is the label for each row. 
Notice that the range of possible prices is too large to fit “reasonably well” 
in a drop-down list. A real estate dataset involves a regression task: the goal 
is to train a model based on a training dataset and then predict the price of 
each house in a test dataset.

Unsupervised learning involves unlabeled data, which is typically the 
case for clustering algorithms (discussed later). Some important unsuper-
vised learning algorithms that involve clustering are listed below:

•	 k-Means

•	 Hierarchical Cluster Analysis (HCA)

•	 Expectation Maximization
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Some important unsupervised learning algorithms that involve dimen-
sionality reduction (discussed in more detail later) are listed below:

•	 PCA (Principal Component Analysis)

•	 Kernel PCA 

•	 LLE (Locally Linear Embedding)

•	 t-SNE (t-distributed Stochastic Neighbor Embedding)

There is one more very important unsupervised task called anomaly 
detection. This task is relevant for fraud detection and detecting outliers  
(discussed later in more detail).

Semi-supervised learning is a combination of supervised and unsu-
pervised learning: some datapoints are labeled and some are unlabeled. 
One technique involves using the labeled data in order to classify (i.e., 
label) the unlabeled data, after which you can apply a classification 
algorithm.

Types of Machine Learning Algorithms

There are three main types of machine learning algorithms:

•	 Regression (ex: linear regression)

•	 Classification (ex: k-Nearest-Neighbor)

•	 Clustering (ex: kMeans)

Regression is a supervised learning technique to predict numerical quanti-
ties. An example of a regression task is predicting the value of a particular 
stock. Note that this task is different from predicting whether the value of 
a particular stock will increase or decrease tomorrow (or some other future 
time period). Another example of a regression task involves predicting the 
cost of a house in a real estate dataset. Both of these tasks are examples of 
a regression task.

Regression algorithms in machine learning include linear regression 
and generalized linear regression (also called multivariate analysis in tradi-
tional statistics).

Classification is also a supervised learning technique, but it’s for pre-
dicting categorical quantities. An example of a classification task is detecting  
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the occurrence of spam, fraud, or determining the digit in a PNG file (such 
as the MNIST dataset). In this case, the data is already labeled, so you can 
compare the prediction with the label that was assigned to the given PNG.

Classification algorithms in machine learning include the following list 
of algorithms (they are discussed in greater detail in the next chapter):

•	 Decision Trees (a single tree)

•	 Random Forests (multiple trees)

•	 kNN (k Nearest Neighbor)

•	 Logistic regression (despite its name)

•	 Naïve Bayes

•	 SVM (Support Vector Machines)

Some machine learning algorithms (such as SVMs, random forests, and 
kNN) support regression as well as classification. In the case of SVMs, the 
scikit-learn implementation of this algorithm provides two APIs: SVC for 
classification and SVR for regression.

Each of the preceding algorithms involves a model that is trained on a 
dataset, after which the model is used to make a prediction. By contrast, a 
random forest consists of multiple independent trees (the number is speci-
fied by you), and each tree makes a prediction regarding the value of a 
feature. If the feature is numeric, take the mean or the mode (or perform 
some other calculation) in order to determine the “final” prediction. If the 
feature is categorical, use the mode (i.e., the most frequently occurring 
class) as the result; in the case of a tie you can select one of them in a ran-
dom fashion. 

Incidentally, the following link contains more information regarding 
the kNN algorithm for classification as well as regression: 

http://saedsayad.com/k_nearest_neighbors_reg.htm

Clustering is an unsupervised learning technique for grouping similar 
data together. Clustering algorithms put data points in different clusters 
without knowing the nature of the data points. After the data has been 
separated into different clusters, you can use the SVM (Support Vector 
Machine) algorithm to perform classification.
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Clustering algorithms in machine learning include the following (some 
of which are variations of each other):

•	 k-Means

•	 Meanshift

•	 Hierarchical Cluster Analysis (HCA)

•	 Expectation Maximization

Keep in mind the following points. First, the value of k in k-Means is a 
hyper parameter, and it’s usually an odd number to avoid ties between 
two classes. Next, the meanshift algorithm is a variation of the k-Means  
algorithm that does not require you to specify a value for k. In fact, the 
meanshift algorithm determines the optimal number of clusters.  
However, this algorithm does not scale well for large datasets.

Machine Learning Tasks
Unless you have a dataset that has already been sanitized, you need to 
examine the data in a dataset to make sure that it’s in a suitable condition. 
The data preparation phase involves 1) examining the rows (“data clean-
ing”) to ensure that they contain valid data (which might require domain-
specific knowledge), and 2) examining the columns (feature selection or 
feature extraction) to determine if you can retain only the most important 
columns.

A high-level list of the sequence of machine learning tasks (some of 
which might not be required) is shown below:

•	 Obtain a dataset

•	 Data cleaning

•	 Feature selection

•	 Dimensionality reduction

•	 Algorithm selection

•	 Train-versus-test data 

•	 Training a model

•	 Testing a model
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•	 Fine-tuning a model

•	 Obtain metrics for the model

First, you obviously need to obtain a dataset for your task. In the ideal sce-
nario, this dataset already exists; otherwise, you need to cull the data from 
one or more data sources (e.g., a CSV file, a relational database, a no-SQL 
database, a Web service, and so forth).

Second, you need to perform data cleaning, which you can do via the 
following techniques:

•	 Missing Value Ratio

•	 Low Variance Filter

•	 High Correlation Filter

In general, data cleaning involves checking the data values in a dataset in 
order to resolve one or more of the following:

•	 Fix incorrect values

•	 Resolve duplicate values

•	 Resolve missing values

•	 Decide what to do with outliers

Use the Missing Value Ratio technique if the dataset has too many missing 
values. In extreme cases, you might be able to drop features with a large 
number of missing values. Use the Low Variance filter technique to identify 
and drop features with constant values from the dataset. Use the High Cor-
relation filter technique to find highly correlated features, which increase 
multicollinearity in the dataset: such features can be removed from a data-
set (but check with your domain expert before doing so).

Depending on your background and the nature of the dataset, you 
might need to work with a domain expert, which is a person who has a deep 
understanding of the contents of the dataset.

For example, you can use a statistical value (mean, mode, and so forth) to 
replace incorrect values with suitable values. Duplicate values can be handled 
in a similar fashion. You can replace missing numeric values with zero, the min-
imum, the mean, the mode, or the maximum value in a numeric column. You 
can replace missing categorical values with the mode of the categorical column. 
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If a row in a dataset contains a value that is an outlier, you have three 
choices:

•	 Delete the row

•	 Keep the row

•	 Replace the outlier with some other value (mean?)

When a dataset contains an outlier, you need to make a decision based on 
domain knowledge that is specific to the given dataset.

Suppose that a dataset contains stock-related information. As you know, 
there was a stock market crash in 1929, which you can view as an outlier. 
Such an occurrence is rare, but it can contain meaningful information. 
Incidentally, the source of wealth for some families in the 20th century was 
based on buying massive amounts of stock are very low prices during the 
Great Depression.

Feature Engineering, Selection, and Extraction

In addition to creating a dataset and “cleaning” its values, you also need to 
examine the features in that dataset to determine whether or not you can 
reduce the dimensionality (i.e., the number of columns) of the dataset. The 
process for doing so involves three main techniques:

•	 Feature engineering

•	 Feature selection

•	 Feature extraction (aka feature projection)

Feature engineering is the process of determining a new set of features that 
are based on a combination of existing features in order to create a mean-
ingful dataset for a given task. Domain expertise is often required for this 
process, even in cases of relatively simple datasets. Feature engineering can 
be tedious and expensive, and in some cases you might consider using auto-
mated feature learning. After you have created a dataset, it’s a good idea to 
perform feature selection or feature extraction (or both) to ensure that you 
have a high quality dataset.

Feature selection is also called variable selection, attribute selection 
or variable subset selection. Feature selection involves selecting the sub-
set of relevant features in a dataset. In essence, feature selection involves 
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selecting the “most important” features in a dataset, which provides these 
advantages:

•	 Reduced training time

•	 Simpler models are easier to interpret

•	 Avoidance of the curse of dimensionality

•	 Better generalization due to a reduction in overfitting (“reduction of 
variance”)

Feature selection techniques are often used in domains where there are 
many features and comparatively few samples (or data points). Keep in 
mind that a low-value feature can be redundant or irrelevant, which are 
two different concepts. For instance, a relevant feature might be redundant 
when it’s combined with another strongly correlated feature.

Feature selection can involve three strategies:  the filter strategy (e.g. 
information gain), the wrapper strategy (e.g. search guided by accuracy), 
and the embedded strategy (prediction errors are used to determine 
whether features are included or excluded while developing a model). One 
other interesting point is that feature selection can also be useful for regres-
sion as well as classification tasks.

Feature extraction creates new features from functions that produce 
combinations of the original features. By contrast, feature selection involves 
determining a subset of the existing features. 

Feature selection and feature extraction both result in dimensionality 
reduction for a given dataset, which is the topic of the next section.

Dimensionality Reduction

Dimensionality Reduction refers to algorithms that reduce the number of 
features in a dataset: hence the term “dimensionality reduction.” As you 
will see, there are many techniques available, and they involve either fea-
ture selection or feature extraction. 

Algorithms that use feature selection to perform dimensionality reduc-
tion are listed here:

•	 Backward Feature Elimination

•	 Forward Feature Selection
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•	 Factor Analysis

•	 Independent Component Analysis

Algorithms that use feature extraction to perform dimensionality reduction 
are listed here:

•	 Principal component analysis (PCA)

•	 Non-negative matrix factorization (NMF)

•	 Kernel PCA

•	 Graph-based kernel PCA

•	 Linear discriminant analysis (LDA)

•	 Generalized discriminant analysis (GDA)

•	 Autoencoder

The following algorithms combine feature extraction and dimensionality 
reduction:

•	 Principal component analysis (PCA)

•	 Linear discriminant analysis (LDA)

•	 Canonical correlation analysis (CCA)

•	 Non-negative matrix factorization (NMF)

These algorithms can be used during a pre-processing step before using 
clustering or some other algorithm (such as kNN) on a dataset.

One other group of algorithms involves methods based on projections, 
which includes t-Distributed Stochastic Neighbor Embedding (t-SNE) as 
well as UMAP.

This chapter discusses PCA, and you can perform an online search to 
find more information about the other algorithms.

PCA
Principal Components are new components that are linear combinations of 
the initial variables in a dataset. In addition, these components are uncor-
related and the most meaningful or important information is contained in 
these new components.
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There are two advantages to PCA: 1) reduced computation time due to 
far fewer features and 2) the ability to graph the components when there are 
at most three components. If you have four or five components, you won’t be 
able to display them visually, but you could select subsets of three components 
for visualization, and perhaps gain some additional insight into the dataset.

PCA uses the variance as a measure of information: the higher the variance, 
the more important the component. In fact, just to jump ahead slightly: PCA 
determines the eigenvalues and eigenvectors of a covariance matrix (discussed 
later), and constructs a new matrix whose columns are eigenvectors, ordered 
from left-to-right based on the maximum eigenvalue in the left-most column, 
decreasing until the right-most eigenvector also has the smallest eigenvalue.

Covariance Matrix
As a reminder, the statistical quantity called the variance of a random vari-
able X is defined as follows:

variance(x) = [SUM (x – xbar)*(x-xbar)]/n

A covariance matrix C is an nxn matrix whose values on the main diagonal 
are the variance of the variables X1, X2, . . ., Xn. The other values of 
C are the covariance values of each pair of variables Xi and Xj.  

The formula for the covariance of the variables X and Y is a generaliza-
tion of the variance of a variable, and the formula is shown here:

covariance(X, Y) = [SUM (x – xbar)*(y-ybar)]/n

Notice that you can reverse the order of the product of terms (multiplica-
tion is commutative), and therefore the covariance matrix C is a symmetric 
matrix:

covariance(X, Y) = covariance(Y,X)

PCA calculates the eigenvalues and the eigenvectors of the covariance 
matrix A.

Working with Datasets

In addition to data cleaning, there are several other steps that you need 
to perform, such as selecting training data versus test data, and deciding 
whether to use “hold out” or cross-validation during the training process. 
More details are provided in the subsequent sections.
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Training Data Versus Test Data
After you have performed the tasks described earlier in this chapter (i.e., 
data cleaning and perhaps dimensionality reduction), you are ready to split 
the dataset into two parts. The first part is the training set, which is used 
to train a model, and the second part is the test set, which is used for 
“inferencing” (another term for making predictions). Make sure that you 
conform to the following guidelines for your test sets:

•	 The set is large enough to yield statistically meaningful results

•	 It’s representative of the data set as a whole

•	 Never train on test data

•	 Never test on training data

What Is Cross-validation?
The purpose of cross-validation is to test a model with non- overlapping test 
sets, which is performed in the following manner:

•	 Step 1) Split the data into k subsets of equal size

•	 Step 2) Select one subset for testing and the others for training

•	 Step 3) Repeat step 2 for the other k-1 subsets

This process is called k-fold cross-validation, and the overall error estimate 
is the average of the error estimates. A standard method for evaluation 
involves ten-fold cross-validation. Extensive experiments have shown that 
10 subsets is the best choice to obtain an accurate estimate. In fact, you can 
repeat ten-fold cross-validation ten times and compute the average of the 
results, which helps to reduce the variance.

The next section discusses regularization, which is an important yet optional 
topic if you are primarily interested in TF 2 code. If you plan to become profi-
cient in machine learning, you will need to learn about regularization.

What Is Regularization?

Regularization helps to solve overfitting problem, which occurs when a 
model performs well on training data but poorly on validation or test data.

Regularization solves this problem by adding a penalty term to the cost 
function, thereby controlling the model complexity with this penalty term. 
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Regularization is generally useful for:

•	 Large number of variables

•	 Low ratio of (# observations)/(# of variables) 

•	 High multi-collinearity

There are two main types of regularization: L1 Regularization (which is 
related to MAE, or the absolute value of differences) and L2 Regulariza-
tion (which is related to MSE, or the square of differences). In general, L2 
performs better than L1, and it’s efficient in terms of computation.

ML and Feature Scaling
Feature Scaling standardizes the range of features of data. This step is 
performed during the data preprocessing step, in part because gradient 
descent benefits from feature scaling.

The assumption is that the data conforms to a standard normal distribu-
tion, and standardization involves subtracting the mean and divide by the 
standard deviation for every data point, which results in a N(0,1) normal 
distribution.

Data Normalization vs Standardization
Data normalization is a linear scaling technique. Let’s assume that a dataset 
has the values {X1, X2, . . . , Xn} along with the following terms: 

Minx = minimum of Xi values 

Maxx = maximum of Xi values

Now calculate a set of new Xi values as follows: 

Xi = (Xi – Minx)/[Maxx – Minx]

The new Xi values are now scaled so that they are between 0 and 1.

The Bias-Variance Tradeoff

Bias in machine learning can be due to an error from wrong assumptions 
in a learning algorithm. High bias might cause an algorithm to miss rel-
evant relations between features and target outputs (underfitting). Predic-
tion bias can occur because of “noisy” data, an incomplete feature set, or a 
biased training sample.
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Error due to bias is the difference between the expected (or average) 
prediction of your model and the correct value that you want to predict. 
Repeat the model building process multiple times, and gather new data 
each time, and also perform an analysis to produce a new model. The 
resulting models have a range of predictions because the underlying data 
sets have a degree of randomness. Bias measures the extent to the predic-
tions for these models are from the correct value.

Variance in machine learning is the expected value of the squared devia-
tion from the mean. High variance can/might cause an algorithm to model 
the random noise in the training data, rather than the intended outputs (aka 
overfitting).

Adding parameters to a model increases its complexity, increases the 
variance, and decreases the bias. Dealing with bias and variance is dealing 
with underfitting and overfitting. 

Error due to variance is the variability of a model prediction for a given 
data point. As before, repeat the entire model building process, and the 
variance is the extent to which predictions for a given point vary among dif-
ferent “instances” of the model.

Metrics for Measuring Models

One of the most frequently used metrics is R-squared, which measures how 
close the data is to the fitted regression line (regression coefficient). The 
R-squared value is always a percentage between 0 and 100%. The value 
0% indicates that the model explains none of the variability of the response 
data around its mean. The value 100% indicates that the model explains all 
the variability of the response data around its mean. In general, a higher 
R-squared value indicates a better model.

Limitations of R-Squared
Although high R-squared values are preferred, they are not necessarily 
always good values. Similarly, low R-squared values are not always bad. For 
example, an R-squared value for predicting human behavior is often less 
than 50%. Moreover, R-squared cannot determine whether the coefficient 
estimates and predictions are biased. In addition, an R-squared value does 
not indicate whether a regression model is adequate. Thus, it’s possible to 
have a low R-squared value for a good model, or a high R-squared value 
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for a poorly fitting model. Evaluate R-squared values in conjunction with 
residual plots, other model statistics, and subject area knowledge.

Confusion Matrix
In its simplest form, a confusion matrix (also called an error matrix) is a type 
of contingency table with two rows and two columns that contains the # of 
false positives, false negatives, true positives, and true negatives. The four 
entries in a 2x2 confusion matrix can be labeled as follows:

TP: True Positive
FP: False Positive
TN: True Negative
FN: False Negative

The diagonal values of the confusion matrix are correct, whereas the off-
diagonal values are incorrect predictions. In general a lower FP value is 
better than a FN value. For example, an FP indicates that a healthy person 
was incorrectly diagnosed with a disease, whereas an FN indicates that an 
unhealthy person was incorrectly diagnosed as healthy. 

Accuracy vs Precision vs Recall
A 2x2 confusion matrix has four entries that that represent the various com-
binations of correct and incorrect classifications. Given the definitions in 
the preceding section, the definitions of precision, accuracy, and recall are 
given by the following formulas:

precision = TP/(TN + FP)
accuracy  = (TP + TN)/[P + N]
recall    = TP/[TP + FN]

Accuracy can be an unreliable metric because it yields misleading results 
in unbalanced data sets. When the number of observations in different 
classes are significantly different, it gives equal importance to both false 
positive and false negative classifications. For example, declaring cancer 
as benign is worse than incorrectly informing patients that they are suf-
fering from cancer. Unfortunately, accuracy won’t differentiate between 
these two cases.

Keep in mind that the confusion matrix can be an nxn matrix and not 
just a 2x2 matrix. For example, if a class has 5 possible values, then the  
confusion matrix is a 5x5 matrix, and the numbers on the main diagonal are 
the “true positive” results.
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The ROC Curve
The ROC (receiver operating characteristic) curve is a curve that plots the 
TPR, which is the true positive rate (i.e., the recall) against the FPR, which 
is the false positive rate). Note that the TNR (the true negative rate) is also 
called the specificity.

The following link contains a Python code sample using SKLearn and 
the Iris dataset, and also code for plotting the ROC:

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

The following link contains an assortment of Python code samples for 
plotting the ROC:

https://stackoverflow.com/questions/25009284/how-to-plot-roc-curve-
in-python

Other Useful Statistical Terms

Machine learning relies on a number of statistical quantities in order to 
assess the validity of a model, some of which are listed here:

•	 RSS

•	 TSS

•	 R-2

•	 F1 score

•	 p-value

The definitions of RSS, TSS, and R^2 are shown below, where y^ is the 
y-coordinate of a point on a best-fitting line and y_ is the mean of the 
y-values of the points in the dataset:

RSS = sum of squares of residuals (y - y^)**2
TSS = toal sum of squares         (y - y_)**2
R^2 = 1 - RSS/TSS

What Is an F1 Score?
The F1 score is a measure of the accuracy of a test, and it’s defined as the 
harmonic mean of precision and recall. Here are the relevant formulas, 
where p is the precision and r is the recall:

p = (# �of correct positive results)/(# of all 
positive results)
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r = (# �of correct positive results)/(# of all 
relevant samples)

F1-score  = 1/[((1/r) + (1/p))/2]
           = 2*[p*r]/[p+r]

The best value of an F1 score is 0 and the worse value is 0. Keep in mind 
that an F1 score tends to be used for categorical classification problems, 
whereas the R^2 value is typically for regression tasks (such as linear 
regression).

What Is a p-value?
The p-value is used to reject the null hypothesis if the p-value is small 
enough (< 0.005) which indicates a higher significance. Recall that the null 
hypothesis states that there is no correlation between a dependent variable 
(such as y) and an independent variable (such as x). The threshold value for 
p is typically 1% or 5%.

There is no straightforward formula for calculating p-values, which 
are values that are always between 0 and 1. In fact, p-values are sta-
tistical quantities to evaluate the so-called “null hypothesis,” and they 
are calculated by means of p-value tables or via spreadsheet/statistical 
software.

What Is Linear Regression? 

The goal of linear regression is to find the best fitting line that “rep-
resents” a dataset. Keep in mind two key points. First, the best fitting 
line does not necessarily pass through all (or even most of) the points in 
the dataset. The purpose of a best fitting line is to minimize the vertical 
distance of that line from the points in dataset. Second, linear regres-
sion does not determine the best-fitting polynomial: the latter involves 
finding a higher-degree polynomial that passes through many of the 
points in a dataset. 

Moreover, a dataset in the plane can contain two or more points that lie 
on the same vertical line, which is to say that those points have the same x 
value. However, a function cannot pass through such a pair of points: if two 
points (x1,y1) and (x2,y2) have the same x value then they must have 
the same y value (i.e., y1=y2). On the other hand, a function can have two 
or more points that lie on the same horizontal line. 
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Now consider a scatter plot with many points in the plane that are 
sort of “clustered” in an elongated cloud-like shape: a best-fitting line will  
probably intersect only limited number of points (in fact, a best-fitting line 
might not intersect any of the points).

One other scenario to keep in mind: suppose a dataset contains 
a set of points that lie on the same line. For instance, let’s say the x 
values are in the set {1,2,3,...,10} and the y values are in the set 
{2,4,6,...,20}. Then the equation of the best-fitting line is y=2*x+0. 
In this scenario, all the points are collinear, which is to say that they lie 
on the same line.

Linear Regression vs Curve-Fitting
Suppose a dataset consists of n data points of the form (x, y), and no two of 
those data points have the same x value. Then according to a well-known 
result in mathematics, there is a polynomial of degree less than or equal to 
n-1 that passes through those n points (if you are really interested, you can 
find a mathematical proof of this statement in online articles). For example, 
a line is a polynomial of degree one and it can intersect any pair of non-
vertical points in the plane. For any triple of points (that are not all on the 
same line) in the plane, there is a quadratic equation that passes through 
those points.

In addition, sometimes a lower degree polynomial is available. For 
instance, consider the set of 100 points in which the x value equals the  
y value: in this case, the line y = x (which is a polynomial of degree one) 
passes through all 100 points.

However, keep in mind that the extent to which a line “represents” 
a set of points in the plane depends on how closely those points can be 
approximated by a line, which is measured by the variance of the points 
(the variance is a statistical quantity). The more collinear the points, the 
smaller the variance; conversely, the more “spread out” the points are, the 
larger the variance.

When Are Solutions Exact Values?
Although statistics-based solutions provide closed-form solutions for lin-
ear regression, neural networks provide approximate solutions. This is due 
to the fact that machine learning algorithms for linear regression involve 
a sequence of approximations that “converges” to optimal values, which 
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means that machine learning algorithms produce estimates of the exact  
values. For example, the slope m and y-intercept b of a best-fitting line for 
a set of points a 2D plane have a closed-form solution in statistics, but they 
can only be approximated via machine learning algorithms (exceptions do 
exist, but they are rare situations). 

Keep in mind that even though a closed-form solution for  
“traditional” linear regression provides an exact value for both m and 
b, sometimes you can only use an approximation of the exact value. 
For instance, suppose that the slope m of a best-fitting line equals the 
square root of 3 and the y-intercept b is the square root of 2. If you plan 
to use these values in source code, you can only work with an approxi-
mation of these two numbers. In the same scenario, a Neural Network 
computes approximations for m and b, regardless of whether or not 
the exact values for m and b are irrational, rational, or integer values. 
However, machine learning algorithms are better suited for complex, 
non-linear, multi-dimensional datasets, which is beyond the capacity of 
linear regression.

As a simple example, suppose that the closed form solution for a linear 
regression problem produces integer or rational values for both m and b. 
Specifically, let’s suppose that a closed form solution yields the values 2.0 
and 1.0 for the slope and y-intercept, respectively, of a best-fitting line. The 
equation of the line looks like this:

y = 2.0 * x + 1.0

However, the corresponding solution from training a neural network 
might produce the values 2.0001 and 0.9997 for the slope m and the 
y-intercept b, respectively, as the values of m and b for a best-fitting 
line. Always keep this point in mind, especially when you are training 
a Neural Network.

What Is Multivariate Analysis?
Multivariate analysis generalizes the equation of a line in the Euclidean 
plane to higher dimensions, and it’s called a hyper plane instead of a line. 
The generalized equation has the following form:

y = w1*x1 + w2*x2 + . . . + wn*xn + b

In the case of 2D linear regression, you only need to find the value of 
the slope (m) and the y-intercept (b), whereas in multivariate analysis you 
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need to find the values for w1, w2, . . ., wn. Note that multivariate 
analysis is a term from statistics, and in machine learning it’s often referred 
to as “generalized linear regression.”

Keep in mind that most of the code samples in this book that pertain to 
linear regression involve 2D points in the Euclidean plane.

Other Types of Regression

Linear regression finds the best fitting line that “represents” a dataset, but 
what happens if a line in the plane is not a good fit for the dataset? This is a 
relevant question when you work with datasets. 

Some alternatives to linear regression include quadratic equations, 
cubic equations, or higher-degree polynomials. However, these alternatives 
involve trade-offs, as we’ll discuss later.

Another possibility is a sort of hybrid approach that involves piece-wise 
linear functions, which comprises a set of line segments. If contiguous line 
segments are connected then it’s a piece-wise linear continuous function; 
otherwise it’s a piece-wise linear discontinuous function.

Thus, given a set of points in the plane, regression involves addressing 
the following questions:

•	 What type of curve fits the data well? How do we know?

•	 Does another type of curve fit the data better?

•	 What does “best fit” mean?

One way to check if a line fits the data involves a visual check, but this 
approach does not work for data points that are higher than two dimen-
sions. Moreover, this is a subjective decision, and some sample datasets 
are displayed later in this chapter. By visual inspection of a dataset, 
you might decide that a quadratic or cubic (or even higher degree) 
polynomial has the potential of being a better fit for the data. However, 
visual inspection is probably limited to points in a 2D plane or in three 
dimensions.

Let’s defer the non-linear scenario and let’s make the assumption that 
a line would be a good fit for the data. There is a well-known technique for 
finding the “best fitting” line for such a dataset that involves minimizing the 
Mean Squared Error (MSE) that we’ll discuss later in this chapter. 
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The next section provides a quick review of linear equations in 
the plane, along with some images that illustrate examples of linear  
equations.

Working with Lines in the Plane (optional)

This section contains a short review of lines in the Euclidean plane, so you 
can skip this section if you are comfortable with this topic. A minor point 
that’s often overlooked is that lines in the Euclidean plane have infinite 
length. If you select two distinct points of a line, then all the points between 
those two selected points is a line segment. A ray is a “half infinite” line: 
when you select one point as an endpoint, then all the points on one side of 
the line constitutes a ray.

For example, the points in the plane whose y-coordinate is 0 is a line 
and also the x-axis, whereas the points between (0,0) and (1,0) on the x-axis 
form a line segment. In addition, the points on the x-axis that are to the 
right of (0,0) form a ray, and the points on the x-axis that are to the left of 
(0,0) also form a ray.

For simplicity and convenience, in this book we’ll use the terms 
“line” and “line segment” interchangeably, and now let’s delve into the 
details of lines in the Euclidean plane. Just in case you’re a bit fuzzy on 
the details, here is the equation of a (non-vertical) line in the Euclidean 
plane:

y = m*x + b

The value of m is the slope of the line and the value of b is the y-intercept 
(i.e., the place where the line intersects the y-axis). 

If need be, you can use a more general equation that can also represent 
vertical lines, as shown here:

a*x + b*y + c = 0

However, we won’t be working with vertical lines, so we’ll stick with the 
first formula.

Figure 2.1 displays three horizontal lines whose equations (from top to 
bottom) are y = 3, y = 0, and y = -3, respectively.
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FIGURE 2.1 A Graph of Three Horizontal Line Segments.

Figure 2.2 displays two slanted lines whose equations are y = x and  
y = -x, respectively.

FIGURE 2.2 A Graph of Two Diagonal Line Segments.
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Figure 2.3 displays two slanted parallel lines whose equations are  
y = 2*x and y = 2*x + 3, respectively.

FIGURE 2.3 A Graph of Two Slanted Parallel Line Segments.

Figure 2.4 displays a piece-wise linear graph consisting of connected 
line segments.

FIGURE 2.4 A Piece-wise Linear Graph of Line Segments.
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Now let’s turn our attention to generating quasi-random data using a 
NumPy API, and then we’ll plot the data using Matplotlib.

Scatter Plots with NumPy and Matplotlib (1)

Listing 2.1 displays the contents of np_plot1.py that illustrates how 
to use the Numpy randn() API to generate a dataset and then the  
scatter() API in Matplotlib to plot the points in the dataset.

One detail to note is that all the adjacent horizontal values are equally 
spaced, whereas the vertical values are based on a linear equation plus a 
“perturbation” value. This “perturbation technique” (which is not a standard 
term) is used in other code samples in this chapter in order to add a slightly 
randomized effect when the points are plotted. The advantage of this tech-
nique is that the best-fitting values for m and b are known in advance, and 
therefore we do not need to guess their values.

Listing 2.1: np_plot1.py

import numpy as np
import matplotlib.pyplot as plt

x = np.random.randn(15,1)
y = 2.5*x + 5 + 0.2*np.random.randn(15,1)

print("x:",x)
print("y:",y)

plt.scatter(x,y)
plt.show()

Listing 2.1 contains two import statements and then initializes the 
array variable x with 15 random numbers between 0 and 1. 

Next, the array variable y is defined in two parts: the first part is a linear 
equation 2.5*x + 5 and the second part is a “perturbation” value that is 
based on a random number. Thus, the array variable y simulates a set of 
values that closely approximate a line segment. 

This technique is used in code samples that simulate a line segment, 
and then the training portion approximates the values of m and b for the  
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best-fitting line. Obviously we already know the equation of the best fitting-line: 
the purpose of this technique is to compare the trained values for the slope m 
and y-intercept b with the known values (which in this case are 2.5 and 5).

A partial output from Listing 2.1 is here:

x: [[-1.42736308]
 [ 0.09482338]
 [-0.45071331]
 [ 0.19536304]
 [-0.22295205]
 // values omitted for brevity
y: [[1.12530514]
 [5.05168677]
 [3.93320782]
 [5.49760999]
 [4.46994978]
 // values omitted for brevity

Figure 2.5 displays a scatter plot of points based on the values of x and y.

FIGURE 2.5 A Scatter Plot of Points for a Line Segment.
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Why the “Perturbation Technique” Is Useful 
You already saw how to use the “perturbation technique” and by way of 
comparison, consider a dataset with the following points that are defined in 
the Python array variables X and Y:

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]
Y = [0,0.15,0.54,0.51, 0.34,0.1,0.19,0.53,1.0,0.58]

If you need to find the best fitting line for the preceding dataset, how would 
you guess the values for the slope m and the y-intercept b? In most cases, 
you probably cannot guess their values. On the other hand, the “perturbation 
technique” enables you to “jiggle” the points on a line whose value for the 
slope m (and optionally the value for the y-intercept b) is specified in advance.

Keep in mind that the “perturbation technique” only works when you intro-
duce small random values that do not result in different values for m and b. 

Scatter Plots with NumPy and Matplotlib (2)

The code in Listing 2.1 assigned random values to the variable x, whereas 
a hard-coded value is assigned to the slope m. The y values are a hard-
coded multiple of the x values, plus a random value that is calculated via 
the “perturbation technique”. Hence we do not know the value of the 
y-intercept b. 

In this section the values for trainX are based on the np.linspace() 
API, and the values for trainY involve the “perturbation technique” that is 
described in the previous section.

The code in this example simply prints the values for trainX and 
trainY, which correspond to data points in the Euclidean plane. Listing 
2.2 displays the contents of np_plot2.py that illustrates how to simulate a 
linear dataset in NumPy.

Listing 2.2: np_plot2.py

import numpy as np
  
trainX = np.linspace(-1, 1, 11)
trainY = �4*trainX + np.random.randn(*trainX.shape)*0.5

print("trainX: ",trainX)
print("trainY: ",trainY)
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Listing 2.6 initializes the NumPy array variable trainX via the NumPy 
linspace() API, followed by the array variable trainY that is defined in 
two parts. The first part is the linear term 4*trainX and the second part 
involves the “perturbation technique” that is a randomly generated num-
ber. The output from Listing 2.6 is here:

trainX:  [�-1.  -0.8 -0.6 -0.4 -0.2  0.   0.2  0.4  
0.6  0.8  1. ]

trainY:  [�-3.60147459 -2.66593108 -2.26491189 
-1.65121314 -0.56454605  0.22746004 
0.86830728  1.60673482  2.51151543  
3.59573877  3.05506056]	

The next section contains an example that is similar to Listing 2.2, using the 
same “perturbation technique” to generate a set of points that approximate 
a quadratic equation instead of a line segment.

A Quadratic Scatterplot with NumPy and Matplotlib

Listing 2.3 displays the contents of np_plot_quadratic.py that illus-
trates how to plot a quadratic function in the plane.

Listing 2.3: np_plot_quadratic.py

import numpy as np
import matplotlib.pyplot as plt

#see what happens with this set of values:
#x = np.linspace(-5,5,num=100)

x = np.linspace(-5,5,num=100)[:,None]
y = �-0.5 + 2.2*x +0.3*x**2 + 2*np.random.

randn(100,1)
print("x:",x)

plt.plot(x,y)
plt.show()

Listing 2.3 initializes the array variable x with the values that are gener-
ated via the np.linspace() API, which in this case is a set of 100 equally 
spaced decimal numbers between -5 and 5. Notice the snippet [:,None] in 
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the initialization of x, which results in an array of elements, each of which 
is an array consisting of a single number. 

The array variable y is defined in two parts: the first part is a quadratic 
equation -0.5 + 2.2*x +0.3*x**2 and the second part is a “perturba-
tion” value that is based on a random number (similar to the code in Listing 
2.1). Thus, the array variable y simulates a set of values that approximates a 
quadratic equation. The output from Listing 2.3 is here:

x: 
[[-5.        ]
 [-4.8989899 ]
 [-4.7979798 ]
 [-4.6969697 ]
 [-4.5959596 ]
 [-4.49494949]
 // values omitted for brevity
 [ 4.8989899 ]
 [ 5.        ]]

Figure 2.6 displays a scatter plot of points based on the values of x and y, 
which have an approximate shape of a quadratic equation.

FIGURE 2.6 A Scatter Plot of Points for a Quadratic Equation.
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The Mean Squared Error (MSE) Formula

In plain English, the MSE is the sum of the squares of the difference 
between an actual y value and the predicted y value, divided by the number 
of points. Notice that the predicted y value is the y value that each point 
would have if that point were actually on the best-fitting line.

Although the MSE is popular for linear regression, there are other error 
types available, some of which are discussed briefly in the next section.

A List of Error Types
Although we will only discuss MSE for linear regression in this book, there 
are other types of formulas that you can use for linear regression, some of 
which are listed here:

•	 MSE

•	 RMSE

•	 RMSPROP

•	 MAE

The MSE is the basis for the preceding error types. For example, RMSE is 
“Root Mean Squared Error,” which is the square root of MSE.

On the other hand, MAE is “Mean Absolute Error,” which is the sum 
of the absolute value of the differences of the y terms (not the square of the 
differences of the y terms), which is then divided by the number of terms.

The RMSProp optimizer utilizes the magnitude of recent gradients to 
normalize the gradients. Specifically, RMSProp maintain a moving average 
over the RMS (root mean squared) gradients, and then divides that term by 
the current gradient.

Although it’s easier to compute the derivative of MSE, it’s also true that 
MSE is more susceptible to outliers, whereas MAE is less susceptible to 
outliers. The reason is simple: a squared term can be significantly larger 
than the absolute value of a term. For example, if a difference term is 10, 
then a squared term of 100 is added to MSE, whereas only 10 is added 
to MAE. Similarly, if a difference term is -20, then a squared term 400 
is added to MSE, whereas only 20 (which is the absolute value of -20) is 
added to MAE.
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Non-linear Least Squares 
When predicting housing prices, where the dataset contains a wide range 
of values, techniques such as linear regression or random forests can cause 
the model to overfit the samples with the highest values in order to reduce 
quantities such as mean absolute error. 

In this scenario, you probably want an error metric, such as relative 
error, that reduces the importance of fitting the samples with the largest 
values. This technique is called non-linear least squares, which may use a 
log-based transformation of labels and predicted values.

The next section contains several code samples, the first of which 
involves calculating the MSE manually, followed by an example that uses 
NumPy formulas to perform the calculations. Finally, we’ll look at a Tensor-
Flow example for calculating the MSE.

Calculating the MSE Manually

This section contains two line graphs, both of which contain a line that 
approximates a set of points in a scatter plot. 

FIGURE 2.7 A Line Graph that Approximates Points of a Scatter Plot.
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Figure 2.7 displays a line segment that approximates a scatter plot of 
points (some of which intersect the line segment). The MSE for the line in 
Figure 2.7 is computed as follows:

MSE = (1*1 + (-1)*(-1) + (-1)*(-1) + 1*1)/7 = 4/7

Figure 2.8 displays a set of points and a line that is a potential candi-
date for best-fitting line for the data. The MSE for the line in Figure 2.8 is 
computed as follows:

MSE = ((-2)*(-2) + 2*2)/7 = 8/7

FIGURE 2.8 A Line Graph that Approximates Points of a Scatter Plot.

Thus, the line in Figure 2.7 has a smaller MSE than the line in Figure 2.8, 
which might have surprised you (or did you guess correctly?)

In these two figures we calculated the MSE easily and quickly, but in 
general it’s significantly more difficult. For instance, if we plot 10 points in 
the Euclidean plane that do not closely fit a line, with individual terms that 
involve non-integer values, we would probably need a calculator. 

A better solution involves NumPy functions, such as the np.linspace() 
API, as discussed in the next section.
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Approximating Linear Data with np.linspace() 

Listing 2.4 displays the contents of np_linspace1.py that illustrates how 
to generate some data with the np.linspace() API in conjunction with 
the “perturbation technique.”

Listing 2.4: np_linspace1.py

import numpy as np

trainX = np.linspace(-1, 1, 6)
trainY = �3*trainX+ np.random.randn(*trainX.

shape)*0.5

print("trainX: ", trainX)
print("trainY: ", trainY)

The purpose of this code sample is merely to generate and display a set 
of randomly generated numbers. Later in this chapter we will use this code 
as a starting point for an actual linear regression task.

Listing 2.4 starts with the definition of the array variable trainX that 
is initialized via the np.linspace() API. Next, the array variable trainY 
is defined via the “perturbation technique” that you have seen in previous 
code samples. The output from Listing 2.4 is here:

trainX:  [-1.  -0.6 -0.2  0.2  0.6  1. ]
trainY:  [�-2.9008553  -2.26684745 -0.59516253  

0.66452207  1.82669051  2.30549295]
trainX:  [-1.  -0.6 -0.2  0.2  0.6  1. ]
trainY:  [�-2.9008553  -2.26684745 -0.59516253  

0.66452207  1.82669051  2.30549295]

Now that we know how to generate (x,y) values for a linear equation, 
let’s learn how to calculate the MSE, which is discussed in the next 
section.

The next example generates a set of data values using the 
np.linspace() method and the np.random.randn() method in order 
to introduces some randomness in the data points.
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Calculating MSE with np.linspace() API

The code sample in this section differs from many of the earlier code sam-
ples in this chapter: it uses a hard-coded array of values for X and also for Y 
instead of the “perturbation” technique. Hence, you will not know the cor-
rect value for the slope and y-intercept (and you probably will not be able 
to guess their correct values). Listing 2.5 displays the contents of plain_
linreg1.py that illustrates how to compute the MSE with simulated data.

Listing 2.5: plain_linreg1.py

import numpy as np
import matplotlib.pyplot as plt

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]
Y = [0,0.15,0.54,0.51, 

0.34,0.1,0.19,0.53,1.0,0.58]

costs = []
#Step 1: Parameter initialization
W = 0.45
b = 0.75

for i in range(1, 100):
  #Step 2: Calculate Cost
  Y_pred = np.multiply(W, X) + b
  Loss_error = 0.5 * (Y_pred - Y)**2
  cost = np.sum(Loss_error)/10

  #Step 3: Calculate dW and db
  db = np.sum((Y_pred - Y))
  dw = np.dot((Y_pred - Y), X)
  costs.append(cost)

  #Step 4: Update parameters:
  W = W - 0.01*dw
  b = b - 0.01*db

  if i%10 == 0:
    print("Cost at", i,"iteration = ", cost)

(Continued)
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#Step 5: Repeat via a for loop with 1000 iterations

#Plot cost versus # of iterations
print("W = ", W,"& b = ",  b)
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.show()

Listing 2.5 initializes the array variables X and Y with hard-coded values, 
and then initializes the scalar variables W and b. The next portion of List-
ing 2.5 contains a for loop that iterates 100 times. After each iteration of 
the loop, the variables Y_pred, Loss_error, and cost are calculated. 
Next, the values for dw and db are calculated, based on the sum of the 
terms in the array Y_pred-Y, and the inner product of Y_pred-y and X, 
respectively.

Notice how W and b are updated: their values are decremented by the 
term 0.01*dw and 0.01*db, respectively. This calculation ought to look 
somewhat familiar: the code is programmatically calculating an approxi-
mate value of the gradient for W and b, both of which are multiplied by the 
learning rate (the hard-coded value 0.01), and the resulting term is dec-
remented from the current values of W and b in order to produce a new 
approximation for W and b. Although this technique is very simple, it does 
calculate reasonable values for W and b. 

The final block of code in Listing 2.5 displays the intermediate approxi-
mations for W and b, along with a plot of the cost (vertical axis) versus the 
number of iterations (horizontal axis). The output from Listing 2.5 is here:

Cost at 10 iteration =  0.04114630674619492
Cost at 20 iteration =  0.026706242729839392
Cost at 30 iteration =  0.024738889446900423
Cost at 40 iteration =  0.023850565034634254
Cost at 50 iteration =  0.0231499048706651
Cost at 60 iteration =  0.02255361434242207
Cost at 70 iteration =  0.0220425055291673
Cost at 80 iteration =  0.021604128492245713
Cost at 90 iteration =  0.021228111750568435
W =  0.47256473531193927 & b =  0.19578262688662174
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Figure 2.9 displays a scatter plot of points generated by the code in 
Listing 2.5.

FIGURE 2.9 MSE Values With Linear Regression.

The code sample plain-linreg2.py is similar to the code in Listing 2.5: 
the difference is that instead of a single loop with 100 iterations, there is an 
outer loop that execute 100 times, and during each iteration of the outer 
loop, the inner loop also execute 100 times.

Linear Regression with Keras

The code sample in this section contains primarily Keras code in order to 
perform linear regression. If you have read the previous examples in this 
chapter, this section will be easier for you to understand because the steps 
for linear regression are the same.

Listing 2.6 displays the contents of keras_linear_regression.py 
that illustrates how to perform linear regression in Keras.
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Listing 2.6: keras_linear_regression.py

#################################################
##############

#Keep in mind the following important points:
#1) �Always standardize both input features and 

target variable:
#doing so only on input feature produces incorrect 

predictions
#2) �Data might not be normally distributed: check 

the data and
#based on the distribution apply StandardScaler, 

MinMaxScaler,
#Normalizer or RobustScaler
#################################################

##############

import tensorflow as tf
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_

split

df = pd.read_csv('housing.csv')
X  = df.iloc[:,0:13]
y  = df.iloc[:,13].values

mmsc = MinMaxScaler()
X  = mmsc.fit_transform(X)
y  = y.reshape(-1,1)
y  = mmsc.fit_transform(y)

X_train, X_test, y_train, y_test = train_test_
split(X, y, test_size=0.3)
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# this Python method creates a Keras model
def build_keras_model():
  model = tf.keras.models.Sequential()
  model.add(tf.keras.layers.Dense(units=13, 

input_dim=13))
  model.add(tf.keras.layers.Dense(units=1))

  model.compile(optimizer='adam',loss='mean_
squared_error',metrics=['mae','accuracy'])

  return model

batch_size=32
epochs = 40

# specify the Python method 'build_keras_model' 
to create a Keras model

# using the implementation of the scikit-learn 
regressor API for Keras

model = �tf.keras.wrappers.scikit_learn.
KerasRegressor(build_fn=build_
keras_model, batch_size=batch_
size,epochs=epochs)

# train ('fit') the model and then make 
predictions:

model.fit(X_train, y_train)
y_pred = model.predict(X_test)
#print("y_test:",y_test)
#print("y_pred:",y_pred)

# scatter plot of test values-vs-predictions
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred)
ax.plot([y_test.min(), y_test.max()], [y_test.

min(), y_test.max()], 'r*--')
ax.set_xlabel('Calculated')
ax.set_ylabel('Predictions')
plt.show()
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Listing 2.6 starts with multiple import statements and then initializes the 
dataframe df with the contents of the CSV file housing.csv (a portion of 
which is shown in Listing 2.7). Notice that the training set X is initialized 
with the contents of the first 13 columns of the dataset housing.csv, and 
the variable y contains the rightmost column of the dataset housing.csv. 

The next section in Listing 2.6 uses the MinMaxScaler class to calcu-
late the mean and standard deviation, and then invokes the fit_trans-
form() method in order to update the X values and the y values so that 
they have a mean of 0 and a standard deviation of 1.

Next, the build_keras_mode() Python method creates a Keras-
based model with two dense layers. Notice that the input layer has size 13, 
which is the number of columns in the dataframe X. The next code snippet 
compiles the model with an adam optimizer, the MSE loss function, and 
also specifies the MAE and accuracy for the metrics. The compiled model 
is then returned to the caller.

The next portion of Listing 2.6 initializes the batch_size variable to 
32 and the epochs variable to 40, and specifies them in the code snippet 
that creates the model, as shown here:

model = 
tf.keras.wrappers.scikit_learn.

KerasRegressor(build_fn=build_keras_model, 
batch_size=batch_size,epochs=epochs)

The short comment block that appears in Listing 2.6 explains the purpose 
of the preceding code snippet, which constructs our Keras model.

The next portion of Listing 2.6 invokes the fit() method to train the 
model and then invokes the predict() method on the X_test data to 
calculate a set of predictions and initialize the variable y_pred with those 
predictions.

The final portion of Listing 2.6 displays a scatter plot in which the hori-
zontal axis is the values in y_test (the actual values from the CSV file 
housing.csv) and the vertical axis is the set of predicted values.

