

Deployment with Docker

Apply continuous integration models, deploy applications
quicker, and scale at large by putting Docker to work

Srdjan Grubor

BIRMINGHAM - MUMBAI

Deployment with Docker
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2017

Production reference: 1201117

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-900-7

www.packtpub.com

http://www.packtpub.com

Credits

Author
Srdjan Grubor

Copy Editor
Stuti Srivastava

Reviewer
Francisco Souza

Project Coordinator
Virginia Dias

Commissioning Editor
Vijin Boricha

Proofreader
Safis Editing

Acquisition Editor
Rahul Nair

Indexer
Aishwarya Gangawane

Content Development Editor
Sharon Raj

Graphics
Kirk D'Penha

Technical Editor
Prashant Chaudhari

Production Coordinator
Aparna Bhagat

About the Author
Srdjan Grubor is a software engineer who has worked on projects large and small for many
years now, with deployment sizes ranging from small to global. Currently, he is working on
solving the world's connectivity problems for Endless OS as a cloud engineer and was one
of the first people to become a Docker Certified Associate. He enjoys breaking things just to
see how they work, tinkering, and solving challenging problems. Srdjan believes that there
is always room for philanthropy in technology.

Acknowledgments
I'd like to thank every person and company that has spent time working on open source
software that has enabled me and countless others to improve their lives and learn things
through its use—don't ever stop contributing!

As for personal appreciation for help on this book, I'd also like to thank:

My family for being the most awesome family one can ask for
My girlfriend for being the best partner ever and also keeping me sane through
the stress of writing this book in my limited spare time
Dora (the kitty) for making me take breaks by sitting on the laptop keyboard
Galileo (the sugar glider) for being the cutest rebel pet in the world
Endless for introducing me to open source software and encouraging me to
contribute back
So many others that would fill pages and pages of this book

Thank you all from the bottom of my heart!

About the Reviewer
Francisco Souza is a Docker Captain and a senior software engineer working with video
and container technologies at the New York Times. Prior to that, he worked with the open
source PaaS Tsuru, created back in 2012 and later adapted to leverage Docker for container
deployment and management. Other than video and containers, Francisco also likes to
explore topics related to concurrency, parallelism, and distributed systems.

He has also contributed as a reviewer to Extending Docker, Russ McKendrick, Packt and
Docker Networking Cookbook, Jon Langemak, Packt.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.comand as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https:/​/​www.​packtpub. ​com/ ​mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https:/​/​www.​amazon. ​com/ ​dp/ ​1786469006.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786469006
https://www.amazon.com/dp/1786469006
https://www.amazon.com/dp/1786469006
https://www.amazon.com/dp/1786469006
https://www.amazon.com/dp/1786469006
https://www.amazon.com/dp/1786469006
https://www.amazon.com/dp/1786469006
https://www.amazon.com/dp/1786469006
https://www.amazon.com/dp/1786469006
https://www.amazon.com/dp/1786469006
https://www.amazon.com/dp/1786469006
https://www.amazon.com/dp/1786469006
https://www.amazon.com/dp/1786469006

I would like to mainly dedicate this book to you, the reader, as you were my primary
motivation for writing this book and always kept me typing. Without the thought that someone
would use this material to learn new things, the book itself would not have been written at all.

Table of Contents
Preface 1

Chapter 1: Containers - Not Just Another Buzzword 6

The what and why of containers 6
Docker's place 9

Introduction to Docker containers 9
The competition 10

rkt 10
System-level virtualization 11
Desktop application-level virtualizations 11

When should containerization be considered? 12
The ideal Docker deployment 14
The container mindset 15

The developer workflow 15
Summary 17

Chapter 2: Rolling Up the Sleeves 18

Installing Docker 18
Debugging containers 27

Seeing what the container sees 28
Our first Dockerfile 30

Breaking the cache 33
A container more practical 34

Extending another container with FROM 36
Ensuring the latest patches are included 36
Applying our custom NGINX configuration 37
Building and running 38

Service from scratch 41
Labels 43
Setting environment variables with ENV 43
Exposing ports 44
Container security layering with limited users 44
VOLUMEs and data that lives outside of the container 45
Setting the working directory 46
Adding files from the internet 46
Changing the current user 46

Table of Contents

[ii]

Putting it all together 47
Summary 51

Chapter 3: Service Decomposition 52

A quick review 52
Docker commands 53
Dockerfile commands 54

Writing a real service 55
An overview 55
What we are going to build 57
The implementation 58

Web server 58
Authentication 60

The database 61
The application server 62

The main application logic 64
Running it all together 69

Launching 71
Testing 72

Limitations and issues with our implementation 74
Fixing the critical issues 75

Using a local volume 75
Generating the credentials at runtime 77

Introducing Docker networking 78
Summary 80

Chapter 4: Scaling the Containers 81

Service discovery 81
A recap of Docker networking 82
Service Discovery in depth 82

Client-side discovery pattern 84
Server-side discovery pattern 85
Hybrid systems 85
Picking the (un)available options 86

Container orchestration 87
State reconciliation 88
Docker Swarm 89
Kubernetes 90
Apache Mesos/Marathon 91
Cloud-based offerings 92

Implementing orchestration 93
Setting up a Docker Swarm cluster 93

Initializing a Docker Swarm cluster 94

Table of Contents

[iii]

Deploying services 95
Cleaning up 99

Using Swarm to orchestrate our words service 99
The application server 100

index.js 100
The web server 102
Database 104
Deploying it all 105
The Docker stack 108
Clean up 110

Summary 111

Chapter 5: Keeping the Data Persistent 112

Docker image internals 112
How images are layered 113

Persisting the writable CoW layer(s) 114
Running your own image registry 116
Underlying storage driver 120

aufs 122
btrfs / zfs 122
overlay and overlay2 123
devicemapper 124

Cleanup of Docker storage 124
Manual cleanup 124
Automatic cleanup 125

Persistent storage 127
Node-local storage 128

Bind mounts 128
Read-only bind mounts 129

Named volumes 129
Relocatable volumes 132

Relocatable volume sync loss 138
UID/GID and security considerations with volumes 139
Summary 144

Chapter 6: Advanced Deployment Topics 145

Advanced debugging 145
Attaching to a container's process space 146

Debugging the Docker daemon 148
Advanced networking 149

Static host configuration 149
DNS configuration 151
Overlay networks 153
Docker built-in network mappings 153

Table of Contents

[iv]

Docker communication ports 154
High availability pipelines 154

Container messaging 155
Implementing our own messaging queue 159

package.json 159
index.js 159
Dockerfile 161

Advanced security 164
Mounting the Docker socket into the container 164
Host security scans 166
Read-only containers 168
Base system (package) updates 170
Privileged mode versus --cap-add and --cap-drop 171

Summary 174

Chapter 7: The Limits of Scaling and the Workarounds 175

Limiting service resources 175
RAM limits 176
CPU limits 184

Pitfall avoidance 188
ulimits 188
Max file descriptors 191
Socket buffers 192
Ephemeral ports 193
Netfilter tweaks 195
Multi-service containers 196

Zero-downtime deployments 198
Rolling service restarts 199
Blue-green deployments 201
Blue-turquoise-green deployments 203

Summary 204

Chapter 8: Building Our Own Platform 205

Configuration management 206
Ansible 207

Installation 208
Basics 209
Usage 210

Amazon Web Services setup 216
Creating an account 217
Getting API keys 218
 Using the API keys 221

Table of Contents

[v]

HashiCorp Packer 222
Installation 222
Usage 223

Choosing the right AMI base image 225
Building the AMI 227

Deployments to AWS 229
The road to automated infrastructure deployment 229

Running the deployment and tear-down playbooks 235
Continuous integration/Continuous delivery 238

Resource considerations 246
First-deploy circular dependency 246
Further generic CI/CD uses 248

Summary 249

Chapter 9: Exploring the Largest-Scale Deployments 250

Maintaining quorums 251
Node automation 254

Reactive auto-scaling 256
Predictive auto-scaling 256

Monitoring 257
Evaluating next-gen technologies 259

Technological needs 260
Popularity 261
A team's technical competency 265

Summary 266

Index 267

Preface
Microservices and containers are here to stay, and in today's world Docker is emerging as
the de facto standard for scalability. Deploying Docker into production is considered to be
one of the major pain points of developing large-scale infrastructure and the documentation
that you can find online leaves a lot to be desired. With this book, you will get exposure to
the various tools, techniques, and workarounds available for the development and
deployment of a Docker infrastructure in your own cloud, based on the author's real-world
experiences of doing the same. You will learn everything you wanted to know to effectively
scale your deployments globally and build a resilient and scalable containerized cloud
platform for yourself.

What this book covers
Chapter 1, Containers – Not Just Another Buzzword, examines what the current approaches
are to deploying services and why containers, and Docker specifically, are eclipsing other
forms of infrastructure deployment.

Chapter 2, Rolling Up the Sleeves, covers all the necessary steps to set up and run a small
local service based on Docker. We will cover how to install Docker, run it, and get a quick
overview of the Docker CLI. With that knowledge, we will write a basic Docker container
and see how to run it locally.

Chapter 3, Service Decomposition, covers how to take the knowledge from the previous
chapter and use it to create and build additional of a database and an app server container,
mirroring simple decomposed microservice deployments.

Chapter 4, Scaling the Containers, talks about scaling horizontally with multiple instances of
the same container. We will cover service discovery, how to deploy one to make the scaling
of a module transparent to the rest of the infrastructure, and its various pros and cons
depending on the implementation, with a quick look into horizontal node scaling.

Chapter 5, Keeping the Data Persistent, covers data persistence for your containers. We will
cover node-local storage, transient storage, and persistent volumes and their intricacies. We
will also spend a bit more time on Docker image layering and some pitfalls.

Preface

[2]

Chapter 6, Advanced Deployment Topics, adds isolation and messaging to the cluster to
increase the security and stability of the services. Other security consideration in Docker
deployments and their trade-offs will be covered here.

Chapter 7, The Limits of Scaling and the Workarounds, covers all the issues that you might
come across as you scale beyond your basic RESTful service needs. We will dig deep into
the issues that you will find with default deployments and how to work around them with
minimal hassle, along with handling code version changes and higher-level management
systems.

Chapter 8, Building Our Own Platform, helps us build our own mini Platform-as-a-Service
(PaaS) in this chapter. We will cover everything from configuration management to
deployment in a cloud-based environment that you can use to bootstrap your own cloud.

Chapter 9, Exploring the Largest-Scale Deployments, covers what we built up, and extends
into the theoretical and real-world examples of the largest-scale deployments of Docker it
also covers any development on the horizon that the reader should keep an eye out for.

What you need for this book
Before you start with the book, make sure you have the following:

Intel or AMD-based x86_64 machine
At least 2 GB of RAM
At least 10 GB of hard drive space
Linux (Ubuntu, Debian, CentOS, RHEL, SUSE, or Fedora), Windows 10,
Windows Server 2016, or macOS
Internet connection

Who this book is for
This book is aimed at system administrators, developers, DevOps engineers, and software
engineers who want to get concrete hands-on experience deploying multitier web
applications and containerized microservices using Docker. It is meant for anyone who has
worked on deploying services in some fashion and wants to take their small-scale setups to
the next order of magnitude or wants to learn more about it.

Preface

[3]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, folder names, filenames, file extensions, pathnames, dummy URLs,
user input, and Twitter handles are shown as follows: "If you go to
http://127.0.0.1:8080 in your browser again, you will see that our app works just like
before!"

A block of code is set as follows:

 # Make sure we are fully up to date
 RUN apt-get update -q && \
 apt-get dist-upgrade -y && \
 apt-get clean && \
 apt-get autoclean

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 # Make sure we are fully up to date
 RUN apt-get update -q && \
 apt-get dist-upgrade -y && \
 apt-get clean && \
 apt-get autoclean

Any command-line input or output is written as follows:

$ docker swarm leave --force
Node left the swarm.

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ ​/​www.
packtpub.​com. If you purchased this book elsewhere, you can visit http:/ ​/​www. ​packtpub.
com/​support and register to have the files emailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Deployment- ​with- ​Docker/ ​. We also have other code bundles from our
rich catalog of books and videos available at https:/ ​/​github. ​com/ ​PacktPublishing/ ​.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ ​/ ​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​DeploymentwithDocker_ ​ColorImages. ​pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ ​/​www. ​packtpub. ​com/ ​submit- ​errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ ​/​www. ​packtpub. ​com/
books/​content/​support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/Deployment-with-Docker/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeploymentwithDocker_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Containers - Not Just Another

Buzzword
In technology, sometimes the jumps in progress are small but, as is the case with
containerization, the jumps have been massive and turn the long-held practices and
teachings completely upside down. With this book, we will take you from running a tiny
service to building elastically scalable systems using containerization with Docker, the
cornerstone of this revolution. We will perform a steady but consistent ramp-up through
the basic blocks with a focus on the inner workings of Docker, and, as we continue, we will
try to spend a majority of the time in the world of complex deployments and their
considerations.

Let’s take a look at what we will cover in this chapter:

What are containers and why do we need them?

Docker’s place in the container world

Thinking with a container mindset

The what and why of containers
We can’t start talking about Docker without actually covering the ideas that make it such a
powerful tool. A container, at the most basic level, is an isolated user-space environment for
a given discrete set of functionality. In other words, it is a way to modularize a system (or a
part of one) into pieces that are much easier to manage and maintain while often also being
very resilient to failures.

Containers - Not Just Another Buzzword Chapter 1

[7]

In practice, this net gain is never free and requires some investment in the adoption and
implementation of new tooling (such as Docker), but the change pays heavy dividends to
the adopters in a drastic reduction of development, maintenance, and scaling costs over its
lifetime.

At this point, you might ask this: how exactly are containers able to provide such huge
benefits? To understand this, we first need to take a look at deployments before such
tooling was available.

In the earlier days of deployments, the process for deploying a service would go something
like this:

Developer would write some code.1.
Operations would deploy that code.2.
If there were any problems in deployment, the operations team would tell the3.
developer to fix something and we would go back to step 1.

A simplification of this process would look something like this:

dev machine => code => ops => bare-metal hosts

The developer would have to wait for the whole process to bounce back for them to try to
write a fix anytime there was a problem. What is even worse, operations groups would
often have to use various arcane forms of magic to ensure that the code that developers
gave them can actually run on deployment machines, as differences in library versions, OS
patches, and language compilers/interpreters were all high risk for failures and likely to
spend a huge amount of time in this long cycle of break-patch-deploy attempts.

The next step in the evolution of deployments came to improve this workflow with the
virtualization of bare-metal hosts as manual maintenance of a heterogeneous mix of
machines and environments is a complete nightmare even when they were in single-digit
counts. Early tools such as chroot came out in the late 70s but were later replaced (though
not fully) with hypervisors such as Xen, KVM, Hyper-V, and a few others, which not only
reduced the management complexity of larger systems, but also provided Ops and
developers both with a deployment environment that was more consistent as well as more
computationally dense:

dev machine => code => ops => n hosts * VM deployments per host

This helped out in the reduction of failures at the end of the pipeline, but the path from the
developer to the deployment was still a risk as the VM environments could very easily get
out of sync with the developers.

Containers - Not Just Another Buzzword Chapter 1

[8]

From here, if we really try to figure out how to make this system better, we can already see
how Docker and other container technologies are the organic next step. By making the
developers' sandbox environment as close as we can get to the one in production, a
developer with an adequately functional container system can literally bypass the ops step,
be sure that the code will work on the deployment environment, and prevent any lengthy
rewrite cycles due to the overhead of multiple group interactions:

dev machine => container => n hosts * VM deployments per host

With Ops being needed primarily in the early stages of system setup, developers can now
be empowered to take their code directly from the idea all the way to the user with the
confidence that a majority of issues that they will find will be ones that they will be able to
fix.

If you consider this the new model of deploying services, it is very reasonable to
understand why we have DevOps roles nowadays, why there is such a buzz around
Platform as a Service (PaaS) setups, and how so many tech giants can apply a change to a
service used by millions at a time within 15 minutes with something as simple as git push
origin by a developer without any other interactions with the system.

But the benefits don't stop there either! If you have many little containers everywhere and if
you have increased or decreased demand for a service, you can add or eliminate a portion
of your host machines, and if the container orchestration is properly done, there will be zero
downtime and zero user-noticeable changes on scaling changes. This comes in extremely
handy to providers of services that need to handle variable loads at different times--think of
Netflix and their peak viewership times as an example. In most cases, these can also be
automated on almost all cloud platforms (that is, AWS Auto Scaling Groups, Google
Cluster Autoscaler, and Azure Autoscale) so that if some triggers occur or there are changes
in resource consumption, the service will automatically scale up and down the number of
hosts to handle the load. By automating all these processes, your PaaS can pretty much be a
fire-and-forget flexible layer, on top of which developers can worry about things that really
matter and not waste time with things such as trying to figure out whether some system
library is installed on deployment hosts.

Now don't get me wrong; making one of these amazing PaaS services is not an easy task by
any stretch of imagination, and the road is covered in countless hidden traps but if you
want to be able to sleep soundly throughout the night without phone calls from angry
customers, bosses, or coworkers, you must strive to be as close as you can to these ideal
setups regardless of whether you are a developer or not.

Containers - Not Just Another Buzzword Chapter 1

[9]

Docker's place
So far, we have talked a lot about containers but haven't mentioned Docker yet. While
Docker has been emerging as the de facto standard in containerization, it is currently one of
many competing technologies in this space, and what is relevant today may not be
tomorrow. For this reason, we will cover a little bit of the container ecosystem so that if you
see shifts occurring in this space, don't hesitate to try another solution, as picking the right
tool for the job almost always beats out trying to, as the saying goes, fit a square peg in a
round hole.

While most people know Docker as the Command-line Interface (CLI) tool, the Docker
platform extends above and beyond that to include tooling to create and manage clusters,
handle persistent storage, build and share Docker containers, and many others, but for now,
we will focus on the most important part of that ecosystem: the Docker container.

Introduction to Docker containers
Docker containers, in essence, are a grouping of a number of filesystem layers that are
stacked on top of each other in a sequence to create the final layout that is then run in an
isolated environment by the host machine's kernel. Each layer describes which files have
been added, modified, and/or deleted relative to its previous parent layer. For example, you
have a base layer with a file /foo/bar, and the next layer adds a file /foo/baz. When the
container starts, it will combine the layers in order and the resulting container will have
both /foo/bar and /foo/baz. This process is repeated for any new layer to end up with a
fully composed filesystem to run the specified service or services.

Think of the arrangement of the filesystem layers in an image as the intricate layering of
sounds in a symphony: you have the percussion instruments in the back to provide the base
for the sound, wind instruments a bit closer to drive the movements, and in the front, the
string instruments with the lead melody. Together, it creates a pleasing end result. In the
case of Docker, you generally have the base layers set up the main OS layers and
configuration, the service infrastructure layers go on top of that (interpreter installation, the
compilation of helpers, and so on), and the final image that you run is finally topped with
the actual service code. For now, this is all you will need to know, but we will cover this
topic in much more detail in the next chapter.

In essence, Docker in its current form is a platform that allows easy and fast development of
isolated (or not depending on how the service is configured) Linux and Windows services
within containers that are scalable, easily interchangeable, and easily distributable.

Containers - Not Just Another Buzzword Chapter 1

[10]

The competition
Before we get too deep into Docker itself, let us also cover some of the current competitors
in broad strokes and see how they differ from Docker itself. The curious thing about almost
all of them is that they are generally a form of abstraction around Linux control groups
(cgroups) and namespaces that limit the use of Linux host's physical resources and isolate
groups of processes from each other, respectively. While almost every tooling mentioned
here provides some sort of containerization of resources, it can differ greatly in the depth of
isolation, implementation security, and/or the container distribution.

rkt
rkt, often written as Rocket, is the closest competing application containerization platform
from CoreOS that was started as a more secure application container runtime. Over time,
Docker has closed a number of its security failings but unlike rkt, which runs with limited
privileges as a user service, Docker's main service runs as root. This means that if someone
manages to break out of the Docker container, they will automatically have full access to the
host's root, which is obviously a really bad thing from an operations perspective while with
rkt, the hacker would also need to escalate their privilege from the limited user. While this
comparison here isn't painting Docker in great light from a security standpoint, if its
development trajectory is to be extrapolated, it is possible and likely that this issue will be
heavily mitigated and/or fixed in the future.

Another interesting difference is that unlike Docker, which is designed to run a single
process within the container, rkt can run multiple processes within a container. This makes
deploying multiple services within a single container much easier. Now, having said that,
you actually can run multiple processes within a Docker container (we will cover this at a
later point in the book) but it is a great pain to set that up properly but I did find in practice
that the pressure to keep services and containers based on a single process really pushes the
developer to create containers as true microservices instead of treating them as mini VMs so
don't consider this necessarily as a problem.

While there are many other smaller reasons to choose Docker over rkt and vice versa, one
massive thing cannot be ignored: the rate of adoption. While rkt is a bit younger, Docker
has been adopted by almost all big tech giants, and there doesn't seem to be any sign of
stopping the trend. With this in mind, if you need to work on microservices today, the
choice is probably very clear but as with any tech field, the ecosystem may look much
differently in a year or even just a couple of months.

Containers - Not Just Another Buzzword Chapter 1

[11]

System-level virtualization
On the opposite side, we have platforms for working with full system images instead of
applications like LXD, OpenVZ, KVM, and a few others. They, unlike Docker and rkt, are
designed to provide you with full support for all of the virtualized system services but at
the cost of much higher resource usage purely by its definition. While having separate
system containers on a host is needed for things like better security, isolation, and possibly
compatibility, almost the entire use of these containers from personal experience can be
moved to an application-level virtualization system with a bit of work to provide better
resource use profile and higher modularity at a slight increase of cost in creating the initial
infrastructure. A sensible rule to follow here is that if you are writing applications and
services, you should probably use application-level virtualization but if you are providing
VMs to the end user or want much more isolation between services you should use a
system-level virtualization.

Desktop application-level virtualizations
Flatpak, AppImage, Snaps, and other similar technologies also provide isolation and
packaging for single-application level containers, but unlike Docker, all of them target the
deployment of desktop applications and do not have as precise control over the container
life cycle (that is starting, stopping, forced termination, and so on) nor do they generally
provide layered images. Instead, most of these tools have nice wrapper Graphical User
Interfaces (GUIs) and provide a significantly better workflow for installing, running, and
updating desktop applications. While most have large overlaps with Docker due to the
same underlying reliance on mentioned cgroups and namespaces, these application-level
virtualization platforms do not traditionally handle server applications (applications that
run without UI components) and vice versa. Since this field is still young and the space they
all cover is relatively small, you can probably expect consolidations and cross-overs so in
this case it would be either for Docker to enter the desktop application delivery space
and/or for one or more of these competing technologies to try to support server
applications.

Containers - Not Just Another Buzzword Chapter 1

[12]

When should containerization be
considered?
We've covered a lot of ground so far, but there is an important aspect that we did not cover
yet but which is an extremely important thing to evaluate as containers do not make sense
in a large array of circumstances as the end deployment target regardless of how much
buzz there is around this concept, so we will cover some general use cases where this type
of platform should really be considered (or not). While containerization should be the end
goal in most cases from an operations perspective and offers huge dividends with minimal
effort when injected into the development process, turning deployment machines into a
containerized platform is a pretty tricky process, and if you will not gain tangible benefits
from it, you might as well dedicate this time to something that will bring real and tangible
value to your services.

Let's start this by covering scaling thresholds first. If your services as a whole can
completely fit and run well on a relatively small or medium virtual machine or a bare-metal
host and you don't anticipate sudden scaling needs, virtualization on the deployment
machines will lead you down the path of pain that really isn't warranted in most cases. The
high front-loaded costs of setting up even a benign but robust virtualized setup will usually
be better spent on developing service features at that level.

Containers - Not Just Another Buzzword Chapter 1

[13]

If you see increases in demand with a service backed with a VM or bare-metal host, you can
always scale up to a larger host (vertical scaling) and refocus your team but for anything
less than that, you probably shouldn't go that route. There have been many cases where a
business has spent months working to get the container technology implemented since it is
so popular, only to lose their customers due to lack of development resources and having to
shut their doors.

Now that your system is maxing out the limits of vertical scalability, is it a good time to add
things such as Docker clusters to the mix? The real answer is "maybe". If your services are
homogeneous and consistent across hosts, such as sharded or clustered databases or simple
APIs, in most cases, this still isn't the right time either as you can scale this system easily
with host images and some sort of a load balancer. If you're opting for a bit more fanciness,
you can use a cloud-based Database as a Service (DBaaS) such as Amazon RDS, Microsoft
DocumentDB, or Google BigQuery and auto-scale service hosts up or down through the
same provider (or even a different one) based on the required level of performance.

If there is ample foreshadowing of service variety beyond this, the need for a much shorter
pipeline from developer to deployment, rising complexity, or exponential growth, you
should consider each of these as triggers to re-evaluate your pros/cons but there is no clear
threshold that will be a clear cut-off. A good rule of thumb here, though, is that if you have
a slow period for your team it won't hurt to explore the containerization options or to gear
up your skills in this space, but be very careful to not underestimate the time it would take
to properly set up such a platform regardless of how easy the Getting Started instructions
look on many of these tools.

With this all, what are the clear signs that you need to get containers into your workflow as
soon as you can? There can be many subtle hints here but the following list covers the ones
that should immediately bring the containers topic up for discussion if the answer is yes, as
the benefits greatly outweigh the time investment into your service platform:

Do you have more than 10 unique, discrete, and interconnected services in your
deployment?
Do you have three or more programming languages you need to support on the
hosts?
Are your ops resources constantly deploying and upgrading services?
Do any of your services require "four 9s" (99.99%) or better availability?
Do you have a recurring pattern of services breaking in deployments because
developers are not considerate of the environment that the services will run in?
Do you have a talented Dev or Ops team that's sitting idle?
Does your project have a burning hole in the wallet?

Containers - Not Just Another Buzzword Chapter 1

[14]

Okay, maybe the last one is a bit of a joke but it is in the list to illustrate, in somewhat of a
sarcastic tone, that at the time of writing this getting a PaaS platform operational, stable,
and secure is neither easy nor cheap regardless of whether your currency is time or money.
Many will try to trick you into the idea that you should always use containers and make
everything Dockerized, but keep a skeptical mindset and make sure that you evaluate your
options with care.

The ideal Docker deployment
Now that we have the real-talk parts done with, let us say that we are truly ready to tackle
containers and Docker for an imaginary service. We covered bits and pieces of this earlier in
the chapter, but we will here concretely define what our ideal requirements would look like
if we had ample time to work on them:

Developers should be able to deploy a new service without any need for ops
resources
The system can auto-discover new instances of services running
The system is flexibly scalable both up and down
On desired code commits, the new code will automatically get deployed without
Dev or Ops intervention
You can seamlessly handle degraded nodes and services without interruption
You are capable of using the full extent of the resources available on hosts (RAM,
CPUs, and so on)
Nodes should almost never need to be accessed individually by developers

If these are the requirements, you will be happy to know that almost all of them are feasible
to a large extent and that we will cover almost all of them in detail in this book. For many of
them, we will need to get into Docker way deeper and beyond most of the materials you
will find elsewhere, but there is no point in teaching you deployments that you cannot take
to the field that only print out "Hello World"s.

As we explore each topic in the following chapters, we will be sure to cover any pitfalls as
there are many such complex system interactions. Some will be obvious to you, but many
probably will not (for example, the PID1 issue), as the tooling in this space is relatively
young and many tools critical for the Docker ecosystem are not even version 1.0 or have
reached version 1.0 only recently.

Containers - Not Just Another Buzzword Chapter 1

[15]

Thus, you should consider this technology space to still be in its early stages of
development so be realistic, don't expect miracles, and expect a healthy dose of little
"gotchas". Keep also in mind that some of the biggest tech giants have been using Docker
for a long time now (Red Hat, Microsoft, Google, IBM, and so on), so don't get scared either.

To get started and really begin our journey, we need to first reconsider the way we think
about services.

The container mindset
Today, as we have somewhat covered earlier in the chapter, vast majority of services
deployed today are a big mess of ad hoc or manually connected and configured pieces that
tend to break apart as soon as a single piece is changed or moved. It is easy to imagine this
as a tower of cards where the piece that needs changing is often in the middle of it, with
risks taking the whole structure down. Small-to-medium projects and talented Dev and Ops
team can mostly manage this level of complexity but it is really not a scalable methodology.

The developer workflow
Even if you're not working on a PaaS system, it is good to consider each piece of a service as
something that should have a consistent environment between the developer and final
deployment hosts, be able to run anywhere with minimal changes, and is modular enough
to be swapped out with an API-compatible analogue if needed. For many of these cases,
even a local Docker usage can go far in making the deployments easier as you can isolate
each component into small pieces that don't change as your development environment
changes.

To illustrate this, imagine a practical case where we are writing a simple web service that
talks to a database on a system that is based on the latest Ubuntu, but our deployment
environment is some iteration of CentOS. In this case, due to their vastly different support
cycle lengths coordinating between versions and libraries will be extremely difficult, so as a
developer, you can use Docker to provide you with the same version of the database that
CentOS would have, and you can test your service in a CentOS-based container to ensure
that all the libraries and dependencies can work when it gets deployed. This process will
improve the development workflow even if the real deployment hosts have no
containerization.

Containers - Not Just Another Buzzword Chapter 1

[16]

Now we will take this example in a slightly more realistic direction: what if you need to run
your service without modifications of code on all currently supported versions of CentOS?

With Docker, you can have a container for each version of the OS that you can test the
service against in order to ensure that you are not going to get any surprises. For additional
points, you can automate a test suite runner to launch each one of the OS version containers
one by one (or even better, in parallel) to run your whole test suite against them
automatically on any code changes. With just these few small tweaks, we have taken an ad-
hoc service that would constantly break in production to something that you almost never
have to worry about as you can be confident that it will work when deployed, which is
really powerful tooling to have.

If you extend this process, you can locally create Docker recipes (Dockerfiles), which we
will get into in the next chapter in detail, with the exact set of steps needed to get your
service running from a vanilla CentOS installation to fully capable of running the service.
These steps can be taken with minimal changes by the ops teams as input to their
automated configuration management (CM) system, such as Ansible, Salt, Puppet, or Chef,
to ensure that the hosts will have the exact baseline that is required for things to run
properly. This codified transfer of exact steps needed on the end target written by the
service developer is exactly why Docker is such a powerful tool.

As is hopefully becoming apparent, Docker as a tool not only improves your development
processes if they're on the deployment machines, but it can also be used throughout the
process to standardize your environments and thus increase the efficiency of almost every
part of the deployment pipeline. With Docker, you will most likely forget the infamous
phrase that instills dread in every Ops person: "it works fine on my machine!". This, by
itself, should be enough to make you consider splicing in container-based workflows even if
your deployment infrastructure doesn't support containers.

The bottom line here that we've been dancing around and which you
should always consider is that with the current tooling available, turning
your whole deployment infrastructure into a container-based one is
slightly difficult, but the addition of containers in any other part of your
development process is generally not too difficult and can provide
exponential workflow improvements to your team.

Containers - Not Just Another Buzzword Chapter 1

[17]

Summary
In this chapter, we followed along the history of deployments and looked at how containers
with Docker bring us closer to this new world of micro-services. Docker was examined with
a high-level overview about which parts we are most interested in. We covered the
competition and where Docker fits into the ecosystem with some use cases. Lastly, we also
covered when you should - and more importantly, when you shouldn't - consider
containers in your infrastructure and development workflow.

In the next chapter, we will finally get our hands dirty and look into how to install and run
Docker images along with creating our first Docker image, so be sure to stick around.

