

MICROSOFT®

EXCEL
® 2019

PROGRAMMING

Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this
license grants permission to use the contents contained herein, including
the disc, but does not give you the right of ownership to any of the textual
content in the book / disc or ownership to any of the information or products
contained in it. This license does not permit uploading of the Work onto the
Internet or on a network (of any kind) without the written consent of the
Publisher. Duplication or dissemination of any text, code, simulations, im-
ages, etc. contained herein is limited to and subject to licensing terms for the
respective products, and permission must be obtained from the Publisher or
the owner of the content, etc., in order to reproduce or network any portion
of the textual material (in any media) that is contained in the Work.

Mercury Learning And Information(“MLI” or “the Publisher”) and any-
one involved in the creation, writing, or production of the companion disc,
accompanying algorithms, code, or computer programs (“the software”), and
any accompanying Web site or software of the Work, cannot and do not war-
rant the performance or results that might be obtained by using the contents
of the Work. The author, developers, and the Publisher have used their best
efforts to insure the accuracy and functionality of the textual material and/
or programs contained in this package; we, however, make no warranty of
any kind, express or implied, regarding the performance of these contents
or programs. The Work is sold “as is” without warranty (except for defective
materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or
the inability to use) the algorithms, source code, computer programs, or tex-
tual material contained in this publication. This includes, but is not limited
to, loss of revenue or profit, or other incidental, physical, or consequential
damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and/or disc, and only at the discretion of the Pub-
lisher. The use of “implied warranty” and certain “exclusions” vary from state
to state, and might not apply to the purchaser of this product.

Companion files are also available from the publisher by writing to info@
merclearning.com.

MICROSOFT®

EXCEL
® 2019

PROGRAMMING

Pocket Primer

Julitta Korol

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Copyright ©2019 by Mercury Learning and Information. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display
or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or
scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

J.Korol. Microsoft ® Excel® 2019 Programming Pocket Primer.
ISBN: 978-1-68392-412-8

Th e publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.

Library of Congress Control Number: 2019939378

192021321 Printed on acid-free paper in the United States of America

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital
vendors. Companion fi les (fi gures and code listings) for this title are available by contacting
info@merclearning.com. Th e sole obligation of Mercury Learning and Information to the
purchaser is to replace the disc, based on defective materials or faulty workmanship, but not
based on the operation or functionality of the product.

Acknowledgments .. xi
Introduction ... xiii

Chapter 1 Excel Macros: A Quick Start in Excel
VBA Programming ...1

Macros and VBA .. 2
Excel Macro-Enabled File Formats ..2
Macro Security Settings .. 3

Enabling the Developer Tab in Excel .. 5
Using the Built-In Macro Recorder ... 8

Planning a Macro ... 8
Recording a Macro .. 9

Using Relative or Absolute References in Macros 11
Editing Recorded Macros ...15
Macro Comments ..20

Cleaning Up the Macro Code .. 22
Running a Macro ...23
Testing and Debugging a Macro ..24
Saving and Renaming a Macro ..25
Printing Macro Code ..26

Improving Your Recorded Macros ..26
Creating a Master Macro ...28
Various Methods of Running Macros ...29

Running the Macro Using a Keyboard Shortcut29
Running the Macro from the Quick Access Toolbar 30
Running the Macro from a Worksheet Button .. 34

Summary ...36

CONTENTS

vi CONTENTS

Chapter 2 Excel Programming Environment: A Quick
Overview of its Tools and Features (VBE)37

Understanding the Project Explorer Window38
Understanding the Properties Window ..39
Understanding the Code Window ...40
Setting the VBE Options ...41
Syntax and Programming Assistance ..42

List Properties/Methods ...42
List Constants ...43
Parameter Info ...44
Quick Info ...45
Complete Word ..45
Indent/Outdent ..45
Comment Block/Uncomment Block ..46

Using the Object Browser ...47
Locating Procedures with the Object Browser52

Using the VBA Object Library ...53
Using the Immediate Window ...54

Obtaining Information in the Immediate Window57
Working with Worksheet Cells and Ranges ...58

Using the Range Property ...59
Using the Cells Property ...59
Using the Offset Property ...60
Using the Resize Property...61
Using the End Property ..63
Moving, Copying, and Deleting Cells ...63

Working with Rows and Columns ..64
Obtaining Information about the Worksheet65

Entering Data and Formatting Cells ..66
Returning Information Entered in a Worksheet66
Finding Out about Cell Formatting ..67

Working with Workbooks and Worksheets ..68
Working with Windows ..69
Working with the Excel Application ...70
Summary ...71

Chapter 3 Excel VBA Fundamentals: A Quick Reference to
Writing VBA Code ...73

Excel Objects, Properties, and Methods ..73
Microsoft Excel Object Model ..75
Writing Simple and Complex VBA Statements76

Breaking Up Long VBA Statements ..79

CONTENTS vii

Saving Results of VBA Statements ...80
Introducing Data Types ..81
Using Variables ...83

How to Create Variables ...84
How to Declare Variables ...85
Specifying the Data Type of a Variable ...88
Assigning Values to Variables ..90
Forcing Declaration of Variables ...94
Understanding the Scope of Variables ..96

Procedure-Level (Local) Variables .. 96
Module-Level Variables .. 96
Project-Level Variables .. 98

Lifetime of Variables ..99
Finding a Variable Definition ..99
Determining a Data Type of a Variable ..99

Using Constants ...100
Built-In Constants ...101

Converting between Data Types ..103
Using Static Variables in VBA Procedures ...106
Using Object Variables in VBA Procedures ...107

Using Specific Object Variables ...109
Summary ...110

Chapter 4 Excel VBA Procedures: A Quick Guide to
Writing Function Procedures 111

Understanding Function Procedures ..112
Creating a Function Procedure ..112

Various Methods of Running Function
Procedures ...114

Running a Function Procedure from a Worksheet114
Running a Function Procedure from Another VBA Procedure ...116

Ensuring Availability of Your Custom Functions117
Passing Arguments to Function Procedures ..118

Specifying Argument Types ...119
Passing Arguments by Reference and Value120
Using Optional Arguments ..122

Testing a Function Procedure ..124
Locating Built-In Functions ..124
Getting to Know the MsgBox Function ..125

Returning Values from the MsgBox Function132
Getting to Know the InputBox Function ..134

Determining and Converting Data Types ..136

viii CONTENTS

Using the InputBox Method ...138
Summary ...142

Chapter 5 Adding Decisions to Excel VBA Programs:
A Quick Introduction to Conditional
Statements ...143

Relational and Logical Operators ...144
Using If...Then Statement ...144
Using If...Then...Else Statement ...148
Using If...Then...ElseIf Statement ..150
Nested If…Then Statements ...152
Using the Select Case Statement ..153

Using Is with the Case Clause ..156
Specifying a Range of Values in a Case Clause156
Specifying Multiple Expressions in a Case Clause157

Writing a VBA Procedure with Multiple Conditions157
Using Conditional Logic in Function Procedures160
Summary ...161

Chapter 6 Adding Repeating Actions to Excel
VBA Programs: A Quick Introduction
to Looping Statements...163

Introducing Looping Statements ...163
Understanding Do...While and Do...Until Loops164
Avoiding Infinite Loops ..168
Executing a Procedure Line by Line ..168
Understanding While...Wend Loop ..169
Understanding For...Next Loop ...170
Understanding For...Each...Next Loop ...173
Exiting Loops Early ..174
Using a Do…While Statement ...175
Using Loops and Conditionals ...176
Summary ...177

Chapter 7 Storing Multiple Values in Excel VBA
Programs: A Quick Introduction to
Working with Arrays ...179

Understanding Arrays ...179
Declaring Arrays ..181
Array Upper and Lower Bounds ...183

CONTENTS ix

Initializing and Filling an Array ..183
Filling an Array Using Individual Assignment Statements 183
Filling an Array Using the Array Function ... 184
Filling an Array Using For…Next Loop .. 184

Using a One-Dimensional Array ...185
Using a Two-Dimensional Array ...187
Using a Dynamic Array ...188
Using Array Functions ..190

The Array Function ...190
The IsArray Function ..190
The Erase Function ...191
The LBound and UBound Functions ...192

Troubleshooting Errors in Arrays ...193
Using the ParamArray Keyword ..194
Data Entry with an Array ..195
Sorting an Array with Excel ..196
Summary ...198

Chapter 8 Keeping Track of Multiple Values in Excel VBA
Programs: A Quick Introduction to Creating
and Using Collections ...199

Working with Collections of Objects ..200
Declaring and Using a Custom Collection201
Adding Objects to a Custom Collection ...202
Removing Objects from a Custom Collection204

Creating and Using Custom Objects ...207
Variable Declarations ..209
Defining the Properties for the Class ..209
Writing Property Procedures ...210
Writing Class Methods ...212
Creating an Instance of a Class ..213

Summary ...220

Chapter 9 Excel Tools for Testing and Debugging: A Quick
Introduction to Testing VBA Programs221

Testing VBA Procedures ...221
Stopping a Procedure ...222
Using Breakpoints ..223

When to Use a Breakpoint ..227
Using the Immediate Window in Break Mode228
Using the Stop and Assert Statements ...228

x CONTENTS

Using the Watch Window ..230
Removing Watch Expressions ..233

Using Quick Watch ..234
Using the Locals Windows and the Call Stack Dialog Box235
Navigating with Bookmarks ...237
Trapping Errors ..238

Using the Err Object ..239
Setting Error Trapping Options in a VBA Project242

Stepping through VBA Procedures ...243
Stepping Over a Procedure and Running to Cursor244
Setting the Next Statement ...246
Showing the Next Statement ..247
Stopping and Resetting VBA Procedures ...247

Terminating a Procedure based on a Condition..................................247
Summary ...250

Index ...251

ACKNOWLEDGMENTS

As years pass and we gain more and more knowledge on a particular
subject there is a tendency to publish books for people who want to
know it all. But the truth is that we really don’t have time to read all

the printed pages when we are just getting started in a new subject. I thank my
publisher, David Pallai, for continuing to publish this smaller book that serves
as a starting point for anyone attempting to get into VBA programming in
Excel. I hope that you as a reader of this primer book will appreciate this short
book and find that the knowledge gained from its pages will not only allow
you to continue your programming journey, but also take you places you never
thought possible.

I’m also thankful to Jennifer Blaney for her expert management of this book
project. I am grateful to the compositor, Swaradha Typesetting, for all of the
composition efforts that gave this book the easy-to-follow look and feel.

Julitta Korol
Brooklyn, New York

April 2019

INTRODUCTION

I’ve been working with Excel since the very beginning. Database concepts
were completely new to me but the Excel interface made it a pleasure to
work with almost daily. Step by step I acquired the skills of database man-

agement and then programming. I learned the latter by trial and error. When
the first consulting opportunity came up to use my Excel skills I found that I
barely knew enough to get started. But challenges do not scare me. I was ea-
ger to learn on the job. My first Excel programming project was designing a
custom quotation system for an automotive manufacturer. Despite my limited
prior exposure to the programming concepts I was able to deliver a system that
automated a big chunk of work for that company. How was I able to do this? I
find reading and doing is the first step towards mastering a skill like program-
ming. This book presents enough programming concepts to get you started
tackling your own Excel database challenges. This is not a book about using
Excel. I assume you are already familiar with most tasks that you can achieve
using Excel built-in commands. But if you are ready to take a look beyond the
standard user interface, you have come to the right place and have made a deci-
sion that will bring a whole set of new possibilities to Excel programming. So
let’s forget the menus for now. Do your own thing. Automating Excel is some-
thing everyone can do. With the right training, that is. This book’s purpose is
to introduce you to the Excel built-in language, known as Visual Basic for Ap-
plications (VBA). With VBA you can begin delegating repetitive tasks to Excel
while freeing your time for projects that are more fun to do. Besides, knowing
how to program these days is a quite a lucrative skill.

This book was designed for someone like you who needs to master Excel
programming fundamentals without spending too much time. Most of the
time all you need is a short book to get you started. It’s less overwhelming to

xiv INTRODUCTION

deal with a new subject in smaller chunks. The Programming Pocket Primer
series will show you only the things you need to know to feel at home with
VBA. What you learn in this book on Excel programming will apply to, say,
Access programming. Just take a quick look my other book, the Microsoft
Access 2019 Programming Pocket Primer, to see what I mean. How’s that for
knowledge transfer? Learn in Excel, and use it in Excel or other Microsoft
Office applications. I call this sweet learning.

If you are looking for in-depth knowledge of Excel programming (and
have time to read through a 1,000-page book), then go ahead and try some of
my more complete, programming titles available from Mercury Learning and
Information.

Excel is about doing and so is this book. So do not try to read it while not
at the computer. You can sit, stand, or lie down; it does not matter. But you do
need to work with this book. Do the examples, read the comments. Do this
until it becomes easy to do without the step-by-step instructions. Do not skip
anything as the concepts in later chapters build on material introduced earlier.

CHAPTER OVERVIEW

Before you get started, allow me to give you a short overview of the things you’ll
be learning as you progress through this primer book. Microsoft Excel 2019
Programming Pocket Primer is divided into nine chapters that progressively
introduce you to programming Microsoft Excel.

Chapter 1 –Getting Started with Excel VBA: A Quick Start in Excel VBA
Programming

In this chapter you learn how you can introduce automation into your Excel
worksheets by simply using the built-in macro recorder. You learn about
different phases of macro design and execution. You also learn about macro
security.

Chapter 2 – Excel Programming Environment : A Quick Overview of its Tools
and Features

In this chapter you learn almost everything you need to know about working
with the Visual Basic Editor window, commonly referred to as VBE. Some of
the programming tools that are not covered here are discussed and used in
Chapter 9.

Chapter 3 – Excel VBA Fundamentals : A Quick Reference to
Writing VBA Code

In this chapter you are introduced to the basic VBA concepts such as Microsoft
Excel object model and its objects, properties, and methods. You also learn
concepts that allow you to store various pieces of information for later use.

INTRODUCTION xv

Chapter 4 – Excel VBA Procedures: A Quick Guide to Writing Function
Procedures

In this chapter you learn how to write and execute function procedures. You
also learn how to provide additional information to your procedures before
they are run. You are introduced to working with some useful built-in functions
and methods that allow you to interact with you VBA procedure users.

Chapter 5 – Adding Decisions to Excel VBA Programs: A Quick Introduction
to Conditional Statements

In this chapter you learn how to control your program flow with several
different decision-making statements.

Chapter 6 – Adding Repeating Actions to Excel VBA Programs: A Quick
Introduction to Looping Statements

In this chapter you learn how you can repeat certain groups of statements using
procedure loops.

Chapter 7 – Storing Multiple Values in Excel VBA Programs: A Quick
Introduction to Working with Arrays

In this chapter you learn the concept of static and dynamic arrays, which you
can use for holding various values. You also learn about built-in array functions.

Chapter 8 – Keeping Track of Multiple Values in Excel VBA Programs:
A Quick Introduction to Creating and Using Collections

In this chapter you learn how to create and use your own VBA objects and
collections of objects.

Chapter 9 – Excel Tools for Testing and Debugging: A Quick Introduction to
Testing VBA Programs

In this chapter you begin using built-in debugging tools to test your
programming code and trap errors.

The above nine chapters will give you the fundamental techniques and
concepts you will need in order to continue your Excel VBA learning path.
The skills obtained in this primer are very portable. They can be utilized in
programming other Microsoft Office applications that also use VBA as their
native programming language such as Access, Word, PowerPoint, Outlook,
and so on. And when you are ready to get more Excel VBA skills under your
belt, you can jump right into Chapter 10 in my more complete book - Microsoft
Excel 2019 Programming by Example with VBA, XML, and ASP also available
from Mercury Learning and Information. (ISBN: 978-1-68392-400-5).

xvi INTRODUCTION

THE COMPANION FILES

The example files for all the hands-on activities in this book are available on
the disc included with this book. Replacement files may be downloaded by
contacting the publisher at info@merclearning.com. Digital versions of this
title are available at academiccourseware.com and other digital vendors.

1

Visual Basic for Applications (VBA) is the programming language built
into all Microsoft® Office® applications, including Microsoft Excel®. By
learning some basic VBA commands, you can start automating many

of the mundane routine tasks that you perform in Excel. In this chapter, you
acquire the fundamentals of VBA by recording macros and using the Visual
Basic Editor to examine and edit the VBA code behind the recorded macro.

Chapter

 1
EXCEL MACROS

A QUICK START IN EXCEL VBA PROGRAMMING

2 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

MACROS AND VBA

Macros are programs that store a series of commands. When you create a
macro, you simply combine a sequence of keystrokes into a single com-
mand that you can later “play back.” Because macros can reduce the number
of steps required to complete tasks, using macros can significantly decrease
the time you spend creating, formatting, modifying, and printing your
Excel worksheets. You can create macros by using Microsoft Excel’s built-in
recording tool (Macro Recorder), or you can write them from scratch using
Visual Basic Editor, a special development environment built into Excel.
You can combine recorded macros with your own programming code to
create unique VBA applications that meet your everyday needs. Whether
you write or record your programming code in Excel, you’ll be utilizing
the powerful programming language—Visual Basic for Applications—com-
monly known as VBA.

Microsoft Excel comes with dozens of built-in, time-saving features
that allow you to work faster and smarter. Before you decide to automate a
worksheet task with a recorded macro or programming code written from
scratch, make sure there is not already a built-in feature that you can use
to perform that task. Consider writing your own VBA code or recording a
macro when you find yourself performing the same series of actions over
and over again or when Excel does not provide a built-in tool to do the job.

Just by learning how to handle Excel’s macro recorder and use basic VBA
statements and constructs to enhance your macros, you’ll be able to au-
tomate any part of your worksheet. For example, you can automate data
entry by recording a macro that enters headings in a worksheet or replaces
column titles with new labels. Adding a little bit of conditional logic to your
VBA code will allow you to automatically check for duplicate entries in a
specified range of your worksheet. With a macro, you can quickly apply
formatting to several worksheets, as well as combine different formats, such
as fonts, colors, borders, and shading. Macros will save you keystrokes when
it comes to setting print areas, margins, headers and footers, and selecting
special options for printouts.

Excel Macro-Enabled File Formats

When a workbook contains programming code, it should be saved in one of
the following macro-enabled file formats:

 ● Excel Macro-Enabled Workbook (.xlsm)
 ● Excel Binary Workbook (.xlsb)
 ● Excel Macro-Enabled Template (.xltm)

EXCEL MACROS 3

If you attempt to save the workbook in a file format that is incompatible
with the type of content it includes, Excel will warn you with a message as
shown in Figure 1.1.

FIGURE 1.1 When a workbook contains programming code, you must save it in a macro-enabled
file type instead of a regular .XLSX workbook file.

Macro Security Settings

Because macros can contain malicious code designed to put a virus on a
user’s computer, it is important to understand different security settings
that are available in Excel. It is also critical that you run up-to-date antivirus
software on your computer. Antivirus software installed on your computer
will scan the workbook file you are attempting to open if the file contains
macros. The default macro security setting is to disable all macros with
notification, as shown in Figure 1.2.

FIGURE 1.2 The Macro Settings options in the Trust Center allow you to control how Excel should
deal with macros when they are present in an open workbook. To open Trust Center’s Macro Settings,
choose File | Options | Trust Center | Trust Center Settings and click the Macro Settings link.

If macros are present in a workbook you are trying to open, you will receive
a security warning message just under the Ribbon, as shown in Figure 1.3.

4 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 1.3 Upon opening a workbook with macros, Excel brings up a security warning message.

To use the disabled components, you should click the Enable Content but-
ton on the message bar. This will add the workbook to the Trusted Docu-
ments list in your registry. The next time you open this workbook you will
not be alerted to macros. If you need more information before enabling
content, you can click the message text displayed in the security message
bar to activate the Backstage View, where you will find an explanation of
the active content that has been disabled, as shown in Figure 1.4. Clicking
the Enable Content button in the Backstage View will reveal two options:

 ● Enable All Content
Th is option provides the same functionality as the Enable Content
button in the security message bar. Th is will enable all the content
and make it a trusted document.

 ● Advanced Options
Th is option brings up the Microsoft Offi ce Security Options dialog
shown in Figure 1.5. Th is dialog provides options for enabling content
for the current session only.

EXCEL MACROS 5

FIGURE 1.4 The Backstage View in Excel.

FIGURE 1.5 Disabled macros can be enabled for the current session in the Microsoft Office Security
Options dialog.

ENABLING THE DEVELOPER TAB IN EXCEL

To make it easy to work with macro-enabled workbooks while working
with this book’s exercises, you will permanently trust your workbooks with
recorded macros or VBA code by placing them in a folder on your local
drive that you mark as trusted. Notice the Trust Center Settings hyperlink
in the Backstage View shown in Figure 1.4. This hyperlink will open the
Trust Center dialog where you can set up a trusted folder. You can also acti-
vate the Trust Center by selecting File | Options.

6 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Let’s take a few minutes now to set up your Excel application so you can
run macros on your computer without security prompts.

 Please note files for the “Hands-On” project may be found on the com-
panion CD-ROM.

 Hands-On 1.1 Setting Up Excel for Macro Development

1. Create a folder on your hard drive named C:\VBAPrimerExcel_
ByExample.

2. Launch Excel and open a blank workbook.
3. Choose File | Options.
4. In the Excel Options dialog, click Customize Ribbon. In the Main Tabs

listing on the right-hand side, select Developer as illustrated in Figure 1.6
and click OK. The Developer tab should now be visible in the Ribbon.

FIGURE 1.6 To enable the Developer tab on the Ribbon, use the Excel Options dialog and
select Customize Ribbon.

5. In the Code group of the Developer tab on the Ribbon, click the Macro
Security button, as shown in Figure 1.7. The Trust Center dialog appears
as depicted in Figure 1.2.

EXCEL MACROS 7

FIGURE 1.7 Use the Macro Security button in the Code group on the Developer tab to
customize the macro security settings.

6. In the left pane of the Trust Center dialog, click Trusted Locations.
Th e Trusted Locations dialog already shows several predefi ned trusted
locations that were created when you installed Excel. For the purpose of
this book, we will add a custom location to this list.

7. Click the Add new location button.
8. In the Path text box, type the name of the folder you created in Step 1 of

this Hands-On as shown in Figure 1.8.

FIGURE 1.8 Designating a Trusted Location folder for this book’s programming examples.

9. Click OK to close the Microsoft Office Trusted Location dialog.
10. Notice that the Trusted Locations list in the Trust Center now includes the

C:\VBAPrimerExcel_ByExample folder as a trusted location. Files placed
in a trusted location can be opened without being checked by the Trust
Center security feature. Click OK to close the Trust Center dialog box.

Your Excel application is now set up for easy macro development as well as
opening files containing macros. You should save all the files created in the
book’s Hands-On exercises into your trusted C:\VBAPrimerExcel_ByEx-
ample folder.

8 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

USING THE BUILT-IN MACRO RECORDER

In this section, we will go through the process of recording several short
macros that perform data entry and formatting tasks in an Excel worksheet.
You will learn how to plan your macros, record your keystrokes, edit and
improve your recorded macro code, run your macros, and learn basic
troubleshooting techniques that will get you back on track in case you
encounter errors while running your macros. You will also learn how to
save your macros, rename them, combine them, and print them.

Planning a Macro

Before you create a macro, take a few minutes to consider what you want to
do. The easiest way to plan your macro is to manually perform all the actions
that the macro needs to do. As you enter the keystrokes, write them down on
a piece of paper exactly as they occur. Don’t leave anything out. Like a voice
recorder, Excel’s macro recorder records every action you perform. If you
do not plan your macro prior to recording, you may end up with unneces-
sary actions that will not only slow it down but also require more editing
later to make it work as intended. Although it’s easier to edit a macro than it
is to erase unwanted passages from a voice recording, performing only the
actions you want recorded will save you editing time and trouble later.

FIGURE 1.9 A sample worksheet to be created and formatted with the help of the Excel built-in
macro recorder.

Suppose you are asked to programmatically create the worksheet depicted in
Figure 1.9. No worries. Getting started is very easy with the macro recorder.
Let’s begin by identifying the tasks required to complete this worksheet.

Task 1 Insert a new sheet into a workbook and name it Employee Wages.
Task 2 Enter column headings into first row of the worksheet and apply required

formatting (column size, font styles).
Task 3 Enter employee data (Full Name, Hourly Rate, Hours Worked).
Tasks 4
and 5

Enter formulas to fill in the employee First and Last Name columns.

Task 6 Enter formulas to calculate employee total wages.
Task 7 Apply formatting to the completed worksheet.

EXCEL MACROS 9

Instead of recording one macro to complete your assignment, you will cre-
ate a separate macro for each task. This approach will give you a chance to
learn how to combine code from several simpler macros and how to create
a master macro. Let’s get started.

 Hands-On 1.2 Getting Things Ready for Macro Recording

1. Open a new workbook and save it as Chap01_ExcelPrimer.xlsm in your
trusted VBAPrimerExcel_ByExample folder. You must save the file in the
macro-enabled file format (.xlsm) to allow for storing macros. Keep this
file open as you will use it to record all the macros in this chapter.

Recording a Macro

Before you record a macro, you need to decide whether you want to record
the positioning of the active cell. If you want the macro to always start in
a specific location on the worksheet, turn on the macro recorder first and
then select the cell you want to start in. If the location of the active cell does
not matter, select a single cell first and then turn on the macro recorder.

 Hands-On 1.3 Inserting and Naming a Worksheet
(Macro Task 1)

1. Choose Developer | Record Macro.
2. In the Record Macro dialog box, enter the name Insert_NewSheet for the

macro, as shown in Figure 1.10. Do not dismiss this dialog box until you
are instructed to do so.

FIGURE 1.10 When you record a new macro, you must name it. In the Record Macro dialog
box, you can also supply a shortcut key, the storage location, and a description for your macro

10 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Macro Names

If you forget to enter a name for the macro, Excel assigns a default name,
such as Macro1, Macro2, and so on. Macro names can contain letters,
numbers, and the underscore character, but the first character must be a
letter. For example, Report1 is a correct macro name, while 1Report is not.
Spaces are not allowed. If you want a space between the words, use the
underscore.

3. Select This Workbook in the Store macro in list box.

Storing Macros

Excel allows you to store macros in three locations:
 ● Personal Macro Workbook—Macros stored in this location will be

available each time you work with Excel. You can fi nd the Personal
Macro Workbook in the XLStart folder. If this workbook doesn’t al-
ready exist, Excel creates it the fi rst time you select this option.

 ● New Workbook—Excel will place the macro in a new workbook.
 ● Th is Workbook—Th e macro will be stored in the workbook you are

currently using.

4. In the Description box, enter the following text: Insert and rename a
worksheet.

5. Choose OK to close the Record Macro dialog box.
Th e Stop Recording button shown in Figure 1.11 appears in the status
bar. Do not click this button until you are instructed to do so. When this
button appears in the status bar, the workbook is in the recording mode.

FIGURE 1.11 The Stop Recording button in the status bar indicates that the macro recording
mode is active.

Th e Stop Recording button remains in the status bar while you record your
macro. Only the actions fi nalized by pressing Enter or clicking OK are
recorded. If you press the Esc key or click Cancel before completing the
entry, the macro recorder does not record that action.

6. Add a new sheet to the current workbook. You can do this by either right-
clicking the Sheet1 tab and choosing Insert | Worksheet | OK, or simply
clicking the plus button to the right of the Sheet1 tab.

7. Rename the new sheet Employee Wages.

SIDEBAR

SIDEBAR

EXCEL MACROS 11

8. Click the Stop Recording button in the status bar as shown in Figure 1.11
or choose View | Macros | Stop Recording. When you stop the macro
recorder, the status bar displays a button that allows you to record another
macro (see Figure 1.12).

You have now recorded your first macro. Excel has written all the necessary
statements to execute the actions you performed. Let’s continue recording
all the remaining actions to complete the tasks that we defined earlier. After
that you will have a chance to review the recorded macro code and try out
your macros.

FIGURE 1.12 Excel status bar with the macro recording button turned off.

 Hands-On 1.4 Inserting Column Headings and Applying
Formatting (Macro Task 2)

1. Choose View | Macros | Record Macro (or you may click the Begin
recording button located in the status bar).

2. Enter Insert_Headings as the name for your macro.
3. Ensure that This Workbook is selected in the Store macro in list box.
4. Click OK.
5. Excel turns on the macro recorder. All your Excel actions from now on are

being recorded.
6. Select cell A1 and enter the first heading: Employee Name.
7. Move to cell B1 and enter: First Name.
8. Enter the remaining headings in cells C1: F1 (Last Name, Hourly Rate,

Hours Worked, Total Wages).
9. Select A1:F1 and apply the bold formatting to the selection by pressing the

B button in the Font group of the Ribbon’s Home tab.
10. With the range A1:F1 still selected, choose Home | Cells | Format |

Autofit Column Width.
11. Click the Stop Recording button in the status bar as shown in Figure 1.11

or choose View | Macros | Stop Recording.
12. You have just recorded your second macro. The Employee Wages worksheet

should now have the required headings in Row 1.

Using Relative or Absolute References in Macros

Th e Excel macro recorder can record your actions using absolute or relative
cell references (see Figure 1.13).

12 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 ● If you want your macro to execute the recorded action in a specifi c
cell, no matter what cell is selected during the execution of the macro,
use absolute cell addressing. Absolute cell references have the follow-
ing form: A1, C5, etc. By default, the Excel macro recorder uses
absolute references. Before you begin to record a new macro, make
sure the Use Relative References option is not selected when you click
the Macros button as shown in Figure 1.13.

 ● If you want your macro to perform the action in any cell, be sure
to select the Use Relative References option before you choose the
Record Macro option. Relative cell references have the following
form: A1, C5, etc. Th e Excel macro recorder will continue to use
relative cell references until you exit Microsoft Excel or click the Use
Relative References option again.

 ● During the process of recording your macro, you may use both meth-
ods of cell addressing. For example, you may select a specifi c cell (e.g.,
A4), perform an action, and then choose another cell relative to
the selected cell (e.g., C9, which is located fi ve rows down and two
columns to the right of the currently active cell A4). Relative refer-
ences automatically adjust when you copy them and absolute refer-
ences don’t.

FIGURE 1.13 Excel macro recorder can record your actions using absolute or
relative cell references. To make your selection, use the Macros drop-down on the
Ribbon’s View tab.

EXCEL MACROS 13

 Hands-On 1.5 Entering Employee Data (Macro Task 3)

1. Choose View | Macros | Record Macro (or you may click the Begin
recording button located in the status bar).

2. Enter Insert_EmployeeData as the name for your macro.
3. Ensure that This Workbook is selected in the Store macro in list box.
4. Click OK.
5. Excel turns on the macro recorder. All your Excel actions from now on are

being recorded.
6. Enter employee data in columns A, D, and E as shown in Figure 1.9.
7. Leave the First Name, Last Name, and Total Wages columns blank as they

will be filled in later.
8. Click the Stop Recording button in the status bar as shown in Figure 1.11

or choose View | Macros | Stop Recording.
9. You have just recorded the third macro. The static data entry has been

completed. We will now proceed to record macros that use formulas to fill
the remaining columns of the worksheet.

 Hands-On 1.6 Entering Formulas to Fill in Employee First Name
(Macro Task 4)

1. Choose View | Macros | Record Macro (or you may click the Begin
recording button, located in the status bar).

2. Enter Get_FirstName as the name for your macro.
3. Ensure that This Workbook is selected in the Store macro in list box.
4. Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are
being recorded.

5. Enter the following formula in cell B2:
=LEFT(A2,FIND(" ", A2)-1)

6. Copy the formula down to cells B3:B7 by dragging the selection handle in
the bottom right corner of cell B2.
Excel fi lls in the fi rst names of all employees.

7. Click the Stop Recording button in the status bar as shown in Figure 1.11
or choose View | Macros | Stop Recording.
You have just recorded a macro that makes use of a formula to retrieve
employee fi rst names from their full name. Th e next macro will populate
the last name column using another formula.

14 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Hands-On 1.7 Entering Formulas to Fill in Employee Last Name
(Macro Task 5)

1. Choose View | Macros | Record Macro (or you may click the Begin
recording button located in the status bar).

2. Enter Get_LastName as the name for your macro.
3. Ensure that This Workbook is selected in the Store macro in list box.
4. Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are
being recorded.

5. Enter the following formula in cell C2:
=RIGHT(A2,LEN(A2)-FIND(" ", A2))

6. Copy the formula down to cells C3:C7 by dragging the selection handle in
the bottom right corner of cell C2.
Excel fi lls in the last names of all employees.

7. Click the Stop Recording button in the status bar as shown in Figure 1.11
or choose View | Macros | Stop Recording.
You have just recorded a macro that makes use of a formula to retrieve
employee last names from their full name. We have one more column to
fi ll in before we can apply the fi nal formatting to this worksheet.

 Hands-On 1.8 Entering Formulas to Calculate Employee Total
Wages (Macro Task 6)

1. Choose View | Macros | Record Macro (or you may click the Begin
recording button located in the status bar).

2. Enter CalculateWages as the name for your macro.
3. Ensure that This Workbook is selected in the Store macro in list box.
4. Click OK.
5. Excel turns on the macro recorder. All your Excel actions from now on are

being recorded.
Select cells F2:F7 and type the formula shown here. Press Ctrl+Enter to
ensure that formula is entered into the selected range F2:F7.

=D2*E2

6. Apply Currency format to cells F2:F7.
7. Click the Stop Recording button in the status bar as shown in Figure 1.11

or choose View | Macros | Stop Recording.
In the next macro you will complete the worksheet by applying desired
formatting.

EXCEL MACROS 15

 Hands-On 1.9 Applying Table Format (Macro Task 7)

1. Choose View | Macros | Record Macro (or you may click the Begin
recording button located in the status bar).

2. Enter FormatTable as the name for your macro.
3. Ensure that This Workbook is selected in the Store macro in list box.
4. Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are
being recorded.

5. Select all data in the Employee Wages worksheet and choose Home |
Styles | Format as a Table. Select any of the predefined table styles from
the drop-down.

6. Select cell A1.
7. Click the Stop Recording button in the status bar as shown in Figure 1.11

or choose View | Macros | Stop Recording.
You have now completed recording a set of macros that create and format
a worksheet. Now that Excel has given us some code to work with, let’s
locate and examine it.

Editing Recorded Macros

Before you can modify your macro, you must find the location where the
macro recorder placed its code. As you recall, when you turned on the
macro recorder, you selected ThisWorkbook for the location. To find the
location of your macros, you will use the Macro dialog box as instructed in
Hands-On 1.10.

 Hands-On 1.10 Examining the Macro Code

1. Choose View | Macros | View Macros.
You should see all seven macros you recorded earlier (see Figure 1.14).

2. Select the Insert_NewSheet macro name and click the Edit button.
Excel opens a special window called Visual Basic Editor (also known as
VBE), as shown in Figure 1.15. Th is window is your VBA programming
environment. Using the keyboard shortcut Alt+F11, you can quickly
switch between the Microsoft Excel application window and the Visual
Basic Editor window. Now take a moment and try switching between both
windows. When you are done, ensure that you are back in the VBE window.

3. Close the Visual Basic Editor window by using the key combination Alt+Q
or choosing File | Close and Return to Microsoft Excel.
Don’t worry if the Visual Basic Editor window seems a bit confusing
right now. As you work with the recorded macros and start writing your
own VBA procedures from scratch, you will become familiar with all the
elements of this screen.

16 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 1.14 In the Macro dialog box, you can select a macro to run, debug (Step Into), edit,
or delete. You can also set macro options.

FIGURE 1.15 The Visual Basic Editor window is used for editing macros as well as writing new
procedures in the Visual Basic for Applications language.

4. In the Microsoft Excel application window, choose Developer | Visual
Basic to switch again to the programming environment.
Notice the menu bar and toolbar in the Visual Basic Editor window which
look diff erent than those in the Microsoft Excel window. As you can see,
there is no Ribbon interface. Th e Visual Basic Editor uses the old Excel style
menu bar and toolbar, which provide tools required for programming and
testing your recorded macros and VBA procedures. As you work through
the individual chapters of this book, you will feel very comfortable in
using these tools.

EXCEL MACROS 17

The main part of the Visual Basic Editor window is a docking surface for
various windows that you will find extremely useful while creating and test-
ing your VBA procedures.

Figure 1.15 displays three windows that are docked in the Visual Basic
Editor window: the Project Explorer window, the Properties window, and
the Code window.

The Project Explorer window shows an open Modules folder. Excel re-
cords your macro actions in special worksheets called Module1, Module2,
and so on, and stores them in the Modules folder. Later in this book, you will
also use modules to write the code of your own procedures from scratch. A
module resembles a blank document in Microsoft Word.

The Properties window displays the properties of the object that is cur-
rently selected in the Project Explorer window. In Figure 1.15, the Module1
object is selected in the Project - VBAProject window, and therefore the
Properties - Module1 window displays the properties of Module1. Notice
that the only available property for the module is the Name property. You
can use this property to change the name of Module1 to a more meaningful
name.

Macro or Procedure?

A macro is a series of commands or functions recorded with the help of
a built-in macro recorder or entered manually in a Visual Basic module.
The term “macro” is often replaced with the broader term “procedure.”
Although the words can be used interchangeably, many programmers pre-
fer “procedure.” While macros allow you to mimic keyboard actions, true
procedures can also execute actions that cannot be performed using the
mouse, keyboard, or menu options. In other words, procedures are more
complex macros that incorporate language structures found in the tradi-
tional programming languages.

The Module1 (Code) window displays the code of all macros you recorded
earlier. Note that the following code may not exactly match the code in your
Code window. Excel records all actions while the recorder is on, so you may
see more or fewer statements recorded.
Option Explicit

Sub Insert_NewSheet()
'
' Insert_NewSheet Macro
' Insert and rename a worksheet
'

'
 Sheets.Add After:=ActiveSheet

SIDEBAR

18 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Sheets("Sheet2").Select
 Sheets("Sheet2").Name = "Employee Wages"

End Sub

Sub Insert_Headings()
'
' Insert_Headings Macro
'

'
 Range("A1").Select
 ActiveCell.FormulaR1C1 = "Employee Name"
 Range("B1").Select
 ActiveCell.FormulaR1C1 = "First Name"
 Range("C1").Select
 ActiveCell.FormulaR1C1 = "Last Name"
 Range("D1").Select
 ActiveCell.FormulaR1C1 = "Hourly Rate"
 Range("E1").Select
 ActiveCell.FormulaR1C1 = "Hours Worked"
 Range("F1").Select
 ActiveCell.FormulaR1C1 = "Total Wages"
 Range("A1:F1").Select
 With Selection.Font
 .Name = "Arial"
 .FontStyle = "Bold"
 .Size = 10
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlUnderlineStyleNone
 .ThemeColor = xlThemeColorLight1
 .TintAndShade = 0
 .ThemeFont = xlThemeFontNone
 End With
 Selection.Columns.AutoFit
End Sub

Sub Insert_EmployeeData()
'
' Insert_EmployeeData Macro
' Insert employee data
'

'
 Range("A2").Select
 ActiveCell.FormulaR1C1 = "James Rogers"
 Range("D2").Select

EXCEL MACROS 19

 ActiveCell.FormulaR1C1 = "15"
 Range("E2").Select
 ActiveCell.FormulaR1C1 = "7"
 Range("A3").Select
 ActiveCell.FormulaR1C1 = "Martha Lambert"
 Range("D3").Select
 ActiveCell.FormulaR1C1 = "13.4"
 Range("E3").Select
 ActiveCell.FormulaR1C1 = "6"
 Range("A4").Select
 ActiveCell.FormulaR1C1 = "Eugene Zelnik"
 Range("D4").Select
 ActiveCell.FormulaR1C1 = "21.42"
 Range("E4").Select
 ActiveCell.FormulaR1C1 = "10"
 Range("A5").Select
 ActiveCell.FormulaR1C1 = "Enrique Martinez"
 Range("D5").Select
 ActiveCell.FormulaR1C1 = "16.5"
 Range("E5").Select
 ActiveCell.FormulaR1C1 = "11"
 Range("A6").Select
 ActiveCell.FormulaR1C1 = "Wanda Pasterniak"
 Range("D6").Select
 ActiveCell.FormulaR1C1 = "35"
 Range("E6").Select
 ActiveCell.FormulaR1C1 = "21"
 Range("A7").Select
 ActiveCell.FormulaR1C1 = "Bruce Smith"
 Range("D7").Select
 ActiveCell.FormulaR1C1 = "28.33"
 Range("E7").Select
 ActiveCell.FormulaR1C1 = "14"
 Range("A7").Select
End Sub

Sub Get_FirstName()
'
' Get_FirstName Macro
'

'
 Range("B2").Select
 ActiveCell.FormulaR1C1 = "=LEFT(RC[-1],
 FIND("" "",RC[-1])-1)"
 Range("B2").Select
 Selection.AutoFill Destination:=Range("B2:B7"), _
 Type:=xlFillDefault
 Range("B2:B2").Select
End Sub

20 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Sub Get_LastName()
'
' Get_LastName Macro
'

'
 Range("C2").Select
 ActiveCell.FormulaR1C1 = "=RIGHT(RC[-2],
 LEN(RC[-2])-FIND("" "",RC[-2]))"
 Range("C2").Select
 Selection.AutoFill Destination:=Range("C2:C7"),
 Type:=xlFillDefault
 Range("C2:C2").Select
End Sub

Sub CalculateWages()
'
' CalculateWages Macro
'

'
 Range("F2:F7").Select
 Selection.FormulaR1C1 = "=RC[-2]*RC[-1]"
 Selection.Style = "Currency"
End Sub

Sub FormatTable()
'
' FormatTable Macro
'

 ActiveSheet.ListObjects.Add(xlSrcRange,
 Range("A1:F7"), ,xlYes).Name = _
 "Table3"
 Range("Table3[#All]").Select
 ActiveSheet.ListObjects("Table3").TableStyle =
 "TableStyleLight14"
 Range("Table3[[#Headers],[Employee Name]]").Select
End Sub

For now, let’s focus on finding answers to two questions:

 ● How do you read the macro code?
 ● How can you edit macros?

Notice that each macro code you recorded is located between the Sub and
End Sub. These words are known as keywords. You read the code line by
line from top to bottom. Editing macros boils down to deleting or modify-
ing existing code or typing new instructions in the Code window.

EXCEL MACROS 21

Macro Comments

Look at the recorded macro code. The lines that begin with a single quote
denote comments. By default, comments appear in green. When the macro
code is executed, Visual Basic ignores the comment lines. Comments are
often placed within the macro code to document the meaning of certain
lines that aren’t obvious. Comments can also be used to temporarily disable
certain blocks of code that you don’t want to execute. This is often done
while testing and troubleshooting your macros.

Let’s add some comments to the CalculateWages macro to make the
code easier to understand.

 Hands-On 1.11 Adding Comments to the Macro Code

1. Make sure that the Visual Basic Editor screen shows the Code window
with the CalculateWages macro.

2. Click after the Range("F2:F7").Select and press Enter.
3. Move the pointer to the empty line you just created and type the following

comment. Be sure to start with a single quote.
' Multiply Hourly Rate by Hours Worked

4. Press Ctrl+S to save the changes in Chap01_ExcelPrimer.xlsm, or choose
File | Save Chap01_ExcelPrimer.xlsm.

All macro procedures begin with the keyword Sub and end with the key-
words End Sub. The Sub keyword is followed by the macro name and a set
of parentheses. Between the keywords Sub and End Sub are statements that
Visual Basic executes each time you run your macro. Visual Basic reads the
lines from top to bottom, ignoring the statements preceded with a single
quote (see the information about comments) and stops when it reaches the
keywords End Sub. Notice that the recorded macro contains many periods.
The periods appear in almost every line of code and are used to join various
elements of the Visual Basic for Applications language. How do you read the
instructions written in this language? They are read from the right side of the
last period to the left. Here are a few statements from the Insert_Headings
macro and a description of what they mean:

Code Segment Description
Range("A1:F1").Select Select cells A1 to F1.
Selection.Columns.AutoFit Extend the column width so that all

entries fit.
ActiveCell.FormulaR1C1 = "Hourly
Rate"

Let the formula of the active cell be
“Hourly Rate.”

22 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Code Segment Description
With Selection.Font
 .Name = "Arial"
 .FontStyle = "Bold"
 .Size = 10
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlUnderlineStyle-
None
 .ThemeColor = xlThemeColor-
Light1
 .TintAndShade = 0
 .ThemeFont = xlThemeFontNone
End With

This is a special block of code that is
interpreted as follows: Set the name of
the font to “Arial Narrow” for the cur-
rently selected cells; set the Font Style
to “Bold,” etc. The block of code that
starts with the keywords With and
ends with the keywords End With
speeds up the execution of the macro
code. Instead of repeating the instruc-
tion “Selection.Font” for each of the
font settings, the macro recorder uses
a shortcut. It places the repeating text,
Selection.Font, to the right of
the keyword With and ends the block
with the keywords End With.

Cleaning Up the Macro Code

As you review and analyze your macro code line by line, you may notice
that Excel recorded a lot of information that you didn’t intend to include.
For example, in the Insert_Headings macro, in addition to setting the font
style to bold and the font size to 10, Excel also recorded the current state of
other options on the Font tab—strikethrough, superscript, subscript, out-
line font, shadow, underline, theme color, tint and shade, and theme font
(take a look at the code fragment in the last row in the foregoing table).

When you use dialog boxes, Excel always records all the settings. These
additional instructions make your macro code longer and more difficult to
understand. Therefore, when you finish recording your macro, it is a good
idea to go over the recorded statements and delete the unnecessary lines.
Let’s do some code cleanup right now.

 Hands-On 1.12 Cleaning Up the Macro Code

1. In the Code window, locate the following block of code in the Insert_
Headings macro and delete the lines that are crossed out:
With Selection.Font
 .Name = "Arial"
 .FontStyle = "Bold"
 .Size = 10
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlUnderlineStyleNone

EXCEL MACROS 23

 .ThemeColor = xlThemeColorLight1
 .TintAndShade = 0
 .ThemeFont = xlThemeFontNone

 End With

Aft er the cleanup, only three statements should be left between the
keywords With and End With. Th ese statements are the settings that you
selected in the Format Cells dialog box when you recorded this macro:
With Selection.Font
 .Name = "Arial"
 .FontStyle = "Bold"
 .Size = 10
End With

2. Replace the first two statements in the Insert_Headings macro as follows:
Range("A1").FormulaR1C1 = "Employee Name"

3. Make a similar change for each of the other headings in this macro—for
example:
Range("B1").FormulaR1C1 = "First Name"

4. Press Ctrl+S to save the changes.
5. On your own, modify the statements in the Insert_EmployeeData macro.

Check your revisions against a companion file.

Running a Macro

You can run your macros from either the Microsoft Excel window or the
Visual Basic Editor window. When you execute a macro from the VBE
screen, Visual Basic executes the macro behind the scenes. You can’t see
when Visual Basic performed a specific action. To watch Visual Basic at
work, you must run your macro from the Macro dialog box or arrange your
screen in such a way that the Microsoft Excel and Visual Basic windows can
be viewed at the same time. Two monitors attached to your computer will
help you greatly in the development work when you need to observe actions
performed by your code.

After you create a macro, you should run it at least once to make sure it
works correctly. Later in this chapter you will learn other ways to run mac-
ros, but for now, let’s use the Macro dialog box.

 Hands-On 1.13 Running a Macro Using the Macro Dialog Box

1. Make sure that the Chap01_ExcelPrimer.xlsm workbook is open.
2. Delete the Employee Wages worksheet so we can start from scratch.
3. Choose View | Macros | View Macros.
4. In the Macro dialog box, click the Insert_NewSheet macro name.
5. Click Run to execute the macro.

24 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Th e Insert_NewSheet macro inserts a blank worksheet and renames it Em-
ployee Wages.
Now, let’s proceed to run the remaining macros.

6. Choose View | Macros | View Macros.
7. In the Macro dialog box, click the Insert_Headings macro name.
8. Click Run to execute the macro.
9. Run the remaining macros: Insert_EmployeeData, Get_FirstName,

Get_LastName, CalculateWages, and FormatTable.

After running all macros, you should see the completed and formatted
Employee Wages worksheet.

Quite often, you will notice that your macro does not perform as ex-
pected the first time you run it. Perhaps during the macro recording you
selected the wrong font or forgot to change the cell color or maybe you just
realized it would be better to include an additional step. Don’t panic. Excel
makes it possible to modify the macro without forcing you to go through
the tedious process of recording your keystrokes again.

Testing and Debugging a Macro

When you modify a recorded macro, it is quite possible that you will intro-
duce some errors. For example, you may delete an important line of code,
or you may inadvertently remove or omit a necessary period. To make sure
that your macro continues to work correctly after your modifications, you
need to run it again.

 Hands-On 1.14 Running a Macro from the VBE Screen

1. Open a new Excel workbook (choose File | New | Blank Workbook). Keep
the original workbook open as you work with this Hands-On.

2. Choose Developer | Visual Basic.
3. In the Visual Basic Editor Code window, place the pointer in any line of

the Insert_NewSheet macro code, and choose Run | Run Sub/UserForm.
If you did not complete Step 1 in this Hands-On, you will see the error
message “Subscript out of range.” Visual Basic cannot fi nd Sheet2 that the
macro references. Before you run macros, you must make sure that your
macro can run in the worksheet that is currently selected. Click the End
button, and make sure that you select the correct worksheet before you try
to run the macro again.

4. To see the result of your macro, you must switch to the Microsoft Excel
window. To do this, press Alt+F11.
If you modifi ed the Insert_Headings macro and happen to omit the period
in With Selection.Font, Visual Basic will generate the “Run time error
‘424’ — Object required” message when running this line of code. Click

EXCEL MACROS 25

the Debug button in the message box, and you will be placed in the Code
window. At this time, Visual Basic will activate break mode and will use
the yellow highlighter to indicate the line that it had trouble executing.
As soon as you correct your error, Visual Basic may announce, “Th is
action will reset your project, proceed anyway?” Click OK to this message.
Although you can edit code in break mode, some edits prevent continuing
execution. Aft er correcting the error, run the macro again, as there may be
more errors to be fi xed before the macro can run smoothly.

5. Switch back to the Visual Basic Editor screen by pressing Alt+F11.

Saving and Renaming a Macro

The macros you recorded in this chapter are in a Microsoft Excel workbook.
All macros are saved when you save the workbook.

 Hands-On 1.15 Saving Macros and Running Macros from An-
other Workbook

1. Save your Chap01_ExcelPrimer.xlsm workbook and then close it.
2. Open a brand-new workbook and press Alt+F8 to open the Macro dialog

box.
Notice that there is no trace of your macros in the Macro dialog box. If
you’d like to run the macros you recorded earlier in this chapter in another
workbook, you need to open the fi le that stores these macros.

3. Save the open workbook file as Chap01_ExcelPrimer2.xlsx in your
trusted C:\VBAPrimerExcel_ByExample folder. You will not have any
macros in this workbook, so saving it in Excel’s default file format will
work just fine.

4. Open the C:\VBAPrimerExcel_ByExample\Chap01_ExcelPrimer.xlsm
workbook file.

5. Activate Sheet1 in the Chap01_ExcelPrimer2.xlsx workbook.
6. Press Alt+F8 to activate the Macro dialog box. Notice that Excel displays

macros in all open workbooks.
7. Run each of the macros listed in this dialog box in the order you have

recorded them.
Your macros go to work again. You should end up with the Employee
Wages worksheet formatted to your liking.

8. Close the Chap01_ExcelPrimer2.xlsx workbook file. Do not save the
changes. Do not close the Chap01_ExcelPrimer.xlsm workbook file. We
will need it in the next section.

When you add additional actions to your macro, you may want to change the
macro name to better indicate its purpose. The name of the macro should
communicate its function as clearly as possible. To change the macro name,

26 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

you don’t need to press a specific key. In the Code window, simply delete the
old macro name and enter the new name following the Sub keyword.

Printing Macro Code

If you want to document your macro or perhaps study the macro code when
you are away from the computer, you can print your macros. You can print
the entire module sheet where your macro is stored or indicate a selection of
lines to print. Let’s print the entire module sheet that contains your macros.

 Hands-On 1.16 Printing Macro Code

1. Switch to the Visual Basic Editor window and double-click Module1 in the
Project Explorer window to activate the module containing your macros.

2. Choose File | Print.
3. In the Print - VBAProject dialog box, the Current Module option button

should be selected.
4. Click OK to print the entire module sheet.

If you’d like to print only a certain block of programming code, perform the
following steps:

1. In the module sheet, highlight the code you want to print.
2. Choose File | Print.
3. In the Print - VBAProject dialog box, the Selection option button should

be selected.
4. Click OK to print the highlighted code.

IMPROVING YOUR RECORDED MACROS

After you record your macro, you may realize that you’d like the macro to
perform additional tasks. Adding new instructions to the macro code is not
very difficult if you are already familiar with the Visual Basic language. In
most situations, however, you can do this more efficiently when you dele-
gate the extra tasks to the macro recorder. You may argue that Excel records
more instructions than are necessary. However, one thing is for sure—the
macro recorder does not make mistakes. If you want to add additional
instructions to your macro using the macro recorder, you must record a
new macro, copy the sections you want, and paste them into the correct
location in your original macro. Note that Microsoft Excel places the newly
recorded macro in a new module sheet.