Figure 2.5 displays a scatter plot of points based on the test values and 
the predictions for those test values.
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FIGURE 2.10 A Scatter Plot and a Best-Fitting Line.

Listing 2.7 displays the first four rows of the CSV file housing.csv 
that is used in the Python code in Listing 2.6.

Listing 2.7: housing.csv

0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3, 
396.9,4.98,24

0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17
.8,396.9,9.14,21.6

0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17
.8,392.83,4.03,34.7

0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18
.7,394.63,2.94,33.4
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Summary

This chapter introduced you to machine learning and concepts such as fea-
ture selection, feature engineering, data cleaning, training sets, and test 
sets. Next you learned about supervised, unsupervised, and semi-super-
vised learning. Then you learned regression tasks, classification tasks, and 
clustering, as well as the steps that are typically required in order to prepare 
a dataset. These steps include “feature selection” or “feature extraction” 
that can be performed using various algorithms. Then you learned about 
issue that can arise with the data in datasets, and how to rectify them.

In addition, you also learned about linear regression, along with a brief 
description of how to calculate a best-fitting line for a dataset of values 
in the Euclidean plane. You saw how to perform linear regression using 
NumPy in order to initialize arrays with data values, along with a “perturba-
tion” technique that introduces some randomness for the y values. This 
technique is useful because you will know the correct values for the slope 
and y-intercept of the best-fitting line, which you can then compare with 
the trained values.

You then learned how to perform linear regression in code samples that 
involve Keras. In addition, you saw how to use Matplotlib in order to dis-
play line graphs for best-fitting lines and graphs that display the cost versus 
the number of iterations during the training-related code blocks. 



C H A P T E R 3
CLASSIFIERS IN MACHINE 
LEARNING

This chapter presents numerous classification algorithms in machine 
learning. This includes algorithms such as the kNN (k Nearest Neigh-
bor) algorithm, logistic regression (despite its name it is a classifier), deci-
sion trees, random forests, SVMs, and Bayesian classifiers. The emphasis 
on algorithms is intended to introduce you to machine learning, which 
includes a tree-based code sample that relies on scikit-learn. The 
latter portion of this chapter contains Keras-based code samples for stan-
dard datasets.

Due to space constraints, this chapter does not cover other well-known 
algorithms, such as Linear Discriminant Analysis and the kMeans algorithm 
(which is for unsupervised learning and clustering). However, there are 
many online tutorials available that discuss these and other algorithms in 
machine learning.

With these points in mind, the first section of this chapter briefly dis-
cusses the classifiers that are mentioned in the introductory paragraph. The 
second section of this chapter provides an overview of activation functions, 
which will be very useful if you decide to learn about deep neural networks. 
In this section you will learn how and why they are used in neural networks. 
This section also contains a list of the TensorFlow APIs for activation func-
tions, followed by a description of some of their merits. 

The third section introduces logistic regression, which relies on 
the sigmoid function, which is also used in RNNs (Recurrent Neural  
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Networks) and LSTMs (Long Short Term Memory). The fourth part of 
this chapter contains a code sample involving Logistic Regression and the 
MNIST dataset. 

In order to give you some context, classifiers are one of three major 
types of algorithms: regression algorithms (such as linear regression in 
Chapter 4), classification algorithms (discussed in this chapter), and clus-
tering algorithms (such as kMeans, which is not discussed in this book). 

Another point: the section pertaining to activation functions does involve 
a basic understanding of hidden layers in a neural network. Depending on 
your comfort level, you might benefit from reading some preparatory mate-
rial before diving into this section (there are many articles available online).

What Is Classification?

Given a dataset that contains observations whose class membership is 
known, classification is the task of determining the class to which a new 
datapoint belongs. Classes refer to categories and are also called targets 
or labels. For example, spam detection in email service providers involves 
binary classification (only two classes). The MNIST dataset contains a set 
of images, where each image is a single digit, which means there are ten 
labels. Some applications in classification include credit approval, medical 
diagnosis, and target marketing.

What Are Classifiers?
In the previous chapter you learned that linear regression uses super-
vised learning in conjunction with numeric data: the goal is to train a 
model that can make numeric predictions (e.g., the price of stock tomor-
row, the temperature of a system, its barometric pressure, and so forth). 
By contrast, classifiers use supervised learning in conjunction with vari-
ous classes of data: the goal is to train a model that can make categorical 
predictions. 

For instance, suppose that each row in a dataset is a specific wine, and 
each column pertains to a specific wine feature (tannin, acidity, and so 
forth). Suppose further that there are five classes of wine in the dataset: for 
simplicity, let's label them A, B, C, D, and E. Given a new data point, which 
is to say a new row of data, a classifier for this dataset attempts to determine 
the label for this wine. 
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Some of the classifiers in this chapter can perform categorical classifica-
tion and make numeric predictions (i.e., they can be used for regression as 
well as classification).

Common Classifiers
Some of the most popular classifiers for machine learning are listed here (in 
no particular order):

•	 Linear classifiers

•	 kNN

•	 Logistic regression 

•	 Decision trees

•	 Random forests

•	 SVMs

•	 Bayesian classifiers

•	 CNNs (deep learning)

Keep in mind that different classifiers have different advantages and disad-
vantages, which often involve a trade-off between complexity and accuracy, 
similar to algorithms in fields that are outside of AI.

In the case of deep learning, CNNs (Convolutional Neural Networks) 
perform image classification, which makes them classifiers (they can also be 
used for audio and text processing).

The next sections provide a brief description of these ML classifiers.

Binary vs MultiClass Classification
Binary classifiers work with datasets that have two classes, whereas multi-
class classifiers (sometimes called multinomial classifiers) distinguish more 
than two classes. Random forest classifiers and naïve Bayes classifiers sup-
port multiple classes, whereas SVMs and linear classifiers can only be used 
as binary classifiers (but multi-class extensions for SVM exist).

In addition, there are techniques for multiclass classification that 
are based on binary classifiers: One-versus-All (OvA) and One-versus-
One (OvO).
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The OvA technique (also called one-versus-the-rest) involves mul-
tiple binary classifiers that are equal to the number of classes. For 
example, if a dataset has five classes, then OvA uses five binary classi-
fiers, each of which detects one of the five classes. In order to classify 
a datapoint in this dataset, select the binary classifier that has output 
the highest score. 

The OvO technique also involves multiple binary classifiers, but in this 
case a binary classifier is used to train on a pair of classes. For instance, if 
the classes are A, B, C, D, and E, then ten binary classifiers are required: 
one for A and B, one for A and C, one for A and D, and so forth, until the 
last binary classifier for D and E. 

In general, if there are n classes, then n*(n-1)/2 binary classi-
fiers are required. Although the OvO technique requires considerably 
more binary classifiers (e.g., 190 are required for 20 classes) than the  
OvA technique (e.g., a mere 20 binary classifiers for 20 classes), the 
OvO technique has the advantage that each binary classifier is only 
trained on the portion of the dataset that pertains to its two chosen 
classes.

MultiLabel Classification
Multilabel classification involves assigning multiple labels to an instance 
from a dataset. Hence, multilabel classification generalizes multiclass classi-
fication (discussed in the previous section), where the latter involves assign-
ing a single label to an instance belonging to a dataset that has multiple 
classes. An article involving multilabel classification that contains Keras-
based code is here:

https://medium.com/@vijayabhaskar96/multi-label-image-classifica-
tion-tutorial-with-keras-imagedatagenerator-cd541f8eaf24

You can also perform an online search for articles that involve SKLearn 
or PyTorch for multilabel classification tasks.

What Are Linear Classifiers?

A linear classifier separates a dataset into two classes. A linear classifier is a 
line for 2D points, a plane for 3D points, and a hyper plane (a generaliza-
tion of a plane) for higher dimensional points. 
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Linear classifiers are often the fastest classifiers, so they are often used 
when the speed of classification is of high importance. Linear classifiers  
usually work well when the input vectors are sparse (i.e., mostly zero  
values) or when the number of dimensions is large.

What Is kNN?

The kNN (k Nearest Neighbor) algorithm is a classification algorithm. In 
brief, data points that are near each other are classified as belonging to the 
same class. When a new point is introduced, it's added to the class of the 
majority of its nearest neighbor. For example, suppose that k equals 3, and 
a new data point is introduced. Look at the class of its three nearest neigh-
bors: let's say they are A, A, and B. Then by majority vote, the new data 
point is labeled as a data point of class A. 

The kNN algorithm is essentially a heuristic and not a technique with 
complex mathematical underpinnings, and yet it's still an effective and use-
ful algorithm.

Try the kNN algorithm if you want to use a simple algorithm or when 
you believe that the nature of your dataset is highly unstructured. The kNN 
algorithm can produce highly nonlinear decisions despite being very sim-
ple. You can use kNN in search applications where you are searching for 
similar items.

Measure similarity by creating a vector representation of the items, and 
then compare the vectors using an appropriate distance metric (such as 
Euclidean distance).

Some concrete examples of kNN search include searching for semanti-
cally similar documents.

How to Handle a Tie in kNN
An odd value for k is less likely to result in a tie vote, but it's not impos-
sible. For example, suppose that k equals 7, and when a new data point is 
introduced, its seven nearest neighbors belong to the set {A,B,A,B,A,B,C}. 
As you can see, there is no majority vote, because there are 3 points in class 
A, 3 points in class B, and 1 point in class C.
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There are several techniques for handling a tie in kNN:

•	 Assign higher weights to closer points

•	 Increase the value of k until a winner is determined

•	 Decrease the value of k until a winner is determined

•	 Randomly select one class

If you reduce k until it equals 1, it's still possible to have a tie vote: there 
might be two points that are equally distant from the new point, so you 
need a mechanism for deciding which of those two points to select as the 
1-neighbor.

If there is a tie between classes A and B, then randomly select either 
class A or class B. Another variant is to keep track of the tie votes, and alter-
nate round-robin style to ensure a more even distribution.

What Are Decision Trees?

Decision trees are another type of classification algorithm that involves a 
treelike structure. In a generic tree, the placement of a data point is deter-
mined by simple conditional logic. As a simple illustration, suppose that a 
dataset contains a set of numbers that represent ages of people, and let's 
also suppose that the first number is 50. This number is chosen as the root 
of the tree, and all numbers that are smaller than 50 are added on the left 
branch of the tree, whereas all numbers that are greater than 50 are added 
on the right branch of the tree. 

For example, suppose we have the sequence of numbers is {50, 25, 70, 
40}. Then we can construct a tree as follows: 50 is the root node; 25 is the 
left child of 50; 70 is the right child of 50; and 40 is the right child of 20. 
Each additional numeric value that we add to this dataset is processed to 
determine which direction to proceed (left or right) at each node in the 
tree.

Listing 3.1 displays the contents of sklearn_tree2.py that defines a 
set of 2D points in the Euclidean plane, along with their labels, and then 
predicts the label (i.e., the class) of several other 2D points in the Euclidean 
plane.



Classifiers in Machine Learning • 69

Listing 3.1: sklearn_tree2.py

from sklearn import tree

# X = pairs of 2D points and Y = the class of each 
point

X = [[0, 0], [1, 1], [2,2]]
Y = [0, 1, 1]

tree_clf = tree.DecisionTreeClassifier()
tree_clf = tree_clf.fit(X, Y)

#predict the class of samples:
print("predict class of [-1., -1.]:")
print(tree_clf.predict([[-1., -1.]]))

print("predict class of [2., 2.]:")
print(tree_clf.predict([[2., 2.]]))

# the percentage of training samples of the same 
class

# in a leaf note equals the probability of each 
class

print("probability of each class in [2.,2.]:")
print(tree_clf.predict_proba([[2., 2.]]))

Listing 3.1 imports the tree class from sklearn and then initializes the 
arrays X and y with data values. Next, the variable tree_clf is initialized as 
an instance of the DecisionTreeClassifier class, after which it is trained 
by invoking the fit() method with the values of X and y.

Now launch the code in Listing 3.3 and you will see the following 
output:

predict class of [-1., -1.]:
[0]
predict class of [2., 2.]:
[1]
probability of each class in [2.,2.]:
[[0. 1.]]
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As you can see, the points [-1,-1] and [2,2] are correctly labeled with the 
values 0 and 1, respectively, which is probably what you expected.

Listing 3.2 displays the contents of sklearn_tree3.py that extends 
the code in Listing 3.1 by adding a third label, and also by predicting the 
label of three points instead of two points in the Euclidean plane (the modi-
fications are shown in bold).

Listing 3.2: sklearn_tree3.py

from sklearn import tree

# X = pairs of 2D points and Y = the class of each 
point

X = [[0, 0], [1, 1], [2,2]]
Y = [0, 1, 2]

tree_clf = tree.DecisionTreeClassifier()
tree_clf = tree_clf.fit(X, Y)

#predict the class of samples:
print("predict class of [-1., -1.]:")
print(tree_clf.predict([[-1., -1.]]))

print("predict class of [0.8, 0.8]:")
print(tree_clf.predict([[0.8, 0.8]]))

print("predict class of [2., 2.]:")
print(tree_clf.predict([[2., 2.]]))

# the percentage of training samples of the same 
class

# in a leaf note equals the probability of each 
class

print("probability of each class in [2.,2.]:")
print(tree_clf.predict_proba([[2., 2.]]))
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As you can see, the points [-1,-1], [0.8, 0.8], and [2,2] are correctly 
labeled with the values 0, 1, and 2, respectively, which again is probably 
what you expected.

Listing 3.3 displays a portion of the dataset partial_wine.csv, which 
contains two features and a label column (there are three classes). The total 
row count for this dataset is 178.

Listing 3.3: partial_wine.csv

predict class of [-1., -1.]:
[0]
predict class of [0.8, 0.8]:
[1]
predict class of [2., 2.]:
[2]
probability of each class in [2.,2.]:
[[0. 0. 1.]]

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('partial_wine.csv')

(Continued)

Now launch the code in Listing 3.2 and you will see the following output:

Alcohol, Malic acid, class
14.23,1.71,1
13.2,1.78,1
13.16,2.36,1
14.37,1.95,1
13.24,2.59,1
14.2,1.76,1

Listing 3.4 displays contents of tree_classifier.py that uses a deci-
sion tree in order to train a model on the dataset partial_wine.csv.

Listing 3.4: tree_classifier.py
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Listing 3.4 contains some import statements and then populates the 
Pandas DataFrame dataset with the contents of the CSV file partial_
wine.csv. Next, the variable X is initialized with the first two columns 
(and all the rows) of dataset, and the variable y is initialized with the third 
column (and all the rows) of dataset. 

X = dataset.iloc[:, [0, 1]].values
y = dataset.iloc[:, 2].values

# split the dataset into a training set and a test set
from sklearn.model_selection import train_test_

split
X_train, X_test, y_train, y_test = train_test_

split(X, y, test_size = 0.25, random_state = 0)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# ====> INSERT YOUR CLASSIFIER CODE HERE <====
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion='entropy

',random_state=0)
classifier.fit(X_train, y_train)
# ====> INSERT YOUR CLASSIFIER CODE HERE <====

# predict the test set results
y_pred = classifier.predict(X_test)

# generate the confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print("confusion matrix:")
print(cm)
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Next, the variables X_train, X_test, y_train, y_test are popu-
lated with data from X and y using a 75/25 split proportion. Notice that the 
variable sc (which is an instance of the StandardScalar class) performs a 
scaling operation on the variables X_train and X_test. 

The code block shown in bold in Listing 3.4 is where we create an 
instance of the DecisionTreeClassifier class and then train the instance 
with the data in the variables X_train and X_test.

The next portion of Listing 3.4 populates the variable y_pred with a 
set of predictions that are generated from the data in the X_test variable. 
The last portion of Listing 3.4 creates a confusion matrix based on the data 
in y_test and the predicted data in y_pred. 

Remember that all the diagonal elements of a confusion matrix are cor-
rect predictions (such as true positive and true negative); all the other cells 
contain a numeric value that specifies the number of predictions that are 
incorrect (such as false positive and false negative).

Now launch the code in Listing 3.4 and you will see the following out-
put for the confusion matrix in which there are thirty-six correct predictions 
and nine incorrect predictions (with an accuracy of 80%):

confusion matrix:
[[13  1  2]
 [ 0 17  4]
 [ 1  1  6]]
from sklearn.metrics import confusion_matrix

There is a total of forty-five entries in the preceding 3x3 matrix, and 
the diagonal entries are correctly identified labels. Hence the accuracy is 
36/45 = 0.80.

What Are Random Forests?

Random Forests are a generalization of decision trees: this classification 
algorithm involves multiple trees (the number is specified by you). If the 
data involves making a numeric prediction, the average of the predictions 
of the trees is computed. If the data involves a categorical prediction, the 
mode of the predictions of the trees is determined. 
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By way of analogy, random forests operate in a manner similar to financial 
portfolio diversification: the goal is to balance the losses with higher gains. 
Random forests use a majority vote to make predictions, which operates 
under the assumption that selecting the majority vote is more likely to be 
correct (and more often) than any individual prediction from a single tree.

You can easily modify the code in Listing 3.4 to use a random forest by 
replacing the two lines shown in bold with the following code:

from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, 

criterion='entropy', random_state = 0)

Make this code change, launch the code, and examine the confusion matrix 
to compare its accuracy with the accuracy of the decision tree in Listing 3.4.

What Are SVMs?

Support Vector Machines involve a supervised ML algorithm and can be 
used for classification or regression problems. SVM can work with nonlin-
early separable data as well as linearly separable data. SVM uses a technique 
called the kernel trick to transform data and then finds an optimal boundary 
the transform involves higher dimensionality. This technique results in a 
separation of the transformed data, after which it's possible to find a hyper-
plane that separates the data into two classes. 

SVMs are more common in classification tasks than regression tasks. 
Some use cases for SVMs include:

•	 Text classification tasks: category assignment

•	 Detecting spam/sentiment analysis

•	 Image recognition: aspect-based recognition, color-based classification

•	 Handwritten digit recognition (postal automation)

Tradeoffs of SVMs
Although SVMs are extremely powerful, there are tradeoffs involved. Some 
of the advantages of SVMs are:

•	 has high accuracy

•	 works well on smaller cleaner datasets
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•	 can be more efficient because it uses a subset of training points

•	 can be an alternative to CNNs in cases of limited datasets

•	 captures more complex relationships between data points

Despite the power of SVMS, there are some disadvantages of SVMs:

•	 not suited to larger datasets: training time can be high

•	 less effective on noisier datasets with overlapping classes

SVMs involve more parameters than decision trees and random forests 

Suggestion: modify Listing 3.4 to use an SVM by replacing the two lines 
shown in bold with the following two lines shown in bold:

from sklearn.svm import SVC
classifier = �SVC(kernel = 'linear',  

random_state = 0)

You now have an SVM-based model, simply by making the previous code 
update! Make the code change, then launch the code and examine the con-
fusion matrix in order to compare its accuracy with the accuracy of the deci-
sion tree model and the random forest model earlier in this chapter.

What Is Bayesian Inference?

Bayesian inference is an important technique in statistics that involves 
statistical inference and Bayes' theorem to update the probability for a 
hypothesis as more information becomes available. Bayesian inference is 
often called Bayesian probability, and it's important in dynamic analysis of 
sequential data.

Bayes Theorem
Given two sets A and B, let's define the following numeric values (all of 
them are between 0 and 1):

P(A) = probability of being in set A
P(B) = probability of being in set B
P(Both) = probability of being in A intersect B
P(A|B) = probability of being in A (given you're in B)
P(B|A) = probability of being in B (given you're in A)
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Then the following formulas are also true:

P(A|B) = P(Both)/P(B) (#1)
P(B|A) = P(Both)/P(A) (#2)

Multiply the preceding pair of equations by the term that appears in the 
denominator and we get these equations:

P(B)*P(A|B) = P(Both) (#3)
P(A)*P(B|A) = P(Both) (#4)

Now set the left-side of equations #3 and #4 equal to each another and that 
gives us this equation:

P(B)*P(A|B) = P(A)*P(B|A) (#5)

Divide both sides of #5 by P(B) and we get this well-known equation:

P(A|B) = P(A)*P(A|B)/P(B) (#6)

Some Bayesian Terminology,
In the previous section, we derived the following relationship:

P(h|d) = (P(d|h) * P(h)) / P(d)

There is a name for each of the four terms in the preceding equation:

First, the posterior probability is P(h|d), which is the probability of 
hypothesis h given the data d. 

Second, P(d|h) is the probability of data d given that the hypothesis 
h was true.

Third, the prior probability of h is P(h), which is the probability of 
hypothesis h being true (regardless of the data). 

Finally, P(d) is the probability of the data (regardless of the  
hypothesis)

We are interested in calculating the posterior probability of P(h|d) from 
the prior probability p(h) with P(d) and P(d|h).
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What Is MAP?
The maximum a posteriori (MAP) hypothesis is the hypothesis with the 
highest probability, which is the maximum probable hypothesis. This can 
be written as follows:

MAP(h) = max(P(h|d))
or:

MAP(h) = max((P(d|h) * P(h)) / P(d))
or:

MAP(h) = max(P(d|h) * P(h))

Why Use Bayes’ Theorem?
Bayes Theorem describes the probability of an event based on the prior 
knowledge of the conditions that might be related to the event. If we know 
the conditional probability, we can use Bayes rule to find out the reverse 
probabilities. The previous statement is the general representation of the 
Bayes rule.

What Is a Bayesian Classifier?

A Naive Bayes Classifier is a probabilistic classifier inspired by the Bayes 
theorem. An NB classifier assumes the attributes are conditionally indepen-
dent and it works well even when assumption is not true. This assumption 
greatly reduces computational cost, and it's a simple algorithm to imple-
ment that only requires linear time. Moreover, a NB classifier easily scal-
able to larger datasets and good results are obtained in most cases. Other 
advantages of a NB classifier include that it:

•	 can be used for Binary & Multiclass classification

•	 provides different types of NB algorithms

•	 is good choice for Text Classification problems

•	 is a popular choice for spam email classification

•	 can be easily trained on small datasets
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As you can probably surmise, NB classifiers do have some disadvantages, 
such as:

•	 All features are assumed unrelated

•	 It cannot learn relationships between features

•	 It can suffer from the "zero probability problem"

The "zero probability problem" refers to the case when the conditional 
probability is zero for an attribute, it fails to give a valid prediction. How-
ever, can be fixed explicitly using a Laplacian estimator.

Types of Naïve Bayes Classifiers
There are three major types of NB classifiers:

•	 Gaussian Naive Bayes

•	 MultinomialNB Naive Bayes

•	 Bernoulli Naive Bayes

Details of these classifiers are beyond the scope of this chapter, but you can 
perform an online search for more information.

Training Classifiers

Some common techniques for training classifiers are:

•	 Holdout method

•	 k-fold cross-validation

The holdout method is the most common method, which starts by dividing 
the dataset into two partitions called train and test (80% and 20%, respec-
tively). The train set is used for training the model, and the test data tests 
its predictive power.

The k-fold cross-validation technique is used to verify that the model is 
not over-fitted. The dataset is randomly partitioned into k mutually exclu-
sive subsets, where each partition has equal size. One partition is for testing 
and the other partitions are for training. Iterate throughout the whole of 
the k folds.
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Evaluating Classifiers

Whenever you select a classifier for a dataset, it's obviously important to 
evaluate the accuracy of that classifier. Some common techniques for evalu-
ating classifiers are:

•	 Precision and Recall

•	 ROC curve (Receiver Operating Characteristics)

Precision and recall are discussed in Chapter 2 and reproduced here for 
your convenience. Let's define the following variables:

TP = the number of true positive results
FP = the number of false positive results
TN = the number of true negative results
FN = the number of false negative results

Then the definitions of precision, accuracy, and recall are given by the fol-
lowing formulas:

precision = TP/(TN + FP)
accuracy  = (TP + TN)/[P + N]
recall    = TP/[TP + FN]

The ROC curve (Receiver Operating Characteristics) is used for visual 
comparison of classification models that shows the trade-off between the 
true positive rate and the false positive rate. The area under the ROC curve 
is a measure of the accuracy of the model. When a model is closer to the 
diagonal, it is less accurate, and the model with perfect accuracy will have 
an area of 1.0.

The ROC curve plots True Positive Rate versus False Positive Rate. 
Another type of curve is the PR curve that plots Precision versus Recall. 
When dealing with highly skewed datasets (strong class imbalance), Preci-
sion-Recall (PR) curves give better results.

Later in this chapter you will see many of the Keras-based classes 
(located in the tf.keras.metrics namespace) that correspond to com-
mon statistical terms, which includes some of the terms in this section. 

This concludes the portion of the chapter pertaining to statistical terms 
and techniques for measuring the validity of a dataset. Now let's look at 
activation functions in machine learning.
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What Are Activation Functions?

A one-sentence description: an activation function is (usually) a nonlinear 
function that introduces nonlinearity into a neural network, thereby pre-
venting a “consolidation” of the hidden layers in neural network. Specifi-
cally, suppose that every pair of adjacent layers in a neural network involves 
just a matrix transformation and no activation function. Such a network is a 
linear system, which means that its layers can be consolidated into a much 
smaller system. 

First, the weights of the edges that connect the input layer with the 
first hidden layer can be represented by a matrix: let’s call it W1. Next, the 
weights of the edges that connect the first hidden layer with the second 
hidden layer can also be represented by a matrix: let’s call it W2. Repeat this 
process until we reach the edges that connect the final hidden layer with 
the output layer: let’s call this matrix Wk. Since we do not have an activation 
function, we can simply multiply the matrices W1, W2, …, Wk together and 
produce one matrix: let’s call it W. We have now replaced the original neural 
network with an equivalent neural network that contains one input layer, a 
single matrix of weights W, and an output layer. In other words, we no longer 
have our original multi-layered neural network!

Fortunately, we can prevent the previous scenario from happening 
when we specify an activation function between every pair of adjacent 
layers. In other words, an activation function at each layer prevents this 
“matrix consolidation.” Hence, we can maintain all the intermediate hid-
den layers during the process of training the neural network. 

For simplicity, let’s assume that we have the same activation func-
tion between every pair of adjacent layers (we’ll remove this assumption 
shortly). The process for using an activation function in a neural network is 
a two step, described as follows:

•	 Step 1. Start with an input vector x1 of numbers

•	 Step 2. Multiply x1 by the matrix of weights W1 that represents the 
edges that connect the input layer with the first hidden layer: the 
result is a new vector x2

•	 Step 3. Apply the activation function to each element of x2 to create 
another vector x3 
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Now repeat steps 2 and 3, except that we use the starting vector x3 and the 
weights matrix W2 for the edges that connect the first hidden layer with the 
second hidden layer (or just the output layer if there is only one hidden 
layer).

After completing the preceding process, we have preserved the neural 
network, which means that it can be trained on a dataset. One other thing: 
instead of using the same activation function at each step, you can replace 
each activation function by a different activation function (the choice is 
yours).

Why Do We Need Activation Functions?
The previous section outlines the process for transforming an input vector 
from the input layer and then through the hidden layers until it reaches the 
output layer. The purpose of activation functions in neural networks is vitally 
important, so it's worth repeating here: activation functions “maintain” the 
structure of neural networks and prevent them from being reduced to an 
input layer and an output layer. In other words, if we specify a nonlinear 
activation function between every pair of consecutive layers, then the neu-
ral network cannot be replaced with a neural network that contains fewer 
layers unless you explicitly remove them. 

Without a nonlinear activation function, we simply multiply a weight 
matrix for a given pair of consecutive layers with the output vector that is 
produced from the previous pair of consecutive layers. We repeat this simple 
multiplication until we reach the output layer of the neural network. After 
reaching the output layer, we have effectively replaced multiple matrices with 
a single matrix that “connects” the input layer with the output layer. 

How Do Activation Functions Work?
If this is the first time you have encountered the concept of an activa-
tion function, it’s probably confusing, so here’s an analogy that might be 
helpful. Suppose you’re driving your car late at night and there’s nobody 
else on the highway. You can drive at a constant speed for as long as 
there are no obstacles (stop signs, traffic lights, and so forth). On the 
other hand, suppose you drive into the parking lot of a large grocery 
store. When you approach a speed bump you must slow down, cross the 
speed bump, and increase speed again, and repeat this process for every 
speed bump. 
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Think of the nonlinear activation functions in a neural network as the 
counterpart to the speed bumps: you simply cannot maintain a constant 
speed, which (by analogy) means that you cannot first multiply all the weight 
matrices together and “collapse” them into a single weight matrix. Another 
analogy involves a road with multiple toll booths: you must slow down, pay 
the toll, and then resume driving until you reach the next toll booth. These 
are only analogies (and hence imperfect) to help you understand the need 
for nonlinear activation functions.

Common Activation Functions

Although there are many activation functions (and you can define your own 
if you know how to do so), here is a list of common activation functions,  
followed by brief descriptions:

•	 Sigmoid

•	 Tanh

•	 ReLU

•	 ReLU6

•	 ELU

•	 SELU

The sigmoid activation function is based on Euler’s constant e, with a 
range of values between 0 and 1, and its formula is shown here:

1/[1+e^(-x)]

The tanh activation function is also based on Euler’s constant e, and its 
formula is shown here:

[e^x – e^(-x)]/[e^x+e^(-x)] 

One way to remember the preceding formula is to note that the numer-
ator and denominator have the same pair of terms: they are separated by 
a “-” sign in the numerator and a “+” sign in the denominator. The tanh 
function has a range of values between -1 and 1.

The ReLU (Rectified Linear Unit) activation function is straightfor-
ward: if x is negative then ReLU(x) is 0; for all other values of x, ReLU(x) 
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equals x. ReLU6 is specific to TensorFlow, and it's a variation of ReLU(x): 
the additional constraint is that ReLU(x) equals 6 when x >= 6 (hence its 
name).

ELU is Exponential Linear Unit and it's the exponential “envelope” of 
ReLU, which replaces the two linear segments of ReLU with an exponential 
activation function that is differentiable for all values of x (including x = 0).

SELU is an acronym for Scaled Exponential Linear Unit, and it’s 
slightly more complicated than the other activation functions (and used less 
frequently). For a thorough explanation of these and other activation func-
tions (along with graphs that depict their shape), navigate to the following 
Wikipedia link:

https://en.wikipedia.org/wiki/Activation_function

This link provides a long list of activation functions as well as their 
derivatives.

Activation Functions in Python
Listing 3.5 displays contents of the file activations.py that contains the 
formulas for various activation functions.

Listing 3.5: activations.py

import numpy as np

# Python sigmoid example:
z = 1/(1 + np.exp(-np.dot(W, x))) 

# Python tanh example:
z = np.tanh(np.dot(W,x))

# Python ReLU example:
z = np.maximum(0, np.dot(W, x))

Listing 3.5 contains Python code that use NumPy methods in order to 
define a sigmoid function, a tanh function, and a ReLU function. Note 
that you need to specify values for x and W in order to launch the code in 
Listing 3.5.
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Keras Activation Functions

TensorFlow (and many other frameworks) provide implementations for 
many activation functions, which saves you the time and effort from writing 
your own implementation of activation functions. 

Here is a list of TF 2/Keras APIs activation functions that are located 
in the tf.keras.layers namespace:

•	 tf.keras.layers.leaky_relu

•	 tf.keras.layers.relu

•	 tf.keras.layers.relu6

•	 tf.keras.layers.selu

•	 tf.keras.layers.sigmoid

•	 tf.keras.layers.sigmoid_cross_entropy_with_logits

•	 tf.keras.layers.softmax

•	 tf.keras.layers.softmax_cross_entropy_with_logits_v2

•	 tf.keras.layers.softplus

•	 tf.keras.layers.softsign

•	 tf.keras.layers.softmax_cross_entropy_with_logits

•	 tf.keras.layers.tanh

•	 tf.keras.layers.weighted_cross_entropy_with_logits 

The following subsections provide additional information regarding 
some of the activation functions in the preceding list. Keep the follow-
ing point in mind: for simple neural networks, use ReLU as your first 
preference.

The ReLU and ELU Activation Functions

Currently ReLU is often the “preferred” activation function: previously the 
preferred activation function was tanh (and before tanh it was sigmoid). 
ReLU behaves close to a linear unit and provides the best training accuracy 
and validation accuracy.
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ReLU is like a switch for linearity: it’s “off” if you don’t need it, and 
its derivative is 1 when it’s active, which makes ReLU the simplest of all 
the current activation functions. Note that the second derivative of the 
function is 0 everywhere: it’s a very simple function that simplifies optimi-
zation. In addition, the gradient is large whenever you need large values, 
and it never “saturates” (i.e., it does not shrink to zero on the positive 
horizontal axis).

Rectified linear units and generalized versions are based on  
the principle that linear models are easier to optimize. Use the  
ReLU activation function or one of its related alternatives (discussed 
later).

The Advantages and Disadvantages of ReLU
The following list contains the advantages of the ReLU activation  
function:

•	 Does not saturate in the positive region

•	 Very efficient in terms of computation 

•	 Models with ReLU typically converge faster those with other 
activation functions

However, ReLU does have a disadvantage when the activation value 
of a ReLU neuron becomes 0: then the gradients of the neuron will 
also be 0 during back-propagation. You can mitigate this scenario by 
judiciously assigning the values for the initial weights as well as the 
learning rate.

ELU
ELU is an acronym for exponential linear unit that is based on ReLU: 
the key difference is that ELU is differentiable at the origin (ReLU is 
a continuous function but not differentiable at the origin). However, 
keep in mind several points. First, ELUs trade computational efficiency 
for immortality (immunity to dying): read the following paper for more 
details: arxiv.org/abs/1511.07289. Secondly, RELUs are still popular and 
preferred over ELU because the use of ELU introduces an additional 
new hyper-parameter.
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Sigmoid, Softmax, and Hardmax Similarities

The sigmoid activation function has a range in (0,1), and it saturates and 
kills gradients. Unlike the tanh activation function, sigmoid outputs are 
not zero-centered. In addition, both sigmoid and softmax (discussed 
later) are discouraged for vanilla feed forward implementation (see Chap-
ter 6 of the online book, Deep Learning by Ian Goodfellow et al.). How-
ever, the sigmoid activation function is still used in LSTMs (specifically 
for the forget gate, input gate, and the output gate), GRUs (Gated Recur-
rent Units), and probabilistic models. Moreover, some autoencoders have 
additional requirements that preclude the use of piecewise linear activa-
tion functions.

Softmax
The softmax activation function maps the values in a dataset to another 
set of values that are between 0 and 1, and whose sum equals 1. Thus, 
softmax creates a probability distribution. In the case of image classifica-
tion with Convolutional Neural Networks (CNNs), the softmax activation 
function maps the values in the final hidden layer to the ten neurons in the 
output layer. The index of the position that contains the largest probability 
is matched with the index of the number 1 in the one-hot encoding of the 
input image. If the index values are equal, then the image has been classi-
fied, otherwise it's considered a mismatch.

Softplus
The softplus activation function is a smooth (i.e., differentiable) approxi-
mation to the ReLU activation function. Recall that the origin is the only 
nondifferentiable point of the ReLU function, which is smoothed by the 
softmax activation whose equation is:

f(x) = ln(1 + e^x)

Tanh
The tanh activation function has a range in (-1,1), whereas the sigmoid 
function has a range in (0,1). Both of these activations saturate, but unlike 
the sigmoid neuron the tanh output is zero-centered. Therefore, in 
practice the tanh nonlinearity is always preferred to the sigmoid non-
linearity.
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The sigmoid and tanh activation functions appear in LSTMs  
(sigmoid for the three gates and tanh for the internal cell state) as well 
as GRUs (Gated Recurrent Units) during the calculations pertaining to 
input gates, forget gates, and output gates (discussed in more detail in the 
next chapter).

Sigmoid, Softmax, and HardMax Differences

This section briefly discusses some of the differences among these three 
functions. First, the sigmoid function is used for binary classification in 
logistic regression model, as well as the gates in LSTMs and GRUs. The 
sigmoid function is used as activation function while building neural net-
works, but keep in mind that the sum of the probabilities is not necessarily 
equal to 1.

Second, the softmax function generalizes the sigmoid function: it's 
used for multiclassification in logistic regression model. The softmax func-
tion is the activation function for the fully connected layer in CNNs, which 
is the rightmost hidden layer and the output layer. Unlike the sigmoid 
function, the sum of the probabilities must equal 1. You can use either the  
sigmoid function or softmax for binary (n=2) classification.

Third, the so-called hardmax function assigns 0 or 1 to output values 
(similar to a step function). For example, suppose that we have three classes 
{c1, c2, c3} whose scores are [1, 7, 2], respectively. The hardmax 
probabilities are [0, 1, 0], whereas the softmax probabilities are [0.1, 
0.7, 0.2]. Notice that the sum of the hardmax probabilities is 1, which 
is also true of the sum of the softmax probabilities. However, the hard-
max probabilities are all-or-nothing, whereas the softmax probabilities are 
analogous to receiving “partial credit.”

What Is Logistic Regression?

Despite its name, logistic regression is a classifier and a linear model 
with a binary output. Logistic regression works with multiple indepen-
dent variables and involves a sigmoid function for calculating prob-
abilities. Logistic regression is essentially the result of applying the  
sigmoid activation function to linear regression in order to perform binary  
classification. 
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Logistic regression is useful in a variety of unrelated fields. Such 
fields include machine learning, various medical fields, and social sci-
ences. Logistic regression can be used to predict the risk of developing 
a given disease, based on various observed characteristics of the patient. 
Other fields that use logistic regression include engineering, marketing, 
and economics.

Logistic regression can be binomial (only two outcomes for a depen-
dent variable), multinomial (three or more outcomes for a dependent 
variable), or ordinal (dependent variables are ordered). For instance, 
suppose that a dataset consists of data that belong either to class A or 
to class B. If you are given a new data point, logistic regression predicts 
whether that new data point belongs to class A or to class B. By contrast, 
linear regression predicts a numeric value, such as the next-day value of 
a stock.

Setting a Threshold Value
The threshold value is a numeric value that determines which data points 
belong to class A and which points belong to class B. For instance, a pass/
fail threshold might be 0.70. A pass/fail threshold for passing a writing driv-
er's test in California is 0.85.

As another example, suppose that p = 0.5 is the cutoff probability. Then 
we can assign class A to the data points that occur with probability > 0.5 and 
assign class B to data points that occur with probability <= 0.5. Since there 
are only two classes, we do have a classifier.

A similar (yet slightly different) scenario involves tossing a well-bal-
anced coin. We know that there is a 50% chance of throwing heads (let’s 
label this outcome as class A) and a 50% chance of throwing tails (let's label 
this outcome as class B). If we have a dataset that consists of labeled out-
comes, then we have the expectation that approximately 50% of them are 
class A and class B. 

On the other hand, we have no way to determine (in advance) what per-
centage of people will pass their written driver’s test, or the percentage of 
people who will pass their course. Datasets containing outcomes for these 
types of scenarios need to be trained, and logistic regression can be a suit-
able technique for doing so.
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Logistic Regression: Important Assumptions
Logistic regression requires the observations to be independent of 
each other. In addition, logistic regression requires little or no multi  
collinearity among the independent variables. Logistic regression  
handles numeric, categorical, and continuous variables and also  
assumes linearity of independent variables and log odds, which is 
defined as:

odds = p/(1-p) and logit = log(odds)

This analysis does not require the dependent and independent variables 
to be related linearly; however, another requirement is that independent 
variables are linearly related to the log odds.

Logistic regression is used to obtain odds ratio in the presence of more 
than one explanatory variable. The procedure is quite similar to multiple 
linear regression, with the exception that the response variable is binomial. 
The result is the impact of each variable on the odds ratio of the observed 
event of interest.

Linearly Separable Data
Linearly separable data is data that can be separated by a line (in 2D), 
a plane (in 3D), or a hyperplane (in higher dimensions). Linearly  
nonseparable data is data (clusters) that cannot be separated by a line 
or a hyperplane. For example, the XOR function involves datapoints 
that cannot be separated by a line. If you create a truth table for an  
XOR function with two inputs, the points (0,0) and (1,1) belong to  
class 0, whereas the points (0,1) and (1,0) belong to class 1 (draw 
these points in a 2D plane to convince yourself). The solution involves  
transforming the data in a higher dimension so that it becomes linearly 
separable, which is the technique used in SVMS (discussed earlier in 
this chapter).

Keras, Logistic Regression, and Iris Dataset

Listing 3.6 displays the contents of tf2-keras-iris.py that defines a 
Keras-based model to perform logistic regression.
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Listing 3.6:  tf2-keras-iris.py

import tensorflow as tf
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_

split
from sklearn.preprocessing import OneHotEncoder, 

StandardScaler

iris = load_iris()
X = iris['data']
y = iris['target']

#you can view the data and the labels:
#print("iris data:",X)
#print("iris target:",y)

# scale the X values so they are between 0 and 1
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_
split(X_scaled, y, test_size = 0.2)

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.

Dense(activation='relu', input_dim=4,
           units=4, kernel_initializer='uniform'))

model.add(tf.keras.layers.
Dense(activation='relu', units=4,

                     kernel_initializer='uniform'))
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model.add(tf.keras.layers.
Dense(activation='sigmoid', units=1,

                     kernel_initializer='uniform'))
#model.add(tf.keras.layers.Dense(1, 

activation='softmax'))

model.compile(optimizer='adam', loss='mean_
squared_error', metrics=['accuracy'])

model.fit(X_train, y_train, batch_size=10, 
epochs=100)

# Predicting values from the test set
y_pred = model.predict(X_test)

# scatter plot of test values-vs-predictions
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred)
ax.plot([y_test.min(), y_test.max()], [y_test.

min(), y_test.max()], 'r*--')
ax.set_xlabel('Calculated')
ax.set_ylabel('Predictions')
plt.show()

Listing 3.6 starts with an assortment of import statements, and 
then initializes the variable iris with the Iris dataset. The variable X 
contains the first three columns (and all the rows) of the Iris dataset, 
and the variable y contains the fourth column (and all the rows) of the 
Iris dataset.

The next portion of Listing 3.6 initializes the training set and 
the test set using an 80/20 data split. Next, the Keras-based model  
contains three Dense layers, where the first two specify the relu acti-
vation function and the third layer specifies the sigmoid activation  
function.
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The next portion of Listing 3.6 compiles the model, trains the model, 
and then calculates the accuracy of the model via the test data. Launch the 
code in Listing 3.6 and you will see the following output:

Train on 120 samples
Epoch 1/100
120/120 [==============================] - 0s 

980us/sample - loss: 0.9819 - accuracy: 0.3167
Epoch 2/100
120/120 [==============================] - 0s 

162us/sample - loss: 0.9789 - accuracy: 0.3083
Epoch 3/100
120/120 [==============================] - 0s 

204us/sample - loss: 0.9758 - accuracy: 0.3083
Epoch 4/100
120/120 [==============================] - 0s 

166us/sample - loss: 0.9728 - accuracy: 0.3083
Epoch 5/100
120/120 [==============================] - 0s 

160us/sample - loss: 0.9700 - accuracy: 0.3083
// details omitted for brevity
Epoch 96/100
120/120 [==============================] - 0s 

128us/sample - loss: 0.3524 - accuracy: 0.6500
Epoch 97/100
120/120 [==============================] - 0s 

184us/sample - loss: 0.3523 - accuracy: 0.6500
Epoch 98/100
120/120 [==============================] - 0s 

128us/sample - loss: 0.3522 - accuracy: 0.6500
Epoch 99/100
120/120 [==============================] - 0s 

187us/sample - loss: 0.3522 - accuracy: 0.6500
Epoch 100/100
120/120 [==============================] - 0s 

167us/sample - loss: 0.3521 - accuracy: 0.6500
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Figure 3.1 displays a scatter plot of points based on the test values and the 
predictions for those test values.

FIGURE 3.1 A Scatter Plot and a Best-Fitting Line.

The accuracy is admittedly poor (abysmal?), and yet it's quite possible 
that you will encounter this type of situation. Experiment with a different 
number of hidden layers and replace the final hidden layer with a Dense 
layer that specifies a softmax activation function—or some other activa-
tion function—to see if this change improves the accuracy.

Summary

This chapter started with an explanation of classification and classifiers,  
followed by a brief explanation of commonly used classifiers in machine 
learning.
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Next you learned about activation functions, why they are important in 
neural networks, and how they are used in neural networks. Then you saw 
a list of the TensorFlow/Keras APIs for various activation functions, fol-
lowed by a description of some of their merits. 

You also learned about Logistic regression that involves the sigmoid 
activation function, followed by a Keras-based code sample involving logis-
tic regression. 



C H A P T E R 4
DEEP LEARNING  
INTRODUCTION

This chapter introduces you to deep learning, which includes MLPs (Mul-
tilayer Perceptrons), CNNs (Convolutional Neural Networks). Other deep 
learning architectures, such as RNNs (Recurrent Neural Networks), and 
LSTMs (Long Short Term Memory), are discussed in Chapter 5. 

Most of the material in this chapter is descriptive content, along with 
some Keras-based code samples that assume you have read the Keras 
material in the previous chapters. This chapter is meant to be a cursory 
introduction to a diverse set of topics, along with suitable links to additional 
information.

If you are new to deep learning, many topics in this chapter will probably 
require additional study in order to become comfortable with them: think of 
this chapter as a modest step toward your mastery of deep learning.

The first portion of this chapter briefly discusses deep learning, the 
problems it can solve, and the challenges for the future. The second part 
of this chapter briefly introduces Perceptrons, which is essentially a core 
building block for neural networks. In fact, ANNs, MLPs, RNNs, LSTMs, VAEs 
are all based on multiple layers that contain multiple Perceptrons, along 
with additional processing steps. 

The third part of this chapter provides an introduction of CNNs, followed 
by an example of training a Keras-based CNN with the MNIST dataset: this 
code sample will make more sense if you have read the section pertaining 
to activation functions in Chapter 5. 
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Keras and the XOR Function

The XOR function is a well-known function that is not linear separable in 
the plane. The truth table for the XOR (“exclusive OR”) function is straight-
forward: given two binary inputs, the output is 1 if at most one input is a 1; 
otherwise, the output is 0. If we treat XOR as the name of a function with 
two binary inputs, here are the outputs:

XOR(0,0) = 0
XOR(1,0) = 1
XOR(0,1) = 1
XOR(1,1) = 0

We can treat the output values as labels that are associated with the input 
values. Specifically, the points (0,0) and (1,1) are in class 0 and the points 
(1,0) and (0,1) are in class 1. Draw these points in the plane, and you will 
have the four vertices of a unit square whose lower-left vertex is the origin. 
Moreover, each pair of diagonal elements belongs to the same class, and 
you cannot separate the points in class 0 from the points in class 1 with a 
straight line in the Euclidean plane. Hence, the XOR function is not linearly 
separable in the plane. If you’re skeptical, try to find a linear separator for 
the XOR function in the Euclidean plane.

