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xv

What Is the Goal?

The goal of this book is to introduce TensorFlow 2 fundamentals for basic 
machine learning algorithms in TensorFlow. It is intended to be a fast-
paced introduction to various “core” features of TensorFlow, with code 

samples that cover deep learning and TensorFlow. The material in the chapters 
illustrates how to solve a variety of tasks using TensorFlow, after which you can 
do further reading to deepen your knowledge. 

This book provides more detailed code samples than those that are found 
in intermediate and advanced TensorFlow books. Although it contains some 
basic code samples in TensorFlow, some familiarity with the software will be 
helpful.

The book will also save you the time required to search for code samples, 
which is a potentially time-consuming process. In any case, if you’re not sure 
whether or not you can absorb the material in this book, glance through the 
code samples to get a feel for the level of complexity. At the risk of stating the 
obvious, please keep in mind the following point: you will not become an expert 
in TensorFlow by reading this book.

What Will I Learn from This Book?

The first chapter contains TensorFlow code samples that illustrate very 
simple TensorFlow functionality, followed by a chapter whose code samples 
illustrate an assortment of built-in APIs. The third chapter delves into the 
TensorFlow Dataset, with a plethora of code samples that illustrate how to 
use “lazy” operators in conjunction with datasets. The fourth chapter dis-
cusses linear regression and the fifth chapter covers logistic regression. If you 
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think that you’ll struggle significantly with the code in the first two chapters, 
then an “absolute beginners” type of book is recommended to prepare you 
for this one.

Another point: although Jupyter is popular, all the code samples in this 
book are Python scripts. However, you can quickly learn about the useful fea-
tures of Jupyter through various online tutorials. In addition, it’s worth looking 
at Google Colaboratory, which is entirely online and is based on Jupyter note-
books, along with free GPU usage.

Why Does This Book Include TF 1.x Material?

If you are new to TensorFlow, then feel free to skip the TF 1.x content, 
particularly if you are starting with a new project involving TensorFlow and you 
don’t have any TF 1.x. However, as this book goes to print, the vast majority of 
existing TensorFlow code is TF 1.x code, which is massive when you consider 
all the companies that are using TensorFlow. Hence, many people who are 
working with TF 1.x also need to learn how to convert TF 1.x to TF 2.

Almost all the TF 1.x material (including the section regarding the upgrade 
script from TF 1.x to TF 2) is limited to the second half of Chapter 1. Keep in 
mind another detail: even if you plan to learn only TF 2, you might be faced 
with a task that involves upgrading from TF 1.x to TF 2, and now you’ll have 
some potentially useful information regarding TF 1.x in this book.

The TF 1.x and TF 2.0 Books: How Are They Different?

TensorFlow 2 uses eager execution whereas TensorFlow 1.x uses deferred 
execution, which means that the coding styles are significantly different. TF 2.0 
also introduces new features, such as generators (which are decorated Python 
functions), that are discussed in that book. 

In some cases, TF 1.x and TF 2 contain the same functionality that is im-
plemented using different APIs. For example, tf.data.Dataset in TF 1.x 
uses iterators (there are four main types) to iterate through datasets, whereas 
tf.data.Dataset in TF 2 uses generators. The TF 2.0 book contains both 
types of code samples for tf.data.Dataset code samples (with the pri-
mary focus on TF 2.0 coding style).

Why Isn’t Keras in Its Own Chapter in This Book?

The answer is straightforward: this book introduces TensorFlow 2 from the 
perspective of people who are interested in machine learning. Consequently, 
Keras is introduced on an “as-needed” topic. For example, Chapter 4 contains 
a section about Keras in the context of linear regression. Chapter 5 contains a 
Keras-based code sample in the context of classifiers (specifically for logistic 
regression). The appendix also contains some Keras-based code samples for 
advanced topics.
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For the same reason, Chapter 5 is devoted to classifiers in machine learning, 
and the Keras and TF 2 material is discussed in the second half of the chapter. 
The extent to which this mixture appeals to you depends on your objectives 
regarding TensorFlow 2 and machine learning.

How Much Keras Knowledge Is Needed for This Book?

The answer depends on the extent to which you become involved in ma-
chine learning: there are essentially four options available, which are discussed 
as follows.

Option #1: �if you are not interested in Keras, you can skip the last example in 
Chapter 4 and Chapter 5, as well as the appendix: even so, there is 
still plenty of TF 2 content in this book. 

Option #2: �if you only want to learn enough details about Keras to work with 
linear regression, there is a very simple example in Chapter 4 that 
follows a “bare bones” section regarding Keras. 

Option #3: �if you also want to learn about Keras and logistic regression, there 
is an example in Chapter 5. This example requires some theoreti-
cal knowledge involving activation functions, optimizers, and cost 
functions, all of which are discussed in the first half of Chapter 5.

Option #4: �if you want to go even further and also learn about Keras and deep 
learning, the appendix discusses some of the underpinnings of 
MLPs, CNNs, RNNs, and LSTMs.

Please keep in mind that Keras is well-integrated into TensorFlow 2 (in 
the tf.keras namespace), and it provides a layer of abstraction over “pure” 
TensorFlow that will enable you to develop prototypes more quickly. 

If you have never worked with Keras, you’ll probably enjoy the experience, 
and if need be, you can read some introductory online tutorials in preparation 
for the Keras-based content in this book. Regardless of your knowledge level, 
if you decide to skip the Keras-related content for now, eventually you do need 
to learn Keras in order to fully master TensorFlow 2.

Do I Need to Learn the Theory Portions of This Book?

Once again, the answer depends on the extent to which you plan to be-
come involved in machine learning. In addition to creating a model, you will 
use various algorithms to see which ones provide the level of accuracy (or 
some other metric) that you need for your project. If you fall short, the theo-
retical aspects of machine learning can help you perform a “forensic” analysis 
of your model and your data, and ideally assist in determining how to improve 
your model.

You can acquire a cursory understanding of TensorFlow 2 from the material 
in this book; delving further into TF 2 depends on your tasks and career goals.
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How Were the Code Samples Created?

The code samples in this book were created and tested using the Tensor-
Flow tf-nightly-2.0-preview (from 4/7/2019) on a MacBook Pro with 
OS X 10.12.6 (macOS Sierra). Regarding their content: the code samples are 
derived primarily from the author for his deep learning and TensorFlow gradu-
ate course. In some cases there are code samples that incorporate short sec-
tions of code from discussions in online forums. The key point to remember 
is that the code samples follow the “Four Cs”: they must be Clear, Concise, 
Complete, and Correct to the extent that it’s possible to do so, given the size 
of this book.

What Are the Technical Prerequisites for This Book?

You need some familiarity with Python, and also need to know how to 
launch Python code from the command line (in a Unix-like environment for 
Mac users). In addition, a mixture of basic linear algebra (vectors and matri-
ces), probability/statistics (mean, median, standard deviation), and basic con-
cepts in calculus (such as derivatives) will help you learn the material in this 
book. 

Some knowledge of NumPy and Matplotlib is also helpful, and the assump-
tion is that you are familiar with basic functionality (such as NumPy arrays). 
For example, Chapter 2 contains a code sample that invokes the tf.range() 
API, which is similar to the NumPy linspace() API; however, the NumPy 
linspace() API is not explained in the code (so you need to look up the 
details of this API if it’s unfamiliar). As another example, in Chapter 3 a TF 2 
Dataset is described as being analogous to a Pandas DataFrame; how-
ever, Pandas APIs are not explained in this book. 

One other prerequisite is important for understanding the code samples 
in the appendix: some familiarity with neural networks, which includes the 
concept of hidden layers and activation functions (even if you don’t fully un-
derstand them). Knowledge of cross entropy is also helpful for some of the 
code samples.  

Also keep in mind that TensorFlow provides a vast assortment of APIs, 
some of which are discussed in the code samples in the book chapters. While 
it’s possible for you to “pick up” the purpose of the more intuitive APIs by read-
ing the online documentation, that’s only true for the basic TensorFlow APIs. 
Consequently, you probably won’t really understand how to “tweak” the values 
of their parameters and why they are needed until you work with them in Ten-
sorFlow code samples. In other words, if you read TensorFlow code samples 
containing APIs that you do not understand, in many cases it’s not enough to 
repeatedly read the code samples. 

A more efficient approach is to learn about the purpose of the TensorFlow 
APIs by reading small code samples that clearly illustrate the purpose of those 
APIs, after which you can read more complex TensorFlow code samples.
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What Are the Nontechnical Prerequisites for This 
Book?

Although the answer to this question is more difficult to quantify, it’s very 
important to have a strong desire to learn TensorFlow and machine learn-
ing, along with the motivation and discipline to read and understand the code 
samples. 

Even the non-trivial TensorFlow APIs can be a challenge to understand the 
first time you encounter them, so be prepared to read the code samples several 
times. The latter requires persistence when learning TensorFlow, and whether 
or not you have enough persistence is something that you need to decide for 
yourself.

Which Topics Are Excluded?

The chapters in this book do not cover CNNs (Convolutional Neural Net-
works), RNNs (Recurrent Neural Networks), or LSTMs (Long Short Term 
Memory). However, these topics are introduced in the appendix, in a some-
what cursory fashion, which is to say that the appendix is not a substitute for 
taking a deep learning course.

You will not find in-depth details about TensorFlow layers and estimators 
(but they are lightly discussed). Keep in mind that online searches on Stacko-
verflow will often involve solutions employing TF 1.x, whereas solutions for 
TF 2 will be less common.

How Do I Set Up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is 
to use Finder to navigate to Applications > Utilities and then 
double-click on the Utilities application. Next, if you already have a com-
mand shell available, you can launch a new command shell by typing the fol-
lowing command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on 
a MacBook from a command shell that is already visible simply by clicking 
command+n in that command shell, and your Mac will launch another com-
mand shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.
com/), which simulates bash commands, or use another toolkit such as MKS (a 
commercial product). Please read the online documentation that describes the 
download and installation process. Note that custom aliases are not automati-
cally set if they are defined in a file other than the main start-up file (such as 
.bash_login). 
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Companion Files

All the code samples and figures in this book may be obtained by writing to 
the publisher at info@merclearning.com.

What Are the “Next Steps” after Finishing This Book?

The answer to this question varies widely, mainly because the answer de-
pends heavily on your objectives. The best answer is to try out a new tool or 
technique from the book on a problem or task you care about, professionally or 
personally. Precisely what that might be depends on who you are, as the needs 
of a data scientist, manager, student, or developer are all different. In addition, 
keep what you learned in mind as you tackle new challenges. 

If you have reached the limits of what you have learned here and want 
to get further technical depth regarding TensorFlow, there are various online 
resources and literature describing more complex features of TensorFlow. 



Chapter 1
Introduction to 
TensorFlow 2

Welcome to TensorFlow 2! This chapter introduces you to various 
features of TensorFlow 2 (abbreviated as TF 2), as well as some of 
the TF 2 tools and projects that are covered under the TF 2 “um-

brella.” You will see TF 2 code samples that illustrate new TF 2 features (such 
as tf.GradientTape and the @tf.function decorator), plus an assort-
ment of code samples that illustrate how to write code “the TF 2 way.” 

Despite the simplicity of many topics in this chapter, they provide you with 
a foundation for TF 2. This chapter also prepares you for Chapter 2, which 
delves into frequently used TF 2 APIs that you will encounter in other chap-
ters of this book. 

Keep in mind that the TensorFlow 1.x releases are considered legacy code 
after the production release of TF 2. Google will provide only security-related 
updates for TF 1.x (i.e., no new code development) and support TensorFlow 
1.x for at least another year beyond the initial production release of TF 2. For 
your convenience, TensorFlow provides a conversion script to facilitate the au-
tomatic conversion of TensorFlow 1.x code to TF 2 code in many cases (details 
provided later in this chapter). 

As you saw in the Preface, this chapter contains several sections regard-
ing TF 1.x, all of which are placed near the end of this chapter. If you do not 
have TF 1.x code, obviously these sections are optional (and they are labeled 
as such).

The first part of this chapter briefly discusses some TF 2 features and some 
of the tools that are included under the TF 2 “umbrella.” The second section 
of this chapter shows you how to write TF 2 code involving TF constants and 
TF variables.

The third section digresses a bit: you will learn about the new TF 2 Python 
function decorator @tf.function that is used in many code samples in 
this chapter. Although this decorator is not always required, it’s important to 
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become comfortable with this feature, and there are some nonintuitive caveats 
regarding its use that are discussed in this section.

The fourth section of this chapter shows you how to perform typical arith-
metic operations in TF 2, how to use some of the built-in TF 2 functions, and 
how to calculate trigonometric values. If you need to perform scientific calcu-
lations, see the code samples that pertain to the type of precision that you can 
achieve with floating point numbers in TF 2. This section also shows you how 
to use for loops and how to calculate exponential values.

The fifth section contains TF 2 code samples involving arrays, such as creat-
ing an identity matrix, a constant matrix, a random uniform matrix, and a trun-
cated normal matrix, along with an explanation about the difference between a 
truncated matrix and a random matrix. This section also shows you how to mul-
tiply second-order tensors in TF 2 and how to convert Python arrays to second-
order tensors in TF 2. The sixth section contains code samples that illustrate 
how to use some of the new features of TF 2, such as tf.GradientTape. 

Although the TF 2 code samples in this book use Python 3.x, it’s possible to 
modify the code samples in order to run under Python 2.7. Also make note of 
the following convention in this book (and only this book): TF 1.x files have a 
“tf_” prefix and TF 2 files have a “tf2_” prefix.

With all that in mind, the next section discusses a few details of TF 2, its 
architecture, and some of its features.

What Is TF 2?

TF 2 is an open source framework from Google that is the newest version 
of TensorFlow. The TF 2 framework is a modern framework that’s well-suited 
for machine learning and deep learning, and it’s available through an Apache 
license. Interestingly, TensorFlow surprised many people, perhaps even mem-
bers of the TF team, in terms of the creativity and plethora of use cases for TF 
in areas such as art, music, and medicine. For a variety of reasons, the Tensor-
Flow team created TF 2 with the goal of consolidating the TF APIs, eliminat-
ing duplication of APIs, enabling rapid prototyping, and making debugging an 
easier experience. 

There is good news if you are a fan of Keras: improvements in TF 2 are 
partially due to the adoption of Keras as part of the core functionality of TF 2. 
In fact, TF 2 extends and optimizes Keras so that it can take advantage of all 
the advanced features in TF 2. 

If you work primarily with deep learning models (CNNs, RNNs, LSTMs, 
and so forth), you’ll probably use some of the classes in the tf.keras names-
pace, which is the implementation of Keras in TF 2. Moreover, tf.keras.
layers provides many standard layers for neural networks. As you’ll see later, 
there are several ways to define Keras-based models, via the tf.keras.Se-
quential class, a functional style definition, and via a subclassing technique. 
Alternatively, you can still use lower-level operations and automatic differen-
tiation if you wish to do so.



Introduction to TensorFlow 2   •  3

Furthermore, TF 2 removes duplicate functionality, provides a more intui-
tive syntax across APIs, and also compatibility throughout the TF 2 ecosystem. 
TF 2 even provides a backward compatibility module called tf.compat.
v1 (which does not include tf.contrib), and a conversion script tf_up-
grade_v2 to help users migrate from TF 1.x to TF 2.

Another significant change in TF 2 is eager execution as the default mode 
(not deferred execution), with new features such as the @tf.function dec-
orator and TF 2 privacy-related features. Here is a condensed list of some TF 
2 features and related technologies:

•	 support for tf.keras: a specification for high-level code for ML and DL
•	 tensorflow.js v1.0: TF in modern browsers
•	 TensorFlow Federated: an open source framework for ML and decen-

tralized data
•	 ragged tensors: nested variable-length (“uneven”) lists
•	 TensorFlow Probability: probabilistic models combined with deep learning
•	 Tensor2Tensor: a library of DL models and datasets

TF 2 also supports a variety of programming languages and hardware plat-
forms, including:

•	 Support for Python, Java, C++
•	 Desktop, server, mobile device (TF Lite)
•	 CPU/GPU/TPU support
•	 Linux and Mac OS X support
•	 VM for Windows

Navigate to the TF 2 home page, where you will find links to many re-
sources for TF 2: https://www.tensorflow.org

TF 2 Use Cases

TF 2 is designed to solve tasks that arise in a plethora of use cases, some of 
which are listed here:

•	 Image recognition
•	 Computer vision
•	 Voice/sound recognition
•	 Time series analysis
•	 Language detection
•	 Language translation
•	 Text-based processing 
•	 Handwriting recognition

The preceding list of use cases can be solved in TF 1.x as well as TF 2, and 
in the latter case, the code tends to be simpler and cleaner compared to its TF 
1.x counterpart.
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TF 2 Architecture: The Short Version

TF 2 is written in C++ and supports operations involving primitive values 
and tensors (discussed later). The default execution mode for TF 1.x is de-
ferred execution whereas TF 2 uses eager execution (think “immediate mode”). 
Although TF 1.4 introduced eager execution, the vast majority of TF 1.x code 
samples that you will find online use deferred execution. 

TF 2 supports arithmetic operations on tensors (i.e., multidimensional ar-
rays with enhancements) as well as conditional logic, “for” loops, and “while” 
loops. Although it’s possible to switch between eager execution mode and 
deferred mode in TF 2, all the code samples in this book use eager execu-
tion mode. 

Data visualization is handled via TensorBoard (discussed in Chapter 2) that 
is included as part of TF 2. As you will see in the code samples in this book, 
TF 2 APIs are available in Python and can therefore be embedded in Python 
scripts.

So, enough already with the high-level introduction: let’s learn how to in-
stall TF 2, which is the topic of the next section.

TF 2 Installation

Install TensorFlow by issuing the following command from the command 
line:

pip install tensorflow==2.0.0-beta0

When a production release of TF 2 is available, you can issue the following 
command from the command line (which will be the most current version of 
TF 2):

pip install --upgrade tensorflow

If you want to install a specific version (let’s say version 1.13.1) of Tensor-
Flow, type the following command:

pip install --upgrade tensorflow==1.13.1

You can also downgrade the installed version of TensorFlow. For ex-
ample, if you have installed version 1.13.1 and you want to install version 
1.10, specify the value 1.10 in the preceding code snippet. TensorFlow will 
uninstall your current version and install the version that you specified 
(i.e., 1.10).

As a sanity check, create a Python script with the following three lines 
of code to determine the version number of TF that is installed on your 
machine:

import tensorflow as tf
print("TF Version:",tf.__version__)
print("eager execution:",tf.executing_eagerly())
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Launch the preceding code and you ought to see something similar to the 
following output:

TF version: 2.0.0-beta0
eager execution: True

As a simple example of TF 2 code, place this code snippet in a text file:

import tensorflow as tf
print("1 + 2 + 3 + 4 =", tf.reduce_sum([1, 2, 3, 4]))

Launch the preceding code from the command line and you should see the 
following output:

1 + 2 + 3 + 4 = tf.Tensor(10, shape=(), dtype=int32)

TF 2 and the Python REPL

In case you aren’t already familiar with the Python REPL (read-eval-print-
loop), it’s accessible by opening a command shell and then typing the following 
command:

python

As a simple illustration, access TF 2-related functionality in the REPL by 
importing the TF 2 library as follows:

>>> import tensorflow as tf

Now check the version of TF 2 that is installed on your machine with this 
command:

>>> print('TF version:',tf.__version__)

The output of the preceding code snippet is shown here (the number that 
you see depends on which version of TF 2 that you installed):

TF version: 2.0.0-beta0

Although the REPL is useful for short code blocks, the TF 2 code sam-
ples in this book are Python scripts that you can launch with the Python 
executable.

Other TF 2-Based Toolkits

In addition to providing support for TF 2-based code on multiple devices, 
TF 2 provides the following toolkits:

•	 TensorBoard for visualization (included as part of TensorFlow)
•	 TensorFlow Serving (hosting on a server)
•	 TensorFlow Hub
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•	 TensorFlow Lite (for mobile applications)
•	 Tensorflow.js (for Web pages and NodeJS)

TensorBoard is a graph visualization tool that runs in a browser. Launch 
TensorBoard from the command line as follows: open a command shell and 
type the following command to access a saved TF graph in the subdirectory /
tmp/abc (or a directory of your choice):

tensorboard –logdir /tmp/abc

Note that there are two consecutive dashes (“-”) that precede the logdir 
parameter in the preceding command. Now launch a browser session and navi-
gate to this URL: localhost:6006

After a few moments you will see a visualization of the TF 2 graph that was 
created in your code and then saved in the directory /tmp/abc.

TensorFlow Serving is a cloud-based, flexible, high-performance serving 
system for ML models that is designed for production environments. Tensor-
Flow Serving makes it easy to deploy new algorithms and experiments, while 
keeping the same server architecture and APIs. More information is here: 

https://www.TF 2.org/serving/
TensorFlow Lite was specifically created for mobile development (both 

Android and iOS). Please keep in mind that TensorFlow Lite supersedes TF 
2 Mobile, which was an earlier SDK for developing mobile applications. Ten-
sorFlow Lite (which also exists for TF 1.x) supports on-device ML inference 
with low latency and a small binary size. Moreover, TensorFlow Lite supports 
hardware acceleration with the Android Neural Networks API. More informa-
tion about TensorFlow Lite is here:

https://www.tensorflow.org/lite/
A more recent addition is tensorflow.js, which provides JavaScript 

APIs to access TensorFlow in a Web page. The tensorflow.js toolkit was 
previously called deeplearning.js. You can also use tensorflow.js 
with NodeJS. More information about tensorflow.js is here: 

https://js.tensorflow.org/

TF 2 Eager Execution

TF 2 eager execution mode makes TF 2 code much easier to write com-
pared to TF 1.x code (which used deferred execution mode). You might be 
surprised to discover that TF introduced “eager execution” as an alternative 
to deferred execution in version 1.4.1, but this feature was vastly underuti-
lized. With TF 1.x code, TensorFlow creates a dataflow graph that consists of 
(a) a set of tf.Operation objects that represent units of computation, and 
(b) tf.Tensor objects that represent the units of data that flow between 
operations.

On the other hand, TF 2 evaluates operations immediately without instan-
tiating a Session object or a creating a graph. Operations return concrete 
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values instead of creating a computational graph. TF 2 eager execution is based 
on Python control flow instead of graph control flow. Arithmetic operations 
are simpler and intuitive, as you will see in code samples later in this chapter. 
Moreover, TF 2 eager execution mode simplifies the debugging process. How-
ever, keep in mind that there isn’t a 1:1 relationship between a graph and eager 
execution.

TF 2 Tensors, Data Types, and Primitive Types

In simplified terms, a TF 2 tensor is an n-dimensional array that is simi-
lar to a NumPy ndarray. A TF 2 tensor is defined by its dimensionality, as 
illustrated here:

scalar number:	 a zeroth-order tensor
vector:	 a first-order tensor
matrix:	 a second-order tensor
3-dimensional array:	a 3rd order tensor

The next section discusses some of the data types that are available in TF 2, 
followed by a section that discusses TF 2 primitive types.

TF 2 Data Types

TF 2 supports the following data types (similar to the supported data types 
in TensorFlow 1.x):

•	 tf.float32
•	 tf.float64
•	 tf.int8
•	 tf.int16
•	 tf.int32
•	 tf.int64
•	 tf.uint8
•	 tf.string
•	 tf.bool

The data types in the preceding list are self-explanatory: two floating point 
types, four integer types, one unsigned integer type, one string type, and one 
Boolean type. As you can see, there is a 32-bit and a 64-bit floating point type, 
and integer types that range from 8-bit through 64-bit.

TF 2 Primitive Types

TF 2 supports tf.constant() and tf.Variable() as primi-
tive types. Notice the capital “V” in tf.Variable(): this indicates 
a TF 2 class (which is not the case for a lowercase initial letter such as 
tf.constant()).
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A TF 2 constant is an immutable value, and a simple example is 
shown here:

aconst = tf.constant(3.0)

A TF 2 variable is a “trainable value” in a TF 2 graph. For example, the 
slope m and y-intercept b of a best-fitting line for a dataset consisting of points 
in the Euclidean plane are two examples of trainable values. Some examples of 
TF variables are shown here:

b = tf.Variable(3, name="b")
x = tf.Variable(2, name="x")
z = tf.Variable(5*x, name="z")

W = tf.Variable(20)
lm = tf.Variable(W*x + b, name="lm")

Notice that b, x, and z are defined as TF variables. In addition, b and x 
are initialized with numeric values, whereas the value of the variable z is an 
expression that depends on the value of x (which equals 2).

Constants in TF 2

Here is a short list of some properties of TF 2 constants:

•	 initialized during their definition
•	 cannot change their value (“immutable”)
•	 can specify their name (optional)
•	 the type is required (ex: tf.float32)
•	 are not modified during training

Listing 1.1 displays the contents of tf2_constants1.py, which illus-
trates how to assign and print the values of some TF 2 constants.

Listing 1.1: tf2_constants1.py

import tensorflow as tf 

scalar = tf.constant(10)
vector = tf.constant([1,2,3,4,5])
matrix = tf.constant([[1,2,3],[4,5,6]])
cube   = tf.constant([[[1], 
[2],[3]],[[4],[5],[6]],[[7],[8],[9]]])

print(scalar.get_shape())
print(vector.get_shape())
print(matrix.get_shape())
print(cube.get_shape())
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Listing 1.1 contains four tf.constant() statements that define TF 2 
tensors of dimension 0, 1, 2, and 3, respectively. The second part of Listing 
1.1 contains four print() statements that display the shape of the four TF 2 
constants that are defined in the first section of Listing 1.1. The output from 
Listing 1.1 is here:

()
(5,)
(2, 3)
(3, 3, 1)

Listing 1.2 displays the contents of tf2_constants2.py, which illus-
trates how to assign values to TF 2 constants and then print those values.

Listing 1.2: tf2_constants2.py

import tensorflow as tf 

x = tf.constant(5,name="x")
y = tf.constant(8,name="y")

@tf.function
def calc_prod(x, y):
  z = 2*x + 3*y
  return z

result = calc_prod(x, y)
print('result =',result)

Listing 1.2 defines a “decorated” (shown in bold) Python function 
calc_prod()with TF 2 code that would otherwise be included in a TF 1.x 
tf.Session() code block. Specifically, z would be included in a sess.
run() statement, along with a feed_dict that provides values for x and 
y. Fortunately, a decorated Python function in TF 2 makes the code look like 
“normal” Python code.

Variables in TF 2

TF 2.0 eliminates global collections and their associated APIs, such as 
tf.get_variable, tf.variable_scope, and tf.initializers.
global_variables. Whenever you need a tf.Variable in TF 2, con-
struct and initialize it directly, as shown here:

tf.Variable(tf.random.normal([2, 4])

Listing 1.3 displays the contents of tf2_variables.py, which illus-
trates how to compute values involving TF constants and variables in a with 
code block.
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Listing 1.3: tf2_variables.py

import tensorflow as tf

v = tf.Variable([[1., 2., 3.], [4., 5., 6.]])
print("v.value():", v.value())
print("")
print("v.numpy():", v.numpy())
print("")

v.assign(2 * v)
v[0, 1].assign(42)
v[1].assign([7., 8., 9.])
print("v:",v)
print("")

try:
  v[1] = [7., 8., 9.]
except TypeError as ex:
  print(ex)

Listing 1.3 defines a TF 2 variable v and prints its value. The next portion 
of Listing 1.3 updates the value of v and prints its new value. The last portion 
of Listing 1.3 contains a try/except block that attempts to update the value 
of v[1]. The output from Listing 1.3 is here:

v.value(): tf.Tensor(
[[1. 2. 3.]
 [4. 5. 6.]], shape=(2, 3), dtype=float32)

v.numpy(): [[1. 2. 3.]
 [4. 5. 6.]]

v: <tf.Variable 'Variable:0' shape=(2, 3) dtype=float32, 
numpy=
array([[ 2., 42.,  6.],
       [ 7.,  8.,  9.]], dtype=float32)>

'ResourceVariable' object does not support item assignment

This concludes the quick tour involving TF 2 code that contains various 
combinations of TF constants and TF variables. The next few sections delve 
into more details regarding the TF primitive types that you saw in the preced-
ing sections.

The tf.rank() API

The rank of a TF 2 tensor is the dimensionality of the tensor, whereas the 
shape of a tensor is the number of elements in each dimension. Listing 1.4 
displays the contents of tf2_rank.py, which illustrates how to find the rank 
of TF 2 tensors.
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Listing 1.4: tf2_rank.py

import tensorflow as tf # tf2_rank.py

A = tf.constant(3.0)
B = tf.fill([2,3], 5.0)
C = tf.constant([3.0, 4.0])

@tf.function
def show_rank(x):
  return tf.rank(x)

print('A:',show_rank(A))
print('B:',show_rank(B))
print('C:',show_rank(C))

Listing 1.4 contains familiar code for defining the TF constant A, followed 
by the TF tensor B, which is a 2x3 tensor in which every element has the 
value 5. The TF tensor C is a 1x2 tensor with the values 3.0 and 4.0.

The next code block defines the decorated Python function show_
rank(), which returns the rank of its input variable. The final section invokes 
show_rank() with A and then with B. The output from Listing 1.4 is here:

A: tf.Tensor(0, shape=(), dtype=int32)
B: tf.Tensor(2, shape=(), dtype=int32)
C: tf.Tensor(1, shape=(), dtype=int32)

The tf.shape() API

The shape of a TF 2 tensor is the number of elements in each dimension 
of a given tensor.

Listing 1.5 displays the contents of tf2_getshape.py, which illustrates 
how to find the shape of TF 2 tensors.

Listing 1.5: tf2_getshape.py

import tensorflow as tf

a = tf.constant(3.0)
print("a shape:",a.get_shape())

b = tf.fill([2,3], 5.0)
print("b shape:",b.get_shape())

c = tf.constant([[1.0,2.0,3.0], [4.0,5.0,6.0]])
print("c shape:",c.get_shape())

Listing 1.5 contains the definition of the TF constant a whose value is 3.0. 
Next, the TF variable b is initialized as a 2x3 tensor whose 
six values are all 5, followed by the constant c whose value is 
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[[1.0,2.0,3.0],[4.0,5.0,6.0]]. The three print() statements 
display the values of a, b, and c. The output from Listing 1.5 is here:

a shape: ()
b shape: (2, 3)
c shape: (2, 3)

Shapes that specify a 0-D Tensor (scalar) are numbers (9, -5, 2.34, and 
so forth), [], and (). As another example, Listing 1.6 displays the contents of 
tf2_shapes.py, which contains an assortment of tensors and their shapes.

Listing 1.6: tf2_shapes.py

import tensorflow as tf

list_0 = []
tuple_0 = ()
print("list_0:",list_0)
print("tuple_0:",tuple_0)

list_1 = [3]
tuple_1 = (3)
print("list_1:",list_1)
print("tuple_1:",tuple_1)

list_2 = [3, 7]
tuple_2 = (3, 7)
print("list_2:",list_2)
print("tuple_2:",tuple_2)

any_list1  = [None]
any_tuple1 = (None)
print("any_list1:",any_list1)
print("any_tuple1:",any_tuple1)

any_list2 = [7,None]
any_list3 = [7,None,None]
print("any_list2:",any_list2)
print("any_list3:",any_list3)

Listing 1.6 contains simple lists and tuples of various dimensions in order to 
illustrate the difference between these two types. The output from Listing 1.6 
is probably what you would expect and it’s shown here:

list_0: []
tuple_0: ()
list_1: [3]
tuple_1: 3
list_2: [3, 7]
tuple_2: (3, 7)
any_list1: [None]
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any_tuple1: None
any_list2: [7, None]
any_list3: [7, None, None]

Variables in TF 2 (Revisited)

TF 2 variables can be updated during backward error propagation (also 
called “backprop,” which is discussed later in this book). TF 2 variables can 
also be saved and then restored at a later point in time. The following list con-
tains some properties of TF 2 variables:

•	 initial value is optional
•	 must be initialized before graph execution
•	 updated during training
•	 constantly recomputed
•	 they hold values for weights and biases
•	 in-memory buffer (saved/restored from disk)

Here are some simple examples of TF 2 variables:

b = tf.Variable(3, name='b')
x = tf.Variable(2, name='x')
z = tf.Variable(5*x, name="z")

W = tf.Variable(20)
lm = tf.Variable(W*x + b, name="lm") 

Notice that the variables b, x, and W specify constant values, whereas the 
variables z and lm specify expressions that are defined in terms of other vari-
ables. If you are familiar with linear regression, you undoubtedly noticed that 
the variable lm (“linear model”) defines a line in the Euclidean plane. Other 
properties of TF 2 variables are listed as follows:

•	 a tensor that’s updateable via operations
•	 exist outside the context of session.run
•	 like a “regular” variable
•	 holds the learned model parameters
•	 variables can be shared (or non-trainable)
•	 used for storing/maintaining state
•	 internally stores a persistent tensor
•	 you can read/modify the values of the tensor
•	 multiple workers see the same values for tf.Variables
•	 the best way to represent shared, persistent state manipulated by your 

program

TF 2 also provides the method tf.assign() in order to modify values 
of TF 2 variables; be sure to read the relevant code sample later in this chapter 
so that you learn how to use this API correctly.
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TF 2 Variables versus Tensors

Keep in mind the following distinction between TF variables and TF 
tensors: TF variables represent your model’s trainable parameters (e.g., 
weights and biases of a neural network), whereas TF tensors represent the 
data fed into your model and the intermediate representations of that data as 
it passes through your model.

In the next section, you will learn about the @tf.function “decorator” 
for Python functions and how it can improve performance.

What Is @tf.function in TF 2?

TF 2 introduced the @tf.function “decorator” for Python func-
tions that defines a graph and performs session execution: it’s sort of a 
“successor” to tf.Session() in TF 1.x. Since graphs can still be useful,  
@tf.function transparently converts Python functions into functions 
that are “backed” by graphs. This decorator also converts tensor-dependent 
Python control flow into TF control flow, and also adds control depend-
encies to order read and write operations to a TF 2 state. Remember that  
@tf.function works best with TF 2 operations instead of NumPy opera-
tions or Python primitives.

In general, you won’t need to decorate functions with @tf.function; use it to 
decorate high-level computations, such as one step of training, or the forward 
pass of a model.

Although TF 2 eager execution mode facilitates a more intuitive user in-
terface, this ease-of-use can be at the expense of decreased performance. For-
tunately, the @tf.function decorator is a technique for generating graphs 
in TF 2 code that execute more quickly than eager execution mode. 

The performance benefit depends on the types of operations that 
are performed: matrix multiplication does not benefit from the use of  
@tf.function, whereas optimizing a deep neural network can benefit from 
@tf.function.

How Does @tf.function Work?

Whenever you decorate a Python function with @tf.function, TF 2 
automatically builds the function in graph mode. If a Python function that 
is decorated with @tf.function invokes other Python functions that are 
not decorated with @tf.function, then the code in those “non-decorated” 
Python functions will also be included in the generated graph. 

Another point to keep in mind is that a tf.Variable in eager mode is 
actually a “plain” Python object: this object is destroyed when it’s out of scope. 
On the other hand, a tf.Variable object defines a persistent object if the 
function is decorated via @tf.function. In this scenario, eager mode is 
disabled and the tf.Variable object defines a node in a persistent TF 2 
graph. Consequently, a function that works in eager mode without annotation 
can fail when it is decorated with @tf.function.
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A Caveat about @tf.function in TF 2

If constants are defined before the definition of a decorated Python func-
tion, you can print their values inside the function using the Python print() 
function. On the other hand, if constants are defined inside the definition of a 
decorated Python function, you can print their values inside the function using 
the TF 2 tf.print() function. Consider this code block:

import tensorflow as tf

a = tf.add(4, 2)

@tf.function
def compute_values():
  print(a) # 6

compute_values()

# output:
# tf.Tensor(6, shape=(), dtype=int32)

As you can see, the correct result is displayed (shown in bold). However, if 
you define constants inside a decorated Python function, the output contains 
types and attributes but not the execution of the addition operation. Consider 
the following code block:

import tensorflow as tf

@tf.function
def compute_values():
  a = tf.add(4, 2)
  print(a)

compute_values()

# output:
# Tensor("Add:0", shape=(), dtype=int32)

The zero in the preceding output is part of the tensor name and not an 
outputted value. Specifically, Add:0 is output zero of the tf.add() opera-
tion. Any additional invocation of compute_values() prints nothing. If 
you want actual results, one solution is to return a value from the function, as 
shown here:

import tensorflow as tf

@tf.function
def compute_values():
  a = tf.add(4, 2)
  return a
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result = compute_values()
print("result:", result)

The output from the preceding code block is here:

result: tf.Tensor(6, shape=(), dtype=int32)

A second solution involves the TF tf.print() function instead of the 
Python print() function, as shown in bold in this code block:

@tf.function
def compute_values():
  a = tf.add(4, 2)
  tf.print(a)

A third solution is to cast the numeric values to Tensors if they do not affect 
the shape of the generated graph, as shown here:

import tensorflow as tf

@tf.function
def compute_values():
  a = tf.add(tf.constant(4), tf.constant(2))
  return a

result = compute_values()
print("result:", result)

The tf.print() Function and Standard Error

There is one more detail to remember: the Python print() function 
“sends” output to something called “standard output” that is associated with a 
file descriptor whose value is 1; on the other hand, tf.print() sends output 
to “standard error” that is associated with a file descriptor whose value is 2. In 
programming languages such as C, only errors are sent to standard error, so 
keep in mind that the behavior of tf.print() differs from the convention 
regarding standard out and standard error. The following code snippets illus-
trate this difference:

python3 file_with_print.py    1>print_output
python3 file_with_tf.print.py 2>tf.print_output

If your Python file contains both print() and tf.print(), you can 
capture the output as follows:

python3 both_prints.py 1>print_output 2>tf.print_output

However, keep in mind that the preceding code snippet might also redirect 
real error messages to the file tf.print_output.
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Working with @tf.function in TF 2

The preceding section explained how the output will differ depending on 
whether you use the Python print() function versus the tf.print() 
function in TF 2 code, where the latter function also sends output to standard 
error instead of standard output.

This section contains several examples of the @tf.function decorator 
in TF 2 to show you some nuances in behavior that depend on where you de-
fine constants and whether you use the tf.print() function or the Python 
print() function. Also keep in mind the comments in the previous section 
regarding @tf.function, as well as the fact that you don’t need to use @
tf.function in all your Python functions.

An Example without @tf.function

Listing 1.7 displays the contents of tf2_simple_function.py, which 
illustrates how to define a Python function with TF 2 code.

Listing 1.7: tf2_simple_function.py

import tensorflow as tf

def func():
  a = tf.constant([[10,10],[11.,1.]])
  b = tf.constant([[1.,0.],[0.,1.]])
  c = tf.matmul(a, b)
  return c

print(func().numpy())

The code in Listing 1.7 is straightforward: a Python function func() de-
fines two TF 2 constants, computes their product, and returns that value.

Since TF 2 works in eager mode by default, the Python function func() 
is treated as a “normal” function. Launch the code and you will see the follow-
ing output:

[[20. 30.]
 [22. 3.]]

An Example with @tf.function

Listing 1.8 displays the contents of tf2_at_function.py, which illus-
trates how to define a decorated Python function with TF code.

Listing 1.8: tf2_at_function.py

import tensorflow as tf

@tf.function
def func():
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  a = tf.constant([[10,10],[11.,1.]])
  b = tf.constant([[1.,0.],[0.,1.]])
  c = tf.matmul(a, b)
  return c

print(func().numpy())

Listing 1.8 defines a decorated Python function: the rest of the code is 
identical to Listing 1.7. However, because of the @tf.function annotation, 
the Python func() function is “wrapped” in a tensorflow.python.
eager.def_function.Function object. The Python function is as-
signed to the .python_function property of the object.

When func() is invoked, the graph construction begins. Only the Python 
code is executed, and the behavior of the function is traced so that TF 2 can 
collect the required data to construct the graph. The output is shown here:

[[20. 30.]
 [22.  3.]]

Overloading Functions with @tf.function

If you have worked with programming languages such as Java and C++, you 
are already familiar with the concept of “overloading” a function. If this term is 
new to you, the idea is simple: an overloaded function is a function that can be 
invoked with different data types. For example, you can define an overloaded 
“add” function that can add two numbers as well as “add” (i.e., concatenate) 
two strings. 

If you’re curious, overloaded functions in various programming languages 
are implemented via “name mangling,” which means that the signature (the 
parameters and their data types for the function) is appended to the function 
name in order to generate a unique function name. This happens “under the 
hood,” which means that you don’t need to worry about the implementation 
details.

Listing 1.9 displays the contents of tf2_overload.py, which illustrates 
how to define a decorated Python function that can be invoked with different 
data types.

Listing 1.9: tf2_overload.py

import tensorflow as tf

@tf.function

def add(a):
  return a + a 

print("Add 1:            ", add(1))
print("Add 2.3:          ", add(2.3))
print("Add string tensor:", add(tf.constant("abc")))
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c = add.get_concrete_function(tf.TensorSpec(shape=None, 
dtype=tf.string))
c(a=tf.constant("a"))  

Listing 1.9 defines a decorated Python function add(), which is preceded 
by a @tf.function decorator. This function can be invoked by passing an 
integer, a decimal value, or a TF 2 tensor, and the correct result is calculated. 
Launch the code and you will see the following output:

Add 1:             tf.Tensor(2, shape=(), dtype=int32)
Add 2.3:           tf.Tensor(4.6, shape=(), dtype=float32)
Add string tensor: tf.Tensor(b'abcabc', shape=(), 
dtype=string)

c: <tensorflow.python.eager.function.ConcreteFunction 
object at 0x1209576a0>

What Is AutoGraph in TF 2?

AutoGraph refers to the conversion from Python code to its graph 
representation, which is a significant new feature in TF 2. In fact, 
AutoGraph is automatically applied to functions that are decorated with 
@tf.function; this decorator creates callable graphs from Python  
functions. 

AutoGraph transforms a subset of Python syntax into its portable, high-
performance and language agnostic graph representation, thereby bridging 
the gap between TF 1.x and TF 2.0. In fact, AutoGraph allows you to inspect 
its auto-generated code with this code snippet. For example, if you define a 
Python function called my_product(), you can inspect its auto-generated 
code with this snippet:

print(tf.autograph.to_code(my_product))

In particular, the Python for/while construct is implemented in TF 2 
via tf.while_loop (break and continue are also supported). The Py-
thon if construct is implemented in TF 2 via tf.cond. The “for _ in 
dataset” is implemented in TF 2 via dataset.reduce.

AutoGraph also has some rules for converting loops. A for loop is con-
verted if the iterable in the loop is a tensor, and a while loop is converted 
if the while condition depends on a tensor. If a loop is converted, it will 
be dynamically “unrolled” with tf.while_loop, as well as the special 
case of a for x in tf.data.Dataset (the latter is transformed into 
tf.data.Dataset.reduce). If a loop is not converted, it will be stati-
cally unrolled.

AutoGraph supports control flow that is nested arbitrarily deep, so you 
can implement many types of ML programs. Check the online documentation 
for more information regarding AutoGraph.
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Arithmetic Operations in TF 2

Listing 1.10 displays the contents of tf2_arithmetic.py, which 
illustrates how to perform arithmetic operations in TF 2.

Listing 1.10: tf2_arithmetic.py

import tensorflow as tf 

@tf.function # repłace print() with tf.print()
def compute_values():
  a = tf.add(4, 2)
  b = tf.subtract(8, 6)
  c = tf.multiply(a, 3)
  d = tf.math.divide(a, 6)

  print(a) # 6
  print(b) # 2
  print(c) # 18
  print(d) # 1

compute_values()

Listing 1.10 defines the decorated Python function compute_values() 
with simple code for computing the sum, difference, product, and quotient of 
two numbers via the tf.add(), tf.subtract(), tf.multiply(), 
and the tf.math.divide() APIs, respectively. The four print() 
statements display the values of a, b, c, and d. The output from Listing 1.10 
is here:

tf.Tensor(6,   shape=(), dtype=int32)
tf.Tensor(2,   shape=(), dtype=int32)
tf.Tensor(18,  shape=(), dtype=int32)
tf.Tensor(1.0, shape=(), dtype=float64)

Caveats for Arithmetic Operations in TF 2

As you can probably surmise, you can also perform arithmetic operations 
involving TF 2 constants and variables. Listing 1.11 displays the contents of 
tf2_const_var.py, which illustrates how to perform arithmetic opera-
tions involving a TF 2 constant and a variable.

Listing 1.11: tf2_const_var.py

import tensorflow as tf 

v1 = tf.Variable([4.0, 4.0])
c1 = tf.constant([1.0, 2.0])
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diff = tf.subtract(v1,c1)
print("diff:",diff)

Listing 1.11 computes the difference of the TF variable v1 and the TF 
constant c1, and the output is shown here:

diff: tf.Tensor([3. 2.], shape=(2,), dtype=float32)

However, if you update the value of v1 and then print the value of diff, 
it will not change. You must reset the value of diff, just as you would in other 
imperative programming languages. 

Listing 1.12 displays the contents of tf2_const_var2.py, which illus-
trates how to perform arithmetic operations involving a TF 2 constant and a 
variable.

Listing 1.12: tf2_const_var2.py

import tensorflow as tf 

v1 = tf.Variable([4.0, 4.0])
c1 = tf.constant([1.0, 2.0])

diff = tf.subtract(v1,c1)
print("diff1:",diff.numpy())

# diff is NOT updated:
v1.assign([10.0, 20.0])
print("diff2:",diff.numpy())

# diff is updated correctly:
diff = tf.subtract(v1,c1)
print("diff3:",diff.numpy())

Listing 1.12 recomputes the value of diff in the final portion of Listing 
1.11, after which it has the correct value. The output is shown here:

diff1: [3. 2.]
diff2: [3. 2.]
diff3: [9. 18.]

TF 2 and Built-In Functions

Listing 1.13 displays the contents of tf2_math_ops.py, which illus-
trates how to perform additional arithmetic operations in a TF graph.

Listing 1.13: tf2_math_ops.py

import tensorflow as tf

PI = 3.141592

@tf.function # repłace print() with tf.print()
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def math_values():
  print(tf.math.divide(12,8))
  print(tf.math.floordiv(20.0,8.0))
  print(tf.sin(PI))
  print(tf.cos(PI))
  print(tf.math.divide(tf.sin(PI/4.), tf.cos(PI/4.)))

math_values()

Listing 1.13 contains a hard-coded approximation for PI, followed by the 
decorated Python function math_values() with five print() statements 
that display various arithmetic results. Note in particular the third output value 
is a very small number (the correct value is zero). The output from Listing 1.13 
is here:

1.5
tf.Tensor(2.0,            shape=(), dtype=float32)
tf.Tensor(6.2783295e-07,  shape=(), dtype=float32)
tf.Tensor(-1.0,           shape=(), dtype=float32)
tf.Tensor(0.99999964,     shape=(), dtype=float32)

Listing 1.14 displays the contents of tf2_math-ops_pi.py, which 
illustrates how to perform arithmetic operations in TF 2.

Listing 1.14: tf2_math_ops_pi.py

import tensorflow as tf 
import math as m

PI = tf.constant(m.pi)

@tf.function # repłace print() with tf.print()
def math_values():
  print(tf.math.divide(12,8))
  print(tf.math.floordiv(20.0,8.0))
  print(tf.sin(PI))
  print(tf.cos(PI))
  print(tf.math.divide(tf.sin(PI/4.), tf.cos(PI/4.)))

math_values()

Listing 1.14 is almost identical to the code in Listing 1.13: the only differ-
ence is that Listing 1.14 specifies a hard-coded value for PI, whereas Listing 
1.14 assigns m.pi to the value of PI. As a result, the approximated value is 
one decimal place closer to the correct value of zero. The output from Listing 
1.14 is here; notice how the output format differs from Listing 1.13 due to the 
Python print() function:

1.5
tf.Tensor(2.0,           shape=(), dtype=float32)
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tf.Tensor(-8.742278e-08, shape=(), dtype=float32)
tf.Tensor(-1.0,          shape=(), dtype=float32)
tf.Tensor(1.0,           shape=(), dtype=float32)

Calculating Trigonometric Values in TF

Listing 1.15 displays the contents of tf2_trig_values.py, which 
illustrates how to compute values involving trigonometric functions in TF 2.

Listing 1.15: tf2_trig_values.py

import tensorflow as tf
import math as m

PI = tf.constant(m.pi)

a = tf.cos(PI/3.)
b = tf.sin(PI/3.)
c = 1.0/a # sec(60)
d = 1.0/tf.tan(PI/3.) # cot(60)

@tf.function # this decorator is okay
def math_values():
  print("a:",a)
  print("b:",b)
  print("c:",c)
  print("d:",d)

math_values()

Listing 1.14 is straightforward: there are several of the same TF 2 APIs that 
you saw in Listing 1.13. In addition, Listing 1.14 contains the tf.tan() API, 
which computes the tangent of a number (in radians). The output from Listing 
1.14 is here:

a: tf.Tensor(0.49999997, shape=(), dtype=float32)
b: tf.Tensor(0.86602545, shape=(), dtype=float32)
c: tf.Tensor(2.0000002,  shape=(), dtype=float32)
d: tf.Tensor(0.57735026, shape=(), dtype=float32)

Calculating Exponential Values in TF 2

Listing 1.15 displays the contents of tf2_exp_values.py, which illus-
trates how to compute values involving additional trigonometric functions in 
TF 2.

Listing 1.15: tf2_exp_values.py

import tensorflow as tf

a  = tf.exp(1.0)
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b  = tf.exp(-2.0)
s1 = tf.sigmoid(2.0)
s2 = 1.0/(1.0 + b)
t2 = tf.tanh(2.0)

@tf.function # this decorator is okay
def math_values():
  print('a: ', a)
  print('b: ', b)
  print('s1:', s1)
  print('s2:', s2)
  print('t2:', t2)

math_values()

Listing 1.15 starts with the TF 2 APIs tf.exp(), tf.sigmoid(), and 
tf.tanh() that compute the exponential value of a number, the sigmoid 
value of a number, and the hyperbolic tangent of a number, respectively. The 
output from Listing 1.15 is here:

a:  tf.Tensor(2.7182817,  shape=(), dtype=float32)
b:  tf.Tensor(0.13533528, shape=(), dtype=float32)
s1: tf.Tensor(0.880797,   shape=(), dtype=float32)
s2: tf.Tensor(0.880797,   shape=(), dtype=float32)
t2: tf.Tensor(0.9640276,  shape=(), dtype=float32)

Working with Strings in TF 2

Listing 1.16 displays the contents of tf2_strings.py, which illustrates 
how to work with strings in TF 2.