2
Rolling Up the Sleeves

In the previous chapter, we looked at what containers are, what role they can fill in your
infrastructure, and why Docker is the one leading the pack in service deployments. Now
that we know what Docker is and isn't, we can get started with the basics. In this chapter,
we will cover the following topics:

Installing Docker
Extending a container
Building a container
Debugging containers

Installing Docker
The installation of Docker varies greatly between operating systems, but for most systems,
there are detailed instructions at https:/ ​/​docs. ​docker. ​com/ ​engine/ ​installation/ ​. Two
levels of Docker are generally available: the Community Edition (CE) and the Enterprise
Edition (EE). While slightly different, for almost everything that we will work on in this
book, the Community Edition is perfectly functional and will suffice in every way. Once
you reach levels of scale where you need much more advanced features, such as security
scans, LDAP, and technical support, the Enterprise Edition might make sense. As would be
expected, the Enterprise Edition is not free, and you can take a look at https:/ ​/​www.
docker.​com/​pricing to see how these editions differ.

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://www.docker.com/pricing
https://www.docker.com/pricing
https://www.docker.com/pricing
https://www.docker.com/pricing
https://www.docker.com/pricing
https://www.docker.com/pricing
https://www.docker.com/pricing
https://www.docker.com/pricing
https://www.docker.com/pricing
https://www.docker.com/pricing

Rolling Up the Sleeves Chapter 2

[19]

For our examples and any OS-specific commands in this book, from here on, we will be
using Ubuntu's Long Term Support (LTS) version, with Ubuntu being currently the most
popular Linux distribution. The latest version of the LTS product available is 16.04, which
will be the base for our CLI interactions and examples but by the time you read this book,
18.04 might be available too. Keep in mind that outside of the installation part, most code
and examples are very portable and should generally run on other platforms, so even if
there are changes needed, they should be minimal. That said, developing Docker services
on non-Linux platforms may not be as refined or stable due to the fact that Docker is
generally used to deploy Linux-based services on Linux machines even though other niche
cases are supported to some extent. Microsoft has been making significant advancements in
this space with Docker for Windows since they have been trying to push their own
container strategy, so keep an eye on their progress as it may become a pretty competent
development platform.

Some manual networking examples in later chapters may not work fully
in macOS due to the different implementation of this subsystem for that
platform. For those, using a virtual machine with Ubuntu LTS is advised if
you want to follow along.

So, with our clean Ubuntu 16.04 LTS machine, VM, or a compatible OS, let's get Docker
installed. While the Docker package is already available on apt repositories within the
distribution, I would highly discourage installation this way, as these versions are usually
much older. While this is not a problem for most software, for fast-moving projects such as
Docker, it will put you at a significant disadvantage when it comes to support for the latest
features. For this reason, we will install Docker from its own apt repository:

Warning! There are couple of other ways to install Docker using many of
the following tools, but unless absolutely necessary, installation with
the sudo curl -sSL https://somesite.com/ | sh pattern or
anything similar to it is a very dangerous thing to do as you are rooting
your own box for a website without checking what the script does. This
execution pattern also leaves minimal evidence of what was done behind.
Additionally mid-stream exception can corrupt the download but still
execute, partially causing damage, and you are only relying on Transport
Layer Security (TLS), for which hundreds of organizations across the
world can create fake certificates. In other words, if you care about your
machine, you should never, ever try to install software in this way unless,
of course, the software vendor is clueless about security and they force
you to do this, in which case, you are at their mercy.

Rolling Up the Sleeves Chapter 2

[20]

$ # Install the pre-requisites
$ sudo apt install -y apt-transport-https \
 curl

$ # Add Docker's signing key into our apt configuration to ensure they are
the only ones that can send us updates. This key should match the one that
the apt repository is using so check the online installation instruction if
you see "NO_PUBKEY <key_id>" errors.
$ apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 \
 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D

$ # Add the repository location to apt. Your URL may be different depending
on if Xenial is your distribution.
$ echo "deb https://apt.dockerproject.org/repo ubuntu-xenial main" | sudo
tee -a /etc/apt/sources.list.d/docker.list

$ # Update the apt listings and install Docker
$ sudo apt update
$ sudo apt install docker-engine

By default, Docker will require sudo (or root) prefixed to all of your
commands to run including ones in this book that don't have it explicitly
mentioned. Generally, for development machines, this is a big pain to deal
with so I might mention, but strongly discourage, that you can also add
your current user to the docker group so that you do not need to prefix
every Docker command with sudo:

Add user to group with usermod (for example $ sudo1.
usermod -aG docker $USER).

Fully log out and log back in (groups are evaluated only on2.
session start).

Keep in mind that this is a huge security hole that can allow a local user to
escalate to root privileges trivially so never, under any circumstance, do
this on any server that will sit on the Internet.

If all of the preceding commands work as expected, you will be able to see whether Docker
is installed:

$ docker --version
Docker version 17.05.0-ce, build 89658be

Rolling Up the Sleeves Chapter 2

[21]

Having Docker installed without anything to run is pretty useless, so let us see whether we
can get an image that we can run locally. Our choices here would be to either make our own
image from scratch or use something that's already built. Given that a big reason why
Docker has reached such high adoption rates is its ease of sharing of images through
Docker Hub (https:/ ​/ ​hub. ​docker. ​com/ ​) and we're just starting out, we will delay creating
our own image for a little bit to explore this site, a centralized place for publishing and
downloading Docker images.

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Rolling Up the Sleeves Chapter 2

[22]

Behind this non-descriptive and bland page is the storage of thousands of Docker images,
and since we are not interested in publishing images right now, we can just click on the
Explore button in the top-right corner of the page to see what images are available:

As you can see, this lists the most popular images at the time of writing, but you can look
for specific ones through the Search box in the upper-left corner as well. For now, as
mentioned a while ago, we will not be spending too much time here, but it will be valuable
for you to know how to run images from Docker Hub, so we will try to pull and run one of
them to show you how it is done.

Rolling Up the Sleeves Chapter 2

[23]

The top container available here right now seems to be NGINX, so we will try to run that in
our Docker environment. If you have not worked with NGINX before, it is a high-
performance web server that is used by a large number of websites on the internet. At this
stage, we just want to get the feel for running these containers, so let us see how that is
done:

$ # Pull the image from the server to our local repository
$ docker pull nginx
Using default tag: latest
latest: Pulling from library/nginx
94ed0c431eb5: Pull complete
9406c100a1c3: Pull complete
aa74daafd50c: Pull complete
Digest:
sha256:788fa27763db6d69ad3444e8ba72f947df9e7e163bad7c1f5614f8fd27a311c3
Status: Downloaded newer image for nginx:latest

The pull command pulls any and all layers that compose this image. In this case, the
NGINX image is based on three stacked layers and has a hash of 788fa277..27a311c3,
and since we didn't specify a specific version that we wanted, we got the default tag, which
is latest. With this single command, we have retrieved the NGINX image from Docker
Hub so that we can run it locally. If we wanted to use a different tag or pull from a different
server, the command gets the more expressive form similar to docker pull
<hostname_or_ip>:<port>/<tag_name> , but we will cover these advanced usages in
later chapters.

With the image now sitting in our local Docker storage (usually in /var/lib/docker), we
can try to run it. NGINX has an absolute sea of possible options that you can examine in
further detail at https:/ ​/ ​hub. ​docker. ​com/​_ ​/​nginx/ ​, but we are interested in just starting
the image for now:

$ docker run nginx

You probably noticed that nothing is happening, but do not worry as this is expected.
Sadly, this command by itself is not enough as NGINX will run in foreground and not be
accessible over a socket at all, so we need to cover a few flags and switches to really make it
useful. So let's shut the container down by pressing Ctrl + C and try again, this time adding
some of the necessary flags:

$ docker run -d \
 -p 8080:80 \
 nginx
dd1fd1b62d9cf556d96edc3ae7549f469e972267191ba725b0ad6081dda31e74

https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/

Rolling Up the Sleeves Chapter 2

[24]

The -d flag runs the container in the background (the detached mode) so that our Terminal
isn't held on by NGINX and the -p 8080:80 flag maps our local port 8080 to the
container's port 80. Containers often have specific ports that they expose, amd in this case,
it is 80 but without the mapping we would have no way of accessing it. The output that the
command returns is a unique identifier (container ID) that can be used to track and control
this specific container after starting it. Hopefully, you can now see how the port whitelisting
approach of Docker adds an extra level of security as only the things you explicitly allow to
listen are permitted.

You can now open your browser to http://localhost:8080, and you should see a page
similar to this one:

But how exactly did we know that port 80 needs to be listened to? Indeed, we will cover
that in just a second, but first, because we started this container in the detached mode, it
will still be running in the background and we should probably make sure that we stop it
too. To see which containers we have running, let's check our Docker container statuses
with docker ps:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
dd1fd1b62d9c nginx "nginx -g 'daemon ..." 13 minutes ago Up 13 minutes
0.0.0.0:8080->80/tcp dazzling_swanson

Rolling Up the Sleeves Chapter 2

[25]

What we see here is that our NGINX container is still running, that it has mapped localhost
interface ports 8080 (including externally accessible ones) with the container's port 80, and
that we have been running it for 13 minutes. If we had more containers, they would all be
listed here so this command is extremely useful for working with Docker containers and is
generally used for debugging and container management.

Since we wanted to shut this container down, we will actually do that now. To shut a
container down, we need to know the container ID that is both the value that was returned
by docker run and the value that the first column of docker ps shows (dd1fd1b62d9c).
Feel free to use either the short or long version of the ID, but for brevity, we will use the
former:

$ docker stop dd1fd1b62d9c
dd1fd1b62d9c

This will gracefully try to stop the container and return the resources used back to the OS
and after a specific timeout, kill it forcefully. If the container was really stuck and we knew
it, we could replace stop with kill to hard kill the process, but that's rarely needed since
stop generally does the same thing if the process is not responding. We will now make sure
that our container is gone:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Yes, things look as we expect them to, but beware that while stopped containers are not
visible, they are not completely removed from the filesystem by default:

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
dd1fd1b62d9c nginx "nginx -g 'daemon ..." 24 minutes ago Exited (137) 2
minutes ago dazzling_swanson

The -a flag is used to show all container statuses, not just the running ones, and you can see
that the system still knows about our old container. We can even resume it with docker
start!

$ docker start dd1fd1b62d9c
dd1fd1b62d9c

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
dd1fd1b62d9c nginx "nginx -g 'daemon ..." 28 minutes ago Up About a minute
0.0.0.0:8080->80/tcp dazzling_swanson

Rolling Up the Sleeves Chapter 2

[26]

To really remove our container permanently, we need to explicitly get rid of it using
docker rm, as shown here, or run the docker run command with the --rm switch (we'll
cover this one in the next few pages):

$ docker stop dd1fd1b62d9c
dd1fd1b62d9c

$ docker rm dd1fd1b62d9c
dd1fd1b62d9c

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Success!

Now let us get back to the earlier question of how we knew that the container needed to
have port 80 mapped to it? We have a couple of options there for finding this information
out, and the simplest one is starting the container and checking in docker ps to see which
ports are unbound:

$ docker run -d \
 --rm \
 nginx
f64b35fc42c33f4af2648bf4f1dce316b095b30d31edf703e099b93470ab725a

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
f64b35fc42c3 nginx "nginx -g 'daemon ..." 4 seconds ago Up 3 seconds 80/tcp
awesome_bell

The new flag here that we used with docker run is --rm, which we just mentioned, and it
tells the Docker daemon to remove the container completely after it is stopped so we don't
have to do it manually ourselves.

If you already have a container that you want to check the mapped ports
on, you can use docker port <container_id> command but we are
omitting it here since it cannot be used on images, but just containers.

While this is the quickest way to see what ports will be needed, the general way to inspect
an image outside of reading its Dockerfile and documentation is through docker inspect:

$ # Inspect NGINX image info and after you match our query, return also
next two lines
$ docker inspect nginx | grep -A2 "ExposedPorts"
"ExposedPorts": {

Rolling Up the Sleeves Chapter 2

[27]

 "80/tcp": {}
},

Additionally, docker inspect can show all kinds of other interesting information, such as
the following:

The ID of the image
The tag name
The image creation date
Hardcoded environment variables
The command that the container runs on start
The size of the container
Image layers IDs
Volumes specified

Feel free to run the inspect command on any container or image and see what gems you
might find there. Majority of the time, this output is mainly used for debugging, but in cases
where the image documentation is lacking, it can be an invaluable tool to get you running
in a minimal amount of time.

Debugging containers
Often in general work with containers, you will likely have to figure out what is going on
with a container that is running, but docker ps is not good enough to provide you with all
the information you need to figure things out. For these cases, the first command to use is
docker logs. This command displays any output that the container has emitted, including
both stdout and stderr streams. For the following logs, I started the same NGINX
container from before and accessed its hosted page on localhost:

$ docker run -d \
 -p 8080:80 \
 nginx
06ebb46f64817329d360bb897bda824f932b9bcf380ed871709c2033af069118

$ # Access the page http://localhost:8080 with your browser

$ docker logs 06ebb46f
172.17.0.1 - - [02/Aug/2017:01:39:51 +0000] "GET / HTTP/1.1" 200 612 "-"
"Mozilla/5.0 (Windows NT 6.3; rv:36.0) Gecko/20100101 Firefox/36.01" "-"
2017/08/02 01:39:51 [error] 6#6: *1 open()
"/usr/share/nginx/html/favicon.ico" failed (2: No such file or directory),

Rolling Up the Sleeves Chapter 2

[28]

client: 172.17.0.1, server: localhost, request: "GET /favicon.ico
HTTP/1.1", host: "localhost:8080"
172.17.0.1 - - [02/Aug/2017:01:39:51 +0000] "GET /favicon.ico HTTP/1.1" 404
169 "-" "Mozilla/5.0 (Windows NT 6.3; rv:36.0) Gecko/20100101
Firefox/36.01" "-"
172.17.0.1 - - [02/Aug/2017:01:39:52 +0000] "GET / HTTP/1.1" 200 612 "-"
"Mozilla/5.0 (Windows NT 6.3; rv:36.0) Gecko/20100101 Firefox/36.01" "-"

You can see here that NGINX records all access and the associated response codes that are
invaluable to debugging a web server. In general, the output can vary from very useful to
garbage depending on what is running the service, but it is usually a good place to start
your search. You can also add the -f flag if you want to follow the logs as they are being
written, which is very helpful when logs are large and you are trying to filter noise from
specific things you are looking for.

Seeing what the container sees
When logs aren't really enough to figure things out, the command to use is docker exec in
order to execute a command on the running container that can include access to a full-
blown shell:

$ docker run -d \
 -p 8080:80 \
 nginx
06ebb46f64817329d360bb897bda824f932b9bcf380ed871709c2033af069118

$ docker exec 06ebb46f ls -la /etc/nginx/conf.d/
total 12
drwxr-xr-x 2 root root 4096 Jul 26 07:33 .
drwxr-xr-x 3 root root 4096 Jul 26 07:33 ..
-rw-r--r-- 1 root root 1093 Jul 11 13:06 default.conf

In this case, we used docker exec to run the ls command in the container, but as-is that is
not really a powerful debugging tool. What if we try to get that full shell within the
container and examine it that way?

$ docker exec -it \
 06ebb46f /bin/bash
root@06ebb46f6481:/# ls -la /etc/nginx/conf.d/
total 12
drwxr-xr-x 2 root root 4096 Jul 26 07:33 .
drwxr-xr-x 3 root root 4096 Jul 26 07:33 ..
-rw-r--r-- 1 root root 1093 Jul 11 13:06 default.conf
root@06ebb46f6481:/# exit
exit

Rolling Up the Sleeves Chapter 2

[29]

$ # Back to host shell

This time, we used -it, which is shorthand for -i and -t flags that combine to set up the
interactive Terminal needed for a full shell access and then we use /bin/bash to run Bash
within the container. The shell within the container is a much more useful tool here, but we
are at the mercy of the container itself in terms of installed tooling since many images trim
out any unnecessary packages from the image--in this case, the NGINX container doesn't
have ps, which is an extremely valuable utility for finding causes of problems. Since
containers are isolated throwaway components generally, sometimes it might be fine to add
your debugging tools to the container in order to find out what is causing problems (though
we will cover a much better way of doing this with pid namespaces joining in later
chapters):

$ docker exec -it 06ebb46f /bin/bash

root@06ebb46f6481:/# ps # No ps on system
bash: ps: command not found

root@06ebb46f6481:/# apt-get update -q
Hit:1 http://security.debian.org stretch/updates InRelease
Get:3 http://nginx.org/packages/mainline/debian stretch InRelease [2854 B]
Ign:2 http://cdn-fastly.deb.debian.org/debian stretch InRelease
Hit:4 http://cdn-fastly.deb.debian.org/debian stretch-updates InRelease
Hit:5 http://cdn-fastly.deb.debian.org/debian stretch Release
Fetched 2854 B in 0s (2860 B/s)
Reading package lists...

root@06ebb46f6481:/# apt-get install -y procps
<snip>
The following NEW packages will be installed:
libgpm2 libncurses5 libprocps6 procps psmisc
0 upgraded, 5 newly installed, 0 to remove and 0 not upgraded.
Need to get 558 kB of archives.
After this operation, 1785 kB of additional disk space will be used.
<snip>

root@06ebb46f6481:/# ps
PID TTY TIME CMD
31 ? 00:00:00 bash
595 ? 00:00:00 ps

root@06ebb46f6481:/#

Rolling Up the Sleeves Chapter 2

[30]

As you can see, adding any debug tooling to the container from its upstream distribution is
easy, but be aware that once you find your issue, you should start a new container and
remove the old one to clean up the leftover junk since it is wasting space and a new
container will start from the image that did not have your newly-installed debugging tools
added (in our case procps).

Another thing to keep in mind is that sometimes, the images prevent the installation of
additional packages, so for those cases we will need to wait until later chapters to see how
we can use namespaces to work in such constrained settings.

Sometimes, the container is locked into a limited user shell, and because of
it, you will be unable to access or modify other parts of the system of the
container. In such configurations, you can add the -u 0 flag to run the
docker exec command as root (user 0). You can also specify any other
username or user ID instead, but generally if you need a secondary user to
work with on a container, root is what you want.

Our first Dockerfile
Now that we know a little bit about how to get around containers, this is a good place to try
out creating our own container. To start building a container, the first thing that we need to
know is that the default filename that Docker looks for when building images is
Dockerfile. While you can use different names for this main configuration file, it is highly
discouraged though in some rare cases, you might not be able to avoid it - if, for example,
you need a test suite image and the main image build files in the same folder. For now, we
will assume you just have a single build configuration, and with that in mind, how about
we see what one of these basic Dockerfile looks like. Create a test folder somewhere on
your filesystem and put this into a file named Dockerfile:

FROM ubuntu:latest

RUN apt-get update -q && \
 apt-get install -qy iputils-ping

CMD ["ping", "google.com"]

Rolling Up the Sleeves Chapter 2

[31]

Let's examine this file line by line. First, we have the FROM ubuntu:latest line in there.
This line indicates that we want to use the latest Ubuntu Docker image as our base on
which we will layer our own service. This image will be automatically pulled from Docker
Hub, but this image can also be from a custom repository, your own local image, and could
be based on any other image as long as it provides a good base for your service (that is,
NGINX, Apline Linux, Jenkins, and so on) if we wanted to.

The next line is very important as the base Ubuntu image does not come with almost
anything out of the box, so we need to install the package that provides the ping utility
(iputils-ping) through its package manager apt , just like we would on the command
line by using the RUN directive to Docker. Before we install it, though, we also need to make
sure that our update indexes are up-to-date, and we use apt-get update for that. In a bit,
we will cover in detail why we used && to chain the update and install commands, but
for now, we will magically ignore it so that we don't derail our example too much.

The CMD directive instructs Docker that by default, Docker will run "ping" "google.com"
every time the container is started without further arguments. This directive is used to start
the service within the container, and it ties the life cycle of the container to that process, so if
our ping fails, our container terminates, and vice versa. You can only have one CMD line in
your Dockerfile, so be especially careful what you use it for.

Now that we have the whole container configured, let's build it:

$ # Build using Dockerfile from current directory and tag our resulting
image as "test_container"
$ docker build -t test_container .

Sending build context to Docker daemon 1.716MB
Step 1/3 : FROM ubuntu:latest
---> 14f60031763d
Step 2/3 : RUN apt-get update -q && apt-get install -qy iputils-ping
---> Running in ad1ea6a6d4fc
Get:1 http://security.ubuntu.com/ubuntu xenial-security InRelease [102 kB]
<snip>
The following NEW packages will be installed:
iputils-ping libffi6 libgmp10 libgnutls-openssl27 libgnutls30 libhogweed4
libidn11 libnettle6 libp11-kit0 libtasn1-6
0 upgraded, 10 newly installed, 0 to remove and 8 not upgraded.
Need to get 1304 kB of archives.
<snip>
Setting up iputils-ping (3:20121221-5ubuntu2) ...
Processing triggers for libc-bin (2.23-0ubuntu9) ...
---> eab9729248d9
Removing intermediate container ad1ea6a6d4fc
Step 3/3 : CMD ping google.com

Rolling Up the Sleeves Chapter 2

[32]

---> Running in 44fbc308e790
---> a719d8db1c35
Removing intermediate container 44fbc308e790
Successfully built a719d8db1c35
Successfully tagged test_container:latest

As the comment on it implies, what we did here with docker build -t
test_container . is that we built the container (using the default Dockerfile
configuration name) in our current directory and tagged it with the name
test_container. Since we didn't specify the version at the end of test_container,
Docker assigned us one called latest, as we can see from the end of the output. If we
carefully examine the output, we can also see that each change to the base image creates a
new layer and that layer's ID is then used as the input into the next directive, each layer
creating its own filesystem diff onto the image. If, for example, we run the build again,
Docker is smart enough to know that nothing has changed and it will use the cached
version of those layers again. Compare the final container ID (a719d8db1c35) with the one
from the previous run:

$ docker build -t test_container .

Sending build context to Docker daemon 1.716MB
Step 1/3 : FROM ubuntu:latest
---> 14f60031763d
Step 2/3 : RUN apt-get update -q && apt-get install -qy iputils-ping
---> Using cache
---> eab9729248d9
Step 3/3 : CMD ping google.com
---> Using cache
---> a719d8db1c35
Successfully built a719d8db1c35
Successfully tagged test_container:latest

If any change is detected in the directives of the Dockerfile, Docker will rebuild that layer
and any subsequent ones to ensure consistency. This functionality and selective "cache
busting" will also be covered later and it has a very important role in managing your
repository and image sizes.

With the container built, let's see whether it actually works (to exit its loop, press Ctrl + C):

$ # Run the image tagged "test_container"
$ docker run test_container

PING google.com (216.58.216.78) 56(84) bytes of data.
64 bytes from ord30s21-in-f14.1e100.net (216.58.216.78): icmp_seq=1 ttl=52
time=45.9 ms
64 bytes from ord30s21-in-f14.1e100.net (216.58.216.78): icmp_seq=2 ttl=52

Rolling Up the Sleeves Chapter 2

[33]

time=41.9 ms
64 bytes from ord30s21-in-f14.1e100.net (216.58.216.78): icmp_seq=3 ttl=52
time=249 ms
^C
--- google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 41.963/112.460/249.470/96.894 ms

Another success! You wrote your first running Docker container!

Breaking the cache
In the container we just wrote, we somewhat glanced over the line RUN apt-get update
-q && apt-get install -qy iputils-ping since it requires a bit of a deeper
discussion here. In most Linux distributions, packages rotate in versions all the time, but the
listing of these indexes that tell us where to find these is baked into the original Docker
image when it gets created (ubuntu:latest in this case). Before we can install a package,
in most cases, our index files have been stale for too long (if they haven't been completely
removed), so we need to update them. Splitting this && joined line into two separate ones
would work for that first build:

RUN apt-get update -q
RUN apt-get install -qy iputils-ping

But what happens when you add another package to that second line later, as shown in the
following line?

RUN apt-get install -qy curl iputils-ping

In this case, Docker is not very smart and will consider the update line to be unchanged
and will not run the update command again, so it will use the state from the cache for the
update layer and then continue on to the next one that tries to install curl (since that one
did change since the last build), which is likely to fail if enough versions have been rotated
in the repositories as the indexes will be stale again. To prevent this from occurring, we join
the update and the install commands with && so they are treated as one directive and
create one layer, in which case, changing any part of either of the two joined commands will
break the cache and run the update correctly. Sadly, as you get more involved with scalable
Docker components, using odd tricks such as these to manage the cache and do selective
cache busting will become a large part of your work.

Rolling Up the Sleeves Chapter 2

[34]

A container more practical
This is probably where we start diverging from other Docker materials out there that
practically assume that with just this basic knowledge, the rest of the work is a
cakewalk when it is really nothing like that. It is not rocket science, but these simple
examples really do not do enough to get us where we need to be, so we will use a practical
example based a bit on our previous work with NGINX and create a container that uses this
web server image to provide and serve up content that we will bake into the image.

This example and all the other ones in this book are also available on
GitHub at https:/ ​/ ​github. ​com/ ​sgnn7/ ​deploying_ ​with_ ​docker. You can
use either git or their web interface to follow along with the examples,
but all examples of code that we will use will be directly included in the
book too.

To begin creating our web server, we need to create a directory to put all of our files in:

$ mkdir ~/advanced_nginx
$ cd ~/advanced_nginx

The first file we need to create is our dummy text file that we will try to serve up in the
image:

$ echo "Just a test file" > test.txt

The next file we will need is the required NGINX configuration. Put the following text into
a file called nginx_main_site.conf:

 server {
 listen 80;
 server_name _;
 root /srv/www/html;

 # Deny access to any files prefixed with '.'
 location ~/\. {
 deny all;
 }

 # Serve up the root path at <host>/
 location / {
 index index.html;
 autoindex on;
 }
 }

https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker

Rolling Up the Sleeves Chapter 2

[35]

If you've never worked with NGINX, let's check out what this file does. In the first block,
we are creating a server that listens on port 80 rooted in /srv/www/html on the image.
The second block, while not strictly needed and would require changing for bigger
websites, should be muscle memory for anyone working on NGINX since it prevents the
downloading of hidden files like .htaccess, .htpasswd, and many others that should not
be available publicly. The last block just makes sure that any path starting with / will be
read from root and if the index file is not provided, it will use index.html. If no such file
is available and we are in a directory, autoindex ensures that it can show you a human-
readable listing of a directory.

While this NGINX configuration is functional, there are many things that
it is not including (SSL configuration, logging, error files, file lookup
matching, and so on), but that is mostly because this is a book is trying to
focus on Docker itself and not NGINX. If you would like to learn more
about how to fully and properly configure NGINX, you can visit https:/ ​/
nginx. ​org/ ​en/ ​docs/ ​ for more information.

With the configuration written, we can now create our Dockerfile, which will take our test
file, our configuration file, and the NGINX image and turn it all into a Docker image that
runs a web server and serves up our test file:

FROM nginx:latest

Make sure we are fully up to date
RUN apt-get update -q && \
 apt-get dist-upgrade -y

Remove the default configuration
RUN rm /etc/nginx/conf.d/default.conf

Create our website's directory and make sure
that the webserver process can read it
RUN mkdir -p /srv/www/html && \
 chown nginx:nginx /srv/www/html

Put our custom server configuration in
COPY nginx_main_site.conf /etc/nginx/conf.d/

Copy our test file in the location that is
being served up
COPY test.txt /srv/www/html/

https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/
https://nginx.org/en/docs/

Rolling Up the Sleeves Chapter 2

[36]

This Dockerfile probably looks a lot different from the first one, so we will spend some time
diving into what we are doing here.

Extending another container with FROM
Similar to our last container, our FROM nginx:latest line ensures that we are using the
latest version of a base image, but instead of Ubuntu, here, we will use NGINX as our base.
The latest ensures that we get the image with the latest features and often patches too at a
slight risk of breakages and API incompatibility in the future.

When writing your Docker containers, you will often have to make these trade-off decisions
based on your situation and stability requirements, but the NGINX API has been very
stable for years now, so in this specific case, we do not need the stability that the named
tags provide. If we wanted one of those tagged versions here, latest would just change to
the version we wanted that is offered on Docker Hub, which we can find at https:/ ​/ ​hub.
docker.​com/​_​/​nginx/ ​ , so something like FROM nginx:1.13 would have been perfectly
fine too.

Ensuring the latest patches are included
Our next steps, apt-get upgrade and apt-get dist-upgrade, are a bit controversial in
the current Docker world, but I think they are a good addition, and I'll explain why. On a
regular deb package-based Linux distribution (that is, Debian, Ubuntu, and so on), these
two commands ensure that your system is fully up to date with the currently released
packages for your version of the system. This means that any package that isn't the newest
version will be upgraded and any obsolete packages will be replaced with newer ones.
Since the general maxim of Docker is that the containers are more or less disposable,
updating your container this way seems to be somewhat frowned upon, but it's not without
its faults.

Since most Docker images on Docker Hub are only built when the base source files or
Dockerfile itself changes, many of these images have older and/or unpatched system
libraries, so when the service uses them as a dynamic library, it may be vulnerable to any
bugs that have since been fixed. To ensure that we are not behind on this security
hardening, we make sure that we update the system before we do anything else. While
there is a small risk of the service breaking due to the system API possibly changing and
there is an increase in image size due to the additional changes applied, the trade-off is, in
my opinion, not good enough to leave the service unprotected, but feel free to use your best
judgment here.

https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/

Rolling Up the Sleeves Chapter 2

[37]

Applying our custom NGINX configuration
Our directive after the system update (RUN rm /etc/nginx/conf.d/default.conf) is
one that removes the default web server configuration from the container. You can find out
more about the NGINX configuration with the link from our last tip, but for now, it will
suffice to say that by default, all the individual site configuration files are stored in
/etc/nginx/conf.d and NGINX Docker image comes out of the box with a simple
example file called default.conf , which we absolutely do not want to use.

While we could overwrite the mentioned file, we would be stuck with the name default,
which isn't very descriptive, so for our configuration, we will delete this one and add ours
with a better filename.

Next, we need to make sure that the folder we will be serving files from is available and
readable by the web server process. The first command using mkdir -p creates all the
relevant directories, but since NGINX doesn't run as the root, we need to know what user
the process will be reading the files we want to serve up or otherwise our server will not be
able to display anything. We can find what the original configuration has there as the
default user by showing the first few lines of the system-wide NGINX configuration
included in the image at /etc/nginx/nginx.conf:

$ # Print top 2 lines of main config file in NGINX image
$ docker run --rm \
 nginx /bin/head -2 /etc/nginx/nginx.conf

user nginx;

Perfect! Well, now that the user that needs to be able to read this directory is nginx , we
will change the owner of our target folder with chown nginx:nginx /srv/www/html ,
but what is going on with that new style of run Docker command we just used when trying
to find this out? If you include a command after specifying the image name instead of the
CMD directive in the image, Docker will substitute it with this new command. In the
preceding command, we are running the /bin/head executable, passing in arguments to
tell it that we only want the top two lines from the /etc/nginx/nginx.conf file. Since
this command exits as soon as it is done, the container stops and is fully removed because
we used the --rm flag.

With the default configuration gone and our directories created, we can now copy our main
configuration for NGINX in place with COPY nginx_main_site.conf
/etc/nginx/conf.d/. The COPY argument does pretty much the obvious thing of copying
a file from the current build directory into the image at a specified location.

Rolling Up the Sleeves Chapter 2

[38]

Be very careful with how you end the COPY directive argument, as leaving
the slash off will put the source into a file at the destination even if the
destination is a directory. To ensure that this doesn't happen, always end
your target directory paths with a slash.

Adding our main test.txt file that we want hosted is the last part, and it follows along
the same lines as the other COPY directive, but we will make sure that we put this one in the
folder that our NGINX configuration is referencing. Since we turned on the autoindex flag
for this endpoint, there are no additional steps to be taken as the folder itself will be
browsable.

Building and running
Now that we went over the whole build configuration, we can create our image and see
what we just made:

$ docker build -t web_server .