Listing 4.1 displays the contents of tf2_keras_xor.py that illustrates 
how to create a Keras-based neural network to train the XOR function.

Listing 4.1: tf2_keras_xor.py

import tensorflow as tf
import numpy as np

# Logical XOR operator and "truth" values:
x = np.array([[0., 0.],[0., 1.],[1., 0.],[1., 

1.]])
y = np.array([[0.], [1.], [1.], [0.]])

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(2, input_dim=2, 

activation='relu'))
model.add(tf.keras.layers.Dense(1))
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print("compiling model...")
model.compile(loss='mean_squared_error', 

optimizer='adam')
print("fitting model...")
model.fit(x,y,verbose=0,epochs=1000)
pred = model.predict(x)

# Test final prediction
print("Testing XOR operator")
p1 = np.array([[0., 0.]])
p2 = np.array([[0., 1.]])
p3 = np.array([[1., 0.]])
p4 = np.array([[1., 1.]])

print(p1,":", model.predict(p1))
print(p2,":", model.predict(p2))
print(p3,":", model.predict(p3))
print(p4,":", model.predict(p4))

Listing 4.1 initializes the NumPy array x with 4 pairs of numbers that 
are the four combinations of 0 and 1, followed by the NumPy array y that 
contains the logical OR of each pair of numbers in x. 

The next portion of Listing 4.1 defines a Keras-based model with two 
Dense layers. Next, the model is compiled, trained, and then the variable 
pred is populated with a set of predictions based on the trained model.

The next code block initializes the points p1, p2, p3, and p4 and then 
displays the values that are predicted for those points. The output from 
launching the code in Listing 4.1 is here:

compiling model...
fitting model...
Testing XOR operator
[[0. 0.]] : [[0.36438465]]
[[0. 1.]] : [[1.0067574]]
[[1. 0.]] : [[0.36437267]]
[[1. 1.]] : [[0.15084022]]
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Experiment with different values for epochs and see how that affects 
the predictions. Use the code in Listing 4.1 as a template for other logi-
cal functions. The only modification to Listing 4.1 that is required is the 
replacement of the variable y in Listing 4.1 with the variable y that is speci-
fied as the labels for several other logic gates that are listed below.

The labels for the NOR function:

y = np.array([[1.], [0.], [0.], [1.]])

The labels for the OR function:

y = np.array([[0.], [1.], [1.], [1.]])

The labels for the XOR function:

y = np.array([[0.], [1.], [1.], [0.]])

The labels for the ANDR function:

y = np.array([[0.], [0.], [0.], [1.]])

mnist = tf.keras.datasets.mnist

The preceding code snippets are the only required code changes to List-
ing 4.1 in order to train a model for a different logical function. For your 
convenience, the companion disc contains the following Keras-based code 
samples for the preceding functions:

tf2_keras-nor.py
tf2_keras-or.py
tf2_keras-xor.py
tf2_keras-and.py

After you have finished working with the preceding samples, try the NAND 
function, or create more complex combinations of these basic functions.

Now that you have seen an example of the limitations of a neural net-
work with a single hidden layer, the usefulness of architectures with mul-
tiple hidden layers makes more sense, as discussed in the next section.

What Is Deep Learning?

Deep learning is a subset of machine learning that focuses on neural 
networks and algorithms for training neural networks. As you learned in 
the introduction to this chapter, deep learning comprises many types of  
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neural networks, such as CNNs, RNNs, LSTMs, GRUs, Variational Autoencod-
ers (VAEs), and GANs. A deep learning model requires at least two hidden 
layers in a neural network (very deep learning involves neural networks 
with at least ten hidden layers).

From a high-level perspective, deep learning with supervised learning 
involves defining a model (a.k.a. neural network) as well as:

•	 Making an estimate for a datapoint

•	 Calculating the loss or error of each estimate

•	 Reducing the error via gradient descent

In Chapter 3, you learned about linear regression in the context of machine 
learning, which starts with initial values for m and b:

m = tf.Variable(0.)

b = tf.Variable(0.)

The training process involves finding the optimal values for m and b in the 
following equation:

y = m*x + b

We want to calculate the dependent variable y given a value for the inde-
pendent variable x. In this case, the calculation is handled by the following 
Python function:  

def predict(x):

  y = m*x + b	

  return y

The loss is another name for the error of the current estimate, which can 
be calculated via the following Python function that determines the MSE 
value:

def squared_error(y_pred, y_actual):

  return tf.reduce_mean(tf.square(y_pred-y_actual)) 

We also need to initialize variables for the training data (often named  
x_train and y_train) and the test-related data (often named x_test 
and y_test), which is typically an 80/20 or 75/25 split between training 
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data and test data. Then the training process invokes the preceding Python 
functions in the following manner:

loss = squared_error(predict(x_train), y_train)

print("Loss:", loss.numpy())

Although the Python functions in this section are simple, they can be gen-
eralized to handle complex models, such as the models that are described 
later in this chapter.

You can also solve linear regression via deep learning, which involves 
the same code that you saw earlier in this section. 

What Are Hyper Parameters?
Deep learning involves hyper parameters, which are sort of like knobs 
and dials whose values are initialized by you prior to the actual train-
ing process. For instance, the number of hidden layers and the number 
of neurons in hidden layers are examples of hyper parameters. You will 
encounter many hyper parameters in deep learning models, some of 
which are listed here:

•	 Number of hidden layers

•	 Number of neurons in hidden layers

•	 Weight initialization

•	 An activation function

•	 A cost function

•	 An optimizer

•	 A learning rate

•	 A dropout rate

The first three hyper parameters in the preceding list are required for the 
initial set-up of a neural network. The fourth hyper parameter is required 
for forward propagation. The next three hyper parameters (i.e., the cost 
function, optimizer, and learning rate) are required in order to perform 
backward error propagation (often called simply backprop) during super-
vised learning tasks. This step calculates a set of numbers that are used to 
update the values of the weights in the neural network in order to improve 
the accuracy of the neural network. The final hyper parameter is useful if 
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you need to reduce overfitting in your model. In general, the cost function 
is the most complex of all these hyper parameters.

During back propagation, the vanishing gradient problem can occur 
(i.e., the gradient value is very close to zero), after which some weights are 
no longer updated, in which case the neural network is essentially inert 
(and debugging this problem is generally nontrivial). Another consider-
ation: deciding whether or not a local minima is “good enough” and prefer-
able to expending the additional time and effort that is required to find an 
absolute minima.

Deep Learning Architectures
As discussed previously, deep learning supports various architectures, 
including MLPs, CNNs, RNNs, and LSTMs. Although there is overlap in 
terms of the types of tasks that these architectures can solve, each one 
has a specific reason for its creation. As you progress from MLPs to LSTMs,  
the architectures become more complex. Sometimes combinations of these 
architectures are well suited for solving tasks. For example, capturing video 
and making predictions typically involves a CNN (for processing each input 
image in a video sequence) and an LSTM to make predictions of the position 
of objects that are in the video stream. 

In addition, neural networks for NLP can contain one or more CNNs, 
RNNs, LSTMs, and biLSTMs (bidirectional LSTMs). In particular, the combi-
nation of reinforcement learning with these architectures is called deep 
reinforcement learning.

Although MLPs have been popular for a long time, they suffer from two 
disadvantages: they are not scalable for computer vision tasks, and they are 
somewhat difficult to train. On the other hand, CNNs do not require adja-
cent layers to be fully connected. Another advantage of CNNs is something 
called translation invariance, which means that an image (such as a digit, 
cat, dog, and so forth) is recognized as such, regardless of where it appears 
in a bitmap.

Problems that Deep Learning Can Solve
As you know, back propagation involves updating the weights of the 
edges between consecutive layers, which is performed in a right-to-
left fashion (i.e., from the output layer toward the input layer). The 
updates involve the chain rule (a rule for computing derivatives) 
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and an arithmetic product of parameters and gradient values. There  
are two anomalous results that can occur: the product of terms 
approaches zero (which is called the vanishing gradient problem) or 
the product of terms becomes arbitrarily large (which is called the 
exploding gradient problem). These problems arise with the sigmoid 
activation function.

Deep learning can mitigate both problems via LSTMs. Deep learn-
ing models usually replace the sigmoid activation function with the 
ReLU activation function. ReLU is a very simple continuous function 
that is differentiable (with a value of 1 to the right of the y-axis and 
a value of -1 to the left of the y-axis) everywhere except the origin. 
Hence, it’s necessary to perform some tweaking to make things work 
nicely at the origin.

Challenges in Deep Learning
Although deep learning is powerful and has produced impressive results in 
many fields, there are some important ongoing challenges that are being 
explored, including:

•	 Bias in algorithms

•	 Susceptibility to adversarial attacks

•	 Limited ability to generalize

•	 Lack of explainability

•	 Correlation but not causality

Algorithms can contain unintentional bias, and even if the bias is 
removed, there can be unintentional bias in data. For example, one neu-
ral network was trained on a dataset containing pictures of Caucasian 
males and females. The outcome of the training process “determined” 
that males were physicians and that females were housewives and did 
so with a high probability. The reason was simple: the dataset depicted 
males and females almost exclusively in those two roles. The following 
article contains more information regarding bias in algorithms:

https://www.technologyreview.com/s/612876/this-is-how-ai-bias-
really-happensand-why-its-so-hard-to-fix

Deep learning focuses on finding patterns in datasets, and gen-
eralizing those results is a more difficult task. There are some initia-
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tives that attempt to provide explainability for the outcomes of neural  
networks, but such work is still in its infancy. Deep learning finds pat-
terns and can determine correlation, but it’s incapable of determining 
causality. 

Now that you have a bird’s eye view of deep learning, let’s rewind and 
discuss an important cornerstone of machine learning called the Percep-
tron, which is the topic of the next section.

What Are Perceptrons?

Recall from Chapter 4 that a model for linear regression involves an output 
layer that contains a single neuron, whereas a multineuron output layer 
is for classifiers (discussed in Chapter 3). DNNs (Deep Neural Networks) 
contain at least two hidden layers, and they can solve logistic regression 
problems and as well as classification problems. In fact, the output layer of 
a model for classification problems consists of a set of probabilities (one for 
each class in the dataset) whose sum equals 1. 

Figure 4.1 displays a Perceptron with incoming edges that have numeric 
weights.

FIGURE 4.1 An Example of a Perceptron.
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Image adapted from [Arunava Chakraborty, Source: https://towardsda-
tascience.com/the-perceptron-3af34c84838c]

The next section delves into the details of a perceptron, and how they 
form the backbone of MLPs.

Definition of the Perceptron Function
A Perceptron involves a function f(x) where the following holds:

f(x) = 1 if w*x + b > 0 (otherwise f(x) = 0)

In the previous expression, w is a vector of weights, x is an input  
vector, b is a vector of biases. The product w*x is the inner product of 
the vectors w and x, and activating a Perceptron is an all-or-nothing 
decision (e.g., a light bulb is either on or off, with no intermediate 
states). 

Notice that the function f(x) checks the value of the linear term 
w*x+b, which is also specified in the sigmoid function for logistic regres-
sion. The same term appears as part of the calculation of the sigmoid value, 
as shown here:

1/[1 + e^(w*x+b)]

Given a value for w*x+b, the preceding expression generates a numeric 
value. However, in the general case, W is a weight matrix, and x and b are 
vectors.

The next section digresses slightly in order to describe artificial neural 
networks, after which we’ll discuss MLPs.

A Detailed View of a Perceptron
A neuron is essentially a building block for neural networks. In general, 
each neuron receives multiple inputs (which are numeric values), each of 
which is from a neuron that belongs to a previous layer in a neural net-
work. The weighted sum of the inputs is calculated and assigned to the 
neuron. 

Specifically, suppose that a neuron N' (N “prime”) receives inputs 
whose weights are in the set {w1, w2, w3, . . . , wn}, where these numbers 
specify the weights of the edges that are connected to neuron N'. Since 
forward propagation involves a flow of data in a left-to-right fashion, 
this means that the left endpoint of the edges is connected to neurons 
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{N1, N2, . . ., Nk} in a preceding layer, and the right endpoint of these 
edges is N'. The weighted sum is calculated as follows:

x1*w1 + x2*w2 + . . . + xn*wn

After the weighted sum is calculated, it’s fed to an activation function that 
calculates a second value. This step is required for artificial neural net-
works, and it’s explained later in the chapter. This process of calculating 
a weighted sum is repeated for every neuron in a given layer, and then 
the same process is repeated on the neurons in the next layer of a neural  
network. 

The entire process is called forward propagation, which is comple-
mented by the backward error propagation step (also called backprop). 
During the backward error propagation step, new weight values are cal-
culated for the entire neural network. The combination of forward prop 
and backward prop is repeated for each data point (e.g., each row of data 
in a CSV file). The goal is to finish this training process so that the final-
ized neural network (also called a model) accurately represents the data in 
a dataset and can also accurately predict values for the test data. Of course, 
the accuracy of a neural network depends on the dataset in question, and 
the accuracy can be higher than 99%.

The Anatomy of an Artificial Neural Network (ANN)

An ANN consists of an input layer, an output layer, and one or more hidden 
layers. For each pair of adjacent layers in an ANN, neurons in the left layer 
are connected with neurons in the right layer via an edge that has a numeric 
weight. If all neurons in the left-side layer are connected to all neurons in 
the right-side layer, it’s called an MLP (discussed later). 

Keep in mind that the Perceptrons in an ANN are “stateless:” they do 
not retain any information about previously processed data. Furthermore, 
an ANN does not contain cycles (hence ANNs are acyclic). By contrast, 
RNNs and LSTMs do retain state and they do have cycle-like behavior, as you 
will see later in this chapter. 

Incidentally, if you have a mathematics background, you might be 
tempted to think of an ANN as a set of contiguous bipartite graphs in 
which data flows from the input layer (think “multiple sources”) toward the  
output layer (“the sink”). Unfortunately, this viewpoint doesn’t prove use-
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ful for understanding ANNs. A better way to understand ANNs is to think  
of their structure as a combination of the hyper parameters in the  
following list:

•	 The number of hidden layers

•	 The number of neurons in each hidden layer

•	 The initial weights of edges connecting pairs of neurons

•	 The activation function

•	 A cost (a.k.a. loss) function

•	 An optimizer (used with the cost function)

•	 The learning rate (a small number)

•	 The dropout rate (optional)

Figure 4.2 displays the contents of an ANN (there are many variations: 
this is simply one example).

FIGURE 4.2 An Example of an ANN.

Image adapted from [Cburnett, Source: https://commons.wikimedia.
org/wiki/File:Artificial_neural_network.svg]
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Since the output layer of the ANN in Figure 4.2 contains more than one 
neuron, we know that it’s a model for a classification task.

Initializing Hyperparameters of a Model
The first three parameters in the list of bullet items in the previous sec-
tion are required for initializing the neural network. The hidden layers 
are intermediate computational layers, each of which is composed of 
neurons. The number of edges between each pair of adjacent layers is 
flexible and determined by you. More information about network ini-
tialization is here: 

http://www.deeplearning.ai/ai-notes/initialization/

The edges that connect neurons in each pair of adjacent layers 
(including the input layer and the output layer) have numeric weights. 
The initial values of these weights are often small random numbers 
between 0 and 1. Keep in mind that the connections between adjacent 
layers can affect the complexity of a model. The purpose of the training 
process is to fine-tune edge weights in order to improve the accuracy 
of a model. 

An ANN is not necessarily fully connected, which is to say that 
some edges between pairs of neurons in adjacent layers might be  
missing. By contrast, neural networks such as CNNs share edges (and 
their weights), which can make them more computationally feasible 
(but even CNNs can require significant training time). Note that the 
Keras tf.keras.layers.Dense() class handles the task of fully 
connecting two adjacent layers. As discussed later, MLPs are fully con-
nected, which can greatly increase the training time for such a neural 
network.

The Activation Hyperparameter
The fourth parameter is the activation function that is applied to weights 
between each pair of consecutive layers. Neural networks with many lay-
ers typically involve different activation functions. For instance, CNNs use 
the ReLU activation function on feature maps (created by applying filters 
to an image), whereas the penultimate layer is connected to the output 
layer via the softmax function (which is a generalization of the sigmoid 
function). 



108 • Artificial Intelligence, Machine Learning, Deep Learning

The Loss Function Hyperparameter

The fifth, sixth, and seventh hyper parameters are required for backward 
error propagation that starts from the output layer and move in a right-
to-left toward the input layer. These hyper parameters perform the heavy 
lifting of machine learning frameworks: they compute the updates to the 
weights of the edges in neural networks. 

The loss function is a function in multidimensional Euclidean space. 
For example, the MSE loss function is a bowl-shaped loss function that has 
a global minimum. In general, the goal is to minimize the MSE function in 
order to minimize the loss, which in turn will help us maximize the accuracy 
of a model (but this is not guaranteed for other loss functions). However, 
sometimes a local minimum might be considered “good enough” instead of 
finding a global minimum: you must make this decision (i.e., it’s not a purely 
programmatic decision).

Alas, loss functions for larger datasets tend to be very complex, which 
is necessary in order to detect potential patterns in datasets. Another loss 
function is the cross-entropy function, which involves maximizing the likeli-
hood function (contrast this with MSE). Search for online articles (such as 
Wikipedia) for more details about loss functions.

The Optimizer Hyperparameter

An optimizer is an algorithm that is chosen in conjunction with a loss 
function, and its purpose is to converge to the minimum value of the 
cost function during the training phase (see the comment in the previous 
section regarding a local minimum). Different optimizers make different 
assumptions regarding the way new approximations are calculated dur-
ing the training process. Some optimizers involve only the most recent 
approximation, whereas other optimizers use a rolling average that takes 
into account several previous approximations.

There are several well-known optimizers, including SGD, RMSprop, 
Adagrad, Adadelta, and Adam. Check online for details regarding the 
advantages and trade-offs of these optimizers.
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The Learning Rate Hyperparameter
The learning rate is a small number, often between 0.001 and 0.05, which 
affects the magnitude of number that is added to the current weight of an 
edge in order to train the model with these updated weights. The learning 
rate has a sort of throttling effect. If the value is too large, the new approxi-
mation might overshoot the optimal point; if it’s too small, the training time 
can increase significantly. By analogy, imagine you are in a passenger jet and 
you’re 100 miles away from an airport. The speed of the airplane decreases 
as you approach the airport, which corresponds to decreasing the learning 
rate in a neural network.

The Dropout Rate Hyperparameter
The dropout rate is the eighth hyper parameter, which is a decimal value 
between 0 and 1, typically between 0.2 and 0.5. Multiply this decimal 
value with 100 to determine the percentage of randomly selected neu-
rons to ignore during each forward pass in the training process. For 
example, if the dropout rate is 0.2, then 20% of the neurons are selected 
randomly and ignored during each step of the forward propagation. 
A different set of neurons is randomly selected whenever a new data-
point is processed in the neural network. Note that the neurons are not 
removed from the neural network: they still exist, and ignoring them 
during forward propagation has the effect of thinning the neural net-
work. In TF 2 the tf.keras.layers.Dropout class performs the task 
of thinning a neural network.

There are additional hyper parameters that you can specify, but they 
are optional and not required in order to understand ANNs.

What Is Backward Error Propagation?

An ANN is typically drawn in a left-to-right fashion, where the left-most 
layer is the input layer. The output from each layer becomes the input for 
the next layer. The term forward propagation refers to supplying values to 
the input layer and progress through the hidden layers toward the output 
layer. The output layer contains the results (which are estimated numeric 
values) of the forward pass through the model.
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Here is a key point: backward error propagation involves the cal-
culation of numbers that are used to update the weights of the edges in 
the neural network. The update process is performed by means of a loss 
function (and an optimizer and a learning rate), starting from the output 
layer (the right-most layer) and then moving in a right-to-left fashion 
in order to update the weights of the edges between consecutive lay-
ers. This procedure trains the neural network, which involves reducing 
the loss between the estimated values at the output layer and the true 
values (in the case of supervised learning). This procedure is repeated 
for each data point in the training portion of the dataset. Processing the 
dataset is called an epoch, and many times a neural network is trained 
via multiple epochs.

The previous paragraph did not explain what the loss function is or 
how it’s chosen: that’s because the loss function and the optimizer and the 
learning rate are hyper parameters that are discussed in previous sections. 
However, two commonly used loss functions are MSE and cross entropy; a 
commonly used optimizer is Adam optimizer (and SGD and RMSprop and 
others); and a common value for the learning rate is 0.01.

What Is a Multilayer Perceptron (MLP)?

A multilayer perceptron (MLP) is a feed forward artificial neural network 
that consists of at least three layers of nodes: an input layer, a hidden layer, 
and an output layer. An MLP is fully connected: given a pair of adjacent lay-
ers, every node in the left layer is connected to every node in the right layer. 
Apart from the nodes in the input layer, each node is a neuron and each 
layer of neurons involves a nonlinear activation function. In addition, MLPs 
use a technique called backward error propagation (or simply back prop) 
for training, which is also true for CNNs (Convolutional Neural Networks). 

Figure 4.3 displays the contents of an MLP with two hidden layers.

One point to keep in mind: the nonlinear activation function of an MLP 
differentiates an MLP from a linear perceptron. In fact, an MLP can handle 
data that is not linearly separable. For instance, the OR function and the 
AND function involve linearly separable data, so they can be represented 
via a linear perceptron. On the other hand, the XOR function involves data 
that is not linearly separable, and therefore requires a neural network such 
as an MLP.
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FIGURE 4.3 An Example of an MLP.

Activation Functions
An MLP without an activation function between any adjacent pair of layers is 
a linear system: at each layer, simply multiply the vector from the previous 
layer with the current matrix (which connects the current layer to the next 
layer) to produce another vector. 

On the other hand, it’s straightforward to multiply a set of matrices to 
produce a single matrix. Since a neural network without activation func-
tions is a linear system, we can multiply those matrices (one matrix for each 
pair of adjacent layers) together to produce a single matrix: the original 
neural network is thereby reduced to a two-layer neural network consisting 
of an input layer and an output layer, which defeats the purpose of having a 
multilayered neural network.

In order to prevent such a reduction of the layers of a neural network, 
an MLP must include a nonlinear activation function between adjacent lay-
ers (this is also true of any other deep neural network). The choice of non-
linear activation function is typically sigmoid, tanh (which is a hyperbolic 
tangent function), or ReLU (Rectified Linear Unit).

The output of the sigmoid function ranges from 0 to 1, which has  
the effect of “squashing” the data values. Similarly, the output of the tanh 
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function ranges from -1 to 1. However, the ReLU activation function (or one 
of its variants) is preferred for ANNs and CNNs, whereas sigmoid and tanh 
are used in LSTMs.

Several upcoming sections contain the details of constructing an MLP, 
such as how to initialize the weights of an MLP, storing weights and biases, 
and how to train a neural network via backward error propagation. 

How Are Datapoints Correctly Classified?

As a point of reference: a datapoint refers to a row of data in a dataset, 
which can be a dataset for real estate, a dataset of thumbnail images, or 
some other type of dataset. Suppose that we want to train an MLP for a data-
set that contains four classes (a.k.a. labels). In this scenario, the output layer 
must also contain four neurons, where the neurons have index values 0, 1, 
2, and 3 (a ten-neuron output layer has index values from 0 to 9 inclusive). 
The sum of the probabilities in the output layer always equals 1 because of 
the softmax activation function that is used when transitioning from the 
penultimate layer to the output layer. 

The index value that has the largest probability is compared with the 
index value one-hot encoding of the label of the current datapoint from the 
dataset. If the index values are equal, then the NN has correctly classified 
the current datapoint (otherwise it’s a mismatch). 

For example, the MNIST dataset contains images of hand-drawn digits 
from 0 through 9 inclusive, which means that a NN for the MNIST dataset 
has ten outputs in the final layer, one for each digit. Suppose that an image 
containing the digit 3 is currently being passed through the NN. The one-
hot encoding for 3 is [0,0,0,1,0,0,0,0,0,0], and the index value with 
the largest value in the one-hot encoding is also 3. Now suppose that output 
layer of the neural network after processing the digit 3 is the following vector 
of values: [0.05,0.05,0.2,0.6,0.2,0.2,0.1,0.1,0.238]. As you can 
see, the index value with the maximum value (which is 0.6) is also 3. In this 
scenario, the neural network has correctly identified the input image. 

A binary classifier involves two outcomes for handling tasks such as 
determining spam/not-spam, fraud/not-fraud, stock increase/decrease (or 
temperature, or barometric pressure), and so forth. Predicting the future 
value of a stock price is a regression task, whereas predicting whether the 
price will increase or decrease is a classification task.
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In machine learning, the multilayer perceptron is a neural network for 
supervised learning of binary classifiers (and it’s a type of linear classifier). 
However, single layer Perceptrons are only capable of learning linearly 
separable patterns. In fact, a famous book entitled Perceptrons by Marvin 
Minsky and Seymour Papert (written in 1969) showed that it was impos-
sible for these classes of network to learn an XOR function. However, an XOR 
function can be “learned” by a two-layer Perceptron.

A High-Level View of CNNs

CNNs are deep NNs (with one or more convolutional layers) that are well 
suited for image classification, along with other use cases, such as audio and 
NLP (Natural Language Processing).

Although MLPs were successfully used for image recognition, they do not 
scale well because every pair of adjacent layers is fully connected, which in turn 
can result in massive neural networks. For large images (or other large inputs) 
the complexity becomes significant and adversely affects performance.

Figure 4.4 displays the contents of a CNN (there are many variations: 
this is simply one example).

FIGURE 4.4 An Example of a CNN.
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Adapted from [Source: https://commons.wikimedia.org/w/index.
php?curid=45679374]

A Minimalistic CNN
A production quality CNN can be very complex, comprising many hid-
den layers. However, in this section we’re going to look at a minimalistic 
CNN (essentially a “toy” neural network), which consists of the following 
layers:

•	 Conv2D (a convolutional layer)

•	 ReLU (activation function)

•	 Max Pooling (reduction technique)

•	 Fully Connected (FC) Layer 

•	 Softmax activation function

The next subsections briefly explain the purpose of each bullet point in the 
preceding list of items.

The Convolutional Layer (Conv2D)

The convolutional layer is typically labeled as Conv2D in Python and TF 
code. The Conv2D layer involves a set of filters, which are small square 
matrices whose dimensions are often 3x3 but can also be 5x5, 7x7, or even 
1x1. Each filter is scanned across an image (think of tricorders in Star 
Trek movies), and at each step, an inner product is calculated with the 
filter and the portion of the image that is currently underneath the filter. 
The result of this scanning process is called a feature map that contains 
real numbers. 

Figure 4.5 displays a 7x7 grid of numbers and the inner product of a 
3x3 filter with a 3x3 subregion that results in the number 4 that appears in 
the feature map.
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FIGURE 4.5 Performing a Convolution.

The ReLU Activation Function

After each feature map is created, it’s possible that some of the values in 
the feature map are negative. The purpose of the ReLU activation function 
is to replace negative values (if any) with zero. Recall the definition of the 
ReLU function:

ReLU(x) = x if x >=0 and ReLU(x) = 0 if x < 0

If you draw a 2D graph of ReLU, it consists of two parts: the horizontal axis 
for x less than zero and the identity function (which is a line) in the first 
quadrant for x greater than or equal to 0.

The Max Pooling Layer
The third step involves max pooling, which is simple to perform: after pro-
cessing the feature map with the ReLU activation function in the previous 
step, partition the updated feature map into 2x2 rectangles, and select the 
largest value from each of those rectangles. The result is a smaller array that 
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contains 25% of the feature map (i.e., 75% of the numbers are discarded). 
There are several algorithms that you can use to perform this extraction: the 
average of the numbers in each square; the square root of the sum of the 
squares of the numbers in each square; or the maximum number in each 
square. 

In the case of CNNs, the algorithm for Max Pooling selects the maxi-
mum number from each 2x2 rectangle. Figure 4.6 displays the result of 
Max Pooling in a CNN.

FIGURE 4.6 An Example of Max Pooling in a CNN.

As you can see, the result is a small square array whose size is only 25% 
of the previous feature map. This sequence is performed for each filter in 
the set of filters that were chosen in the Conv2D layer. This set can have 8, 
16, 32, or more filters.

If you feel puzzled or skeptical about this technique, consider the anal-
ogy involving compression algorithms, which can be divided into two types: 
lossy and lossless. In case you didn’t already know, JPEG is a lossy algorithm 
(i.e., data is lost during the compression process), and yet it works just fine for 
compressing images. If it’s helpful, think of max pooling as the counterpart  
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to lossy compression algorithms, and perhaps that will persuade you of the 
efficacy of this algorithm.

At the same time, your skepticism is valid. In fact, Geoffrey Hinton 
(often called the godfather of deep learning) proposed a replacement for 
max pooling called capsule networks. This architecture is more complex 
and more difficult to train, and beyond the scope of this book (you can find 
online tutorials that discuss capsule networks in detail). However, capsule 
networks tend to be more resistant to GANs (Generative Adversarial Net-
works).

Repeat the previous sequence of steps (as in LeNet), and then per-
form a rather nonintuitive action: flatten all these small arrays so that 
they are one-dimensional vectors, and concatenate these vectors into 
one (very long) vector. The resulting vector is then fully connected with 
the output layer, where the latter consists of 10 “buckets.” In the case 
of MNIST, these placeholders are for the digits from 0 to 9 inclusive. 
Note that the Keras class tf.keras.layers.Flatten performs this 
flattening process.

The softmax activation function is applied to the long vector of 
numbers in order to populate the 10 buckets of the output layer. The 
result: the 10 buckets are populated with a set of non-zero (and non-
negative) numbers whose sum equals one. Find the index of the bucket 
containing the largest number and compare this number with the index 
of the one-hot encoded label associated with the image that was just 
processed. If the index values are equal, then the image was success-
fully identified.

More complex CNNs involve multiple Conv2D layers, multiple FC (fully 
connected) layers, different filter sizes, and techniques for combining pre-
vious layers (such as ResNet) to boost the data values’ current layer. Addi-
tional information about CNNs is here: https://en.wikipedia.org/wiki/Convo-
lutional_neural_network.

Now that you have a high-level understanding of CNNs, let’s look at a 
code sample that illustrates an image in the MNIST dataset (and the pixel 
values of that image), followed by two code samples that use Keras to train 
a model on the MNIST dataset.
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Displaying an Image in the MNIST Dataset

Listing 4.2 displays the contents of tf2_keras_mnist_digit.py that 
illustrates how to create a neural network in TensorFlow that processes the 
MNIST dataset.

Listing 4.2: tf2_keras_mnist_digit.py

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(X_train, y_train), (X_test, y_test) = mnist.
load_data()

print("X_train.shape:",X_train.shape)
print("X_test.shape: ",X_test.shape)

first_img = X_train[0]

# uncomment this line to see the pixel values
#print(first_img)

import matplotlib.pyplot as plt
plt.imshow(first_img, cmap='gray')
plt.show()

Listing 4.2 starts with some import statements and then populates 
the training data and test data from the MNIST dataset. The variable 
first_img is initialized as the first entry in the X_train array, which is 
the first image in the training dataset. The final block of code in Listing 
4.2 displays the pixel values for the first image. The output from Listing 
4.2 is here:

X_train.shape: (60000, 28, 28)

X_test.shape:  (10000, 28, 28)
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Figure 4.7 displays the contents of the first image in the MNIST dataset.

FIGURE 4.7 The First Image in the MNIST Dataset.

Keras and the MNIST Dataset

When you read code samples that contain Keras-based models that use the 
MNIST dataset, the models use a different API in the input layer. 

Specifically, a model that is not a CNN flattens the input images into a 
one-dimensional vector via the tf.keras.layers.Flatten() API, an 
example of which is here (see Listing 4.3 for details):

tf.keras.layers.Flatten(input_shape=(28,28))

On the other hand, a CNN uses the tf.keras.layers.Conv2D() 
API, an example of which is here (see Listing 4.4 for details): 

tf.�keras.layers.Conv2D(32,(3,3),activation='relu',in
put_shape=(28,28,1))
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Listing 4.3 displays the contents of keras_mnist.py that illustrates 
how to create a Keras-based neural network in TensorFlow that processes 
the MNIST dataset.

Listing 4.3: keras_mnist.py

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_

data()

x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.

nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.

nn.softmax)
])

model.summary()

model.compile(optimizer='adam',
              loss='sparse_categorical_

crossentropy',
              metrics=[‘accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Listing 4.3 starts with some import statements and then initializes 
the variable mnist as a reference to the built-in MNIST dataset. Next, the 
training-related and test-related variables are initialized with their respec-
tive portions of the MNIST dataset, followed by a scaling transformation for 
x_train and x_test. 



Deep Learning Introduction • 121

The next portion of Listing 4.3 defines a very simple Keras-based 
model with four layers that are created from classes in the tf.keras.
layers package. The next code snippet displays a summary of the model 
definition, as shown here:

Model: "sequential"

Layer (type) Output Shape Param #
flatten (Flatten) (None, 784) 0
dense (Dense) (None, 512) 401920
dropout (Dropout) (None, 512) 0
dense_1 (Dense) (None, 10) 5130

Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0

The remaining portion of Listing 4.3 compiles, fits, and evaluates the model, 
which produces the following output:

Epoch 1/5

60000/60000 [==============================] - 14s 
225us/step - loss: 0.2186 - acc: 0.9360

Epoch 2/5

60000/60000 [==============================] - 14s 
225us/step - loss: 0.0958 - acc: 0.9704

Epoch 3/5

60000/60000 [==============================] - 14s 
232us/step - loss: 0.0685 - acc: 0.9783

Epoch 4/5

60000/60000 [==============================] - 14s 
227us/step - loss: 0.0527 - acc: 0.9832

Epoch 5/5

60000/60000 [==============================] - 14s 
225us/step - loss: 0.0426 - acc: 0.9861

10000/10000 [==============================] - 1s 
59us/step



122 • Artificial Intelligence, Machine Learning, Deep Learning

As you can see, the final accuracy for this model is 98.6%, which is a 
respectable value.

Keras, CNNs, and the MNIST Dataset

Listing 4.4 displays the contents of keras_cnn_mnist.py that illustrates 
how to create a Keras-based neural network in TensorFlow that processes 
the MNIST dataset.

Listing 4.4: keras_cnn_mnist.py

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_
labels) = tf.keras.datasets.mnist.load_data()

train_images = train_images.reshape((60000, 28, 28, 
1))

test_images  = test_images.reshape((10000, 28, 28, 1))

# Normalize pixel values: from the range 0-255 to 
the range 0-1

train_images, test_images = train_images/255.0, 
test_images/255.0

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32, (3, 3), 

activation='relu', input_shape=(28, 28, 1)))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(64, (3, 3), 

activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(64, (3, 3), 

activation='relu'))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64, 

activation='relu'))
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model.add(tf.keras.layers.Dense(10, 
activation='softmax'))

model.summary()

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=[‘accuracy'])

model.fit(train_images, train_labels, epochs=1)
test_loss, test_acc = model.evaluate(test_images, 

test_labels)
print(test_acc)

# predict the label of one image
test_image = np.expand_dims(test_images[300], 

axis = 0)
plt.imshow(test_image.reshape(28,28))
plt.show()

result = model.predict(test_image)
print("result:", result)
print("result.argmax():", result.argmax())

Listing 4.4 initializes the training data and labels, as well as the test 
data and labels, via the load_data() function. Next, the images are 
reshaped so that they are 28x28 images, and then the pixel values are 
rescaled from the range 0-255 (all integers) to the range 0-1 (decimal 
values).

The next portion of Listing 4.4 uses the Keras Sequential() API 
to define a Keras-based model called model, which contains two pairs of 
Conv2D and MaxPooling2D layers, followed by the Flatten layer, and 
then two consecutive Dense layers.

Next, the model is compiled, trained, and evaluated via the compile(), 
fit(), and evaluate() methods, respectively. The final portion of Listing 
4.4 successfully predicts the image whose label is 4, which is then displayed 



124 • Artificial Intelligence, Machine Learning, Deep Learning

via Matplotlib. Launch the code in Listing 4.4 and you will see the fol-
lowing output on the command line:

Model: "sequential"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 26, 26, 32) 320
max_pooling2d 
(MaxPooling2D)

(None, 13, 13, 32) 0

conv2d_1 (Conv2D) (None, 11, 11, 64) 18496

max_pooling2d_1 
(MaxPooling2

(None, 5, 5, 64) 0

conv2d_2 (Conv2D) (None, 3, 3, 64) 36928

flatten (Flatten) (None, 576) 0

dense (Dense) (None, 64) 36928

dense_1 (Dense) (None, 10) 650

Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0

60000/60000 [==============================] - 54s 
907us/sample - loss: 0.1452 - accuracy: 0.9563

10000/10000 [==============================] - 3s 
297us/sample - loss: 0.0408 - accuracy: 0.9868

0.9868

Using TensorFlow backend.

result: [[6.2746993e-05 1.7837329e-03 3.8957372e-04 
4.6143982e-06 9.9723744e-01

  1.5522403e-06 1.9182076e-04 3.0044283e-04 
2.2602901e-05 5.3929521e-06]]

result.argmax(): 4

Figure 4.8 displays the image that is displayed when you launch the 
code in Listing 4.4.

You might be asking yourself how the model in Listing 4.4 can achieve 
such high accuracy when every input image is flattened into a one-dimen-
sional vector, which loses the adjacency information that is available in 
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a two-dimensional image. Before CNNs became popular, one technique 
involved using MLPs and another technique involved SVMs as models for 
images. In fact, if you don’t have enough images to train a model, you can 
still use an SVM. Another option is to generate synthetic data using a GAN 
(which was its original purpose).

FIGURE 4.8 An Image in the MNIST Dataset.

Analyzing Audio Signals with CNNs

In addition to image classification, you can train CNNs with audio signals, 
which can be converted from analog to digital. Audio signals have vari-
ous numeric parameters (such as decibel level and voltage level) that are 
described here: 

https://en.wikipedia.org/wiki/Audio_signal
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If you have a set of audio signals, the numeric values of their associ-
ated parameters become the dataset for a CNN. Remember that CNNs have 
no understanding of the numeric input values: the numeric values are 
processed in the same fashion, regardless of the source of the numeric 
values.

One use case involves a microphone outside of a building detects and 
identifies various sounds. Obviously it’s important to identify the sound of a 
backfire from a vehicle versus the sound of a gunshot. In the latter case, the 
police would be notified about a potential crime. There are companies that 
use CNNs to identify different types of sounds; other companies are explor-
ing the use of RNNs and LSTMs instead of CNNs.

Summary

In this chapter, you got a brief introduction to deep learning, how it  
differs from machine learning, and some of the problems it can solve. You 
learned about the challenges that exist in deep learning, which includes bias 
in algorithms, susceptibility to adversarial attacks, limited ability to general-
ize, lack of explainability in neural networks, and the lack of causality.

Next you learned about the XOR function, which is an example of a non-
linearly separable set of four points in the plane. Despite its simplicity in 
the 2D case, the XOR function cannot be solved with a single-layer shallow 
network: instead, two hidden layers are required. Next you learned about 
Perceptrons, which is essentially a core building block for neural networks. 

You also saw a Keras-based code sample for training a neural network 
on the MNIST dataset. In addition, you learned how CNNs are constructed, 
along with a Keras-based code sample for training a CNN with the MNIST 
dataset: this code sample will make more sense after you have read the  
section pertaining to activation functions in Chapter 3.



C H A P T E R 5
DEEP LEARNING: RNNs  
AND LSTMs

This chapter extends the introduction from Chapter 4 by discussing RNNs 
(recurrent neural networks) and LSTMs (long short term memory). Although 
most of this chapter contains descriptive content regarding these architec-
tures, there are Keras-based code samples. Hence, this would be a good 
point to read the Keras material in the associated appendix in case you 
haven’t already done so.

The first part of this chapter introduces you to the architecture of RNNs, 
BPTT (back propagation through time), and a short Keras-based code 
sample. As you will see, RNNs can keep track of information from earlier 
time periods, which makes them useful for a variety of tasks, including NLP 
tasks.

The second part of this chapter introduces you to the architecture of 
LSTMs, which are more complex than RNNs. Specifically, LSTMs includes a 
forget gate, an input gate, and an output gate, as well as a long-term mem-
ory cell. You will also learn about the advantages of LSTMs over RNNs. In 
addition, you will be exposed to bidirectional LSTMs that are used in some 
well-known NLP-related models (see Chapter 6).

The third part of this chapter introduces you to the architecture of 
autoencoders and the rationale for using them, as well as an introduction to 
variational autoencoders.

Please keep in mind that the code samples in this chapter assume that 
you have some familiarity with Keras (discussed in Appendix A).
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What Is an RNN?

An RNN is a Recurrent Neural Network, which is a type of architecture that 
was developed during the 1980s. RNNs are suitable for datasets that contain 
sequential data as well as for NLP tasks, such as language modeling, text 
generation, or autocompletion of sentences. In fact, you might be surprised 
to learn that you can even perform image classification (such as MNIST) via 
an RNN. Figure 5.1 displays the contents of a simple RNN.

FIGURE 5.1 An Example of an RNN.

Image adapted from [Source: https://commons.wikimedia.org/w/index.
php?curid=60109157]

In addition to simple RNNs there are more powerful constructs such as 
LSTMs and GRUs. A basic RNN has the simplest type of feedback mechanism 
(described later) and involves a sigmoid activation function.

RNNs (which includes LSTMs and GRUs) differ from ANNs in several 
important ways, as listed here:

•	 Statefulness (all RNNs)

•	 Feedback mechanism (all RNNs)

•	 A sigmoid or tanh activation function

•	 Multiple gates (LSTMs and GRUs)
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•	 BPTT (Back Propagation Through Time)

•	 Truncated BPTT (simple RNNs)

First, ANNs and CNNs are essentially stateless, whereas RNNs are stateful 
because they have internal state. Hence, RNNs can process more complex 
sequences of inputs, which makes them suitable for tasks such as handwrit-
ing recognition and or speech recognition.

Anatomy of an RNN
Consider the RNN in Figure 5.1. Suppose that the sequence of inputs is 
labeled x1, x2, x3, ... , x(t), .... and also that the sequence of hidden states 
is labeled h1, h2, h3, ..., h(t). Note that each input sequence and hidden 
state is a 1xn vector, where n is the number of features.

At time period t, the input is based on a combination of h(t-1) and 
x(t), after which an activation function is applied to this combination 
(which can also involve adding a bias vector).

Another difference is the feedback mechanism for RNNs that occurs 
between consecutive time periods. Specifically, the output at a previous 
time period is combined with the new input of the current time period in 
order to calculate the new internal state. Let’s use the sequence {h(0), 
h(1), h(2), . . . h(t-1), h(t)} to represent the set of internal states 
of an RNN during time periods {0, 1, 2, … , t-1, t} and let’s also suppose 
that the sequence {x(0) , x(1), x(2), ... , x(t-1), x(t)} is the inputs 
during the same time periods.

The fundamental relationship for an RNN at time period t is here:

h(t) = f(W*x(t) + U*h(t-1))

In the preceding formula, W and U are weight matrices and f is typically the 
tanh activation function. 

Here is a code snippet of a TF 2 Keras-based model that is based on 
the tf.keras.layers.SimpleRNN class:

import tensorflow as tf
...
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.SimpleRNN(5, input_

shape=(1,2), batch_input_shape=[1,1,2], 
stateful=True))

... 
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Perform an online search for more information and code samples 
involving Keras and RNNs.

What Is BPTT?
BPTT (back propagation through time) in RNNs is the counterpart to back-
prop for CNNs. The weight matrices of RNNs are updated during BPTT in 
order to train the neural network. 

However, there is a problem called the exploding gradient that can 
occur in RNNs, which is to say that the gradient becomes arbitrary large 
(versus the gradient becoming arbitrary small in the so-called vanishing 
gradient scenario). One way to deal with the exploding gradient problem 
is to use a truncated BPTT, which means that BPTT is computed for a 
small number of steps instead of all time steps. Another technique is to 
specify a maximum value for the gradient, which involves simple condi-
tional logic.

The good news is that there is another way to overcome both the explod-
ing gradient and vanishing gradient problem, which involves LSTMs that are 
discussed later in this chapter.

Working with RNNs and Keras

Listing 5.1 displays the contents of keras_rnn_model.py that illustrates 
how to create a simple Keras-based RNN model.

Listing 5.1: keras_rnn_model.py

import tensorflow as tf

timesteps = 30
input_dim = 12

# number of units in RNN cell
units = 512

# number of classes to be identified
n_classes = 5
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Listing 5.1 first initializes the variables timesteps (the number of 
time steps), input_dim (the number of elements in each input vector of 
numbers), units (the number of hidden units in the RNN neuron), and 
n_classes (the number of classes in the dataset).

The next portion of Listing 5.1 creates a Keras-based model that looks 
similar to earlier Keras-based models, with the exception of the code snip-
pet for the RNN layer, as shown here:

model.add(tf.keras.layers.SimpleRNN(units=units,

          dropout=0.2,

          input_shape=(timesteps, input_dim)))

As you can see, the preceding code snippet adds an instance of the  
SimpleRNN class as well as the variables that are defined in the preceding 
code block. 

The final portion of code invokes the compile() method, followed by 
the summary() method to display the structure of the model.

# Keras Sequential model with RNN and Dense layer
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.SimpleRNN(units=units,
                    dropout=0.2,
                    input_shape=(timesteps, input_dim)))
model.add(tf.keras.layers.Dense(n_classes, 

activation='softmax'))

# model loss function and optimizer
model.compile(loss='categorical_crossentropy',
              optimizer=tf.keras.optimizers.Adam(),
              metrics=['accuracy'])

model.summary()
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Launch the code in Listing 5.1 and you will see the following output:

Model: "sequential"

Layer (type)
Output Shape 
Shape

Param #

simple_rnn 
(SimpleRNN)

(None, 512) 268800

dense (Dense) (None, 5) 2565

Total params: 271,365
Trainable params: 271,365
Non-trainable params: 0

Now that you see how easy it is to create an RNN-based model in Keras, 
let’s look at an example of an RNN-based model in Keras that will be 
trained on the MNIST dataset, which is the topic of the next section.

Working with Keras, RNNs, and MNIST 

Listing 5.2 displays the contents of keras_rnn_mnist.py that illustrates 
how to create a simple Keras-based RNN model that is trained on the 
MNIST dataset.