At times you may need to modify your macro code by removing some
statements. Before you start deleting unnecessary lines of code, think of
how you can use the comment feature that you’ve recently learned. You can

EXCEL MACROS 27

comment out the unwanted lines and run the macro with the commented
code. If the Visual Basic Editor does not generate errors, you can safely de-
lete the commented lines. By following this path, you will never find your-
self recording the same keystrokes more than once. And, if the macro does
not perform correctly, you can remove the comments from the lines that
may be needed after all.

When you create macros with the macro recorder, you can quickly learn
the VBA equivalents for the Excel commands and dialog box settings. Then
you can look up the meaning and the usage of these Visual Basic commands
in the online help. It’s obvious that the more instructions Visual Basic needs
to read, the slower your macro will execute. Eliminating extraneous com-
mands will speed up your macro. Learning the right word or expression in
any language takes time. You’ll learn about Visual Basic objects, properties,
and methods in Chapter 3, “Excel VBA Fundamentals.”

Including Additional Instructions

To include additional instructions in the existing macro, add empty lines
in the required places of the macro code by pressing Enter, and type in
the necessary Visual Basic statements. If the additional instructions are
keyboard actions or menu commands, you may use the macro recorder to
generate the necessary code and then copy and paste these code lines into
the original macro.

Want to add more improvements to your macro? How about a message to
notify you when Visual Basic has finished executing the last macro line?
This sort of action cannot be recorded, as Excel does not have a correspond-
ing Ribbon command or shortcut menu option. However, using the Visual
Basic for Applications language, you can add new instructions to your
macro by hand. Let’s see how this is done.

 Hands-On 1.17 Adding Visual Basic Statements to the Recorded
Macro Code

1. In the Code window containing the code of the FormatTable macro, click
in front of the End Sub keywords and press Enter.

2. Place your cursor on the empty line and type the following statement:
MsgBox "Your worksheet is ready."

When you run this macro next time around, you see a message box with
your programmed message text. You must click the OK button in the
message box to discard this message. MsgBox is one of the most frequently
used built-in VBA functions. You will learn more about its usage in Chapter
4, “Excel VBA Procedures.”

SIDEBAR

28 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

CREATING A MASTER MACRO

In this chapter, you recorded several macros that required that you execute
them in the order they were recorded. Instead of running your macros one
by one, it is more convenient to have one master macro that will perform
all the required tasks in the correct order. Let’s see how this is done in the
next Hands-On.

 Hands-On 1.18 Creating a Master Macro Procedure

1. Switch to the Microsoft Visual Basic for Application window and select
VBAProject (Chap01_ExcelPrimer.xlsm) in the Project Explorer
window.

2. Choose Insert | Module to add a new module to the selected VBA project.
3. In the Properties window select Module2 next to the (Name) property

and rename it MasterProcedure.
4. In the Code window on your right, enter the following procedure:

Sub CreateEmployeeWorksheet()
 Insert_NewSheet
 Insert_Headings
 Insert_EmployeeData
 Get_FirstName
 Get_LastName
 CalculateWages
 FormatTable
End Sub

5. Press Ctrl+S to save the changes in the workbook.
6. Choose File | Close and Return to Microsoft Excel.
7. In the Microsoft Excel window, choose File | New | Blank workbook.
8. Choose View | Macros | View Macros to display the Macro dialog box.
9. Select the CreateEmployeeWorksheet macro name and click Run.

Excel runs your code and displays a message box that you added in the
previous Hands-On.

10. Click OK to dismiss the message box.
11. Close the Excel workbook you just created without saving it.

In this Hands-On you learned how easy it is to combine stand-alone mac-
ros into a master macro. All you need to do is list the macro names on
separate lines between the Sub and End Sub keywords. You could also copy
all the code of the recorded macros into a new macro; however, this would
make the macro code more diffi cult to troubleshoot. It is much easier to
understand and work with shorter macros. In Chapter 9 of this book, you
will learn several techniques that will allow you to test your macros using
Excel built-in tools.

EXCEL MACROS 29

VARIOUS METHODS OF RUNNING MACROS

So far in this chapter, you have learned a couple of methods of running
macros. You already know how to run a macro from the VBE screen or a
Macro dialog box in the Microsoft Excel application window. In the VBE
screen you can run the VBA code in one of the following ways:

 ● Press F5 on the keyboard
 ● Choose Run | Run Sub/UserForm
 ● Choose Tools | Macros
 ● Click the Run Sub/UserForm (F5) button on the Standard toolbar as

shown in Figure 1.16.

FIGURE 1.16 The Visual Basic code can also be run from the toolbar button.

In this section, you will learn three cool methods of macro execution that
will allow you to run your macros using a keyboard shortcut, toolbar but-
ton, or worksheet button. Let’s get started.

Running the Macro Using a Keyboard Shortcut

A popular method to run a macro is by using an assigned keyboard short-
cut. It is much faster to press Ctrl+Shift+I than it is to activate the macro
from the Macro dialog box. Before you can use the keyboard shortcut, you
must assign it to your macro. Let’s learn how this is done.

 Hands-On 1.19 Assigning a Macro to a Keyboard Shortcut

1. In the Excel application window, press Alt+F8 to open the Macro dialog
box.

2. In the list of macros, click the CreateEmployeeWorksheet macro, and
then choose the Options button.

3. When the Macro Options dialog box appears, the cursor is in the Shortcut
key text box.

4. Hold down the Shift key and press the letter I on the keyboard. Excel
records the keyboard combination as Ctrl+Shift+I. The result is shown in
Figure 1.17.

30 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 1.17 Using the Macro Options dialog box, you can assign a keyboard shortcut for
running a macro.

5. Click OK to close the Macro Options dialog box.
6. Click Cancel to close the Macro dialog box and return to the worksheet.
7. To run your macro using the newly assigned keyboard shortcut, open a

new workbook and press Ctrl+Shift+I.
Your macro goes to work, and your worksheet is ready to use.

Avoid Shortcut Confl icts

If you assign to your macro a keyboard shortcut that conflicts with a Mi-
crosoft Excel built-in shortcut, Excel will run your macro if the workbook
containing the macro code is currently open.

Running the Macro from the Quick Access Toolbar

You can add your own buttons to the built-in Quick Access toolbar. Let’s see
how it is done to run a macro from Excel.

 Hands-On 1.20 Running a Macro from the Quick Access Toolbar

1. In the Microsoft Excel window, click the Customize Quick Access Toolbar
button (the downward-pointing arrow in the title bar) and choose More
Commands as shown in Figure 1.18.

SIDEBAR

EXCEL MACROS 31

FIGURE 1.18 Adding a new button to the Quick Access toolbar (Step 1).

Th e Excel Options dialog box appears with the page titled Customize the
Quick Access Toolbar.

2. In the Choose commands from drop-down list box, select Macros.
3. Select CreateEmployeeWorksheet in the list box on the left-hand side.
4. Click the Add button to move the CreateEmployeeWorksheet macro to

the list box on the right-hand side.
Th e current selections are shown in Figure 1.19.

5. To change the button image for your macro, click the Modify button.
6. In the button gallery, select any button you like and click OK.

FIGURE 1.19 Adding a new button to the Quick Access toolbar (Step 2).

7. After closing the gallery window, make sure that the image to the left of
the macro name has changed. Click OK to close the Excel Options dialog.
You should now see a new button on the Quick Access toolbar as shown in
Figure 1.20. Th is button will be available for any open workbook.

32 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 1.20 A custom button placed on the Quick Access toolbar will run the specified
macro (Step 3).

8. Click the macro button you’ve just added to run the macro assigned to it.
Again, your macro goes to work; however, this time it runs into a problem.
Recall that previously before you ran it you opened a new blank workbook.
To run this macro from any workbook, you need to modify it.

9. Click the End button in the error dialog box.
10. Switch to the Visual Basic Editor screen and modify the Insert_NewSheet

macro as shown in Figure 1.21.

FIGURE 1.21 The recorded macro Insert_NewSheet was modified to correct issues
encountered during its execution.

To allow the user to name the sheet during the macro execution you can
use the Excel InputBox method discussed in detail in Chapter 4.

11. Save the workbook and return to the Microsoft Excel window.
12. Click the macro button on the Quick Access toolbar (see Figure 1.20).

Excel adds a new worksheet to the active workbook and prompts you for
the name of the worksheet.

13. Enter any name for the newly created worksheet and click OK.

NOTE

If you clicked the Cancel button instead of typing in the
name for the worksheet, Visual Basic will run into an issue
and you will see the Application-defined or object-defined
run time error 1004. Click End to close the error message
and you will be returned to the Microsoft Excel application
window. Manually delete the empty sheet that was added
to the workbook and execute the macro again this time
entering the name for the sheet when prompted. You will
learn how to handle the Cancel button in Chapter 9.

EXCEL MACROS 33

Aft er you supply the worksheet name, the Visual Basic continues to execute
the remaining macros in your master procedure. Th e execution fails again
when the program reaches the FormatTable procedure. What’s wrong with
this macro code? It worked perfectly well when you recorded it. Oft en
issues with recorded code arise with the named ranges. Th e fi rst line of
the FormatTable procedure assigns the name “Table3” to the table range.
Because you are running the master procedure inside the workbook where
“Table3” name already exists, the Visual Basic throws the error – “Select
method of range class failed.” Table names within the workbook must be
unique. For your code to run correctly you must revise the FormatTable
procedure.

14. Click the Debug button in the error message dialog and Visual Basic will
highlight the line of code it cannot execute.

15. Exit the break mode by choosing Run | Reset.
16. Modify the FormatTable procedure as shown in Figure 1.22.

FIGURE 1.22 The recorded macro FormatTable macro was modified to correct issues
encountered during its execution.

Th e fi rst line of code in the revised procedure declares strTableName
variable to hold the name of the table supplied by the InputBox function
on the next line. You will learn about variables and their types, declarations
and assignments in Chapter 3. Th e third line creates a new list object and
assigns it a name stored in the strTableName variable. Every time you run
the procedure and are prompted for a table name you must enter a unique
name.

Notice the space and underscore after the ListObjects.Add function. This is
how you tell Visual Basic to break long lines of code. You will learn about
line continuation rules also in Chapter 3. After adding and assigning a name
to the table object, the macro again refers to the strTableName variable to
assign a predefined formatting style to the table. The procedure then selects
cell A1 in the active worksheet and displays a message to the user.

17. After making changes to the FormatTable procedure save your code and
return to the Microsoft Excel application window.

34 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

18. Run the procedure again by clicking the button on the Quick Access
toolbar.

19. The master procedure should now run as expected.

Running the Macro from a Worksheet Button

Sometimes it makes the most sense to place a macro button right on the
worksheet, where it cannot be missed. Let’s go over the steps that will attach
the WhatsInACell macro to a worksheet button.

 Hands-On 1.21 Running a Macro from a Button Placed on a
Worksheet

1. Open Chap01_Supplement.xlsm workbook located on the companion
CD.

2. If prompted, click the button to enable content.
3. Save the workbook file in your trusted folder (See Hands-On 1.1)
4. Choose Developer | Insert. The Forms toolbar appears, as shown in

Figure 1.23.

FIGURE 1.23 Adding a button to a worksheet.

5. In the Form Controls area, click the first image, which represents a button.
6. Click anywhere in the empty area of the worksheet. When the Assign

Macro dialog box appears, choose the WhatsInACell macro and click OK.
7. Excel creates a button with the default label “Button 1.” To change the

button’s label, click inside the button, delete the default text and type
Format Cells. If the text does not fit, do not worry; you will resize the
button in Step 7. When the button is selected, it looks like the one shown
in Figure 1.24. If the selection handles are not displayed, right-click Button
1 on the worksheet and choose Edit Text on the shortcut menu. Select the
default text and enter the new label.

8. When you’re done renaming the button, click outside the button to exit
the edit mode.
Because the text you entered is longer than the default button text, let’s
resize the button so that the entire text is visible.

EXCEL MACROS 35

9.

FIGURE 1.24 A button with an attached macro.

10. Right-click the button you’ve just renamed to select it, point to one of the
tiny circles that appear in the button’s right edge, and drag right to expand
the button until you see the complete entry, Format Cells.

NOTE
If you left click the button inadvertently, there is nothing
you can do to stop the macro from running. You can resize
the button after the macro has run.

11. When you’re done resizing the button, click outside the button to exit the
selection mode.

12. To run your macro, click the button you just created.
Your macro goes to work, and your worksheet is now formatted as shown
in Figure 1.25.
Let’s remove the formatting you just applied by running the RemoveFormats
macro.

FIGURE 1.25 The worksheet was formatted with a macro attached to the Format Cells
button.

36 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

13. Press Alt+F8 to open the Macro dialog box. Select the RemoveFormats
macro and click the Run button.

14. On your own, create another button on this worksheet that will be used for
running the RemoveFormats macro.

15. Save your workbook with a different file name so that the original workbook
can be reused again in case you’d like to revisit the button creation process.

NOTE

The code of WhatsInACell and RemoveFormat macros in
this practice workbook was written by the built-in macro re-
corder while executing a series of commands via Excel menu
/ Ribbon options.

You can also run macros from a hyperlink, or a button placed in the Ribbon.
These techniques are not introduced in this book because they require the
understanding of the advanced topic of Ribbon Customizations.

SUMMARY

In this chapter, you have learned how to create macros by recording your
selections in the Microsoft Excel application window. You also learned how
to view, read, and modify the recorded macros in the Visual Basic Editor
window. In addition, you tried various methods of running macros. This
chapter has also explained macro security issues that you should be aware
of when opening workbooks containing macro code.

The next chapter focuses on using the Visual Basic Editor interface
window.

37

Now that you know how to record, run, and edit macros, let’s spend
some time in the Visual Basic Editor window (also known as VBE)
and become familiar with its features. With the tools located in the

VBE window, you can:

 ● Write your own VBA procedures.
 ● Create custom forms.
 ● View and modify object properties.
 ● Test VBA procedures and locate errors.

The Visual Basic Editor window can be accessed in the following ways:

 ● Choose Developer | Code | Visual Basic.
 ● Choose Developer | Controls | View Code.
 ● Press Alt+F11.

Chapter

 2
EXCEL PROGRAMMING

ENVIRONMENT

A QUICK OVERVIEW OF ITS
TOOLS AND FEATURES (VBE)

38 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

UNDERSTANDING THE PROJECT EXPLORER WINDOW

The Project Explorer window displays a hierarchical list of currently open
projects and their elements. A VBA project can contain the following ele-
ments:

 ● Worksheets
 ● Charts
 ● Th isWorkbook—Th e workbook where the project is stored
 ● Modules—Special sheets where programming code is stored
 ● Classes—Special modules that allow you to create your own objects
 ● Forms
 ● References to the other projects

With the Project Explorer you can manage your projects and easily move
between projects that are loaded into memory. You can activate the Project
Explorer window in one of three ways:

 ● From the View menu by selecting Project Explorer.
 ● From the keyboard by pressing Ctrl+R.
 ● From the Standard toolbar by clicking the Project Explorer button as

shown in Figure 2.1.

FIGURE 2.1 Buttons on the Standard toolbar provide a quick way to access many of the Visual
Basic Editor features.

The Project Explorer window contains three buttons as shown in Figure 2.2.
The first button from the left (View Code) displays the Code window for
the selected module. The middle button (View Object) displays either the
selected sheet in the Microsoft Excel Object folder or a form located in the
Forms folder. The button on the right (Toggle Folders) hides and/or acti-
vates the display of folders in the Project Explorer window.

EXCEL PROGRAMMING ENVIRONMENT 39

FIGURE 2.2 The Project Explorer window displays a list of currently open projects.
The Properties window displays the settings for the object currently selected in the Project
Explorer.

UNDERSTANDING THE PROPERTIES WINDOW

The Properties window allows you to review and set properties of various
objects in your project. The name of the currently selected object is dis-
played in the Object box located just below the Properties window’s title
bar. For example, Figure 2.2 displays the properties of the Sheet1 object.
Properties of the object can be viewed alphabetically or by category by
clicking the appropriate tab.

 ● Alphabetic tab—Lists alphabetically all properties for the selected
object. You can change the property setting by selecting the property
name and typing or selecting the new setting.

 ● Categorized tab—Lists all properties for the selected object by cat-
egory. You can collapse the list so that you see the categories, or you
can expand a category to see the properties. Th e plus sign (+) icon
to the left of the category name indicates that the category list can be
expanded. Th e minus sign (–) indicates that the category is currently
expanded.

40 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

The Properties window can be accessed in three ways:

 ● From the View menu by selecting Properties Window.
 ● From the keyboard by pressing F4.
 ● From the toolbar by clicking the Properties Window button.

UNDERSTANDING THE CODE WINDOW

The Code window is used for Visual Basic programming as well as viewing
and modifying the code of recorded macros and existing VBA procedures.
Each module can be opened in a separate Code window. There are several
ways to activate the Code window:

 ● From the Project Explorer window, choose the appropriate UserForm
or module, and click the View Code button.

 ● From the menu bar, choose View | Code.
 ● From the keyboard, press F7.

In Figure 2.3, you will notice at the top of the Code window two drop-down
list boxes that allow you to move quickly within the Visual Basic code. In
the Object box on the left side of the Code window, you can select the object
whose code you want to view. The box on the right side of the Code window
lets you quickly choose a procedure or event procedure to view. When you
open this box, the names of all procedures located in a module are sorted
alphabetically. If you select a procedure in the Procedures/Events box, the
cursor will jump to the first line of this procedure.

By dragging the split bar shown in Figure 2.3 down to a selected position
in the Code window, you can divide the Code window into two panes. You
can then view different sections of a long procedure or a different procedure
in each pane. This two-pane display in the Code window is often used for
copying or cutting and pasting sections of code between procedures of the
same module.

To return to the one-window display, simply drag the split bar all the way
to the top of the Code window.
At the bottom left of the Code window, there are two icons. The Procedure
View icon displays one procedure at a time in the Code window. To select
another procedure, use the Procedures/Events box. The Full Module View
icon displays all the procedures in the selected module. Use the vertical
scrollbar to scroll through the module’s code.

The margin indicator bar is used by Visual Basic Editor to display help-
ful indicators during editing and debugging. If you’d like to take a quick
look at some of these indicators, skim through Chapter 9, “Excel Tools for
Testing and Debugging.”

EXCEL PROGRAMMING ENVIRONMENT 41

FIGURE 2.3 The Visual Basic Code window has several elements that make it easy to locate
procedures and review the VBA code.

SETTING THE VBE OPTIONS

There are several other windows that are frequently used in the Visual Basic
environment.

Figure 2.4 displays the list of windows that can be docked in the Vi-
sual Basic Editor window. You will learn how to use some of these windows
in Chapter 3 (Object Browser, Immediate window) and Chapter 9 (Locals
window, Watch window).

FIGURE 2.4 The Docking tab in the Tools | Options dialog box allows you to choose which
windows you want to be dockable in the Visual Basic Editor screen.

42 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

SYNTAX AND PROGRAMMING ASSISTANCE

Figure 2.5 shows the Edit toolbar in the VBE window that contains several
buttons that let you enter correctly formatted VBA instructions with speed
and ease. If the Edit toolbar isn’t currently docked in the Visual Basic Editor
window, you can turn it on by choosing View | Toolbars | Edit.

Writing procedures in Visual Basic requires that you use hundreds of
built-in instructions and functions. Because most people cannot memorize
the correct syntax of all the instructions that are available in VBA, the Intel-
liSense® technology provides you with syntax and programming assistance
on demand when entering instructions. You can have special windows pop
up and guide you through the process of creating correct VBA code.

FIGURE 2.5 Buttons located on the Edit toolbar make it easy to write and format VBA
instructions.

List Properties/Methods

Each object can contain several properties and methods. When you enter
the name of the object and a period that separates the name of the object
from its property or method in the Code window, a pop-up menu may
appear. This menu lists the properties and methods available for the object
that precedes the period as shown in Figure 2.6. To turn on this automated
feature, choose Tools | Options. In the Options dialog box, click the Editor
tab, and make sure the Auto List Members check box is selected.

To choose an item from the pop-up menu that appears, start typing the
name of the property or method that you want to select. When Excel high-
lights the correct item name, press Enter to insert the item into your code
and start a new line. Or, if you want to continue writing instructions on the
same line, press the Tab key instead. You can also double-click the item to
insert it in your code. To close the pop-up menu without inserting an item,

EXCEL PROGRAMMING ENVIRONMENT 43

simply press Esc. When you press Esc to remove the pop-up menu, Visual
Basic will not display it again for the same object. To display the Properties/
Methods pop-up menu again, you can:

 ● Press Ctrl+J.
 ● Use the Backspace key to delete the period and type the period again.
 ● Right-click in the Code window and select List Properties/Methods

from the shortcut menu.
 ● Choose Edit | List Properties/Methods.
 ● Click the List Properties/Methods button on the Edit toolbar.

List Constants

A constant is a value that indicates a specific state or result. Excel has many
predefined, built-in constants. You will learn about constants, their types,
and usage in Chapter 3.

Suppose you want your program to turn on the Page Break Preview of
your worksheet. In the Microsoft Excel application window, the View tab
lists four types of workbook views:

 ● Th e Normal View is the default view for most tasks in Excel.
 ● Page Layout View allows you to view the document as it will appear

on the printed page.
 ● Page Break Preview allows you to see where pages will break when

the document is printed.
 ● Custom Views allows you to save the set of display and print settings

as a custom view.

The first three view options are represented by a built-in constant. Micro-
soft Excel constant names begin with the characters “xl.” As soon as you
enter in the Code window the instruction:

ActiveWindow.View =

FIGURE 2.6 While you are entering the VBA instructions, Visual Basic suggests properties and
methods that can be used with the object.

44 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

a pop-up menu will appear with the names of valid constants for the prop-
erty, as shown in Figure 2.7.

FIGURE 2.7 The List Constants pop-up menu displays a list of constants that are valid for the
property entered.

To work with the List Constants pop-up menu, use the same techniques
as for the List Properties/Methods pop-up menu outlined in the preceding
section.

The List Constants pop-up menu can be activated by pressing
Ctrl+Shift+J or clicking the List Constants button on the Edit toolbar.

Parameter Info

If you’ve had a chance to work with Excel worksheet functions, you already
know that many functions require one or more arguments (or parameters).
For example, here’s the syntax for the most common worksheet function:

SUM(number1,number2, ...)

where number1, number2, … are 1 to 30 arguments that you can add up.
Like functions, VBA methods may require one or more arguments. If a

method requires an argument, you can see the names of required and op-
tional arguments in a tooltip box that appears just below the cursor as soon
as you type the beginning parenthesis as illustrated in Figure 2.8. In the
tooltip, the current argument is displayed in bold. When you supply the first
argument and enter the comma, Visual Basic displays the next argument in
bold. Optional arguments are surrounded by square brackets [].

You can open the Parameter Info tooltip using the keyboard. To do this,
enter the method or function name, follow it with the left parenthesis, and
press Ctrl+Shift+I. You can also click the Parameter Info button on the Edit
toolbar or choose Edit | Parameter Info.

FIGURE 2.8 A tooltip displays a list of arguments utilized by a VBA method.

The Parameter Info feature makes it easy for you to supply correct arguments
to a VBA method. In addition, it reminds you of two other things that are very
important for the method to work correctly: the order of the arguments and

EXCEL PROGRAMMING ENVIRONMENT 45

the required data type of each argument. You will learn about data types in
Chapter 3.

Quick Info

When you select an instruction, function, method, procedure name, or
constant in the Code window and then click the Quick Info button on the
Edit toolbar (or press Ctrl+I), Visual Basic displays the syntax of the high-
lighted item, as well as the value of a constant, as depicted in Figure 2.9. The
Quick Info feature can be turned on or off using the Options dialog box. To
use the feature, click the Editor tab and choose the Auto Quick Info option.

FIGURE 2.9 The Quick Info feature displays a list of arguments required by a selected method
or function, a value of a selected constant, or the type of the selected object or property.

Complete Word

Another way to increase the speed of writing VBA procedures in the Code
window is with the Complete Word feature. As you enter the first few letters
of a keyword and press Ctrl+Spacebar or click the Complete Word button
on the Edit toolbar, Visual Basic will fill in the remaining letters by complet-
ing the keyword entry for you. For example, when you enter the first four
letters of the keyword Application (Appl) in the Code window and press
Ctrl+Spacebar, Visual Basic will complete the rest of the word, and in the
place of “Appl,” you will see the entire word “Application.”

Indent/Outdent

If the Auto Indent option is turned on, you can automatically indent the
selected lines of code by the number of characters specified in the Tab
Width text box. The default entry for Auto Indent is four characters. You
can easily change this setting via the Options dialog box (by selecting the
Editor tab; see Figure 2.4).

Why would you want to use indentation in your code? When you in-
dent certain lines in your VBA procedures, you make them more readable
and easier to understand. Indenting is especially recommended for entering
lines of code that make decisions or repeat actions. You will learn how to
create these kinds of Visual Basic instructions in Chapters 5 and 6, “Adding
Decisions to Excel VBA Programs” and “Adding Repeating Actions to Excel
VBA Programs.” Let’s spend a few minutes learning how to apply the indent
and outdent features to the lines of code in the WhatsInACell macro that
you worked with in Chapter 1.

46 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Hands-On 2.1 Indenting/Outdenting Visual Basic Code

1. Open the Chap01_Supplement.xlsm workbook that you worked with in
Chapter 1.

2. Press Alt+F11 to switch to the VBE window.
3. Choose View | Toolbars | Edit to gain access to the Editing toolbar. If the

toolbar pops up in the middle of the screen, double-click its title bar to get
it docked at the top of the VBE window.

4. In the Project Explorer window, select the Chap01_Supplement.
xlsmVBA project and activate the Module1 that contains the code of the
WhatsInACell macro.

5. Select the block of code located between the keyword With and End With.
6. Click the Indent button (see Figure 2.5) on the Edit toolbar or press Tab

on the keyboard. The selected block of instructions will move four spaces
to the right if you are using the default setting in the Tab Width box in the
Options dialog box (Editor tab).

7. Click the Outdent button on the Edit toolbar or press Shift+Tab to return
the selected lines of code to the previous location in the Code window.

8. Close the Chap01_Supplement.xlsm workbook.
The Indent and Outdent options are also available from the Edit menu.

Comment Block/Uncomment Block

In Chapter 1, you learned that a single quote placed at the beginning of a
line of code denotes a comment. Not only do comments make it easier to
understand what the procedure does, but also, they are very useful in testing
and troubleshooting VBA code.

For example, when you execute your code, it may not run as expected.
Instead of deleting the lines that may be responsible for the problems you
encounter, you may want to skip those lines of code for now and return to
them later. By placing a single quote at the beginning of the line you want to
avoid, you can continue checking the other parts of your procedure.

 ● To comment a few lines of code, simply select the lines and click the
Comment Block button on the Edit toolbar (see Figure 2.5).

 ● To turn the commented code back into VBA instructions, select the
lines and click the Uncomment Block button on the Edit toolbar (see
Figure 2.5).

If you don’t select text and click the Comment Block button, the single
quote is added only to the line of code where the cursor is currently located.

EXCEL PROGRAMMING ENVIRONMENT 47

USING THE OBJECT BROWSER

You can move easily through the myriad of VBA elements and features
by examining the capabilities of the Object Browser. To access the Object
Browser, use any of the following methods in the VBE window:

 ● Press F2.
 ● Choose View | Object Browser.
 ● Click the Object Browser button on the toolbar.

The Object Browser allows you to browse through the objects that are avail-
able to your VBA procedures, as well as view their properties, methods, and
events. With the aid of the Object Browser, you can move quickly between
procedures in your own VBA projects, as well as search for objects and
methods across object type libraries.

The Object Browser window is divided into three sections as illustrated in
Figure 2.10. The top of the window displays the Project/Library drop-down
list box with the names of all libraries and projects that are available to the
currently active VBA project. A library is a special file that contains informa-
tion about the objects in an application. New libraries can be added via the
References dialog box (Tools | References). The entry for <All Libraries> lists
the objects of all libraries that are installed on your computer. When you se-
lect the library called Excel, you will see only the names of the objects that are
exclusive to Microsoft Excel. In contrast to the Excel library, the VBA library
lists the names of all the objects in Visual Basic for Applications.

FIGURE 2.10 The Object Browser window allows you to browse through all the objects,
properties, and methods available to the current VBA project.

48 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Below the Project/Library drop-down list box is a Search text box that
you’ll use to quickly find information in a library. This field remembers
the last four items for which you searched. To find only whole words, you
can right-click anywhere in the Object Browser window and choose Find
Whole Word Only from the shortcut menu.

The Search Results section of the Object Browser displays the library,
class, and member elements that met the criteria entered in the Search text
box as shown in Figure 2.11.

When you type the search text and click the Search button (the binocu-
lars icon), Visual Basic expands the Object Browser dialog box to show the
Search Results area. You can hide or show the Search Results by clicking the
button located to the right of the Search button.

FIGURE 2.11 Searching for answers in the Object Browser.

The Classes list box displays the available object classes in the selected
library. If you select a VBA project, this list shows objects in the project. In
Figure 2.11, the Application object class is selected. When you highlight
a class, the list on the right-hand side (Members) shows the properties,
methods, and events available for that class. By default, members are listed
alphabetically. You can, however, organize the members list by group type
(properties, methods, or events) using the Group Members command from
the Object Browser shortcut menu.

EXCEL PROGRAMMING ENVIRONMENT 49

If you select a VBA project in the Project/Library list box, the Members
list box will list all the procedures available in this project. To examine the
code of a procedure, simply double-click its name. If you select a VBA li-
brary, you will see a listing of Visual Basic built-in functions and constants.
If you need more information on the selected class or a member, click the
question mark button at the top of the Object Browser window.

The bottom of the Object Browser window displays a code template area
with the definition of the selected member. If you click the green hyperlink
text in the code template, you can quickly jump to the selected member’s
class or library in the Object Browser window. Text displayed in the code
template area can be copied to the Windows clipboard and then pasted to a
Code window. If the Code window is visible while the Object Browser win-
dow is open, you can save time by dragging the highlighted code template
and dropping it into the Code window.

You can easily adjust the size of the various sections of the Object Brows-
er window by dragging the dividing horizontal and vertical lines.

Now that you’ve discovered the Object Browser, you may wonder how
you can put it to use in VBA programming. Let’s assume that you placed a
text box in the middle of your worksheet. How can you make Excel move
this text box so that it is positioned at the top left-hand corner of the sheet?
Hands-On 2.2 should provide the answer to this question.

 Hands-On 2.2 Writing a VBA Procedure to Move a Text Box on
the Worksheet

1. Open a new workbook.
2. Choose Insert | Text |Text Box.
3. Now draw a box in the middle of the sheet and enter any text as shown in

Figure 2.12.
4. Select any cell outside the text box area.
5. Press Alt+F11 to activate the Visual Basic Editor window.
6. Choose Insert | Module to add a new module sheet.
7. In the Properties window, enter the new name for this module:

Manipulations.
8. Choose View | Object Browser or press F2.
9. In the Project/Library list box, click the drop-down arrow and select the

Excel library.
10. Enter textbox as the search text in the Search box as shown in Figure 2.13,

and then click the Search button. Make sure you don’t enter a space in the
search string.

50 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 2.12 Excel displays the name of the inserted object in the Name box above the
worksheet.

FIGURE 2.13 Using the Object Browser window, you can find the appropriate VBA
instructions for writing your own procedures.

Visual Basic searches the Excel library and displays the search results. It
appears that the Shapes object shown in Figure 2.13 is in control of our text
box operations. Looking at the members list, you can quickly determine
that the AddTextbox method is used for adding a new text box to a work-
sheet. The code template at the bottom of the Object Browser shows the
correct syntax for using this method. If you select the AddTextbox method
and press F1, you will see the Help window with more details on how to
use this method. The Help window tells us that the Left and Top properties
determine the position of the text box in a worksheet.

EXCEL PROGRAMMING ENVIRONMENT 51

11. Close the Object Browser window and the Help window if they are open.
Double-click the Manipulations module and enter the MoveTextBox
procedure, as shown here:
Sub MoveTextBox()
 With ActiveSheet.Shapes("TextBox 1")

 .Select
 .Left = 0
 .Top = 0
 End With

End Sub

Th e MoveTextBox procedure selects TextBox 1 in the collection of Shapes.
TextBox 1 is the default name of the fi rst object placed in the worksheet.
Each time you add a new object to your worksheet, Excel assigns a new
number (index) to it. Instead of using the object name, you can refer to the
member of a collection by its index. For example, instead of:
With ActiveSheet.Shapes("TextBox 1")

enter:
With ActiveSheet.Shapes(1)

12. Choose Run | Run Sub/UserForm to execute this procedure.
13. Press Alt+F11 to switch to the Microsoft Excel application window.

Th e text box should be positioned at the top left -hand corner of the
worksheet.

14. Save the workbook file as Chap02_ExcelPrimer.xlsm. Keep this file open
as you will continue to work with it in Hands-On 2.3.

Let’s manipulate another object with Visual Basic.

 Hands-On 2.3 Writing a VBA Procedure to Move a Circle on the
Worksheet

1. Place a small circle in the same worksheet where you originally placed the
text box in Hands-On 2.2. Use the Oval shape in the Basic Shapes area of
the Insert | Illustrations | Shapes tool. Hold down the Shift key while
drawing on the worksheet to create a perfect circle.

2. Click outside the circle to deselect it.
3. Press Alt+F11 to activate the Visual Basic Editor screen.
4. In the Manipulations Module’s Code window, write a VBA procedure that

will place the circle inside the text box. Keep in mind that Excel numbers
objects consecutively. The first object is assigned a number 1, the second
object a number 2, and so on. The type of object—whether it is a text box,
a circle, or a rectangle—does not matter.

5. The MoveCircle procedure shown here demonstrates how to move a circle
to the top left-hand corner of the active worksheet:

52 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Sub MoveCircle()
 With ActiveSheet.Shapes(2)
 .Select
 .Left = 0
 .Top = 0
 End With
End Sub

Moving a circle is like moving a text box or any other object placed in a
worksheet. Notice that instead of referring to the circle by its name, Oval
2, the procedure uses the object’s index.

6. Run the MoveCircle procedure.
7. Press Alt+F11 to return to the Microsoft Excel window.
8. The circle should now appear on the top of the text box.

Locating Procedures with the Object Browser

In addition to locating objects, properties, and methods, the Object Browser
is a handy tool for locating and accessing procedures written in various
VBA projects. The Hands-On 2.4 exercise demonstrates how you can see, at
a glance, which procedures are stored in the selected project.

 Hands-On 2.4 Using Object Browser to Locate VBA Procedures

1. In the Object Browser, select VBAProject from the Project/Library drop-
down list as shown in Figure 2.14.
Th e left side of the Object Browser displays the names of objects that are
included in the selected project. Th e Members list box on the right shows
the names of all the available procedures.

FIGURE 2.14 The Object Browser lists all the procedures available in a VBA project.

2. In the Members list, double-click the MoveCircle procedure.
3. Excel locates the selected procedure in the Code window.

EXCEL PROGRAMMING ENVIRONMENT 53

USING THE VBA OBJECT LIBRARY

In the previous examples, you used the properties of objects that are members
of the Shapes collection in the Excel object library. While the Excel library
contains objects specific to using Microsoft Excel, the VBA object library
provides access to many built-in VBA functions that are general in nature.
They allow you to manage files, set the date and time, interact with users,
convert data types, deal with text strings, or perform mathematical calcula-
tions. In the following Hands-On 2.5 exercise, you will use one of the built-in
VBA functions to create a new Windows subfolder without leaving Excel.

 Hands-On 2.5 Writing a VBA Procedure to Create a Folder in
Windows

1. Press Alt+F11 to return to the Manipulations module, where you entered
the MoveTextBox and MoveCircle procedures.

2. On a new line, type the name of the new procedure: Sub NewFolder().
3. Press Enter. Visual Basic will enter the ending keywords End Sub.
4. Press F2 to activate the Object Browser.
5. Click the drop-down arrow in the Project/Library list box and select VBA.
6. Enter file as the search text in the Search box and press the Search button.
7. Scroll down in the Members list box and highlight the MkDir method as

shown in Figure 2.15.

FIGURE 2.15 When writing procedures from scratch, consult the Object Browser for names of
the built-in VBA functions.

54 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

8. Click the Copy button (the middle button in the top row) in the Object
Browser window to copy the selected method name to the Windows
clipboard.

9. Return to the Manipulations Code window and paste the copied instruction
inside the procedure NewFolder.

10. Enter a space, followed by “C:\Study”. Be sure to enter the name of the
entire path in quotes. The NewFolder procedure should look like this:
Sub NewFolder()
 MkDir "C:\Study"
End Sub

11. Position the insertion point within the code of the NewFolder procedure
and choose Run | Run Sub/UserForm to execute the NewFolder procedure.
When you run the NewFolder procedure, Visual Basic creates a new folder
on drive C. To see the folder, activate Windows Explorer.
Aft er creating a new folder, you may realize that you don’t need it aft er all.
Although you could easily delete the folder while in Windows Explorer,
how about getting rid of it programmatically? Th e Object Browser displays
many other methods that are useful for working with folders and fi les. Th e
RmDir method is just as simple to use as the MkDir method.

12. To remove the Study folder from your hard drive, you could replace the
MkDir method with the RmDir method, and then rerun the NewFolder
procedure. However, let’s write a new procedure called RemoveFolder in
the Manipulations Code window, as shown here:
Sub RemoveFolder()
 RmDir "C:\Study"
End Sub

Th e RmDir method allows you to remove unwanted folders from your hard
disk.

13. Position the insertion point within the code of the RemoveFolder procedure
and choose Run | Run Sub/UserForm to execute the RemoveFolder
procedure.
Check Windows Explorer to see that the Study folder is gone.

USING THE IMMEDIATE WINDOW

The Immediate window is used for trying out various instructions, func-
tions, and operators present in the Visual Basic language before using them
in your own VBA procedures. It is a great tool for experimenting with your
new language.

Th e Immediate window allows you to type VBA statements and test their
results immediately without having to write a procedure. Th e Immediate
window is like a scratch pad. Use it to try out your statements. If the

EXCEL PROGRAMMING ENVIRONMENT 55

statement produces the expected result, you can copy the statement from
the Immediate window into your procedure (or you can drag it right onto
the Code window if it is visible).

The Immediate window can be moved anywhere on the Visual Basic
Editor screen or it can be docked so that it always appears in the same area
of the screen. The docking setting can be turned on and off on the Docking
tab in the Options dialog box (Tools | Options).

 ● To quickly access the Immediate window, simply press Ctrl+G while
in the Visual Basic Editor screen.

 ● To close the Immediate window, click the Close button in the top
right-hand corner of the window.

Before you start creating full-fledged VBA procedures (this awaits you in
the next chapter!), begin with some warm-up exercises to build up your
VBA vocabulary. How can you do this quickly and painlessly? How can you
try out some of the newly learned VBA statements? Here is a short, interac-
tive language exercise: Enter a simple VBA instruction and Excel will check
it out and display the result in the next line. Let’s begin by setting up your
exercise screen.

 Hands-On 2.6 Entering and Executing VBA Statements in the
Immediate Window

1. In the Visual Basic Editor window, choose View | Immediate Window.
2. Arrange the screen so that both the Microsoft Excel window and the Visual

Basic window are placed side by side as presented in Figure 2.16 or use a
setup with two monitors displaying Excel windows on separate screens.

FIGURE 2.16 By positioning the Microsoft Excel and Visual Basic windows side by side you
can watch the execution of the instructions entered in the Immediate window.

56 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

3. In the VBE screen, press Ctrl+G to activate the Immediate window.
4. In the Immediate window, type the following instruction and press Enter:

Worksheets.Add

When you press the Enter key, Visual Basic gets to work. If you entered the
foregoing VBA statement correctly, VBA adds a new sheet in the current
workbook. Th e Sheet2 tab at the bottom of the workbook should now be
highlighted.

5. In the Immediate window, type another VBA statement and be sure to
press Enter when you’re done:
Range("A1:A4").Select

As soon as you press Enter, Visual Basic highlights the cells A1, A2, A3,
and A4 in the active worksheet.

6. Enter the following instruction in the Immediate window:
[A1:A4].Value = 55

When you press Enter, Visual Basic places the number 55 in every cell
of the specifi ed range, A1:A4. Th is statement is an abbreviated way of
referring to the Range object. Th e full syntax is more readable:

Range("A1:A4").Value = 55

7. Enter the following instruction in the Immediate window:
Selection.ClearContents

When you press Enter, VBA deletes the results of the previous statement
from the selected cells. Cells A1:A4 are now empty.

8. Enter the following instruction in the Immediate window:
ActiveCell.Select

When you press Enter, Visual Basic makes cell A1 active.
Figure 2.17 shows all the instructions entered in the Immediate window
in this exercise. Every time you pressed the Enter key, Excel executed the
statement on the line where the cursor was located. If you want to execute
the same instruction again, click anywhere in the line containing the
instruction and press Enter.

FIGURE 2.17 Instructions entered in the Immediate window are executed
as soon as you press the Enter key.

EXCEL PROGRAMMING ENVIRONMENT 57

For more practice you may want to rerun the statements shown in
Figure 2.17. Execute the instructions one by one by clicking in the appro-
priate line and pressing the Enter key.

Obtaining Information in the Immediate Window

So far you have used the Immediate window to perform actions. These
actions could have been performed manually by clicking the mouse in vari-
ous areas of the worksheet and entering data.

Instead of simply performing actions, the Immediate window also al-
lows you to ask questions. Suppose you want to find out which cells are
currently selected, the value of the active cell, the name of the active sheet,
or the number of the current window. When working in the Immediate
window, you can easily get answers to these and other questions.

In the preceding exercise, you entered several instructions. Let’s return
to the Immediate window to ask some questions. Excel remembers the in-
structions entered in the Immediate window even after you close this win-
dow. Note that the contents of the Immediate window are automatically
deleted when you exit Microsoft Excel.

 Hands-On 2.7 Obtaining Information in the Immediate Window

1. Click the mouse in the second line of the Immediate window where you
previously entered the instruction Range("A1:A4").Select.

2. Press Enter to have Excel reselect cells A1:A4.
3. Click in the new line of the Immediate window, enter the following

question, and press Enter:
?Selection.Address

When you press Enter, Excel will not select anything in the worksheet.
Instead, it will display the result of the instruction on a separate line in the
Immediate window. In this case, Excel returns the absolute address of the
cells that are currently selected (A1:A4).
Th e question mark (?) tells Excel to display the result of the instruction in
the Immediate window. Instead of the question mark, you can use the Print
keyword, as shown in the next step.

4. In a new line in the Immediate window, enter the following statement and
press Enter:
Print ActiveWorkbook.Name

Excel enters the name of the active workbook on a new line in the
Immediate window.
How about fi nding the name of the application?

5. In a new line in the Immediate window, enter the following statement and
press Enter:

58 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

?Application.Name

Excel will reveal its full name: Microsoft Excel.
Th e Immediate window can also be used for a quick calculation.

6. In a new line in the Immediate window, enter the following statement and
press Enter:
?12/3

Excel shows the result of the division on the next line. But what if you want
to know right away the result of 3+2 and 12*8?
Instead of entering these instructions on separate lines, you can enter them
on one line, as in the following example:

?3+2:?12*8

Notice the colon separating the two blocks of instructions. When you
press the Enter key, Excel displays the results 5, 96 on separate lines in the
Immediate window.
Th e following lists all the instructions you entered in the Immediate
window, including Excel’s answers to your questions:
Worksheets.Add
Range("A1:A4").Select
[A1:A4].Value = 55
Selection.ClearContents
ActiveCell.Select
?Selection.Address
A1:A4
Print ActiveWorkbook.Name
Book2
?Application.Name
Microsoft Excel
?12/3
 4
?3+2:?12*8
 5
 96

To delete the instructions from the Immediate window, make sure that the
selection point is in the Immediate window, press Ctrl+A to highlight all
the lines, and then press Delete.

WORKING WITH WORKSHEET CELLS AND RANGES

When you are ready to write your own VBA procedure to automate a spread-
sheet task, you will most likely begin searching for instructions that allow
you to manipulate worksheet cells. You will need to know how to select

EXCEL PROGRAMMING ENVIRONMENT 59

cells, how to enter data in cells, how to assign range names, how to format
cells, and how to move, copy, and delete cells. Although these tasks can be
easily performed with the mouse or keyboard, mastering these techniques
in Visual Basic for Applications requires a little practice. You must use the
Range object to refer to a single cell, a range of cells, a row, or a column.
There are three properties that allow you to access the Range object: the
Range property, the Cells property, and the Offset property.

Using the Range Property

The Range property returns a cell or a range of cells. The reference to the
range must be in an A1-style and in quotation marks (for example, “A1”).
The reference can include the range operator, which is a colon (for exam-
ple, “A1:B2”), or the union operator, which is a comma (for example, “A5”,
“B12”).

 Hands-On 2.8 Using the Range Property to Select Worksheet Cells

To render this into VBA: Enter this in the Immediate window:

Select a single cell (e.g., A5). Range("A5").Select

Select a range of cells (e.g., A6:A10). Range("A6:A10").Select

Select several nonadjacent cells
(e.g., A1, B6, C8).

Range("A1, B6, C8").Select

Select several nonadjacent cells and
cell ranges (e.g., A11:D11, C12, D3).

Range("A11:D11, C12, D3").
Select

Using the Cells Property

You can use the Cells property to return a single cell. When selecting a sin-
gle cell, this property requires two arguments. The first argument indicates
the row number and the second one is the column number. Arguments are
entered in parentheses. When you omit arguments, Excel selects all the cells
in the active worksheet. Let’s try out a couple of statements in Hands-On 2.9.

 Hands-On 2.9 Using the Cells Property to Select Worksheet Cells
(Part I)

To render this into VBA: Enter this in the Immediate window:
Select a single cell (e.g., A5). Cells(5, 1).Select

Select a range of cells
(e.g., A6:A10).

Range(Cells(6, 1), Cells(10, 1)).
Select

Select all cells in a worksheet. Cells.Select

Notice how you can combine the Range property and the Cells property:
Range(Cells(6, 1), Cells(10, 1)).Select

60 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

In this example, the first Cells property returns cell A6, while the second
one returns cell A10. The cells returned by the Cells properties are then
used as a reference for the Range object. As a result, Excel will select the
range of cells where the top cell is specified by the result of the first Cells
property and the bottom cell is defined by the result of the second Cells
property.

A worksheet is a collection of cells. You can also use the Cells property
with a single argument that identifies a cell’s position in the collection of a
worksheet’s cells. Excel numbers the cells in the following way: Cell A1 is
the first cell in a worksheet, cell B1 is the second one, cell C1 is the third
one, and so on. Cell 16384 is the last cell in the first worksheet row. Now let’s
write some practice statements in Hands-On 2.10.

 Hands-On 2.10 Using the Cells Property to Select Worksheet
Cells (Part II)

To render this into VBA: Enter this in the Immediate window:
Select cell A1. Cells(1).Select

or
Cells.Item(1).Select

Select cell C1. Cells(3).Select
or
Cells.Item(3).Select

Select cell XFD. Cells(16384).Select
or
Cells.Item(16384).Select

Notice that the word Item is a property that returns a single member of a
collection. Because Item is the default member for a collection, you can
refer to a worksheet cell without explicitly using the Item property.

Now that you’ve discovered two ways to select cells (Range property
and Cells property), you may wonder why you should bother using the
more complicated Cells property. It’s obvious that the Range property is
more readable; after all, you used the Range references in Excel formulas
and functions long before you decided to learn about VBA. Using the Cells
property is more convenient, however, when it comes to working with cells
as a collection. Use this property to access all the cells or a single cell from
a collection.

Using the Offset Property

Another very flexible way to refer to a worksheet cell is with the Offset
property. Quite often when automating worksheet tasks, you may not know
exactly where a specific cell is located. How can you select a cell whose
address you don’t know? The answer: Have Excel select a cell based on an
existing selection.

EXCEL PROGRAMMING ENVIRONMENT 61

The Offset property calculates a new range by shifting the starting selec-
tion down or up a specified number of rows. You can also shift the selec-
tion to the right or left a specified number of columns. In calculating the
position of a new range, the Offset property uses two arguments. The first
argument indicates the row offset and the second one is the column offset.
Let’s try out some examples in Hands-On 2.11.

 Hands-On 2.11 Selecting Cells Using the Offset Property

To render this into VBA: Enter this in the Immediate window:
Select a cell located one row
down and three columns to the
right of cell A1.

Range("A1").Offset(1, 3).Select

Select a cell located two rows
above and one column to the left
of cell D15.

Range("D15").Offset(–2, –1).Select

Select a cell located one row
above the active cell. If the active
cell is in the first row, you will
get an error message.

ActiveCell.Offset(–1, 0).Select

In the first example, Excel selects cell D2. As soon as you enter the second
example, Excel chooses cell C13.

If cells A1 and D15 are already selected, you can rewrite the first two
statements in the following way:
Selection.Offset(1, 3).Select
Selection.Offset(-2, -1).Select

Notice that the third example in the practice table displays zero (0) in the
position of the second argument. Zero entered as a first or second argument
of the Offset property indicates a current row or column. The instruction
ActiveCell.Offset(–1, 0).Select will cause an error if the active cell is
located in the first row.

Using the Resize Property

When working with the Offset property, you may occasionally need to
change the size of a selection of cells. Suppose that the starting selection is
A5:A10. How about shifting the selection two rows down and two columns
to the right and then changing the size of the new selection? Let’s say the
new selection should highlight cells C7:C8. The Offset property can take
care of only the first part of this task. The second part requires another
property. Excel has a special Resize property. You can combine the Offset
property with the Resize property to answer the foregoing question. Before
you combine these two properties, let’s proceed to Hands-On 2.12 to learn
how you can use them separately.

62 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Hands-On 2.12 Writing a VBA Statement to Resize a
Selection of Cells

1. Arrange the screen so that the Microsoft Excel window and the Visual
Basic window are side by side.

2. Activate the Immediate window and enter the following instructions:
Range("A5:A10").Select
Selection.Offset(2, 2).Select
Selection.Resize(2, 4).Select

Th e fi rst instruction selects range A5:A10. Cell A5 is the active cell. Th e
second instruction shift s the current selection to cells C7:C12. Cell C7 is
located two rows below the active cell A5 and two columns to the right of
A5. Now the active cell is C7.
Th e last instruction resizes the current selection. Instead of range C7:C12,
cells C7:F8 are selected.
Like the Off set property, the Resize property takes two arguments. Th e fi rst
argument is the number of rows you intend to include in the selection,
and the second argument specifi es the number of columns. Hence,
the instruction Selection.Resize(2, 4).Select resizes the current
selection to two rows and four columns.
Th e last two instructions can be combined in the following way:

Selection.Offset(2, 2).Resize(2, 4).Select

In this statement, the Off set property calculates the beginning of a new
range, the Resize property determines the new size of the range, and the
Select method selects the specifi ed range of cells.

Recording a Selection of Cells

By default, the macro recorder selects cells using the Range property. If
you turn on the macro recorder and select cell A2, enter any text, and
select cell A5, you will see the following lines of code in the Visual Basic
Editor window:
Range("A2").Select
ActiveCell.FormulaR1C1 = "text"
Range("A5").Select

You can have the macro recorder use the Offset property if you tell it to
use relative references. To do this, click View | Macros | Use Relative Refer-
ences, and then choose Record Macro. The macro recorder produces the
following lines of code:
ActiveCell.Offset(-1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = "text"
ActiveCell.Offset(3, 0).Range("A1").Select

SIDEBAR

EXCEL PROGRAMMING ENVIRONMENT 63

When you record a procedure using the relative references, the procedure
will always select a cell relative to the active cell. The first and third lines
in this set of instructions reference cell A1, even though nothing was said
about cell A1. As you remember from Chapter 1, the macro recorder has
its own way of getting things done. To make things simpler, you can delete
the reference to Range("A1"):
ActiveCell.Offset(-1, 0).Select
ActiveCell.FormulaR1C1 = "text"
ActiveCell.Offset(3, 0).Select

After recording a procedure using the relative reference, make sure Use
Relative References is not selected if your next macro does not require the
use of relative addressing.

Using the End Property

If you often must quickly access certain remote cells in your worksheet,
you may already be familiar with the following keyboard shortcuts: End+up
arrow, End+down arrow, End+left arrow, and End+right arrow. In VBA,
you can use the End property to quickly move to remote cells. Let’s move
around the worksheet by writing statements listed in Hands-On 2.13.

 Hands-On 2.13 Selecting Cells Using the End Property

To render this into VBA: Enter this in the Immediate window:
Select the last cell in any row. ActiveCell.End(xlToRight).Select

Select the last cell in any column. ActiveCell.End(xlDown).Select

Select the first cell in any row. ActiveCell.End(xlToLeft).Select

Select the first cell in any column. ActiveCell.End(xlUp).Select

Notice that the End property requires an argument that indicates the direc-
tion you want to move. Use the following Excel built-in Direction Enumera-
tion constants to jump in the specified direction: xlToRight, xlToLeft,
xlUp, xlDown.