Sending build context to Docker daemon 17.41kB
Step 1/6 : FROM nginx:latest
 ---> b8efb18f159b
Step 2/6 : RUN apt-get update -q && apt-get dist-upgrade -yq
 ---> Running in 5cd9ae3712da
Get:1 http://nginx.org/packages/mainline/debian stretch InRelease [2854 B]
Get:2 http://security.debian.org stretch/updates InRelease [62.9 kB]
Get:3 http://nginx.org/packages/mainline/debian stretch/nginx amd64
Packages [11.1 kB]
Get:5 http://security.debian.org stretch/updates/main amd64 Packages [156
kB]
Ign:4 http://cdn-fastly.deb.debian.org/debian stretch InRelease
Get:6 http://cdn-fastly.deb.debian.org/debian stretch-updates InRelease
[88.5 kB]
Get:7 http://cdn-fastly.deb.debian.org/debian stretch Release [118 kB]
Get:8 http://cdn-fastly.deb.debian.org/debian stretch Release.gpg [2373 B]
Get:9 http://cdn-fastly.deb.debian.org/debian stretch/main amd64 Packages
[9497 kB]
Fetched 9939 kB in 40s (246 kB/s)
Reading package lists...
Reading package lists...
Building dependency tree...
Reading state information...
Calculating upgrade...
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
 ---> 4bbd446af380
Removing intermediate container 5cd9ae3712da

Rolling Up the Sleeves Chapter 2

[39]

Step 3/6 : RUN rm /etc/nginx/conf.d/default.conf
 ---> Running in 39ad3da8979a
 ---> 7678bc9abdf2
Removing intermediate container 39ad3da8979a
Step 4/6 : RUN mkdir -p /srv/www/html && chown nginx:nginx /srv/www/html
 ---> Running in e6e50483e207
 ---> 5565de1d2ec8
Removing intermediate container e6e50483e207
Step 5/6 : COPY nginx_main_site.conf /etc/nginx/conf.d/
 ---> 624833d750f9
Removing intermediate container a2591854ff1a
Step 6/6 : COPY test.txt /srv/www/html/
 ---> 59668a8f45dd
Removing intermediate container f96dccae7b5b
Successfully built 59668a8f45dd
Successfully tagged web_server:latest

Seems like the container build is just fine; let's run it:

$ docker run -d \
 -p 8080:80 \
 --rm \
 web_server
bc457d0c2fb0b5706b4ca51b37ca2c7b8cdecefa2e5ba95123aee4458e472377

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
bc457d0c2fb0 web_server "nginx -g 'daemon ..." 30 seconds ago Up 29 seconds
0.0.0.0:8080->80/tcp goofy_barti

Rolling Up the Sleeves Chapter 2

[40]

So far, so good, as it seems to be running fine. Now we will access the container with our
browser at http://localhost:8080.

Rolling Up the Sleeves Chapter 2

[41]

As we were hoping, our server is working and showing us the content of /srv/www/html,
but let's click on test.txt to make sure it is working too:

Great, it looks like our plan worked and we have created a high-performance static website
hosting server container! Sure, there are many other things we can add to this, but our main
goal of extending a sample image to do something useful is a success!

Service from scratch
Our last example was decently comprehensive but it left out some important Docker
commands that we should also know, so we will use another example, albeit reworking the
web server solution in a slightly less optimal way, to both show them used and to explain
what they do. In the process, we will go a bit deeper and see whether we can make as many
parts of the service on our own.

Rolling Up the Sleeves Chapter 2

[42]

We will start this example with creating a clean directory and creating the same test file we
used earlier:

$ mkdir ~/python_webserver
$ cd ~/python_webserver

$ echo "Just a test file" > test.txt

Now we will create our bit-more-complex Python-based web server container by putting
the following content in the Dockerfile:

FROM python:3

Add some labels for cache busting and annotating
LABEL version="1.0"
LABEL org.sgnn7.name="python-webserver"

Set a variable that we will keep reusing to prevent typos
ENV SRV_PATH=/srv/www/html

Make sure we are fully up to date
RUN apt-get update -q && \
 apt-get dist-upgrade -y

Let Docker know that the exposed port we will use is 8000
EXPOSE 8000

Create our website's directory, then create a limited user
and group
RUN mkdir -p $SRV_PATH && \
 groupadd -r -g 350 pythonsrv && \
 useradd -r -m -u 350 -g 350 pythonsrv

Define ./external as an externally-mounted directory
VOLUME $SRV_PATH/external

To serve things up with Python, we need to be in that
same directory
WORKDIR $SRV_PATH

Copy our test file
COPY test.txt $SRV_PATH/

Add a URL-hosted content into the image
ADD https://raw.githubusercontent.com/moby/moby/master/README.md \
 $SRV_PATH/

Make sure that we can read all of these files as a

Rolling Up the Sleeves Chapter 2

[43]

limited user
RUN chown -R pythonsrv:pythonsrv $SRV_PATH

From here on out, use the limited user
USER pythonsrv

Run the simple http python server to serve up the content
CMD ["python3", "-m", "http.server"]

Using Python's built-in web server is highly discouraged in almost all
cases, as it is neither scalable nor configurable in any significant way, but
it serves as a good example of a service that could be hosted through
Docker and is available on almost all systems with Python. Do not use this
in real production services unless you really know what you are doing.

Barring the note about using python's web server module in production, this is still a good
example of all of the other major Dockerfile directives that we didn't cover and that you will
now learn how to use.

Labels
Our first new directive here is LABEL:

LABEL version="1.0"
LABEL org.sgnn7.name="python-webserver"

LABEL <key>=<value> or LABEL <key> <value> is used to add metadata about the
image that is being built, which can later be examined and filtered by docker ps and
docker images using something like docker images --filter "<key>=<value>".
Keys are generally all lowercase in the reverse-dns notation, but you can use anything
you want here and version should be present on every image, so we use the top-level
version key name. However, the version here is not only there so that we can filter images
but also to break Docker's cache if we change it. Without cache-busting of this sort or
through the manually set flag during builds (docker build --no-cache), Docker will
keep reusing the cache all the way up to the most recently changed directive or files so there
is a high probability that your container will stay stuck in a frozen package configuration.
This condition may or may not be what you want, but just in case you have automated
build tooling, adding a version layer that can break the cache whenever you change it
makes the container very easy to update.

Rolling Up the Sleeves Chapter 2

[44]

Setting environment variables with ENV
ENV, unlike some of these other commands, should be mostly self-explanatory: it sets the
environmental variables both in the Dockerfile and the container. Since we would need to
keep re-typing /srv/www/html in our Dockerfile, in order to prevent typos and to
ensure easy changes to our final server directory target, we set the SRV_PATH variable that
we keep reusing with $SRV_PATH later. Generally for Docker containers, almost all the
configurations to containers are done through environmental variables such as these, so
expect to see this directive more in the later chapters.

Even though we don't use it in this example, you need to watch out when
using environment variables in the CMD directive directly as it does not get
expanded but runs directly. You can ensure that your variable gets
expanded in CMD by using it as part of a shell command structure similar
to this: CMD ["sh", "-c", "echo", "$SRV_PATH"].

Exposing ports
Our next new directive here is EXPOSE 8000. Remember how we used docker info to
find out what port the NGINX container was using? This directive filled in that information
in the metadata and is used by the Docker orchestration tooling to map incoming ports into
the right ingress port on the container. Since Python's HTTP server starts its service on port
8000 by default, we use EXPOSE to inform Docker that whoever uses this container should
make sure that they map this port on the host. You can also list multiple ports here with this
directive but since our service is using only one, we will not need to use that right now.

Container security layering with limited users
The following novel block of code in our Dockerfile is probably a little bit of a convoluted
puzzle, but we will go through it together:

RUN mkdir -p $SRV_PATH && \
 groupadd -r -g 350 pythonsrv && \
 useradd -r -m -u 350 -g 350 pythonsrv

Rolling Up the Sleeves Chapter 2

[45]

This is something we need to expand on multiple levels, but the first thing you need to
know is that by default, Dockerfile directives are executed as root, and if at any point later
you do not specify a different USER, your service will run with root credentials, which is a
massive hole from a security perspective that we are trying to patch up by running our
service as a limited user only. However, without the user and group defined, we cannot
switch our context away from the root, so we create both a pythonsrv group first and
then we follow it up by creating the pythonsrv user attached to the said group. The -r
flags mark the user and group a system-level entity and is a good practice for groups and
users that will not be directly logged into.

Speaking of users and groups, if you mount a volume from the host to the Docker container
that is running as a limited user, if neither the host nor the container perfectly agree on the
user and group IDs (uid and gid, respectively), you cannot read or write files from
volumes. To avoid this situation, we use a stable UID and GID of 350 that is easy to
remember and is not normally in the regular UID/GID tables on most host systems. This
number is mostly arbitrary, but as long as it is in the service range for your host OS and
doesn't clash with the users or groups on the host either, it should be fine.

The last flag that wasn't covered so far is -m, and what it does is create the home directory
skeleton files for the user. Most of the time, you will not need this, but if any subsequent
operations try to use $HOME (such as npm or a large swathe of other services), there will be
no such directory unless you specify this flag and your build will fail so we make sure we
do not hit this condition by creating $HOME for the pythonsrv user.

To round this off, we chained all of these RUN commands together to ensure that we use as
few layers as we can. Each layer creates additional metadata and increases the size of your
image, so just like the Docker best practices document states, we try to reduce them by
stacking these commands together. While it is not the best thing to do in all cases as
debugging this style of configuration is pretty difficult, it does usually trim the container
size significantly.

VOLUMEs and data that lives outside of the
container
But what if we want to add files that live outside of the container that might need to persist
even when the container dies? That is where the VOLUME directive comes into play. With
VOLUMEs, any time you start the container, this path is actually assumed to be mounted
from outside of the container, and if none is provided, one will be created and attached for
you automatically.

Rolling Up the Sleeves Chapter 2

[46]

Here, we are assigning our /srv/www/html/external path to this unnamed volume, but
we will reserve majority of our detailed discussion about volumes for later chapters.

Setting the working directory
Since the Python HTTP server can only serve files from the current directory that it runs in,
without explicitly configuring this correctly our container would show files out of the /
directory. To work around this, we include WORKDIR $SRV_ROOT into the
Dockerfile which changes our working directory to the one that will contain the files we
want to serve up. A thing to note about this command is that you can reuse it as many times
as you want and it applies to any subsequent commands in the Dockerfile (such as RUN or
CMD).

Adding files from the internet
What about trying to add files to your container that are not hosted locally and/or due to
licensing you cannot include them in your repository where the Dockerfile lives? For this
specific purpose, there is the ADD directive. This command downloads the file from the URI
provided and puts it in the container. If the file is local compressed archive, such as a .tgz
or a .zip file and the target path ends with a slash, it will get expanded into that directory,
making this a very useful option as opposed to COPY. In the example that we're writing
here, we will take a semi-random file from GitHub and put it in the directory to be included
with the following:

ADD https://raw.githubusercontent.com/moby/moby/master/README.md \
 $SRV_PATH/

Changing the current user
We have explained why we need to run our service as a limited user and how we created
the user for it, but now is the time to permanently switch the context to pythonsrv. Using
USER pythonsrv, any further commands will be executed as pythonsrv user, including
the container's CMD executable command, which is exactly what we want. Just like WORKDIR,
this directive can be used multiple times in a Dockerfile, but for our purposes, there is no
need to do the rest of the configuration as non-root. Generally, it is a good practice to keep
this layer statement as high as possible in the Dockerfile since it is very unlikely that it
will change and would be unlikely to break cache. However, for this example, we can't
move it higher as our previous command uses chown, which requires root privileges.

Rolling Up the Sleeves Chapter 2

[47]

Putting it all together
We're nearly done! The last thing we need to do is start Python's built-in HTTP server
module when our container starts:

CMD ["python3", "-m", "http.server"]

With everything in place, we can build and start our new container:

$ docker build -t python_server .
Sending build context to Docker daemon 16.9kB
Step 1/14 : FROM python:3
 ---> 968120d8cbe8
<snip>
Step 14/14 : CMD python3 -m http.server
 ---> Running in 55262476f342
 ---> 38fab9dca6cd
Removing intermediate container 55262476f342
Successfully built 38fab9dca6cd
Successfully tagged python_server:latest

$ docker run -d \
 -p 8000:8000 \
 --rm \
 python_server
d19e9bf7fe70793d7fce49f3bd268917015167c51bd35d7a476feaac629c32b8

Rolling Up the Sleeves Chapter 2

[48]

We can cross our fingers and check what we have built by accessing
http://localhost:8000:

Rolling Up the Sleeves Chapter 2

[49]

It works! Clicking on the test.txt shows the correct Just a test string and README.md
that we fetched from GitHub downloads just fine when clicked. With all of the functionality
there, what is in the external/ directory?

If the volume is empty, it is really no surprise that our directory here is empty too. How
about we see whether we can mount some files from our host into this directory:

$ # Kill our old container that is still running
$ docker kill d19e9bf7
d19e9bf7

$ # Run our image but mount our current folder to container's
$ # /srv/www/html/external folder
$ docker run -d \
 -p 8000:8000 \
 --rm \
 -v $(pwd):/srv/www/html/external \
 python_server
9756b456074f167d698326aa4cbe5245648e5487be51b37b00fee36067464b0e

Rolling Up the Sleeves Chapter 2

[50]

Here, we are mounting our current directory ($(pwd)) to our /srv/www/html/external
target with our -v flag. So what does http://localhost:8000/external look like now?
Do we have our files visible?

Indeed we do - our service works exactly as we expect it to! A real service written from
scratch!

With a working service under our belt, we should now be able to continue our journey into
Docker in the next chapter by scaling our containers.

Rolling Up the Sleeves Chapter 2

[51]

Summary
In this chapter, we covered everything from the basic Docker container to extending an
existing container, all the way to creating our own service from scratch. Along the way, we
covered the most important Docker and Dockerfile commands and how to use them and,
even more importantly, where and why to use them. While this was not the most in-depth
coverage of the topic, it is just the right amount of depth we need in order to start working
on scaling containers in our next chapter.

3
Service Decomposition

This chapter will cover how to take the knowledge from the previous chapter and use it to
create and build an addition of a database and an application server container, since real-
world services are usually composed in such a way. Once we get them all built up, we will
see what is needed in order to group them together into a more usable service and cover
even of more Docker under the hood.

In this chapter, we will cover the following topics:

A quick review of Docker commands
Writing a real service with:

A web server service
An application service
A database

Introducing volumes
Security considerations for credential passing

A quick review
Before we start, let's review the Docker and Dockerfile commands we covered previously in
a single section in two lists that you can use as a reference later.

Service Decomposition Chapter 3

[53]

Docker commands
Here are all of the commands we covered for Docker with a few others added, which you
might use if you build containers frequently:

For more in-depth information about parameters required for each, or to
see commands that we have not covered yet, type docker help in the
Terminal or the command by itself into the Terminal. You can also visit
https:/ ​/​docs. ​docker. ​com/ ​ and explore the documentation if the
information provided by the CLI output is not good enough, and it may
contain more recent data.

docker attach - Attach the shell's input/output/error stream to the
container
docker build - Build a Docker image based on a provided Dockerfile
docker cp - Copy files between container and host
docker exec - Execute a command in a running container
docker images - List image available to your installation of docker
docker info - Display information about the system
docker inspect - Display information about Docker layers, containers,
images, etc
docker kill - Forcefully terminate a container
docker logs - Display logs from a container since it last started
docker pause - Pause all processes within a container
docker ps - List information about containers and their resource usage
docker pull - Pull an image from a remote repository into the local
registry
docker push - Push an image from the local registry into a remote
repository
docker rm - Remove a container
docker rmi - Remove an image from the local repository
docker run - Start a new container and run it
docker search - Search DockerHub for images
docker start - Start a stopped container
docker stop - Stop a running container nicely (wait for container to shut
down)
docker tag - Create a tag for an image
docker top - Show running processes of a container
docker unpause - Resume all processes in a paused container
docker version - Show the Docker version

https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/

Service Decomposition Chapter 3

[54]

Recently, Docker commands have begun to be isolated into their own
docker CLI sections like docker container, to separate them from other
cluster management commands. To use this newer syntax, just prepend
any command with the container (that is, docker stop turns into docker
container stop). You can feel free to use either version, though keep an
eye out as you can probably expect the older style to be deprecated at
some point even though the new style is overly verbose for most Docker
usage.

Dockerfile commands
The following list is a similar one, but this time, we are covering the commands you can use
in a Dockerfile, and we've arranged it in an order similar to the one you would use when
working within the Dockerfile:

FROM <image_name>[:<tag>]: Base the current image on <image_name>
LABEL <key>=<value> [<key>=value>...]: Add metadata to the image
EXPOSE <port>: Indicate which port should be mapped into the container
WORKDIR <path>: Set the current directory for the following commands
RUN <command> [&& <command>...]: Execute one or more shell commands
ENV <name>=<value>: Set an environment variable to a specific value
VOLUME <path>: Indicates that the <path> should be externally mounted volume
COPY <src> <dest>: Copy a local file, a group of files, or a folder into the container
ADD <src> <dest>: The same as COPY but can handle URIs and local archives
USER <user | uid>: Set the runtime context to <user> or <uid> for commands after this
one
CMD ["<path>", "<arg1>", ...]: Define the command to run when the container is
started

Since almost all containers you would want to build can be constructed
with this set, this list is not the whole superset of Docker commands, and a
few of them have been intentionally left out. If you get curious about
things such as ENTRYPOINT, ARG, HEALTHCHECK, or others, you can check
out the complete documentation at https:/ ​/​docs. ​docker. ​com/​engine/
reference/ ​builder/ ​.

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

Service Decomposition Chapter 3

[55]

Writing a real service
So far, we have spent time making fake or mock container services that helped us build
Docker skills, but we have not had a chance to work on something that resembles a real-
world service. In general, most of the simpler services that get utilized out there will look
something similar to what is shown in this high-level diagram:

An overview
Here we will discuss each service in detail.

Web servers:

The rightmost piece in the image we just looked at is a web server. Web servers act as high-
speed HTTP request processing handlers and are generally used in this context as follows:

Reverse-proxy endpoints for resources within the clusters, Virtual Private Cloud
(VPC), and/or Virtual Private Network (VPN)
Hardened gatekeepers to limit resource access and/or prevent abuse
Analytics collection points
Load balancers
Static content delivery servers
Reducers of application server logic utilization
SSL termination endpoints
Caches of remote data
Data diodes (allow either ingress or egress of data but not both)
Local or federated account AAA handlers

Service Decomposition Chapter 3

[56]

This particular piece of our imaginary service is not always strictly required if the need for
security is extremely low, the services are internal, and processing power is abundant, but
in almost all other cases where any of these conditions are not present, the addition of a web
server is practically mandatory. A good analogy to a web server is your home router. While
it is not strictly necessary for you to use the Internet, a dedicated router enables better
sharing of your network and serves as a dedicated security appliance between you and the
Internet. While we have spent much of the previous chapter using NGINX, many others can
be used (Apache, Microsoft IIS, lighttpd, and so on) and are generally functionally
interchangeable, but beware of significantly different configuration setups.

Application servers:

So if the web server is doing all this for us, what does the application server do? The
application server is actually your main service logic, generally wrapped up in some web-
accessible endpoints or a queue-consuming daemon. This piece could be used as follows:

The main website framework
Data manipulation API logic
Some sort of data transformation layer
Data aggregation framework

The main distinction between an application server versus a web server is that the web
server generally operates on static data and makes generally rigid decisions in a flow, while
the application server does almost all of the dynamic data processing in a non-linear
fashion. Things that fall under this category are generally frameworks such as Node.js,
Ruby on Rails, JBoss, Tornado, and others for running specific programming language
applications which can process requests. Try not to think of needing a big framework as a
requirement here since even the right Bash script or a C file could do the job just as well and
still qualify as an application server.

The reason why we defer as much of the work as we can to the web server instead of the
application server is that due to the framework overhead, an application server is generally
extremely slow and thus unsuitable to do simple, small, and repetitive tasks that a web
server could chew through without breaking a sweat. For reference, an average specialized
web server will be about an order of magnitude more efficient at serving up static pages
than a full blown application server and, by inference, that much faster than most
application servers. As mentioned earlier, you can probably handle low loads on an
application server on its own or with some tuning medium ones, but anything above that is
something that deserves a dedicated reverse proxy.

Service Decomposition Chapter 3

[57]

The database: Once we have this logic and static file processing down, they are sadly
mostly useless without the actual data to transform and pass around. As with any software
that uses data, this is done with a backing database. Since we want to be able to scale any
piece of the system and isolate discrete components, the database gets its own section. In
the pre-container world, though, we were dependent on big, monolithic databases that
provided us with Atomicity, Consistency, Isolation, and Durability (ACID) properties,
and they did their job well. However, in the container world, we absolutely do not want
this type of architecture as it is neither as resilient nor as horizontally scalable as databases
that are shardable and able to be clustered.

With these new-style databases, though, you generally do not get the same assurance that
your data is treated in the same manner as the old-style ones, and it is an important
distinction to have. What you get with most container-friendly databases instead of ACID is
Basically Available, Soft state, Eventual consistency (BASE), which pretty much means
that data will eventually be correct, but between the update initially being sent and the final
state, the data may be in various states of intermediate values.

What we are going to build
We want to make a service that will be able to serve as a good example but not be too
complicated, to show what a real-word example of a service might probably look like. For
this use case, we will make a container grouping that can do two things behind basic HTTP
authentication:

Save a string entered in a form on the landing page to a database.
When we land on the homepage, show the list of all strings saved so far.

Here, we will try to cover as many things as we can while also building a generally realistic
prototype of a container-backed web service. Keep in mind that with the available tooling,
even making a service as simple as this is not very easy so we will attempt to reduce the
complexity where we can though the difficulty of our content does ramp up from here.

Service Decomposition Chapter 3

[58]

The implementation
As we covered the three major pieces that we need in general service architectures already,
we will split our project into the same discrete parts with a web server, application server,
and a database container, and we will outline the steps needed to build them here. As
mentioned earlier, you can use Git to check out all of the code easily from GitHub at
https:/​/​github.​com/ ​sgnn7/ ​deploying_ ​with_ ​docker if you do not want to retype the code
from these examples.

Web server
We can choose any web server software here, but since we have already worked with
NGINX earlier, it makes sense that we would try to reuse bits and pieces of this component-
-it is practically what the container architecture is all about! The web server component will
provide some basic authentication, cache data, and act as a reverse-proxy for the application
server behind it. Our basic setup that we worked on earlier can be used here, but we will
modify it a bit so that instead of serving files directly, it acts as a proxy and then use
authentication based on a credentials file we will create in our Dockerfile. Let's create a
new folder named web_server and add these files to it:

nginx_main_site.conf:

server {
 listen 80;
 server_name _;

 root /srv/www/html;

 location ~/\. {
 deny all;
 }

 location / {
 auth_basic "Authentication required";
 auth_basic_user_file /srv/www/html/.htpasswd;

 proxy_pass http://172.17.0.1:8000;
 }
}

https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker

Service Decomposition Chapter 3

[59]

There are three interesting parts about this configuration here. The first one is the inclusion
of auth_basic_ commands that enable HTTP Basic authentication on all endpoints
provided by this configuration. The second, if you were observant enough of the new .-
prefixed credentials file, is the fact that our denial of fetching all files starting with a . is
needed now since we added .htpasswd. The third and the final interesting thing here is the
use of proxy_pass, which allows the server to route all traffic that is authenticated to the
backend application server. Why we use http://172.17.0.1:8000 as the destination is
beginning to open the proverbial Pandora's box of Docker networking, so we will explain
why we used it later as we will derail our service building if we cover it now.

Warning! In most cases, using basic authentication is a practical joke of
security without HTTPS as we use it here since anyone on the network can
sniff out your credentials in plaintext with the simplest of tools. In your
services, at the very least, mandate the HTTPS protocol is you use basic
auth or rely on stronger forms of credentials-passing before deploying
services to anything with direct Internet access.

We can now add our new Dockerfile in that same directory, which will look like this:

FROM nginx:latest
Make sure we are fully up to date
RUN apt-get update -q && \
 apt-get dist-upgrade -y && \
 apt-get install openssl && \
 apt-get clean && \
 apt-get autoclean

Setup any variables we need
ENV SRV_PATH /srv/www/html

Get a variable defined for our password
ARG PASSWORD=test

Remove default configuration
RUN rm /etc/nginx/conf.d/default.conf

Change ownership of copied files
RUN mkdir -p $SRV_PATH && \
 chown nginx:nginx $SRV_PATH

Setup authentication file
RUN printf "user:$(openssl passwd -1 $PASSWORD)\n" >> $SRV_PATH/.htpasswd

Add our own configuration in
COPY nginx_main_site.conf /etc/nginx/conf.d/

Service Decomposition Chapter 3

[60]

As you can see, we've made a couple of changes here from our original work in the
previous chapter. The initial thing that should stick out is the new way to write the RUN
apt-get line, which we've annotated here briefly:

RUN apt-get update -q && \ # Update our repository information
 apt-get dist-upgrade -y && \ # Upgrade any packages we already have
 apt-get install openssl && \ # Install dependency (openssl)
 apt-get clean && \ # Remove cached package files
 apt-get autoclean # Remove any packages that are no longer
needed on the system

Unlike in previous images, here, we install the openssl package since we will need it to
create NGINX-encrypted passwords for authentication, but the clean and autoclean
lines are here to make sure we remove any cached apt packages on the system and remove
orphaned packages, giving us a smaller image which is something we should always strive
for. Just like before, we combine all of the lines in a similar manner early on so that the
filesystem difference between the previous and current layer will only be the required
changes and nothing else, making it a very compact change. When writing your own
images, if you find yourself needing even more fat trimming, many more things can be
removed (such as removing documentation files, /var directories, unnecessary optional
packages, and so on), but these two should be the ones to use in most cases as they're
simple to do and work pretty well on Debian-based systems.

Authentication
Without proper authentication, our server is wide open to anyone accessing it so we add a
username/password combo to act as a gatekeeper to our service:

ARG PASSWORD=test
...
RUN printf "user:$(openssl passwd -1 $PASSWORD)\n" >> $SRV_PATH/.htpasswd

ARG acts as a build-time substitute for an ENV directive and allows the password to be
passed in as a build argument with --build-arg <arg>. If the build is not provided with
one, it should default to the argument after the equals sign, which is a very insecure test in
this case. We will use this variable a bit lower in the Dockerfile to create the .htpasswd
file with a specific password for our user.

The second line uses openssl, which we installed earlier, to take this build arg and create
the .htpasswd file with encrypted credentials in a format that NGINX and most other web
servers can understand (<username>:<hashed_password>).

Service Decomposition Chapter 3

[61]

Warning! Keep in mind that the -1 algorithm is less secure than the
Salted SHA (SSHA) method of creating .htpasswd passwords, but to
create them in this way would have involved more complicated
commands that would have distracted from our main purpose here, but
you can visit https:/ ​/​nginx. ​org/ ​en/ ​docs/ ​http/ ​ngx_ ​http_ ​auth_ ​basic_
module. ​html#auth_ ​basic_ ​user_ ​file for more details. Also be aware that
you should never use online password generators as they can (and often
do) steal your entered information.

If you haven't worked with Bash sub-shells before, $(openssl ...) is run in a separate
shell and the output is substituted as a string variable before the rest is evaluated so the >>
append operation will only see the encrypted password after username: and nothing
related to openssl. As it should be somewhat apparent from these things, if we don't
provide any build arguments, the container will have a single username user with a
password set to test.

Warning! This type of credential passing to the image is used here as an
example and is very nonsecure since anyone can run docker history
and see what this variable was set to or start the image and echo the
PASSWORD variable. In general, preferred ways of passing this type of
sensitive data are through environment variables when you launch the
container, mounting the credentials file as a volume onto the container,
using docker secret, or an external credentials sharing service. We may
cover some of these in later chapters, but for now, you should just keep in
mind not to use this particular way of passing credentials in production
due to security concerns.

With the web_server piece finished up, we can move to the next piece: the database.

The database
While SQL databases have come a long way in their ability to be sharded and clustered and
generally provide good performance, many of cluster-friendly solutions have been based on
NoSQL and in most cases use a key/value storage; plus, they have been gaining ground
versus the entrenched SQL players in the ecosystem with each passing year. To get our feet
wet quickest and with least amount of effort, we'll choose MongoDB here, which is a breeze
to get working, and because it is NoSQL, we don't have to set up any kind of schema either,
massively reducing our need for tricky configurations!

https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file
https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html#auth_basic_user_file

Service Decomposition Chapter 3

[62]

Warning! The default setup for MongoDB is very easy to do, but it does
not enable any security by default, so anyone with network access to that
container can read and write data to any database. In a private cloud, this
might be somewhat acceptable, but in any other situation, it is not
something that should be done, so keep in mind that if you plan on
deploying MongoDB and make sure it is set up at least with some sort of
isolation and/or authentication.

Our whole setup for the database here will be really simple, and if we didn't need to harden
it with package updates, we wouldn't even have a custom one:

FROM mongo:3

Make sure we are fully up to date
RUN apt-get update -q && \
 apt-get dist-upgrade -y && \
 apt-get clean && \
 apt-get autoclean

The only thing we should consider when we run it is to make sure that the database storage
volume from the container (/var/lib/mongodb) is mounted from the host into the
container so that we preserve it if the container stops, but we can worry about that once we
start launching the container group.

The application server
For this component, we will pick a framework with a minimal amount of boilerplate needed
to get a service up and operational, which most people would say today is Node.js with
Express. Since Node.js is based on JavaScript, which was originally based on a Java-like
syntax, most people who worked on HTML should be able to figure out what the
application code is be doing, but before we get there, we need to define our Node package
and our dependencies, so create a new application_server directory on the same level
as web_server and add the following to a file called package.json:

{
 "name": "application-server",
 "version": "0.0.1",
 "scripts": {
 "start": "node index.js"
 },
 "dependencies": {
 "express": "^4.15.4"
 }
}

Service Decomposition Chapter 3

[63]

There's nothing really magical here; we're just using a Node package definition file to
declare that we need Express as a dependency and that our npm start command should
run node index.js.

Let's also make our Dockerfile now:

FROM node:8

Make sure we are fully up to date
RUN apt-get update -q && \
 apt-get dist-upgrade -y && \
 apt-get clean && \
 apt-get autoclean

Container port that should get exposed
EXPOSE 8000

Setup any variables we need
ENV SRV_PATH /usr/local/share/word_test

Make our directory
RUN mkdir -p $SRV_PATH && \
 chown node:node $SRV_PATH

WORKDIR $SRV_PATH

USER node

COPY . $SRV_PATH/

RUN npm install

CMD ["npm", "start"]

Many of these things should be very familiar here, especially with people familiar with
Node. We are starting with the node:8 image, adding our application code, installing the
dependencies we defined in package.json (with npm install), and then finally making
sure that the app starts when run from the docker CLI.

The order here is pretty important to both avoid cache breaking and ensure proper
permissions. We place things that we don't expect to change much (USER, WORKDIR,
EXPOSE, mkdir, and chown) above COPY since they are much less likely to change as
opposed to the application code and since they're mostly interchangeable, we arrange them
in the ascending order of what we think are the least likely to change in the future in order
to prevent rebuilding of layers and wasted computing power.

Service Decomposition Chapter 3

[64]

Here is also a Node.js-specific image optimization trick: since npm
install is usually the most time and CPU intensive part of dealing with
code changes to a Node application, you can even further optimize this
Dockerfile by copying only package.json, running npm install, and
then copying the rest of the files to the container. Creating the container in
this manner will only do the pricey npm install if package.json
changes and will generally improve build times by a large margin, but this
was excluded from this example in order to not derail our main
conversation with framework-specific optimizations.

So far, we haven't really defined any application code, so let's see what that looks like too.
First, we need an HTML view to be our landing page, and we can throw one together pretty
quickly using a pug (formerly also known as jade) template. Create a views/ folder and
put this in a file named index.pug located in that folder:

html
 head
 title Docker words
 body
 h1 Saved Words

 form(method='POST' action='/new')
 input.form-control(type='text', placeholder='New word' name='word')
 button(type='submit') Save

 ul
 for word in words
 li= word

You don't have to know much about this templating style except that it is a simple
HTML page on which we will display all items from the words array passed into it during
rendering, and if a new word is put in, there will be a form submitted as a POST request to
the /new endpoint.