Listing 5.2: keras_rnn_mnist.py

#Simple RNN and MNIST dataset
import tensorflow as tf
import numpy as np

# instantiate mnist and load data:
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.

load_data()

# one-hot encoding for all labels to create 1x10
# vectors that are compared with the final layer:
y_train = tf.keras.utils.to_categorical(y_train)
y_test  = tf.keras.utils.to_categorical(y_test)
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# resize and normalize the 28x28 images:
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, 

image_size])
x_test  = np.reshape(x_test, [-1, image_size, 

image_size])
x_train = x_train.astype('float32') / 255
x_test  = x_test.astype('float32')  / 255

# initialize some hyper- parameters:
input_shape = (image_size, image_size)
batch_size = 128
hidden_units = 128
dropout_rate = 0.3

# RNN-based Keras model with 128 hidden units:
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.SimpleRNN(units=hidden_

units,
                    dropout=dropout_rate,
                    input_shape=input_shape))
model.add(tf.keras.layers.Dense(num_labels))
model.add(tf.keras.layers.Activation('softmax'))
model.summary()

model.compile(loss='categorical_crossentropy',
              optimizer='sgd',
              metrics=['accuracy'])

# train the network on the training data:
model.fit(x_train, y_train, epochs=8, batch_

size=batch_size)

#calculate and then display the accuracy:
loss, acc = model.evaluate(x_test, y_test, batch_

size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))
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Listing 5.2 contains the usual import statements, followed by the 
initialization of the mnist variable as a reference to the MNIST dataset, 
after which the four variables for the training data and the test data are 
initialized.

The next portion of Listing 5.2 ensures that the training images and test 
images are resized as 28x28 images, after which the pixel values (which are 
in the range of 0 to 255) in these images are scaled down so that they are in 
the range of 0 to 1. The next portion of Listing 5.2 is very similar to Listing 
5.1: some hyper parameters are initialized and then an RNN-based model 
in Keras is created. 

At this point we have new code, starting with the code snippet 
that saves the model structure in the rnn-mnist.png file. A second  
new code block invokes the compile() method to synch up the model 
with the training data, followed by the fit() method that trains the 
model.

The final portion of Listing 5.2 evaluates the trained model on  
the test data and displays the values of loss and acc that correspond 
to the loss and the accuracy, respectively, of the model on the test  
data. Launch the code in Listing 5.2 and you will see the following 
output:

Model: "sequential"

Layer (type) Output Shape Param #
simple_rnn 
(SimpleRNN)

(None, 256) 72960

dense (Dense) (None, 10) 2570
activation 
(Activation)

(None, 10) 0

Total params: 75,530
Trainable params: 75,530
Non-trainable params: 0

Epoch 1/5
60000/60000 [==============================] - 33s 

542us/sample - loss: 0.8198 - accuracy: 0.7605
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Epoch 2/5
 6528/60000 [==>...........................] - ETA: 

27s - loss: 0.4661 - accuracy: 0.8627
60000/60000 [==============================] - 34s 

559us/sample - loss: 0.3724 - accuracy: 0.8917
Epoch 3/5
60000/60000 [==============================] - 33s 

545us/sample - loss: 0.2764 - accuracy: 0.9183
Epoch 4/5
60000/60000 [==============================] - 33s 

545us/sample - loss: 0.2269 - accuracy: 0.9327
Epoch 5/5
60000/60000 [==============================] - 34s 

561us/sample - loss: 0.1983 - accuracy: 0.9407
10000/10000 [==============================] - 2s 

237us/sample - loss: 0.1396 - accuracy: 0.9577
Test accuracy: 95.8%

Working with TensorFlow and RNNs (Optional)

The code sample in this section is optional because it’s based on Tensor-
Flow 1.x. As this book goes to print, Google released TensorFlow 2, after 
which TensorFlow 1.x becomes legacy code that will be supported for one 
additional year. Keep this in mind when you encounter any other code sam-
ples in this book that involve TensorFlow 1.x.

However, this code sample does provide some low-level details regard-
ing the output and the state for each hidden layer in an RNN neuron, which 
can give you some insight into how the calculations are performed and the 
values that are generated. Keep in mind that the data for the two time steps 
is simulated, which is to say that the data does not reflect any meaningful 
use case. The purpose of the simplified data is to help you focus on the way 
in which calculations are performed.

Listing 5.3 displays the contents of dynamic_rnn_2TP.py  
that illustrates how to create a simple TensorFlow-based RNN  
model.
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Listing 5.3: dynamic_rnn_2TP.py

import tensorflow as tf
import numpy as np

n_steps = 2    # number of time steps
n_inputs = 3   # number of inputs per time unit
n_neurons = 5  # number of hidden units

X_batch = np.array([
  # t = 0      t = 1
  [[0, 1, 2], [9, 8, 7]], # instance 0
  [[3, 4, 5], [0, 0, 0]], # instance 1
  [[6, 7, 8], [6, 5, 4]], # instance 2
  [[9, 0, 1], [3, 2, 1]], # instance 3
])

#sequence_length <= # of elements in each batch
seq_length_batch = np.array([2, 1, 2, 2])

X = tf.placeholder(dtype=tf.float32, shape=[None, 
n_steps, n_inputs])

seq_length = tf.placeholder(tf.int32, [None])

basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_
units=n_neurons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X, 
sequence_length=seq_length, dtype=tf.float32)

with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  outputs_val, states_val = sess.run([outputs, 

states],
                 feed_dict={X:X_batch, seq_

length:seq_length_batch})

  print("�X_batch     shape:", X_batch.shape)       
# (4,2,3)

  print("�outputs_val shape:", outputs_val.shape)   
# (4,2,5)
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Listing 5.3 starts by initializing n_steps (the number of time steps), n_
inputs (the number of inputs), and n_neurons (the number of neurons) 
to 2, 3, and 5, respectively.

Next the NumPy array X_batch is a 4x2x3 array that is initialized with inte-
gers. As you can see from the comment line, the first column of values are for 
time step 0, and the second column of values are for the time step 1. You can also 
think of each row of data in X_batch as an instance of data for both time steps. 

Next, the variable seq_length_batch is a one-dimensional vector of 
integers, each of which specifies that number of time steps that appear to 
the left of a vector consisting of purely zero values. As you can see, this vec-
tor contains the value 2 for instances number 0, 2, and 3, and the value 0 
for instance number 1. 

The next portion of Listing 5.3 defines the placeholder X that can hold an 
arbitrary number of arrays whose shape is [n_steps, n_inputs]. Now we’re 
ready to define an RNN cell and specify its outputs and states, as shown here:

basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_
units=n_neurons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X, 
sequence_length=seq_length, dtype=tf.float32)

  print("�states_val  shape:", states_val.shape)    
# (4,5)

  print("outputs_val:",outputs_val)
  print("----------------------------\n")
  print("states_val: ",states_val)

#################################################
##################

# outputs => output of ALL RNN states
# states  => output of LAST ACTUAL RNN state 

(ignores zero vector)
# state = output[1] for full sequences
# state = output[0] for short sequences
#################################################

##################
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The key point to remember is that the final output value from the right-
most hidden unit is the value that is passed to the next neuron.

Launch the code in Listing 5.3 and you will see the following output, 
where the value of interest is shown in bold:

#----------------------------
#outputs_val:
#[[[-0.09700205  0.7671716   0.6775758   0.01522888  

0.5460828 ]
#  [ 0.92776424 -0.5916748   0.67824966  0.99423325  

0.9999991 ]]
#
# [[ 0.24040672  0.81568515  0.8890421   0.780813    

0.99762475]
#  [ 0.           0.           0.           0.        0. 

        ]]
#
# [[ 0.5282535   0.8549201   0.9647311   0.9692446   

0.99999046]
#  [ 0.9725177  -0.7165484   0.46688017  0.9411293   

0.9999323 ]]
#
# [[ 0.81080747 -0.9926888   0.56612366  0.9561879   

0.9997731 ]
#  [ 0.48786768 -0.7099759  -0.7283263   0.76442945  

0.9971904 ]]]
#----------------------------
#states_val:
#[[ 0.92776424 -0.5916748   0.67824966  0.99423325  

0.9999991 ]
# [ 0.24040672  0.81568515  0.8890421   0.780813    

0.99762475]
# [ 0.9725177  -0.7165484   0.46688017  0.9411293   

0.9999323 ]
# [ 0.48786768 -0.7099759  -0.7283263   0.76442945  

0.9971904 ]]
#----------------------------
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In the preceding output, notice that the row count of the rows shown in 
bold are 2, 1, 2, 2, which is exactly the same as the values in seq_length_
batch. As you can see, these highlighted rows appear (also in bold) in the 
array labeled states_val.

Listing 5.3 is a very small and artificial example of an RNN, and hope-
fully this example gives you a better understanding of the inner workings 
of an RNN. There are many variants of RNNs, and you can read about some 
of them here:

https://en.wikipedia.org/wiki/Recurrent_neural_network

What Is an LSTM?

LSTMs are a special type of RNN, and they are well suited for many use cases, 
including NLP, speech recognition, and handwriting recognition. LSTMs 
are well suited for handling something called long term dependency, which 
refers to the distance gap between relevant information and the location 
where that information is required. This situation arises when information 
in one section of a document needs to be linked to information that is in a 
more distant location of the document.

LSTMs were developed in 1997 and went on to exceed the accuracy 
performance of state-of-the-art algorithms. LSTMs also began revolu-
tionizing speech recognition (circa 2007). Then in 2009 an LSTM won 
pattern recognition contests, and in 2014, Baidu used RNNs to exceed 
speech recognition records. Navigate to the following link in order to 
see an example of an LSTM: https://commons.wikimedia.org/w/index.
php?curid=60149410

Anatomy of an LSTM
LSTMs are stateful and they contain three gates (forget gate, input gate, 
and an output gate) that involve a sigmoid function, and also a cell state 
that involves the tanh activation function. At time period t the input 
to an LSTM is based on a combination of the two vectors h(t-1) and 
x(t). This pair of inputs is combined, after which a sigmoid activa-
tion function is applied to this combination (which can also include a  
bias vector) in the case of the forget gate, input gate, and the output 
gate.
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The processing that occurs at time step t is the short term mem-
ory of an LSTM. The internal cell state of LSTMs maintains long term 
memory. Updating the internal cell state involves the tanh activation 
function, whereas the other gates use the sigmoid activation function, 
as mentioned in the previous paragraph. Here is a TF 2 code block that 
defines Keras-based model for an LSTM:

import tensorflow as tf
. . . 
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.LSTMCell(6,batch_input_

shape=(1,1,1),kernel_initializer='ones',statefu
l=True))

model.add(tf.keras.layers.Dense(1))
. . .

You can learn about the difference between an LSTM and an LSTMCell 
here:

https://stackoverflow.com/questions/48187283/whats-the-difference-
between-lstm-and-lstmcell

In case you’re interested, additional information about LSTMs and also 
how to define a custom LSTM cell is here:

https://en.wikipedia.org/wiki/Recurrent_neural_network

https://stackoverflow.com/questions/54231440/define-custom-lstm-cell-
in-keras

Bidirectional LSTMs
In addition to one-directional LSTMs, you can also define a bidirectional 
LSTM that consists of two regular LSTMs: one LSTM for the forward direc-
tion and one LSTM in the backward or opposite direction. You might be 
surprised to discover that bidirectional LSTMs are well suited for solving 
NLP tasks. 

For instance, ELMo is a deep word representation for NLP tasks that 
uses bidirectional LSTMs. An even newer architecture in the NLP world 
is called a transformer, and bidirectional transformers are used in BERT, 
which is a very well-known system (released by Google in 2018) that can 
solve complex NLP problems. 
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The following TF 2 code block contains a Keras-based model that 
involves bidirectional LSTMs:

import tensorflow as tf
. . . 
model = Sequential()
model.add(Bidirectional(LSTM(10, return_

sequences=True), input_shape=(5,10)))
model.add(Bidirectional(LSTM(10)))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', 

optimizer='rmsprop')
. . . 

The previous code block contains two bidirectional LSTM cells, both of 
which are shown in bold.

LSTM Formulas
The formulas for LSTMs are more complex than the update formula for a 
simple RNN, but there are some patterns that can help you understand those 
formulas. 

Navigate to the following link in order to see the formulas for an LSTM:

https://en.wikipedia.org/wiki/Long_short-term_memory#cite_note-
lstm1997-1]

The formulas show you how the new weights are calculated for the 
forget gate f, the input gate i, and the output gate i during time step t. In 
addition, the preceding link shows you how the new internal state and the 
hidden state (both at time step t) are calculated.

Notice the pattern for gates f, i, and o: all of them calculate the sum of 
two terms, each of which is a product involving x(t) and h(t), after which 
the sigmoid function is applied to that sum. Specifically, here’s the formula 
for the forget gate at time t:

f(t) = sigma(W(f)*x(t) + U(f)*h(t) + b(f))

In the preceding formula, W(f), U(f), and b(f) are the weight matrices 
associated with x(t), the weight matrix associated with h(t), and the bias 
vector for the forget gate f, respectively.
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Notice that the calculations for i(t) and o(t) have the same pattern as the 
calculation for f(t).The difference is that i(t) has the matrices W(i) and 
U(i), whereas o(t) has the matrices W(o) and U(o). Thus, f(t), i(t), 
and o(t) have a parallel construction.

The calculations for c(t), i(t), and h(t) are based on the values for 
f(t), i(t), and o(t), as shown here:

c(t)  = f(t) * c(t-1) + i(t) * tanh(c'(t)) 
c'(t) = sigma(W(c) * x(t) + U(c) * h(t-1))
h(t)  = o(t) * tanh(c(t))

The final state of an LSTM is a one-dimensional vector that contains the out-
put from all the other layers in the LSTM. If you have a model that contains 
multiple LSTMs, the final state vector for a given LSTM becomes the input 
for the next LSTM in that model.

LSTM Hyperparameter Tuning
LSTMs are also prone to overfitting, and here is a list of things to consider if 
you are manually optimizing hyper parameters for LSTMs:

•	 Overfitting (use regularization such as L1 or L2)

•	 Larger networks are more prone to overfitting

•	 More data tends to reduce overfitting

•	 Train the networks over multiple epochs

•	 The learning rate is vitally important

•	 It can be helpful to stack layers 

•	 Use softsign instead of softmax for LSTMs

•	 RMSprop, AdaGrad, or momentum are good choices

•	 Xavier weight initialization
Perform an online search to obtain more information about the optimizers 
in the preceding list.

Working with TensorFlow and LSTMs (Optional)

Listing 5.4 displays the contents of dynamic_lstm_2TP.py that illustrates 
how to create a simple LSTM model with TensorFlow 1.x code.
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Listing 5.4: dynamic_lstm_2TP.py

import tensorflow as tf
import numpy as np

n_steps = 2   # number of time steps
n_inputs = 3  # number of inputs per time unit
n_neurons = 5 # number of hidden units

X_batch = np.array([
  # t = 0      t = 1
  [[0, 1, 2], [9, 8, 7]], # instance 0
  [[3, 4, 5], [0, 0, 0]], # instance 1
  [[6, 7, 8], [6, 5, 4]], # instance 2
  [[9, 0, 1], [3, 2, 1]], # instance 3
])

seq_length_batch = np.array([2, 1, 2, 2])

X = �tf.placeholder(dtype=tf.float32,shape=[None, 
n_steps,n_inputs])

seq_length = tf.placeholder(tf.int32, [None])

basic_cell = tf.nn.rnn_cell.BasicLSTMCell(num_
units=n_neurons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X, 
sequence_length=seq_length, dtype=tf.float32)

with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  outputs_val, states_val = sess.run([outputs, 

states],
                 feed_dict={X:X_batch, seq_

length:seq_length_batch})

  print("�X_batch     shape:", X_batch.shape)       
# (4,2,3)

(Continued)
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The first half of Listing 5.4 is identical to the first half of Listing 5.3, and 
the first line of code that is different involves defining basic_cell as an 
LSTM (shown in bold), which is reproduced here:

basic_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=n_
neurons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X, 
sequence_length=seq_length, dtype=tf.float32)

Notice that outputs and states in Listing 5.4 are initialized in exactly 
the same fashion as shown in Listing 5.3. The next portion of code is a 
tf.Session() code block that is the training loop. 

Another difference to notice in Listing 5.4: during each computation in 
the training loop: states_val is actually an instance of LSTMStatesTu-
ple, whereas states_val in Listing 5.3 is a 4x5 tensor. Launch the code 
in Listing 5.4 and you will see the following output:

  print("�outputs_val shape:", outputs_val.shape)   
# (4,2,5)

  print("�states:           ", states_val)          
# LSTMStateTuple(...)

  print("outputs_val:",outputs_val)
  print("----------------------------\n")
  print("states_val: ",states_val)

('X_batch     shape:', (4, 2, 3))
('outputs_val shape:', (4, 2, 5))
        
('states:           ', LSTMStateTuple(c=array(
   [[-1.0492262 , -0.1059267 , -0.27163735, 

-0.64399946,  0.06018598],
    [-0.7445494 ,  0.00723887, -0.11805946, 

-0.26550752,  0.21816696],
    [-1.4126835 ,  0.05187892, -0.07408151, 

-0.66379607,  0.1348486 ],
    [-0.5987958 ,  0.24536057, -0.16916996, 

-0.8177415 ,  0.39747238]],
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      dtype=float32), h=array(
       [[-7.33636796e-01, -6.07701950e-02, 

-1.40444040e-01,
         -2.65002381e-02, 5.37334010e-04],
        [-4.83454257e-01, 3.39480606e-03, 

-3.36034223e-02,
         -2.59866733e-02, 4.49425131e-02],
        [-7.36429453e-01, 2.63450593e-02, 

-4.42487188e-02,
         -1.05846934e-01, 5.22684120e-03], 
        [-3.73311013e-01, 1.35892674e-01, 

-9.72046256e-02,
         -2.79455721e-01, 5.36275432e-02]], 

dtype=float32)))
          
('outputs_val:', array([
       [[-1.39581457e-01, -8.17378387e-02, 

-8.70967656e-02,
         -3.05497926e-02,  1.16406225e-01],
        [-7.33636796e-01, -6.07701950e-02, 

-1.40444040e-01,
         -2.65002381e-02,  5.37334010e-04]],

       [[-4.83454257e-01,  3.39480606e-03, 
-3.36034223e-02,

         -2.59866733e-02,  4.49425131e-02],
        [ 0.00000000e+00,  0.00000000e+00,  

0.00000000e+00,
          0.00000000e+00,  0.00000000e+00]],

       [[-6.21303201e-01,  4.13885061e-03, 
-6.17417134e-03,

         -8.89408588e-03,  4.83810157e-03],
        [-7.36429453e-01,  2.63450593e-02, 

-4.42487188e-02,  
         -1.05846934e-01,  5.22684120e-03]],
       

(Continued)
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       [[-�1.01410240e-01,  4.99857590e-02, 
-9.47358180e-03,  

         -3.74739647e-01,  9.64458846e-03],
        [-�3.73311013e-01,  1.35892674e-01, 

-9.72046256e-02,
         -�2.79455721e-01,  5.36275432e-02]]], 

dtype=float32))
----------------------------

('states_val: ', LSTMStateTuple(c=array(
   [[-1.0492262 , -0.1059267 , -0.27163735, 

-0.64399946,  0.06018598],
    [-0.7445494 ,  0.00723887, -0.11805946, 

-0.26550752,  0.21816696],
    [-1.4126835 ,  0.05187892, -0.07408151, 

-0.66379607,  0.1348486 ],
    [-0.5987958 ,  0.24536057, -0.16916996, 

-0.8177415 ,  0.39747238]],
   dtype=float32), h=array(
      [[-�7.33636796e-01, -6.07701950e-02, 

-1.40444040e-01,
        -2.65002381e-02,  5.37334010e-04],
       [-�4.83454257e-01,  3.39480606e-03, 

-3.36034223e-02,
        -2.59866733e-02,  4.49425131e-02],
       [-�7.36429453e-01,  2.63450593e-02, 

-4.42487188e-02,
        -1.05846934e-01,  5.22684120e-03],
       [-�3.73311013e-01,  1.35892674e-01, 

-9.72046256e-02,
        -�2.79455721e-01,  5.36275432e-02]], 

dtype=float32)))

There are two things in particular to notice about the output. First, 
examine the middle portion displayed in bold in the preceding output, and 
notice that these are the same values that are displayed in the final output 
block in the output section labeled states_val. 
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Next, the second code block that is displayed in bold contains two vec-
tors: a non-zero vector followed by a zero vector, which corresponds to the 
data labeled instance 1 in Listing 5.4. 

What Are GRUs?

A GRU (Gated Recurrent Unit) is an RNN that is a simplified type of LSTM. 
The key difference between a GRU and an LSTM: a GRU has two gates (reset 
and update gates) whereas an LSTM has three gates (reset, output and forget 
gates). The reset gate in a GRU performs the functionality of the input gate 
and the forget gate of an LSTM.

Keep in mind that GRUs and LSTMs both have the goal of tracking long-
term dependencies effectively, and they both address the problem of van-
ishing gradients and exploding gradients. Navigate to the following link in 
order to see an example of a GRU:

https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_
base_type.svg

Navigate to the following link in order to see the formulas for a GRU 
(which are similar to the formulas for an LSTM):

https://en.wikipedia.org/wiki/Gated_recurrent_unit

What Are Autoencoders?

An autoencoder (AE) is a neural network that is similar to an MLP where 
the output layer is the same as the input layer. The simplest type of AE 
contains a single hidden layer that has fewer neurons than either the 
input layer or the output layer. However, there are many different types 
of AEs in which there are multiple hidden layers, sometimes containing 
more neurons than the input layer (and sometimes containing fewer 
neurons).

An AE uses unsupervised learning and back propagation to learn an 
efficient data encoding. Their purpose is dimensionality reduction: AEs 
set the input values equal to the inputs and then try to find the identity 
function. Figure 5.2 displays a simple AE that involves a single hidden 
layer.
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FIGURE 5.2 A Basic Autoencoder.

Image adapted from [Philippe Remy, Source: http://philipperemy.
github.io/anomaly-detection/ 

In essence, a basic AE compresses the input to an “intermediate” vec-
tor with fewer dimensions than the input data, and then transforms that 
vector into a tensor with the same shape as the input. Several use cases for 
AEs are listed below:

•	 Document retrieval

•	 Classification

•	 Anomaly detection

•	 Adversarial autoencoders

•	 Image denoising (generating clear images)

An example of using TensorFlow and Keras with an autoencoder in order 
to perform fraud detection is here:

https://www.datascience.com/blog/fraud-detection-with-tensorflow
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AEs can also be used for feature extraction because they can yield 
better results than PCA. Keep in mind that AEs are data-specific, which 
means that they only work with similar data. However, they differ from 
image compression (and are mediocre for data compression). For example, 
an autoencoder trained on faces would work poorly on pictures of trees. In 
summary, an AE involves:

•	 “squeezing” the input to a smaller layer

•	 learning a representation for a set of data

•	 is done typically for dimensionality reduction (PCA)

•	 keeping only the middle “compressed” layer

As a high-level example, consider a 10x10 image (100 pixels), and an AE 
that has 100 neurons (10x10 pixels), a hidden layer with 50 neurons, and an 
output layer with 100 neurons. Hence, the AE compresses 100 neurons to 
50 neurons. 

As you saw earlier, there are numerous variations of the basic AE, some 
of which are listed below:

•	 LSTM autoencoders

•	 Denoising autoencoders

•	 Contractive autoencoders

•	 Sparse autoencoders

•	 Stacked autoencoders

•	 Deep autoencoders

•	 Linear autoencoders

If you’re interested, the following link contains a wide assortment of auto-
encoders, including those that are mentioned in this section:

https://www.google.com/search?sa=X&q=Autoencoder&tbm=isch&so
urce=univ&ved=2ahUKEwjo-8zRrIniAhUGup4KHVgvC10QiR56BAgME
BY&biw=967&bih=672
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Perform an online search for code samples and more details regarding 
AEs and their associated use cases.

Autoencoders and PCA
The optimal solution to an autoencoder is strongly related to principal com-
ponent analysis (PCA) if the autoencoder involves linear activations or only 
a single sigmoid hidden layer. 

The weights of an autoencoder with a single hidden layer of size p 
(where p is less than the size of the input) span the same vector subspace as 
the one spanned by the first p principal components. 

The output of the autoencoder is an orthogonal projection onto 
this subspace. The autoencoder weights are not equal to the princi-
pal components, and are generally not orthogonal, yet the principal  
components may be recovered from them using the singular value 
decomposition.

What Are Variational Autoencoders?
In very brief terms, a Variational autoencoder is sort of an enhanced regular 
autoencoder in which the left side acts as an encoder, and the right side acts 
as a decoder. Both sides have a probability distribution associated with the 
encoding and decoding process.

In addition, both the encoder and the decoder are actually neural 
networks. The input for the encoder is a vector x of numeric values, 
and its output is a hidden representation z that has weights and biases. 
The decoder has input a (i.e., the output of the encoder), and its output 
is the parameters of a probability distribution of the data, which also 
has weights and biases. Note that the probability distributions for the 
encoder and the decoder are different. If you want to learn more about 
VAEs, navigate to the Wikipedia page that discusses VAEs in a detailed 
fashion:

ht tps : / / en .wik iped ia .org /wik i /Autoencoder#Var ia t iona l_
autoencoder_.28VAE.29

Figure 5.3 displays a high-level and simplified VAE that involves a sin-
gle hidden layer.
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FIGURE 5.3 A Variational Autoencoder.

Another interesting model architecture is a combination of a CNN and a 
VAE, which you can read about here:

https://towardsdatascience.com/gans-vs-autoencoders-comparison-of-
deep-generative-models-985cf15936ea

In the next section, you will learn about GANs and how to combine a 
VAE with a GAN.

What Are GANs?

A GAN is an acronym for Generative Adversarial Network whose original 
purpose was to generate synthetic data, typically for augmenting small data-
sets or unbalanced datasets. One use case pertains to missing persons: sup-
ply the available images of those persons to a GAN in order to generate 
an image of how those people might look today. There are many other use 
cases for GANs, some of which are listed here:

•	 Generating art

•	 Creating fashion styles
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•	 Improving images of low quality 

•	 Creating “artificial” faces

•	 Reconstructing incomplete/damaged images

Ian Goodfellow (PhD in Machine Learning from the University of Mon-
treal) created GANs in 2014. Yann LeCun (AI research director at Face-
book) called adversarial training “the most interesting idea in the last 10 
years in ML.” Incidentally, Yann LeCun was one of the three recipients 
of the Turing Award in 2019, along with Yoshua Bengio and Geoffrey 
Hinton.

GANs are becoming increasingly common and people are finding cre-
ative (unexpected?) uses for them. Alas, GANs have been used for nefarious 
purposes, such as circumventing since image-recognition systems. GANs can 
generate counterfeit images from valid images by changing the pixel values 
in order to deceive neural networks. Since those systems rely on pixel pat-
terns, they can be deceived via adversarial images, which are images whose 
pixel values have been altered. 

Navigate to the following link in order to see an example of a GAN that 
distorts the image of a panda: https://arxiv.org/pdf/1412.6572.pdf

An article that delves into details of adversarial examples (including the 
misclassified panda) is here:

https://openai.com/blog/adversarial-example-research/

According to an MIT paper, the modified values that trigger mis-
classifications exploit precise patterns that the image system associates 
with specific objects. The researchers noticed that data sets contain two 
types of correlations: patterns that are correlated with the dataset data, 
and nongeneralizable patterns in the dataset data. GANs successfully 
exploit the latter correlations in order to deceive image-recognition 
systems. Details of the MIT paper are here: https://gandissect.csail.
mit.edu.

Can Adversarial Attacks Be Stopped?
Unfortunately, there are no long-term solutions to adversarial attacks, 
and given their nature, it might never be possible to completely  
defend against them. Although various techniques are being  
developed to thwart adversarial attacks, their effectiveness tends to be 
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short-lived: new GANs are created that can outwit those techniques.  
The following article contains more information about adversarial 
attacks:

https://www.technologyreview.com/s/613170/emtech-digital-dawn-
song-adversarial-machine-learning

Interestingly, GANs can have problems in terms of convergence, just like 
other neural networks. One technique for addressing this problem is called 
minibatch discrimination, details of which are here:

https://www.inference.vc/understanding-minibatch-discrimination- 
in-gans/

Please note that the preceding link involves Kullback Leibler Diver-
gence and JS Divergence, which are more advanced topics. The preceding 
blog post also contains a link to the following Jupyter notebook:

https://gist.github.com/fhuszar/a91c7d0672036335c1783d02c3a3dfe5

If you’re interested in working with GANs, this GitHub link contains 
Python and TensorFlow code samples for constructing attacks and defenses:

https://github.com/tensorflow/cleverhans

Creating a GAN

A GAN has two main parts: a generator and a discriminator. The gen-
erator can have a CNN-like architecture for the purpose of generating 
images, whereas the discriminator can have a CNN-like architecture in 
order to detect whether or not an image (provided by the generator) 
is real or fake. By way of analogy, a generator is analogous to a person 
who makes counterfeit money, and a discriminator is analogous to a law 
enforcement officer who tries to distinguish between valid currency and 
counterfeit currency.

The generator (which has previously been initialized) sends fake 
images to the discriminator (already trained but no longer updateable) 
for analysis. If the discriminator is highly accurate in terms of detecting 
real and fake images, then the generator needs to be modified in order 
to improve the quality of fake images that are produced. The modifi-
cation to the generator is performed by backward error propagation.  
On the other hand, if the discriminator performs poorly, then the  
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generator is generating high quality fake images, and therefore the gen-
erator does not require significant modification.

Listing 5.5 displays the contents of keras_create_gan.py that 
defines a Python function for creating a GAN.

Listing 5.4: keras_create_gan.py

import tensorflow as tf

def build_generator(img_shape, z_dim):
  model = tf.keras.models.Sequential()
  # Fully connected layer
  model.add(tf.keras.layers.Dense(128, input_dim=z_dim))
  # Leaky ReLU activation
  model.add(tf.keras.layers.

LeakyReLU(alpha=0.01))
  # Output layer with tanh activation
  model.add(tf.keras.layers.Dense(28 * 28 * 1, 

activation='tanh'))
  # Reshape the Generator output to image dimensions
  model.add(tf.keras.layers.Reshape(img_shape))
  return model

def build_discriminator(img_shape):
  model = tf.keras.models.Sequential()
  # Flatten the input image
  model.add(tf.keras.layers.Flatten(input_

shape=img_shape))
  # Fully connected layer
  model.add(tf.keras.layers.Dense(128))
  # Leaky ReLU activation
  model.add(tf.keras.layers.

LeakyReLU(alpha=0.01))
  # Output layer with sigmoid activation
  model.add(tf.keras.layers.Dense(1, 

activation='sigmoid'))
  return model
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def build_gan(generator, discriminator):
  # ensure that the discriminator is not trainable
  discriminator.trainable = False
  # the GAN connects the generator and descriminator
  gan = tf.keras.models.Sequential()

  # start with the generator:
  gan.add(generator)

  # then add the discriminator:
  gan.add(discriminator)

  # compile gan
  opt = tf.keras.optimizers.Adam(lr=0.0002, 

beta_1=0.5)
  gan.compile(loss='binary_crossentropy', 

optimizer=opt) 
  return gan

gen = build_generator(...)
dis = build_discriminator(...)
gan = build_gan(gen, dis)

As you can see, the Python function in Listing 5.5 contains three 
Python methods for build_generator(), build_discriminator(), 
and build_gan() for creating a generator, a discriminator, and a GAN, 
respectively. 

The GAN is initialized with a generator and then a discriminator, both 
of which are parameters for this function. Notice that the discriminator in 
the build_gan() method is not trainable, which is ensured with this code 
snippet:

discriminator.trainable = False
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Another point to notice is that the preceding Python functions do not 
create CNN-like architectures. A different way to create a discriminator is 
shown in the following code block (details are omitted):

dis = build_discriminator(...)
gen_model = tf.keras.models.Sequential()
gen_model.add(tf.keras.layers.Dense(...)
gen_model.add(tf.keras.layers.

LeakyReLU(alpha=0.2))
gen_model.add(tf.keras.layers.Reshape(...)

# code for upsampling 
gen_model.add(tf.keras.layers.Conv2DTranspose(...)
gen_model.add(tf.keras.layers.LeakyReLU(...)
...
gen_model.add(tf.keras.layers.Reshape(...)
gen_model.add(tf.keras.layers.LeakyReLU(...)

# output layer
gen_model.add(tf.keras.layers.Conv2D(...))

The preceding code block involves the Conv2D() class and the Leaky-
ReLU() class (similar to ReLU), but notice there is no max pooling layer. 
Check online documentation for an explanation of upsampling and the  
purpose of the TensorFlow/Keras classes LeakyReLU() and  
Conv2DTranspose().

A High-Level View of GANs
There are numerous types of GANs, such as DCGANs (Deep Convolu-
tional GANs), cGANs (Conditional GANs), and StyleGANs. In general, 
creating GANs involves the following high-level sequence of steps:

•	 Step 1) Select a dataset (ex: MNIST or cifar10)

•	 Step 2) Define and train the Discriminator Model

•	 Step 3) Define and use the Generator Model

•	 Step 4) Train the Generator Model

•	 Step 5) Evaluate GAN Model performance

•	 Step 6) Use the final Generator Model
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Although GANs can be similar to CNNs, there are some important differ-
ences in the layers that are used. First, the convolution layer in GANs often 
has a stride of (2, 2), which is to say that the convolutional filter moves two 
columns at a time, and then shifts downward two rows at a time. Next, 
GANs contain a LeakyReLU activation function that is slightly different 
from the ReLU activation functions. Third, GANs do not have a max pool-
ing layer. 

In addition, GANs also involve the concept of upscaling, which in a 
sense is like the opposite of downscaling (i.e., max pooling). Perform an 
online search for more information regarding the details of GANs.

The VAE-GAN Model
Another interesting model is the VAE-GAN model, which is a hybrid of a 
VAE and a GAN, and details about this model are here:

https://towardsdatascience.com/gans-vs-autoencoders-comparison-of-
deep-generative-models-985cf15936ea

According to the preceding link, GANs are superior to VAEs, but they 
are also difficult to work with and require a lot of data and tuning. If you’re 
interested, a GAN tutorial (by the same author) is available here:

https://github.com/mrdragonbear/GAN-Tutorial 

Summary 

In this chapter, you learned about the architecture of an RNN, some tasks 
that you can solve due to its stateful architecture, followed by a Keras-
based code sample. Next you saw the architecture of an LSTM, as well as a 
basic code sample. 

In addition, you saw a TensorFlow 1.x code sample for an LSTM cell 
whose output shows you the path of some of the internal calculations that 
are performed. In addition, you learned about Variational Autoencoders 
and some of their use cases. 

Finally, you got an introduction to GANs, a high-level description of how 
to construct them, and also how they are trained.





C H A P T E R 6
NLP AND REINFORCEMENT 
LEARNING

This chapter provides a casual introduction to NLP (Natural Language  
Processing) and Reinforcement Learning (RL). Both topics can easily fill 
entire books, often involving complex topics, which means that this chap-
ter provides a limited introduction to these topics. If you want to acquire a 
thorough grasp of BERT (discussed briefly later in the chapter), you need to 
learn about attention and the transformer architecture. Similarly, if you want 
to acquire a solid understanding of deep reinforcement learning, then you 
need to understand deep learning architectures. After you finish reading the 
cursory introduction to NLP and RL in this chapter, you can find additional 
online information about the facets of NLP or RL that interest you.

The first section discusses NLP, along with some code samples in 
Keras. This section also discusses NLU (Natural Language Understand-
ing) and NLG (Natural Language Generation). 

The second section introduces Reinforcement Learning, along with a 
description of the types of tasks that are well suited to RL. You will learn 
about the nchain task and the epsilon-greedy algorithm that can solve prob-
lems that you cannot solve using a pure greedy algorithm. In this section 
you will also learn about the Bellman equation, which is a cornerstone of 
reinforcement learning.

The third section discusses the TF-Agents toolkit from Google, deep 
reinforcement learning (deep learning combined with reinforcement learn-
ing), and the Google Dopamine toolkit.
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Working with NLP (Natural Language Processing)

This section highlights some concepts in NLP, and depending on your back-
ground, you might need to perform an online search to learn more about 
some of the concepts (try Wikipedia). Although the concepts are treated in 
a very superficial manner, you will know what to pursue in order to further 
your study of NLP.

NLP is currently the focus of significant interest in the machine learn-
ing community. Some of the use cases for NLP are listed here:

•	 Chatbots

•	 Search (text and audio)

•	 Text classification

•	 Sentiment analysis

•	 Recommendation systems

•	 Question answering

•	 Speech recognition

•	 NLU (Natural Language Understanding)

•	 NLG (Natural Language Generation)

You encounter many of these use cases in everyday life: when you visit web 
pages, or perform an online search for books, or recommendations regard-
ing movies.

NLP Techniques
The earliest approach for solving NLP tasks involved rule-based approaches, 
which dominated the industry for decades. Examples of techniques using 
rule-based approaches include Regular Expressions (RegExs) and Context 
Free Grammars (CFGs). RegExs are sometimes used in order to remove 
HTML tags from text that has been scraped from a web page or unwanted 
special characters from a document.

The second approach involved training a machine learning model 
with some data that is based on some user-defined features. This tech-
nique requires a considerable amount of feature engineering (a nontrivial 
task), and includes analyzing the text to remove undesired and superfluous 
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content (including stop words), as well as transforming the words (e.g., con-
verting uppercase to lowercase).

The most recent approach involves deep learning, whereby a neural 
network learns the features instead of relying on humans to perform fea-
ture engineering. One of the key ideas involves mapping words to numbers, 
which enables us to map sentences to vectors of numbers. After transform-
ing documents to vectors, we can perform a myriad of operations on those 
vectors. For example, we can use the notion of vector spaces to define vec-
tor space models, where the distance between two vectors can be measured 
by the angle between them (related to cosine similarity). If two vectors are 
close to each other, then it’s likelier that the corresponding sentences are 
similar in meaning. Their similarity is based on the distributional hypothesis, 
which asserts that words in the same contexts tend to have similar meanings.

A nice article that discusses vector representations of words, along with 
links to code samples, is here:

https://www.tensorflow.org/tutorials/representation/word2vec

The Transformer Architecture and NLP
In 2017, Google introduced the Transformer Neural Network architec-
ture, which is based on a self-attention mechanism that is well suited for 
language understanding.

Google showed that the Transformer outperforms earlier bench-
marks for both RNNs and CNNs involving the translation of academic Eng-
lish to German as well as English to French. Moreover, the Transformer 
required less computation to train and also improved the training time by 
as much as an order of magnitude.

The Transformer can process the sentence “I arrived at the bank after 
crossing the river” and correctly determine that the word “bank” refers to 
the shore of a river and not a financial institution. The Transformer makes 
this determination in a single step by making the association between bank 
and river. As another example, the Transformer can determine the differ-
ent meanings of it in these two sentences:

“The horse did not cross the street because it was too tired.”

“The horse did not cross the street because it was too narrow.”

The Transformer computes the next representation for a given word 
by comparing the word to every other word in the sentence, which results 
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in an attention score for the words in the sentence. The Transformer uses 
these scores to determine the extent to which other words will contribute 
to the next representation of a given word.

The result of these comparisons is an attention score for every other 
word in the sentence. As a result, river received a high attention score when 
computing a new representation for bank.

Although LSTMs and bidirectional LSTMs are heavily utilized in NLP 
tasks, the Transformer has gained a lot of traction in the AI community, 
not only for translation between languages, but also the fact that for some 
tasks it can outperform both RNNs and CNNs. The Transformer architec-
ture requires much less computation time in order to train a model, which 
explain why some people believe that the Transformer has already begun 
to supplant RNNs and LSTMs.

The following link contains a TF 2 code sample of a Transformer 
neural network that you can launch in Google Colaboratory:

https://www.tensorflow.org/alpha/tutorials/text/transformer

Another interesting and recent architecture is called Attention Aug-
mented Convolutional Networks, which is a combination of CNNs with self-
attention. This combination achieves better accuracy than pure CNNs, and 
you can find more details in this paper: https://arxiv.org/abs/1904.09925 

Transformer-XL Architecture
The Transformer-XL combines a Transformer architecture with 

two techniques called Recurrence Mechanism and Relative Positional 
Encoding to obtain better results than a Transformer. Transformer-XL 
works with word-level and character-level language modeling.

The Transformer-XL and Transformer both process the first seg-
ment of tokens, and the former also keeps the outputs of the hidden layers. 
Consequently, each hidden layer receives two inputs from the previous hid-
den layer, and then concatenates them to provide additional information to 
the neural network.

According to the following article, Transformer-XL significantly out-
performs Transformer, and its dependency is 80% longer than “vanilla” 
RNNs:

https://hub.packtpub.com/transformer-xl-a-google-architecture-with-
80-longer-dependency-than-rnns/
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Reformer Architecture
Recently the Reformer architecture was released, which uses two tech-
niques to improve the efficiency (i.e., lower memory and faster perfor-
mance on long sequences) of the Transformer architecture. As a result, 
the Reformer architecture also has lower complexity than the Trans-
former. More details regarding the Reformer are here:

https://openreview.net/pdf?id=rkgNKkHtvB

Some Reformer-related code is here: https://pastebin.com/62r5FuEW

NLP and Deep Learning
The NLP models that use deep learning can comprise CNNs, RNNs, LSTMs, 
and bidirectional LSTMs. For example, Google released BERT in 2018, which 
is an extremely powerful framework for NLP. BERT is quite sophisticated 
and involves bidirectional transformers and so-called attention (discussed 
briefly later in this chapter). 

Deep learning for NLP often yields higher accuracy than other tech-
niques, but keep in mind that sometimes it’s not as fast as rule-based and 
classical machine learning methods. In case you’re interested, a code sam-
ple that uses TensorFlow and RNNs for text classification is here:

https://www.tensorflow.org/alpha/tutorials/text/text_classification_rnn

A code sample that uses TensorFlow and RNNs for text generation is here:

https://www.tensorflow.org/alpha/tutorials/text/text_generation

Data Preprocessing Tasks in NLP
There are some common preprocessing tasks that are performed on docu-
ments, as listed below: 

•	 [1] Lowercasing

•	 [1] Noise removal

•	 [2] Normalization

•	 [3] Text enrichment

•	 [3] Stopword removal

•	 [3] Stemming

•	 [3] Lemmatization
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The preceding tasks can be classified as follows:

•	 [1]: Mandatory tasks

•	 [2]: Recommended tasks

•	 [3]: Task dependent

In brief, preprocessing tasks involve at least the removal of redundant 
words (a, the, and so forth), removing the endings of words (running, runs, 
and ran are treated the same as run), and converting text from uppercase 
to lowercase.

Popular NLP Algorithms

Some of the popular NLP algorithms are listed below, and in some cases 
they are the foundation for more sophisticated NLP toolkits:

•	 BoW: Bag of Words

•	 n-grams and skip-grams

•	 TF-IDF: basic algorithm in extracting keywords

•	 Word2Vector (Google): O/S project to describe text

•	 GloVe (Stanford NLP Group)

•	 LDA: text classification

•	 CF (collaborative filtering): an algorithm in news recommend system 
(Google News and Yahoo News)

The topics in the first half of the preceding list are discussed briefly in sub-
sequent sections.

What Is an n-gram?
An n-gram is a technique for creating a vocabulary that is based on adjacent 
words that are grouped together. This technique retains some word posi-
tions (unlike BoW). You need to specify the value of “n” that in turn speci-
fies the size of the group.

The idea is simple: for each word in a sentence, construct a vocabulary 
term that contains the n words on the left side of the given word and n 
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words that are on the right side of the given word. As a simple example, 
“This is a sentence” has the following 2-grams:

(this, is), (is, a), (a, sentence)

As another example, we can use the same sentence “This is a sentence” to 
determine its 3-grams:

(this, is, a), (is, a, sentence)

The notion of n-grams is surprisingly powerful, and it’s used heavily in pop-
ular open source toolkits such as ELMo and BERT when they pretrain their 
models.

What Is a skip-gram?
Given a word in a sentence, a skip gram creates a vocabulary term by con-
structing a list that contains the n words on both sides of a given word, 
followed by the word itself. For example, consider the following sentence:

the quick brown fox jumped over the lazy dog

A skip-gram of size 1 yields the following vocabulary terms:

([the,brown], quick), ([quick,fox], brown), 
([brown,jumped], fox),...

A skip-gram of size 2 yields the following vocabulary terms:

([the,quick,fox,jumped], brown), 
([quick,brown,jumped,over], fox), ([brown,fox,over,the], 
jumped),...

More details regarding skip-grams are discussed here:

https://www.tensorflow.org/tutorials/representation/word2vec#the_
skip-gram_model

What Is BoW?
BoW (Bag of Words) assigns a numeric value to each word in a sentence 
and treats those words as a set (or bag). Hence, BoW does not keep track of 
adjacent words, so it’s a very simple algorithm.

Listing 6.1 displays the contents of the Python script bow_to_vector.
py that illustrates how to use the BoW algorithm.
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Listing 6.1: bow_to_vector.py

VOCAB = ['dog', 'cheese', 'cat', 'mouse']
TEXT1 = 'the mouse ate the cheese'
TEXT2 = 'the horse ate the hay'
 
def to_bow(text):
 words = text.split(" ")
 return [1 if w in words else 0 for w in VOCAB]
 
print("VOCAB: ",VOCAB)
print("TEXT1:",TEXT1)
print("BOW1: ",to_bow(TEXT1)) # [0, 1, 0, 1]
print("")

print("TEXT2:",TEXT2) 
print("BOW2: ",to_bow(TEXT2)) # [0, 0, 0, 0]

Listing 6.6 initializes a list VOCAB and two text strings TEXT1 and TEXT2. 
The next portion of Listing 6.6 defines the Python function to_bow() that 
returns an array containing 0s and 1s: if a word in the current sentence 
appears in the vocabulary, then a 1 is returned (otherwise a 0 is returned). 
The last portion of Listing 6.6 invokes the Python function with two differ-
ent sentences. The output from launching the code in Listing 6.6 is here:

('VOCAB: ', ['dog', 'cheese', 'cat', 'mouse'])
('TEXT1:', 'the mouse ate the cheese')
('BOW1: ', [0, 1, 0, 1])

('TEXT2:', 'the horse ate the hay')
('BOW2: ', [0, 0, 0, 0])
fitting model...

What Is Term Frequency?
Term frequency is the number of times that a word appears in a document, 
which can vary among different documents. Consider the following simple 
example that consists of two “documents” Doc1 and Doc2:

Doc1 = "This is a short sentence"

Doc2 = "yet another short sentence"
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The term frequency for the word is and the word short is given below:

tf(is) = 1/5 for doc1

tf(is) = 0 for doc2

tf(short) = 1/5 for doc1

tf(short) = 1/4 for doc2

The preceding values will be used in the calculation of tf-idf that is 
explained in a later section.

What Is Inverse Document Frequency (idf)?
Given a set of N documents and given a word in a document, let’s define dc 
and idf of each word as follows:

dc = # of documents containing a given word

idf = log(N/dc)

Now let’s use the same two documents Doc1 and Doc2 from a previous 
section:

Doc1 = "This is a short sentence"

Doc2 = "yet another short sentence"

The calculations of the idf value for the word is and the word short are 
shown here:

idf(is) = log(2/1) = log(2)

idf(short) = log(2/2) = 0

The following link provides more detailed information about inverse docu-
ment frequency: https://en.wikipedia.org/wiki/Tf–idf#Example_of_tf–idf.