Listing 1.16: tf2_strings.py

import tensorflow as tf

x1 = tf.constant("café")
print("x1:",x1)
tf.strings.length(x1)
print("")

len1 = tf.strings.length(x1, unit="UTF8_CHAR")
len2 = tf.strings.unicode_decode(x1, "UTF8")

print("len1:",len1.numpy())
print("len2:",len2.numpy())
print("")

# String arrays
x2 = tf.constant(["Café", "Coffee", "caffè", "咖啡"])
print("x2:",x2)
print("")
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len3 = tf.strings.length(x2, unit="UTF8_CHAR")
print("len2:",len3.numpy())
print("")

r = tf.strings.unicode_decode(x2, "UTF8")
print("r:",r)

Listing 1.16 defines the TF 2 constant x1 as a string that contains an accent 
mark. The first print() statement displays the first three characters of 
x1, followed by a pair of hexadecimal values that represent the accented “e” 
character. The second and third print()  statements display the number of 
characters in x1, followed by the UTF8 sequence for the string x1.

The next portion of Listing 1.16 defines the TF 2 constant x2 as a first-
order TF 2 tensor that contains four strings. The next print() statement dis-
plays the contents of x2, using UTF8 values for characters that contain accent 
marks.

The final portion of Listing 1.16 defines r as the Unicode values for the 
characters in the string x2. The output from Listing 1.14 is here:

x1: tf.Tensor(b'caf\xc3\xa9', shape=(), dtype=string)

len1: 4
len2: [ 99  97 102 233]

x2: tf.Tensor([b'Caf\xc3\xa9' b'Coffee' b'caff\xc3\xa8' b'\
xe5\x92\x96\xe5\x95\xa1'], shape=(4,), dtype=string)

len2: [4 6 5 2]

r: <tf.RaggedTensor [[67, 97, 102, 233], [67, 111, 102, 
102, 101, 101], [99, 97, 102, 102, 232], [21654, 21857]]>

Chapter 2 contains a complete code sample with more examples of a 
RaggedTensor in TF 2.

Working with Tensors and Operations in TF 2

Listing 1.17 displays the contents of tf2_tensors_operations.py, 
which illustrates how to use various operators with tensors in TF 2.

Listing 1.17: tf2_tensors_operations.py

import tensorflow as tf

x = tf.constant([[1., 2., 3.], [4., 5., 6.]])

print("x:", x)
print("")
print("x.shape:", x.shape)
print("")
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print("x.dtype:", x.dtype)
print("")
print("x[:, 1:]:", x[:, 1:])
print("")
print("x[..., 1, tf.newaxis]:", x[..., 1, tf.newaxis])
print("")
print("x + 10:", x + 10)
print("")
print("tf.square(x):", tf.square(x))
print("")
print("x @ tf.transpose(x):", x @ tf.transpose(x))

m1 = tf.constant([[1., 2., 4.], [3., 6., 12.]])
print("m1:              ", m1)
print("m1 + 50:         ", m1 + 50)
print("m1 * 2:          ", m1 * 2)
print("tf.square(m1):   ", tf.square(m1))

Listing 1.17 defines the TF tensor x that contains a 2x3 array of real num-
bers. The bulk of the code in Listing 1.17 illustrates how to display proper-
ties of x by invoking x.shape and x.dtype, as well as the TF function 
tf.square(x). The output from Listing 1.17 is here:

x: tf.Tensor(
[[1. 2. 3.]
 [4. 5. 6.]], shape=(2, 3), dtype=float32)

x.shape: (2, 3)

x.dtype: <dtype: 'float32'>

x[:, 1:]: tf.Tensor(
[[2. 3.]
 [5. 6.]], shape=(2, 2), dtype=float32)

x[..., 1, tf.newaxis]: tf.Tensor(
[[2.]
 [5.]], shape=(2, 1), dtype=float32)

x + 10: tf.Tensor(
[[11. 12. 13.]
 [14. 15. 16.]], shape=(2, 3), dtype=float32)

tf.square(x): tf.Tensor(
[[ 1.  4.  9.]
 [16. 25. 36.]], shape=(2, 3), dtype=float32)

x @ tf.transpose(x): tf.Tensor(
[[14. 32.]
 [32. 77.]], shape=(2, 2), dtype=float32)
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m1:               tf.Tensor(
[[1. 2. 4.]
 [3. 6. 12.]], shape=(2, 3), dtype=float32)

m1 + 50:          tf.Tensor(
[[51. 52. 54.]
 [53. 56. 62.]], shape=(2, 3), dtype=float32)

m1 * 2:           tf.Tensor(
[[ 2.  4.  8.]
 [ 6. 12. 24.]], shape=(2, 3), dtype=float32)

tf.square(m1):    tf.Tensor(
[[  1.   4.  16.]
 [  9.  36. 144.]], shape=(2, 3), dtype=float32)

Second-Order Tensors in TF 2 (1)

Listing 1.18 displays the contents of tf2_elem2.py, which illustrates 
how to define a second-order TF tensor and access elements in that tensor.

Listing 1.18: tf2_elem2.py

import tensorflow as tf

arr2 = tf.constant([[1,2],[2,3]])

@tf.function
def compute_values():
  print('arr2: ',arr2)
  print('[0]:  ',arr2[0])
  print('[1]:  ',arr2[1])

compute_values()

Listing 1.18 contains the TF constant arr1 that is initialized with the 
value [[1,2],[2,3]]. The three print() statements display the value of 
arr1, the value of the element whose index is 1, and the value of the element 
whose index is [1,1]. The output from Listing 1.18 is here:

arr2:   tf.Tensor(
[[1 2]
 [2 3]], shape=(2, 2), dtype=int32)
[0]:   tf.Tensor([1 2], shape=(2,), dtype=int32)
[1]:   tf.Tensor([2 3], shape=(2,), dtype=int32)

Second-Order Tensors in TF 2 (2)

Listing 1.19 displays the contents of tf2_elem3.py, which illustrates 
how to define a second-order TF 2 tensor and access elements in that tensor.
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Listing 1.19: tf2_elem3.py

import tensorflow as tf

arr3 = tf.constant([[[1,2],[2,3]],[[3,4],[5,6]]])

@tf.function # repłace print() with tf.print()
def compute_values():
  print('arr3:   ',arr3)
  print('[1]:    ',arr3[1])
  print('[1,1]:  ',arr3[1,1])
  print('[1,1,0]:',arr3[1,1,0])

compute_values()

Listing 1.19 contains the TF constant arr3 that is initialized with the 
value [[[1,2],[2,3]],[[3,4],[5,6]]]. The four print() state-
ments display the value of arr3, the value of the element whose index is 1, 
the value of the element whose index is [1,1], and the value of the element 
whose index is [1,1,0]. The output from Listing 1.19 (adjusted slightly for 
display purposes) is here:

arr3:    tf.Tensor(
[[[1 2]
  [2 3]]

 [[3 4]
  [5 6]]], shape=(2, 2, 2), dtype=int32)
[1]:     tf.Tensor(
[[3 4]
 [5 6]], shape=(2, 2), dtype=int32)
[1,1]:   tf.Tensor([5 6], shape=(2,), dtype=int32)
[1,1,0]: tf.Tensor(5, shape=(), dtype=int32)

Multiplying Two Second-Order Tensors in TF

Listing 1.20 displays the contents of tf2_mult.py, which illustrates how 
to multiply second-order tensors in TF 2.

Listing 1.20: tf2_mult.py

import tensorflow as tf

m1 = tf.constant([[3., 3.]])  # 1x2
m2 = tf.constant([[2.],[2.]]) # 2x1
p1 = tf.matmul(m1, m2)        # 1x1

@tf.function
def compute_values():
  print('m1:',m1)
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  print('m2:',m2)
  print('p1:',p1)

compute_values()

Listing 1.20 contains two TF constants m1 and m2 that are initialized 
with the values [[3., 3.]] and [[2.],[2.]]. Due to the nested square 
brackets, m1 has shape 1x2, whereas m2 has shape 2x1. Hence, the product 
of m1 and m2 has shape (1,1).

The three print() statements display the values of m1, m2, and p1. The 
output from Listing 1.20 is here:

m1: tf.Tensor([[3. 3.]], shape=(1, 2), dtype=float32)
m2: tf.Tensor(
[[2.]
 [2.]], shape=(2, 1), dtype=float32)
p1: tf.Tensor([[12.]], shape=(1, 1), dtype=float32)

Convert Python Arrays to TF Tensors

Listing 1.21 displays the contents of tf2_convert_tensors.py, 
which illustrates how to convert a Python array to a TF 2 tensor.

Listing 1.21: tf2_convert_tensors.py

import tensorflow as tf
import numpy as np  

x1 = np.array([[1.,2.],[3.,4.]])
x2 = tf.convert_to_tensor(value=x1, dtype=tf.float32)

print ('x1:',x1)
print ('x2:',x2)

Listing 1.21 is straightforward, starting with an import statement for 
TensorFlow and one for NumPy. Next, the x_data variable is a NumPy array, 
and x is a TF tensor that is the result of converting x_data to a TF tensor. 
The output from Listing 1.21 is here:

x1: [[1. 2.]
 [3. 4.]]
x2: tf.Tensor(
[[1. 2.]
 [3. 4.]], shape=(2, 2), dtype=float32)

Conflicting Types in TF 2

Listing 1.22 displays the contents of tf2_conflict_types.py, which 
illustrates what happens when you try to combine incompatible tensors in 
TF 2.
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Listing 1.22: tf2_conflict_types.py

import tensorflow as tf

try:
  tf.constant(1) + tf.constant(1.0)
except tf.errors.InvalidArgumentError as ex:
  print(ex)

try:
  tf.constant(1.0, dtype=tf.float64) + tf.constant(1.0)
except tf.errors.InvalidArgumentError as ex:
  print(ex)

Listing 1.22 contains two try/except blocks. The first block adds two 
constants 1 and 1.0, which are compatible. The second block attempts to add 
the value 1.0 that’s declared as a tf.float64 with 1.0, which are not com-
patible tensors. The output from Listing 1.22 is here:

cannot compute Add as input #1(zero-based) was expected to 
be a int32 tensor but is a float tensor [Op:Add] name: add/
cannot compute Add as input #1(zero-based) was expected 
to be a double tensor but is a float tensor [Op:Add] name: 
add/

Differentiation and tf.GradientTape in TF 2

Automatic differentiation (i.e., calculating derivatives) is useful for imple-
menting ML algorithms such as back propagation for training various types of 
NNs (Neural Networks). During eager execution, the TF 2 context manager 
tf.GradientTape traces operations for computing gradients. This context 
manager provides a watch() method for specifying a tensor that will be dif-
ferentiated (in the mathematical sense of the word).

The tf.GradientTape context manager records all forward-pass opera-
tions on a “tape.” Next, it computes the gradient by “playing” the tape back-
ward, and then discards the tape after a single gradient computation. Thus, a 
tf.GradientTape can only compute one gradient: subsequent invocations 
throw a runtime error. Keep in mind that the tf.GradientTape context 
manager only exists in eager mode. 

Why do we need the tf.GradientTape context manager? Consider de-
ferred execution mode, where we have a graph in which we know how nodes 
are connected. The gradient computation of a function is performed in two 
steps: (a) backtracking from the output to the input of the graph, and (b) com-
puting the gradient to obtain the result. 

By contrast, in eager execution the only way to compute the gradient of 
a function using automatic differentiation is to construct a graph. After con-
structing the graph of the operations executed within the tf.GradientTape 
context manager on some “watchable” element (such as a variable), we can 
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instruct the tape to compute the required gradient. If you want a more detailed 
explanation, the tf.GradientTape documentation page contains an exam-
ple that explains how and why tapes are needed.

The default behavior for tf.GradientTape is to “play once and then 
discard.” However, it’s possible to specify a persistent tape, which means that 
the values are persisted and therefore the tape can be “played” multiple times. 
The next section contains several examples of tf.GradientTape, including 
an example of a persistent tape.

Examples of tf.GradientTape

Listing 1.23 displays the contents of tf2_gradient_tape1.py, which 
illustrates how to invoke tf.GradientTape in TF 2. This example is one of 
the simplest examples of using tf.GradientTape in TF 2.

Listing 1.23: tf2_gradient_tape1.py

import tensorflow as tf

w = tf.Variable([[1.0]])

with tf.GradientTape() as tape:
  loss = w * w

grad = tape.gradient(loss, w)
print("grad:",grad)

Listing 1.23 defines the variable w, followed by a with statement that ini-
tializes the variable loss with the expression w*w. Next, the variable grad is 
initialized with the derivative that is returned by the tape, and then evaluated 
with the current value of w.

As a reminder, if we define the function z = w*w, then the first derivative 
of z is the term 2*w , and when this term is evaluated with the value of 1.0 
for w, the result is 2.0. Launch the code in Listing 1.23 and you will see the 
following output:

grad: tf.Tensor([[2.]], shape=(1, 1), dtype=float32)

Using the watch() Method of tf.GradientTape

Listing 1.24 displays the contents of tf2_gradient_tape2.py, which 
also illustrates the use of tf.GradientTape with the watch() method in 
TF 2.

Listing 1.24: tf2_gradient_tape2.py

import tensorflow as tf

x = tf.constant(3.0)
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with tf.GradientTape() as g:
  g.watch(x)
  y = 4 * x * x

dy_dx = g.gradient(y, x)

Listing 1.24 contains a similar with statement as Listing 1.23, but this 
time a watch() method is also invoked to “watch” the tensor x. As you saw in 
the previous section, if we define the function y = 4*x*x, then the first de-
rivative of y is the term 8*x; when the latter term is evaluated with the value 
3.0 for x, the result is 24.0.

Launch the code in Listing 1.24 and you will see the following output:

dy_dx: tf.Tensor(24.0, shape=(), dtype=float32)

Using Nested Loops with tf.GradientTape

Listing 1.25 displays the contents of tf2_gradient_tape3.py, which 
also illustrates how to define nested loops with tf.GradientTape in order 
to calculate the first and the second derivative of a tensor in TF 2.

Listing 1.25: tf2_gradient_tape3.py

import tensorflow as tf

x = tf.constant(4.0)
with tf.GradientTape() as t1:
  with tf.GradientTape() as t2:
    t1.watch(x)
    t2.watch(x)
    z = x * x * x
  dz_dx = t2.gradient(z, x)
d2z_dx2 = t1.gradient(dz_dx, x)

print("First  dz_dx:  ",dz_dx)
print("Second d2z_dx2:",d2z_dx2)

x = tf.Variable(4.0)
with tf.GradientTape() as t1:
  with tf.GradientTape() as t2:
    z = x * x * x
  dz_dx = t2.gradient(z, x)
d2z_dx2 = t1.gradient(dz_dx, x)

print("First  dz_dx:  ",dz_dx)
print("Second d2z_dx2:",d2z_dx2)

The first portion of Listing 1.25 contains a nested loop, where the outer 
loop calculates the first derivative and the inner loop calculates the second 
derivative of the term x*x*x when x equals 4. The second portion of Listing 
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1.25 contains another nested loop that produces the same output with slightly 
different syntax. 

In case you’re a bit rusty regarding derivatives, the next code block shows 
you a function z, its first derivative z', and its second derivative z'':

z   = x*x*x
z'  = 3*x*x
z'' = 6*x

When we evaluate z, z', and z'' with the value 4.0 for x, the result is 
64.0, 48.0, and 24.0, respectively. Launch the code in Listing 1.25 and you will 
see the following output:

First  dz_dx:   tf.Tensor(48.0, shape=(), dtype=float32)
Second d2z_dx2: tf.Tensor(24.0, shape=(), dtype=float32)
First  dz_dx:   tf.Tensor(48.0, shape=(), dtype=float32)
Second d2z_dx2: tf.Tensor(24.0, shape=(), dtype=float32)

Other Tensors with tf.GradientTape

Listing 1.26 displays the contents of tf2_gradient_tape4.py, which 
illustrates how to use tf.GradientTape in order to calculate the first 
derivative of an expression that depends on a 2x2 tensor in TF 2.

Listing 1.26: tf2_gradient_tape4.py

import tensorflow as tf

x = tf.ones((3, 3))

with tf.GradientTape() as t:
  t.watch(x)
  y = tf.reduce_sum(x)
  print("y:",y)
  z = tf.multiply(y, y)
  print("z:",z)
  z = tf.multiply(z, y)
  print("z:",z)

# the derivative of z with respect to y
dz_dy = t.gradient(z, y)
print("dz_dy:",dz_dy)

In Listing 1.26, y equals the sum of the elements in the 3x3 tensor x, which 
is 9.

Next, z is assigned the term y*y and then multiplied again by y, so the 
final expression for z (and its derivative) is here:

z  = y*y*y
z' = 3*y*y
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When z’ is evaluated with the value 9 for y, the result is 3*9*9, which 
equals 243. Launch the code in Listing 1.26 and you will see the following 
output (slightly reformatted for readability):

y: tf.Tensor(9.0,       shape=(), dtype=float32)
z: tf.Tensor(81.0,      shape=(), dtype=float32)
z: tf.Tensor(729.0,     shape=(), dtype=float32)
dz_dy: tf.Tensor(243.0, shape=(), dtype=float32)

A Persistent Gradient Tape

Listing 1.27 displays the contents of tf2_gradient_tape5.py, which 
illustrates how to define a persistent gradient tape with tf.GradientTape 
in order to calculate the first derivative of a tensor in TF 2.

Listing 1.27: tf2_gradient_tape5.py

import tensorflow as tf

x = tf.ones((3, 3))

with tf.GradientTape(persistent=True) as t:
  t.watch(x)
  y = tf.reduce_sum(x)
  print("y:",y)
  w = tf.multiply(y, y)
  print("w:",w)
  z = tf.multiply(y, y)
  print("z:",z)
  z = tf.multiply(z, y)
  print("z:",z)

# the derivative of z with respect to y
dz_dy = t.gradient(z, y)
print("dz_dy:",dz_dy)
dw_dy = t.gradient(w, y)
print("dw_dy:",dw_dy)

Listing 1.27 is almost the same as Listing 1.26: the new sections are dis-
played in bold. Note that w is the term y*y and therefore the first derivative w 
“is 2*y. Hence, the values for w and w” are 81 and 18, respectively, when they 
are evaluated with the value 9.0. Launch the code in Listing 1.27 and you will 
see the following output (slightly reformatted for readability), where the new 
output is shown in bold:

y: tf.Tensor(9.0,       shape=(), dtype=float32)
w: tf.Tensor(81.0,      shape=(), dtype=float32)
z: tf.Tensor(81.0,      shape=(), dtype=float32)
z: tf.Tensor(729.0,     shape=(), dtype=float32)
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dz_dy: tf.Tensor(243.0, shape=(), dtype=float32)
dw_dy: tf.Tensor(18.0,  shape=(), dtype=float32)

This concludes the portion of the chapter that discusses new features of 
TF 2. The remaining sections discuss migration of TF 1.x code to TF 2.

Migrating TF 1.x Code to TF 2 Code (optional)

If you do not have any TF 1.x code, this section is optional, yet it might be 
worth skimming through the material, just in case you need to migrate some 
code from TF 1.x to TF 2 at some point in the future. In brief, the major 
changes involve streamlined namespaces, eager execution, no global variables, 
and functions instead of sessions.

The TF 1.x libraries tf.app, tf.logging, and tf.flags are not 
available in TF 2. The most significant change is the removal of tf.contrib 
from TF 2: check the contents of tf.experiment, which might be the new 
“home” for code that was previously in tf.contrib.

Furthermore, since the tf.Session class has been removed, its “run” 
method has also been removed. There are other simplifications that will be-
come apparent as you read the samples in this book. 

The APIs in TF 2 look quite different from TF 1.x, and they have a more 
“Python-like” style. Some TensorFlow 1.x APIs are not available in TF 2, in-
cluding equal(), eval(), name_scope(), reduce_sum(), and 
summary.scalar().

In order to migrate from TF 1.x to TF 2, remove the graph definition, 
the session execution, variables initialization, variable sharing via scopes, 
as well as any tf.control_dependencies. There are several tech-
niques for converting older TF 1.x code, as described in the following  
subsections.

Two Conversion Techniques from TF 1.x to TF 2

The simplest option (let’s call it option #1) is to launch the upgrade/conver-
sion script that performs an initial pass to convert your TF 1.x code to TF 2. 
This script inserts tf.compat.v1 endpoints to access placeholders, sessions, 
collections, and other TF 1.x functionality. 

By contrast, option #2 involves “pure” TF 2 functionality, which is not the 
case for the conversion script; hence, option #2 is recommended, and the de-
tails are discussed in the next section.

Do not make manual upgrade-related changes to TF 1.x code before 
launching the conversion script, which expects TF 1.x syntax (it fails if 
you make manual updates).

NOTE
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Converting to Pure TF 2 Functionality

The most commonly required steps for converting TF 1.x code to pure 
TF 2 code are listed here:

1.	 replace tf.Session.run calls with a Python function
2.	 feed_dict and tf.placeholders become function arguments
3.	 fetches become the function’s return value
4.	 add a @tf.function decorator to the Python function
5.	 use tf.Variable instead of tf.get_variable

Additional conversion steps include: combining tf.data.Dataset and 
@tf.function, and using Keras layers and models (discussed in Chapter 4) 
to manage variables.

Converting Sessions to Functions

Let’s look at an example of TF 1.x and its TF 2 counterpart, such as the fol-
lowing code snippet from TensorFlow 1.x:

outputs = session.run(f(placeholder),feed_
dict={placeholder:input})

The equivalent code in TF 2 is here, where f is a decorated Python function:

outputs = f(input)

Combine tf.data.Dataset and @tf.function

Chapter 3 is devoted to TF 2 tf.data.Dataset code samples, so this sec-
tion will make more sense after you have read that chapter. When iterating over 
training data that fits in memory, use regular Python iteration. Otherwise, use 
tf.data.Dataset to stream training data from the disk. Datasets are itera-
bles (not iterators), and work the same as other Python iterables in eager mode. 

You can fully utilize dataset asynchronous prefetching/streaming features 
by wrapping your code in @tf.function(), which replaces Python itera-
tion with the equivalent graph operations using AutoGraph.

Use Keras Layers and Models to Manage Variables

When possible, use Keras layers and models to manage variables, because 
they recursively collect dependent variables. This functionality facilitates the 
handling of local variables.

In TF 2, Keras layers and models inherit from tf.train.Checkpoint-
able and are also integrated with @tf.function; this integration allows you 
to directly checkpoint or export SavedModels from Keras objects. If you are fa-
miliar with Keras, you’ll be interested to know that the Keras .fit() API is not 
required in order to leverage these integrations. Chapters 4 and 5 contain Keras-
based code samples for linear regression and logistic regression, respectively.
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The TensorFlow Upgrade Script (optional)

TensorFlow provides an upgrade script tf_upgrade_v2 that is included 
in the most recent TF 1.x installations (such as TF 1.12).

Note that the tf_upgrade_v2 upgrade script is currently only available 
through the pip command for installing TF 1.13 or higher (and nightly TF 2 
builds): it’s not available via the pip3 command. 

In order to create a TF 1.x environment that does not overlap with a TF 2 
environment, you can use the conda command (which is part of the Ana-
conda distribution that is freely available). 

Another option is to use the virtual_env command. Check the online 
documentation for instructions regarding either of these two commands.

Do not make manual upgrade modifications to TF 1.x scripts, because 
those changes can cause the upgrade script to fail (because it assumes that 
your code contains TF 1.x syntax).

When you have everything ready, the following command converts the TF 
1.x code in oldtf.py to the Python script newtf.py that contains TF 2 
code:

tf_upgrade_v2 --infile oldtf.py --outfile newtf.py

The preceding command creates the Python script newtf.py contain-
ing the upgraded TF 2 code. In addition, this utility generates the text file 
report.txt that contains a list of errors (if any) that the upgrade script 
cannot fix. 

The upgrade can also upgrade an entire directory tree, as shown here:

# upgrade the .py files and copy all the other files to the 
outtree
tf_upgrade_v2 --intree oldcode --outtree newcode-upgraded

As a variation, you can invoke this upgrade script on a directory tree and 
also keep the upgraded Python scripts in the same directory, as shown here:

# just upgrade the .py files
tf_upgrade_v2 --intree coolcode --outtree coolcode-upgraded 
--copyotherfiles False

Summary

This chapter introduced you to TF 2, a very brief view of its architecture, 
and some of the tools that are part of the TF 2 “family.” Then you learned how 
to write basic Python scripts containing TF 2 code with TF constants and vari-
ables. You also learned how to perform arithmetic operations and also some 
built-in TF functions.

NOTE
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Next, you learned how to calculate trigonometric values, how to use for 
loops, and how to calculate exponential values. You also saw how to perform 
various operations on second-order TF 2 tensors.

In addition, you saw code samples that illustrate how to use some of 
the new features of TF 2, such as the @tf.function decorator and 
tf.GradientTape. Finally, you learned how to make some common 
changes when migrating TF 1.x code to TF 2 code.



Chapter 2
Useful TF 2 APIs

This chapter focuses on TF 2 APIs that will be useful for various tasks 
in your TF 2 code. Although an entire chapter devoted to APIs seems 
rather dry, there is a simple reason for doing so: you need all the APIs 

in this chapter if you continue learning about TensorFlow beyond this book. 
In addition, this “one-stop” chapter makes it easier for you to find these TF 2 
APIs. At a minimum, please skim through the material in this chapter to make 
note of the TF 2 APIs that are discussed.

The first part of this chapter briefly discusses some tensor operations (such 
as multiplying tensors) and also how to create for loops and while loops in 
TensorFlow. Recall from Chapter 1 that TF 2 uses eager execution as the de-
fault execution, whereas TF 1.x uses deferred execution. 

The second part of this chapter contains a collection of TF 2 code samples 
that show you how to use various APIs that are commonly used in machine 
learning. Specifically, you will see how to use the tf.random_normal() 
API for generating random numbers (which is useful for initializing the weights 
of edges in neural networks). 

You will see examples of the tf.argmax() API for finding the index of 
each row (or column) that contains the maximum value in each row (or col-
umn), which is used for calculating the accuracy of the training process involv-
ing various algorithms. In addition, you will learn about the tf.range() 
API, which is similar to the NumPy linspace() API.

The third portion of this chapter discusses another set of TF 2 APIs, includ-
ing reduce_mean() and equal(), both of which are useful for calculating 
the accuracy of a trained neural network (in conjunction with tf.argmax()). 
You will also learn about the truncated_normal() API, which is a variant 
of the tf.random_normal() API, and the one_hot() API for encoding 
data in a particular fashion (i.e., the digit 1 in one position and zero in all other 
positions of a vector). 
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One of the most frequently used APIs is reshape(), which you will see in 
any TF 2 code that involves training a CNN (Convolutional Neural Network). 
After you have completed this section of the chapter, navigate to the following 
URL that contains a massive collection of TF 2 APIs: https://www.tensorflow.
org/api_docs/python/tf

The last section of this chapter is about launching TensorBoard from the 
command line. You will also learn about Google Colaboratory, which is a fully 
online Jupyter-based environment, and also how to launch TensorBoard in a 
Jupyter notebook in Google Colaboratory.

TF 2 Tensor Operations

TF 2 supports many arithmetic operations on TensorFlow tensors, such 
as adding, multiplying, dividing, and subtracting tensors. The preceding op-
erations are performed on an element-by-element basis of two tensors. For 
example, adding two 2x2 tensors involves four additions, whereas adding two 
4x4 tensors involves sixteen additions.

The TF 2 tf.argmax() API enables you to find the maximum value 
of each row (or each column) of a two-dimensional TF 2 tensor. This API 
is used while training CNNs (Convolutional Neural Networks) as part of the 
calculation of the number of images (in the case of mnist) that are correctly 
identified during the training phase. The TF 2 tf.argmin() is similar to 
the tf.argmax() API, except that minimum values are found instead of 
maximum values.

TF 2 provides statistical methods such as tf.reduce_mean() and  
tf.random_normal() for calculating the mean of a set of numbers and ran-
domly selecting numbers from a normal distribution. The tf.truncated_
normal() API is similar to the tf.random_normal() API, with the 
added constraint that the selected numbers must be in a specified range 
(which is specified by you).

Now let’s look at the code samples in the next two sections that show you 
simple examples of a for loop and a while loop in TF 2.

Using for Loops in TF 2

Listing 2.1 displays the contents of tf2_forloop1.py, which illustrates 
how to create a simple for loop in a TF 2 graph.

Listing 2.1: tf2_forloop1.py

import tensorflow as tf

x = tf.Variable(0, name='x')

for i in range(5):
  x = x + 1
  print("x:",x)
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As you can see, Listing 2.1 contains simple Python code (except for the 
declaration of the tensor x). Listing 2.1 initializes the TF 2 variable x with the 
value 0, followed by a for loop that iterates through the values 1 through 5. 
During each iteration of the loop, the variable x is incremented by 1 and its 
value is printed. The output from Listing 2.1 is here:

1
2
3
4
5

Using while Loops in TF 2

Listing 2.2 displays the contents of tf2_while_loop.py, which illus-
trates how to create a while loop in TF 2.

Listing 2.2: tf2_while_loop.py

import tensorflow as tf

a = tf.constant(12)

while not tf.equal(a, 1):
  if tf.equal(a % 2, 0):
    a = a / 2
  else:
    a = 3 * a + 1
  print(a)

Listing 2.2 defines the TF 2 constant a whose value is 12. The next portion 
of Listing 2.2 is a while loop that contains an if/else statement. If the 
value of a is even, then a is replaced by half its value. If a is odd, then its value 
is tripled and incremented by 1. Launch the code in Listing 2.2 and you will 
see the following output:

tf.Tensor(6.0, shape=(), dtype=float64)
tf.Tensor(3.0, shape=(), dtype=float64)
tf.Tensor(10.0,shape=(), dtype=float64)
tf.Tensor(5.0, shape=(), dtype=float64)
tf.Tensor(16.0,shape=(), dtype=float64)
tf.Tensor(8.0, shape=(), dtype=float64)
tf.Tensor(4.0, shape=(), dtype=float64)
tf.Tensor(2.0, shape=(), dtype=float64)
tf.Tensor(1.0, shape=(), dtype=float64)

TF 2 Operations with Random Numbers

TF 2 provides APIs for generating random numbers, such as the TF 2 
tf.random_normal() API that generates random numbers from a normal 
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distribution. Listing 2.3 displays the contents of tf2_normal_dist.py, 
which illustrates how to use the tf.random_normal() method in TF 2.

Listing 2.3: tf2_normal_dist.py

import tensorflow as tf

# normal distribution:
w = tf.Variable(tf.random_normal([784, 10], stddev=0.01))

# mean of an array:
b = tf.Variable([10,20,30,40,50,60],name='t')

print("w: ",w)
print("b: ",tf.reduce_mean(input_tensor=b))

Listing 2.3 defines the TF 2 variables w (initialized with random values) 
and b (initialized with hard-coded values). The TF 2 variable w has dimensions 
784x10 and b is a 1x6 tensor. Launch the code in Listing 2.3 and you will see 
the output shown here:

w:  <tf.Variable 'Variable:0' shape=(784, 10) 
dtype=float32, numpy=
array([[ �0.00407915, -0.00796624, -0.01256408, ...,  

0.01846658,
        -0.00702356,  0.02048219],
       [ �0.00358197, -0.00531838, -0.01946299, ...,  

0.00724312,
         0.00584369,  0.00208779],
       [�-0.00771784,  0.00230517, -0.00738808, ..., 

-0.01874011,
        -0.00284803, -0.00042984],
       ...,
       [� 0.00850285,  0.00289324,  0.00047594, ..., 

-0.0062794 ,
        -0.01276   , -0.01168498],
       [� 0.00468423,  0.00165335,  0.00315462, ..., 

-0.01164965,
        -0.00566464, -0.00804143],
       [-�0.00787143,  0.00773228, -0.00716571, ...,  

0.00040842,
         0.00976203,  0.00791298]], dtype=float32)>
b:  tf.Tensor(35, shape=(), dtype=int32)

Listing 2.4 displays the contents of random_normal.py, which illus-
trates how to use the tf.random_normal() method in TF 2.

Listing 2.4: tf2_random_normal.py

import tensorflow as tf 
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# initialize a 6x3 array of random numbers:
values = {'weights':tf.Variable(tf.random_normal([6,3]))}

print("values:")
print(values['weights'])

Listing 2.4 initializes the values variable with the element weights, 
which is initialized as a TF 2 variable that comprises a 6x3 tensor containing 
randomly selected values from a normal distribution. The output from launch-
ing the code in Listing 2.4 is here:

<tf.Variable 'Variable:0' shape=(6, 3) dtype=float32, numpy=
array([[-0.9062903 , -0.20363109,  0.46733373],
       [ 1.3933249 ,  1.0044192 ,  0.4911133 ],
       [-1.1827736 , -1.7746108 ,  0.17291453],
       [-0.17107153, -0.15072137, -0.7849119 ],
       [-0.5893343 , -1.8309714 , -0.42436346],
       [ 0.49252385,  0.04508299,  1.1422006 ]], 
dtype=float32)>

Listing 2.5 displays the contents of tf2_array1.py, which illustrates 
how to convert a NumPy array to a TF 2 tensor.

Listing 2.5: tf2_array1.py

import tensorflow as tf 
import numpy as np

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

# create a Python array:
array_1d = np.array([1.3, 1, 4.0, 23.5])
tf_tensor = tf.convert_to_tensor(value=array_1d, dtype=tf.
float64)

print(tf_tensor)
print(tf_tensor[0])
print(tf_tensor[2]) 

Listing 2.5 defines the NumPy variable array_1d that is initialized as an 
array of four real numbers. Next, the TF 2 variable tf_tensor is assigned 
the result of converting the NumPy variable array_1d to a TF 2 tensor. The 
output from launching the code in Listing 2.5 is here:

tf.Tensor([ 1.3  1.   4.  23.5], shape=(4,), dtype=float64)
tf.Tensor(1.3, shape=(), dtype=float64)
tf.Tensor(4.0, shape=(), dtype=float64)
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TF 2 Tensors and Maximum Values

The TF 2 tf.argmax() API determines the index values containing 
maximum values on a row-wise basis or on a column-wise basis for a TF  2 
tensor. Just to be sure you understand the previous statement: the TF 2 
tf.argmax() API determines the index values that contain maximum val-
ues and not the actual maximum values in those index positions. 

As a trivial example, the array [10,20,30] contains a minimum value of 
10 in index position 0 and a maximum value of 30 in index position 2. Conse-
quently, the TF 2 tf.argmax() API returns the value 2, whereas the TF 2 
tf.argmin() API returns the value 0.

Listing 2.6 displays the contents of tf2_row_max.py, which illustrates 
how to find the maximum value on a row-wise basis in a TF 2 tensor.

Listing 2.6: tf2_row_max.py

import tensorflow as TF 2 

# initialize an array of arrays:
a = [[1,2,3], [30,20,10], [40,60,50]]
b = tf.Variable(a, name='b')

print("b: ",tf.argmax(b,1))

Listing 2.6 defines the Python variable a as a 3x3 array of integers. Next, 
the variable b is initialized as a TF 2 variable that is based on the contents of 
the Python variable a. The output is shown here:

b:  tf.Tensor([2 0 1], shape=(3,), dtype=int64)

Notice that tf.argmax() in Listing 2.6 specifies the value 1 (shown in 
bold): this indicates that you want the indexes containing row-wise maximum 
values. On the other hand, specify the value 0 if you want the indexes contain-
ing column-wise maximum values.

The TF 2 range() API

Listing 2.7 displays the contents of tf2_range1.py, which illustrates 
how to use the TF 2 range() API, which generates a range of numbers be-
tween an initial value and a final value, where consecutive values differ by the 
same constant. 

Listing 2.7: tf2_range1.py

import tensorflow as tf
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a1 = tf.range(3, 18, 3)
a2 = tf.range(0, 8, 2)
a3 = tf.range(-6, 6, 3)
a4 = tf.range(-10, 10, 4)

print('a1:',a1)
print('a2:',a2)
print('a3:',a3)
print('a4:',a4)

Listing 2.7 defines the TF 2 variable a1 that is the set of numbers between 
3 (inclusive) and 18 (exclusive), where each number is 3 larger than its prede-
cessor. Similarly, the variables a2, a3, and a4 are defined with ranges that 
have a different start value, and end value, and increment value. The output 
from launching the code in tf2_range1.py is here:

a1: tf.Tensor([3    6  9 12 15], shape=(5,), dtype=int32)
a2: tf.Tensor([0    2  4 6],     shape=(4,), dtype=int32)
a3: tf.Tensor([-6  -3  0 3],     shape=(4,), dtype=int32)
a4: tf.Tensor([-10 -6 -2 2 6],   shape=(5,), dtype=int32)

Operations with Nodes

Listing 2.8 displays the contents of tf2_addnodes.py, which illustrates 
how to add two nodes in TF 2.

Listing 2.8: tf2_addnodes.py

import tensorflow as TF 2 

a1 = tf.Variable(7,  tf.float32)
a2 = tf.Variable(13, tf.float32)
a3 = a1 + a2

@tf.function
def compute_values(a1, a2):
  return a1 + a2

result = compute_values(a1, a2)
print("a1 + a2 =",result)

Listing 2.8 defines a3 as the sum of a1 and a2. The next portion of List-
ing 2.8 defines the decorated Python function compute_values(), which 
computes the sum of its two arguments and returns that sum. The output from 
launching the code in Listing 2.8 is here:

a1 + a2 = tf.Tensor(20, shape=(), dtype=int32)
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The tf.size(), tf.shape(), and tf.rank() APIs

These three TF 2 APIs are somewhat related, so they are included in the 
same section for easy reference. First of all, the tf.size() API returns the 
number of elements in a TF 2 tensor. Here is a simple example:

t = tf.constant([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]])
tf.size(t)  # 12

In essence, ignore the square brackets and count the number of elements 
in order to determine the answer.

Second, the tf.shape() API returns the shape of a TF 2 tensor, which is 
the number of elements in each “dimension.” Here is a simple example:

t = tf.constant([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]])
tf.shape(t)  # [2, 2, 3]

Third, the tf.rank() API returns the number of indices required to 
uniquely select each element of the tensor. The rank is also known as the 
“order,” “degree,” or “ndims.” Here is a simple example: 

# the shape of tensor 't' is [2, 2, 3]
t = tf.constant([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]])
# the rank of t is 3

Note that the rank of a tensor does not equal the rank of a matrix: the latter 
equals the number of linearly independent rows in that matrix.

You might initially think that the rank in the preceding example is 4 instead 
of 3 because it’s easy to overlook the number of nested square brackets. An 
easier way to display the preceding TF 2 tensor is shown here:

[
  [
    [1,1,1],
    [2,2,2]
  ],
  [ 
    [3,3,3],
    [4,4,4]
  ]
]

As you can see in the preceding layout, the rank of the tensor is 3 because 
you need to “traverse” 3 levels in order to uniquely identify each element of 
the tensor.

The tf.reduce_prod() and tf.reduce_sum() APIs

Listing 2.9 displays the contents of tf2_reduce_prod.py, which 
illustrates how to invoke the TF 2 reduce_prod()  and reduce_sum() 
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APIs for multiplying and adding, respectively, the numeric elements in a TF 2  
tensor.

Listing 2.9: tf2_reduce_prod.py

import tensorflow as tf

x = tf.constant([100,200,300], name="x")
y = tf.constant([1,2,3], name="y")

sum_x  = tf.reduce_sum(x, name="sum_x")
prod_y = tf.reduce_prod(y, name="prod_y")
div_xy = tf.math.divide(sum_x, prod_y, name="div_xy")
# 'div' is deprecated in favor of operator or tf.math.divide

print("sum_x: ",sum_x)
print("prod_y:",prod_y)
print("div_xy:",div_xy)

sum_x:  tf.Tensor(600, shape=(), dtype=int32)
prod_y: tf.Tensor(6,   shape=(), dtype=int32)
div_xy: tf.Tensor(100, shape=(), dtype=int32)

Listing 2.9 defines the TF 2 constants x and y, followed by three variables 
whose values are based on three TF 2 APIs. Specifically, sum_x equals the 
value of invoking the tf.reduce_sum() API with the TF 2 constant x, 
which equals the sum of the numeric elements of x. 

Next, prod_y equals the value of invoking the tf.reduce_prod() 
API with the TF 2 constant y, which equals the product of the numeric ele-
ments of y. Finally, div_xy equals the ratio of sum_x and prod_y. The 
output from launching the code in Listing 2.9 is here:

sum_x:  tf.Tensor(600, shape=(), dtype=int32)
prod_y: tf.Tensor(6, shape=(), dtype=int32)
div_xy: tf.Tensor(100, shape=(), dtype=int32)

The tf.reduce_mean() API

Listing 2.10 displays the contents of tf2_reduce_mean.py, which 
illustrates how to invoke the reduce_mean() API in TF 2.

Listing 2.10: tf2_reduce_mean.py

import tensorflow as tf

x = tf.constant([100,200,300], name='x')
y = tf.constant([1,2,3], name='y')

sum_x  = tf.reduce_sum(x, name="sum_x")
prod_y = tf.reduce_prod(y, name="prod_y")
mean   = tf.reduce_mean([sum_x,prod_y], name="mean")
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print("sum_x: ",sum_x)
print("prod_y:",prod_y)
print("mean:  ",mean)

sum_x:  tf.Tensor(600, shape=(), dtype=int32)
prod_y: tf.Tensor(6,   shape=(), dtype=int32)
mean:   tf.Tensor(303, shape=(), dtype=int32)

Listing 2.10 defines the TF 2 constants x and y, followed by three variables 
whose values are based on three APIs in TF 2. Specifically, sum_x equals the 
value of invoking the tf.reduce_sum() API with the TF 2 constant x, 
which equals the sum of the numeric elements of x. 

Next, prod_y equals the value of invoking the tf.reduce_prod() 
API with the TF 2 constant y, which equals the product of the numeric ele-
ments of y. Finally, mean equals the sum of sum_x and prod_y. The output 
from launching the code in Listing 2.10 is here:

sum_x:  tf.Tensor(600, shape=(), dtype=int32)
prod_y: tf.Tensor(6,   shape=(), dtype=int32)
mean:   tf.Tensor(303, shape=(), dtype=int32)

The tf.random_normal() API (1)

The TF 2 tf.random_normal() API returns a set of values from a 
normal distribution with mean 0 and standard deviation 1. Listing 2.11 displays 
the contents of tf2_random_normal.py, which illustrates how to invoke 
the TF 2 tf.random_normal() API in a Python script.

Listing 2.11: tf2_random_normal.py

import tensorflow as tf

# initialize a 6x3 2nd order tensor of random numbers:
values = {'weights':tf.Variable(tf.random.normal([6,3]))}

print("values:")
print(values['weights'])

Listing 2.11 defines the TF 2 variable values, which is a 6x3 second-order 
tensor of random numbers. The output from launching the code in Listing 
2.11 is here:

values:
<tf.Variable 'Variable:0' shape=(6, 3) dtype=float32, 
numpy=
array([[ 1.6026226 ,  0.8578084 , -0.4129617 ],
       [-1.2773342 ,  0.00630822, -0.26294807],
       [-0.6857447 ,  0.8162317 , -1.3068705 ],
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       [ 0.8561586 ,  0.4733295 , -0.01647461],
       [-0.87976044, -0.7573596 ,  1.1681179 ],
       [ 0.6858091 ,  0.9455758 ,  0.67297345]], 
dtype=float32)>

The TF 2 random_normal() API (2)

The previous section showed you how to use the TF 2 random_nor-
mal() API. Listing 2.12 displays the contents of tf2_random_normal2.
py, which illustrates how to use the random_normal() API in conjunction 
with a NumPy array.

Listing 2.12: tf2_random_normal2.py

import tensorflow as tf

for i in range(3):
  x_train = tf.random.normal((1,), mean=5, stddev=2.0)
  y_train = x_train * 2 + 3
  print("x_train:",x_train)
print("-----------------\n")

for i in range(3):
  x_train = tf.random.normal((2,), mean=5, stddev=2.0)
  y_train = x_train * 2 + 4
  print("x_train:",x_train)
print("-----------------\n")

for i in range(3):
  x_train = tf.random.normal((3,), mean=5, stddev=2.0)
  y_train = x_train * 2 + 6
  print("x_train:",x_train)
print("-----------------\n")

Listing 2.12 contains three for loops, all of which initialize the variable  
x_train by invoking the tf.random_normal() API with the mean 
equal to 5 and the stddev equal to 2.0. Moreover, all three loops define the  
y_train variable as a linear combination of the x_train values. 

The first parameter of the tf.random_normal() API specifies the 
shape of the set of random numbers. This parameter is set to (1,), (2,), 
and (3,) in the three for loops, which means that there will be one, two, and 
three columns of output, respectively. The output from Listing 2.12 is here:

x_train: tf.Tensor([7.1610246], shape=(1,), dtype=float32)
x_train: tf.Tensor([4.7292676], shape=(1,), dtype=float32)
x_train: tf.Tensor([3.34873],   shape=(1,), dtype=float32)
-----------------
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x_train: tf.Tensor([6.7025995 4.178926 ], shape=(2,), 
dtype=float32)
x_train: tf.Tensor([8.426264  6.4971704], shape=(2,), 
dtype=float32)
x_train: tf.Tensor([2.7849288 7.8707666], shape=(2,), 
dtype=float32)
-----------------

x_train: tf.Tensor([8.499574  3.6422663 7.9269   ], 
shape=(3,), dtype=float32)
x_train: tf.Tensor([4.3513556 1.2529728 6.7783537], 
shape=(3,), dtype=float32)
x_train: tf.Tensor([6.3333287 1.5062737 3.0980983], 
shape=(3,), dtype=float32)
-----------------

The tf.truncated_normal() API

The tf.truncated_normal() API produces a set of random values 
from a truncated normal distribution, which differs from the tf.random_
normal() API in terms of the interval from which random values are se-
lected. First, visualize a regular normal distribution whose mean is close to 0. 
Second, mentally “chop off” the values that are more than 2 standard devia-
tions from the mean, which results in a “truncated” normal distribution. 

This truncated interval is the interval from which random numbers are 
selected. Specifically, a random number is generated, and that number is in-
cluded in the “result” set only if it’s inside the “truncated” normal distribution. 

However, if the randomly chosen value lies outside the truncated normal 
distribution, regenerate the value (and do so as often as necessary) until it’s 
inside the truncated normal distribution, after which the number is included 
in the “result” set. 

Perhaps an analogy would be helpful here. Suppose you toss a fair die and 
only record the numbers that are 2, 3, or 4, which is to say that you ignore a 
1, 5, or 6 whenever that number is displayed. In addition, suppose that you 
want 100 occurrences of 2, 3, or 4. In this situation, you are almost guaranteed 
that you must toss the die more than 100 times (it’s possible to toss a die that 
returns only a 2, 3, or 4 in the first 100 tosses, but the probability of doing so is 
practically zero). A function that returns the desired values is somewhat analo-
gous to the tf.truncated_normal() function.

One other detail: the tf.truncated_normal() API is useful because 
it helps to prevent (or at least reduce) saturation that can occur with the sig-
moid function: neurons stop “learning” if saturation occurs.

The tf.reshape() API

Listing 2.13 displays the contents of tf2_reshape.py, which illustrates 
how to invoke the TF 2 reshape() APIs in order to create TF 2 tensors with 
different shapes.



Useful TF 2 APIs   •  51

Listing 2.13: tf2_reshape.py

import tensorflow as tf

x = tf.constant([[2,5,3,-5],[0,3,-2,5],[4,3,5,3]])

print("shape:  ",tf.shape(input=x))
print("shape 1:",tf.reshape(x, [6,2]))
print("shape 2:",tf.reshape(x, [3,4]))

Listing 2.13 defines the TF 2 constant x as a TF 2 tensor with shape (3,4) 
that consists of 12 integers (some are positive and some are negative). We can 
reshape the variable x as long as the product of the new row size and column 
size equals 12. 

Hence, the allowable pairs of values for rows and columns are: 1 and 12, 2 
and 6, 3 and 4, 4 and 3, 6 and 2, and also 12 and 1. The output from launching 
the code in Listing 2.13 is here:

shape:   tf.Tensor([3 4], shape=(2,), dtype=int32)
shape 1: tf.Tensor(
[[ 2  5]
 [ 3 -5]
 [ 0  3]
 [-2  5]
 [ 4  3]
 [ 5  3]], shape=(6, 2), dtype=int32)
shape 2: tf.Tensor(
[[ 2  5  3 -5]
 [ 0  3 -2  5]
 [ 4  3  5  3]], shape=(3, 4), dtype=int32)

The tf.range() API

Listing 2.14 displays the contents of tf2_range.py, which illustrates 
how to invoke the TF 2 tf.range() APIs to generate a range of numeric 
values. If you are familiar with NumPy, the TF 2 tf.range() API is similar 
to the NumPy linspace() API.

Listing 2.14: tf2_range.py

import tensorflow as tf

a1 = tf.range(3, 18, 3)
a2 = tf.range(0, 8, 2)
a3 = tf.range(-6, 6, 3)
a4 = tf.range(-10, 10, 4)

print('a1:',a1)
print('a2:',a2)
print('a3:',a3)
print('a4:',a4)
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Listing 2.14 defines a1, a2, a3, and a4 by invoking the tf.range() 
API with different numeric triples so that you can see some of the possibilities 
with the tf.range() API. The output from launching the code in Listing 
2.14 is here:

a1: tf.Tensor([3    6  9 12 15], shape=(5,), dtype=int32)
a2: tf.Tensor([0    2  4  6],    shape=(4,), dtype=int32)
a3: tf.Tensor([-6  -3  0  3],    shape=(4,), dtype=int32)
a4: tf.Tensor([-10 -6 -2  2 6],  shape=(5,), dtype=int32)

The tf.equal() API (1)

Listing 2.15 displays the contents of tf2_equal.py, which illustrates 
how to invoke the TF 2 equal() API as well as the TF 2 not_equal() 
API to determine whether or not two TF 2 tensors are equal.