The main application logic
There is no easy way around this, but our main application logic file, index.js, won't be as
simple as the other configuration files have been:

'use strict'

// Load our dependencies
const bodyParser = require('body-parser')
const express = require('express');

Service Decomposition Chapter 3

[65]

const mongo = require('mongodb')

// Setup database and server constants
const DB_NAME = 'word_database';
const DB_HOST = process.env.DB_HOST || 'localhost:27017';
const COLLECTION_NAME = 'words';
const SERVER_PORT = 8000;

// Create our app, database clients, and the word list array
const app = express();
const client = mongo.MongoClient();
const dbUri = `mongodb://${DB_HOST}/${DB_NAME}`;
const words = [];

// Setup our templating engine and form data parser
app.set('view engine', 'pug')
app.use(bodyParser.urlencoded({ extended: false }))

// Load all words that are in the database
function loadWordsFromDatabase() {
 return client.connect(dbUri).then((db) => {
 return db.collection(COLLECTION_NAME).find({}).toArray();
 })
 .then((docs) => {
 words.push.apply(words, docs.map(doc => doc.word));
 return words;
 });
}

// Our main landing page handler
app.get('/', (req, res) => {
 res.render('index', { words: words });
});

// Handler for POSTing a new word
app.post('/new', (req, res) => {
 const word = req.body.word;

 console.info(`Got word: ${word}`);
 if (word) {
 client.connect(dbUri).then((db) => {
 db.collection(COLLECTION_NAME).insertOne({ word }, () => {
 db.close();
 words.push(word);
 });
 });
 }

Service Decomposition Chapter 3

[66]

 res.redirect('/');
});

// Start everything by loading words and then starting the server
loadWordsFromDatabase().then((words) => {
 console.info(`Data loaded from database (${words.length} words)`);
 app.listen(SERVER_PORT, () => {
 console.info("Server started on port %d...", SERVER_PORT);
 });
});

This file may seem daunting at first, but this is possibly the smallest API service that you
can make from scratch that is also fully functional.

If you would like to learn more about either Node, Express, or the
MongoDB driver, you can visit https:/ ​/​nodejs. ​org/ ​en/ ​, https:/ ​/
expressjs. ​com/ ​, and https:/ ​/​github. ​com/ ​mongodb/ ​node- ​mongodb-
native. If you don't feel like typing, you can also copy and paste this file
from https:/ ​/​github. ​com/ ​sgnn7/ ​deploying_ ​with_ ​docker/ ​.

The basic operation of this app is as follows:

Load any existing words from the MongoDB database
Keep a copy of that list in a variable so that we only need to fetch things from the
database once
Open a port 8000 and listen for requests
If we receive a GET request on /, return the rendered index.html template and
fill it in with the word list array
If we receive a POST to /new:

Save the value in the database
Update our word list
Send us back to /

One part here, however, needs special attention:

const DB_HOST = process.env.DB_HOST || 'localhost:27017';

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/
https://github.com/sgnn7/deploying_with_docker/

Service Decomposition Chapter 3

[67]

Remember when we previously mentioned that much of image configuration should be
done through environment variables before? That is exactly what we are doing here! If an
environment variable DB_HOST is set (as we expect it to be when running as a container), we
will use it as the hostname, but if none is provided (as we expect it when running locally), it
will assume that the database is running locally on the standard MongoDB port. This
provides the flexibility of being configurable as a container and being able to be tested
locally by a developer outside of Docker.

With the main logic file in place, our service should now be arranged in a similar filesystem
layout as this:

$ tree ./
./
├── Dockerfile
├── index.js
├── package.json
└── views
 └── index.pug

1 directory, 4 files

Since this is really the only easy part to test out of the three, let's install MongoDB locally
and see what the service does. You can visit https:/ ​/​docs. ​mongodb. ​com/​manual/
installation/​ for information on how to install it for other platforms, but I've included the
following steps to do this manually on Ubuntu 16.04:

$ # Install MongoDB
$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
0C49F3730359A14518585931BC711F9BA15703C6
$ echo "deb [arch=amd64,arm64] http://repo.mongodb.org/apt/ubuntu
xenial/mongodb-org/3.4 multiverse" | sudo tee
/etc/apt/sources.list.d/mongodb-org-3.4.list

$ sudo apt-get update
$ sudo apt-get install -y mongodb-org
$ sudo systemctl start mongodb

$ # Install our service dependencies
$ npm install
application-server@0.0.1
/home/sg/checkout/deploying_with_docker/chapter_3/prototype_service/applica
tion_server
<snip>
npm WARN application-server@0.0.1 No license field.

$ # Run the service

https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/

Service Decomposition Chapter 3

[68]

$ npm start
> application-server@0.0.1 start
/home/sg/checkout/deploying_with_docker/chapter_3/prototype_service/applica
tion_server
> node index.js

Data loaded from database (10 words)
Server started on port 8000...

It seems to work: let's check out the browser by going to http://localhost:8000!

Service Decomposition Chapter 3

[69]

Let's put a few words in it and see what happens:

So far, so good! The final test is restarting the service and making sure that we see the same
list. Press Ctrl + C out of our Node process and run npm start. You should see the same
list again, which means that it is working as expected!

Running it all together
So, we have our web_server, application_server, and database containers all figured
out. Let's verify that you have all the files matching these before moving on:

$ tree .
.
├── application_server
│ ├── Dockerfile
│ ├── index.js
│ ├── package.json
│ └── views
│ └── index.pug
├── database
│ └── Dockerfile
└── web_server

Service Decomposition Chapter 3

[70]

 ├── Dockerfile
 └── nginx_main_site.conf

4 directories, 7 files

The next step for us is to build all the containers:

 $ # Build the app server image
 $ cd application_server
 $ docker build -t application_server .
 Sending build context to Docker daemon 34.3kB
 Step 1/10 : FROM node:8
 <snip>
 Successfully built f04778cb3778
 Successfully tagged application_server:latest

 $ # Build the database image
 $ cd ../database
 $ docker build -t database .
 Sending build context to Docker daemon 2.048kB
 Step 1/2 : FROM mongo:3
 <snip>
 Successfully built 7c0f9399a152
 Successfully tagged database:latest

 $ # Build the web server image
 $ cd ../web_server
 $ docker build -t web_server .
 Sending build context to Docker daemon 3.584kB
 Step 1/8 : FROM nginx:latest
 <snip>
 Successfully built 738c17ddeca8
 Successfully tagged web_server:latest

This sequential building is great for showing what needs to be done in
each step, but always think about automation and how manual processes
can be improved. In this particular case, this whole block of statements
and execution could have also been done from the parent directory with
this single line: for dir in *; do cd $dir; docker build -t
$dir .; cd ..; done

Service Decomposition Chapter 3

[71]

Launching
With the three relevant containers made, we can now launch them. Some care needs to be
taken that they are launched in order as our application tries to read the data from the
database as soon as it is started and we don't want the web server up if the application isn't
there, so we will launch them in this order: database -> application_server ->
web_server:

$ docker run --rm \
 -d \
 -p 27000:27017 \
 database
3baec5d1ceb6ec277a87c46bcf32f3600084ca47e0edf26209ca94c974694009

$ docker run --rm \
 -d \
 -e DB_HOST=172.17.0.1:27000 \
 -p 8000:8000 \
 application_server
dad98a02ab6fff63a2f4096f4e285f350f084b844ddb5d10ea3c8f5b7d1cb24b

$ docker run --rm \
 -d \
 -p 8080:80 \
 web_server
3ba3d1c2a25f26273592a9446fc6ee2a876904d0773aea295a06ed3d664eca5d

$ # Verify that all containers are running
$ docker ps --format "table {{.Image}}\t{{.Status}}\t{{.ID}}\t{{.Ports}}"
IMAGE STATUS CONTAINER ID PORTS
web_server Up 11 seconds 3ba3d1c2a25f
0.0.0.0:8080->80/tcp
application_server Up 26 seconds dad98a02ab6f
0.0.0.0:8000->8000/tcp
database Up 45 seconds 3baec5d1ceb6
0.0.0.0:27000->27017/tcp

A few things to note here:

We mapped local port 27000 to database 27017 intentionally so that we
wouldn't have the conflict with the MongoDB database already running on the
host.
We passed in the magic 172.17.0.1 IP as the host and port 27000 to our
application server to use as the database host.
We started the web server on port 8080 instead of 80 for the web server in order
to make sure that we don't need root permissions*.

Service Decomposition Chapter 3

[72]

If you do not see three containers running, check the logs with docker
logs <container id>. The most likely culprit will probably be the
mismatch between the IP/port on a container and the destination, so just
fix and restart the container that is failing until you have all three running.
If you have a lot of problems, do not hesitate to start the containers in the
non-daemon mode by removing the -d flag from the commands we used.

* - On *nix systems, ports below 1024 are called registered or privileged
ports that govern many important aspects of communications for a
system. To prevent malicious use of these system ports, root-level access is
required on almost all such platforms. Since we don't really care which
port we will be using for this testing, we will avoid this issue altogether by
selecting port 8080.

The flow of information in this setup is approximated to this:

Browser <=> localhost:8080 <=> web_server:80 <=> 172.17.0.1:8000 (Docker
"localhost") <=> app_server <=> 172.17.0.1:27000 (Docker "localhost") <=>
database:27017

Testing
We have all the pieces running, so let's give it a whirl at http://localhost:8080!

Service Decomposition Chapter 3

[73]

Nice; our authentication is working! Let's put in our super-secret credentials (User: user,
Password: test).

Once we log in, we should be able to see our application server take the processing of the
request over and give us the form to enter the words we want to save:

Service Decomposition Chapter 3

[74]

Just as we wanted, the application server is handling requests once we authenticate! Enter a
few words and see what happens:

Congratulations! You have made your first containerized service!

Limitations and issues with our implementation
We should take a minute here to consider what parts of our service might need improving if
you are to use it in a real system and what the most optimal/practical mitigations might be.
As the critical part of working with containers and the cloud is evaluating the pros and cons
of larger architectures, this is something you should always try to do when developing a
new system or changing an existing one.

From a cursory look, these are the obvious things that could be improved, what the impact
is, and what might be the possible mitigations:

The database has no authentication
Class: Security, very high impact
Mitigation: Private cloud or use authentication

Database data is stored within Docker container (data lost if the container is lost)
Class: Stability, critical impact
Mitigation: Mounted volume and/or sharding and clustering

Service Decomposition Chapter 3

[75]

Hardcoded endpoints
Class: Ops, very high impact
Mitigation: Service discovery (we will cover this in later chapters)

Application server assumes it is the only one changing the word list
Class: Scaling, very high impact
Mitigation: Refresh data on each page load

Application server requires database on container start
Class: Scaling/Ops, medium impact
Mitigation: Defer loading until the page is hit and/or show
message that the database is not available

Web server authentication is baked into the image
Class: Security, critical impact
Mitigation: Add credentials at runtime

Web server authentication is over HTTP
Class: Security, very high impact
Mitigation: Use HTTPS and/or OAuth

Fixing the critical issues
Since we are pretty early in our Docker journey, we will only cover a few workarounds for
the most critical issues for now, which are as follows:

Database data is stored within the Docker container (data is lost if the container is
lost).
Web server authentication is baked into the image.

Using a local volume
The first issue is a very serious problem because all of our data is currently tied to our
container, so if the database app stops, you have to restart the same container to get your
data back. In this situation, if the container is run with the --rm flag and stops or is
otherwise terminated, all the data associated with it would disappear, which is definitively
not something we want. While large-scale solutions for this problem are done with
sharding, clustering, and/or persistent volumes for our level, we should be fine by just
mounting the data volume where we want to keep our data into the container directly. This
should keep the data on the host filesystem if anything happens to the container and can be
further backed up or moved somewhere else if needed.

Service Decomposition Chapter 3

[76]

This process of mounting (sometimes called mapping) a directory into the container is
actually relatively easy to do when we start it if our volume is a named volume stored
within Docker internals:

$ docker run --rm -d -v local_storage:/data/db -p 27000:27017 database

What this will do is create a named volume in Docker's local storage called
local_storage, which will be seamlessly mounted on /data/db in the container (the
place where the MongoDB image stores its data in the images from Docker Hub). If the
container dies or anything happens to it, you can mount this volume onto a different
container and retain the data.

-v , --volume , and using a named volume are not the only ways to create
volumes for Docker containers. We will cover the reasons why we use this
syntax as opposed to other options (that is, --mount) in more detail in
Chapter 5, Keeping the Data Persistent, which specifically deals with
volumes.

Let us see this in action (this may require a MongoDB client CLI on your host machine):

$ # Start our container
$ docker run --rm \
 -d \
 -v local_storage:/data/db \
 -p 27000:27017 \
 database
16c72859da1b6f5fbe75aa735b539303c5c14442d8b64b733eca257dc31a2722

$ # Insert a test record in test_db/coll1 as { "item": "value" }
$ mongo localhost:27000
MongoDB shell version: 2.6.10
connecting to: localhost:27000/test

> use test_db
switched to db test_db

> db.createCollection("coll1")
{ "ok" : 1 }

> db.coll1.insert({"item": "value"})
WriteResult({ "nInserted" : 1 })

> exit
bye

$ # Stop the container. The --rm flag will remove it.

Service Decomposition Chapter 3

[77]

$ docker stop 16c72859
16c72859

$ # See what volumes we have
$ docker volume ls
DRIVER VOLUME NAME
local local_storage

$ # Run a new container with the volume we saved data onto
$ docker run --rm \
 -d \
 -v local_storage:/data/db \
 -p 27000:27017 \
 database
a5ef005ab9426614d044cc224258fe3f8d63228dd71dee65c188f1a10594b356

$ # Check if we have our records saved
$ mongo localhost:27000
MongoDB shell version: 2.6.10
connecting to: localhost:27000/test

> use test_db
switched to db test_db

> db.coll1.find()
{ "_id" : ObjectId("599cc7010a367b3ad1668078"), "item" : "value" }

> exit

$ # Cleanup
$ docker stop a5ef005a
a5ef005a

As you can see, our record persisted through the original container's destruction, which is
exactly what we want! We will cover how to handle volumes in other ways in later
chapters, but this should be enough to get us where we want with this critical issue in our
little service.

Generating the credentials at runtime
Unlike the database problem, this particular issue is not as easy to deal with, mostly
because credentials are a tough problem to deal with from a security perspective. If you
include a build argument or a baked-in environment variable, anyone with access to the
image can read it. Also, if you pass in the credentials through an environment variable
during container creation, anyone that has docker CLI access can read it so you're mostly
left with mounting of volumes with credentials to the container.

Service Decomposition Chapter 3

[78]

There are a few other ways of passing credentials securely, though they
are a bit outside of the scope of this exercise such as env variables that
contain hashed passwords, using a broker secrets-sharing service, using
cloud-specific roles mechanisms (that is, AWS, IAM Role, user-data),
and a few others, but the important part for this section is to understand
which things you should try not to do when handling authentication data.

To work around this, we will generate our own credentials file locally on the host machine
and mount it to the container when it starts. Substitute user123 with whatever username
you want and password123 with an alphanumeric password:

$ printf "user123:$(openssl passwd -1 password123)\n" >> ~/test_htpasswd

$ # Start the web_server with our password as the credentials source
$ docker run --rm \
 -v $HOME/test_htpasswd:/srv/www/html/.htpasswd \
 -p 8080:80 web_server
1b96c35269dadb1ac98ea711eec4ea670ad7878a933745678f4385d57e96224a

With this small change, your web server will now be secured with the new username and
the new password and the configuration won't be available to people able to run docker
commands either. You can access http:/ ​/​127.​0. ​0.​1:8080 to see that the new username
and password are the only credentials that work.

Introducing Docker networking
At an earlier point, we have somewhat glanced over our use of IP 172.17.0.1 in the
web_server code, and it is something that is not well covered in other materials, but it is a
very important thing to understand if you want to have a solid grasp on Docker. When the
Docker service is started on a machine, a number of networking iptables rules are added
to your machine in order to allow the container to connect to the world through forwarding
and vice versa. Effectively, your machine becomes an Internet router for all containers
started. On top of this, each new container is assigned a virtual address (most likely in the
range of 172.17.0.2+) and any communication it does will be normally invisible to the
other containers unless a software-defined network is created, so connecting multiple
container on the same machine is actually a really tricky task to do manually without helper
software that is in the Docker infrastructure called Service Discovery.

http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080

Service Decomposition Chapter 3

[79]

Since we didn't want the overhead of this Service Discovery for now (which we will cover
later in more depth), and we couldn't use localhost/127.0.0.1/::1, which would not
have worked at all, we needed to give it the Docker virtual router IP (almost always
172.17.0.1) so that it would find our actual machine where other container ports have
been bound.

Please note that large parts of this next section do not work on macOS nor
Windows machines due to the way their networking stack is implemented
for Docker. For those systems, I would suggest that you use an Ubuntu
virtual machine to follow along.

If you would like to verify this, we can use a few commands outside and inside of Docker in
order to really see what is happening:

$ # Host's iptables. If you have running containers, DOCKER chain wouldn't
be empty.
$ sudo iptables -L
<snip>
Chain FORWARD (policy DROP)
target prot opt source destination
DOCKER-ISOLATION all -- anywhere anywhere
ACCEPT all -- anywhere anywhere ctstate
RELATED,ESTABLISHED
DOCKER all -- anywhere anywhere
ACCEPT all -- anywhere anywhere
ACCEPT all -- anywhere anywhere
<snip>
Chain DOCKER (1 references)
target prot opt source destination

Chain DOCKER-ISOLATION (1 references)
target prot opt source destination
RETURN all -- anywhere anywhere
<snip>

$ # Host's network addresses is 172.17.0.1
$ ip addr
<snip>
5: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UP group default
 link/ether 02:42:3c:3a:77:c1 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.1/16 scope global docker0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:3cff:fe3a:77c1/64 scope link
 valid_lft forever preferred_lft forever
<snip>

Service Decomposition Chapter 3

[80]

$ # Get container's network addresses
$ docker run --rm \
 -it \
 web_server /bin/bash

root@08b6521702ef:/# # Install pre-requisite (iproute2) package
root@08b6521702ef:/# apt-get update && apt-get install -y iproute2
<snip>

root@08b6521702ef:/# # Check the container internal address (172.17.0.2)
root@08b6521702ef:/# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
722: eth0@if723: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UP group default
 link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 172.17.0.2/16 scope global eth0
 valid_lft forever preferred_lft forever

root@08b6521702ef:/# # Verify that our main route is through our host at
172.17.0.1
root@08b6521702ef:/# ip route
default via 172.17.0.1 dev eth0
172.17.0.0/16 dev eth0 proto kernel scope link src 172.17.0.2

root@08b6521702ef:/# exit

As you can see, this system is a bit odd, but it works pretty well. Generally when building
bigger systems, service discovery is practically mandatory, so you wouldn't have to worry
about such low-level details in the field.

Summary
In this chapter, we covered how to build multiple containers to make a basic service
composed of a web server, application server, and the database, launch multiple containers
together, and tie them together with networking. We also worked through what the most
common issues might be when connecting services and what the common pitfalls with
these basic building blocks are. Some hints about future topics were also given (volumes,
service discovery, credentials passing, and so on), but we will cover those in later chapters
in depth. In the next chapter, we will be turning our little service into a robust service with
horizontally scaled components.

4
Scaling the Containers

In this chapter, we will be taking our service and trying to scale it horizontally with
multiple instances of the same container. We will cover the following topics in this chapter:

Orchestration options and their pros/cons
Service discovery
State reconciliation
The deployment of your own Docker Swarm cluster
Deploying our word service from the previous chapter onto that cluster

Service discovery
Before we get any further, we really need to get deeply familiar with the conceptual Docker
container connectivity, which is, unsurprisingly, in some ways very similar to building
high-availability services with servers in a non-containerized world. Because of this,
covering this topic in some depth will not only expand your understanding of Docker
networking, but also help in generally building out resilient services.

Scaling the Containers Chapter 4

[82]

A recap of Docker networking
In the previous chapter, we covered a bit of the Docker networking layout, so we will cover
the main points here:

By default, Docker containers run on an isolated virtual network on the host
Each container has its own network address in that network
By default, localhost for a container is not the host machine's localhost
There is high overhead of manual work in order to connect containers manually
Manual networking connections between containers are inherently fragile

In the parallel world of setting up a local server network, the base experience of Docker
connectivity is very much akin to hooking up your whole network with static IPs. While
this approach is not very difficult to get working, maintaining it is extremely hard and
laborious, which is why we need something better than that.

Service Discovery in depth
Since we don't want to deal with this fragile system of keeping and maintaining hardcoded
IP addresses, we need to figure out a way so our connections are flexible and require no
adjustments from the client if the target service dies or a new one is created. It would also
be nice if each connection to the same service is equally balanced between all instances of
the same service. Ideally, our services would look something like this:

Scaling the Containers Chapter 4

[83]

For this exact use case for the Internet, DNS was created so that clients would have a way to
find servers even if the IP address or network changes from anywhere in the world. As an
added benefit, we have target addresses that are easier to remember (DNS names such
as https:/​/​google. ​com instead of something such as https://123.45.67.89) and the
ability to distribute the processing to as many handling services as we want.

If you have not worked with DNS in depth, the main principles are reduced to these basic
steps:

The user (or app) wants to connect to a server (that is, google.com).1.
The local machine either uses its own cached DNS answer or goes out to the DNS2.
system and searches for this name.
The local machine gets back the IP address (123.45.67.89) that it should use3.
as the target.
The local machine connects to the IP address.4.

https://google.com
https://google.com
https://google.com
https://google.com
https://google.com
https://google.com
https://google.com
http://www.google.com

Scaling the Containers Chapter 4

[84]

The DNS system is much more complicated than the single sentences
mentioned here. While DNS is a really good thing to know about in any
server-oriented tech position, here, it was sufficient just to know that the
input to the DNS system is a hostname and the output is the real target
(IP). If you would like to know more about how the DNS system actually
works, I recommend that you visit https:/ ​/​en.​wikipedia. ​org/ ​wiki/
Domain_ ​Name_ ​System at your leisure.

If we coerce the DNS handling that is implemented in almost all clients already as a way to
automatically discover services, we could make ourselves the service discovery mechanism
that we have been looking for! If we make it smart enough, it can tell us where the running
container is, load balance between all instances of the same container, and provide us with a
static name to use as our target. As one may expect, almost all container service discovery
systems have this exact pattern of functionality; it just generally differs if it is done as either
a client-side discovery pattern, server-side discovery pattern, or some sort of a hybrid
system.

Client-side discovery pattern
This type of pattern isn't used often, but it pretty much involves using a service-aware client
to discover other services and to load balance between them. The advantage here is that the
client can make intelligent decisions about where to connect to and in which manner, but
the downside is that this decision making is distributed onto each service and hard to
maintain but it is not dependent on a single source of truth (single service registry) that
could take down a whole cluster if it fails.

The architecture generally looks something similar to this:

https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System

Scaling the Containers Chapter 4

[85]

Server-side discovery pattern
The more common service discovery pattern is a centralized server-side discovery pattern
where the DNS system is used to direct the clients to the container. In this particular way of
finding services, a container registers and de-registers itself from the service registry, which
holds the state of the system. This state, in turn, is used to populate the DNS entries that the
client then contacts to find the target(s) that it is trying to connect to. While this system is
generally pretty stable and flexible, it sometimes suffers from really tricky issues that
generally hamper DNS systems elsewhere, such as DNS caching, which uses stale IP
addresses until the time-to-live (TTL) expires or when the app itself caches the DNS entry
regardless of updates (NGINX and Java apps are notorious for this).

Hybrid systems
This grouping includes all other combinations that we haven't covered yet, but it covers the
class of largest deployments that use a tool, HAProxy, which we will cover in some detail
later. What it basically does is tie a specific port on the host (that is, <host>:10101) to a
load-balanced target somewhere else in the cluster.

Scaling the Containers Chapter 4

[86]

From the client perspective, they are connecting to a single and stable location and the
HAProxy then tunnels it seamlessly to the right target.

This setup supports both pull and push refreshing of methods and is very resilient, but we
will take a deep dive into this type of setup in later chapters.

Picking the (un)available options
With all of these types of service discoveries available, we should be able to handle any
container scaling that we want, but we need to keep something very important in mind:
almost all service discovery tooling is intimately bound to the system used for deploying
and managing the containers (also known as container orchestration) due to the fact that
updates to container endpoints are generally just an orchestration system implementation
detail. Because of this, service discovery systems usually aren't as portable as one might
like, so the choice of this infrastructure piece usually gets decided by your orchestration
tooling (with a few exceptions here and there).

Scaling the Containers Chapter 4

[87]

Container orchestration
As we somewhat hinted earlier, service discovery is a critical part of deploying a container-
based system in any capacity. Without something like that, you might as well just use bare-
metal servers as the majority of advantages gained using containers have been lost. To have
an effective service discovery system, you are pretty much mandated to use some sort of
container orchestration platform, and luckily (or maybe un-luckily?), options for container
orchestration have been sprouting at an almost alarming rate! In general terms, though, at
the time of writing this book (and in my humble opinion), the popular and stable choices
come down to mainly these:

Docker Swarm
Kubernetes
Apache Mesos/Marathon
Cloud-based offerings (Amazon ECS, Google Container Engine, Azure Container
Service, and so on)

Each one has its own vocabulary and the way in which the infrastructure pieces connect, so
before we go any further, we need to cover the pertinent vocabulary in regard to
orchestration services that will mostly be reusable between all of them:

Node: An instance of Docker Engine. Generally used only when talking about
cluster-connected instances.
Service: A functionality grouping that is composed of one or more running
instances of the same Docker image.
Task: A specific and unique instance of a running service. This is usually a single
running Docker container.
Scaling: The count of tasks specified for a service to run. This usually determines
how much throughput a service can support.
Manager node: A node in charge of management and orchestration duties of the
cluster.
Worker node: A node designated as a task runner.

Scaling the Containers Chapter 4

[88]

State reconciliation
Besides our just-learned dictionary, we also need to understand the underlying algorithm of
almost all orchestration frameworks, state reconciliation, which deserves its own little
section here. The basic principle that this works on is a very simple three-step process, as
follows:

The user setting the desired count(s) of each service or a service disappearing.
The orchestration framework seeing what is needed in order to change the
current state to the desired state (delta evaluation).
Executing whatever is needed to take the cluster to that state (known as state
reconciliation).

For example, if we currently have five running tasks for a service in the cluster and change
the desired state to only three tasks, our management/orchestration system will see that the
difference is -2 and thus pick two random tasks and kill them seamlessly. Conversely, if we
have three tasks running and we want five instead, the management/orchestration system
will see that the desired delta is +2 so it will pick two places with available resources for it
and start two new tasks. A short explanation of two state transitions should also help clarify
this process:

Initial State: Service #1 (3 tasks), Service #2 (2 tasks)
Desired State: Service #1 (1 task), Service #2 (4 tasks)

Reconciliation:
 - Kill 2 random Service #1 tasks
 - Start 2 Service #2 tasks on available nodes

New Initial State: Service #1 (1 tasks), Service #2 (4 tasks)

Scaling the Containers Chapter 4

[89]

New Desired State: Service #1 (2 tasks), Service #2 (0 tasks)

Reconciliation:
 - Start 1 tasks of Service #1 on available node
 - Kill all 4 running tasks of Service #2

Final State: Service #1 (2 tasks), Service #2 (0 tasks)

Using this very simple but powerful logic, we can dynamically scale up and down our
services without worrying about the intermediate stages (to a degree). Internally, keeping
and maintaining states is such a difficult task that most orchestration frameworks use a
special, high-speed key-value store component to do this for them (that is, etcd,
ZooKeeper, and Consul).

Since our system only cares about where our current state is and where it needs to be, this
algorithm also doubles as the system for building resilience as a dead node, or the container
will reduce the current task count for applications and will trigger a state transition back to
the desired counts automatically. As long as services are mostly stateless and you have the
resources to run the new services, these clusters are resilient to almost any type of failure
and now you can hopefully see how a few simple concepts tie together to create such a
robust infrastructure.

With our new understanding of management and orchestration framework basics, we will
now take a brief look at each one of our available options (Docker Swarm, Kubernetes,
Marathon) and see how they compare with each other.

Docker Swarm
Out of the box, Docker contains an orchestration framework and a management platform
very architecturally similar to the one covered just a second ago, called Docker Swarm.
Swarm allows a pretty quick and simple way to get scaling integrated with your platform
with minimal ramp-up time and given that it is already a part of Docker itself, you really
don't need much else to deploy a simple set of services in a clustered environment. As an
added benefit, it contains a pretty solid service discovery framework, has multi-host
networking capability, and uses TLS for communication between nodes.

Scaling the Containers Chapter 4

[90]

Multi-host networking capability is the ability of a system to create a
virtual network across multiple physical machines that are transparent
from the point of view of the container. Using one of these, your
containers can communicate with each other as if they were on the same
physical network, simplifying the connectivity logic and reducing
operational costs. We will look into this aspect of clustering in depth a bit
later.

The cluster configuration for Docker Swarm can be a simple YAML file, but the downside is
that GUI tools are, at the time of writing this, somewhat lacking, though Portainer (https:/
/​portainer.​io) and Shipyard (https:/ ​/ ​shipyard- ​project. ​com) are getting to be pretty
decent, so this might not be a problem for too long. Additionally, some large-scale ops
tooling is missing and it seems that generally, features of Swarm are heavily evolving and
thus in a state of flux, so my personal recommendation would be to use this type of
orchestration if you need to get something up and running quickly on small-to-largish
scales. As this product gets more and more mature (and since Docker Inc. is placing a lot of
development resources behind this), it will probably improve significantly, and I expect it to
match Kubernetes features in many respect so keep an eye out for its feature news.

Kubernetes
Kubernetes is Google's cloud platform and orchestration engine that currently provides a
bit more in terms of features than does Swarm. The setup of Kubernetes is much more
difficult as you need: a master, a node (the worker according to our earlier dictionary), and
pods (grouping of one or more containers). Pods are always co-located and co-scheduled, so
handling their dependencies is a bit easier to deal with but you do not get the same
isolation. The interesting thing to keep in mind here is that all containers within the pod
share the same IP address/ports, share volumes, and are generally within the same isolation
group. It is almost better to think of a pod as a small virtual machine running many services
than many containers running in parallel.

Kubernetes has been gaining a massive amount of community traction lately and is
probably the most deployed cluster orchestration and management system in use, though
to be fair, finding exact figures is tricky, with a majority of them being deployed in private
clouds. Given that Google has been using this system for a while and on such a large scale,
it has a pretty proven track record and I would probably recommended it for medium-to-
large scales. If you don't mind the overhead of setting everything up, I think even smaller
scales would be acceptable, but in that space, Docker Swarm is so easy to use that using
Kubernetes for it is generally impractical.

https://portainer.io
https://portainer.io
https://portainer.io
https://portainer.io
https://portainer.io
https://portainer.io
https://shipyard-project.com
https://shipyard-project.com
https://shipyard-project.com
https://shipyard-project.com
https://shipyard-project.com
https://shipyard-project.com
https://shipyard-project.com
https://shipyard-project.com
https://shipyard-project.com

Scaling the Containers Chapter 4

[91]

At the time of writing this book, both Mesos and Docker EE have included
capabilities to support Kubernetes so if you would want to bet on an
orchestration engine, this would probably be it.

Apache Mesos/Marathon
When you really need to dial up the scaling to levels of Twitter and Airbnb, you probably
need something even more powerful than Swarm or Kubernetes, which is where Mesos and
Marathon come into play. Apache Mesos was not actually built with Docker in mind but as
a general cluster-management tooling that provides resource management in a consistent
way for applications that run on top of it with APIs. You can run anything from scripts,
actual applications, and multiple platforms (such as HDFS and Hadoop) with relative ease.
For container-based orchestration and scheduling on this platform these days, Marathon is
the general go-to here.