What Is tf-idf?
The term tf-idf is an abbreviation for Term Frequency, Inverse Docu-
ment Frequency, and it’s the product of the tf value and the idf value of 
a word, as shown here:

tf-idf = tf * idf

A high frequency word has a higher tf value but a lower idf value. In 
general, “rare” words are more relevant than “popular” ones, so they 
help to extract relevance. For example, suppose you have a collection  
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of ten documents (real documents, not the toy documents we used 
earlier). The word the occurs frequently in English sentences, but it 
does not provide any indication of the topics in any of the documents.  
On the other hand, if you determine that the word universe appears 
multiple times in a single document, this information can provide  
some indication of the theme of that document, and with the help 
of NLP techniques, assist in determining the topic (or topics) in that  
document. 

What Are Word Embeddings?

An embedding is a fixed-length vector to encode and represent an entity 
(document, sentence, word, graph). Each word is represented by a real-
valued vector, which can result in hundreds of dimensions. Furthermore, 
such an encoding can result in sparse vectors: one example is one-hot 
encoding, where one position has the value 1 and all other positions have 
the value 0.

Three popular word embedding algorithms are Word2vec, GloVe, and 
FastText. Keep in mind that these three algorithms involve unsupervised 
approaches. They are also based on the distributional hypothesis: words 
in the same contexts tend to have similar meanings: https://aclweb.org/
aclwiki/Distributional_Hypothesis.

A good article regarding Word2Vec in TensorFlow is here:

https://towardsdatascience.com/learn-word2vec-by-implementing-it-
in-tensorflow-45641adaf2ac

This article is useful if you want to see Word2Vec with FastText in gen-
sim:

https://towardsdatascience.com/word-embedding-with-word2vec-and-
fasttext-a209c1d3e12c

Another good article, and this one pertains to the skip-gram model:

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-in-
tuition-78614e4d6e0b

A useful article that describes how FastText works under the hood:

https://towardsdatascience.com/fasttext-under-the-hood-11efc57b2b3



NLP and Reinforcement Learning • 169

Along with the preceding popular algorithms there are also some popu-
lar embedding models, some of which are listed below:

•	 Baseline Averaged Sentence Embeddings

•	 Doc2Vec

•	 Neural-Net Language Models

•	 Skip-Thought Vectors

•	 Quick-Thought Vectors

•	 InferSent

•	 Universal Sentence Encoder

Perform an online search for more information about the preceding embed-
ding models.

ELMo, ULMFit, OpenAI, BERT, and ERNIE 2.0

During 2018 there were some significant advances in NLP-related research, 
resulting in the following toolkits and frameworks:

•	 ELMo:   released in 02/2018

•	 ULMFit:  released in 05/2018

•	 OpenAI:  released in 06/2018

•	 BERT:   released in 10/2018

•	 MT-DNN:  released in 01/2019

•	 ERNIE 2.0: released in 08/2019

ELMo is an acronym for Embeddings from Language Models, which pro-
vides Deep Contextualized Word Representations and state-of-the-art con-
textual word vectors, resulting in noticeable improvements in word embed-
dings.

Jeremy Howard and Sebastian Ruder created ULMFit (Universal Lan-
guage Model Fine-tuning), which is a transfer learning method that can be 
applied to any task in NLP. ULMFit significantly outperforms the state-of-
the-art on six text classification tasks, reducing the error by 18–24% on the 
majority of datasets. 
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Furthermore, with only 100 labeled examples, it matches the perfor-
mance of training from scratch on 100x more data. ULMFit is download-
able from GitHub:

https://github.com/jannenev/ulmfit-language-model

OpenAI developed GPT-2 (a successor to GPT), which is a model that 
was trained to predict the next word in 40GB of Internet text. OpenAI 
chose not to release the trained model due to concerns regarding malicious 
applications of their technology.

GPT-2 is a large transformer-based language model with 1.5 bil-
lion parameters, trained on a dataset of 8 million web pages (curated by 
humans), with an emphasis on diversity of content. GPT-2 is trained to 
predict the next word, given all the previous words within some text. The 
diversity of the dataset causes this goal to contain naturally occurring dem-
onstrations of many tasks across diverse domains. GPT-2 is a direct scale-up 
of GPT, with more than 10X the parameters and trained on more than 10X 
the amount of data.

BERT is an acronym for Bidirectional Encoder Representations from 
Transformers. BERT can pass this simple English test (i.e., BERT can deter-
mine the correct choice among multiple choices):

On stage, a woman takes a seat at the piano. She:

a) sits on a bench as her sister plays with the doll.

b) smiles with someone as the music plays.

c) is in the crowd, watching the dancers.

d) nervously sets her fingers on the keys.

Details of BERT and this English test are here:

https://www.lyrn.ai/2018/11/07/explained-bert-state-of-the-art-lan-
guage-model-for-nlp/

The BERT (TensorFlow) source code is available here on GitHub:

https://github.com/google-research/bert

https://github.com/hanxiao/bert-as-service
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Another interesting development is MT-DNN from Microsoft, which 
asserts that MT-DNN can outperform Google BERT:

https://medium.com/syncedreview/microsofts-new-mt-dnn-outper-
forms-google-bert-b5fa15b1a03e

A Jupyter notebook with BERT is available, and you need the following 
in order to run the notebook in Google Colaboratory:

•	 A GCP (Google Compute Engine) account

•	 A GCS (Google Cloud Storage) bucket

Here is the link to the notebook in Google Colaboratory:

https://colab.research.google.com/github/tensorflow/tpu/blob/master/
tools/colab/bert_finetuning_with_cloud_tpus.ipynb

In March 2019, Baidu open sourced ERNIE 1.0 (Enhanced Repre-
sentation through kNowledge IntEgration) that (according to Baidu) out-
performed BERT in tasks involving Chinese language understanding. In 
August, 2019 Baidu open sourced ERNIE 2.0, which is downloadable here:

https://github.com/PaddlePaddle/ERNIE/

An article with additional information about ERNIE 2.0 (including its 
architecture) is here:

https://hub.packtpub.com/baidu-open-sources-ernie-2-0-a-continual-
pre-training-nlp-model-that-outperforms-bert-and-xlnet-on-16-nlp-tasks/

What Is Translatotron?

Translatotron is an End-to-End Speech-to-Speech Translation Model (from 
Google) whose output retains the original speaker’s voice; moreover, it’s 
trained with less data.

Speech-to-speech translation systems have been developed over the 
past several decades with the goal of helping people who speak different 
languages to communicate with each other. Such systems have three parts:

•	 Automatic speech recognition to transcribe the source speech as text

•	 Machine translation to translate the transcribed text into the target language

•	 Text-to-speech synthesis (TTS) to generate speech in the target 
language from the translated text
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The preceding approach has been successful in commercial products 
(including Google Translate). However, Translatatron does not require sep-
arate stages, resulting in the following advantages:

•	 Faster inference speed

•	 Avoiding compounding errors between recognition and translation

•	 Easier to retain the voice of the original speaker after translation

•	 Better handling of untranslated words (names and proper nouns)

This concludes the portion of this chapter that pertains to NLP. Another 
area of great interest in the AI community is Reinforcement Learning, 
which is introduced later in this chapter.

Deep Learning and NLP

In Chapter 4, you learned about CNNs and how they are well suited for 
image classification tasks. You might be surprised to discover that CNNs 
also work with NLP tasks. However, you must first map each word in a 
dictionary (which can be a subset of the words in English or some other 
language) to numeric values and then construct a vector of numeric values 
from the words in a sentence. A document can be transformed into a set of 
numeric vectors (involving various techniques that are not discussed here) 
in order to create a dataset that’s suitable for input to a CNN. 

Another option involves the use of RNNs and LSTMs instead of CNNs for 
NLP-related tasks. By contrast, a bidirectional transformer is the basis for 
in BERT (Bidirectional Encoder Representations from Transformers). The 
Google AI team developed BERT (open sourced in 2018) and it’s considered 
a breakthrough in its ability to solve NLP problems. The source code is here: 
https://github.com/google-research/bert

NLU versus NLG

NLU is an acronym for Natural Language Understanding. NLU pertains to 
machine reading comprehension, and it’s considered a difficult problem. At 
the same time, NLU is relevant to machine translation, question answering, 
and text categorization (among others). NLU attempts to discern the mean-
ing of fragmented sentences and run-on sentences, after which some type 
of action can be performed (e.g., respond to voice queries).
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NLG is an acronym for Natural Language Generation, which involves 
generating documents. The Markov chain (discussed later in this chapter) 
was one of the first algorithms for natural language generation. Another 
technique involves RNNs (discussed in Chapter 5) that can retain some his-
tory of previous words, and the probability of the next word in a sequence is 
calculated. Recall that RNNs suffer from limited memory, which limits the 
length of the sentences that can be generated. A third technique involves 
LSTMs, which can maintain state for a long period of time and also avoid 
the exploding gradient problem. 

Recently (circa 2017) Google introduced the transformer architec-
ture, which involves a stack of encoders for processing inputs and a set 
of decoders to produce generated sentences. A transformer-based archi-
tecture is more efficient than an LSTM because a transformer requires 
a small and fixed number of steps in order to apply the so-called self-
attention mechanism in order to simulate the relationship among all the 
words in a sentence. 

In fact, the transformer differs from previous models in one important 
way: it uses the representation of all words in context without compressing 
all the information into a single fixed-length representation. This technique 
enables a transformer to handle longer sentences without high computa-
tional costs.

The transformer architecture is the foundation for the GPT-2 language 
model (from OpenAI). The model learns to predict the next word in a sen-
tence by focusing on words that were previously seen in the model and 
related to predicting the next word. In 2018, Google released the BERT 
architecture for NLP, which is based on transformers with a two-way 
encoder representation. 

What Is Reinforcement Learning (RL)?

Reinforcement Learning is a subset of machine learning that attempts 
to find the maximum reward for a so-called agent that interacts with 
an environment. RL is suitable for solving tasks that involve deferred 
rewards, especially when those rewards are greater than intermediate 
rewards. 

In fact, RL can handle tasks that involve a combination of negative, 
zero, and positive rewards. For example, if you decide to leave your job 
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in order to attend school on a full-time basis, you are spending money (a 
negative reward) with the belief that your investment of time and money 
will lead to a higher-paying position (a positive reward) that outweighs the 
cost of school and lost earnings.

One thing that might surprise you is that Reinforcement Learning 
agents are susceptible to GANs. Chapter 5 contains a section devoted to 
GANs, and you can find additional details (along with related links) in this 
article:

https://openai.com/blog/adversarial-example-research/ 

Reinforcement Learning Applications
There are many RL applications, some of which are listed here:

•	 Game theory

•	 Control theory 

•	 Operations research 

•	 Information theory 

•	 Simulation-based optimization 

•	 Multiagent systems

•	 Swarm intelligence 

•	 Statistics and genetic algorithms

•	 Resources management in computer clusters

•	 Traffic light control (congestion problems)

•	 Robotics operations

•	 Autonomous cars/helicopters

•	 Web System Configuration/web-page indexing

•	 Personalized recommendations

•	 Bidding and advertising
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•	 Robot-legged locomotion 

•	 Marketing strategy selection 

•	 Factory control 

RL refers to goal-oriented algorithms for reaching a complex goal, such as 
winning games that involve multiple moves (e.g., chess or Go). RL algo-
rithms are penalized for incorrect decisions and rewarded for correct deci-
sions: this reward mechanism is reinforcement. 

NLP and Reinforcement Learning
More recently Reinforcement Learning with NLP has become a suc-
cessful area of research. One technique for NLP-related tasks involves 
RNN-based encoder-decoder models that have achieved good results for 
short input and output sequences. Another technique involves a neu-
ral network, supervised word prediction, and Reinforcement Learning. 
This particular combination avoids exposure bias, which can occur in 
models that use only supervised learning. More details are here: https://
arxiv.org/pdf/1705.04304.pdf

Yet another interesting technique involves Deep Reinforcement 
Learning (i.e., DL combined with RL) with NLP. In case you don’t 
already know, DRL has achieved success in various areas, such as Atari 
games, defeating Lee Sedol (the world champion Go player), and robot-
ics. In addition, DRL is also applicable to NLP-related tasks, which 
involves the key challenge of designing of a suitable model. Perform 
an online search for more information about solving NLP-related tasks 
with RL and DRL.

Values, Policies, and Models in RL
There are three main approaches in Reinforcement Learning. Value-based 
RL estimates the optimal value function Q(s,a), which is the maximum 
value achievable under any policy. Policy-based RL searches directly for 
the optimal policy π, which is the policy achieving maximum future reward. 
Model-based RL builds a model of the environment and plans (by looka-
head) using the model.
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In addition to the preceding approaches to RL (value functions, poli-
cies, and models), you will need to learn the following RL concepts:

•	 MDPs (Markov Decision Processes)

•	 A policy (a sequence of actions)

•	 The state/value function

•	 The action/value function

•	 Bellman equation (for calculating rewards)

The RL material in this chapter only addresses the following list of topics 
(after which you can learn the concepts in the previous list):

•	 NFAs (Non-Deterministic Finite Automata)

•	 Markov Chains

•	 MDPs (Markov Decision Processes)

•	 Epsilon-Greedy Algorithm

•	 Bellman Equation

Another key point: almost all RL problems can be formulated as Markov 
Decision Processes, which in turn are based on Markov Chains. Let’s take a 
look at NFAs and Markov Chains and then we can define Markov Decision 
Processes.

From NFAs to MDPs

Let’s start with the two-minute summary. The underlying structure for an 
MDP is an NFA (nondeterministic finite automata), which is studied in 
great detail in an automata theory course (as part of a computer science 
degree). An NFA is a collection of states and transitions, each of which 
has equal probability. An NFA also has a start state and one or more end 
states.

Now add probabilities to transitions in an NFA, in such a way that the 
sum of the probabilities of the outgoing transitions of any state equals one. 
The result is a Markov Chain. A Markov Decision Process is a Markov 
Chain with several additional properties.
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The following subsections expand the two-minute summary by provid-
ing additional explanatory details.

What Are NFAs?
An NFA is a Non Deterministic Finite Automata, which is a generalization 
of a DFA (Deterministic Finite Automata). Figure 6.1 displays an example 
of a NFA.

FIGURE 6.1 An Example of an NFA.

Image adapted from [Source: https://math.stackexchange.com/ques-
tions/1240601/what-is-the-easiest-way-to-determine-the-accepted-lan-
guage-of-a-deterministic-fi?rq=1]

An NFA enables you to define multiple transitions from a given state to 
other states. By way of analogy, consider the location of many (most?) gas 
stations. Usually they are located at an intersection of two streets, which 
means there are at least two entrances to the gas station. After you make 
your purchase, you can exit from the same entrance or from the second 
entrance. In some cases, you might even be able to exit from one location 
and return to the gas station from the other entrance: this would be compa-
rable to a loop transition of a state in a state machine.

The next step involves adding probabilities to NFAs in order to create a 
Markov Chain, which is described in more detail in the next section.

What Are Markov Chains?
Markov Chains are NFAs with an additional constraint: the sum of the prob-
abilities of the outgoing edges of every state equals one. Figure 6.2 displays 
a Markov Chain.
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FIGURE 6.2 An Example of a Markov Chain.

Image adapted from [Source: https://en.wikipedia.org/wiki/Markov_
chain]

As you can see in Figure 6.2, a Markov Chain is an NFA because a state 
can have multiple transitions. The constraint involving probabilities ensures 
that we can perform statistical sampling in MDPs that are described in the 
next section.

Markov Decision Processes (MDPs)
In high-level terms, a Markov Decision Process is a method that samples 
from a complex distribution to infer its properties. More specifically, MDPs 
are an extension of Markov chains, which involves the addition of actions 
(allowing choice) and rewards (giving motivation). Conversely, if only one 
action exists for each state (e.g. “wait”) and all rewards are the same (e.g. 
“zero”), an MDP reduces to a Markov chain. Figure 6.3 displays an example 
of an MDP.
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FIGURE 6.3 An Example of an MDP.

Thus, an MDP consists of a set of states and actions, as well as the 
rules for transitioning from one state to another. One episode of this 
process (e.g., a single “game”) produces a finite sequence of states, 
actions, and rewards. A key property of MDPs: history does not affect 
future decisions. In other words, the process of selecting the next 
state is independent of everything that happened before reaching the  
current state.

MDPs are nondeterministic search problems that are solved via dynamic 
programming and RL, where outcomes are partly random and partly under 
control. As you learned earlier in this section, almost all RL problems can 
be formulated as MDPs; consequently, RL can solve tasks that cannot be 
solved by greedy algorithms. However, the epsilon-greedy algorithm is a 
clever algorithm that can solve such tasks. In addition, the Bellman Equa-
tion enables us to compute rewards for states. Both are discussed in subse-
quent sections.
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The Epsilon-Greedy Algorithm

There are three fundamental problems that arise in Reinforcement Learning:

•	 The exploration-exploitation tradeoff 

•	 The problem of delayed reward (credit assignment) 

•	 The need to generalize

The term exploration refers to trying something new or different, whereas 
the term exploitation refers to leveraging existing knowledge or informa-
tion. For instance, going to a favorite restaurant is an example of exploita-
tion (you are exploiting your knowledge of good restaurants), whereas going 
to an untried restaurant is an example of exploration (you are exploring a 
new venue). When people move to a new city, they tend to explore new 
restaurants in that new city; on the other hand, people who are moving out 
from the city where they currently reside will tend to exploit their knowl-
edge of good restaurants just before they move to a new city.

In general, exploration refers to making random choices, whereas 
exploitation refers to using a greedy algorithm. The epsilon-greedy algo-
rithm is an example of exploration and exploitation, where the epsilon por-
tion of the algorithm refers to making random selections, and exploitation 
involves a greedy algorithm.

An example of a simple task that can be solved via the epsilon-greedy 
algorithm is Open AI Gym’s NChain environment, as shown in Figure 6.4.

FIGURE 6.4 The Open AI Gym’s NChain Environment.
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Image adapted from [http://ceit.aut.ac.ir/~shiry/lecture/machine-learn-
ing/papers/BRL-2000.pdf]

Each state in Figure 6.4 has two actions, and each action has an associated 
reward. For each state, its forward action has reward 0, whereas its backward 
action has reward 3. Since a greedy algorithm will always select the larger reward 
at any state, this means that the backward action is always selected. Hence, we 
can never move toward the final state 4 that has a reward of 10. Indeed, we can 
never leave state 0 (the initial state) if we adhere to the greedy algorithm. 

Here is the key question: how do we go from the initial state 0 to the 
final state, which contains a large reward? We need a modified or hybrid 
algorithm in order to go through intermediate low-reward states that lead 
to the high reward state.

The hybrid algorithm is simple to describe: adhere to the greedy algo-
rithm about 90% of the time and randomly select a state for the remaining 
10% of the time. This technique is simple, elegant, and effective, and it’s 
called the epsilon-greedy algorithm (there are additional details required 
for a complete implementation).

Incidentally, a Python-based solution for OpenAI’s NChain task is here:

https://github.com/openai/gym/blob/master/gym/envs/toy_text/nchain.py

Another central concept in Reinforcement Learning involves the Bell-
man Equation, which is the topic of the next section.

The Bellman Equation

The Bellman equations are named after Richard Bellman, who derived 
these equations that are ubiquitous in Reinforcement Learning. There are 
several Bellman equations, including one for the state value function and 
one for the action value function. Figure 6.5 displays the Bellman equation 
for the state value function.

FIGURE 6.5 The Bellman Equation.
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As you can see in Figure 6.5, the value of a given state depends on 
the discounted value of future states. The following analogy might help 
you understand the purpose of the discounted value called gamma in 
this equation. Suppose that you have USD 100 that you invest at a 5% 
annual interest rate. After one year you will have USD 105 (=100 + 
5%*100 = 100*(1+0.05)), after two years you will have USD 110.25 
(=100*(1+0.05)*(1+0.05)), and so forth.

Conversely, if you have a future value of USD 100 (with a 5% annual 
investment rate) that is two years in the future, what is its present value? 
The answer involves dividing 100 by powers of (1+0.05). Specifically, 
the present value of USD 100 from two years in the future equals 100/
[(1+0.05)*(1+0.05)]. 

In analogous fashion, the Bellman equation enables us to calculate the 
current value of a state by calculating the discounted reward of subsequent 
states. The discount factor is called gamma, and it’s often a value between 
0.9 and 0.99. In the preceding example involving USD 100, the value of 
gamma is 0.9523.

Other Important Concepts in RL
After you have studied the basic concepts in RL, you can delve into the  
topics that are listed below:

•	 Policy Gradient (rules for “best” actions) 

•	 Q-value 

•	 Monte Carlo 

•	 Dynamic programming 

•	 Temporal Difference (TD) 

•	 Q-learning 

•	 Deep Q Network

The preceding topics are explained in online articles (suggestion: use Wiki-
pedia as a starting point for RL concepts), and they will be much more 
relevant after you grasp the introductory concepts in RL that are discussed 
in earlier sections. Be prepared to spend some time learning these topics 
because some of them are quite challenging in nature.
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RL Toolkits and Frameworks

There are many toolkits and libraries for Reinforcement Learning, typically 
based on Python, Keras, Torch, or Java. Some of them are listed here:

•	 OpenAI gym: A toolkit for developing and comparing reinforcement 
learning algorithms

•	 OpenAI universe: A software platform for measuring and training an 
AI’s general intelligence across the world’s supply of games, websites 
and other applications

•	 DeepMind Lab: A customizable 3D platform for agent-based AI 
research

•	 rllab: A framework for developing and evaluating reinforcement 
learning algorithms, fully compatible with OpenAI Gym

•	 TensorForce: Practical deep reinforcement learning on TensorFlow 
with Gitter support and OpenAI Gym/Universe/DeepMind Lab 
integration

•	 tf-TRFL: A library built on top of TensorFlow that exposes several 
useful building blocks for implementing RL agents

•	 OpenAI lab: An experimentation system for RL using OpenAI Gym, 
Tensorflow, and Keras

•	 MAgent: A platform for Many-agent Reinforcement Learning

•	 Intel Coach: A Python reinforcement learning research framework 
containing implementation of many state-of-the-art algorithms

As you can see from the preceding list, there is a considerable variety of 
available RL toolkits, and visit their homepages to determine which ones 
have the features that meet your specific requirements. 

TF-Agents
Google created the TF-Agents library for RL in TensorFlow. Google TF-
Agents is open source and downloadable from Github:

https://github.com/tensorflow/agents

The core elements of RL algorithms are implemented as agents. An 
agent encompasses two main responsibilities: defining a policy to interact 
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with the environment, and how to learn/train that policy from collected 
experience. TF-Agents implements the following algorithms:

•	 DQN: Human level control through deep reinforcement learning 
(Mnih et al., 2015)

•	 DDQN: Deep Reinforcement Learning with Double Q-learning 
(Hasselt et al., 2015)

•	 DDPG: Continuous control with deep reinforcement learning 
(Lillicrap et al., 2015)

•	 TD3: Addressing Function Approximation Error in Actor-Critic 
Methods (Fujimoto et al., 2018)

•	 REINFORCE: Simple Statistical Gradient-Following Algorithms for 
Connectionist Reinforcement Learning (Williams, 1992)

•	 PPO: Proximal Policy Optimization Algorithms (Schulman et al., 2017)

•	 SAC: Soft Actor Critic (Haarnoja et al., 2018)

Before you can use TF-Agents, first install the nightly build version of TF-
Agents with this command (pip or pip3):

# the --upgrade flag ensures you'll get the latest 
version

pip install --user --upgrade tf-nightly 
pip install --user --upgrade tf-agents-nightly # 

requires tf-nightly

There are end-to-end examples training agents under each agent directory, 
an example of which is here for DQN:

tf_agents/agents/dqn/examples/v1/train_eval_gym.py

Keep in mind that TF-Agents is in prerelease status and therefore under 
active development, which means that interfaces may change at any time.

What Is Deep Reinforcement Learning (DRL)?

Deep Reinforcement Learning is a surprisingly effective combination of 
deep learning and RL that has shown remarkable results in a variety of 
tasks. For example, DRL has won game competitions such as Go (Alpha Go 
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versus world champion Lee Sedol) and even prevailed in the complexity of 
StarCraft (AlphaStar of DeepMind) and Dota. 

With the release of ELMo and BERT in 2018 (discussed earlier in this 
chapter), DRL made significant advances in NLP with these toolkits, sur-
passing previous benchmarks in NLP.

Google released the Dopamine toolkit for DRL, which is downloadable 
here from GitHub: https://github.com/google/dopamine.

The keras-rl toolkit supports state-of-the-art Deep RL algorithms in 
Keras, which are also designed for compatibility with OpenAI (discussed 
earlier in this Appendix). This toolkit includes the following:

•	 Deep Q Learning (DQN) 

•	 Double DQN 

•	 Deep Deterministic Policy Gradient (DDPG) 

•	 Continuous DQN (CDQN or NAF) 

•	 Cross-Entropy Method (CEM) 

•	 Dueling network DQN (Dueling DQN) 

•	 Deep SARSA 

•	 Asynchronous Advantage Actor-Critic (A3C) 

•	 Proximal Policy Optimization Algorithms (PPO) 

Please keep in mind that the details of the algorithms in the preceding list 
require a decent understanding of Reinforcement Learning. The keras-rl  
toolkit is downloadable here from GitHub: https://github.com/keras-rl/
keras-rl

Summary

This chapter introduced you to NLP, along with some code samples in 
Keras, as well as NLU (Natural Language Understanding) and NLG (Nat-
ural Language Generation). In addition, you learned about some basic con-
cepts in NLP, such as n-grams, BoW, tf-idf, and word embeddings.

Then you got an introduction to Reinforcement Learning, along with 
a description of the types of tasks that are well-suited to RL. You learned  
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about the nchain task and the epsilon-greedy algorithm that can solve 
problems that you cannot solve using a pure greedy algorithm. You also 
learned about the Bellman equation, which is a cornerstone of reinforce-
ment learning.

Next, you were exposed to the TF-Agents toolkit from Google, deep 
reinforcement learning (deep learning combined with reinforcement learn-
ing), and the Google Dopamine toolkit.

Congratulations! You have reached the end of this book, which has cov-
ered many machine learning concepts. You also learned about Keras, as 
well as linear regression, logistic regression, and deep learning. You are 
now in a good position to delve further into machine learning algorithms or 
proceed with deep learning, and good luck in your journey!



A P P E N D I X A
INTRODUCTION TO KERAS

This appendix introduces you to Keras, along with code samples that illus-
trate how to define basic neural networks as well as and deep neural net-
works with various datasets with as MNIST and Cifar10.

The first part of this appendix briefly discusses some of the important 
namespaces (such as tf.keras.layers) and their contents, as well as a 
simple Keras-based model.

The second section contains an example of performing linear regres-
sion with Keras and a simple CSV file. You will also see a Keras-based 
MLP neural network that is trained on the MNIST dataset.

The third section contains a simple example of training a neural network 
with the cifar10 dataset. This code sample is similar to training a neural 
network on the MNIST dataset, and requires a very small code change. 

The final section contains two examples of Keras-based models that 
perform early stopping, which is convenient when the model exhibits mini-
mal improvement (that is specified by you) during the training process.

What Is Keras? 

If you are already comfortable with Keras, you can skim this section to 
learn about the new namespaces and what they contain, and then pro-
ceed to the next section that contains details for creating a Keras-based 
model.
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If you are new to Keras, you might be wondering why this section is 
included in this appendix. First, Keras is well integrated into TF 2, and 
it’s in the tf.keras namespace. Second, Keras is well suited for defin-
ing models to solve a myriad of tasks, such as linear regression and logis-
tic regression, as well as deep learning tasks involving CNNs, RNNs, and 
LSTMs that are discussed in the Appendix. 

The next several subsections contain lists of bullet items for various 
Keras-related namespaces, and they will be very familiar if you have 
worked with TF 1.x. If you are new to TF 2, you’ll see examples of some of 
the classes in subsequent code samples.

Working with Keras Namespaces in TF 2
TF 2 provides the tf.keras namespace, which in turn contains the follow-
ing namespaces:

•	 tf.keras.layers

•	 tf.keras.models

•	 tf.keras.optimizers

•	 tf.keras.utils

•	 tf.keras.regularizers

The preceding namespaces contain various layers in Keras models, dif-
ferent types of Keras models, optimizers (Adam et al.), utility classes, and 
regularizers (such as L1 and L2), respectively.

Currently there are three ways to create Keras-based models:

•	 The Sequential API

•	 The Functional API

•	 The Model API

The Keras-based code samples in this book use primarily the Sequen-
tial API (it’s the most intuitive and straightforward). The Sequential API 
enables you to specify a list of layers, most of which are available in the 
tf.keras.layers namespace (discussed later). 

The Keras-based models that use the functional API involve specifying 
layers that are passed as function-like elements in a pipeline-like fashion. 
Although the functional API provides some additional flexibility, you will 
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probably use the Sequential API to define Keras-based models if you are 
a TF 2 beginner.

The model-based API provides the greatest flexibility, and it involves 
defining a Python class that encapsulates the semantics of your Keras 
model. This class is a subclass of the tf.model.Model class, and you 
must implement the two methods __init__ and call in order to define a 
Keras model in this subclass. 

Perform an online search for more details regarding the Functional 
API and the Model API.

Working with the tf.keras.layers Namespace
The most common (and also the simplest) Keras-based model is the 
Sequential() class that is in the tf.keras.models namespace. This 
model is comprised of various layers that belong to the tf.keras.layers 
namespace, as shown here:

•	 tf.keras.layers.Conv2D()

•	 tf.keras.layers.MaxPooling2D()

•	 tf.keras.layers.Flatten()

•	 tf.keras.layers.Dense()

•	 tf.keras.layers.Dropout()

•	 tf.keras.layers.BatchNormalization()

•	 tf.keras.layers.embedding()

•	 tf.keras.layers.RNN()

•	 tf.keras.layers.LSTM()

•	 tf.keras.layers.Bidirectional (ex: BERT)

The Conv2D() and MaxPooling2D() classes are used in Keras-based 
models for CNNs, which are discussed in Chapter 5. Generally speaking, 
the next six classes in the preceding list can appear in models for CNNs as 
well as models for machine learning. The RNN() class is for simple RNNS 
and the LSTM class is for LSTM-based models.  The Bidirectional() 
class is a bidirectional LSTM that you will often see in models for solv-
ing NLP (Natural Language Processing) tasks. Two very important NLP 
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frameworks that use bidirectional LSTMs were released as open source (on 
GitHub) in 2018: ELMo from Facebook and BERT from Google. 

Working with the tf.keras.activations Namespace
Machine learning and deep learning models require activation functions. 
For Keras-based models, the activation functions are in the tf.keras.
activations namespace, some of which are listed here:

•	 tf.keras.activations.relu

•	 tf.keras.activations.selu

•	 tf.keras.activations.linear

•	 tf.keras.activations.elu

•	 tf.keras.activations.sigmoid

•	 tf.keras.activations.softmax

•	 tf.keras.activations.softplus

•	 tf.keras.activations.tanh 

•	 Others … 

The ReLU/SELU/ELU functions are closely related, and they often appear in 
ANNs (Artificial Neural Networks) and CNNs. Before the relu() function 
became popular, the sigmoid() and tanh() functions were used in ANNs 
and CNNs. However, they are still important and they are used in various 
gates in GRUs and LSTMs. The softmax() function is typically used in the 
pair of layers consisting of the rightmost hidden layer and the output layer. 

Working with the keras.tf.datasets Namespace
For your convenience, TF 2 provides a set of built-in datasets in the 
tf.keras.datasets namespace, some of which are listed here:

•	 tf.keras.datasets.boston_housing

•	 tf.keras.datasets.cifar10

•	 tf.keras.datasets.cifar100

•	 tf.keras.datasets.fashion_mnist

•	 tf.keras.datasets.imdb
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•	 tf.keras.datasets.mnist

•	 tf.keras.datasets.reuters

The preceding datasets are popular for training models with small datasets. 
The mnist dataset and fashion_mnist dataset are both popular when 
training CNNs, whereas the boston_housing dataset is popular for linear 
regression. The Titanic dataset is also popular for linear regression, but 
it’s not currently supported as a default dataset in the tf.keras.datas-
ets namespace.

Working with the tf.keras.experimental Namespace
The contrib namespace in TF 1.x has been deprecated in TF 2, and its 
successor is the tf.keras.experimental namespace, which contains 
the following classes (among others):

•	 tf.keras.experimental.CosineDecay

•	 tf.keras.experimental.CosineDecayRestarts

•	 tf.keras.experimental.LinearCosineDecay

•	 tf.keras.experimental.NoisyLinearCosineDecay

•	 tf.keras.experimental.PeepholeLSTMCell

If you are a beginner, you probably won’t use any of the classes in the pre-
ceding list. Although the PeepholeLSTMCell class is a variation of the 
LSTM class, there are limited use cases for this class.

Working with Other tf.keras Namespaces
TF 2 provides a number of other namespaces that contain useful classes, 
some of which are listed here:

•	 tf.keras.callbacks	 (early stopping)

•	 tf.keras.optimizers	 (Adam et al)

•	 tf.keras.regularizers	 (L1 and L2)

•	 tf.keras.utils	        (to_categorical)

The tf.keras.callbacks namespace contains a class that you can use 
for early stopping, which is to say that it’s possible to terminate the training 
process if there is insufficient reduction in the cost function in two succes-
sive iterations.
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The tf.keras.optimizers namespace contains the various optimiz-
ers that are available for working in conjunction with cost functions, which 
includes the popular Adam optimizer.

The tf.keras.regularizers namespace contains two popular reg-
ularizers: the L1 regularizer (also called LASSO in machine learning) and 
the L2 regularizer (also called the Ridge regularizer in machine learning). 
L1 is for MAE (Mean Absolute Error) and L2 is for MSE (Mean Squared 
Error). Both regularizers act as “penalty” terms that are added to the cho-
sen cost function in order to reduce the influence of features in a machine 
learning model. Note that LASSO can drive values to zero, with the result 
that features are actually eliminated from a model, and hence is related to 
something called feature selection in machine learning.

The tf.keras.utils namespace contains an assortment of functions, 
including the to_categorical() function for converting a class vector 
into a binary class.

Although there are other namespaces in TF 2, the classes listed in all 
the preceding subsections will probably suffice for the majority of your 
tasks if you are a beginner in TF 2 and machine learning.

TF 2 Keras versus “Standalone” Keras
The original Keras is actually a specification, with various backend frame-
works such as TensorFlow, Theano, and CNTK. Currently Keras stand-
alone does not support TF 2, whereas the implementation of Keras in 
tf.keras has been optimized for performance. 

Keras standalone will live in perpetuity in the keras.io package, 
which is discussed in detail at the Keras website: keras.io.

Now that you have a high-level view of the TF 2 namespaces for Keras 
and the classes that they contain, let’s find out how to create a Keras-based 
model, which is the subject of the next section.

Creating a Keras-based Model

The following list of steps describe the high-level sequence involved in cre-
ating, training, and testing a Keras model:

•	 Step 1: Determine a model architecture (the number of hidden layers, 
various activation functions, and so forth)
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•	 Step 2: Invoke the compile() method

•	 Step 3: Invoke the fit() method to train the model

•	 Step 4: Invoke the evaluate() method to evaluate the trained model

•	 Step 5: Invoke the predict() method to make predictions

Step 1 involves determining the values of a number of hyperparameters, 
including:

•	 The number of hidden layers

•	 The number of neurons in each hidden layer

•	 The initial values of the weights of edges

•	 The cost function

•	 The optimizer

•	 The learning rate

•	 The dropout rate

•	 The activation function(s)

Steps 2 through 4 involve the training data, whereas step 5 involves the test 
data, which are included in the following more detailed sequence of steps 
for the preceding list: 

•	 Specify a dataset (if necessary, convert data to numeric data)

•	 Split the dataset into training data and test data (usually 80/20 split)

•	 Define the Keras model (such as the tf.keras.models.
Sequential() API)

•	 Compile the Keras model (the compile() API)

•	 Train (fit) the Keras model (the fit() API)

•	 Make a prediction (the prediction() API)

Note that the preceding bullet items skip some steps that are part of a real 
Keras model, such as evaluating the Keras model on the test data, as well 
as dealing with issues such as overfitting.

The first bullet item states that you need a dataset, which can be as sim-
ple as a CSV file with 100 rows of data and just 3 columns (or even smaller). 
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In general, a dataset is substantially larger: it can be a file with 1,000,000 
rows of data and 10,000 columns in each row. We’ll look at a concrete data-
set in a subsequent section.

Next, a Keras model is in the tf.keras.models namespace, and the 
simplest (and also very common) Keras model is tf.keras.models.
Sequential. In general, a Keras model contains layers that are in the 
tf.keras.layers namespace, such as tf.keras.Dense (which means 
that two adjacent layers are completely connected). 

The activation functions that are referenced in Keras layers are in 
the tf.nn namespace, such as the tf.nn.ReLU for the ReLU activation 
function.

Here’s a code block of the Keras model that’s described in the preced-
ing paragraphs (which covers the first four bullet points):

import tensorflow as tf
model = tf.keras.models.Sequential([
  tf.keras.layers.Dense(512, activation=tf.

nn.relu),
])

We have three more bullet items to discuss, starting with the compilation 
step. Keras provides a compile() API for this step, an example of which 
is here: 

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

Next we need to specify a training step, and Keras provides the fit() API 
(as you can see, it’s not called train()), an example of which is here:

model.fit(x_train, y_train, epochs=5)

The final step is the prediction that is performed via the predict() API, 
an example of which is here:

pred = model.predict(x)

Keep in mind that the evaluate() method is used for evaluating an 
trained model, and the output of this method is accuracy or loss. On the 
other hand, the predict() method makes predictions from the input 
data.
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Listing A.1 displays the contents of tf2_basic_keras.py that 
combines the code blocks in the preceding steps into a single code 
sample.

Listing A.1: tf2_basic_keras.py

import tensorflow as tf

# NOTE: we need the train data and test data

model = tf.keras.models.Sequential([
  tf.keras.layers.Dense(1, activation=tf.

nn.relu),
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Listing A.1 contains no new code, and we’ve essentially glossed over 
some of the terms such as the optimizer (an algorithm that is used in con-
junction with a loss function), the loss (the type of loss function) and the 
metrics (how to evaluate the efficacy of a model). 

The explanations for these details cannot be condensed into a few para-
graphs (alas), but the good news is that you can find a plethora of detailed 
online blog posts that discuss these terms.

Keras and Linear Regression

This section contains a simple example of creating a Keras-based model 
in order to solve a task involving linear regression: given a positive number 
representing kilograms of pasta, predict its corresponding price. Listing A.2 
displays the contents of pasta.csv and Listing A.3 displays the contents of 
keras_pasta.py that performs this task. 
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Listing A.2: pasta.csv

weight,price
5,30
10,45
15,70
20,80
25,105
30,120
35,130
40,140
50,150

Listing A.3: keras_pasta.py

import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# price of pasta per kilogram
df = pd.read_csv("pasta.csv")

weight = df['weight']
price  = df['price']

model = tf.keras.models.Sequential([
   tf.keras.layers.Dense(units=1,input_shape=[1])
])

# MSE loss function and Adam optimizer
model.compile(loss='mean_squared_error',
              �optimizer=tf.keras.optimizers.Adam(0.1))

# train the model
history = model.fit(weight, price, epochs=100, 

verbose=False)

# graph the # of epochs versus the loss
plt.xlabel('Number of Epochs')
plt.ylabel("Loss Values")
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Listing A.3 initializes the Pandas Dataframe df with the contents 
of the CSV file pasta.csv, and then initializes the variables weight and 
cost with the first and second columns, respectively, of df. 

The next portion of Listing A.3 defines a Keras-based model that con-
sists of a single Dense layer. This model is compiled and trained, and then 
a graph is displayed that shows the number of epochs on the horizontal 
axis and the corresponding value of the loss function for the vertical axis. 
Launch the code in Listing A.3 and you will see the following output:

Cost for 11kg: [[41.727108]]

Cost for 45kg: [[159.02121]]

Figure A.1 displays a graph of epochs versus loss during the training 
process.

FIGURE A.1 A Graph of Epochs versus Loss.

plt.plot(history.history['loss'])
plt.show()

print("Cost for 11kg:",model.predict([11.0]))
print("Cost for 45kg:",model.predict([45.0]))
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Keras, MLPs, and MNIST

This section contains a simple example of creating a Keras-based MLP 
neural network that will be trained with the MNIST dataset. Listing A.4 
displays the contents of keras_mlp_mnist.py that performs this task. 

Listing A.4: keras_mlp_mnist.py

import tensorflow as tf
import numpy as np

# instantiate mnist and load data:
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# one-hot encoding for all labels to create 1x10
# vectors that are compared with the final layer:
y_train = tf.keras.utils.to_categorical(y_train)
y_test  = tf.keras.utils.to_categorical(y_test)

image_size = x_train.shape[1]
input_size = image_size * image_size

# resize and normalize the 28x28 images:
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test  = np.reshape(x_test, [-1, input_size])
x_test  = x_test.astype('float32') / 255

# initialize some hyper-parameters:
batch_size = 128
hidden_units = 128
dropout_ratea = 0.20

# define a Keras-based model:
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(hidden_units, 

input_dim=input_size))
model.add(tf.keras.layers.Activation('relu'))
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Listing A.4 contains the usual import statements and then initializes 
the variable mnist as a reference to the MNIST dataset. The next portion 
of Listing A.4 contains some typical code that populates the training dataset 
and the test dataset and converts the labels to numeric values via the tech-
nique known as one-hot encoding.

Next, several hyperparameters are initialized, and a Keras-based 
model is defined that specifies three Dense layers and the relu activation 
function. This model is compiled and trained, and the accuracy on the test 
dataset is computed and then displayed. Launch the code in Listing A.4 and 
you will see the following output:

Model: “sequential”

Layer (type)
Output Shape 
Shape

Param #

dense (Dense) (None, 256) 200960
activation 
(Activation)

(None, 256) 0

model.add(tf.keras.layers.Dropout(dropout_rate))
model.add(tf.keras.layers.Dense(hidden_units))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dense(10))
model.add(tf.keras.layers.Activation('softmax'))

model.summary()

model.compile(loss='categorical_crossentropy',
                optimizer='adam',
                metrics=['accuracy'])

# train the network on the training data:
model.fit(x_train, y_train, epochs=10, batch_

size=batch_size)

# calculate and then display the accuracy:
loss, acc = model.evaluate(x_test, y_test, batch_

size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))
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dropout (Dropout) (None, 256) 0
dense_1 (Dense) (None, 256) 65792    
activation_1 
(Activation)

(None, 256) 0

dropout_1 (Dropout) (None, 256) 0
dense_2 (Dense) (None, 10) 2570     
activation_2 
(Activation) 

(None, 10) 0

Total params: 269,322
Trainable params: 269,322
Non-trainable params: 0

Train on 60000 samples
Epoch 1/10
60000/60000 [==============================] - 4s 

74us/sample - loss: 0.4281 - accuracy: 0.8683
Epoch 2/10
60000/60000 [==============================] - 4s 

66us/sample - loss: 0.1967 - accuracy: 0.9417
Epoch 3/10
60000/60000 [==============================] - 4s 

63us/sample - loss: 0.1507 - accuracy: 0.9547
Epoch 4/10
60000/60000 [==============================] - 4s 

63us/sample - loss: 0.1298 - accuracy: 0.9600
Epoch 5/10
60000/60000 [==============================] - 4s 

60us/sample - loss: 0.1141 - accuracy: 0.9651
Epoch 6/10
60000/60000 [==============================] - 4s 

66us/sample - loss: 0.1037 - accuracy: 0.9677
Epoch 7/10
60000/60000 [==============================] - 4s 

61us/sample - loss: 0.0940 - accuracy: 0.9702
Epoch 8/10
60000/60000 [==============================] - 4s 

61us/sample - loss: 0.0897 - accuracy: 0.9718
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Keras, CNNs, and cifar10

This section contains a simple example of training a neural network with 
the cifar10 dataset. This code sample is similar to training a neural network 
on the MNIST dataset and requires a very small code change. 

Keep in mind that images in MNIST have dimensions 28x28, whereas 
images in cifar10 have dimensions 32x32. Always ensure that images have 
the same dimensions in a dataset, otherwise the results can be unpredictable.

Note: make sure that the images in your dataset have the same dimensions 

Listing A.5 displays the contents of keras_cnn_cifar10.py that 
trains a CNN with the cifar10 dataset. 

Listing A.5: keras_cnn_cifar10.py

Epoch 9/10
60000/60000 [==============================] - 4s 

62us/sample - loss: 0.0830 - accuracy: 0.9747
Epoch 10/10
60000/60000 [==============================] - 4s 

64us/sample - loss: 0.0805 - accuracy: 0.9748
10000/10000 [==============================] - 0s 

39us/sample - loss: 0.0654 - accuracy: 0.9797

Test accuracy: 98.0%

import tensorflow as tf

batch_size = 32
num_classes = 10
epochs = 100
num_predictions = 20

cifar10 = tf.keras.datasets.cifar10

# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.

load_data()

(Continued)



202 • Artificial Intelligence, Machine Learning, Deep Learning

print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# Convert class vectors to binary class matrices
y_train = tf.keras.utils.to_categorical(y_train, 

num_classes)
y_test = tf.keras.utils.to_categorical(y_test, 

num_classes)

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32, (3, 3), 

padding='same',
                 input_shape=x_train.shape[1:]))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Conv2D(32, (3, 3)))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_

size=(2, 2)))
model.add(tf.keras.layers.Dropout(0.25))

# you can also duplicate the preceding code block here

model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(512))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(num_classes))
model.add(tf.keras.layers.Activation('softmax'))

# use RMSprop optimizer to train the model
model.compile(loss='categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
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Listing A.5 contains the usual import statement and then initializes 
the variable cifar10 as a reference to the cifar10 dataset. The next sec-
tion of code is similar to the contents of Listing A.4: the main difference is 
that this Keras-based model defines a CNN instead of an MLP. Hence, the 
first layer is a convolutional layer, as shown here:

model.add(tf.keras.layers.Conv2D(32, (3, 3), 
padding='same',

                 input_shape=x_train.shape[1:]))

Note that a vanilla CNN involves a convolutional layer (which is the  
purpose of the preceding code snippet), followed by the ReLU activation 
function, and a max pooling layer, both of which are displayed in Listing 
A.5. In addition, the final layer of the Keras model is the softmax activa-
tion function, which converts the 10 numeric values in the fully connected 
layer to a set of 10 non-negative numbers between 0 and 1, whose sum 
equals 1 (this gives us a probability distribution).