Moving, Copying, and Deleting Cells

In the process of developing a new worksheet model, you often find yourself
moving and copying cells and deleting cell contents. Visual Basic allows you
to automate these worksheet editing tasks with three simple-to-use meth-
ods: Cut, Copy, and Clear. And now let’s do some hands-on exercises to get
some practice in the most frequently used worksheet operations.

64 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Hands-On 2.14 Moving, Copying, and Deleting Cells

To render this into VBA: Enter this in the Immediate window:
Move the contents of cell A5 to cell A4. Range("A5").Cut

Destination:=Range("A4")

Copy a formula from cell A3 to cells D5:F5. Range("A3").Copy
Destination:=Range("D5:F5")

Delete the contents of cell A4. Range("A4").Clear
or
Range("A4").Cut

Notice that the first two methods in the table require a special argument
called Destination. This argument specifies the address of a cell or a range
of cells where you want to place the cut or copied data. In the last example,
the Cut method is used without the Destination argument to remove data
from the specified cell.

The Clear method deletes everything from the specified cell or range,
including any applied formats and cell comments. If you want to be specific
about what you delete, use the following methods:

 ● ClearContents—Clears only data from a cell or range of cells
 ● ClearFormats—Clears only applied formats
 ● ClearComments—Clears all cell comments from the specifi ed range
 ● ClearNotes—Clears notes and sound notes from all the cells in the

specifi ed range
 ● ClearHyperlinks—Removes all hyperlinks from the specifi ed range
 ● ClearOutline—Clears the outline for the specifi ed range

WORKING WITH ROWS AND COLUMNS

Excel uses the EntireRow and EntireColumn properties to select the entire
row or column. Let’s now write the statements in Hands-On 2.15 to quickly
select entire rows and columns.

 Hands-On 2.15 Selecting Entire Rows and Columns

To render this into VBA: Enter this in the Immediate window:
Select an entire row where the active cell is
located.

Selection.EntireRow.Select

Select an entire column where the active cell
is located.

Selection.EntireColumn.
Select

EXCEL PROGRAMMING ENVIRONMENT 65

When you select a range of cells you may want to find out how many rows
or columns are included in the selection. Let’s have Excel count rows and
columns in Range("A1:D15").

1. Type the following VBA statement in the Immediate window and press
Enter:
Range("A1:D15").Select

If the Microsoft Excel window is visible, Visual Basic will highlight the
range A1:D15 when you press Enter.

2. To find out how many rows are in the selected range, enter the following
statement:
?Selection.Rows.Count

As soon as you press Enter, Visual Basic displays the answer on the next
line. Your selection includes 15 rows.

3. To find out the number of columns in the selected range, enter the
following statement:
?Selection.Columns.Count

As soon as you press Enter, Visual Basic tells you that the selected
Range("A1:D15") occupies the width of four columns.

4. In the Immediate window, position the cursor anywhere within the word
Rows or Columns and press F1 to find out more information about these
useful properties.

Obtaining Information about the Worksheet

How big is an Excel worksheet? How many columns and rows does it con-
tain? If you ever forget the details, use the Count property as shown in
Hands-On 2.16.

 Hands-On 2.16 Counting Rows and Columns

To render this into VBA: Enter this in the Immediate window:
Find out the total number of rows in an Excel
worksheet.

?Rows.Count

Find out the total number of columns in an
Excel worksheet.

?Columns.Count

A Microsoft Excel worksheet has 1,048,576 rows and 16,384 columns.

66 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

ENTERING DATA AND FORMATTING CELLS

The information entered in a worksheet can be text, numbers, or formulas.
To enter data in a cell or range of cells, you can use either the Value property
or the Formula property of the Range object.

 ● Using the Value property:

ActiveSheet.Range("A1:C4").Value = "=4 * 25"

 ● Using the Formula property:

ActiveSheet.Range("A1:C4").Formula = "=4 * 25"

In both examples, cells A1:C4 display 100—the result of the multiplication
4 * 25. Let’s proceed to some practice in Hands-On 2.17.

 Hands-On 2.17 Using VBA Statements to Enter Data in a
Worksheet

To render this into VBA: Enter this in the Immediate window:
Enter in cell A5 the following text:
Amount Due

Range("A5").Formula = "Amount
Due"

Enter the number 123 in cell D21. Range("D21").Formula = 123
or
Range("D21").Value = 123

Enter in cell B4 the following
formula: = D21 * 3

Range("B4").Formula = "=D21 *
3"

Returning Information Entered in a Worksheet

In some Visual Basic procedures, you will undoubtedly need to return the
contents of a cell or a range of cells. Although you can use either the Value
or Formula property, this time the two Range object’s properties are not
interchangeable.

 ● Th e Value property displays the result of a formula entered in a
specifi ed cell. If, for example, cell A1 contains a formula = 4 * 25,
then the instruction

?Range("A1").Value

will return the value of 100.
 ● If you want to display the formula instead of its result, you must use

the Formula property:

?Range("A1").Formula

Excel will display the formula (= 4 * 25) instead of its result (100).

EXCEL PROGRAMMING ENVIRONMENT 67

Finding Out about Cell Formatting

A frequent spreadsheet task is applying formatting to a selected cell or a
range. Your VBA procedure may need to find out the type of formatting
applied to a worksheet cell. To retrieve the cell formatting, use the Number-
Format property:
?Range("A1").NumberFormat

Upon entering the foregoing statement in the Immediate window, Excel dis-
plays the word “General,” which indicates that no special formatting was
applied to the selected cell. To change the format of a cell to dollars and
cents using VBA, enter the following instruction:
Range("A1").NumberFormat = "$#,##0.00"

If you enter 125 in cell A1 after it has been formatted using this code, cell A1
will display $125.00. You can look up the available format codes in the For-
mat Cells dialog box in the Microsoft Excel application window as shown
in Figure 2.18.

FIGURE 2.18 You can apply different formatting to selected cells and ranges using format
codes, as displayed in the Custom category in the Format Cells dialog box. To quickly bring up
this dialog box, press the Alt, H, F, and M keys one at a time.

68 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

WORKING WITH WORKBOOKS AND WORKSHEETS

Now that you’ve got your feet wet working with worksheet cells and
ranges, it’s time to move up one level and learn how you can control a
single workbook, as well as an entire collection of workbooks. You cannot
prepare a new worksheet if you don’t know how to open a new workbook.
You cannot remove a workbook from the screen if you don’t know how to
close a workbook. You cannot work with an existing workbook if you don’t
know how to open it. These important tasks are handled by the following
VBA methods: Add, Open, and Close. The next series of drills in Hands-On
2.18 and 2.19 will give you the language skills necessary for dealing with
workbooks and worksheets.

 Hands-On 2.18 Working with Workbooks

To render this into VBA: Enter this in the Immediate window:
Open a new workbook. Workbooks.Add

Find out the name of the first workbook. ?Workbooks(1).Name

Find out the number of open work-
books.

?Workbooks.Count

Activate the second open workbook. Workbooks(2).Activate

Close the Chap01_ExcelPrimer.xlsm
workbook and save the changes.

Workbooks("Chap01_ExcelPrimer.
xlsm").Close SaveChanges:=True

Open the Chap01_ExcelPrimer.xlsm
workbook. Type the correct path to the
file location on your computer.

Workbooks.Open "C:\VBAEx-
celPrimer_ByExample\
Chap01_ExcelPrimer.xlsm"

Activate the Chap01_ExcelPrimer.xlsm
workbook.

Workbooks("Chap01_ExcelPrimer.
xlsm").Activate

Save the active workbook as NewChap.
xlsm.

ActiveWorkbook.SaveAs File-
name:= "NewChap.xlsm"

Close the first workbook. Workbooks(1).Close

Close the active workbook without sav-
ing recent changes to it.

ActiveWorkbook.Close
SaveChanges:=False

Close all open workbooks. Workbooks.Close

If you worked through the last example in Hands-On 2.18, all workbooks
are now closed. Before you experiment with worksheets, make sure you have
opened a new workbook.

When you deal with individual worksheets, you must know how to add a
new worksheet to a workbook, select a worksheet or a group of worksheets,
name a worksheet, and copy, move, and delete worksheets. In Visual Basic,
each of these tasks is handled by a special method or property.

EXCEL PROGRAMMING ENVIRONMENT 69

 Hands-On 2.19 Working with Worksheets

To render this into VBA: Enter this in the Immediate window:
Add a new worksheet. Worksheets.Add

Find out the name of the first worksheet. ?Worksheets(1).Name

Select a sheet named Sheet3. Worksheets(3).Select

Select sheets 1, 3, and 4. Worksheets(Array(1,3,4)).Select

Activate a sheet named Sheet1. Worksheets("Sheet1").Activate

Move Sheet2 before Sheet1. Worksheets("Sheet2").Move
Before:=Worksheets("Sheet1")

Rename worksheet Sheet2 to Expenses. Worksheets("Sheet2").Name =
"Expenses"

Find out the number of worksheets in
the active workbook.

?Worksheets.Count

Remove the worksheet named Expenses
from the active workbook.

Worksheets("Expenses").Delete

Notice the difference between the Select and Activate methods:

 ● Th e Select and Activate methods can be used interchangeably if
only one worksheet is selected.

 ● If you select a group of worksheets, the Activate method allows you
to decide which one of the selected worksheets is active. As you know,
only one worksheet can be active at a time.

Sheets Other than Worksheets

In addition to worksheets, the collection of workbooks contains chart
sheets. To add a new chart sheet to your workbook, use the Add method:
Charts.Add

To count the chart sheets, use:
?Charts.Count

WORKING WITH WINDOWS

When you work with several Excel workbooks and need to compare or con-
solidate data or you want to see different parts of the same worksheet, you
are bound to use the options available from the Microsoft Excel Window
menu: New Window and Arrange.

In Hands-On 2.20, you will learn how to work with Windows using VBA.

SIDEBAR

70 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Hands-On 2.20 Working with Windows

To render this into VBA: Enter this in the Immediate window:
Show the active workbook in a new
window.

ActiveWorkbook.NewWindow

Display on screen all open workbooks. Windows.Arrange

Activate the second window. Windows(2).Activate

Find out the title of the active window. ?ActiveWindow.Caption

Change the active window’s title to My
Window.

ActiveWindow.Caption = "My
Window"

When you display windows on screen, you can decide how to arrange them.
The Arrange method has many arguments, as shown in Table 2.1. The argu-
ment that allows you to control the way the windows are positioned on your
screen is called ArrangeStyle. If you omit the ArrangeStyle argument, all
windows are tiled.

TABLE 2.1 Arguments of the Arrange method of the Windows object.

Constant Value Description
xlArrangeStyleTiled 1 Windows are tiled (the default value).
xlArrangeStyleCascade 7 Windows are cascaded.
xlArrangeStyleHorizontal 2 Windows are arranged horizontally.
xlArrangeStyleVertical 3 Windows are arranged vertically.

Instead of the names of constants, you can use the value equivalents shown
in Table 2.1.

To cascade all windows, use the following VBA instruction:
Windows.Arrange ArrangeStyle:=xlArrangeStyleCascade

Or simply:
Windows.Arrange ArrangeStyle:=7

WORKING WITH THE EXCEL APPLICATION

The Application object represents the Excel application itself. By control-
ling the Application object, you can perform many tasks, such as saving the
way your screen looks at the end of a day’s work or quitting the application.
As you know, Excel allows you to save the screen settings by using the Save
Workspace button on the View tab. The task of saving the workspace can be
easily performed with VBA:
Application.SaveWorkspace "Project"

EXCEL PROGRAMMING ENVIRONMENT 71

This instruction saves the screen settings in the workspace file named Proj-
ect. The next time you need to work with the same files and arrangement
of windows, simply open the Project.xlwx file so Excel will bring up the
correct files and restore your screen with those settings. And now let’s write
some statements that use the Application object.

 Hands-On 2.21 Working with the Excel Application

To render this into VBA: Enter this in the Immediate window:
Check the name of the active applica-
tion.

?Application.Name

Change the title of the Excel applica-
tion to My Application.

Application.Caption =
"My Application"

Change the title of the Excel applica-
tion back to Microsoft Excel.

Application.Caption =
"Microsoft Excel"

Find out what operating system you
are using.

?Application.OperatingSystem

Find out the name of a person or firm
to whom the application is registered.

?Application.OrganizationName

Find out the name of the folder where
the Excel executable file (Excel.exe)
resides.

?Application.Path

Quit working with Microsoft Excel. Application.Quit

SUMMARY

This chapter has given you an overview of the Visual Basic Editor window.
You learned many basic VBA terms and practiced them by executing single
statements in the Immediate window.

In the next chapter, you will learn how the data can be stored for later use
in variables. You will also explore data types and constants.

73

In programming, just as in life, certain things need to be done at once
while others can be put off until later. When you postpone a task, you
may enter it in your mental or paper “to-do” list and classify it by its type

or importance. When you delegate the task or finally get around to doing
it yourself, you cross it off the list. This chapter shows you how your VBA
procedures can memorize important pieces of information for use in later
statements or calculations. You will learn how a procedure can keep a “to-
do” entry in a variable, how variables are declared, and how they relate to
data types and constants.

EXCEL OBJECTS, PROPERTIES, AND METHODS

You can create procedures that control many features of Microsoft Excel
using Visual Basic for Applications. You can also control many other appli-
cations. The power of Visual Basic comes from its ability to control and
manage various objects. But what is an object?

An object is a thing you can control with VBA. Workbooks, a worksheet,
a range in a worksheet, a chart, and a toolbar are just a few examples of the
objects you may want to control while working in Excel. Excel contains a
multitude of objects that you can manipulate in different ways. All these
objects are organized in a hierarchy. Some objects may contain other objects.
For example, Microsoft Excel is an Application object. The Application
object contains other objects, such as workbooks or command bars. The
Workbook object may contain other objects, such as worksheets or charts.

Chapter

 3
EXCEL VBA FUNDAMENTALS

A QUICK REFERENCE TO WRITING VBA CODE

74 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

In this chapter, you will learn how to control the following Excel objects:
Range, Window, Worksheet, Workbook, and Application. You begin by
learning about the Range object. You can’t do much work in spreadsheets
unless you know how to manipulate ranges of cells.

Certain objects look alike. For example, if you open a new workbook and
examine its worksheets, you won’t see any differences. A group of like ob-
jects is called a collection. A Worksheets collection includes all worksheets
in a workbook. Collections are also objects. In Microsoft Excel, the most
frequently used collections are:

 ● Workbooks collection—represents all currently open workbooks.
 ● Worksheets collection—represents all the Worksheet objects in the

specifi ed or active workbook. Each Worksheet object represents a
worksheet.

 ● Sheets collection—represents all the sheets in the specifi ed or active
workbook. Th e Sheets collection can contain Chart or Worksheet ob-
jects.

 ● Windows collection—represents all the Window objects in Microsoft
Excel. Th e Windows collection for the Application object contains
all the windows in the application, whereas the Windows collection
for the Workbook object contains only the windows in the specifi ed
workbook.

When you work with collections, you can perform the same action on all
the objects in the collection.

Each object has some characteristics that allow you to describe the ob-
ject. In Visual Basic, the object’s characteristics are called properties. For
example, a Workbook object has a Name property, and the Range object has
such properties as Column, Font, Formula, Name, Row, Style, and Value.
The object properties can be set. When you set an object’s property, you
control its appearance or its position. Object properties can take on only
one specific value at any one time. For example, the active workbook can’t
be called two different names at the same time.

The most difficult part of Visual Basic is to understand the fact that
some properties can also be objects. Let’s consider the Range object. You
can change the appearance of the selected range of cells by setting the Font
property. But the font can have a different name (Times New Roman, Arial,
…), different size (10, 12, 14, …), and different style (bold, italic, underline,
…). These are font properties. If the font has properties, then the font is also
an object.

Properties are great. They let you change the look of the object, but how
can you control the actions? Before you can make Excel carry out some
tasks, you need to know another term. Objects have methods. Each action

EXCEL VBA FUNDAMENTALS 75

you want the object to perform is called a method. The most important
Visual Basic method is the Add method, which you can use to add a new
workbook or worksheet. Objects can use various methods. For example, the
Range object has special methods that allow you to clear the cell contents
(ClearContents method), clear just formats (ClearFormats method), and
clear both contents and formats (Clear method). Other methods allow ob-
jects to be selected, copied, or moved.

Methods can have optional parameters that specify how the method is
to be carried out. For example, the Workbook object has a method called
Close. You can close any open workbook using this method. If there are
changes to the workbook, Microsoft Excel will display a message prompting
you to save the changes. You can use the Close method with the SaveChang-
es parameter set to False to close the workbook and discard any changes
that have been made to it, as in the following example:
Workbooks("Chap01_ExcelPrimer.xlsm").Close SaveChanges:=False

MICROSOFT EXCEL OBJECT MODEL

When you learn new things, theory can give you the necessary background,
but how do you really know what’s where? All the available Excel objects as
well as their properties and methods can be looked up in the online Excel
Object Model Reference that you can access by choosing Help | Microsoft
Visual Basic for Applications Help in the Visual Basic Editor window. Fig-
ure 3.1 illustrates the Excel Object Model Reference in the online help. This
page can be accessed via the following link:

http://msdn.microsoft.com/en-us/library/ff194068.aspx

Objects are listed alphabetically for easy perusal, and when you click the
object you will see object subcategories that list the object’s properties,
methods, and events. Reading the object model reference is a great way to
learn about Excel objects and collections of objects. The time you spend
here will pay big dividends later when you need to write complex VBA
procedures from scratch. A good way to get started is to always look up
objects that you come across in Excel programming texts or example
procedures. Now take a few minutes to familiarize yourself with the main
Excel object—Application. This object allows you to specify application-
level properties and execute application-level methods. You saw several
examples of working with the Application object in Chapter 2.

76 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 3.1 In your VBA programming work, always refer to the Excel Object Model Reference
that contains documentation for all the objects, properties, methods, and events contained in the
Excel object model.

WRITING SIMPLE AND COMPLEX VBA STATEMENTS

Now that you know the basic elements of VBA (objects, properties, and
methods), it’s time to start using them. But how do you combine objects,
properties, and methods into correct language structures? Every language
has grammar rules that people follow in order to make themselves under-
stood. Whether you communicate in English, Spanish, French, or another
language, you apply certain rules to your writing and speech. In program-
ming, we use the term syntax to specify language rules. You can look up
the syntax of each object, property, or method in the online help or in the
Object Browser window.

To make sure Excel always understands what you mean, just stick to the
following rules:

Rule #1: Referring to the property of an object
If the property does not have arguments, the syntax is as follows:

Object.Property

Object is a placeholder. It is where you should place the name of the actual
object that you are trying to access. Property is also a placeholder. Here
you place the name of the object’s characteristics. For example, to refer to
the value entered in cell A4 on your worksheet, you can write the following
instruction:

EXCEL VBA FUNDAMENTALS 77

Notice that there is a period between the name of the object and its property.
When you need to access the property of an object that is contained

within several other objects, you must include the names of all objects in
turn, separated by the dot operator, as shown here:

ActiveSheet.Shapes(2).Line.Weight

This example references the Weight property of the Line object and refers to
the second object in the collection of Shapes located in the active worksheet.

Some properties require one or more arguments. For example, when
using the Offset property, you can select a cell relative to the active cell.
The Offset property requires two arguments. The first argument indicates
the row number (rowOffset), and the second one determines the column
number (columnOffset).

In this example, assuming the active cell is A1, Offset(3, 2) will reference
the cell located three rows down and two columns to the right of cell A1.
In other words, cell C4 is referenced. Because the arguments placed within
parentheses are often difficult to understand, it’s common practice to pre-
cede the value of the argument with its name, as in the following example:

ActiveCell.Offset(rowOffset:=3, columnOffset:=2)

Notice that a colon and an equal sign always follow the named arguments.
When you use the named arguments, you can list them in any order. The
foregoing instruction can also be written as follows:

ActiveCell.Offset(columnOffset:=2, rowOffset:=3)

The revised instruction does not change the meaning; you are still ref-
erencing cell C4 assuming that A1 is the active cell. However, if you trans-
pose the arguments in a statement that does not use named arguments, you
will end up referencing another cell. For example, the statement Active-
Cell.Offset(2, 3) will reference cell D3 instead of C4.

Rule #2: Changing the property of an object
Object.Property = Value

Value is a new value that you want to assign to the property of the object.

78 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

The value can be:

 ● A number. Th e following instruction enters the number 25 in cell A4.

 ● Text entered in quotes. Th e following instruction changes the font of
the active cell to Times New Roman.

ActiveCell.Font.Name = "Times New Roman"

 ● A logical value (True or False). Th e following instruction applies bold
formatting to the active cell.

ActiveCell.Font.Bold = True

Rule #3: Returning the current value of the object property
Variable = Object.Property

Variable is the name of the storage location where Visual Basic is going to
store the property setting. You will learn about variables later in this chapter.

This instruction saves the current value of cell A4 in the variable named
CellValue.
Rule #4: Referring to the object’s method
If the method does not have arguments, the syntax is as follows:

Object.Method

Object is a placeholder. It is where you should place the name of the actual
object that you are trying to access. Method is also a placeholder. Here you
place the name of the action you want to perform on the object. For exam-
ple, to clear the contents in cell A4, use the following instruction:

If the method requires arguments, the syntax is as follows:
Object.Method (argument1, argument2, ... argumentN)

EXCEL VBA FUNDAMENTALS 79

For example, using the GoTo method, you can quickly select any range in a
workbook. The syntax of the GoTo method is shown here:
Object.GoTo(Reference, Scroll)

The Reference argument is the destination cell or range. The Scroll
argument can be set to True to scroll through the window or to False to
not scroll through the window. For example, the following VBA statement
selects cell P100 in Sheet1 and scrolls through the window:

Application.GoTo _
 Reference:=Worksheets("Sheet1").Range("P100"), _
 Scroll:=True

The foregoing instruction did not fit on one line, so it was broken into
sections using the special line continuation character (the underscore),
described in the next section.

Suppose you want to delete the contents of cell A4. To do this manually,
you would select cell A4 and press the Delete key on your keyboard. To per-
form the same operation using Visual Basic, you first need to find out how
to make Excel select an appropriate cell. Cell A4, like any other worksheet
cell, is represented by the Range object. Visual Basic does not have a Delete
method for deleting contents of cells. Instead, you should use the Clear-
Contents method, as in the following example:

Range("A4").ClearContents

Notice the dot operator between the name of the object and its method.
This instruction removes the contents of cell A4. However, how do you
make Excel delete the contents of cell A4 located in the first sheet of the
Chap03_ExcelPrimer.xlsm workbook? Let’s also assume that there are sev-
eral workbooks open. If you don’t want to end up deleting the contents of
cell A4 from the wrong workbook or worksheet, you must write a detailed
instruction so that Visual Basic knows where to locate the necessary cell:

Application.Workbooks("Chap03_ExcelPrimer.xlsm")
.Worksheets("Sheet1").Range("A4").ClearContents

The foregoing instruction should be written on one line and read from right
to left as follows: Clear the contents of cell A4, which is part of a range
located in a worksheet named Sheet1 contained in a workbook named
Chap03_ExcelPrimer.xlsm, which in turn is part of the Excel application.
Be sure to include the letter “s” at the end of the collection names: Work-
books and Worksheets. All references to the names of workbooks, work-
sheets, and cells must be enclosed in quotation marks.

Breaking Up Long VBA Statements

When you start writing complete VBA procedures from scratch, you will
need to know how to break up a long VBA statement into two or more lines

80 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

to make your procedure more readable. Visual Basic has a special line con-
tinuation character that can be used at the end of a line to indicate that the
next line is a continuation of the previous one, as in the following example:
Selection.PasteSpecial _
 Paste:=xlValues, _
 Operation:=xlMultiply, _
 SkipBlanks: =False, _
 Transpose:=False

The line continuation character is the underscore (_). You must precede the
underscore with a space.

You can use the line continuation character in your code before or after:

 ● Operators; for example: &, +, Like, NOT, AND
 ● A comma
 ● An equal sign
 ● An assignment operator (:=)

You cannot use the line continuation character between a colon and an
equal’s sign. For example, the following use of the continuation character is
not recognized by Visual Basic:
Selection.PasteSpecial Paste: _
 =xlValues, Operation: _
 =xlMultiply, SkipBlanks: _
 =False, Transpose: _
 =False

Also, you may not use the line continuation character within text enclosed
in quotes. For example, the following usage of the underscore is invalid:
MsgBox "To continue the long instruction, use the _
 line continuation character."

Instead, break it up as follows:
MsgBox "To continue the long instruction, use the " & _
 "line continuation character."

SAVING RESULTS OF VBA STATEMENTS

In Chapter 2, while working in the Immediate window, you tried several
Visual Basic instructions that returned some information. For example,
when you entered ?Rows.Count, you found out that there are 1,048,576
rows in a worksheet. However, when you write Visual Basic procedures out-
side of the Immediate window, you can’t use the question mark. If you want
to know the result after executing an instruction, you must tell Visual Basic
to memorize it. In programming, results returned by Visual Basic instruc-

EXCEL VBA FUNDAMENTALS 81

tions can be written to variables. Since variables can hold various types of
data, the next section focuses on introducing you to VBA data types. Once
you understand the basics of data types, it will be easy to tackle the variable
part.

INTRODUCING DATA TYPES

When you create Visual Basic procedures, you have a purpose in mind: You
want to manipulate data. Because your procedures will handle different
kinds of information, you should understand how Visual Basic stores data.
The data type determines how the data is stored in the computer’s memory.
For example, data can be stored as a number, text, date, object, and so on.
If you forget to tell Visual Basic the type of your data, it assigns the Variant
data type. The Variant type can figure out on its own what kind of data is
being manipulated and then take on that type.

The Visual Basic data types are shown in Table 3.1. In addition to the
built-in data types, you can define your own data types. Because data types
take up different amounts of space in the computer’s memory, some of them
are more expensive than others. Therefore, to conserve memory and make
your procedure run faster, you should select the data type that uses the least
number of bytes and, at the same time, can handle the data that your proce-
dure has to manipulate.

TABLE 3.1 VBA data types.

Data Type
(Name)

Size
(Bytes)

Description

Boolean 2 Stores a value of True (0) or False (–1).
Byte 1 A number in the range of 0 to 255.
Integer 2 A number in the range of –32,768 to 32,767.

The type declaration character for Integer is the
percent sign (%).

Long
(Long integer)

4 A number in the range of –2,147,483,648 to
2,147,483,647. The type declaration character for Long
is the ampersand (&).

LongLong
(LongLong integer)

8 Stored as a signed 64-bit (8-byte) number ranging
in value from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. The type declaration
character for LongLong is the caret (^). LongLong is a
valid declared type only on 64-bit platforms.

82 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Data Type
(Name)

Size
(Bytes)

Description

LongPtr
(Long integer on
32-bit systems;
LongLong integer
on 64-bit systems)

4 on 32-bit
8 on 64-bit

Numbers ranging in value from
–2,147,483,648 to 2,147,483,647 on 32-
bit systems; –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 on 64-bit systems. Using
LongPtr enables writing code that can run in both 32-
bit and 64-bit environments.

Single
(single-precision
floating-point)

4 Single-precision floating-point real number ranging
in value from –3.402823E38 to –1.401298E–45
for negative values and from 1.401298E–45 to
3.402823E38 for positive values. The type declaration
character for Single is the exclamation point (!).

Double
(double-precision
floating-point)

8 Double-precision floating-point real number
in the range of –1.79769313486231E308 to
–4.94065645841247E–324 for negative values and
4.94065645841247E–324 to 1.79769313486231E308
for positive values. The type declaration character for
Double is the number sign (#).

Currency
(scaled integer)

8 (scaled integer) Monetary values used in fixed-point
calculations:
–922,337,203,685,477.5808 to
922,337,203,685,477.5807.
The type declaration character for Currency is the at
sign (@).

Decimal 14 96-bit (12-byte) signed integer scaled by a variable
power of 10. The power of 10 scaling factor specifies
the number of digits to the right of the decimal point,
and ranges from 0 to 28.
With no decimal point (scale of 0), the largest value is
+/–79,228,162,514,264,337,593,543,950,335.
With 28 decimal places, the largest value is
+/–7.9228162514264337593543950335.
The smallest nonzero value is +/–
0.0000000000000000000000000001.
You cannot declare a variable to be of type Decimal.
You must use the Variant data type. Use the CDec
function to convert a value to a decimal number:

Dim numDecimal As Variant
numDecimal = CDec(0.02 * 15.75 *
0.0006)

Date 8 Date from January 1, 100, to December 31, 9999, and
times from 0:00:00 to 23:59:59. Date literals must be
enclosed within number signs (#)—for example:
#January 1, 2019#

EXCEL VBA FUNDAMENTALS 83

Data Type
(Name)

Size
(Bytes)

Description

String
(variable-length)

10 bytes +
string length

A variable-length string can contain up to
approximately 2 billion characters. The type
declaration character for String is the dollar sign ($).

String
(fixed-length)

Length of
string

A fixed-length string can contain 1 to approximately
65,400 characters.

Object 4 Object variable used to refer to any Excel object. Use
the Set statement to declare a variable as an Object.

Variant
(with numbers)

16 Any numeric value up to the size of a Double.

Variant
(with characters)

22 bytes +
string length

Any valid nonnumeric data type in the same range as
for a variable-length string.

User-Defined
(using Type)

One or more
elements

A data type you define using the Type statement.
User-defined data types can contain one or more
elements of a data type, an array, or a previously
defined user-defined type—for example:

Type custInfo
 custFullName as String
 custTitle as String
 custBusinessName as String
 custFirstOrderDate as Date
End Type

NOTE
For more information about data types see the online help
at: https://docs.microsoft.com/en-us/office/vba/language/
reference/user-interface-help/data-type-summary.

USING VARIABLES

A variable is simply a name that is used to refer to an item of data. Each time
you want to remember a result of a VBA instruction, think of a name that
will represent it. For example, if the number 1,048,576 must remind you of
the total number of rows in a worksheet (a very important piece of informa-
tion when you want to bring external data into Excel), you can make up a
name such as AllRows, NumOfRows, or TotalRows, and so on. The names
of variables can contain characters, numbers, and some punctuation marks,
except for the following:

, # $ % & @ !

The name of a variable cannot begin with a number or contain a space.
If you want the name of the variable to include more than one word, use
the underscore (_) as a separator. Although the name of a variable can

84 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

contain as many as 254 characters, it’s best to use short and simple variable
names. Using short names will save you typing time when you need to
refer to the variable in your Visual Basic procedure. Visual Basic doesn’t
care whether you use uppercase or lowercase letters in variable names, but
most programmers use lowercase letters. For variable names that are made
up of one or more words, you may want to use title case, as in the names
NumOfRows and First_Name.

Reserved Words Can’t Be Used for Variable Names

You can use any label you want for a variable name, except for the reserved
words that VBA uses. Visual Basic statements and certain other words that
have a special meaning in VBA cannot be used as names of variables. For
example, words such as Name, Len, Empty, Local, Currency, or Exit will
generate an error message if used as a variable name.

Meaningful Variable Names

Give variables names that can help you remember their roles. Some pro-
grammers use a prefix to identify the type of a variable. A variable name
that begins with “str” (for example, strName) can be quickly recognized
within the code of your procedure as the one holding the text string.

How to Create Variables

You can create a variable by declaring it with a special command or by just
using it in a statement. When you declare your variable, you make Visual
Basic aware of the variable’s name and data type. This is called explicit vari-
able declaration. There are several advantages to explicit variable declara-
tion:

 ● Explicit variable declaration speeds up the execution of your proce-
dure. Because Visual Basic knows the data type, it reserves only as
much memory as is necessary to store the data.

 ● Explicit variable declaration makes your code easier to read and un-
derstand because all the variables are listed at the very beginning of
the procedure.

 ● Explicit variable declaration helps prevent errors caused by mis-
spelled variable names. Visual Basic automatically corrects the vari-
able name based on the spelling used in the variable declaration.

If you don’t let Visual Basic know about the variable prior to using it, you
are implicitly telling VBA that you want to create this variable. Variables
declared implicitly are automatically assigned the Variant data type (see
Table 3.1 in the previous section). Although implicit variable declaration

SIDEBAR

SIDEBAR

EXCEL VBA FUNDAMENTALS 85

is convenient (it allows you to create variables on the fly and assign values
without knowing in advance the data type of the values being assigned), it
can cause several problems, as outlined here:

 ● If you misspell a variable name in your procedure, Visual Basic may
display a runtime error or create a new variable. You are guaranteed
to waste some time troubleshooting problems that could have been
easily avoided had you declared your variable at the beginning of the
procedure.

 ● Because Visual Basic does not know what type of data your variable
will store, it assigns it a Variant data type. Th is causes your procedure
to run slower because Visual Basic must check the data type every
time it deals with your variable. Because a Variant can store any type
of data, Visual Basic has to reserve more memory to store your data.

How to Declare Variables

You declare a variable with the Dim keyword. Dim stands for dimension. The
Dim keyword is followed by the name of the variable and then the variable
type.

Suppose you want the procedure to display the age of an employee. Be-
fore you can calculate the age, you must tell the procedure the employee’s
date of birth. To do this, you declare a variable called DateOfBirth, as fol-
lows:

 Dim DateOfBirth As Date

Notice that the Dim keyword is followed by the name of the variable
(DateOfBirth). This name can be anything you choose, if it is not one of
the VBA keywords. Specify the data type the variable will hold by placing
the As keyword after its name, followed by one of the data types from Table
4.1. The Date data type tells Visual Basic that the variable DateOfBirth will
store a date. To store the employee’s age, declare the age variable as follows:

 Dim age As Integer

The age variable will store the number of years between today’s date and the
employee’s date of birth. Because age is displayed as a whole number, this
variable has been assigned the Integer data type.

You may also want your procedure to keep track of the employee’s name,
so you declare another variable to hold the employee’s first and last name:

 Dim FullName As String

Because the word “Name” is on the VBA list of reserved words, using it
in your VBA procedure would guarantee an error. To hold the employee’s
full name, call the variable FullName and declare it as the String data type,
because the data it will hold is text.

86 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Declaring variables is regarded as a good programming practice because
it makes programs easier to read and helps prevent certain types of errors.

Informal Variables

Variables that are not explicitly declared with Dim statements are said to
be implicitly declared. These variables are automatically assigned a data
type called Variant. They can hold numbers, strings, and other types of
information. You can create a variable by simply assigning some value to
a variable name anywhere in your VBA procedure. For example, you will
implicitly declare a variable in the following way:
DaysLeft = 100

Now that you know how to declare your variables, let’s look at a procedure
that uses them:
 Sub AgeCalc()
 ' variable declaration
 Dim FullName As String
 Dim DateOfBirth As Date
 Dim age As Integer

 ' assign values to variables
 FullName = "John Smith"
 DateOfBirth = #01/03/1981#

 ' calculate age
 age = Year(Now())-Year(DateOfBirth)

 ' print results to the Immediate window
 Debug.Print FullName & " is " & age & " years old."
 End Sub

The variables are declared at the beginning of the procedure in which they
are going to be used. In this procedure, the variables are declared on sepa-
rate lines. If you want, you can declare several variables on the same line,
separating each variable name with a comma, as shown here:

Dim FullName As String, DateOfBirth As Date, age As Integer

Notice that the Dim keyword appears only once at the beginning of the vari-
able declaration line.

When Visual Basic executes the variable declaration statements, it cre-
ates the variables with the specified names and reserves memory space to
store their values. Then specific values are assigned to these variables.

To assign a value to a variable, begin with a variable name followed by an
equal sign. The value entered to the right of the equals sign is the data you
want to store in the variable. The data you enter here must be of the type

SIDEBAR

EXCEL VBA FUNDAMENTALS 87

determined by the variable declaration. Text data should be surrounded by
quotation marks, and dates by the # characters.

Using the data supplied by the DateOfBirth variable, Visual Basic cal-
culates the age of an employee and stores the result of the calculation in the
age variable. Then the full name of the employee as well as the age is printed
to the Immediate window using the instruction Debug.Print. When the
Visual Basic procedure has executed, you must view the Immediate window
to see the results.

Let’s see what happens when you declare a variable with the incorrect
data type. The purpose of the following procedure is to calculate the total
number of rows in a worksheet and then display the results in a dialog box.
 Sub HowManyRows()
 Dim NumOfRows As Integer

 NumOfRows = Rows.Count

 MsgBox "The worksheet has " & NumOfRows & " rows."
 End Sub

A wrong data type can cause an error. In the foregoing procedure, when
Visual Basic attempts to write the result of the Rows.Count statement to
the variable NumOfRows, the procedure fails, and Excel displays the message
“Run-time error 6—Overflow.” This error results from selecting an invalid
data type for that variable. The number of rows in a spreadsheet does not
fit the Integer data range. To correct the problem, you should choose a data
type that can accommodate a larger number:
 Sub HowManyRows2()
 Dim NumOfRows As Long

 NumOfRows = Rows.Count
 MsgBox "The worksheet has " & NumOfRows & " rows."
 End Sub

You can also correct the problem caused by the assignment of the wrong data
type in the first example by deleting the variable type (As Integer). When
you rerun the procedure, Visual Basic will assign to your variable the Vari-
ant data type. Although Variants use up more memory than any other vari-
able type and slow down the speed at which your procedures run (because
Visual Basic must do extra work to check the Variant’s context), when it
comes to short procedures, the cost of using Variants is barely noticeable.

What Is the Variable Type?

You can quickly find out the type of a variable used in your procedure by
right-clicking the variable name and selecting Quick Info from the short-
cut menu.

SIDEBAR

88 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Concatenation

You can combine two or more strings to form a new string. The joining
operation is called concatenation. You have seen examples of concatenated
strings in the foregoing AgeCalc and HowManyRows2 procedures. Con-
catenation is represented by an ampersand character (&). For instance,
"His name is " & FirstName will produce the following string: His
name is John. The name of the person is determined by the contents of the
FirstName variable. Notice that there is an extra space between “is” and
the ending quote: “His name is .” Concatenation of strings also can be rep-
resented by a plus sign (+). However, many programmers prefer to restrict
the plus sign to operations on numbers to eliminate ambiguity.

Specifying the Data Type of a Variable

If you don’t specify the variable’s data type in the Dim statement, you end up
with an untyped variable. Untyped variables in VBA are always Variant data
types. It’s highly recommended that you create typed variables. When you
declare a variable of a certain data type, your VBA procedure runs faster
because Visual Basic does not have to stop to analyze the Variant variable to
determine its type.

Visual Basic can work with many types of numeric variables. Integer
variables can hold only whole numbers from –32,768 to 32,767. Other types
of numeric variables are Long, Single, Double, and Currency. Long variables
can hold whole numbers in the range –2,147,483,648 to 2,147,483,647. Un-
like the Integer and Long variables, the Single and Double variables can
hold decimals. String variables are used to refer to text. When you declare
a variable of String data type, you can tell Visual Basic how long the string
should be—for instance:

Dim extension As String * 3

declares a fixed-length String variable named extension that is three char-
acters long. If you don’t assign a specific length, the String variable will be
dynamic. This means that Visual Basic will make enough space in computer
memory to handle whatever amount of text is assigned to it.

After you declare a variable, you can store only the type of information
in it that you determined in the declaration statement. Assigning string val-
ues to numeric variables or numeric values to string variables results in the
error message “Type mismatch” or causes Visual Basic to modify the value.
For example, if your variable was declared to hold whole numbers and your
data uses decimals, Visual Basic will disregard the decimals and use only the
whole part of the number. When you run the MyNumber procedure shown
here, Visual Basic modifies the data to fit the variable’s data type (Integer),
and instead of 23.11 the variable ends up holding a value of 23.

SIDEBAR

EXCEL VBA FUNDAMENTALS 89

 Sub MyNumber()
 Dim myNum As Integer

 myNum = 23.11
 MsgBox myNum
 End Sub

If you don’t declare a variable with a Dim statement, you can still designate
a type for it by using a special character at the end of the variable name. To
declare the FirstName variable as String, you can append the dollar sign to
the variable name:

Dim FirstName$

This declaration is the same as Dim FirstName As String. The type
declaration characters are shown in Table 3.2.

TABLE 3.2 Type declaration characters.

Data Type Character
Integer %
Long &
Single !
Double #
Currency @
String $

Notice that the type declaration characters can be used only with six data
types. To use the type declaration character, append the character to the end
of the variable name.

In the AgeCalc2 procedure, here we use two type declaration characters
shown in Table 3.2.
 Sub AgeCalc2()
 ' variable declaration
 Dim FullName$
 Dim DateOfBirth As Date
 Dim age%

 ' assign values to variables
 FullName$ = "John Smith"
 DateOfBirth = #1/3/1981#

 ' calculate age
 age% = Year(Now()) - Year(DateOfBirth)

 ' print results to the Immediate window
 Debug.Print FullName$ & " is " & age% & " years old."
 End Sub

90 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Declaring Typed Variables

The variable type can be indicated by the As keyword or a type symbol. If
you don’t add the type symbol or the As command, the variable will be the
default data type Variant.

Assigning Values to Variables

Now that you know how to name and declare variables and have seen exam-
ples of using variables in complete procedures, let’s gain experience using
them. In Hands-On 3.1 we will begin by creating a variable and assigning it
a specific value.

 Please note files for the “Hands-On” project may be found on the com-
panion CD-ROM.

 Hands-On 3.1 Writing a VBA Procedure with Variables

1. Open a new workbook and save it as C:\VBAPrimerExcel_ByExample\
Chap03_ExcelPrimer.xlsm.

2. Activate the Visual Basic Editor window.
3. In the Project Explorer window, select the new project VBAProject

(Chap03_ExcelPrimer.xlsm) and in the Properties window change its
name to Chapter3.

4. Choose Insert | Module to add a new module to the Chapter3 (Chap03_
ExcelPrimer.xlsm) VBA project.

5. While the Module1 is selected, use the Properties window to change its
name to Variables.

6. In the Code window, enter the CalcCost procedure shown here:
 Sub CalcCost()
 slsPrice = 35
 slsTax = 0.085

 Range("A1").Formula = "The cost of calculator"
 Range("A4").Formula = "Price"
 Range("B4").Formula = slsPrice
 Range("A5").Formula = "Sales Tax"
 Range("A6").Formula = "Cost"
 Range("B5").Formula = slsPrice * slsTax
 cost = slsPrice + (slsPrice * slsTax)

 With Range("B6")
 .Formula = cost
 .NumberFormat = "0.00"
 End With

 strMsg = "The calculator total is $" & cost & "."
 Range("A8").Formula = strMsg
 End Sub

SIDEBAR

EXCEL VBA FUNDAMENTALS 91

The foregoing procedure calculates the cost of purchasing a calculator using
the following assumptions: The price of a calculator is $35 and the sales tax
equals 8.5%.

The procedure uses four variables: slsPrice, slsTax, cost, and strMsg.
Because none of these variables have been explicitly declared, they all have
the same data type—Variant. The variables slsPrice and slsTax were cre-
ated by assigning some values to variable names at the beginning of the
procedure. The cost variable was assigned a value that is a result of a calcu-
lation: slsPrice + (slsPrice * slsTax). The cost calculation uses the
values supplied by the slsPrice and slsTax variables. The strMsg variable
puts together a text message to the user. This message is then entered as a
complete sentence in a worksheet cell. When you assign values to variables,
place an equal sign after the name of the variable. After the equals sign, you
should enter the value of the variable. This can be a number, a formula, or
text surrounded by quotation marks. While the values assigned to the vari-
ables slsPrice, slsTax, and cost are easily understood, the value stored
in the strMsg variable is a little more involved. Let’s examine the contents
of the strMsg variable.
 strMsg = "The calculator total is $ " & cost & "."

 ● Th e string "The calculator total is " is surrounded by quo-
tation marks. Notice that there is an extra space before the ending
quotation marks.

 ● Th e dollar sign inside the quotes is used to denote the Currency data
type. Because the dollar symbol is a character, it is surrounded by the
quotes.

 ● Th e & character allows another string or the contents of a variable to
be appended to the string. Th e & character must be used every time
you want to append a new piece of information to the previous string.

 ● Th e cost variable is a placeholder. Th e actual cost of the calculator
will be displayed here when the procedure runs.

 ● Th e & character attaches yet another string.
 ● Th e period is surrounded by quotes. When you require a period at

the end of a sentence, you must attach it separately when it follows
the name of the variable.

Variable Initialization

When Visual Basic creates a new variable, it initializes the variable. Vari-
ables assume their default value. Numerical variables are set to zero (0),
Boolean variables are initialized to False, String variables are set to the
empty string (“”), and Date variables are set to December 30, 1899.

SIDEBAR

92 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Now let’s execute the CalcCost procedure.
7. Position the cursor anywhere within the CalcCost procedure and choose

Run | Run Sub/UserForm.
When you run this procedure, Visual Basic may display the following
message: “Compile error: Variable not defi ned.” If this happens, click OK
to close the message box. Visual Basic will select the slsPrice variable
and highlight the name of the CalcCost procedure. Th e title bar displays
“Microsoft Visual Basic – Chap03_ExcelPrimer.xlsm [break].” Th e Visual
Basic break mode allows you to correct the problem before you continue.
Later in this book, you will learn how to fi x problems in break mode. For
now, exit this mode by choosing Run | Reset. Now go to the top of the Code
window and delete the statement Option Explicit that appears on the fi rst
line. Th e Option Explicit statement means that all variables used within
this module must be formally declared. You will learn about this statement
in the next section. When the Option Explicit statement is removed
from the Code window, choose Run | Run Sub/UserForm to rerun the
procedure. Th is time, Visual Basic goes to work with no objections.

8. After the procedure has finished executing, press Alt+F11 to switch to
Microsoft Excel.
Th e result of the procedure should match Figure 3.2.

FIGURE 3.2 The VBA procedure can enter data and calculate results in a worksheet.

Cell A8 displays the contents of the strMsg variable. Notice that the cost
entered in cell B6 has two decimal places, while the cost in strMsg displays
three decimals. To display the cost of a calculator with two decimal places
in cell A8, you must apply the required format not to the cell but to the
cost variable itself.
 VBA has special functions that allow you to change the format of data.
To change the format of the cost variable, you will now use the Format
function. Th is function has the following syntax:

EXCEL VBA FUNDAMENTALS 93

Format(expression, format)

where expression is a value or variable that you want to format, and
format is the type of format you want to apply.

9. In the VBE window, select the entire code of the CalcCost procedure and
copy and paste it below the current procedure on the first empty line. Add
some spacing between the two procedures by pressing Enter two times
after the first procedure End Sub keywords.

10. Change the name of the copied procedure to CalcCost_Modified.
11. Change the calculation of the cost variable in the CalcCost procedure:

cost = Format(slsPrice + (slsPrice * slsTax), "0.00")

12. Replace the With…End With block of instructions with the following:
Range("B6").Formula = cost

13. Replace the statement Range("B5").Formula = slsPrice * slsTax
with the following instruction:
Range("B5").Formula = Format((slsPrice * slsTax), "0.00")

14. Rerun the modified procedure.
Aft er running the procedure, the text displayed in cell A8 shows the cost
of the calculator formatted with two decimal places.
 Aft er trying out the CalcCost procedure, you may wonder why you
should bother declaring variables if Visual Basic can handle undeclared
variables so well. Th e CalcCost procedure is very short, so you don’t need
to worry about how many bytes of memory will be consumed each time
Visual Basic uses the Variant variable. In short procedures, however, it is
not the memory that matters but the mistakes you are bound to make
when typing variable names. What will happen if the second time you use
the cost variable you omit the “o” and refer to it as cst?
Range("B6").Formula = cst

What will you end up with if instead of slsTax you use the word Tax in
the formula?
Cost = Format(slsPrice + (slsPrice * Tax), "0.00")

The result of the CalcCost procedure after introducing these two mistakes
is shown in Figure 3.3.

94 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 3.3 Misspelling variable names will produce incorrect results.

Notice that in Figure 3.3 cell B6 does not show a value because Visual Basic
does not find the assignment statement for the cst variable. Because Visual
Basic does not know the sales tax, it displays the price of the calculator (see
cell A8) as the total cost. Visual Basic does not guess. It simply does what
you tell it to do. This brings us to the next section, which explains how to
make sure this kind of error doesn’t occur.

NOTE

If you have made changes in the variable names as de-
scribed earlier, be sure to replace the names of the variables
cst and tax with cost and slsTax in the appropriate lines
of the VBA code before you continue.

Forcing Declaration of Variables

Visual Basic has the Option Explicit statement that automatically re-
minds you to formally declare all your variables. This statement must be
entered at the top of each of your modules. The Option Explicit state-
ment will cause Visual Basic to generate an error message when you try
to run a procedure that contains undeclared variables as demonstrated in
Hands-On 3.2.

 Hands-On 3.2 Writing a VBA Procedure with Explicitly Declared
Variables

This Hands-On requires prior completion of Hands-On 3.1.
1. Return to the Code window where you entered the CalcCost procedure.
2. At the top of the module window (in the first line), type Option Explicit

and press Enter. Excel will display the statement in blue.
3. Run the CalcCost procedure. Visual Basic displays the error message

“Compile error: Variable not defined.”
4. Click OK to exit the message box.

Visual Basic highlights the name of the variable slsPrice. Now you must
formally declare this variable. When you declare the slsPrice variable

EXCEL VBA FUNDAMENTALS 95

and rerun your procedure, Visual Basic will generate the same error as
soon as it encounters another variable name that was not declared.

5. Choose Run | Reset to reset the VBA project.
6. Enter the following declarations at the beginning of the CalcCost

procedure:
' declaration of variables
Dim slsPrice As Currency
Dim slsTax As Single
Dim cost As Currency
Dim strMsg As String

Th e revised CalcCost procedure is shown here:
 Sub CalcCost()
 ' declaration of variables
 Dim slsPrice As Currency
 Dim slsTax As Single
 Dim cost As Currency
 Dim strMsg As String

 slsPrice = 35
 slsTax = 0.085
 Range("A1").Formula = "The cost of calculator"
 Range("A4").Formula = "Price"
 Range("B4").Formula = slsPrice
 Range("A5").Formula = "Sales Tax"
 Range("A6").Formula = "Cost"
 Range("B5").Formula = Format((slsPrice * slsTax), "0.00")
 cost = Format(slsPrice + (slsPrice * slsTax), "0.00")

 Range("B6").Formula = cost
 strMsg = "The calculator total is $" & cost & "."
 Range("A8").Formula = strMsg
 End Sub

7. Rerun the procedure to ensure that Excel no longer displays the error.

Option Explicit in Every Module

To automatically include Option Explicit in every new module you cre-
ate, follow these steps:

 ● Choose Tools | Options.
 ● Make sure that the Require Variable Declaration check box is se-

lected in the Options dialog box (Editor tab).
 ● Choose OK to close the Options dialog box.

From now on, every new module will be added with the Option Explicit
statement in line 1. If you want to require variables to be explicitly declared
in a previously created module, you must enter the Option Explicit
statement manually by editing the module yourself.

SIDEBAR

96 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Option Explicit forces formal (explicit) declaration of all variables
in a module. One big advantage of using Option Explicit is that any
mistyping of the variable name will be detected at compile time (when
Visual Basic attempts to translate the source code to executable code). If
included, the Option Explicit statement must appear in a module be-
fore any procedures.

Understanding the Scope of Variables

Variables can have different ranges of influence in a VBA procedure. The
term scope defines the availability of a variable to the same procedure, other
procedures, and other VBA projects.

Variables can have the following three levels of scope in Visual Basic for
Applications:

 ● Procedure-level scope
 ● Module-level scope
 ● Project-level scope

Procedure-Level (Local) Variables

From this chapter, you already know how to declare a variable by using
the Dim keyword. The position of the Dim keyword in the module sheet
determines the scope of a variable. Variables declared with the Dim keyword
placed within a VBA procedure have a procedure-level scope.

Procedure-level variables are frequently referred to as local variables. Lo-
cal variables can be used only in the procedure in which they were declared.
Undeclared variables always have a procedure-level scope. A variable’s
name must be unique within its scope. This means that you cannot declare
two variables with the same name in the same procedure. However, you
can use the same variable name in different procedures. In other words, the
CalcCost procedure can have the slsTax variable, and the ExpenseRep pro-
cedure in the same module can have its own variable called slsTax. Both
variables are independent of each other.

Module-Level Variables

Local variables help save computer memory. As soon as the procedure ends,
the variable dies and Visual Basic returns the memory space used by the
variable to the computer. In programming, however, you often want the vari-
able to be available to other VBA procedures after the procedure in which
the variable was declared has finished running. This situation requires that
you change the scope of a variable. Instead of a procedure-level variable,
you want to declare a module-level variable. To declare a module-level vari-

EXCEL VBA FUNDAMENTALS 97

able, you must place the Dim keyword at the top of the module sheet before
any procedures (just below the Option Explicit keyword). For instance, to
make the slsTax variable available to any other procedure in the Variables
module, declare the slsTax variable in the following way:

 Option Explicit
 Dim slsTax As Single

 Sub CalcCost()
 ...Instructions of the procedure...
 End Sub

In the foregoing example, the Dim keyword is located at the top of the
module, below the Option Explicit statement. Before you can see how
this works, you need another procedure that uses the slsTax variable. In
Hands-On 3.3, we will write a new VBA procedure named ExpenseRep.