As mentioned a little bit earlier, Kubernetes support has been now
available again for Mesos after being in a broken state for a while so the
suggestion of Marathon may change by the time you read this text.

Scaling the Containers Chapter 4

[92]

Marathon runs as an application (in a very loose sense of the word) on top of Mesos as the
container orchestration platform and provides all kind of niceties, such as a great UI
(though Kubernetes has one too), metrics, constraints, persistent volumes (experimental at
the time of writing this), and many others. As a platform, Mesos and Marathon are
probably the most powerful combo for handling clusters in the tens-of-thousands-of-nodes
range, but to get everything pieced together, unless you use the pre-packaged DC/OS
solution (https:/​/​dcos. ​io/ ​), it is in my experience really, really tricky to get up and
running compared to the other two. If you need to cover the range of medium-to-largest of
scales with added flexibility in order to run other platforms (such as Chronos) on it too,
currently, I would strongly recommend this combo.

Cloud-based offerings
If all of this seems too much trouble and you don't mind paying a hefty premium every
month for it, all the big cloud players have some sort of container-based service offering.
Since these vary wildly both in functionality and feature set, anything that would get put
onto this page in that regard will probably be outdated by the time it gets published, and
we are more interested in deploying services on our own, so I will leave you links to the
appropriate offerings that will have up-to-date information if you choose this route:

Amazon ECS: https:/ ​/ ​aws. ​amazon. ​com/ ​ecs/ ​

Google Container Engine: https:/ ​/ ​cloud. ​google. ​com/ ​container- ​engine/ ​

https://dcos.io/
https://dcos.io/
https://dcos.io/
https://dcos.io/
https://dcos.io/
https://dcos.io/
https://dcos.io/
https://dcos.io/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/

Scaling the Containers Chapter 4

[93]

Microsoft Azure (Azure Container Service): https:/ ​/​azure. ​microsoft. ​com/ ​en-
us/​services/ ​container- ​service/ ​

Oracle Container Cloud Service: https:/ ​/​cloud. ​oracle. ​com/​container

Docker Cloud: https:/ ​/ ​cloud. ​docker. ​com/ ​

Probably many others that I have missed

Personally, I would recommend this approach for small-to-medium deployments due to
ease of use and tested environments. If your needs expand past these scales, implementing
your service on scalable groups of virtual machines on Virtual Private Clouds (VPCs) with
the same cloud service provider is generally one of the ways to go as you can tailor your
infrastructure in the exact way that your needs expand, though the upfront DevOps costs
are not small, so decide accordingly. A good rule of thumb to remember with pretty much
any cloud offering is that with easy tooling already provided you get much quicker
deployments counterbalanced by increased costs (usually hidden) and lack of
flexibility/customizability.

Implementing orchestration
With our newly-gained understanding of the orchestration and management offerings out
there, it is time to try this out ourselves. In our next exercise, we will first try to use Docker
Swarm to create and play a bit with a local cluster and then we will try to deploy our
service from the previous chapter onto it.

Setting up a Docker Swarm cluster
Since all the functionality to set up a Docker Swarm cluster is already included in the
Docker installation, this is actually a really easy thing to do. Let's see what commands we
have available to us:

$ docker swarm
<snip>
Commands:
 init Initialize a swarm
 join Join a swarm as a node and/or manager
 join-token Manage join tokens
 leave Leave the swarm
 unlock Unlock swarm
 unlock-key Manage the unlock key
 update Update the swarm

https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://cloud.oracle.com/container
https://cloud.oracle.com/container
https://cloud.oracle.com/container
https://cloud.oracle.com/container
https://cloud.oracle.com/container
https://cloud.oracle.com/container
https://cloud.oracle.com/container
https://cloud.oracle.com/container
https://cloud.oracle.com/container
https://cloud.oracle.com/container
https://cloud.oracle.com/container
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/

Scaling the Containers Chapter 4

[94]

A few things to note here--some more apparent than others:

You create a swarm with docker swarm init
You join a cluster with docker swarm join and the machine can be a worker
node, a manager node, or both
Authentication is managed using tokens (unique strings that need to match)
If something happens to a manager node, such as a restart or power cycle, and
you have set up auto-locking of the swarm, you will need an unlock key to
unlock the TLS keys

So far, so good, so let's see whether we can set up a swarm with our machine serving both
as a manager and a worker to see how this works.

Initializing a Docker Swarm cluster
To create our swarm, we first need to instantiate it:

$ docker swarm init

Swarm initialized: current node (osb7tritzhtlux1o9unlu2vd0) is now a
manager.

To add a worker to this swarm, run the following command:

 docker swarm join \
 --token
SWMTKN-1-4atg39hw64uagiqk3i6s3zlv5mforrzj0kk1aeae22tpsat2jj-2zn0ak0ldxo58d1
q7347t4rd5 \
 192.168.4.128:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and
follow the instructions.

$ # Make sure that our node is operational
$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
osb7tritzhtlux1o9unlu2vd0 * feather2 Ready Active Leader

Scaling the Containers Chapter 4

[95]

We have created a swarm with that command and we are automatically enrolled as a
manager node. If you take a look at the output, the command for adding worker nodes is
just docker swarm join --token <token> <ip>, but we are interested in a single-node
deployment for now, so we won't need to worry about it. Given that our manager node is
also a worker node, we can just use it as-is to throw a few services on it.

Deploying services
Most of the commands we will initially need are accessible through the docker services
command:

$ docker service
<snip>
Commands:
 create Create a new service
 inspect Display detailed information on one or more services
 logs Fetch the logs of a service or task
 ls List services
 ps List the tasks of one or more services
 rm Remove one or more services
 scale Scale one or multiple replicated services
 update Update a service

As you might be suspecting, given how similar these commands are to
some of the ones for managing containers, once you move to an
orchestration platform as opposed to fiddling with containers directly, the
ideal management of your services would be done through the
orchestration itself. I would probably expand this and go as far as to say
that if you are working with containers too much while having an
orchestration platform, you did not set something up or you did not set it
up correctly.

We will now try to get some sort of service running on our Swarm, but since we are just
exploring how all this works, we can use a very slimmed down (and a very insecure)
version of our Python web server from Chapter 2, Rolling Up the Sleeves. Create a new
folder and add this to a new Dockerfile:

FROM python:3

ENV SRV_PATH=/srv/www/html

EXPOSE 8000

RUN mkdir -p $SRV_PATH && \

Scaling the Containers Chapter 4

[96]

 groupadd -r -g 350 pythonsrv && \
 useradd -r -m -u 350 -g 350 pythonsrv && \
 echo "Test file content" > $SRV_PATH/test.txt && \
 chown -R pythonsrv:pythonsrv $SRV_PATH

WORKDIR $SRV_PATH

CMD ["python3", "-m", "http.server"]

Let's build it so that our local registry has an image to pull from when we define our
service:

$ docker build -t simple_server .

With the image in place, let's deploy it on our swarm:

$ docker service create --detach=true \
 --name simple-server \
 -p 8000:8000 \
 simple_server
image simple_server could not be accessed on a registry to record
its digest. Each node will access simple_server independently,
possibly leading to different nodes running different
versions of the image.

z0z90wgylcpf11xxbm8knks9m

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
z0z90wgylcpf simple-server replicated 1/1 simple_server
*:8000->8000/tcp

The warning shown is actually very important: our service is only
available on our local machine's Docker registry when we built it, so using
a Swarm service that is spread between multiple nodes will have issues
since other machines will not be able to load the same image. For this
reason, having the image registry available from a single source to all of
the nodes is mandatory for cluster deployments. We will cover this issue
in more detail as we progress through this and following chapters.

If we check out http://127.0.0.1:8000, we can see that our service is running! Let's see
this:

Scaling the Containers Chapter 4

[97]

If we scale this service to three instances, we can see how our orchestration tool is handling
the state transitions:

$ docker service scale simple-server=3

image simple_server could not be accessed on a registry to record
its digest. Each node will access simple_server independently,
possibly leading to different nodes running different
versions of the image.

simple-server scaled to 3

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
z0z90wgylcpf simple-server replicated 2/3 simple_server
*:8000->8000/tcp

$ # After waiting a bit, let's see if we have 3 instances now
$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
z0z90wgylcpf simple-server replicated 3/3 simple_server
*:8000->8000/tcp

Scaling the Containers Chapter 4

[98]

$ # You can even use regular container commands to see it
$ docker ps --format 'table {{.ID}} {{.Image}} {{.Ports}}'
CONTAINER ID IMAGE PORTS
0c9fdf88634f simple_server:latest 8000/tcp
98d158f82132 simple_server:latest 8000/tcp
9242a969632f simple_server:latest 8000/tcp

You can see how this is adjusting the container instances to fit our specified parameters.
What if we now add something in the mix that will happen in real life-a container death:

$ docker ps --format 'table {{.ID}} {{.Image}} {{.Ports}}'
CONTAINER ID IMAGE PORTS
0c9fdf88634f simple_server:latest 8000/tcp
98d158f82132 simple_server:latest 8000/tcp
9242a969632f simple_server:latest 8000/tcp

$ docker kill 0c9fdf88634f
0c9fdf88634f

$ # We should only now have 2 containers
$ docker ps --format 'table {{.ID}} {{.Image}} {{.Ports}}'
CONTAINER ID IMAGE PORTS
98d158f82132 simple_server:latest 8000/tcp
9242a969632f simple_server:latest 8000/tcp

$ # Wait a few seconds and try again
$ docker ps --format 'table {{.ID}} {{.Image}} {{.Ports}}'
CONTAINER ID IMAGE PORTS
d98622eaabe5 simple_server:latest 8000/tcp
98d158f82132 simple_server:latest 8000/tcp
9242a969632f simple_server:latest 8000/tcp

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
z0z90wgylcpf simple-server replicated 3/3 simple_server
*:8000->8000/tcp

As you can see, the swarm will bounce back up like nothing happened, and this is exactly
why containerization is so powerful: not only can we spread processing tasks among many
machines and flexibly scale the throughput, but with identical services we don't really care
very much if some (hopefully small) percentage of services dies, as the framework will
make it completely seamless for the client. With the built-in service discovery of Docker
Swarm, the load balancer will shift the connection to whatever container is
running/available so anyone trying to connect to our server should not see much of a
difference.

Scaling the Containers Chapter 4

[99]

Cleaning up
As with any service that we are finished with, we need to make sure that we clean up any
resources we have used up so far. In the case of Swarm, we should probably remove our
service and destroy our cluster until we need it again. You can do both of those things using
docker service rm and docker swarm leave:

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
z0z90wgylcpf simple-server replicated 3/3 simple_server
*:8000->8000/tcp

$ docker service rm simple-server
simple-server

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS

$ docker swarm leave --force
Node left the swarm.

The reason why we had to use the --force flag here is due to the fact that
we are a manager node and we are the last one in the cluster, so by
default, Docker will prevent this action without it. In a multi-node setup,
you will not generally need this flag.

With this action, we are now back at where we started and are ready to do this with a real
service.

Using Swarm to orchestrate our words service
In the previous chapter, we built a simple service that can be used to add and list words
entered on a form. But if you remember, we heavily used somewhat of an implementation
detail to connect the services together, making it extremely fragile if not downright hacked-
up together. With our new-found knowledge of service discovery and our understanding of
Docker Swarm orchestration, we can try to get our old code ready for real cluster
deployment and move away from the fragile setup we had earlier.

Scaling the Containers Chapter 4

[100]

The application server
Copy the old application server folder from Chapter 3, Service Decomposition, to a new
folder and we will change our main handler code (index.js) since we have to
accommodate the fact that we will not be the only instance reading from and writing to the
database anymore.

As always, all code can also be found at https:/ ​/​github. ​com/​sgnn7/
deploying_ ​with_ ​docker. This particular implementation can be found in
chapter_4/clustered_application.

Warning! As you start thinking about similar containers running in
parallel, you have to start being extra careful about data changes that can
and will occur outside of the container's realm of control. For this reason,
keeping or caching the state in any form in a running container is usually a
recipe for disaster and data inconsistencies. To avoid this issue, in general,
you should try to make sure that you re-read the information from your
upstream sources (that is, the database) before doing any transformation
or passing of the data like we do here.

index.js
This file is pretty much the same one from the last chapter but we will be making a few
changes to eliminate caching:

'use strict'

const bodyParser = require('body-parser')
const express = require('express');
const mongo = require('mongodb')

const DB_NAME = 'word_database';
const DB_HOST = process.env.DB_HOST || 'localhost:27017';
const COLLECTION_NAME = 'words';
const SERVER_PORT = 8000;

const app = express();
const client = mongo.MongoClient();
const dbUri = `mongodb://${DB_HOST}/${DB_NAME}`;

app.set('view engine', 'pug')
app.use(bodyParser.urlencoded({ extended: false }))

function loadWordsFromDatabase() {

https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker

Scaling the Containers Chapter 4

[101]

 return client.connect(dbUri).then((db) => {
 return db.collection(COLLECTION_NAME).find({}).toArray();
 })
 .then((docs) => {
 return docs.map(doc => doc.word);
 });
}

app.get('/', (req, res) => {
 console.info("Loading data from database...");
 loadWordsFromDatabase().then(words => {
 console.info("Data loaded, showing the result...");
 res.render('index', { words: words });
 });
});

app.post('/new', (req, res) => {
 const word = req.body.word;

 console.info(`Got word: ${word}`);
 if (word) {
 client.connect(dbUri).then((db) => {
 db.collection(COLLECTION_NAME).insertOne({ word }, () => {
 db.close();
 });
 });
 }

 res.redirect('/');
});

app.listen(SERVER_PORT, () => {
 console.info("Server started on port %d...", SERVER_PORT);
});

If may have noticed, many things are similar, but there are fundamental changes too:

We don't pre-load the words on start as the list might change from the time the
service initializes and the user requests data.
We load the saved words on each GET request in order to make sure we always
get fresh data.
When we save the word, we just insert it into the database and don't preserve it
in the application as we will get new data on GET re-display.

Scaling the Containers Chapter 4

[102]

Using this approach, any changes done to the data in the database by any app instances will
immediately be reflected in all of them. Additionally, if a database administrator changed
any of the data, we will also see those changes within the application. Since our service also
uses an environment variable for the database host, we should not need to change it to the
support service discovery.

Caution! Be aware that because we read the database on each GET request,
our changes to support clustering are not free and come with an increase
in database queries, which can become a real bottleneck when the
networking, cache invalidation, or disk transfers become overly saturated
by these requests. Additionally, since we read the database before we
display the data, slowdowns in the backend processing of our database
find() will be user-visible, possibly causing undesired user experience,
so keep these things in mind as you develop container-friendly services.

The web server
Our web server changes will be a bit trickier due to a quirk/feature of the NGINX
configuration processing that may also impact you if you do Java-based DNS resolution.
Essentially, NGINX caches DNS entries so hard that effectively, once it reads the
configuration files, any new DNS resolution within that configuration will not actually take
place at all unless some extra flags (resolver) are specified. With the Docker service
being constantly mutable and relocatable, this is a serious issue that must be worked
around to function properly on the Swarm. Here, you have a couple of options:

Run a DNS forwarder (such as dnsmasq) in parallel with NGINX and use that as
the resolver. This requires running both dnsmasq and NGINX in the same
container.
Populate the NGINX configuration container start with the same resolvers from
the system using something such as envsubst: this requires all containers to be
in the same user-defined network.
Hardcode the DNS resolver IP (127.0.0.11): this also requires all containers to
be in the same user-defined network.

Scaling the Containers Chapter 4

[103]

For robustness, we will use the second option, so copy the web server from the previous
chapter into a new folder and rename it to nginx_main_site.conf.template. We will
then add a resolver configuration to it and a variable $APP_NAME for our proxy host
endpoint:

server {
 listen 8080;
 server_name _;

 resolver $DNS_RESOLVERS;

 root /srv/www/html;

 location ~/\. {
 deny all;
 }

 location / {
 auth_basic "Authentication required";
 auth_basic_user_file /srv/www/html/.htpasswd;

 proxy_pass http://$APP_NAME:8000;
 }
}

Since NGINX does not handle environment variable substitution in the configuration files,
we will write a wrapper script around it. Add a new file called start_nginx.sh and
include the following content in it that takes the host's resolvers and generates the new
main_site config:

#!/bin/bash -e

export DNS_RESOLVERS=$(cat /etc/resolv.conf | grep 'nameserver' | awk '{
print $2 }' | xargs echo)

cat /etc/nginx/conf.d/nginx_main_site.conf.template | envsubst
'$DNS_RESOLVERS $APP_NAME' > /etc/nginx/conf.d/nginx_main_site.conf

nginx -g 'daemon off;'

To get this to run, we finally need to make sure we start NGINX with this script instead of
the one built in, so we need to modify our Dockerfile as well.

Scaling the Containers Chapter 4

[104]

Open up our Dockerfile and make sure that it has the following:

FROM nginx:latest

RUN apt-get update -q && \
 apt-get dist-upgrade -y && \
 apt-get install openssl && \
 apt-get clean && \
 apt-get autoclean

EXPOSE 8080

ENV SRV_PATH /srv/www/html

ARG PASSWORD=test

RUN rm /etc/nginx/conf.d/default.conf

COPY start_nginx.sh /usr/local/bin/

RUN mkdir -p $SRV_PATH && \
 chown nginx:nginx $SRV_PATH && \
 printf "user:$(openssl passwd -crypt $PASSWORD)\n" >>
$SRV_PATH/.htpasswd && \
 chmod +x /usr/local/bin/start_nginx.sh

COPY nginx_main_site.conf.template /etc/nginx/conf.d/

CMD ["/usr/local/bin/start_nginx.sh"]

Here, the main change is the start up script CMD override and turning the configuration into
a template with the rest pretty much left alone.

Database
Unlike the other two containers, we will leave the database in one container due to a
combination of things:

MongoDB can scale to high GB/low TB dataset sizes easily with vertical scaling.
Databases are extremely difficult to scale up without in-depth knowledge of
volumes (covered in the next chapter).
Sharding and replica sets of databases are generally complicated enough for
whole books to be written on this topic alone.

Scaling the Containers Chapter 4

[105]

We may cover this topic in a later chapter, but here, it would derail us from our general goal
of learning how to deploy services so we will just have our single database instance that we
used in the previous chapter for now.

Deploying it all
As we did for our simple web server, we will begin by creating another Swarm cluster:

$ docker swarm init
Swarm initialized: current node (1y1h7rgpxbsfqryvrxa04rvcp) is now a
manager.

To add a worker to this swarm, run the following command:

 docker swarm join \
 --token SWMTKN-1-36flmf9vnika6x5mbxx7vf9kldqaw6bq8lxtkeyaj4r5s461ln-
aiqlw49iufv3s6po4z2fytos1 \
 192.168.4.128:2377

Then, we need to create our overlay network for the service-discovery hostname resolution
to work. You don't need to know much about this other than it creates an isolated network
that we will add all the services to:

$ docker network create --driver overlay service_network
44cyg4vsitbx81p208vslp0rx

Finally, we will build and launch our containers:

$ cd ../database
$ docker build . -t local_database
$ docker service create -d --replicas 1 \
 --name local-database \
 --network service_network \
 --mount
type=volume,source=database_volume,destination=/data/db \
 local_database
<snip>
pilssv8du68rg0oztm6gdsqse

$ cd ../application_server
$ docker build -t application_server .
$ docker service create -d -e DB_HOST=local-database \
 --replicas 3 \
 --network service_network \
 --name application-server \
 application_server

Scaling the Containers Chapter 4

[106]

<snip>
pue2ant1lg2u8ejocbsovsxy3

$ cd ../web_server
$ docker build -t web_server .
$ docker service create -d --name web-server \
 --network service_network \
 --replicas 3 \
 -e APP_NAME=application-server \
 -p 8080:8080 \
 web_server
<snip>
swi95q7z38i2wepmdzoiuudv7

$ # Sanity checks
$ docker service ls
ID NAME MODE REPLICAS IMAGE
PORTS
pilssv8du68r local-database replicated 1/1 local_database
pue2ant1lg2u application-server replicated 3/3 application_server
swi95q7z38i2 web-server replicated 3/3 web_server
*:8080->8080/tcp

$ docker ps --format 'table {{.ID}} {{.Image}}\t {{.Ports}}'
CONTAINER ID IMAGE PORTS
8cdbec233de7 application_server:latest 8000/tcp
372c0b3195cd application_server:latest 8000/tcp
6be2d6e9ce77 web_server:latest 80/tcp, 8080/tcp
7aca0c1564f0 web_server:latest 80/tcp, 8080/tcp
3d621c697ed0 web_server:latest 80/tcp, 8080/tcp
d3dad64c4837 application_server:latest 8000/tcp
aab4b2e62952 local_database:latest 27017/tcp

If you are having trouble with getting these services up and running, you
can check the logs with docker service logs <service_name> in
order to figure out what went wrong. You can also use docker logs
<container_id> if a specific container is having trouble.

Scaling the Containers Chapter 4

[107]

With these in place, we can now check whether our code works at
http://127.0.0.1:8080 (username: user, password: test):

Looks like it is working! Once we put in our credentials, we should be redirected to the
main application page:

Scaling the Containers Chapter 4

[108]

Does the database work if we put in some words?

Indeed! We have really created a 1-node swarm-backed service, and it is scalable plus load
balanced!

The Docker stack
As it was pretty obvious from just a few paragraphs before, a manual setup of these services
seems somewhat of a pain, so here we introduce a new tool that can help us do this much
easier: Docker Stack. This tool uses a YAML file to get things to deploy all the services
easily and repeatedly.

First we will clean up our old exercise before trying to use Docker stack configuration:

$ docker service ls -q | xargs docker service rm
pilssv8du68r
pue2ant1lg2u
swi95q7z38i2

$ docker network rm service_network
service_network

Scaling the Containers Chapter 4

[109]

Now we can write our YAML configuration file--you can easily notice the parallels that the
CLI has to this configuration file:

You can find more information about all the available options usable in
Docker stack YAML files by visiting https:/ ​/​docs. ​docker. ​com/ ​docker-
cloud/ ​apps/ ​stack- ​yaml- ​reference/ ​. Generally, anything you can set
with the CLI commands, you can do the same with the YAML
configuration.

version: "3"
services:
 local-database:
 image: local_database
 networks:
 - service_network
 deploy:
 replicas: 1
 restart_policy:
 condition: on-failure
 volumes:
 - database_volume:/data/db

 application-server:
 image: application_server
 networks:
 - service_network
 depends_on:
 - local-database
 environment:
 - DB_HOST=local-database
 deploy:
 replicas: 3
 restart_policy:
 condition: on-failure

 web-server:
 image: web_server
 networks:
 - service_network
 ports:
 - 8080:8080
 depends_on:
 - application-server
 environment:
 - APP_NAME=application-server
 deploy:
 replicas: 3

https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/
https://docs.docker.com/docker-cloud/apps/stack-yaml-reference/

Scaling the Containers Chapter 4

[110]

 restart_policy:
 condition: on-failure

networks:
 service_network:

volumes:
 database_volume:

What about starting our stack? That's easy too! Stack has almost the same commands as
docker services:

$ docker stack deploy --compose-file swarm_application.yml swarm_test
Creating network swarm_test_service_network
Creating service swarm_test_local-database
Creating service swarm_test_application-server
Creating service swarm_test_web-server

$ # Sanity checks
$ docker stack ls
NAME SERVICES
swarm_test 3

$ docker stack services swarm_test
ID NAME MODE REPLICAS
IMAGE PORTS
n5qnthc6031k swarm_test_application-server replicated 3/3
application_server
v9ho17uniwc4 swarm_test_web-server replicated 3/3
web_server *:8080->8080/tcp
vu06jxakqn6o swarm_test_local-database replicated 1/1
local_database

$ docker ps --format 'table {{.ID}} {{.Image}}\t {{.Ports}}'
CONTAINER ID IMAGE PORTS
afb936897b0d application_server:latest 8000/tcp
d9c6bab2453a web_server:latest 80/tcp, 8080/tcp
5e6591ee608b web_server:latest 80/tcp, 8080/tcp
c8a8dc620023 web_server:latest 80/tcp, 8080/tcp
5db03c196fda application_server:latest 8000/tcp
d2bf613ecae0 application_server:latest 8000/tcp
369c86b73ae1 local_database:latest 27017/tcp

If you go to http://127.0.0.1:8080 in your browser again, you will see that our app
works just like before! We have managed to deploy our whole cluster worth of images with
a single file on a Docker Swarm cluster!

Scaling the Containers Chapter 4

[111]

Clean up
We are not the kind to leave useless services around, so we will remove our stack and stop
our Swarm cluster as we prepare for the next chapter:

$ docker stack rm swarm_test
Removing service swarm_test_application-server
Removing service swarm_test_web-server
Removing service swarm_test_local-database
Removing network swarm_test_service_network

$ docker swarm leave --force
Node left the swarm.

We won't need to clean up the network or running containers as they will automatically
get removed by Docker once our stack is gone. With this part done, we can now move on to
the next chapter about volumes with a clean slate.

Summary
In this chapter, we covered a multitude of things like: what service discovery is and why we
need it, container orchestration basics and state reconciliation principles, as well as some
major players in the orchestration world. With that knowledge in hand, we went on to
implement a single-node full cluster using Docker Swarm to show how something like this
can be done and near the end we used Docker stack to manage groups of services together,
hopefully showing you how this can all be turned from theory to practice.

In the next chapter, we will start exploring the intricate world of Docker volumes and data
persistence, so stick with us.

5
Keeping the Data Persistent

In this chapter, we will cover how to keep your important data persistent, safe, and
independent of your containers by covering everything about Docker volumes. We will go
through various topics, including the following:

Docker image internals
Deploying your own instance of a repository
Transient storage
Persistent storage

Bind-mounts
Named volumes
Relocatable volumes

User and group ID handling

While we won't cover all the available storage options, especially ones that are specific to
orchestration tooling, this chapter should give you a better understanding of how Docker
handles data and what you can do to make sure it is kept in exactly the way you want it.

Docker image internals
To understand even better why we need persistent data, we first need to understand in
detail how Docker handles container layers. We covered this topic in some detail in
previous chapters, but here, we will spend some time to understand what is going on under
the covers. We will first discuss what Docker currently does for handling the written data
within containers.

Keeping the Data Persistent Chapter 5

[113]

How images are layered
As we covered earlier, Docker stores data that composes the images in a set of discrete,
read-only filesystem layers that are stacked on top of each other when you build your
image. Any changes done to the filesystem are stacked like transparent slides on top of each
other to create the full tree, and any files that have newer content (including being
completely removed) will mask the old ones with each new layer. Our former depth of
understanding here would probably be sufficient for the basic handling of containers, but
for advanced usage, we need to know the full internals on how the data gets handled.

When you start multiple containers with the same base image, all of them are given the
same set of filesystem layers as the original image so they start from the exact same
filesystem history (barring any mounted volumes or variables), as we'd expect. However,
during the start up process, an extra writable layer is added to the top of the image, which
persists any data written within that specific container:

As you would expect, any new files are written to this top layer, but this layer is
actually not the same type as the other ones but a special copy-on-write (CoW) type. If a file
that you are writing to in a container is already part of one of the underlying layers, Docker
will make a copy of it in the new layer, masking the old one and from that point forward if
you read or write to that file, the CoW layer will return its content.

Keeping the Data Persistent Chapter 5

[114]

If you destroy this container without trying to save this new CoW layer or without using
volumes, as we have experienced this earlier but in a different context, this writable layer
will get deleted and all the data written to the filesystem by that container will be effectively
lost. In fact, if you generally think of containers as just images with a thin and writable CoW
layer, you can see how simple yet effective this layering system is.

Persisting the writable CoW layer(s)
At some point or another, you might want to save the writable container layer to use as a
regular image later. While this type of image splicing is highly discouraged, and I would
tend to mostly agree, you may find times where it could provides you with an invaluable
debugging tooling when you are unable to investigate the container code in other ways. To
create an image from an existing container, there is the docker commit command:

$ docker commit --help

Usage: docker commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]

Create a new image from a container's changes

Options:
 -a, --author string Author (e.g., "John Hannibal Smith <hannibal@a-
team.com>")
 -c, --change list Apply Dockerfile instruction to the created image
 --help Print usage
 -m, --message string Commit message
 -p, --pause Pause container during commit (default true)

As you can see, we just need some basic information, and Docker will take care of the rest.
How about we try this out on our own:

$ # Run a new NGINX container and add a new file to it
$ docker run -d nginx:latest
2020a3b1c0fdb83c1f70c13c192eae25e78ca8288c441d753d5b42461727fa78
$ docker exec -it \
 2020a3b1 \
 /bin/bash -c "/bin/echo test > /root/testfile"

$ # Make sure that the file is in /root
$ docker exec -it \
 2020a3b1 \
 /bin/ls /root
testfile

$ # Check what this container's base image is so that we can see changes

Keeping the Data Persistent Chapter 5

[115]

$ docker inspect 2020a3b1 | grep Image
 "Image":
"sha256:b8efb18f159bd948486f18bd8940b56fd2298b438229f5bd2bcf4cedcf037448",
 "Image": "nginx:latest",

$ # Commit our changes to a new image called "new_nginx_image"
$ docker commit -a "Author Name <author@site.com>" \
 -m "Added a test file" \
 2020a3b1 new_nginx_image
sha256:fda147bfb46277e55d9edf090c5a4afa76bc4ca348e446ca980795ad4160fc11

$ # Clean up our original container
$ docker stop 2020a3b1 && docker rm 2020a3b1
2020a3b1
2020a3b1

$ # Run this new image that includes the custom file
$ docker run -d new_nginx_image
16c5835eef14090e058524c18c9cb55f489976605f3d8c41c505babba660952d

$ # Verify that the file is there
$ docker exec -it \
 16c5835e \
 /bin/ls /root
testfile

$ # What about the content?
$ docker exec -it \
 16c5835e \
 /bin/cat /root/testfile
test

$ See what the new container's image is recorded as
$ docker inspect 16c5835e | grep Image
 "Image":
"sha256:fda147bfb46277e55d9edf090c5a4afa76bc4ca348e446ca980795ad4160fc11",
 "Image": "new_nginx_image",

$ # Clean up
$ docker stop 16c5835e && docker rm 16c5835e
16c5835e
16c5835e

Keeping the Data Persistent Chapter 5

[116]

The docker commit -c switch is very useful and adds a command to the
image just like the Dockerfile would and accepts the same directives that
the Dockerfile does, but since this form is so rarely used, we have decided
to skip it. If you would like to know more about this particular form
and/or more about docker commit, feel free to explore https:/ ​/​docs.
docker. ​com/ ​engine/ ​reference/ ​commandline/ ​commit/ ​#commit- ​a-
container- ​with- ​new- ​configurations at leisure.

Running your own image registry
In our previous chapter, during Swarm deploys, we were getting warnings about not using
a registry for our images and for a good reason. All the work we did was based on our
images being available only to our local Docker Engine so multiple nodes could not have
been able to use any of the images that we built. For absolutely bare-bones setups, you can
use Docker Hub (https:/ ​/ ​hub. ​docker. ​com/ ​) as an option to host your public images, but
since practically every Virtual Private Cloud (VPC) cluster uses their own internal instance
of a private registry for security, speed, and privacy, we will leave Docker Hub as an
exercise for you if you want to explore it and we will cover how to run our own registry
here.

Docker has recently come out with a service called Docker Cloud (https:/
/​cloud. ​docker. ​com/ ​), which has private registry hosting and continuous
integration and may cover a decent amount of use cases for small-scale
deployments, though the service is not free past a single private repository
at this time. Generally, though, the most preferred way of setting up
scalable Docker-based clusters is a privately hosted registry, so we will
focus on that approach, but keep an eye on Docker Cloud's developing
feature set as it may fill some operational gaps in your clusters that you
can defer as you build other parts of your infrastructure.