Listing 2.15: tf2_equal.py

import tensorflow as tf

x1  = tf.constant([0.9, 2.5, 2.3, -4.5])
x2  = tf.constant([1.0, 2.0, 2.0, -4.0])
eq  = tf.equal(x1,x2)
neq = tf.not_equal(x1,x2)

print('x1: ',x1)
print('x2: ',x2)
print('eq: ',eq)
print('neq:',neq)

Listing 2.15 defines the TF 2 constants x1 and x2 as one-dimensional 
constants. Next, the variable eq is defined by performing an element-by-
element comparison of x1 and x2, and the result of the comparison is a one-
dimensional tensor of Boolean values. The output from launching the code in 
Listing 2.15 is here:

x1:  tf.Tensor([0.9 2.5 2.3 -4.5], shape=(4,), dtype=float32)
x2:  tf.Tensor([1.  2.  2. -4.],   shape=(4,), dtype=float32)
eq:  tf.Tensor([False False False False], shape=(4,), 
dtype=bool)
neq: tf.Tensor([True  True  True  True], shape=(4,), 
dtype=bool)

The tf.equal() API (2)

Listing 2.16 displays the contents of tf2_equal2.py, which also illus-
trates how to invoke the TF 2 equal() API.
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Listing 2.16: tf2_equal2.py

import tensorflow as tf
import numpy as np

x1 = tf.constant([0.9, 2.5, 2.3, -4.5])
x2 = tf.constant([1.0, 2.0, 2.0, -4.0])
x3 = tf.Variable(x1)

print('x1:',x1)
print('x2:',x2)
print('r3:',tf.round(x3))
print('eq:',tf.equal(x1,x3))

Listing 2.16 is straightforward: there are three TF 2 constants, x1, x2, and 
x3, which contain an assortment of positive and negative decimal values. Their 
values are displayed by the four print() statements. Notice that the fourth 
print() statement displays a tensor of Boolean values that are based on an 
element-by-element comparison of the elements of x1 and x3. The output 
from launching the code in Listing 2.16 is here:

x1: tf.Tensor([0.9  2.5  2.3 -4.5],  shape=(4,), 
dtype=float32)
x2: tf.Tensor([1.  2.  2. -4.],      shape=(4,), 
dtype=float32)
r3: tf.Tensor([1.  2.  2. -4.],      shape=(4,), 
dtype=float32)
eq: tf.Tensor([True True True True], shape=(4,), dtype=bool)

The tf.argmax() API (1)

As you learned earlier in this chapter, the TF 2 argmax() API returns 
the index position of a tensor of values that contains the maximum value in a 
tensor (not the actual maximum value). Listing 2.17 displays the contents of 
tf2_argmax.py, which illustrates how to invoke the TF 2 argmax() API.

Listing 2.17: tf2_argmax.py

import tensorflow as tf
import numpy as np

x1 = tf.constant([3.9, 2.1, 2.3, -4.0])
x2 = tf.constant([1.0, 2.0, 5.0, -4.2])

print('x1:',x1)
print('x2:',x2)
print('a1:',tf.argmax(input=x1, axis=0))
print('a2:',tf.argmax(input=x2, axis=0))
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Listing 2.17 defines the TF 2 constants x1 and x2, which are 
one-dimensional tensors that contain positive and negative decimal values. 
The first pair of print() statements displays the contents of x1 and x2, fol-
lowed by the index positions of the maximum values in x1 and x2. The output 
from launching the code in Listing 2.17 is here:

x1: tf.Tensor([ 3.9  2.1  2.3 -4. ], shape=(4,), 
dtype=float32)
x2: tf.Tensor([ 1.   2.   5.  -4.2], shape=(4,), 
dtype=float32)
a1: tf.Tensor(0, shape=(), dtype=int64)
a2: tf.Tensor(2, shape=(), dtype=int64)

The tf.argmax() API (2)

Listing 2.18 displays the contents of tf2_argmax2.py, which illustrates 
another example of invoking the TF 2 argmax() API.

Listing 2.18: tf2_argmax2.py

import tensorflow as tf

# initialize array of arrays:
arr1 = [[1,2,3], [30,20,10], [40,60,50]]
b = tf.Variable(arr1, name='b')

print("index of max values in b: ",tf.argmax(input=b,axis=1))

Listing 2.18 defines the 3x3 array arr1 that contains integer values, fol-
lowed by the definition of the TF 2 variable b. The print() statement 
displays the index position of each row of arr1 that contains the maximum 
value for that row. The output from launching the code in Listing 2.18 is here:

index of max values in b:  tf.Tensor([2 0 1], shape=(3,), 
dtype=int64)

The tf.argmax() API (3)

Listing 2.19 displays the contents of tf2_argmax3.py with another 
example of invoking the TF 2 argmax() API, this time involving two 3x3 
NumPy arrays.

Listing 2.19: tf2_argmax3.py

import tensorflow as tf
import numpy as np

x = np.array([[31, 23,  4, 54],
              [18,  3, 25,  0],
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              [28, 14, 33, 22],
              [17, 12,  5, 81]])

y = np.array([[31, 23,  4, 24],
              [18,  3, 25,  0],
              [28, 14, 33, 22],
              [17, 12,  5, 11]])

print('xmax:', tf.argmax(input=x,axis=1))
print('ymax:', tf.argmax(input=y,axis=1))
print('equal:',tf.equal(x,y))

Listing 2.19 defines the 3x3 NumPy arrays x and y that contain integer 
values. The print() statement displays the index of the maximum value for 
each row of x, followed by another print() statement that displays the index 
of the maximum value for each row of y. 

The third print() statement displays a tensor of Boolean values that are 
the result of performing an element-by-element comparison of the elements 
of x and y to determine which pairs contain equal values. The output from 
launching the code in Listing 2.19 is here:

xmax: tf.Tensor([3 2 2 3], shape=(4,), dtype=int64)
ymax: tf.Tensor([0 2 2 0], shape=(4,), dtype=int64)

equal: tf.Tensor(
[[ True  True  True False]
 [ True  True  True  True]
 [ True  True  True  True]
 [ True  True  True False]], shape=(4, 4), dtype=bool)

Combining tf.argmax() and tf.equal() APIs

Listing 2.20 displays the contents of tf2_argmax_equal.py, which  
illustrates how to invoke the TF 2 equal() API with the TF 2 tf.argmax() 
API.

Listing 2.20: tf2_argmax_equal.py

import tensorflow as tf
import numpy as np

pred = np.array([[31,  23,  4, 24, 27, 34],
                 [18,  3,  25,  0,  6, 35],
                 [28,  14, 33, 22, 20,  8],
                 [13,  30, 21, 19,  7,  9],
                 [16,  1,  26, 32,  2, 29],
                 [17,  12, 5,  11, 10, 15]])

y =    np.array([[31,  23,  4, 24, 27, 14],
                 [18,  3,  25,  0,  6, 35],
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                 [28,  14, 33, 22, 20,  8],
                 [13,  30, 21, 19,  7,  9],
                 [16,  1,  26, 32,  2, 29],
                 [17,  12,  5, 11, 10, 15]])

prediction = tf.equal(tf.argmax(input=pred,axis=1),tf.
argmax(input=y,axis=1))
accuracy = tf.reduce_mean(input_tensor=tf.cast(prediction, 
tf.float32))

print("prediction:",prediction)
print("accuracy:  ",accuracy)

Listing 2.20 defines two NumPy two-dimensional arrays of integers. The 
variable prediction contains the indexes of the maximum row values of x 
and y. Next, the variable accuracy compares the index values in the pre-
diction variable to determine how often they are equal. The result (after 
multiplying by 100) gives us the percentage of occurrences of equal index 
positions. 

In Listing 2.20, the maximum value in each of the rows 2 through 6 of x are 
in the same position as the maximum value for rows 2 through 6 of y. However, 
the index of the maximum value in row 1 of x is 5, whereas the index of the 
maximum value in row 1 of y is 0 (i.e., the index values do not match). Hence, 
the index values only match in 5 of the 6 rows, which equals the fraction 5/6 
that equals the decimal value 0.8333333 (rounded to six decimal places), which 
in turn is a percent value of 83.33333%.

This code sample is very helpful for understanding the logic (which is iden-
tical to this code sample) for calculating the accuracy of the training and testing 
portion of CNNs that are trained for the purpose of correctly identifying im-
ages. The output from launching the code in Listing 2.20 is here:

prediction: tf.Tensor([False  True  True  True  True  
True], shape=(6,), dtype=bool)
accuracy:   tf.Tensor(0.8333333, shape=(), dtype=float32

Combining tf.argmax() and tf.equal() APIs (2)

Listing 2.21 displays the contents of tf2_argmax_equal2.py, which 
illustrates how to invoke the TF 2 equal() API with the TF 2 argmax() 
API.

Listing 2.21: tf2_argmax_equal2.py

import tensorflow as tf
import numpy as np

# predictions from our model:  
pred = np.array([[0.1, 0.03, 0.2, 0.05, 0.02, 0.6],
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                 [0.5, 0.04, 0.2, 0.06, 0.10, 0.1],
                 [0.2, 0.04, 0.5, 0.06, 0.10, 0.1]])

# true values from our labeled data:
y_vals = np.array([[0,  0,  0,  0,  0,  1],
                   [1,  0,  0,  0,  0,  0],
                   [0,  0,  1,  0,  0,  0]])

print("argmax(pred,1):  ", tf.argmax(input=pred,axis=1))
print("argmax(y_vals,1):", tf.argmax(input=y_vals,axis=1))

prediction = tf.equal(tf.argmax(input=pred, axis=1),tf.
argmax(input=y_vals, axis=1))

accuracy = tf.reduce_mean(input_tensor=tf.cast(prediction, 
tf.float32))

print("prediction:",prediction)
print("accuracy:",accuracy)

Listing 2.21 contains code that is very similar to Listing 2.20: the main 
difference is that Listing 2.21 contains integer values for x and y, whereas 
the NumPy arrays pred and y_vals in Listing 2.21 contain decimal values 
that are between 0 and 1. The output from launching the code in Listing 2.21  
is here:

argmax(pred,1):   tf.Tensor([5 0 2], shape=(3,), dtype=int64)
argmax(y_vals,1): tf.Tensor([5 0 2], shape=(3,), dtype=int64)
prediction: tf.Tensor([True  True  True], shape=(3,), 
dtype=bool)
accuracy:   tf.Tensor(1.0, shape=(), dtype=float32)

The tf.map_fn() API

Although Chapter 3 contains more information about lazy operators, this 
section contains a basic introduction to the tf.map_fn() API. In essence, 
this API is similar to the map() API: both APIs take an array of numbers and 
then “send” every number in the array to a function that is called a lambda 
expression. Note that you specify the array as well as the function. 

For example, suppose you want to double every number in the array [1,2,3]. 
A common solution involves a loop that creates a new array whose values are 
twice their corresponding values in the initial array (or you could update the 
initial array “in place” by doubling each value).

An easier way to accomplish the same task involves the tf.map_fn() 
API. Listing 2.22 displays the contents of tf2_map_function.py, which 
illustrates how to invoke the TF 2 tf.map_fn() API in order to perform 
various operations on arrays of numbers, such as squaring every number in an 
array.
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Listing 2.22: tf2_map_function.py

import tensorflow as tf
import numpy as np

elems = np.array([1, 2, 3, 4, 5])

doubles = tf.map_fn(lambda x: 2 * x, elems)
print("doubles:",doubles)
# [2, 4, 6, 8, 10]

squares = tf.map_fn(lambda x: x * x, elems)
print("squares:",squares)
# [1, 4, 9, 16, 25]

elems = (np.array([1, 2, 3]), np.array([-1, 1, -1]))
neg_pos = tf.map_fn(lambda x: x[0] * x[1], elems, dtype=tf.
int64)
print("neg_pos:",neg_pos)
# [-1, 2, -3]

elems = np.array([1, 2, 3])
pos_neg = tf.map_fn(lambda x: (x, -x), elems, dtype=(tf.
int64, tf.int64))
print("pos_neg:",pos_neg)

Listing 2.22 contains a NumPy array elems, followed by four code blocks, 
each of which involves a lambda expression, all of which are displayed here:

lambda x: 2 * x
lambda x: x * x
lambda x: x[0] * x[1]
lambda x: (x, -x)

As you can see, the first lambda expression computes 2*x, where x is a 
number in the NumPy array elems, whereas the second lambda expression 
computes x*x, where x is also a number from the NumPy array elems. Note 
that both lambda expressions execute independently of each other, which 
means that they both process every element in the NumPy array elems. 

Examine the first two output lines as follows to convince yourself that the 
output consists of the doubled values and the squared values, respectively, of 
the numbers in the NumPy array elems. Now look at the other two lambda 
expressions to determine the resulting output, which you can confirm by in-
specting the following output. The complete output from launching the code 
in Listing 2.22 is here:

doubles: tf.Tensor([2 4 6  8 10],    shape=(5,), dtype=int64)
squares: tf.Tensor([1 4 9 16 25 36], shape=(6,), dtype=int64)
neg_pos: tf.Tensor([-1  2 -3], shape=(3,), dtype=int64)
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pos_neg: (<tf.Tensor: id=206,  shape=(3,), dtype=int64, 
numpy=array([1, 2, 3])>, <tf.Tensor: id=207,   shape=(3,), 
dtype=int64, numpy=array([-1, -2, -3])>)

What Is a One-Hot Encoding? 

This section briefly describes how to create a “one-hot” encoding for cate-
gorical (i.e., nonnumerical) data. Before we perform a one-hot encoding, keep 
in mind that a feature in a dataset that contains nonnumerical values is called 
categorical or nominal data. 

A one-hot encoding “maps” nonnumerical feature values into a correspond-
ing set of numeric values, which is often required (in fact, it’s always required 
when dealing with convolutional neural networks). The term one-hot encoding 
involves the conversion of each nonnumerical value into a vector that contains 
a single 1 (and zeroes elsewhere).

For example, suppose that we have a color variable whose values are red, 
green, or blue. A one-hot encoding of this color variable happens to look 
like a 3x3 identity matrix, as shown here:

red, green, blue
1,     0,    0
0,     1,    0
0,     0,    1

Now suppose that you have a dataset with six rows of data whose color 
values are red, green, blue, red, green, and blue. Then the six 
rows would contain the following values (let’s ignore the values of the other 
elements of these six rows):

1, 0, 0
0, 1, 0
0, 0, 1
1, 0, 0
0, 1, 0
0, 0, 1

The TF one_hot() API

Listing 2.23 displays the contents of tf2_onehot2.py, which illustrates 
how to use the TF 2 one_hot() API with a tensor.

Listing 2.23: tf2_onehot2.py

import tensorflow as tf

idx = tf.constant([2, 0, -1, 0])
target = tf.one_hot(idx, 3, 2, 0)
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@tf.function
def compute_values():
  print(idx)
  print(target)

compute_values()

Listing 2.23 starts by defining the variable idx based on a TF 2 constant 
that is a one-dimensional TF 2 tensor. Notice that the second and fourth ele-
ments in the TF 2 tensor are equal, which means that their one-hot encoding 
will be the same. The next portion of Listing 2.23 defines target, which will 
contain the one-hot encoded values for idx. Next, the compute_values 
function prints the TF 2 variable idx and then prints the contents of tar-
get, which is a 4x3 tensor. The output from Listing 2.23 is here:

tf.Tensor([ 2  0 -1  0], shape=(4,), dtype=int32)

tf.Tensor(
[[0 0 2]
 [2 0 0]
 [0 0 0]
 [2 0 0]], shape=(4, 3), dtype=int32)

Other Useful TF 2 APIs

In addition to the TF 2 APIs that you have seen in this chapter, you will also 
encounter the following APIs, whose names are intuitive. This section contains 
short code blocks that illustrate the syntax for these APIs, and you can find 
more detailed information in the online documentation.

The tf.zeros() API initializes a tensor with all zeroes, as shown here:

import tensorflow as tf
zeroes = tf.zeros([2, 3])
print("zeroes:",zeros)

The output from the preceding code block is a 2x3 second-order tensor 
containing all zeroes, as shown here:

zeroes: tf.Tensor(
 [[0. 0. 0.] 
  [0. 0. 0.]], shape=(2, 3), dtype=float32)

The tf.ones() API initializes a tensor with all ones, as shown here:

import tensorflow as tf
ones = tf.ones ([2, 3])
print("ones:",ones)
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The output from the preceding code block is a 2x3 second-order tensor 
containing all ones, as shown here:

ones: tf.Tensor(
[[1. 1. 1.] 
 [1. 1. 1.]], shape=(2, 3), dtype=float32)

The tf.fill() API initializes a tensor with a specified numeric or string 
value, as shown here:

import tensorflow as tf
nines = tf.fill(dims=[2, 3], value=9)
pizza = tf.fill(dims=[2, 3], value="pizza")

print("nines:",nines)
print("pizza:",pizza)

The output from the preceding pair of print() statements is shown here:

nines: tf.Tensor(
 [[9 9 9]
  [9 9 9]], shape=(2, 3), dtype=int32)
pizza: tf.Tensor(
 [[b'pizza' b'pizza' b'pizza']
  [b'pizza' b'pizza' b'pizza']], shape=(2, 3), dtype=string)

The tf.unique() API finds the unique numbers or strings (duplicate 
values are ignored) in a TF 2 tensor, as shown here:

import tensorflow as tf

x = tf.constant([1, 1, 2, 4, 4, 4, 7, 8, 8])
val, idx = tf.unique(x)
y = tf.constant(['a','a','b','b','c','c'])
val2, idx2 = tf.unique(y)

print("val: ",val)
print("idx: ",idx)
print("val2:",val2)
print("idx2:",idx2)

The output from the preceding four print() statements is shown here:

val:  tf.Tensor([1 2 4 7 8], shape=(5,), dtype=int32)
idx:  tf.Tensor([0 0 1 2 2 2 3 4 4], shape=(9,), dtype=int32)
val2: tf.Tensor([b'a' b'b' b'c'], shape=(3,), dtype=string)
idx2: tf.Tensor([0 0 1 1 2 2], shape=(6,), dtype=int32)

The tf.where() API determines the location of a matching number 
(if  any). For example, the following code block finds the location of the 
numbers 3 and 5 in the variable t1:
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import tensorflow as tf

t1 = tf.constant([[1, 2, 3], [4, 5, 6]])
t2 = tf.where(tf.equal(t1, 3))
t3 = tf.where(tf.equal(t1, 5))

print("t1:",t1)
print("t2:",t2)
print("t3:",t3)

The output from the preceding three print() statements is shown here:

t1: tf.Tensor(
 [[1 2 3]
  [4 5 6]], shape=(2, 3), dtype=int32)
t2: tf.Tensor([[0 2]], shape=(1, 2), dtype=int64)
t3: tf.Tensor([[1 1]], shape=(1, 2), dtype=int64)

In the preceding code block, notice that t1 has dimensions 2x3; the num-
ber 3 appears in position 3 (which has index 2) of the first element (which has 
index 0). Hence, the result is an element that contains the one-dimensional 
tensor [0 2]. Similarly, the number 5 appears in t1 in position 2 (which has 
index 1) of the second element (which has index 1). Hence, the result is an ele-
ment that contains the one-dimensional tensor [1 1].

Save and Restore TF 2 Variables

Listing 2.24 displays the contents of tf2_save_restore.py, which 
illustrates how to save and restore TF 2 variables.

Listing 2.24: tf2_save_restore.py

import tensorflow as tf

x = tf.Variable(10.)
#checkpoint = tf.train.Checkpoint()
checkpoint = tf.train.Checkpoint(x=x)
print("x:",x)  # => 10.0

# Assign a new value to x and save
x.assign(3.)
print("x:",x)  # => 3.0
checkpoint_path = './ckpt/'
checkpoint.save(checkpoint_path)

# Change the variable after saving.
x.assign(25.)
print("x:",x)  # => 25.0
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# Restore values from the checkpoint
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_
path))
print("x:",x)  # => 3.0

Listing 2.24 contains the TF 2 variable x with the value 10 and initializes 
the TF 2 variable checkpoint (which has type tf.train.Checkpoint) 
to “track” the value of x. 

Checkpoints capture the exact value of all parameters (tf.Variable ob-
jects) used by a model. Since checkpoints do not contain any description of the 
computation defined by the model, typically they are only useful when source 
code that will use the saved parameter values is available. After you finish read-
ing this code sample, try using the commented out code snippet for the vari-
able checkpoint and compare the difference in the output.

The next code snippet in Listing 2.24 assigns the value 3 to x, after which 
the checkpoint.save() code snippet creates the following directory 
structure:

./ckpt

./ckpt/-1.data-00000-of-00001

./ckpt/-1.index

./ckpt/checkpoint

Notice how the next code snippet assigns the value 25 to the variable x, 
but when the code checkpoint.restore() is invoked, x is restored to its 
“saved” value. Launch the code in Listing 2.24 and you will see the following 
output, and notice the sequence of values for the variable x (the values are 
highlighted in bold):

x: <tf.Variable 'Variable:0' shape=() dtype=float32, 
numpy=10.0>
x: <tf.Variable 'Variable:0' shape=() dtype=float32, 
numpy=3.0>
x: <tf.Variable 'Variable:0' shape=() dtype=float32, 
numpy=25.0>
x: <tf.Variable 'Variable:0' shape=() dtype=float32, 
numpy=3.0>

TensorFlow Ragged Constants and Tensors

As you probably know, every element in a “regular” multidimensional ten-
sor has the same dimensions. For example, a 2x3 second-order tensor contains 
two rows and three columns: each row is a 1x3 vector, and each column is a 2x1 
vector. As another example, a 2x3x4 tensor contains two 3x4 tensors (and the 
same logic applies to each 3x4 tensor). 

On the other hand, a ragged constant is a set of elements that have differ-
ent lengths. You can think of ragged constants as a generalization of “regular” 
datasets.
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Listing 2.25 displays the contents of tf2_ragged_tensors1.py, 
which illustrates how to define a ragged dataset and then iterate through its 
contents.

Listing 2.25: tf2_ragged_tensors1.py

import tensorflow as tf

digits = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2], 
[6], []])
words = tf.ragged.constant([["Bye", "now"], ["thank", 
"you", "again", "sir"]])

print(tf.add(digits, 3))
print(tf.reduce_mean(digits, axis=1))
print(tf.concat([digits, [[5, 3]]], axis=0))
print(tf.tile(digits, [1, 2]))
print(tf.strings.substr(words, 0, 2))

Listing 2.25 defines two ragged constants digits and words consisting 
of integers and strings, respectively. The remaining portion of Listing 2.25 con-
sists of five print() statements that apply various operations to these two 
datasets and then display the results.

The first print() statement adds the value 3 to every number in the 
digits dataset, and the second print() statement computes the row-wise 
average of the elements of the digits dataset because axis=1 (whereas 
axis=0 performs column-wise operations).

The third print() statement appends the element [[5,3]] to the 
digits dataset, and performs this operation in a column-wise fashion (be-
cause axis=0). The fourth print() statement “doubles” each non-empty 
element of the digits dataset. Finally, the fifth print() statement extracts 
the first two characters from every string in the words dataset. The output 
from launching the code in Listing 2.25 is here:

<tf.RaggedTensor [[6, 4, 7, 4], [], [8, 12, 5], [9], []]>
tf.Tensor([2.25              nan 5.33333333 6.                
nan], shape=(5,), dtype=float64)
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], [],  
[5, 3]]>
<tf.RaggedTensor [[3, 1, 4, 1, 3, 1, 4, 1], [], [5, 9, 2, 
5, 9, 2], [6, 6], []]>
<tf.RaggedTensor [[b'By', b'no'], [b'th', b'yo', b'ag', 
b'si']]>

Listing 2.26 displays the contents of tf2_ragged_tensors2.py, 
which illustrates how to define a ragged tensor in TF 2.
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Listing 2.26: tf2_ragged_tensors2.py

import tensorflow as tf

x1 = tf.RaggedTensor.from_row_splits(
        values=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
        row_splits=[0, 5, 10])
print("x1:",x1)

x2 = tf.RaggedTensor.from_row_splits(
        values=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
        row_splits=[0, 4, 7, 10])
print("x2:",x2)

x3 = tf.RaggedTensor.from_row_splits(
        values=[1, 2, 3, 4, 5, 6, 7, 8],
        row_splits=[0, 4, 4, 7, 8, 8])
print("x3:",x3)

Listing 2.26 defines the TF 2 ragged tensors x1, x2, and x3 that are based 
on the integers from 1 to 10 inclusive. The values parameter specifies a 
set of values that will be “split” into a set of vectors, using the numbers in the 
row_splits parameter for the start index and the end index of each vector.

For example, x1 specifies row_splits with the value [0,5,10] whose 
values are used as index positions in order to create two vectors: the vector 
whose values are from index 0 through index 4 of x1, and the vector whose 
values are from index 5 through index 9 of x1. The contents of those two vec-
tors are [1, 2, 3, 4, 5] and [6, 7, 8, 9, 10], respectively (see 
the output as follows).

As another example, x2 specifies row_splits with the value 
[0,4,7,10], which determines three vectors: the vector whose values are 
from index 0 through index 3 of x1, the vector whose values are from index 4 
through index 6 of x1, and the vector whose values are from index 7 through 
index 9 of x1. The contents of those two vectors are [1,2,3,4], [5,6,7], 
and [8, 9, 10], respectively (see the output as follows).

You can perform a similar analysis for x3, keeping mind that the vector 
whose start index and end index are [4,4] is an empty vector. The output 
from launching the code in Listing 2.26 is here:

x1: <tf.RaggedTensor [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]>
x2: <tf.RaggedTensor [[1, 2, 3, 4], [5, 6, 7], [8, 9, 10]]>
x3: <tf.RaggedTensor [[1, 2, 3, 4], [], [5, 6, 7], [8], []]>

If you want to generate a list of values, invoke the to_list() operator. 
For instance, suppose you define x4 as follows:
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x4 = tf.RaggedTensor.from_row_splits(
        values=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
        row_splits=[0, 5, 10]).to_list()
print("x4:",x4)

The output from the preceding code snippet is here (which you can com-
pare with the output for x1 in the preceding output block):

x4: [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]

You can also create higher-dimensional ragged tensors in TF 2. For 
example, the following code snippet creates a two-dimensional ragged tensor in  
TF 2:

RaggedTensor.from_nested_row_splits(
     flat_values=[3,1,4,1,5,9,2,6],
     nested_row_splits=([0,3,3,5], [0,4,4,7,8,8])).to_list()

The preceding code snippet generates the following output:

[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]

What Is a TFRecord?

A TFRecord is a file that describes the data required during the training 
phase and the testing phase of a model. There are two protocol buffer message 
types available for a TFRecord: the Example message type and the Se-
quenceExample message type. These protocol buffer message types enable 
you to arrange data as a map from string keys to values that are lists of integers, 
32-bit floats, or bytes.

The data in a TFRecord is “wrapped” inside a Feature class. In addi-
tion, each feature is stored in a key value pair, where the key corresponds to 
the title that is allotted to each feature. These titles are used later for extract-
ing the data from TFRecord. The created dictionary is passed as input to a 
Feature class. Finally, the features object is passed as input to an Example 
class that is appended to the TFRecord. The preceding process is repeated 
for every type of data that is stored in TFRecord.

The TFRecord file format is a record-oriented binary format that you can 
use for training data. In addition, the tf.data.TFRecordDataset class 
enables you to stream over the contents of one or more TFRecord files as part 
of an input pipeline.

You can store any type of data, including images, in the tf.train.
Example format. However, you specify the mechanism for arranging the data 
into serialized bytes, as well as reconstructing the original format.

A Simple TFRecord

Listing 2.27 displays the contents of tf2_record1.py, which illustrates 
how to define a TFRecord in TF 2.
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Listing 2.27: tf2_record1.py

import tensorflow as tf

data = b"pasta"
simple1 = tf.train.Example(features=tf.train.
Features(feature={
  'my_ints':  tf.train.Feature(int64_list=tf.train.
Int64List(value=[2, 5])),
  'my_float': tf.train.Feature(float_list=tf.train.
FloatList(value=[3.6])),
  'my_bytes': tf.train.Feature(bytes_list=tf.train.
BytesList(value=[data]))
})) 

print("my_ints:",  simple1.features.feature['my_ints'].
int64_list.value)
print("my_floats:",simple1.features.feature['my_float'].
float_list.value)
print("my_bytes:", simple1.features.feature['my_bytes'].
bytes_list.value)

#print("simple1:",simple1)

Listing 2.27 contains the definition of the variable simple1 that is an 
instance of the tf.train.Example class. The simple1 variable defines a 
record consisting of the fields my_ints, my_floats, and my_bytes that 
are of type Int64List, FloatList, and ByteList, respectively. 

The final portion of Listing 2.27 contains print() statements that display 
the values of various elements in the simple1 variable, as shown here:

('my_ints:', [2L, 5L])
('my_floats:', [3.5999999046325684])
('my_bytes:', [b'pasta'])

What Are tf.layers?

The tf.layers namespace contains an assortment of classes for the 
layers in Neural Networks, including DNNs (Dense Neural Networks) and 
CNNs (Convolutional Neural Networks). Some of the more common classes 
in the tf.layers namespace are listed as follows (and are discussed in more 
detail in the appendix):

•	 BatchNormalization: Batch normalization layer 
•	 Conv2D: 2D convolution layer (e.g., spatial convolution over images)
•	 Dense: Densely connected layer class
•	 Dropout: Applies Dropout to the input
•	 Flatten: Flattens an input tensor while preserving the batch axis (axis 0)
•	 Layer: Base layer class
•	 MaxPooling2D: Max pooling layer for 2D inputs (e.g., images)
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For example, a minimalistic CNN starts with a “triple” that consists of a 
Conv2D layer, followed by ReLU (Rectified Linear Unit) activation function, 
and then a MaxPooling2D layer. If you see this triple appear a second time, 
followed by two consecutive Dense layers and then a softmax activation func-
tion, it’s known as “LeNet.”

A bit of trivia: in the late 1990s, when people deposited checks at an auto-
mated bank machine, LeNet scanned the contents of those checks to deter-
mine the digits of the check amount (of course, customers had to confirm that 
the number determined by LeNet was correct). LeNet had an accuracy rate 
around 90%, which is a very impressive result for such a simple Convolutional 
Neural Network!

What Is TensorBoard?

TensorBoard is very powerful data and graph visualization tool that pro-
vides a great deal of useful information as well as debugging support. Tensor-
Board is part of the TensorFlow distribution, so you don’t need to perform a 
separate installation.

TensorBoard has a background thread that loads event data from event files 
that are in the directory that you specify with “—logdir” when you launch Ten-
sorBoard from the command line. Data from event files is loaded into memory 
because it’s more efficient than querying data from files.

TensorBoard itself is an extensible Web server with a plug-in architec-
ture, which is the mechanism for adding dashboards. You access TensorBoard 
through a Polymer-based Web component framework in a Web browser ses-
sion. The Web application involves a mix of JavaScript and TypeScript. In ad-
dition, D3.js, dagre.js, and three.js are used for the visualizations.

TensorBoard supports multiple dashboards for scalars, graph, histograms, 
images, and so forth. TensorBoard enables you to analyze data based on a spe-
cific “run” and also by “tag,” which enables you to perform analysis of the man-
ner in which your data changes over time.

TensorBoard provides a “writer” for saving the contents of a TensorFlow 
graph to a file in a directory (that is specified by you). In addition, TensorBoard 
provides various APIs in order to insert the values of variables in a Tensor-
Board visualization. 

In order to view the contents of a TF 2 graph in TensorBoard, open a com-
mand shell, navigate to the parent directory of the directory that contains 
graph-related files (let’s pretend its name is tf_log_files), and launch the 
following command:

tensorboard –logdir=./tf_log_files

Next, launch a Chrome browser and navigate to this URL:

localhost:6006
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When you see the TensorFlow graph rendered in your browser, use your 
mouse to resize the graph, and double-click on nodes to “drill down” and find 
more information about each node.

TensorBoard provides support for CPUs, GPUs, and TPUs, in conjunction 
with TF 1.x and TF 2, with one exception: TensorBoard currently does not 
support TPUs with TF 2. You can follow this issue for updates on the support 
status:

https://github.com/tensorflow/tensorflow/issues/24412

TF 2 with TensorBoard

This section contains some useful links that provide more detailed and 
instructive information regarding TensorBoard with TF 2 as well as TF 1.x. 
Navigate to the following link if you want to see an example of TF 2 and Ten-
sorBoard in a Jupyter notebook:

https://colab.research.google.com/github/tensorflow/
tensorboard/blob/master/docs/r2/get_started.
ipynb#scrollTo=XKUjdIoV87um

You can download the preceding Jupyter notebook and also a Python file 
that contains the same code as the Jupyter notebook; in the latter case you also 
need to “comment out” the so-called magic commands in Jupyter.

If the Keras code in the preceding Jupyter notebook is unfamiliar to you, 
read the Keras-based code samples that are discussed later in this book and 
then the code in this Jupyter notebook will make more sense.

If you have not upgraded to TF 2 yet, navigate to this link for more infor-
mation about TensorBoard with TensorFlow 1.x:

https://www.tensorflow.org/guide/summaries_and_tensorboard

Other tips and how-to information about TensorBoard is available here:

https://github.com/TF 2 2/tensorboard/blob/master/README.
md#my-tensorboard-isnt-showing-any-data-whats-wrong

Some information about TF 2 with Keras and how to write image summa-
ries for TensorBoard is here:

https://stackoverflow.com/questions/55421290/
tensorflow-2-0-keras-how-to-write-image-summaries-for-
tensorboard/55754700#55754700

A video about TensorBoard during the TF Summit (2019): 

https://www.youtube.com/watch?v=xM8sO33x_OU&list=PLQY2H8rRo
yvzoUYI26kHmKSJBedn3SQuB&index=11&t=0s
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The appendix contains a brief section about TensorFlow Graphics, which 
supports 3D effects in TensorBoard.

TensorBoard Dashboards

TensorBoard supports a variety of dashboards, some of which are listed as 
follows with a brief description of their functionality:

•	 Scalar Dashboard
•	 Histogram Dashboard
•	 Distribution Dashboard
•	 Image Dashboard
•	 Audio Dashboard
•	 Text Dashboard

The Scalar Dashboard visualizes scalar statistics that vary over time (e.g., 
the loss values of a model). The Histogram Dashboard visualizes data recorded 
via the tf.summary.histogram API and displays how the statistical distri-
bution of a Tensor has varied over time. The charts display temporal “slices” of 
data, where each slice is a histogram of the tensor at a given step.

The Distribution Dashboard also displays histogram data (via the 
tf.summary.histogram API) and shows high-level statistics on a distri-
bution. Each line on the chart represents a percentile in the distribution over 
the data. Moreover, the percentiles can also be viewed as standard deviation 
boundaries on a normal distribution.

Finally, the Image Dashboard, Audio Dashboard, and Text Dashboard dis-
play PNGs, audio files, and text, respectively.

There are a few things to keep in mind. First, TensorBoard expects a sin-
gle events file, which is to say that multiple summary writers involve multiple 
events files. In the case of a distributed TensorFlow instance, designate one 
worker as the “chief” that is responsible for all summary processing. Second, 
if data appears to overlap with itself, you might have multiple executions of 
TensorFlow that wrote to the same log directory. 

The tf.summary API

The tf.summary API is the primary way for “serving up” data from event 
files to TensorBoard. This API also assists in displaying log metrics and predic-
tion details. TF 1.x has a tf.summary module that will be replaced by a new 
API for TensorBoard in TF 2 that differs as follows:

•	 The data-format-specific parts will be defined in tensorboard. 
summary

•	 The generated summary events will use a more extensible “wire format”
•	 The write-side code will use the V2 summary-writing API
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Navigate to the following URL for more information about TensorBoard 
in TF 2:

https://www.tensorflow.org/tensorboard/r2/get_started

In addition, the following URL contains an example of profiling training 
metrics for a Keras-based model:

https://www.tensorflow.org/tensorboard/r2/tensorboard_
profiling_keras

Google Colaboratory

Depending on the hardware, GPU-based TF 2 code is typically at least 
fifteen times faster than CPU-based TF 2 code. However, the cost of a good 
GPU can be a significant factor. Although NVIDIA provides GPUs, those con-
sumer-based GPUs are not optimized for multi-GPU support (which is sup-
ported by TF 2).

Fortunately Google Colaboratory is an affordable alternative that provides 
free GPU support, and also runs as a Jupyter notebook environment. In ad-
dition, Google Colaboratory executes your code in the cloud and involves zero 
configuration, and it’s available here:

https://colab.research.google.com/notebooks/welcome.ipynb

This Jupyter notebook is suitable for training simple models and testing 
ideas quickly. Google Colaboratory makes it easy to upload local files, install 
software in Jupyter notebooks, and even connect Google Colaboratory to a 
Jupyter runtime on your local machine.

Some of the supported features of Colaboratory include TF 2 execution 
with GPUs, visualization using Matplotlib, and the ability to save a copy of your 
Google Colaboratory notebook to Github by using File > Save a copy 
to GitHub. 

Moreover, you can load any .ipynb on GitHub just by adding the path to 
the URL colab.research.google.com/github/ (see the Colabora-
tory website for details).

Google Colaboratory has support for other technologies such as HTML 
and SVG, enabling you to render SVG-based graphics in notebooks that are in 
Google Colaboratory. One point to keep in mind: any software that you install 
in a Google Colaboratory notebook is only available on a per-session basis: if 
you log out and log in again, you need to perform the same installation steps 
that you performed during your earlier Google Colaboratory session.

As mentioned earlier, there is one other very nice feature of Google Co-
laboratory: you can execute code on a GPU for up to twelve hours per day for 
free. This free GPU support is extremely useful for people who don’t have a 
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suitable GPU on their local machine (which is probably the majority of users), 
and now they launch TF 2 code to train neural networks in less than twenty 
or thirty minutes that would otherwise require multiple hours of CPU-based 
execution time.

In case you’re interested, you can launch TensorBoard inside a Google Co-
laboratory notebook with the following command (replace the specified direc-
tory with your own location):

%tensorboard --logdir /logs/images

Keep in mind the following details about Google Colaboratory. First, when-
ever you connect to a server in Google Colaboratory, you start what’s known as 
a session. You can execute the code in a session with either a GPU or a TPU 
without any cost to you, and you can execute your code without any time limit 
for your session. However, if you select the GPU option for your session, only 
the first twelve hours of GPU execution time are free. Any additional GPU 
time during that same session incurs a small charge (see the website for those 
details).

The other point to keep in mind is that any software that you install in a 
Jupyter notebook during a given session will not be saved when you exit that 
session. For example, the following code snippet installs TFLearn in a Jupyter 
notebook:

!pip install tflearn

When you exit the current session, and at some point later you start a new 
session, you need to install TFLearn again, as well as any other software (such 
as Github repositories) that you also installed in any previous session.

Incidentally, you can also run TF 2 code and TensorBoard in Google Co-
laboratory, with support for CPUs and GPUs (and support for TPUs will be 
available later). Navigate to this link for more information:

https://www.tensorflow.org/tensorboard/r2/tensorboard_in_
notebooks

Other Cloud Platforms

GCP (Google Cloud Platform) is a cloud-based service that enables you to 
train TF 2 code in the cloud. GCP provides Deep Learning DL images (similar 
in concept to Amazon AMIs) that are available here:

https://cloud.google.com/deep-learning-vm/docs

The preceding link provides documentation and also a link to DL images 
based on different technologies, including TF 2 and PyTorch, with GPU and 
CPU versions of those images. Along with support for multiple versions of Py-
thon, you can work in a browser session or from the command line.
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Gcp Sdk

Install GCloud SDK on a Mac-based laptop by downloading the software 
at this link:

https://cloud.google.com/sdk/docs/quickstart-macos

You will also receive USD 300 dollars worth of credit (over one year) if you 
have never used Google cloud.

This concludes the material for this chapter, and if you want to learn more 
about any of the features that you have seen, perform an Internet search for 
additional tutorials.

Summary

In this chapter, you learned about some TF 2 features such as eager execu-
tion, which has a more Python-like syntax than “regular” TensorFlow syntax, 
tensor operations (such as multiplying tensors), and also how to create for 
loops and while loops in TF 2.

Next, you saw how to use the TF 2 tf.random_normal() API for gen-
erating random numbers (which is useful for initializing the weights of edges 
in neural networks), followed by the tf.argmax() API for finding the index 
of each row (or column) that contains the maximum value in each row (or col-
umn), which is used for calculating the accuracy of the training process involv-
ing various algorithms. You also saw the tf.range() API, which is similar to 
the NumPy linspace() API.

In addition, you learned about the TF 2 reduce_mean() and equal() 
APIs, both of which are involved in calculating the accuracy of the training 
of a neural network (in conjunction with tf.argmax()). Next, you saw 
the TensorFlow truncated_normal() API, which is a variant of the 
tf.random_normal() API, and the TF 2 one_hot() API for encod-
ing data in a particular fashion. Moreover, you learned about the TF 2 re-
shape() API, which you will see in any TF 2 code that involves training a 
CNN (Convolutional Neural Network).

In the second half of this chapter you were introduced to TensorBoard, 
which is a very powerful visualization tool that is part of the TensorFlow distri-
bution. You saw some code samples that invoke TensorBoard APIs alongside 
other TF 2 APIs in order to augment the TensorFlow graph with supplemental 
information that was rendered in TensorBoard in a Web browser. Finally, you 
got an introduction to Google Colaboratory, which is a fully online Jupyter-
based environment.



Chapter 3
TF 2 Datasets

This chapter discusses the TF 2 tf.data.Dataset namespace and 
the classes therein that support a rich set of operators for processing 
very large datasets (i.e., datasets that are too large to fit in memory). 

You will learn about so-called lazy operators (such as filter() and map()) 
that you can invoke via “method chaining” to extract a desired subset of data 
from a dataset. In addition, you’ll learn about TF 2 Estimators (in the 
tf.estimator namespace) and TF 2 layers (in the tf.keras.layers 
namespace).

Please note that the word “dataset” in this chapter refers to a TF 2 class in 
the tf.data.Dataset namespace. Such a dataset acts as a “wrapper” for 
actual data, where the latter can be a CSV file or some other data source. This 
chapter does not cover TF 2 built-in datasets of “pure” data, such as MNIST, 
CIFAR, and IRIS, except for cases in which they are part of code samples that 
involve TF 2 lazy operators.

Familiarity with lambda expressions (discussed later) and Functional Reac-
tive Programming will be very helpful for this chapter. In fact, the code sam-
ples chapter will be very straightforward if you already have experience with 
Observables in RxJS, RxAndroid, RxJava, or some other environment 
that involves lazy execution.

The first part of this chapter briefly introduces you to TF 2 Datasets 
and lambda expressions, along with some simple code samples. You will 
learn about iterators that work with TF 1.x tf.data.Datasets, and 
also TF 2 generators (which are Python functions with a @tf.function 
decorator). 

The second part of this chapter discusses TextLineDatasets that are 
very convenient for working with text files. As explained previously, the TF 2 
code samples in this section use TF 2 generators instead of iterators (which 
work with TF 1.x).



TF 2 Datasets   •  75

The third part of this chapter discusses various lazy operators, such as 
filter(), map(), and batch() operators, and also briefly describes how 
they work (and when you might need to use them). You’ll also learn method 
chaining for combining these operators, which results in powerful code combi-
nations that can significantly reduce the complexity of your TF 2 code.

The final portion of the chapter briefly discusses TF 2 estimators in 
the tf.estimator namespace (which are a layer of abstraction above 
tf.keras.layers), as well as TF 2 layers that provide an assortment of 
classes for DNNs (Dense Neural Networks) and CNNs (Convolutional Neural 
Networks) that are discussed in the appendix.

The TF 2 tf.data.Datasets

Before we delve into this topic, we need to make sure that the following 
distinction is clear: a “dataset” contains rows of data (often in a flat file), where 
the columns are called “features” and the rows represent an “instance” of 
the dataset. By contrast, a TF 2 Dataset refers to a class in the tf.data.
Dataset namespace that acts like a “wrapper” around a “regular” dataset that 
contains rows of data.  

You can also think of a TF 2 Dataset as being analogous to a Pandas 
DataFrame. Again, if you are familiar with Observables in Angular (or 
something similar), you can perform a quick knowledge transfer as you learn 
about TF 2 Datasets.

TF 2 tf.data.Datasets are well-suited for creating asynchronous and 
optimized data pipelines. In brief, the TF 2 Dataset API loads data from 
the disk (both images and text), applies optimized transformations, creates 
batches, and sends the batches to the GPU. In fact, the TF 2 Dataset API is 
well-suited for better GPU utilization. In addition, use tf.functions in TF 
2.0 to fully utilize dataset asynchronous prefetching/streaming features.

According to the TF 2 documentation: “A Dataset can be used to represent 
an input pipeline as a collection of elements (nested structures of tensors) and 
a ‘logical plan’ of transformations that act on those elements.”

A TF 2 tf.data.Dataset is designed to handle very large datasets. A 
TF 2 Dataset can also represent an input pipeline as a collection of elements 
(i.e., a nested structure of tensors), along with a “logical plan” of transforma-
tions that act on those elements. For example, you can define a TF 2 Dataset 
that initially contains the lines of text in a text file, then extract the lines of text 
that start with a “#” character, and then display only the first three matching 
lines. Creating this pipeline is easy: create a TF 2 Dataset and then chain the 
lazy operators filter() and take(), which is similar to an example that 
you will see later in this chapter.

Creating a Pipeline

Think of a dataset as a pipeline that starts with a source, which can be a 
NumPy array, tensors in memory, or some other source. If the source involves 
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tensors, use tf.data.Dataset.from_tensors() to combine the input, 
otherwise use tf.data.Dataset.from_tensor_slices() if you want 
a separate row for each input tensor. On the other hand, if the input data is 
located on disk in a TFRecord format (which is recommended), construct a 
tf.data.TFRecordDataset.

The difference between the first two APIs is shown as follows:

#combine the input into one element => [[1, 2], [3, 4]]
t1 = tf.constant([[1, 2], [3, 4]])
ds1 = tf.data.Dataset.from_tensors(t1) 

#a separate element for each item: [1, 2], [3, 4]
t2 = tf.constant([[1, 2], [3, 4]]) 
ds2 = tf.data.Dataset.from_tensor_slices(t2)
for item in ds1:
  print("1item:",item)

print("--------------")

for item in ds2:
  print("2item:",item)

The output from the preceding code block is here:

1item: tf.Tensor(
[[1 2]
 [3 4]], shape=(2, 2), dtype=int32)
--------------
2item: tf.Tensor([1 2], shape=(2,), dtype=int32)
2item: tf.Tensor([3 4], shape=(2,), dtype=int32)

The TF 2 from_tensors() API also requires compatible dimensions, 
which means that the following code snippet causes an error:

# exception: ValueError: Dimensions 10 and 9 are not 
compatible
ds1 = tf.data.Dataset.from_tensor_slices(
    (tf.random_uniform([10, 4]), tf.random_
uniform([9])))	

On the other hand, the TF 2 from_tensor_slices() API does not 
have a compatibility restriction, so the following code snippet works correctly:

ds2 = tf.data.Dataset.from_tensors(
    (tf.random_uniform([10, 4]), tf.random_uniform([9])))

Another situation in which there are differences in these two APIs involves 
the use of lists, as shown here:

ds1 = tf.data.Dataset.from_tensor_slices(
    [tf.random_uniform([2, 3]), tf.random_uniform([2, 3])])
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ds2 = tf.data.Dataset.from_tensors(
    [tf.random_uniform([2, 3]), tf.random_uniform([2, 3])])

print(ds1) # shapes: (2, 3)
print(ds2) # shapes: (2, 2, 3)

In the preceding code block, the TF 2 from_tensors() API creates 
a 3D tensor whose shape is (2,2,3), whereas the TF 2 from_tensor_
slices() API merges the input tensor and produces a tensor whose shape 
is (2,3).

As a further illustration of these two APIs, consider the following code 
block:

import tensorflow as tf

ds1 = tf.data.Dataset.from_tensor_slices(
    (tf.random.uniform([3, 2]), tf.random.uniform([3])))

ds2 = tf.data.Dataset.from_tensors(
    (tf.random.uniform([3, 2]), tf.random.uniform([3])))

print('-----------------------------')
for i, item in enumerate(ds1):
  print('elem1: ' + str(i + 1), item[0], item[1])

print('-----------------------------')
for i, item in enumerate(ds2):
  print('elem2: ' + str(i + 1), item[0], item[1])
print('-----------------------------')

Launch the preceding code and you will see the following output:

-----------------------------
elem1: 1 tf.Tensor([0.965013  0.8327141], shape=(2,), 
dtype=float32) tf.Tensor(0.03369963, shape=(), 
dtype=float32)
elem1: 2 tf.Tensor([0.2875235  0.11409616], shape=(2,), 
dtype=float32) tf.Tensor(0.05131495, shape=(), 
dtype=float32)
elem1: 3 tf.Tensor([0.08330548 0.13498652], shape=(2,), 
dtype=float32) tf.Tensor(0.3145547, shape=(), 
dtype=float32)
-----------------------------

elem2: 1 tf.Tensor(
[[0.9139079  0.13430142]
 [0.9585271  0.58751714]
 [0.4501326  0.8380357 ]], shape=(3, 2), dtype=float32) 
tf.Tensor([0.00776255 0.2655964  0.61935973], shape=(3,), 
dtype=float32)
-----------------------------
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Basic Steps for TF 2 Datasets

Perform the following three steps in order to create and process the con-
tents of a TF 2 Dataset:

1.	 Create or import data
2.	 Define a generator (Python function)
3.	 Consume the data

There are many ways to populate a TF 2 Dataset from multiple sources. 
For simplicity, the code samples in the first part of this chapter perform the 
following steps: start by creating a TF 2 Dataset instance with an initial-
ized NumPy array of data; second, define a Python function in order to iterate 
through the TF 2 Dataset; and third, access the elements of the dataset (and 
in some cases, supply those elements to a TF 2 model).

As you saw earlier in this chapter, keep in mind that TF 1.x combines 
Datasets with iterators, whereas TF 2 uses generators with Datasets. TF 2 
uses generators because eager execution (the default execution mode for TF 2) 
does not support iterators.

A Simple TF 2 tf.data.Dataset

Listing 3.1 displays the contents of tf2_numpy_dataset.py, which 
illustrates how to create a very basic TF 2 tf.data.Dataset from a NumPy 
array of numbers. Although this code sample is minimalistic, it’s the initial code 
block that appears in other code samples in this chapter.

Listing 3.1: tf2_numpy_dataset.py

import tensorflow as tf
import numpy as np

x = np.arange(0, 10)

# make a dataset from a numpy array
ds = tf.data.Dataset.from_tensor_slices(x)

Listing 3.1 contains two familiar import statements and then initializes 
the variable x as a NumPy array with the integers from 0 through 9 inclusive. 
The variable ds is initialized as a TF 2 Dataset that’s based on the contents 
of the variable x.

Note that nothing else happens in Listing 3.1, and no output is generated: 
later you will see more meaningful code samples involving TF 2 Datasets.

What Are Lambda Expressions? 

In brief, a lambda expression is an anonymous function. Use lambda 
expressions to define local functions that can be passed as arguments, returned 
as the value of function calls, or used as “one-off” function definitions.
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Informally, a lambda expression takes an input variable and performs some 
type of operation (specified by you) on that variable. For example, here’s a 
“bare bones” lambda expression that adds the number 1 to an input variable x:

lambda x: x + 1

The term on the left of the “:” is x, and it’s just a formal variable name that 
acts as the input (you can replace x with another string that’s convenient for 
you). The term on the right of the “:” is x+1, which simply increments the 
value of the input x. 

As another example, the following lambda expression doubles the value of 
the input parameter:

lambda x: 2*x

You can also define a lambda expression in a valid TF 2 code snippet, as 
shown here (ds is a TF 2 Dataset that is defined elsewhere):

ds.map(lambda x: x + 1)

Even if you are unfamiliar with TF 2 Datasets or the map() operator, 
you can still understand the preceding code snippet. Later in this chapter 
you’ll see other examples of lambda expressions that are used in conjunction 
with lazy operators.

The next section contains a complete TF 2 code sample that illustrates how 
to define a generator (which is a Python function) that adds the number 1 to 
the elements of a TF 2 Dataset.