This model is compiled and trained, and then evaluated on the test 
dataset. The last portion of Listing A.5 displays the value of the test-related 
loss and accuracy, both of which are calculated during the preceding evalu-
ation step. Launch the code in Listing A.5 and you will see the following 
output (note that the code was stopped after partially completing the sec-
ond epoch):

x_train shape: (50000, 32, 32, 3)
50000 train samples
10000 test samples 

x_test /= 255

model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          validation_data=(x_test, y_test),
          shuffle=True)

# evaluate and display results from test data
scores = model.evaluate(x_test, y_test, 

verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
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Epoch 1/100
50000/50000 [==============================] - 

285s 6ms/sample - loss: 1.7187 - accuracy: 
0.3802 - val_loss: 1.4294 - val_accuracy: 
0.4926

Epoch 2/100
 1888/50000 [>.............................] - 

ETA: 4:39 - loss: 1.4722 - accuracy: 0.4635

Resizing Images in Keras

Listing A.6 displays the contents of keras_resize_image.py that illus-
trates how to resize an image in Keras. 

Listing A.6: keras_resize_image.py

import tensorflow as tf
import numpy as np
import imageio
import matplotlib.pyplot as plt

# use any image that has 3 channels
inp = tf.keras.layers.Input(shape=(None, None, 3))
out = tf.keras.layers.Lambda(lambda image: 

tf.image.resize(image, (128, 128)))(inp)

model = tf.keras.Model(inputs=inp, outputs=out)
model.summary()

# read the contents of a PNG or JPG
X = imageio.imread('sample3.png')

out = model.predict(X[np.newaxis, ...])

fig, axes = plt.subplots(nrows=1, ncols=2)
axes[0].imshow(X)
axes[1].imshow(np.int8(out[0,...]))

plt.show()
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Listing A.6 contains the usual import statements and then initial-
izes the variable inp so that it can accommodate a color image, followed 
by the variable out that is the result of resizing inp so that it has dimen-
sions 28x23. Next, inp and out are specified as the values of inputs 
and outputs, respectively, for the Keras model, as shown in this code 
snippet:

model = tf.keras.Model(inputs=inp, outputs=out)

Next, the variable X is initialized as a reference to the result of reading 
the contents of the image sample3.png. The remainder of Listing A.6 
involves displaying two images: the original image and the resized image. 
Launch the code in Listing A.6 and you will see a graph of an image and its 
resized image as shown in Figure A.2.

FIGURE A.2 A Graph of an Image and its Resized Image.

Keras and Early Stopping (1)

After specifying the training set and the test set from a dataset, you also 
decide on the number of training epochs. A value that’s too large can lead to 
overfitting, whereas a value that’s too small can lead to underfitting. More-
over, model improvement can diminish and subsequent training iterations 
become redundant.
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Early stopping is a technique that allows you to specify a large  
value for the number of epochs, and yet the training will stop  
if the model performance improvement drops below a threshold  
value.

There are several ways that you can specify early stopping, and they 
involve the concept of a callback function. Listing A.7 displays the contents 
of tf2_keras_callback.py that performs early stopping via a callback 
mechanism.

Listing A.7: tf2_keras_callback.py

import tensorflow as tf
import numpy as np

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation 

	 ='relu'))
model.add(tf.keras.layers.Dense(64, activation 

	 ='relu'))
model.add(tf.keras.layers.Dense(10, activation 

	 ='softmax'))

model.compile(optimizer=tf.keras.optimizers.
Adam(0.01),

            loss='mse',		   # mean squared error
            metrics=['mae'])	   # mean absolute error

data   = np.random.random((1000, 32))
labels = np.random.random((1000, 10))

val_data   = np.random.random((100, 32))
val_labels = np.random.random((100, 10))

callbacks = [
  # stop training if "val_loss" stops improving 

for over 2 epochs
  tf.keras.callbacks.EarlyStopping(patience=2, 

monitor='val_loss'),
  # write TensorBoard logs to the ./logs directory
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Listing A.7 defines a Keras-based model with three hidden layers 
and then compiles the model. The next portion of Listing A.7 uses the 
np.random.random function in order to initialize the variables data, 
labels, val_data, and val_labels.

The interesting code involves the definition of the callbacks 
variable that specifies tf.keras.callbacks.EarlyStopping class 
with a value of 2 for patience, which means that the model will stop 
training if there is an insufficient reduction in the value of val_loss.  
The callbacks variable includes the tf.keras.callbacks. 
TensorBoard class to specify the logs subdirectory as the location for 
the TensorBoard files.

Next, the model.fit() method is invoked with a value of 50  
for epochs (shown in bold), followed by the model.evaluate() 
method. Launch the code in Listing A.7 and you will see the following 
output:

  tf.keras.callbacks.TensorBoard(log_dir='./logs')
]

model.fit(data, labels, batch_size=32, epochs=50, 
callbacks=callbacks,

          validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)

Epoch 1/50
1000/1000 [==============================] - 0s 

354us/sample - loss: 0.2452 - mae: 0.4127 - val_
loss: 0.2517 - val_mae: 0.4205

Epoch 2/50
1000/1000 [==============================] - 0s 

63us/sample - loss: 0.2447 - mae: 0.4125 - val_
loss: 0.2515 - val_mae: 0.4204

Epoch 3/50
1000/1000 [==============================] - 0s 

63us/sample - loss: 0.2445 - mae: 0.4124 - val_
loss: 0.2520 - val_mae: 0.4209
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Notice that the code stopped training after four epochs, even though 50 
epochs are specified in the code.

Keras and Early Stopping (2)

The previous section contains a code sample with minimalistic functionality 
with respect to the use of callback functions in Keras. However, you can 
also define a custom class that provides finer-grained functionality that uses 
a callback mechanism. 

Listing A.8 displays the contents of tf2_keras_callback2.py that 
performs early stopping via a callback mechanism (the new code is shown 
in bold).

Listing A.8: tf2_keras_callback2.py

import tensorflow as tf
import numpy as np

model = tf.keras.Sequential()
model.add(�tf.keras.layers.Dense(64, activation 

='relu'))
model.add(�tf.keras.layers.Dense(64, activation 

='relu'))
model.add(�tf.keras.layers.Dense(10, activation 

='softmax'))

model.compile(optimizer=tf.keras.optimizers.
Adam(0.01),

Epoch 4/50
1000/1000 [==============================] - 0s 

68us/sample - loss: 0.2444 - mae: 0.4123 - val_
loss: 0.2519 - val_mae: 0.4205

1000/1000 [==============================] - 0s 
37us/sample - loss: 0.2437 - mae: 0.4119

(1000, 10)
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            loss='mse',		    # mean squared error
             metrics=['mae'])	   # mean absolute error

data   = np.random.random((1000, 32))
labels = np.random.random((1000, 10))

val_data   = np.random.random((100, 32))
val_labels = np.random.random((100, 10))

class MyCallback(tf.keras.callbacks.Callback):
  def on_train_begin(self, logs={}):
    print(“on_train_begin”)

  def on_train_end(self, logs={}):
    print(“on_train_begin”)
    return

  def on_epoch_begin(self, epoch, logs={}):
    print(“on_train_begin”)
    return

  def on_epoch_end(self, epoch, logs={}):
    print(“on_epoch_end”)
    return

  def on_batch_begin(self, batch, logs={}):
    print(“on_batch_begin”)
    return

  def on_batch_end(self, batch, logs={}):
    print(“on_batch_end”)
    return

callbacks = [MyCallback()]

model.fit(�data, labels, batch_size=32, epochs=50, 
callbacks=callbacks,

          validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)
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The new code in Listing A.8 differs from Listing A.7 is limited to the 
code block that is displayed in bold. This new code defines a custom Python 
class with several methods, each of which is invoked during the appropri-
ate point during the Keras lifecycle execution. The six methods consist of 
three pairs of methods for the start event and end event associated with 
training, epochs, and batches, as listed here:

•	 def on_train_begin()

•	 def on_train_end()

•	 def on_epoch_begin()

•	 def on_epoch_end()

•	 def on_batch_begin()

•	 def on_batch_end()
The preceding methods contain just a print() statement in Listing A.8, 
and you can insert any code you wish in any of these methods. Launch the 
code in Listing A.8 and you will see the following output:

on_train_begin
on_train_begin
Epoch 1/50
on_batch_begin
on_batch_end
  32/1000 [..............................] - ETA: 

4s - loss: 0.2489 - mae: 0.4170on_batch_begin
on_batch_end
on_batch_begin on_batch_end
// details omitted for brevity
on_batch_begin
on_batch_end
on_batch_begin
on_batch_end
992/1000 [============================>.] - ETA: 0s 

- loss: 0.2468 - mae: 0.4138on_batch_begin
on_batch_end
on_epoch_end
1000/1000 [==============================] - 0s 

335us/sample - loss: 0.2466 - mae: 0.4136 - val_
loss: 0.2445 - val_mae: 0.4126
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on_train_begin
Epoch 2/50
on_batch_begin
on_batch_end
 32/1000 [..............................] - ETA: 0s 

- loss: 0.2465 - mae: 0.4133on_batch_begin
on_batch_end
on_batch_begin
on_batch_end
// details omitted for brevity 
on_batch_end
on_epoch_end
1000/1000 [==============================] - 0s 

51us/sample - loss: 0.2328 - mae: 0.4084 - val_
loss: 0.2579 - val_mae: 0.4241

on_train_begin
 32/1000 [..............................] - ETA: 0s 

- loss: 0.2295 - mae: 0.4030
1000/1000 [==============================] - 0s 

22us/sample - loss: 0.2313 - mae: 0.4077
(1000, 10)

Keras and Metrics

Many Keras-based models only specify accuracy as the metric for evaluat-
ing a trained model, as shown here:

model.compile(optimizer='adam',
                 loss='sparse_categorical_crossentropy',
                 metrics=[‘accuracy’])

However, there are many other built-in metrics available, each of which 
is encapsulated in a Keras class in the tf.keras.metrics namespace.  
A list of many such metrics are displayed in the following list:

•	 class Accuracy: how often predictions matches labels

•	 class BinaryAccuracy: how often predictions matches labels

•	 class CategoricalAccuracy: how often predictions matches labels
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•	 class FalseNegatives: the number of false negatives

•	 class FalsePositives: the number of false positives

•	 class Mean: the (weighted) mean of the given values

•	 class Precision: the precision of the predictions wrt the labels

•	 class Recall: the recall of the predictions wrt the labels

•	 class TrueNegatives: the number of true negatives

•	 class TruePositives: the number of true positives
Earlier in this chapter you learned about the confusion matrix that  
provides numeric values for TP, TN, FP, and FN; each of these val-
ues has a corresponding Keras class TruePositive, TrueNega-
tive, FalsePositive, and FalseNegative, respectively. Perform 
an online search for code samples that use the metrics in the preceding 
list.

Saving and Restoring Keras Models

Listing A.9 displays the contents of tf2_keras_save_model.py that cre-
ates, trains, and saves a Keras-based model, then creates a new model that 
is populated with the data from the saved model.

Listing A.8: tf2_keras_save_model.py

import tensorflow as tf
import os

def create_model():
  model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(512, activation=tf.

nn.relu),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation=tf.

nn.softmax)
  ])

  model.compile(optimizer=tf.keras.optimizers.
Adam(),
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               loss=tf.keras.losses.sparse_
categorical_crossentropy,

                metrics=['accuracy'])

  return model

# Create a basic model instance
model = create_model()
model.summary()

checkpoint_path = "checkpoint/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)

# Create checkpoint callback
cp_callback = tf.keras.callbacks.

ModelCheckpoint(checkpoint_path,
save_weights_only=True, verbose=1)

# => model #1: create the first model
model = create_model()

mnist = tf.keras.datasets.mnist
(X_train, y_train),(X_test, y_test) = mnist.load_

data()

X_train, X_test = X_train / 255.0, X_test / 255.0
print("X_train.shape:",X_train.shape)

model.fit(X_train, y_train,  epochs = 2,
          validation_data = (X_test,y_test),
          callbacks = [cp_callback])  # pass 

callback to training
# => model #2: create a new model and load saved 

model
model = create_model()
loss, acc = model.evaluate(X_test, y_test)
print("Untrained model, accuracy: {:5.2f}%".

format(100*acc))

model.load_weights(checkpoint_path)
loss,acc = model.evaluate(X_test, y_test)
print("Restored model, accuracy: {:5.2f}%".

format(100*acc))
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Listing A.8 starts with the create_model() Python function that creates 
and compiles a Keras-based model. The next portion of Listing A.8 defines 
the location of the file that will be saved as well as the checkpoint callback, 
as shown here:

checkpoint_path = "checkpoint/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)

# Create checkpoint callback
cp_callback = tf.keras.callbacks.

ModelCheckpoint(checkpoint_path,
save_weights_only=True, verbose=1)

The next portion of Listing A.8 trains the current model using the MNIST 
dataset, and also specifies cp_callback so that the model can be saved.

The final code block in Listing A.8 creates a new Keras-based model 
by invoking the Python method create_model() again, evaluating this 
new model on the test-related data, and displaying the value of the accu-
racy. Next, the model is loaded with the saved model weights via the load_
weights() API. The relevant code block is reproduced here:

model = create_model()
loss, acc = model.evaluate(X_test, y_test)
print("Untrained model, accuracy: {:5.2f}%".

format(100*acc))

model.load_weights(checkpoint_path)
loss,acc = model.evaluate(X_test, y_test)
print("Restored model, accuracy: {:5.2f}%".

format(100*acc))

Now launch the code in Listing A.8 and you will see the following output:

on_train_begin
Model: “sequential”

Layer (type) Output Shape Param #
flatten (Flatten) (None, 784) 0
dense (Dense) (None, 512) 401920
dropout (Dropout) (None, 512) 0
dense_1 (Dense) (None, 10) 5130
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Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0

Train on 60000 samples, validate on 10000 samples
Epoch 1/2
59840/60000 [============================>.] - ETA: 

0s - loss: 0.2173 - accuracy: 0.9351  
Epoch 00001: saving model to checkpoint/cp.ckpt
60000/60000 [==============================] - 10s 

168us/sample - loss: 0.2170 - accuracy: 0.9352 - 
val_loss: 0.0980 - val_accuracy: 0.9696

Epoch 2/2
59936/60000 [============================>.] - ETA: 

0s - loss: 0.0960 - accuracy: 0.9707 
Epoch 00002: saving model to checkpoint/cp.ckpt
60000/60000 [==============================] - 10s 

174us/sample - loss: 0.0959 - accuracy: 0.9707 - 
val_loss: 0.0735 - val_accuracy: 0.9761

10000/10000 [==============================] - 1s 
86us/sample - loss: 2.3986 - accuracy: 0.0777

Untrained model, accuracy:  7.77%
10000/10000 [==============================] - 1s 

67us/sample - loss: 0.0735 - accuracy: 0.9761
Restored model, accuracy: 97.61%

The directory where you launched this code sample contains a new  
subdirectory called checkpoint whose contents are shown here:

-rw-r--r--  1 owner  staff     1222 Aug 17 14:34 
cp.ckpt.index

-rw-r--r--  1 owner  staff  4886716 Aug 17 14:34 
cp.ckpt.data-00000-of-00001

-rw-r--r--  1 owner  staff       71 Aug 17 14:34 
checkpoint
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Summary

This appendix introduced you to some of the features of Keras and an 
assortment of Keras-based code samples involving basic neural networks 
with the MNIST and Cifar10 datasets. You learned about some of the 
important namespaces (such as tf.keras.layers) and their contents.

Next, you saw an example of performing linear regression with Keras 
and a simple CSV file. Then you learned how to create a Keras-based MLP 
neural network that is trained on the MNIST dataset.

In addition, you saw examples of Keras-based models that perform 
early stopping, which is convenient when the model exhibits minimal 
improvement (that is specified by you) during the training process. 



A P P E N D I X B
INTRODUCTION TO TF 2

Welcome to TensorFlow 2! This appendix introduces you to various features 
of TensorFlow 2 (abbreviated as TF 2), as well as some of the TF 2 tools and 
projects that are covered under the TF 2 umbrella. You will see TF 2 code 
samples that illustrate new TF 2 features (such as tf.GradientTape and 
the @tf.function decorator), plus an assortment of  code samples that 
illustrate how to write code the TF 2 way. 

Despite the simplicity of many topics in this appendix, they provide you 
with a foundation for TF 2. This appendix prepares you for complex code, 
which delves into frequently used TF 2 APIs that you will encounter in 
other chapters of this book. 

Keep in mind that the TensorFlow 1.x releases are considered legacy 
code after the production release of TF 2. Google will provide only secu-
rity-related updates for TF 1.x (i.e., no new code development), and sup-
port TensorFlow 1.x for at least another year beyond the initial production 
release of TF 2. For your convenience, TensorFlow provides a conversion 
script to facilitate the automatic conversion of TensorFlow 1.x code to TF 2 
code in many cases (details provided later in this chapter). 

As you saw in the preface, this appendix contains several sections 
regarding TF 1.x, all of which are placed near the end of this chapter. If you 
do not have TF 1.x code, obviously these sections are optional (and they are 
labeled as such).
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The first part of this appendix briefly discusses some TF 2 features and 
some of the tools that are included under the TF 2 umbrella. The second 
section of this appendix shows you how to write TF 2 code involving TF 
constants and TF variables.

The third section digresses a bit: you will learn about the new TF 2 
Python function decorator @tf.function that is used in many code 
samples in this chapter. Although this decorator is not always required, it’s 
important to become comfortable with this feature, and there are some 
nonintuitive caveats regarding its use that are discussed in this section.

The fourth section of this appendix shows you how to perform typical 
arithmetic operations in TF 2, how to use some of the built-in TF 2 functions, 
and how to calculate trigonometric values. If you need to perform scientific 
calculations, see the code samples that pertain to the type of precision that 
you can achieve with floating point numbers in TF 2. This section also shows 
you how to use for loops and how to calculate exponential values.

The fifth section contains TF 2 code samples involving arrays, such as 
creating an identity matrix, a constant matrix, a random uniform matrix, 
and a truncated normal matrix, along with an explanation about the differ-
ence between a truncated matrix and a random matrix. This section also 
shows you how to multiply second-order tensors in TF 2 and how to convert 
Python arrays to second-order tensors in TF 2. The sixth section contains 
code samples that illustrate how to use some of the new features of TF 2, 
such as tf.GradientTape. 

Although the TF 2 code samples in this book use Python 3.x, it’s pos-
sible to modify the code samples in order to run under Python 2.7. Also 
make note of the following convention in this book (and only this book): TF 
1.x files have a “tf_” prefix and TF 2 files have a “tf2_” prefix.

With all that in mind, the next section discusses a few details of TF 2, 
its architecture, and some of its features.

What Is TF 2? 

TF 2 is an open source framework from Google that is the newest version 
of TensorFlow. The TF 2 framework is a modern framework that’s well 
suited for machine learning and deep learning, and it’s available through an 
Apache license. Interestingly, TensorFlow surprised many people, perhaps 
even members of the TF team, in terms of the creativity and plethora of 
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use cases for TF in areas such as art, music, and medicine. For a variety of 
reasons, the TensorFlow team created TF 2 with the goal of consolidating 
the TF APIs, eliminating duplication of APIs, enabling rapid prototyping, 
and making debugging an easier experience. 

There is good news if you are a fan of Keras: improvements in TF 2 are 
partially due to the adoption of Keras as part of the core functionality of 
TF 2. In fact, TF 2 extends and optimizes Keras so that it can take advan-
tage of all the advanced features in TF 2. 

If you work primarily with deep learning models (CNNs, RNNs, 
LSTMs, and so forth), you’ll probably use some of the classes in the 
tf.keras namespace, which is the implementation of Keras in TF 2. 
Moreover, tf.keras.layers provides several standard layers for neural 
networks. As you’ll see later, there are several ways to define Keras-based 
models, via the tf.keras.Sequential class, a functional style definition, 
and via a subclassing technique. Alternatively, you can still use lower-level 
operations and automatic differentiation if you wish to do so.

Furthermore, TF 2 removes duplicate functionality, provides a more 
intuitive syntax across APIs, as well as compatibility throughout the TF 2 
ecosystem. TF 2 even provides a backward compatibility module called 
tf.compat.v1 (which does not include tf.contrib), and a conversion 
script tf_upgrade_v2 to help users migrate from TF 1.x to TF 2.

Another significant change in TF 2 is eager execution as the default mode 
(not deferred execution), with new features such as the @tf.function 
decorator and TF 2 privacy-related features. Here is a condensed list of 
some TF 2 features and related technologies:

•	 Support for tf.keras: a specification for high-level code for ML 
and DL

•	 Tensorflow.js v1.0: TF in modern browsers

•	 TensorFlow Federated: an open source framework for ML and 
decentralized data

•	 Ragged Tensors: nested variable-length (“uneven”) lists

•	 TensorFlow Probability: probabilistic models combined with deep 
learning

•	 Tensor2Tensor: a library of DL models and datasets



220 • Artificial Intelligence, Machine Learning, Deep Learning

TF 2 also supports a variety of programming languages and hardware  
platforms, including:

•	 Support for Python, Java, C++

•	 Desktop, server, mobile device (TF Lite)

•	 CPU/GPU/TPU support

•	 Linux and Mac OS X support

•	 VM for Windows

Navigate to the TF 2 home page, where you will find links to many resources 
for TF 2: https://www.tensorflow.org 

TF 2 Use Cases
TF 2 is designed to solve tasks that arise in a plethora of use cases, some of 
which are listed here:

•	 Image recognition

•	 Computer vision

•	 Voice/sound recognition

•	 Time series analysis

•	 Language detection

•	 Language translation

•	 Text-based processing 

•	 Handwriting recognition

The preceding list of use cases can be solved in TF 1.x as well as TF 2, and 
in the latter case, the code tends to be simpler and cleaner compared to 
their TF 1.x counterpart.

TF 2 Architecture: The Short Version
TF 2 is written in C++ and supports operations involving primitive val-

ues and tensors (discussed later). The default execution mode for TF 1.x 
is deferred execution whereas TF 2 uses eager execution (think immediate 
mode). Although TF 1.4 introduced eager execution, the vast majority of 
TF 1.x code samples that you will find online use deferred execution. 
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TF 2 supports arithmetic operations on tensors (i.e., multidimensional 
arrays with enhancements) as well as conditional logic, “for” loops, and 
“while” loops. Although it’s possible to switch between eager execution 
mode and deferred mode in TF 2, all the code samples in this book use 
eager execution mode. 

Data visualization is handled via TensorBoard (discussed in Chapter 2) 
that is included as part of TF 2. As you will see in the code samples in this 
book, TF 2 APIs are available in Python and can therefore be embedded in 
Python scripts.

So, enough already with the high-level introduction: let’s learn how to 
install TF 2, which is the topic of the next section.

TF 2 Installation
Install TensorFlow by issuing the following command from the command 
line:

pip install tensorflow==2.0.0-beta1

When a production release of TF 2 is available, you can issue the following 
command from the command line (which will be the most current version 
of TF 2):

pip install --upgrade tensorflow

If you want to install a specific version (let’s say version 1.13.1) of Ten-
sorFlow, type the following command:

pip install --upgrade tensorflow==1.13.1

You can also downgrade the installed version of TensorFlow. For example, 
if you have installed version 1.13.1 and you want to install version 1.10, 
specify the value 1.10 in the preceding code snippet. TensorFlow will  
uninstall your current version and install the version that you specified  
(i.e., 1.10).

As a sanity check, create a Python script with the following three lines 
of code to determine the version number of TF that is installed on your 
machine:

import tensorflow as tf

print("TF Version:",tf.__version__)

print("eager execution:",tf.executing_eagerly())
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Launch the preceding code and you ought to see something similar to the 
following output:

TF version: 2.0.0-beta1
eager execution: True

As a simple example of TF 2 code, place this code snippet in a text file:

import tensorflow as tf
print("1 + 2 + 3 + 4 =", tf.reduce_sum([1, 2, 3, 4]))
Launch the preceding code from the command line and you should see 

the following output:

1 + 2 + 3 + 4 = tf.Tensor(10, shape=(), dtype=int32)

TF 2 and the Python REPL
In case you aren’t already familiar with the Python REPL (read-eval-print-
loop), it’s accessible by opening a command shell and then typing the  
following command:

python
As a simple illustration, access TF 2-related functionality in the REPL by 
importing the TF 2 library as follows:

>>> import tensorflow as tf
Now check the version of TF 2 that is installed on your machine with this 
command:

>>> print('TF version:',tf.__version__)

The output of the preceding code snippet is shown here (the number that 
you see depends on which version of TF 2 that you installed):

TF version: 2.0.0-beta1

Although the REPL is useful for short code blocks, the TF 2 code sam-
ples in this book are Python scripts that you can launch with the Python  
executable.

Other TF 2-based Toolkits

In addition to providing support for TF 2-based code on multiple devices, 
TF 2 provides the following toolkits:

•	 TensorBoard for visualization (included as part of TensorFlow)

•	 TensorFlow Serving (hosting on a server)
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•	 TensorFlow Hub

•	 TensorFlow Lite (for mobile applications)

•	 Tensorflow.js (for Web pages and NodeJS)

TensorBoard is a graph visualization tool that runs in a browser. Launch 
TensorBoard from the command line as follows: open a command shell and 
type the following command to access a saved TF graph in the subdirectory 
/tmp/abc (or a directory of your choice):

tensorboard –logdir /tmp/abc

Note that there are two consecutive dashes (“-”) that precede the logdir 
parameter in the preceding command. Now launch a browser session and 
navigate to this URL: localhost:6006

After a few moments you will see a visualization of the TF 2 graph 
that was created in your code and then saved in the directory /tmp/
abc.

TensorFlow Serving is a cloud-based flexible, high-performance serving 
system for ML models that is designed for production environments. Ten-
sorFlow Serving makes it easy to deploy new algorithms and experiments, 
while keeping the same server architecture and APIs. More information is 
here: https://www.TF 2.org/serving/

TensorFlow Lite was specifically created for mobile development 
(both Android and iOS). Please keep in mind that TensorFlow Lite 
supersedes TF 2 Mobile, which was an earlier SDK for developing 
mobile applications. TensorFlow Lite (which also exists for TF 1.x) sup-
ports on-device ML inference with low latency and a small binary size. 
Moreover, TensorFlow Lite supports hardware acceleration with the 
Android Neural Networks API. More information about TensorFlow 
Lite is here:

https://www.tensorflow.org/lite/

A more recent addition is tensorflow.js that provides JavaScript 
APIs to access TensorFlow in a Web page. The tensorflow.js toolkit 
was previously called deeplearning.js. You can also use tensorflow.
js with NodeJS. More information about tensorflow.js is here: https://
js.tensorflow.org. 
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TF 2 Eager Execution

TF 2 eager execution mode makes TF 2 code much easier to write com-
pared to TF 1.x code (which used deferred execution mode). You might 
be surprised to discover that TF introduced eager execution as an alter-
native to deferred execution in version 1.4.1, but this feature was vastly 
underutilized. With TF 1.x code, TensorFlow creates a dataflow graph that 
consists of 1) a set of tf.Operation objects that represent units of compu-
tation, and 2) tf.Tensor objects that represent the units of data that flow 
between operations.

On the other hand, TF 2 evaluates operations immediately without 
instantiating a Session object or a creating a graph. Operations return con-
crete values instead of creating a computational graph. TF 2 eager execu-
tion is based on Python control flow instead of graph control flow. Arith-
metic operations are simpler and intuitive, as you will see in code samples 
later in this chapter. Moreover, TF 2 eager execution mode simplifies the 
debugging process. However, keep in mind that there isn’t a 1:1 relation-
ship between a graph and eager execution.

TF 2 Tensors, Data Types, and Primitive Types

In simplified terms, a TF 2 tensor is an n-dimensional array that is similar 
to a NumPy ndarray. A TF 2 tensor is defined by its dimensionality, as 
illustrated here:

scalar number:		  a zeroth-order tensor
vector:			   a first-order tensor
matrix:			   a second-order tensor
3-dimensional array:	 a 3rd order tensor

The next section discusses some of the data types that are available in TF 2, 
followed by a section that discusses TF 2 primitive types.

TF 2 Data Types
TF 2 supports the following data types (similar to the supported data types 
in TensorFlow 1.x):

•	 tf.float32

•	 tf.float64
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•	 tf.int8

•	 tf.int16

•	 tf.int32

•	 tf.int64

•	 tf.uint8

•	 tf.string

•	 tf.bool

The data types in the preceding list are self-explanatory: two floating point 
types, four integer types, one unsigned integer type, one string type, and 
one Boolean type. As you can see, there is a 32-bit and a 64-bit floating 
point type, and integer types that range from 8-bit through 64-bit.

TF 2 Primitive Types
TF 2 supports tf.constant() and tf.Variable() as primitive types. 
Notice the capital V in tf.Variable(): this indicates a TF 2 class (which 
is not the case for lowercase initial letter such as tf.constant()).

A TF 2 constant is an immutable value, and a simple example is shown 
here:

aconst = tf.constant(3.0)

A TF 2 variable is a trainable value in a TF 2 graph. For example, the slope m  
and y-intercept b of a best-fitting line for a dataset consisting of points in 
the Euclidean plane are two examples of trainable values. Some examples 
of TF variables are shown here:

b = tf.Variable(3, name="b")
x = tf.Variable(2, name="x")
z = tf.Variable(5*x, name="z")

W = tf.Variable(20)
lm = tf.Variable(W*x + b, name="lm")

Notice that b, x, and z are defined as TF variables. In addition, b and x are 
initialized with numeric values, whereas the value of the variable z is an 
expression that depends on the value of x (which equals 2).
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Constants in TF 2

Here is a short list of some properties of TF 2 constants:

•	 They are initialized during their definition

•	 They are cannot change its value (“immutable”)

•	 They are can specify its name (optional)

•	 Their type is required (ex: tf.float32)

•	 They are not modified during training

Listing B.1 displays the contents of tf2_constants1.py that illustrates 
how to assign and print the values of some TF 2 constants.

Listing B.1: tf2_constants1.py

import tensorflow as tf 

scalar = tf.constant(10)
vector = tf.constant([1,2,3,4,5])
matrix = tf.constant([[1,2,3],[4,5,6]])
cube   = tf.consta

nt([[[1],[2],[3]],[[4],[5],[6]],[[7],[8],[9]]])

print(scalar.get_shape())
print(vector.get_shape())
print(matrix.get_shape())
print(cube.get_shape())

Listing B.1 contains four tf.constant() statements that define TF 2 
tensors of dimension 0, 1, 2, and 3, respectively. The second part of Listing 
B.1 contains four print() statements that display the shape of the four TF 
2 constants that are defined in the first section of Listing B.1. The output 
from Listing B.1 is here:

()
(5,)
(2, 3)
(3, 3, 1)
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Listing B.2 displays the contents of tf2_constants2.py that 
illustrates how to assign values to TF 2 constants and then print those 
values.

Listing B.2: tf2_constants2.py

import tensorflow as tf 

x = tf.constant(5,name="x")
y = tf.constant(8,name="y")

@tf.function
def calc_prod(x, y):
  z = 2*x + 3*y
  return z

result = calc_prod(x, y)
print('result =',result)

Listing B.2 defines a decorated (shown in bold) Python function 
calc_prod()with TF 2 code that would otherwise be included in a TF 1.x 
tf.Session() code block. Specifically, z would be included in a sess.
run() statement, along with a feed_dict that provides values for x and y. 
Fortunately, a decorated Python function in TF 2 makes the code look like 
normal Python code.

Variables in TF 2

TF 2.0 eliminates global collections and their associated APIs, such as 
tf.get_variable, tf.variable_scope, and tf.initializers.
global_variables. Whenever you need a tf.Variable in TF 2, con-
struct and initialize it directly, as shown here:

tf.Variable(tf.random.normal([2, 4])

Listing B.3 displays the contents of tf2_variables.py that illustrates 
how to compute values involving TF constants and variables in a with code 
block.
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Listing B.3: tf2_variables.py

import tensorflow as tf

v = tf.Variable([[1., 2., 3.], [4., 5., 6.]])
print("v.value():", v.value())
print("")
print("v.numpy():", v.numpy())
print("")

v.assign(2 * v)
v[0, 1].assign(42)
v[1].assign([7., 8., 9.])
print("v:",v)
print("")

try:
  v [1] = [7., 8., 9.]
except TypeError as ex:
  print(ex)

Listing B.3 defines a TF 2 variable v and prints its value. The next 
portion of Listing B.3 updates the value of v and prints its new value. The 
last portion of Listing B.3 contains a try/except block that attempts to 
update the value of v[1]. The output from Listing B.3 is here:

v.value(): tf.Tensor(
[[1. 2. 3.]
 [4. 5. 6.]], shape=(2, 3), dtype=float32)

v.numpy(): [[1. 2. 3.]
 [4. 5. 6.]]

v: <tf.Variable 'Variable:0' shape=(2, 3) 
dtype=float32, numpy=

array([[ 2., 42.,  6.],
        [ 7.,  8.,  9.]], dtype=float32)>

'ResourceVariable' object does not support item 
assignment
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This concludes the quick tour involving TF 2 code that contains vari-
ous combinations of TF constants and TF variables. The next few sections 
delve into more details regarding the TF primitive types that you saw in the 
preceding sections.

The tf.rank() API

The rank of a TF 2 tensor is the dimensionality of the tensor, whereas the 
shape of a tensor is the number of elements in each dimension. Listing B.4 
displays the contents of tf2_rank.py that illustrates how to find the rank 
of TF 2 tensors.

Listing B.4: tf2_rank.py

import tensorflow as tf # tf2_rank.py

A = tf.constant(3.0)
B = tf.fill([2,3], 5.0)
C = tf.constant([3.0, 4.0])

@tf.function
def show_rank(x):
  return tf.rank(x)

print('A:',show_rank(A))
print('B:',show_rank(B))
print('C:',show_rank(C))

Listing B.4 contains familiar code for defining the TF constant A, fol-
lowed by the TF tensor B, which is a 2x3 tensor in which every element 
has the value 5. The TF tensor C is a 1x2 tensor with the values 3.0 and 4.0.

The next code block defines the decorated Python function show_
rank() that returns the rank of its input variable. The final section invokes 
show_rank() with A and then with B. The output from Listing B.4 is here:

A: tf.Tensor(0, shape=(), dtype=int32)
B: tf.Tensor(2, shape=(), dtype=int32)
C: tf.Tensor(1, shape=(), dtype=int32)
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The tf.shape() API

The shape of a TF 2 tensor is the number of elements in each dimension 
of a given tensor.

Listing B.5 displays the contents of tf2_getshape.py that illustrates 
how to find the shape of TF 2 tensors.

Listing B.5: tf2_getshape.py

import tensorflow as tf

a = tf.constant(3.0)
print("a shape:",a.get_shape())

b = tf.fill([2,3], 5.0)
print("b shape:",b.get_shape())

c = tf.constant([[1.0,2.0,3.0], [4.0,5.0,6.0]])
print("c shape:",c.get_shape())

Listing B.5 contains the definition of the TF constant a whose 
value is 3.0. Next, the TF variable b is initialized as a 1x2 vector with 
the value [[2,3], 5.0], followed by the constant c whose value is 
[[1.0,2.0,3.0],[4.0,5.0,6.0]]. The thrree print() statements 
display the values of a, b, and c. The output from Listing B.5 is here:

a shape: ()
b shape: (2, 3)
c shape: (2, 3)

Shapes that specify a 0-D Tensor (scalar) are numbers (9, -5, 2.34, and so 
forth), [], and (). As another example, Listing B.6 displays the contents of 
tf2_shapes.py that contains an assortment of tensors and their shapes.

Listing B.6: tf2_shapes.py

import tensorflow as tf

list_0 = []
tuple_0 = ()
print("list_0:",list_0)
print("tuple_0:",tuple_0)
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Listing B.6 contains simple lists and tuples of various dimensions in 
order to illustrate the difference between these two types. The output from 
Listing B.6 is probably what you would expect, and it’s shown here:

list_0: []
tuple_0: ()
list_1: [3]
tuple_1: 3
list_2: [3, 7]
tuple_2: (3, 7)
any_list1: [None]
any_tuple1: None
any_list2: [7, None]
any_list3: [7, None, None]

Variables in TF 2 (Revisited)

TF 2 variables can be updated during backward error propagation. TF 2 
variables can also be saved and then restored at a later point in time. The 
following list contains some properties of TF 2 variables:

•	 The initial value is optional

•	 They must be initialized before graph execution

list_1 = [3]
tuple_1 = (3)
print("list_1:",list_1)
print("tuple_1:",tuple_1)

list_2 = [3, 7]
tuple_2 = (3, 7)
print("list_2:",list_2)
print("tuple_2:",tuple_2)

any_list1  = [None]
any_tuple1 = (None)
print("any_list1:",any_list1)
print("any_tuple1:",any_tuple1)

any_list2 = [7,None]
any_list3 = [7,None,None]
print("any_list2:",any_list2)
print("any_list3:",any_list3)
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•	 They are updated during training

•	 They are constantly recomputed

•	 They hold values for weights and biases

•	 They have an in-memory buffer (saved/restored from disk)

Here are some simple examples of TF 2 variables:

b = tf.Variable(3, name='b')
x = tf.Variable(2, name='x')
z = tf.Variable(5*x, name="z")

W = tf.Variable(20)
lm = tf.Variable(W*x + b, name="lm") 

Notice that the variables b, x, and W specify constant values, whereas the 
variables z and lm specify expressions that are defined in terms of other 
variables. If you are familiar with linear regression, you undoubtedly noticed 
that the variable lm (“linear model”) defines a line in the Euclidean plane. 
Other properties of TF 2 variables are listed below:

•	 They have a tensor that’s updateable via operations

•	 They exist outside the context of session.run

•	 They are like a regular variable

•	 They hold the learned model parameters

•	 Their variables can be shared (or non-trainable)

•	 They are used for storing/maintaining state

•	 They internally store a persistent tensor

•	 You can read/modify the values of the tensor

•	 Multiple workers see the same values for tf.Variables

•	 They are the best way to represent shared, persistent state manipulated 
by your program

TF 2 also provides the method tf.assign() in order to modify values of 
TF 2 variables; be sure to read the relevant code sample later in this chapter 
so that you learn how to use this API correctly.
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TF 2 Variables vs Tensors 
Keep in mind the following distinction between TF variables and TF  
tensors:

TF variables represent your model’s trainable parameters (ex: weights 
and biases of a neural network), whereas TF tensors represents the data 
fed into your model and the intermediate representations of that data as it 
passes through your model.

In the next section, you will learn about the @tf.function decorator 
for Python functions and how it can improve performance.

What Is @tf.function in TF 2?

TF 2 introduced the @tf.function decorator for Python functions that 
defines a graph and performs session execution: it’s sort of a successor to 
tf.Session() in TF 1.x. Since graphs can still be useful, @tf.function 
transparently converts Python functions into functions that are backed by 
graphs. This decorator also converts tensor-dependent Python control flow 
into TF control flow and adds control dependencies to order read and write 
operations to TF 2 state. Remember that @tf.function works best with 
TF 2 operations instead of NumPy operations or Python primitives.

In general, you won’t need to decorate functions with @tf.function; use 
it to decorate high-level computations, such as one step of training, or the 
forward pass of a model.

Although TF 2 eager execution mode facilitates a more intuitive user 
interface, this ease-of-use can be at the expense of decreased performance. 
Fortunately, the @tf.function decorator is a technique for generating 
graphs in TF 2 code that execute more quickly than eager execution mode. 

The performance benefit depends on the type of operations that 
are performed: matrix multiplication does not benefit from the use of @
tf.function, whereas optimizing a deep neural network can benefit from 
@tf.function.

How Does @tf.function Work?
Whenever you decorate a Python function with @tf.function, TF 2 auto-
matically builds the function in graph mode. If a Python function that is 
decorated with @tf.function invokes other Python functions that are 



234 • Artificial Intelligence, Machine Learning, Deep Learning

not decorated with @tf.function, then the code in those nondecorated 
Python functions will also be included in the generated graph. 

Another point to keep in mind is that a tf.Variable in eager mode 
is actually a plain Python object: this object is destroyed when it’s out 
of scope. On the other hand, a tf.Variable object defines a persis-
tent object if the function is decorated via @tf.function. In this sce-
nario, eager mode is disabled and the tf.Variable object defines a 
node in a persistent TF 2 graph. Consequently, a function that works 
in eager mode without annotation can fail when it is decorated with  
@tf.function.

A Caveat About @tf.function in TF 2
If constants are defined before the definition of a decorated Python function, 
you can print their values inside the function using the Python print() 
function. On the other hand, if constants are defined inside the definition of 
a decorated Python function, you can print their values inside the function 
using the TF 2 tf.print() function. Consider this code block:

import tensorflow as tf

a = tf.add(4, 2)

@tf.function
def compute_values():
  print(a) # 6

compute_values()

# output:
# tf.Tensor(6, shape=(), dtype=int32)

As you can see, the correct result is displayed (shown in bold). However, if 
you define constants inside a decorated Python function, the output con-
tains types and attributes but not the execution of the addition operation. 
Consider the following code block:

import tensorflow as tf

@tf.function
def compute_values():
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  a = tf.add(4, 2)
  print(a)

compute_values()

# output:
# Tensor("Add:0", shape=(), dtype=int32)

The zero in the preceding output is part of the tensor name and not an 
outputted value. Specifically, Add:0 is output zero of the tf.add() opera-
tion. Any additional invocation of compute_values() prints nothing. If 
you want actual results, one solution is to return a value from the function, 
as shown here:

import tensorflow as tf

@tf.function
def compute_values():
  a = tf.add(4, 2)
  return a

 result = compute_values()
print("result:", result)

The output from the preceding code block is here:

result: tf.Tensor(6, shape=(), dtype=int32)

A second solution involves the TF tf.print() function instead of the 
Python print() function, as shown in bold in this code block:

@tf.function
def compute_values():
  a = tf.add(4, 2)
  tf.print(a)

A third solution is to cast the numeric values to Tensors if they do not affect 
the shape of the generated graph, as shown here:

import tensorflow as tf

@tf.function
def compute_values():
  a = tf.add(tf.constant(4), tf.constant(2))
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  return a

result = compute_values()
print("result:", result)

The tf.print() Function and Standard Error
There is one more detail to remember: the Python print() function sends 
output to something called standard output that is associated with a file 
descriptor whose value is 1; on the other hand, tf.print() sends output 
to standard error that is associated with a file descriptor whose value is 2. 
In programming languages such as C, only errors are sent to standard error, 
so keep in mind that the behavior of tf.print() differs from the conven-
tion regarding standard out and standard error. The following code snippets 
illustrate this difference:

python3 file_with_print.py    1>print_output
python3 file_with_tf.print.py 2>tf.print_output

If your Python file contains both print() and tf.print() you can cap-
ture the output as follows:

python3 both_prints.py 1>print_output 2>tf.print_output

However, keep in mind that the preceding code snippet might also redirect 
real error messages to the file tf.print_output.

Working with @tf.function in TF 2

The preceding section explained how the output will differ depending on 
whether you use the Python print() function versus the tf.print() 
function in TF 2 code, where the latter function also sends output to stan-
dard error instead of standard output.

This section contains several examples of the @tf.function deco-
rator in TF 2 to show you some nuances in behavior that depend on 
where you define constants and whether you use the tf.print()  
function or the Python print() function. Also keep in mind the  
comments in the previous section regarding @tf.function, as well as the 
fact that you don’t need to use @tf.function in all your Python functions.

An Example Without @tf.function
Listing B.7 displays the contents of tf2_simple_function.py that illus-
trates how to define a Python function with TF 2 code.
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Listing B.7: tf2_simple_function.py

import tensorflow as tf

def func():
  a = tf.constant([[10,10],[11.,1.]])
  b = tf.constant([[1.,0.],[0.,1.]])
  c = tf.matmul(a, b)
  return c

print(func().numpy())

The code in Listing B.7 is straightforward: a Python function 
func() defines two TF 2 constants, computes their product, and 
returns that value.

Since TF 2 works in eager mode by default, the Python function 
func() is treated as a normal function. Launch the code and you will see 
the following output:

[[20. 30.]
 [22. 3.]]

An Example With @tf.function
Listing B.8 displays the contents of tf2_at_function.py that illustrates 
how to define a decorated Python function with TF code.

Listing B.8: tf2_at_function.py

import tensorflow as tf

@tf.function
def func():
  a = tf.constant([[10,10],[11.,1.]])
  b = tf.constant([[1.,0.],[0.,1.]])
  c = tf.matmul(a, b)
  return c

print(func().numpy())
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Listing B.8 defines a decorated Python function: the rest of the code is 
identical to Listing B.7. However, because of the @tf.function annota-
tion, the Python func() function is wrapped in a tensorflow.python.
eager.def_function.Function object. The Python function is assigned 
to the .python_function property of the object.

When func() is invoked, the graph construction begins. Only the 
Python code is executed, and the behavior of the function is traced so that 
TF 2 can collect the required data to construct the graph. The output is 
shown here:

[[20. 30.]
 [22.  3.]]

Overloading Functions with @tf.function
If you have worked with programming languages such as Java and C++, 
you are already familiar with the concept of overloading a function. If this 
term is new to you, the idea is simple: an overloaded function is a function 
that can be invoked with different data types. For example, you can define 
an overloaded add function that can add two numbers as well as add (i.e., 
concatenate) two strings. 

If you’re curious, overloaded functions in various programming lan-
guages are implemented via name mangling, which means that the signa-
ture (the parameters and their data types for the function) are appended 
to the function name in order to generate a unique function name. This 
happens under the hood, which means that you don’t need to worry about 
the implementation details.

Listing B.9 displays the contents of tf2_overload.py that illustrates 
how to define a decorated Python function that can be invoked with differ-
ent data types.

Listing B.9: tf2_overload.py

import tensorflow as tf

@tf.function
def add(a):
  return a + a 
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Listing B.9 defines a decorated Python function add() is preceded by a 
@tf.function decorator. This function can be invoked by passing an inte-
ger, a decimal value, or a TF 2 tensor and the correct result is calculated. 
Launch the code and you will see the following output:

print("Add 1:            ", add(1))
print("Add 2.3:          ", add(2.3))
print("Add string tensor:", add(tf.

constant("abc")))

c = add.get_concrete_function(tf.
TensorSpec(shape=None, dtype=tf.string))

c(a=tf.constant("a"))  

Add 1:            tf.Tensor(2, shape=(), dtype=int32)
Add 2.3:           tf.Tensor(4.6, shape=(), dtype=float32)
Add string tensor: �tf.Tensor(b'abcabc', shape=(), 

dtype=string)
c: <tensorflow.python.eager.function.