To host a registry locally, Docker has provided a Docker Registry image (registry:2) that
you can run as a regular container with various backends, including the following:

inmemory: A temporary image storage with a local in-memory map. This is only
recommended for testing.
filesystem: Stores images using a regular filesystem tree.
s3, azure, swift, oss, gcs: Cloud vendor-specific implementations of storage
backends.

Let us deploy a registry with a local filesystem backend and see how it can be used.

https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://docs.docker.com/engine/reference/commandline/commit/#commit-a-container-with-new-configurations
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/

Keeping the Data Persistent Chapter 5

[117]

Warning! The following section does not use TLS-secured or authenticated
registry configuration. While this configuration might be acceptable in
some rare circumstances in isolated VPCs, generally, you would want to
both secure the transport layer with TLS certificates and add some sort of
authentication. Luckily, since the API is HTTP-based, you can do most of
this with an unsecured registry with a reverse-proxied web server in front
of it, like we did earlier with NGINX. Since the certificates need to be
"valid" as evaluated by your Docker client and this procedure is different
for pretty much every operating system out there, doing the work here
would generally not be portable in most configurations, which is why we
are skipping it.

$ # Make our registry storage folder
$ mkdir registry_storage

$ # Start our registry, mounting the data volume in the container
$ # at the expected location. Use standard port 5000 for it.
$ docker run -d \
 -p 5000:5000 \
 -v $(pwd)/registry_storage:/var/lib/registry \
 --restart=always \
 --name registry \
 registry:2
19e4edf1acec031a34f8e902198e6615fda1e12fb1862a35442ac9d92b32a637

$ # Pull a test image into our local Docker storage
$ docker pull ubuntu:latest
latest: Pulling from library/ubuntu
<snip>
Digest:
sha256:2b9285d3e340ae9d4297f83fed6a9563493945935fc787e98cc32a69f5687641
Status: Downloaded newer image for ubuntu:latest

$ # "Tag our image" by marking it as something that is linked to our local
registry
$ # we just started
$ docker tag ubuntu:latest localhost:5000/local-ubuntu-image

$ # Push our ubuntu:latest image into our local registry under "local-
ubuntu-image" name
$ docker push localhost:5000/local-ubuntu-image
The push refers to a repository [localhost:5000/local-ubuntu-image]
<snip>
latest: digest:
sha256:4b56d10000d71c595e1d4230317b0a18b3c0443b54ac65b9dcd3cac9104dfad2
size: 1357

Keeping the Data Persistent Chapter 5

[118]

$ # Verify that our image is in the right location in registry container
$ ls registry_storage/docker/registry/v2/repositories/
local-ubuntu-image

$ # Remove our images from our main Docker storage
$ docker rmi ubuntu:latest localhost:5000/local-ubuntu-image
Untagged: ubuntu:latest
Untagged: localhost:5000/local-ubuntu-image:latest
<snip>

$ # Verify that our Docker Engine doesn't have either our new image
$ # nor ubuntu:latest
$ docker images
REPOSITORY TAG IMAGE ID CREATED
SIZE

$ # Pull the image from our registry container to verify that our registry
works
$ docker pull localhost:5000/local-ubuntu-image
Using default tag: latest
latest: Pulling from local-ubuntu-image
<snip>
Digest:
sha256:4b56d10000d71c595e1d4230317b0a18b3c0443b54ac65b9dcd3cac9104dfad2
Status: Downloaded newer image for localhost:5000/local-ubuntu-image:latest

$ # Great! Verify that we have the image.
$ docker images
REPOSITORY TAG IMAGE ID
CREATED SIZE
localhost:5000/local-ubuntu-image latest 8b72bba4485f
23 hours ago 120MB

As you can see, using the local registry actually seems to be pretty easy! The only new thing
introduced here that might need a bit of coverage outside of the registry itself is --
restart=always, which makes sure that the containers automatically restarts if it exits
unexpectedly. The tagging is required to associate an image with the registry, so with doing
docker tag [<source_registry>/]<original_tag_or_id>

[<target_registry>/]<new_tag>, we can effectively assign a new tag to either an
existing image tag, or we can create a new tag. As indicated in this small code snippet, both
the source and the target can be prefixed with an optional repository location that defaults
to docker.io (Docker Hub) if not specified.

Keeping the Data Persistent Chapter 5

[119]

Sadly, from personal experience, even though this example has made things look real easy,
real deployments of the registry are definitely not easy since appearances can be deceiving
and there are a few things you need to keep in mind when using it:

If you use an insecure registry, to access it from a different machine, you must
add "insecure-registries" : ["<ip_or_dns_name>:<port>"] to
/etc/docker/daemon.json to every Docker Engine that will be using this
registry's images.

Note: This configuration is not recommended for a vast number of
security reasons.

If you use an invalid HTTPS certificate, you have to also mark it as an insecure
registry on all clients.

This configuration is also not recommended as it is only marginally
better than the unsecured registry due to possible transport
downgrade Man-in-the-Middle (MITM) attacks

The final word of advice that I would give you regarding the registry is that the cloud
provider backend documentation for the registry has been, in my experience, notoriously
and persistently (dare I say intentionally?) incorrect. I would highly recommend that you go
through the source code if the registry rejects your settings since setting the right variables
is pretty unintuitive. You can also use a mounted file to configure the registry, but if you
don't want to build a new image when your cluster is just starting up, environmental
variables are the way to go. The environment variables are all-capital names with "_"
segment-joined names and match up to the hierarchy of the available options:

parent
└─ child_option
 └─ some_setting

This field for the registry would then be set with -e
PARENT_CHILD_OPTION_SOME_SETTING=<value>.

For a complete list of the available registry options, you can visit https:/ ​/
github. ​com/ ​docker/ ​docker- ​registry/ ​blob/ ​master/ ​config/ ​config_
sample. ​yml and see which ones you would need to run your registry. As
mentioned earlier, I have found the main documentation on
docs.docker.com and a large percentage of documentation on the code
repository itself extremely unreliable for configurations, so don't be afraid
to read the source code in order to find out what the registry is actually
expecting.

https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://github.com/docker/docker-registry/blob/master/config/config_sample.yml
https://docs.docker.com/

Keeping the Data Persistent Chapter 5

[120]

To help people who will deploy the registry with the most likely backing storage outside of
filesystem, which is s3, I will leave you a working (at the time of writing this)
configuration:

$ docker run -d \
 -p 5000:5000 \
 -v $(pwd)/registry_storage:/var/lib/registry \
 -e REGISTRY_STORAGE=s3 \
 -e REGISTRY_STORAGE_CACHE_BLOBDESCRIPTOR=inmemory \
 -e REGISTRY_STORAGE_S3_ACCESSKEY=<aws_key_id> \
 -e REGISTRY_STORAGE_S3_BUCKET=<bucket> \
 -e REGISTRY_STORAGE_S3_REGION=<s3_region> \
 -e REGISTRY_STORAGE_S3_SECRETKEY=<aws_key_secret> \
 --restart=always \
 --name registry \
 registry:2

Underlying storage driver
This section may be a bit too advanced for some readers and does not
strictly require reading, but in the interest of fully understanding how
Docker handles images and what issues you might encounter on large-
scale deployments, I would encourage everyone to at least skim through it
as the identification of backing-storage driver issues may be of use. Also,
be aware that issues mentioned here may not age gracefully as the Docker
code base evolves, so check out their website for up-to-date information.

Unlike what you might have expected from the Docker daemon, the handling of the image
layers locally is actually done in a very modular way so that almost any layering filesystem
driver can be plugged into the daemon. The storage driver controls how images are stored
and retrieved on your docker host(s), and while there may not be any difference from the
client's perspective, each one is unique in many aspects.

To start, all of the available storage drivers we will mention are provided by the underlying
containerization technology used by Docker, called containerd. While knowing anything
beyond that last sentence about it is generally overkill for most Docker usages, suffice it to
say that it is just one of underlying modules that Docker uses as the image handling API.
containerd provides a stable API for storing and retrieving images and their designated
layers so that any software built on top of it (such as Docker and Kubernetes) can worry
about just tying it all together.

Keeping the Data Persistent Chapter 5

[121]

You may see references in code and/or documentation about things called
graphdrivers, which is pedantically the high-level API that interacts with
storage drivers, but in most cases, when it is written, it is used to describe
a storage driver that implements the graphdriver API; for example, when
a new type of storage driver is talked about, you will often see it referred
to as a new graphdriver.

To see which backing filesystem you are using, you can type docker info and look for the
Storage Driver section:

$ docker info
<snip>
Storage Driver: overlay2
 Backing Filesystem: extfs
 Supports d_type: true
 Native Overlay Diff: true
<snip>

Warning! Changing the storage driver will, in most cases, remove access to
any and all images and layers from your machine that were stored by the
old driver, so proceed with care! Also, I believe that by changing the
storage driver without manually cleaning images and containers either
through CLI and/or by deleting things from /var/lib/docker/ will
leave those images and containers dangling, so make sure to clean things
up if you consider these changes.

If you would like to change your storage driver to any of the options we will discuss here,
you can edit (or create if missing) /etc/docker/daemon.json and add the following to it,
after which you should restart the docker service:

{
 "storage-driver": "driver_name"
}

If daemon.json does not work, you can also try changing /etc/default/docker by
adding a -s flag to DOCKER_OPTS and restarting the service:

DOCKER_OPTS="-s driver_name"

Keeping the Data Persistent Chapter 5

[122]

In general, Docker is transitioning from /etc/default/docker (the path
dependent on distribution) to /etc/docker/daemon.json as its
configuration file, so if you see somewhere on the Internet or other
documentation that the former file is referenced, see whether you can find
the equivalent configuration for daemon.json as I believe that it will fully
replace the other one at some point in the future (as with all books,
probably under a week after this book gets released).

So now that we know what storage drivers are and how to change them, what our the
options that we can use here?

aufs
aufs (also known as unionfs) is the oldest but probably the most mature and stable
layered filesystem available for Docker. This storage driver is generally fast to start and
efficient in terms of storage and memory overhead. If your kernel has been built with
support for this driver, Docker will default to it, but generally, outside of Ubuntu and only
with the linux-image-extra-$(uname -r) package installed, most distributions do not
add that driver to their kernels, nor do they have it available, so most likely your machine
will not be able to run it. You could download the kernel source and recompile it with aufs
support, but generally, this is such a nightmare of a maintenance that you might as well
choose a different storage driver if it is not readily available. You can use grep aufs
/proc/filesystems to check whether your machine has the aufs kernel module enabled
and available.

Note that the aufs driver can only be used on ext4 and xfs filesystems.

btrfs / zfs
These are conceptually less of drivers than actual filesystems that you mount under
/var/lib/docker and each comes with its own set of pros and cons. Generally, they both
have performance impacts as opposed to some of the other options and have a high
memory overhead but may provide you with easier management tooling and/or higher
density storage. Since these drivers currently have marginal support and I have heard of
many critical bugs still affecting them, I would not advise using them in production unless
you have very good reasons to do so. If the system has the appropriate drive mounted at
/var/lib/docker and the related kernel modules are available, Docker will pick these
next after aufs.

Keeping the Data Persistent Chapter 5

[123]

Note that the order of preference here doesn't mean that these two storage drivers are more
desirable than the other ones mentioned in this section but purely that if the drive is
mounted with the appropriate (and uncommon) filesystem is at the expected Docker
location, Docker will assume that this is the configuration that the user wanted.

overlay and overlay2
These particular storage drivers are slowly becoming a favorite for Docker installations.
They are very similar to aufs but are much faster and simpler implementation. Like aufs,
both overlay and overlay2 require a kernel overlay module included and loaded, which
in general should be available on kernels 3.18 and higher. Also, both can run only on top of
ext4 or xfs filesystems. The difference between overlay and overlay2 is that the newer
version has improvements that were added in kernel 4.0 to reduce inode usage, but the
older one has a longer track record in the field. If you have any doubt, overlay2 is a rock-
solid choice in almost any circumstance.

If you have not worked with inodes before, note that they contain the
metadata about each individual file on the filesystem and the maximum
count allowed is in most cases hardcoded when the filesystem is created.
While this hardcoded maximum is fine for most general usages, there are
edge cases where you may run out of them, in which case the filesystem
will give you errors on any new file creation even though you will have
available space to store the file. If you want to learn more about these
structures, you can visit http:/ ​/​www. ​linfo. ​org/ ​inode. ​html for more
information.

Both overlay and overlay2 backing storage driver have been known to
cause heavy inode usage due to how they handle file copies internally.
While overlay2 is advertised not to have these issues, I have personally
run into inode problems numerous times, with large Docker volumes built
with default inode maximums. If you ever use these drivers and notice
that the disk is full with messages but you still have space on the device,
check your inodes for exhaustion with df -i to ensure it is not the docker
storage that is causing issues.

http://www.linfo.org/inode.html
http://www.linfo.org/inode.html
http://www.linfo.org/inode.html
http://www.linfo.org/inode.html
http://www.linfo.org/inode.html
http://www.linfo.org/inode.html
http://www.linfo.org/inode.html
http://www.linfo.org/inode.html
http://www.linfo.org/inode.html
http://www.linfo.org/inode.html
http://www.linfo.org/inode.html
http://www.linfo.org/inode.html
http://www.linfo.org/inode.html

Keeping the Data Persistent Chapter 5

[124]

devicemapper
Instead of working on file-level devices, this driver operates directly on the block device
where your Docker instance is. While the default setup generally sets up a loopback device
and is mostly fine for local testing, this particular setup is extremely not suggested for
production systems due to the sparse files it creates in the loopback device. For production
systems, you are encouraged to combine it with direct-lvm, but that kind of intricate
setup requires a configuration that is particularly tricky and slower than the overlay
storage driver, so I would generally not recommend its use unless you are unable to use
aufs or overlay/overlay2.

Cleanup of Docker storage
If you work with Docker images and containers, you will notice that, in general, Docker will
chew through any storage you give it relatively quickly, so proper maintenance is
recommended every now and then to ensure that you do not end up with useless garbage
on your hosts or run out of inodes for some storage drivers.

Manual cleanup
First up is the cleanup of all containers that you have run but have forgotten to use --rm by
using docker rm:

$ docker rm $(docker ps -aq)
86604ed7bb17
<snip>
7f7178567aba

This command effectively finds all containers (docker ps), even the ones that you stopped
(the -a flag), and only returns their IDs (the -q flag). This is then passed on to docker rm,
which will try to remove them one by one. If any containers are still running, it will give
you a warning and skip them. Generally, this is just a good thing to do as often as you want
if your containers are stateless or have a state stored outside of the container itself.

Keeping the Data Persistent Chapter 5

[125]

The next thing up, though potentially much more destructive and more space-saving, is
deleting Docker images you have accumulated. If your space issues are frequent, manual
removal can be pretty effective. A good rule of thumb is that any images with <none> as
their tag (also called dangling) can usually be removed using docker rmi as they, in most
cases, indicate that this image was superseded by a newer build of a Dockerfile:

$ docker images --filter "dangling=true"
REPOSITORY TAG IMAGE ID CREATED
SIZE
<none> <none> 873473f192c8 7 days ago
129MB
<snip>
registry <none> 751f286bc25e 7 weeks ago
33.2MB

$ # Use those image IDs and delete them
$ docker rmi $(docker images -q --filter "dangling=true")

Deleted:
sha256:873473f192c8977716fcf658c1fe0df0429d4faf9c833b7c24ef269cacd140ff
<snip>
Deleted:
sha256:2aee30e0a82b1a6b6b36b93800633da378832d623e215be8b4140e8705c4101f

Automatic cleanup
All of the things we have just done seem pretty painful to do and are hard to remember so
Docker recently added docker image prune to help out in this aspect. By using docker
image prune, all dangling images will be removed with a single command:

$ docker image prune

WARNING! This will remove all dangling images.
Are you sure you want to continue? [y/N] y

Deleted Images:
untagged:
ubuntu@sha256:2b9285d3e340ae9d4297f83fed6a9563493945935fc787e98cc32a69f5687
641
deleted:
sha256:8b72bba4485f1004e8378bc6bc42775f8d4fb851c750c6c0329d3770b3a09086
<snip>
deleted:
sha256:f4744c6e9f1f2c5e4cfa52bab35e67231a76ede42889ab12f7b04a908f058551

Total reclaimed space: 188MB

Keeping the Data Persistent Chapter 5

[126]

If you are intent on cleaning any and all images not tied to containers, you
can also run docker image prune -a. Given that this command is
pretty destructive I would not recommend it in most cases other than
maybe running it on Docker slave nodes in clusters on a nighty/weekly
timer to reduce space usage.

Something to note here, as you might have noticed, deleting all references to an image layer
also cascades onto child layers.

Last but not least is volume clean-up, which can be managed with the docker volume
command. I would recommend that you exercise extreme caution when doing this in order
to avoid deleting data that you might need and only use manual volume selection or prune:

$ docker volume ls
DRIVER VOLUME NAME
local database_volume
local local_storage
local swarm_test_database_volume

$ docker volume prune

WARNING! This will remove all volumes not used by at least one container.
Are you sure you want to continue? [y/N] y

Deleted Volumes:
local_storage
swarm_test_database_volume
database_volume

Total reclaimed space: 630.5MB

As a reference, I have been running Docker rather lightly the week I wrote this chapter and
the removal of stale containers, images, and volumes has reduced my filesystem usage by
about 3 GB. While that number is mostly anecdotal and may not seem much, on cloud
nodes with small instance hard disks and on clusters with continuous integration added,
leaving these things around will get you out of disk space faster than you might realize, so
expect to spend some time either doing this manually or automating this process for your
nodes in something such as systemd timers or crontab.

Keeping the Data Persistent Chapter 5

[127]

Persistent storage
Since we have covered transient local storage, we can now consider what other options we
have for keeping data safe when the container dies or is moved. As we talked about
previously, without being able to save data from the container in some fashion to an outside
source if a node or the container unexpectedly dies while it is serving up something (such as
your database), you will most likely lose some or all your data contained on it, which is
definitively something we would like to avoid. Using some form of container-external
storage for your data, like we did in earlier chapters with mounted volumes, we can begin
to make the cluster really resilient and containers that run on it stateless.

By making containers stateless, you gain confidence to not worry much about exactly what
container is running on which Docker Engine as long as they can pull the right image and
run it with the right parameters. If you think about it for a minute, you may even notice
how this approach has a huge number of similarities with threading, but on steroids. You
can imagine Docker Engine like a virtual CPU core, each service as a process, and each task
as a thread. With this in mind, if everything is stateless in your system then your cluster is
effectively stateless too, and by inference, you must utilize some form of data storage
outside of the containers to keep your data safe.

Caution! Lately, I have noticed a number of sources online that have been
recommending that you should keep data through massive replication of
services with sharding and clustering of backing databases without
persisting data on disk, relying on the cloud provider's distributed
availability zones and trusting Service Level Agreements (SLA) to
provide you with resilience and self-healing properties for your cluster.
While I would agree that these clusters are somewhat resilient, without
some type of permanent physical representation of your data on some
type of a volume, you may hit cascade outages on your clusters that will
chain before the data is replicated fully and risk losing data with no way
to restore it. As a personal advice here, I would highly recommend that at
least one node in your stateful services uses storage that is on physical
media that is not liable to be wiped when issues arise (e.g. NAS, AWS EBS
storage, and so on).

Keeping the Data Persistent Chapter 5

[128]

Node-local storage
This type of storage that is external to the container is specifically geared toward keeping
data separate from your container instances, as we would expect, but is limited to usability
only within containers deployed to the same node. Such storage allows a stateless container
setup and has many development-geared uses, such as isolated builds and reading of
configuration files, but for clustered deployments it is severely limited, as containers that
run on other nodes will not have any access to data created on the original node. In either
case, we will cover all of these node-local storage types here since most large clusters use
some combination of node-local storage and relocatable storage.

Bind mounts
We have seen these earlier, but maybe we did not know what they are. Bind mounts take a
specific file or folder and mount it within the container sandbox at a specified location,
separated by :. The general syntax that we have used so far for this should look similar to
the following:

$ docker run <run_params> \
 -v /path/on/host:/path/on/container \
 <image>...

Newer Docker syntax for this functionality is making its way into becoming a standard
where the -v and --volume is now being replaced with --mount, so you should get used
to that syntax too. In fact, from here on out, we will use both as much as we can so that you
are comfortable with either style, but at the time of writing this book, --mount is not yet as
fully functional as the alternative so expect some interchanging depending on what works
and what does not.

In particular here, at this time, a simple bind mount volume with an
absolute path source just does not work with --mount style which is
almost all the examples we have used so far which is why we have not
introduced this form earlier.

With all that said and out of the way, unlike --volume, --mount is a <key>=<value>
comma-separated list of parameters:

type: The type of the mount, which can be bind, volume, or tmpfs.
source: The source for the mount.
target: The path to the location in the container where the source will be
mounted.

Keeping the Data Persistent Chapter 5

[129]

readonly: Causes the mount to be mounted as read-only.
volume-opt: Extra options for the volume. May be entered more than once.

This is a comparative version to the one we used for --volume:

$ docker run <run_params> \
 --mount source=/path/on/host,target=/path/on/container \
 <image>...

Read-only bind mounts
Another type of a bind mount that we did not really cover earlier is a read-only bind
mount. This configuration is used when the data mounted into the container needs to
remain read-only, which is very useful when passing configuration files into multiple
containers from the host. This form of mounting a volume looks a bit like this for both of the
two syntax styles:

$ # Old-style
$ docker run <run_params> \
 -v /path/on/host:/path/on/container:ro \
 <image>...

$ # New-style
$ docker run <run_params> \
 --mount
source=/path/on/host,target=/path/on/container,readonly \
 <image>...

As mentioned a bit earlier, something that a read-only volume can provide us as opposed to
a regular mount is passing configuration files to the containers from the host. This is
generally used when the Docker Engine host has something in their configuration that
impacts the containers running code (that is, path prefixes for storing or fetching data,
which host we're running on, what DNS resolvers the machine is using from
/etc/resolv.conf, and many others) so in big deployments, it is used extensively and
expect to see it often.

As a good rule of thumb, unless you explicitly need to write data to a
volume, always mount it as read-only to the container. This will prevent
the inadvertent opening of security holes from a compromised container
spreading onto the other containers and the host itself.

Keeping the Data Persistent Chapter 5

[130]

Named volumes
Another form of volume mounting is using named volumes. Unlike bind-mounts, named
data volumes (often referred to as data volume containers) provide a more portable way to
refer to volumes as they do not depend on knowing anything about the host. Under the
covers, they work almost exactly the same way as bind-mounts, but they are much easier to
handle due to their simpler usage. Also, they have an added benefit of being able to be
easily shared among containers and even be managed by host-independent solutions or a
completely separate backend.

Caution! If the named data volume is created by simply running the
container, unlike bind-mounts that literally replace all content the
container had at that mounted path, the named data volume will copy the
content that the container image had at that location into the named data
volume when the container launches. This difference is very subtle but can
cause serious issues, as you might end up with unexpected content in the
volume if you forget about this detail or assume that it behaves the same
way as bind-mounts.

Now that we know what named data volumes are, let us create one by using the early-
configuration approach (as opposed to creating one by directly running a container):

$ # Create our volume
$ docker volume create mongodb_data
mongodb_data

$ docker volume inspect mongodb_data
[
 {
 "Driver": "local",
 "Labels": {},
 "Mountpoint": "/var/lib/docker/volumes/mongodb_data/_data",
 "Name": "mongodb_data",
 "Options": {},
 "Scope": "local"
 }
]

$ # We can start our container now
$ # XXX: For non-bind-mounts, the new "--mount" option
$ # works fine so we will use it here
$ docker run -d \
 --mount source=mongodb_data,target=/data/db \
 mongo:latest
888a8402d809174d25ac14ba77445c17ab5ed371483c1f38c918a22f3478f25a

Keeping the Data Persistent Chapter 5

[131]

$ # Did it work?
$ docker exec -it 888a8402 ls -la /data/db
total 200
drwxr-xr-x 4 mongodb mongodb 4096 Sep 16 14:10 .
drwxr-xr-x 4 root root 4096 Sep 13 21:18 ..
-rw-r--r-- 1 mongodb mongodb 49 Sep 16 14:08 WiredTiger
<snip>
-rw-r--r-- 1 mongodb mongodb 95 Sep 16 14:08 storage.bson

$ # Stop the container
$ docker stop 888a8402 && docker rm 888a8402
888a8402
888a8402

$ # What does our host's FS have in the
$ # volume storage? (path used is from docker inspect output)
$ sudo ls -la /var/lib/docker/volumes/mongodb_data/_data
total 72
drwxr-xr-x 4 999 docker 4096 Sep 16 09:08 .
drwxr-xr-x 3 root root 4096 Sep 16 09:03 ..
-rw-r--r-- 1 999 docker 4096 Sep 16 09:08
collection-0-6180071043564974707.wt
<snip>
-rw-r--r-- 1 999 docker 4096 Sep 16 09:08 WiredTiger.wt

$ # Remove the new volume
$ docker volume rm mongodb_data
mongodb_data

Manually creating the volume before you use it (using docker volume create) is
generally unnecessary but was done here to demonstrate the long-form of doing it but we
could have just launched our container as the first step and Docker would have created the
volume on its own:

$ # Verify that we don't have any volumes
$ docker volume ls
DRIVER VOLUME NAME

$ # Run our MongoDB without creating the volume beforehand
$ docker run -d \
 --mount source=mongodb_data,target=/data/db \
 mongo:latest
f73a90585d972407fc21eb841d657e5795d45adc22d7ad27a75f7d5b0bf86f69

$ # Stop and remove our container
$ docker stop f73a9058 && docker rm f73a9058
f73a9058
f73a9058

Keeping the Data Persistent Chapter 5

[132]

$ # Check our volumes
$ docker volume ls
DRIVER VOLUME NAME
local
4182af67f0d2445e8e2289a4c427d0725335b732522989087579677cf937eb53
local mongodb_data

$ # Remove our new volumes
$ docker volume rm mongodb_data
4182af67f0d2445e8e2289a4c427d0725335b732522989087579677cf937eb53
mongodb_data
4182af67f0d2445e8e2289a4c427d0725335b732522989087579677cf937eb53

You may have noticed here, though, we ended up with two volumes instead of just our
expected mongodb_data and if you followed the previous example with this one, you
might actually have three (one named, two with random names). This is because every
container launched will create all the local volumes defined in the Dockerfile regardless
of whether you name them or not, and our MongoDB image actually defines two volumes:

$ # See what volumes Mongo image defines
$ docker inspect mongo:latest | grep -A 3 Volumes
<snip>
 "Volumes": {
 "/data/configdb": {},
 "/data/db": {}
 },

We only gave a name to the first one so the /data/configdb volume received a random
one. Be aware of such things as you might encounter space exhaustion issues if you are not
attentive enough. Running docker volume prune every once in a while can help reclaim
that space, but be careful with this command as it will destroy all volumes not tied to
containers.

Relocatable volumes
All of these options that we discussed earlier are fine when working on a single host, but
what they lack is real data portability between different physical hosts. For example, the
current methods of keeping data persistent can realistically scale up to but not beyond
(without some extreme hacking) a single physical server with single Docker Engine and
shared attached storage. This might be fine for a powerful server but starts to lack any sort
of use in a true clustering configuration since you might be dealing with an unknown
number of servers, mixed virtual and physical hosts, different geographic areas, and so on.

Keeping the Data Persistent Chapter 5

[133]

Also when a container is restarted, you most likely will not be able to easily predict where it
is going to get launched to have the volume backend there for it when it starts. For this use
case, there are things called relocatable volumes. These go by various different names, such
as "shared multi-host storage", "orchestrated data volume", and many others, but the idea is
pretty much the same across the board: have a data volume that will follow the container
wherever it goes.

To illustrate the example, here, we have three hosts with two stateful services all connected
using the same relocatable volume storage driver:

Stateful Container 1 with Volume D on Host 1
Stateful Container 2 with Volume G on Host 3

Keeping the Data Persistent Chapter 5

[134]

For the purpose of this example, assume that Host 3 has died. In the normal volume driver
case, all your data from Stateful Container 2 would be lost, but because you would be
using relocatable storage:

The orchestration platform will notify your storage driver that the container has
died.
The orchestration platform will indicate that it wants to restart the killed services
on a host with available resources.
The volume driver will mount the same volume to the new host that will run the
service.
The orchestration platform will start the service, passing the volume details into
the new container.

In our hypothetical example, the new system state should look a little bit like this:

Keeping the Data Persistent Chapter 5

[135]

As you can see from an external point of view, nothing has changed and the data was
seamlessly transitioned to the new container and kept its state, which is exactly what we
wanted. For this specific purpose, there are a number of Docker volume drivers that one can
choose, and each one has its own configuration method for various storage backends, but
the only one included with Docker pre-built images for Azure and AWS out of the box is
CloudStor, and it is only for Docker Swarm, making it super-specific and completely non-
portable.

For various reasons, including the age of technology and lackluster
support by Docker and plugin developers, having to do this type of
volume handling is most likely going to be the part that you sink a lot of
time into when building your infrastructure. I do not want to discourage
you, but at the time of writing this, the state of things is really dire
regardless of what easy tutorials may like you to believe.

You can find a majority of the drivers at https:/ ​/​docs. ​docker. ​com/ ​engine/ ​extend/
legacy_​plugins/​#volume- ​plugins. After configuration, use them in the following manner
if you are doing it manually without orchestration in order to manage mounting:

$ # New-style volume switch (--mount)
$ docker run --mount source=<volume_name>,target=/dest/path,volume-
driver=<name> \
 <image>...

$ # Old-style volume switch
$ docker run -v <volume_name>:/dest/path \
 --volume-driver <name> \
 <image>...

For reference, currently, I believe that the most popular plugins for handling relocatable
volumes are Flocker, REX-Ray (https:/ ​/​github. ​com/ ​codedellemc/ ​rexray), and GlusterFS
though there are many to choose from, with many of them having similar functionality. As
mentioned earlier, the state of this ecosystem is rather abysmal for such an important
feature and it seems that almost every big player running their clustering either forks and
builds their own storage solution, or they make their own and keep it closed-sourced. Some
deployments have even opted to using labels for their nodes to avoid this topic completely
and force specific containers to go to specific hosts so that they can use locally mounted
volumes.

https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://github.com/codedellemc/rexray
https://github.com/codedellemc/rexray
https://github.com/codedellemc/rexray
https://github.com/codedellemc/rexray
https://github.com/codedellemc/rexray
https://github.com/codedellemc/rexray
https://github.com/codedellemc/rexray
https://github.com/codedellemc/rexray
https://github.com/codedellemc/rexray
https://github.com/codedellemc/rexray
https://github.com/codedellemc/rexray

Keeping the Data Persistent Chapter 5

[136]

Flocker's parent company, ClusterHQ, shut down its operations in
December 2016 for financial reasons, and while the lack of support would
give a bit of a push to not be mentioned here, it is still the most popular
one by an order of magnitude for this type of volume management at the
time of writing this book. All the code is open sourced on GitHub at
https:/ ​/​github. ​com/ ​ClusterHQ so you can build, install, and run it even
without official support. If you want to use this plugin in an enterprise
environment and would like to have support for it, some of the original
developers are available for hire through a new company called ScatterHQ
at https:/ ​/ ​www. ​scatterhq. ​com/​ and they have their own source code
repositories at https:/ ​/​github. ​com/​ScatterHQ.

GlusterFS is unmaintained in its original source like Flocker, but just like
Flocker, you can build, install, and run the full code from the source
repository located at https:/ ​/​github. ​com/​calavera/ ​docker- ​volume-
glusterfs. If you would like code versions that have received updates,
you can find a few in the fork network at https:/ ​/​github. ​com/ ​calavera/
docker- ​volume- ​glusterfs/ ​network.