Working with Generators in TF 2 

Listing 3.2 displays the contents of tf2_plusone.py, which illustrates 
how to use a lambda expression to add the number 1 to the elements of a TF 
2 Dataset.

Listing 3.2: tf2_plusone.py

import tensorflow as tf
import numpy as np

x = np.arange(0, 10)

def gener():
  for i in x:
    yield (i+1)

ds = tf.data.Dataset.from_generator(gener, (tf.int64))

#for value in ds.take(len(x)):
for value in ds:
  print("1value:",value)
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for value in ds.take(2*len(x)):
  print("2value:",value)

Listing 3.2 initializes the variable x as a NumPy array consisting of the 
integers from 0 through 9 inclusive. Next, the variable ds is initialized as a TF 2 
Dataset that is created from the Python function gener(), which returns 
the input value incremented by 1. Notice that the Python function gener() 
does not have a @tf.function() decorator: even so, this function is treated 
as a generator because it’s specified as such in the from_generator() API. 

The next portion of Listing 3.2 contains two for loops that iterate through 
the elements of ds and display their values. Since the first for loop does not 
specify the number of elements in ds, that for loop will process all the num-
bers in ds. 

Here’s an important detail regarding generators in TF 2: they only emit 
a single value when they are invoked. This means that the for loop in the 
Python gener() function does not execute ten times: it executes only once 
when it is invoked, and then it “waits” until the gener() function is invoked 
again. 

In case it’s helpful, you can think of the gener() function as a “writer” 
that prints a single value to a pipe, and elsewhere there is some code that acts 
like a “reader” that reads a data value from the pipe. The code that acts as a 
reader is the first for loop that is reproduced here:

for value in ds:
  print("1value:",value)

How does the preceding code block invoke the gener() function when 
it doesn’t even appear in the code? The answer is simple: the preceding code 
block indirectly invokes the gener() function because it’s specified in the 
definition of ds, as shown here in bold:

ds = tf.data.Dataset.from_generator(gener, (tf.int64))

To summarize, each time that the preceding for loop executes, it invokes 
the Python gener() function, which in turn prints a value and then “waits” 
until it is invoked again.

The second for loop also acts as a “reader,” and this time the code invokes 
the take() operator (it will “take” data from the dataset) that specifies twice 
the length of the NumPy array x. Why would anyone specify a length that is 
greater than the number of elements in the underlying array? There may be 
various reasons (perhaps it was accidental), so it’s good to know what will hap-
pen in this situation (see if you can correctly guess the result). The output from 
launching the code in Listing 3.2 is here:

1value: tf.Tensor(1,  shape=(), dtype=int64)
1value: tf.Tensor(2,  shape=(), dtype=int64)
1value: tf.Tensor(3,  shape=(), dtype=int64)
1value: tf.Tensor(4,  shape=(), dtype=int64)
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1value: tf.Tensor(5,  shape=(), dtype=int64)
1value: tf.Tensor(6,  shape=(), dtype=int64)
1value: tf.Tensor(7,  shape=(), dtype=int64)
1value: tf.Tensor(8,  shape=(), dtype=int64)
1value: tf.Tensor(9,  shape=(), dtype=int64)
1value: tf.Tensor(10, shape=(), dtype=int64)
2value: tf.Tensor(1,  shape=(), dtype=int64)
2value: tf.Tensor(2,  shape=(), dtype=int64)
2value: tf.Tensor(3,  shape=(), dtype=int64)
2value: tf.Tensor(4,  shape=(), dtype=int64)
2value: tf.Tensor(5,  shape=(), dtype=int64)
2value: tf.Tensor(6,  shape=(), dtype=int64)
2value: tf.Tensor(7,  shape=(), dtype=int64)
2value: tf.Tensor(8,  shape=(), dtype=int64)
2value: tf.Tensor(9,  shape=(), dtype=int64)
2value: tf.Tensor(10, shape=(), dtype=int64)

What Are Iterators? (optional)

As you saw earlier in this chapter, iterators are used with Datasets in TF 
1.x code, so if you only work with TF 2, consider this section as optional.

An iterator bears some resemblance to a “cursor” in other languages, which 
is to say that an iterator is something that “points” to a row of data in a dataset. 
By way of analogy, if you have a linked list of items, an iterator is analogous to a 
pointer that “points” to the first element in the list, and each time you move the 
pointer to the next item in the list, you are “advancing” the iterator. Working 
with datasets and iterators involves the following sequence of steps:

1.	 create a dataset
2.	 create an iterator (see next section) 
3.	 “point” the iterator to the dataset 
4.	 print the contents of the current item
5.	 “advance” the iterator to the next item
6.	 go to step 4) if there are more items

Notice that step 6 in the preceding list specifies “if there are more items,” 
which you can handle via a try/except block (shown later in this chapter) 
when the iterator goes beyond the last item in the dataset. This technique is 
very useful because it obviates the need to know the number of items in a data-
set. TF 1.x provides several types of iterators, as discussed in the next section.

TF 1.x Iterators (optional)

If you are working exclusively with TF 2, then this section is optional. If 
you are working with TensorFlow 1.x, it’s probably useful to know that TF 1.x 
supports four types of iterators, as listed here: 

1.	 One shot
2.	 Initializable
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3.	 Reinitializable
4.	 Feedable

A one-shot iterator can iterate only once through a dataset. After we reach 
the end of the dataset, the iterator will no longer yield elements; instead, it will 
raise an Exception. For example, if dx is an instance of tf.Dataset, then 
the following code snippet defines a one-shot iterator:

iterator = dx.make_one_shot_iterator()

An initializable iterator can be dynamically updated: invoke its initializer 
operation and pass new data via the parameter feed_dict. If dx is an in-
stance of tf.Dataset, then the following code snippet defines a reusable 
iterator:

iterator = dx.make_initializable_iterator()

A reinitializable iterator can be initialized from a different Dataset. This 
type of iterator is very useful for training datasets that require some additional 
transformation, such as shuffling their contents.

A feedable iterator allows you to select from different iterators: this type 
of iterator is essentially a “selector” to select an iterator from a collection of 
iterators.

Keep in mind that initializable iterators are not supported in eager mode: 
the alternative is to use generators. 

This concludes the section regarding iterators in TF 1.x. The next section 
contains a code sample that illustrates how to concatenate two TF 2 Datasets.

Concatenating TF 2 tf.Data.Datasets

Listing 3.3 displays the contents of tf2_concatenate.py, which illus-
trates how to concatenate two TF 2 Datasets.

Listing 3.3: tf2_concatenate.py

import tensorflow as tf
import numpy as np

x1 = np.array([1,2,3,4,5])
x2 = np.array([6,7,8,9,10])

ds1 = tf.data.Dataset.from_tensor_slices(x1)
ds2 = tf.data.Dataset.from_tensor_slices(x2)
ds3 = ds1.concatenate(ds2)

try:
  for value in ds3.take(20):
    print("value:",value)
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except tf.errors.OutOfRangeError:
  pass

Listing 3.3 contains two NumPy arrays x1 and x2, followed by the TF 2 
Datasets ds1 and ds2 that act as “containers” for x1 and x2, respec-
tively. Next, the dataset ds3 is defined as the concatenation of ds1 and ds2. 

The next portion of Listing 3.3 is a try/except block that contains a for 
loop in order to display the contents of ds3. The output from launching the 
code in Listing 3.4 is here:

ds3 value: tf.Tensor(1, shape=(), dtype=int64)
ds3 value: tf.Tensor(2, shape=(), dtype=int64)
ds3 value: tf.Tensor(3, shape=(), dtype=int64)
ds3 value: tf.Tensor(4, shape=(), dtype=int64)
ds3 value: tf.Tensor(5, shape=(), dtype=int64)
ds3 value: tf.Tensor(6, shape=(), dtype=int64)
ds3 value: tf.Tensor(7, shape=(), dtype=int64)
ds3 value: tf.Tensor(8, shape=(), dtype=int64)
ds3 value: tf.Tensor(9, shape=(), dtype=int64)
ds3 value: tf.Tensor(10, shape=(), dtype=int64)

One other point to keep in mind: different structures cannot be concat-
enated. For example, consider the variables y1 and y2:

# y1 = { (8, 9), (10, 11), (12, 13) }
# y2 = { 14.0, 15.0, 16.0 }

If you create a TF 2 Dataset from y1 and y2, the resulting datasets can-
not be concatenated to ds1.

The TF 2 reduce() Operator

The TF 2 reduce() operator performs a reduction on its input until a 
single value is produced. For example, you can use the reduce() operator to 
add all the numbers in an array. Listing 3.4 displays the contents of tf2_re-
duce.py, which illustrates how to use the reduce() API in TF 2.

Listing 3.4: tf2_reduce.py

import tensorflow as tf
import numpy as np

x1 = tf.data.Dataset.range(8).reduce(np.int64(0),lambda x, 
_: x + 1)
x2 = tf.data.Dataset.range(8).reduce(np.int64(0),lambda x, 
y: x + y)

print("x1:",x1)
print("x2:",x2)
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Listing 3.4 defines the variables x1 and x2 as instances of tf.data.
Dataset, which in turn is based on the digits from 0 to 7 inclusive. Notice 
that x1 and x2 specify different lambda expressions. The lambda expression 
for x1 returns its input value incremented by one. Since the largest number in 
the input set of values is 7, the last output value is 8. 

On the other hand, x2 defines a lambda expression that returns the sum 
of two consecutive input values. The initial sum is 0, so the final output equals 
the sum of the numbers 1, 2, . . . , and 7, which equals 28. The output from 
launching the code in Listing 3.4 is here:

x1: tf.Tensor(8,  shape=(), dtype=int64)
x2: tf.Tensor(28, shape=(), dtype=int64)

Working with Generators in TF 2

Earlier in the chapter you were introduced to TF 2 generators, which are a 
Python function (for our code samples, let’s just name this function gener()) 
that works somewhat like a “pipe”: you read a single value each time that the 
gener() function is invoked. You can also think of a TF 2 generator as a func-
tion that “emits” one value when the function is invoked. [If you are familiar 
with the Go programming language, this is essentially the same as a “channel.”]

After emitting the last available value, the “pipe” no longer returns any 
values. Contrary to what you might expect, no error message is displayed when 
the “pipe” is empty.

Now that you understand the underlying behavior of a generator in TF 2, 
let’s look at the following code snippet (which you’ve seen already) that shows 
you how to define a TF 2 tf.data.Dataset that involves a generator:

ds = tf.data.Dataset.from_generator(gener, (tf.int64))

If you read the previous code snippet in English, it is as follows: “the 
Dataset ds obtains its values from the Python function gener() that 
emits a value of type tf.int64.” If you iterate through the values of ds via 
a for loop, the gener() function is invoked and it will “yield” a single value. 
Hence, the number of times your code iterates through the values of ds equals 
the number of times that the gener() function is invoked.

Listing 3.5 displays the contents of tf2_generator1.py, which illus-
trates how to define a generator in TF 2 that “yields” a value that is three times 
its input value.

Listing 3.5: tf2_generator1.py

import tensorflow as tf
import numpy as np

x = np.arange(0, 10)
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def gener():
  for i in x:
    yield (3*i)

ds = tf.data.Dataset.from_generator(gener, (tf.int64))

for value in ds.take(len(x)):
  print("value:",value)

for value in ds.take(2*len(x)):
  print("value:",value)

Listing 3.5 contains the NumPy variable x that contains the digits from 
0 to 9 inclusive. The next portion of Listing 3.4 defines the Python function 
gener() that contains a for loop that iterates through the values in x. 
Notice that it’s not necessary to specify a @tf.function decorator, because 
the definition of ds specifies the Python function gener() as a generator.

However, recall that the yield keyword performs a parsimonious opera-
tion: it “yields” only a single value. In this example, the variable i ranges from 
0 to 9, but the first invocation of gener() returns only the value 3*0 because 
i equals 0. 

The next invocation of gener() returns the value 3*1 because i equals 1. 
Each subsequent invocation of gener() returns the sequence of values 3*2, 
3*3, . . . , 3*9. In a sense, the for loop in the gener() function is a “stateful” 
loop in the sense that it “remembers” the current value of i during subsequent 
invocations of the gener() function.

The output from launching the code in Listing 3.5 is here:

value: tf.Tensor(0,  shape=(), dtype=int64)
value: tf.Tensor(3,  shape=(), dtype=int64)
value: tf.Tensor(6,  shape=(), dtype=int64)
value: tf.Tensor(9,  shape=(), dtype=int64)
value: tf.Tensor(12, shape=(), dtype=int64)
value: tf.Tensor(15, shape=(), dtype=int64)
value: tf.Tensor(18, shape=(), dtype=int64)
value: tf.Tensor(21, shape=(), dtype=int64)
value: tf.Tensor(24, shape=(), dtype=int64)
value: tf.Tensor(27, shape=(), dtype=int64)
value: tf.Tensor(0,  shape=(), dtype=int64)
value: tf.Tensor(3,  shape=(), dtype=int64)
value: tf.Tensor(6,  shape=(), dtype=int64)
value: tf.Tensor(9,  shape=(), dtype=int64)
value: tf.Tensor(12, shape=(), dtype=int64)
value: tf.Tensor(15, shape=(), dtype=int64)
value: tf.Tensor(18, shape=(), dtype=int64)
value: tf.Tensor(21, shape=(), dtype=int64)
value: tf.Tensor(24, shape=(), dtype=int64)
value: tf.Tensor(27, shape=(), dtype=int64)
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The TF 2 filter() Operator (1)

The filter() operator uses Boolean logic to “filter” the elements in 
an array in order to determine which elements satisfy the Boolean condition. 
As an analogy, if you hold a piece of smoked glass in front of your eyes, the 
glass will “filter out” a portion of the light spectrum. A filter in TF 2 per-
forms an analogous function: it generally results in a subset of the original 
set. [A filter that returns every input element is technically possible, but it’s 
also pointless.]

As a simple example, suppose that we have a NumPy array [1,2,3,4] 
and we want to select only the even numbers in this array. The result is [2,4], 
whose contents are a subset of the original array. Listing 3.6 displays the 
contents of tf2_filter.py, which illustrates how to use the filter() 
operator in TF 2.

Listing 3.6: tf2_filter.py

import tensorflow as tf
import numpy as np

#def filter_fn(x):
#  return tf.reshape(tf.not_equal(x % 2, 1), [])

x = np.array([1,2,3,4,5,6,7,8,9,10])

ds = tf.data.Dataset.from_tensor_slices(x)
ds = ds.filter(lambda x: tf.reshape(tf.not_equal(x%2,1), 
[]))
#ds = ds.filter(filter_fn)

for value in ds:
  print("value:",value)

Listing 3.6 initializes the variable x as a NumPy array consisting of the inte-
gers from 1 through 10 inclusive. Next, the variable ds is initialized as a TF 2 
Dataset that is created from the contents of the variable x. The next code 
snippet invokes the filter() operator, inside of which a lambda expression 
returns only even numbers because of this expression:

tf.not_equal(x%2,1)

The next portion of Listing 3.6 is a for loop that iterates through the ele-
ments of the dataset ds. The output from launching the code in Listing 3.6 is 
here:

value: tf.Tensor(2,  shape=(), dtype=int64)
value: tf.Tensor(4,  shape=(), dtype=int64)
value: tf.Tensor(6,  shape=(), dtype=int64)
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value: tf.Tensor(8,  shape=(), dtype=int64)
value: tf.Tensor(10, shape=(), dtype=int64)

The TF 2 filter() Operator (2)

Listing 3.7 displays the contents of tf2_filter2.py, which illustrates 
another example of the filter() operator in TF 2.

Listing 3.7: tf2_filter2.py

import tensorflow as tf
import numpy as np

ds = tf.data.Dataset.from_tensor_slices([1,2,3,4,5])
ds = ds.filter(lambda x: x < 4) # [1,2,3]

print("First iteration:")
for value in ds:
  print("value:",value)

# "tf.math.equal(x, y)" is required for equality comparison
def filter_fn(x):
  return tf.math.equal(x, 1)

ds = ds.filter(filter_fn)

print("Second iteration:")
for value in ds:
  print("value:",value)

Listing 3.7 defines the variable ds as a TF 2 Dataset that is created 
from the array [1,2,3,4,5]. The next code snippet invokes the filter() 
operator, inside of which a lambda expression returns numbers that are less 
than 4. The for loop prints the numbers in the ds variable, which consist of 
the “filtered” list of digits 1, 2, and 3.

The next portion of Listing 3.7 is the decorated Python function filter_
fn() that is specified as part of the new definition of ds, as shown here:

ds = ds.filter(filter_fn)

The preceding code snippet executes the decorated Python function fil-
ter_fn() in the second for loop in Listing 3.7. The output from launching 
the code in Listing 3.7 is here:

First iteration:
value: tf.Tensor(1, shape=(), dtype=int32)
value: tf.Tensor(2, shape=(), dtype=int32)
value: tf.Tensor(3, shape=(), dtype=int32)
Second iteration:
value: tf.Tensor(1, shape=(), dtype=int32)
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The TF 2 batch() Operator (1)

The batch(n) operator processes a “batch” of n elements during each 
iteration. Listing 3.8 displays the contents of tf2_batch1.py, which illus-
trates how to use the batch() operator in TF 2.

Listing 3.8: tf2_batch1.py

import tensorflow as tf
import numpy as np

x = np.arange(0, 34)
ds = tf.data.Dataset.from_tensor_slices(x).batch(3)

for value in ds:
  print("value:",value)

Listing 3.8 initializes the variable x as a NumPy array consisting of the 
integers from 0 through 33 inclusive (note that this array contains 34 num-
bers). Next, the variable ds is initialized as a TF 2 Dataset that is a con-
tainer for the contents of the variable x. Notice that the definition of x 
involves method chaining by “tacking on” the batch(3) operator as part 
of the definition of ds.

The final portion of Listing 3.8 contains a loop that iterates through the ele-
ments of the dataset ds. Now launch the code in Listing 3.8 to see the output 
in its entirety, as shown here:

tf.Tensor([0 1 2],    shape=(3,), dtype=int64)
tf.Tensor([3 4 5],    shape=(3,), dtype=int64)
tf.Tensor([6 7 8],    shape=(3,), dtype=int64)
tf.Tensor([ 9 10 11], shape=(3,), dtype=int64)
tf.Tensor([12 13 14], shape=(3,), dtype=int64)
tf.Tensor([15 16 17], shape=(3,), dtype=int64)
tf.Tensor([18 19 20], shape=(3,), dtype=int64)
tf.Tensor([21 22 23], shape=(3,), dtype=int64)
tf.Tensor([24 25 26], shape=(3,), dtype=int64)
tf.Tensor([27 28 29], shape=(3,), dtype=int64)
tf.Tensor([30 31 32], shape=(3,), dtype=int64)
tf.Tensor([33],       shape=(1,), dtype=int64)

The TF 2 batch() Operator (2)

Listing 3.9 displays the contents of tf2_generator2.py, which illus-
trates how to use a generator function to display “batches” of numbers.

Listing 3.9: tf2_generator2.py

import tensorflow as tf
import numpy as np
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x = np.arange(0, 12)

def gener():
  i = 0
  while(i < len(x/3)):
    yield (i, i+1, i+2)
    i += 3

ds = tf.data.Dataset.from_generator(gener, (tf.int64,tf.
int64,tf.int64))

third = int(len(x)/3)
for value in ds.take(third):
  print("value:",value)

Listing 3.9 initializes the variable x as a NumPy array consisting of the in-
tegers from 0 through 12 inclusive. The Python function gener() returns 
a “triple” of three consecutive numbers from the NumPy array x. Since the 
next code snippet invokes the from_generator() API with the gener() 
function, the latter is treated as a generator (you saw an example of this behav-
ior earlier in this chapter).

The final portion of Listing 3.9 contains a for loop that iterates through 
the elements of ds, printing three consecutive values during each print() 
statement. The output from launching the code in Listing 3.9 is here:

value: (<tf.Tensor: id=34, shape=(), dtype=int64, numpy=0>, 
<tf.Tensor: id=35, shape=(), dtype=int64, numpy=1>, <tf.
Tensor: id=36, shape=(), dtype=int64, numpy=2>)
value: (<tf.Tensor: id=40, shape=(), dtype=int64, numpy=3>, 
<tf.Tensor: id=41, shape=(), dtype=int64, numpy=4>, <tf.
Tensor: id=42, shape=(), dtype=int64, numpy=5>)
value: (<tf.Tensor: id=46, shape=(), dtype=int64, numpy=6>, 
<tf.Tensor: id=47, shape=(), dtype=int64, numpy=7>, <tf.
Tensor: id=48, shape=(), dtype=int64, numpy=8>)
value: (<tf.Tensor: id=52, shape=(), dtype=int64, numpy=9>, 
<tf.Tensor: id=53, shape=(), dtype=int64, numpy=10>, <tf.
Tensor: id=54, shape=(), dtype=int64, numpy=11>)

The companion files contains tf2_generator1.py and tf2_gen-
erator3.py, which illustrate variations of the preceding code sample. Ex-
periment with the code by changing the hard-coded values and then see if you 
can correctly predict the output.

The TF 2 map() Operator (1)

The map() operator is often defined as a projection, and while this is tech-
nically correct,  the actual behavior might not be clear. Here’s the basic idea: 
when you provide a list or an array of values as input for the map() operator, 
this operator “applies” a lambda expression to each input element. 
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For example, the lambda expression lambda x: x*2 returns twice its 
input value x, whereas the lambda expression lambda x: x/2 returns half 
its input value x. In both lambda expressions the input list and the output list 
have the same number of elements. In many cases the values in the two lists 
are different, but there are many exceptions. For example, the lambda expres-
sion lambda x: x%2 returns the value 0 for even numbers and the value 1 
for odd numbers, so the output consists of two distinct numbers, whereas the 
input list can be arbitrarily large. Listing 3.10 displays the contents of tf2_
map.py, which illustrates a complete example of the map() operator in TF 2.

Listing 3.10: tf2_map.py

import tensorflow as tf
import numpy as np

x = np.array([[1],[2],[3],[4]])
ds = tf.data.Dataset.from_tensor_slices(x)
ds = ds.map(lambda x: x*2)

for value in ds:
  print("value:",value)

Listing 3.10 initializes the variable x as a NumPy array consisting of four 
elements, where each element is a 1x1 array consisting of the numbers 1, 2, 3, 
and 4. Next, the variable ds is initialized as a TF 2 Dataset that is created 
from the contents of the variable x. Notice how ds.map() then defines a 
lambda expression that doubles each input value (which takes the value of each 
integer from 1 to 4) in this example.

The final portion of Listing 3.10 contains a for loop that iterates through 
the elements of ds and displays their values. The output from launching the 
code in Listing 3.10 is here:

value: tf.Tensor([2], shape=(1,), dtype=int64)
value: tf.Tensor([4], shape=(1,), dtype=int64)
value: tf.Tensor([6], shape=(1,), dtype=int64)
value: tf.Tensor([8], shape=(1,), dtype=int64)

The TF 2 map() Operator (2)

Listing 3.11 displays the contents of tf2_map2.py, which illustrates two 
techniques for defining a dataset, as well as how to invoke multiple occur-
rences of the map() operator in TF 2.

Listing 3.11: tf2_map2.py

import tensorflow as tf
import numpy as np



TF 2 Datasets   •  91

# a simple Numpy array
x = np.array([[1],[2],[3],[4]])

# make a dataset from a Numpy array
dataset = tf.data.Dataset.from_tensor_slices(x)

# METHOD #1: THE LONG WAY
# a lambda expression to double each value
#dataset = dataset.map(lambda x: x*2)
# a lambda expression to add one to each value
#dataset = dataset.map(lambda x: x+1)
# a lambda expression to cube each value
#dataset = dataset.map(lambda x: x**3)

# METHOD #2: A SHORTER WAY
dataset = dataset.map(lambda x: x*2).map(lambda x: x+1).
map(lambda x: x**3)

for value in ds:
  print("value:",value)

Listing 3.11 initializes the variable x as a NumPy array consisting of four 
elements, where each element is a 1x1 array consisting of the numbers 1, 2, 
3, and 4. Next, the variable dataset is initialized as a TF 2 Dataset that is 
created from the contents of the variable x. 

The next portion of Listing 3.11 is a “commented out” code block that con-
sists of three lambda expressions, followed by a code snippet (shown in bold) 
that uses method chaining in order to produce a more compact way of invoking 
the same three lambda expressions:

dataset = dataset.map(lambda x: x*2).map(lambda x: x+1).
map(lambda x: x**3)

The preceding code snippet transforms each input value by first doubling 
the value, then adding one to the output from the first lambda expression, and 
then cubing the output from the second lambda expression.

Although method chaining is a concise way to combine operators, invok-
ing many lazy operators in a single (very long) line of code can also become 
difficult to understand, whereas writing code using the “longer way” would be 
easier to debug. 

A suggestion: start with each lazy operator in a separate line of code, and 
after you are satisfied that the individual results are correct, then use method 
chaining to combine the operators into a single line of code (perhaps up to a 
maximum of four or five lazy operators).

The final portion of Listing 3.11 contains a for loop that iterates through 
the transformed values and displays their values. The output from launching 
the code in Listing 3.11 is here: 

value: tf.Tensor([27],  shape=(1,), dtype=int64)
value: tf.Tensor([125], shape=(1,), dtype=int64)
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value: tf.Tensor([343], shape=(1,), dtype=int64)
value: tf.Tensor([729], shape=(1,), dtype=int64)

The TF 2 flatmap() Operator (1)

In addition to the TF 2 map() operator, TF 2 also supports the TF 2 
flat_map() operator. However, the TF 2 map() and TF 2 flat_map() 
operators expect functions with different signatures. Specifically, map() takes 
a function that maps a single element of the input dataset to a single new ele-
ment, whereas flat_map() takes a function that maps a single element of 
the input dataset to a Dataset of elements.

Listing 3.12 displays the contents of tf2_flatmap1.py, which illus-
trates how to use the flatmap() operator in TF 2.

Listing 3.12: tf2_flatmap1.py

import tensorflow as tf
import numpy as np

x = np.array([[1,2,3], [4,5,6], [7,8,9]])

ds = tf.data.Dataset.from_tensor_slices(x)
ds.flat_map(lambda x: tf.data.Dataset.from_tensor_
slices(x))

for value in ds.take(3):
  print("value:",value)

Listing 3.12 initializes the variable x as a NumPy array consisting of three 
elements, where each element is a 1x3 array of numbers. Next, the variable 
ds is initialized as a TF 2 Dataset that is a container for the contents of the 
variable x.

The final portion of Listing 3.12 contains a for loop that iterates through 
the elements of dataset and displays their values. Once again, note that the 
try/except block is unnecessary, even if the take() method specifies a 
number that is greater than the number of elements in ds. The output from 
launching the code in Listing 3.12 is here:

value: tf.Tensor([1 2 3], shape=(3,), dtype=int64)
value: tf.Tensor([4 5 6], shape=(3,), dtype=int64)
value: tf.Tensor([7 8 9], shape=(3,), dtype=int64)

The TF 2 flatmap() Operator (2) 

The code in the previous section works fine, but there is a hard-coded value 
3 in the code block that displays the elements of the dataset. The code sample 
in this section removes the hard-coded value.
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Listing 3.13 displays the contents of tf2_flatmap2.py, which illus-
trates how to use the flatmap() operator in TF 2 and then iterate through 
the elements of the dataset.

Listing 3.13: tf2_flatmap2.py

import tensorflow as tf
import numpy as np

x = np.array([[1,2,3], [4,5,6], [7,8,9]])

ds = tf.data.Dataset.from_tensor_slices(x)
ds.flat_map(lambda x: tf.data.Dataset.from_tensor_
slices(x))

for value in ds:
  print("value:",value)

Listing 3.13 initializes the variable x as a NumPy array consisting of three 
elements, where each element is a 1x3 array of numbers. Next, the variable 
ds is initialized as a TF 2 Dataset that is created from the contents of the 
variable x. 

The final portion of Listing 3.13 iterates through the elements of ds and 
displays their values. The for loop iterates through the elements of ds. The 
output from launching the code in Listing 3.13 is the same as the output from 
Listing 3.12:

value: tf.Tensor([1 2 3], shape=(3,), dtype=int64)
value: tf.Tensor([4 5 6], shape=(3,), dtype=int64)
value: tf.Tensor([7 8 9], shape=(3,), dtype=int64)

The TF 2 flat_map() and filter() Operators 

Listing 3.14 displays the contents of comments.txt, and Listing 3.15 
displays the contents of tf2_flatmap_filter.py, which illustrates how 
to use the filter() operator in TF 2.

Listing 3.14: comments.txt

#this is file line #1 
#this is file line #2 
this is file line #3 
this is file line #4 
#this is file line #5

Listing 3.15: tf2_flatmap_filter.py

import tensorflow as tf
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filenames = ["comments.txt"]

ds = tf.data.Dataset.from_tensor_slices(filenames)

# 1) Use Dataset.flat_map() to transform each file 
#    as a separate nested ds, then concatenate their 
#    contents sequentially into a single "flat" ds
# 2) Skip the first line (header row)
# 3) Filter out lines beginning with "#" (comments)

ds = ds.flat_map(
    lambda filename: (
      tf.data.TextLineDataset(filename)
      .skip(1)
      .filter(lambda line:  
tf.not_equal(tf.strings.substr(line,0,1),"#"))))

for value in ds.take(2):
  print("value:",value)

Listing 3.15 defines the variable filenames as an array of text filenames, 
which in this case consists of just one text file named comments.txt (whose 
contents are shown in Listing 3.14). Next, the variable dataset is initialized 
as a TF 2 Dataset that contains the contents of comments.txt. 

The next section of Listing 3.15 is a comment block that explains the pur-
pose of the subsequent code block that defines the variable ds. As you can see, 
ds involves a small set of operations that are executed via method chaining in 
order to perform various transformations on the contents of the variable ds.

Specifically, the flat_map() operator “flattens” whatever is returned 
by the nested lambda expression, which involves several transformations. 
The first transformation involves passing each input filename, one at a time, 
to the tf.data.TextLineDataset class. The second transformation 
skips the first line of text from the current input file. The third transforma-
tion invokes a filter() operator that specifies another lambda expression 
with conditional logic, as shown here:

tf.not_equal(tf.strings.substr(line,0,1),"#"))

The preceding code snippet returns the current line of text (from the cur-
rently processed text file) if and only if the character in the first position of the 
line of text is not the character “#”; otherwise, nothing is returned (i.e., the line 
of text is skipped). These transformations can be summarized as follows: “for 
each input file, skip the first line, and print any subsequent lines that do not 
start with the character #.”

The final portion of Listing 3.15 prints two lines of output, which might 
seem anticlimactic after defining such a fancy set of transformations! Launch 
the code in Listing 3.15 and you will see the following output:
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value: tf.Tensor(b'this is file line #3 ', shape=(), 
dtype=string)
value: tf.Tensor(b'this is file line #4 ', shape=(), 
dtype=string)

The TF 2 repeat() Operator

The repeat(n) operator simply repeats its input values n times. Listing 
3.16 displays the contents of tf2_repeat.py, which illustrates how to use 
the repeat() operator in TF 2.

Listing 3.16: tf2_repeat.py

import tensorflow as tf

ds = tf.data.Dataset.from_tensor_slices(tf.range(4))
ds = ds.repeat(2)

for value in ds.take(20):
  print("value:",value)

Listing 3.16 initializes the variable ds1 as a TF 2 Dataset that is created 
from the integers between 0 and 3 inclusive. The next code snippet “tacks on” 
the repeat() operator to ds, which has the effect of appending the con-
tents of ds to itself. Hence, ds contains eight numbers: the numbers from 0 
through 3 inclusive, and again the numbers 0 through 3 inclusive.

The final portion of Listing 3.16 contains a for loop that iterates through 
the elements of the dataset ds. Although the take() method specifies the 
number 20, the loop is only executed 8 times because the repeat() op-
erator specifies the value 2. The output from launching the code in Listing 
3.16 is here:

value: tf.Tensor(0, shape=(), dtype=int32)
value: tf.Tensor(1, shape=(), dtype=int32)
value: tf.Tensor(2, shape=(), dtype=int32)
value: tf.Tensor(3, shape=(), dtype=int32)
value: tf.Tensor(0, shape=(), dtype=int32)
value: tf.Tensor(1, shape=(), dtype=int32)
value: tf.Tensor(2, shape=(), dtype=int32)
value: tf.Tensor(3, shape=(), dtype=int32) 

The TF 2 take() Operator 

The take(n) operator “takes” n input values. Listing 3.17 displays the 
contents of tf2_take.py, which illustrates another example of the take() 
operator in TF 2.
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Listing 3.17: tf2_take.py

import tensorflow as tf

ds = tf.data.Dataset.from_tensor_slices(tf.range(8))
ds = ds.take(5)

for value in ds.take(20):
  print("value:",value)

Listing 3.17 initializes the variable ds1 as a TF 2 Dataset that is created 
from the integers between 0 and 7 inclusive. The next code snippet “tacks on” 
the take() operator to ds, which has the effect of limiting the output to the 
first five integers.

The final portion of Listing 3.17 contains a for loop that iterates through 
the elements of the dataset ds. See the code in the preceding section for an 
explanation of the how the output is generated. The output from launching the 
code in Listing 3.17 is here:

value: tf.Tensor(0, shape=(), dtype=int32)
value: tf.Tensor(1, shape=(), dtype=int32)
value: tf.Tensor(2, shape=(), dtype=int32)
value: tf.Tensor(3, shape=(), dtype=int32)
value: tf.Tensor(4, shape=(), dtype=int32)

Combining the TF 2 map() and take() Operators

Listing 3.18 displays the contents of tf2_map_take.py, which illus-
trates how to use method chaining in order to invoke the map() operator 
three times, using three different lambda expressions, followed by the take() 
operator in TF 2.

Listing 3.18: tf2_map_take.py

import tensorflow as tf
import numpy as np

x = np.array([[1],[2],[3],[4]])

# make a ds from a numpy array
ds = tf.data.Dataset.from_tensor_slices(x)
ds = ds.map(lambda x: x*2).map(lambda x: x+1).map(lambda x: 
x**3)

for value in ds.take(4):
  print("value:",value)

Listing 3.18 initializes the variable x as a NumPy array consisting of four 
elements, where each element is a 1x1 array consisting of the numbers 1, 2, 3, 
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and 4. Next, the variable dataset is initialized as a TF 2 Dataset that is 
created from the contents of the variable x. The next portion of Listing 3.18 
involves three lambda expressions that are shown in bold and reproduced here:

ds = ds.map(lambda x: x*2).map(lambda x: x+1).map(lambda x: 
x**3)

The preceding code snippet transforms each input value by first doubling 
the value, then adding one to the first result, and then cubing the second result.

The final portion of Listing 3.18 “takes” the first four elements from the 
variable dataset and displays their contents, as shown here:

value: tf.Tensor([27],  shape=(1,), dtype=int64)
value: tf.Tensor([125], shape=(1,), dtype=int64)
value: tf.Tensor([343], shape=(1,), dtype=int64)
value: tf.Tensor([729], shape=(1,), dtype=int64)

Combining the TF 2 zip() and batch() Operators

Listing 3.19 displays the contents of tf2_zip_batch.py, which illus-
trates how to combine the zip() and batch() operators in TF 2.

Listing 3.19: tf2_zip_batch.py

import tensorflow as tf

ds1 = tf.data.Dataset.range(100)
ds2 = tf.data.Dataset.range(0, -100, -1)
ds3 = tf.data.Dataset.zip((ds1, ds2))
ds4 = ds3.batch(4)

for value in ds.take(10):
  print("value:",value)

Listing 3.19 initializes the variables ds1, ds2, ds3, and ds4 as TF 2 
Datasets that are created successively starting from ds1, which contains the 
integers between 0 and 99 inclusive. The variable ds2 is initialized via the 
range() operator that starts from 0 and is decreased to -99, and the variable 
ds3 is initialized via the zip() operator that processes two elements at a 
time, in a pairwise fashion. Next, the variable ds3 is initialized by invoking 
the batch() operator on the variable ds3. The final portion of Listing 3.19 
prints three lines of “batched” output, as shown here:

value: (<tf.Tensor: id=20, shape=(4,), dtype=int64, 
numpy=array([0, 1, 2, 3])>, <tf.Tensor: id=21, shape=(4,), 
dtype=int64, numpy=array([ 0, -1, -2, -3])>)
value: (<tf.Tensor: id=24, shape=(4,), dtype=int64, 
numpy=array([4, 5, 6, 7])>, <tf.Tensor: id=25, shape=(4,), 
dtype=int64, numpy=array([-4, -5, -6, -7])>)
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value: (<tf.Tensor: id=28, shape=(4,), dtype=int64, 
numpy=array([ 8,  9, 10, 11])>, <tf.Tensor: id=29, 
shape=(4,), dtype=int64, numpy=array([ -8,  -9, -10, 
-11])>)
value: (<tf.Tensor: id=32, shape=(4,), dtype=int64, 
numpy=array([12, 13, 14, 15])>, <tf.Tensor: id=33, 
shape=(4,), dtype=int64, numpy=array([-12, -13, -14, 
-15])>)
value: (<tf.Tensor: id=36, shape=(4,), dtype=int64, 
numpy=array([16, 17, 18, 19])>, <tf.Tensor: id=37, 
shape=(4,), dtype=int64, numpy=array([-16, -17, -18, 
-19])>)
value: (<tf.Tensor: id=40, shape=(4,), dtype=int64, 
numpy=array([20, 21, 22, 23])>, <tf.Tensor: id=41, 
shape=(4,), dtype=int64, numpy=array([-20, -21, -22, 
-23])>)
value: (<tf.Tensor: id=44, shape=(4,), dtype=int64, 
numpy=array([24, 25, 26, 27])>, <tf.Tensor: id=45, 
shape=(4,), dtype=int64, numpy=array([-24, -25, -26, 
-27])>)
value: (<tf.Tensor: id=48, shape=(4,), dtype=int64, 
numpy=array([28, 29, 30, 31])>, <tf.Tensor: id=49, 
shape=(4,), dtype=int64, numpy=array([-28, -29, -30, 
-31])>)
value: (<tf.Tensor: id=52, shape=(4,), dtype=int64, 
numpy=array([32, 33, 34, 35])>, <tf.Tensor: id=53, 
shape=(4,), dtype=int64, numpy=array([-32, -33, -34, 
-35])>)
value: (<tf.Tensor: id=56, shape=(4,), dtype=int64, 
numpy=array([36, 37, 38, 39])>, <tf.Tensor: id=57, 
shape=(4,), dtype=int64, numpy=array([-36, -37, -38, 
-39])>)

For your convenience, here is a slightly more condensed and clearer ver-
sion of the output from Listing 3.19:

[ 0, 1, 2, 3],    [ 0, -1, -2, -3]
[ 4, 5, 6, 7],    [-4, -5, -6, -7]
[ 8,  9, 10, 11], [ -8,  -9, -10, -11]
[12, 13, 14, 15], [-12, -13, -14, -15]
[16, 17, 18, 19], [-16, -17, -18, -19]
[20, 21, 22, 23], [-20, -21, -22, -23]
[24, 25, 26, 27], [-24, -25, -26, -27]
[28, 29, 30, 31], [-28, -29, -30, -31]
[32, 33, 34, 35], [-32, -33, -34, -35]
[36, 37, 38, 39], [-36, -37, -38, -39]
[40, 41, 42, 43], [-40, -41, -42, -43]
[44, 45, 46, 47], [-44, -45, -46, -47]
. . . .
[96, 97, 98, 99], [-96, -97, -98, -99]
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Combining the TF 2 zip() and take() Operators

The zip() operator processes two elements at a time, in a pairwise fash-
ion. Think of two lines of people waiting at the entrance to a movie theater 
with double doors. After opening the doors, a “pair” of people—one from each 
“line”—enters the theater. 

Listing 3.20 displays the contents of tf2_zip_take.py, which illus-
trates how to combine the zip() and take() operators in TF 2.

Listing 3.20: tf2_zip_take.py

import tensorflow as tf
import numpy as np

x = np.arange(0, 10)
y = np.arange(1, 11)

# create dataset objects from the arrays
dx = tf.data.Dataset.from_tensor_slices(x)
dy = tf.data.Dataset.from_tensor_slices(y)

# zip the two datasets together
d2 = tf.data.Dataset.zip((dx, dy)).batch(3)

for value in d2.take(8):
  print("value:",value)

Listing 3.20 initializes the variables x and y as a range of integers from 0 to 
9 and from 1 to 10, respectively. Next, the variables dx and dy are initialized 
as TF 2 Datasets that are created from the contents of the variables x and 
y, respectively. 

The next code snippet defines the variable d2 as a TF 2 Dataset that 
combines the elements from dx and dy in a pairwise fashion via the zip() 
operator, as shown here:

d2 = tf.data.Dataset.zip((dx, dy)).batch(3)

Notice how method chaining is performed by “tacking on” the batch(3) 
operator as part of the definition of dcomb.

The final portion of Listing 3.20 contains a loop that executes fifteen times, 
and during each iteration the loop prints the current contents of the variable 
iterator. Each line of output consists of two “blocks” of numbers, where 
a block consists of three consecutive integers. The output from launching the 
code in Listing 3.20 is here:

value: (<tf.Tensor: id=16, shape=(3,), dtype=int64, 
numpy=array([0, 1, 2])>, <tf.Tensor: id=17, shape=(3,), 
dtype=int64, numpy=array([1, 2, 3])>)
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value: (<tf.Tensor: id=20, shape=(3,), dtype=int64, 
numpy=array([3, 4, 5])>, <tf.Tensor: id=21, shape=(3,), 
dtype=int64, numpy=array([4, 5, 6])>)
value: (<tf.Tensor: id=24, shape=(3,), dtype=int64, 
numpy=array([6, 7, 8])>, <tf.Tensor: id=25, shape=(3,), 
dtype=int64, numpy=array([7, 8, 9])>)
value: (<tf.Tensor: id=28, shape=(1,), dtype=int64, 
numpy=array([9])>, <tf.Tensor: id=29, shape=(1,), 
dtype=int64, numpy=array([10])>)

TF 2 tf.data.Datasets and Random Numbers

Listing 3.21 displays the contents of tf2_generator3.py, which illus-
trates how to create a TF 2 Dataset with random numbers.

Listing 3.21: tf2_generator3.py

import tensorflow as tf
import numpy as np

x = np.random.sample((8,2))
size = x.shape[0]

def gener():
  for i in range(0,size):
    yield (x[i][0], x[i][1])

ds = tf.data.Dataset.from_generator(gener, (tf.float64,tf.
float64))

for value in ds:
  print("value:",value)

Listing 3.21 initializes the variable x as a NumPy array consisting of 100 
rows and 2 columns of randomly generated numbers. Next, the variable ds 
is initialized as a TF 2 Dataset that is created from the contents of the 
variable x. 

The next portion of Listing 3.21 defines the Python function gener(), 
which is a generator, for the same reason that has been discussed in previous 
code samples. The final portion of Listing 3.21 prints the first line of trans-
formed data, as shown here:

value: (<tf.Tensor: id=32, shape=(), dtype=float64, 
numpy=0.20591749665857995>, <tf.Tensor: id=33, shape=(), 
dtype=float64, numpy=0.5990477322965386>)
value: (<tf.Tensor: id=36, shape=(), dtype=float64, 
numpy=0.4384201871832957>, <tf.Tensor: id=37, shape=(), 
dtype=float64, numpy=0.5169209418998256>)
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value: (<tf.Tensor: id=40, shape=(), dtype=float64, 
numpy=0.587374875326609>, <tf.Tensor: id=41, shape=(), 
dtype=float64, numpy=0.8141864916735249>)
value: (<tf.Tensor: id=44, shape=(), dtype=float64, 
numpy=0.05471699195088109>, <tf.Tensor: id=45, shape=(), 
dtype=float64, numpy=0.806596986559444>)
value: (<tf.Tensor: id=48, shape=(), dtype=float64, 
numpy=0.8878379222956106>, <tf.Tensor: id=49, shape=(), 
dtype=float64, numpy=0.9533861033011681>)
value: (<tf.Tensor: id=52, shape=(), dtype=float64, 
numpy=0.4504035573049521>, <tf.Tensor: id=53, shape=(), 
dtype=float64, numpy=0.6303139480618501>)
value: (<tf.Tensor: id=56, shape=(), dtype=float64, 
numpy=0.84588294357816>, <tf.Tensor: id=57, shape=(), 
dtype=float64, numpy=0.916291642540712>)
value: (<tf.Tensor: id=60, shape=(), dtype=float64, 
numpy=0.8851826544276614>, <tf.Tensor: id=61, shape=(), 
dtype=float64, numpy=0.6337544549532578>)

TF 2, MNIST, and tf.data.Dataset

In addition to creating a dataset from NumPy arrays of data or from Pan-
das Dataframes, you can create a dataset from existing datasets. For exam-
ple, Listing 3.22 displays the contents of tf2_mnist.py, which illustrates 
how to create a tf.data.Dataset from the MNIST dataset.

Listing 3.22: tf2_mnist.py

import tensorflow as tf

train, test = tf.keras.datasets.mnist.load_data()
mnist_x, mnist_y = train

print("mnist_x.shape:",mnist_x.shape)
print("mnist_y.shape:",mnist_y.shape)

mnist_ds = tf.data.Dataset.from_tensor_slices(mnist_x)
#print(mnist_ds)

for value in mnist_ds:
  print("value:",value)

Listing 3.22 initializes the variables train and test from the MNIST 
dataset, and then initializes the variables mnist_x and mnist_y from the 
train variable. The next code snippet initializes the mnist_ds variable as 
a tf.data.Dataset that is created from the mnist_x variable. The next 
portion of Listing 3.22 contains a for loop that iterates through the elements 
in mnist_ds.
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The complete output from launching the code in Listing 3.22 is very 
lengthy, and you can see the full output by launching this code sample from 
the command line. 

The next block shows you the shape of mnist_x and mnist_y, followed 
by a portion of the data (i.e., the pixel values) in the first image contained in 
the MNIST dataset.

mnist_x.shape: (60000, 28, 28)
mnist_y.shape: (60000,)

value: tf.Tensor(
[[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   
    0   0   0   0   0   0   0   0   0   0]  
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   
    0   0   0   0   0   0   0   0   0   0]  
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   
    0   0   0   0   0   0   0   0   0   0]  
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   
    0   0   0   0   0   0   0   0   0   0]  
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   
    0   0   0   0   0   0   0   0   0   0]  
 [  0   0   0   0   0   0   0   0   0   0   0   0   3  18  
18  18 126 136 
  175  26 166 255 247 127   0   0   0   0]  
 [  0   0   0   0   0   0   0   0  30  36  94 154 170 253 
253 253 253 253 
  225 172 253 242 195  64   0   0   0   0]  
// output omitted for brevity
[  0   0   0   0  55 172 226 253 253 253 253 244 133  11   
0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0 136 253 253 253 212 135 132  16   0   0   
0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0
    0   0   0   0   0   0   0   0   0   0]], shape=(28, 
28), dtype=uint8)
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If you launch the code in Listing 3.22 from the command line, you will see 
the complete set of 784 (=28 x 28) pixel values.

Working with the TFDS Package in TF 2

The tensorflow_datasets package (tfds) contains utilities for load-
ing predefined datasets. Keep in mind that these are datasets that contain data 
and are not to be confused with tf.data.Dataset. Listing 3.23 displays 
the contents of tfds.py, which illustrates how to display the list of available 
built-in datasets in TF 2 by means of the tfds package.

Listing 3.23: tfds.py

import tensorflow as tf
import tensorflow_datasets as tfds

# See available datasets
print(tfds.list_builders())

# Construct a tf.data.Dataset
ds = tfds.load(name="mnist", split=tfds.Split.TRAIN)

# Build your input pipeline
ds = ds.shuffle(1024).batch(32).prefetch(tf.data.
experimental.AUTOTUNE)

for features in ds.take(1):
  image, label = features["image"], features["label"]

Listing 3.23 contains a print() statement that displays the complete list 
of built-in datasets in TF 2. The variable ds is initialized as the training-related 
data in the MNIST dataset. The next code snippet uses method chaining to 
invoke three operators: first the shuffle() operator (to shuffle the input 
data), then the batch() operator to specify 32 rows per batch, and then the 
prefetch() method to select the first batch of data. The final code block 
is a for loop that “takes” only the first row of data from ds. The output from 
launching the code in Listing 3.23 is here:

['bair_robot_pushing_small', 'cats_vs_dogs', 'celeb_a', 
'celeb_a_hq', 'cifar10', 'cifar100', 'coco2014', 'diabetic_
retinopathy_detection', 'dummy_dataset_shared_generator', 
'dummy_mnist', 'fashion_mnist', 'image_label_folder', 
'imagenet2012', 'imdb_reviews', 'lm1b', 'lsun', 'mnist', 
'moving_mnist', 'nsynth', 'omniglot', 'open_images_v4', 
'quickdraw_bitmap', 'squad', 'starcraft_video', 'svhn_
cropped', 'tf_flowers', 'wmt_translate_ende', 'wmt_
translate_enfr']
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As you can see, the previous output contains some well-known datasets, 
including CIFAR10, CIFAR100, MNIST, and FASHION_MNIST (among 
others).

The CIFAR10 Dataset and TFDS in TF 2

Listing 3.24 displays the contents of tfds-cifar10.py, which illus-
trates how to perform some processing on the CIFAR10 dataset and use 
lambda expressions and the map() operator to train the datasets. 

Listing 3.24: tfds-cifar10.py

import tensorflow as tf
import tensorflow_datasets as tfds

loader = tfds.load("cifar10", as_supervised=True)
train, test = loader["train"], loader["test"]

train = train.map(
  lambda image, label: (tf.image.convert_image_dtype(image, 
tf.float32), label)
).cache().map(
  lambda image, label: (tf.image.random_flip_left_
right(image), label)
).map(
  lambda image, label: (tf.image.random_contrast(image, 
lower=0.0, upper=1.0), label)
).shuffle(100).batch(64).repeat()

The code in this section is from the following stackoverflow post (which 
contains additional details):

https://stackoverflow.com/questions/55141076/how-to-apply-data-aug-
mentation-in-tensorflow-2-0-after-tfds-load

Working with tf.estimator

The first subsection introduced as follows is useful if you have some experi-
ence with well-known machine learning algorithms using a Python library such 
as scikit-learn. You will see a list of the TF 2 classes that are similar to 
their Python-based counterparts in machine learning, with classes for regres-
sion tasks and classes for classification tasks.

The second subsection contains a list of TF 2 classes that are relevant for 
defining CNNs (Convolutional Neural Networks) in TF 2.

If you are new to machine learning then this section will have limited value 
to you right now, but you can still learn what’s available in TF 2 (perhaps for 
future reference).



TF 2 Datasets   •  105

What Are TF 2 Estimators?