ConcreteFunction object at 0x1209576a0>

What Is AutoGraph in TF 2?
AutoGraph refers to the conversion from Python code to its graph repre-
sentation, which is a significant new feature in TF 2. In fact, AutoGraph is 
automatically applied to functions that are decorated with @tf.function; 
this decorator creates callable graphs from Python functions. 

AutoGraph transforms a subset of Python syntax into its portable, high-
performance and language agnostic graph representation, thereby bridg-
ing the gap between TF 1.x and TF 2.0. In fact, AutoGraph allows you to 
inspect its auto-generated code with this code snippet. For example, if you 
define a Python function called my_product(), you can inspect its auto-
generated code with this snippet:

print(tf.autograph.to_code(my_product))

In particular, the Python for/while construct in implemented in TF 2 
via tf.while_loop (break and continue are also supported). The Python 
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if construct is implemented in TF 2 via tf.cond. The “for _ in data-
set” is implemented in TF 2 via dataset.reduce.

AutoGraph also has some rules for converting loops. A for loop is 
converted if the iterable in the loop is a Tensor, and a while loop is con-
verted if the while condition depends on a Tensor. If a loop is converted, 
it will be dynamically unrolled with tf.while_loop, as well as the spe-
cial case of a for x in tf.data.Dataset (the latter is transformed 
into tf.data.Dataset.reduce). If a loop is not converted, it will be 
statically unrolled.

AutoGraph supports control flow that is nested arbitrarily deep, so you 
can implement many types of ML programs. Check the online documenta-
tion for more information regarding AutoGraph.

Arithmetic Operations in TF 2

Listing B.10 displays the contents of tf2_arithmetic.py that 
illustrates how to perform arithmetic operations in a TF 2.

Listing B.10: tf2_arithmetic.py

import tensorflow as tf 

@tf.function # repłace print() with tf.print()
def compute_values():
  a = tf.add(4, 2)
  b = tf.subtract(8, 6)
  c = tf.multiply(a, 3)
  d = tf.math.divide(a, 6)

  print(a) # 6
  print(b) # 2
  print(c) # 18
  print(d) # 1

compute_values()

Listing B.10 defines the decorated Python function compute_val-
ues() with simple code for computing the sum, difference, product, 
and quotient of two numbers via the tf.add(), tf.subtract(), 
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tf.multiply(), and the tf.math.divide() APIs, respectively.  
The four print() statements display the values of a, b, c, and d. The out-
put from Listing B.10 is here:

tf.Tensor(6,   shape=(), dtype=int32)
tf.Tensor(2,   shape=(), dtype=int32)
tf.Tensor(18,  shape=(), dtype=int32)
tf.Tensor(1.0, shape=(), dtype=float64)

Caveats for Arithmetic Operations in TF 2

As you can probably surmise, you can also perform arithmetic operations 
involves TF 2 constants and variables. Listing B.11 displays the contents of 
tf2_const_var.py that illustrates how to perform arithmetic operations 
involving a TF 2 constant and a variable.

Listing B.11: tf2_const_var.py

import tensorflow as tf 

v1 = tf.Variable([4.0, 4.0])
c1 = tf.constant([1.0, 2.0])

diff = tf.subtract(v1,c1)
print("diff:",diff)

Listing B.11 computes the difference of the TF variable v1 and the TF 
constant c1, and the output is shown here:

diff: tf.Tensor([3. 2.], shape=(2,), dtype=float32)

However, if you update the value of v1 and then print the value of diff, it 
will not change. You must reset the value of diff, just as you would in other 
imperative programming languages. 

Listing B.12 displays the contents of tf2_const_var2.py that illus-
trates how to perform arithmetic operations involving a TF 2 constant and 
a variable.
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Listing B.12: tf2_const_var2.py

import tensorflow as tf 

v1 = tf.Variable([4.0, 4.0])
c1 = tf.constant([1.0, 2.0])

diff = tf.subtract(v1,c1)
print("diff1:",diff.numpy())

# diff is NOT updated:
v1.assign([10.0, 20.0])
print("diff2:",diff.numpy())

# diff is updated correctly:
diff = tf.subtract(v1,c1)
print("diff3:",diff.numpy())

import tensorflow as tf 

PI = 3.141592

@tf.function # repłace print() with tf.print()
def math_values():
  print(tf.math.divide(12,8))

Listing B.12 recomputes the value of diff in the final portion of List-
ing B.11, after which it has the correct value. The output is shown here:

diff1: [3. 2.]
diff2: [3. 2.]
diff3: [9. 18.]

TF 2 and Built-in Functions 

Listing B.13 displays the contents of tf2_math_ops.py that illustrates 
how to perform additional arithmetic operations in a TF graph.

Listing B.13: tf2_math_ops.py
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Listing B.13 contains a hard-coded approximation for PI, followed by 
the decorated Python function math_values() with five print() state-
ments that display various arithmetic results. Note, in particular, the third 
output value is a very small number (the correct value is zero). The output 
from Listing B.13 is here:

1.5
tf.Tensor(2.0,			  shape=(), dtype=float32)
tf.Tensor(6.2783295e-07,	 shape=(), dtype=float32)
tf.Tensor(-1.0,		  shape=(), dtype=float32)
tf.Tensor(0.99999964,	 shape=(), dtype=float32)

Listing B.14 displays the contents of tf2_math-ops_pi.py that illustrates 
how to perform arithmetic operations in TF 2.

Listing B.14: tf2_math_ops_pi.py

  print(tf.math.floordiv(20.0,8.0))
  print(tf.sin(PI))
  print(tf.cos(PI))
  print(tf.math.divide(tf.sin(PI/4.), 

tf.cos(PI/4.)))

math_values()

import tensorflow as tf 
import math as m

PI = tf.constant(m.pi)

@tf.function # repłace print() with tf.print()
def math_values():
  print(tf.math.divide(12,8))
  print(tf.math.floordiv(20.0,8.0))
  print(tf.sin(PI))
  print(tf.cos(PI))
  print(tf.math.divide(tf.sin(PI/4.), 

tf.cos(PI/4.)))

math_values()
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Listing B.14 is almost identical to the code in Listing B.13: the 
only difference is that Listing B.14 specifies a hard-coded value for 
PI, whereas Listing B.14 assigns m.pi to the value of PI. As a result, 
the approximated value is one decimal place closer to the correct value 
of zero. The output from Listing B.14 is here, and notice how the  
output format differs from Listing B.13 due to the Python print() 
function:

1.5
tf.Tensor(2.0,			  shape=(), dtype=float32)
tf.Tensor(-8.742278e-08,	 shape=(), dtype=float32)
tf.Tensor(-1.0,		  shape=(), dtype=float32)
tf.Tensor(1.0,			  shape=(), dtype=float32)

Calculating Trigonometric Values in TF 2

Listing B.15 displays the contents of tf2_trig_values.py that illustrates 
how to compute values involving trigonometric functions in TF 2.

Listing B.15: tf2_trig_values.py

import tensorflow as tf
import math as m

PI = tf.constant(m.pi)

a = tf.cos(PI/3.)
b = tf.sin(PI/3.)
c = 1.0/a # sec(60)
d = 1.0/tf.tan(PI/3.) # cot(60)

@tf.function # this decorator is okay
def math_values():
  print("a:",a)
  print("b:",b)
  print("c:",c)
  print("d:",d)

math_values()
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Listing B.14 is straightforward: there are several of the same TF 2 
APIs that you saw in Listing B.13. In addition, Listing B.14 contains the 
tf.tan() API, which computes the tangent of a number (in radians). The 
output from Listing B.14 is here:

a: tf.Tensor(0.49999997, shape=(), dtype=float32)
b: tf.Tensor(0.86602545, shape=(), dtype=float32)
c: tf.Tensor(2.0000002,  shape=(), dtype=float32)
d: tf.Tensor(0.57735026, shape=(), dtype=float32)

Calculating Exponential Values in TF 2

Listing B.15 displays the contents of tf2_exp_values.py that illustrates 
how to compute values involving additional trigonometric functions in TF 2.

Listing B.15: tf2_exp_values.py

import tensorflow as tf

a  = tf.exp(1.0)
b  = tf.exp(-2.0)
s1 = tf.sigmoid(2.0)
s2 = 1.0/(1.0 + b)
t2 = tf.tanh(2.0)

@tf.function # this decorator is okay
def math_values():
  print('a: ', a)
  print('b: ', b)
  print('s1:', s1)
  print('s2:', s2)
  print('t2:', t2)

math_values()

Listing B.15 starts with the TF 2 APIs tf.exp(), tf.sigmoid(), and 
tf.tanh() that compute the exponential value of a number, the sigmoid 
value of a number, and the hyperbolic tangent of a number, respectively. 
The output from Listing B.15 is here:

a:  tf.Tensor(2.7182817,  shape=(), dtype=float32)
b:  tf.Tensor(0.13533528, shape=(), dtype=float32)
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s1: tf.Tensor(0.880797,   shape=(), dtype=float32)
s2: tf.Tensor(0.880797,   shape=(), dtype=float32)
t2: tf.Tensor(0.9640276,  shape=(), dtype=float32)

Working with Strings in TF 2

Listing B.16 displays the contents of tf2_strings.py that illustrates how 
to work with strings in TF 2.

Listing B.16: tf2_strings.py

import tensorflow as tf

x1 = tf.constant("café")
print("x1:",x1)
tf.strings.length(x1)
print("")

len1 = tf.strings.length(x1, unit="UTF8_CHAR")
len2 = tf.strings.unicode_decode(x1, "UTF8")

print("len1:",len1.numpy())
print("len2:",len2.numpy())
print("")

# String arrays
x2 = tf.constant(["Café", "Coffee", "caffè",  

"咖啡"])
print("x2:",x2)
print("")

len3 = tf.strings.length(x2, unit="UTF8_CHAR")
print("len2:",len3.numpy())
print("")

r = tf.strings.unicode_decode(x2, "UTF8")
print("r:",r)

Listing B.16 defines the TF 2 constant x1 as a string that contains an 
accent mark. The first print() statement displays the first three characters 
of x1, followed by a pair of hexadecimal values that represent the accented e 
character. The second and third print()  statements display the number of 
characters in x1, followed by the UTF8 sequence for the string x1.
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The next portion of Listing B.16 defines the TF 2 constant x2 as a first-
order TF 2 tensor that contains four strings. The next print() statement 
displays the contents of x2, using UTF8 values for characters that contain 
accent marks.

The final portion of Listing B.16 defines r as the Unicode values for the 
characters in the string x2. The output from Listing B.14 is here:

x1: tf.Tensor(b'caf\xc3\xa9', shape=(), 
dtype=string)

len1: 4
len2: [ 99  97 102 233]

x2: tf.Tensor([b'Caf\xc3\xa9' b'Coffee' b'caff\xc3\
xa8' b'\xe5\x92\x96\xe5\x95\xa1'], shape=(4,), 
dtype=string)

len2: [4 6 5 2]

r: <tf.RaggedTensor [[67, 97, 102, 233], [67, 111, 
102, 102, 101, 101], [99, 97, 102, 102, 232], 
[21654, 21857]]>

Chapter 2 contains a complete code sample with more examples of a 
RaggedTensor in TF 2.

Working with Tensors and Operations in TF 2

Listing B.17 displays the contents of tf2_tensors_operations.py that 
illustrates how to use various operators with tensors in TF 2.

Listing B.17: tf2_tensors_operations.py

import tensorflow as tf

x = tf.constant([[1., 2., 3.], [4., 5., 6.]])

print("x:", x)
print("")
print("x.shape:", x.shape)
print("")
print("x.dtype:", x.dtype)

(Continued)
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print("")
print("x[:, 1:]:", x[:, 1:])
print("")
print("x[..., 1, tf.newaxis]:", x[..., 1, 

tf.newaxis])
print("")
print("x + 10:", x + 10)
print("")
print("tf.square(x):", tf.square(x))
print("")
print("x @ tf.transpose(x):", x @ tf.transpose(x))

m1 = tf.constant([[1., 2., 4.], [3., 6., 12.]])
print("m1:              ", m1 + 50)
print("m1 + 50:         ", m1 + 50)
print("m1 * 2:          ", m1 * 2)
print("tf.square(m1):   ", tf.square(m1))

Listing B.17 defines the TF tensor x that contains a 2x3 array of real 
numbers. The bulk of the code in Listing B.17 illustrates how to display 
properties of x by invoking x.shape and x.dtype, as well as the TF func-
tion tf.square(x). The output from Listing B.17 is here:

x: tf.Tensor(
[[1. 2. 3.]
 [4. 5. 6.]], shape=(2, 3), dtype=float32)

x.shape: (2, 3)

x.dtype: <dtype: 'float32'>

x[:, 1:]: tf.Tensor(
[[2. 3.]
 [5. 6.]], shape=(2, 2), dtype=float32)

x[..., 1, tf.newaxis]: tf.Tensor(
[[2.]
 [5.]], shape=(2, 1), dtype=float32)

x + 10: tf.Tensor(
[[11. 12. 13.]
 [14. 15. 16.]], shape=(2, 3), dtype=float32)
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Second-Order Tensors in TF 2 (1)

Listing B.18 displays the contents of tf2_elem2.py that illustrates how to 
define a second-order TF tensor and access elements in that tensor.

Listing B.18: tf2_elem2.py

tf.square(x): tf.Tensor(
[[ 1.  4.  9.]
 [16. 25. 36.]], shape=(2, 3), dtype=float32)

x @ tf.transpose(x): tf.Tensor(
[[14. 32.]
 [32. 77.]], shape=(2, 2), dtype=float32)

m1:               tf.Tensor(
[[51. 52. 54.]
 [53. 56. 62.]], shape=(2, 3), dtype=float32)

m1 + 50:          tf.Tensor(
[[51. 52. 54.]
 [53. 56. 62.]], shape=(2, 3), dtype=float32)

m1 * 2:           tf.Tensor(
[[ 2.  4.  8.]
 [ 6. 12. 24.]], shape=(2, 3), dtype=float32)

tf.square(m1):    tf.Tensor(
[[  1.   4.  16.]
 [  9.  36. 144.]], shape=(2, 3), dtype=float32)

import tensorflow as tf

arr2 = tf.constant([[1,2],[2,3]])

@tf.function
def compute_values():
  print('arr2: ',arr2)
  print('[0]:  ',arr2[0])
  print('[1]:  ',arr2[1])

compute_values()
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Listing B.18 contains the TF constant arr1 that is initialized with the 
value [[1,2],[2,3]]. The three print() statements display the value of 
arr1, the value of the element whose index is 1, and the value of the ele-
ment whose index is [1,1]. The output from Listing B.18 is here:

arr2:   tf.Tensor(
[[1 2]
 [2 3]], shape=(2, 2), dtype=int32)
[0]:   tf.Tensor([1 2], shape=(2,), dtype=int32)
[1]:   tf.Tensor([2 3], shape=(2,), dtype=int32)

2nd Order Tensors in TF 2 (2)

Listing B.19 displays the contents of tf2_elem3.py that illustrates how to 
define a second-order TF 2 tensor and access elements in that tensor.

Listing B.19: tf2_elem3.py

import tensorflow as tf

arr3 = tf.constant([[[1,2],[2,3]],[[3,4],[5,6]]])

@tf.function # repłace print() with tf.print()
def compute_values():
  print('arr3:   ',arr3)
  print('[1]:    ',arr3[1])
  print('[1,1]:  ',arr3[1,1])
  print('[1,1,0]:',arr3[1,1,0])

compute_values()

Listing B.19 contains the TF constant arr3 that is initialized with 
the value [[[1,2],[2,3]],[[3,4],[5,6]]]. The four print() state-
ments display the value of arr3, the value of the element whose index 
is 1, the value of the element whose index is [1,1], and the value of the 
element whose index is [1,1,0]. The output from Listing B.19 (adjusted 
slightly for display purposes) is here:

arr3:    tf.Tensor(
[[[1 2]
  [2 3]]

 [[3 4]
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  [5 6]]], shape=(2, 2, 2), dtype=int32)
[1]:     tf.Tensor(
[[3 4]
 [5 6]], shape=(2, 2), dtype=int32)
[1,1]:   tf.Tensor([5 6], shape=(2,), dtype=int32)
[1,1,0]: tf.Tensor(5, shape=(), dtype=int32)

Multiplying Two Second-Order Tensors in TF 2

Listing B.20 displays the contents of tf2_mult.py that illustrates how to 
multiply second-order tensors in TF 2.

Listing B.20: tf2_mult.py

import tensorflow as tf

m1 = tf.constant([[3., 3.]])		 # 1x2
m2 = tf.constant([[2.],[2.]])	 # 2x1
p1 = tf.matmul(m1, m2)			  # 1x1

@tf.function
def compute_values():
  print('m1:',m1)
  print('m2:',m2)
  print('p1:',p1)

compute_values()

Listing B.20 contains two TF constant m1 and m2 that are initialized 
with the value [[3., 3.]] and [[2.],[2.]]. Due to the nested square 
brackets, m1 has shape 1x2, whereas m2 has shape 2x1. Hence, the prod-
uct of m1 and m2 has shape (1,1).

The three print() statements display the value of m1, m2, and p1. The 
output from Listing B.20 is here:

m1: tf.Tensor([[3. 3.]], shape=(1, 2), dtype=float32)
m2: tf.Tensor(
[[2.]
 [2.]], shape=(2, 1), dtype=float32)
p1: tf.Tensor([[12.]], shape=(1, 1), dtype=float32)
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Convert Python Arrays to TF Tensors

Listing B.21 displays the contents of tf2_convert_tensors.py that 
illustrates how to convert a Python array to a TF 2 tensor.

Listing B.21: tf2_convert_tensors.py

import tensorflow as tf
import numpy as np  

x1 = np.array([[1.,2.],[3.,4.]])
x2 = tf.convert_to_tensor(value=x1, dtype=tf.

float32)

print ('x1:',x1)
print ('x2:',x2)

import tensorflow as tf

try:
  tf.constant(1) + tf.constant(1.0)
except tf.errors.InvalidArgumentError as ex:
  print(ex)

Listing B.21 is straightforward, starting with an import statement for 
TensorFlow and one for NumPy. Next, the x_data variable is a NumPy array, 
and x is a TF tensor that is the result of converting x_data to a TF tensor. 
The output from Listing B.21 is here:

x1: [[1. 2.]
 [3. 4.]]
x2: tf.Tensor(
[[1. 2.]
 [3. 4.]], shape=(2, 2), dtype=float32)

Conflicting Types in TF 2
Listing B.22 displays the contents of tf2_conflict_types.py that illus-
trates what happens when you try to combine incompatible tensors in TF 2.

Listing B.22: tf2_conflict_types.py
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Listing B.22 contains two try/except blocks. The first block adds two 
constants 1 and 1.0, which are compatible. The second block attempts to 
add the value 1.0 that’s declared as a tf.float64 with 1.0, which are not 
compatible tensors. The output from Listing B.22 is here:

cannot compute Add as input #1(zero-based) was expected 
to be a int32 tensor but is a float tensor [Op:Add] name: add/

cannot compute Add as input #1(zero-based) was expected to 
be a double tensor but is a float tensor [Op:Add] name: add/

Differentiation and tf.GradientTape in TF 2

Automatic differentiation (i.e., calculating derivatives) is useful for imple-
menting ML algorithms such as back propagation for training various types 
of NNs (Neural Networks). During eager execution, the TF 2 context man-
ager tf.GradientTape traces operations for computing gradients. This 
context manager provides a watch() method for specifying a tensor that 
will be differentiated (in the mathematical sense of the word).

The tf.GradientTape context manager records all forward-pass oper-
ations on a “tape.” Next, it computes the gradient by playing the tape back-
ward, and then discards the tape after a single gradient computation. Thus, 
a tf.GradientTape can only compute one gradient: subsequent invoca-
tions throw a runtime error. Keep in mind that the tf.GradientTape 
context manager only exists in eager mode. 

Why do we need the tf.GradientTape context manager? Consider 
deferred execution mode, where we have a graph in which we know how 
nodes are connected. The gradient computation of a function is performed 
in two steps: 1) backtracking from the output to the input of the graph, and 
2) computing the gradient to obtain the result. 

By contrast, in eager execution the only way to compute the gradi-
ent of a function using automatic differentiation is to construct a graph. 
After constructing the graph of the operations executed within the 

try:
  tf.constant(1.0, dtype=tf.float64) + 

tf.constant(1.0)
except tf.errors.InvalidArgumentError as ex:
  print(ex)
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tf.GradientTape context manager on some watchable element (such 
as a variable), we can instruct the tape to compute the required gradient. 
If you want a more detailed explanation, the tf.GradientTape docu-
mentation page contains an example that explains how and why tapes are 
needed.

The default behavior for tf.GradientTape is to play once and then 
discard. However, it’s possible to specify a persistent tape, which means 
that the values are persisted and therefore the tape can be played multiple 
times. The next section contains several examples of tf.GradientTape, 
including an example of a persistent tape.

Examples of tf.GradientTape

Listing B.23 displays the contents of tf2_gradient_tape1.py that illus-
trates how to invoke tf.GradientTape in TF 2. This example is one of the 
simplest examples of using tf.GradientTape in TF 2.

Listing B.23: tf2_gradient_tape1.py

import tensorflow as tf

w = tf.Variable([[1.0]])

with tf.GradientTape() as tape:
  loss = w * w

grad = tape.gradient(loss, w)
print("grad:",grad)

Listing B.23 defines the variable w, followed by a with statement that 
initializes the variable loss with expression w*w. Next, the variable grad is 
initialized with the derivative that is returned by the tape, and then evalu-
ated with the current value of w.

As a reminder, if we define the function z = w*w, then the first deriva-
tive of z is the term 2*w , and when this term is evaluated with the value of 
1.0 for w, the result is 2.0. Launch the code in Listing B.23 and you will see 
the following output:

grad: tf.Tensor([[2.]], shape=(1, 1), dtype=float32)
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Using the watch() Method of tf.GradientTape
Listing B.24 displays the contents of tf2_gradient_tape2.py that also 
illustrates the use of tf.GradientTape with the watch() method in TF 2.

Listing B.24: tf2_gradient_tape2.py

import tensorflow as tf

x = tf.constant(3.0)

with tf.GradientTape() as g:
  g.watch(x)
  y = 4 * x * x

dy_dx = g.gradient(y, x)

Listing B.24 contains a similar with statement as Listing B.23, but this 
time a watch() method is also invoked to watch the tensor x. As you saw 
in the previous section, if we define the function y = 4*x*x, then the first 
derivative of y is the term 8*x; when the latter term is evaluated with the 
value 3.0, the result is 24.0.

Launch the code in Listing B.24 and you will see the following output:
dy_dx: tf.Tensor(24.0, shape=(), dtype=float32)

Using Nested Loops with tf.GradientTape
Listing B.25 displays the contents of tf2_gradient_tape3.py that also 
illustrates how to define nested loops with tf.GradientTape in order to 
calculate the first and the second derivative of a tensor in TF 2.

Listing B.25: tf2_gradient_tape3.py

import tensorflow as tf

x = tf.constant(4.0)
with tf.GradientTape() as t1:
  with tf.GradientTape() as t2:
    t1.watch(x)
    t2.watch(x)
    z = x * x * x
  dz_dx = t2.gradient(z, x)
d2z_dx2 = t1.gradient(dz_dx, x)

(Continued)
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The first portion of Listing B.25 contains a nested loop, where the outer 
loop calculates the first derivative and the inner loop calculates the second 
derivative of the term x*x*x when x equals 4. The second portion of List-
ing B.25 contains another nested loop that produces the same output with 
slightly different syntax. 

In case you’re a bit rusty regarding derivatives, the next code block 
shows you a function z, its first derivative z', and its second derivative 
z'':

z   = x*x*x
z'  = 3*x*x
z'' = 6*x

When we evaluate z, z', and z'' with the value 4.0 for x, the result is 
64.0, 48.0, and 24.0, respectively. Launch the code in Listing B.25 and you 
will see the following output:

First  dz_dx:   tf.Tensor(48.0, shape=(), dtype=float32)
Second d2z_dx2: tf.Tensor(24.0, shape=(), dtype=float32)
First  dz_dx:   tf.Tensor(48.0, shape=(), dtype=float32)
Second d2z_dx2: tf.Tensor(24.0, shape=(), dtype=float32)

Other Tensors with tf.GradientTape
Listing B.26 displays the contents of tf2_gradient_tape4.py  
that illustrates how to use tf.GradientTape in order to calculate  
the first derivative of an expression that depends on a 2x2 tensor in  
TF 2.

print("First  dz_dx:  ",dz_dx)
print("Second d2z_dx2:",d2z_dx2)

x = tf.Variable(4.0)
with tf.GradientTape() as t1:
  with tf.GradientTape() as t2:
    z = x * x * x
  dz_dx = t2.gradient(z, x)
d2z_dx2 = t1.gradient(dz_dx, x)

print("First  dz_dx:  ",dz_dx)
print("Second d2z_dx2:",d2z_dx2)
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Listing B.26: tf2_gradient_tape4.py

import tensorflow as tf

x = tf.ones((3, 3))

with tf.GradientTape() as t:
  t.watch(x)
  y = tf.reduce_sum(x)
  print("y:",y)
  z = tf.multiply(y, y)
  print("z:",z)
  z = tf.multiply(z, y)
  print("z:",z)

# the derivative of z with respect to y
dz_dy = t.gradient(z, y)
print("dz_dy:",dz_dy)

In Listing B.26, y equals the sum of the elements in the 3x3 tensor x, 
which is 9.

Next, z is assigned the term y*y and then multiplied again by y, so the 
final expression for z (and its derivative) is here:

z  = y*y*y
z' = 3*y*y

When z’ is evaluated with the value 9 for y, the result is 3*9*9, which equals 
243. Launch the code in Listing B.26 and you will see the following output 
(slightly reformatted for readability):

y: tf.Tensor(9.0,		  shape=(), dtype=float32)
z: tf.Tensor(81.0,		  shape=(), dtype=float32)
z: tf.Tensor(729.0,		  shape=(), dtype=float32)
dz_dy: tf.Tensor(243.0,	 shape=(), dtype=float32)

A Persistent Gradient Tape
Listing B.27 displays the contents of tf2_gradient_tape5.py that 
illustrates how to define a persistent gradient tape in order to with 
tf.GradientTape in order to calculate the first derivative of a tensor in 
TF 2.
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Listing B.27: tf2_gradient_tape5.py

import tensorflow as tf

x = tf.ones((3, 3))

with tf.GradientTape(persistent=True) as t:
  t.watch(x)
  y = tf.reduce_sum(x)
  print("y:",y)
  w = tf.multiply(y, y)
  print(“w:”,w)
  z = tf.multiply(y, y)
  print("z:",z)
  z = tf.multiply(z, y)
  print("z:",z)

# the derivative of z with respect to y
dz_dy = t.gradient(z, y)
print("dz_dy:",dz_dy)
dw_dy = t.gradient(w, y)
print(“dw_dy:”,dw_dy)

Listing B.27 is almost the same as Listing B.26: the new sections are 
displayed in bold. Note that w is the term y*y and therefore the first deriva-
tive w ‘ is 2*y. Hence, the values for w and w ‘ are 81 and 18, respectively, 
when they are evaluated with the value 9.0. Launch the code in Listing B.27 
and you will see the following output (slightly reformatted for readability), 
where the new output is shown in bold:

y: tf.Tensor(9.0,		  shape=(), dtype=float32)
w: tf.Tensor(81.0,		  shape=(), dtype=float32)
z: tf.Tensor(81.0,		  shape=(), dtype=float32)
z: tf.Tensor(729.0,		  shape=(), dtype=float32)
dz_dy: tf.Tensor(243.0,	 shape=(), dtype=float32)
dw_dy: tf.Tensor(18.0,	 shape=(), dtype=float32)

Google Colaboratory

Depending on the hardware, GPU-based TF 2 code is typically at least fif-
teen times faster than CPU-based TF 2 code. However, the cost of a good 
GPU can be a significant factor. Although NVIDIA provides GPUs, those 



Introduction to TF 2  • 259

consumer-based GPUs are not optimized for multi-GPU support (which is 
supported by TF 2).

Fortunately, Google Colaboratory is an affordable alternative that pro-
vides free GPU and TPU support, and also runs as a Jupyter notebook 
environment. In addition, Google Colaboratory executes your code in the 
cloud and involves zero configuration, and it’s available here:

https://colab.research.google.com/notebooks/welcome.ipynb

This Jupyter notebook is suitable for training simple models and test-
ing ideas quickly. Google Colaboratory makes it easy to upload local files, 
install software in Jupyter notebooks, and even connect Google Colabora-
tory to a Jupyter runtime on your local machine.

Some of the supported features of Colaboratory include TF 2 execution 
with GPUs, visualization using Matplotlib, and the ability to save a copy of 
your Google Colaboratory notebook to Github by using File > Save a 
copy to GitHub. 

Moreover, you can load any .ipynb on GitHub by just adding the path to 
the URL colab.research.google.com/github/ (see the Colaboratory 
website for details).

Google Colaboratory has support for other technologies such as HTML 
and SVG, enabling you to render SVG-based graphics in notebooks that are in 
Google Colaboratory. One point to keep in mind: any software that you install 
in a Google Colaboratory notebook is only available on a per-session basis: if 
you log out and log in again, you need to perform the same installation steps 
that you performed during your earlier Google Colaboratory session.

As mentioned earlier, there is one other very nice feature of Google 
Colaboratory: you can execute code on a GPU for up to twelve hours per 
day for free. This free GPU support is extremely useful for people who 
don’t have a suitable GPU on their local machine (which is probably the 
majority of users), and now they launch TF 2 code to train neural networks 
in less than twenty or thirty minutes that would otherwise require multiple 
hours of CPU-based execution time.

In case you’re interested, you can launch Tensorboard inside a Google 
Colaboratory notebook with the following command (replace the specified 
directory with your own location):

%tensorboard --logdir /logs/images
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Keep in mind the following details about Google Colaboratory. First, 
whenever you connect to a server in Google Colaboratory, you start what’s 
known as a session. You can execute the code in a session with a GPU or a 
TPU, and you can execute your code without any time limit for your session. 
However, if you select the GPU option for your session, only the first twelve 
hours of GPU execution time are free. Any additional GPU time during that 
same session incurs a small charge (see the website for those details).

The other point to keep in mind is that any software that you install in 
a Jupyter notebook during a given session will not be saved when you exit 
that session. For example, the following code snippet installs TFLearn in a 
Jupyter notebook:

!pip install tflearn

When you exit the current session and at some point later you start a new 
session, you need to install TFLearn again, as well as any other software 
(such as Github repositories) that you also installed in any previous session.

Incidentally, you can also run TF 2 code and TensorBoard in Google 
Colaboratory, with support for CPUs and GPUs (and support for TPUs will 
be available later). Navigate to this link for more information:

https://www.tensorflow.org/tensorboard/r2/tensorboard_in_notebooks

Other Cloud Platforms

GCP (Google Cloud Platform) is a cloud-based service that enables you 
to train TF 2 code in the cloud. GCP provides deep learning DL images 
(similar in concept to Amazon AMIs) that are available here:

https://cloud.google.com/deep-learning-vm/docs

The preceding link provides documentation and a link to DL images 
based on different technologies, including TF 2 and PyTorch, with GPU 
and CPU versions of those images. Along with support for multiple versions 
of Python, you can work in a browser session or from the command line.

GCP SDK
Install GCloud SDK on a Mac-based laptop by downloading the software at 
this link: https://cloud.google.com/sdk/docs/quickstart-macos

You will also receive USD 300 worth of credit (over one year) if you 
have never used Google cloud.
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Summary

This chapter introduced you to TF 2, a very brief view of its architecture, 
and some of the tools that are part of the TF 2 family. Then you learned 
how to write basic Python scripts containing TF 2 code with TF constants 
and variables. You also learned how to perform arithmetic operations and 
some built-in TF functions.

Next, you learned how to calculate trigonometric values, how to use for 
loops, and how to calculate exponential values. You also saw how to perform 
various operations on second-order TF 2 tensors. In addition, you saw code 
samples that illustrate how to use some of the new features of TF 2, such as 
the @tf.function decorator and tf.GradientTape. 

Then you got an introduction to Google Colaboratory, which is a cloud-
based environment for machine learning and deep learning. This environ-
ment is based on Jupyter notebooks, with support for Python and various 
other languages. Google Colaboratory also provides up to twelve hours of 
free GPU use on a daily basis, which is a very nice feature.





A P P E N D I X C
INTRODUCTION TO  
PANDAS

This appendix starts with an introduction to the Pandas package for Python 
that provides a rich and powerful set of APIs for managing datasets. These 
APIs are very useful for machine learning and deep learning tasks that 
involve dynamically slicing and dicing subsets of datasets. 

The first part of this appendix briefly describes Pandas and some of 
its useful features. This section contains code samples that illustrate some 
nice features of DataFrames and a brief discussion of series, which are 
two of the main features of Pandas. The second part of this appendix dis-
cusses various types of DataFrames that you can create, such as numeric 
and Boolean DataFrames. In addition, you will see examples of creating 
DataFrames with NumPy functions and random numbers.

The second section of this appendix shows you how to manipulate the 
contents of DataFrames with various operations. In particular, you will also 
see code samples that illustrate how to create Pandas DataFrames from 
CSV files, Excel spreadsheets, and data that is retrieved from a URL. The 
third section of this appendix gives you an overview of important data clean-
ing tasks that you can perform with Pandas APIs.

The final section of this appendix introduces you to Jupyter, which is 
a Python-based application for displaying and executing Python code in a 
browser. You will also learn about the Google Colaboratory environment, 
which is fully online and supports Jupyter notebooks and provides 12 
hours of daily GPU usage for free.
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After you have completed this appendix, glance through the following 
blog post that discusses an initiative for parallelizing Pandas, as well as a chart 
containing the most frequently used Pandas APIs in Kaggle competitions:

https://rise.cs.berkeley.edu/blog/pandas_on-ray-early-lessons

What Is Pandas? 

Pandas is a Python package that is compatible with other Python packages, 
such as NumPy, Matplotlib, and so forth. Install Pandas by opening a 
command shell and invoking this command for Python 2.x:

pip install pandas

Launch this command to install Pandas for Python 3.x:

pip3 install pandas

In many ways the Pandas package has the semantics of a spreadsheet, 
and it also works with xls, xml, html, csv file types. Pandas pro-
vides a data type called a DataFrame (similar to a Python dictionary) with 
extremely powerful functionality, which is discussed in the next section. 

Pandas DataFrames support a variety of input types, such as ndar-
rays, lists, dicts, or Series. Pandas also provides another data type 
called Pandas Series (not discussed in this appendix), this data structure 
provides another mechanism for managing data (search online for more 
details).

Pandas Dataframes
In simplified terms, a Pandas DataFrame is a two-dimensional data struc-
ture, and it’s convenient to think of the data structure in terms of rows and 
columns. DataFrames can be labeled (rows as well as columns), and the 
columns can contain different data types. 

By way of analogy, it might be useful to think of a DataFrame as the 
counterpart to a spreadsheet, which makes it a very useful data type in 
Pandas related Python scripts. The source of the dataset can be a data file, 
database tables, web service, and so forth. Pandas DataFrame features 
include:

•	 Data Frame Methods

•	 Data Frame Statistics
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•	 Grouping, Pivoting, and Reshaping

•	 Dealing with Missing Data

•	 Joining Data Frames

Dataframes and Data Cleaning Tasks
The specific tasks that you need to perform depend on the structure and 
contents of a dataset. In general, you will perform a workflow with the fol-
lowing steps (not necessarily always in this order), all of which can be per-
formed with a Pandas DataFrame:

•	 Read data into a dataframe

•	 Display top of dataframe

•	 Display column data types

•	 Display non-missing values

•	 Replace NA with a value

•	 Iterate through the columns

•	 Statistics for each column

•	 Find Missing Values

•	 Total missing values

•	 Percentage of missing values

•	 Sort table values

•	 Print summary information

•	 Columns with > 50% missing

•	 Rename columns.

A Labeled Pandas Dataframe 

Listing C.1 displays the contents of pandas_labeled_df.py that illus-
trates how to define a Pandas DataFrame whose rows and columns are 
labeled.
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Listing C.1: pandas_labeled_df.py

import numpy
import pandas

myarray = �numpy.array([[10,30,20], 
[50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']
colnames = ['January', 'February', 'March']

mydf = �Pandas.DataFrame(myarray, index=rownames, 
columns=colnames)

print(mydf)
print(mydf.describe())

Listing C.1 contains two import statements followed by the variable 
myarray, which is a 3x3 NumPy array of numbers. The variables rownames 
and colnames provide names for the rows and columns, respectively, of 
the data in myarray. Next, the variable mydf is initialized as a Pandas 
DataFrame with the specified datasource (i.e., myarray).

You might be surprised to see that the first portion of the output below 
requires a single print statement (which simply displays the contents 
of mydf). The second portion of the output is generated by invoking the 
describe() method that is available for any NumPy DataFrame. The 
describe() method is very useful: you will see various statistical quanti-
ties, such as the mean, standard deviation minimum, and maximum per-
formed column-wise (not row-wise), along with values for the 25th, 50th, 
and 75th percentiles. The output of Listing C.1 is here:

           January  February    March
apples        10        30       20
oranges       50        40       60
beer        1000      2000      3000

           January     February        March
count     3.000000     3.000000     3.000000
mean    353.333333   690.000000  1026.666667
std     560.386771  1134.504297  1709.073823
min      10.000000    30.000000    20.000000
25%      30.000000    35.000000    40.000000
50%      50.000000    40.000000    60.000000
75%     525.000000  1020.000000  1530.000000
max    1000.000000  2000.000000  3000.000000
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Pandas Numeric DataFrames

Listing C.2 displays the contents of pandas_numeric_df.py that illus-
trates how to define a Pandas DataFrame whose rows and columns are 
numbers (but the column labels are characters).

Listing C.2: pandas_numeric_df.py>

import pandas as pd

df1 = �pd.DataFrame(np.random.randn(10, 4),columns 
=['A','B','C','D'])

df2 = �pd.DataFrame(np.random.randn(7, 3), columns 
=['A','B','C'])

df3 = df1 + df2

        A       B       C   D
0  0.0457 -0.0141  1.3809 NaN
1 -0.9554 -1.5010  0.0372 NaN
2 -0.6627  1.5348 -0.8597 NaN
3 -2.4529  1.2373 -0.1337 NaN
4  1.4145  1.9517 -2.3204 NaN
5 -0.4949 -1.6497 -1.0846 NaN
6 -1.0476 -0.7486 -0.8055 NaN
7     NaN     NaN     NaN NaN
8     NaN     NaN     NaN NaN
9     NaN     NaN     NaN NaN

The essence of Listing C.2 involves initializing the DataFrames df1 
and df2, and then defining the DataFrame df3 as the sum of df1 and 
df2. The output from Listing C.2 is here:

Keep in mind that the default behavior for operations involving  
a DataFrame and Series is to align the Series index on the 
DataFrame columns; this results in a row-wise output. Here is a simple 
illustration:

names = pd.Series(['SF', 'San Jose', 'Sacramento'])
sizes = pd.Series([852469, 1015785, 485199])

df = �pd.DataFrame({ 'Cities': names, 'Size': sizes })
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df = pd.DataFrame({ 'City name': names,'sizes': 
sizes })

print(df)
The output of the preceding code block is here:

    City name    sizes
0          SF   852469
1    San Jose  1015785
2  Sacramento   485199

Pandas Boolean DataFrames

Pandas supports Boolean operations on DataFrames, such as the logical 
or, the logical and, and the logical negation of a pair of DataFrames. List-
ing C.3 displays the contents of pandas_boolean_df.py that illustrates 
how to define a Pandas DataFrame whose rows and columns are Boolean 
values.

Listing C.3: pandas_boolean_df.py

import pandas as pd

df1 = �pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, 
dtype=bool)

df2 = �pd.DataFrame({'a' : [0, 1, 1], 'b' : [1, 1, 0] }, 
dtype=bool)

print("df1 & df2:")
print(df1 & df2)

print("df1 | df2:")
print(df1 | df2)

print("df1 ^ df2:")
print(df1 ^ df2)

Listing C.3 initializes the DataFrames df1 and df2, and then com-
putes df1 & df2, df1 | df2, df1 ^ df2, which represent the logical AND, 



Introduction to Pandas   • 269

the logical OR, and the logical negation, respectively, of df1 and df2. The 
output from launching the code in Listing C.3 is here:

df1 & df2:
       a      b
0  False  False
1  False   True
2   True  False
df1 | df2:
      a     b
0  True  True
1  True  True
2  True  True
df1 ^ df2:
       a      b
0   True   True
1   True  False
2  False   True

Transposing a Pandas Dataframe
The T attribute (as well as the transpose function) enables you to generate 
the transpose of a Pandas DataFrame, similar to a NumPy ndarray.

For example, the following code snippet defines a Pandas dataFrame 
df1 and then displays the transpose of df1:

df1 = �pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, 
dtype=int)

print("df1.T:")
print(df1.T)

The output is here: 

df1.T:
   0  1  2
a  1  0  1
b  0  1  1

The following code snippet defines Pandas dataFrames df1 and df2 
and then displays their sum:

df1 = �pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, 
dtype=int)
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df2 = �pd.DataFrame({'a' : [3, 3, 3], 'b' : [5, 5, 5] }, 
dtype=int)

print("df1 + df2:")
print(df1 + df2)

The output is here: 

df1 + df2:
   a  b
0  4  5
1  3  6
2  4  6

Pandas Dataframes and Random Numbers 

Listing C.4 displays the contents of pandas_random_df.py that illustrates 
how to create a Pandas DataFrame with random numbers.

Listing C.4: pandas_random_df.py

import pandas as pd
import numpy as np

df = �pd.DataFrame(np.random.randint(1, 5, size=(5, 2)), 
columns=['a','b'])

df = df.append(df.agg(['sum', 'mean']))

print("Contents of dataframe:")
print(df)

Listing C.4 defines the Pandas DataFrame df that consists of five 
rows and two columns of random integers between 1 and 5. Notice that 
the columns of df are labeled a and b. In addition, the next code snippet 
appends two rows consisting of the sum and the mean of the numbers in 
both columns. The output of Listing C.4 is here:

a    b
0      1.0  2.0
1      1.0  1.0
2      4.0  3.0
3      3.0  1.0
4      1.0  2.0
sum   10.0  9.0
mean   2.0  1.8
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Combining Pandas DataFrames (1)

Listing C.5 displays the contents of pandas_combine_df.py that illus-
trates how to combine Pandas DataFrames.

Listing C.5: pandas_combine_df.py 

import pandas as pd
import numpy as np

df = pd.DataFrame({'foo1' : np.random.randn(5),
                     'foo2' : np.random.randn(5)})

print("contents of df:")
print(df)

print("contents of foo1:")
print(df.foo1)

print("contents of foo2:")
print(df.foo2)

Listing C.5 defines the Pandas DataFrame df that consists of five 
rows and two columns (labeled “foo1” and “foo2”) of random real num-
bers between 0 and 5. The next portion of Listing C.5 displays the contents 
of df and foo1. The output of Listing C.5 is here:

contents of df:
       foo1      foo2
0  0.274680 -0.848669
1 -0.399771 -0.814679
2  0.454443 -0.363392
3  0.473753  0.550849
4 -0.211783 -0.015014

contents of foo1:
0    0.256773
1    1.204322
2    1.040515
3   -0.518414
4    0.634141
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Name: foo1, dtype: float64
contents of foo2:
0   -2.506550
1   -0.896516
2   -0.222923
3    0.934574
4    0.527033
Name: foo2, dtype: float64

Combining Pandas DataFrames (2)

Pandas supports the “concat” method in DataFrames in order to concat-
enate DataFrames. Listing C.6 displays the contents of concat_frames.
py that illustrates how to combine two Pandas DataFrames.

Listing C.6: concat_frames.py

import pandas as pd

can_weather = pd.DataFrame({
    "city": ["Vancouver","Toronto","Montreal"],
    "temperature": [72,65,50],
    "humidity": [40, 20, 25]
})

us_weather = pd.DataFrame({
    "city": ["SF","Chicago","LA"],
    "temperature": [60,40,85],
    "humidity": [30, 15, 55]
})

df = pd.concat([can_weather, us_weather])
print(df)

The first line in Listing C.6 is an import statement, followed by the 
definition of the Pandas dataframes can_weather and us_weather 
that contain weather-related information for cities in Canada and 
the USA, respectively. The Pandas dataframe df is the concatenation  



Introduction to Pandas   • 273

of  can_weather and us_weather. The output from Listing C.6  
is here:

0		  Vancouver		  40		  72
1		  Toronto		  20		  65
2		  Montreal		  25		  50
0		  SF			   30		  60
1		  Chicago		  15		  40
2		  LA			   55		  85

Data Manipulation with Pandas Dataframes (1)

As a simple example, suppose that we have a two-person company that 
keeps track of income and expenses on a quarterly basis, and we want to 
calculate the profit/loss for each quarter and the overall profit/loss.

Listing C.7 displays the contents of pandas_quarterly_df1.py that 
illustrates how to define a Pandas DataFrame consisting of income-related 
values.

Listing C.7: pandas_quarterly_df1.py

import pandas as pd

summary = {
    'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
    'Cost':    [23500, 34000, 57000, 32000],
    'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)

print("Entire Dataset:\n",df)
print("Quarter:\n",df.Quarter)
print("Cost:\n",df.Cost)
print("Revenue:\n",df.Revenue)

Listing C.7 defines the variable summary that contains hard-coded quar-
terly information about cost and revenue for our two-person company. In 
general, these hard-coded values would be replaced by data from another 
source (such as a CSV file), so think of this code sample as a simple way to 
illustrate some of the functionality that is available in Pandas DataFrames.



274 • Artificial Intelligence, Machine Learning, Deep Learning

The variable df is a Pandas DataFrame based on the data in the sum-
mary variable. The three print statements display the quarters, the cost 
per quarter, and the revenue per quarter.

The output from Listing C.7 is here:

Entire Dataset:
		   Cost		 Quarter	 Revenue
0		  23500		   Q1		   40000
1		  34000		   Q2		   60000
2		  57000		   Q3		   50000
3				      Q4		   30000
Quarter:
0		  Q1
1		  Q2
2		  Q3
3		  Q4
Name: Quarter, dtype: object
Cost:
0		  23500
1		  34000
2		  57000
3		  32000
Name: Cost, dtype: int64
Revenue:
0		  40000
1		  60000
2		  50000
3		  30000
Name: Revenue, dtype: int64

Data Manipulation with Pandas DataFrames (2)

In this section, let’s suppose that we have a two-person company that keeps 
track of income and expenses on a quarterly basis, and we want to calculate 
the profit/loss for each quarter and the overall profit/loss.