On top of all this ecosystem fragmentation, this particular way of integrating with Docker is
starting to be deprecated in favor of the docker plugin system which manages and
installs these plugins as Docker images from Docker Hub but due to lack of availability of
these new-style plugins, you might have to use a legacy plugin depending on your specific
use cases.

Sadly at the time of writing this book, docker plugin system is, like
many of these features, so new that there are barely any available plugins
for it. For example, the only plugin from the ones earlier mentioned in
legacy plugins that is built using this new system is REX-Ray but the most
popular storage backend (EBS) plugin does not seem to install cleanly. By
the time you get to read this book, things will probably have changed here
but be aware that there is a significant likelihood that in your own
implementation you will be using the tried-and-tested legacy plugins.

https://github.com/ClusterHQ
https://github.com/ClusterHQ
https://github.com/ClusterHQ
https://github.com/ClusterHQ
https://github.com/ClusterHQ
https://github.com/ClusterHQ
https://github.com/ClusterHQ
https://github.com/ClusterHQ
https://github.com/ClusterHQ
https://www.scatterhq.com/
https://www.scatterhq.com/
https://www.scatterhq.com/
https://www.scatterhq.com/
https://www.scatterhq.com/
https://www.scatterhq.com/
https://www.scatterhq.com/
https://www.scatterhq.com/
https://www.scatterhq.com/
https://www.scatterhq.com/
https://github.com/ScatterHQ
https://github.com/ScatterHQ
https://github.com/ScatterHQ
https://github.com/ScatterHQ
https://github.com/ScatterHQ
https://github.com/ScatterHQ
https://github.com/ScatterHQ
https://github.com/ScatterHQ
https://github.com/ScatterHQ
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network
https://github.com/calavera/docker-volume-glusterfs/network

Keeping the Data Persistent Chapter 5

[137]

So with all of these caveats mentioned, let's actually try to get one of the only plugins
(sshfs) that can be found working using the new docker plugin install system:

To duplicate this work, you will need access to a secondary machine
(though you can run it loopback too) with SSH enabled and reachable
from wherever you have Docker Engine running from, since that is the
backing storage system that it uses. You will also need the target folder
ssh_movable_volume made on the device and possibly the addition of -
o odmap=user to the sshfs volume parameters depending on your
setup.

$ # Install the plugin
$ docker plugin install vieux/sshfs

Plugin "vieux/sshfs" is requesting the following privileges:
 - network: [host]
 - mount: [/var/lib/docker/plugins/]
 - mount: []
 - device: [/dev/fuse]
 - capabilities: [CAP_SYS_ADMIN]
Do you grant the above permissions? [y/N] y
latest: Pulling from vieux/sshfs
2381f72027fc: Download complete
Digest:
sha256:72c8cfd1a6eb02e6db4928e27705f9b141a2a0d7f4257f069ce8bd813784b558
Status: Downloaded newer image for vieux/sshfs:latest
Installed plugin vieux/sshfs

$ # Sanity check
$ docker plugin ls
ID NAME DESCRIPTION ENABLED
0d160591d86f vieux/sshfs:latest sshFS plugin for Docker true

$ # Add our password to a file
$ echo -n '<password>' > password_file

$ # Create a volume backed by sshfs on a remote server with SSH daemon
running
$ docker volume create -d vieux/sshfs \
 -o sshcmd=user@192.168.56.101/ssh_movable_volume \
 -o password=$(cat password_file) \
 ssh_movable_volume
ssh_movable_volume

$ # Sanity check
$ docker volume ls
DRIVER VOLUME NAME

Keeping the Data Persistent Chapter 5

[138]

vieux/sshfs:latest ssh_movable_volume

$ # Time to test it with a container
$ docker run -it \
 --rm \
 --mount source=ssh_movable_volume,target=/my_volume,volume-
driver=vieux/sshfs:latest \
 ubuntu:latest \
 /bin/bash

root@75f4d1d2ab8d:/# # Create a dummy file
root@75f4d1d2ab8d:/# echo 'test_content' > /my_volume/test_file

root@75f4d1d2ab8d:/# exit
exit

$ # See that the file is hosted on the remote server
$ ssh user@192.168.56.101
user@192.168.56.101's password:
<snip>
user@ubuntu:~$ cat ssh_movable_volume/test_file
test_content

$ # Get back to our Docker Engine host
user@ubuntu:~$ exit
logout
Connection to 192.168.56.101 closed.

$ # Clean up the volume
$ docker volume rm ssh_movable_volume
ssh_movable_volume

Due to the way the volume is used, this volume is mostly portable and could allow us the
relocatable features we need, though most other plugins use a process that runs outside of
Docker and in parallel on each host in order to manage the volume mounting, un-
mounting, and moving, so instructions for those will be vastly different.

Relocatable volume sync loss
One last thing that must be mentioned in this section as well is the fact that most of plugins
that handle the moving of volumes can only handle being attached to a single node at any
one time due to the volume being writable by multiple sources is going to generally cause
serious issues so most drivers disallow it.

Keeping the Data Persistent Chapter 5

[139]

This however is in conflict with the main feature of most orchestration engines which, on
changes to Docker services, will leave the original service running until the new one is
started and passes health checks, causing the need to mount the same volume on both the
old and new service task in effect, creating a chicken-egg paradox.

In most cases, this can be worked around by making sure that Docker completely kills the
old service before starting the new one, but even then, you can expect that occasionally the
old volume will not be unmounted quickly enough from the old node, so the new service
will fail to start.

UID/GID and security considerations with
volumes
This section is not in a small informational box like I would have put it elsewhere, because
it is a big enough issue and problematic enough to deserve its own section. To understand
what happens with container user ID (UID) and group ID (GID), we need to understand
how the host's system permission works. When you have a file with group and user
permissions, they are internally all actually mapped to numbers and not kept as usernames
or group names that you see when listing things with regular ls switches:

$ # Create a folder and a file that we will mount in the container
$ mkdir /tmp/foo
$ cd /tmp/foo
$ touch foofile

$ # Let's see what we have. Take note of owner and group of the file and
directory
$ ls -la
total 0
drwxrwxr-x 2 user user 60 Sep 8 20:20 .
drwxrwxrwt 56 root root 1200 Sep 8 20:20 ..
-rw-rw-r-- 1 user user 0 Sep 8 20:20 foofile

$ # See what our current UID and GID are
$ id
uid=1001(user) gid=1001(user) <snip>

$ # How about we see the actual values that the underlying system uses
$ ls -na
total 0
drwxrwxr-x 2 1001 1001 60 Sep 8 20:20 .
drwxrwxrwt 56 0 0 1200 Sep 8 20:20 ..
-rw-rw-r-- 1 1001 1001 0 Sep 8 20:20 foofile

Keeping the Data Persistent Chapter 5

[140]

When you do ls, the system reads in /etc/passwd and /etc/group to display the actual
username and group name for permissions, and it is the only way in which the UID/GID is
mapped to permissions but the underlying values are UIDs and GIDs.

As you might have guessed, this user-to-UID and group-to-GID mapping might not (and
often does not) translate well to a containerized system as the container(s) will not have the
same /etc/passwd and /etc/group files but the permissions of files on external volumes
are stored with the data. For example, if the container has a group with a GID of 1001, it
will match the group permission bits -rw on our foofile and if it has a user has a UID of
1001, it will match our -rw user permissions on the file. Conversely, if your UIDs and GIDs
do not match up, even if you have a group or user with the same name in the container and
on the host, you will not have the right UIDs and GID for proper permission processing.
Time to check out what kind of a mess we can do with this:

$ ls -la
total 0
drwxrwxr-x 2 user user 60 Sep 8 21:16 .
drwxrwxrwt 57 root root 1220 Sep 8 21:16 ..
-rw-rw-r-- 1 user user 0 Sep 8 21:16 foofile

$ ls -na
total 0
drwxrwxr-x 2 1001 1001 60 Sep 8 21:16 .
drwxrwxrwt 57 0 0 1220 Sep 8 21:16 ..
-rw-rw-r-- 1 1001 1001 0 Sep 8 21:16 foofile

$ # Start a container with this volume mounted
$ # Note: We have to use the -v form since at the time of writing this
$ # you can't mount a bind mount with absolute path :(
$ docker run --rm \
 -it \
 -v $(pwd)/foofile:/tmp/foofile \
 ubuntu:latest /bin/bash

root@d7776ec7b655:/# # What does the container sees as owner/group?
root@d7776ec7b655:/# ls -la /tmp
total 8
drwxrwxrwt 1 root root 4096 Sep 9 02:17 .
drwxr-xr-x 1 root root 4096 Sep 9 02:17 ..
-rw-rw-r-- 1 1001 1001 0 Sep 9 02:16 foofile

root@d7776ec7b655:/# # Our container doesn't know about our users
root@d7776ec7b655:/# # so it only shows UID/GID

root@d7776ec7b655:/# # Let's change the owner/group to root (UID 0) and set
setuid flag

Keeping the Data Persistent Chapter 5

[141]

root@d7776ec7b655:/# chown 0:0 /tmp/foofile
root@d7776ec7b655:/# chmod +x 4777 /tmp/foofile

root@d7776ec7b655:/# # See what the permissions look like now in container
root@d7776ec7b655:/# ls -la /tmp
total 8
drwxrwxrwt 1 root root 4096 Sep 9 02:17 .
drwxr-xr-x 1 root root 4096 Sep 9 02:17 ..
-rwsrwxrwx 1 root root 0 Sep 9 02:16 foofile

root@d7776ec7b655:/# # Exit the container
root@d7776ec7b655:/# exit
exit

$ # What does our unmounted volume looks like?
$ ls -la
total 0
drwxrwxr-x 2 user user 60 Sep 8 21:16 .
drwxrwxrwt 57 root root 1220 Sep 8 21:17 ..
-rwsrwxrwx 1 root root 0 Sep 8 21:16 foofile
$ # Our host now has a setuid file! Bad news!

Warning! The ability to set the setuid flag on files is a really big security
hole that executes the file with the file owner's permissions. If we decided
to compile a program and set this flag on it, we could have done a massive
amount of damage on the host. Refer to https:/ ​/ ​en.​wikipedia. ​org/
wiki/ ​Setuid for more information on this flag.

As you can see, this can be a serious issue if we decided to be more malicious with our
setuid flag. This issue extends to any mounted volumes we use, so make sure that you
exercise proper caution when dealing with them.

Docker has been working on getting user namespaces working in order to
avoid some of these security issues, which work by re-mapping the UIDs
and GIDs to something else within the container through /etc/subuid
and /etc/subgid files so that there is no root UID clashing between the
host and the container, but they're not without their problems (and there's
plenty of them at the time of writing this book). For more information on
using user namespaces, you can find more information at https:/ ​/ ​docs.
docker. ​com/ ​engine/ ​security/ ​userns- ​remap/ ​.

https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Setuid
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/

Keeping the Data Persistent Chapter 5

[142]

Compounding this UID/GID problem is another issue that happens with such separate
environments: even if you install all the same packages in the same order between two
containers, due to users and groups usually being created by name and not a specific
UID/GID, you are not guaranteed to have these consistent between the container runs,
which is a serious problems if you want to remount the same volume between a container
that was upgraded or rebuilt. For this reason, you must ensure that UIDs and GIDs are
stable on volumes by doing something similar to the following, as we have done in some
earlier examples, before you install the package(s) with the users and groups that will be
dealing with the volume data:

RUN groupadd -r -g 910 mongodb && \
 useradd -r -u 910 -g 910 mongodb && \
 mkdir -p /data/db && \
 chown -R mongodb:mongodb /data/db && \
 chmod -R 700 /data/db && \
 apt-get install mongodb-org

Here, we create a group mongodb with GID 910 and a user mongodb with UID 910 and
then make sure that our data directory is owned by it before we install MongoDB. By doing
this, when the mongodb-org package is installed, the group and user for running the
database is already there and with the exact UID/GID that will not change. With a stable
UID/GID, we can mount and remount the volume on any built container with the same
configuration as both of the numbers will match and it should work on any machine that
we move the volume to.

The only final thing to possibly worry about (which is also somewhat of a problem in that
last example) is that mounting a folder will overlay itself over an already created folder on
the host and replace its permissions. This means that if you mount a new folder onto the
container, either you have to manually change the volume's permissions or change the
ownership when the container starts. Let's see what I mean by that:

$ mkdir /tmp/some_folder
$ ls -la /tmp | grep some_folder
drwxrwxr-x 2 sg sg 40 Sep 8 21:56 some_folder

$ # Mount this folder to a container and list the content
$ docker run -it \
 --rm \
 -v /tmp/some_folder:/tmp/some_folder \
 ubuntu:latest \
 ls -la /tmp
total 8
drwxrwxrwt 1 root root 4096 Sep 9 02:59 .
drwxr-xr-x 1 root root 4096 Sep 9 02:59 ..
drwxrwxr-x 2 1000 1000 40 Sep 9 02:56 some_folder

Keeping the Data Persistent Chapter 5

[143]

$ # Somewhat expected but we will do this now by overlaying
$ # an existing folder (/var/log - root owned) in the container

$ # First a sanity chech
$ docker run -it \
 --rm \
 ubuntu:latest \
 ls -la /var | grep log
drwxr-xr-x 4 root root 4096 Jul 10 18:56 log

$ # Seems ok but now we mount our folder here
$ docker run -it \
 --rm \
 -v /tmp/some_folder:/var/log \
 ubuntu:latest \
 ls -la /var | grep log
drwxrwxr-x 2 1000 1000 40 Sep 9 02:56 log

As you can see, whatever permissions were already set on the folder within the container
got completely trampled by our mounted directory volume. As mentioned earlier, the best
way to avoid having permission errors with limited users running services in the container
and mounted volumes is to change the permissions on the mounted paths on container start
with a wrapper script or start the container with a mounted volume and change it
manually, with the former being the much preferable option. The simplest wrapper script
goes something like this:

#!/bin/bash -e

Change owner of volume to the one we expect
chown mongodb:mongodb /path/to/volume

Optionally you can use this recursive version too
but in most cases it is a bit heavy-handed
chown -R mongodb:mongodb /path/to/volume

su - <original limited user> -c '<original cmd invocation>'

Placing this in /usr/bin/wrapper.sh of the container and adding the following snippet
somewhere to the Dockerfile where it runs as root should be good enough to fix the
issue:

<snip>
CMD ["/usr/bin/wrapper.sh"]

Keeping the Data Persistent Chapter 5

[144]

When the container starts, the volume will be mounted already and the script will change
the user and group of the volume to the proper one before passing the command to the
original runner for the container, fixing our issue.

The biggest takeaway from this section should be that you should be mindful of user
permissions when you deal with volumes as they may cause usability and security issues if
you are not careful. As you develop your services and infrastructure, these types of pitfalls
can cause everything from minor headaches to catastrophic failures but now that you know
more about them, we have hopefully prevented the worst.

Summary
In this chapter, you have learned a massive amount of new stuff revolving around Docker's
data handling including Docker image internals and running your own Docker Registry.
We have also covered transient, node-local, and relocatable data storage and the associated
volume management that you will need to effectively deploy your services in the cloud.
Later we have spent some time covering the volume orchestration ecosystem to help you
navigate the changing landscape of Docker volume drivers as things have been changing
quickly in this space. As we got to the end, coverage of various pitfalls (like UID/GID
issues) was included so that you can avoid them in your own deployments.

As we continue into the next chapter, we will cover cluster hardening and how to pass data
between a large volume of services in an orderly fashion.

6
Advanced Deployment Topics

We have spent a decent amount of time talking about container communication and
security, but in this chapter, we will take a look at taking deployments even further by
covering the following:

Advanced debugging techniques.
Implementing queue messaging.
Running security checks.
Container security in depth.

We will also look at a few other tools and techiniques that will help you manage your
deployments better.

Advanced debugging
The ability to debug containers in the wild is a very important topic and we previously
covered some of the more basic techniques that can be of use here. But there are cases where
docker ps and docker exec just aren't enough, so in this section, we will examine a few
more tools you can add to your toolbox that can help resolve those tricky issues.

Advanced Deployment Topics Chapter 6

[146]

Attaching to a container's process space
There may be times when a container is running with a minimalist distribution such as
Alpine Linux (https:/ ​/​www. ​alpinelinux. ​org/​) and the container in question has an issue
with a process that you would like to debug but also lacks the most basic tooling you need
for debugging included. By default, Docker isolates all containers in their individual
process namespace so our current debugging workflow, which we used before by attaching
to that container directly and trying to figure out what was wrong with very limited tooling
is not going to help us much here.

Luckily for us though, Docker is fully capable of joining the process namespaces of two
containers with the docker run --pid "container:<name_or_id>" flag, so that we
can attach a debug tooling container directly onto the affected one:

$ # Start an NGINX container
$ docker run -d --rm nginx
650a1baedb0c274cf91c086a9e697b630b2b60d3c3f94231c43984bed1073349

$ # What can we see from a new/separate container?
$ docker run --rm \
 ubuntu \
 ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 16:37 ? 00:00:00 ps -ef

$ # Now let us try the same thing but attach to the NGINX's PID space
$ docker run --rm \
 --pid "container:650a1bae" \
 ubuntu \
 ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 16:37 ? 00:00:00 nginx: master process nginx -g
daemon off;
systemd+ 7 1 0 16:37 ? 00:00:00 nginx: worker process
root 8 0 0 16:37 ? 00:00:00 ps -ef

https://www.alpinelinux.org/
https://www.alpinelinux.org/
https://www.alpinelinux.org/
https://www.alpinelinux.org/
https://www.alpinelinux.org/
https://www.alpinelinux.org/
https://www.alpinelinux.org/
https://www.alpinelinux.org/
https://www.alpinelinux.org/
https://www.alpinelinux.org/

Advanced Deployment Topics Chapter 6

[147]

As you can see, we can just attach a debugging container into the same PID namespace and
debug any oddly behaving process this way and can keep the original container pristine
from the installation of debug tooling! Using this technique, the original container can be
kept small since the tooling can be shipped separately and the container remains running
throughout the debugging process so your task will not be rescheduled. That said,
whenever you are debugging different containers using this method, be careful not to kill
the processes or the threads within it as they have a likely chance of cascading and killing
the whole container, halting your investigation.

Interestingly enough, this pid flag can also be invoked with --pid host to share the host's
process namespace if you have a tool that does not run on your distribution and there is a
Docker container for it (or, alternatively, if you want to use a container for the management
of the host's processes):

$ # Sanity check
$ docker run --rm \
 ubuntu \
 ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 16:44 ? 00:00:00 ps -ef

$ # Now we try to attach to host's process namespace
$ docker run --rm \
 --pid host \
 ubuntu \
 ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 15:44 ? 00:00:02 /sbin/init splash
root 2 0 0 15:44 ? 00:00:00 [kthreadd]
root 4 2 0 15:44 ? 00:00:00 [kworker/0:0H]
<snip>
root 5504 5485 3 16:44 ? 00:00:00 ps -ef

It should be apparent as to how much capability this flag's functionality can provide for
both running and debugging applications, so do not hesitate to use it.

Warning! Sharing the host's process namespace with the container is a big
security hole as a malicious container can easily commandeer or DoS the
host by manipulating processes, especially if the container's user is
running as a root. Due to this, exercise extreme caution when utilizing --
pid host and ensure that you use this flag only on containers you trust
completely.

Advanced Deployment Topics Chapter 6

[148]

Debugging the Docker daemon
If none of these techniques have helped you so far, you can try to run the Docker container
and check what the daemon API is doing with docker system events, which tracks
almost all actions that are triggered on its API endpoint. You can use this for both auditing
and debugging, but generally, the latter is its primary purpose as you can see in the
following example.

On the first terminal, run the following command and leave it running so that we can see
what information we can collect:

$ docker system events

On another Terminal, we will run a new container:

$ docker run -it \
 --rm \
 ubuntu /bin/bash

$ root@563ad88c26c3:/# exit
exit

After you have done this start and stop of the container, the events command in the first
terminal should have output something similar to this:

$ docker system events
2017-09-27T10:54:58.943347229-07:00 container create
563ad88c26c3ae7c9f34dfe05c77376397b0f79ece3e233c0ce5e7ae1f01004f
(image=ubuntu, name=thirsty_mccarthy)
2017-09-27T10:54:58.943965010-07:00 container attach
563ad88c26c3ae7c9f34dfe05c77376397b0f79ece3e233c0ce5e7ae1f01004f
(image=ubuntu, name=thirsty_mccarthy)
2017-09-27T10:54:58.998179393-07:00 network connect
1e1fd43bd0845a13695ea02d77af2493a449dd9ee50f2f1372f589dc4968410e
(container=563ad88c26c3ae7c9f34dfe05c77376397b0f79ece3e233c0ce5e7ae1f01004f
, name=bridge, type=bridge)
2017-09-27T10:54:59.236311822-07:00 container start
563ad88c26c3ae7c9f34dfe05c77376397b0f79ece3e233c0ce5e7ae1f01004f
(image=ubuntu, name=thirsty_mccarthy)
2017-09-27T10:54:59.237416694-07:00 container resize
563ad88c26c3ae7c9f34dfe05c77376397b0f79ece3e233c0ce5e7ae1f01004f
(height=57, image=ubuntu, name=thirsty_mccarthy, width=176)
2017-09-27T10:55:05.992143308-07:00 container die
563ad88c26c3ae7c9f34dfe05c77376397b0f79ece3e233c0ce5e7ae1f01004f
(exitCode=0, image=ubuntu, name=thirsty_mccarthy)
2017-09-27T10:55:06.172682910-07:00 network disconnect
1e1fd43bd0845a13695ea02d77af2493a449dd9ee50f2f1372f589dc4968410e

Advanced Deployment Topics Chapter 6

[149]

(container=563ad88c26c3ae7c9f34dfe05c77376397b0f79ece3e233c0ce5e7ae1f01004f
, name=bridge, type=bridge)
2017-09-27T10:55:06.295496139-07:00 container destroy
563ad88c26c3ae7c9f34dfe05c77376397b0f79ece3e233c0ce5e7ae1f01004f
(image=ubuntu, name=thirsty_mccarthy)

Its use is fairly niche but this type of tracing, along with the other tips and tricks we have
discussed so far, should provide you with the tools to tackle almost any type of problem on
a Docker-based cluster. Everything already mentioned aside, in my personal experience,
there have also been a couple of times where gdb was required as well as a couple of times
when a problem turned out to be an upstream bug. Because of that, be prepared to get your
hands dirty when scaling up as the chance of novel problems increases too.

Advanced networking
Networking is one of the most important things for Docker clusters and it needs to be kept
operational and running smoothly on clusters for the whole system to operate in any
capacity. With that in mind, it stands to reason that it behooves us to cover a few of the
topics that we have not talked about yet but that are important in most real-world
deployments, big and small. There is a big chance you will encounter at least one of these
use cases in your own deployments so I would recommend a full read-through, but your
mileage may vary.

Static host configuration
In some specific configurations, you may have a host on your network that needs to be
mapped or re-mapped to a specific IP address for the container that is trying to reach it.
This allows a flexible configuration of named servers and can be a real life-saver for static
hosts on the network without a good network DNS server.

To add such a host mapping to a container, you can run the container with docker run --
add-host and using this flag, an entry in /etc/hosts is added that matches your input so
that you can properly route your requests to it:

$ # Show what the default /etc/hosts has
$ docker run --rm \
 -it \
 ubuntu \
 /bin/cat /etc/hosts

127.0.0.1 localhost

Advanced Deployment Topics Chapter 6

[150]

::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.17.0.2 3c46adb8a875

$ # We now will add our fake server1 host mapping
$ docker run --rm \
 -it \
 --add-host "server1:123.45.67.89" \
 ubuntu \
 /bin/cat /etc/hosts

127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
123.45.67.89 server1
172.17.0.2 dd4d7c6ef7b8

$ # What does the container see when we have an additional host?
$ docker run --rm \
 -it \
 --add-host "server1:123.45.67.89" \
 ubuntu /bin/bash

root@0ade7f3e8a80:/# getent hosts server1
123.45.67.89 server1

root@0ade7f3e8a80:/# exit
exit

As mentioned, this can be very useful when you have a non-containerized service for which
you do not want to hardcode the IP into the container that also is not resolvable from the
Internet DNS servers.

Advanced Deployment Topics Chapter 6

[151]

DNS configuration
Speaking of DNS, we should probably talk a bit about Docker DNS handling. By default,
Docker Engine uses the DNS settings from the host, but in some advanced deployment
settings where the network that the cluster is being deployed in is within an already built-
out network, there may be times when the engine or the container needs to be configured
with a custom DNS setting or the DNS search prefix (also know as the domain name). In
such cases, you are able to override the default DNS settings of the Docker Engine easily by
adding the dns and/or dns-search parameters to /etc/docker/daemon.json and
restarting the daemon. Both parameters allow multiple values and are pretty self-
explanatory:

{
...
 "dns": ["1.2.3.4", "5.6.7.8", ...],
 "dns-search": ["domain.com", ...],
...
}

In all networking setups that I have ever worked on, I have not seen a
situation where overriding DNS server IPs or DNS search prefixes is a
better option to deploying your own DHCP server within the network and
setting the appropriate options for the DNS server(s) (option 6) and
domain name (option 15), which the machine will pick up when
initializing the network interface. If you would like to find out more about
these DHCP flags, I would highly recommend that you visit https:/ ​/ ​en.
wikipedia. ​org/ ​wiki/ ​Dynamic_ ​Host_ ​Configuration_ ​Protocol#DHCP_
options and read up on them before using the parameters we mentioned
previously.

Caution! In some cases where the engine host's DNS servers are pointed to
localhost ranges, as they are in most systemd-resolve and dnsmasq
setups, the container cannot access the host's localhost address and is
thus replaced with Google's DNS servers (8.8.8.8 and 8.8.4.4) by
default for all containers running on that instance. If you would like to
retain the host's DNS setting within the container, you must ensure that
the DNS resolver in the configuration is not one on the localhost IP
range and is accessible by container networks. You can find more
information about this at https:/ ​/​docs. ​docker. ​com/​engine/ ​userguide/
networking/ ​default_ ​network/ ​configure- ​dns/ ​.

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/
https://docs.docker.com/engine/userguide/networking/default_network/configure-dns/

Advanced Deployment Topics Chapter 6

[152]

If you are not interested in engine-wide configuration and are only trying to override a
single container's DNS settings, you can do the equivalent action by adding --dns and --
dns-search options to the docker run command, which ends up replacing the default
/etc/resolv.conf settings in the relevant container:

$ # Since my default DNS is pointed to localhost, the default should be
Google's DNS servers
$ docker run --rm \
 -it \
 ubuntu \
 /bin/cat /etc/resolv.conf

Dynamic resolv.conf(5) file for glibc resolver(3) generated by
resolvconf(8)
DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN
127.0.0.53 is the systemd-resolved stub resolver.
run "systemd-resolve --status" to see details about the actual
nameservers.
nameserver 8.8.8.8
nameserver 8.8.4.4

$ # Now we will specify a custom DNS and DNS search prefix and see what the
same file looks like
$ docker run --rm \
 -it \
 --dns 4.4.4.2 \
 --dns-search "domain.com" \
 ubuntu \
 /bin/cat /etc/resolv.conf

search domain.com
nameserver 4.4.4.2

As you can see, the settings in the container have been changed to match our parameters. In
our case, any DNS resolution will flow to the 4.4.4.2 server and any unqualified
hostname will first be attempted to get resolved as <host>.domain.com.

Advanced Deployment Topics Chapter 6

[153]

Overlay networks
We only briefly touched on this in Chapter 4, Scaling the Containers, but in order to get our
containers to work with the Swarm service discovery, we had to create this type of network
though we didn't really spend much time explaining what it is. In the context of Docker
Swarm, containers on one machine cannot reach containers on a different machine as their
networks are routed directly to the next hop as they traverse the network and a bridge
network prevents each container from reaching its neighbor on the same node. To hook all
of the containers together in this multi-host setup seamlessly, you can create an overlay
network that spans any Swarm nodes that are part of the cluster. Sadly, this type of network
is only available in Docker Swarm clusters, so in general, it has limited portability across the
orchestration tooling but you can create one with docker network create -d overlay
network_name. Since we have already covered an example of a deployment using this type
of a network in Chapter 4, Scaling the Containers, you can look it up there to see it in action.

Caution! Overlay networks do not communicate data securely by default
with other nodes, so using the --opt encrypted flag when creating one
is highly encouraged where network transport cannot be trusted fully.
Using this option will incur some processing cost and will require you to
allow port 50 communication within your cluster, but in most cases, it
should be worth it turning it on.

Docker built-in network mappings
In previous chapters, we were mostly working with containers with the default network
settings, which were utilizing the bridge network in most cases since that is the default,
but this is not the only type of networking that can be used for a container. The following is
a list of the available network connections, and almost all of them can be set through the
docker run --network parameter:

bridge: As mentioned in earlier chapters, this type of network creates an
independent virtual interface on the host for communicating with the container,
and the container can communicate with the host and the Internet. Generally,
inter-container communication is prevented in this type of a network.
none: Disables all networking communication for the container. This is useful
with containers that only contain tooling and have no need for network
communication.
host: Uses the host's networking stack and does not create any virtual interfaces.

Advanced Deployment Topics Chapter 6

[154]

<network_name_or_id>: Connects to a named network. This flag is useful when
you create a network and want to put multiple containers in the same networking
grouping. For example, this would be useful for hooking up multiple chatty
containers such as Elasticsearch into their own isolated network.
<container_name_or_id>: This allows you to connect to a networking stack of
the specified container. Just like the --pid flag, this is very useful for debugging
running containers without directly attaching to them, though the network may
need to be created with the --attachable flag depending on the network driver
used.

Warning! Using the host networking switch gives the container full
access to local system services and as such is a liability when used in any
context other than testing. Use extreme caution when this flag is used, but
luckily, there are only very few cases (if any) where there will be a
legitimate use for this mode.

Docker communication ports
Unless you are running Docker Swarm, you will probably never need to worry about what
ports Docker uses to communicate, but this is something that is relatively good to know as a
point of reference should you ever encounter such configurations in the field or you want to
have such deployments within your clusters. The list is pretty short, but each port is very
important for the operation of most Swarm clusters:

2377 TCP - Used for Swarm node communication
4789 UDP - Container ingress network
7946 TCP/UDP - Container network discovery
50 IP - Used for secure communication of overlay networks if you use "--opt
encrypted" when creating the overlay network

High availability pipelines
Previously, we spent the majority of our time working with socket-based communication
between nodes on a cluster, which is generally something that makes sense to most people
and has tooling built around it in almost every programming language. So, it is the first tool
that people transitioning their classic infrastructure to containers usually go for, but for
large-and-beyond scales where you are dealing with pure data processing, it simply does
not work well due to the back-pressure caused by exceeding the capacity of a particular
stage on the rest of the processing pipeline.

Advanced Deployment Topics Chapter 6

[155]

If you imagine each cluster service as a consecutive set of transformation steps, the socket-
based system would go through a loop of steps similar to these:

Opening a listening socket.
Looping forever doing the following:

Waiting for data on a socket from the previous stage.
Processing that data.
Sending the processed data to the next stage's socket.

But what happens in that last step if the next stage is already at the maximum capacity?
What most socket-based systems will do is either throw an exception and completely fail
the processing pipeline for this particular piece of data or prevent the execution from
continuing and keep retrying to send the data to the next stage until it succeeds. Since we
don't want to fail the processing pipeline as the result was not an error and we do not want
to keep our worker waiting around for the next stage to unblock, we need something that
can hold inputs to stages in an ordered structure so that the previous stage can continue
working on its own new set of inputs.

Container messaging
For the scenario that we just talked about, where back-pressure on individual processing
stages causes cascade backflow stoppages, message queues (often alternatively referred to
as pub/sub messaging systems) are here to provide us with the exact solution we need.
Message queues generally store data as messages in a First-In, First-Out (FIFO) queue
structure and work by allowing the sender to add the desired inputs to a particular stage's
queue ("enqueue") and the worker (listener) to trigger on new messages within that queue.
When the worker is processing a message, the queue hides it from the rest of the workers
and when the worker is complete and successful, the message is removed from the queue
permanently. By operating on results in an asynchronous manner, we can allow the senders
to keep working on their own tasks and completely modularize the data processing
pipeline.