The tf.estimator namespace contains an assortment of classes that 
implement various algorithms that are available in machine learning, such as 
boosted trees, DNN classifiers, DNN regressors, linear classifiers, and linear 
regressors. 

The estimator-related classes DNNRegressor, LinearRegressor, and 
DNNLinearCombinedRegressor are for regression tasks, whereas the 
classes DNNClassifier, LinearClassifier, and DNNLinearCom-
binedClassifier are for classification tasks. A more extensive list of esti-
mator classes (with very brief descriptions) is listed as follows:

•	 BoostedTreesClassifier: A Classifier for TF 2 Boosted Trees models
•	 BoostedTreesRegressor: A Regressor for TF 2 Boosted Trees models
•	 CheckpointSaverHook: Saves checkpoints every N steps or seconds
•	 DNNClassifier: A classifier for TF 2 DNN models
•	 DNNEstimator: An estimator for TF 2 DNN models with user-specified 

head
•	 DNNLinearCombinedClassifier: An estimator for TF 2 Linear and 

DNN joined classification models
•	 DNNLinearCombinedRegressor: An estimator for TF 2 Linear and 

DNN joined models for regression
•	 DNNRegressor: A regressor for TF 2 DNN models
•	 Estimator: Estimator class to train and evaluate TF 2 models
•	 LinearClassifier: Linear classifier model
•	 LinearEstimator: An estimator for TF 2 linear models with user-speci-

fied head
•	 LinearRegressor: An estimator for TF 2 Linear regression problems

All estimator classes are in the tf.estimator namespace, and all esti-
mator classes inherit from the tf.estimator.Estimator class. Read the 
online documentation for the details of the preceding classes as well as online 
tutorials for relevant code samples.

Other TF 2 Namespaces

In addition to the classes and namespaces that are mentioned in previ-
ous sections, TF 2 provides various other useful namespaces, including the 
following:

•	 tf.data (contains tf.data.Dataset)
•	 tf.keras (Keras-based functionality)
•	 tf.linalg (linear algebra)
•	 tf.lite (for mobile applications)
•	 tf.losses (cost functions)
•	 tf.math (mathematical functions)
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•	 tf.nn (neural networks)
•	 tf.random (random values)
•	 tf.saved_model 
•	 tf.test 
•	 tf.train 
•	 tf.version

The tf.data namespace contains the tf.data.Dataset names-
pace, which contains classes that are discussed in the first half of this chapter; 
the tf.linalg namespace contains an assortment of classes that perform 
operations in linear algebra; and the tf.lite namespace contains classes for 
mobile application development.

The tf.keras namespace contains functionality that is relevant to any-
one who wants to work with Keras-based code. In particular, tf.keras con-
tains many important namespaces, including the following:

•	 tf.keras.layers (Activation, Dense, Dropout, etc.)
•	 tf.keras.models (Sequential and Functional)
•	 tf.keras.optimizers (algorithms for cost functions)

The appendix contains code samples that involve classes from each of the 
three namespaces in the preceding list.

Summary

This chapter introduced you to TF 2 Datasets that are well-suited for 
processing the contents of “normal” size datasets as well datasets that are too 
large to fit in memory. You saw how to define a lambda expression and use that 
expression in a TF 2 Dataset. 

Next, you learned about various “lazy operators,” including batch(), 
filter(), flatmap(), map(), take(), and zip(), and how to 
use them to define a subset of the data in a TF 2 Dataset. You also learned 
how to use TF 2 generators in order to iterate through the elements of a TF 2 
Dataset. 

Next, you learned how to create a TF 2 Dataset from a CSV file and then 
display its contents. Then you got a brief introduction to the tf.estimator 
namespace, which contains an assortment of classes that implement various 
algorithms, such as boosted trees, DNN classifiers, DNN regressors, linear 
classifiers, and linear regressors.

Finally, you learned about various other important aspects of TF 2, such as 
the tf.keras.layers namespace that contains an assortment of classes for 
DNNs (Dense Neural Networks) and CNNs (Convolutional Neural Networks).



Chapter 4
Linear Regression

This chapter introduces linear regression, which is a well-known algo-
rithm in machine learning. You’ll learn some important aspects and as-
sumptions regarding linear regression, and some statistical quantities 

for determining how well a model represents a dataset. You will see code ex-
amples that involve Python and NumPy code (often using the NumPy lins-
pace() API), as well as code samples involving TF 2 code. 

The first part of this chapter briefly discusses the basic concepts involved 
in linear regression. Although linear regression was developed more than 200 
years ago, this technique is still one of the “core” techniques for solving (albeit 
simple) problems in statistics and machine learning. This section introduces 
“Mean Squared Error” (MSE) for finding a best-fitting line for data points in a 
2D plane (or a hyperplane for higher dimensions).

The second section in this chapter contains very simple graphs of lines, 
scatterplots, and a quadratic plot in the plane (skip them if they are familiar). 
The third section discusses regularization, ML and feature scaling, and data 
normalization versus standardization. 

The fourth section discusses various metrics for measuring models, such as 
R-Squared and its limitations, the confusion matrix, and accuracy versus preci-
sion versus recall. You will also learn about other useful statistical terms, such 
as RSS, TSS, F1 score, and p-value.

The fifth section shows you how to calculate the MSE value manually for 
a small dataset in the 2D plane. The sixth section discusses linear regression 
in conjunction with TF 2 estimators (in the tf.estimator namespace) 
that provides “canned” APIs for various algorithms. You will also see an exam-
ple of solving linear regression using the TF 2 LinearRegressor() class 
that is also a TF 2 estimator. 

The final section contains a Keras-based code sample to train a model in 
order to solve a task in linear regression. Although the Keras code is minimal 
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(only a single layer), you do need to have some understanding of some Keras 
APIs, some of which are discussed briefly in this section.

As you will soon see, roughly two-thirds of this chapter discusses linear re-
gression and topics pertaining to machine learning, and the TF 2 code samples 
are in the final third of this chapter. The amount of material that you read is 
obviously your choice, and although you can skip many of the theoretical con-
cepts in this chapter, eventually you will need to learn them if you intend to 
deepen your knowledge of machine learning.

What Is Linear Regression? 

In simplified terms, linear regression in the 2D plane attempts to deter-
mine the best-fitting line that “represents” a dataset. A best-fitting line min-
imizes the distance of that line from the points in the dataset. There is no 
correlation between best-fitting line and the number of points in the dataset 
that actually lie on the best-fitting line. In addition, linear regression differs 
from curve-fitting: the latter typically involves finding a polynomial that actu-
ally passes through points in a dataset. 

In fact, 2D datasets consist of points that are often “scattered” in such a 
way that they cannot be points on a polynomial curve, regardless of how large 
a value that you choose for the degree of the polynomial. The reason is due to 
an important limiting factor: a polynomial can never intersect more than one 
point on any vertical line in the Euclidean plane. Since a dataset in the plane 
can contain many points that lie on the same vertical line, a different polyno-
mial must be found to intersect each of the points on such a line. 

Incidentally, the same property holds for continuous as well as noncontinu-
ous functions in the plane: they can intersect at most one point of any vertical 
line in the plane. In fact, the definition of a function (which includes polyno-
mials) states the following: if a function intersects two points (x1,y1) and 
(x2,y2) that have the same x value, then those two points must have the 
same y value. That is to say, if x1=x2 then y1=y2 must be true. Note that 
there is no such restriction for points that have the same y value because such 
points lie on a horizontal line (which is a function). 

Now perform the following thought experiment: consider a scatter plot with 
many points in the plane that are sort of “clustered” in a tilted and elongated 
cloud-like shape. For such a dataset, a best-fitting line will probably intersect 
only a limited number of points. In fact, it’s even possible that a best-fitting line 
doesn’t intersect any of the points in the dataset.

One other scenario: suppose a dataset contains a set of 2D points that lie 
on the same line. For instance, let’s suppose that the x values are in the set 
{1,2,3,...,10} and also that the y values are in the set {2,4,6,...,20}. 
Then the equation of the best-fitting line is y=2*x+0. In this scenario, all the 
points are collinear, which is to say that they lie on the same line.
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Linear Regression versus Curve-Fitting

In some situations, it’s possible to determine the maximum degree of a 
polynomial that fits a set of points in the 2D plane. For instance, suppose we 
have a set of n points of the form (x,y). Let’s also make the assumption that 
no pair of points have the same x value; this means that no two points lie on the 
same vertical line. In this situation, there is a polynomial of degree at most n-1 
that passes through those n points (if you are really interested, you can find a 
mathematical proof of this statement in online articles). 

For example, a non-vertical line in the 2D plane is a polynomial of degree 
one, and it intersects any pair of points in the 2D plane (as long as the pair of 
points are not on a vertical line). For any triple of points that are not collinear 
in the plane (i.e., they do not all lie on the same line), there is a polynomial of 
degree two (also known as a quadratic polynomial) that passes through those 
three points. If you have 100 such points, then there is a polynomial of degree 
at most 99 that passes through all those points.

The good news is that sometimes a lower degree polynomial is available. 
For instance, consider the set of 100 points in which the x value equals the y 
value: in this case, the line y = x (which is a polynomial of degree one) passes 
through all 100 points.

Notice that the preceding paragraphs mentioned “a set of points” along 
with a set of assumptions. In general, a dataset of points in a 2D plane might 
not satisfy all those assumptions.

However, keep in mind that the extent to which a line “represents” a set of 
points in the plane depends on how closely those points can be approximated 
by a line, which is measured by the variance of the points (the variance is a 
statistical quantity). The more collinear the points, the smaller the variance; 
conversely, the more “spread out” the points are, the larger the variance.

What Is Multivariate Analysis?

Multivariate analysis generalizes the equation of a line in the Euclidean 
plane to higher dimensions, and it’s called a hyper plane instead of a line. The 
generalized equation has the following form:

y = w1*x1 + w2*x2 + . . . + wn*xn + b

In the case of 2D linear regression, you only need to find the value of the 
slope (m) and the y-intercept (b), whereas in multivariate analysis you need to 
find the values for w1, w2, . . ., wn. Note that multivariate analysis is a 
term from statistics, and in machine learning it’s often referred to as “general-
ized linear regression.”

Keep in mind that most of the code samples in this book that pertain to 
linear regression involve 2D points in the Euclidean plane.
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When Are Solutions Exact in Machine Learning?

Although statistics-based solutions provide closed-form solutions for linear 
regression, neural networks generally provide approximate solutions. This is 
due to the fact that machine learning algorithms involve a sequence of approxi-
mations that “converges” to optimal values, which means that machine learning 
algorithms produce estimates of the exact values. For example, the slope m and 
y-intercept b of a best-fitting line for a set of points in a 2D plane have a closed-
form solution in statistics, but they can only be approximated via machine learn-
ing algorithms (exceptions do exist, but they are rare situations). 

Keep in mind that even though a closed-form solution for “traditional” lin-
ear regression provides an exact value for both m and b, sometimes you can only 
use an approximation of the exact value. For instance, suppose that the slope 
m of a best-fitting line equals the square root of 3 and the y-intercept b is the 
square root of 2. If you plan to use these values in source code, you can only 
work with an approximation of these two numbers. In the same scenario, a neu-
ral network computes approximations for m and b, regardless of whether or not 
the exact values for m and b are irrational, fractional, or integer values. How-
ever, machine learning algorithms are better suited for complex, nonlinear, 
multidimensional datasets, which is beyond the capacity of linear regression.

As a simple example, suppose that the closed-form solution for a linear 
regression problem produces integer or rational values for both m and b. Spe-
cifically, let’s suppose that a closed-form solution yields the values 2.0 and 1.0 
for the slope and y-intercept, respectively, of a best-fitting line. The equation 
of the line looks like this:

y = 2.0 * x + 1.0

However, the corresponding solution from training a neural network might 
produce the values 2.0001 and 0.9997 for the slope m and the y-intercept b, 
respectively, as the values of m and b for a best-fitting line. Always keep this 
point in mind, especially when you are training a neural network.

Challenges with Linear Regression

Linear regression models are very powerful and simpler than their alterna-
tives. However, issues can arise because of various factors, and an accurate 
analysis of these issues can be difficult. Here is a list of potential problems that 
can arise:

•	 Nonlinear data
•	 Nonconstant variance of error terms (heteroscedasticity)
•	 Correlation of error terms
•	 Collinearity
•	 Outliers
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Nonlinear Data

Linear regression is based on the assumption that a line is an accurate 
model for the data. If you suspect that the data is not sufficiently linear, use 
residual plots to check for nonlinearity. Recall that the residual values are the 
differences between the y-coordinate of each point and the y-coordinate of 
its corresponding point on the estimated line: ei = yi - y_i.

Nonconstant Variance of Error Terms

Various terms in linear models, including standard errors and confidence 
intervals, rely on the assumption that error terms have constant variance. Some-
times a transformation of the dependent variable Y can reduce heteroscedas-
ticity. Two examples of transformation functions are log(Y) or sqrt(Y); 
however, you can specify other functions as well (just make sure that they are 
monotonically nondecreasing functions).

Correlation of Error Terms

A correlation among the error terms results in estimated standard errors 
that tend to underestimate the true standard errors. In addition, confidence 
and prediction intervals are correspondingly narrower. Error correlations can 
occur in consecutive time periods for time series data.

Collinearity

Collinearity refers to variables that are very close to each other, and it can 
be difficult to distinguish the individual effects of collinear variables. Moreo-
ver, collinearity reduces the accuracy of the estimates of the regression coef-
ficients. Inspect the correlation matrix of the predictors for relatively large 
elements, which indicates a pair of highly correlated variables, and hence col-
linearity in the data.

However, collinearity can exist among more than two variables (multi- 
collinearity), and collinearity among those variables is not detectable in the 
correlation matrix. Collinearity can be problematic in regression models, espe-
cially when there is a high degree of correlation between two or more variables.

Fortunately, there are techniques for addressing collinearity, such as PCA 
(Principal Component Analysis), LDA (Linear Discriminant Analysis), SVD 
(Singular Value Decomposition), and various other techniques. However, 
these techniques are beyond the scope of this book (search online and you will 
find many articles).

Outliers and Anomalies

Outliers are “unusual” or unexpected data points, and while you might be 
tempted to ignore them, it’s not always possible to do so. For instance, a stock 
market crash is an outlier, and it most likely contains important information, so 
it’s advisable to retain such data.
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Although an outlier might not significantly affect the MSE value, it can 
have a more significant effect on the RSE value. Residual plots can help you 
detect outliers in a dataset.

Anomalies are outliers that cannot be ignored, which is to say that anoma-
lies are more serious than outliers. Thus, anomalies are outliers, but outliers 
are not necessarily anomalies. This means that anomalies form a subset of out-
liers. The earlier example of a stock market crash in a stock-related dataset is 
an example of an outlier that is also an anomaly.

By contrast, suppose that your credit card purchases are always within a 
fifty-mile radius, and suddenly a purchase in a different state or country ap-
pears on your credit card. That purchase is an outlier because it’s much dif-
ferent from all your other purchases; however, it’s not necessarily a fraudulent 
transaction (you might be on a business trip or on vacation), which means that 
this purchase is not automatically an anomaly.

Other Types of Regression

Linear regression finds the best-fitting line that “represents” a dataset, but 
what happens if a line in the plane is not a good fit for the dataset? This is a very 
important question when you work with datasets. Some alternatives to linear 
regression include quadratic equations, cubic equations, or higher-degree pol-
ynomials. However, these alternatives involve trade-offs, as we’ll discuss later.

Another possibility is a sort of hybrid approach that involves a piecewise lin-
ear function that comprises a set of line segments. If contiguous line segments 
are connected, then it’s a piecewise linear continuous function; otherwise it’s a 
piecewise linear discontinuous function.

Thus, given a set of points in the plane, regression involves addressing the 
following questions:

1.	 What type of curve fits the data well? How do we know?
2.	 Does another type of curve fit the data better?
3.	 What does “best fit” mean?

One way to check if a line fits the data involves a visual check, but this 
approach does not work for data points that are higher than two dimensions. 
Moreover, this is a subjective decision, and some sample datasets are displayed 
later in this chapter. By visual inspection of a dataset, you might decide that 
a quadratic or cubic (or even higher degree) polynomial has the potential of 
being a better fit for the data. However, visual inspection is probably limited to 
points in a 2D plane or in three dimensions.

Let’s defer the nonlinear scenario and let’s make the assumption that a line 
would be a good fit for the data. There is a well-known technique for finding 
the “best-fitting” line for such a dataset called Mean Squared Error (MSE), 
and we’ll discuss it later in this chapter. 

The next section provides a quick review of linear equations in the plane, 
along with some images that illustrate examples of linear equations.
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Working with Lines in the Plane

This section starts with basic examples involving lines in a 2D plane. If you 
are comfortable with this topic, feel free to skip this section and proceed to the 
next section.

In case you don’t remember, here is a general equation for a line in the 
Euclidean plane (except for vertical lines):

y = m*x + b

The value of m is the slope of the line and the value of b is the y-intercept 
(i.e., the place where the line intersects the y-axis). 

If need be, you can use a more general equation that can also represent 
vertical lines, as shown here:

a*x + b*y + c = 0

However, we won’t be working with vertical lines, so we’ll stick with the 
first formula.

Figure 4.1 displays three horizontal lines whose equations (from top to bot-
tom) are y = 3, y = 0, and y = -3, respectively.

Figure 4.2 displays two slanted lines whose equations are y = x and y = -x.
Figure 4.3 displays two slanted parallel lines whose equations are y = 2*x 

and y = 2*x + 3.
Figure 4.4 displays a piecewise linear graph consisting of connected line 

segments.
Now let’s turn our attention to generating quasi-random data using a 

NumPy API, and then we’ll plot the data using Matplotlib.

Figure 4.1.  A graph of three horizontal line segments.
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Figure 4.2.  A graph of two diagonal line segments.

Figure 4.3.  A graph of two slanted parallel line segments.
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Scatter Plots with NumPy and Matplotlib (1)

Listing 4.1 displays the contents of np_plot.py, which illustrates how to 
use the NumPy randn() API to generate a dataset and then the scatter() 
API in Matplotlib to plot the points in the dataset.

One detail to note is that all the adjacent horizontal values are equally 
spaced, whereas the vertical values are based on a linear equation plus a “per-
turbation” value. This “perturbation technique” (which is not a standard term) 
is used in other code samples in this chapter in order to add a slightly rand-
omized effect when the points are plotted. The advantage of this technique is 
that the best-fitting values for m and b are known in advance, and therefore we 
do not need to guess their values.

Listing 4.1: np_plot.py

import numpy as np
import matplotlib.pyplot as plt

x = np.random.randn(15,1)
y = 2.5*x + 5 + 0.2*np.random.randn(15,1)

print("x:",x)
print("y:",y)

Figure 4.4.  A piecewise linear graph of line segments.
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plt.scatter(x,y)
plt.show()

Listing 4.1 contains two import statements and then initializes the NumPy 
array x with fifteen random numbers between 0 and 1. Next, the NumPy array 
y is defined in two parts: the first part is a linear equation 2.5*x + 5 and 
the second part is a “perturbation” value that is based on a random number. 
Thus, the array variable y simulates a set of values that closely approximates a 
line segment. 

This technique is used in code samples that simulate a line segment, and 
then the training portion approximates the values of m and b for the best-fitting 
line. Obviously, we already know the equation of the best-fitting line: the pur-
pose of this technique is to compare the trained values for the slope m and y-
intercept b with the known values (which in this case are 2.5 and 5). A partial 
output from Listing 4.1 is here:

x: [[-1.42736308]
 [ 0.09482338]
 [-0.45071331]
 [ 0.19536304]
 [-0.22295205]
 // values omitted for brevity
y: [[1.12530514]
 [5.05168677]
 [3.93320782]
 [5.49760999]
 [4.46994978]
 // values omitted for brevity

Figure 4.5 displays a scatter plot of points based on the values of x and y.

Why the “Perturbation Technique” Is Useful 

The code sample in this section initializes a dataset with points that are 
defined in the Python array variables X and Y:

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]
Y = [0,0.15,0.54,0.51, 0.34,0.1,0.19,0.53,1.0,0.58]

If you need to find the best-fitting line for the preceding dataset, how would 
you estimate the values for the slope m and the y-intercept b? In most cases, 
you probably cannot guess their values. On the other hand, the “perturbation 
technique” enables you to “jiggle” the points on a line whose value for the slope 
m (and optionally the value for the y-intercept b) is specified in advance.

Keep in mind that the “perturbation technique” only works when you in-
troduce small random values that do not result in different values for m and b. 
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Scatter Plots with NumPy and Matplotlib (2)

The code in Listing 4.1 in the previous section assigned random values to 
the variable x, whereas a hard-coded value is assigned to the slope m. The y 
values are a hard-coded multiple of the x values, plus a random value that is 
calculated via the “perturbation technique.” Hence, we do not know the value 
of the y-intercept b. 

In this section the values for trainX are based on the np.linspace() 
API, and the values for trainY involve the “perturbation technique” that is 
described in the previous section.

The code in this example simply prints the values for trainX and 
trainY, which correspond to data points in the Euclidean plane. Listing 4.2 
displays the contents of np_plot2.py, which illustrates how to simulate a 
linear dataset in NumPy.

Listing 4.2: np_plot2.py

import numpy as np

x_data = np.linspace(-1, 1, 11)
y_data = 4*x_data + np.random.randn(*x_data.shape)*0.5

print("x_data: ",x_data)
print("y_data: ",y_data)

Figure 4.5.  A scatter plot of points for a line segment.
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Listing 4.2 initializes the NumPy variable x_data via the NumPy lins-
pace() API, followed by the NumPy variable y_data that is defined in two 
parts. The first part is the linear term 4*x_data and the second part involves 
the “perturbation technique” that is a randomly generated number. The output 
from Listing 4.2 is here:

x_data:  [-1.  -0.8 -0.6 -0.4 -0.2  0.   0.2  0.4  0.6  0.8  
1. ]
y_data:  [-3.60147459 -2.66593108 -2.26491189 -1.65121314 
-0.56454605  0.22746004 0.86830728  1.60673482  2.51151543  
3.59573877  3.05506056]

The purpose of this code sample is merely to generate and display a set of 
randomly generated numbers. Later in this chapter we will use this code as a 
starting point for an actual linear regression task.

The next section contains an example that is similar to Listing 4.2, using the 
same “perturbation technique” to generate a set of points that approximates a 
quadratic equation instead of a line segment.

A Quadratic Scatter Plot with NumPy and Matplotlib

Listing 4.3 displays the contents of np_plot_quadratic.py, which il-
lustrates how to plot a quadratic function in the plane.

Listing 4.3: np_plot_quadratic.py

import numpy as np
import matplotlib.pyplot as plt

#see what happens with this set of values:
#x = np.linspace(-5,5,num=100)

x = np.linspace(-5,5,num=100)[:,None]
y = -0.5 + 2.2*x +0.3*x**2 + 2*np.random.randn(100,1)
print("x:",x)

plt.plot(x,y)
plt.show()

Listing 4.3 initializes the NumPy variable x with the values that are gener-
ated via the np.linspace() API, which in this case is a set of 100 equally 
spaced decimal numbers between -5 and 5. Notice the snippet [:,None] in 
the initialization of x, which results in an array of elements, each of which is an 
array consisting of a single number. 

The array variable y is defined in two parts: the first part is a quadratic 
equation -0.5 + 2.2*x +0.3*x**2 and the second part is a “perturba-
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tion” value that is based on a random number (similar to the code in Listing 
4.1). Thus, the array variable y simulates a set of values that approximates a 
quadratic equation. The output from Listing 4.3 is here:

x: 
[[-5.        ]
 [-4.8989899 ]
 [-4.7979798 ]
 [-4.6969697 ]
 [-4.5959596 ]
 [-4.49494949]
 // values omitted for brevity
 [ 4.8989899 ]
 [ 5.        ]]

Figure 4.6 displays a scatter plot of points based on the values of x and y, 
which have an approximate shape of a quadratic equation.

Figure 4.6.  A scatter plot of points for a quadratic equation.
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The Mean Squared Error (MSE) Formula

Figure 4.8 displays the formula for the MSE. In plain English, the MSE 
is the sum of the squares of the difference between an actual y value and the 
predicted y value (this difference is called a “residual value”), divided by the 
number of points. Notice that the predicted y value is the y value that each 
point would have if that point were actually on the best-fitting line.

Although the MSE is popular for linear regression, there are other error 
types available, some of which are discussed briefly in the next section.

A List of Error Types

Although we will only discuss MSE for linear regression in this book, there 
are other types of formulas that you can use for linear regression, some of 
which are listed here:

•	 MSE
•	 RMSE
•	 RMSPROP
•	 MAE

The MSE is the basis for the preceding error types. For example, RMSE is 
“Root Mean Squared Error,” which is the square root of the MSE.

On the other hand, MAE is “Mean Absolute Error,” which is the sum of 
the absolute value of the differences of the y terms (not the square of the differ-
ences of the y terms), which is then divided by the number of terms.

The RMSProp optimizer utilizes the magnitude of recent gradients to nor-
malize the gradients. Maintain a moving average over the RMS (root mean 
squared) gradients, and then divide that term by the current gradient.

Although it’s easier to compute the derivative of MSE, it’s also true that 
MSE is more susceptible to outliers, whereas MAE is less susceptible to outli-
ers. The reason is simple: a squared term can be significantly larger than the 
absolute value of a term. For example, if a difference term is 10, then a squared 
term of 100 is added to the MSE, whereas only 10 is added to the MAE. Simi-
larly, if a difference term is -20, then a squared term 400 is added to the MSE, 
whereas only 20 (which is the absolute value of -20) is added to the MAE.

Nonlinear Least Squares

When predicting housing prices, where the dataset contains a wide range 
of values, techniques such as linear regression or random forests can cause the 
model to overfit the samples with the highest values in order to reduce quanti-
ties such as mean absolute error. 

In this scenario you probably want an error metric, such as relative error, 
that reduces the importance of fitting the samples with the largest values. This 
technique is called nonlinear least squares, which may use a log-based trans-
formation of labels and predicted values.
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The next section discusses regularization, which is an important yet op-
tional topic if you are primarily interested in TF 2 code. If you plan to become 
proficient in machine learning, you will need to learn about regularization.

What Is Regularization?

Regularization helps to solve overfitting problems, which occur when a 
model performs well on training data but poorly on validation or test data. 
Regularization solves this problem by adding a penalty term to the cost func-
tion, thereby controlling the model complexity with this penalty term. Regu-
larization is generally useful for:

1.	 large number of variables
2.	 low ratio of (# observations)/(# of variables) 
3.	 high multi-collinearity

There are two main types of regularization: L1 Regularization (which is 
related to MAE, or the absolute value of differences) and L2 Regularization 
(which is related to MSE, or the square of differences). In general, L2 per-
forms better than L1 and L2 is efficient in terms of computation.

Machine Learning and Feature Scaling

Feature scaling standardizes the range of features of data. This step is per-
formed during the data preprocessing step, in part because gradient descent 
benefits from feature scaling.

The assumption is that the data conforms to a standard normal distribution, 
and standardization involves subtracting the mean and dividing by the standard 
deviation for every data point, which results in a N(0,1) normal distribution.

Data Normalization vs. Standardization

Data normalization is a linear scaling technique. Let’s assume that a dataset 
has the values {X1, X2, . . . , Xn} along with the following terms: 

Minx = minimum of Xi values 
Maxx = maximum of Xi values

Now calculate new Xi values as follows:

Xi = (Xi – Minx)/[Maxx – Minx]

The new Xi values are now scaled so that they are between 0 and 1.

The Bias-Variance Trade-off

Bias in machine learning can be due to an error from wrong assumptions 
in a learning algorithm. High bias might cause an algorithm to miss relevant 
relations between features and target outputs (underfitting).
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Prediction bias can occur because of “noisy” data, an incomplete feature 
set, or a biased training sample.

Error due to bias is the difference between the expected (or average) pre-
diction of your model and the correct value that you want to predict. Repeat 
the model-building process multiple times, gather new data each time, and 
also run an analysis to produce a new model. The resulting models have a 
range of predictions, because the underlying data sets have a degree of ran-
domness. Bias measures the extent to which the predictions for these models 
deviate from the correct value.

Variance in machine learning is the expected value of the squared devia-
tion from the mean. High variance can/might cause an algorithm to model 
the random noise in the training data, rather than the intended outputs (aka 
overfitting).

Adding parameters to a model increases its complexity, increases the vari-
ance, and decreases the bias. Dealing with bias and variance is dealing with 
underfitting and overfitting. 

Error due to variance is the variability of a model prediction for a given 
data point. As before, repeat the entire model-building process, and the vari-
ance is the extent to which predictions for a given point vary among different 
“instances” of the model.

Metrics for Measuring Models

One of the most frequently used metrics is R-squared, in which R-squared 
measures how close the data is to the fitted regression line (regression coef-
ficient). R-squared is always between 0% and 100%. The value 0% indicates 
that the model explains none of the variability of the response data around its 
mean. The value 100% indicates that the model explains all the variability of 
the response data around its mean. In general, a higher R-squared indicates a 
better model.

Limitations of R-Squared

Although high R-squared values are preferred, they are not necessarily al-
ways good values. Similarly, low R-squared values are not always bad. An R-
squared value for predicting human behavior is often less than 50%. Moreover, 
R-squared cannot determine whether the coefficient estimates and predic-
tions are biased. In addition, R-squared does not indicate whether a regres-
sion model is adequate. Thus, it’s possible to have a low R-squared value for 
a good model, or a high R-squared value for a poorly fitting model. Evaluate 
R-squared values in conjunction with residual plots, other model statistics, and 
subject area knowledge.

Confusion Matrix

In its simplest form, a confusion matrix (also called an error matrix) is a type 
of contingency table with two rows and two columns that contains the number 
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of false positives, false negatives, true positives, and true negatives. The four 
entries in a 2x2 confusion matrix can be labeled as follows:

TP: True Positive
FP: False Positive
TN: True Negative
FN: False Negative

The diagonal values of the confusion matrix are correct, whereas the off-
diagonal values are incorrect predictions. In general a lower FP value is better 
than an FN value. For example, an FP indicates that a healthy person was in-
correctly diagnosed with a disease, whereas an FN indicates that an unhealthy 
person was incorrectly diagnosed as healthy. 

Accuracy vs. Precision vs. Recall

A 2x2 confusion matrix has four entries that represent the various com-
binations of correct and incorrect classifications. Given the definitions in the 
preceding section, the definitions of precision, accuracy, and recall are given 
by the following formulas:

precision = TP/(TN + FP)
accuracy  = (TP + TN)/[P + N]
recall    = TP/[TP + FN]

Accuracy is an unreliable metric because it yields misleading results in un-
balanced data sets. When the numbers of observations in different classes are 
significantly different, it gives equal importance to both false positive and false 
negative classifications. For example, declaring cancer as benign is worse than 
incorrectly informing patients that they are suffering from cancer. Unfortu-
nately, accuracy won’t differentiate between these two cases.

Other Useful Statistical Terms

Machine learning relies on a number of statistical quantities in order to as-
sess the validity of a model, some of which are listed here:

•	 RSS
•	 TSS
•	 R^2
•	 F1 score
•	 p-value

The definitions of RSS, TSS, and R^2 are shown as follows, where y^ 
is the y-coordinate of a point on a best-fitting line and y_ is the mean of the 
y-values of the points in the dataset:

RSS = sum of squares of residuals (y - y^)**2
TSS = total sum of squares         (y - y_)**2
R^2 = 1 - RSS/TSS
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What Is an F1 Score?

The F1 score is a measure of the accuracy of a test, and it’s defined as the 
harmonic mean of precision and recall. Here are the relevant formulas, where 
p is the precision and r is the recall:

p = (# of correct positive results)/(# of all positive 
results)
r = (# of correct positive results)/(# of all relevant 
samples)

F1-score  = 1/[((1/r) + (1/p))/2]
          = 2*[p*r]/[p+r]

The best value of an F1 score is 1 and the worst value is 0. Keep in mind that 
an F1 score tends to be used for categorical classification problems, whereas 
the R^2 value is typically used for regression tasks (such as linear regression).

What Is a p-value?

The p-value is used to reject the null hypothesis if the p-value is small 
enough (< 0.005), which indicates a higher significance. Recall that the null 
hypothesis states that there is no correlation between a dependent variable 
(such as y) and an independent variable (such as x). The threshold value for p 
is typically 1% or 5%.

There is no straightforward formula for calculating p-values, which are val-
ues that are always between 0 and 1. In fact, p-values are statistical quantities 
to evaluate the null hypothesis, and they are calculated using p-value tables or 
spreadsheet/statistical software.

Working with Datasets

There are several aspects of working with datasets that contain data (i.e., 
not the tf.data.Dataset class in Chapter 3), such as selecting training 
data versus test data, and also performing cross-validation on data. More de-
tails are provided in the subsequent sections.

Training Data Versus Test Data

A training set is a subset of a dataset that is used to train a model, whereas 
a test set is a subset to test the trained model. Ensure the following for your 
test sets:

1.	 the set is large enough to yield statistically meaningful results
2.	 it’s representative of the data set as a whole
3.	 never train on test data
4.	 never test on training data
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What Is Cross-Validation?

The purpose of cross-validation is to test a model with non-overlapping test 
sets, which is performed in the following manner:

Step 1) split the data into k subsets of equal size
Step 2) select one subset for testing and the others for training
Step 3) repeat step 2) for the other k-1 subsets

This process is called k-fold cross-validation, and the overall 
error estimate is the average of the error estimates.

A standard method for evaluation involves ten-fold cross-validation. Exten-
sive experiments have shown that ten subsets is the best choice to obtain an 
accurate estimate. In fact, you can repeat ten-fold cross-validation ten times 
and compute the average of the results, which helps to reduce the variance.

The next section contains several code samples, the first of which involves 
calculating the MSE manually, followed by an example that uses NumPy for-
mulas to perform the calculations. Finally, we’ll look at a TF 2 example for 
calculating the MSE.

Calculating the MSE Manually

This section contains two line graphs, both of which contain a line that ap-
proximates a set of points in a scatter plot. 

Figure 4.7 displays a line segment that approximates a scatter plot of points 
(some of which intersect the line segment).

Figure 4.8 displays a set of points and a line that is a potential candidate for 
best-fitting line for the data. The MSE for the line in Figure 4.7 is computed 
as follows:

MSE = (-2)*(-2) + 2*2 = 8

Figure 4.7.  A line graph that approximates points of a scatter plot.
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Now look at Figure 4.10, which also displays a set of points and a line that 
is a potential candidate for best-fitting line for the data.

The MSE for the line in Figure 4.8 is computed as follows:

MSE = 1*1 + (-1)*(-1) + (-1)*(-1) + 1*1 = 4

Thus, the line in Figure 4.8 has a smaller MSE than the line in Figure 4.7, 
which might have surprised you (or did you guess correctly?).

In these two figures we calculated the MSE easily and quickly, but in gen-
eral it’s significantly more difficult. For instance, if we plot ten points in the 
Euclidean plane that do not closely fit a line, with individual terms that involve 
non-integer values, we would probably need a calculator. 

A better solution involves NumPy functions, such as the np.linspace() 
API, as discussed in the next section.

Simple 2D Data Points in TF 2

Listing 4.4 displays the contents of basic_linear1.py, which calcu-
lates the y-coordinates of 2D points based on simulated data for the x-coordi-
nates (but linear regression is not performed in this code sample).

Listing 4.4: basic_linear1.py

import tensorflow as tf

W = tf.Variable([.5], dtype=tf.float32)
b = tf.Variable([-1], dtype=tf.float32)
x = tf.Variable([0],  dtype=tf.float32)

Figure 4.8.  A line graph that approximates points of a scatter plot.
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@tf.function
def compute_values(x):
  lm = W*x + b
  return lm

for x in range(4):
  val = compute_values(x+1)
  print("val:", val)

Listing 4.4 contains the variables W, b, and x, which are combined in the 
decorated Python function compute_values() to calculate a linear com-
bination of values. Finally, a loop with a print() statement generates the 
output, as shown here:

val: tf.Tensor([-0.5],shape=(1,), dtype=float32)
val: tf.Tensor([0.],  shape=(1,), dtype=float32)
val: tf.Tensor([0.5], shape=(1,), dtype=float32)
val: tf.Tensor([1.],  shape=(1,), dtype=float32)

The preceding four tensor values are computed by invoking the decorated 
Python function compute_values() with the x values 1, 2, 3, and 4. Now 
that we know how to generate (x,y) values for a linear equation, let’s learn 
how to calculate the MSE, which is discussed in the next section.

TF2, tf.GradientTape(), and Linear Regression

The code sample in this section shows you how to perform linear regression 
with tf.GradientTape(), which supersedes the TF 1.x code style that 
involves tf.Session().

Listing 4.5 displays the contents of tf2_linreg_tape.py, which illus-
trates how to use tf.GradientTape() in order to train the values for the 
slope m and intercept b of a best-fitting line in the Euclidean plane.

Listing 4.5: tf2_linreg_tape.py

import tensorflow as tf

step    = 20
rows    = 100 
slope   = 0.4 
bias    = 1.5 

x_train = tf.random.uniform(shape=(rows,))
perturb = tf.random.normal(shape=(len(x_train),), 
stddev=0.01)
y_train = slope * x_train + bias + perturb

# initial values for slope 'm' and bias 'b' 
m = tf.Variable(0.)
b = tf.Variable(0.)
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# predict the y value based on a value for x 
def predict_y_value(x):
  y = m * x + b 
  return y

# loss = RSS = residual sum of squares 
#      = sum of squares of difference 
#        between predicted and true values
def squared_error(y_pred, y_true):
  return tf.reduce_mean(tf.square(y_pred - y_true))

loss = squared_error(predict_y_value(x_train), y_train)
print("Initial loss:", loss.numpy())

######################################
# backward error propagation requires:
# a loss function (squared_error)
# an optimizer    (tape.gradient)
# a value for the learning rate 
#####################################

learning_rate = 0.05
steps = 200

for i in range(steps):
  with tf.GradientTape() as tape:
    predictions = predict_y_value(x_train)
    loss = squared_error(predictions, y_train)

  gradients = tape.gradient(loss, [m, b])

  m.assign_sub(gradients[0] * learning_rate)
  b.assign_sub(gradients[1] * learning_rate)

  if(i % step) == 0:
    print("Step %d, Loss %f" % (i, loss.numpy()))

# display trained values for slope m and bias b
print ("m: %f, b: %f" % (m.numpy(), b.numpy()))

Listing 4.5 starts with the initialization of four variables, followed by a 
code block that initializes the variables x_train and x_train, along with 
the “perturbation” technique that you have seen in previous code samples.  
The next two lines of code initialize the two trainable variables m (the slope) 
and b (the bias) with the value 0. When the code finishes execution, you will 
see the calculated value for m and b, both of which are close to the values of 
slope and bias that are initialized in the beginning of this code sample.

The next portion of Listing 4.5 is the Python function predict_y_
value() that calculates (and returns) the value of y based on the value of x. 
This function is invoked when we calculate the value of loss later in the code.
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Next, the Python function squared_error() is the loss function, which 
is essentially the MSE (Mean Squared Error) that is discussed earlier in this 
chapter. This function takes the predicted y values and the initial y values as 
input in order to compute the current MSE value. 

Next, the value of loss is determined by first invoking the Python func-
tion predict_y_value, and then passing the result of that invocation to the 
Python function squared_error. 

Now that the initializations and Python functions are defined, let’s look at 
the training loop in the next portion of Listing 4.5. This loop calculates the 
predictions variable and the loss variable, as shown here:

with tf.GradientTape() as tape:
  predictions = predict_y_value(x_train)
  loss = squared_error(predictions, y_train)

gradients = tape.gradient(loss, [m, b])

Notice how the tape variable (an instance of tf.GradientTape()) 
calculates the new gradient values based on the current values of loss, m,  
and b. The gradients variable contains the partial derivative of the loss 
function loss with respect to the variables m and b, which are the only two 
variables that we need to update for linear regression in the Euclidean plan. 

Specifically, gradients[0] is the partial derivative of the loss variable 
with respect to m, and gradients[1] is the partial derivative of the loss 
variable with respect to b. In the case of a linear regression task in n dimen-
sions, the gradients variable is a 1xn vector whose elements are partial de-
rivatives for each of those n dimensions. 

The next section of Listing 4.5 uses the values in the gradients array to 
update the values of m and b via a very simple calculation, as shown here:

m.assign_sub(gradients[0] * learning_rate)
b.assign_sub(gradients[1] * learning_rate)

The preceding code snippet calculates the new value of b by subtracting the 
quantity gradients[0]*learning_rate from the current value of m, 
and then updates b by subtracting the quantity gradients[1]*learning_
rate from the current value of b.

The final portion of Listing 4.5 periodically displays the values of the loss 
variable, and the last code snippet displays the trained values for m and b. 
Launch the code in Listing 4.5 and you will see the following output:

Initial loss: 2.9317048
Step 0, Loss 2.931705
Step 20, Loss 0.018575
Step 40, Loss 0.005255
Step 60, Loss 0.004075
Step 80, Loss 0.003194
Step 100, Loss 0.002508
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Step 120, Loss 0.001974
Step 140, Loss 0.001558
Step 160, Loss 0.001234
Step 180, Loss 0.000982
m: 0.498547, b: 1.447338

As you can see from the preceding output, the trained values for m and b 
are 0.498547 and 1.447338, respectively, which are reasonably close to the ini-
tial values of 0.4 and 1.5 for the slope and bias, respectively.

If you increase the value of steps from 200 to 500, the trained values for m 
and b are 0.410014 and 1.494226, respectively, which are considerably closer 
to the initial values of 0.4 and 1.5 for the slope and bias, respectively.

Working with Keras

If you are already comfortable with Keras, you can skim this section to learn 
about the new namespaces and what they contain, and then proceed to the 
next section that contains details for creating a Keras-based model.

If you are new to Keras, you might be wondering why this section is in-
cluded in this chapter. First, Keras is well-integrated into TF 2, and it’s in the 
tf.keras namespace. Second, Keras is well-suited for defining models to 
solve a myriad of tasks, such as linear regression and logistic regression, as well 
as deep learning tasks involving CNNs, RNNs, and LSTMs that are discussed 
in the appendix. 

The next several subsections contain lists of bullet items for various Keras-
related namespaces, and they will be very familiar if you have worked with TF 
1.x. If you are new to TF 2, you’ll see examples of some of Keras-related classes 
in subsequent code samples.

Working with Keras Namespaces in TF 2

TF 2 provides the tf.keras namespace, which in turn contains the fol-
lowing namespaces:

•	 tf.keras.layers
•	 tf.keras.models
•	 tf.keras.optimizers
•	 tf.keras.utils
•	 tf.keras.regularizers

The preceding namespaces contain various layers in Keras models, differ-
ent types of Keras models, optimizers (Adam et al.), utility classes, and regular-
izers (such as L1 and L2), respectively.

Currently there are three ways to create Keras-based models:

•	 The Sequential API
•	 The Functional API
•	 The Model API
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The Keras-based code samples in this book use primarily the Sequential 
API (it’s the most intuitive and straightforward). The Sequential API ena-
bles you to specify a list of layers, most of which are defined in the tf.keras.
layers namespace (discussed later). 

The Keras-based models that use the functional API involve specifying 
layers that are passed as function-like elements in a “pipeline-like” fashion. 
Although the functional API provides some additional flexibility, you will prob-
ably use the Sequential API to define Keras-based models if you are a TF 
2 beginner.

The model-based API provides the greatest flexibility, and it involves de-
fining a Python class that encapsulates the semantics of your Keras model. 
This class is a subclass of the tf.keras.model.Model class, and you must 
implement the two methods __init__ and call in order to define a Keras 
model in this subclass. 

Perform an online search for more details regarding the Functional API 
and the Model API.

Working with the tf.keras.layers Namespace

The most common (and also the simplest) Keras-based model is the Se-
quential() class that is in the tf.keras.models namespace. This 
model is comprised of various layers that belong to the tf.keras.layers 
namespace, as shown here:

•	 tf.keras.layers.Conv2D()
•	 tf.keras.layers.MaxPooling2D()
•	 tf.keras.layers.Flatten()
•	 tf.keras.layers.Dense()
•	 tf.keras.layers.Dropout()
•	 tf.keras.layers.BatchNormalization()
•	 tf.keras.layers.embedding()
•	 tf.keras.layers.RNN()
•	 tf.keras.layers.LSTM()
•	 tf.keras.layers.Bidirectional (ex: BERT)

The Conv2D() and MaxPooling2D() classes are used in Keras-based 
models for CNNs, which are discussed in the appendix. Generally speaking, 
the next six classes in the preceding list can appear in models for CNNs as well 
as models for machine learning. The RNN() class is for simple RNNS and the 
LSTM class is for LSTM-based models. The Bidirectional() class is a 
bidirectional LSTM that you will often see in models for solving NLP (Natural 
Language Processing) tasks. Two very important NLP frameworks that use 
bidirectional architectures were released as open source (on GitHub) in 2018: 
ELMo from Facebook and BERT from Google. 
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Working with the tf.keras.activations Namespace

Machine learning and deep learning models require activation functions. 
For Keras-based models, the activation functions are in the tf.keras.ac-
tivations namespace, some of which are listed here:

•	 tf.keras.activations.relu
•	 tf.keras.activations.selu
•	 tf.keras.activations.linear
•	 tf.keras.activations.elu
•	 tf.keras.activations.sigmoid
•	 tf.keras.activations.softmax
•	 tf.keras.activations.softplus
•	 tf.keras.activations.tanh 
•	 Others …

The ReLU/SELU/ELU activation functions are closely related, and they 
often appear in ANNs (Artificial Neural Networks) and CNNs. Before the 
relu() function became popular, the sigmoid() and tanh() functions 
were used in ANNs and CNNs. However, they are still important and they 
are used in various gates in GRUs and LSTMs. The softmax() function is 
typically used in the pair of layers consisting of the rightmost hidden layer and 
the output layer. 

Working with the tf.keras.datasets Namespace

For your convenience, TF 2 provides a set of built-in datasets in the 
tf.keras.datasets namespace, some of which are listed here:

•	 tf.keras.datasets.boston_housing
•	 tf.keras.datasets.cifar10
•	 tf.keras.datasets.cifar100
•	 tf.keras.datasets.fashion_mnist
•	 tf.keras.datasets.imdb
•	 tf.keras.datasets.mnist
•	 tf.keras.datasets.reuters

The preceding datasets are popular for training models with small datasets. 
The mnist dataset and fashion_mnist dataset are both popular when 
training CNNs, whereas the boston_housing dataset is popular for linear 
regression. The Titanic dataset is also popular for linear regression, but it’s 
not currently supported as a default dataset in the tf.keras.datasets 
namespace.

Working with the tf.keras.experimental Namespace

The contrib namespace in TF 1.x has been deprecated in TF 2, and its 
“successor” is the tf.keras.experimental namespace, which contains 
the following classes (among others):
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•	 tf.keras.experimental.CosineDecay
•	 tf.keras.experimental.CosineDecayRestarts
•	 tf.keras.experimental.LinearCosineDecay
•	 tf.keras.experimental.NoisyLinearCosineDecay
•	 tf.keras.experimental.PeepholeLSTMCell

If you are a beginner, you probably won’t use any of the classes in the pre-
ceding list. Although the PeepholeLSTMCell class is a variation of the 
LSTM class, there are limited use cases for this class.

Working with Other tf.keras Namespaces

TF 2 provides a number of other namespaces that contain useful classes, 
some of which are listed here:

•	 tf.keras.callbacks     (early stopping)
•	 tf.keras.optimizers    (Adam et al)
•	 tf.keras.regularizers  (L1 and L2)
•	 tf.keras.utils         (to_categorical)

The tf.keras.callbacks namespace contains a class that you can use 
for “early stopping,” which is to say that it’s possible to terminate the training 
process if there is insufficient reduction in the cost function in two successive 
iterations.

The tf.keras.optimizers namespace contains the various optimiz-
ers that are available for working in conjunction with cost functions, which 
includes the popular Adam optimizer.

The tf.keras.regularizers namespace contains two popular regu-
larizers: L1 regularizer (also called LASSO in machine learning) and the L2 
regularizer (also called the Ridge regularizer in machine learning). L1 is for 
MAE (Mean Absolute Error) and L2 is for MSE (Mean Squared Error). Both 
of these regularizers act as “penalty” terms that are added to the chosen cost 
function in order to reduce the “influence” of features in a machine learning 
model. Note that LASSO can drive values to zero, with the result that features 
are actually eliminated from a model, and hence it is related to something 
called feature selection in machine learning.

The tf.keras.utils namespace contains an assortment of functions, 
including the to_categorical() function for converting a class vector 
into a binary class.

Although there are other namespaces in TF 2, the classes listed in all the 
preceding subsections will probably suffice for the majority of your tasks if you 
are a beginner in TF 2 and machine learning.

TF 2 Keras versus “Standalone” Keras

The original Keras is actually a specification, with various “backend” frame-
works such as TensorFlow, Theano, and CNTK. Currently Keras standalone 
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does not support TF 2, whereas the implementation of Keras in tf.keras 
has been optimized for performance. 

Keras standalone will live in perpetuity in the keras.io package, which is 
discussed in detail at the Keras website: keras.io.

Now that you have a high-level view of the TF 2 namespaces for Keras and 
the classes that they contain, let’s find out how to create a Keras-based model, 
which is the subject of the next section.

Creating a Keras-Based Model

A Keras model generally involves at least the following sequence of steps:

•	 Specify a dataset (if necessary, convert data to numeric data)
•	 Split the dataset into training data and test data (usually 80/20 split)
•	 Define the Keras model (the tf.keras.models.Sequential() 

API)
•	 Compile the Keras model (the compile() API)
•	 Train (fit) the Keras model (the fit() API)
•	 Make a prediction (the prediction() API)

Note that the preceding bullet items skip some steps that are part of a real 
Keras model, such as evaluating the Keras model on the test data, as well as 
dealing with issues such as overfitting.

The first bullet item states that you need a dataset, which can be as simple 
as a CSV file with 100 rows of data (and just 3 columns). In general, a dataset 
is substantially larger: it can be a file with 1,000,000 rows of data and 10,000 
columns in each row. We’ll look at a concrete dataset in a subsequent section.

Next, a Keras model is in the tf.keras.models namespace, and the 
simplest (and also very common) Keras model is tf.keras.models.
Sequential. In general, a Keras model contains layers that are in the 
tf.keras.layers namespace, such as tf.keras.Dense (which means 
that two adjacent layers are completely connected). 

The activation functions that are referenced in Keras layers are in the 
tf.nn namespace, such as the tf.nn.ReLU for the ReLU activation  
function.

Here’s a code block of the Keras model that’s described in the preceding 
paragraphs (which covers the first four bullet points):

import tensorflow as tf

model = tf.keras.models.Sequential([
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
])
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We have three more bullet items to discuss, starting with the compilation 
step. Keras provides a compile() API for this step, an example of which is 
here: 

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

Next we need to specify a training step, and Keras provides the fit() API 
(as you can see, it’s not called train()), an example of which is here:

model.fit(x_train, y_train, epochs=5)

The final step is the prediction, and Keras provides the predict() API, 
an example of which is here:

pred = model.predict(x)

Listing 4.6 displays the contents of tf2_basic_keras.py, which com-
bines the code blocks in the preceding steps into a single code sample.