 Hands-On 3.3 Writing a VBA Procedure with a Module-Level
Variable

1. In the Code window, cut the declaration line Dim slsTax As Single in the
Variables module from the CalcCost procedure and paste it at the top of
the module sheet below the Option Explicit statement.

2. In the same module where the CalcCost procedure is located, enter the
code of the ExpenseRep procedure as shown here:

 Sub ExpenseRep()
 Dim slsPrice As Currency
 Dim cost As Currency

 slsPrice = 55.99

 cost = slsPrice + (slsPrice * slsTax)
 MsgBox slsTax
 MsgBox cost
 End Sub

Th e ExpenseRep procedure declares two Currency type variables:
slsPrice and cost. Th e slsPrice variable is then assigned a value of
55.99. Th e slsPrice variable is independent of the slsPrice variable that
is declared within the CalcCost procedure.
Th e ExpenseRep procedure calculates the cost of a purchase. Th e cost
includes the sales tax stored in the slsTax variable. Because the sales tax
is the same as the one used in the CalcCost procedure, the slsTax variable
has been declared at the module level.

3. Run the ExpenseRep procedure.
Because you have not yet run the CalcCost procedure, Visual Basic does
not know the value of the slsTax variable, so it displays zero in the fi rst
message box.

98 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

4. Run the CalcCost procedure.
Aft er Visual Basic executes the CalcCost procedure that you revised in
Hands-On 3.2, the contents of the slsTax variable equals 0.085. If slsTax
were a local variable, the contents of this variable would be empty upon
the termination of the CalcCost procedure.
When you run the CalcCost procedure, Visual Basic erases the contents
of all the variables except for the slsTax variable, which was declared at a
module level.

5. Run the ExpenseRep procedure again.
As soon as you attempt to calculate the cost by running the ExpenseRep
procedure, Visual Basic retrieves the value of the slsTax variable and uses
it in the calculation.

Private Variables

When you declare variables at a module level, you can use the Private key-
word instead of the Dim keyword—for instance:

Private slsTax As Single

Private variables are available only to the procedures that are part of the
module where they were declared. Private variables are always declared at
the top of the module after the Option Explicit statement.

Keeping the Project-Level Variable Private

To prevent a project-level variable’s contents from being referenced outside
its project, you can use the Option Private Module statement at the top
of the module sheet, just below the Option Explicit statement and before
the declaration line—for example:
 Option Explicit
 Option Private Module
 Public slsTax As Single

 Sub CalcCost()
 ... procedure statements...
 End Sub

Project-Level Variables

Module-level variables that are declared with the Public keyword (instead
of Dim) have project-level scope. This means that they can be used in any
Visual Basic for Applications module. When you want to work with a vari-
able in all the procedures in all the open VBA projects, you must declare it
with the Public keyword—for instance:
 Option Explicit
 Public slsTax As Single

SIDEBAR

SIDEBAR

EXCEL VBA FUNDAMENTALS 99

Sub CalcCost()
 ...procedure statements...
 End Sub

Notice that the slsTax variable declared at the top of the module with the
Public keyword will now be available to any other procedure in the VBA
project.

Lifetime of Variables

In addition to scope, variables have a lifetime. The lifetime of a variable
determines how long a variable retains its value. Module-level and project-
level variables preserve their values as long as the project is open. Visual
Basic, however, can reinitialize these variables if required by the program’s
logic. Local variables declared with the Dim statement lose their values
when a procedure has finished. Local variables have a lifetime as long as
a procedure is running, and they are reinitialized every time the program
is run. Visual Basic allows you to extend the lifetime of a local variable by
changing the way it is declared.

Finding a Variable Definition

When you find an instruction in a VBA procedure that assigns a value to
a variable, you can quickly locate the definition of the variable by select-
ing the variable name and pressing Shift+F2 or choosing View | Definition.
Visual Basic will jump to the variable declaration line. Press Ctrl+Shift+F2
or choose View | Last Position to return your mouse pointer to its previous
position.

Determining a Data Type of a Variable

You can find out the type of a variable by using one of the VBA built-in
functions. The VarType function returns an integer indicating the type of
a variable. Figure 3.4 displays the VarType function’s syntax and the values
it returns. Let’s try using the VarType function in the Immediate window.

 Hands-On 3.4 Using the Built-In VarType Function

1. In the Visual Basic Editor window, choose View | Immediate Window.
2. Type the following statements that assign values to variables:

age = 18
birthdate = #1/1/1981#
firstName = "John"

3. Now ask Visual Basic what type of data each of the variables holds:
?VarType(age)

When you press Enter, Visual Basic returns 2. As shown in Figure 3.4, the
number 2 represents the Integer data type. If you type:
?VarType(birthdate)

100 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 3.4 With the built-in VarType function, you can learn the data type the variable
holds.

Visual Basic returns 7 for Date. If you make a mistake in the variable name
(let’s say you type birthday, instead of birthdate), Visual Basic returns zero
(0). If you type:

?VarType(firstName)

Visual Basic tells you that the value stored in the variable firstName is a
String type (8).

USING CONSTANTS

The contents of a variable can change while your procedure is executing. If
your procedure needs to refer to unchanged values repeatedly, you should
use constants. A constant is like a named variable that always refers to the
same value. Visual Basic requires that you declare constants before you use

EXCEL VBA FUNDAMENTALS 101

them. Declare constants by using the Const statement, as in the following
examples:
 Const dialogName = "Enter Data" As String
 Const slsTax = 8.5
 Const ColorIdx = 3

A constant, like a variable, has a scope. To make a constant available within
a single procedure, declare it at the procedure level, just below the name of
the procedure—for instance:
 Sub WedAnniv()
 Const Age As Integer = 25
 MsgBox (Age)
 End Sub

If you want to use a constant in all the procedures of a module, use the Pri-
vate keyword in front of the Const statement—for instance:

Private Const driveLetter As String = "C:"

The Private constant has to be declared at the top of the module, just
before the first Sub statement. If you want to make a constant available to
all modules in the workbook, use the Public keyword in front of the Const
statement—for instance:

Public Const NumOfChars As Integer = 255

The Public constant has to be declared at the top of the module, just be-
fore the first Sub statement. When declaring a constant, you can use any one
of the following data types: Boolean, Byte, Integer, Long, Currency, Single,
Double, Date, String, or Variant.

Like variables, several constants can be declared on one line if separated
by commas—for instance:
Const Age As Integer = 25, City As String = "Denver"

Using constants makes your VBA procedures more readable and easier to
maintain. For example, if you refer to a certain value several times in your
procedure, use a constant instead of the value. This way, if the value changes
(for example, the sales tax goes up), you can simply change the value in the
declaration of the Const statement instead of tracking down every occur-
rence of that value.

Built-In Constants

Both Microsoft Excel and Visual Basic for Applications have a long list of
predefined constants that do not need to be declared. These built-in con-
stants can be looked up using the Object Browser window. Let’s proceed to
Hands-On 3.5, where we open the Object Browser to take a look at the list
of Excel constants.

102 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Hands-On 3.5 Viewing Excel Constants in the Object Browser

1. In the Visual Basic Editor window, choose View | Object Browser.
2. In the Project/Library list box, click the drop-down arrow and select Excel.
3. Enter constants as the search text in the Search box and press Enter or

click the Search button. Visual Basic shows the result of the search in the
Search Results area.

4. Scroll down in the Classes list box to locate and then select Constants as
shown in Figure 3.5. The right side of the Object Browser window displays
a list of all built-in constants that are available in the Microsoft Excel object
library. Notice that the names of all the constants begin with the prefix “xl.”

FIGURE 3.5 Use the Object Browser to look up any built-in constant.

5. To look up VBA constants, choose VBA in the Project/Library list box
(see Figure 3.6). Notice that the names of the VBA built-in constants begin
with the prefix “vb.”

EXCEL VBA FUNDAMENTALS 103

FIGURE 3.6 The names of VBA constants begin with the “vb” prefix.

CONVERTING BETWEEN DATA TYPES

While VBA handles a lot of data type conversion automatically in the back-
ground, it also provides several data conversion functions (see Table 3.3)
that allow you to convert one data type to another. These functions should
be used in situations where you want to show the result of an operation as
a specific data type rather than the default data type. For example, instead
of showing the result of your calculation as an integer or single-precision or
double-precision number, you may want to use the CCur function to force
currency arithmetic, as in the following example procedure:
 Sub ShowMoney()
 'declare variables of two different types
 Dim myAmount As Single
 Dim myMoneyAmount As Currency

 myAmount = 345.34

 myMoneyAmount = CCur(myAmount)
 Debug.Print "Amount = $" & myMoneyAmount
 End Sub

When using the CCur function, currency options are recognized depending
on the locale setting of your computer. The same holds true for the CDate
function. By using this function, you can ensure that the date is formatted

104 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

according to the locale setting of your system. Use the IsDate function to
determine whether a return value can be converted to date or time.
 Sub ConvertToDate()
 'assume you have entered Jan 1 2019 in cell A1
 Dim myEntry As String
 Dim myRangeValue As Date

 myEntry = Sheet2.Range("A1").Value
 If IsDate(myEntry) Then
 myRangeValue = CDate(myEntry)
 End If
 Debug.Print myRangeValue
 End Sub

In cases where you need to round the value to the nearest even number, you
will find the CInt and Clng functions quite handy, as demonstrated in the
following procedure:
 Sub ShowInteger()
 'declare variables of two different types
 Dim myAmount As Single
 Dim myIntAmount As Integer

 myAmount = 345.64

 myIntAmount = CInt(myAmount)
 Debug.Print "Original Amount = " & myAmount
 Debug.Print "New Amount = " & myIntAmount
 End Sub

As you can see in the code of the foregoing procedures, the syntax for the
VBA conversion functions is as follows:

conversionFunctionName(variablename)

where variablename is the name of a variable, a constant, or an expression
(like x + y) that evaluates to a specific data type.

TABLE 3.3 VBA data type conversion functions.

Conversion Function Return Type Description
CBool Boolean Any valid string or numeric expression
CByte Byte 0 to 255
CCur Currency –922,337,203,685,477.5808 to

922,337,203,685,477.5807
CDate Date Any valid date expression
CDbl Double –1.79769313486231E308 to

–-4.94065645841247E-324 for negative
values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values.

EXCEL VBA FUNDAMENTALS 105

Conversion Function Return Type Description
CDec Decimal +/–79,228,162,514,264,337,593,543,950,335

for zero-scaled numbers—that is, numbers
with no decimal places. For numbers
with 28 decimal places, the range is
+/–7.9228162514264337593543950335.
The smallest possible nonzero number is
0.0000000000000000000000000001.

CInt Integer –32,768 to 32,767; fractions are rounded.
CLng Long –2,147,483,648 to 2,147,483,647; fractions are

rounded.
CLngLng LongLong –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807; fractions are rounded.
(Valid on 64-bit platforms only.)

CLngPtr LongPtr –2,147,483,648 to 2,147,483,647 on 32-bit
systems; –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 on 64-bit systems.
Fractions are rounded for 32-bit and 64-bit
systems.

CSng Single –3.402823E38 to –1.401298E-45 for negative
values; 1.401298E-45 to 3.402823E38 for positive
values.

CStr String Returns for CStr depend on the expression
argument.

If Expression Is CStr returns
Boolean A string containing True

or False
Date A string containing a

date in the short date
format of your system

Null A runtime error
Empty A zero-length string (“”)
Error A string containing the

word “Error” followed
by the error number

Other numeric A string containing the
number

Cvar Variant Same range as Double for numerics. Same range
as String for nonnumeric.

 Hands-On 3.6 Using Data Type Conversion Functions in VBA

1. Select Insert | Module to insert a new module into the Chapter3 (Chap03_
ExcelPrimer.xslm) project.

106 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

2. Use the Properties window to rename the module to DataTypeConversion.
3. Enter the code of the procedures introduced in this section: ShowMoney,

ConvertToDate, and ShowInteger.
4. Insert a new worksheet into current workbook and enter Jan 1 2019 in

cell A1.
5. Run each procedure and check the results in the Immediate window.

USING STATIC VARIABLES IN VBA PROCEDURES

A variable declared with the Static keyword is a special type of local
variable. Static variables are declared at the procedure level. Unlike local
variables declared with the Dim keyword, static variables do not lose their
contents when the program is not in their procedure. For example, when a
VBA procedure with a static variable calls another procedure, after Visual
Basic executes the statements of the called procedure and returns to the
calling procedure, the static variable still retains the original value. The
CostOfPurchase procedure shown in Hands-On 3.7 demonstrates the use
of the static variable named allPurchase. Notice how this variable keeps
track of the running total.

 Hands-On 3.7 Writing a VBA Procedure with a Static Variable

1. In the Code window of the Variables module, write the following procedure:
Sub CostOfPurchase()
 ' declare variables
 Static allPurchase
 Dim newPurchase As String
 Dim purchCost As Single

 newPurchase = InputBox("Enter the cost of a purchase:")
 purchCost = CSng(newPurchase)
 allPurchase = allPurchase + purchCost

 ' display results
 MsgBox "The cost of a new purchase is: " & newPurchase
 MsgBox "The running cost is: " & allPurchase
End Sub

Th e foregoing procedure begins with declaring a static variable named
allPurchase and two other local variables: newPurchase and purchCost.
Th e InputBox function used in this procedure displays a dialog box and
waits for the user to enter the value. As soon as you input the value and
click OK, Visual Basic assigns this value to the variable newPurchase.
 Th e InputBox function is discussed in detail in Chapter 4. Because
the result of the InputBox function is always a string, the newPurchase

EXCEL VBA FUNDAMENTALS 107

variable was declared as the String data type. You can’t, however, use
strings in mathematical calculations. Th at’s why the next instruction
uses a type conversion function (CSng) to translate the text value into a
numeric variable of the Single data type. Th e CSng function requires one
argument—the value you want to translate. To fi nd out more about the
CSng function, position the insertion point anywhere within the word
CSng and press F1. Th e number obtained as the result of the CSng function
is then stored in the variable purchCost.
 Th e next instruction, allPurchase = allPurchase + purchCost,
adds to the current purchase value the new value supplied by the InputBox
function.

2. Position the cursor anywhere within the CostOfPurchase procedure and
press F5. When the dialog box appears, enter a number. For example, enter
100 and click OK or press Enter. Visual Basic displays the message “The
cost of a new purchase is: 100.” Click OK in the message box. Visual Basic
displays the second message “The running cost is: 100.”

3. When you run this procedure for the first time, the content of the
allPurchase variable is the same as the content of the purchCost variable.

4. Rerun the same procedure. When the input dialog appears, enter another
number. For example, enter 50 and click OK or press Enter. Visual Basic
displays the message “The cost of a new purchase is: 50.” Click OK in the
message box. Visual Basic displays the second message “The running cost
is: 150.”

5. When you run the procedure the second time, the value of the static
variable is increased by the new value supplied in the dialog box. You
can run the CostOfPurchase procedure as many times as you want. The
allPurchase variable will keep the running total for as long as the project
is open.

USING OBJECT VARIABLES IN VBA PROCEDURES

The variables that you’ve learned in the preceding sections are used to store
data. Storing data is the main reason for using “normal” variables in your
procedures. In addition to the normal variables that store data, there are
special variables that refer to the Visual Basic objects. These variables are
called object variables. In Chapter 2, you worked with several objects in the
Immediate window. Now you will learn how you can represent an object
with the object variable.

Object variables don’t store data; instead, they tell where the data is lo-
cated. For example, with the object variable you can tell Visual Basic that
the data is in cell E10 of a worksheet. Object variables make it easy to locate

108 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

data. When writing Visual Basic procedures, you often need to write long
instructions, such as:

Worksheets("Sheet2").Range(Cells(1, 1), Cells(10, 5).Select

Instead of using long references to the object, you can declare an object vari-
able that will tell Visual Basic where the data is located. Object variables are
declared similarly to the variables you already know. The only difference is
that after the As keyword, you enter the word Object as the data type—for
instance:

Dim myRange As Object

The foregoing statement declares the object variable named myRange.
Well, it’s not enough to declare the object variable. You also must assign a

specific value to the object variable before you can use this variable in your
procedure. Assign a value to the object variable by using the Set keyword.
The Set keyword must be followed by the equals sign and the value that the
variable will refer to—for example:

Set myRange = Worksheets("Sheet2").Range(Cells(1, 1), Cells(10,
5))

This statement assigns a value to the object variable myRange. This value
refers to cells A1:E10 in Sheet1. If you omit the word Set, Visual Basic will
respond with an error message—“Run-time error 91: Object variable or
With block variable not set.”

Again, it’s time to see a practical example.

 Hands-On 3.8 Writing a VBA Procedure with Object Variables

1. In the Code window of the Variables module, write the following procedure:
 Sub UseObjVariable()
 Dim myRange As Object
 Sheets.Add
 Set myRange = Worksheets("Sheet2").Range(Cells(1, 1), _
 Cells(10, 5))
 myRange.BorderAround Weight:=xlMedium

 With myRange.Interior
 .ColorIndex = 6
 .Pattern = xlSolid
 End With

 Set myRange = Worksheets("Sheet2").Range(Cells(12, 5), _
 Cells(12, 10))
 myRange.Value = 54

 Debug.Print IsObject(myRange)
End Sub

EXCEL VBA FUNDAMENTALS 109

Let’s examine the code of the UseObjVariable procedure line by line. Th e
procedure begins with the declaration of the object variable myRange. Th e
next statement sets the object variable myRange to the range A1:E10 on
Sheet2. From now on, every time you want to reference this range, instead
of using the entire object’s address, you’ll use the shortcut—the name of
the object variable. Th e purpose of this procedure is to create a border
around the range A1:E10. Instead of writing a long instruction:

Worksheets("Sheet2").Range(Cells(1, 1), _
 Cells(10, 5)).BorderAround Weight:=xlMedium

you can take a shortcut by using the name of the object variable:
myRange.BorderAround Weight:=xlMedium

Th e next series of statements changes the color of the selected range of
cells (A1:E10). Again, you don’t need to write the long instruction to
reference the object that you want to manipulate. Instead of the full object
name, you can use the myRange object variable. Th e next statement assigns
a new reference to the object variable myRange. Visual Basic forgets the old
reference, and the next time you use myRange, it refers to another range
(E12:J12).
 Aft er the number 54 is entered in the new range (E12:J12), the procedure
shows you how you can make sure that a specifi c variable is of the Object
type. Th e instruction Debug.Print IsObject(myRange) will enter True
in the Immediate window if myRange is an object variable. IsObject is a
VBA function that indicates whether a specifi c value represents an object
variable.

2. Position the cursor anywhere within the UseObjVariable procedure and
press F5.

Advantages of Using Object Variables

 ● Th ey can be used instead of the actual object.
 ● Th ey are shorter and easier to remember than the actual values to

which they point.
 ● You can change their meaning while your procedure is running.

Using Specific Object Variables

The object variable can refer to any type of object. Because Visual Basic
has many types of objects, it’s a good idea to create object variables that
refer to a specific object to make your programs more readable and faster.
For instance, in the UseObjVariable procedure (see the previous section),

SIDEBAR

110 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

instead of the generic object variable (Object), you can declare the myRange
object variable as a Range object:

Dim myRange As Range

If you want to refer to a specific worksheet, then you can declare the Work-
sheet object:
 Dim mySheet As Worksheet
 Set mySheet = Worksheets("Marketing")

When the object variable is no longer needed, you can assign Nothing to it.
This frees up memory and system resources:

Set mySheet = Nothing

SUMMARY

This chapter introduced several new VBA concepts, such as data types,
variables, and constants. You learned how to declare various types of vari-
ables and define their types. You also saw the difference between a variable
and a constant. Now that you know what variables are and how to use them,
you can create VBA procedures that allow you to manipulate data in more
meaningful ways than you saw in previous chapters.

In the next chapter, you will expand your VBA knowledge by learning
how to write custom function procedures. In addition, you will learn about
built-in functions that will allow your VBA procedure to interact with users.

111

Earlier in this book you learned that a procedure is a group of instruc-
tions that allows you to accomplish specific tasks when your program
runs. In this book you get acquainted with the following types of VBA

procedures:

 ● Subroutine procedures (subroutines) perform some useful tasks but
don’t return any values. Th ey begin with the keyword Sub and end
with the keywords End Sub. Subroutines can be recorded with the
macro recorder or written from scratch in the Visual Basic Editor
window. In Chapter 1, you learned various ways to execute this type
of procedure.

 ● Function procedures (functions) perform specifi c tasks that return
values. Th ey begin with the keyword Function and end with the
keywords End Function. In this chapter, you will create your fi rst
function procedure. Function procedures can be executed from a
subroutine or accessed from a worksheet just like any Excel built-in
function.

 ● Property procedures are used with custom objects. Use them to set
and get the value of an object’s property or set a reference to an object.
You will learn how to create custom objects and use property proce-
dures in Chapter 8.

Chapter

 4
EXCEL VBA PROCEDURES

A QUICK GUIDE TO WRITING
FUNCTION PROCEDURES

112 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

In this chapter, you will learn how to create and execute custom functions.
In addition, you find out how variables are used in passing values to sub-
routines and functions. Later in the chapter, you will take a thorough look at
the two most useful VBA built-in functions: MsgBox and InputBox.

UNDERSTANDING FUNCTION PROCEDURES

With the hundreds of built-in Excel functions, you can perform a wide
variety of calculations automatically. However, there will be times when
you may require a custom calculation. With VBA programming, you can
quickly fulfill this special need by creating a function procedure. You can
build any functions that are not supplied with Excel. Among the reasons for
creating custom VBA functions are the following:

 ● analyze data and perform calculations
 ● modify data and report information
 ● take a specifi c action based on supplied or calculated data

Creating a Function Procedure

Like Excel functions, function procedures perform calculations and return
values. The best way to learn about functions is to create one, so let’s get
started. After setting up a new VBA project, you will create a simple func-
tion procedure that sums two values.

 Please note files for the “Hands-On” project may be found on the com-
panion CD-ROM.

 Hands-On 4.1 Writing a Simple Function Procedure

1. Open a new Excel workbook and save it as C:\ VBAPrimerExcel_
ByExample\Chap04_ExcelPrimer.xlsm.

2. Switch to the Visual Basic Editor window and select VBAProject
(Chap04_ExcelPrimer.xlsm).

3. In the Properties window, change the name of the project name to
ProcAndFunctions.

4. Select the ProcAndFunctions (Chap04_ExcelPrimer.xlsm) project in the
Project Explorer window and choose Insert | Module.

5. In the Properties window, change the Module1 name to Sample1.
6. In the Project Explorer window, highlight Sample1 and click anywhere in

the Code window. Choose Insert | Procedure. The Add Procedure dialog
box appears.

7. In the Add Procedure dialog box, make the entries shown in Figure 4.1:

EXCEL VBA PROCEDURES 113

Name: SumItUp
Type: Function
Scope: Public

FIGURE 4.1 When you use the Add Procedure dialog box, Visual Basic automatically creates
the procedure type you choose.

8. Click OK to close the Add Procedure dialog box. Visual Basic enters an
empty function procedure that looks like this:
Public Function SumItUp()

End Function

9. Modify the function declaration as follows:
Public Function SumItUp(m,n)

End Function

Th e purpose of this function is to add two values. Instead of passing the
actual values to the function, you can make the function more fl exible by
providing it with the arguments in the form of variables. By doing this,
your custom function will be able to add any two numbers that you specify.
Each of the passed-in variables (m, n) represents a value. You will supply the
values for each of these variables when you run this function.

10. Type the following statement between the Public Function and End
Function statements:
SumItUp = m + n

Th is statement instructs Visual Basic to add the value stored in the n variable
to the value stored in the m variable and return the result to the SumItUp
function. To specify the value that you want the function to return, type
the function name followed by the equals sign and the value you want it

114 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

to return. In the foregoing statement, set the name of the function equal
to the total of m + n. Th e completed custom function procedure is shown
here:

Public Function SumItUp(m,n)
 SumItUp = m + n
End Function

Th e fi rst statement declares the name of the function procedure. Th e
Public keyword indicates that the function is accessible to all other
procedures in all other modules. Th e Public keyword is optional. Notice
the keyword Function followed by the name of the function (SumItUp)
and a pair of parentheses. In the parentheses, you will list the data items
that the function will use in the calculation. Every function procedure ends
with the End Function statement.

About Function Names

Function names should suggest the role that the function performs and
must conform to the rules for naming variables (see Chapter 3).

Scoping VBA Procedures

In the previous chapter, you learned that the variable’s scope determines
which modules and procedures it can be used in. Like variables, VBA
procedures have scope. A procedure scope determines whether it can be
called by procedures in other modules. By default, all VBA procedures are
public. This means they can be called by other procedures in any module.
Because procedures are public by default, you can skip the Public key-
word if you want. And if you replace the Public keyword with the Pri-
vate keyword, your procedure will be available only to other procedures
in the same module, not to procedures in other modules.

VARIOUS METHODS OF RUNNING FUNCTION
PROCEDURES

Unlike a subroutine, a function procedure can be executed in just two ways:
You can use it in a worksheet formula, or you can call it from another proce-
dure. In the following sections, you will learn special techniques for execut-
ing functions.

Running a Function Procedure from a Worksheet

A custom function procedure is like an Excel built-in function. If you don’t
know the exact name of the function or its arguments, you can use the For-

SIDEBAR

SIDEBAR

EXCEL VBA PROCEDURES 115

mula palette to help enter the required function in a worksheet as shown in
Hands-On 4.2.

 Hands-On 4.2 Executing a Function Procedure from within an
Excel Worksheet

1. Switch to the Microsoft Excel window and select any cell.
2. Click the Insert Function (fx) button on the Formula bar. Excel displays

the Insert Function dialog box. The lower portion of the dialog box
displays an alphabetical listing of all the functions in the selected category.

3. In the category drop-down box, select User Defined. In the function name
box, locate and select the SumItUp function that was created in Hands-On
4.1. When you highlight the name of the function in the function name
box (Figure 4.2), the bottom part of the dialog box displays the function’s
syntax: SumItUp(m,n).

FIGURE 4.2 VBA custom function procedures are listed under the User Defined category in
the Insert Function dialog box. They also appear in the list of all Excel built-in functions when
you select All in the category drop-down.

4. Click OK to begin writing a formula. The Function Arguments dialog
box appears, as shown in Figure 4.3. This dialog displays the name of the
function and each of its arguments: m and n.

5. Enter the values for the arguments as shown in Figure 4.3 or enter your own
values. As you type the values in the argument text boxes, Excel displays
the values you entered and the current result of the function. Because both
arguments (m and n) are required, the function will return an error if you
skip either one of the arguments.

6. Click OK to exit the Function Arguments dialog.

116 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 4.3 The Formula palette feature is helpful in entering any worksheet function,
whether built-in or custom-made with VBA programming.

Excel enters the SumItUp function in the selected cell and displays its result.
7. To edit the function, select the cell that displays the function’s result and

click the Insert Function (fx) button to access the Function Arguments
dialog box. Enter new values for the function’s m and n arguments and
click OK.

NOTE

To edit the arguments’ values directly in the cell, double-click
the cell containing the function and make the necessary changes.
You may also set up the SumItUp function to perform calcu-
lations based on the values entered in cells. To do this, in the
Function Arguments dialog box shown in Figure 4.3, simply en-
ter cell references instead of values. For example, enter C1 for
the m argument and C2 for the n argument. When you click OK,
Excel will display zero (0) as the result of the function. On the
worksheet, enter the values in cells C1 and C2 and your custom
function will recalculate the result just like any other built-in
Excel function.

Running a Function Procedure from Another VBA Procedure

To execute a custom function, write a VBA subroutine and call the function
when you need it. The following procedure calls the SumItUp function and
prints the result of the calculation to the Immediate window.

 Hands-On 4.3 Executing a Function from a VBA Procedure

1. In the same module where you entered the code of the SumItUp function
procedure, enter the RunSumItUp procedure.
Sub RunSumItUp()

 Dim m As Single, n As Single

EXCEL VBA PROCEDURES 117

 m = 37
 n = 3459.77

 Debug.Print SumItUp(m,n)
 MsgBox "Open the Immediate Window to see the result."
End Sub

Notice how the foregoing subroutine uses one Dim statement to declare
the m and n variables. Th ese variables will be used to feed the data to the
function. Th e next two statements assign the values to those variables. Next,
Visual Basic calls the SumItUp function and passes the values stored in the
m and n variables to it. When the function procedure statement SumItUp
= m + n is executed, Visual Basic returns to the RunSumItUp subroutine
and uses the Debug.Print statement to print the function’s result to the
Immediate window. Finally, the MsgBox function informs the user where to
look for the result. You can fi nd more information about using the MsgBox
function later in this chapter.

2. Place the mouse pointer anywhere within the RunSumItUp procedure
and press F5 to run it.

ENSURING AVAILABILITY OF YOUR CUSTOM FUNCTIONS

Your custom VBA function is available only while the workbook where the
function is stored is open. If you close the workbook, the function is no lon-
ger available. To make sure that your custom VBA functions are available
every time you work with Microsoft Excel, you can do one of the following:

 ● Store your functions in the Personal macro workbook.
 ● Save the workbook with your custom VBA function in the XLStart

folder.
 ● Set up a reference to the workbook containing your custom functions.

A Quick Test of a Function

After you write your custom function, you can quickly try it out in the Im-
mediate window. To display the value of a function, open the Immediate
window and type a question mark (?) followed by the function name. Re-
member to enclose the function’s arguments in parentheses.

For example, type:
 ? SumItUp(54, 367.24)

and press Enter. Your function procedure runs, using the values you passed
for the m and n arguments. The result of the function appears on a line below:
 421.24

SIDEBAR

118 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

PASSING ARGUMENTS TO FUNCTION PROCEDURES

Procedures (both subroutines and functions) often take arguments. Argu-
ments are one or more values needed for a procedure to do something.
Arguments are entered within parentheses. Multiple arguments are sepa-
rated with commas.

Having used Excel for a while, you already know that Excel’s built-in
functions can produce different results based on the values you supply to
them. For example, if cells A4 and A5 contain the numbers 5 and 10, re-
spectively, the Sum function =SUM(A4:A5) will return 15, unless you change
the values entered in the specified cells. Just like you can pass any values to
Excel’s built-in functions, you can pass values to custom VBA procedures.

Let’s see how you can pass some values from a subroutine procedure to
the SumItUp function. We will write a procedure that collects the user’s first
and last names. Next, we will call the SumItUp function to get the sum of
characters in a person’s first and last names.

 Hands-On 4.4 Passing Arguments to Functions (Example 1)

1. Type the following NumOfCharacters subroutine in the same module
(Sample1) where you entered the SumItUp function:
Sub NumOfCharacters()
 Dim f As Integer
 Dim l As Integer

 f = Len(InputBox("Enter first name:"))
 l = Len(InputBox("Enter last name:"))
 MsgBox SumItUp(f,l)
End Sub

2. Place the mouse pointer within the code of the NumOfCharacters procedure
and press F5. Visual Basic displays the input box asking for the first name.
This box is generated by the following function: InputBox("Enter first
name:"). For more information on the use of this function, see the section
titled “Using the InputBox Function” later in this chapter.

3. Enter any name, and press Enter or click OK. Visual Basic takes the text
you entered and supplies it as an argument to the Len function. The Len
function calculates the number of characters in the supplied text string.
Visual Basic places the result of the Len function in the f variable for
further reference. After that, Visual Basic displays the next input box, this
time asking for the last name.

4. Enter any last name, and press Enter or click OK.
Visual Basic passes the last name to the Len function to get the number
of characters. Th en that number is stored in the l variable. What happens

EXCEL VBA PROCEDURES 119

next? Visual Basic encounters the MsgBox function. Th is function tells
Visual Basic to display the result of the SumItUp function. However, because
the result is not yet ready, Visual Basic jumps quickly to the SumItUp
function to perform the calculation using the values saved earlier in the f
and l variables. Inside the function procedure, Visual Basic substitutes the
m argument with the value of the f variable and the n argument with the
value of the l variable. Once the substitution is done, Visual Basic adds up
the two numbers and returns the result to the SumItUp function.
 Th ere are no more tasks to perform inside the function procedure, so
Visual Basic returns to the subroutine and provides the SumItUp function’s
result as an argument to the MsgBox function. Now a message appears on
the screen displaying the total number of characters.

5. Click OK to exit the message box.
You can run the NumOfCharacters procedure as many times as you’d like,
each time supplying diff erent fi rst and last names.

To pass a specific value from a function to a subroutine, assign the value to
the name of the function. For example, the NumOfDays function shown here
passes the value of 7 to the subroutine DaysInAWeek.
 Function NumOfDays()
 NumOfDays = 7
 End Function

 Sub DaysInAWeek()
 MsgBox "There are " & NumOfDays & " days in a week."
 End Sub

Specifying Argument Types

In the preceding section, you learned that functions perform some calcula-
tions based on data received through their arguments. When you declare a
function procedure, you list the names of arguments inside a set of paren-
theses. Argument names are like variables. Each argument name refers to
whatever value you provide at the time the function is called. When a sub-
routine calls a function procedure, it passes the required arguments as vari-
ables to it. Once the function does something, the result is assigned to the
function name. Notice that the function procedure’s name is used as if it
were a variable.

Like variables, functions can have types. The result of your function pro-
cedure can be String, Integer, Long, and so on. To specify the data type for
your function’s result, add the keyword As and the name of the desired data
type to the end of the function declaration line—for example:

Function MultiplyIt(num1, num2) As Integer

120 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Let’s look at an example of a function that returns an Integer number,
although the arguments passed to it are declared as Single data types in a
calling subroutine.

 Hands-On 4.5 Passing Arguments to Functions (Example 2)

1. Add a new module to the ProcAndFunctions (Chap04_ExcelPrimer.
xlsm) project and change the module’s name to Sample2.

2. Activate the Sample2 module and enter the HowMuch subroutine as
shown here:
Sub HowMuch()
 Dim num1 As Single
 Dim num2 As Single
 Dim result As Single

 num1 = 45.33
 num2 = 19.24

 result = MultiplyIt(num1, num2)
 MsgBox result
End Sub

3. Enter the MultiplyIt function procedure below the HowMuch subroutine:
Function MultiplyIt(num1, num2) As Integer
 MultiplyIt = num1 * num2
End Function

Because the values stored in the variables num1 and num2 are not whole
numbers, you may want to assign the Integer data type to the result of the
function to ensure that the result is a whole number. If you don’t assign the
data type to the MultiplyIt function’s result, the HowMuch procedure
will display the result in the data type specifi ed in the declaration line of
the result variable. Instead of 872, the result of the multiplication will be
872.1492.

4. Run the HowMuch procedure.
How about passing diff erent values each time you run the procedure?
Instead of hardcoding the values to be used in the multiplication, you can
use the InputBox function to ask the user for the values at runtime—for
example:

num1 = InputBox("Enter a number:")

Th e InputBox function is discussed in detail in a later section of this chapter.

Passing Arguments by Reference and Value

In some procedures, when you pass arguments as variables, Visual Basic
can suddenly change the value of the variables. To ensure that the called

EXCEL VBA PROCEDURES 121

function procedure does not alter the value of the passed-in arguments, you
should precede the name of the argument in the function’s declaration line
with the keyword ByVal. Let’s look at the following example.

 Hands-On 4.6 Passing Arguments to Functions (Example 3)

1. Add a new module to the ProcAndFunctions (Chap04_ExcelPrimer.
xlsm) project and change the module’s name to Sample3.

2. Activate the Sample3 module and type the procedures shown here:
Sub ThreeNumbers()
 Dim num1 As Integer, num2 As Integer, num3 As Integer
 num1 = 10
 num2 = 20
 num3 = 30

 MsgBox MyAverage(num1, num2, num3)
 MsgBox num1
 MsgBox num2
 MsgBox num3
End Sub

Function MyAverage(ByVal num1, ByVal num2, ByVal num3)
 num1 = num1 + 1

 MyAverage = (num1 + num2 + num3) / 3
End Function

To prevent the function from altering values of arguments, use the keyword
ByVal before the arguments’ names (see the “Know Your Keywords: ByRef
and ByVal” sidebar).

3. Run the ThreeNumbers procedure.

The ThreeNumbers procedure assigns values to three variables and then calls
the MyAverage function to calculate and return the average of the numbers
stored in these variables. The function’s arguments are the variables num1,
num2, and num3. Notice that all of the function arguments are preceded with
the keyword ByVal. Also, notice that prior to the calculation of the average,
the MyAverage function changes the value of the num1 variable. Inside the
function procedure, the num1 variable equals 11 (10 + 1). Therefore, when
the function passes the calculated average to the ThreeNumbers procedure,
the MsgBox function displays the result as 20.3333333333333 and not 20, as
expected. The next three MsgBox functions show the contents of each of the
variables. The values stored in these variables are the same as the original
values assigned to them—10, 20, and 30.

What will happen if you omit the keyword ByVal in front of the num1
argument in the MyAverage function’s declaration line? The function’s re-
sult will still be the same, but the contents of the num1 variable displayed

122 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

by MsgBox num1 is now 11. The MyAverage function has not only returned
an unexpected result (20.3333333333333 instead of 20) but also modified
the original data stored in the num1 variable. To prevent Visual Basic from
permanently changing the values supplied to the function, use the ByVal
keyword.

Know Your Keywords: ByRef and ByVal

Because any of the variables passed to a function procedure (or a sub-
routine) can be changed by the receiving procedure, it is important to
know how to protect the original value of a variable. Visual Basic has two
keywords that give or deny permission to change the contents of a vari-
able—ByRef and ByVal. By default, Visual Basic passes information into a
function procedure (or a subroutine) by reference (ByRef keyword), refer-
ring to the original data specified in the function’s argument at the time
the function is called. So, if the function alters the value of the argument,
the original value is changed. You will get this result if you omit the ByVal
keyword in front of the num1 argument in the MyAverage function’s decla-
ration line. If you want the function procedure to change the original val-
ue, you don’t need to explicitly insert the ByRef keyword, because passed
variables default to ByRef. When you use the ByVal keyword in front of
an argument name, Visual Basic passes the argument by value. This means
that Visual Basic makes a copy of the original data and passes that copy
to a function. If the function changes the value of an argument passed by
value, the original data does not change—only the copy changes. That’s
why when the MyAverage function changed the value of the num1 argu-
ment, the original value of the num1 variable remained the same.

Using Optional Arguments

At times you may want to supply an additional value to a function. Let’s say
you have a function that calculates the price of a meal per person. Some-
times, however, you’d like the function to perform the same calculation for
a group of two or more people. To indicate that a procedure argument is
not always required, precede the name of the argument with the Optional
keyword. Arguments that are optional come at the end of the argument list,
following the names of all the required arguments.

Optional arguments must always be the Variant data type. This means
that you can’t specify the optional argument’s type by using the As keyword.
In the preceding section, you created a function to calculate the average of
three numbers. Suppose that sometimes you’d like to use this function to
calculate the average of two numbers. You could define the third argument
of the MyAverage function as optional.

To preserve the original MyAverage function, let’s create the Avg func-
tion to calculate the average for two or three numbers.

SIDEBAR

EXCEL VBA PROCEDURES 123

 Hands-On 4.7 Writing Functions with Optional Arguments

1. Add a new module to the ProcAndFunctions (Chap04_ExcelPrimer.
xlsm) project and change the module’s name to Sample4.

2. Activate the Sample4 module and enter the function procedure Avg
shown here:
Function Avg(num1, num2, Optional num3)
 Dim totalNums As Integer

 totalNums = 3

 If IsMissing(num3)Then
 num3 = 0
 totalNums = totalNums - 1
 End If

 Avg = (num1+num2+num3)/totalNums
End Function

Let’s take a few minutes to analyze the Avg function. Th is function can take
up to three arguments. Th e arguments num1 and num2 are required. Th e
argument num3 is optional. Notice that the name of the optional argument
is preceded with the Optional keyword. Th e optional argument is listed
at the end of the argument list. Because the type of the num1, num2, and
num3 arguments is not declared, Visual Basic treats all of these arguments
as Variants. Inside the function procedure, the totalNums variable is
declared as an Integer and then assigned a beginning value of 3. Because
the function has to be capable of calculating an average of two or three
numbers, the handy built-in function IsMissing checks for the number
of supplied arguments. If the third (optional) argument is not supplied,
the IsMissing function puts in its place the value of zero (0), and at the
same time it deducts the value of 1 from the value stored in the totalNums
variable. Hence, if the optional argument is missing, totalNums is 2. Th e
next statement calculates the average based on the supplied data, and the
result is assigned to the name of the function.
 Th e IsMissing function allows you to determine whether the optional
argument was supplied. Th is function returns the logical value true if
the third argument is not supplied, and it returns false when the third
argument is given. Th e IsMissing function is used here with the decision-
making statement If…Then. (See Chapter 5 for a detailed description of
decision-making statements used in VBA.) If the num3 argument is missing
(IsMissing), then (Then) Visual Basic supplies a zero for the value of the
third argument (num3 = 0) and reduces the value stored in the argument
totalNums by one (totalNums = totalNums – 1).

124 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

3. Now call this function from the Immediate window like this:
?Avg(2,3)

As soon as you press Enter, Visual Basic displays the result: 2.5. If you enter
the following:

?Avg(2,3,5)

this time the result is 3.3333333333333.
As you’ve seen, the Avg function allows you to calculate the average of

two or three numbers. You decide which values and how many values (two
or three) you want to average. When you start typing the values for the
function’s arguments in the Immediate window, Visual Basic displays the
name of the optional argument enclosed in square brackets.

How else can you run the Avg function? On your own, run this function
from a worksheet. Make sure you run it with two and then with three
arguments.

TESTING A FUNCTION PROCEDURE

To test whether a custom function does what it was designed to do, write a
simple subroutine that will call the function and display its result. In addi-
tion, the subroutine should show the original values of arguments. This
way, you’ll be able to quickly determine when the values of arguments were
altered. If the function procedure uses optional arguments, you’ll also need
to check those situations in which the optional arguments may be missing.

LOCATING BUILT-IN FUNCTIONS

VBA comes with numerous built-in functions. These functions can be
looked up in the Visual Basic online help:

http://msdn.microsoft.com/en-us/library/office/jj692811.aspx

Take, for example, the MsgBox or InputBox function. One of the features of
a good program is its interaction with the user. When you work with Micro-
soft Excel, you interact with the application by using various dialog boxes.
When you make a mistake, a dialog box comes up and displays a message
informing you of the error. When you write your own procedures, you can
also inform the users about an unexpected error or the result of a specific
calculation. You do this with the help of the MsgBox function. So far you
have seen a simple implementation of this function. In the next section, you
will find out how to control the way your message looks. You will also learn
how to get information from the user with the InputBox function.

EXCEL VBA PROCEDURES 125

GETTING TO KNOW THE MSGBOX FUNCTION

The MsgBox function that you have used thus far was limited to displaying a
message to the user in a simple one-button dialog box. You closed the mes-
sage box by clicking the OK button or pressing the Enter key. You create a
simple message box by following the MsgBox function name with the text
enclosed in quotation marks. In other words, to display the message “The
procedure is complete.” you write the following statement:
 MsgBox "The procedure is complete."

You can quickly try out the foregoing instruction by entering it in the Imme-
diate window. When you type this instruction and press Enter, Visual Basic
displays the message box shown in Figure 4.4.

FIGURE 4.4 To display a message to the user, place the text as the argument of the MsgBox
function.

The MsgBox function allows you to use other arguments that make it possi-
ble to set the number of buttons that should be available in the message box
or change the title of the message box from the default, “Microsoft Excel.”
You can also assign your own help topic.

The syntax of the MsgBox function is as follows:
MsgBox (prompt [, buttons] [, title], [, helpfile, context])

Notice that while the MsgBox function has five arguments, only the first one,
prompt, is required. The arguments listed in square brackets are optional.
When you enter a long text string for the prompt argument, Visual Basic
decides how to break the text so it fits the message box. Let’s do some exer-
cises in the Immediate window to learn various text formatting techniques.

126 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Hands-On 4.8 Formatting Text for Display in the MsgBox
Function

1. Enter the following instruction in the Immediate window. Be sure to enter
the entire text string on one line, and then press Enter.
MsgBox "All processes completed successfully. Now connect an
 external storage device to your computer. The following
 procedure will copy the workbook file to the attached device."

As soon as you press Enter, Visual Basic shows the resulting dialog box
(Figure 4.5).

FIGURE 4.5 This long message will look more appealing when you take the text formatting
into your own hands.

When you write a VBA procedure that requires long messages, you can
break your message text into several lines using the VBA Chr function.
Th e Chr function takes one argument (a number from 0 to 255), and it
returns a character represented by this number. For example, Chr(13)
returns a carriage return character (this is the same as pressing the Enter
key), and Chr(10) returns a linefeed character (useful for adding spacing
between the text lines).

Sub LongTextMessage()
 MsgBox "All processes completed successfully. " & Chr(13) _
 & "Now connect an external storage device to " & Chr(13) _
 & "your computer. The following procedure " & Chr(13) _
 & "will copy the workbook file to the attached device."
End Sub

Figure 4.6 depicts the message box after running the LongTextMessage
procedure.

EXCEL VBA PROCEDURES 127

FIGURE 4.6 You can break a long text string into several lines by using the Chr(13)
function.

You must surround each text fragment with quotation marks. Th e Chr(13)
function indicates a place where you’d like to start a new line. Th e string
concatenation character (&) is used to add a carriage return character to a
concatenated string.
 Quoted text embedded in a text string requires an additional set of
quotation marks, as shown in the revised statement here:

Sub LongTextMessageRev()
 MsgBox "All processes completed successfully. " & _
 Chr(13) _
 & "Now connect an external storage device to " & _
 Chr(13) & "your computer. " & _
 "The following procedure ""TestProc()""" & _
 Chr(13) & "will copy the workbook file " & _
 "to the attached device."
End Sub

When you enter exceptionally long text messages on one line, it’s easy to
make a mistake. As you recall, Visual Basic has a special line continuation
character (an underscore _) that allows you to break a long VBA statement
into several lines. Unfortunately, the line continuation character cannot be
used in the Immediate window.

2. Add a new module to the ProcAndFunctions (Chap04_ExcelPrimer.
xlsm) project and change the module’s name to Sample5.

3. Activate the Sample5 module and enter the LongTextMessage and
LongTextMessageRev subroutines as shown earlier. Be sure to precede
each line continuation character (_) with a space.

4. Execute each procedure.
Notice that the text entered on several lines is more readable, and the code
is easier to maintain.
To improve the readability of your message, you may want to add more
spacing between the text lines by including blank lines. To do this, use two
Chr(13) or two Chr(10) functions, as shown in the following step.

128 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

5. Enter the following LongTextMessage2 procedure and run it:
Sub LongTextMessage2()
 MsgBox "All processes completed successfully. " & _
 Chr(10) & Chr(10) _
 & "Now connect an external storage device " & _
 Chr(13) & Chr(13) _
 & "to your computer. The following procedure " & _
 Chr(10) & Chr(10) _
 & "will copy the workbook file to the attached device."
End Sub

Figure 4.7 displays the message box generated by the LongTextMessage2
procedure.

FIGURE 4.7 You can increase the readability of your message by increasing spacing between
the selected text lines.

Now that you’ve mastered the text formatting techniques, let’s take a closer
look at the next argument of the MsgBox function. Although the buttons
argument is optional, it is frequently used. The buttons argument specifies
how many and what types of buttons you want to appear in the message
box. This argument can be a constant or a number, as shown in Table 4.1.
If you omit this argument, the resulting message box includes only the OK
button, as you’ve seen in the preceding examples.

TABLE 4.1 Settings for the MsgBox buttons argument.

Constant Value Description
Button settings
vbOKOnly 0 Displays only an OK button. This is the

default.
vbOKCancel 1 OK and Cancel buttons.
vbAbortRetryIgnore 2 Abort, Retry, and Ignore buttons.
vbYesNoCancel 3 Yes, No, and Cancel buttons.
vbYesNo 4 Yes and No buttons.

EXCEL VBA PROCEDURES 129

Constant Value Description
vbRetryCancel 5 Retry and Cancel buttons.
Icon settings
vbCritical 16 Displays the Critical Message icon.
vbQuestion 32 Displays the Question Message icon.
vbExclamation 48 Displays the Warning Message icon.
vbInformation 64 Displays the Information Message icon.
Default button settings
vbDefaultButton1 0 The first button is the default.
vbDefaultButton2 256 The second button is the default.
vbDefaultButton3 512 The third button is the default.
vbDefaultButton4 768 The fourth button is the default.
Message box modality
vbApplicationModal 0 The user must respond to the message

before continuing to work in the cur-
rent application.

vbSystemModal 4096 All applications are suspended until the
user responds to the message box.

Other MsgBox display settings
vbMsgBoxHelpButton 16384 Adds Help button to the message box.
vbMsgBoxSetForeground 65536 Specifies the message box window as

the foreground window.
vbMsgBoxRight 524288 Text is right aligned.
vbMsgBoxRtlReading 1048576 Text appears as right-to-left reading on

Hebrew and Arabic systems.

When should you use the buttons argument? Suppose you want the user
of your procedure to respond to a question with Yes or No. Your message
box may then require two buttons. If a message box includes more than one
button, one of them is considered a default button. When the user presses
Enter, the default button is selected automatically. Because you can display
various types of messages (critical, warning, information), you can visually
indicate the importance of the message by including in the buttons argu-
ment the graphical representation (icon) for the chosen message type.

In addition to the type of message, the buttons argument can include a
setting to determine whether the message box must be closed before a user
switches to another application. It’s quite possible that the user may want
to switch to another program or perform another task before responding
to the question posed in your message box. If the message box is applica-
tion modal (vbApplication Modal), the user must close the message box

130 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

before continuing to use your application. On the other hand, if you want to
suspend all the applications until the user responds to the message box, you
must include the vbSystemModal setting in the buttons argument.

The buttons argument settings are divided into five groups: button
settings, icon settings, default button settings, message box modality, and
other MsgBox display settings. Only one setting from each group can be
included in the buttons argument. To create a buttons argument, you can
add up the values for each setting you want to include. For example, to dis-
play a message box with two buttons (Yes and No), the question mark icon,
and the No button as the default button, look up the corresponding values
in Table 4.1 and add them up. You should arrive at 292 (4 + 32 + 256).

Let’s go back to the Immediate window for more testing of the capabili-
ties of the MsgBox function.

 Hands-On 4.9 Using the MsgBox Function with Arguments
(Example 1)

1. To quickly see the message box using the calculated message box argument,
enter the following statement in the Immediate window, and press Enter:
MsgBox "Do you want to proceed?", 292

Th e resulting message box is shown in Figure 4.8.

FIGURE 4.8 You can specify the number of buttons to include in the message box by using the
optional buttons argument.

When you derive the buttons argument by adding up the constant values,
your procedure becomes less readable. Th ere’s no reference table where
you can check the hidden meaning of 292. To improve the readability of
your MsgBox function, it’s better to use the constants instead of their values.

2. Now enter the following revised statement on one line in the Immediate
window and press Enter.
MsgBox "Do you want to proceed?", vbYesNo + vbQuestion +

vbDefaultButton2

EXCEL VBA PROCEDURES 131

Th is statement (which must be entered on one line) produces the same
result shown in Figure 4.8 and is more readable.

The following example shows how to use the buttons argument inside the
Visual Basic procedure.

 Hands-On 4.10 Using the MsgBox Function with Arguments
(Example 2)

1. Add a new module to the ProcAndFunctions (Chap04_ExcelPrimer.
xlsm) project and change the module’s name to Sample6.

2. Activate the Sample6 module and enter the MsgYesNo subroutine shown
here, and then run it:
Sub MsgYesNo()
 Dim question As String
 Dim myButtons As Integer

 question = "Do you want to open a new workbook?"
 myButtons = vbYesNo + vbQuestion + vbDefaultButton2

 MsgBox question, myButtons
End Sub

In the foregoing subroutine, the question variable stores the text of your
message. The settings for the buttons argument is placed in the myBut-
tons variable. Instead of using the names of constants, you can use their
values, as in the following:
 myButtons = 4 + 32 + 256

However, by specifying the names of the buttons argument’s constants,
you make your procedure easier to understand for yourself and others who
may work with this procedure in the future.
 The question and myButtons variables are used as arguments for the
MsgBox function. When you run the procedure, you see the result dis-
played, as shown in Figure 4.8. Notice that the No button is selected. It’s
the default button for this dialog box. If you press Enter, Excel removes the
MsgBox from the screen. Nothing happens because your procedure does
not have any more instructions following the MsgBox function.
 To change the default button, use the vbDefaultButton1 setting instead.
 The third argument of the MsgBox function is title. While this is also
an optional argument, it’s very handy, as it allows you to create procedures
that don’t provide visual clues to the fact that you programmed them with
Microsoft Excel. Using this argument, you can set the title bar of your mes-
sage box to any text you want.