Listing C.8 displays the contents of pandas_quarterly_df1.py that 
illustrates how to define a Pandas DataFrame consisting of income-related 
values.
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Listing C.8: pandas_quarterly_df2.py

import pandas as pd

summary = {
    'Quarter':	 ['Q1', 'Q2', 'Q3', 'Q4'],
    'Cost':	 [-23500, -34000, -57000, -32000],
    'Revenue':	 [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)
print("First Dataset:\n",df)

df['Total'] = df.sum(axis=1)	
print("Second Dataset:\n",df)

Listing C.8 defines the variable summary that contains quarterly infor-
mation about cost and revenue for our two-person company. The variable 
df is a Pandas DataFrame based on the data in the summary variable. 
The three print statements display the quarters, the cost per quarter, and 
the revenue per quarter.

The output from Listing C.8 is here:

First Dataset:
     Cost	    Quarter		  Revenue
0	 -23500	 Q1		   40000
1	 -34000	 Q2		   60000
2	 -57000	 Q3		   50000
3	 -32000	 Q4		   30000
Second Dataset:
     Cost	    Quarter		  Revenue	 Total
0	 -23500	 Q1		   40000		 16500
1	 -34000	 Q2		   60000		 26000
2	 -57000	 Q3		   50000		 -7000
3	 -32000	 Q4		   30000		 -2000

Data Manipulation with Pandas Dataframes (3)

Let’s start with the same assumption as the previous section: we have a two-
person company that keeps track of income and expenses on a quarterly 
basis, and we want to calculate the profit/loss for each quarter and the over-
all profit/loss. In addition, we want to compute column totals and row totals.
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Listing C.9 displays the contents of pandas_quarterly_df1.py that 
illustrates how to define a Pandas DataFrame consisting of income-related 
values.

Listing C.9: pandas_quarterly_df3.py

import pandas as pd

summary = {
    'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
    'Cost':    [-23500, -34000, -57000, -32000],
    'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)
print("First Dataset:\n",df)

df['Total'] = df.sum(axis=1)
df.loc['Sum'] = df.sum()
print("Second Dataset:\n",df)

# or df.loc['avg'] / 3
#df.loc['avg'] = df[:3].mean()
#print("Third Dataset:\n",df)

Listing C.9 defines the variable summary that contains quarterly 
information about cost and revenue for our two-person company. The 
variable df is a Pandas DataFrame based on the data in the summary 
variable. The three print statements display the quarters, the cost 
per quarter, and the revenue per quarter. The output from Listing C.9  
is here:

First Dataset:
     Cost	     Quarter		 Revenue
0	 -23500	 Q1		  40000
1	 -34000	 Q2		  60000
2	 -57000	 Q3		  50000
3	 -32000	 Q4		  30000
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Second Dataset:
     Cost	    Quarter		  Revenue	 Total
0	 -23500	 Q1		  40000		 16500
1	 -34000	 Q2		  60000		 26000
2	 -57000	 Q3		  50000		 -7000
3	 -32000	 Q4		  30000		 -2000

Sum -146500  Q1Q2Q3Q4		 180000	 33500

Pandas DataFrames and CSV Files

The code samples in several earlier sections contain hard-coded data inside 
the Python scripts. However, it’s also very common to read data from a CSV 
file. You can use the Python CSV.reader() function, the NumPy load-
txt() function, or the Pandas function read_csv() function (shown in 
this section) to read the contents of CSV files.

Listing C.10 displays the contents of the CSV file weather_data.csv and 
Listing C.11 displays the contents of weather_data.py that illustrates 
how to read a CSV file, initialize a Pandas DataFrame with the contents 
of that CSV file, and display various subsets of the data in the Pandas 
DataFrames.

Listing C.10: weather_data.csv

day,temperature,windspeed,event
7/1/2018,42,16,Rain   
7/2/2018,45,3,Sunny   
7/3/2018,78,12,Snow   
7/4/2018,74,9,Snow    
7/5/2018,42,24,Rain   
7/6/2018,51,32,Sunny

Listing C.11: weather_data.py

import pandas as pd

df = pd.read_csv("weather_data.csv")

print(df)
print(df.shape)  # rows, columns

(Continued)
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Listing C.11 invokes the Pandas read_csv() function to read the 
contents of the CSV file weather_data.csv, followed by a set of Python 
print() statements that display various portions of the CSV file. 

The output from Listing C.11 is here:

         day  temperature   windspeed	 event
0  7/1/2018           42         16		 Rain
1  7/2/2018           45          3		 Sunny
2  7/3/2018           78         12		 Snow
3  7/4/2018           74          9		 Snow
4  7/5/2018           42         24		 Rain
5  7/6/2018           51         32		 Sunny
(6, 4)
         day  temperature   windspeed	 event
0  7/1/2018           42         16		 Rain
1  7/2/2018           45          3		 Sunny
2  7/3/2018           78         12		 Snow
3  7/4/2018           74          9		 Snow
4  7/5/2018           42         24		 Rain

         day  temperature   windspeed	 event
1  7/2/2018           45          3		 Sunny
2  7/3/2018           78         12		 Snow
3  7/4/2018           74          9		 Snow
4  7/5/2018           42         24		 Rain
5  7/6/2018           51         32		 Sunny

         day  temperature   windspeed	 event
1  7/2/2018           45          3		 Sunny
2  7/3/2018           78         12		 Snow

print(df.head()) # df.head(3)
print(df.tail())
print(df[1:3])
print(df.columns)
print(type(df['day']))
print(df[['day','temperature']])
print(df['temperature'].max())
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Index(['day', 'temperature', 'windspeed', 'event'], 
dtype='object')

<class 'pandas.core.series.Series'>
        day      temperature
0  7/1/2018           42
1  7/2/2018           45
2  7/3/2018           78
3  7/4/2018           74
4  7/5/2018           42
5  7/6/2018           51
78

In some situations you might need to apply Boolean conditional logic to 
filter out some rows of data, based on a conditional condition that’s applied 
to a column value. 

Listing C.12 displays the contents of the CSV file people.csv and List-
ing C.13 displays the contents of people_pandas.py that illustrates how to 
define a Pandas DataFrame that reads the CSV file and manipulates the data.

Listing C.12: people.csv

fname,lname,age,gender,country
john,smith,30,m,usa
jane,smith,31,f,france
jack,jones,32,f,france
dave,stone,33,f,france
sara,stein,34,f,france
eddy,bower,35,f,france

import pandas as pd

df = pd.read_csv('people.csv')
df.info()
print('fname:')
print(df['fname'])
print('------------')
print('age over 33:')

Listing C.13: people_pandas.py

(Continued)
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Listing C.13 populate the Pandas dataframe df with the contents of 
the CSV file people.csv. The next portion of Listing C.13 displays the 
structure of df, followed by the first names of all the people. The next por-
tion of Listing C.13 displays a tabular list of six rows containing either True 
or False depending on whether a person is over 33 or at most 33, respec-
tively. The final portion of Listing C.13 displays a tabular list of two rows 
containing all the details of the people who are over 33. The output from 
Listing C.13 is here:

print(df['age'] > 33)
print('------------')
print('age over 33:')
myfilter = df['age'] >  33
print(df[myfilter])

myfilter = df['age'] >  33
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 5 columns):
fname      6 non-null object
lname      6 non-null object
age        6 non-null int64
gender     6 non-null object
country    6 non-null object
dtypes: int64(1), object(4)
memory usage: 320.0+ bytes
fname:
0    john
1    jane
2    jack
3    dave
4    sara
5    eddy
Name: fname, dtype: object
------------
age over 33:
0    False
1    False
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Pandas DataFrames and Excel Spreadsheets (1)

Listing C.14 displays the contents of people_xlsx.py that illustrates how 
to read data from an Excel spreadsheet and create a Pandas DataFrame 
with that data.

Listing C.14: people_xlsx.py

2    False
3    False
4     True
5     True
Name: age, dtype: bool
------------
age over 33:
  fname  lname  age gender country
4  sara  stein   34      f  france
5  eddy  bower   35      m  france

import pandas as pd

df = pd.read_excel("people.xlsx")
print("Contents of Excel spreadsheet:")
print(df)

Listing C.14 is straightforward: the Pandas dataframe df is ini-
tialized with the contents of the spreadsheet people.xlsx (whose 
contents are the same as people.csv displayed in Listing C.12) via 
the Pandas function read_excel(). The output from Listing C.14  
is here:

  fname  lname  age gender country
0  john  smith   30      m     usa
1  jane  smith   31      f  france
2  jack  jones   32      f  france
3  dave  stone   33      f  france
4  sara  stein   34      f  france
5  eddy  bower   35      f  france
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Pandas DataFrames and Excel Spreadsheets (2)

Listing C.15 displays the contents of employees_xlsx.py that illus-
trates how to read data from an Excel spreadsheet and create a Pandas 
DataFrame with that data.

Listing C.15: employees_xlsx.py

import pandas as pd

df = pd.read_excel("employees.xlsx")
print("Contents of Excel spreadsheet:")
print(df)

print("Q1 sum, mean, min, max:")
print(df["q1"].sum(), df["q1"].mean(),df["q1"].

min(),df["q1"].max())

print("Q2 sum, mean, min, max:")
print(df["q2"].sum(), df["q2"].mean(),df["q2"].

min(),df["q2"].max())

print("Q3 sum, mean, min, max:")
print(df["q3"].sum(), df["q3"].mean(),df["q3"].

min(),df["q3"].max())

print("Q4 sum, mean, min, max:")
print(df["q4"].sum(), df["q4"].mean(),df["q4"].

min(),df["q4"].max())

sum_col=df[["q1","q2","q3","q4"]].sum()
print("Quarter totals:")
print(sum_col)
df = pd.read_excel("people.xlsx")
print("Contents of Excel spreadsheet:")
print(df)

Listing C.15 starts by reading the contents of the spreadsheet people.
xlsx (whose contents are the same as people.csv displayed in Listing 
C.12) into the Pandas dataframe df, just as you saw in Listing C.14. The 
rest of Listing C.15 displays various statistical values, such as the sum, mean, 
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min, and max values of quarter 1, quarter 2, quarter 3, and quarter 4. The 
output from Listing C.15 is here:

Contents of Excel spreadsheet:

id fname lname gender title q1

0 1000 john smith m marketing 20000

1 2000 jane smith f developer 30000

2 3000 jack jones m sales 10000

3 4000 dave stone m support 15000

4 5000 sara stein f analyst 25000

5 6000 eddy bower m developer 14000

q2 q3 q4 country

0 12000 18000 25000 usa

1 15000 11000 35000  france

2 19000 12000 15000 usa

3 17000 14000 18000 france

4 22000 18000 28000 italy

5 32000 28000 10000 france

Q1 sum, mean, min, max:
114000 19000.0 10000 30000
Q2 sum, mean, min, max:
117000 19500.0 12000 32000
Q3 sum, mean, min, max:
101000 16833.333333333332 11000 28000
Q4 sum, mean, min, max:
131000 21833.333333333332 10000 35000
Quarter totals:
q1    114000
q2    117000
q3    101000
q4    131000
dtype: int64
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Contents of Excel spreadsheet:
	 fname	lname	  age	 gender      country
0	 john	 smith	  30	   m		   usa
1	 jane	 smith	  31	   f		  france
2	 jack	 jones	  32	   f		  france
3	 dave	 stone	  33	   f		  france
4	 sara	 stein	  34	   f		  france

Reading Data Files with Different Delimiters

This section contains an example of reading a text file that contains differ-
ent delimiters: some rows use a space as a delimiter, whereas other rows 
start with a space and use a colon “:” as well as a space as a separator.

Listing C.16 displays the contents of multiple_delims.dat that 
contains data rows with different delimiters, followed by Listing C.17 that 
displays the contents of multiple_delims.py that read the contents of 
multiple_delims.dat into a Pandas DataFrame.

Listing C.16: multiple_delims.dat

c stuff
c more header
c begin data         
 1 1:.5           
 1 2:6.5          
 1 3:5.3

import pandas as pd

df = pd.read_csv('multidelim.dat', skiprows=3, 
                   names=['a', 'b', 'c'],
                   sep=' |:', engine='python')

print("dataframe:")
print(df)
print(data.head())

Listing C.17: multiple_delims.py

Listing C.17 invokes the Pandas read_csv() function to read the 
contents of multidelim.dat into the Pandas dataframe df. Compare 
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the output shown below with the contents of Listing C.16 to understand  
the code in Listing C.17:

dataframe:
   a  b    c
0  1  1  0.5
1  1  2  6.5
2  1  3  5.3

Transforming Data with the sed Command (Optional)

The preceding section contains an example of a data file with differ-
ent delimiters, but there is a limitation: the first set of rows must have  
the same type and the second set of rows must also be of the same type. 

However, you might have a more heterogeneous dataset with a set of 
rows in random order, where each row contains multiple delimiters. The 
solution in this section involves three files: an initial randomized dataset 
multiple_delims2.dat, a shell script multiple_delims2.sh for cre-
ating a clean dataset called multiple_delims2b.dat, and a Python script 
multiple_delims2.py that reads the data in multiple_delims2b.
dat into a Pandas DataFrame.

Listing C.18 displays the contents of multiple_delims2.dat that 
contains a mixture of delimiters in multiple rows (in random order).

Listing C.18: multiple_delims2.dat

1000|Jane:Edwards^Sales
2000:Tom:Smith^Development
3000|Dave:Del Ray^Marketing
4000^Steven^Andrews:Marketing

inputfile="multiple_delims2.dat"
cat $inputfile | sed -e 's/:/,/' -e 's/|/,/' -e 

's/\^/,/g'

Listing C.19 displays the contents of the shell script multiple_
delims.sh that transforms multiple_delims2.dat into the dataset 
multiple_delims2b.dat, where the latter dataset has only a comma “,” 
as a delimiter between columns in every row.

Listing C.19: multiple_delims2.sh
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Listing C.19 specifies the name of a text file whose contents are piped 
to the Unix sed command that replaces all occurrences of the characters 
“,”, “|”, and “^” with a comma “,”. The trailing g in the sed command 
ensures that the replacement is performed globally. The resulting output 
will contain only a “,” as a delimiter (shown in Listing C.18).

Open a command shell and navigate to the directory that contains the 
shell script in Listing C.19 and execute the following pair of commands:

chmod +x multiple_delims2.sh

./multiple_delims2.sh > multiple_delims2b.dat

Listing C.20 displays the contents of multiple_delims2b.dat that 
you created in the preceding step.

Listing C.20: multiple_delims2b.dat

1000,Jane,Edwards,Sales
2000,Tom,Smith,Development
3000,Dave,Del Ray,Marketing
4000,Steven,Andrews,Marketing

Listing C.21 displays the contents of multiple_delims2b.py that 
reads the contents of multiple_delims2b.dat into a Pandas DataFrame.

Listing C.21: multiple_delims2b.py

import pandas as pd	

df = pd.read_csv('multiple_delims2b.dat', 
                   names=['a', 'b', 'c', 'd'],
                   sep=',', engine='python')

print("dataframe:")
print(df)

Listing C.21 imports pandas and then initializes the variable df with 
the contents of the text file multiple_delims2b.dat. The output from 
launching the code in Listing C.21 is here:

dataframe:
      a       b        c            d
0	 1000	   Jane	    Edwards	     Sales
1	 2000	   Tom	     Smith	     Development



Introduction to Pandas   • 287

2	 3000	   Dave	    Del Ray	     Marketing
3	 4000	   Steven  Andrews	     Marketing

Once again, the heavy lifting is performed by the cryptic-looking sed 
command in the shell script multiple_delims2.sh, which is in appen-
dix 4 of the book Data Cleaning Pocket Primer (ISBN: 978-1683922179). 
This book contains a detailed explanation of the sed command that will 
enable you to understand the contents of multiple_delims2.sh, as well 
as chapters that discuss the grep and awk commands and numerous exam-
ples of how to use them for various data cleaning tasks.

Select, Add, and Delete Columns in DataFrames

This section contains short code blocks that illustrate how to perform opera-
tions on a DataFrame that resemble the operations on a Python dictionary. 
For example, getting, setting, and deleting columns works with the same 
syntax as the analogous Python dict operations, as shown here:

df = �pd.DataFrame.from_dict(dict([('A',[1,2,3]), 
('B',[4,5,6])]),

                orient='index', columns=['one', 
'two', 'three'])

print(df)

The output from the preceding code snippet is here:

   one  two  three
A    1    2      3    
B    4    5      6  

Now look at the following sequence of operations on the contents of the 
dataframe df:

df['three'] = df['one'] * df['two']
df['flag'] = df['one'] > 2
print(df)

The output from the preceding code block is here:

   one  two  three   flag
a  1.0  1.0    1.0  False
b  2.0  2.0    4.0  False
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c  3.0  3.0    9.0   True
d  NaN  4.0    NaN  False

Columns can be deleted or popped like with a Python dict, as shown in 
following code snippet:

del df['two']
three = df.pop('three')
print(df)

The output from the preceding code block is here:

   one   flag
a  1.0  False
b  2.0  False
c  3.0   True
d  NaN  False

When inserting a scalar value, it will naturally be propagated to fill the column:

df['foo'] = 'bar'
print(df)

The output from the preceding code snippet is here:

   one   flag  foo
a  1.0  False  bar
b  2.0  False  bar
c  3.0   True  bar
d  NaN  False  bar

When inserting a Series that does not have the same index as the DataFrame, 
it will be conformed to the index of the DataFrame:

df['one_trunc'] = df['one'][:2]
print(df)

The output from the preceding code snippet is here:

   one   flag  foo	 one_trunc
a  1.0  False  bar        1.0
b  2.0  False  bar        2.0
c  3.0   True  bar        NaN
d  NaN  False  bar        NaN

You can insert raw ndarrays but their length must match the length of the 
index of the DataFrame.
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Pandas DataFrames and Scatterplots

Listing C.22 displays the contents of pandas_scatter_df.py that illus-
trates how to generate a scatterplot from a Pandas DataFrame.

Listing C.22: pandas_scatter_df.py

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt	
from pandas import read_csv
from pandas.plotting import scatter_matrix

myarray = np.array([[10,30,20], 
[50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']
colnames = ['January', 'February', 'March']

mydf = pd.DataFrame(myarray, index=rownames, 
columns=colnames)

	
print(mydf)
print(mydf.describe())

scatter_matrix(mydf)
plt.show()

Listing C.22 starts with various import statements, followed by the def-
inition of the NumPy array myarray. Next, the variables myarray and  
colnames are initialized with values for the rows and columns, 
respectively. The next portion of Listing C.22 initializes the Pandas 
DataFrame mydf so that the rows and columns are labeled in the out-
put, as shown here:

January  February	 March
apples        10        30     20
oranges       50        40     60
beer        1000      2000   3000
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           January     February        March
count     3.000000     3.000000     3.000000
mean    353.333333   690.000000  1026.666667
std     560.386771  1134.504297  1709.073823
min      10.000000    30.000000    20.000000
25%      30.000000    35.000000    40.000000
50%      50.000000    40.000000    60.000000
75%     525.000000  1020.000000  1530.000000
max    1000.000000  2000.000000  3000.0000000

Pandas DataFrames and Histograms

Listing C.23 displays the contents of pandas_histograms.py that illus-
trates how to generate histograms from a Pandas DataFrame.

Listing C.23: pandas_histograms.py

import pandas as pd

df = pd.read_csv("housing.csv")

print(df.head())
print(df.info())
print(df.describe())

import matplotlib.pyplot as plt
df.hist(bins=50, figsize=(20,15))
#save_fig("housing_histograms")
plt.show()

Listing C.23 initializes the Pandas DataFrame df with the  
contents of the CSV file housing.csv. Next, various portions of df are 
displayed, such as the first five rows and information about the struc-
ture of df. 

The next portion of Listing C.23 imports the plt class so that we can 
display a scatterplot of the data in df: this is done by invoking the hist() 
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method of the df variable, followed by the plt.show() command that 
actually displays the scatter plot. The output from Listing C.23 is here:

Unnamed: 

0 price
lot 
size

bed 
rooms

bath 
rms

stories
drive 
way

rec 
room\

0 1 42000.0 5850 3 1 2 yes no

1 2 38500.0 4000 2 1 1 yes no

2 3 49500.0 3060 3 1 1 yes no

3 4 60500.0 6650 3 1 2 yes yes

4 5 61000.0 6360 2 1 1 yes no

  fullbase gashw airco  garagepl prefarea  
0      yes    no    no         1       no  
1       no    no    no         0       no  
2       no    no    no         0       no  
3       no    no    no         0       no  
4       no    no    no         0       no  

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 546 entries, 0 to 545
Data columns (total 13 columns):
Unnamed: 0    546 non-null int64
price         546 non-null float64
lotsize       546 non-null int64
bedrooms      546 non-null int64
bathrms       546 non-null int64
stories       546 non-null int64
driveway      546 non-null object
recroom       546 non-null object
fullbase      546 non-null object
gashw         546 non-null object
airco         546 non-null object
garagepl      546 non-null int64
prefarea      546 non-null object
dtypes: float64(1), int64(6), object(6)
memory usage: 55.5+ KB
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None
Unnamed:	

0 price
lot 
size

bed 
rooms

count 546.000000 546.000000 546.000000 546.000000

mean 273.500000 68121.597070 5150.265568 2.965201

std 157.760895 26702.670926 2168.158725 0.737388

min 1.000000 25000.000000 1650.000000 1.000000

25% 137.250000 49125.000000 3600.000000 2.000000

50% 273.500000 62000.000000 4600.000000 3.000000

75% 409.750000 82000.000000 6360.000000 3.000000

max 546.000000 190000.000000 16200.000000 6.000000

bathrms stories garagepl

count 546.000000 546.000000 546.000000

mean 1.285714 1.807692 0.692308

std 0.502158 0.868203 0.861307

min 1.000000 1.000000 0.000000

25% 1.000000 1.000000 0.000000

50% 1.000000 2.000000 0.000000

75% 2.000000 2.000000 1.000000

max 4.000000 4.000000 3.000000

Figure C.1 displays the histograms that are generated by launching the 
code in Listing C.23.

Pandas DataFrames and Simple Statistics

Listing C.24 displays the contents of housing_stats.py that illustrates 
how to gather basic statistics from data in a Pandas DataFrame.
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FIGURE C.1 Histograms for the housing.csv Dataset.

Listing C.24: housing_stats.py

import pandas as pd

df = pd.read_csv("housing.csv")

minimum_bdrms = df["bedrooms"].min()
median_bdrms  = df["bedrooms"].median()
maximum_bdrms = df["bedrooms"].max()

print("minimum # of bedrooms:",minimum_bdrms)
print("median  # of bedrooms:",median_bdrms)
print("maximum # of bedrooms:",maximum_bdrms)
print("")

print("median values:",df.median().values)
print("")

(Continued)
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Listing C.24 initializes the Pandas DataFrame df with the contents 
of the CSV file housing.csv. The next three variables are initialized with 
the minimum, median, and maximum number of bedrooms, respectively, 
and then these values are displayed.

The next portion of Listing C.24 initializes the variable prices with 
the contents of the Prices column of the Pandas DataFrame df. Next, the 
first five rows are printed via the prices.head() statement, followed by 
the median value of the prices. 

The final portion of Listing C.24 initializes the variable corr_matrix 
with the contents of the correlation matrix for the Pandas DataFrame df, 
and then displays its contents. The output from Listing C.24 is here:

Apples
10

Standardizing Pandas DataFrames

Listing C.25 displays the contents of pandas_standardize_df.py that 
illustrates how to standardize data in a Pandas DataFrame.

prices = df["price"]
print("first 5 prices:")
print(prices.head())
print("")

median_price = df["price"].median()
print("median price:",median_price)
print("")

corr_matrix = df.corr()
print("correlation matrix:")
print(corr_matrix["price"].sort_

values(ascending=False))
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Listing C.25: pandas_standardize_df.py

# Standardize data (0 mean, 1 stdev)
from sklearn.preprocessing import StandardScaler
from pandas import read_csv
import numpy

url = 'https://goo.gl/bDdBiA'
names = ['preg','plas','pres','skin','test','mass',

'pedi','age','class']
dataframe = read_csv(url, names=names)
array = dataframe.values

# separate array into input and output components
X = array[:,0:8]
Y = array[:,8]
scaler = StandardScaler().fit(X)
rescaledX = scaler.transform(X)

# summarize transformed data
numpy.set_printoptions(precision=3)
print(rescaledX[0:5,:])

Listing C.25 imports the StandardScaler class from the Sklearn 
package in order to rescale data values so that they have a mean of 0 and a 
standard deviation of 1. 

Next, the variable url is initialized with the location of a website that 
returns CSV-based data. The names variable contains an array of column 
names that are used to label the columns of the CSV-based data. Next, the 
variable dataframe is initialized with the contents of the CSV-based data 
(retrieved from the location specified by the url variable).

The next portion of Listing C.25 initializes the variable array with the 
values in the variable dataframe. Next, the variable X is initialized with 
the leftmost eight columns of every row in the variable array, and the vari-
able y is initialized with the data in the ninth column of the variable array. 
The next portion of Listing C.25 invokes the fit method of the Standard-
Scaler class in order to fit the data contained in X, and the result is used 
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to initialize the variable scaler. The next statement invokes the trans-
form() method on the contents of X and the results are used to initialize 
the variable rescaledX, which concludes the required data transforma-
tions (finally!)

The final portion of Listing C.25 displays all the columns of the first five 
rows of the variable scaler. The output from Listing C.25 is here:

minimum # of bedrooms: 1
median  # of bedrooms: 3.0
maximum # of bedrooms: 6

median values: [2.735e+02 6.200e+04 4.600e+03 
3.000e+00 1.000e+00 2.000e+00 0.000e+00]

first 5 prices:
0    42000.0
1    38500.0
2    49500.0
3    60500.0
4    61000.0
Name: price, dtype: float64

median price: 62000.0

correlation matrix:
price         1.000000
lotsize       0.535796
bathrms       0.516719
stories       0.421190
garagepl      0.383302
Unnamed: 0    0.376007
bedrooms      0.366447

Pandas DataFrames, NumPy Functions, and Large Datasets

Pandas DataFrames containing numeric data can be used in conjunction 
with NumPy functions such as log, exp, and sqrt (and various other 
NumPy functions). Example of such functions are shown here:

df.exp(df)
np.asarray(df)
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matrix multiplication:
df.T.dot(df)

the dot method on Series implements dot product:

s1 = pd.Series(np.arange(5,10))
s1.dot(s1)

However, a Pandas DataFrame is not intended to be a direct replace-
ment for ndarray as some of its indexing semantics are quite different 
from a matrix.

Another challenge that you might face: what do you do with large 
datasets that exceed the memory of your machine? The solution involves 
a chunking technique for reading portions of data into memory. Chunking 
enables you to stream data from a file into a Pandas DataFrame, and you 
can specify the number of rows in a chunk of data. An example of chunking 
is shown here: 

import pandas as pd
mydata = pd.DataFrame()

#Modify chunksize based on your requirements
for chunk in pd.read_csv('myfile.csv', 

iterator=True, chunksize=5000):
  mydata = pd.concat([mydata, chunk], ignore_

index=True)

Working with Pandas Series

A Pandas Series is a one-dimensional labeled array that can be popu-
lated with any data type: integers, strings, floating point numbers, Python 
objects, and so forth. The axis labels are collectively referred to as the 
index. 

Create a Pandas Series as shown here in the Python REPL:

>>> s = pd.Series(data, index=index)

The variable data in the preceding code snippet can be a scalar value, 
a Python dict, an ndarray, and so forth. The variable index is a list of 
axis labels, which consists of different possible values, as discussed in the 
following subsections.
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From ndarray
If the variable data in the code snippet below is an ndarray, then index 
must be the same length as the variable data: 

>>> s = pd.Series(data, index=index)

However, if no index is passed, an index will be automatically created with 
the values [0, ..., len(data) - 1]. Here is another example:

>>> s = pd.Series(np.random.randn(5), index=['a', 'b', 
'c', 'd', 'e'])

>>> s

The output of the preceding code snippet in the Python REPL is here:

a    0.4691
b   -0.2829
c   -1.5091
d   -1.1356
e    1.2121
dtype: float64
>> s.index

The output of the preceding code snippet in the Python REPL is here:

Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
>>> pd.Series(np.random.randn(5))

The output of the preceding code snippet in the Python REPL is here:

0   -0.1732
1    0.1192
2   -1.0442
3   -0.8618
4   -2.1046
dtype: float64

Note that Pandas supports nonunique index values. However, if you invoke 
an operation that does not support duplicate index values, then an excep-
tion will be raised if you specify data that has duplicate index values. 

Here is an example of a Python Series that is instantiated from a 
Python dict:

>>> d = {'b' : 1, 'a' : 0, 'c' : 2}
>>> pd.Series(d)
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The output in the Python REPL is here:

b    1
a    0
c    2
dtype: int64

Pandas DataFrame from Series
Listing C.26 displays the contents of pandas_df.py that illustrates how to 
create a Pandas DataFrame with data from a Pandas Series.

Listing C.26: pandas_df.py

import pandas as pd

names = pd.Series(['SF', 'San Jose', 'Sacramento'])
sizes = pd.Series([852469, 1015785, 485199])

df = pd.DataFrame({ 'Cities': names, 'Size': sizes })
df = pd.DataFrame({ 'City name': names,'sizes': sizes })

print('df:',df)

Listing C.26 is straightforward: the first portion initializes the Pandas 
Series names and sizes with cities, and zip codes, respectively. The next 
portion of Listing C.26 creates the Pandas DataFrame df with the con-
tents of the series names and sizes. The output from Listing C.26 is here:

('df:',
    City name	 Sizes
0          SF	 852469
1    San Jose	 1015785
2  Sacramento	 485199)

Useful One-line Commands in Pandas 

This section contains an eclectic mix of one-line commands in Pan-
das (some of which you have already seen in this appendix) that are 
useful to know:

Save a data frame to a csv file (comma separated and without indices):

df.to_csv("data.csv", sep=",", index=False)
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List the column names of a DataFrame:

df.columns

Drop missing data from a DataFrame:

df.dropna(axis=0, how='any')

Replace missing data in a DataFrame:

df.replace(to_replace=None, value=None)

Check for NANs in a DataFrame:

pd.isnull(object)

Drop a feature in a DataFrame:

df.drop('feature_variable_name', axis=1)

Convert object type to float in a DataFrame:

pd.to_numeric(df["feature_name"], errors='coerce')

Convert data in a DataFrame to NumPy array:

df.as_matrix()

Display the first n rows of a dataframe:

df.head(n)

Get data by feature name in a DataFrame:

df.loc[feature_name]

Apply a function to a DataFrame: multiply all values in the “height” 
column of the data frame by 3:

df["height"].apply(lambda height: 3 * height)

OR:

def multiply(x):

    return x * 3

df["height"].apply(multiply)

Rename the fourth column of the data frame as “height”:

df.rename(�columns = {df.columns[3]:'height'}, 
inplace=True)
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Get the unique entries of the column “first” in a DataFrame:

df[""first"].unique()

Create a dataframe with columns “first” and “last” from an existing 
DataFrame:

new_df = df[["name", "size"]]

Sort the data in a DataFrame:

df.sort_values(ascending = False)

Filter the data column named “size” to display only values equal to 7:

df[df["size"] == 7]

Select the first row of the “height” column in a DataFrame:

df.loc([0], ['height'])

This concludes the Pandas-related portion of the Appendix. The next 
section contains a brief introduction to Jupyter, which is a Flask-based 
Python application that enables you to execute Python code in a browser. 
Instead of Python scripts, you will use Jupyter notebooks, which support 
various interactive features for executing Python code. In addition, your 
knowledge of Jupyter will be very useful when you decide to use Google 
Colaboratory (discussed later) that also supports Jupyter notebooks in a 
browser.

What Is Jupyter?

The Jupyter Notebook is an open-source web application for creating 
and sharing documents. Moreover, such documents can contain a combina-
tion of code, equations, visualizations, and text. The Jupyter home page 
is here:

http://jupyter.org/

Jupyter is popular among data scientists, Python developers, and 
even physicists because it simplifies the sharing of code. Moreover, Google 
Colaboratory (later in this appendix) supports Jupyter notebooks, along 
with some extra functionality.

First let’s take a look at some Jupyter features that are discussed in 
the next section.
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Jupyter Features
Jupyter has gained significant traction among various communities 
because of its ease of use and useful functionality. Some of the features of 
Jupyter include:

•	 support for multiple programming languages

•	 support for Python2 and Python3

•	 sharing notebooks

•	 importing notebooks

•	 download notebooks

•	 produce different types of output

•	 big data integration

•	 multiuser version

•	 user management and authentication

In particular, the Jupyter Notebook supports more than forty program-
ming languages, including Python, R, Julia, and Scala. Notebooks can be 
easily shared via email, Dropbox, GitHub and the Jupyter Notebook 
Viewer. Jupyter notebooks support interactive output that contains 
a combination of HTML, images, videos, LaTeX, and custom MIME 
types.

In addition, Jupyter notebooks support big data integration, such 
as Apache Spark, where the data has been generated from Python, R and 
Scala. A multiuser version of the Jupyter notebook is also available, and 
it’s designed for companies, classrooms, and research labs. You can also 
manage multiple users and authentication with OAuth and easily deploy 
the Jupyter Notebook to all the users in your organization. 

Launching Jupyter from the Command Line
Launching Jupyter from the command line is straightforward. First open 
a command shell, then navigate to the directory that contains the Jupyter 
notebook basic-stuff.ipynb, and then launch Jupyter with this com-
mand:

jupyter notebook
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After a few moments a new browser session is automatically opened 
and you will see a list of the files in the current directory.

JupyterLab
JupyterLab is an interactive development environment for notebooks con-
taining code and data, that also fully supports Jupyter notebooks. Jupy-
terLab also enables you to use text editors, terminals, data file viewers, 
and other custom components side by side with notebooks in a tabbed work 
area.

JupyterLab provides a high level of integration between notebooks, 
documents, and activities, so that you can:

•	 drag-and-drop to reorder notebook cells and copy them between 
notebooks.

•	 run code blocks interactively from text files (.py, .R, .md, .tex, etc.).

•	 link a code console to a notebook kernel to explore code 
interactively without cluttering up the notebook with temporary 
scratch work.

•	 edit popular file formats with live preview, such as Markdown, JSON, 
CSV, Vega, VegaLite (and others)

Develop JupyterLab Extensions
While many JupyterLab users will install additional JupyterLab exten-
sions, some of you will want to develop your own. The extension develop-
ment API is evolving during the beta release series and will stabilize in 
JupyterLab 1.0. To start developing a JupyterLab extension, see the 
JupyterLab Extension Developer Guide and the TypeScript or JavaScript 
extension templates.

JupyterLab itself is codeveloped on top of PhosphorJS, a new 
Javascript library for building extensible, high-performance, desktop-
style web applications. In fact, JupyterLab supports modern JavaS-
cript technologies such as TypeScript, React, Lerna, Yarn, and webpack. 
In addition, the combination of unit tests, documentation, consistent 
coding standards, and user experience research helps them maintain a 
high-quality application.
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Summary

This appendix introduced you to Pandas for creating labeled Dataframes 
and displaying metadata of Pandas Dataframes. Then you learned how to 
create Pandas Dataframes from various sources of data, such as random 
numbers and hard-coded data values.

You also learned how to read Excel spreadsheets and perform numeric 
calculations on that data, such as the min, mean, and max values in numeric 
columns. Then you saw how to create Pandas Dataframes from data stored 
in CSV files. Then you learned how to invoke a Web Service to retrieve 
data and populate a Pandas Dataframe with that data. In addition, you 
learned how to generate a scatterplot from data in a Pandas Dataframe. 
Finally, you saw how to use Jupyter, which is a Python-based application 
for displaying and executing Python code in a browser. 
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and scatterplots, 289–290
select, add, and delete columns in, 

287–288
from Series, 299
and simple statistics, 292–294
standardizing, 294–296
transposing, 269–270

pandas_labeled_df.py, 265–266
Pandas Numeric DataFrames, 267–268
Pandas read_csv() functions, 278
Pandas Series, 264, 297–299
Parallel construction, 142
Parse tree, 16, 17
PCA. See Principal component analysis
PeepholeLSTMCell class, 191
Perceptron activation function, 104
Perceptron Learning Rule, 13
Perceptrons, 103–105

in artificial neural network, 105
detailed view of, 104
function, 104

Persistent Gradient Tape, 257–258
“Perturbation technique,” 46, 48–50, 54, 55, 62
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Piece-wise linear function, 42
plain_linreg1.py, 55–56
plt.show() command, 291
PNG file, 27
Policy, 183
Policy-based reinforcement learning, 175
Popular NLP algorithms, 164–168
Posterior probability, 76
Preceding approach, 172
Preceding code block, 156
Precision, 37, 79
Prediction bias, 35
predict()method, 60, 194
“Preferred” activation function, 84
prices.head() statements, 294
Primitive types, TensorFlow 2 (TF 2), 225
Principal component analysis (PCA),  
32–33, 150
print() function, 234, 235, 244
print() statements, 210, 230, 241, 243, 
246, 247, 250, 266, 274, 275, 276

Prior probability, 76
PROSPECTOR, 12
p-value, 39
Python, xvii

activation functions in. See Python  
activation functions

Python activation functions, 83, 99, 100, 155, 166
add(), 239
create_model(), 214
decorator @tf.function, 218
func() function, 238
math_values(), 243
show_rank(), 229
@tf.function decorator for, 233

Python class, 189
Python file, 22
Python methods, 155

build_keras_mode(), 60
fit_transform() method, 60
predict() method, 60

Python read-eval-print-loop (REPL), 222

Q

Quadratic Scatterplot with NumPy and  
Matplotlib, 49–50

R

RaggedTensor, 247
Random forest classifiers, 65
Random forests, 27, 52, 73–74
Random numbers, 270
Ray, 43
read_csv() function, 277
read_excel(), 281
Recall, 37, 79
Receiver operating characteristic (ROC) 
curve, 38, 79

Rectified linear unit (ReLU), 111
Recurrence Mechanism, 162
Recurrent neural networks (RNNs), 17, 
63–64, 95, 101, 105, 127, 128–129, 173

anatomy of, 129–130
autoencoder, 147–151
back propagation through time, 130
gated recurrent unit, 147
TensorFlow and, 163
VAE-GAN model, 157
variational autoencoder, 150–151
working with Keras and, 130–135
working with TensorFlow and, 135–139

Reformer architecture, 163
Regression

algorithms, 26, 64
types of, 42–43

Regular Expressions (RegExs), 160
Regularization, 34–35
Reinforcement learning (RL), 19–20, 101, 
159, 173–174

applications, 174–175
Bellman equations, 181–182
NLP and, 175
toolkits and frameworks, 183–184
values, policies, and models, 175–176
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Relational artifacts, 16
Relative Positional Encoding, 162
ReLU. See Rectified Linear Unit; Rectified 
linear unit
ReLU activation functions, 83–85, 102, 107, 
115–117, 157, 190, 194, 199
REPL, 298, 299
Resizing images in Keras model, 204–205
ResNet, 117
Restoring, Keras model, 212–215
Ridge regularizers, 192
RL. See Reinforcement Learning
rllab, 183
RMSE. See Root Mean Squared Error
RMSProp, 51
RNN() class, 189
rnn-mnist.png file, 134
RNNs. See Recurrent neural networks
Robotics, 20–21
ROC curve. See Receiver operating charac-
teristic curve

Root Mean Squared Error (RMSE), 51
R-squared value, 36–37
Rule-based system, 18, 21

S

Saving, Keras model, 212–215
Scaled Exponential Linear Unit (SELU), 83
Scatterplots

with NumPy and Matplotlib, 46–49
Pandas DataFrame and, 289–290
of points, 47

Second-order tensors, in TensorFlow 2, 249–251
sed command, 285–287
Self-attention mechanism, 161
Self-awareness tests, 3
SELU. See Scaled Exponential Linear Unit
Semantic Net Processing System (SNePS), 9
Semi-supervised learning, 26
seq_length_batch, 137, 139

Sequential API, 188, 189
Sequential() class, 189
show_rank(), 229
SHRDLU, 16
sigmoid activation function, 83, 86–87, 
102, 111, 140, 190
SimpleRNN class, 131
Simple statistics, Pandas DataFrame and, 
292–294

Single-layered network, 13
Skip gram, 165
sklearn_tree2.py, 68, 69
Slanted parallel line segments, 45
SNePS. See Semantic Net Processing System
softmax activation function, 86, 93, 112, 
117, 190, 203
softplus activation function, 86
Specificity, 38
Speech recognition, 129
Speech-to-speech translation systems, 171
Spreadsheet, 24
Stand-alone expert systems, 13
Standalone Keras, TF 2 Keras vs., 192
Standard error, 236
Standardization, data normalization vs., 35
Standardized IQ tests, 4
Standardizing Pandas DataFrame, 
294–296
StandardScaler class, 73, 295, 296
StarCraft, 185
State-of-the-art algorithms, 139
Statistical terms, 38–39
Statistical value, 28
Strings, in TensorFlow 2, 246–247
Strong artificial intelligence, 7

vs. weak artificial intelligence, 4–5
StyleGANs, 156
summary() method, 131, 275
Supervised learning, 25
Support Vector Machines (SVM), 27, 74–75

tradeoffs of, 74–75
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SVM. See Support Vector Machines
Symbol-based approach, 14

T

tanh activation function, 83, 86, 111, 140, 
190

t-Distributed Stochastic Neighbor Embed-
ding (t-SNE), 32

TEIRESIAS, 12
Ten-fold cross-validation, 34
TensorBoard, 223
TensorBoard class, 207
TensorFlow, 23

and Keras, 148
and long short term memory, 142–147
neural networks in, 122
and recurrent neural networks, 135–139
reinforcement learning in, 183
and RNNs, 163

TensorFlow 2 (TF 2), xvi, 218–220 
architecture, 220–221
arithmetic operations in, 240–241

caveats for, 241–242
AutoGraph, 239–240
and built-in functions, 242–244
conflicting types in, 252–253
constant, 225–227
convert Python arrays to, 252–253
data types, 224–225
differentiation and tf.GradientTape 

in, 253–254
eager execution mode, 224
exponential values in, 245–246
installation, 221–222
multiplying two second-order tensors, 

251
namespaces in, 188–189
primitive types, 225
and Python REPL, 222
rank, 229
second-order tensors in, 249–251
shape, 230–231

tensors, 224
tensors and operations in, 247–249
@tf.function decorator. See @
tf.function decorator

toolkits, 222–223
trigonometric values in, 244–245
use cases, 220
variables, 225, 227–229, 231–233

vs. tensors, 233
vs. “Standalone” Keras, 192
working with strings in, 246–247

tensorflow.js toolkit, 223
TensorFlow Lite, 223
tensorflow.python.eager.def_
function.Function object, 238

TensorFlow Serving, 223
TensorForce, 183
Tensors, in TensorFlow 2, 224, 247–249
Tensors, with tf.GradientTape, 
256–257

Term frequency, 166–167
Term Frequency, Inverse Document Fre-
quency (tf-idf), 167–168

Test data
tests, 78
training data vs., 33, 34

Text-to-speech synthesis (TTS), 171
TF-Agents library, 183–184
tf.assign() method, 232
tf2_basic_keras.py, 195
tf.compat.v1, 219
tf.constant(), 225, 226
tf2_elem2.py, 249
@tf.function decorator, 218, 219, 233

Caveat about, 234–236
overloading functions with, 238–239
print() function vs., 236
for Python functions, 233
and standard error, 236
working with, 233–234, 236–238

tf.GradientTape, 253–254
decorator, 217, 218
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examples of, 254
nested loops with, 255–256
tensors with, 256–257
using watch() method of, 255

tf-idf. See Term Frequency, Inverse 
Document Frequency
tf.keras.activations  
namespaces, 190
tf2_keras_callback.py, 206–207
tf2_keras_callback2.py, 208–209
tf.keras.callbacks namespaces, 191
tf.keras.datasets namespaces, 
190–191
tf.keras.Dense, 194
tf.keras.experimental  
namespaces, 191
tf.keras.layers.Conv2D(), 119
tf.keras.layers.Flatten(), 119
tf.keras.layers namespace, 189–190, 
219
tf.keras.layers.SimpleRNN 
class, 129
tf.keras.metrics namespaces, 211
tf2_keras_mnist_digit.py, 118
tf.keras.models namespaces, 189, 194
tf.keras namespace, 188
tf.keras.optimizers namespaces, 192
tf.keras.regularizers  
namespaces, 192
tf2_keras_save_model.py, 212–213
tf.keras.Sequential, 219
tf.keras.utils namespaces, 192
tf.model.Model class, 189
tf.nn namespaces, 194
tf.nn.ReLU, 194
tf.print() function, 234
tf.rank() API, 229
tf.Session() code block, 144
tf.shape()API, 230–231
tf.tan() API, 245
tf2_tensors_operations.py, 247–249

tf-TRFL, 183
tf_upgrade_v2, 219
tf.Variable(), 225
Threshold value, 88
Titanic dataset, 25
Titanic dataset, 191
to_bow(), 166
to_categorical() functions, 192
Toolkits, TensorFlow 2 (TF 2), 222–223
Tradeoffs of support vector machines, 74–75
Traditional artificial intelligence, 18
“Traditional” linear regression, 41
“Traditional” programming languages, 24
Training data vs. test data, 33, 34
Training process, 100, 102
Train set, 78
Transfer learning method, 169
Transformer architecture, 140, 161–163, 173
Transformers, 17
Transformer-XL architecture, 162–163
Transforming data, 285–287
transform() method, 296
Translation invariance, 101
Translatotron, 171–172
Transposing, Pandas DataFrame, 269–270
tree_classifier.py, 71–72
Trigonometric values, in TensorFlow 2, 244–245
Truncated BPTT, 130
t-SNE. See t-Distributed Stochastic Neigh-
bor Embedding

TTS. See Text-to-speech synthesis
Turing test

definition, 5–6
interrogator test, 6

U

ULMFit. See Universal Language Model 
Fine-tuning

Universal Language Model Fine-tuning 
(ULMFit), 169–171
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Unsupervised learning, 25–26, 27
Use cases, TensorFlow 2 (TF 2), 220
Utilities application, xviii

V

VAE-GAN model, 157
VAEs. See Variational Autoencoders
Vanishing gradient problem, 101, 102
Vanishing gradient scenario, 130
Variable

TensorFlow 2, 225, 227–229
tree_clf, 69

Variable selection, 30
Variable subset selection, 30
Variance, 36, 40

error due to, 36
as measure of information, 33
of random variable, 33

Variational autoencoder, 150–151
Variational Autoencoders (VAEs), 99

W

watch() method, 255
Weak artificial intelligence approach, 4–5
Weighted sum, 105
Weizenbaum, Joseph, 14–15
while loop, 239–240
Winograd, Terry, 15–16
with statements, 254, 255
Word embedding algorithms, 168–169
Wrapper strategy, 31

X

XCON, 12
XOR function, 89, 96–98, 110, 113

Z

Zero probability problem, 78
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