Listing 4.6: tf2_basic_keras.py

import tensorflow as tf

# NOTE: we need the train data and test data

model = tf.keras.models.Sequential([
  tf.keras.layers.Dense(1, activation=tf.nn.relu),
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Listing 4.6 contains no new code, and we’ve essentially glossed over some 
of the terms such as the optimizer (an algorithm that is used in conjunction 
with a cost function), the loss (the type of loss function), and the metrics (how 
to evaluate the efficacy of a model). 

The explanations for these details cannot be condensed into a few para-
graphs (alas), but the good news is that you can find a plethora of detailed 
online blog posts that discuss these terms. The appendix contains additional 
Keras-based code samples involving advanced topics.
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Keras and Linear Regression

This section contains a simple example of creating a Keras-based model 
in order to solve a task involving linear regression: given a positive number 
representing kilograms of pasta, predict its corresponding price. Listing 4.7 
displays the contents of pasta.csv and Listing 4.8 displays the contents of 
tf2_pasta.py that performs this task. 

Listing 4.7: pasta.csv

weight,price
5,30
10,45
15,70
20,80
25,105
30,120
35,130
40,140
50,150

Listing 4.8: tf2_pasta.py

import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# price of pasta per kilogram
df = pd.read_csv("pasta.csv")

weight = df['weight']
price  = df['price']

model = tf.keras.models.Sequential([
   tf.keras.layers.Dense(units=1,input_shape=[1])
])

# MSE loss function and Adam optimizer
model.compile(loss='mean_squared_error',
              optimizer=tf.keras.optimizers.Adam(0.1))

# train the model
history = model.fit(weight, price, epochs=100, verbose=False)

# graph the # of epochs versus the loss
plt.xlabel('Number of Epochs')
plt.ylabel("Loss Values")
plt.plot(history.history['loss'])
plt.show()
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print("Cost for 11kg:",model.predict([11.0]))
print("Cost for 45kg:",model.predict([45.0]))

Listing 4.8 initializes the Pandas Dataframe df with the contents of the 
CSV file pasta.csv, and then initializes the variables weight and cost 
with the first and second columns, respectively, of df. 

The next portion of Listing 4.8 defines a Keras-based model that consists 
of a single Dense layer. This model is compiled and trained, and then a graph 
is displayed that shows the “number of epochs” on the horizontal axis and the 
corresponding value of the loss function for the vertical axis. Launch the code 
in Listing 4.8 and you will see the following output:

Cost for 11kg: [[41.727108]]
Cost for 45kg: [[159.02121]]

Figure 4.9 displays a graph of epochs versus loss during the training  
process.

The next section introduces the tf.estimator namespace, followed by 
an example of using a TF estimator with a TF Dataset. 

Figure 4.9.  A graph of epochs versus loss.



138  •  T ensorFlow 2 Pocket Primer

Working with tf.estimator 

Estimators are a layer above tf.keras.layers, which means that es-
timators provide a layer of abstraction. Estimator-based models run on CPUs, 
GPUs, or TPUs without model changes. Moreover, estimator-based models 
run locally or in a distributed environment without model changes.

The estimator classes “live” in the tf.estimator namespace. Estima-
tors exist for an assortment of classes that implement various algorithms in 
machine learning, such as boosted trees, DNN classifiers, DNN regressors, 
linear classifiers, and linear regressors. 

Every estimator has a model function that constructs graphs for training, 
evaluation, and prediction. Whenever you create a custom Estimator, you 
must define the model function (they are already defined for existing Esti-
mators). 

The estimator-related classes DNNRegressor, LinearRegressor, 
and DNNLinearCombinedRegressor are for regression tasks, whereas 
the classes DNNClassifier, LinearClassifier, and DNNLine-
arCombinedClassifier are for classification tasks. A more extensive list 
of estimator classes (with very brief descriptions) is listed as follows:

•	 BoostedTreesClassifier: A classifier for Tensorflow Boosted Trees  
models

•	 BoostedTreesRegressor: A regressor for Tensorflow Boosted Trees  
models

•	 CheckpointSaverHook: Saves checkpoints every N steps or seconds
•	 DNNClassifier: A classifier for TensorFlow DNN models
•	 DNNEstimator: An estimator for TensorFlow DNN models with user-

specified head
•	 DNNLinearCombinedClassifier: An estimator for TensorFlow Linear 

and DNN joined classification models
•	 DNNLinearCombinedRegressor: An estimator for TensorFlow Linear 

and DNN joined models for regression
•	 DNNRegressor: A regressor for TensorFlow DNN models
•	 Estimator: Estimator class to train and evaluate TensorFlow models
•	 LinearClassifier: Linear classifier model
•	 LinearEstimator: An estimator for TensorFlow Linear models with user-

specified head
•	 LinearRegressor: An estimator for TensorFlow Linear regression prob-

lems

All estimator classes are in the tf.estimator namespace, and all the 
estimator classes inherit from the tf.estimator.Estimator class. Read 
the online documentation for the details of the preceding classes as well as 
online tutorials for relevant code samples.
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Summary

This chapter introduced you to linear regression and a brief description 
of how to calculate a best-fitting line for a dataset of points in the Euclid-
ean plane. You saw how to perform linear regression using NumPy in order to 
initialize arrays with data values, along with a “perturbation” technique that 
introduces some randomness for the y values. This technique is useful because 
you will know the correct values for the slope and y-intercept of the best-fitting 
line, which you can then compare with the trained values.

In addition, you learned about concepts such as regularization, ML and 
feature scaling, and data normalization versus standardization. Then you were 
introduced to metrics for measuring models, such as R-Squared and its limita-
tions, the confusion matrix, and accuracy versus precision versus recall. More-
over, you learned about other useful statistical terms, such as RSS, TSS, F1 
score, and p-value.

You then learned how to perform linear regression in code samples that 
involve TF 2. Furthermore, you learned about TF estimators and how they 
provide implementations of various algorithms, such as linear regression 
(LinearRegressor) and linear classification (LinearClassifier). You 
also saw code samples involving the LinearRegressor class for training  
TF 2 models to perform linear regression.

Finally, you got a very condensed introduction to Keras, with a description 
of some of its more important namespaces, along with a Keras-based code 
sample for solving a task involving linear regression.



Chapter 5
Working with Classifiers

This chapter presents numerous classification algorithms in machine 
learning. This includes algorithms such as the kNN (k Nearest Neigh-
bor) algorithm, logistic regression (despite its name it is a classifier), de-

cision trees, random forests, SVMs, and Bayesian classifiers. The emphasis on 
algorithms is intended to introduce you to machine learning, which includes 
a tree-based code sample that relies on scikit-learn. The latter portion 
of this chapter contains TF 2 code samples and Keras-based code samples for 
standard datasets.

Due to space constraints, this chapter does not cover other well-known 
algorithms such as linear discriminant analysis and the kMeans algorithm (for 
unsupervised learning and clustering). However, there are many online tutori-
als available that discuss these and other algorithms in machine learning.

With the preceding points in mind, the first section of this chapter briefly 
discusses the classifiers that are mentioned in the introductory paragraph. The 
second section of this chapter provides an overview of activation functions, 
which will be very useful if you decide to learn about deep neural networks. In 
this section you will learn how and why they are used in neural networks. This 
section also contains a list of the TensorFlow APIs for activation functions, fol-
lowed by a description of some of their merits. 

The third section introduces logistic regression, along with a code sample 
that involves logistic regression and TensorFlow. Logistic regression relies on 
the sigmoid function, which is also used in RNNs (recurrent neural networks) 
and LSTMs (long short term memory).

The fourth part of this chapter contains a code sample involving Tensor-
Flow, logistic regression, and the MNIST dataset. This code sample relies 
on an understanding of other code samples that are discussed in Chapter 2 
(the names of those code samples are provided in the description of the code 
sample).
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The final portion of this chapter contains Keras-based code samples that 
illustrate how to perform “early stopping” and how to define a custom Python 
class to handle various events during the Keras training life cycle.

In order to give you some context, classifiers are one of three major types 
of algorithms: regression algorithms (such as linear regression in Chapter 4), 
classification algorithms (discussed in this chapter), and clustering algorithms 
(such as kMeans, which is not discussed in this book). 

Another point: the section pertaining to activation functions does involve a 
basic understanding of hidden layers in a neural network. Depending on your 
comfort level, you might benefit from reading some preparatory material be-
fore diving into this section (there are many articles available online).

What Is Classification?

Given a dataset that contains observations whose class membership is 
known, classification is the task of determining the class to which a new data 
point belongs. Classes refer to categories and are also called targets or labels. 
For example, spam detection in email service providers involves binary clas-
sification (only two classes). The MNIST dataset contains a set of images where 
each image is a single digit, which means there are ten labels. Some applica-
tions in classification include credit approval, medical diagnosis, and target 
marketing.

What Are Classifiers?

In the previous chapter, you learned that linear regression uses supervised 
learning in conjunction with numeric data: the goal is to train a model that can 
make numeric predictions (e.g., the price of stock tomorrow, the temperature 
of a system, its barometric pressure, and so forth). By contrast, classifiers use 
supervised learning in conjunction with nonnumerical classes of data: the goal 
is to train a model that can make categorical predictions. 

For instance, suppose that each row in a dataset is a specific wine, and each 
column pertains to a specific wine feature (tannin, acidity, and so forth). Sup-
pose further that there are five classes of wine in the dataset: for simplicity, let’s 
label them A, B, C, D, and E. Given a new data point, which is to say a new row 
of data, a classifier attempts to determine the label for the new wine. 

Some of the classifiers in this chapter can perform categorical classification 
and also make numeric predictions (i.e., they can be used for regression as well 
as classification).

Common Classifiers

Some of the most popular classifiers for machine learning are listed here 
(in no particular order):

•	 linear classifiers
•	 kNN (k Nearest Neighbor)
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•	 logistic regression 
•	 decision trees
•	 random forests
•	 SVMs (Support Vector Machines)
•	 Bayesian classifiers
•	 CNNs (Convolutional Neural Networks)

Keep in mind that different classifiers have different advantages and dis-
advantages, which often involves a trade-off between complexity and accuracy, 
similar to algorithms in fields that are outside of AI.

In the case of deep learning, CNNs perform image classification, which 
makes them classifiers (they can also be used for audio and text processing). 
The subsequent sections provide a brief description of the ML classifiers that 
are listed in the previous list.

What Are Linear Classifiers?

A linear classifier separates a dataset into two classes. A linear classifier is a 
line for 2D points, a plane for 3D points, and a hyperplane (a generalization of 
a plane) for higher dimensional points. 

Linear classifiers are often the fastest classifiers, so they are often used 
when the speed of classification is of high importance. Linear classifiers usually 
work well when the input vectors are sparse (i.e., mostly zero values) or when 
the number of dimensions is large.

What Is kNN?

The kNN (“k Nearest Neighbor”) algorithm is a classification algorithm. In 
brief, data points that are “near” each other are classified as belonging to the 
same class. When a new point is introduced, it’s added to the class of the ma-
jority of its nearest neighbor. For example, suppose that k equals 3, and a new 
data point is introduced. Look at the class of its three nearest neighbors: let’s 
say they are A, A, and B. Then by majority vote, the new data point is labeled 
as a data point of class A. 

The kNN algorithm is essentially a heuristic and not a technique with com-
plex mathematical underpinnings, and yet it’s still an effective and useful algo-
rithm. Try the kNN algorithm if you want to use a simple algorithm, or when 
you believe that the nature of your dataset is highly unstructured. The kNN 
algorithm can produce highly nonlinear decisions despite being very simple.

Note that kNN is often used in search applications where you are looking 
for “similar” items; that is, when your task is some form of “find items similar 
to this one.”

Measure similarity by creating a vector representation of the items, and 
then compare the vectors using an appropriate distance metric (such as Eu-
clidean distance).
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Some concrete examples of a kNN search include searching for semanti-
cally similar documents.

How to Handle a Tie in kNN

An odd value for k is less likely to result in a tie vote, but it’s not impossible. 
For example, suppose that k equals 7, and when a new data point is introduced, 
the labels of its seven nearest neighbors belong to the set {A,B,A,B,A,B,C}. As 
you can see, there is no majority vote, because there are three points in class A, 
three points in class B, and one point in class C.

There are several techniques for handling a tie, as listed here:

•	 Assign higher weights to closer points
•	 Increase the value of k until a winner is determined
•	 Decrease the value of k until a winner is determined
•	 Randomly select one class

If you reduce k until it equals 1, it’s still possible to have a tie vote: there 
might be two points that are equally distant from the new point, so you need a 
mechanism for deciding which of those two points to select as the 1-neighbor.

If there is a tie between classes A and B, then randomly select either class 
A or class B. Another variant is to keep track of the “tie” votes, and alternate 
round-robin style to ensure a more even distribution.

What Are Decision Trees?

Decision trees are another type of classification algorithm that involves a 
tree-like structure. Keep in mind that a “generic” tree is constructed using 
conditional logic. As a simple illustration, suppose that a dataset contains a set 
of numbers representing ages of people, and let’s also suppose that the first 
number is 50. This number is chosen as the root of the tree, and all numbers 
that are smaller than 50 are added on the left branch of the tree, whereas all 
numbers that are greater than 50 are added on the right branch of the tree. 

For example, suppose the sequence of numbers is {50, 25, 70, 40}. Then we 
can construct a tree as follows: 50 is the root node; 25 is the left child of 50; 70 
is the right child of 50; and 40 is the right child of 20. Each additional numeric 
value that we add to this dataset is processed to determine which direction to 
proceed (“left or right”) at each node in the tree.

Listing 5.1 displays a portion of the dataset partial_wine.csv, which 
contains two features and a label column (there are three classes). The total 
row count for this dataset is 178.

Listing 5.1: partial_wine.csv

Alcohol, Malic acid, class
14.23,1.71,1
13.2,1.78,1
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13.16,2.36,1
14.37,1.95,1
13.24,2.59,1
14.2,1.76,1

Listing 5.2 displays the contents of tree_classifier.py, which uses a 
decision tree in order to train a model on the dataset partial_wine.csv.

Listing 5.2: tree_classifier.py

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('partial_wine.csv')
X = dataset.iloc[:, [0, 1]].values
y = dataset.iloc[:, 2].values

# split the dataset into a training set and a test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size = 0.25, random_state = 0)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# ====> INSERT YOUR CLASSIFIER CODE HERE <====
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion='entropy',ran
dom_state=0)
classifier.fit(X_train, y_train)
# ====> INSERT YOUR CLASSIFIER CODE HERE <====

# predict the test set results
y_pred = classifier.predict(X_test)

# generate the confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print("confusion matrix:")
print(cm)

Listing 5.3 contains some import statements and then populates the 
Pandas DataFrame variable dataset with the contents of the CSV file 
partial_wine.csv. Next, the variable x is initialized with the first two 
columns (and all the rows) of dataset, and the variable y is initialized with 
the third column (and all the rows) of dataset. 



Working with Classifiers   •  145

Next, the variables X_train, X_test, y_train, and y_test are 
populated with data from X and y using a 75/25 split proportion. Notice that 
the variable sc (which is an instance of the StandardScalar class) per-
forms a scaling operation on the variables X_train and X_test. 

The code block shown in bold in Listing 5.3 is where we create an instance 
of the DecisionTreeClassifier class and then train the instance with 
the data in the variables X_train and X_test.

The next portion of Listing 5.3 populates the variable y_pred with a set of 
predictions that are generated from the data in the X_test variable. The last 
portion of Listing 5.3 creates a confusion matrix based on the data in y_test 
and the predicted data in y_pred. 

Remember that the diagonal elements of a confusion matrix are the correct 
predictions (such as true positive and true negative); all the other cells contain 
a numeric value that specifies the number of predictions that are incorrect 
(such as false positive and false negative).

Now launch the code in Listing 5.3 and you will see the following output for 
the confusion matrix in which there are thirty-six correct predictions and nine 
incorrect predictions (with an accuracy of 80%):

confusion matrix:
[[13  1  2]
 [ 0 17  4]
 [ 1  1  6]]

There is a total of forty-five entries in the preceding 3x3 matrix, and the 
diagonal entries are correctly identified labels. Hence, the accuracy is 36/45 
= 0.80.

What Are Random Forests?

Random forests are a generalization of decision trees: this classification al-
gorithm involves multiple trees (the number is specified by you). If the data 
involves making a numeric prediction, the average of the predictions of the 
trees is computed. If the data involves a categorical prediction, the mode of the 
predictions of the trees is determined. 

By way of analogy, random forests operate in a manner similar to financial 
portfolio diversification: the goal is to balance the losses with higher gains. 
Random forests use a “majority vote” to make predictions, which operates 
under the assumption that selecting the majority vote is more likely to be cor-
rect (and more often) than any individual prediction from a single tree.

You can easily modify the code in Listing 5.3 to use a random forest by 
replacing the two lines shown in bold with the following code:

from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, 
criterion='entropy', random_state = 0)



146  •  T ensorFlow 2 Pocket Primer

Make this code change, launch the code, and examine the confusion matrix 
to compare its accuracy with the accuracy of the decision tree in Listing 5.3.

What Are SVMs?

Support vector machines involve a supervised ML algorithm and can be 
used for classification or regression problems. SVMs can work with nonlinearly 
separable data as well as linearly separable data. An SVM uses a technique 
called the “kernel trick” to transform data and then finds an optimal boundary. 
The data points are “transformed” into a higher dimension in order to find a 
linear separation of the transformed data. 

The key idea involves finding a hyperplane that best divides a dataset into 
two classes. SVMs are more common in classification tasks than regression 
tasks. Some common use cases for SVMs include:

•	 text classification tasks: category assignment
•	 detecting spam/sentiment analysis
•	 used for image recognition: aspect-based recognition and color-based 

classification
•	 handwritten digit recognition (postal automation)

Trade-offs of SVMs

Although SVMs are extremely powerful, there are trade-offs involved. 
Some of the advantages of SVMs are listed here:

•	 high accuracy
•	 works well on smaller, cleaner datasets
•	 can be more efficient because it uses a subset of training points
•	 an alternative to CNNs in cases of limited datasets
•	 captures more complex relationships between data points

There are some disadvantages of SVMs that are listed here:

•	 not suited to larger datasets: training time can be high
•	 less effective on noisier datasets with overlapping classes
•	 SVMs involve more parameters than decision trees and random forests

Now modify Listing 5.3 to use an SVM by replacing the two lines shown in 
bold with the following two lines shown in bold:

from sklearn.svm import SVC
classifier = SVC(kernel = 'linear', random_state = 0)

You now have an SVM-based model, simply by making the previous code 
update! Make the code change, launch the modified code, and examine the 
confusion matrix in order to compare its accuracy with the accuracy of the de-
cision tree model and the random forest model earlier in this chapter.
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What Is Bayesian Inference?

Bayesian inference is an important technique in statistics that involves sta-
tistical inference and Bayes’s theorem to update the probability for a hypoth-
esis as more information becomes available. Bayesian inference is often called 
“Bayesian probability,” and it’s important in dynamic analysis of sequential 
data.

Bayes’s Theorem

Given two sets A and B, let’s define the following numeric values (all of 
them are between 0 and 1):

P(A) = probability of being in set A
P(B) = probability of being in set B
P(Both) = probability of being in A intersect B
P(A|B) = probability of being in A (given you're in B)
P(B|A) = probability of being in B (given you're in A)

Given the preceding definitions, the following formulas are also true:

P(A|B) = P(Both)/P(B) (#1)
P(B|A) = P(Both)/P(A) (#2)

Multiply the preceding pair of equations by the term that appears in the 
denominator and we get these equations:

P(B)*P(A|B) = P(Both) (#3)
P(A)*P(B|A) = P(Both) (#4)

Now set the left sides of equations #3 and #4 equal to each another, and 
that gives us this equation:

P(B)*P(A|B) = P(A)*P(B|A) (#5)

Divide both sides of #5 by P(B) and we get this well-known equation:

P(A|B) = P(A)*P(A|B)/P(B) (#6)

Some Bayesian Terminology

In the previous section, we derived the following relationship:

P(h|d) = (P(d|h) * P(h)) / P(d)

Each of the four terms in the preceding equation has a name, as discussed 
in the following.

First, the posterior probability is P(h|d), which is the probability of hy-
pothesis h given the data d. 

Second, P(d|h) is the probability of data d given that the hypothesis h 
was true.
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Third, the prior probability of h is P(h), which is the probability of  
hypothesis h being true (regardless of the data). 

Finally, P(d) is the probability of the data (regardless of the hypothesis).
We are interested in calculating the posterior probability of P(h|d) from the 

prior probability p(h) with P(D) and P(d|h).

What Is MAP?

The maximum a posteriori (MAP) hypothesis is the hypothesis with the 
highest probability, which is the maximum probable hypothesis. This can be 
written as follows:

MAP(h) = max(P(h|d))

or:

MAP(h) = max((P(d|h) * P(h)) / P(d))

or:

MAP(h) = max(P(d|h) * P(h))

Why Use Bayes’s Theorem?

Bayes’s Theorem describes the probability of an event based on the prior 
knowledge of the conditions that might be related to the event. If we know the 
conditional probability, we can use Bayes rule to find out the reverse probabili-
ties. The previous statement is the general representation of the Bayes rule.

What Is a Bayesian Classifier?

A Naive Bayes (NB) classifier is a probabilistic classifier inspired by the 
Bayes theorem. An NB classifier assumes the attributes are conditionally in-
dependent, and it can work even when this assumption is not true. This as-
sumption greatly reduces computational cost, and it’s a simple algorithm to 
implement that only requires linear time. Moreover, an NB classifier is easily 
scalable to larger datasets, and good results are obtained in most cases. Other 
advantages of an NB classifier include:

•	 can be used for binary and multiclass classification
•	 provides different types of NB algorithms
•	 good choice for text classification problems
•	 a popular choice for spam email classification
•	 can be easily trained on small datasets

As you can probably surmise, NB classifiers do have some disadvantages, as 
listed in the following:
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•	 all features are assumed unrelated
•	 it cannot learn relationships between features
•	 it can suffer from “the zero probability problem”:

The “zero probability problem” refers to the case when the conditional 
probability is zero for an attribute, and it fails to give a valid prediction. How-
ever, it can be fixed explicitly using a Laplacian estimator.

Types of Naive Bayes Classifiers

Naive Bayes classifiers consist of “probabilistic classifiers” that are based 
on applying Bayes’s theorem with strong (naive) independence assumptions 
among the features. Naive Bayes classifiers are highly scalable, requiring a 
number of parameters that is linear in the number of variables (features/pre-
dictors) in a learning problem. Maximum-likelihood training is performed by 
evaluating a closed-form expression that requires linear time, which is more 
efficient than other types of classifiers.

There are three major types of NB classifiers. A Gaussian Naive Bayes 
classifier is used in classification, and the assumption is that features follow a 
normal distribution. A Multinomial Naive Bayes classifier involves 1xn feature 
vectors representing the frequencies of events that have been generated. Each 
feature vector contains data for a histogram whose elements equal the number 
of times that an event was observed in an instance. This type of event model is 
used for document classification. A Bernoulli Naive Bayes classifier is suitable 
for binary feature vectors. An example is the Bag of Words (BoW) algorithm 
for text classification where 0 and 1 represent absence or occurrence of a word, 
respectively, in a document.

Training Classifiers

Some common techniques for training classifiers are listed here:

•	 holdout method
•	 k-fold cross-validation

The holdout method is the most common method, which starts by dividing 
the dataset into two partitions called train and test (80% and 20%, respec-
tively). The train set is used for training the model, and the test data tests its 
predictive power.

The k-fold cross-validation technique is used to verify that the model is 
not over-fitted. The dataset is randomly partitioned into k mutually exclusive 
subsets, where each partition has equal size. One partition is for testing and the 
other partitions are for training. Iterate throughout the whole of the k folds.
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Evaluating Classifiers

Whenever you select a classifier for a dataset, it’s obviously important to 
evaluate the accuracy of that classifier. Some common techniques for evaluat-
ing classifiers are listed here:

•	 precision and recall
•	 ROC curve (receiver operating characteristics)

Precision and recall are discussed in Chapter 4 and are reproduced here for 
your convenience. Recall the following definitions from Chapter 4:

TP = the number of true positive results
FP = the number of false positive results
TN = the number of true negative results
FN = the number of false negative results

Then the definitions of precision, accuracy, and recall are given by the fol-
lowing formulas:

precision = TP/(TN + FP)
accuracy  = (TP + TN)/[P + N]
recall    = TP/[TP + FN]

The ROC curve (receiver operating characteristics) is used for visual com-
parison of classification models that shows the trade-off between the true 
positive rate and the false positive rate. The area under the ROC curve is a 
measure of the accuracy of the model. When a model is closer to the diagonal, 
it is less accurate, and the model with perfect accuracy will have an area of 1.0.

The ROC curve plots true positive rate versus false positive rate. Another 
type of curve is the PR curve that plots precision versus recall. When deal-
ing with highly skewed datasets (strong class imbalance), precision-recall (PR) 
curves give better results.

Later in this chapter you will see many of the Keras-based classes (located 
in the tf.keras.metrics namespace) that correspond to common statisti-
cal terms, which include some of the terms in this section. 

This concludes the portion of the chapter pertaining to statistical terms and 
techniques for measuring the validity of a dataset. Now let’s look at activation 
functions in machine learning, which is discussed in the next section.

What Are Activation Functions?

The following is a one-sentence description: an activation function is a 
nonlinear function that introduces nonlinearity into a neural network, thereby 
preventing a “consolidation” of the hidden layers in the neural network. Spe-
cifically, suppose that every pair of adjacent layers in a neural network involves 
just a matrix transformation and no activation function. Such a network is a 



Working with Classifiers   •  151

linear system, which means that its layers can be consolidated into a much 
smaller system. 

Notice that the weights of the edges that connect the input layer with the 
first hidden layer can be represented by a matrix: let’s call it W1. Next, the 
weights of the edges that connect the first hidden layer with the second hidden 
layer can also be represented by a matrix: let’s call it W2. Repeat this process 
until we reach the edges that connect the final hidden layer with the output 
layer: let’s call this matrix Wk. Since we do not have an activation function, we 
can simply multiply the matrices W1, W2, …, Wk together and produce one 
matrix: let’s call it W. We have now replaced the original neural network with 
an equivalent neural network that contains one input layer, a single matrix of 
weights W, and an output layer. In other words, we no longer have our original 
multilayered neural network!

Fortunately, we can prevent the previous scenario from happening when 
we specify an activation function between every pair of adjacent layers. In 
other words, an activation function at each layer prevents this “matrix consoli-
dation.” Hence, we can maintain all the intermediate hidden layers during the 
process of training the neural network. 

For simplicity, let’s assume that we have the same activation function be-
tween every pair of adjacent layers (we’ll remove this assumption shortly). The 
process for using an activation function in a neural network is described as 
follows:

1.	 start with an input vector x1 of numbers
2.	 multiply x1 by the matrix of weights W1 that represents the edges that 

connect the input layer with the first hidden layer: the result is a new 
vector x2

3.	 “apply” the activation function to each element of x2 to create another 
vector x3

Now repeat steps 2 and 3, except that we use the “starting” vector x3 and 
the weights matrix W2 for the edges that connect the first hidden layer with the 
second hidden layer (or just the output layer if there is only one hidden layer).

After completing the preceding process, we have “preserved” the neural 
network, which means that it can be trained on a dataset. One other thing: 
instead of using the same activation function at each step, you can replace each 
activation function by a different activation function (the choice is yours).

Why Do We Need Activation Functions?

The previous section outlines the process for transforming an input vector 
from the input layer and then through the hidden layers until it reaches the 
output layer. The purpose of activation functions in neural networks is vitally 
important, so it’s worth repeating here: activation functions “maintain” the 
structure of neural networks and prevent them from being reduced to an input 
layer and an output layer. In other words, if we specify a nonlinear activation 
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function between every pair of consecutive layers, then the neural network 
cannot be replaced with a neural network that contains fewer layers. 

Without a nonlinear activation function, we simply multiply a weight matrix 
for a given pair of consecutive layers with the output vector that is produced 
from the previous pair of consecutive layers. We repeat this simple multiplica-
tion until we reach the output layer of the neural network. 

How Do Activation Functions Work?

If this is the first time you have encountered the concept of an activation 
function, it’s probably confusing, so here’s an analogy that might be helpful. 
Suppose you’re driving your car late at night and there’s nobody else on the 
highway. You can drive at a constant speed for as long as there are no obstacles 
(stop signs, traffic lights, and so forth). On the other hand, suppose you drive 
into the parking lot of a large grocery store. When you approach a speed bump 
you must slow down, cross the speed bump, and increase speed again, and re-
peat this process for every speed bump, and also slow down for other vehicles 
and pedestrians. 

Think of the nonlinear activation functions in a neural network as the 
counterpart to the speed bumps: you simply cannot maintain a constant speed, 
which (by analogy) means that you cannot first multiply all the weight matri-
ces together and “collapse” them into a single weight matrix. Another analogy 
involves a road with multiple toll booths: you must slow down, pay the toll, 
and then resume driving until you reach the next toll booth. These are only 
analogies (and hence imperfect) to help you understand the need for nonlin-
ear activation functions.

Common Activation Functions

Although there are many activation functions (and you can define your own 
if you know how to do so), here is a list of common activation functions, fol-
lowed by brief descriptions:

•	 Sigmoid
•	 Tanh
•	 ReLU
•	 ReLU6
•	 ELU
•	 SELU

The sigmoid activation function is based on Euler’s constant e, with a 
range of values between 0 and 1, and its formula is shown here:

1/[1+e^(-x)]
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The tanh activation function is also based on Euler’s constant e, and its 
formula is shown here:

[e^x – e^(-x)]/[e^x+e^(-x)] 

One way to remember the preceding formula is to note that the numerator 
and denominator have the same pair of terms: they are separated by a “-” sign 
in the numerator and a “+” sign in the denominator. The tanh function has a 
range of values between -1 and 1.

The ReLU (rectified linear unit) activation function is straightforward: if 
x is negative then ReLU(x) is 0; for all other values of x, ReLU(x) equals x. 
ReLU6 is specific to TensorFlow, and it’s a variation of ReLU(x): the additional 
constraint is that ReLU(x) equals 6 when x >= 6 (hence its name).

ELU is the exponential linear unit, and it’s the exponential “envelope” of 
ReLU, which replaces the two linear segments of ReLU with an exponential 
activation function that is differentiable for all values of x (including x = 0).

SELU is an acronym for scaled exponential linear unit, and it’s slightly more 
complicated than the other activation functions (and used less frequently). For 
a thorough explanation of these and other activation functions (along with 
graphs that depict their shape), navigate to the following Wikipedia link:

https://en.wikipedia.org/wiki/Activation_function
The preceding link provides a long list of activation functions as well as 

their derivatives.

Activation Functions in Python

Listing 5.4 displays contents of the file activations.py, which con-
tains the formulas for various activation functions.

Listing 5.4: activations.py

import numpy as np

# Python sigmoid example:
z = 1/(1 + np.exp(-np.dot(W, x))) 

# Python tanh example:
z = np.tanh(np.dot(W,x))

# Python ReLU example:
z = np.maximum(0, np.dot(W, x))

Listing 5.4 contains Python code that uses NumPy methods in order to 
define a sigmoid function, a tanh function, and a ReLU function. Figure 5.1 
displays a graph of each of the activation functions in Listing 5.4.

TF 2 (in addition to other frameworks) provides implementations for many 
activation functions, which saves you the time and effort from writing your own 
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implementation of activation functions. The list of TF 2 API activation func-
tions from Chapter 4 are reproduced here for your convenience:

•	 tf.keras.activations.relu
•	 tf.keras.activations.selu
•	 tf.keras.activations.linear
•	 tf.keras.activations.elu
•	 tf.keras.activations.sigmoid
•	 tf.keras.activations.softmax
•	 tf.keras.activations.softplus
•	 tf.keras.activations.tanh

The following subsections provide additional information regarding some 
of the activation functions in the preceding list. Keep the following point in 
mind: for simple neural networks, use ReLU as your first preference.

The ReLU and ELU Activation Functions

Currently ReLU is often the “preferred” activation function: previously the 
preferred activation function was tanh (and before tanh it was sigmoid). 
ReLU behaves close to a linear unit and provides the best training accuracy and 
validation accuracy.

Figure 5.1.  TensorFlow activation functions.
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ReLU is like a switch for linearity: it’s “off” if you don’t need it, and its 
derivative is 1 when it’s active, which makes ReLU the simplest of all the cur-
rent activation functions. Note that the second derivative of the function is 0 
everywhere (but undefined at the origin): it’s a very simple function that sim-
plifies optimization. In addition, the gradient is large whenever you need large 
values, and it never “saturates” (i.e., it does not shrink to zero on the positive 
horizontal axis).

Rectified linear units and generalized versions are based on the principle 
that linear models are easier to optimize. Use the ReLU activation function or 
one of its related alternatives (discussed later).

The Advantages and Disadvantages of ReLU

The following list contains the advantages of the ReLU activation function:

•	 does not saturate in the positive region
•	 very efficient in terms of computation 
•	 models with ReLU typically converge faster than those with other activa-

tion functions

However, ReLU does have a disadvantage when the activation value of a 
ReLU neuron becomes 0: then the gradients of the neuron will also be 0 during 
back-propagation. You can mitigate this scenario by judiciously assigning the 
values for the initial weights as well as the learning rate.

ELU

ELU is an acronym for exponential linear unit that is based on ReLU: the 
key difference is that ELU is differentiable at the origin (ReLU is a continuous 
function but not differentiable at the origin). However, keep in mind several 
points. First, ELUs trade computational efficiency for “immortality” (immunity 
to dying): read the following paper for more details: arxiv.org/abs/1511.07289. 
Secondly, ReLUs are still popular and preferred over ELU because the use of 
ELU introduces an additional new hyper-parameter.

Sigmoid, Softmax, and Hardmax Similarities

The sigmoid activation function has a range in (0,1), and it saturates and 
“kills” gradients. Unlike the tanh activation function, sigmoid outputs are 
not zero-centered. In addition, both sigmoid and softmax (discussed later) 
are discouraged for vanilla feed forward implementation (see Chapter 6 of the 
online book by Ian Goodfellow et al.). However, the sigmoid activation func-
tion is still used in LSTMs (specifically for the forget gate, input gate, and the 
output gate), GRUs (gated recurrent units), and probabilistic models. Moreo-
ver, some autoencoders have additional requirements that preclude the use of 
piecewise linear activation functions.
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Softmax

The softmax activation function maps the values in a dataset to another 
set of values that are between 0 and 1, and whose sum equals 1. Thus, soft-
max creates a probability distribution. In the case of image classification with 
convolutional neural networks, the softmax activation function “maps” the 
values in the final hidden layer (often abbreviated as “FC”) to the ten neurons 
in the output layer. The index of the position that contains the largest probabil-
ity is matched with the index of the number 1 in the one-hot encoding of the 
input image. If the index values are equal, then the image has been classified; 
otherwise, it’s considered a mismatch.

Softplus

The softplus activation function is a smooth (i.e., differentiable) ap-
proximation of the ReLU activation function. Recall that the origin is the only 
non-differentiable point of the ReLU function, which is “smoothed” by the 
softmax activation, whose equation is here:

f(x) = ln(1 + e^x)

Tanh

The tanh activation function has a range of values in the interval (-1,1), 
whereas the sigmoid function has a range of values in the interval (0,1). 
Both of these activations saturate, but unlike the sigmoid neuron the tanh 
output is zero-centered. Therefore, in practice the tanh nonlinearity is always 
preferred to the sigmoid nonlinearity.

The sigmoid and tanh activation functions appear in LSTMs (sigmoid 
for the three gates and tanh for the internal cell state) as well as GRUs (gated 
recurrent units) during the calculations pertaining to input gates, forget gates, 
and output gates (discussed in more detail in the next chapter).

Sigmoid, Softmax, and Hardmax Differences

This section briefly discusses some of the differences among these three 
functions. First, the sigmoid function is used for binary classification in 
the logistic regression model, as well as for the gates in LSTMs and GRUs. 
The sigmoid function is used as an activation function while building neu-
ral networks, but keep in mind that the sum of the probabilities is not neces-
sarily equal to 1.

Second, the softmax function generalizes the sigmoid function: it’s 
used for multi-classification in the logistic regression model. The softmax 
function is the activation function for the “fully connected layer” in CNNs, 
which is the rightmost hidden layer and the output layer. Unlike in the sigmoid 
function, the sum of the probabilities must equal 1. You can use either the 
sigmoid function or softmax for binary (n=2) classification.
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Third, the so-called “hardmax” function assigns 0 or 1 to output values 
(similar to a step function). For example, suppose that we have three classes 
{c1, c2, c3} whose scores are [1, 7, 2], respectively. The hardmax 
probabilities are [0, 1, 0], whereas the softmax probabilities are [0.1, 
0.7, 0.2]. Notice that the sum of the hardmax probabilities is 1, which 
is also true of the sum of the softmax probabilities. However, the hardmax 
probabilities are all or nothing, whereas the softmax probabilities are analo-
gous to receiving “partial credit.”

TF 2 and the Sigmoid Activation Function

Listing 5.5 displays the contents of tf2_activation_functions.
py, which illustrates how to create a TensorFlow graph that involves seven 
activation functions, including the sigmoid function for logistic regression.

Listing 5.5: tf2_activation_functions.py

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

# ReLU activation
print(tf.nn.relu([-3., 3., 10.]))
y_relu = tf.nn.relu(x_vals)

# ReLU-6 activation
print(tf.nn.relu6([-3., 3., 10.]))
y_relu6 = tf.nn.relu6(x_vals)

# Sigmoid activation
print(tf.nn.sigmoid([-1., 0., 1.]))
y_sigmoid = tf.nn.sigmoid(x_vals)

# Hyperbolic Tangent activation
print(tf.nn.tanh([-1., 0., 1.]))
y_tanh = tf.nn.tanh(x_vals)

# Softsign activation
print(tf.nn.softsign([-1., 0., 1.]))
y_softsign = tf.nn.softsign(x_vals)

# Softplus activation
print(tf.nn.softplus([-1., 0., 1.]))
y_softplus = tf.nn.softplus(x_vals)

# Exponential linear activation (ELU)
print(tf.nn.elu([-1., 0., 1.]))
y_elu = tf.nn.elu(x_vals)
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# Plot the different functions
plt.plot(x_vals, y_softplus, 'r--', label='Softplus', 
linewidth=2)
plt.plot(x_vals, y_relu, 'b:', label='ReLU', linewidth=2)
plt.plot(x_vals, y_relu6, 'g-.', label='ReLU6', linewidth=2)
plt.plot(x_vals, y_elu, 'k-', label='ExpLU', linewidth=0.5)
plt.ylim([-1.5,7])
plt.legend(loc='best')
plt.show()

plt.plot(x_vals, y_sigmoid, 'r--', label='Sigmoid', 
linewidth=2)
plt.plot(x_vals, y_tanh, 'b:', label='Tanh', linewidth=2)
plt.plot(x_vals, y_softsign, 'g-.', label='Softsign', 
linewidth=2)
plt.ylim([-2,2])
plt.legend(loc='best')
plt.show()

Listing 5.5 starts with some import statements, followed by an extensive 
code block that shows you how to invoke the TensorFlow activation functions 
that are listed in a previous section. The final section of code in Listing 5.5 
plots the various TensorFlow functions. 

Figure 5.2 displays the graph of the TensorFlow activation functions that 
are defined in the first portion of Listing 5.5.

Figure 5.3 displays the graph of the TensorFlow activation functions that 
are defined in the second portion of Listing 5.5.

Figure 5.2.  TensorFlow activation functions.
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What Is Logistic Regression?

Despite its name, logistic regression is a classifier as well as a model with a 
binary output. Logistic regression works with multiple independent variables 
and involves a sigmoid function for calculating probabilities. Logistic regres-
sion is essentially the result of “applying” the sigmoid activation function to 
linear regression in order to perform binary classification. 

Logistic regression is useful in a variety of unrelated fields. Such fields in-
clude machine learning, various medical fields, and social sciences. Logistic 
regression can be used to predict the risk of developing a given disease, based 
on various observed characteristics of the patient. Other fields that use logistic 
regression include engineering, marketing, and economics.

Logistic regression can be binomial (only two outcomes for a dependent 
variable), multinomial (three or more outcomes for a dependent variable), or 
ordinal (dependent variables are ordered). For instance, suppose that a dataset 
consists of data that belong either to class A or class B. If you are given a new 
data point, logistic regression predicts whether that new data point belongs to 
class A or class B. By contrast, linear regression predicts a numeric value, such 
as the next-day value of a stock.

Figure 5.3.  TensorFlow activation functions.
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Setting a Threshold Value

The threshold value is a numeric value that determines which data points 
belong to class A and which points belong to class B. For instance, a pass/fail 
threshold might be 0.70. A pass/fail threshold for passing a written driver’s test 
in California is 0.85.

As another example, suppose that p = 0.5 is the “cutoff” probability. Then 
we can assign class A to the data points that occur with probability > 0.5 and 
assign class B to data points that occur with probability <= 0.5. Since there are 
only two classes, we do have a classifier.

A similar (yet slightly different) scenario involves tossing a well-balanced 
coin. We know that there is a 50% chance of throwing heads (let’s label this 
outcome as class A) and a 50% chance of throwing tails (let’s label this out-
come as class B). If we have a dataset that consists of labeled outcomes, then 
we have the expectation that approximately 50% of them are class A and 50% 
are class B. 

On the other hand, we have no way to determine (in advance) what per-
centage of people will pass their written driver’s test, or the percentage of peo-
ple who will pass their course. Datasets containing outcomes for these types 
of scenarios need to be trained, and logistic regression is a suitable activation 
function for doing so.

Logistic Regression: Assumptions

Logistic regression requires the observations to be independent of each 
other. In addition, logistic regression requires little or no multicollinearity 
among the independent variables. Logistic regression handles numeric, cat-
egorical, and continuous variables, and also assumes linearity of independent 
variables and log odds, which is defined here:

odds = p/(1-p) and logit = log(odds)

This analysis does not require the dependent and independent variables 
to be related linearly; however, another requirement is that independent vari-
ables are linearly related to the log odds.

Logistic regression is used to obtain an odds ratio in the presence of more 
than one explanatory variable. The procedure is quite similar to multiple lin-
ear regression, with the exception that the response variable is binomial. The 
result is the impact of each variable on the odds ratio of the observed event of 
interest.

Linearly Separable Data

Linearly separable data is data that can be separated by a line (in 2D), a 
plane (in 3D), or a hyperplane (in higher dimensions). Linearly non-separable 
data is data (such as a set of clusters) that cannot be separated by a line or a 
hyperplane. 
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For example, the XOR function involves datapoints that cannot be sepa-
rated by a line. If you create a truth table for an XOR function with two in-
puts, the points (0,0) and (1,1) belong to class 0, whereas the points (0,1) and 
(1,0) belong to class 1 (draw these points in a 2D plane to convince yourself). 
The solution involves transforming the data in a higher dimension so that it 
becomes linearly separable, which is the technique used in SVMs (discussed 
earlier in this chapter).

TensorFlow and Logistic Regression

Listing 5.6 displays the contents of tf2_keras_log_reg.py, which 
defines a Keras-based model to perform logistic regression.

Listing 5.6: tf2_keras_log_reg.py

import tensorflow as tf
import seaborn as sns
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegressionCV

# Load the Iris Dataset
iris = sns.load_dataset("iris")
X = iris.values[:, 0:4]
y = iris.values[:, 4]

# Create train and test data
train_X, test_X, train_y, test_y = train_test_split(X, y, 
train_size=0.5, random_state=0)

# Make one-hot encoder
def one_hot_encode_object_array(arr):
  #One hot encode a numpy array of objects (e.g. strings)
  uniq_vals, ids = np.unique(arr, return_inverse=True)
  return tf.keras.utils.to_categorical(ids, len(uniq_vals))

train_y_hot = one_hot_encode_object_array(train_y)
test_y_hot  = one_hot_encode_object_array(test_y)

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(16, input_shape=(4,)))
model.add(tf.keras.layers.Activation('sigmoid'))
model.add(tf.keras.layers.Dense(3))
model.add(tf.keras.layers.Activation('softmax'))
model.compile(loss='categorical_crossentropy', 
metrics=['accuracy'], optimizer='adam')

# train the model:
model.fit(train_X, train_y_hot, verbose=1, batch_size=1)
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score, accuracy = model.evaluate(test_X, test_y_hot, batch_
size=16, verbose=0)

print("Test Score    = {:.2f}".format(score))
print("Test Accuracy = {:.2f}".format(accuracy))

Listing 5.6 starts with an assortment of import statements, and then ini-
tializes the variable iris with the Iris dataset. The variable X contains the 
first three columns (and all the rows) of the Iris dataset, and the variable y 
contains the fourth column (and all the rows) of the Iris dataset.

The next portion of Listing 5.6 initializes the training set and the test set 
equally: they both contain 50% of the data. The next code block is a Python 
function that returns a one-hot encoding of its input (one-hot encoding is de-
scribed in Chapter 2). This Python function is invoked to populate train_y_
hot and test_y_hot as one-hot encoded data. Next, the Keras-based model 
contains four hidden layers: a Dense layer and sigmoid activation function, 
followed by another Dense layer and a softmax activation function.

The next portion of Listing 5.6 compiles the model, trains the model, and 
then calculates the accuracy of the model via the test data. Launch the code in 
Listing 5.6 and you will see the following output:

105/105 [==============================] - 0s 2ms/sample - 
loss: 1.2798 - accuracy: 0.3048
45/45 [==============================] - 0s 1ms/sample - 
loss: 1.0867 - accuracy: 0.4000
Test Score    = 1.09
Test Accuracy = 0.40 

Keras and Early Stopping (1)

When you create a model for a neural network, you also need to decide on 
the number of training epochs. This number is hardly an obvious choice; in 
fact, a value that’s too large can lead to overfitting, whereas a value that’s too 
small can lead to underfitting.

Early stopping is a technique that allows you to specify a large value for 
the number of epochs, and yet the training will stop if the model performance 
improvement drops below a threshold value.

There are several ways that you can specify early stopping, and they in-
volve the concept of a callback function. Listing 5.7 displays the contents of 
tf2_keras_callback.py, which performs early stopping via a callback 
mechanism.

Listing 5.7: tf2_keras_callback.py

import tensorflow as tf
import numpy as np
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model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.compile(optimizer=tf.keras.optimizers.Adam(0.01),
              loss='mse',       # mean squared error
              metrics=['mae'])  # mean absolute error

data   = np.random.random((1000, 32))
labels = np.random.random((1000, 10))

val_data   = np.random.random((100, 32))
val_labels = np.random.random((100, 10))

callbacks = [
  # stop training if "val_loss" stops improving for over 2 
epochs
  tf.keras.callbacks.EarlyStopping(patience=2, 
monitor='val_loss'),
  # write TensorBoard logs to the ./logs directory
  tf.keras.callbacks.TensorBoard(log_dir='./logs')
]

model.fit(data, labels, batch_size=32, epochs=50, 
callbacks=callbacks,
          validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)

Listing 5.7 defines a Keras-based model with three hidden layers and then 
compiles the model. The next portion of Listing 5.7 uses the np.random.
random function in order to initialize the variables data, labels, val_
data, and val_labels.

The interesting code involves the definition of the callbacks variable 
that specifies the tf.keras.callbacks.EarlyStopping class with a 
value of 2 for patience, which means that the model will stop training if 
there is an insufficient reduction in the value of val_loss. 

The callbacks variable includes the tf.keras.callbacks.Ten-
sorBoard class to specify the logs subdirectory as the location for the Ten-
sorBoard files.

Next, the model.fit() method is invoked with a value of 50 for epochs 
(shown in bold), followed by the model.evaluate() method. Launch the 
code in Listing 5.7 and you will see the following output:

Epoch 1/50
1000/1000 [==============================] - 0s 354us/
sample - loss: 0.2452 - mae: 0.4127 - val_loss: 0.2517 - 
val_mae: 0.4205
Epoch 2/50
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1000/1000 [==============================] - 0s 63us/sample 
- loss: 0.2447 - mae: 0.4125 - val_loss: 0.2515 - val_mae: 
0.4204
Epoch 3/50
1000/1000 [==============================] - 0s 63us/sample 
- loss: 0.2445 - mae: 0.4124 - val_loss: 0.2520 - val_mae: 
0.4209
Epoch 4/50
1000/1000 [==============================] - 0s 68us/sample 
- loss: 0.2444 - mae: 0.4123 - val_loss: 0.2519 - val_mae: 
0.4205
1000/1000 [==============================] - 0s 37us/sample 
- loss: 0.2437 - mae: 0.4119
(1000, 10)

Notice that the code stopped training after four epochs, even though fifty 
epochs are specified in the code.

Keras and Early Stopping (2)

The previous section contains a code sample with minimalistic functional-
ity with respect to the use of callback functions in Keras. However, you can 
also define a custom class that provides finer-grained functionality that uses a 
callback mechanism. 

Listing 5.8 displays the contents of tf2_keras_callback2.py, which 
performs early stopping via a callback mechanism (the new code is shown in 
bold).