132 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Suppose you want the MsgYesNo procedure to display in its title the text
“New workbook.” The following MsgYesNo2 procedure demonstrates the
use of the title argument:
 Sub MsgYesNo2()
 Dim question As String
 Dim myButtons As Integer
 Dim myTitle As String

 question = "Do you want to open a new workbook?"
 myButtons = vbYesNo + vbQuestion + vbDefaultButton2
 myTitle = "New workbook"

 MsgBox question, myButtons, myTitle
 End Sub

The text for the title argument is stored in the variable myTitle. If you
don’t specify the value for the title argument, Visual Basic displays the
default text, “Microsoft Excel.”
 Notice that the arguments are listed in the order determined by the Msg-
Box function. If you would like to list the arguments in any order, you must
precede the value of each argument with its name:

MsgBox title:=myTitle, prompt:=question,
buttons:=myButtons

The last two optional arguments—helpfile and context—are used by
programmers who are experienced with using help files in the Windows
environment.
 The helpfile argument indicates the name of a special help file that
contains additional information you may want to display to your VBA
procedure user. When you specify this argument, the Help button will be
added to your message box.

Returning Values from the MsgBox Function

When you display a simple message box dialog with one button, clicking
the OK button or pressing the Enter key removes the message box from the
screen. However, when the message box has more than one button, your
procedure should detect which button was pressed. To do this, you must
save the result of the message box in a variable. Table 4.2 shows values that
the MsgBox function returns.

TABLE 4.2 Values returned by the MsgBox function.

Button Selected Constant Value
OK vbOK 1
Cancel vbCancel 2
Abort vbAbort 3

EXCEL VBA PROCEDURES 133

Button Selected Constant Value
Retry vbRetry 4
Ignore vbIgnore 5
Yes vbYes 6
No vbNo 7

Let’s revise the MsgYesNo2 procedure to show which button the user has
chosen.

 Hands-On 4.11 Using the MsgBox Function with Arguments
(Example 3)

1. Activate the Sample6 module and enter the MsgYesNo3 subroutine as
shown here:
Sub MsgYesNo3()
 Dim question As String
 Dim myButtons As Integer
 Dim myTitle As String

 Dim myChoice As Integer

 question = "Do you want to open a new workbook?"
 myButtons = vbYesNo + vbQuestion + vbDefaultButton2
 myTitle = "New workbook"
 myChoice = MsgBox(question, myButtons, myTitle)

 MsgBox myChoice
End Sub

In the foregoing procedure, we assigned the result of the MsgBox function
to the variable myChoice. Notice that the arguments of the MsgBox function
are now listed in parentheses:

 myChoice = MsgBox(question, myButtons, myTitle)

2. Run the MsgYesNo3 procedure.
When you run the MsgYesNo3 procedure, a two-button message box
is displayed. When you click on the Yes button, the statement MsgBox
myChoice displays the number 6. When you click the No button, the
number 7 is displayed.

MsgBox Function with or without Parentheses?

Use parentheses around the MsgBox function’s argument list when you
want to use the result returned by the function. By listing the function’s ar-
guments without parentheses, you tell Visual Basic that you want to ignore
the function’s result. Most likely, you will want to use the function’s result
when the MsgBox contains more than one button.

SIDEBAR

134 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

GETTING TO KNOW THE INPUTBOX FUNCTION

The InputBox function displays a dialog box with a message that prompts
the user to enter data. This dialog box has two buttons—OK and Can-
cel. When you click OK, the InputBox function returns the information
entered in the text box. When you select Cancel, the function returns the
empty string (“”). The syntax of the InputBox function is as follows:
 InputBox(prompt [, title] [, default] [, xpos] [, ypos]
 [, helpfile, context])

The first argument, prompt, is the text message that you want to display in
the dialog box. Long text strings can be entered on several lines by using
the Chr(13) or Chr(10) functions (see examples of using the MsgBox func-
tion earlier in this chapter). All of the remaining InputBox arguments are
optional.

The second argument, title, allows you to change the default title of
the dialog box. The default value is “Microsoft Excel.”

The third argument of the InputBox function, default, allows the dis-
play of a default value in the text box. If you omit this argument, the empty
edit box is displayed.

The following two arguments, xpos and ypos, let you specify the ex-
act position where the dialog box should appear on the screen. If you omit
these arguments, the box appears in the middle of the current window. The
xpos argument determines the horizontal position of the dialog box from
the left edge of the screen. When omitted, the dialog box is centered hori-
zontally. The ypos argument determines the vertical position from the top
of the screen. If you omit this argument, the dialog box is positioned verti-
cally approximately one-third of the way down the screen. Both xpos and
ypos are measured in special units called twips. One twip is equivalent to
approximately 0.0007 inches.

The last two arguments, helpfile and context, are used in the same
way as the corresponding arguments of the MsgBox function discussed ear-
lier in this chapter.

Now that you know the meaning of the InputBox function’s arguments,
let’s look at some examples of using this function.

 Hands-On 4.12 Using the InputBox Function (Example 1)

1. Add a new module to the ProcAndFunctions (Chap04_ExcelPrimer.
xlsm) project and change the module’s name to Sample7.

2. Activate the Sample7 module and enter the Informant subroutine shown
here:
Sub Informant()

EXCEL VBA PROCEDURES 135

 InputBox prompt:="Enter your place of birth:" & Chr(13) _
 & " (e.g., Boston, Great Falls, etc.) "
End Sub

Th is procedure displays a dialog box with two buttons, as shown in Figure
4.9. Th e input prompt is displayed on two lines.

FIGURE 4.9 A dialog box generated by the Informant subroutine.

As with the MsgBox function, if you plan on using the data entered by the
user in the dialog box, you should store the result of the InputBox function
in a variable.

3. Type the Informant2 procedure shown here to assign the result of the
InputBox function to the variable town:
Sub Informant2()
 Dim myPrompt As String
 Dim town As String

 Const myTitle = "Enter data"

 myPrompt = "Enter your place of birth:" & Chr(13) _
 & "(e.g., Boston, Great Falls, etc.)"
 town = InputBox(myPrompt, myTitle)

 MsgBox "You were born in " & town & ".", , "Your response"
End Sub

Notice that this time the arguments of the InputBox function are listed
within parentheses. Parentheses are required if you want to use the result of
the InputBox function later in your procedure. Th e Informant2 subroutine
uses a constant to specify the text to appear in the title bar of the dialog box.
Because the constant value remains the same throughout the execution of
your procedure, you can declare the input box title as a constant. However,
if you’d rather use a variable, you still can. When you run a procedure using
the InputBox function, the dialog box generated by this function always
appears in the same area of the screen. To change the location of the dialog
box, you must supply the xpos and ypos arguments, as explained earlier.

4. Run the Informant2 procedure.

136 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

5. To display the dialog box in the top left-hand corner of the screen, modify
the InputBox function in the Informant2 procedure as follows and then
run it:
town = InputBox(myPrompt, myTitle, , 1, 200)

Notice that the argument myTitle is followed by two commas. Th e second
comma marks the position of the omitted default argument. Th e next two
arguments determine the horizontal and vertical position of the dialog box.
If you omit the second comma aft er the myTitle argument, Visual Basic
will use the number 1 as the value of the default argument. If you precede
the values of arguments by their names (for example, prompt:=myPrompt,
title:=myTitle, xpos:=1, ypos:=200), you won’t have to remember to
place a comma in the place of each omitted argument.

What will happen if you enter a number instead of the name of a town?
Because users often supply incorrect data in an input dialog box, your pro-
cedure must verify that the supplied data can be used in further data manip-
ulations. The InputBox function itself does not provide a facility for data
validation. To validate user input, you must learn additional VBA instruc-
tions that are presented in the next chapter.

Determining and Converting Data Types

The result of the InputBox function is always a string. If the user enters a
number, the string value the user entered should be converted to a numeric
value before your procedure can use this number in mathematical compu-
tations. Visual Basic is capable of converting values from one data type to
another.

NOTE
Refer to Chapter 3 for more information about using the Var-
Type function to determine the data type of a variable and com-
mon data type conversion functions.

Let’s try out a procedure that suggests what type of data the user should
enter by supplying a default value in the InputBox dialog.

 Hands-On 4.13 Using the InputBox Function (Example 2)

1. Activate the Sample7 module in the ProcAndFunctions (Chap04_
ExcelPrimer.xlsm) project and enter the following AddTwoNums
procedure:
Sub AddTwoNums()
 Dim myPrompt As String
 Dim value1 As String
 Dim value2 As Integer
 Dim mySum As Single

EXCEL VBA PROCEDURES 137

 Const myTitle = "Enter data"

 myPrompt = "Enter a number:"
 value1 = InputBox(myPrompt, myTitle, 0)
 value2 = 2
 mySum = value1 + value2

 MsgBox "The result is " & mySum & _
 " (" & value1 & " + " & CStr(value2) + ")", _
 vbInformation, "Total"
End Sub

Th e AddTwoNums procedure displays the dialog box shown in Figure
4.10. Notice that this dialog box has two special features that are obtained
by using the InputBox function’s optional title and default arguments.
Instead of the default title “Microsoft Excel,” the dialog box displays a text
string defi ned by the contents of the myTitle constant. Th e zero entered
as the default value in the edit box suggests that the user enter a number
instead of text. Once the user provides the data and clicks OK, the user’s
input is assigned to the variable value1.

value1 = InputBox(myPrompt, myTitle, 0)

2. Run the AddTwoNums procedure, supply any number when prompted,
and then click OK.

FIGURE 4.10 To suggest that the user enter a specific type of data, you may want to provide a
default value in the edit box.

Th e data type of the variable value1 is String.
3. You can check the data type easily if you follow the foregoing instruction

in the procedure code with this statement:
MsgBox VarType(value1)

When Visual Basic runs the foregoing line, it will display a message box
with the number 8. Recall from Chapter 4 that this number represents the
String data type.

The statement mySum = value1 + value2 adds the value stored in the
value2 variable to the user’s input and assigns the result of the calculation
to the variable mySum. Because the value1 variable’s data type is String,
prior to using this variable’s data in the computation, Visual Basic goes to

138 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

work behind the scenes to perform the data type conversion. Visual Ba-
sic understands the need for conversion. Without it, the two incompatible
data types (String and Integer) would generate a Type mismatch error. The
procedure ends with the MsgBox function displaying the result of the cal-
culation and showing the user how the total was derived. Notice that the
value2 variable has to be converted from Integer to String data type using
the CStr function in order to display it in the message box:
MsgBox "The result is " & mySum & _

" (" & value1 & " + " & CStr(value2) + ")", _
vbInformation, "Total"

Defi ne a Constant

To ensure that all the title bars in a particular VBA procedure display the
same text, assign the title text to a constant. By doing this you will save
time by not having to type the title text more than once.

USING THE INPUTBOX METHOD

In addition to the built-in InputBox VBA function, there is also the Excel
InputBox method. If you activate the Object Browser window and type
“inputbox” in the search box and press Enter, Visual Basic will display two
occurrences of InputBox—one in the Excel library and the other one in the
VBA library, as shown in Figure 4.11.

FIGURE 4.11 Don’t forget to use the Object Browser when researching Visual Basic functions
and methods.

SIDEBAR

EXCEL VBA PROCEDURES 139

The InputBox method available in the Microsoft Excel library has a slightly
different syntax than the InputBox function that was covered earlier in this
chapter. Its syntax is:
expression.InputBox(prompt, [title], [default], [left],
[top], _
 [helpfile], [helpcontextID], [type])

All bracketed arguments are optional. The prompt argument is the message
to be displayed in the dialog box, title is the title for the dialog box, and
default is a value that will appear in the text box when the dialog box is
initially displayed.

The left and top arguments specify the position of the dialog box on
the screen. The values for these arguments are entered in points. Note that
one-point equals 1/72 inch. The arguments helpfile and helpcontextID
identify the name of the help file and the specific number of the help topic
to be displayed when the user clicks the Help button.

The last argument of the InputBox method, type, specifies the return
data type. If you omit this argument, the InputBox method will return text.
The values of the type argument are shown in Table 4.3.

TABLE 4.3 Data types returned by the InputBox method.

Value Type of Data Returned
0 A formula
1 A number
2 A string (text)
4 A logical value (True or False)
8 A cell reference, as a Range object
16 An error value (for example, #N/A)
64 An array of values

You can allow the user to enter a number or text in the edit box if you use 3
for the type argument. This value is obtained by adding up the values for a
number (1) and a string (2), as shown in Table 4.3. The InputBox method is
quite useful for VBA procedures that require a user to select a range of cells
in a worksheet.

Let’s look at an example procedure that uses the Excel InputBox method.

 Hands-On 4.14 Using the Excel InputBox Method

1. Close the Object Browser window if you opened it before.
2. In the Sample7 module, enter the following WhatRange procedure:

Sub WhatRange()
 Dim newRange As Range

140 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Dim tellMe As String

 tellMe = "Use the mouse to select a range:"
 Set newRange = Application.InputBox(prompt:=tellMe, _
 Title:="Range to format", _
 Type:=8)
 newRange.NumberFormat = "0.00"
 newRange.Select
End Sub

Th e WhatRange procedure begins with a declaration of an object variable—
newRange. As you recall from Chapter 3, object variables point to the
location of the data. Th e range of cells that the user selects is assigned to
the object variable newRange. Notice the keyword Set before the name of
the variable:

Set newRange = Application.InputBox(prompt:=tellMe, _
 Title:="Range to format", _
 Type:=8)

Th e Type argument (Type:=8) enables the user to select any range of cells.
When the user highlights the cells, the next instruction:

newRange.NumberFormat = "0.00"

changes the format of the selected cells. Th e last instruction selects the
range of cells that the user highlighted.

3. Press Alt+F11 to activate the Microsoft Excel Application window, and
then press Alt+F8 and choose WhatRange procedure and run it.
Visual Basic displays a dialog box prompting the user to select a range of
cells in the worksheet.

4. Use the mouse to select any cells you want. Figure 4.12 shows how Visual
Basic enters the selected range reference in the edit box as you drag the
mouse to select the cells.

FIGURE 4.12 Using Excel’s InputBox method, you can get the range address
from the user.

EXCEL VBA PROCEDURES 141

5. When you’re done selecting cells, click OK in the dialog box.
Th e selected range is now formatted. To check this out, enter a whole
number in any of the selected cells. Th e number should appear formatted
with two decimal places.

6. Rerun the procedure, and when the dialog box appears, click Cancel.
When you click the Cancel button or press Esc, Visual Basic displays an
error message—“Object Required.” When you click the Debug button in
the error dialog box, Visual Basic will highlight the line of code that caused
the error. Because you don’t want to select anything when you cancel
the dialog box, you must fi nd a way to ignore the error that Visual Basic
displays. Using a special statement, On Error GoTo labelname, you
can take a detour when an error occurs. Th is instruction has the following
syntax:
On Error GoTo labelname

Th is instruction should be placed just below the variable declaration lines.
Labelname can be any word you want, except for a Visual Basic keyword.
If an error occurs, Visual Basic will jump to the specifi ed label, as shown
in Step 8 ahead.

7. Choose Run | Reset to cancel the procedure you were running.
8. Modify the WhatRange procedure so it looks like the WhatRange2

procedure shown here:
Sub WhatRange2()
 Dim newRange As Range
 Dim tellMe As String

 On Error GoTo VeryEnd

 tellMe = "Use the mouse to select a range:"
 Set newRange = Application.InputBox(prompt:=tellMe, _
 Title:="Range to format", _
 Type:=8)
 newRange.NumberFormat = "0.00"
 newRange.Select

 VeryEnd:
End Sub

9. Run the modified procedure and click Cancel as soon as the input box
appears.
Notice that this time the procedure does not generate the error when you
cancel the dialog box. When Visual Basic encounters the error, it jumps to
the VeryEnd label placed at the end of the procedure. Th e statements placed
between On Error Goto VeryEnd and the VeryEnd labels are ignored. In
Chapter 9, you will fi nd other examples of trapping errors in your VBA
procedures.

142 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

10. Subroutines and Functions: Which Should You Use?
Create a subroutine when… Create a function when…
You want to perform some actions. You want to perform a simple calculation

more than once.
You want to get input from the user. You must perform complex computations.
You want to display a message on the
screen.

You must call the same block of
instructions more than once.
You want to check if a certain expression
is True or False.

SUMMARY

In this chapter, you learned the difference between subroutine procedures
that perform actions and function procedures that return values. While you
can create subroutines by recording or typing code directly into the Visual
Basic module, function procedures cannot be recorded because they can
take arguments. You must write them manually. You learned how to pass
arguments to functions and determine the data type of a function’s result.
You increased your repertoire of VBA keywords with the ByVal, ByRef, and
Optional keywords. You also learned how, with the help of parameters,
subprocedures can pass values back to the calling procedures. After work-
ing through this chapter, you should be able to create some custom func-
tions of your own that are suited to your specific needs. You should also be
able to interact easily with your procedure users by employing the MsgBox
and InputBox functions as well as the Excel InputBox method.

Chapter 5 will introduce you to decision making. You will learn how to
change the course of your VBA procedure based on the results of the condi-
tions that you supply.

143

Visual Basic for Applications, like other programming languages, of-
fers special statements that allow you to include decision points in
your own procedures. But what is decision making? Suppose some-

one approaches you with the question, “Do you like the color red?” Af-
ter giving this question some thought, you’ll answer “yes” or “no.” If you’re
undecided or simply don’t care, you might answer “maybe” or “perhaps.”
In programming, you must be decisive. Only “yes” or “no” answers are al-
lowed. In programming, all decisions are based on supplied answers. If the
answer is positive, the procedure executes a specified block of instructions.
If the answer is negative, the procedure executes another block of instruc-
tions or simply doesn’t do anything. In this chapter, you will learn how to
use VBA conditional statements to alter the flow of your program. Condi-
tional statements are often referred to as “control structures,” as they give
you the ability to control the flow of your VBA procedure by skipping over
certain statements and “branching” to another part of the procedure.

Chapter

 5
ADDING DECISIONS TO
EXCEL VBA PROGRAMS

A QUICK INTRODUCTION TO
CONDITIONAL STATEMENTS

144 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

RELATIONAL AND LOGICAL OPERATORS

You make decisions in your VBA procedures by using conditional expres-
sions inside the special control structures. A conditional expression is an
expression that uses one of the relational operators listed in Table 5.1, one
of the logical operators listed in Table 5.2, or a combination of both. When
Visual Basic encounters a conditional expression in your program, it evalu-
ates the expression to determine whether it is true or false.

TABLE 5.1 Relational operators in VBA.

Operator Description
= Equal to
<> Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

TABLE 5.2 Logical operators in VBA.

Operator Description
AND All conditions must be true before an action can be taken.
OR At least one of the conditions must be true before an action can be taken.
NOT Used for negating a condition. If a condition is true, NOT makes it false.

If a condition is false, NOT makes it true.

USING IF...THEN STATEMENT

The simplest way to get some decision making into your VBA procedure
is to use the If…Then statement. Suppose you want to choose an action
depending on a condition. You can use the following structure:

If condition Then statement

For example, to delete a blank row from a worksheet, first check if the active
cell is blank. If the result of the test is true, go ahead and delete the entire
row that contains that cell:

If ActiveCell = "" Then Selection.EntireRow.Delete

If the active cell is not blank, Visual Basic will ignore the statement follow-
ing the Then keyword.

Sometimes you may want to perform several actions when the condition
is true. Although you could add other statements on the same line by sepa-
rating them with colons, your code will look clearer if you use the multiline
version of the If…Then statement, as shown here:

ADDING DECISIONS TO EXCEL VBA PROGRAMS 145

 If condition Then
 statement1
 statement2
 statementN
 End If

For example, to perform some actions when the value of the active cell is
greater than 50, you can write the following block of instructions:
 If ActiveCell.Value > 50 Then
 MsgBox "The exact value is " & ActiveCell.Value
 Debug.Print ActiveCell.Address & ": " & ActiveCell.
Value
 End If

In this example, the statements between the Then and the End If keywords
are not executed if the value of the active cell is less than or equal to 50.
Notice that the block If…Then statement must end with the keywords End
If.

How does Visual Basic make a decision? It evaluates the condition it
finds between the If…Then keywords. Let’s try to evaluate the following
condition:

ActiveCell.Value > 50

 Please note files for the “Hands-On” project may be found on the com-
panion CD-ROM.

 Hands-On 5.1 Evaluating Conditions in the Immediate Window

1. Open a new Microsoft Excel workbook.
2. Select any cell in a blank worksheet and enter 50.
3. Switch to the Visual Basic Editor window.
4. Activate the Immediate window.
5. Enter the following statement, and press Enter when you’re done:

? ActiveCell.Value > 50

When you press Enter, Visual Basic writes the result of this test—false.
When the result of the test is false, Visual Basic will not bother to read the
statement following the Then keyword in your code. It will simply go on
to read the next line of your procedure, if there is one. If there are no more
lines to read, the procedure will end.

6. Now change the operator to less than or equal to, and have Visual Basic
evaluate the following condition:
? ActiveCell.Value <= 50

This time, the test returns true, and Visual Basic will jump to whatever
statement or statements it finds after the Then keyword.

146 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

7. Close the Immediate window.

Now that you know how Visual Basic evaluates conditions, let’s try the If…
Then statement in a VBA procedure.

 Hands-On 5.2 Writing a VBA Procedure with a Simple If…Then
Statement

1. Open a new workbook and save it as C:\VBAPrimerExcel_ByExample\
Chap05_ExcelPrimer.xlsm.

2. Switch to the Visual Basic Editor screen and rename the VBA project
Decisions.

3. Insert a new module in the Decisions (Chap05_ExcelPrimer.xlsm)
project and rename this module IfThen.

4. In the IfThen module, enter the following procedure:
Sub SimpleIfThen()
 Dim weeks As String
 weeks = InputBox("How many weeks are in a year?", "Quiz")
 If weeks <> 52 Then MsgBox "Try Again"
End Sub

Th e SimpleIfTh en procedure stores the user’s answer in the variable named
weeks. Th e variable’s value is then compared to the number 52. If the result
of the comparison is true (that is, if the value stored in the variable weeks is
not equal to 52), Visual Basic will display the message “Try Again.”

5. Run the SimpleIfThen procedure and enter a number other than 52.
6. Rerun the SimpleIfThen procedure and enter the number 52.

When you enter the correct number of weeks, Visual Basic does nothing.
Th e procedure simply ends. It would be nice to display a message when the
user guesses right.

7. Enter the following instruction on a separate line before the End Sub
keywords:
If weeks = 52 Then MsgBox "Congratulations!"

8. Run the SimpleIfThen procedure again and enter 52.
When you enter the correct answer, Visual Basic does not execute the
statement MsgBox “Try Again.” When the procedure is executed, the
statement to the right of the Then keyword is ignored if the result from
evaluating the supplied condition is false. As you recall, a VBA procedure
can call another procedure. Let’s see whether it can also call itself.

9. Modify the first If statement in the SimpleIfThen procedure as follows:
If weeks <> 52 Then MsgBox "Try Again": SimpleIfThen

We added a colon and the name of the SimpleIfTh en procedure to the end
of the existing If…Then statement. If the user enters the incorrect answer,

ADDING DECISIONS TO EXCEL VBA PROGRAMS 147

he will see a message, and as soon as he clicks the OK button in the message
box, the input box will appear again, and he will get another chance to
supply the correct answer. Th e user will be able to keep on guessing for a
long time. In fact, he won’t be able to exit the procedure gracefully until he
supplies the correct answer. If he clicks Cancel, he will have to deal with
the unfriendly error message “Type mismatch.” You saw in the previous
chapter how to use the On Error GoTo labelname statement to go around
the error, at least temporarily until you learn more about error handling in
Chapter 9. For now, you may want to revise your SimpleIfTh en procedure
as follows:

Sub SimpleIfThen()
 Dim weeks As String
 On Error GoTo VeryEnd
 weeks = InputBox("How many weeks are in a year:", "Quiz")
 If weeks <> 52 Then MsgBox "Try Again": SimpleIfThen
 If weeks = 52 Then MsgBox "Congratulations!"
 VeryEnd:
End Sub

10. Run the SimpleIfThen procedure a few times by supplying incorrect
answers. The error trap that you added to your procedure allows the user
to quit guessing without having to deal with the ugly error message.

Two Formats for the If…Then Statement

The If…Then statement has two formats—single line and multiline. The
single-line format is good for short or simple statements like:

 If secretCode <> 01W01 Then MsgBox "Access denied"

Or
 If secretCode = 01W01 Then alpha = True : beta = False

Here, secretCode, alpha, and beta are the names of variables. In the first
example, Visual Basic displays the message “Access denied” if the value of
secretCode is not equal to 01W01. In the second example, Visual Basic
sets the value of alpha to true and beta to false when the secretCode
variable is equal to 01W01. Notice that the second statement to be ex-
ecuted is separated from the first by a colon. The multiline If…Then state-
ment is clearer when there are more statements to be executed when the
condition is true or when the statement to be executed is extremely long,
as in the following example:

 If ActiveSheet.Name = "Sheet1" Then
 ActiveSheet.Move after:= Sheets(Worksheets.Count)
 End If

SIDEBAR

148 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Here, Visual Basic examines the active sheet name. If it is Sheet1, the con-
dition ActiveSheet.Name = "Sheet1" is true, and Visual Basic proceeds
to execute the line following the Then keyword. As a result, the active sheet
is moved to the last position in the workbook.

NOTE

If Block Instructions and Indenting
To make the If blocks easier to read and understand, use inden-
tation. Compare the following:

If condition Then
 action
End If

If condition Then
 action
End If

In the If…Then block statement on the right, you can easily see
where the block begins and where it ends.

USING IF...THEN...ELSE STATEMENT

Now you know how to display a message or take an action when one or
more conditions are true or false. What should you do, however, if your
procedure needs to take one action when the condition is true and another
action when the condition is false? By adding the Else clause to the simple
If…Then statement, you can direct your procedure to the appropriate state-
ment depending on the result of the test.

The If…Then…Else statement has two formats—single line and multi-
line. The single-line format is as follows:

If condition Then statement1 Else statement2

The statement following the Then keyword is executed if the condition is
true, and the statement following the Else clause is executed if the condi-
tion is false—for example:
If Sales > 5000 Then Bonus = Sales * 0.05 Else MsgBox "No

Bonus"

If the value stored in the variable Sales is greater than 5000, Visual Basic
will calculate the bonus using the following formula: Sales * 0.05. How-
ever, if the variable Sales is not greater than 5000, Visual Basic will display
the message “No Bonus.”

The If…Then…Else statement should be used to decide which of the two
actions to perform. When you need to execute more statements when the
condition is true or false, it’s better to use the multiline format of the If…
Then…Else statement:

ADDING DECISIONS TO EXCEL VBA PROGRAMS 149

 If condition Then
 statements to be executed if condition is True
 Else
 statements to be executed if condition is False
 End If

Notice that the multiline (block) If…Then…Else statement ends with the
End If keywords. Use the indentation shown in the previous section to
make this block structure easier to read. Here’s a code example that uses the
foregoing syntax:
 If ActiveSheet.Name = "Sheet1" Then
 ActiveSheet.Name = "My Sheet"
 MsgBox "This sheet has been renamed."
 Else
 MsgBox "This sheet name is not default."
 End If

If the condition (ActiveSheet.Name = "Sheet1") is true, Visual Basic will
execute the statements between Then and Else and ignore the statement
between Else and End If. If the condition is false, Visual Basic will omit
the statements between Then and Else and execute the statement between
Else and End If. Let’s look at the complete procedure example.

 Hands-On 5.3 Writing a VBA Procedure with an If…Then…Else
Statement

1. Insert a new module into the Decisions (Chap05_ExcelPrimer.xlsm)
project.

2. Change the module name to IfThenElse.
3. Enter the following WhatTypeOfDay procedure and then run it:

 Sub WhatTypeOfDay()
 Dim response As String
 Dim question As String
 Dim strmsg1 As String, strmsg2 As String
 Dim myDate As Date

 question = "Enter any date in the format mm/dd/yyyy:" _
 & Chr(13)& " (e.g., 11/22/2019)"
 strmsg1 = "weekday"
 strmsg2 = "weekend"
 response = InputBox(question)
 myDate = Weekday(CDate(response))
 If myDate >= 2 And myDate <= 6 Then
 MsgBox strmsg1
 Else
 MsgBox strmsg2
 End If
End Sub

150 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

The foregoing procedure asks the user to enter any date. The user-supplied
string is then converted to the Date data type with the built-in CDate func-
tion. Finally, the Weekday function converts the date into an integer that
indicates the day of the week. The day of the week constants are listed in
Table 5.3. The integer is stored in the variable myDate. The conditional test
is performed to check whether the value of the variable myDate is greater
than or equal to 2 (>=2) and less than or equal to 6 (<=6). If the result of the
test is true, the user is told that the supplied date is a weekday; otherwise,
the program announces that it’s a weekend.

4. Run the procedure from the Visual Basic window. Run it a few times, each
time supplying a different date. Check the Visual Basic answers against
your desktop or wall calendar.
TABLE 5.3 Values returned by the built-in Weekday function.

Constant Value
vbSunday 1
vbMonday 2
vbTuesday 3
vbWednesday 4
vbThursday 5
vbFriday 6
vbSaturday 7

USING IF...THEN...ELSEIF STATEMENT

Quite often you will need to check the results of several different conditions.
To join a set of If conditions together, you can use the ElseIf clause. Using
the If…Then…ElseIf statement, you can supply more conditions to evaluate
than is possible with the If…Then…Else statement discussed earlier.

Here’s the syntax of the If…Then…Else statement:
 If condition1 Then
 statements to be executed if condition1 is True
 ElseIf condition2 Then
 statements to be executed if condition2 is True
 ElseIf condition3 Then
 statements to be executed if condition3 is True
 ElseIf conditionN Then
 statements to be executed if conditionN is True
 Else
 statements to be executed if all conditions are False
 End If

The Else clause is optional; you can omit it if there are no actions to be exe-
cuted when all conditions are false. Your procedure can include any num-

ADDING DECISIONS TO EXCEL VBA PROGRAMS 151

ber of ElseIf statements and conditions. The ElseIf clause always comes
before the Else clause. The statements in the ElseIf clause are executed
only if the condition in this clause is true.

Let’s look at the following code example:
 If ActiveCell.Value = 0 Then
 ActiveCell.Offset(0, 1).Value = "zero"
 ElseIf ActiveCell.Value > 0 Then
 ActiveCell.Offset(0, 1).Value = "positive"
 ElseIf ActiveCell.Value < 0 Then
 ActiveCell.Offset(0, 1).Value = "negative"
 End if

This example checks the value of the active cell and enters the appropriate
label (zero, positive, negative) in the adjoining column. Notice that the Else
clause is not used. If the result of the first condition (ActiveCell.Value =
0) is false, Visual Basic jumps to the next ElseIf statement and evaluates its
condition (ActiveCell.Value > 0). If the value is not greater than zero,
Visual Basic skips to the next ElseIf and the condition ActiveCell.Value
< 0 is evaluated.

Let’s see how the If…Then…ElseIf statement works in a complete pro-
cedure.

 Hands-On 5.4 Writing a VBA Procedure with an If…Then…
ElseIf Statement

1. Insert a new module into the current VBA project.
2. Rename the module IfThenElseIf.
3. Enter the following WhatValue procedure:

Sub WhatValue()
 Range("A1").Select
 If ActiveCell.Value = 0 Then
 ActiveCell.Offset(0, 1).Value = "zero"
 ElseIf ActiveCell.Value > 0 Then
 ActiveCell.Offset(0, 1).Value = "positive"
 ElseIf ActiveCell.Value < 0 Then
 ActiveCell.Offset(0, 1).Value = "negative"
 End If
End Sub

Because you need to run the WhatValue procedure several times to
test each condition, let’s have Visual Basic assign a temporary keyboard
shortcut to this procedure.

4. Open the Immediate window and type the following statement:
Application.OnKey "^+y", "WhatValue"

When you press Enter, Visual Basic runs the OnKey method that assigns
the WhatValue procedure to the key sequence Ctrl+Shift +Y. Th is keyboard

152 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

shortcut is only temporary—it will not work when you restart Microsoft
Excel. To assign the shortcut key to a procedure, use the Options button in
the Macro dialog box accessed from Developer | Macros in the Microsoft
Excel window.

5. Now switch to the Microsoft Excel window and activate Sheet2.
6. Type 0 (zero) in cell A1 and press Enter. Then press Ctrl+Shift+Y.
7. Visual Basic calls the WhatValue procedure and enters “zero” in cell B1.
8. Enter any number greater than zero in cell A1 and press Ctrl+Shift+Y.

Visual Basic again calls the WhatValue procedure. Visual Basic evaluates
the fi rst condition, and because the result of this test is false, it jumps to the
ElseIf statement. Th e second condition is true, so Visual Basic executes
the statement following Then and skips over the next statements to the
End If. Because there are no more statements following the End If, the
procedure ends. Cell B1 now displays the word “positive.”

9. Enter any number less than zero in cell A1 and press Ctrl+Shift+Y.
Th is time, the fi rst two conditions return false, so Visual Basic goes to
examine the third condition. Because this test returns true, Visual Basic
enters the word “negative” in cell B1.

10. Enter any text in cell A1 and press Ctrl+Shift+Y.

Visual Basic’s response is “positive.” However, this is not a satisfactory an-
swer. You may want to differentiate between positive numbers and text by
displaying the word “text.” To make the WhatValue procedure smarter, you
need to learn how to make more complex decisions by using nested If…
Then statements.

NESTED IF…THEN STATEMENTS

You can make more complex decisions in your VBA procedures by plac-
ing an If…Then or If…Then…Else statement inside another If…Then or If…
Then…Else statement.

Structures in which an If statement is contained inside another If block
are referred to as nested If statements. The following TestConditions pro-
cedure is a revised version of the WhatValue procedure created in the previ-
ous section. The WhatValue procedure has been modified to illustrate how
nested If…Then statements work.
Sub TestConditions()
 Range("A1").Select
 If IsEmpty(ActiveCell) Then
 MsgBox "The cell is empty."
 Else
 If IsNumeric(ActiveCell.Value) Then
 If ActiveCell.Value = 0 Then

ADDING DECISIONS TO EXCEL VBA PROGRAMS 153

 ActiveCell.Offset(0, 1).Value = "zero"
 ElseIf ActiveCell.Value > 0 Then
 ActiveCell.Offset(0, 1).Value = "positive"
 ElseIf ActiveCell.Value < 0 Then
 ActiveCell.Offset(0, 1).Value = "negative"
 End If
 Else
 ActiveCell.Offset(0, 1).Value = "text"
 End If
 End If
End Sub

To make the TestConditions procedure easier to understand, each If…Then
statement is shown with different formatting. You can now clearly see that
the procedure uses three If…Then blocks. The first If block (in bold) checks
whether the active cell is empty. If this is true, the message is displayed, and
Visual Basic skips over the Else part until it finds the matching End If.
This statement is located just before the End Sub keywords. If the active
cell is not empty, the IsEmpty(ActiveCell) condition returns false, and
Visual Basic runs the single underlined If block following the Else format-
ted in bold. This (underlined) If…Then…Else statement is said to be nested
inside the first If block (in bold). This statement checks if the value of the
active cell is a number. Notice that this is done with the help of another
built-in function—IsNumeric. If the value of the active cell is not a number,
the condition is false, so Visual Basic jumps to the statement following the
underlined Else and enters “text” in cell B1. However, if the active cell con-
tains a number, Visual Basic runs the double-underlined If block, evaluat-
ing each condition and making the appropriate decision. The first If block
(in bold) is called the outer If statement. This outer statement contains two
inner If statements (single and double underlined).

USING THE SELECT CASE STATEMENT

To avoid complex nested If statements that are difficult to follow, you can
use the Select Case statement instead. The syntax of this statement is as
follows:
Select Case testexpression

 Case expressionlist1
 statements if expressionlist1 matches testexpression
 Case expressionlist2
 statements if expressionlist2 matches testexpression
 Case expressionlistN
 statements if expressionlistN matches testexpression
 Case Else
 statements to be executed if no values match

154 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

testexpression
End Select

You can place any number of Case clauses to test between the keywords
Select Case and End Select. The Case Else clause is optional. Use it
when you expect that there may be conditional expressions that return false.
In the Select Case statement, Visual Basic compares each expression-
list with the value of testexpression.

Here’s the logic behind the Select Case statement. When Visual Basic
encounters the Select Case clause, it makes note of the value of testex-
pression. Then it proceeds to test the expression following the first Case
clause. If the value of this expression (expressionlist1) matches the value
stored in testexpression, Visual Basic executes the statements until an-
other Case clause is encountered and then jumps to the End Select state-
ment. If, however, the expression tested in the first Case clause does not
match testexpression, Visual Basic checks the value of each Case clause
until it finds a match. If none of the Case clauses contain the expression
that matches the value stored in testexpression, Visual Basic jumps to
the Case Else clause and executes the statements until it encounters the
End Select keywords. Notice that the Case Else clause is optional. If your
procedure does not use Case Else and none of the Case clauses contain
a value matching the value of testexpression, Visual Basic jumps to the
statements following End Select and continues executing your procedure.

Let’s look at an example of a procedure that uses the Select Case state-
ment. In Chapter 4, you learned quite a few details about the MsgBox func-
tion, which allows you to display a message with one or more buttons. You
also learned that the result of the MsgBox function can be assigned to a vari-
able. Using the Select Case statement, you can now decide which action
to take based on the button the user pressed in the message box.

 Hands-On 5.5 Writing a VBA Procedure with a Select Case
Statement

1. Insert a new module into the current VBA project.
2. Rename the new module SelectCase.
3. Enter the following TestButtons procedure:

Sub TestButtons()
 Dim question As String
 Dim bts As Integer
 Dim myTitle As String
 Dim myButton As Integer

 question = "Do you want to open a new workbook?"
 bts = vbYesNoCancel + vbQuestion + vbDefaultButton1
 myTitle = "New Workbook"

ADDING DECISIONS TO EXCEL VBA PROGRAMS 155

 myButton = MsgBox(prompt:=question, _
 buttons:=bts, _
 title:=myTitle)
 Select Case myButton
 Case 6
 Workbooks.Add
 Case 7
 MsgBox "You can open a new book manually later."
 Case Else
 MsgBox "You pressed Cancel."
 End Select
End Sub

Th e fi rst part of the TestButtons procedure displays a message with three
buttons: Yes, No, and Cancel. Th e value of the button selected by the user
is assigned to the variable myButton. If the user clicks Yes, the variable
myButton is assigned the vbYes constant or its corresponding value—6. If
the user selects No, the variable myButton is assigned the constant vbNo or
its corresponding value—7. Lastly, if Cancel is pressed, the contents of the
variable myButton will equal vbCancel, or 2. Th e Select Case statement
checks the values supplied aft er the Case clause against the value stored
in the variable myButton. When there is a match, the appropriate Case
statement is executed.
 Th e TestButtons procedure will work the same if you use the constants
instead of button values:
Select Case myButton
 Case vbYes
 Workbooks.Add
 Case vbNo
 MsgBox "You can open a new book manually later."
 Case Else
 MsgBox "You pressed Cancel."
End Select

You can omit the Else clause. Simply revise the Select Case statement
as follows:

Select Case myButton
 Case vbYes
 Workbooks.Add
 Case vbNo
 MsgBox "You can open a new book manually later."
 Case vbCancel
 MsgBox "You pressed Cancel."
End Select

4. Run the TestButtons procedure three times, each time selecting a different
button.

156 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Using Is with the Case Clause

Sometimes a decision is made based on a relational operator, listed in Table
5.1, such as whether the test expression is greater than, less than, or equal
to. The Is keyword lets you use a conditional expression in a Case clause.
The syntax for the Select Case clause using the Is keyword is shown here:
 Select Case testexpression
 Case Is condition1
 statements if condition1 is True
 Case Is condition2
 statements if condition2 is True
 Case Is conditionN
 statements if conditionN is True
 End Select

Although using Case Else in the Select Case statement isn’t required, it’s
always a good idea to include one, just in case the variable you are testing
has an unexpected value. The Case Else statement is a good place to put an
error message. For example, let’s compare some numbers:
 Select Case myNumber
 Case Is <=10
 MsgBox "The number is less than or equal to 10."
 Case 11
 MsgBox "You entered eleven."
 Case Is >=100
 MsgBox "The number is greater than or equal to 100."
 Case Else
 MsgBox "The number is between 12 and 99."
 End Select

Assuming that the variable myNumber holds 120, the third Case clause
is true, and the only statement executed is the one between the Case Is
>=100 and the Case Else clause.

Specifying a Range of Values in a Case Clause

In the preceding example you saw a simple Select Case statement that
uses one expression in each Case clause. Many times, however, you may
want to specify a range of values in a Case clause. Do this by using the To
keyword between the values of expressions, as in the following example:
 Select Case unitsSold
 Case 1 To 100
 Discount = 0.05
 Case Is <= 500
 Discount = 0.1
 Case 501 To 1000
 Discount = 0.15
 Case Is > 1000

ADDING DECISIONS TO EXCEL VBA PROGRAMS 157

 Discount = 0.2
 End Select

Let’s analyze the foregoing Select Case block with the assumption that
the variable unitsSold currently holds the value 99. Visual Basic compares
the value of the variable unitsSold with the conditional expression in the
Case clauses. The first and third Case clauses illustrate how to use a range of
values in a conditional expression by using the To keyword. Because units-
Sold equals 99, the condition in the first Case clause is true; thus, Visual
Basic assigns the value 0.05 to the variable Discount. How about the second
Case clause, which is also true? Although it’s obvious that 99 is less than or
equal to 500, Visual Basic does not execute the associated statement Dis-
count = 0.1. The reason for this is that once Visual Basic locates a Case
clause with a true condition, it doesn’t bother to look at the remaining Case
clauses. It jumps over them and continues to execute the procedure with the
instructions that may be following the End Select statement.

Specifying Multiple Expressions in a Case Clause

You may specify multiple conditions within a single Case clause by separat-
ing each condition with a comma, as shown in the following code example:
 Select Case myMonth
 Case "January", "February", "March"
 Debug.Print myMonth & ": 1st Qtr."
 Case "April", "May", "June"
 Debug.Print myMonth & ": 2nd Qtr."
 Case "July", "August", "September"
 Debug.Print myMonth & ": 3rd Qtr."
 Case "October", "November", "December"
 Debug.Print myMonth & ": 4th Qtr."
 End Select

Multiple Conditions with the Case Clause

The commas used to separate conditions within a Case clause have the
same meaning as the OR operator used in the If statement. The Case
clause is true if at least one of the conditions is true.

 Nesting means placing one type of control structure inside another con-
trol structure. You will see more nesting examples with the looping struc-
tures discussed in Chapter 7.

WRITING A VBA PROCEDURE WITH MULTIPLE
CONDITIONS

The SimpleIfThen procedure that you worked with earlier evaluated only
a single condition in the If…Then statement. This statement, however, can

SIDEBAR

158 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

take more than one condition. To specify multiple conditions in an If…Then
statement, use the logical operators AND and OR (listed in Table 5.2 at the
beginning of this chapter). Here’s the syntax with the AND operator:

If condition1 AND condition2 Then statement

In the foregoing syntax, both condition1 and condition2 must be true for
Visual Basic to execute the statement to the right of the Then keyword—for
example:

If sales = 10000 AND salary < 45000 Then SlsCom = Sales
 * 0.07

In this example:
 Condition1 sales = 10000
 Condition2 salary < 45000

When AND is used in the conditional expression, both conditions must
be true before Visual Basic can calculate the sales commission (SlsCom). If
either of these conditions is false, or both are false, Visual Basic ignores the
statement after Then.

When it’s good enough to meet only one of the conditions, you should
use the OR operator. Here’s the syntax:

If condition1 OR condition2 Then statement

The OR operator is more flexible. Only one of the conditions has to be true
before Visual Basic can execute the statement following the Then keyword.

Let’s look at this example:
If dept = "S" OR dept = "M" Then bonus = 500

In this example, if at least one condition is true, Visual Basic assigns 500 to
the bonus variable. If both conditions are false, Visual Basic ignores the rest
of the line.

Now let’s look at a complete procedure example. Suppose you can get a
10% discount if you purchase 50 units of a product, each priced at $7.00.
The IfThenAnd procedure demonstrates the use of the AND operator.

 Hands-On 5.6 Writing a VBA Procedure with Multiple Conditions

1. Enter the following procedure in the IfThen module of the Decisions
(Chap05_ExcelPrimer.xlsm) project:
Sub IfThenAnd()
 Dim price As Single
 Dim units As Integer
 Dim rebate As Single

 Const strmsg1 = "To get a rebate you must buy an additional

ADDING DECISIONS TO EXCEL VBA PROGRAMS 159

"
 Const strmsg2 = "Price must equal $7.00"

 units = Range("B1").Value
 price = Range("B2").Value

 If price = 7 AND units >= 50 Then
 rebate = (price * units) * 0.1
 Range("A4").Value = "The rebate is: $" & rebate
 End If

 If price = 7 AND units < 50 Then
 Range("A4").Value = strmsg1 & 50 - units & " unit(s)."
 End If

 If price <> 7 AND units >= 50 Then
 Range("A4").Value = strmsg2
 End If

 If price <> 7 AND units < 50 Then
 Range("A4").Value = "You didn't meet the criteria."
 End If
End Sub

Th e IfTh enAnd procedure just shown has four If…Then statements that are
used to evaluate the contents of two variables: price and units. Th e AND
operator between the keywords If…Then allows more than one condition
to be tested. With the AND operator, all conditions must be true for Visual
Basic to run the statements between the Then…End If keywords. Because
the IfTh enAnd procedure is based on the data entered in worksheet cells,
it’s more convenient to run it from the Microsoft Excel window.

2. Switch to the Microsoft Excel application window and choose Developer
| Macros.

3. In the Macro dialog box, select the IfThenAnd macro and click the
Options button.

4. While the cursor is blinking in the Shortcut key box, press Shift+I to
assign the shortcut key Ctrl+Shift+I to your macro, and then click OK to
exit the Macro Options dialog box.

5. Click Cancel to close the Macro dialog box.
6. Enter the sample data in a worksheet as shown in Figure 5.1.

FIGURE 5.1 Sample test data in a worksheet.

160 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

7. Press Ctrl+Shift+I to run the IfThenAnd procedure.
8. Change the values of cells B1 and B2 so that every time you run the

procedure, a different If…Then statement is true.

USING CONDITIONAL LOGIC IN FUNCTION
PROCEDURES

To get more practice with the Select Case statement, let’s use it in a func-
tion procedure. As you recall from Chapter 4, function procedures allow
you to return a result to a subroutine. Suppose a subroutine must display
a discount based on the number of units sold. You can get the number of
units from the user and then run a function to figure out which discount
applies.

 Hands-On 5.7 Writing a Function Procedure with a Select
Case Statement

1. Enter the following subroutine in the SelectCase module:
Sub DisplayDiscount()
 Dim unitsSold As Integer
 Dim myDiscount As Single
 unitsSold = InputBox("Enter the number of units sold:")
 myDiscount = GetDiscount(unitsSold)
 MsgBox myDiscount
End Sub

2. Enter the following function procedure:
Function GetDiscount(unitsSold As Integer)
 Select Case unitsSold
 Case 1 To 200
 GetDiscount = 0.05
 Case Is <= 500
 GetDiscount = 0.1
 Case 501 To 1000
 GetDiscount = 0.15
 Case Is > 1000
 GetDiscount = 0.2
 End Select
End Function

3. Place the cursor anywhere within the code of the DisplayDiscount
procedure and press F5 to run it. Run the procedure several times, entering
values to test each Case statement.
 Th e DisplayDiscount procedure passes the value stored in the variable
unitsSold to the GetDiscount function. When Visual Basic encounters
the Select Case statement, it checks whether the value of the fi rst Case

ADDING DECISIONS TO EXCEL VBA PROGRAMS 161

clause expression matches the value stored in the unitsSold parameter. If
there is a match, Visual Basic assigns a 5% discount (0.05) to the function
name, and then jumps to the End Select keywords. Because there are no
more statements to execute inside the function procedure, Visual Basic
returns to the calling procedure—DisplayDiscount. Here it assigns the
function’s result to the variable myDiscount. Th e last statement displays
the value of the retrieved discount in a message box.

SUMMARY

Conditional statements, which were introduced in this chapter, let you con-
trol the flow of your procedure. By testing the truth of a condition, you can
decide which statements should be run and which should be skipped over.
In other words, instead of running your procedure from top to bottom, line
by line, you can execute only certain lines. If you are wondering what kind
of conditional statement you should use in your VBA procedure, here are a
few guidelines:

 ● If you want to supply only one condition, the simple If…Then state-
ment is the best choice.

 ● If you need to decide which of two actions to perform, use the If…
Then…Else statement.

 ● If your procedure requires two or more conditions, use the If…Then…
ElseIf or Select Case statements.

 ● If your procedure has a great number of conditions, use the Select
Case statement. Th is statement is more fl exible and easier to compre-
hend than the If…Then…ElseIf statement.

Some decisions must be repeated. For example, you may want to repeat the
same actions for each cell in a worksheet or each sheet in a workbook. The
next chapter teaches you how to perform the same steps repeatedly.

163

Now that you’ve learned how conditional statements can give your
VBA procedures decision-making capabilities, it’s time to go a step
further. Not all decisions are easy. Sometimes you will need to per-

form several statements multiple times to arrive at a certain condition. On
other occasions, however, after you’ve reached the decision, you may need
to run the specified statements as long as a condition is true or until a con-
dition becomes true. In programming, performing repetitive tasks is called
looping. VBA has various looping structures that allow you to repeat a se-
quence of statements several times. In this chapter, you will learn how to
loop through your code.

INTRODUCING LOOPING STATEMENTS

A loop is a programming structure that causes a section of program code to
execute repeatedly. VBA provides several structures to implement loops in
your procedures: Do…While, Do…Until, For…Next, For…Each, and While…
Wend.

Chapter

 6
ADDING REPEATING

ACTIONS TO EXCEL
VBA PROGRAMS

A QUICK INTRODUCTION TO
LOOPING STATEMENTS

164 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

UNDERSTANDING DO...WHILE AND DO...UNTIL LOOPS

Visual Basic has two types of Do loop statements that repeat a sequence of
statements either as long as or until a certain condition is true. The Do…
While loop lets you repeat an action as long as a condition is true. This loop
has the following syntax:
 Do While condition
 statement1
 statement2
 statementN
 Loop

When Visual Basic encounters this loop, it first checks the truth value of the
condition. If the condition is false, the statements inside the loop are not
executed. Visual Basic will continue to execute the program with the first
statement after the Loop keyword. If the condition is true, the statements
inside the loop are run one by one until the Loop statement is encountered.
The Loop statement tells Visual Basic to repeat the entire process again, as
long as the testing of the condition in the Do…While statement is true. Let’s
now see how you can put the Do…While loop to good use in Microsoft Excel.

In Chapter 5, you learned how to make a decision based on the contents
of a cell. Let’s take it a step further and see how you can repeat the same de-
cision for a number of cells. Our task is to apply bold formatting to any cell
in a column, as long as it’s not empty.

 Please note files for the “Hands-On” project may be found on the com-
panion CD-ROM.

 Hands-On 6.1 Writing a VBA Procedure with a Do…While
Statement

1. Open a new workbook and save it as C:\VBAPrimerExcel_ByExample\
Chap06_ExcelPrimer.xlsm.

2. Switch to the Visual Basic Editor screen and change the name of the new
project to Repetition.

3. Insert a new module into the Repetition project and change its name to
DoLoops.

4. Enter the following procedure in the DoLoops module:
Sub ApplyBold()

 Do While ActiveCell.Value <> ""
 ActiveCell.Font.Bold = True
 ActiveCell.Offset(1, 0).Select
 Loop
End Sub

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS 165

5. Press Alt+F11 to switch to the Microsoft Excel application window,
activate Sheet1, and then enter any data (text or numbers) in cells A1:A7.

6. When finished with the data entry, select cell A1.
7. Choose Developer | Macros. In the Macro dialog box, double-click the

ApplyBold procedure (or highlight the procedure name and click Run).
When you run the ApplyBold procedure, Visual Basic fi rst evaluates the
condition in the Do While statement—ActiveCell.Value <>"". Th e
condition says: Perform the following statements as long as the value of the
active cell is not an empty string (“”). Because you have entered data in cell
A1 and made this cell active (see Steps 5 to 6), the fi rst test returns true.
So Visual Basic executes the statement ActiveCell.Font.Bold = True,
which applies the bold formatting to the active cell. Next, Visual Basic
selects the cell in the next row (the Off set property is discussed in Chapter
3). Because the statement that follows is the Loop keyword, Visual Basic
returns to the Do While statement and again checks the condition. If the
newly selected active cell is not empty, Visual Basic repeats the statements
inside the loop. Th is process continues until the contents of cell A8 are
examined. Because this cell is empty, the condition is false, so Visual Basic
skips the statements inside the loop. Because there are no more statements
to execute aft er the Loop keyword, the procedure ends. Let’s look at another
Do…While loop example.