Listing 5.8: tf2_keras_callback2.py

import tensorflow as tf
import numpy as np

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.compile(optimizer=tf.keras.optimizers.Adam(0.01),
              loss='mse',       # mean squared error
              metrics=['mae'])  # mean absolute error

data   = np.random.random((1000, 32))
labels = np.random.random((1000, 10))

val_data   = np.random.random((100, 32))
val_labels = np.random.random((100, 10))

class MyCallback(tf.keras.callbacks.Callback):
  def on_train_begin(self, logs={}):
    print("on_train_begin")
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  def on_train_end(self, logs={}):
    print("on_train_begin")
    return

  def on_epoch_begin(self, epoch, logs={}):
    print("on_train_begin")
    return

  def on_epoch_end(self, epoch, logs={}):
    print("on_epoch_end")
    return

  def on_batch_begin(self, batch, logs={}):
    print("on_batch_begin")
    return

  def on_batch_end(self, batch, logs={}):
    print("on_batch_end")
    return

callbacks = [MyCallback()]

model.fit(data, labels, batch_size=32, epochs=50, 
callbacks=callbacks,
          validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)

The new code in Listing 5.8 that differs from Listing 5.7 is limited to the 
code block that is displayed in bold. This new code defines a custom Python 
class with several methods, each of which is invoked during the appropriate 
point during the Keras life cycle execution. The six methods consists of three 
pairs of methods for the start event and end event associated with training, 
epochs, and batches, as listed here:

•	 on_train_begin()
•	 on_train_end()
•	 on_epoch_begin()
•	 on_epoch_end()
•	 on_batch_begin()
•	 on_batch_end()

The preceding methods contain just a print() statement in Listing 5.8, 
and you can insert any code you wish in any of these methods. Launch the code 
in Listing 5.8 and you will see the following output:

on_train_begin
on_train_begin
Epoch 1/50
on_batch_begin
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on_batch_end
  32/1000 [..............................] - ETA: 4s - 
loss: 0.2489 - mae: 0.4170on_batch_begin
on_batch_end
on_batch_begin on_batch_end
// details omitted for brevity
on_batch_begin
on_batch_end
on_batch_begin
on_batch_end
992/1000 [============================>.] - ETA: 0s - loss: 
0.2468 - mae: 0.4138on_batch_begin
on_batch_end
on_epoch_end
1000/1000 [==============================] - 0s 335us/
sample - loss: 0.2466 - mae: 0.4136 - val_loss: 0.2445 - 
val_mae: 0.4126
on_train_begin
Epoch 2/50
on_batch_begin
on_batch_end
 32/1000 [..............................] - ETA: 0s - loss: 
0.2465 - mae: 0.4133on_batch_begin
on_batch_end
on_batch_begin
on_batch_end
// details omitted for brevity 
on_batch_end
on_epoch_end
1000/1000 [==============================] - 0s 51us/sample 
- loss: 0.2328 - mae: 0.4084 - val_loss: 0.2579 - val_mae: 
0.4241
on_train_begin
 32/1000 [..............................] - ETA: 0s - loss: 
0.2295 - mae: 0.4030
1000/1000 [==============================] - 0s 22us/sample 
- loss: 0.2313 - mae: 0.4077
(1000, 10)

Keras and Metrics

Many Keras-based models only specify accuracy as the metric for evalu-
ating a trained model, as shown here:

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

However, there are many other built-in metrics available, each of which is 
encapsulated in a Keras class in the tf.keras.metrics namespace. A list 
of many such metrics is displayed in the following list:
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•	 class Accuracy: how often predictions match labels
•	 class BinaryAccuracy: how often predictions match labels
•	 class CategoricalAccuracy: how often predictions match labels
•	 class FalseNegatives: the number of false negatives
•	 class FalsePositives: the number of false positives
•	 class Mean: the (weighted) mean of the given values
•	 class Precision: the precision of the predictions wrt the labels
•	 class Recall: the recall of the predictions wrt the labels
•	 class TrueNegatives: the number of true negatives
•	 class TruePositives: the number of true positives

Earlier in this chapter you learned about the “confusion matrix” that 
provides numeric values for TP, TN, FP, and FN; each of these values has a 
corresponding Keras class TruePositive, TrueNegative, FalsePos-
itive, and FalseNegative, respectively. Perform an online search for 
code samples that use the metrics in the preceding list.

Distributed Training in TF 2 (Optional)

The TF 2 API tf.distribute.Strategy enables you to distribute 
the training of a model across multiple GPUs and TPUs, as well as multiple 
machines with minimal code changes to existing models. This TF 2 API is easy 
to use, with good performance and support for multiple strategies (discussed 
later). Moreover, this TF 2 API works with tf.keras and tf.estimator 
along with minor code changes. The TF 2 API tf.distribute.Strat-
egy supports various specialized strategies, as shown in the following:

•	 MirroredStrategy
•	 MultiWorkerMirroredStrategy
•	 TPUStrategy
•	 ParameterServerStrategy

The TF 2 tf.distribute.MirrorStrategy supports synchronous 
distributed training on multiple GPUs on one machine. It creates one replica 
per GPU device. Each variable in the model is mirrored across all the replicas. 
Together, these variables form a single conceptual variable called Mirrored-
Variable. These variables are kept in sync with each other by applying iden-
tical updates.

The TF 2 tf.distribute.experimental.MultiWorkerMir-
roredStrategy is very similar to MirroredStrategy. This strategy im-
plements synchronous distributed training across multiple workers, each with 
potentially multiple GPUs. In addition, this strategy creates copies of all vari-
ables in the model on each device across all workers, which is similar to Mir-
roredStrategy.

The TF 2 tf.distribute.experimental.TPUStrategy lets 
users run their TensorFlow training on TPUs, which are available on Google 
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Colab, the TensorFlow Research Cloud, and Google Compute Engine. TPUS-
trategy has the same synchronous distributed training architecture as Mir-
roredStrategy. TPUs provide their own implementation of efficient 
all-reduce and other collective operations across multiple TPU cores, which 
are used in TPUStrategy.

The TF 2 tf.distribute.experimental.ParameterServer-
Strategy supports parameter servers training. This strategy is suitable for 
multi-GPU synchronous local training or for asynchronous multi-machine 
training. When used to train locally on one machine, variables are not mir-
rored; instead, they are placed on the CPU and operations are replicated across 
all local GPUs. In a multi-machine setting, machines are designated as workers 
or as parameter servers. Each variable of the model is placed on one parameter 
server. Computation is replicated across all GPUs of the all the workers.

Using tf.distribute.Strategy with Keras

The tf.distribute.Strategy strategy is integrated into tf.keras, 
which means that it’s seamless for Keras users to distribute their training writ-
ten in Keras-based code. However, there are two code changes required: first, 
create an instance of the appropriate tf.distribute.Strategy, and 
second, move the creation and compiling of the Keras model inside strat-
egy.scope. The following code block illustrates how to do so with a Keras 
model that contains one dense layer:

mirrored_strategy = tf.distribute.MirroredStrategy()

with mirrored_strategy.scope():
  model = tf.keras.Sequential([tf.keras.layers.Dense(1,
                               input_shape=(1,))])
                            model.compile(loss='mse',optimi
zer='sgd')

For more details regarding distributed training in TF 2, navigate to this 
website:

https://www.tensorflow.org/guide/distribute_strategy

Summary

This chapter started with an explanation of classification and classifiers, fol-
lowed by a brief explanation of commonly used classifiers in machine learning. 
Next you saw a list of the TF 2 APIs for various activation functions, followed 
by a description of some of their merits. 

You also learned about logistic regression that involves the sigmoid activa-
tion function, followed by a Keras-based code sample involving logistic regres-
sion. Then you saw an example of early stopping in Keras, followed by a very 
brief description of the classes in the tf.keras.metrics namespace.

Finally, you learned about the TF 2 support for distributed training, and a 
brief description of the available strategies.



This appendix briefly discusses an assortment of topics, such as NLP 
(natural language processing), MLPs (multilayer perceptrons), CNNs 
(convolutional neural networks), RNNs (recurrent neural networks), 

LSTMs (long short term memory), reinforcement learning, and deep reinforce-
ment learning. Most of this appendix contains descriptive content, along with 
some Keras-based code samples that assume you have read the Keras material 
in the previous chapters. This appendix is meant to be a cursory introduction 
to a diverse set of topics, along with suitable links to additional information.

If you are new to deep learning, many topics in this appendix (such as LSTMs) 
will require additional study in order for you to become comfortable with them. 
Nevertheless, there’s still value in learning about topics that are new to you: 
think of this appendix as a modest step toward your mastery of deep learning.

The first portion of this appendix briefly discusses deep learning, the prob-
lems it can solve, and the challenges for the future. The second part of this ap-
pendix briefly introduces the perceptron, which is essentially a “core building 
block” for neural networks. In fact ANNs, MLPs, RNNs, LSTMs, and VAEs are 
all based on multiple layers that contain multiple perceptrons. 

The third part of this appendix provides an introduction to CNNs, followed 
by an example of training a Keras-based CNN with the MNIST dataset: this 
code sample will make more sense if you have read the section pertaining to 
activation functions in Chapter 5. 

The fourth part of this appendix discusses the architectures of RNNs, LSTMs, 
GRUs, autoencoders, and GANs. The final section of this appendix discusses re-
inforcement learning, the TF-Agents toolkit from Google, a short introduction 
to deep reinforcement learning, and also the Google Dopamine toolkit. 

Again, please read the sections in Chapter 4 and Chapter 5 pertaining to 
the Keras material in order to derive greater benefit from the code samples in 
this appendix.

Appendix

TF 2, Keras, and  
Advanced Topics
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What Is Deep Learning?

Deep learning is a subset of machine learning, and it includes model archi-
tectures known as CNNs, RNNs, LSTMs, GRUs, variational autoencoders (VAEs), 
and GANs. A deep learning model requires at least two hidden layers in a neu-
ral network (“very deep learning” involves neural networks with at least ten 
hidden layers).

From a high-level viewpoint, deep learning with supervised learning in-
volves defining a model (aka neural network) as well as:

•	 making an estimate for a datapoint
•	 calculating the loss or error of each estimate
•	 reducing the error via gradient descent

In Chapter 4, you learned about linear regression in the context of machine 
learning, which starts with initial values for m and b:

m = tf.Variable(0.)
b = tf.Variable(0.)

The training process involves finding the optimal values for m and b in the 
following equation:

y = m*x + b

We want to calculate the dependent variable y given a value for the inde-
pendent variable x. In this case, the calculation is handled by the following 
Python function:  

def predict(x):
  y = m*x + b	
  return y

The loss is another name for the error of the current estimate, which can be 
calculated via the following Python function that determines the MSE value:

def squared_error(y_pred, y_actual):
  return tf.reduce_mean(tf.square(y_pred-y_actual)) 

We also need to initialize variables for the training data (often named x_
train and y_train) and the test-related data (often named x_test and 
x_test), which is typically an 80/20 or 75/25 “split” between training data and 
test data. Then the training process invokes the preceding Python functions in 
the following manner:

loss = squared_error(predict(x_train), y_train)
print("Loss:", loss.numpy())

Although the Python functions in this section are simple, they can be gen-
eralized to handle complex models, such as the models that are described later 
in this appendix.
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You can also solve linear regression via deep learning, which involves the 
same code that you saw earlier in this section. 

What Are Hyperparameters?

Deep learning involves hyperparameters, which are sort of like knobs and 
dials whose values are initialized by you prior to the actual training process. 
For instance, the number of hidden layers and the number of neurons in hid-
den layers are examples of hyperparameters. You will encounter many hyper-
parameters in deep learning models, some of which are listed here:

•	 Number of hidden layers
•	 Number of neurons in hidden layers
•	 Weight initialization
•	 An activation function
•	 A cost function
•	 An optimizer
•	 A learning rate
•	 A dropout rate

The first three hyperparameters in the preceding list are required for the 
initial setup of a neural network. The fourth hyperparameter is required for 
forward propagation. The next three hyperparameters (i.e., the cost function, 
optimizer, and learning rate) are required in order to perform backward error 
propagation (aka backprop) during supervised learning tasks. This step cal-
culates a set of numbers that is used to update the values of the weights in 
the neural network in order to improve the accuracy of the neural network. 
The final hyperparameter is useful if you need to reduce overfitting in your 
model. In general, the cost function is the most complex of all these hyper-
parameters.

During back propagation, the vanishing gradient problem can occur, after 
which some weights are no longer updated, in which case the neural network is 
essentially inert (and debugging this problem is generally nontrivial). Another 
consideration: deciding whether or not a local minima is “good enough” and 
preferable to expending the additional time and effort that is required to find 
an absolute minima.

Deep Learning Architectures

As discussed previously, deep learning supports various architectures, in-
cluding ANNs, CNNs, RNNs, and LSTMs. Although there is overlap in 
terms of the types of tasks that these architectures can solve, each one has a 
specific reason for its creation. As you progress from MLPs to LSTMs, the ar-
chitectures become more complex. Sometimes combinations of these architec-
tures are well-suited for solving tasks. For example, capturing video and making 
predictions typically involves a CNN (for processing each input image in a video 
sequence) and an LSTM (to make predictions of the position of objects that are 
in the video stream). 
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In addition, neural networks for NLP can contain one or more CNNs, RNNs, 
LSTMs, and biLSTMs (bidirectional LSTMs). In particular, the combination of 
reinforcement learning with these architectures is called deep reinforcement 
learning.

Although MLPs have been popular for a long time, they suffer from two 
disadvantages: they are not scalable for computer vision tasks, and they are 
somewhat difficult to train. On the other hand, CNNs do not require adjacent 
layers to be fully connected. Another advantage of CNNs is something called 
“translation invariance,” which means that an image (such as a digit, cat, dog, 
and so forth) is recognized as such, regardless of where it appears in a bitmap.

Problems That Deep Learning Can Solve

As you know, back propagation involves updating the weights of the edges 
between consecutive layers, which is performed in a right-to-left fashion (i.e., 
from the output layer toward the input layer). The updates involve the chain 
rule (a rule for computing derivatives) and an arithmetic product of param-
eters and gradient values. There are two anomalous results that can occur: the 
product of terms approaches zero (which is called the “vanishing gradient” 
problem) or the product of terms becomes arbitrarily large (which is called the 
“exploding gradient” problem). These problems arise with the sigmoid activa-
tion function.

Deep learning can mitigate both of these problems via LSTMs. Keep in 
mind that CNN models replace the sigmoid activation function with the ReLU 
activation function. ReLU is a very simple continuous function that is differen-
tiable (with a value of 1 to the right of the y-axis and a value of -1 to the left of 
the y-axis) everywhere except the origin. Hence, it’s necessary to perform some 
“tweaking” to make things work nicely at the origin.

Challenges in Deep Learning

Although deep learning is powerful and has produced impressive results 
in many fields, there are some important ongoing challenges that are being 
explored, including:

•	 Bias in algorithms
•	 Susceptibility to adversarial attacks
•	 Limited ability to generalize
•	 Lack of explainability
•	 Lack of causality

Algorithms can contain unintentional bias, and even if the bias is removed, 
there can be unintentional bias in data. For example, one neural network was 
trained on a dataset containing pictures of Caucasian males and females. The 
outcome of the training process “determined” that males were physicians and 
that females were housewives (and did so with a high probability). The reason 
was simple: the dataset depicted males and females almost exclusively in those 



TF 2, Keras, and Advanced Topics    •  173

two roles. The following article contains more information regarding bias in 
algorithms:

https://www.technologyreview.com/s/612876/this-is-how-ai-bias-really-
happensand-why-its-so-hard-to-fix

Deep learning focuses on finding patterns in datasets, and generalizing 
those results is a more difficult task. There are some initiatives that attempt to 
provide explainability for the outcomes of neural networks, but such work is 
still in its infancy. Deep learning finds patterns and can determine correlation, 
but it’s incapable of determining causality. 

Now that you have a bird’s-eye view of deep learning, let’s rewind and dis-
cuss an important cornerstone of neural networks called the perceptron, which 
is the topic of the next section.

What Are Perceptrons?

Recall from Chapter 4 that a model for linear regression involves an output 
layer that contains a single neuron, whereas a multi-neuron output layer is 
for classifiers (discussed in Chapter 5). DNNs (deep neural networks) contain 
at least two hidden layers, and they can solve regression problems as well as 
classification problems. In fact, the output layer of a model for classification 
problems actually consists of a set of probabilities (one for each class in the 
dataset) whose sum equals 1. 

Figure A.1 displays a perceptron with incoming edges that have numeric 
weights.

Figure A.1.  An example of a perceptron.

Image adapted from Arunava Chakraborty, source: https://towardsdatascience.com/the-perceptron- 
3af34c84838c
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The next section delves into the details of perceptrons and how they form 
the backbone of MLPs.

Definition of the Perceptron Function

A Perceptron involves a function f(x) where the following holds:

f(x) = 1 if w*x + b > 0 (otherwise f(x) = 0)

In the previous expression, w is a vector of weights, x is an input vector, and 
b is a vector of biases. The product w*x is the inner product of the vectors w 
and x, and activating a Perceptron is an all-or-nothing decision (e.g., a light 
bulb is either on or off, with no intermediate states). 

Notice that the function f(x) checks the value of the linear term w*x+b, 
which is also specified in the sigmoid function for logistic regression. The same 
term appears as part of the calculation of the sigmoid value, as shown here:

1/[1 + e^(w*x+b)]

Given a value for w*x+b, the preceding expression generates a numeric 
value. However, in the general case, W is a weight matrix, and x and b are vectors.

The next section digresses slightly in order to describe artificial neural net-
works, after which we’ll discuss MLPs.

A Detailed View of a Perceptron

A neuron is essentially a “building block” for neural networks. In gen-
eral, each neuron receives multiple inputs (which are numeric values), 
each of which is from a neuron that belongs to a previous layer in a neural 
network. The weighted sum of the inputs is calculated and assigned to the 
neuron. 

Specifically, suppose that a neuron N’ (N “prime”) receives inputs whose 
weights are in the set {w1, w2, w3, . . . , wn}, where these numbers specify the 
weights of the edges that are connected to neuron N’. Since forward propa-
gation involves a flow of data in a left-to-right fashion, this means that the 
left endpoints of the edges are connected to neurons {N1, N2, . . ., Nk} in a 
preceding layer, and the right endpoint of all these edges is N’. The weighted 
sum is calculated as follows:

x1*w1 + x2*w2 + . . . + xn*wn

After the weighted sum is calculated, it’s “passed” to an activation func-
tion that calculates a second value. This step is required for artificial neural 
networks, and it’s explained later in the chapter. This process of calculat-
ing a weighted sum is repeated for every neuron in a given layer, and then 
the same process is repeated on the neurons in the next layer of a neural 
network. 
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The entire process is called forward propagation, which is “comple-
mented” by the backward error propagation step (also called “backprop”). 
During the backward error propagation step, new weight values are calculated 
for the entire neural network. The combination of forward prop and backward 
prop is repeated for each data point (e.g., each row of data in a CSV file). The 
goal is to finish this training process so that the finalized neural network (also 
called a “model”) accurately represents the data in a dataset and can also ac-
curately predict values for the test data. Of course, the “accuracy” of a neural 
network depends on the dataset in question, and the accuracy can be higher 
than 99%.

The Anatomy of an Artificial Neural Network (ANN)

An ANN consists of an input layer, an output layer, and one or more hidden 
layers. For each pair of adjacent layers in an ANN, neurons in the left layer 
are connected with neurons in the right layer via an edge that has a numeric 
weight. If all neurons in the left layer are connected to all neurons in the right 
layer, it’s called an MLP (discussed later). 

Keep in mind that the perceptrons in an ANN are “stateless”: they do 
not retain any information about previously processed data. Furthermore, an 
ANN does not contain cycles (hence ANNs are acyclic). By contrast, RNNs and 
LSTMs do retain state and they do have cycle-like behavior, as you will see later 
in this chapter. 

Incidentally, if you have a mathematics background, you might be tempted 
to think of an ANN as a set of contiguous bipartite graphs in which data “flows” 
from the input layer (think “multiple sources”) toward the output layer (“the 
sink”). Unfortunately, this viewpoint doesn’t prove useful for understanding 
ANNs. A better way to understand ANNs is to think of their structure as a 
combination of the hyperparameters in the following list:

1.	 the number of hidden layers
2.	 the number of neurons in each hidden layer
3.	 the initial weights of edges connecting pairs of neurons
4.	 the activation function
5.	 a cost (aka loss) function
6.	 an optimizer (used with the cost function)
7.	 the learning rate (a small number)
8.	 the dropout rate (optional)

Figure A.2 is a very small example of an ANN (there are many variations: 
this is simply one example).

Since the output layer of the ANN in Figure A.2 contains more than one 
neuron, we know that it’s a model for a classification task.
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Figure A.2.  An example of an ANN.

Image adapted from Cburnett, source: https://commons.wikimedia.org/wiki/ 
File:Artificial_neural_network.svg

The Model Initialization Hyperparameters

The first three parameters in the list of bullet items in the previous section 
are required for initializing the neural network. The hidden layers are interme-
diate computational layers, each of which is composed of neurons. The num-
ber of edges between each pair of adjacent layers is flexible and determined by 
you. More information about network initialization is here: 

http://www.deeplearning.ai/ai-notes/initialization/
The edges that connect neurons in each pair of adjacent layers (including 

the input layer and the output layer) have numeric weights. The initial values 
of these weights are often small random numbers between 0 and 1. Keep in 
mind that the connections between adjacent layers can affect the complexity 
of a model. The purpose of the training process is to fine-tune edge weights in 
order to produce an accurate model. 

An ANN is not necessarily fully connected, which is to say that some edges 
between pairs of neurons in adjacent layers might be missing. By contrast, 
neural networks such as CNNs share edges (and their weights), which can make 
them more computationally feasible (but even CNNs can require significant 
training time). Note that the Keras tf.keras.layers.Dense() class 
handles the task of fully connecting two adjacent layers. As discussed later, 
MLPs are fully connected, which can greatly increase the training time for such 
a neural network.

The Activation Hyperparameter

The fourth parameter is the activation function that is applied to weights 
between each pair of consecutive layers. Neural networks with many layers 
typically involve different activation functions. For instance, CNNs use the 
ReLU activation function on feature maps (created by “applying” filters to an 
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image), whereas the penultimate layer is “connected” to the output layer via 
the softmax function (which is a generalization of the sigmoid function). 

The Cost Function Hyperparameter

The fifth, sixth, and seventh hyperparameters are required for backward 
error propagation that starts from the output layer and moves right to left to-
ward the input layer. These hyperparameters perform the “heavy lifting” of 
machine learning frameworks: they compute the updates to the weights of the 
edges in neural networks. 

The cost function is a function in multidimensional Euclidean space. For 
example, the MSE cost function is a bowl-shaped cost function that has a 
global minimum. In general, the goal is to minimize the MSE function in 
order to minimize the cost, which in turn will help us maximize the accuracy 
of a model (but this is not guaranteed for other cost functions). However, 
sometimes a local minimum might be considered “good enough” instead of 
finding a global minimum: you must make this decision (i.e., it’s not a purely 
programmatic decision).

Alas, cost functions for larger datasets tend to be very complex, which is 
necessary in order to detect potential patterns in datasets. Another cost func-
tion is the cross-entropy function, which involves maximizing the likelihood 
function (contrast this with MSE). Search for online articles (such as Wikipe-
dia) for more details about cost functions.

The Optimizer Hyperparameter

An optimizer is an algorithm that is chosen in conjunction with a cost function, 
and its purpose is to converge to the minimum value of the cost function during 
the training phase (see the comment in the previous section regarding a local 
minimum). Different optimizers make different assumptions regarding the man-
ner in which new approximations are calculated during the training process. Some 
optimizers involve only the most recent approximation, whereas other optimizers 
use a “rolling average” that takes into account several previous approximations.

There are several well-known optimizers, including SGD, RMSprop, Ad-
agrad, Adadelta, and Adam. Check online for details regarding the advan-
tages and trade-offs of these optimizers.

The Learning Rate Hyperparameter

The learning rate is a small number, often between 0.001 and 0.05, which 
affects the magnitude of the number used to update the current weight of an 
edge in order to train the model with these updated weights. The learning rate 
has a sort of “throttling effect.” If the value is too large, the new approxima-
tion might “overshoot” the optimal point; if it’s too small, the training time can 
increase significantly. By analogy, imagine you are in a passenger jet and you’re 
100 miles away from an airport. The speed of the airplane decreases as you 
approach the airport, which corresponds to decreasing the learning rate in a 
neural network.
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The Dropout Rate Hyperparameter

The dropout rate is the eighth hyperparameter, which is a decimal  
value between 0 and 1, typically between 0.2 and 0.5. Multiply this deci-
mal value with 100 to determine the percentage of randomly selected  
neurons to ignore during each forward pass in the training process. For 
example, if the dropout rate is 0.2, then 20% of the neurons are selected 
randomly and ignored during the forward propagation process. A different 
set of neurons is randomly selected whenever a new data point is processed 
in the neural network. Note that the neurons are not removed from the 
neural network: they still exist, and ignoring them during forward propa-
gation has the effect of “thinning” the neural network. In TF 2, the Keras 
tf.keras.layers.Dropout class performs the task of “thinning” a 
neural network.

There are additional hyperparameters that you can specify, but they are 
optional and not required in order to understand ANNs.

What Is Backward Error Propagation?

An ANN is typically drawn in a left-to-right fashion, where the leftmost 
layer is the input layer. The output from each layer becomes the input for 
the next layer. The term forward propagation refers to supplying values to the 
input layer and progressing through the hidden layers toward the output layer. 
The output layer contains the results (which are estimated numeric values) of 
the forward pass through the model.

Here is a key point: backward error propagation involves the calculation of 
numbers that are used to update the weights of the edges in the neural network. 
The update process is performed by means of a loss function (and an optimizer 
and a learning rate), starting from the output layer (the right-most layer) and 
then moving in a right-to-left fashion in order to update the weights of the 
edges between consecutive layers. This procedure trains the neural network, 
which involves reducing the loss between the estimated values at the output 
layer and the true values (in the case of supervised learning). This procedure 
is repeated for each data point in the training portion of the dataset. Process-
ing the training dataset is called an epoch, and many times a neural network is 
trained via multiple epochs.

The previous paragraph did not explain what the loss function is or how 
it’s chosen: that’s because the loss function, the optimizer, and the learning 
rate are hyperparameters that are discussed in previous sections. However, two 
commonly used loss functions are MSE and cross entropy; a commonly used 
optimizer is the Adam optimizer (and SGD and RMSprop and others); and a 
common value for the learning rate is 0.01.

What Is a Multilayer Perceptron (MLP)?

A multilayer perceptron (MLP) is a feedforward artificial neural net-
work that consists of at least three layers of nodes: an input layer, a hidden 
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Figure A.3.  An example of an MLP.

layer, and an output layer. An MLP is fully connected: given a pair of ad-
jacent layers, every node in the left layer is connected to every node in 
the right layer. Apart from the nodes in the input layer, each node is a 
neuron, and each layer of neurons involves a nonlinear activation function. 
In addition, MLPs use a technique called backward error propagation (or 
simply “backprop”) for training, which is also true for CNNs (convolutional 
neural networks). 

Figure A.3 displays the contents of an MLP with two hidden layers.
One point to keep in mind: the nonlinear activation function of an MLP 

differentiates an MLP from a linear perceptron. In fact, an MLP can handle 
data that is not linearly separable. For instance, the OR function and the 
AND function involve linearly separable data, so they can be represented 
via a linear perceptron. On the other hand, the XOR function involves data 
that is not linearly separable, and therefore requires a neural network such 
as an MLP.

Activation Functions

An MLP without an activation function between any adjacent pair of layers 
is a linear system: at each layer, simply multiply the vector from the previous 
layer with the current matrix (which connects the current layer to the next 
layer) to produce another vector. 

On the other hand, it’s straightforward to multiply a set of matrices to pro-
duce a single matrix. Since a neural network without activation functions is a 
linear system, we can multiply those matrices (one matrix for each pair of ad-
jacent layers) together to produce a single matrix: the original neural network 
is thereby reduced to a two-layer neural network consisting of an input layer 
and an output layer, which defeats the purpose of having a multilayered neural 
network.



180  •   TensorFlow 2 Pocket Primer

In order to prevent such a reduction of the layers of a neural network, 
an MLP must include a nonlinear activation function between adjacent layers 
(this is also true of any other deep neural network). The choice of nonlinear 
activation function is typically sigmoid, tanh (which is a hyperbolic tangent 
function), or ReLU (rectified linear unit).

The output of the sigmoid function ranges from 0 to 1, which has the 
effect of “squashing” the data values. Similarly, the output of the tanh func-
tion ranges from -1 to 1. However, the ReLU activation function (or one of its 
variants) is preferred for ANNs and CNNs, whereas sigmoid and tanh are 
used in LSTMs.

Several upcoming sections contain the details of constructing an MLP, such 
as how to initialize the weights of an MLP, storing weights and biases, and how 
to train a neural network via backward error propagation. 

How Are Data Points Correctly Classified?

As a point of reference: a “data point” refers to a row of data in a dataset, 
which can be a dataset for real estate, a dataset of thumbnail images, or some 
other type of dataset. Suppose that we want to train an MLP for a dataset that 
contains four classes (aka “labels”). In this scenario, the output layer must also 
contain four neurons, where the neurons have index values 0, 1, 2, and 3 (a 
ten-neuron output layer has index values from 0 to 9 inclusive). The sum of 
the probabilities in the output layer always equals 1 because of the softmax 
activation function that is used when transitioning from the penultimate layer 
to the output layer. 

The index value that has the largest probability in the output layer is com-
pared with the index value one-hot encoding of the label of the current data 
point. If the index values are equal, then the NN has correctly classified the 
current data point (otherwise, it’s a mismatch). 

For example, the MNIST dataset contains images of hand-drawn digits 
from 0 through 9 inclusive, which means that an NN for the MNIST dataset 
has ten outputs in the final layer, one for each digit. Suppose that an image 
containing the digit 3 is currently being “passed” through the NN. The one-
hot encoding for 3 is [0,0,0,1,0,0,0,0,0,0], and the index value with 
the largest value in the one-hot encoding is also 3. Now suppose that the out-
put layer of the NN is [0.05,0.05,0.2,0.6,0.02,0.02,0.01,0.01
,0.04] after processing the digit 3. As you can see, the index value with the 
maximum value (which is 0.6) is also 3. In this scenario, the NN has correctly 
identified the input image. One other point: the TF API tf.argmax() is 
used to calculate the total number of images that have been correctly labeled 
by an NN. 

A binary classifier involves two outcomes for handling tasks such as de-
termining spam/not-spam, fraud/not-fraud, stock increase/decrease (or tem-
perature, or barometric pressure), and so forth. Predicting the future value 
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of a stock price is a regression task, whereas predicting whether the price will 
increase or decrease is a classification task.

In machine learning, the multilayer perceptron is an NN for supervised 
learning of binary classifiers (and it’s a type of linear classifier). However, 
single-layer perceptrons are only capable of learning linearly separable pat-
terns. In fact, a famous book entitled Perceptrons by Marvin Minsky and Sey-
mour Papert (written in 1969) showed that it was impossible for these classes 
of networks to learn an XOR function. However, an XOR function can be 
“learned” by a two-layer perceptron.

Keras and the XOR Function

The XOR function is a well-known function that is not linearly separable in 
the plane. The truth table for the XOR (“exclusive OR”) function is straight-
forward: given two binary inputs, the output is 1 if at most one input is a 1; 
otherwise, the output is 0. If we treat XOR as the name of a function with two 
binary inputs, here are the outputs:

XOR(0,0) = 0
XOR(1,0) = 1
XOR(0,1) = 1
XOR(1,1) = 0

We can treat the output values as labels that are associated with the 
input values. Specifically, the points (0,0) and (1,1) are in class 0 and the 
points (1,0) and (0,1) are in class 1. Draw these points in the plane, and 
you will have the four vertices of a unit square whose lower-left vertex is 
the origin. Moreover, each pair of diagonal elements belongs to the same 
class, which makes the XOR function nonlinearly separable in the plane. If 
you’re skeptical, try to find a linear separator for the XOR function in the 
Euclidean plane.

Listing A.1 displays the contents of tf2_keras_xor.py, which illus-
trates how to create a Keras-based NN to train the XOR function.

Listing A.1: tf2_keras_xor.py

import tensorflow as tf
import numpy as np

# Logical XOR operator and "truth" values:
x = np.array([[0., 0.],[0., 1.],[1., 0.],[1., 1.]])
y = np.array([[0.], [1.], [1.], [0.]])

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(2, input_dim=2, 
activation='relu'))
model.add(tf.keras.layers.Dense(1))



182  •   TensorFlow 2 Pocket Primer

print("compiling model...")
model.compile(loss='mean_squared_error', optimizer='adam')
print("fitting model...")
model.fit(x,y,verbose=0,epochs=1000)
pred = model.predict(x)

# Test final prediction
print("Testing XOR operator")
p1 = np.array([[0., 0.]])
p2 = np.array([[0., 1.]])
p3 = np.array([[1., 0.]])
p4 = np.array([[1., 1.]])

print(p1,":", model.predict(p1))
print(p2,":", model.predict(p2))
print(p3,":", model.predict(p3))
print(p4,":", model.predict(p4))

Listing A.1 initializes the NumPy array x with four pairs of numbers that 
are the four combinations of 0 and 1, followed by the NumPy array y that con-
tains the logical OR of each pair of numbers in x. 

The next portion of Listing A.1 defines a Keras-based model with two 
Dense layers. Next, the model is compiled and trained, and then the var-
iable pred is populated with a set of predictions based on the trained 
model.

The next code block initializes the points p1, p2, p3, and p4 and then 
displays the values that are predicted for those points. The output from launch-
ing the code in Listing A.1 is here:

compiling model...
fitting model...
Testing XOR operator
[[0. 0.]] : [[0.36438465]]
[[0. 1.]] : [[1.0067574]]
[[1. 0.]] : [[0.36437267]]
[[1. 1.]] : [[0.15084022]]

Experiment with different values for epochs and see how that affects the 
predictions. Use the code in Listing A.1 as a “template” for other logical func-
tions. The only modification to Listing A.1 that is required is the replacement 
of the variable y in Listing A.1 with the variable y that is specified as the labels 
for several other logic gates that are listed as follows.

The labels for the NOR function:

y = np.array([[1.], [0.], [0.], [1.]])

The labels for the OR function:

y = np.array([[0.], [1.], [1.], [1.]])
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The labels for the XOR function:

y = np.array([[0.], [1.], [1.], [0.]])

The labels for the ANDR function:

y = np.array([[0.], [0.], [0.], [1.]])
mnist = tf.keras.datasets.mnist

The preceding code snippets are the only changes that you need to make to 
Listing A.1 in order to train a model for a different logical function. For your 
convenience, the companion files contains the following Keras-based code 
samples for the preceding functions:

tf2_keras-nor.py
tf2_keras-or.py
tf2_keras-xor.py
tf2_keras-and.py

After you have finished working with the preceding samples, try the NAND 
function, or create more complex combinations of these basic functions.

A High-Level View of CNNs

CNNs are deep NNs (with one or more convolutional layers) that are well-
suited for image classification, along with other use cases, such as audio and 
NLP (natural language processing).

Although MLPs were successfully used for image recognition, they do not 
scale well because every pair of adjacent layers is fully connected, which 
in turn can result in massive neural networks. For large images (or other 
large inputs) the complexity becomes significant and adversely affects 
performance.

Figure A.4 displays the contents of a CNN (there are many variations: this 
is simply one example).

Figure A.4.  An example of a CNN.

Adapted from source: https://commons.wikimedia.org/w/index.php?curid=45679374
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Figure A.5.  Performing a convolution.

A Minimalistic CNN

A production quality CNN can be very complex, comprising many hid-
den layers. However, in this section we’re going to look at a minimalistic CNN  
(essentially a “toy” neural network), which consists of the following  
layers:

•	 Conv2D (a convolutional layer)
•	 ReLU (activation function)
•	 max pooling (reduction technique)
•	 fully connected (FC) layer 
•	 Softmax activation function

The next subsections briefly explain the purpose of each bullet point in the 
preceding list of items.

The Convolutional Layer (Conv2D)

The convolutional layer is typically labeled as Conv2D in Python and TF 
code. The Conv2D layer involves a set of filters, which are small square matri-
ces whose dimensions are often 3x3 but can also be 5x5, 7x7, or even 1x1. Each 
filter is “scanned across” an image (think of tricorders in Star Trek movies), and 
at each step, an inner product is calculated with the filter and the portion of 
the image that is currently “underneath” the filter. The result of this scanning 
process is a “feature map” that contains real numbers. 

Figure A.5 displays a 7x7 grid of numbers and the inner product of a 3x3 
filter with a 3x3 subregion that results in the number 4 that appears in the 
feature map.
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The ReLU Activation Function

After each feature map is created, it’s possible that some of the values in 
the feature map are negative. The purpose of the ReLU activation function is 
to replace negative values (if any) with zero. Recall the definition of the ReLU 
function:

ReLU(x) = x if x >=0 and ReLU(x) = 0 if x < 0

If you draw a 2D graph of ReLU, it consists of two parts: the horizontal axis 
for x less than zero and the identity function (which is a line) in the first quad-
rant for x greater than or equal to 0.

The Max Pooling Layer

The third step involves “max pooling,” which is actually simple to perform: 
after processing the feature map with the ReLU activation function in the pre-
vious step, partition the updated feature map into 2x2 rectangles, and select 
the largest value from each of those rectangles. The result is a smaller array 
that contains 25% of the values of the feature map (i.e., 75% of the numbers 
are discarded). There are several algorithms that you can use to perform this 
extraction: the average of the numbers in each square; the square root of the 
sum of the squares of the numbers in each square; or the maximum number 
in each square. 

In the case of CNNs, the algorithm for max pooling selects the maximum 
number from each 2x2 rectangle. Figure A.6 displays the result of max pooling 
in a CNN.

As you can see, the result is a small square array whose size is only 25% of 
the previous feature map. This sequence is performed for each filter in the set 
of filters that were chosen in the Conv2D layer. This set can have 8, 16, 32, or 
more filters.

If you feel puzzled or skeptical about this technique, consider the analogy 
involving compression algorithms, which can be divided into two types: lossy 
and lossless. In case you didn’t already know, JPEG is a lossy algorithm (i.e., 

Figure A.6.  An example of max pooling in a CNN.
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data is lost during the compression process), and yet it works just fine for 
compressing images. Think of max pooling as the counterpart to lossy com-
pression algorithms, and perhaps that will persuade you of the efficacy of this 
algorithm.

At the same time, your skepticism is valid. In fact, Geoffrey Hinton (often 
called the “godfather” of deep learning) proposed a replacement for max 
pooling called “capsule networks.” This architecture is more complex and 
more difficult to train, and is also beyond the scope of this book (you can 
find online tutorials that discuss capsule networks in detail). However, cap-
sule networks tend to be more “resistant” to GANs (Generative Adversarial 
Networks).

Repeat the previous sequence of steps (as in LeNet), and then perform a 
rather nonintuitive action: “flatten” all these small arrays so that they are one-
dimensional vectors, and concatenate these vectors into one (very long) vector. 
The resulting vector is then fully connected with the output layer, where the 
latter consists of ten “buckets.” In the case of MNIST, these placeholders are 
for the digits from 0 to 9 inclusive. Note that the Keras tf.keras.layers.
Flatten class performs this “flattening” process.

The softmax activation function is “applied” to the “long vector” of num-
bers in order to populate the ten “buckets” of the output layer. The result: the 
ten buckets are populated with a set of nonzero (and nonnegative) numbers 
whose sum equals one. Find the index of the bucket containing the largest 
number and compare this number with the index of the one-hot encoded label 
associated with the image that was just processed. If the index values are equal, 
then the image was successfully identified.

More complex CNNs involve multiple Conv2D layers, multiple FC (fully 
connected) layers, different filter sizes, and techniques for combining previous 
layers (such as ResNet) to “boost” the data values’ current layer. Additional 
information about CNNs is here: https://en.wikipedia.org/wiki/Convolutional_
neural_network

CNNs with Audio Signals

In addition to image classification, you can train CNNs with audio signals, 
which can be converted from analog to digital. Audio signals have various 
numeric parameters (such as decibel level and voltage level) that are de-
scribed here: 

https://en.wikipedia.org/wiki/Audio_signal
If you have a set of audio signals, the numeric values of their associ-

ated parameters become the dataset for a CNN. Remember that CNNs have 
no “understanding” of the numeric input values: the numeric values are  
processed in the same fashion, regardless of the source of the numeric 
values.

One use case involves a microphone outside of a building that detects and 
identifies various sounds. Obviously, it’s important to identify the sound of a 
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“backfire” from a vehicle versus the sound of a gunshot. In the latter case, the 
police would be notified about a potential crime. There are companies that use 
CNNs to identify different types of sounds; other companies are exploring the 
use of RNNs and LSTMs instead of CNNs.

CNNs and NLPs

In the case of NLPs, it’s possible to “map” words to numeric values and 
construct a vector of numeric values from the words in a sentence. Hence, the 
text in a document can be transformed into a set of numeric vectors (involv-
ing various techniques that are not discussed here) in order to create a dataset 
that’s suitable for input to a CNN. 

Another option involves the use of RNNs and LSTMs instead of CNNs for 
NLP-related tasks. A bidirectional architecture is being used successfully in 
BERT (Bidirectional Encoder Representations from Transformers). The 
Google AI team developed BERT (open sourced in 2018), and it’s considered 
a breakthrough in its ability to solve NLP problems. The source code is here:

https://github.com/google-research/bert
Now that you have a high-level understanding of CNNs, let’s look at a code 

sample that illustrates an image in the MNIST dataset (and the pixel values of 
that image), followed by two code samples that use Keras to train a model on 
the MNIST dataset.

Displaying an Image in the MNIST Dataset

Listing A.2 displays the contents of tf2_keras-mnist_digit.py, 
which illustrates how to create a neural network in TensorFlow that processes 
the MNIST dataset.

Listing A.2: tf2_keras-mnist_digit.py

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(X_train, y_train), (X_test, y_test) = mnist.load_data()

print("X_train.shape:",X_train.shape)
print("X_test.shape: ",X_test.shape)

first_img = X_train[0]

# uncomment this line to see the pixel values
#print(first_img)

import matplotlib.pyplot as plt
plt.imshow(first_img, cmap='gray')
plt.show()
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Figure A.7.  The first image in the MNIST dataset.

Listing A.2 starts with some import statements and then populates the 
training data and test data from the MNIST dataset. The variable first_img 
is initialized as the first entry in the X_train array, which is the first image 
in the training dataset. The final block of code in Listing A.2 displays the pixel 
values for the first image. The output from Listing A.2 is here:

X_train.shape: (60000, 28, 28)
X_test.shape:  (10000, 28, 28)

Figure A.7 displays the contents of the first image in the MNIST dataset.

Keras and the MNIST Dataset

When you read code samples that contain Keras-based models that use the 
MNIST dataset, the models use a different API in the input layer. 

Specifically, a model that is not a CNN flattens the input images into a one-
dimensional vector via the tf.keras.layers.Flatten() API, an exam-
ple of which is here (see Listing A.3 for details):

tf.keras.layers.Flatten(input_shape=(28,28))

On the other hand, a CNN uses the tf.keras.layers.Conv2D() API, 
an example of which is here (see Listing A.4 for details): 

tf.keras.layers.Conv2D(32,(3,3),activation='relu',input_
shape=(28,28,1))

Listing A.3 displays the contents of tf2_simple_keras_mnist.py, 
which illustrates how to create a Keras-based neural network in TensorFlow 
that processes the MNIST dataset.
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Listing A.3: tf2_simple_keras_mnist.py

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

model.summary()

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Listing A.3 starts with some import statements and then initializes the 
variable mnist as a reference to the built-in MNIST dataset. Next, the train-
ing-related and test-related variables are initialized with their respective por-
tions of the MNIST dataset, followed by a scaling transformation for x_train 
and x_test. 

The next portion of Listing A.3 defines a very simple Keras-based model 
with four layers that are created from classes in the tf.keras.layers 
package. The next code snippet displays a summary of the model definition, 
as shown here:

Model: "sequential"
___________________________________________________________
Layer (type)                 Output Shape           Param #   
===========================================================
flatten (Flatten)            (None, 784)             0
___________________________________________________________
dense (Dense)                (None, 512)             401920    
___________________________________________________________
dropout (Dropout)            (None, 512)             0
___________________________________________________________
dense_1 (Dense)              (None, 10)              5130      
===========================================================
Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0
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The remaining portion of Listing A.3 compiles, fits, and evaluates the 
model, which produces the following output:

Epoch 1/5
60000/60000 [==============================] - 14s 225us/
step - loss: 0.2186 - acc: 0.9360
Epoch 2/5
60000/60000 [==============================] - 14s 225us/
step - loss: 0.0958 - acc: 0.9704
Epoch 3/5
60000/60000 [==============================] - 14s 232us/
step - loss: 0.0685 - acc: 0.9783
Epoch 4/5
60000/60000 [==============================] - 14s 227us/
step - loss: 0.0527 - acc: 0.9832
Epoch 5/5
60000/60000 [==============================] - 14s 225us/
step - loss: 0.0426 - acc: 0.9861
10000/10000 [==============================] - 1s 59us/step

As you can see, the final accuracy for this model is 98.6%, which is a re-
spectable value.

Keras, CNNs, and the MNIST Dataset

Listing A.4 displays the contents of tf2_cnn_dataset_mnist.py, 
which illustrates how to create a Keras-based neural network in TensorFlow 
that processes the MNIST dataset.

Listing A.4: tf2_cnn_dataset_mnist.py

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_labels) = 
tf.keras.datasets.mnist.load_data()

train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

# Normalize pixel values: from the range 0-255 to the range 
0-1
train_images, test_images = train_images/255.0, test_
images/255.0
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model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32, (3, 3), 
activation='relu', input_shape=(28, 28, 1)))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(64, (3, 3), 
activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(64, (3, 3), 
activation='relu'))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.summary()

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=1)
test_loss, test_acc = model.evaluate(test_images, test_
labels)
print(test_acc)

# predict the label of one image
test_image = np.expand_dims(test_images[300],axis = 0)
plt.imshow(test_image.reshape(28,28))
plt.show()

result = model.predict(test_image)
print("result:", result)
print("result.argmax():", result.argmax())

Listing A.4 initializes the training data and labels, as well as the test data 
and labels, via the load_data() function. Next, the images are reshaped 
so that they are 28x28 images, and then the pixel values are rescaled from the 
range 0–255 (all integers) to the range 0–1 (decimal values).

The next portion of Listing A.4 uses the Keras Sequential() API to de-
fine a Keras-based model called model, which contains two pairs of Conv2D 
and MaxPooling2D layers, followed by the Flatten layer, and then two 
consecutive Dense layers.

Next, the model is compiled, trained, and evaluated via the compile(), 
fit(), and evaluate() methods, respectively. The final portion of Listing 
A.4 successfully predicts the image whose label is 4, which is then displayed via 
Matplotlib. Launch the code in Listing A.4 and you will see the following 
output on the command line:
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Model: "sequential"
___________________________________________________________
Layer (type)                 Output Shape           Param #   
===========================================================
conv2d (Conv2D)              (None, 26, 26, 32)     320       
___________________________________________________________
max_pooling2d (MaxPooling2D) (None, 13, 13, 32)     0         
___________________________________________________________
conv2d_1 (Conv2D)            (None, 11, 11, 64)     18496     
___________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64)       0         
___________________________________________________________
conv2d_2 (Conv2D)            (None, 3, 3, 64)       36928     
___________________________________________________________
flatten (Flatten)            (None, 576)            0         
___________________________________________________________
dense (Dense)                (None, 64)             36928     
___________________________________________________________
dense_1 (Dense)              (None, 10)             650       
===========================================================
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0
___________________________________________________________
60000/60000 [==============================] - 54s 907us/
sample - loss: 0.1452 - accuracy: 0.9563
10000/10000 [==============================] - 3s 297us/
sample - loss: 0.0408 - accuracy: 0.9868
0.9868
Using TensorFlow backend.
result: [[6.2746993e-05 1.7837329e-03 3.8957372e-04 
4.6143982e-06 9.9723744e-01
  1.5522403e-06 1.9182076e-04 3.0044283e-04 2.2602901e-05 
5.3929521e-06]]
result.argmax(): 4

Figure A.8 displays the image that is displayed when you launch the code 
in Listing A.4.

You might be asking yourself how non-CNN models in machine learning 
achieve high accuracy when every input image is flattened into a one-dimen-
sional vector, which loses the “adjacency” information that is available in a two- 
dimensional image. Before CNNs became popular, one technique involved 
using MLPs and another technique involved SVMs as models for images. In 
fact, if you don’t have enough images to train a model, you can still use an SVM. 
Another option is to generate synthetic data using a GAN (which was its original 
purpose).
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What Is an RNN?

An RNN is a recurrent neural network, which is a type of architecture that 
was developed during the 1980s. RNNs are suitable for datasets that contain se-
quential data and also for NLP tasks, such as language modeling, text genera-
tion, or auto-completion of sentences. In fact, you might be surprised to learn 
that you can even perform image classification (such as MNIST) via an RNN. 
Figure A.9 displays the contents of a simple RNN.

In addition to simple RNNs there are more powerful constructs such as 
LSTMs and GRUs. A basic RNN has the simplest type of feedback mechanism 
(described later), which involves a sigmoid activation function.

RNNs (which includes LSTMs and GRUs) differ from ANNs in several impor-
tant ways, as listed here:

•	 Statefulness (all RNNs)
•	 Feedback mechanism (all RNNs)
•	 A sigmoid or tanh activation function
•	 Multiple gates (LSTMs and GRUs)
•	 BPTT (Back Propagation Through Time)
•	 Truncated BPTT (simple RNNs)

First, ANNs and CNNs are essentially “stateless,” whereas RNNs are “stateful” 
because they have an internal state. Hence, RNNs can process more complex 
sequences of inputs, which makes them suitable for tasks such as handwriting 
recognition and speech recognition.

Figure A.8.  An image in the MNIST dataset.
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Anatomy of an RNN

Consider the RNN in Figure A.9. Suppose that the sequence of inputs is la-
beled x1, x2, x3, . . . , x(t), and also that the sequence of “hidden states” 
is labeled h1, h2, h3, . . . , h(t). Note that each input sequence and hidden 
state is a 1xn vector, where n is the number of features.

At time period t, the input is based on a combination of h(t-1) and x(t), 
after which an activation function is “applied” to this combination (which can 
also involve adding a bias vector).

Another difference is the feedback mechanism for RNNs that occurs be-
tween consecutive time periods. Specifically, the output at a previous time 
period is combined with the new input of the current time period in order to 
calculate the new internal state. Let’s use the sequence {h(0), h(1), h(2), 
. . . h(t-1), h(t)} to represent the set of internal states of an RNN 
during time periods {0, 1, 2, . . . , t-1, t}, and let’s also suppose that 
the sequence {x(0) , x(1), x(2), ... , x(t-1), x(t)} is the inputs 
during the same time periods.

The fundamental relationship for an RNN at time period t is here:

h(t) = f(W*x(t) + U*h(t-1))

In the preceding formula, W and U are weight matrices, and f is typically 
the tanh activation function. 

Here is a code snippet of a TF 2 Keras-based model that involves the Sim-
pleRNN class:

import tensorflow as tf
...
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.SimpleRNN(5, input_shape=(1,2), 
batch_input_shape=[1,1,2], stateful=True))
... 

Perform an online search for more information and code samples involving 
Keras and RNNs.

Figure A.9.  An example of an RNN.

Image adapted from source: https://commons.wikimedia.org/w/index.php?curid=60109157
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What Is BPTT?

BPTT (back propagation through time) in RNNs is the counterpart to “back-
prop” for CNNs. The weight matrices of RNNs are updated during BPTT in 
order to train the neural network. 

However, there is a problem called the “exploding gradient” that can occur 
in RNNs, which is to say that the gradient becomes arbitrarily large (versus 
the gradient becoming arbitrarily small in the so-called “vanishing gradient” 
scenario). One way to deal with the exploding gradient problem is to use a 
“truncated BPTT,” which means that BPTT is computed for a small number 
of steps instead of all time steps. Another technique is to specify a maximum 
value for the gradient, which involves simple conditional logic.

The good news is that there is another way to overcome both the explod-
ing gradient and vanishing gradient problems, which involves LSTMs that are 
discussed later in this chapter.