The Do…While loop has an alternative syntax that lets you test the condition
at the bottom of the loop in the following way:
 Do
 statement1
 statement2
 statementN
 Loop While condition

When you test the condition at the bottom of the loop, the statements inside
the loop are executed at least once. Let’s take a look at an example:
 Sub SignIn()
 Dim secretCode As String
 Do
 secretCode = InputBox("Enter your secret code:")
 If secretCode = "sp1045" Then Exit Do
 Loop While secretCode <> "sp1045"
 End Sub

Notice that by the time the condition is evaluated, Visual Basic has al-
ready executed the statements one time. In addition to placing the condi-
tion at the end of the loop, the SignIn procedure shows how to exit the loop
when a condition is reached. When the Exit Do statement is encountered,
the loop ends immediately.

Another handy loop, Do…Until, allows you to repeat one or more state-

166 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

ments until a condition becomes true. In other words, Do…Until repeats a
block of code as long as something is false. Here’s the syntax:
 Do Until condition
 statement1
 statement2
 statementN
 Loop

Using the foregoing syntax, you can now rewrite the previous ApplyBold
procedure in the following way:
 Sub ApplyBold2()
 Do Until IsEmpty(ActiveCell)
 ActiveCell.Font.Bold = True
 ActiveCell.Offset(1, 0).Select
 Loop
 End Sub

The first line of this procedure says to perform the following statements
until the first empty cell is reached. As a result, if the active cell is not empty,
Visual Basic executes the two statements inside the loop. This process con-
tinues as long as the condition IsEmpty(ActiveCell) evaluates to false.
Because the ApplyBold2 procedure tests the condition at the beginning of
the loop, the statements inside the loop will not run if the first cell is empty.
You will get the chance to try out this procedure in the next section.

Like the Do…While loop, the Do…Until loop has a second syntax that lets
you test the condition at the bottom of the loop:
 Do
 statement1
 statement2
 statementN
 Loop Until condition

If you want the statements to execute at least once, place the condition on
the line with the Loop statement no matter what the value of the condition.

Let’s try out an example procedure that deletes empty sheets from a
workbook.

 Hands-On 6.2 Writing a VBA Procedure with a Do…Until
Statement

1. Enter the DeleteBlankSheets procedure, as shown here, in the DoLoops
module that you created earlier.
Sub DeleteBlankSheets()
 Dim myRange As Range
 Dim shcount As Integer
 shcount = Worksheets.Count

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS 167

 Do
 Worksheets(shcount).Select
 Set myRange = ActiveSheet.UsedRange
 If myRange.Address = "A1" And _
 Range("A1").Value = "" Then
 Application.DisplayAlerts = False
 Worksheets(shcount).Delete
 Application.DisplayAlerts = True
 End If
 shcount = shcount - 1
 Loop Until shcount = 1
End Sub

2. Press Alt+F11 to switch to the Microsoft Excel window and manually
insert three new worksheets into the current workbook. In one of the
sheets, enter text or number in cell A1. On another sheet, enter some data
in cells B2 and C10. Do not enter any data on the third inserted sheet.

3. Run the DeleteBlankSheets procedure.
When you run this procedure, Visual Basic deletes the selected sheet
whenever two conditions are true—the UsedRange property address
returns cell A1 and cell A1 is empty. Th e UsedRange property applies to
the Worksheet object and contains every nonempty cell on the worksheet,
as well as all the empty cells that are among them. For example, if you enter
something in cells B2 and C10, the used range is B2:C10. If you later
enter data in cell A1, the UsedRange will be A1:C10. Th e used range
is bounded by the farthest upper-left and farthest lower-right nonempty
cell on a worksheet.

Because the workbook must contain at least one worksheet, the code is
executed until the variable shcount equals one. The statement shcount =
shcount – 1 makes sure that the shcount variable is reduced by one each
time the statements in the loop are executed. The value of shcount is initial-
ized at the beginning of the procedure with the following statement:

Worksheets.Count

Notice also that when deleting sheets, Excel normally displays the confir-
mation dialog box. If you’d rather not be prompted to confirm the deletion,
use the following statement:

Application.DisplayAlerts = False

When you are finished, turn the system messages back on with the follow-
ing statement:

Application.DisplayAlerts = True

168 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Counters

A counter is a numeric variable that keeps track of the number of items
that have been processed. The DeleteBlankSheets procedure just shown
declares the variable shcount to keep track of sheets that have been pro-
cessed. A counter variable should be initialized (assigned a value) at the
beginning of the program. This ensures that you always know the exact
value of the counter before you begin using it. A counter can be incre-
mented or decremented by a specified value. See other examples of using
counters with the For…Next loop later in this chapter.

AVOIDING INFINITE LOOPS

If you don’t design your loop correctly, you get an infinite loop—a loop that
never ends. You will not be able to stop the procedure by using the Esc key.
The following procedure causes the loop to execute endlessly because the
programmer forgot to include the test condition:
 Sub SayHello()
 Do
 MsgBox "Hello."
 Loop
 End Sub

To stop the execution of the infinite loop, you must press Ctrl+Break. When
Visual Basic displays the message box that says, “Code execution has been
interrupted,” click End to end the procedure.

EXECUTING A PROCEDURE LINE BY LINE

When you run procedures that use looping structures, it’s sometimes hard
to see whether the procedure works as expected. Occasionally, you’d like
to watch the procedure execute in slow motion so that you can check the
logic of the program. Let’s examine how Visual Basic allows you to execute
a procedure line by line.

 Hands-On 6.3 Executing a Procedure Line by Line

1. Insert a new sheet into the current workbook and enter any data in cells
A1:A5.

2. Select cell A1 and choose Developer | Macros.
3. In the Macro dialog box, select the ApplyBold procedure and click the

Step Into button.

SIDEBAR

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS 169

Th e VBE screen will appear with the name of the procedure highlighted
in yellow, as shown in Figure 6.1. Notice the yellow arrow in the margin
indicator bar of the Code window.

FIGURE 6.1 Watching the procedure code execute line by line.

4. Arrange the screens side by side as shown in Figure 6.1.
5. Make sure cell A1 is selected and that it contains data.
6. Click the title bar in the Visual Basic window to move the focus to this

window, and then press F8. The yellow highlight in the Code window
jumps to this line:
Do While ActiveCell.Value <> ""

7. Continue pressing F8 while watching both the Code window and the
worksheet window.

NOTE You will find more information related to stepping through VBA
procedures in Chapter 9.

UNDERSTANDING WHILE...WEND LOOP

The While…Wend loop is functionally equivalent to the Do…While loop.
This statement is a carryover from earlier versions of Microsoft Basic and
is included in VBA for backward compatibility. The loop begins with the
keyword While and ends with the keyword Wend. Here’s the syntax:
 While condition
 statement1
 statement2
 statementN
 Wend

The condition is tested at the top of the loop. The statements are executed as
long as the given condition is true. Once the condition is false, Visual Basic
exits the loop.

170 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Let’s look at an example of a procedure that uses the While…Wend looping
structure. We will change the row height of all nonempty cells in a work-
sheet.

 Hands-On 6.4 Writing a VBA Procedure with a While…Wend
Statement

1. Insert a new module into the current VBA project. Rename the module
WhileLoop.

2. Enter the following procedure in the WhileLoop module.
Sub ChangeRHeight()
 While ActiveCell <> ""
 ActiveCell.RowHeight = 28
 ActiveCell.Offset(1, 0).Select
 Wend
End Sub

3. Switch to the Microsoft Excel window and enter some data in cells B1:B4
of any worksheet.

4. Select cell B1 and choose Developer | Macros.
5. In the Macro dialog, select the ChangeRHeight procedure and click Run.

The ChangeRHeight procedure sets the row height to 28 when the active
cell is not empty. The next cell is selected by using the Offset property of
the Range object. The statement ActiveCell.Offset(1, 0).Select tells
Visual Basic to select the cell that is located one row below (1) the active cell
and in the same column (0).

UNDERSTANDING FOR...NEXT LOOP

The For…Next loop is used when you know how many times you want to
repeat a group of statements. The syntax of a For…Next loop looks like this:
 For counter = start To end [Step increment]
 statement1
 statement2
 statementN
 Next [counter]

The code in the brackets is optional. Counter is a numeric variable that
stores the number of iterations. Start is the number at which you want
to begin counting, and end indicates how many times the loop should be
executed.

For example, if you want to repeat the statements inside the loop five
times, use the following For statement syntax:
 For counter = 1 To 5

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS 171

 Your statements go here
 Next

When Visual Basic encounters the Next keyword, it will go back to the
beginning of the loop and execute the statements inside the loop again, as
long as counter hasn’t reached the value in end. As soon as the value of
counter is greater than the number entered after the To keyword, Visual
Basic exits the loop. Because the variable counter automatically changes
after each execution of the loop, sooner or later the value stored in counter
exceeds the value specified. By default, every time Visual Basic executes the
statements inside the loop, the value of the variable counter is increased by
one. You can change this default setting by using the Step clause. For exam-
ple, to increase the variable counter by three, use the following statement:
 For counter = 1 To 5 Step 3
 Your statements go here
 Next counter

When Visual Basic encounters the foregoing instruction, it executes the
statements inside the loop twice. The first time in the loop, counter equals
1. The second time in the loop, counter equals 4 (3 + 1). After the second
time inside the loop, counter equals 7 (4 + 3). This causes Visual Basic to
exit the loop. Note that the Step increment is optional and isn’t specified
unless it’s a value other than 1. You can also place a negative number after
Step. Visual Basic will then decrement this value from counter each time it
encounters the Next keyword. The name of the variable (counter) after the
Next keyword is also optional. However, it’s good programming practice to
make your Next keywords explicit by including counter.

How can you use the For…Next loop in a Microsoft Excel spreadsheet?
Suppose in your sales report you’d like to include only products that were
sold in a particular month. When you imported data from a Microsoft Ac-
cess table, you also got rows with the sold amount equal to zero. How can
you quickly eliminate those “zero” rows? Although there are many ways to
solve this problem, let’s see how you can handle it with a For…Next loop.

 Hands-On 6.5 Writing a VBA Procedure with a For…Next
Statement

1. In the Visual Basic window, insert a new module into the current project
and rename it ForNextLoop.

2. Enter the following procedure in the ForNextLoop module:
Sub DeleteZeroRows()
 Dim totalR As Integer
 Dim r As Integer

 Range("A1").CurrentRegion.Select

172 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 totalR = Selection.Rows.Count
 Range("B2").Select

 For r = 1 To totalR - 1
 If ActiveCell = 0 Then
 Selection.EntireRow.Delete
 totalR = totalR - 1
 Else
 ActiveCell.Offset(1, 0).Select
 End If
 Next r
End Sub

Let’s examine the DeleteZeroRows procedure line by line. Th e fi rst two
statements calculate the total number of rows in the current range and
store this number in the variable totalR. Next, Visual Basic selects cell B2
and encounters the For keyword. Because the fi rst row of the spreadsheet
contains the column headings, decrease the total number of rows by one
(totalR – 1). Visual Basic will need to execute the instructions inside the
loop six times. Th e conditional statement (If…Then…Else) nested inside
the loop tells Visual Basic to make a decision based on the value of the
active cell. If the value is equal to zero, Visual Basic deletes the current row
and reduces the value of totalR by one. Otherwise, the condition is false,
so Visual Basic selects the next cell. Each time Visual Basic completes the
loop, it jumps to the For keyword to compare the value of r with the value
of totalR – 1.

3. Switch to the Microsoft Excel window and insert a new worksheet. Enter
the data shown here:

A B
1 Product Name Sales (in Pounds)
2 Apples 120
3 Pears 0
4 Bananas 100
5 Cherries 0
6 Blueberries 0
7 Strawberries 160

4. Choose Developer | Macros.
5. In the Macro dialog, select the DeleteZeroRows procedure and click Run.

When the procedure ends, the sales spreadsheet does not include products
that were not sold.

Paired Statements

For and Next must be paired. If one is missing, Visual Basic generates the
following error message: “For without Next.”

SIDEBAR

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS 173

UNDERSTANDING FOR...EACH...NEXT LOOP

When your procedure needs to loop through all of the objects of a collec-
tion or all of the elements in an array (arrays are covered in Chapter 7), the
For Each…Next loop should be used. This loop does not require a counter
variable. Visual Basic can figure out on its own how many times the loop
should execute.

Let’s take, for example, a collection of worksheets. To remove a work-
sheet from a workbook, you must first select it and then choose Home |
Cells | Delete | Delete Sheet. To leave only one worksheet in a workbook,
you need to use the same command several times, depending on the total
number of worksheets. Because each worksheet is an object in a collection
of worksheets, you can speed up the process of deleting worksheets by using
the For Each…Next loop. This loop looks like the following:
 For Each element In Group
 statement1
 statement2
 statementN
 Next [element]

In the foregoing syntax, element is a variable to which all the elements of
an array or collection will be assigned. This variable must be of the Variant
data type for an array and an Object data type for a collection. Group is the
name of a collection or an array.

Let’s now see how to use the For Each…Next loop to remove some work-
sheets.

 Hands-On 6.6 Writing a VBA Procedure with a For Each…
Next Statement

1. Insert a new module into the current project and rename it
ForEachNextLoop.

2. Type the following procedure in the ForEachNextLoop module:
Sub RemoveSheets()
 Dim mySheet As Worksheet

 Application.DisplayAlerts = False

 Workbooks.Add
 Sheets.Add After:=ActiveSheet, Count:=3

 For Each mySheet In Worksheets
 If mySheet.Name <> "Sheet1" Then
 ActiveWindow.SelectedSheets.Delete
 End If
 Next mySheet

174 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Application.DisplayAlerts = True
End Sub

Visual Basic will open a new workbook, add three new sheets aft er the
default Sheet1 (ActiveSheet), and proceed to delete all the sheets except
for Sheet1. Notice that the variable mySheet represents an object in a
collection of worksheets. Th erefore, this variable has been declared of the
specifi c object data type Worksheet. Th e fi rst instruction, Application.
DisplayAlerts = False, makes sure that Microsoft Excel does not display
alerts and messages while the procedure is running. Th e For Each…Next
loop steps through each worksheet and deletes it as long as it is not Sheet1.
When the procedure ends, the workbook has only one sheet—Sheet1.

3. Position the insertion point anywhere within the RemoveSheets procedure
code and press F5 to run it.

EXITING LOOPS EARLY

Sometimes you may not want to wait until the loop ends on its own. It’s
possible that a user has entered the wrong data, a procedure has encoun-
tered an error, or perhaps the task has been completed and there’s no need
to do additional looping. You can leave the loop early without reaching the
condition that normally terminates it. Visual Basic has two types of Exit
statements:

 ● Th e Exit For statement is used to end either a For…Next or a For
Each…Next loop early.

 ● Th e Exit Do statement immediately exits any of the VBA Do loops.

The following procedure demonstrates how to use the Exit For statement
to leave the For Each…Next loop early.

 Hands-On 6.7 Writing a VBA Procedure with an Early Exit from a
For Each…Next Statement

1. Enter the following procedure in the ForEachNextLoop module:
Sub EarlyExit()
 Dim myCell As Variant
 Dim myRange As Range

 Set myRange = Range("A1:H10")
 For Each myCell In myRange
 If myCell.Value = "" Then
 myCell.Value = "empty"
 Else
 Exit For

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS 175

 End If
 Next myCell
End Sub

Th e EarlyExit procedure examines the contents of each cell in the specifi ed
range—A1:H10. If the active cell is empty, Visual Basic enters the text
“empty” in the active cell. When Visual Basic encounters the fi rst nonempty
cell, it exits the loop.

2. Open a new workbook and enter a value in any cell within the specified
range—A1:H10.

3. Choose Developer | Macros.
4. In the Macro dialog, select the EarlyExit procedure and click Run.

USING A DO…WHILE STATEMENT

The next example procedure demonstrates how to display today’s date and
time in Microsoft Excel’s status bar for 10 seconds.

 Hands-On 6.8 Writing a VBA Procedure with a Do…While
Statement

1. Enter the following procedure in the DoLoops module:
Sub TenSeconds()
 Dim stopme

 stopme = Now + TimeValue("00:00:10")

 Do While Now < stopme
 Application.DisplayStatusBar = True
 Application.StatusBar = Now
 Loop

 Application.StatusBar = False
End Sub

In the TenSeconds procedure, the statements inside the Do…While loop will
be executed as long as the time returned by the Now function is less than the
value of the variable called stopme. Th e variable stopme holds the current
time plus 10 seconds. (See the online help for other examples of using the
built-in TimeValue function.)
Th e statement Application.DisplayStatusBar tells Visual Basic to turn
on the status bar display. Th e next statement places the current date and
time in the status bar. While the time is displayed for 10 seconds, the user
cannot work with the system (the mouse pointer turns into the hourglass).
Aft er the 10 seconds are over (that is, when the condition Now < stopme

176 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

evaluates to true), Visual Basic leaves the loop and executes the statement
aft er the Loop keyword. Th is statement returns the default status bar
message “Ready.”

2. Press Alt+F11 to switch to the Microsoft Excel application window.
3. Choose Developer | Macros. In the Macro dialog box, double-click the

TenSeconds macro name (or highlight the macro name and click Run).
Observe the date and time display in the status bar. Th e status bar should
return to “Ready” aft er 10 seconds.

USING LOOPS AND CONDITIONALS

Let’s combine the looping statements and some conditional logic to write a
procedure that checks whether a certain sheet is part of a workbook.

 Hands-On 6.9 Writing a VBA Procedure with Loops and
Conditionals

1. Enter the following procedures in a new module:
 Sub IsSuchSheet(strSheetName As String)
 Dim mySheet As Worksheet
 Dim counter As Integer

 counter = 0

 Workbooks.Add
 Sheets.Add After:=ActiveSheet, Count:=3
 For Each mySheet In Worksheets
 If mySheet.Name = strSheetName Then
 counter = counter + 1
 Exit For
 End If
 Next mySheet

 If counter = 1 Then
 MsgBox strSheetName & " exists."
 Else
 MsgBox strSheetName & " was not found."
 End If
 End Sub

 Sub FindSheet()
 Call IsSuchSheet("Sheet4")
 End Sub

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS 177

Th e IsSuchSheet procedure uses the Exit For statement to ensure that we
exit the loop as soon as the sheet name passed in the procedure argument
is found in the workbook. Th e FindSheet procedure is used to show you
how to call one procedure from another.

2. To execute the IsSuchSheet procedure, run the FindSheet procedure.

SUMMARY

In this chapter, you learned how to repeat certain groups of statements
using procedure loops. While working with several types of looping state-
ments, you saw how each loop performs repetitions in a slightly different
way. As you gain programming experience, you’ll find it easier to choose the
appropriate flow control structure for your task.

The next chapter will show you how arrays are used to work with larger
sets of data.

179

In previous chapters, you worked with many VBA procedures that used
variables to hold specific information about an object, property, or val-
ue. For each single value that you wanted your procedure to manipulate,

you declared a variable. But what if you have a series of values? If you had
to write a VBA procedure to deal with larger amounts of data, you would
have to create enough variables to handle all the data. Can you imagine
the nightmare of storing in your program currency exchange rates for all
the countries in the world? To create a table to hold the necessary data,
you’d need at least three variables for each country: country name, currency
name, and exchange rate. Fortunately, Visual Basic has a way to get around
this problem. By clustering the related variables together, your VBA proce-
dures can manage a large amount of data with ease. In this chapter, you’ll
learn how to manipulate lists and tables of data with arrays.

UNDERSTANDING ARRAYS

An array is a special type of variable that represents a group of similar values
that are of the same data type (String, Integer, Currency, Date, etc.). The two
most common types of arrays are one-dimensional arrays (lists) and two-
dimensional arrays (tables). A one-dimensional array is sometimes referred

Chapter

 7
STORING MULTIPLE VALUES

IN EXCEL VBA PROGRAMS

A QUICK INTRODUCTION TO
 WORKING WITH ARRAYS

180 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

to as a list. A shopping list, a list of the days of the week, and an employee
list are examples of one-dimensional arrays or, simply, numbered lists. Each
element in the list has an index value that allows accessing that element. For
example, in the following illustration we have a one-dimensional array of
six elements indexed from 0 to 5:

(0) (1) (2) (3) (4) (5)

You can access the third element of this array by specifying index (2). By
default, the first element of an array is indexed zero. You can change this
behavior by using the Option Base 1 statement or by explicitly coding the
lower bound of your array as explained further in this chapter.

All elements of the array must be of the same data type. In other words,
one array cannot store both strings and integers. Following are two exam-
ples of one-dimensional arrays: a one-dimensional array called cities that
is populated with text (String data type—$) and a one-dimensional array
called lotto that contains six lottery numbers stored as integers (Integer data
type—%).

A one-dimensional array: cities$ A one-dimensional array: lotto%
cities(0) Baltimore lotto(0) 25
cities(1) Atlanta lotto(1) 4
cities(2) Boston lotto(2) 31
cities(3) Washington lotto(3) 22
cities(4) New York lotto(4) 11
cities(5) Trenton lotto(5) 5

As you can see, the contents assigned to each array element match the Array
type. If you want to store values of different data types in the same array,
you must declare the array as Variant. You will learn how to declare arrays
in the next section.

A two-dimensional array may be thought of as a table or matrix. The
position of each element in a table is determined by its row and column
numbers. For example, an array that holds the yearly sales for each product
your company sells has two dimensions (the product name and the year).
The following is a diagram of an empty two-dimensional array.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)
(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)
(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)
(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)
(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)
(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

You can access the first element in the second row of this two-dimen-
sional array by specifying indexes (1, 0). Following are two examples of a
two-dimensional array: an array named yearlyProductSales@ that stores

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS 181

yearly product sales using the Currency data type (@) and an array named
exchange (of Variant data type) that stores the name of the country, its cur-
rency, and the U.S. dollar exchange rate.

A two-dimensional array: yearlyProductSales@
Walking Cane

(0,0)
$25,023

(0,1)
Pill Crusher

(1,0)
$64,085

(1,1)
Electric Wheelchair

(2,0)
$345,016

(2,1)
Folding Walker

(3,0)
$85,244

(3,1)

A two-dimensional array: exchange
Japan
(0,0)

Japanese Yen
(0,1)

108.83
(0,2)

Australia
(1,0)

Australian Dollar
(1,1)

1.28601
(1,2)

Canada
(2,0)

Canadian Dollar
(2,1)

1.235
(2,2)

Norway
(3,0)

Norwegian Krone
(3,1)

6.4471
(3,2)

Europe
(4,0)

Euro
(4,1)

0.816993
(4,2)

In these examples, the yearlyProductSales@ array can hold a maximum of
8 elements (4 rows * 2 columns = 8) and the exchange array will allow a
maximum of 15 elements (5 rows * 3 columns = 15).

Although VBA arrays can have up to 60 dimensions, most people find
it difficult to picture dimensions beyond 3-D. A three-dimensional array is
an array of two-dimensional arrays (tables) where each table has the same
number of rows and columns. A three-dimensional array is identified by
three indexes: table, row, and column. The first element of a three-dimen-
sional array is indexed (0, 0, 0).

Declaring Arrays

Because an array is a variable, you must declare it in a similar way that you
declare other variables (by using the keywords Dim, Private, or Public).
For fixed-length arrays, the array bounds are listed in parentheses following
the variable name. If a variable-length, or dynamic, array is being declared,
the variable name is followed by an empty pair of parentheses.

The last part of the array declaration is the definition of the data type
that the array will hold. An array can hold any of the following data types:
Integer, Long, Single, Double, Variant, Currency, String, Boolean, Byte, or
Date. Let’s look at some examples:

182 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Array Declaration (one-dimensional) Description
Dim cities(5) as String Declares a 6-element array, indexed 0 to 5
Dim lotto(1 to 6) as String Declares a 6-element array, indexed 1 to 6
Dim supplies(2 to 11) Declares a 10-element array, indexed 2 to 11
Dim myIntegers(-3 to 6) Declares a 10-element array, indexed −3 to 6

(the lower bound of an array can be 0, 1, or
negative)

Dim dynArray() as Integer Declares a variable-length array whose
bounds will be determined at runtime (see
examples later in this chapter)

Array Declaration (two-dimensional) Description
Dim exchange(4,2) as Variant Declares a two-dimensional array (five

rows by three columns)
Dim yearlyProductSales(3, 1)
as Currency

Declares a two-dimensional array (four
rows by two columns)

Dim my2Darray(1 to 3, 1 to7)
as Single

Declares a two-dimensional array (three
rows indexed 1 to 3 by seven columns
indexed 1 to 7)

Array Declaration (three-dimensional) Description
Dim exchange(2, 1 to 6, 4)
as Variant

Declares a three-dimensional array (the first
dimension has three elements, the second di-
mension has six elements indexed 1 to 6, and
the third dimension has five elements)

When you declare an array, Visual Basic automatically reserves enough
memory space. The amount of the memory allocated depends on the array’s
size and data type. When you declare a one-dimensional array named lotto
with six elements, Visual Basic sets aside 12 bytes—2 bytes for each element
of the array (recall that the size of the Integer data type is 2 bytes, and hence
2 * 6 = 12). The larger the array, the more memory space is required to store
the data. Because arrays can eat up a lot of memory and impact your com-
puter’s performance, it’s recommended that you declare arrays with only as
many elements as you think you’ll use.

What Is an Array Variable?

An array is a group of variables that have a common name. While a typical
variable can hold only one value, an array variable can store many indi-
vidual values. You refer to a specific value in the array by using the array
name and an index number.

SIDEBAR

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS 183

Subscripted Variables

The numbers inside the parentheses of the array variables are called sub-
scripts, and each individual variable is called a subscripted variable or ele-
ment. For example, cities(5) is the sixth subscripted variable (element) of
the array cities().

Array Upper and Lower Bounds

By default, VBA assigns zero (0) to the first element of the array. Therefore,
number 1 represents the second element of the array, number 2 represents
the third, and so on. With numeric indexing starting at 0, the one-dimen-
sional array cities(5) contains six elements numbered from 0 to 5. If you’d
rather start counting your array’s elements at 1, you can explicitly specify
a lower bound of the array by using an Option Base 1 statement. This
instruction must be placed in the declaration section at the top of a VBA
module before any Sub statements. If you don’t specify Option Base 1 in a
procedure that uses arrays, VBA assumes that the statement Option Base
0 is to be used and begins indexing your array’s elements at 0. If you’d rather
not use the Option Base 1 statement and still have the array indexing start
at a number other than 0, you must specify the bounds of an array when
declaring the array variable. The bounds of an array are its lowest and high-
est indices. Let’s look at the following example:

Dim cities(3 To 6) As Integer

The foregoing statement declares a one-dimensional array with four ele-
ments. The numbers enclosed in parentheses after the array name specify
the lower (3) and upper (6) bounds of the array. The first element of this
array is indexed 3, the second 4, the third 5, and the fourth 6. Notice the
keyword To between the lower and the upper indexes.

Initializing and Filling an Array

After you declare an array, you must assign values to its elements. This is
often referred to as “initializing an array,” “filling an array,” or “populating
an array.” The three methods you can use to load data into an array are dis-
cussed in this section.

Filling an Array Using Individual Assignment Statements

Assume you want to store the names of your six favorite cities in a one-
dimensional array named cities. After declaring the array with the Dim
statement:

Dim cities(5) as String

or

SIDEBAR

184 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Dim cities$(5)

you can assign values to the array variable like this:
cities(0) = "Baltimore"
cities(1) = "Atlanta"
cities(2) = "Boston"
cities(3) = "San Diego"
cities(4) = "New York"
cities(5) = "Denver"

Filling an Array Using the Array Function

VBA’s built-in function Array returns an array of Variants. Because Variant
is the default data type, the As Variant clause is optional in the array vari-
able declaration:

Dim cities() as Variant

or
Dim cities()

Notice that you don’t specify the number of elements between the paren-
theses.

Next, use the Array function as shown here to assign values to your cit-
ies array:

cities = Array("Baltimore", "Atlanta", "Boston", "San Di-
ego",
 "New York", "Denver")

When using the Array function for array population, the lower bound of
an array is 0 or 1 and the upper bound is 5 or 6, depending on the setting
of Option Base (see the previous section titled “Array Upper and Lower
Bounds”).

Filling an Array Using For…Next Loop

The easiest way to learn how to use loops to populate an array is by writing
a procedure that fills an array with a specific number of integer values. Let’s
look at the example procedure here:
 Sub LoadArrayWithIntegers()
 Dim myIntArray(1 To 10) As Integer
 Dim i As Integer

 'Initialize random number generator
 Randomize

 'Fill the array with 10 random numbers between 1 and
100
 For i = 1 To 10

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS 185

 myIntArray(i) = Int((100 * Rnd) + 1)
 Next

 'Print array values to the Immediate window
 For i = 1 To 10
 Debug.Print myIntArray(i)
 Next
 End Sub

The foregoing procedure uses a For…Next loop to fill myIntArray with 10
random numbers between 1 and 100. The second loop is used to print out
the values from the array. Notice that the procedure uses the Rnd function
to generate a random number. This function returns a value less than 1 but
greater than or equal to 0. You can try it out in the Immediate window by
entering:
 x=rnd
 ?x

Before calling the Rnd function, the LoadArrayWithIntegers procedure uses
the Randomize statement to initialize the random-number generator. To
become more familiar with the Randomize statement and Rnd function, be
sure to follow up with the Excel online help.

USING A ONE-DIMENSIONAL ARRAY

Having learned the basics of array variables, let’s write a couple of VBA
procedures to make arrays a part of your new skill set. The procedure in
Hands-On 7.1 uses a one-dimensional array to programmatically display a
list of six North American cities.

 Please note files for the “Hands-On” project may be found on the com-
panion CD-ROM.

 Hands-On 7.1 Using a One-Dimensional Array

1. Open a new workbook and save it as C:\VBAPrimerExcel_ByExample\
Chap07_ExcelPrimer.xlsm.

2. Switch to the Microsoft Visual Basic Editor window and rename the VBA
project Arrays.

3. Insert a new module into the Arrays (Chap07_ExcelPrimer.xlsm) project
and rename this module StaticArrays.

4. In the StaticArrays module, enter the following FavoriteCities procedure:
' start indexing array elements at 1
Option Base 1

186 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Sub FavoriteCities()
 'now declare the array
 Dim cities(6) As String

 'assign the values to array elements
 cities(1) = "Baltimore"
 cities(2) = "Atlanta"
 cities(3) = "Boston"
 cities(4) = "San Diego"
 cities(5) = "New York"
 cities(6) = "Denver"

 'display the list of cities
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities(5) & Chr(13) & cities(6)
End Sub

Before the FavoriteCities procedure begins, the default indexing for
an array is changed. Notice that the position of the Option Base 1
statement is at the top of the module window before the Sub statement.
Th is statement tells Visual Basic to assign the number 1 instead of the
default 0 to the fi rst element of the array. Th e array cities() of String
data type is declared with six elements. Each element of the array is
then assigned a value. Th e last statement uses the MsgBox function to
display the list of cities. When you run this procedure in Step 5, the city
names will appear on separate lines in the message box, as shown in
Figure 7.1. You can change the order of the displayed data by switching the
index values.

FIGURE 7.1 You can display the elements of a one-dimensional array with the MsgBox
function.

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS 187

5. Position the insertion point anywhere within the procedure code and
press F5 to run the FavoriteCities procedure.

6. On your own, modify the FavoriteCities procedure so that it displays the
names of the cities in the reverse order (from 6 to 1).

USING A TWO-DIMENSIONAL ARRAY

Now that you know how to programmatically produce a list (a one-dimen-
sional array), it’s time to take a closer look at how you can work with tables
of data. The following procedure creates a two-dimensional array that will
hold the country name, currency name, and exchange rate for three coun-
tries.

 Hands-On 7.2 Storing Data in a Two-Dimensional Array

1. In the StaticArrays module, enter the following procedure:
Sub Exchange()
 Dim t As String
 Dim r As String
 Dim Ex(3, 3) As Variant

 t = Chr(9) ' tab
 r = Chr(13) ' Enter

 Ex(1, 1) = "Japan"
 Ex(1, 2) = "Yen"
 Ex(1, 3) = 104.57
 Ex(2, 1) = "Mexico"
 Ex(2, 2) = "Peso"
 Ex(2, 3) = 11.2085
 Ex(3, 1) = "Canada"
 Ex(3, 2) = "Dollar"
 Ex(3, 3) = 1.2028
 MsgBox "Country " & t & t & "Currency" & t & "per US$" _
 & r & r _
 & Ex(1, 1) & t & t & Ex(1, 2) & t & Ex(1, 3) & r _
 & Ex(2, 1) & t & t & Ex(2, 2) & t & Ex(2, 3) & r _
 & Ex(3, 1) & t & t & Ex(3, 2) & t & Ex(3, 3) & r & r _
 & "* Sample Exchange Rates for Demonstration Only", , _
 "Exchange"
End Sub

2. Run the Exchange procedure.
When you run the Exchange procedure, you will see a message box w
ith the exchange information presented in three columns, as shown in
Figure 7.2.

188 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 7.2 The text displayed in a message box can be custom formatted.

USING A DYNAMIC ARRAY

The arrays introduced thus far in this chapter were static. A static array is an
array of a specific size. Use a static array when you know in advance how big
the array should be. The size of the static array is specified in the array’s dec-
laration statement. For example, the statement Dim Fruits(9) As String
declares a static array called Fruits that is made up of 10 elements (assuming
you have not changed the default indexing to 1). But what if you’re not sure
how many elements your array will contain? If your procedure depends on
user input, the number of user-supplied elements might vary every time
the procedure is executed. How can you ensure that the array you declare
is not wasting memory? After you declare an array, VBA sets aside enough
memory to accommodate the array. If you declare an array to hold more
elements than what you need, you’ll end up wasting valuable computer
resources. The solution to this problem is making your arrays dynamic.

A dynamic array is an array whose size can change. You use a dynamic
array when the array size is determined each time the procedure is run.
A dynamic array is declared by placing empty parentheses after the array
name:

Dim Fruits() As String

Before you use a dynamic array in your procedure, you must use the ReDim
statement to dynamically set the lower and upper bounds of the array. For
example, initially you may want to hold five fruits in the array:

Redim Fruits(1 To 5)

The ReDim statement redimensions arrays as the code of your procedure
executes and informs Visual Basic about the new size of the array. This
statement can be used several times in the same procedure.

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS 189

The example procedure in Hands-On 7.3 will dynamically load data en-
tered in a worksheet into a one-dimensional array.

 Hands-On 7.3 Loading Worksheet Data into an Array

1. Insert a new module into the Arrays project and rename it DynamicArrays.
2. In the DynamicArrays module, enter the following procedure:

Sub LoadArrayFromWorksheet()
 Dim myDataRng As Range
 Dim myArray() As Variant
 Dim cnt As Integer
 Dim i As Integer
 Dim cell As Variant
 Dim r As Integer
 Dim last As Integer

 Set myDataRng = ActiveSheet.UsedRange

 'get the count of nonempty cells (text and numbers only)
 last = myDataRng.SpecialCells(xlCellTypeConstants, 3).Count

 If IsEmpty(myDataRng) Then
 MsgBox "Sheet is empty."
 Exit Sub
 End If

 ReDim myArray(1 To last)

 i = 1

 'fill the array from worksheet data
 'reformat all numeric values
 For Each cell In myDataRng
 If cell.Value <> "" Then
 If IsNumeric(cell.Value) Then
 myArray(i) = Format(cell.Value, "$#,#00.00")
 Else
 myArray(i) = cell.Value
 End If
 i = i + 1
 End If
 Next

 'print array values to the Immediate window
 For i = 1 To last
 Debug.Print myArray(i)
 Next
 Debug.Print "Items in the array: " & UBound(myArray)
End Sub

190 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

3. Switch to the Microsoft Excel application window of the Chap07_
ExcelPrimer.xlsm workbook and enter some data in Sheet2. For example,
enter your favorite fruits in cells A1:B6 and numbers in cells D1:D9.

4. Choose Developer | Macros. In the Macro dialog box, choose
LoadArrayFromWorksheet, and click Run.
When the procedure completes, check the data in the Immediate window.
You should see the entries you typed in the worksheet. Th e numeric data
should appear formatted with the currency format.

USING ARRAY FUNCTIONS

You can manipulate arrays with five built-in VBA functions: Array, IsAr-
ray, Erase, LBound, and UBound. The following sections demonstrate the
use of each of these functions in VBA procedures.

The Array Function

The Array function allows you to create an array during code execution
without having to dimension it first. This function always returns an array
of Variants. Using the Array function, you can quickly place a series of
values in a list.

The CarInfo procedure shown here creates a fixed-size, one-dimension-
al, three-element array called auto.

 Hands-On 7.4 Using the Array Function

1. Insert a new module into the current project and rename it Array_
Function.

2. Enter the following CarInfo procedure:
Option Base 1

Sub CarInfo()
 Dim auto As Variant
 auto = Array("Ford", "Black", "1999")
 MsgBox auto(2) & " " & auto(1) & ", " & auto(3)
 auto(2) = "4-door"
 MsgBox auto(2) & " " & auto(1) & ", " & auto(3)
End Sub

3. Run the CarInfo procedure.

The IsArray Function

Using the IsArray function, you can test whether a variable is an array. The
IsArray function returns either true, if the variable is an array, or false, if
it’s not an array. Here’s an example.

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS 191

 Hands-On 7.5 Using the IsArray Function

1. Insert a new module into the current project and rename it IsArray_
Function.

2. Enter the code of the IsThisArray procedure, as shown here:
Sub IsThisArray()
 ' declare a dynamic array
 Dim sheetNames() As String
 Dim totalSheets As Integer
 Dim counter As Integer

 ' count the sheets in the current workbook
 totalSheets = ActiveWorkbook.Sheets.Count

 ' specify the size of the array
 ReDim sheetNames(1 To totalSheets)

 ' enter and show the names of sheets
 For counter = 1 To totalSheets
 sheetNames(counter) = _
 ActiveWorkbook.Sheets(counter).Name
 MsgBox sheetNames(counter)
 Next counter

 ' check if this is indeed an array
 If IsArray(sheetNames) Then
 MsgBox "The sheetNames variable is an array."
 End If
End Sub

3. Run the IsThisArray procedure.

The Erase Function

When you want to remove the data from an array, you should use the Erase
function. This function deletes all the data held by static or dynamic arrays.
In addition, the Erase function reallocates all the memory assigned to a
dynamic array. If a procedure has to use the dynamic array again, you must
use the ReDim statement to specify the size of the array.

The following example shows how to erase the data from the array cities.

 Hands-On 7.6 Using the Erase Function

1. Insert a new module into the current project and rename it Erase_
Function.

2. Enter the code of the FunCities procedure shown here:
' start indexing array elements at 1
Option Base 1

192 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Sub FunCities()
' declare the array
Dim cities(1 To 5) As String

' assign the values to array elements
cities(1) = "Las Vegas"
cities(2) = "Orlando"
cities(3) = "Atlantic City"
cities(4) = "New York"
cities(5) = "San Francisco"

' display the list of cities
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities (5)
Erase cities

' show all that were erased
MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities (5)
End Sub

Aft er the Erase function deletes the values from the array, the MsgBox
function displays an empty message box.

3. Run the FunCities procedure.

The LBound and UBound Functions

The LBound and UBound functions return whole numbers that indicate the
lower bound and upper bound of an array.

 Hands-On 7.7 Using the LBound and UBound Functions

1. Insert a new module into the current project and rename it L_and_
UBound_Function.

2. Enter the code of the FunCities2 procedure shown here:
Sub FunCities2()
 ' declare the array
 Dim cities(1 To 5) As String

 ' assign the values to array elements
 cities(1) = "Las Vegas"
 cities(2) = "Orlando"
 cities(3) = "Atlantic City"
 cities(4) = "New York"
 cities(5) = "San Francisco"

 ' display the list of cities
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS 193

 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities (5)
 ' display the array bounds
 MsgBox "The lower bound: " & LBound(cities) & Chr(13) _
 & "The upper bound: " & UBound(cities)
End Sub

3. Run the FunCities2 procedure.

TROUBLESHOOTING ERRORS IN ARRAYS

When working with arrays, it’s easy to make a mistake. If you try to assign
more values than there are elements in the declared array, VBA will display
the error message “Subscript out of range,” as shown in Figure 7.3.

FIGURE 7.3 This error was caused by an attempt to access a nonexistent array element.

Suppose you declare a one-dimensional array that consists of six elements
and you are trying to assign a value to the seventh element. When you run
the procedure, Visual Basic can’t find the seventh element, so it displays the
error message. When you click the Debug button, Visual Basic will high-
light the line of code that caused the error.

To fix this type of error, you should begin by looking at the array’s dec-
laration statement. Once you know how many elements the array should
hold, it’s easy to figure out that the culprit is the index number that appears
in the parentheses in the highlighted line of code. In the example shown in
Figure 7.4, once we replace the line of code cities(7) = "Denver" with
cities(6) = "Trenton" and press F5 to resume the procedure, the proce-
dure will run as intended.

194 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 7.4 When you click the Debug button in the error message, Visual Basic highlights the
statement that triggered the error.

Another frequent error you may encounter while working with arrays is
Type mismatch. To avoid this error, keep in mind that each element of an
array must be of the same data type. If you attempt to assign to an element
of an array a value that conflicts with the data type of the array declared
in the Dim statement, you’ll obtain the Type mismatch error during code
execution. To hold values of different data types in an array, declare the
array as Variant.

USING THE PARAMARRAY KEYWORD

Values can be passed between subroutines or functions as required or
optional arguments. If the passed argument is not absolutely required for
the procedure to execute, the argument’s name is preceded by the keyword
Optional. Sometimes, however, you don’t know in advance how many
arguments you want to pass. A classic example is addition. You may want to
add together two numbers. Later, you may use 3, 10, or 15 numbers.

Using the keyword ParamArray, you can pass an array consisting of any
number of elements to your subroutines and function procedures.

The following AddMultipleArgs function will add up as many num-
bers as you require. This function begins with the declaration of an array,
myNumbers. Notice the use of the ParamArray keyword. The array must be
declared as an array of type Variant, and it must be the last argument in the
procedure definition.

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS 195

 Hands-On 7.8 Passing an Array to Procedures Using the
ParamArray Keyword

1. Insert a new module into the current project and rename it ParameterAr-
rays.

2. In the ParameterArrays module, enter the following AddMultipleArgs
function procedure:
Function AddMultipleArgs(ParamArray myNumbers() As Variant)
 Dim mySum As Single
 Dim myValue As Variant
 For Each myValue in myNumbers
 mySum=mySum+myValue
 Next
 AddMultipleArgs = mySum
End Function

3. To try out the AddMultipleArgs function, activate the Immediate window
and type the following instruction:
?AddMultipleArgs(1, 23.24, 3, 24, 8, 34)

When you press Enter, Visual Basic returns the total of all the numbers in
the parentheses: 93.24. You can supply an unlimited number of arguments.
To add more values, enter additional values inside the parentheses and
press Enter. Notice that each function argument must be separated by a
comma.

DATA ENTRY WITH AN ARRAY

Earlier in this chapter you learned how to use various Array functions.
The following procedure demonstrates how the simple Array function can
speed up data entry.

 Hands-On 7.9 Using the Array Function to Enter Headings in a
Worksheet

1. Insert a new module into the current project and rename it DataEntry_
withArray.

2. In the EnterData_Array module, enter the following ColumnHeads
procedure:
 Sub ColumnHeads()
 Dim heading As Variant
 Dim cell As Range
 Dim i As Integer
 i = 0
 heading = Array("First Name", "Last Name", _

196 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 "Position", "Salary")
 Workbooks.Add

 For Each cell In Range("A1:D1")
 cell.Formula = heading(i)
 i = i + 1
 Next

 Columns("A:D").Select
 Selection.Columns.AutoFit
 Range("A1").Select
 End Sub

3. Switch to Microsoft Excel window and run the ColumnHeads procedure.

SORTING AN ARRAY WITH EXCEL

We all find it easier to work with sorted data. Some operations on arrays,
like finding maximum and minimum values, require that the array is sorted.
Once it is sorted, you can find the maximum value by assigning the upper
bound index to the sorted array, as in the following:

y = myIntArray(UBound(myIntArray))

The minimum value can be obtained by reading the first value of the sorted
array:

x = myIntArray(1)

So, how can you sort an array? This section demonstrates how you can use
Excel to get your array data into the sorted order. An easy way to sort an
array is copying your array values to a new worksheet, and then using the
Excel built-in Sort function. After completing the sort, you can load your
sorted values back into a VBA array. This technique is the simplest since
you can use a macro recorder to get your sort statement started for you.
And, with a large array, it is also faster than the classic bubble sort routine
that is commonly used with arrays.

 Hands-On 7.10 Using Excel to Sort a VBA Array

1. Insert a new module into the current project and rename it SortArray_
withExcel.

2. In the SortArray_withExcel module, enter the following
SortArrayWithExcel procedure:
 Sub SortArrayWithExcel()
 Dim myIntArray() As Integer
 Dim i As Integer
 Dim x As Integer

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS 197

 Dim y As Integer
 Dim r As Integer
 Dim myDataRng As Range

 'initialize random number generator
 Randomize

 ReDim myIntArray(1 To 10)

 ' Fill the array with 10 random numbers between 1 and 100
 For i = 1 To 10
 myIntArray(i) = Int((100 * Rnd) + 1)
 Debug.Print "aValue" & i & ":" & vbTab & myIntArray(i)
 Next

 'write array to a worksheet
 Worksheets.Add

 r = 1 'row counter
 With ActiveSheet
 For i = 1 To 10
 Cells(r, 1).Value = myIntArray(i)
 r = r + 1
 Next i
 End With

 'Use Excel Sort to order values in the worksheet
 Set myDataRng = ActiveSheet.UsedRange

 With ActiveSheet.Sort
 .SortFields.Clear
 .SortFields.Add Key:=Range("A1"), _
 SortOn:=xlSortOnValues, Order:=xlAscending, _
 DataOption:=xlSortNormal
 .SetRange myDataRng
 .Header = xlNo
 .MatchCase = False
 .Apply
 End With

 'free the memory used by array by using Erase statement
 Erase myIntArray

 ReDim myIntArray(1 To 10)

 'load sorted values back into an array

 For i = 1 To 10
 myIntArray(i) = ActiveSheet.Cells(i, 1).Value
 Next

198 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 'write out sorted array to the Immediate Window

 i = 1
 For i = 1 To 10
 Debug.Print "aValueSorted: " & myIntArray(i)
 Next

 'find minimum and maximum values stored in the array
 x = myIntArray(1)
 y = myIntArray(UBound(myIntArray))
 Debug.Print "Min value=" & x & vbTab; "Max value=" & y
 End Sub

The SortArrayWithExcel procedure populates a dynamic array with 10
random Integer values and prints out this array to an Immediate window
and a new worksheet. Next, the values entered in the worksheet are sorted
in ascending order using the Excel Sort object. The sort statements have
been generated by the macro recorder and then modified for this proce-
dure’s needs. Once sorted, the Erase statement is used to free the memory
used by the dynamic array. Before reloading the array with the sorted val-
ues, the procedure redeclares the array variable using the ReDim statement.
The last statements in the procedure demonstrate how to retrieve the mini-
mum and maximum values from the array variable.

3. Switch to Microsoft Excel window and run the SortArrayWithExcel
procedure.

SUMMARY

In this chapter, you learned how you can use arrays in complex VBA proce-
dures that require many variables. You worked with examples of procedures
that demonstrated how to declare and use a one-dimensional array (list)
and a two-dimensional array (table). You saw the difference between static
and dynamic arrays and practiced using five built-in VBA functions that are
frequently used with arrays: Array, IsArray, Erase, LBound, and UBound.
You also learned how to use a new keyword—ParamArray—and perform
sorting of an array with Excel.

In the next chapter, you will learn how to use collections instead of ar-
rays to manipulate large amounts of data.

199

Microsoft Excel offers a large number of built-in objects that you
can access from your VBA procedures to automate many aspects
of your worksheets. You are not by any means limited to using

these built-in objects. VBA allows you to create your own objects and col-
lections of objects, complete with their own methods and properties.

While writing your own VBA procedures, you may come across a situ-
ation where there’s no built-in collection to handle the task at hand. The
solution is to create a custom collection object. You already know from the
previous chapter how to work with multiple items of data by using dynamic
and static arrays. Because collections have built-in properties and methods
that allow you to add, remove, and count their elements, they are much
easier to work with than arrays. In this chapter, you will learn how to work
with collections, including how to declare a custom collection object. The
usage of class modules to create user-defined objects will also be discussed
at the introductory level.

Chapter

 8
KEEPING TRACK OF

MULTIPLE VALUES IN
EXCEL VBA PROGRAMS

A QUICK INTRODUCTION TO
CREATING AND USING COLLECTIONS

200 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Before diving into the theory and hands-on examples in this chapter, you
should become familiar with several terms:

 ● Collection—an object that contains a set of related objects.
 ● Class—a defi nition of an object that includes its name, properties,

methods, and events. Th e class acts as a sort of object template from
which an instance of an object is created at runtime.

 ● Instance—a specifi c object that belongs to a class is referred to as an
instance of the class. When you create an instance, you create a new
object that has the properties and methods defi ned by the class.

 ● Class module—a module that contains the defi nition of a class, in-
cluding its property and method defi nitions.

 ● Module—a module containing sub and function procedures that are
available to other VBA procedures and are not related to any object
in particular.

 ● Form module—a module that contains the VBA code for all event
procedures triggered by events occurring in a user form or its con-
trols. A form module is a type of class module.

 ● Event—an action recognized by an object, such as a mouse click or a
keypress, for which you can defi ne a response. Events can be caused
by a user action or a VBA statement or can be triggered by the system.

 ● Event procedure—a procedure that is automatically executed in re-
sponse to an event initiated by the user or program code or triggered
by the system.

WORKING WITH COLLECTIONS OF OBJECTS

A set of similar objects is known as a collection. In Microsoft Excel, for
example, all open workbooks belong to the collection of Workbooks, and all
the sheets in a workbook are members of the Worksheets collection. Collec-
tions are objects that contain other objects. No matter what collection you
want to work with, you can do the following:

 ● Refer to a specifi c object in a collection by using an index value. For
example, to refer to the second object in the collection of Worksheets,
use either of the following statements:
Worksheets(2).Select
Worksheets("Sheet2").Select

 ● Determine the number of items in the collection by using the Count
property. For example, when you enter in the Immediate window the
statement:

?Worksheets.Count

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS 201

VBA will return the total number of worksheets in the current
workbook.

 ● Insert new items into the collection by using the Add method. For
example, when you enter in the Immediate window the statement:

Worksheets.Add

VBA will insert to the current workbook a new worksheet. Th e
Worksheets collection now contains one more item.

 ● Cycle through every object in the collection by using the For Each…
Next loop.
Suppose that you opened a workbook containing fi ve worksheets
with the following names: “Daily wages,” “Weekly wages,” “Monthly
wages,” “Yearly salary,” and “Bonuses.” To delete the worksheets that
contain the word “wages” in the name, you could write the following
procedure:

Sub DeleteSheets()
 Dim ws As Worksheet
 Application.DisplayAlerts = False
 For Each ws In Worksheets

 If InStr(ws.Name, "wages") Then
 ws.Delete

 End If
 Next
 Application.DisplayAlerts = True
End Sub

Th e statement Application.DisplayAlerts = False is used to
suppress some prompts and messages that Excel displays while the
code is running. In this case, we want to suppress the confi rmation
message that Excel displays when worksheets are deleted. Th e InStr
function is very useful for string comparisons as it allows you to fi nd
one string within another. Th e statement InStr(ws.Name, "wages")
tells Excel to determine if the worksheet name (stored in ws object
variable) contains the string of characters “wages.”

Declaring and Using a Custom Collection

To create a user-defined collection, you should begin by declaring an object
variable of the Collection type:

Dim collection_name as Collection
Set collection_name = New Collection

Or
Dim collection_name As New Collection

202 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Adding Objects to a Custom Collection

After you’ve declared the Collection object with the Dim keyword, you can
insert new items into the collection by using the Add method. The Add
method looks like this:

object.Add item[, key, before, after]

You are required to specify only the object and the item. The object is the
collection name. This is the same name that was used in the declaration
of the Collection object. The item is the object that you want to add to the
collection.

Although other arguments are optional, they are quite useful. It’s impor-
tant to understand that the items in a collection are automatically assigned
numbers starting with 1. However, they can also be assigned a unique key
value. Instead of accessing a specific item with an index (1, 2, 3, and so on),
you can assign a key for that object at the time an object is added to a col-
lection. For instance, if you are creating a collection of custom sheets, you
could use a sheet name as a key. To identify an individual in a collection of
students or employees, you could use their ID numbers as a key.

If you want to specify the position of the object in the collection, you
should use either a before or after argument (do not use both). The be-
fore argument is the object before which the new object is added. The af-
ter argument is the object after which the new object is added.

The objects with which you populate your collection do not have to be
of the same data type.

The GetComments procedure in Hands-On 8.1 declares a custom col-
lection object named colNotes. We will use this collection to store com-
ments that you insert in a worksheet.

 Please note files for the “Hands-On” project may be found on the com-
panion CD-ROM.

 Hands-On 8.1 Using a Custom Collection Object

1. Open a new workbook and save it as C:\VBAPrimerExcel_ByExample\
Chap08_ExcelPrimer.xlsm.

2. Right-click any cell in Sheet1 and choose Insert Comment from the
shortcut menu. Type any text you want. Click outside the comment frame
to exit the comment edit mode. Add two new sheets to the workbook. Use
the same technique to enter two comments in Sheet2. Enter different text
for each comment. Add a comment in any cell on Sheet3. You should now
have four comments in three worksheets.

3. Click the File tab and choose Options. In the Excel Options window’s
General section, in the area named “Personalize your copy of Microsoft

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS 203

Office,” you should see a text box with your name. Delete your name and
enter Joan Smith, and then click OK. Now, enter one comment anywhere
on Sheet2 and one comment anywhere on Sheet3. These comments
should be automatically stamped with Joan Smith’s name. When you’re
done entering the comment text, return to the Excel Options window and
change the User name text box entry back to the way it was (your name).

4. Switch to the Visual Basic Editor and rename the VBA project ObjColClass.
5. Add a new module to the current project and rename it MyCollection.
6. In the MyCollection module, enter the GetComments procedure, as

shown here:
Sub GetComments()
 Dim sht As Worksheet
 Dim colNotes As New Collection
 Dim myNote As Comment
 Dim i As Integer
 Dim t As Integer
 Dim strName As String

 strName = InputBox("Enter author's name:")
 For Each sht In ThisWorkbook.Worksheets
 sht.Select
 i = ActiveSheet.Comments.Count
 For Each myNote In ActiveSheet.Comments
 If myNote.Author = strName Then
 MsgBox myNote.Text
 If colNotes.Count = 0 Then
 colNotes.Add Item:=myNote, key:="first"
 Else
 colNotes.Add Item:=myNote, Before:=1
 End If
 End If
 Next
 t = t + i
 Next
 If colNotes.Count <> 0 Then MsgBox colNotes("first").Text
 MsgBox "Total comments in workbook: " & t & Chr(13) & _
 "Total comments in collection: " & colNotes.Count
 Debug.Print "Comments by " & strName
 For Each myNote In colNotes
 Debug.Print Mid(myNote.Text, Len(myNote.Author) + 2, _
 Len(myNote.Text))
 Next
End Sub

Th e foregoing procedure begins by declaring the custom collection object
called colNotes. Next, the procedure prompts for an author’s name and
then loops through all the worksheets in the active workbook to locate this
author’s comments. Only comments entered by the specifi ed author are
added to the custom collection.

204 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 Th e procedure assigns a key to the fi rst comment and then adds the
remaining comments to the collection by placing them before the
comment that was added last (notice the use of the before argument).
If the collection includes at least one comment, the procedure displays
a message box with the text of the comment that was identifi ed with the
special key argument. Notice how the key argument is used in referencing
an item in a collection. Th e procedure then prints the text of all the
comments included in the collection to the Immediate window.
 Text functions (Mid and Len) are used to get only the text of the
comment without the author’s name. Next, the total number of comments
in a workbook and the total number of comments in the custom collection
are returned by the Count property.

7. Run the GetComments procedure twice each time, supplying a different
name of the commenting author (your name and Joan Smith). Check the
procedure results in the Immediate window.

Removing Objects from a Custom Collection

Removing an item from a custom collection is as easy as adding an item. To
remove an object, use the Remove method in the following format:

object.Remove item

The object is the name of the custom collection that contains the object
you want to remove. The item is the object you want to remove from the
collection.

To demonstrate the process of removing an item from a collection, let’s
modify the GetComments procedure that you prepared in the preceding
section. At the end of this procedure, we’ll display the contents of the items
that are currently in the colNotes collection one by one and ask the user
whether the item should be removed from the collection.

 Hands-On 8.2 Removing Items from a Custom Collection

1. Add the following lines to the declaration section of the GetComments
procedure:
Dim response as Integer
Dim myID As Integer

Th e fi rst statement declares the variable called response. You will use this
variable to store the result of the MsgBox function. Th e second statement
declares the variable myID to store the index number of the Collection
object.

2. Locate the following statement in the GetComments procedure:
For Each myNote In colNotes

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS 205

Precede the foregoing statement with the following line of code:

myID = 1

3. Locate the following statement in the GetComments procedure:
Debug.Print Mid(myNote.Text, Len(myNote.Author) + 2, _
 Len(myNote.Text))

Enter the following block of instructions below that statement:
response = MsgBox("Remove this comment?" & Chr(13) _
& Chr(13) & myNote.Text, vbYesNo + vbQuestion)
If response = 6 Then
 colNotes.Remove Index:=myID
Else
 myId = myID + 1
End If

4. Enter the following statements at the end of the procedure before the End
Sub keywords:
Debug.Print "These comments remain in the collection:"
For Each myNote in colNotes
 Debug.Print Mid(myNote.Text, Len(myNote.Author) + 2, _
 Len(myNote.Text))
Next

Th e revised GetComments procedure, named GetComments2, is shown
here. Note that this procedure removes the specifi ed comments from the
custom collection. It does not delete the comments from the worksheets.

Sub GetComments2()
 Dim sht As Worksheet
 Dim colNotes As New Collection
 Dim myNote As Comment
 Dim i As Integer
 Dim t As Integer
 Dim strName As String
 Dim response As Integer
 Dim myID As Integer

 strName = InputBox("Enter author's name:")
 For Each sht In ThisWorkbook.Worksheets
 sht.Select
 i = ActiveSheet.Comments.Count
 For Each myNote In ActiveSheet.Comments
 If myNote.Author = strName Then
 MsgBox myNote.Text
 If colNotes.Count = 0 Then
 colNotes.Add Item:=myNote, key:="first"
 Else
 colNotes.Add Item:=myNote, Before:=1
 End If

206 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 End If
 Next
 t = t + i
 Next
 If colNotes.Count <> 0 Then MsgBox colNotes("first").Text

 MsgBox "Total comments in workbook: " & t & Chr(13) & _
 "Total comments in collection:" & colNotes.Count
 Debug.Print "Comments by " & strName

 myID = 1

 For Each myNote In colNotes
 Debug.Print Mid(myNote.Text, Len(myNote.Author) + 2, _
 Len(myNote.Text))
 response = MsgBox("Remove this comment?" & Chr(13) _
 & Chr(13) & myNote.Text, vbYesNo + vbQuestion)
 If response = 6 Then
 colNotes.Remove index:=myID
 Else
 myID = myID + 1
 End If
 Next

 MsgBox "Total notes in workbook: " & t & Chr(13) & _
 "Total notes in collection: " & colNotes.Count
 Debug.Print "These comments remain in the collection:"

 For Each myNote In colNotes
 Debug.Print Mid(myNote.Text, Len(myNote.Author) + 2, _
 Len(myNote.Text))
 Next
End Sub

5. Run the GetComments2 procedure and remove one of the comments
displayed in the message box.
Keep in mind that this procedure manipulates only the custom collection
of comments and not the actual comments you entered in the workbook.
Th erefore, aft er deleting the comments via the foregoing code, the
comments will still be present in the workbook. To delete all comments
from the workbook, run the following code:

Sub DeleteWorkbookComments()
 Dim myComment As Comment
 Dim sht As Worksheet

 For Each sht In ThisWorkbook.Worksheets
 For Each myComment In sht.Comments
 myComment.Delete

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS 207

 Next
 Next
End Sub

Reindexing Collections

Collections are reindexed automatically when an object is removed. There-
fore, to remove all objects from a custom collection, you can use 1 for the
Index argument, as in the following example:
Do While myCollection.Count > 0
 myCollection.Remove Index:=1
Loop

CREATING AND USING CUSTOM OBJECTS

Visual Basic Editor’s Insert menu has two Module options: Module and
Class Module. So far, you’ve used standard modules to create subroutine
and function procedures. You’ll use the class module for the first time in
this chapter to create a custom class named CAsset and learn how to define
its properties and methods.

Before you can create custom objects, you need a basic understanding
of what a class is. If you refer to the beginning of this chapter, you will see
that we described a class as a sort of object template. A frequently used anal-
ogy is comparing an object class to a cookie cutter. Just as a cookie cutter
defines what a cookie will look like; the definition of the class determines
how an object should look and behave. Before you can use an object class,
you must first create a new instance of that class. Object instances are the
cookies. Each object instance has the characteristics (properties and meth-
ods) defined by its class. Just as you can cut out many cookies using the
same cookie cutter, you can create multiple instances of a class. You can also
change the properties of each instance of a class independently of any other
instance of the same class.

A class module lets you define your own custom classes, complete with
custom properties and methods. Recall that a property is an attribute of an
object that defines one of its characteristics, such as shape, position, color,
title, and so on. You can create the properties for your custom objects by
writing property procedures in a class module. There are three types of
property procedures (Property Get, Property Let, and Property Set). You
will learn how to work with property procedures in Lab 8.1.

A method is an action that the object can perform. The object methods
are also created in a class module by writing subroutines or function proce-
dures. Working with class modules is an advanced topic and covered in this
chapter at the introductory level.

SIDEBAR

208 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Lab 8.1 will introduce you to the process of creating a custom object
named CAsset. This object will contain information about a single comput-
er hardware asset. It will have four properties to hold the information about
AssetType, Manufacturer, Model, and Price. It will also have a method that
will allow you to modify the price. The asset information that you will use
in this project is provided in a text file on the companion CD-ROM disc and
depicted in Figure 8.1.

FIGURE 8.1 This text file (AssetInfo.txt) provides the data for the custom CAsset object class.

As you can see in Figure 8.1, the data file contains several lines (records).
The data between the quotes is treated as a single field. Fields are delimited
by a comma (,). This type of a text file is often called a comma-delimited file
or a sequential access file. To successfully complete this lab, you need to know
that in sequential access files the data is retrieved in the same order as it is
stored. Sequential access files can be opened in Input, Output, or Append
mode. In this project you will use the Input mode, which will allow you to
read the data from the file into your custom object’s properties. Because the
file contains data on several assets, you will also reinforce your understand-
ing about collections by reading the data from the text file into a collection
of CAsset objects and then manipulating these objects. So, let’s get started.

 Lab 8.1a Creating a Class Module

1. Select VBAProject (Chap08_ExcelPrimer.xlsm) in the Project Explorer
window and choose Insert | Class Module.

2. Highlight the Class 1 module in the Project Explorer window and use the
Properties window to rename the class module CAsset.

Naming a Class Module

Every time you create a new class module, give it a meaningful name. Set
the name of the class module to the name you want to use in your VBA

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS 209

procedures that use the class. The name you choose for your class should
be easily understood and identify the “thing” the object class represents.
As a rule, the object class name is prefaced with an uppercase “C.”

Variable Declarations

After adding and renaming the class module, the next step is to declare the
variables that will hold the data you want to store in the object. Each item
of data you want to store in an object should be assigned a variable. Vari-
ables in a class module are called data members and are declared with the
Private keyword. This keyword ensures that the variables will be available
only within the class module. Using the Private keyword instead of the
familiar Dim statement hides the data members and prevents other parts of
the application from referencing them. Only the procedures within the class
module in which the variables were defined can modify the value of these
variables.

Because the name of a variable also serves as a property name, use mean-
ingful names for your object’s data members. It’s traditional to preface the
variable names with m_ to indicate that they are data members of a class.

Let’s continue with our project by declaring data members for our CAs-
set class.

 Lab 8.1b Declaring Members of the CAsset Class

1. Type the following declaration lines at the top of the CAsset class module:
'declarations
Private m_AssetType As String
Private m_Manufacturer As String
Private m_Model As String
Private m_Price As Currency

Notice that the name of each data member variable begins with the prefi x
m_.

Defining the Properties for the Class

Declaring the variables with the Private keyword guarantees that the vari-
ables cannot be directly accessed from outside the object. This means that
the VBA procedures from outside the class module will not be able to set
or read data stored in those variables. To enable other parts of your VBA
application to set or retrieve the asset data, you must add special property
procedures to the CAsset class module.

There are three types of property procedures:

 ● Property Let allows other parts of the application to set the value of
a property.

210 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 ● Property Get allows other parts of the application to get or read the
value of a property.

 ● Property Set is used instead of Property Let when setting the refer-
ence to an object.

Property procedures are executed when an object property needs to be
set or retrieved. The Property Get procedure can have the same name as the
Property Let procedure.

You should create property procedures for each property of the object
that can be accessed by another part of your VBA application. The easiest
of the three types of property statements to understand is the Property Get
procedure. Let’s examine the syntax of the property procedures by taking a
closer look at the Property Get AssetType procedure. As a rule, the property
procedures contain the following parts:

 ● A procedure declaration line that specifi es the name of the property
and the data type:

Property Get AssetType() As String

AssetType is the name of the property and As String determines the
data type of the property’s return value.

 ● An assignment statement like the one used in a function procedure:

AssetType = m_AssetType

AssetType is the name of the property, and m_AssetType is the data
member variable that holds the value of the property you want to
retrieve or set. Th e m_AssetType variable should be defi ned with the
Private keyword at the top of the class module.

 ● Th e End Property keywords that specify the end of the property
procedure:

Property Get AssetType() As String
 AssetType = m_AssetType
End Property

Writing Property Procedures

The CAsset class has four properties (AssetType, Manufacturer, Model, and
Price) that need to be exposed to a VBA procedure that you will write later.
Because this procedure will need to read a data file and then write it into
a collection of CAsset objects, the next step requires writing the necessary
Property Get and Property Let procedures.

 Lab 8.1c Writing Property Procedures for the CAsset Class

1. Type the following Property Get and Let procedures in the CAsset class
module, just below the declaration section.

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS 211

' Property procedures

Property Get AssetType() As String
 AssetType = m_AssetType
End Property

Property Let AssetType(ByVal aType As String)
 m_AssetType = aType
End Property

Property Get Manufacturer() As String
 Manufacturer = m_Manufacturer
End Property

Property Let Manufacturer(ByVal aMake As String)
 m_Manufacturer = aMake
End Property

Property Get Model() As String
 Model = m_Model
End Property

Property Let Model(ByVal aModel As String)
 m_Model = aModel
End Property

Property Get Price() As Currency
 Price = m_Price
End Property

Property Let Price(ByVal aPrice As Currency)
 m_Price = aPrice

End Property

Notice that each type of the needed asset information requires a separate
Property Get procedure. Each of the Property Get procedures returns the
current value of the property. Th e Property Get procedure is like a function
procedure. Like function procedures, the Property Get procedures contain
an assignment statement. As you recall from Chapter 4, to return a value
from a function procedure, you must assign it to the function’s name.

Immediate Exit from Property Procedures

Just like the Exit Sub and Exit Function keywords allow you to exit
early from a subroutine or a function procedure, the Exit Property key-
words give you a way to immediately exit from a property procedure. Pro-
gram execution will continue with the statements following the statement
that called the Property Get, Property Let, or Property Set procedure.

SIDEBAR

212 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

In addition to retrieving values stored in data members (private variables)
with Property Get procedures, you wrote corresponding Property Let
procedures to allow other parts of the application to change the values
of these variables as needed. You can make a property read-only by not
writing a corresponding Property Let procedure.
 Th e Property Let procedures require at least one parameter that specifi es
the value you want to assign to the property. Th is parameter can be passed
by value (see the ByVal keyword in the Property Let Price procedure shown
earlier) or by reference (ByRef is the default). If you need a refresher on
the meaning of these keywords, see the section titled “Passing Arguments
by Reference and Value” in Chapter 4.
 Th e data type of the parameter passed to the Property Let procedure
must have the same data type as the value returned from the Property Get
procedure with the same name. Notice that the Property Let procedures
have the same name as the Property Get procedures prepared in the
preceding section.

Defi ning the Scope of Property Procedures

You can place the Public, Private, or Static keyword before the name
of a property procedure to define its scope. For example, to indicate that
the Property Get procedure is accessible to other procedures in all mod-
ules, use the following statement format:
Public Property Get AssetType() As String

To make the Property Get procedure accessible only to other procedures
in the module where it is declared, use the following statement format:
Private Property Get Model() As String

To preserve the Property Get procedure’s local variables between proce-
dure calls, use the following statement format:
Static Property Get Manufacturer() As String

If not explicitly specified using either Public or Private, property pro-
cedures are public by default. Also, if the Static keyword is not used, the
values of local variables are not preserved between the procedure calls.

Writing Class Methods

Apart from properties, objects usually have one or more methods. A method
is an action that the object can perform. Methods allow you to manipulate
data stored in a class object. Methods are created with the sub or function
procedures. To make a method available outside the class module, use the
Public keyword in front of the sub or function definition.

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS 213

The CAsset class that you create in this lab has one method that allows
you to calculate the new price. Assume that the asset’s price can be decreased
by a specific percentage or amount. Let’s continue with our lab by writing a
class method that calculates the new price.

 Lab 8.1d. Writing a Method for the CAsset Class

1. Type the following NewPrice function procedure in the CAsset class
module:
' function to calculate new price
Public Function NewPrice(discountType As Integer, _
 currentPrice As Currency, _
 amount As Long) As Currency

 If amount >= currentPrice Then
 NewPrice = currentPrice
 Exit Function
 End If
 Select Case discountType
 Case 1 ' by percent
 If amount > 50 Then
 amount = 50
 End If
 NewPrice = currentPrice - ((currentPrice * _
 amount) / 100)

 Case 2 ' by amount
 NewPrice = currentPrice - amount
 End Select
End Function

The NewPrice function defined with the Public keyword in a class module
serves as a method for the CAsset class. To calculate a new price, a VBA
procedure from outside the class module must pass three arguments: dis-
countType, currentPrice, and amount. The discountType argument
specifies the type of the calculation. Suppose you want to decrease the asset
price by 5% or by $5. The first option will decrease the price by the specified
percentage, and the second option will subtract the specified amount from
the current price. The currentPrice argument is the current price figure
for an asset, and amount determines the value by which the price should be
changed. The other assumptions in the new price calculation that you might
want to include can be specified with the conditional statements.

Creating an Instance of a Class

You have now completed the definition of the CAsset class. Every time you
define a class you must do this in a class module. In VBA, you can define
only one class in a class module. The name of the class is the name of the

214 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

module. A class is a template from which you can create objects. The class
specifies the properties and methods that will be common for all objects
created from that class.

After defining the class, you can create objects based on that class. This
process takes place in a standard module. You start by declaring an object
variable. If the name of the class module is CAsset, declare a variable of type
CAsset and set that variable to a new instance of the class, like this:
 Dim asset As CAsset
 Set asset = New CAsset

It is also possible to combine the two statements into a single statement, like
this:
 Dim asset As New CAsset

The asset variable represents a reference to an object of the CAsset class.
You can name your object variable anything you want except you cannot
use any of the VBA reserved words. All the properties and methods defined
in CAsset class will now be available in the asset variable. When you
declare the object variable with the New keyword, VBA creates the object
and allocates memory for it; however, the object isn’t instanced until you
refer to it in your procedure code by assigning a value to its property or
running one of its methods.

Let’s continue our hands-on lab project by writing the VBA procedure
that reads the data from the text file into a collection of CAsset objects.

 Lab 8.1e Writing Code

1. In the Visual Basic Editor screen, choose Insert | Module to add a standard
module to the current VBA project.

2. In the Properties window, rename the module AssetInfo.
3. In the Project Explorer window, double-click the AssetInfo module to

activate the Code window.
4. In the AssetInfo Code window, enter the Retrieve_AssetInfo procedure as

shown here:
Sub Retrieve_AssetInfo()
 ' declare two object variables
 ' one for the object and the other
 ' for the collection of objects
 Dim asset As CAsset
 Dim AssetsColl As Collection

 ' declare variables for reading the data file
 Dim strAssetType As String
 Dim strMake As String
 Dim strModel As String
 Dim itemPrice As String

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS 215

 ' declare a variable to specify discount type
 ' in the calculation of new asset price
 Dim intDiscount As Integer

 ' declare variables used by the MsgBox function
 Dim strTitle As String
 Dim strPrompt As String

 ' declare variables to facilitate data
 ' entry in a worksheet and the Immediate window
 Dim strFilePath As String
 Dim strRecord As String
 Dim wRow As Integer

 ' declare variables used for collection purpose
 Dim counter As Integer
 Dim aKey As String

 ' declare variables for accessing an object
 ' in a collection via a key
 Dim assetKey As String
 'Dim m As Object

 ' if error occurs go to the next statement
 On Error Resume Next

 ' initialize various variables
 strFilePath = "C:\VBAPrimerExcel_ByExample\AssetInfo.txt"
 counter = 0

 wRow = 1

 strPrompt = "Enter 1 for the percent discount or "
 strPrompt = strPrompt + " 2 for the amount discount"

 strTitle = "Price Discount Type"

 ' create an instance of the collection object
 Set AssetsColl = New Collection

 ' open the text file for reading
 Open strFilePath For Input As #1

 'check is the file is available
 If Err.Number <> 0 Then
 MsgBox "File not found!", vbCritical, "File Error"
 Exit Sub
 End If

 ' ask the user the type of discount to apply
 intDiscount = CInt(InputBox(strPrompt, strTitle, 1))

216 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 ' add a new empty worksheet
 ActiveWorkbook.Worksheets.Add

 ' -------------------------------------
 ' loop until end of file is encountered
 ' -------------------------------------
 Do While Not EOF(1)

 'read data from the text file into four variables
 Input #1, strAssetType, strMake, strModel, itemPrice

 If strAssetType = "AssetType" Then
 ' --
 ' enter column headings in the worksheet 1st row
 ' 5th column is for new price calculation
 ' --
 With ActiveSheet
 .Cells(1, 1) = strAssetType
 .Cells(1, 2) = strMake
 .Cells(1, 3) = strModel
 .Cells(1, 4) = itemPrice
 .Cells(1, 5) = "New " & itemPrice
 End With
 ' skip lines of code following the if statement
 GoTo Label_SkipHeading
 End If

 '---------------------------------------
 ' create an instance of the CAsset class
 '---------------------------------------
 Set asset = New CAsset

 counter = counter + 1
 aKey = "record" & counter

 '-----------------------------------
 ' set properties of the asset object
 '-----------------------------------
 asset.AssetType = strAssetType
 asset.Manufacturer = strMake
 asset.Model = strModel
 asset.Price = itemPrice

 '--
 ' add asset object to the AssetsColl collection
 ' and assign a custom key for that object
 '--
 AssetsColl.Add asset, aKey

 Set asset = Nothing

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS 217

Label_SkipHeading:
 Resume Next
 Loop

 'Close the text file
 Close #1

 ' display informational message
 MsgBox "Asset Collection contains " & _
 AssetsColl.Count & " items.", _
 vbInformation, "Total Items"

 '--
 ' iterate through the collection and access
 ' each instance of the CAsset class
 ' printing the data to the Immediate window
 '--
 For Each asset In AssetsColl
 Debug.Print asset.AssetType & vbTab & _
 asset.Manufacturer & vbTab & _
 asset.Model & vbTab & FormatNumber(asset.Price, 2)
 Next asset

 '--
 ' iterate through the collection to access
 ' each instance of the CAsset class
 ' this time entering data the active worksheet
 '--
 For Each asset In AssetsColl
 'set next row in the worksheet
 wRow = wRow + 1
 'write record to the worksheet
 With ActiveSheet
 .Cells(wRow, 1) = asset.AssetType
 .Cells(wRow, 2) = asset.Manufacturer
 .Cells(wRow, 3) = asset.Model
 .Cells(wRow, 4) = asset.Price
 ' calculate the discount
 .Cells(wRow, 5) = asset.NewPrice(intDiscount, _
 asset.Price, 100)
 End With
 Next asset
 Selection.CurrentRegion.Columns.AutoFit

 'retrieve the asset from a collection by a key
 assetKey = InputBox("Enter key", "Retrieval", "record1")

 Set asset = AssetsColl.Item(assetKey)
 strRecord = "Asset Type" & vbTab & asset.AssetType & _
 vbCrLf
 strRecord = strRecord & "Manufacturer" & vbTab & _
 asset.Manufacturer & vbCrLf

218 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

 strRecord = strRecord & "Model" & vbTab & vbTab & _
 asset.Model & vbCrLf
 strRecord = strRecord & "Price" & vbTab & vbTab & _
 Format(asset.Price, "Currency")

 MsgBox strRecord, vbInformation + vbOKOnly, _
 "Retrieving " & assetKey

End Sub

5. Run the Retrieve_AssetInfo procedure. Reply to all the procedure prompts
by accepting the default values.

6. After running the procedure, you should see the asset data entered in a
worksheet and in the Immediate window as shown in Figures 8.2 and 8.3.

FIGURE 8.2 The asset data in the provided text file (see Figure 8.1) is stored in a collection of
objects and written to the worksheet. The New Price column does not exist in the original file
and
was added by the VBA procedure to demonstrate the use of class methods.

The Retrieval input box demonstrates how a key can be used for accessing
objects in a collection. The asset details for the specified record are dis-
played in a message box above.

FIGURE 8.3 The asset data in the provided text file (see Figure 8.1) is written to the
Immediate window.

The Retrieve_AssetInfo procedure starts off by declaring and initializing a

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS 219

whole bunch of variables that will be used by various sections of the code.
Because you are dealing with an external file, you want to make sure that if
the file cannot be found, a message is displayed and the procedure ends. The
Number property of the VBA Err object will return a number other than
zero if some problem was encountered while opening the file. To read the
file, you must open it in Input mode using the following statement:

Open strFilePath For Input As #1

Once the file is open, you want to read it sequentially from top to bottom.
This can be done using the Do While or Do Until loop that you learned
in Chapter 6. Text files contain a special character known as an end-of-file
marker that is appended to the file by the operating system. When reading
the file, you can use the EOF function to detect that marker and thus know
if the end of file was reached. The statement

Do While Not EOF(1)

means that you want to keep executing the statements inside the loop until
all data in the file has been read. This statement is equivalent to Do Until
EOF(1). The number between the parentheses is a number corresponding
to the file number from which you want to read the data (the same number
that was used in the Open statement).
Each time in the loop, we use the Input # statement to read the data from
the file into four variables:

Input #1, strAssetType, strMake, strModel, itemPrice

Note that there are other ways of reading text files in VBA, but they are
beyond the scope of this primer book.
After writing out the column names into the worksheet, we create our asset
object and set its four properties (AssetType, Manufacturer, Model, and
Price), using the values stored in the variables:

asset.AssetType = strAssetType
asset.Manufacturer = strMake
asset.Model = strModel
asset.Price = itemPrice

Each of the foregoing assignment statements is actually a call to the appro-
priate Let procedure in the CAsset class module. For example, to set the
AssetType property of the asset object, the following procedure is executed:
Property Let AssetType(ByVal aType As String)
 m_AssetType = aType
End Property

You can execute the procedure line by line (see the next chapter) to gain
better understanding of what’s going on when these statements are being
executed.

220 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

At this point the asset object contains the first record data, which is the
second line in our text file. Before handling the next record’s data, we use
the Add method to add the asset object to the AssetsColl collection:

AssetsColl.Add asset, aKey

Each object in the collection is identified by a key that we create by con-
catenating a number and the word “record,” obtaining “record1,” “record2,”
“record3,” and so on.

After adding the asset object to the collection, we release the memory
by setting it to Nothing and we continue to the next record, executing the
statements within the loop, skipping only those that were used for the prep-
aration of the column headings. A new object is created, its properties are
set, and the object is added to the collection. The same process repeats until
the EOF is reached. When we are done looping, we close the file using the
Close#1 statement. We should now have 9 asset objects in the AssetsColl
collection. The remaining code in the procedure iterates through the col-
lection of objects and prints the data to the immediate window and to the
worksheet. When we retrieve the objects from the collection, VBA goes on
to execute the Property Get procedures that you wrote in the CAsset class
module. When writing the New Price to the worksheet we call the NewPrice
method. This method uses the intDiscount variable whose value was ob-
tained from the user earlier in the procedure. If you accepted the default
value in the input box, then the Price is reduced by the specified percent-
age. The last parameter of the NewPrice method, which denotes amount, is
hardcoded. Based on the entered amount, the IF statements included in the
NewPrice method will execute or will be skipped. When entering prices, it
is often necessary to appropriately format the data. The Retrieve_AssetInfo
procedure uses the FormatNumber function to format the Price data in the
Immediate window:

FormatNumber(asset.Price, 2)

The second argument of the FormatNumber function specifies how many
places to the right of the decimal are displayed. To format the number as
Currency, change the foregoing statement to:

FormatCurrency(asset.Price, 2)

SUMMARY

In this chapter, you learned how to create and use your own objects and
collections in VBA procedures. You used a class module to create a custom
object, and you saw how to define your object’s properties using Property
Get and Property Let procedures. You also learned how to write a method
for your custom object. In the next chapter, you will learn how to trouble-
shoot your VBA procedures.

221

It does not take much for an error to creep into your VBA procedure. The
truth is that no matter how careful you are, it is rare that all your VBA
procedures will work correctly the first time. There are three types of er-

rors in VBA: syntax errors, logic errors, and runtime errors. This chapter in-
troduces you to the Visual Basic Editor tools that are available for you to use
in the process of analyzing the code of your VBA procedures and locating the
source of errors.

TESTING VBA PROCEDURES

Because most of the procedures we wrote earlier were quite short, finding
errors wasn’t very difficult. However, locating the source of errors in longer
and more complex procedures is more tedious and time-consuming. For-
tunately, Visual Basic Editor provides a set of handy tools that can make the
process of tracking down your VBA problems easier, faster, and less frus-
trating. Bugs are errors in computer programs. Debugging is the process
of locating and fixing those errors by stepping through the code of your
procedure or checking the values of variables.

Chapter

 9

A QUICK INTRODUCTION
TO TESTING VBA PROGRAMS

EXCEL TOOLS FOR
TESTING AND DEBUGGING

222 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

When testing your VBA procedure, use the following guidelines:

 ● To analyze your procedure, step through your code one line at a time
by pressing F8 or choose Debug | Step Into.

 ● To locate an error in a specifi c place in your procedure, use a break-
point.

 ● To monitor the value of a variable or expression used by your proce-
dure, add a watch expression.

 ● To get to sections of code that interest you, set up a bookmark to
jump quickly to the desired location.

Each of these guidelines is demonstrated in a hands-on scenario in this
chapter.

STOPPING A PROCEDURE

While testing your VBA procedure you may want to halt its execution. This
can be done simply by pressing the Esc key, which causes Visual Basic to
stop your program and display the message shown in Figure 9.1. VBA also
offers other methods of stopping your procedure. When you stop your pro-
cedure, you enter what is called a break mode.
To enter break mode, do one of the following:

 ● Press the Ctrl+Break key combination
 ● Set one or more breakpoints
 ● Insert the Stop statement into your procedure code
 ● Add a watch expression

A break occurs when the execution of your VBA procedure is suspended.
Visual Basic remembers the values of all variables and the statement from
which the execution of the procedure should resume when the user decides
to continue by clicking Run Sub/UserForm on the toolbar (or the Run menu
option with the same name), or by clicking the Continue button in the dia-
log box. The error dialog box shown in Figure 9.1 informs you that the
procedure was halted. The buttons in this dialog are described in Table 9.1.

FIGURE 9.1 This message appears when you press Esc or Ctrl+Break while your VBA procedure
is running.

EXCEL TOOLS FOR TESTING AND DEBUGGING 223

TABLE 9.1 Error dialog buttons.

Continue Click this button to resume code execution. This button will be grayed out
if an error was encountered.

End Click this button if you do not want to troubleshoot the procedure at this
time. VBA will stop code execution.

Debug
Click this button to enter break mode. The Code window will appear,
and VBA will highlight the line at which the procedure execution was
suspended. You can examine, debug, reset, or step through the code.

Help Click this button to view the online help that explains the cause of this
error message.

You can prevent application users from halting your procedure by including
the following statement in the procedure code:

Application.EnableCancelKey = xlDisabled

When the user presses Esc or Ctrl+Break while the procedure is running,
nothing happens. The Application object’s EnableCancelKey property
disables these keys.

USING BREAKPOINTS

If you know more or less where you can expect a problem in the code of
your procedure, suspend code execution on a given line by pressing F9 to
set a breakpoint on that line. When VBA gets to that line while running
your procedure, it will immediately display the Code window. At this point,
you can step through the procedure code line by line by pressing F8 or
choosing Debug | Step Into. To see how this works, let’s look at the following
scenario. Assume that during the execution of the ChangeCode procedure
in Hands-On 9.1, the following line of code could get you in trouble:
ActiveCell.FormulaR1C1 "=VLOOKUP(RC[1],Codes.xlsx!R1C1:R6C2,2)"

 Please note files for the “Hands-On” project may be found on the com-
panion CD-ROM.

 Hands-On 9.1 Setting Breakpoints in a VBA Procedure

1. Copy the Chap09_ExcelPrimer.xlsm workbook from the companion disc
to your C:\VBAPrimerExcel_ByExample folder.

2. Copy the Codes.xlsx workbook from the companion disc to your C:\
VBAPrimerExcel_ByExample folder.

3. Start Microsoft Excel and open both these files (Chap09_ExcelPrimer.
xlsm, Codes.xlsx) from the C:\VBAPrimerExcel_ByExample folder.

4. Examine the data in both workbooks. It should look like Figures 9.2 and
9.3.

224 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 9.2 The data entered in column D of this spreadsheet will be replaced by the
ChangeCode procedure with the data illustrated in Figure 9.3.

FIGURE 9.3 The ChangeCode procedure uses this code table for lookup purposes.

5. Close the Codes.xlsx workbook. Leave the other file open.
6. With Chap09_ExcelPrimer.xlsm active, switch to the Visual Basic Editor

window.
7. In the Project Explorer, open the Modules folder in the Debugging

(Chap09_ExcelPrimer.xlsm) project and double-click the Breaks module.
Th e Breaks Module Code window lists the following ChangeCode
procedure:

Sub ChangeCode()
 Workbooks.Open Filename:="C:\VBAPrimerExcel_ByExample\Codes.xlsx"
 Windows("Chap09_ExcelPrimer.xlsm").Activate
 Columns("D:D").Insert Shift:=xlToRight
 Range("D1").Formula = "Code"
 Columns("D:D").SpecialCells(xlBlanks).Select
 ActiveCell.FormulaR1C1 = "=VLookup(RC[1],Codes.xlsx!R1C1:R6C2,2)"
 Selection.FillDown
 With Columns("D:D")
 .EntireColumn.AutoFit
 .Select
 End With
 Selection.Copy
 Selection.PasteSpecial Paste:=xlValues
 Rows("1:1").Select

EXCEL TOOLS FOR TESTING AND DEBUGGING 225

 With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlBottom
 .Orientation = xlHorizontal
 End With
 Workbooks("Codes.xlsx").Close
End Sub

8. In the ChangeCode procedure, click anywhere on the line containing the
following statement:

ActiveCell.FormulaR1C1 = "=VLookup(RC[1],Codes.
xlsx!R1C1:R6C2,2)"

9. Set a breakpoint by pressing F9 (or choosing Debug | Toggle Breakpoint
or clicking in the margin indicator to the left of the line).
When you set the breakpoint, Visual Basic displays a red circle in the
margin. At the same time, the line that has the breakpoint is indicated as
white text on a red background as in Figure 9.4. Th e color of the breakpoint
can be changed on the Editor Format tab in the Options dialog box (Tools
menu).

10. Press F5 to run the ChangeCode procedure.
When you run the procedure, Visual Basic will execute all the statements
until it encounters the breakpoint. Figure 9.5 shows the yellow arrow
in the margin to the left of the statement at which the procedure was
suspended, and the statement inside a box with a yellow background. Th e
arrow and the box indicate the current statement or the statement that is
about to be executed. If the current statement also contains a breakpoint,
the margin displays both indicators overlapping one another (the circle
and the arrow).

FIGURE 9.4 The line of code where the breakpoint is set is displayed in the color specified on
the Editor Format tab in the Options dialog box.

226 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 9.5 When Visual Basic encounters a breakpoint, it displays the Code window and
indicates the current statement.

While in break mode, you can change code, add new statements, execute
the procedure one line at a time, skip lines, set the next statement, use the
Immediate window, and more. When Visual Basic is in break mode, all the
options on the Debug menu are available. If you change certain code while
you work in break mode, VBA will prompt you to reset the project by
displaying the following error message: “Th is action will reset your project,
proceed anyway?” You can click OK to stop the program’s execution and
proceed editing your code or click Cancel to delete the new changes and
continue running the code from the point at which it was suspended.

11. Press F5 (or choose Run Sub/UserForm) to continue running the
procedure.
Visual Basic leaves break mode and continues to run the procedure
statements until it reaches the end of the procedure. When the procedure
fi nishes executing, Visual Basic does not automatically remove the
breakpoint. Notice that the line of code with the VLookup function is still
highlighted in red.
 In this example you have set only one breakpoint. Visual Basic allows
you to set any number of breakpoints in a procedure. This way, you can
suspend and continue the execution of your procedure as you please. You
can analyze the code of your procedure and check the values of variables
while execution is suspended. You can also perform various tests by typing
statements in the Immediate window.

12. Remove the breakpoint by choosing Debug | Clear All Breakpoints or by
pressing Ctrl+Shift+F9 or by clicking on the red circle in the margin area
to remove the breakpoint.

EXCEL TOOLS FOR TESTING AND DEBUGGING 227

All the breakpoints are removed. If you had set several breakpoints in a
given procedure and would like to remove only one or some of them, click
on the line containing the breakpoint that you want to remove and press
F9 (or choose Debug | Clear Breakpoint or simply click the red dot in the
margin). You should clear the breakpoints when they are no longer needed.
Th e breakpoints are automatically removed when you close the fi le.

13. Switch to the Microsoft Excel application window and notice that a new
column with the looked-up codes, like the one in Figure 9.6, was added on
Sheet1 of the Chap09_ExcelPrimer.xlsm workbook.

FIGURE 9.6 This worksheet was modified by the ChangeCode procedure in Hands-On 9.1.

When to Use a Breakpoint

Consider setting a breakpoint if you suspect that your procedure never exe-
cutes a certain block of code.

In break mode, you can quickly find out the contents of the variable at
the cursor in the Code window by holding the mouse pointer over it. For
example, in the VarValue procedure shown in Figure 9.7, the breakpoint
has been set on the Workbooks.Add statement. When Visual Basic encoun-
ters this statement, the Code window (break mode) appears. Because Visual
Basic has already executed the statement that stores the name of Active-
Workbook in the variable strName, you can quickly find out the value of
this variable by resting the mouse pointer over its name. The name of the
variable and its current value appear in a tooltip frame.

FIGURE 9.7 In break mode, you can find out the value of a variable by resting the mouse
pointer on that variable.

NOTE
To show the values of several variables used in a procedure at
once, you should use the Locals window, which is discussed later
in this chapter.

228 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

USING THE IMMEDIATE WINDOW IN BREAK MODE

Once the procedure execution is suspended and the Code window appears,
you can activate the Immediate window and type VBA instructions to find
out, for instance, which cell is currently active or the name of the active
sheet. You can also use the Immediate window to change the contents of
variables in order to correct values that may be causing errors.

Figure 9.8 shows the suspended ChangeCode procedure and the Imme-
diate window with the questions that were asked of Visual Basic while in
break mode.

FIGURE 9.8 When the code execution is suspended, you can find the values of your variables
and execute additional commands by entering appropriate statements in the Immediate window.

USING THE STOP AND ASSERT STATEMENTS

Sometimes you won’t be able to test your procedure right away. If you set
up your breakpoints and then close the file, Excel will remove your break-
points, and the next time you are ready to test your procedure, you’ll have to
begin by setting up breakpoints again. To postpone the task of testing your
procedure until you reopen the file, insert a Stop statement into your code
wherever you want to halt a procedure. Figure 9.9 shows a Stop statement
before the For Each…Next loop. Visual Basic will suspend the execution of
the StopExample procedure when it encounters the Stop statement. The
screen will display the Code window in break mode.

Although the Stop statement has exactly the same effect as setting a
breakpoint, it has one disadvantage—all Stop statements stay in the proce-
dure until you remove them. When you no longer need to stop your proce-
dure, you must locate and remove all the Stop statements.

EXCEL TOOLS FOR TESTING AND DEBUGGING 229

A very powerful and easy-to-apply debugging technique is utilizing De-
bug.Assert statements. Assertions allow you to write code that checks it-
self while running. By including assertions in your programming code, you
can verify that a particular condition or assumption is true. Assertions give
you immediate feedback when an error occurs. They are great for detecting
logic errors early in the development phase instead of hearing about them
later from your end users. The fact that your procedure ran on your system
without generating an error does not mean that there are no bugs in that
procedure. Don’t assume anything—always test for validity of expressions
and variables in your code. The Debug.Assert statement takes any expres-
sion that evaluates to True or False and activates the break mode when that
expression evaluates to False. The syntax for Debug.Assert is shown here:

Debug.Assert condition

where condition is a VBA code or expression that returns True or False. If
condition evaluates to False or 0 (zero), VBA will enter break mode. For
example, when running the following looping structure, the code will stop
executing when the variable i equals 50:
 Sub TestDebugAssert()
 Dim i As Integer

 For i = 1 To 100
 Debug.Assert i <> 50
 Next
 End Sub

Keep in mind that Debug.Assert does nothing if the condition is False or
zero. The execution simply stops on that line of code and the VBE screen
opens with the line containing the false statement highlighted so that you
can start debugging your code. You may need to write an error handler to
handle the identified error. Error-handling procedures are discussed later
in this chapter.

While you can stop the code execution by using the Stop statement (see
the previous section), Debug.Assert differs from the Stop statement in its

FIGURE 9.9 You can insert a Stop statement anywhere in the code of your VBA procedure. The
procedure will halt when it gets to the Stop statement, and the Code window will appear with the
line highlighted.

230 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

conditional aspect; it will stop your code only under specific conditions.
Conditional breakpoints can also be set by using the Watch window (see
the next section).

After you have debugged and tested your code, comment out or remove
the Debug.Assert statements from your final code. The easiest way to do
this is to use Edit | Replace in the VBE editor screen. To comment out the
statements, enter Debug.Assert in the Find What box. In the Replace With
box, enter an apostrophe followed by Debug.Assert.
To remove the Debug.Assert statements from your code, enter Debug.
Assert in the Find What box. Leave the Replace With box empty but be
sure to mark the Use Pattern Matching check box.

USING THE WATCH WINDOW

Many errors in procedures are caused by variables that assume unexpected
values. If a procedure uses a variable whose value changes in various loca-
tions, you may want to stop the procedure and check the current value of
that variable. Visual Basic offers a special Watch window that allows you to
keep an eye on variables or expressions while your procedure is running.
To add a watch expression to your procedure, perform the following:

 ● In the Code window, select the variable whose value you want to
monitor.

 ● Choose Debug | Add Watch.
The screen will display the Add Watch dialog box, as shown in Figure 9.10.
The Add Watch dialog box contains three sections, which are described in
Table 9.2.

FIGURE 9.10 The Add Watch dialog box allows you to define conditions that you want to
monitor while a VBA procedure is running.

EXCEL TOOLS FOR TESTING AND DEBUGGING 231

TABLE 9.2 Add Watch dialog options.

Expression

Displays the name of a variable that you have highlighted in your
procedure. If you opened the Add Watch dialog box without selecting a
variable name, type the name of the variable you want to monitor in the
Expression text box.

Context
In this section you should indicate the name of the procedure that
contains the variable and the name of the module where this procedure
is located.

Watch Type

Specifies how to monitor the variable. If you choose the Watch Expres-
sion option button, you will be able to read the value of the variable in
the Watch window while in break mode. If you choose Break When
Value Is True, Visual Basic will automatically stop the procedure when
the variable evaluates to true (nonzero). The last option button, Break
When Value Changes, stops the procedure each time the value of the
variable or expression changes.

You can add a watch expression before running a procedure or after exe-
cution of your procedure has been suspended. The difference between a
breakpoint and a watch expression is the breakpoint always stops a proce-
dure in a specified location and the watch stops the procedure only when
the specified condition (Break When Value Is True or Break When Value
Changes) is met. Watches are extremely useful when you are not sure where
the variable is being changed. Instead of stepping through many lines of
code to find the location where the variable assumes the specified value, you
can simply put a watch expression on the variable and run your procedure
as normal. Let’s see how this works.

 Hands-On 9.2 Watching the Values of VBA Expressions

1. The Breaks Module Code window lists the following WhatDate procedure:
Sub WhatDate()
 Dim curDate As Date
 Dim newDate As Date
 Dim x As Integer

 curDate = Date
 For x = 1 To 365
 newDate = Date + x
 Next
End Sub

The WhatDate procedure uses the For…Next loop to calculate the date that
is x days in the future. If you run this procedure, you won’t get any result
unless you insert the following instruction in the code of the procedure:
MsgBox "In " & x & " days, it will be " & NewDate

In this example, however, you don’t care to display the individual dates,
day after day. What if all you want to do is to stop the program when the

232 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

value of the variable x reaches 211? In other words, what date will be 211
days from now? To get the answer, you could insert the following state-
ment into your procedure:
If x = 211 Then MsgBox "In " & x & " days it will be " &
NewDate

Introducing new statements into your procedure just to get an answer
about the value of a certain variable when a specifi c condition occurs will
not always be viable. Instead of adding MsgBox or other debug statements
to your procedure code that you will later need to delete, you can use
the Watch window and avoid extra code maintenance. If you add watch
expressions to the procedure, Visual Basic will stop the For…Next loop
when the specifi ed condition is met, and you’ll be able to check the values
of the desired variables.

2. Choose Debug | Add Watch.
3. In the Expression text box, enter the following expression: x = 211. In the

Context section, choose WhatDate from the Procedure combo box and
Breaks from the Module combo box. In the Watch Type section, select the
Break When Value Is True option button.

4. Click OK to close the Add Watch dialog box. You have now added your
first watch expression.
Visual Basic opens the Watch window and places your expression x = 211
in it. Now let’s add another expression to the Watch window that will allow
us to track the current date.

5. In the Code window, position the insertion point anywhere within the
name of the curDate variable.

6. Choose Debug | Add Watch and click OK to set up the default watch type
with Watch Expression.
Notice that curDate now appears in the Expression column of the Watch
window.
 We will also want to keep track of the newDate variable.

7. In the Code window, position the insertion point anywhere within the
name of the newDate variable.

8. Choose Debug | Add Watch and click OK to set up the default watch type
with Watch Expression.
Notice that newDate now appears in the Expression column of the Watch
window. After performing the foregoing steps, the WhatDate procedure
contains the following three watches:

x = 211—Break When Value is True
curDate—Watch Expression
newDate—Watch Expression

9. Position the insertion point anywhere inside the code of the WhatDate
procedure, and press F5.

EXCEL TOOLS FOR TESTING AND DEBUGGING 233

Figure 9.11 shows the Watches window when Visual Basic stops the pro-
cedure when x equals 211.

FIGURE 9.11 Using the Watches window.

Notice that the value of the variable x in the Watch window is the same
as the value that you specified in the Add Watch dialog. In addition, the
Watch window shows the value of both variables—curDate and newDate.
The procedure is in break mode. You can press F5 to continue or you can
ask another question, such as “What date will be in 277 days?” The next
step shows how to do this.

10. Choose Debug | Edit Watch and enter the following expression: x = 277.
11. Click OK to close the Edit Watch dialog box.

Notice that the Watch window now displays a new value for the expres-
sion. x is now False.

12. Press F5 to continue running the procedure.
The procedure stops again when the value of x equals 277. The value of
curDate is the same; however, the newDate variable now contains a new
value—a date that is 277 days from now. You can change the value of the
expression again or finish running the procedure.

13. Press F5 to finish running the procedure.
When your procedure is running and a watch expression has a value, the
Watch window displays the value of the watch expression. If you open the
Watch window after the procedure has finished, you will see <out of con-
text> instead of the variable values. In other words, when the watch ex-
pression is out of context, it does not have a value.

Removing Watch Expressions

To remove the watch expressions, click on the expression in the Watch win-
dow that you want to remove, and press Delete. You may now remove all the
watch expressions you had defined in the preceding example.

234 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

USING QUICK WATCH

In break mode you can check the value of an expression for which you have
not defined a watch expression by using the Quick Watch dialog box dis-
played in Figure 9.12.

FIGURE 9.12 The Quick Watch dialog box shows the value of the selected
expression in a VBA procedure.

The Quick Watch dialog box can be accessed in the following ways:

 ● While in break mode, position the insertion point anywhere inside
the name of a variable or expression you wish to watch.

 ● Choose Debug | Quick Watch.
 ● Press Shift +F9.

The Add button in the Quick Watch dialog box allows you to add the expres-
sion to the Watch window. Let’s find out how to work with this dialog box.

 Hands-On 9.3 Using the Quick Watch Dialog Box

1. Make sure that the WhatDate procedure you entered in the previous
Hands-On exercise does not contain any watch expressions. See the
section called “Removing Watch Expressions” for instructions on how to
remove a watch expression from the Watch window.

2. In the WhatDate procedure, position the insertion point on the name of
the variable x.

3. Choose Debug | Add Watch.
4. Enter the following expression: x = 50.
5. Choose the Break When Value Is True option button and click OK.
6. Run the WhatDate procedure.

Visual Basic will suspend procedure execution when x equals 50. Notice
that the Watch window does not contain the newDate or the curDate vari-
ables. To check the values of these variables, you can position the mouse
pointer over the appropriate variable name in the Code window, or you can
invoke the Quick Watch dialog box.

EXCEL TOOLS FOR TESTING AND DEBUGGING 235

7. In the Code window, position the mouse pointer inside the newDate
variable and press Shift+F9.

The Quick Watch dialog shows the name of the expression and its current
value.

8. Click Cancel to return to the Code window.
9. In the Code window, position the mouse pointer inside the curDate

variable and press Shift+F9.
The Quick Watch dialog now shows the value of the variable curDate.

10. Click Cancel to return to the Code window.
11. Press F5 to continue running the procedure.
12. In the Watch window, highlight the line containing the expression x = 50

and press Delete to remove it.
13. Close the Watch window.

USING THE LOCALS WINDOWS AND THE CALL STACK
DIALOG BOX

If during the execution of a VBA procedure you want to keep an eye on all
the declared variables and their current values, make sure you choose View
| Locals Window before you run the procedure. Figure 9.13 shows a list of
variables and their corresponding values in the Locals window displayed
while Visual Basic is in the break mode.

The Locals window contains three columns. The Expression column dis-
plays the names of variables that are declared in the current procedure. The

FIGURE 9.13 The Locals window displays the current values of all the declared variables in the
current VBA procedure.

236 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

first row displays the name of the module preceded by the plus sign. When
you click the plus sign, you can check if any variables have been declared at
the module level. For class modules, the system variable Me is defined. For
standard modules, the first variable is the name of the current module. The
global variables and variables in other projects are not accessible from the
Locals window.

The second column shows the current values of variables. In this col-
umn, you can change the value of a variable by clicking it and typing the
new value. After changing the value, press Enter to register the change. You
can also press Tab, Shift+Tab, or the up or down arrows, or click anywhere
within the Locals window after you’ve changed the variable value. The third
column displays the type of each declared variable.
To observe the values of variables in the Locals window, perform the follow-
ing Hands-On exercise.

 Hands-On 9.4 Using the Locals and Call Stack Windows

1. Choose View | Locals Window.
2. Click anywhere inside the WhatDate procedure and press F8.

By pressing F8, you place the procedure in break mode. The Locals window
displays the name of the current module and the local variables and their
beginning values.

3. Press F8 a few more times while keeping an eye on the Locals window.
Th e Locals window also contains a button with three dots. Th is button
opens the Call Stack dialog box shown in Figure 9.14, which displays a list
of all active procedure calls. An active procedure call is a procedure that is
started but not completed. You can also activate the Call Stack dialog box
by choosing View | Call Stack. Th is option is available only in break mode.

FIGURE 9.14 The Call Stack dialog box displays a list of the procedures that are started but
not completed.

The Call Stack dialog box is especially helpful for tracing nested proce-
dures. Recall that a nested procedure is a procedure that is being called
from within another procedure. If a procedure calls another, the name of

EXCEL TOOLS FOR TESTING AND DEBUGGING 237

the called procedure is automatically added to the Calls list in the Call
Stack dialog box. When Visual Basic has finished executing the statements
of the called procedure, the procedure name is automatically removed
from the Call Stack dialog box. You can use the Show button in the Call
Stack dialog box to display the statement that calls the next procedure list-
ed in the dialog box.

4. Press F5 to continue running the WhatDate procedure.
5. Close the Locals window.

NAVIGATING WITH BOOKMARKS

In the process of analyzing or reviewing your VBA procedures, you will
often find yourself jumping to certain areas of code. Using the built-in
bookmark feature, you can easily mark the spots in your code that you want
to navigate between.