Working with RNNs and TF 2

Listing A.5 displays the contents of tf2_rnn_model.py, which illus-
trates how to create a simple Keras-based RNN model.

Listing A.5: tf2_rnn_model.py

import tensorflow as tf

timesteps = 30
input_dim = 12

# number of units in RNN cell
units = 512

# number of classes to be identified
n_activities = 5
model = tf.keras.models.Sequential()

# RNN with dropout:
model.add(tf.keras.layers.SimpleRNN(units=units,
                    dropout=0.2,
                    input_shape=(timesteps, input_dim)))

# one Dense layer:
model.add(tf.keras.layers.Dense(n_activities, 
activation='softmax'))

# model loss function and optimizer
model.compile(loss='categorical_crossentropy',
              optimizer=tf.keras.optimizers.Adam(),
              metrics=['accuracy'])

model.summary()
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Launch the code in Listing A.5 and you will see the following output:

Model: "sequential"
___________________________________________________________
Layer (type)                 Output Shape           Param #   
===========================================================
simple_rnn (SimpleRNN)       (None, 512)            268800    
___________________________________________________________
dense (Dense)                (None, 5)              2565      
===========================================================
Total params: 271,365
Trainable params: 271,365
Non-trainable params: 0

There are many variants of RNNs, and you can read about some of them 
here:

https://en.wikipedia.org/wiki/Recurrent_neural_network

What Is an LSTM?

LSTMs are a special type of RNN, and they are well-suited for many use 
cases, including NLP, speech recognition, and handwriting recognition. LSTMs 
are designed for handling something called “long term dependency,” which 
refers to the distance gap between relevant information and the location where 
that information is required. This situation arises when information in one sec-
tion of a document needs to be “linked” to information that is in a more distant 
location of the document.

LSTMs were developed in 1997 and went on to exceed the accuracy perfor-
mance of state-of-the-art algorithms. LSTMs also began revolutionizing speech 
recognition (circa 2007). Then in 2009 an LSTM won pattern recognition con-
tests, and in 2014, Baidu used RNNs to exceed speech recognition records. 
Navigate to the following link in order to see an example of an LSTM: https://
commons.wikimedia.org/w/index.php?curid=60149410

Anatomy of an LSTM

LSTMs are “stateful” and they contain three gates (forget gate, input gate, 
and an output gate) that involve a sigmoid function, and also a cell state that 
involves the tanh activation function. At time period t the input to an LSTM 
is based on a combination of the two vectors h(t-1) and x(t). This pair of 
inputs is combined, after which a sigmoid activation function is “applied” to 
this combination (which can also include a bias vector) in the case of the forget 
gate, input gate, and the output gate. 

The processing that occurs at time step t is the “short term” memory of an 
LSTM. The internal cell state of LSTMs maintains “long term” memory. Updat-
ing the internal cell state involves the tanh activation function, whereas the 
other gates use the sigmoid activation function, as mentioned in the previous 
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paragraph. Here is a TF 2 code block that defines a Keras-based model for an 
LSTM (with the LSTM shown in bold):

import tensorflow as tf
. . . 
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.LSTMCell(6,batch_input_
shape=(1,1,1),kernel_initializer='ones',stateful=True))
model.add(tf.keras.layers.Dense(1))
. . .

You can learn about the difference between an LSTM and an LSTMCell 
here:

https://stackoverflow.com/questions/48187283/whats-the-difference-be-
tween-lstm-and-lstmcell

In case you’re interested, additional information about LSTMs and also how 
to define a custom LSTM cell is here:

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://stackoverflow.com/questions/54231440/define-custom-lstm-cell-in-

keras

Bidirectional LSTMs

In addition to one-directional LSTMs, you can also define a “bidirectional” 
LSTM that consists of two “regular” LSTMs: one LSTM for the forward direction 
and one LSTM in the backward or opposite direction. You might be surprised 
to discover that bidirectional LSTMs are well-suited for solving NLP tasks. 

For instance, ELMo is a deep word representation for NLP tasks that uses 
bidirectional LSTMs. 

An even newer architecture in the NLP world is called a “transformer,”; 
bidirectional transformers are used in BERT, which is a very well-known sys-
tem (released by Google in 2018) that can solve solve complex NLP problems. 

The following TF 2 code block contains a Keras-based model that involves 
bidirectional LSTMs:

import tensorflow as tf
. . . 
model = Sequential()
model.add(Bidirectional(LSTM(10, return_sequences=True), 
input_shape=(5,10)))
model.add(Bidirectional(LSTM(10)))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', 
optimizer='rmsprop')
. . . 

The previous code block contains two bidirectional LSTM cells, both of 
which are shown in bold.
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LSTM Formulas

The formulas for LSTMs are more complex than the update formula for a 
simple RNN, but there are some patterns that can help you understand those 
formulas. 

Navigate to the following link in order to see the formulas for an LSTM:
https://en.wikipedia.org/wiki/Long_short-term_memory#cite_note-

lstm1997-1
The formulas show you how the new weights are calculated for the forget 

gate f, the input gate i, and the output gate o during time step t. In addition, 
Figure A.10 shows you how the new internal state and the hidden state (both 
at time step t) are calculated.

Notice the pattern for gates f, i, and o: all of them calculate the sum of 
two terms, each of which is a product involving x(t) and h(t), after which 
the sigmoid function is applied to that sum. Specifically, here’s the formula for 
the forget gate at time t:

f(t) = sigma(W(f)*x(t) + U(f)*h(t) + b(f))

In the preceding formula, W(f), U(f), and b(f) are the weight matrix 
associated with x(t), the weight matrix associated with h(t), and the bias 
vector for the forget gate f, respectively.

Notice that the calculations for i(t) and o(t) have the same pattern as the 
calculation for f(t). The difference is that i(t) has the matrices W(i) and 
U(i), whereas o(t) has the matrices W(o) and U(o). Thus, f(t), i(t), and 
o(t) have a “parallel construction.”

The calculations for c(t), i(t), and h(t) are based on the values for 
f(t), i(t), and o(t), as shown here:

c(t)  = f(t) * c(t-1) + i(t) * tanh(c'(t)) 
c'(t) = sigma(W(c) * x(t) + U(c) * h(t-1))
h(t)  = o(t) * tanh(c(t))

The final state of an LSTM is a one-dimensional vector that contains the 
output from all the other layers in the LSTM. If you have a model that contains 
multiple LSTMs, the final state vector for a given LSTM becomes the input for 
the next LSTM in that model.

LSTM Hyperparameter Tuning

LSTMs are also prone to overfitting, and here is a list of things to consider if 
you are manually optimizing hyperparameters for LSTMs:

•	 overfitting (use regularization such as L1 or L2)
•	 larger networks are more prone to overfitting
•	 more data tends to reduce overfitting
•	 train the networks over multiple epochs
•	 the learning rate is vitally important
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•	 stacking layers can be helpful
•	 use softsign instead of softmax for LSTMs
•	 RMSprop, AdaGrad, or momentum are good choices
•	 Xavier weight initialization

Perform an online search to obtain more information about the optimizers 
in the preceding list.

What Are GRUs?

A GRU (gated recurrent unit) is an RNN that is a simplified type of LSTM. 
The key difference between a GRU and an LSTM is that a GRU has two gates 
(reset and update gates) whereas an LSTM has three gates (reset, output, and 
forget gates). The reset gate in a GRU performs the functionality of the input 
gate and the forget gate of an LSTM.

Keep in mind that GRUs and LSTMs both have the goal of tracking long-
term dependencies effectively, and they both address the problem of vanishing 
gradients and exploding gradients. Navigate to the following link in order to 
see an example of a GRU:

https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_
type.svg

Navigate to the following link in order to see the formulas for a GRU (which 
are similar to the formulas for an LSTM):

https://en.wikipedia.org/wiki/Gated_recurrent_unit

What Are Autoencoders?

An autoencoder (AE) is a neural network that is similar to an MLP, where 
the output layer is the same as the input layer. The simplest type of AE con-
tains a single hidden layer that has fewer neurons than either the input layer 
or the output layer. However, there are many different types of AEs in which 
there are multiple hidden layers, sometimes containing more neurons than the 
input layer (and sometimes containing fewer neurons).

An AE uses unsupervised learning and back propagation to learn an ef-
ficient data encoding. Their purpose is dimensionality reduction: AEs set the 
input values equal to the inputs and then try to find the identity function. Fig-
ure A.10 displays a simple AE that involves a single hidden layer.

In essence, a basic AE compresses the input to an “intermediate” vector 
with fewer dimensions than the input data, and then transforms that vector 
into a tensor with the same shape as the input. Several use cases for AEs are 
listed as follows:

•	 document retrieval
•	 classification
•	 anomaly detection
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•	 adversarial autoencoders
•	 image denoising (generating clear images)

An example of using TensorFlow and Keras with an autoencoder in order 
to perform fraud detection is here:

https://www.datascience.com/blog/fraud-detection-with-tensorflow
AEs can also be used for feature extraction because they can yield better 

results than PCAs. Keep in mind that AEs are data-specific, which means that 
they only work with similar data. However, they differ from image compression 
(and are mediocre for data compression). For example, an autoencoder trained 
on faces would work poorly on pictures of trees. In summary, an AE involves:

•	 “squeezing” the input to a smaller layer
•	 learning a representation for a set of data
•	 typically for dimensionality reduction (PCA)
•	 keep only the middle “compressed” layer

As a high-level example, consider a 10x10 image (100 pixels) and an AE 
that has 100 neurons (10x10 pixels), a hidden layer with 50 neurons, and an 
output layer with 100 neurons. Hence, the AE “compresses” 100 neurons to 
50 neurons. 

As you saw earlier, there are numerous variations of the basic AE, some of 
which are listed as follows:

•	 LSTM autoencoders
•	 Denoising autoencoders
•	 Contractive autoencoders
•	 Sparse autoencoders

Figure A.10.  A basic autoencoder.

Image adapted from Philippe Remy, source: http://philipperemy.github.io/anomaly-detection/
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•	 Stacked autoencoders
•	 Deep autoencoders
•	 Linear autoencoders

If you’re interested, the following link contains a wide assortment of  
autoencoders, including those that are mentioned in this section:

https://www.google.com/search?sa=X&q=Autoencoder&tbm=isch&source
=univ&ved=2ahUKEwjo-8zRrIniAhUGup4KHVgvC10QiR56BAgMEBY&bi
w=967&bih=672

Perform an online search for code samples and more details regarding AEs 
and their associated use cases.

Autoencoders and PCA

The optimal solution to an autoencoder is strongly related to principal com-
ponent analysis (PCA) if the autoencoder involves linear activations or only a 
single sigmoid hidden layer. 

The weights of an autoencoder with a single hidden layer of size p (where 
p is less than the size of the input) span the same vector subspace as the one 
spanned by the first p principal components. 

The output of the autoencoder is an orthogonal projection onto this sub-
space. The autoencoder weights are not equal to the principal components, 
and are generally not orthogonal, yet the principal components may be recov-
ered from them using the singular value decomposition.

What Are Variational Autoencoders?

In very brief terms, a variational autoencoder is sort of an enhanced “regu-
lar” autoencoder in which the “left side” acts as an encoder, and the right side 
acts as a decoder. Both sides have a probability distribution associated with the 
encoding and decoding process.

In addition, both the encoder and the decoder are actually neural networks. 
The input for the encoder is a vector x of numeric values, and its output is a 
hidden representation z that has weights and biases. The decoder has input 
a (i.e., the output of the encoder), and its output is the parameters of a prob-
ability distribution of the data, which also has weights and biases. Note that the 
probability distributions for the encoder and the decoder are different. If you 
want to learn more about VAEs, navigate to the Wikipedia page that discusses 
VAEs in a detailed fashion.

Figure A.11 displays a high-level and simplified VAE that involves a single 
hidden layer.

Another interesting model architecture is a combination of a CNN and a 
VAE, which you can read about here:

https://towardsdatascience.com/gans-vs-autoencoders-comparison-of-
deep-generative-models-985cf15936ea

In the next section, you will learn about GANs, and also how to combine a 
VAE with a GAN.
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Figure A.11.  A variational autoencoder.

What Are GANs?

A GAN is a generative adversarial network, whose original purpose was to 
generate synthetic data, typically for augmenting small datasets or unbalanced 
datasets. One use case pertains to missing persons: supply the available images 
of those persons to a GAN in order to generate an image of how those people 
might look today. There are many other use cases for GANs, some of which are 
listed here:

•	 Generating art
•	 Creating fashion styles
•	 Improving images of low quality 
•	 Creating “artificial” faces
•	 Reconstructing incomplete/damaged images

Ian Goodfellow (PhD in Machine Learning from the University of Mon-
treal) created GANs in 2014. Yann LeCun (AI research director at Facebook) 
called adversarial training “the most interesting idea in the last 10 years in 
ML.” Incidentally, Yann LeCun was one of the three recipients of the Turing 
Award in 2019: Yoshua Bengio, Geoffrey Hinton, and Yann LeCun.

GANs are becoming increasingly common, and people are finding creative 
(unexpected?) uses for them. Alas, GANs have been used for nefarious pur-
poses, such as circumventing image-recognition systems. GANs can generate 
“counterfeit” images from valid images by changing the pixel values in order to 
deceive neural networks. Since those systems rely on pixel patterns, they can 
be deceived via adversarial images, which are images whose pixel values have 
been altered. 

Navigate to the following link in order to see an example of a GAN that 
distorts the image of a panda: https://arxiv.org/pdf/1412.6572.pdf
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An article that delves into details of adversarial examples (including the 
misclassified panda) is here:

https://openai.com/blog/adversarial-example-research/
According to an MIT paper, the modified values that trigger misclassifica-

tions exploit precise patterns that the image system associates with specific 
objects. The researchers noticed that datasets contain two types of correla-
tions: patterns that are correlated with the dataset data, and non-generalizable 
patterns in the dataset data. GANs successfully exploit the latter correlations 
in order to deceive image-recognition systems. Details of the MIT paper are 
here: https://gandissect.csail.mit.edu

Various techniques are being developed to thwart adversarial attacks, but 
their effectiveness tends to be short-lived: new GANs are created that can out-
wit those techniques. The following article contains more information about 
adversarial attacks:

https://www.technologyreview.com/s/613170/emtech-digital-dawn-song-
adversarial-machine-learning

Unfortunately, there are no long-term solutions to adversarial attacks, and 
given their nature, it might never be possible to completely defend against 
them. Interestingly, GANs can have problems in terms of convergence, just like 
other neural networks. One technique for addressing this problem is called 
“minibatch discrimination,” details of which are here:

https://www.inference.vc/understanding-minibatch-discrimination-in-
gans/

Please note that the preceding link involves Kullback Leibler Divergence 
and JS Divergence, which are more advanced topics. The preceding blog post 
also contains a link to the following Jupyter notebook:

https://gist.github.com/fhuszar/a91c7d0672036335c1783d02c3a3dfe5
If you’re interested in working with GANs, this GitHub link contains Python 

and TensorFlow code samples for “constructing attacks and defenses”:
https://github.com/tensorflow/cleverhans

The VAE-GAN Model

Another interesting model is the VAE-GAN model, which is a hybrid of a 
VAE and a GAN, and details about this model are here:

https://towardsdatascience.com/gans-vs-autoencoders-comparison-of-
deep-generative-models-985cf15936ea

According to the preceding link, GANs are superior to VAEs, but they are 
also difficult to work with and require a lot of data and tuning. If you’re inter-
ested, a GAN tutorial (by the same author) is available here:

https://github.com/mrdragonbear/GAN-Tutorial 

Working with NLP (Natural Language Processing)

This section highlights some concepts in NLP, and in many cases you need 
to perform an online search to learn about the meaning of the concepts (try 
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Wikipedia). Although the concepts are treated in a very superficial manner, 
you will know what to pursue in order to further your study of NLP.

NLP is currently the focus of significant interest in the machine learning 
community. Some of the use cases for NLP are listed here:

•	 Chatbots
•	 Search (text and audio)
•	 Text classification
•	 Sentiment analysis
•	 Recommendation systems
•	 Question answering
•	 Speech recognition
•	 NLU (natural language understanding)
•	 NLG (natural language generation)

You encounter many of these use cases in everyday life when you visit web 
pages, or when you perform an online search for books or recommendations 
regarding movies.

NLP Techniques

The earliest approach for solving NLP tasks involved rule-based ap-
proaches, which dominated the industry for decades. Examples of techniques 
using rule-based approaches include regular expressions (RegExs) and context 
free grammars (CFGs). RegExs are sometimes used in order to remove me-
tacharacters from text that has been “scraped” from a web page.

The second approach involved training a machine learning model with 
some data that was based on some user-defined features. This technique  
requires a considerable amount of feature engineering (a nontrivial task) and 
includes analyzing the text to remove undesired and superfluous content  
(including “stop” words), as well as transforming the words (e.g., converting 
uppercase to lowercase).

The most recent approach involves deep learning, whereby a neural net-
work learns the features instead of relying on humans to perform feature en-
gineering. One of the key ideas involves “mapping” words to numbers, which 
enables us to map sentences to vectors of numbers. After transforming docu-
ments to vectors, we can perform a myriad of operations on those vectors. For 
example, we can use the notion of vector spaces to define vector space models, 
where the distance between two vectors can be measured by the angle be-
tween them (this is “cosine similarity”). If two vectors are “close” to each other, 
then it’s likelier that the corresponding sentences are similar in meaning. Their 
similarity is based on the distributional hypothesis: words in the same contexts 
tend to have similar meanings.

A nice article that discusses vector representations of words, along with 
links to code samples, is here:

https://www.tensorflow.org/tutorials/representation/word2vec
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The Transformer Architecture and NLP

In 2017, Google introduced the Transformer neural network architec-
ture, which is based on a self-attention mechanism that is well-suited for lan-
guage understanding.

Google showed that the Transformer outperforms earlier benchmarks 
for both RNNs and CNNs involving the translation of academic English to Ger-
man as well as English to French. Moreover, the Transformer required less 
computation to train, and improved the training time by as much as an order 
of magnitude.

The Transformer can process the sentence “I arrived at the bank after 
crossing the river” and correctly determine that the word “bank” refers to the 
shore of a river and not a financial institution. The Transformer makes this 
determination in a single step by making the association between “bank” and 
“river.”

The Transformer computes the next representation for a given word 
by comparing the word to every other word in the sentence, which results in 
an “attention score” for the words in the sentence. The Transformer uses 
these scores to determine the extent to which other words will contribute to 
the next representation of a given word.

The result of these comparisons is an attention score for every other word 
in the sentence. As a result, “river” received a high attention score when com-
puting a new representation for “bank.”

Although LSTMs and bidirectional LSTMs are heavily utilized in NLP tasks, 
the Transformer has gained a lot of attention in the AI community, not only 
for translation between languages, but also the fact that for some tasks it can 
outperform both RNNs and CNNs. The Transformer architecture requires 
much less computation time in order to train a model, which explains why 
some people believe that the Transformer will supplant RNNs and LSTMs.

The following link contains a TF 2 code sample of a Transformer neural 
network that you can launch in Google Colaboratory:

https://www.tensorflow.org/alpha/tutorials/text/transformer
Another interesting and recent architecture is called “attention augmented 

convolutional networks,” which is a combination of CNNs with self-attention. 
This combination achieves better accuracy than “pure” CNNs, and you can find 
more details in this paper: https://arxiv.org/abs/1904.09925 

Transformer-XL Architecture

The Transformer-XL combines a Transformer architecture with two tech-
niques called recurrence mechanism and relative positional encoding to obtain 
better results than a Transformer. Transformer-XL works with word-level and 
character-level language modeling.

The Transformer-XL and Transformer both process the first segment of 
tokens, and the former also keeps the outputs of the hidden layers. Conse-
quently, each hidden layer receives two inputs from the previous hidden layer, 
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and then concatenates them to provide additional information to the neural 
network.

NLP and Deep Learning

The NLP models that use deep learning can comprise CNNs, RNNs, LSTMs, 
and bidirectional LSTMs. For example, Google released BERT in 2018, which 
is an extremely powerful framework for NLP. BERT is quite sophisticated, and 
involves bidirectional transformers and so-called “attention” (discussed briefly 
later in this appendix). Deep learning for NLP often yields higher accuracy 
than other techniques, but keep in mind that sometimes it’s not as fast as rule-
based and classical machine learning methods.

In case you’re interested, a code sample that uses TensorFlow and RNNs for 
text classification is here:

https://www.tensorflow.org/alpha/tutorials/text/text_classification_rnn
A code sample that uses TensorFlow and RNNs for text generation is here:
https://www.tensorflow.org/alpha/tutorials/text/text_generation

NLP and Reinforcement Learning

More recently reinforcement learning with NLP has become a successful 
area of research. One technique for NLP-related tasks involves RNN-based  
encoder–decoder models that have achieved good results for short input and 
output sequences. Another technique involves a neural network, supervised 
word prediction, and reinforcement learning. This particular combination 
avoids exposure bias, which can occur in models that use only supervised learn-
ing. More details are here: https://arxiv.org/pdf/1705.04304.pdf

Yet another interesting technique involves deep reinforcement learning 
(i.e., DL combined with RL) with NLP. In case you don’t already know, DRL 
has achieved success in various areas, such as Atari games, defeating Lee Sedol 
(the world champion Go player), and robotics. In addition, DRL is also appli-
cable to NLP-related tasks, which involves the key challenge of designing of a 
suitable model. Perform an online search for more information about solving 
NLP-related tasks with RL and DRL.

Data Preprocessing Tasks

There are some common preprocessing tasks that are performed on 
documents, listed as follows:

•	 [1] lowercasing
•	 [1] noise removal
•	 [2] normalization
•	 [3] text enrichment
•	 [3] stopword removal
•	 [3] stemming
•	 [3] lemmatization
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The preceding tasks can be classified as follows:

1.	 [1]: mandatory tasks
2.	 [2]: recommended tasks
3.	 [3]: task dependent

In brief, preprocessing tasks involve at least the removal of redundant 
words (“a,” “the,” and so forth), removing the endings of words (“running,” 
“runs,” and “ran” are treated the same as “run”), and converting text from up-
percase to lowercase.

Popular NLP Algorithms

Some of the popular NLP algorithms are listed as follows, and in some 
cases they are the foundation for more sophisticated NLP toolkits:

•	 n-grams and skip-grams
•	 BoW: Bag of Words
•	 TF-IDF: basic algorithm in extracting keywords
•	 Word2Vector (Google): O/S project to describe text
•	 GloVe (Stanford NLP Group)
•	 LDA: text classification
•	 CF (collaborative filtering): an algorithm in news recommend system 

(Google News and Yahoo News)

The topics in the first half of the preceding list are discussed briefly in 
subsequent sections.

What Is an n-Gram?

An n-gram is a technique for creating a vocabulary that is based on adjacent 
words that are grouped together. This technique retains some word positions 
(unlike BoW). You need to specify the value of “n” that in turn specifies the 
size of the group.

The idea is simple: for each word in a sentence, construct a vocabulary 
term that contains the n words on the left side of the given word and n words 
that are on the right side of the given word. As a simple example, “This is a 
sentence” has the following 2-grams:

(this, is), (is, a), (a, sentence)

As another example, we can use the same sentence “This is a sentence” to 
determine its 3-grams:

(this, is, a), (is, a, sentence)

The notion of n-grams is surprisingly powerful, and it’s used heavily in pop-
ular open-source toolkits such as ELMo and BERT when they pretrain their 
models.
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What Is a Skip-Gram?

Given a word in a sentence, a skip-gram creates a vocabulary term by con-
structing a list that contains the n words on both sides of a given word, followed 
by the word itself. For example, consider the following sentence:

the quick brown fox jumped over the lazy dog

A skip-gram of size 1 yields the following vocabulary terms:

([the,brown], quick), ([quick,fox], brown), 
([brown,jumped], fox),...

A skip-gram of size 2 yields the following vocabulary terms:

([the,quick,fox,jumped], brown), 
([quick,brown,jumped,over], fox), ([brown,fox,over,the], 
jumped),...

More details regarding skip-grams are discussed here:
https://www.tensorflow.org/tutorials/representation/word2vec#the_skip-

gram_model

What Is BoW?

BoW (Bag of Words) assigns a numeric value to each word in a sentence 
and treats those words as a set (or bag). Hence, BoW does not keep track of 
adjacent words, so it’s a very simple algorithm.

Listing A.6 displays the contents of the Python script bow_to_vector.
py, which illustrates how to use the BoW algorithm.

Listing A.6: bow_to_vector.py

VOCAB = ['dog', 'cheese', 'cat', 'mouse']
TEXT1 = 'the mouse ate the cheese'
TEXT2 = 'the horse ate the hay'

def to_bow(text):
  words = text.split(" ")
  return [1 if w in words else 0 for w in VOCAB]

print("VOCAB: ",VOCAB)
print("TEXT1:",TEXT1)
print("BOW1: ",to_bow(TEXT1))  # [0, 1, 0, 1]
print("")

print("TEXT2:",TEXT2) 
print("BOW2: ",to_bow(TEXT2))  # [0, 0, 0, 0]

Listing A.6 initializes a list VOCAB and two text strings TEXT1 and TEXT2. 
The next portion of Listing A.6 defines the Python function to_bow() that 
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returns an array containing 0s and 1s: if a word in the current sentence appears 
in the vocabulary, then a 1 is returned (otherwise a 0 is returned). The last por-
tion of Listing A.6 invokes the Python function with two different sentences. 
The output from launching the code in Listing A.6 is here:

('VOCAB: ', ['dog', 'cheese', 'cat', 'mouse'])
('TEXT1:', 'the mouse ate the cheese')
('BOW1: ', [0, 1, 0, 1])

('TEXT2:', 'the horse ate the hay')
('BOW2: ', [0, 0, 0, 0])
fitting model...

What Is Term Frequency?

Term frequency is the number of times that a word appears in a document, 
which can vary among different documents. Consider the following simple  
example that consists of two “documents” Doc1 and Doc2:

Doc1 = "This is a short sentence"
Doc2 = "yet another short sentence"

The term frequency for the word “is” and the word “short” is given as fol-
lows:

tf(is) = 1/5 for doc1
tf(is) = 0 for doc2
tf(short) = 1/5 for doc1
tf(short) = 1/4 for doc2

The preceding values will be used in the calculation of tf-idf that is 
explained in a later section.

What Is Inverse Document Frequency (idf)?

Given a set of N documents and given a word in a document, let’s define dc 
and idf of each word as follows:

dc = # of documents containing a given word
idf = log(N/dc)

Now let’s use the same two documents Doc1 and Doc2 from a previous 
section:

Doc1 = "This is a short sentence"
Doc2 = "yet another short sentence"

The calculations of the idf value for the word “is” and the word “short” 
are shown here:

idf(is) = log(2/1) = log(2)
idf(short) = log(2/2) = 0
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The following link provides more detailed information about inverse docu-
ment frequency: https://en.wikipedia.org/wiki/Tf–idf#Example_of_tf–idf

What Is tf-idf?

The term tf-idf is an abbreviation for “term frequency, inverse docu-
ment frequency,” and it’s the product of the tf value and the idf value of a 
word, as shown here:

tf-idf = tf * idf

A high-frequency word has a higher tf value but a lower idf value. In 
general, “rare” words are more relevant than “popular” ones, so they help to 
extract “relevance.” For example, suppose you have a collection of ten docu-
ments (real documents, not the toy documents we used earlier). The word 
“the” occurs frequently in English sentences, but it does not provide any indi-
cation of the topics in any of the documents. On the other hand, if you deter-
mine that the word “universe” appears multiple times in a single document, 
this information can provide some indication of the theme of that document, 
and with the help of NLP techniques, assist in determining the topic (or topics) 
in that document. 

What Are Word Embeddings?

An embedding is a fixed-length vector to encode and represent an entity 
(document, sentence, word, or graph). Each word is represented by a real- 
valued vector, which can result in hundreds of dimensions. Furthermore, 
such an encoding can result in sparse vectors: one example is one-hot en-
coding, where one position has the value 1 and all other positions have the 
value 0.

Three popular word-embedding algorithms are Word2vec, GloVe, and 
FastText. Keep in mind that these three algorithms involve unsupervised ap-
proaches. They are also based on the distributional hypothesis, which asserts 
that words in the same contexts tend to have similar meanings: https://aclweb.
org/aclwiki/Distributional_Hypothesis

A good article regarding Word2Vec in TensorFlow is here:
https://towardsdatascience.com/learn-word2vec-by-implementing-it-in-

tensorflow-45641adaf2ac
This article is useful if you want to see Word2Vec with FastText in gensim:
https://towardsdatascience.com/word-embedding-with-word2vec-and-

fasttext-a209c1d3e12c
Another good article, and this one pertains to the skip-gram model:
https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intui-

tion-78614e4d6e0b
A useful article that describes how FastText works “under the hood”:
https://towardsdatascience.com/fasttext-under-the-hood-11efc57b2b3
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Along with the preceding popular algorithms, there are also some popular 
embedding models, some of which are listed as follows:

•	 Baseline Averaged Sentence Embeddings
•	 Doc2Vec
•	 Neural-Net Language Models
•	 Skip-Thought Vectors
•	 Quick-Thought Vectors
•	 InferSent
•	 Universal Sentence Encoder

Perform an online search for more information about the preceding em-
bedding models.

ELMo, ULMFit, OpenAI, and BERT

During 2018 there were some significant advances in NLP-related  
research, resulting in the following toolkits and frameworks:

•	 ELMo:    released in 02/2018
•	 ULMFit:  released in 05/2018
•	 OpenAI:  released in 06/2018
•	 BERT:    released in 10/2018
•	 MT-DNN:  released in 01/2019

ELMo is an acronym for “embeddings from language models,” which pro-
vides deep contextualized word representations and state-of-the-art contextual 
word vectors, resulting in noticeable improvements in word embeddings.

Jeremy Howard and Sebastian Ruder created ULMFit (universal language 
model fine-tuning), which is a transfer learning method that can be applied 
to any task in NLP. ULMFit significantly outperforms the state of the art on 
six text classification tasks, reducing the error by 18–24% on the majority of 
datasets. 

Furthermore, with only 100 labeled examples, it matches the performance 
of training from scratch on 100x more data. ULMFit is downloadable here 
from GitHub:

https://github.com/jannenev/ulmfit-language-model
OpenAI developed GPT-2 (a successor to GPT), which is a model that was 

trained to predict the next word in 40GB of Internet text. OpenAI chose not 
to release the trained model due to concerns regarding malicious applications 
of their technology.

GPT-2 is a large transformer-based language model with 1.5 billion param-
eters, trained on a dataset of 8 million web pages (curated by humans), with 
an emphasis on diversity of content. GPT-2 is trained to predict the next word, 
given all of the previous words within some text. The diversity of the dataset 
causes this goal to contain naturally occurring demonstrations of many tasks 
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across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X 
the parameters and trained on more than 10X the amount of data.

BERT is an acronym for “bidirectional encoder representations from trans-
formers.” BERT can pass this simple English test (i.e., BERT can determine the 
correct choice among multiple choices):

On stage, a woman takes a seat at the piano. She:
a) sits on a bench as her sister plays with the doll.
b) smiles with someone as the music plays.
c) is in the crowd, watching the dancers.
d) nervously sets her fingers on the keys.

Details of BERT and this English test are here:
https://www.lyrn.ai/2018/11/07/explained-bert-state-of-the-art-language-

model-for-nlp/
The BERT (TensorFlow) source code is available here on GitHub:
https://github.com/google-research/bert
https://github.com/hanxiao/bert-as-service
Another interesting development is MT-DNN from Microsoft, which as-

serts that MT-DNN can outperform Google BERT:
https://medium.com/syncedreview/microsofts-new-mt-dnn-outperforms-

google-bert-b5fa15b1a03e
A Jupyter notebook with BERT is available, and you need the following in 

order to run the notebook in Google Colaboratory:

a GCP (Google Compute Engine) account
a GCS (Google Cloud Storage) bucket

Here is the link to the notebook in Google Colaboratory:
https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/

colab/bert_finetuning_with_cloud_tpus.ipynb

What Is Translatotron?

Translatotron is an end-to-end speech-to-speech translation model (from 
Google) whose output retains the original speaker’s voice; moreover, it’s trained 
with less data.

Speech-to-speech translation systems have been developed over the past 
several decades with the goal of helping people who speak different languages 
to communicate with each other. Such systems have three parts:

•	 automatic speech recognition to transcribe the source speech as text
•	 machine translation to translate the transcribed text into the target lan-

guage
•	 text-to-speech synthesis (TTS) to generate speech in the target language 

from the translated text
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The preceding approach has been successful in commercial products (in-
cluding Google Translate). However, Translatotron does not require separate 
stages, resulting in the following advantages:

•	 faster inference speed
•	 avoiding compounding errors between recognition and translation
•	 easier to retain the voice of the original speaker after translation
•	 better handling of untranslated words (names and proper nouns)

This concludes the portion of the appendix that pertains to NLP. Another 
area of great interest in the AI community is reinforcement learning, which is 
introduced in the next section.

What Is Reinforcement Learning (RL)?

Reinforcement learning is a subset of machine learning that attempts to 
find the maximum reward for a so-called “agent” that interacts with an “envi-
ronment.” RL is suitable for solving tasks that involve deferred rewards .

In fact, RL can handle tasks that involve a combination of negative, zero, 
and positive rewards. For example, if you decide to leave your job in order to 
attend school on a full-time basis, you are spending money (a negative reward) 
with the belief that your investment of time and money will lead to a higher 
paying position (a positive reward) that outweighs the cost of school and lost 
earnings.

One thing that might surprise you is that reinforcement learning agents are 
susceptible to GANs. More details (along with related links) are in this article:

https://openai.com/blog/adversarial-example-research/
There are many RL applications, some of which are listed here:

•	 game theory
•	 control theory  
•	 operations research  
•	 information theory  
•	 simulation-based optimization  
•	 multi-agent systems
•	 swarm intelligence  
•	 statistics and genetic algorithms
•	 resources management in computer clusters
•	 traffic light control (congestion problems)
•	 robotics operations
•	 autonomous cars/helicopters
•	 web system configuration/web-page indexing
•	 personalized recommendations
•	 bidding and advertising
•	 robot legged locomotion 
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•	 marketing strategy selection 
•	 factory control

RL refers to goal-oriented algorithms for reaching a complex goal, such as 
winning games that involve multiple moves (e.g., chess or Go). RL algorithms 
are penalized for incorrect decisions and rewarded for correct decisions: this 
reward mechanism is reinforcement. 

There are three main approaches in reinforcement learning. Value-based 
RL estimates the optimal value function Q(s,a), which is the maximum value 
achievable under any policy. Policy-based RL searches directly for the optimal 
policy π, which is the policy achieving maximum future reward. Model-based 
RL builds a model of the environment and plans (by lookahead) using the 
model.

In addition to the preceding approaches to RL (value functions, policies, 
and models), you will need to learn the following RL concepts:

•	 MDPs (Markov decision processes)
•	 A policy (a sequence of actions)
•	 The state/value function
•	 The action/value function
•	 Bellman equation (for calculating rewards)

The RL material in this appendix only addresses the following list of topics 
(after which you can learn the concepts in the previous list):

•	 NFAs (nondeterministic finite automata)
•	 Markov chains
•	 MDPs (Markov decision processes)
•	 Epsilon-greedy Algorithm
•	 Bellman equation

Another key point: almost all RL problems can be formulated as Markov 
Decision Processes, which in turn are based on Markov chains. Let’s take a look 
at NFAs and Markov chains and then we can define Markov decision processes.

What Are NFAs?

An NFA is a nondeterministic finite automata, which is a generalization of a 
DFA (deterministic finite automata). Figure A.12 displays an example of an NFA.

An NFA enables you to define multiple transitions from a given state to 
other states. By way of analogy, consider the location of many (most?) gas 
stations. Usually they are located at an intersection of two streets, which 
means there are at least two entrances to the gas station. After you make your 
purchase, you can exit from the same entrance or from the second entrance. 
In some cases, you might even be able to exit from one location and return to 
the gas station from the other entrance: this would be comparable to a “loop” 
transition of a state in a state machine.
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The next step involves adding probabilities to NFAs in order to create a 
Markov chain, which is described in more detail in the next section.

What Are Markov Chains?

Markov chains are NFAs with an additional constraint: the sum of the prob-
abilities of the outgoing edges of every state equals one. Figure A.13 displays 
a Markov chain.

As you can see in Figure A.13, a Markov chain is an NFA because a state 
can have multiple transitions. The constraint involving probabilities ensures 
that we can perform statistical sampling in MDPs that are described in the next 
section.

Figure A.12.  An example of an NFA.

Image adapted from source: https://math.stackexchange.com/questions/1240601/what-is-the-easiest-way-to-
determine-the-accepted-language-of-a-deterministic-fi?rq=1

Figure A.13.  An example of a Markov chain.

Image adapted from source: https://en.wikipedia.org/wiki/Markov_chain
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Markov Decision Processes (MDPs)

In high-level terms, a Markov decision process is a method that samples 
from a complex distribution to infer its properties. More specifically, MDPs 
are an extension of Markov chains, which involves the addition of actions 
(allowing choice) and rewards (giving motivation). Conversely, if only one 
action exists for each state (e.g., “wait”) and all rewards are the same (e.g., 
“zero”), an MDP reduces to a Markov chain. Figure A.14 displays an example 
of an MDP.

Thus, an MDP consists of a set of states and actions, and also the rules for 
transitioning from one state to another. One episode of this process (e.g., a 
single game) produces a finite sequence of states, actions, and rewards. A key 
property of MDPs: history does not affect future decisions. In other words, the 
process of selecting the next state is independent of everything that happened 
before reaching the current state.

MDPs are nondeterministic search problems that are solved via dynamic 
programming and RL, where outcomes are partly random and partly under 
control. As you learned earlier in this section, almost all RL problems can 
be formulated as MDPs; consequently, RL can solve tasks that cannot be 
solved by greedy algorithms. However, the epsilon-greedy algorithm is a 
clever algorithm that can solve such tasks. In addition, the Bellman equa-
tion enables us to compute rewards for states. Both are discussed in sub-
sequent sections.

The Epsilon-Greedy Algorithm

There are three fundamental problems that arise in reinforcement learning:

•	 the exploration-exploitation trade-off 
•	 the problem of delayed reward (credit assignment) 
•	 the need to generalize

Figure A.14.  An example of an MDP.



TF 2, Keras, and Advanced Topics    •  217

The term “exploration” refers to trying something new or different, whereas 
the term exploitation refers to leveraging existing knowledge or information. 
For instance, going to a favorite restaurant is an example of exploitation (you 
are “exploiting” your knowledge of good restaurants), whereas going to an 
untried restaurant is an example of exploration (you are “exploring” a new 
venue). When people move to a new city, they tend to explore new restaurants, 
whereas people who are moving away from a city tend to exploit their knowl-
edge of good restaurants.

In general, exploration refers to making random choices, whereas exploi-
tation refers to using a greedy algorithm. The epsilon-greedy algorithm is an 
example of exploration and exploitation, where the “epsilon” portion of the 
algorithm refers to making random selections, and “exploitation” involves a 
greedy algorithm.

An example of a simple task that can be solved via the epsilon-greedy algo-
rithm is Open AI Gym’s NChain environment, as shown in Figure A.15.

Each state in Figure A.15 has two actions, and each action has an associ-
ated reward. For each state, its “forward” action has reward 0, whereas its 
“backward” action has reward 2. Since a greedy algorithm will always select 
the larger reward at any state, this means that the “backward” action is always 
selected. Hence, we can never move toward the final state 4 that has a reward 
of 10. Indeed, we can never leave state 0 (the initial state) if we adhere to the 
greedy algorithm. 

Here is the key question: how do we go from the initial state 0 to the final 
state, which contains a large reward? We need a modified or hybrid algorithm 
in order to go through intermediate low-reward states that lead to the high 
reward state.

The hybrid algorithm is simple to describe: adhere to the greedy algorithm 
about 90% of the time and randomly select a state for the remaining 10% of 

Figure A.15.  The Open AI Gym’s NChain environment.

Image adapted from http://ceit.aut.ac.ir/~shiry/lecture/machine-learning/papers/BRL-2000.pdf
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the time. This technique is simple, elegant, and effective, and it’s called the 
epsilon-greedy algorithm.

Incidentally, a Python-based solution for OpenAI’s NChain task is here:
https://github.com/openai/gym/blob/master/gym/envs/toy_text/nchain.py
Another central concept in reinforcement learning involves the Bellman 

equation, which is the topic of the next section.

The Bellman Equation

The Bellman equations are named after Richard Bellman, who derived 
these equations that are ubiquitous in reinforcement learning. There are sev-
eral Bellman equations, including one for the state value function and one for 
the action value function. Figure A.16 displays the Bellman equation for the 
state value function.

As you can see in Figure A.16, the value of a given state depends on the 
discounted value of future states. The following analogy might help you un-
derstand the purpose of the discounted value gamma in this equation. Sup-
pose that you have USD 100 that you invest at a 5% annual interest rate. After 
one year you will have USD 105 (=100 + 5%*100 = 100*(1+0.05)), 
after two years you will have USD 110.25 (=100*(1+0.05)*(1+0.05)), 
and so forth.

Conversely, if you have a future value of USD 100 (with a 5% annual 
investment rate) that is two years in the future, what is its present value? 
The answer involves dividing 100 by powers of (1+0.05). Specifically, 
the present value of USD 100 from two years in the future equals 100/
[(1+0.05)*(1+0.05)]. 

In analogous fashion, the Bellman equation enables us to calculate the cur-
rent value of a state by calculating the discounted reward of subsequent states. 
The discount factor is called gamma, and it’s often a value between 0.9 and 0.99. 
In the preceding example involving USD 100, the value of gamma is 0.9523.

Other Important Concepts in RL

After you have studied the basic concepts in RL, you can delve into the 
following topics:

•	 Policy gradient (rules for “best” actions) 
•	 Q-value  
•	 Monte Carlo  

Figure A.16.  The Bellman equation.
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•	 dynamic programming  
•	 Temporal difference (TD) 
•	 Q-learning  
•	 Deep Q network

The preceding topics are explained in online articles (suggestion: use Wiki-
pedia as a starting point for RL concepts), and they will be much more relevant 
after you grasp the introductory concepts in RL that are discussed in earlier 
sections. Be prepared to spend some time learning these topics, because some 
of them are quite challenging in nature.

RL Toolkits and Frameworks

There are many toolkits and libraries for reinforcement learning, typically 
based on Python, Keras, Torch, or Java. Some of them are listed here:

•	 OpenAI gym: A toolkit for developing and comparing reinforcement 
learning algorithms

•	 OpenAI universe: A software platform for measuring and training an 
AI’s general intelligence across the world’s supply of games, websites, 
and other applications

•	 DeepMind Lab: A customizable 3D platform for agent-based AI re-
search

•	 rllab: A framework for developing and evaluating reinforcement learn-
ing algorithms, fully compatible with OpenAI Gym

•	 TensorForce: Practical deep reinforcement learning on TensorFlow with 
Gitter support and OpenAI Gym/Universe/DeepMind Lab integration

•	 tf-TRFL: A library built on top of TensorFlow that exposes several use-
ful building blocks for implementing RL agents

•	 OpenAI lab: An experimentation system for RL using OpenAI Gym, 
Tensorflow, and Keras

•	 MAgent: A platform for many-agent reinforcement learning
•	 Intel Coach: Coach is a Python reinforcement learning research frame-

work containing implementation of many state-of-the-art algorithms

As you can see from the preceding list, there is a considerable variety of 
available RL toolkits, and you can visit their home pages to determine which 
ones have the features that meet your specific requirements. 

TF-Agents

Google created the TF-Agents library for RL in TensorFlow. Google  
TF-Agents is open source and downloadable from Github:

https://github.com/tensorflow/agents
The core elements of RL algorithms are implemented as agents. An agent 

encompasses two main responsibilities: defining a policy to interact with the 
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environment, and how to learn/train that policy from collected experience.  
TF-Agents implements the following algorithms:

•	 DQN: Human-Level Control through Deep Reinforcement Learning, 
Mnih et al., 2015

•	 DDQN: Deep Reinforcement Learning with Double Q-Learning, Has-
selt et al., 2015

•	 DDPG: Continuous Control with Deep Reinforcement Learning, Lil-
licrap et al., 2015

•	 TD3: Addressing Function Approximation Error in Actor-Critic Meth-
ods, Fujimoto et al., 2018

•	 REINFORCE: Simple Statistical Gradient-Following Algorithms for 
Connectionist Reinforcement Learning, Williams, 1992

•	 PPO: Proximal Policy Optimization Algorithms, Schulman et al., 2017
•	 SAC: Soft Actor Critic, Haarnoja et al., 2018

Before you can use TF-Agents, first install the nightly build version of  
TF-Agents with this command (pip or pip3):

# the --upgrade flag ensures you'll get the latest version
pip install --user --upgrade tf-nightly  
pip install --user --upgrade tf-agents-nightly # requires 
tf-nightly

There are “end-to-end” examples training agents under each agent direc-
tory, an example of which is here for DQN:

tf_agents/agents/dqn/examples/v1/train_eval_gym.py

Keep in mind that TF-Agents is in prerelease status and therefore under 
active development, which means that interfaces may change at any time.

What Is Deep Reinforcement Learning (DRL)?

Deep reinforcement learning is a surprisingly effective combination of 
deep learning and RL that has shown remarkable results in a variety of tasks. 
For example, DRL has won game competitions such as Go (Alpha Go versus 
world champion Lee Sedol) and even prevailed in the complexity of StarCraft 
(AlphaStar of DeepMind). 

With the release of ELMo and BERT in 2018 (discussed earlier in this  
appendix), DRL made significant advances in NLP with these toolkits, surpass-
ing previous benchmarks in NLP.

Google released the Dopamine toolkit for DRL, which is downloadable 
here from GitHub: https://github.com/google/dopamine

The keras-rl toolkit supports state-of-the-art Deep RL algorithms in 
Keras, which are also designed for compatibility with OpenAI (discussed ear-
lier in this appendix). This toolkit includes the following:
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•	 Deep Q learning (DQN) 
•	 Double DQN 
•	 Deep deterministic policy gradient (DDPG) 
•	 Continuous DQN (CDQN or NAF) 
•	 Cross-entropy method (CEM) 
•	 Dueling network DQN (Dueling DQN) 
•	 Deep SARSA 
•	 Asynchronous advantage actor-critic (A3C) 
•	 Proximal policy optimization algorithms (PPO)

Please keep in mind that the details of the algorithms in the preceding list 
require a decent understanding of reinforcement learning. The keras-rl 
toolkit is downloadable here from GitHub: https://github.com/keras-rl/keras-rl

Miscellaneous Topics

This section contains a very brief description of other areas of TensorFlow 
that might be of interest to you:

•	 TFX (TensorFlow Extended)
•	 TensorFlow Probability
•	 TensorFlow Graphics
•	 TF Privacy

The following subsections provide a very brief description of these topics, 
along with links where you can find additional information.

TFX (TensorFlow Extended)

TFX is a TensorFlow-based ML platform that provides a configuration 
framework and shared libraries to integrate common components needed to 
define, launch, and monitor your ML system. TFX involves pipelines that de-
fine a data flow through several components (based on TFX libraries), in order 
to perform a given ML task. 

TFX pipeline components enable you to perform a variety of ML tasks, 
including modeling, training, and serving inference. You can also manage de-
ployments to online, native mobile, and JavaScript targets. A TFX pipeline 
often includes the following components:

•	 ExampleGen is the initial input component of a pipeline that ingests and 
optionally splits the input dataset 

•	 StatisticsGen calculates statistics for the dataset
•	 SchemaGen examines the statistics and creates a data schema
•	 ExampleValidator looks for anomalies and missing values in the dataset
•	 Transform performs feature engineering on the dataset
•	 Trainer trains the model
•	 Evaluator performs deep analysis of the training results
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•	 ModelValidator helps you validate your exported models, ensuring that 
they are “good enough” to be pushed to production

•	 Pusher deploys the model on a serving infrastructure

TFX is downloadable here on GitHub: https://github.com/tensorflow/tfx

TensorFlow Probability 

TensorFlow Probability (TFP) is a Python library built on TensorFlow that 
combines probabilistic models and deep learning on modern hardware. TFP is 
suitable for data scientists (among others) who want to encode domain knowl-
edge to understand data and make predictions. TFP includes:

•	 multiple probability distributions and bijectors
•	 tools to build deep probabilistic models
•	 variational inference and Markov chain Monte Carlo
•	 optimizers such as Nelder-Mead, BFGS, and SGLD

Since TFP is based on TensorFlow, TFP enables you to manage models in 
one language in a start-to-finish manner. More details regarding TFP are here:

https://www.tensorflow.org/probability

TensorFlow Graphics

TensorFlow Graphics is intended to help you train ML systems that con-
tain complex 3D vision tasks. As such, TensorFlow Graphics provides a set of 
differentiable graphics and geometry layers (cameras, spatial transformations, 
mesh convolutions, and so forth) and 3D viewer functionalities (such as 3D 
TensorBoard) to train and debug ML models. More details regarding Tensor-
Flow Graphics are here:

https://github.com/tensorflow/graphics

TF Privacy

TensorFlow Privacy is a Python library that includes implementations of 
TensorFlow optimizers for training machine learning models with differential 
privacy. The library comes with tutorials and analysis tools for computing the 
privacy guarantees provided. More information is here: https://github.com/ten-
sorflow/privacy

Summary

This appendix started with an overview of aspects of deep learning, along 
with some of the issues (such as the vanishing gradient and exploding gradient) 
that deep learning has solved. You learned about the challenges that exist in 
deep learning, which include bias in algorithms, susceptibility to adversarial 
attacks, limited ability to generalize, lack of explainability in neural networks, 
and the lack of causality.
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Then you learned about perceptrons and how they are used as neural net-
works. Then you saw a TF 2 code sample that shows you how to define a hid-
den layer in a neural network. 

You also learned about the architecture of an ANN, along with commonly 
used hyperparameters. Next, you saw TF code samples for an XOR function 
and an OR function. In addition, you saw a Keras-based model for a CNN and 
the MNIST dataset. 

Then you learned about the architecture of an RNN, followed by a Keras-
based code sample. Next you saw the architecture of an LSTM, as well as a 
basic code sample. You also got an introduction to variational autoencoders 
and some of their use cases. In addition, you were introduced to GANs and how 
you can use them. 

In addition, you learned about some basic concepts in NLP, such as n-
grams, BoW, tf-idf, and word embeddings.

Finally, you learned about reinforcement learning, including the epsilon-
greedy algorithm and the Bellman equation, followed by some aspects of deep 
reinforcement learning, which combines deep learning with reinforcement 
learning.

Congratulations! You have reached the end of this book, which has cov-
ered many TF 2 concepts and has introduced you to Keras, as well as linear 
regression, logistic regression, and deep learning. You can delve further into 
machine learning algorithms or proceed with deep learning, and good luck in 
your journey!
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