To set up a bookmark:

 ● Click anywhere in the statement that you want to defi ne as a book-
mark.

 ● Choose Edit | Bookmarks | Toggle Bookmark or click the Toggle
Bookmark button on the Edit toolbar as illustrated in Figure 9.15.

 ● Visual Basic will place a rounded blue rectangle in the left margin
beside the statement.

FIGURE 9.15 Using bookmarks you can quickly jump between often-used sections of your
procedures.

238 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Once you’ve set up two or more bookmarks, you can jump between the
marked locations of your code by choosing Edit | Bookmarks | Next Book-
mark or simply by clicking the Next Bookmark button on the Edit toolbar.
You can remove bookmarks at any time by choosing Edit | Bookmarks |
Clear All Bookmarks or by clicking the Clear All Bookmarks button on the
Edit toolbar. To remove a single bookmark, click anywhere in the book-
marked statement and choose Edit | Bookmarks | Toggle Bookmark or click
the Toggle Bookmark button on the Edit toolbar.

TRAPPING ERRORS

No one writes bug-free programs the first time. When you create VBA pro-
cedures, you have to determine how your program will respond to errors.
Many unexpected errors happen during runtime. For example, your pro-
cedure may try to give a workbook the same name as an open workbook.
Runtime errors are often discovered by users who attempt to do something
that the programmer has not anticipated. If an error occurs when the proce-
dure is running, Visual Basic displays an error message and the procedure is
stopped. Most often, the error message that VBA displays is quite cryptic to
the user. You can prevent users from seeing many runtime errors by includ-
ing error-handling code in your VBA procedures. This way, when Visual
Basic encounters an error, instead of displaying a default error message, it
will show a much friendlier and more comprehensive error message.

In programming, mistakes and errors are not the same thing. A mistake,
such as a misspelled or missing statement, a misplaced quote or comma, or
assigning a value of one type to a variable of a different (and incompatible)
type, can be removed from your program through proper testing and de-
bugging. But even though your code may be free of mistakes, this does not
mean that errors will not occur. An error is the result of an event or an op-
eration that doesn’t work as expected. For example, if your VBA procedure
accesses a particular file on disk and someone has deleted this file or moved
it to another location, you’ll get an error no matter what. An error prevents
the procedure from carrying out a specific task.

To implement error handling, place the On Error statement in your pro-
cedure. This statement tells VBA what to do if an error occurs while your
program is running. VBA uses the On Error statement to activate an error-
handling procedure that will trap runtime errors. Depending on the type of
procedure, you can exit the error trap by using one of the following state-
ments: Exit Sub, Exit Function, Exit Property, End Sub, End Func-
tion, or End Property. You should write an error-handling routine for
each procedure. Table 9.3 shows how the On Error statement can be used.

EXCEL TOOLS FOR TESTING AND DEBUGGING 239

TABLE 9.3 On Error statement options.

On Error GoTo Label Specifies a label to jump to when an error occurs. This
label marks the beginning of the error-handling routine.
An error handler is a routine for trapping and responding
to errors in your application. The label must appear in the
same procedure as the On Error statement.

On Error Resume Next When a runtime error occurs, Visual Basic ignores the line
that caused the error, and does not display an error mes-
sage but continues the procedure with the next line.

On Error GoTo 0 Turns off error trapping in a procedure. When VBA runs
this statement, errors are detected but not trapped within
the procedure.

Using the Err Object

Your error-handling code can utilize various properties and methods of the
Err object. For example, to check which error occurred, check the value of
Err.Number. The Number property of the Err object will tell you the value
of the last error that occurred, and the Description property will return a
description of the error. You can also find the name of the application that
caused the error by using the Source property of the Err object (this is very
helpful when your procedure launches other applications). After handling
the error, use the Err.Clear statement to reset Err.Number back to zero.
To test your error-handling code you can use the Raise method of the Err
object. For example, to raise the “Disk not ready” error, use the following
statement:

Err.Raise 71

The OpenToRead procedure shown here demonstrates the use of the Resume
Next and Error statements, as well as the Err object.

 Hands-On 9.5 Writing a VBA Procedure with Error-Handling
Code

1. Insert a new module into the Testing project and rename it Traps.
2. In the Traps module Code window, enter the Archive procedure as shown

here:
Sub OpenToRead()
Dim myFile As String
Dim myChar As String
Dim myText As String
Dim FileExists As Boolean

FileExists = True

On Error GoTo ErrorHandler

myFile = InputBox("Enter the name of file to open:")

240 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Open myFile For Input As #1
If FileExists Then
' loop until the end of file (EOF)
 Do While Not EOF(1)
 ' get one character
 myChar = Input(1, #1)
 ' store in the variable myText
 myText = myText + myChar
 Loop
 Debug.Print myText
 ' close the file
 Close #1
End If
Exit Sub

ErrorHandler:
 FileExists = False
 Select Case Err.Number
 Case 76
 MsgBox "The path you entered cannot be found."
 Case 53
 MsgBox "This file can't be found on the " & _
 "specified drive."
 Case 75
 Exit Sub
 Case Else
 MsgBox "Error " & Err.Number & " :" & _
 Error(Err.Number)
 Exit Sub
 End Select
 Resume Next
End Sub

Th e purpose of the OpenToRead procedure is to read the contents of
the user-supplied text fi le character by character. When the user enters a
fi lename, various errors can occur. For example, the fi lename or the path
may be wrong, or the user may try to open a fi le that is already open. To
trap these errors, the error-handling routine at the end of the OpenToRead
procedure uses the Number property of the Err object.
 Th ere are several methods of reading a text fi le. In this example, to read
data from a text fi le, the procedure uses the Windows Low-Level File I/O
(Input / Output) method. Th erefore, to open the fi le for reading, we need
to use the Open statement, like this:

Open myFile For Input As #1

Here’s the general syntax of the Open statement, followed by an explanation
of each component:

EXCEL TOOLS FOR TESTING AND DEBUGGING 241

Open pathname For mode[Access access][lock] As [#]filenumber

 [Len=reclength]

Th e Open statement has three required arguments: pathname, mode, and
filenumber. Pathname is the name of the fi le you want to open. Th e
fi lename may include the name of a drive and folder.

 ● Mode is a keyword that determines how the fi le was opened.
Sequential fi les can be opened in one of the following modes: Input,
Output, or Append. Use Input to read the fi le, Output to write to a fi le
overwriting any existing fi le and Append to write to a fi le by adding
to any existing information.

 ● Th e optional Access clause can be used to specify permissions for the
fi le (Read, Write, or Read Write).

 ● Th e optional Lock argument determines which fi le operations are
allowed for other processes. For example, if a fi le is open in a net-
work environment, lock determines how other people can access it.
Th e following lock keywords can be used: Shared, Lock Read, Lock
Write, or Lock Read Write.

 ● Filenumber is a number from 1 to 511. Th is number is used to re-
fer to the fi le in subsequent operations. You can obtain a unique fi le
number using the Visual Basic built-in FreeFile function.

 ● Th e last element of the Open statement, reclength, specifi es the buf-
fer size (total number of characters) for sequential (text) fi les, or the
record size for random-access fi les (text fi les where data is stored in
records of equal length and fi elds separated by commas).

If the specifi ed fi le exists, the procedure uses the Do…While loop to tell
Visual Basic to execute the statements inside the loop until the end of the
fi le has been reached. Th e end of the fi le is determined by the result of the
EOF function. Th e Input function is used to return the specifi ed number
of characters:

myChar = Input(1, #1)

#1 is the fi le number that was used in the process of opening the fi le with
the Open statement.
Each character being read is stored in the myChar variable. Next, the
myChar variable is appended to the myText variable, like this:

myText = myText + myChar

Th e procedure then writes the contents of the myText variable to the
Immediate window using the Debug.Print statement. When the fi le has
been read, we must close it using the Close statement:

Close #1 ' close the file

242 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

Th e Err object contains information about runtime errors. If an error
occurs while the procedure is running, the statement Err.Number will
return the error number. If errors 76, 53, or 75 occur, Visual Basic will
display user-friendly messages stored inside the Select…Case block
and then proceed to the Resume Next statement, which will send it to
the line of code following the one that caused the error. If another error
occurs, Visual Basic will return its error code (Err.Number) and error
description (Error (Err.Number)). At the beginning of the procedure,
the variable FileExists is set to True. Th is way, if the program doesn’t
encounter an error, all the instructions inside the If FileExists Then
block will be executed. However, if VBA encounters an error, the value
of the FileExists variable will be set to False (see the fi rst statement in
the error-handling routine just below the ErrorHandler label). Th is way,
Visual Basic will not cause another error while trying to read a fi le that
caused the error on opening. Notice the Exit Sub statement before the
ErrorHandler label. Put the Exit Sub statement just above the error-
handling routine because you don’t want Visual Basic to carry out the
error handling if there are no errors.
To test the OpenToRead procedure and better understand error trapping,
we will need a text fi le (see Step 3).

3. Use Windows Notepad to prepare a text file. Enter any text you want in
this file. When done, save the file as C:\VBAPrimerExcel_ByExample\
Vacation.txt.

4. Run the OpenToRead procedure three times in step mode by using the F8
key, each time supplying one of the following:

 ● Name of the C:\VBAPrimerExcel_ByExample\Vacation.txt fi le
 ● Filename that does not exist on drive C
 ● Path that does not exist on your computer (e.g., K:\Test)

Setting Error Trapping Options in a VBA Project

You can specify the error-handling settings for your current Visual Basic
project by choosing Tools | Options and selecting the General tab (shown in
Figure 9.16).

The Error Trapping area located on the General tab determines how er-
rors are handled in the Visual Basic environment. The following options are
available:

 ● Break on All Errors
This setting will cause Visual Basic to enter the break mode on any
error, whether an error handler is active or whether the code is in a
class module (class modules were covered in Chapter 8).

EXCEL TOOLS FOR TESTING AND DEBUGGING 243

 ● Break in Class Module
This setting will trap any unhandled error in a class module. Visual
Basic will activate a break mode when an error occurs and will high-
light the line of code in the class module that produced this error.

 ● Break on Unhandled Errors
This setting will trap errors for which you have not written an error
handler. The error will cause Visual Basic to activate a break mode.
If the error occurs in a class module, the error will cause Visual Basic
to enter break mode on the line of code that called the offending pro-
cedure of the class.

STEPPING THROUGH VBA PROCEDURES

Stepping through the code means running one statement at a time. This
allows you to check every line in every procedure that is encountered. To
start stepping through a procedure from the beginning, place the insertion
point anywhere inside the code of your procedure and choose Debug | Step
Into or press F8. Figure 9.17 shows the Debug menu, which contains several
options that allow you to execute a procedure in step mode. When you run
a procedure one statement at a time, Visual Basic executes each statement
until it encounters the End Sub keywords. If you don’t want Visual Basic to
step through every statement, you can press F5 at any time to run the rest of

FIGURE 9.16 Setting the Error Trapping options in the Options dialog box will affect all
instances of Visual Basic started after you change the setting.

244 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

the procedure without stepping through it.
Let’s step through a procedure line by line.

FIGURE 9.17 The Debug menu offers many commands for stepping through VBA procedures.

 Hands-On 9.6 Stepping through a VBA Procedure

1. Place the insertion point anywhere inside the code of the procedure
whose execution you wish to trace. For example, try out the OpenToRead
procedure you prepared in Hands-On 9.5.

2. Press F8 or choose Debug | Step Into.
Visual Basic executes the current statement and automatically advances to
the next statement and suspends execution. While in break mode, you can
activate the Immediate window, Watch window, or Locals window to see the
eff ect of a particular statement on the values of variables and expressions.
And if the procedure you are stepping through calls other procedures, you
can activate the Call Stack window to see which procedures are currently
active.

3. Press F8 again to execute the selected statement.
Aft er executing this statement, Visual Basic will select the next statement,
and the procedure execution will be halted again.

4. Continue stepping through the procedure by pressing F8 or press F5 to
continue the code execution without stopping.
You can also choose Run | Reset to stop the procedure at the current
statement without executing the remaining statements.

Stepping Over a Procedure and Running to Cursor

When you step over procedures (Shift+F8), Visual Basic executes each pro-
cedure as if it were a single statement. This option is particularly useful if

EXCEL TOOLS FOR TESTING AND DEBUGGING 245

a procedure contains calls to other procedures and you don’t want to step
into these procedures because they have already been tested and debugged,
or you want to concentrate only on the new code that has not yet been
debugged.

Suppose that the current statement in MyProcedure (see Hands-On 9.7)
calls the SpecialMsg procedure. If you choose Debug | Step Over (Shift+F8)
instead of Debug | Step Into (F8), Visual Basic will quickly execute all the
statements inside the SpecialMsg procedure and select the next statement
in the calling procedure (MyProcedure). During the execution of the Spe-
cialMsg procedure, Visual Basic continues to display the Code window with
the current procedure.

 Hands-On 9.7 Stepping over a Procedure

1. In the Breaks Module Code window, locate the following procedure:
Sub MyProcedure()
 Dim strName As String

 Workbooks.Add
 strName = ActiveWorkbook.Name
 ' choose Step Over to avoid stepping through the
 ' lines of code in the called procedure - SpecialMsg
 SpecialMsg strName
 Workbooks(strName).Close
End Sub

Sub SpecialMsg(n As String)
 If n = "Book2" Then
 MsgBox "You must change the name."
 End If
End Sub

2. Add a breakpoint at the following statement:
SpecialMsg strName

3. Place the insertion point anywhere within the code of MyProcedure, and
press F5 to run it.
Visual Basic halts execution when it reaches the breakpoint.

4. Press Shift+F8 or choose Debug | Step Over.
Visual Basic quickly runs the SpecialMsg procedure and advances to the
statement immediately aft er the call to the SpecialMsg procedure.

5. Press F5 to finish running the procedure without stepping through its
code.

6. Remove the breakpoint you set in Step 2.
Stepping over a procedure is particularly useful when you don’t want
to analyze individual statements inside the called procedure. Another

246 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

command on the Debug menu, Step Out (Ctrl+Shift +F8), is used when
you step into a procedure and then decide that you don’t want to step all
the way through it. When you choose this option, Visual Basic will execute
the remaining statements in this procedure in one step and proceed to
activate the next statement in the calling procedure. In the process of
stepping through a procedure, you can switch between the Step Into, Step
Over, and Step Out options. Th e option you select depends on which code
fragment you wish to analyze at a given moment. Th e Debug menu’s Run
To Cursor (Ctrl+F8) command lets you run your procedure until the line
you have selected is encountered. Th is command is really useful if you
want to stop the execution before a large loop or you intend to step over a
called procedure. Now, let’s suppose you want to execute MyProcedure to
the line that calls the SpecialMsg procedure.

7. Click inside the statement SpecialMsg strName.
8. Choose Debug | Run To Cursor. Visual Basic will stop the execution of

the MyProcedure code when it reaches the specified line.
9. Press Shift+F8 to step over the SpecialMsg procedure.

10. Press F5 to execute the remaining statements in the procedure.

Setting the Next Statement

At times, you may want to rerun previous lines of code in the procedure
or skip over a section of code that is causing trouble. In each of these sit-
uations, you can use the Set Next Statement option on the Debug menu.
When you halt execution of a procedure, you can resume the procedure
from any statement you want. Visual Basic will skip execution of the state-
ments between the selected statement and the statement where execution
was suspended. Suppose that in MyProcedure (see the code of this proce-
dure in the preceding section) you have set a breakpoint on the statement
calling the SpecialMsg procedure. To skip the execution of the SpecialMsg
procedure, you can place the insertion point inside the statement Work-
books (strName).Close and press Ctrl+F9 (or choose Debug | Set Next
Statement).

You can’t use the Set Next Statement option unless you have suspended
the execution of the procedure.

While skipping lines of code can be very useful in the process of debug-
ging your VBA procedures, it should be done with care. When you use the
Next Statement option, you tell Visual Basic that this is the line you want
to execute next. All lines in between are ignored. This means that certain
things that you may have expected to occur don’t happen, which can lead to
unexpected errors.

EXCEL TOOLS FOR TESTING AND DEBUGGING 247

Showing the Next Statement

If you are not sure from which statement the execution of the procedure
will resume, you can choose Debug | Show Next Statement and Visual Basic
will place the cursor on the line that will run next. This is particularly use-
ful when you have been looking at other procedures and are not sure where
execution will resume. The Show Next Statement option is available only in
break mode.

Stopping and Resetting VBA Procedures

At any time while stepping through the code of a procedure in the Code
window, you can:

 ● Press F5 to execute the remaining instructions without stepping
through.

 ● Choose Run | Reset to fi nish the procedure without executing the
remaining statements.

When you reset your procedure, all the variables lose their current values.
Numeric variables assume the initial value of zero, variable-length strings
are initialized to a zero-length string (“”), and fixed-length strings are filled
with the character represented by the ASCII character code 0 or Chr(0).
Variant variables are initialized to Empty, and the value of object variables
is set to Nothing.

TERMINATING A PROCEDURE BASED ON A CONDITION

You may recall, in Chapter 1 (see Hands-On 1.20) we ran into an error while
executing the Insert_NewSheet macro. We modified this macro to prompt
the user for the sheet name using the Excel InputBox method. However, to
make this macro error-proof, we need to ensure that the macro will not fail
if the user clicks Cancel or enters a space or several blank spaces for the
worksheet name. Let’s address this problem now that you have more Excel
VBA knowledge under your belt. Here is the Insert_NewSheet procedure as
we modified it in Chapter 1.
Sub Insert_NewSheet()
'
' Insert_NewSheet Macro
' Insert and rename a worksheet
'

 Sheets.Add After:=ActiveSheet
 ActiveSheet.Name = Application.InputBox _
 ("Enter the name for your worksheet:", "Rename This Sheet")

End Sub

248 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

The InputBox method is a member of the Excel Application object and this
requires that you precede its name with the name of the object (Applica-
tion). Note that the code below uses the line continuation character (an
underscore) to break up the long statement that you may end up when sup-
plying the arguments to this method. You will find the list of arguments
and their descriptions in Chapter 4. One of the arguments which we abso-
lutely must add to the InputBox method to get the expected results with the
Cancel button is called “type” and it specifies the return data type. When
the user clicks Cancel the Application.InputBox method returns False.
Therefore, we need to introduce some conditional logic to test for the return
type. We also need to prevent the user for feeding us blank spaces for the
sheet name. By now you should be familiar with writing VBA conditional
statements. Conditional logic will allow you to make many enhancements
to your recorded macro code. Let’s look at the revised Insert_NewSheet
procedure.

Sub Insert_NewSheet()
'
' Insert_NewSheet Macro revised
' Insert and rename a worksheet
'
 Dim userInput As Variant

 userInput = Application.InputBox _
 ("Enter the name for your worksheet:", _
 "Rename This Sheet", , , , , , 2)

 If userInput = False Then
 MsgBox ("You pressed the Cancel button." & _
 "The procedure will terminate.")
 sFlag = True
 Exit Sub
 ElseIf userInput = "" Or Trim(userInput) = "" Then
 MsgBox "Please enter the sheet name or press Cancel to
exit."
 Insert_NewSheet

 Else
 Sheets.Add After:=ActiveSheet
 ActiveSheet.Name = userInput
 End If
End Sub

Note that we will now store the user supplied sheet name in the userInput
variable. This variable is declared as Variant data type because the Input-
Box method can return different types of data and we want Excel to handle
it for us. We begin by asking the user for the input. First, we must define
the message that the user will see. Next, we specify the text that appears in

EXCEL TOOLS FOR TESTING AND DEBUGGING 249

the title bar of the dialog box. We don’t care about the five arguments that
follow, so you will see commas as their placeholders, or you can forgo com-
mas when you specify the names for your arguments as shown in Chap-
ter 4 procedures. Recall that you can use named arguments to make your
methods easier to understand. What we care about is the last argument.
The value of 2 specifies that we expect to get a string (text). Once the result
of the user interaction with the InputBox is in the userInput variable, it’s
time for the if statements. If the contents of the variable are False, then
we want to display a message to the user and terminate the procedure. You
already know that you can exit early from a VBA procedure by using the
Exit Sub statement. Before terminating the procedure, however, you may
want to store some vital piece of information in additional variables. In case
of the Insert_NewSheet procedure, we need to remember that we exited the
procedure, so we don’t run other procedures that may depend on this one.
Recall that our Insert_NewSheet procedure is a part of a larger master pro-
cedure which will also need to be terminated. The sFlag variable will hold
a Boolean value of True if the user clicked Cancel and False otherwise. You
are free to choose names for your variables. Notice that the sFlag variable
is not declared anywhere in the Insert_NewSheet procedure. Since we must
use it also in the CreateEmployeeWorksheet master procedure, we need
a project-level scope declaration. From Chapter 3, you already know that
public variables can be used in any module. Here is the perfect opportunity
to utilize them. Figure 9.18 shows the revised CreateEmployeeWorksheet
procedure from Chapter 1. Notice the declaration of the sFlag variable at
the top of the module. The first line of code in the procedure makes sure
that sFlag is set to False when we start. When the Insert_NewSheet pro-
cedure has finished running, the sFlag will be True if user clicked Cancel.
Again, we can use the Exit Sub statement to stop further code execution.
And if sFlag is False we will continue with the remaining statements.
 Note that the Insert_NewSheet procedure also checks in the Elseif
clause whether the user clicked OK without supplying any data or entered
a space or several spaces. The VBA Trim function removes the leading and
trailing spaces from a supplied text string. If the value of the userInput
variable is an empty string (“”), then we display a message to the user and
call the procedure again. This way the user has a chance to either enter the
required data or click Cancel. Finally, if everything looks good, then we exe-
cute the statements in the Else clause. A new worksheet is inserted after the
current sheet and is renamed with the text stored in the userInput variable.

250 MICROSOFT EXCEL 2019 PROGRAMMING POCKET PRIMER

FIGURE 9.18 The revised CreateEmployeeWorksheet procedure uses a public variable.

 H ands-On 9.8 Working with all the Debugging Tools

1. Modify the procedures discussed in this section and use it as a playing
ground for practicing all debugging techniques you were introduced to
in this chapter. Be sure to run the master procedure at least three times to
check all the conditions used in the Insert_NewSheet procedure.

SUMMARY

In this chapter, you learned how to trap errors and test your VBA proce-
dures to make sure they perform as planned. You debugged your code by
stepping through it using breakpoints and watches. You learned how to
work with the Immediate window in break mode, and you found out how
the Locals window can help you monitor the values of variables and how the
Call Stack dialog box can be helpful in keeping track of where you are in a
complex program.

By using the built-in debugging tools, you can quickly pinpoint the prob-
lem spots in your procedures. Try to spend more time getting acquainted
with the Debug menu options and debugging tools discussed in this chap-
ter. Mastering the art of debugging can save you hours of trial and error.

INDEX

A
Absolute cell references, 11–12
Access clause, 241
Activate method, 69
ActiveCell, 56
ActiveWindow, 43
ActiveWorkbook, 57
Add method, 69, 202, 219
Add Watch dialog box, 230
Address property, 167
AddTextbox method, 50
Advanced Options, 4
Alt+F8, 25, 29, 35, 140
AND operator, 54, 158
Antivirus software, 3
Append mode, 208
Application object, 48, 70–71, 223, 247
Arguments, 44–45, 59, 122–123

optional, 121–123
passing arguments by reference and value,

120–121
types, specifying, 119–120

Arrange method, 70
ArrangeStyle argument, 70
Array(s), 177–198

data entry with, 195–196
declaring, 181–183
Debug button, 193–194
dimensioning,
dynamic, 188–190
functions of, 190–193

Array function, 209
Erase function, 191–192
IsArray function, 190–191
LBound function, 192–193
UBound function, 192–193

initializing anf filling, 189
For…Next loop, using, 172
individual assignment statements,

using, 183–184
Array function, using, 190

one-dimensional array, 179–180,
182–183,185–86

Option Base 1 statement, 180, 183, 186
ParamArray keyword, 194–195
sorting with Excel, 196–198
static, 188
subscripted variables, 183
three-dimensional array, 181, 182
troubleshooting errors, 193–194
two-dimensional array, 187
upper and lower bounds, 183
using ParamArray keyword,
using in VBA procedures, 190
variable, 183

ASCII, 246
Assert statement, 228–230
AssetType property, 210–211
Assignment operator (:=), 80
As Variant clause, 184
Attached macro with button, 34
Auto Indent option, 45

252 INDEX

Auto Quick Info option, 45
Avg function, 123, 124, 125

B
Backstage View, 4, 5
Before argument, 202
Bookmarks, navigating with, 237–238
Boolean (data type), 81
Break mode, 222
Breaking up long VBA statements, 79–80
Breakpoints, 223–227
Bugs, 221
Built-in constants, 43, 101–102
Built-in functions, 109, 112, 118

avoiding Type mismatch error, 138
determining and converting data types, 99
returning values from msgbox function,

132–133
msgbox function, 132
subordinates and functions, 142
using Inputbox function, 134–138
using Inputbox method, 138–142
using msgbox function, 125–133

Buttons argument, 128–129
ByRef keyword, 122
Byte (data type), 81
ByVal keyword, 122, 211

C
Call Stack dialog box, 235–237
Carriage return character, 126–127
Case clauses, 154, 157
Case Else clause, 154, 156
CBool function, 103
CByte function, 103
CCur function, 103
CDate function, 103
CDbl function, 104
CDec function, 104
Cell formatting, 67
Cell recording, 62–63
cell using End Property, 63
Cells property, 59–60
Chr function, 126
Chr(10) function, 126
Chr(13) function, 126
CInt function, 104
Class, 20, 213–220

creating instance of,
creating Property Get Procedures, 210–212
creating Property Let Procedures, 210–212

defining properties of class, 209–212
variable declarations, 230
writing class methods, 212–213
writing property procedures for CAsset

class, 214, 219
Class module, 219
creating, 213–214
naming, 209

Clear method, 64, 75
ClearComments method, 64
ClearContents method, 64, 75, 79
ClearFormats method, 64, 75
ClearHyperlinks method, 64
ClearNotes method, 64
ClearOutline method, 64
Clng function, 104
CLngLng function, 104
CLngPtr function, 104
Close method, 68, 75
Code window, 16, 17, 20, 21, 22, 24, 38,

40–42, 43, 45, 49,169, 223, 227, 228,
236, 244, 246

Collection(s), 74, 200. See also Specific
collections

custom. See custom collection
definition of, 74, 200–207
reindexing, 207
working with, 200–207

adding objects to custom
collection, 202

creating custom objects, 207
declaring custom collection, 201–202
removing objects from custom

collection, 204–207
columnoffset, 77
Comma-delimited file, 208
Comment Block button, 46
Complete Word button, 45
Concatenation, 88
Conditional expressions, 144, 154

function procedures, conditional logic in,
160–161

If…Then…Else statement, 148–150
If…Then…ElseIf statement, 150–152
If…Then statement, 147–148

formats for, 147
Nested If…Then statements, 152–153
relational and logical operators, 144
Select Case statement, 153–157

multiple conditions with Case
clause, 157

INDEX 253

specifying range of values in Case
clause, 156–157

specifying multiple expressions in Case
clause, 157

using Is with Case clause, 156
writing VBA procedure with multiple

conditions, 157–160
Conditional statements, 143, 161, 163, 213,

247,
Const statement, 100
Constant, 43–44, 100–102,

built-in, 101
names of, 102
pop-up menu, 42–43
Private constant, 100

Context, 87, 127, 132, 231,
Continuation character, 89, 80, 247– ,
Continue button, 222
Conversion functions, 102–104
Cookie cutter, 207
Counter, 168
Count property, 200
CSng function, 104
CStr function, 104
Currency (data type), 82
Custom collection, 199

adding objects to, 202–207
class methods, writing, 212–213
creating and using, 207–220
declaring and using, 201
defining properties for class, 209–210
instance of class, creating, 213–220
property procedures, writing, 111, 210–212
reindexing collections, 207
removing objects, 204–207
variable declarations, 209

Customize Quick Access Toolbar, 30
Customize Ribbon, 6
Custom VBA function, 112, 117
Custom Views, 43
Cut method, 64,
CVar function, 104

D
Data entry with array, 195–196
Data members, 209
Date (data type), 82
Data type, 81–83

converting between, 102–105
determining, of variable, 99–100
determining and converting, 136–138

returned, 139
specifying, of variables, 88–90

Debug button, 24, 141, 193
Debugging, 221, 224, 229, 238
Debug menu, 243, 246, 250
Debug.Assert statement, 229–230
Decimal (data type), 82
Declaration characters, 89
Delete method, 79
Destination arguments, 64
Developer tab, enabling, 5–7
Dim keyword, 85, 86, 96, 97, 98, 105, 202
Disabled macros, 5
Display Alerts property, 174
DisplayStatusBar property, 175
Docking tab, 55
Do loop statements, 164
Double (data type), 82
Do…Until loop, 164–168
Do…Until statement, 166
Do…While loop statements, 164–168
Do…While statement, 175–176
Dynamic array, 188–190

E
Edit button, 15
Edit Text, 34
Edit toolbar, 42, 43–44, 45, 237
Editing recorded macros, 15–17
Enable All Content option, 4
EnableCancelKey property, 223
Enable Content button, 4
End button, 24, 31
End property, using, 63
End Property keywords, 210
End Select statement, 154, 157
End Sub keyword, 27, 28, 93, 153, 205, 243
End Function keyword, 111
End With keyword, 22
Entering data and formatting cells, 66–67

finding cell format, 67
Formula property, 66
returning information entered, 66
Value property, 66

EntireColumn property, 64
EntireRow property, 64
EOF function, 219, 241
Erase function, 191–192
Err object, 239– 242
Err.Clear statement, 239
Err.Number statement, 239, 242

254 INDEX

Error dialog buttons, 223
ErrorHandler label, 242
Errors, trapping, 242–243
Error statement, 238
Event(s), 200
Event procedure, definition of, 200
Excel

Backstage View in, 5
setting up for macro development, 6–8

Excel application, working with, 70–71
Excel library, 138
Excel object model, 75–76
Exit Do statement, 165
Exit For statement, 174, 177
Exit Function keywords, 211
Exit Property keywords, 211
Exit statements, 174
Explicit variable declaration, 84
Expression, 26, 103, 144, 222

F
F5, 28
F8, 169
F9, 223
File formats, macro-enabled, 2–3
Filenumber, 241
Filling array, 183
Fixed-length string, 246
Font property, 74
For Each…Next loop, 173–174 , 201, 228
For keyword, 172
Format Cells dialog box, 22
FormatNumber function, 220
Form module, definition of, 220
Formula palette feature, 116
Formula property, 66
FormulaR1C1 property, 62
For…Next loop, 170–172
FreeFile function, 241
Function keyword, 211
Function, quick test, 117
Function procedure, 109, 111–142

Add Procedure dialog box, 112
conditional logic in, 160–161
creating, 112–114
function names, 114
methods of running, 114–117

running from another VBA
procedure, 116–117

running from worksheet, 114–116
passing arguments to, 118–124

quick test of, 117
scoping VBA, 114
with Select Case statement, 153–157
specifying argument types, 120–121
testing, 124

Function procedures (functions), 114–117
Functions, 111

built-in functions, locating, 124
ensuring availability of custom functions,

117–118
InputBox function, 114, 120, 134–138

data types, determining and converting,
136–137

MsgBox function, 117, 121, 125–133
returning values from MsgBox

Function, 132 –133
passing arguments to function procedures,

118–124
passing arguments by reference and

value, 120–121
specifying argument types, 119–120
using optional arguments, 122–123

running function procedure
from another VBA procedure, 116–117
from worksheet, 114–115

testing, 124
understanding procedures, 112–14

G
GoTo method, 79

H
Help button, 129, 132, 139
Helpfile argument, 132

I
If statements, 152–153, 220, 248
If…Then statement, 144–148
If…Then…Else statement, 148–150,

152–153, 161
If…Then…ElseIf statement, 150–152
Immediate window, 41, 54–58, 62

in break window, 228
obtaining information, 57–58

Indent button, 46
Infinite loops, avoiding, 168
Informal variables, 86
Initializing array, 183
InputBox function, 33, 105, 106, 120, 134–138

data types, determining and converting,
136–137

INDEX 255

InputBox method, 138–142
data types returned, 139

Input function, 241
Insert Function dialog box, 115
Instance, 200
Instance of class, creating, 213–214
Integer (data type), 81
IntelliSense® technology, 42
IsArray function, 190–191
IsDate function, 103
IsEmpty (ActiveCell) condition, 153, 166
Is keyword, 153

with Case clause, 156
Item property, 60

K
Key argument, 204
Keyboard shortcut, running

macro using, 29–30

L
LBound function, 192
Len function, 118
Lifetime of variables, 99
Like operator, 80
Linefeed character, 126
List Constants button, 44
List Properties/Methods option, 42–43
Local variables, 96. See procedure-level

(local) variables
Locals window, 235–237
Lock argument, 241
Logical operators, 144
Long (data type), 81
Long VBA statements, breaking up, 79–80
LongLong (data type), 81
LongPtr (data type), 82
Loop(s), 163–177

avoiding infinite, 168
counter, 168
Do…Until, 164–168
Do…While, 164–168
exiting early, 174–175
For Each…Next, 173–174
For…Next, 170–171
paired statements, 172
While…Wend, 169–170

Looping statements, 163
avoiding infinite loops, 168
Do…Until loop statements, 164–167
Do…While loop statements, 164–167

For Each…Next loop, 173–174
exiting loops early, 174–175
For…Next loop, 170–171
loops and conditionals, 176–177
While…Wend loop, 169–170

Loop keyword, 164, 165, 176
Loops and conditionals, 176–177
Low-level file I/O (input/output), 240

M
Macro(s), 2

absolute or relative cell references, 11–15
assigning to keyboard shortcut, 29
attached with button, 34
cleaning up macro code, 22–23
comments, 20–21
development, setting up, 6–7
dialog box, 24
editing, 15–16
Excel macro-enabled file formats, 2–3
names, 9
planning, 8–9
printing macro code, 25
recorded macros, improving, 26
recording, 9
running, 28–35

avoiding shortcut conflicts, 30
from quick access toolbar, 30–33
using keyboard shortcut, 29–30
from worksheet button, 33

saving and renaming, 24–25
security settings, 3–5
stop recording button, 10
storing locations, 10
testing and debugging, 24

Macro code
adding comments, 21
cleaning up, 22–23
examining, 15–17

Macro-Enabled Template, 2
Macro-Enabled Workbook, 2
Macro recorder, 2, 8–26

editing recorded macros, 15–16
improving recorded macros, 26–27
planning, 8–9
printing macro code, 25–26
recording, 3
running, 23
saving and renaming,
testing and debugging, 24

Macro Security button, 7

256 INDEX

Macro security settings, 3–5
advanced options, 4
disabled macros, 4
enable all content, 4
trust center options, 6

Manipulations module, 51
Margin indicator bar, 169
Master macro, creation, 27–28
Method, 73–75
Methods of running macros, 28–35

Quick Access toolbar, 30–33
using keyboard shortcut, 29–30
from worksheet button, 33–35

Microsoft Excel application window, 32, 33,
35, 43, 51, 67

Microsoft Excel Object folder, 38
Microsoft Excel object model, 75–76
Microsoft Excel workbook, 24
Microsoft Office Security Options dialog, 5
MkDir method, 53, 54
Mode keyword, 241
Modify button, 30
Module(s), 38, 200, 207

form, 200
Module (Code) window, 16
Module-level variables, 96–98
Modules folder, 16, 224
moving, copying, and deleting cells, 63–64
MsgBox buttons argument, 128
MsgBox function, 117, 119, 121, 124, 125, 128,

130,
with arguments, 130– 131
parentheses, 133
returning values from, 132–133

Multiple conditions, writing VBA procedure
with, 157–160

N
Name property, 17
nested if…then statements, 152–153
Next keyword, 171
Normal View, 43
NOT operator, 80, 144
NumberFormat property, 67

O
Object, 16, 26, 33, 38, 42, 46, 52, 53, 73, 75,

106, 109, 200, 202, 207, 239
Object (data type), 83
Object Browser window, 101–102, 138,

built-in constant, 101

code template area, 49
locating procedures, 52–53
Project/Library drop-down, 47
search, 48
VBA instructions, 46–47
viewing Excel constants in, 101–102

Object collections, 200–207
custom collection

adding objects to, 202–204
creating and using, 207–220
declaring and using, 201
removing objects from, 204–207

working with, 200–207
Object variables in VBA procedures, 106–109

advantages, 108
Offset property, 60–61 ,

selecting cells using, 61
One-dimensional array, 179–180, 185–187
On Error GoTo 0, 239
On Error GoTo Label, 141, 147, 239
On Error Resume Next, 239
OnKey method, 151
Open method, 68
Open statement, 219, 240, 241
OperatingSystem property, 71
Operators, –
Option Base 0 statement, 183
Option Base 1 statement, 180, 183, 186
Option Explicit statement, 92, 94, 95–98
Option Private Module statement, 98
Optional arguments, 122–123
OR operator, 157
OrganizationName property, 71
Outdent button, 45

P
Page Break Preview, 43
Page Layout View, 43
ParamArray keyword, 194–195
Parameter Info button, 44
Passing arguments, 118–124

ByRef and ByVal, 122
optional arguments, 122–124
by reference and value, 120–121
specifying argument types, 119–120
testing function procedure, 124

Personal macro workbook, 10, 117
Plus (+), 39
Populating array, 183
Printing macro code, 25–26
Private keyword, 98, 100, 114, 209–210

INDEX 257

Private variables, 98, 212
Procedure (s), 111–142. See also Macro(s)

function, 111
property, 123

defining scope, 209–210
types of, 207

subroutine, 207
Procedure-level (local) variables, 96
Procedure, stopping, 222–223
Programs, adding repeating actions to, 45,

163–177
avoiding infinite loops, 168
Do…Until loop, 164–168
Do…While loop, 164–168
Do…While statement, 175–176
executing procedure line by line, 168–169
exiting loops early, 174–175
For Each…Next loop, 173–174
For…Next loop, 173–174
looping statements, 176
using loops and conditionals, 176–177
While…Wend loop, 169–170

Project Explorer window, 16, 38–39
activate, 38
standard toolbar, 38

Project-level variables, 98
Project/Library drop-down, 47, 48
Properties, 73–75
Properties/Methods pop-up menu, 43–44
Properties window, 16, 39–40
Property of object

changing, 77–78
object’s method, referring to, 78–79
referring to, 78
returning current value of, 78

Property Get procedure, 210, 212
Property Let procedures, 210, 212
Property procedures, 111

for CAsset class, 213
defining scope, 212
immediate exit from, 211
Property Set procedure, 211
writing, 212–213

Public constant, 100
Public keyword, 98, 99, 100, 114, 212, 213

Q
Question mark (?), 57
Quick Access toolbar (QAT), 30–33

adding new button to, 30
running macro from, 30

Quick Info button, 45
Quick Watch dialog box, 234–235

R
Raise method, 239,
Randomize statement, 185
Range object, 56, 59, 60, 66, 74, 79, 108,

139, 170
Range property, 59–60
Reclength, 241
Record Macro dialog box, 9, 10
ReDim statement, 188, 191, 198
Reference argument, 79
Reindexing collections, 207
Relational operators, 144
Relative cell references, 11–12
Remove method, 204,
RemoveFormats macro, 34
Removing Watch Expressions, 233
Resetting, of VBA procedures, 246–247
Resize property, 61
Resume Next statement, 242
RmDir method, 54
Rows and columns, working with, 64–65

counting, 65
obtaining information about worksheet, 65

RowOffset, 77
Run Sub/UserForm, 24, 92, 222, 226
Runtime errors, 85, 104, 221, 238, 242

S
SaveChanges parameter set, 75
Saving results of VBA statements, 80–81
Save Workspace button, 70
Scope of variables, 96–99

module-level variables, 96–97
procedure-level (local) variables, 96
project level, 98–99

Scroll argument, 79
SecretCode variable, 147
Security warning message, 3
Select Case statement, 153–157

specifying range of values in Case clause,
156–157

specifying multiple expressions in Case
clause, 157

using Is with Case clause, 156
Selection, 58, 60, 61, 62–63
Select method, 69
Set Next Statement option, 246
Shapes collection, 53

258 INDEX

Sheets collection, 74
Shift+F8, 244
Shortcut conflicts, 30
Show Next Statement option, 246
Simple and complex VBA statements, 76–80

breaking up long statements, 79–80
changing property of object, 77–78
referring to object’s method, 78–79
referring to property of object, 76–77
returning current value of object

property, 78
saving results, 80–81

Single (data type), 82
Sort function, 196
Split bar, 40
Static array, 199
Static keyword, 105, 212
Static variables in VBA procedures, 105–106
Stepping through VBA procedures, 243–247

and running to cursor, 245–246
setting Next statement, 246
showing Next statement, 247
stopping and resetting VBA

procedures, 247
Stop recording button, 10
Stop statement, 222
String (data type), 83
Sub keyword, 21, 25, 27, 28, 93, 153, 243
Subroutine procedures (subroutines), 111
Subscripted variable, 183
Subscript out of range, 24, 193,
Sum function, 118
Syntax, 42–47

T
Testing VBA procedures, 221–222

Err object, using, 239–242
guidelines for,
Locals windows and Cal Stack dialog box,

using, 235–237
navigating with bookmarks, 237–238
stepping through VBA procedure, 243–244
stopping procedure, 222–223
trapping errors, 238–239
using breakpoints, 223–224
using assert statement, 228–230
using immediate window in break

mode, 228
using quick watch, 234–235
using stop statement, 228–230
using watch window, 230–233

Three-dimensional array, 181
TimeValue function, 175
Title argument, 132
Trapping errors, 141, 238–239
Troubleshooting errors in arrays, 193–194
Trust Center options, 5. See also macro

security settings
Trust Center Settings hyperlink, 5
Trusted Documents list, 4
Trusted Locations, 7
Two-dimensional array, 180, 181
Type mismatch error, 194
Type statement, 83

U
UBound function, 192
Uncomment Block, 46
Underscore (_), 79, 80,
Union operator, 59
UsedRange property, 167
User-defined (data type), 83
Use Relative References option, 11

V
Value property, 66,
Values of VBA Expressions, 231–233
Variant (data type), 83
Variables, 83–100

advantages of using object variables, 108
using specific object variables, 109

assigning values to, 90–91
concatenation, 88
converting between data types, 102–105
creating, 90
data type, 88–89
declaration characters,
declaring, 85–86
declaring typed, 90

assigning values to variables, 90
determining data type of, 99
explicit variable declaration, 84
finding variable definition, 99
forcing declaration, 94–95
informal variables, 86–87
initialization, 91
lifetime of, 99
meaningful variable names, 84

creating variables, 84–85
declaring variables, 85–86

module-level, 96–97
option explicit in every module, 95–96

INDEX 259

scope of variables, 96
private variables, 98
procedure-level (local), 96
project-level, 98–99
reserved words, using, 84
scope of, 96–7
type, 87
VBA procedure with, 97–98

Variant data type, 81, 84, 85, 87, 122
VarType function, 99
VBA. See Visual Basic for Applications

(VBA)
VBAProject, 17
VBA programs, adding repeating actions,

163–167
avoiding infinite loops, 168
Do…Until loop, 164–168
Do…While loop statements, 164–168
executing procedure line by line, 168–169
exiting loops early, 174–175
For Each…Next loop, 173–174
For…Next loop, 170–173
looping statements, 163
using loops and conditionals, 176–177
While…Wend loop, 169–170

VBA statements, simple and complex, 76–80
breaking up long statements, 79–80
changing property of object, 77–78
referring to object’s method, 78–79
referring to property of object, 76–77
returning current value of object

property, 78
saving results, 80–81

vbSystemModal setting, 129, 130
vbYes constant, 155
View Macros, 15, 23, 28
Visual Basic Code window. See Code window
Visual Basic data types, 81
Visual basic editor (VBE), 1, 2, 15, 16, 23, 25,

31, 35, 37, 40, 42, ,51, 55, 71, 75, 90,
99, 101, 112, 145, 164, 185, 203, 207,
214, 221, 224

code window, 16–17, 20, 25, 38, 40–41
data types, 81–82
entering data and formatting cells, 66–67

finding out about cell formatting, 67
returning information entered in

worksheet, 66–67
Excel application, working with, 70–71
Immediate window, 60–61

obtaining information in, 65–66

Object Browser, 47–52
locating procedures with, 52

Project Explorer window, 38–39
Properties window, 39–40
rows and columns, working with, 64–65

obtaining information about
worksheet, 65

saving results of statements, 80
setting opions, 41
stepping through procedures, 243–247

setting next statement, 246–247
showing next statement, 247
stepping over procedure and running

to cursor, 244–245
stopping and resetting, 247

syntax and programming assistance, 42–46
Comment Block button, 46
Complete Word button, 45
Indent button, 45
List Constants button, 43–44
List Properties/Methods option, 42–43
Outdent button, 45
Parameter Info button, 44–45
Quick Info button, 45
Uncomment Block button, 46

understanding project explorer
window, 38–39

elements, 38
understanding properties windows, 39–40

ways to access properties windows, 38
using constants in procedures, 100–102

built-in-constants, 101
VBA object library, using, 53–55
Windows, working with, 69–70
workbooks, working with, 68–69
worksheet cells and ranges, working

with, 58–64
Cells property, using, 59–60
End property, using, 63
moving, copying, and deleting

cells, 63–64
Offset property, using, 60–61
Range property, using, 59
Resize property, using, 61–62

worksheets, working with, 69–69
Visual Basic for Applications (VBA), 4

breaking up long statements, 79–80
to create folder in windows, 53–54
data type conversion functions, –
data types, 103–104
Insert Function dialog box, 115

260 INDEX

library lists, 47
and macros, 2–3
object library, 53–54
object properties and methods, 39
object variables, 106–109
procedure with multiple conditions,

157–160
Select Case statement, 153–157
simple and complex statements, 76–80
static variables in, 105–106
stopping and resetting, 247
testing, 221–222

VLookup function, 226

W
Watch expressions, removing, 233
Watch Type, 231, 232
Watch Window, using, 230–233
Weekday function, 150
Weight property, 77
While…Wend loop, 169–170
Windows collection, 74
Windows, working with, 69–70
With keyword, 21

Workbook
collection, 74
working with, 70–71

Worksheet, 58–59
collection, 74
running function procedure from, –
working with, 114–117

Worksheet button, running macro from,
33–34

Worksheet cells and ranges, working, 58–64
Cells property, using, 59–60
End property, using, 63
moving, copying, and deleting cells, 63–64
Offset property, using, 60–61
Range property, using, 59
Resize property, using, 61–63
ThisWorkbook, 15

X
XLStart folder, 10, 117

Z
Zero-length string (“”), 104, 246

	Cover
	Title
	Copyright Page
	Contents
	Acknowledgments
	Introduction
	Chapter 1 Excel Macros: A Quick Start in Excel VBA Programming
	Macros and VBA
	Excel Macro-Enabled File Formats
	Macro Security Settings

	Enabling the Developer Tab in Excel
	Using the Built-In Macro Recorder
	Planning a Macro
	Recording a Macro
	Using Relative or Absolute References in Macros

	Editing Recorded Macros
	Macro Comments
	Cleaning Up the Macro Code

	Running a Macro
	Testing and Debugging a Macro
	Saving and Renaming a Macro
	Printing Macro Code

	Improving Your Recorded Macros
	Creating a Master Macro
	Various Methods of Running Macros
	Running the Macro Using a Keyboard Shortcut
	Running the Macro from the Quick Access Toolbar
	Running the Macro from a Worksheet Button

	Summary

	Chapter 2 Excel Programming Environment: A Quick Overview of its Tools and Features (VBE)
	Understanding the Project Explorer Window
	Understanding the Properties Window
	Understanding the Code Window
	Setting the VBE Options
	Syntax and Programming Assistance
	List Properties/Methods
	List Constants
	Parameter Info
	Quick Info
	Complete Word
	Indent/Outdent
	Comment Block/Uncomment Block

	Using the Object Browser
	Locating Procedures with the Object Browser

	Using the VBA Object Library
	Using the Immediate Window
	Obtaining Information in the Immediate Window

	Working with Worksheet Cells and Ranges
	Using the Range Property
	Using the Cells Property
	Using the Offset Property
	Using the Resize Property
	Using the End Property
	Moving, Copying, and Deleting Cells

	Working with Rows and Columns
	Obtaining Information about the Worksheet

	Entering Data and Formatting Cells
	Returning Information Entered in a Worksheet
	Finding Out about Cell Formatting

	Working with Workbooks and Worksheets
	Working with Windows
	Working with the Excel Application
	Summary

	Chapter 3 Excel VBA Fundamentals: A Quick Reference to Writing VBA Code
	Excel Objects, Properties, and Methods
	Microsoft Excel Object Model
	Writing Simple and Complex VBA Statements
	Breaking Up Long VBA Statements

	Saving Results of VBA Statements
	Introducing Data Types
	Using Variables
	How to Create Variables
	How to Declare Variables
	Specifying the Data Type of a Variabl
	Assigning Values to Variables
	Forcing Declaration of Variables
	Understanding the Scope of Variables
	Procedure-Level (Local) Variables
	Module-Level Variables
	Project-Level Variables

	Lifetime of Variables
	Finding a Variable Definition
	Determining a Data Type of a Variable

	Using Constants
	Built-In Constants

	Converting between Data Types
	Using Static Variables in VBA Procedures
	Using Object Variables in VBA Procedures
	Using Specific Object Variables

	Summary

	Chapter 4 Excel VBA Procedures: A Quick Guide to Writing Function Procedures
	Understanding Function Procedures
	Creating a Function Procedure

	Various Methods of Running Function ProceduresVarious Methods of Running Function Procedures
	Running a Function Procedure from a Worksheet
	Running a Function Procedure from Another VBA Procedure

	Ensuring Availability of Your Custom Functions
	Passing Arguments to Function Procedures
	Specifying Argument Types
	Passing Arguments by Reference and Value
	Using Optional Arguments

	Testing a Function Procedure
	Locating Built-In Functions
	Getting to Know the MsgBox Function
	Returning Values from the MsgBox Function

	Getting to Know the InputBox Function
	Determining and Converting Data Types

	Using the InputBox Method
	Summary

	Chapter 5 Adding Decisions to Excel VBA Programs: A Quick Introduction to Conditional Statements
	Relational and Logical Operators
	Using If...Then Statement
	Using If...Then...Else Statement
	Using If...Then...ElseIf Statement
	Nested If…Then Statements
	Using the Select Case Statement
	Using Is with the Case Clause
	Specifying a Range of Values in a Case Clause
	Specifying Multiple Expressions in a Case Clause

	Writing a VBA Procedure with Multiple Condition
	Using Conditional Logic in Function Procedures
	Summary

	Chapter 6 Adding Repeating Actions to Excel VBA Programs: A Quick Introduction to Looping Statements
	Introducing Looping Statements
	Understanding Do...While and Do...Until Loops
	Avoiding Infinite Loops
	Executing a Procedure Line by Line
	Understanding While...Wend Loop
	Understanding For...Next Loop
	Understanding For...Each...Next Loop
	Exiting Loops Early
	Using a Do…While Statement
	Using Loops and Conditionals
	Summary

	Chapter 7 Storing Multiple Values in Excel VBA Programs: A Quick Introduction to Working with Arrays
	Understanding Arrays
	Declaring Arrays
	Array Upper and Lower Bounds
	Initializing and Filling an Array
	Filling an Array Using Individual Assignment Statements
	Filling an Array Using the Array Function
	Filling an Array Using For…Next Loop

	Using a One-Dimensional Array
	Using a Two-Dimensional Array
	Using a Dynamic Array
	Using Array Functions
	The Array Function
	The IsArray Function
	The Erase Function
	The LBound and UBound Functions

	Troubleshooting Errors in Arrays
	Using the ParamArray Keyword
	Data Entry with an Array
	Sorting an Array with Excel
	Summary

	Chapter 8 Keeping Track of Multiple Values in Excel VBA Programs: A Quick Introduction to Creating and Using Collections
	Working with Collections of Objects
	Declaring and Using a Custom Collection
	Adding Objects to a Custom Collection
	Removing Objects from a Custom Collection

	Creating and Using Custom Objects
	Variable Declarations
	Defining the Properties for the Class
	Writing Property Procedures
	Writing Class Methods
	Creating an Instance of a Class

	Summary

	Chapter 9 Excel Tools for Testing and Debugging: A Quick Introduction to Testing VBA Programs
	Testing VBA Procedures
	Stopping a Procedure
	Using Breakpoints
	When to Use a Breakpoint

	Using the Immediate Window in Break Mode
	Using the Stop and Assert Statements
	Using the Watch Window
	Removing Watch Expressions

	Using Quick Watch
	Using the Locals Windows and the Call Stack Dialog Box
	Navigating with Bookmarks
	Trapping Errors
	Using the Err Object
	Setting Error Trapping Options in a VBA Project

	Stepping through VBA Procedures
	Stepping Over a Procedure and Running to Cursor
	Setting the Next Statement
	Showing the Next Statement
	Stopping and Resetting VBA Procedures

	Terminating a Procedure based on a Condition
	Summary

	Index