Advanced Deployment Topics Chapter 6

[156]

To see queues in action, let's say we have two running containers and within a very short
period of time, messages A, B, C, and D arrive one after another as inputs from some
imaginary processing step (red indicating the top of the queue):

Internally, the queue tracks their ordering, and initially, neither of the container queue
listeners have noticed the messages, but very quickly, they get a notification that there is
new work to be done, so they get the messages in the order in which they were received.
The messaging queue (depending on the exact implementation) marks those messages as
unavailable for other listeners and sets a timeout for the worker to complete. In this
example Message A and Message B have been marked for processing by the available
workers:

During this process, let's assume that Container 1 had a catastrophic failure and it just died.
Message A timeout on the queue expires without it being finished so the queue puts it back
on top and makes it available again for listeners while our other container keeps on
working:

Advanced Deployment Topics Chapter 6

[157]

With Message B successfully completed, Container 2 notifies the queue that the task is
done and the queue removes it completely from its lists. With that out of the way, the
container now takes the topmost message, which turns out to be the unfinished Message A
and the process continues just like before:

While this cluster stage has been dealing with failures and overloading, the previous stage
that put all of these messages in the queue kept working on its dedicated workload. Our
current stage also has not lost any data even though half of our processing capability got
forcefully removed at a random point in time.

The new pseudocode loop for a worker would be a bit more like this now:

Register as a listener on a queue.
Loop forever doing the following:

Wait for a message from the queue.
Process the data from the queue.
Send the processed data to the next queue.

Advanced Deployment Topics Chapter 6

[158]

With this new system, if there is any kind of processing slowdown in the pipeline, the
queues for those overloaded stages will start to grow in size, but if the earlier stages slow
down, the queues will shrink until they are empty. As long as the maximum queue size can
handle the volume of messages and the overloaded stages can handle the average demands,
you can ascertain that all the data that is in the pipeline will be eventually processed and
your triggers for scaling up stages are pretty much as simple as noticing larger queues that
are not caused by bugs. This not only helps mitigate differences in pipeline stage scaling,
but it also helps preserve data if pieces of your cluster go down since the queues will grow
during failure time and then empty as you bring your infrastructure back to fully working -
and all of this will happen without data loss.

If this bundle of benefits was not enough of a positive, consider that you can now have a
guarantee that the data was processed since the queue keeps the data around so if a worker
dies, the queue will (as we've seen earlier) put the message back in the queue to possibly get
processed by another worker, unlike socket-based processing which would just silently die
in that case. The increase in processing density, increase in failure tolerance, and better
handling of burst data makes queues extremely attractive to container developers. If all
your communication is also done with queues, service discovery might not even be needed
for these workers except to tell them where the queue manager is since the queue is doing
that discovery work for you.

Unsurprisingly, most queues come at a development cost, which is why they are not as
widely in use as one might expect. In most cases, you will not only need to add custom
queue client libraries to your worker code, but in many types of deployments, you will also
need a process or a daemon somewhere that will be the main queue arbitrator that handles
the messages. In fact, I would probably go as far as to say that choosing the messaging
system alone is a research task onto itself, but if you're looking for quick answers, generally
Apache Kafka (https:/ ​/​kafka. ​apache. ​org/​), RabbitMQ (https:/ ​/​www. ​rabbitmq. ​com/ ​),
and Redis-backed custom implementations (https:/ ​/​redis. ​io/ ​) seem to be more popular
in clustering contexts for in-house messaging queues going from the biggest deployments
to the smallest, respectively.

As with all things we have been covering so far, most cloud providers
offer some type of service for this (AWS SQS, Google Cloud Pub/Sub,
Azure Queue Storage, and so on) so that you don't have to build it
yourself. If you are OK with spending a little bit more money, you can
utilize these and not worry about hosting the daemon process yourself.
Historically, messaging queues have been hard to maintain and manage
properly in house, so I would venture to say that many, if not most, cloud
systems use these services instead of deploying their own.

https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/
https://redis.io/

Advanced Deployment Topics Chapter 6

[159]

Implementing our own messaging queue
With the theory out of the way, let's see how we can build our own little queue publisher
and listener. For our example here, we will use one of the simpler messaging systems based
on Redis called bull (https:/ ​/​www. ​npmjs. ​com/ ​package/ ​bull). First we will write the code
that will run this whole system, and to make things easy for us, we will use the same image
for both the consumer and the producer.

In a new directory, create the following:

As a reminder, this code is also in the GitHub repository and you can view
it or clone it from https:/ ​/​github. ​com/​sgnn7/ ​deploying_ ​with_ ​docker/
tree/ ​master/ ​chapter_ ​6/ ​redis_ ​queue if you do not want to type the full
text.

package.json
This file is pretty much just a copy of our older example with the addition of the bull
package and a name change:

{
 "name": "queue-worker",
 "version": "0.0.1",
 "scripts": {
 "start": "node index.js"
 },
 "dependencies": {
 "bull": "^3.2.0"
 }
}

index.js
index.js is a single-file app that either sends a timestamp every 1.5 seconds to the queue
or reads from the queue depending on the invocation argument. The queue location is
defined by the QUEUE_HOST environment variable:

'use strict'

const Queue = require('bull');

const veryImportantThingsQueue = new Queue('very_important_things',
 { redis: { port: 6379,
 host:
process.env.QUEUE_HOST }});

https://www.npmjs.com/package/bull
https://www.npmjs.com/package/bull
https://www.npmjs.com/package/bull
https://www.npmjs.com/package/bull
https://www.npmjs.com/package/bull
https://www.npmjs.com/package/bull
https://www.npmjs.com/package/bull
https://www.npmjs.com/package/bull
https://www.npmjs.com/package/bull
https://www.npmjs.com/package/bull
https://www.npmjs.com/package/bull
https://www.npmjs.com/package/bull
https://www.npmjs.com/package/bull
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_6/redis_queue

Advanced Deployment Topics Chapter 6

[160]

// Prints any message data received
class Receiver {
 constructor () {
 console.info('Registering listener...');
 veryImportantThingsQueue.process(job => {
 console.info('Got a message from the queue with data:',
job.data);
 return Promise.resolve({});
 });
 }
}

// Sends the date every 1.5 seconds
class Sender {
 constructor () {
 function sendMessage() {
 const messageValue = new Date();
 console.info('Sending a message...', messageValue);
 veryImportantThingsQueue.add({ 'key': messageValue });
 }

 setInterval(sendMessage, 1500);
 }
}

// Sanity check
if (process.argv.length < 2) {
 throw new Error(`Usage: ${process.argv.slice(2).join(' ')} <sender |
receiver>`);
}

// Start either receiver or sender depending of CLI arg
console.info('Starting...');
if (process.argv[2] === 'sender') {
 new Sender();
} else if (process.argv[2] === 'receiver') {
 new Receiver();
} else {
 throw new Error(`Usage: ${process.argv.slice(0, 2).join(' ')} <sender |
receiver>`);
}

Advanced Deployment Topics Chapter 6

[161]

Dockerfile
Nothing special here: the file is pretty much a trimmed-down version of our older Node.js
app:

FROM node:8

Make sure we are fully up to date
RUN apt-get update -q && \
 apt-get dist-upgrade -y && \
 apt-get clean && \
 apt-get autoclean

Container port that should get exposed
EXPOSE 8000

ENV SRV_PATH /usr/local/share/queue_handler

Make our directory
RUN mkdir -p $SRV_PATH && \
 chown node:node $SRV_PATH

WORKDIR $SRV_PATH

USER node

COPY . $SRV_PATH/

RUN npm install

CMD ["npm", "start"]

We will build the image now:

$ docker build -t queue-worker .
Sending build context to Docker daemon 7.168kB
<snip>
 ---> 08e33a32ba60
Removing intermediate container e17c836c5a33
Successfully built 08e33a32ba60
Successfully tagged queue-worker:latest

Advanced Deployment Topics Chapter 6

[162]

With the image building out of the way, we can now write out our stack definition file:
swarm_application.yml. We are pretty much creating the queue server, the queue
listener, and the queue sender on a single network and making sure that they can find each
other here:

version: "3"
services:
 queue-sender:
 image: queue-worker
 command: ["npm", "start", "sender"]
 networks:
 - queue_network
 deploy:
 replicas: 1
 depends_on:
 - redis-server
 environment:
 - QUEUE_HOST=redis-server

 queue-receiver:
 image: queue-worker
 command: ["npm", "start", "receiver"]
 networks:
 - queue_network
 deploy:
 replicas: 1
 depends_on:
 - redis-server
 environment:
 - QUEUE_HOST=redis-server

 redis-server:
 image: redis
 networks:
 - queue_network
 deploy:
 replicas: 1
 networks:
 - queue_network
 ports:
 - 6379:6379

networks:
 queue_network:

Advanced Deployment Topics Chapter 6

[163]

Having both image built and the stack definition, we can launch our queue cluster to see
whether it works:

$ # We need a Swarm first
$ docker swarm init
Swarm initialized: current node (c0tq34hm6u3ypam9cjr1vkefe) is now a
manager.
<snip>

$ # Now we deploy our stack and name it "queue_stack"
$ docker stack deploy \
 -c swarm_application.yml \
 queue_stack
Creating service queue_stack_queue-sender
Creating service queue_stack_queue-receiver
Creating service queue_stack_redis-server

$ # At this point, we should be seeing some traffic...
$ docker service logs queue_stack_queue-receiver
<snip>
queue_stack_queue-receiver.1.ozk2uxqnbfqz@machine | Starting...
queue_stack_queue-receiver.1.ozk2uxqnbfqz@machine | Registering
listener...
queue_stack_queue-receiver.1.ozk2uxqnbfqz@machine | Got a message from
the queue with data: { key: '2017-10-02T08:24:21.391Z' }
queue_stack_queue-receiver.1.ozk2uxqnbfqz@machine | Got a message from
the queue with data: { key: '2017-10-02T08:24:22.898Z' }
<snip>

$ # Yay! It's working!

$ # Let's clean things up to finish up
$ docker stack rm queue_stack
Removing service queue_stack_queue-receiver
Removing service queue_stack_queue-sender
Removing service queue_stack_redis-server
Removing network queue_stack_redis-server
Removing network queue_stack_queue_network
Removing network queue_stack_service_network

$ docker swarm leave --force
Node left the swarm.

Advanced Deployment Topics Chapter 6

[164]

At this point, we could add any number of senders and listeners (within reason) and our
system will work just fine in a very asynchronous style, increasing throughput at both ends.
As a reminder, though, if you decide to go this route, another queue type is highly advised
(Kafka, SQS, and so on) but the underlying principles are pretty much the same.

Advanced security
We have covered some security issues in previous chapters, but for some issues that seem to
be frequently ignored, we need to cover them with a little bit more depth than the small info
box in the middle of the text and see why they are such large issues when used improperly.
While it might seem like a lot of work to implement all the things we pointed out in various
warnings and info boxes, the smaller the attack surface you provide to your potential
intruders, the better you will be in the long run. That said, unless you are working on
deploying this system for a government agency, I expect that there will be some
compromises but I urge you to strongly weigh the pros and cons for each otherwise you
risk getting that dreaded midnight call about an intrusion.

Ironically, hardened systems usually take so much time to develop and
deploy that they are often obsolete or provide marginal business value by
the time they are in production environments, and due to their carefully
assembled pieces, they are rarely (if ever) updated with a newer
functionality, have patches applied to them quickly, or code
improvements done on the source so it is a truly a double-edged sword.
There is never a perfect solution, only a range of things you are
comfortable with to some degree of dealing with. Historically, I have
mostly seen horrible execution on either extremes of the fence so my
advice here is that you look for a blend of the two if possible.

Mounting the Docker socket into the container
This is by far the most egregious security hole that developers completely disregard when
deploying containerized solutions. For various things related to container management,
often advice on the Internet is generally leaning toward bind-mounting the Docker socket
(/var/run/docker.sock) into the container, but the thing rarely mentioned is effectively
giving the host's root-level access to such a container when you do this. Since the Docker's
socket is actually just an API endpoint and the Docker daemon runs as the root, the
container can simply escape its containment by launching other containers with the host's
system folders being mounted on them and then executing arbitrary commands on them.

Advanced Deployment Topics Chapter 6

[165]

For more information on using the Docker socket as a RESTful endpoint,
you can take a look at the source code or explore a bit through the
documentation for Docker Engine API at https:/ ​/​docs. ​docker. ​com/
engine/ ​api/ ​v1. ​31/ ​. The only thing you will generally need to do to use it
through a tool such as curl is to add --unix-socket <socket_path>
and, optionally -H "Content-Type: application/json" for POST
requests.

Docker has been making strides at turning its service into a userspace one
from a root-level one, but so far, this feature has not materialized in any
practical manner. While personally I have reservations about this
happening anytime soon, keep an eye out for this feature as at some point
it may actually get released and become a usable feature which would be a
huge step forward for container security.

With the theory of how to misuse the Docker socket, now we will break out of our container
though we will stop short of actually doing anything damaging to the system:

$ Start a "benign" container with the Docker socket mounted and run Bash
$ docker run --rm \
 -it \
 -v /var/run/docker.sock:/var/run/docker.sock \
 ubuntu /bin/bash

root@686212135a17:/# # Sanity check - make sure that the socket is there
root@686212135a17:/# ls -la /var/run/docker.sock
srw-rw---- 1 root 136 0 Sep 20 05:03 /var/run/docker.sock

root@686212135a17:/# # Install curl but almost any other HTTP client will
work
root@686212135a17:/# # Even a base Python can do this but curl is fine for
brevity
root@686212135a17:/# apt-get update && apt-get install -y curl
<snip>
done

root@686212135a17:/# # Create a container through the socket and bind-mount
root to it
root@686212135a17:/# # with a "malicious" touch command to run
root@686212135a17:/# curl -s \
 --unix-socket /var/run/docker.sock \
 -H "Content-Type: application/json" \
 -d '{"Image": "ubuntu", "Cmd": ["touch",
"/mnt/security_breach"], "Mounts": [{"Type": "bind", "Source": "/",
"Target":"/mnt", "RW": true}]}' \
 -X POST \

https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/
https://docs.docker.com/engine/api/v1.31/

Advanced Deployment Topics Chapter 6

[166]

 http:/v1.29/containers/create
{"Id":"894c4838931767462173678aacc51c3bb98f4dffe15eaf167782513305c72558","W
arnings":null}

root@686212135a17:/# # Start our escaped container
root@686212135a17:/# curl --unix-socket /var/run/docker.sock \
 -X POST \
 http:/v1.29/containers/894c4838/start

root@686212135a17:/# # Exit out of our "benign" container back to host
root@686212135a17:/# exit
exit

$ # Let's see what happened on our host
$ ls -la / | grep breach
-rw-r--r-- 1 root root 0 Sep 20 23:14 security_breach

$ # Oops!

It should be apparent now how the benign container was able to root the host with just a
few CLI commands. While some of it is predicated on the container process running as the
root, the same could possibly be done if the Docker group ID clashes with a non-privileged
group within the container, but with nitpicks aside, suffice it to say that mounting the
Docker socket without fully understanding the implications can lead to a very painful
breach. With that in mind, there are (albeit rare) legitimate uses of this technique so use
your best judgment here.

Host security scans
As part of a drive to increase the security of deployments, a tool was released by Docker
that can help easily identify the most common security issues with a host running a Docker
Engine called Docker Bench for Security. This tool will scan and verify a large number of
possible weaknesses in your configuration and will present them in a very easy-to-read
listing. You can download and run this image just like you would one of the other regular
containers available on Docker Hub:

Advanced Deployment Topics Chapter 6

[167]

Warning! This security scan requires many permissions (--net host, --
pid host, Docker socket mounting, and so on) that we have covered as
generally really bad ideas to run on a host since they present a pretty large
attack vector for malicious actors but on the other hand, the scan needs
those permissions to check the settings you have. As such, I would highly
recommend running this type of security scan on a clone of the host
machine that you are trying to test in a network-isolated environment in
order to prevent compromises of your infrastructure if the scanning image
is maliciously modified.

$ docker run --rm \
 -it \
 --net host \
 --pid host \
 --cap-add audit_control \
 -e DOCKER_CONTENT_TRUST=$DOCKER_CONTENT_TRUST \
 -v /var/lib:/var/lib \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v /usr/lib/systemd:/usr/lib/systemd \
 -v /etc:/etc \
 docker/docker-bench-security

Docker Bench for Security v1.3.3
#
Docker, Inc. (c) 2015-
#
Checks for dozens of common best-practices around deploying Docker
containers in production.
Inspired by the CIS Docker Community Edition Benchmark v1.1.0.

Initializing Mon Oct 2 00:03:29 CDT 2017

[INFO] 1 - Host Configuration
[WARN] 1.1 - Ensure a separate partition for containers has been created
[NOTE] 1.2 - Ensure the container host has been Hardened
date: invalid date '17-10-1 -1 month'
sh: out of range
sh: out of range
[PASS] 1.3 - Ensure Docker is up to date
[INFO] * Using 17.09.0 which is current
[INFO] * Check with your operating system vendor for support and
security maintenance for Docker
[INFO] 1.4 - Ensure only trusted users are allowed to control Docker
daemon

Advanced Deployment Topics Chapter 6

[168]

[INFO] * docker:x:999
[WARN] 1.5 - Ensure auditing is configured for the Docker daemon
[WARN] 1.6 - Ensure auditing is configured for Docker files and
directories - /var/lib/docker
[WARN] 1.7 - Ensure auditing is configured for Docker files and
directories - /etc/docker
[INFO] 1.8 - Ensure auditing is configured for Docker files and
directories - docker.service
<snip>
[PASS] 2.10 - Ensure base device size is not changed until needed
[WARN] 2.11 - Ensure that authorization for Docker client commands is
enabled
[WARN] 2.12 - Ensure centralized and remote logging is configured
[WARN] 2.13 - Ensure operations on legacy registry (v1) are Disabled
[WARN] 2.14 - Ensure live restore is Enabled
[WARN] 2.15 - Ensure Userland Proxy is Disabled
<snip>
[PASS] 7.9 - Ensure CA certificates are rotated as appropriate (Swarm mode
not enabled)
[PASS] 7.10 - Ensure management plane traffic has been separated from data
plane traffic (Swarm mode not enabled)

The list is pretty long, so most of the output lines were removed, but you should have a
pretty good idea about what this tool does and how to use it. Note that this is not the only
product in this space (e.g. Clair from CoreOS at https:/ ​/​github. ​com/ ​coreos/ ​clair) so try
to use as many of them as you can in order to see where your weaknesses in the
infrastructure lie.

Read-only containers
In the development of our previous examples spanning most of the chapters, we did not
really pay much attention to whether containers changed the state of the filesystem while
running. This is not such a problem for test and development systems, but in production, it
is very important to lock things down even further in order to prevent malicious runtime
exploitation from both internal and external sources. For this purpose, there is a docker
run --read-only flag, which (unsurprisingly) mounts the container's root filesystem as
read-only. By doing this, we ensure that all data that is not mounted with volumes is as
pristine as when we built the image, ensuring consistency and protecting your cluster. The
only thing that you might need to be careful of if you run the containers in this manner is
that locations for temporary storage of files in places such as /run, /tmp, and /var/tmp are
extremely likely to be required by the container during execution, so these mounts should
be additionally mounted as tmpfs volumes:

https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair

Advanced Deployment Topics Chapter 6

[169]

$ # Start a regular container
$ docker run -it \
 --rm \
 ubuntu /bin/bash

root@79042a966943:/# # Write something to /bin
root@79042a966943:/# echo "just_a_test" > /bin/test

root@79042a966943:/# # Check if it's there
root@79042a966943:/# ls -la /bin | grep test
-rw-r--r-- 1 root root 12 Sep 27 17:43 test

root@79042a966943:/# exit
exit

$ # Now try a read-only container
$ docker run -it \
 --rm \
 --tmpfs /run \
 --tmpfs /tmp \
 --tmpfs /var/tmp \
 --read-only \
 ubuntu /bin/bash

root@5b4574a46c09:/# # Try to write to /bin
root@5b4574a46c09:/# echo "just_a_test" > /bin/test
bash: /bin/test: Read-only file system

root@5b4574a46c09:/# # Works as expected! What about /tmp?
root@5b4574a46c09:/# echo "just_a_test" > /tmp/test
root@5b4574a46c09:/# ls /tmp
test

root@5b4574a46c09:/# exit
exit

If you do not expect your container to change anything on the filesystem and since
containers should generally not need to write to paths such as /usr, using this flag in
production is highly recommended, so apply it liberally to all your static services if
possible.

Advanced Deployment Topics Chapter 6

[170]

Base system (package) updates
We talked a little about this previously, but it seems that in most online documentation and
blogs, package updates have been sorely neglected in coverage within the context of Docker
containers. While there are supporters of both camps, it is important to remember that there
is no guarantee that the tagged images available from places such as Docker Hub have been
built with the latest updates, and even in cases where they are, the tagged image might
have been built a while ago and, as such, won't contain the latest security patches.

While it is true that within Docker containers, the host's kernel is used to run the context of
the container, a security hole in any of the supporting libraries within the container can (and
usually does) result in a breach that can often cascade onto the host and into your whole
network. Due to this fact, my personal recommendation for containers that will be deployed
to production is that you should always make sure that the container is built with the latest
libraries if possible. There are definite risks, albeit small, in manually upgrading packages
on some base images that are caused by library incompatibilities that occur when you do
the upgrade, but as a general rule, it is a risk worth taking.

In most cases, in order to do this kind of upgrade, just like we covered earlier in most of our
Docker examples, you pretty much need to invoke the system upgrade lines specific to the
base OS distribution of the image in Dockerfile. For our default deployment OS (Ubuntu
LTS), this operation is done with apt-get update and apt-get dist-upgrade:

...
RUN apt-get update && apt-get -y dist-upgrade
...

Caution! Do not forget that by default, docker build will cache all
individual layers that have unchanged Dockerfile directives, so this
command will work as expected the first time, but its layer will be pulled
from the cache any subsequent time it is used if none of the lines
preceding it have changed due to the fact that this line will stay the same
regardless of packages changing upstream. If you want to ensure that you
get the latest updates, you will have to break the cache either by changing
a line above apt-get in your Dockerfile or by adding --no-cache to
your docker build command. Also, note that using --no-cache, all
layers will be regenerated, possibly causing a prolonged build cycle
and/or registry disk use.

Advanced Deployment Topics Chapter 6

[171]

Privileged mode versus --cap-add and --cap-drop
Some advanced things that you might want to do within a container, such as Docker-in-
Docker (DinD), NTP, mounting loopback devices, and many others, will require higher
privileges than the ones given to the root user of the container by default. As such,
additional privileges need to be allowed for the container to run without issues, so for that
use case, Docker has a very simple but extremely broad privileged mode that adds the
complete host's capabilities to the container. To use this mode, just append --privileged
to the docker run command:

Docker-in-Docker (commonly known as DinD) is a special configuration
of a container that allows you to run the Docker Engine within the
container that is already running on a Docker Engine but without sharing
the Docker socket, which allows (if precautions are taken) a more secure
and robust way to build containers within your infrastructure that is
already containerized. The prevalence of this configuration is somewhat
rare but is very powerful when used as part of a Continuous Integration
(CI) and Continuous Delivery (CD) setup.

$ # Run an NTP daemon without the extra privileges and see what happens
$ docker run -it \
 --rm \
 cguenther/ntpd

ntpd: can't set priority: Permission denied
reset adjtime failed: Operation not permitted
creating new /var/db/ntpd.drift
adjtimex failed: Operation not permitted
adjtimex adjusted frequency by 0.000000ppm
ntp engine ready
reply from 38.229.71.1: offset -2.312472 delay 0.023870, next query 8s
settimeofday: Operation not permitted
reply from 198.206.133.14: offset -2.312562 delay 0.032579, next query 8s
reply from 96.244.96.19: offset -2.302669 delay 0.035253, next query 9s
reply from 66.228.42.59: offset -2.302408 delay 0.035170, next query 7s
^C

$ And now with our new privileged mode
$ docker run -it \
 --rm \
 --privileged \
 cguenther/ntpd

creating new /var/db/ntpd.drift
adjtimex adjusted frequency by 0.000000ppm

Advanced Deployment Topics Chapter 6

[172]

ntp engine ready
^C

As you can see, adding this flag removes all errors from the output as we can now change
the system time.

With the functionality of this mode explained, we can now talk about why ideally, if
possible, you should never use the privileged mode. By default, the privileged mode allows
practically full access to most of the host's systems and is not granular enough to make
sense in most circumstances, so after you figure out that your container needs additional
privileges, you should selectively add them with --cap-add instead. These flags are
standard Linux capability identifiers that you can find in places such as http:/ ​/​man7. ​org/
linux/​man-​pages/ ​man7/ ​capabilities. ​7. ​html and allow fine-tuning to the level of access
you desire. If we now convert our previous NTP daemon example into this new style, it
should look a bit more like this:

$ # Sanity check
$ docker run -it \
 --rm \
 cguenther/ntpd

ntpd: can't set priority: Permission denied
<snip>
settimeofday: Operation not permitted
<snip>
^C

$ # Now with the added SYS_TIME capability
$ docker run -it \
 --rm \
 --cap-add SYS_TIME \
 cguenther/ntpd

ntpd: can't set priority: Permission denied
creating new /var/db/ntpd.drift
adjtimex adjusted frequency by 0.000000ppm
ntp engine ready
reply from 204.9.54.119: offset 15.805277 delay 0.023080, next query 5s
set local clock to Mon Oct 2 06:05:47 UTC 2017 (offset 15.805277s)
reply from 38.229.71.1: offset 0.005709 delay 31.617842, next query 9s
^C

http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

Advanced Deployment Topics Chapter 6

[173]

If you noticed, we still have an error visible due to another missing capability, but the
settimeofday error is gone, which is the most important problem that we needed to fix for
this container to run.

Interestingly enough, we can also drop capabilities from our container that are not being
used with --cap-drop if we want to increase security. For this flag, there is also a special
keyword, ALL, that can be used to drop all available privileges. If we use this to fully lock
down our NTP container but have everything working, let us see what that will look like:

docker run -it \
 --rm \
 --cap-drop ALL \
 --cap-add SYS_TIME \
 --cap-add SYS_CHROOT \
 --cap-add SETUID \
 --cap-add SETGID \
 --cap-add SYS_NICE \
 cguenther/ntpd

creating new /var/db/ntpd.drift
adjtimex adjusted frequency by 0.000000ppm
ntp engine ready
reply from 216.229.0.49: offset 14.738336 delay 1.993620, next query 8s
set local clock to Mon Oct 2 06:16:09 UTC 2017 (offset 14.738336s)
reply from 216.6.2.70: offset 0.523095 delay 30.422572, next query 6s
^C

Here, we have removed all capabilities first and then added back the few that are really
needed to run the container, and as you can see, things are working just fine. In your own
deployments, I would strongly suggest that if you have spare development capacity or are
security-oriented, take some time to lock your running containers in this manner as they
will be much more secure and you will be much more sure that the container is running
with the principle of least privilege.

The Principle of Least Privilege is a concept in computer security where
you allow only the minimal privileges needed to run a component to the
user or a service. This principle is very much a staple of high-security
implementations but is often not found elsewhere due to the assumed
overhead of managing the access even though it is a great way to increase
the security and stability of your systems. If you would like to find out
more about this concept, you should definitely make your way to https:/
/​en. ​wikipedia. ​org/ ​wiki/ ​Principle_ ​of_ ​least_ ​privilege and check it
out.

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege

Advanced Deployment Topics Chapter 6

[174]

Summary
In this chapter, we have learned many advanced tools and techniques needed to deploy
robust clusters, such as the following:

Additional debugging options to manage container issues.
Deep dives into Docker's advanced networking topics.
Implementing our own queue messaging.
Various security hardening tips and tricks.

All of these topics combined with previous material should cover the gamut of deployment
needs for most clusters. But in the next chapter, we will see what issues we need to worry
about when the number of hosts, services, and tasks reaches levels that aren't generally
expected and we start seeing the clusters fall apart and what we can do to mitigate such
problems.

7
The Limits of Scaling and the

Workarounds
When you scale up your systems, every tool or framework you are using will reach a point
where it will break or just not function as expected. For some things that point will be high
and for some it will be low, and the intent of this chapter is to cover strategies and
workarounds for the most likely scalability issues you will encounter when working with
microservice clusters. In this chapter we will cover the following topics:

Increasing service density and stability.
Avoiding and mitigating common issues with large-scale deployments.
Multi-service containers.
Best practices for zero-downtime deployments.

Limiting service resources
So far, we have not really spent any time talking about service isolation with regard to the
resources available to the services, but it is a very important topic to cover. Without limiting
resources, a malicious or misbehaving service could be liable to bring the whole cluster
down, depending on the severity, so great care needs to be taken to specify exactly what
allowance individual service tasks should use.

The Limits of Scaling and the Workarounds Chapter 7

[176]

The generally accepted strategy for handling cluster resources is the following:

Any resource that may cause errors or failures to other services if used beyond
intended values is highly recommended to be limited on the service level. This is
usually the RAM allocation, but may include CPU or others.
Any resources, specifically the hardware ones, for which you have an external
limit should also be limited for Docker containers too (e.g. you are only allowed
to use a specific portion of a 1-Gbps NAS connection).
Anything that needs to run on a specific device, machine, or host should be
locked to those resources in the same fashion. This kind of setup is very common
when only a certain number of machines have the right hardware for a service,
such as in GPU computing clusters.
Any resource that you would like specifically rationed within the cluster
generally should have a limit applied. This includes things such as lowering the
CPU time percentage for low-priority services.
In most cases, the rest of the resources should be fine using normal allocations of
the available resources of the host.

By applying these rules, we will ensure that our cluster is more stable and secure, with the
exact division of resources that we want among the services. Also, if the exact resources
required for a service are specified, the orchestration tool usually can make better decisions
about where to schedule newly created tasks so that the service density per Engine is
maximized.

RAM limits
Strangely enough, even though CPU might be considered the most important computing
resource, RAM allocation for clustered services is even more important due to the fact that
RAM overuse can (and will) cause Out of Memory (OOM) process and task failures for
anything running on the same host. With the prevalence of memory leaks in software, this
usually is not a matter of "if" but "when", so setting limits for RAM allocation is generally
very desirable, and in some orchestration configurations it is even mandatory. Suffering
from this issue is usually indicated by seeing SIGKILL, "Process killed", or exit code
-9 on your service.

The Limits of Scaling and the Workarounds Chapter 7

[177]

Keep in mind, though, that these signals could very well be caused by
other things but the most common cause is OOM failures.

By limiting the available RAM, instead of a random process on the host being killed by
OOM manager, only the offending task's processes will be targeted for killing, so the
identification of faulty code is much easier and faster because you can see the large number
of failures from that service and your other services will stay operational, increasing the
stability of the cluster.

OOM management is a huge topic and is much more broad than it would
be wise to include in this section, but it is a very important thing to know
if you spend a lot of time in the Linux kernel. If you are interested in this
topic, I highly recommend that you visit https:/ ​/​www. ​kernel. ​org/ ​doc/
gorman/ ​html/ ​understand/ ​understand016. ​html and read up on it.

WARNING! On some of the most popular kernels, memory and/or swap
cgroups are disabled due to their overhead. To enable memory and swap
limiting on these kernels, your hosts kernel must be started with
cgroup_enable=memory and swapaccount=1 flags. If you are using
GRUB for your bootloader, you can enable them by editing
/etc/default/grub (or, on the latest
systems, /etc/default/grub.d/<name>), setting
GRUB_CMDLINE_LINUX="cgroup_enable=memory swapaccount=1",
running sudo update-grub, and then restarting your machine.

To use the RAM-limiting cgroup configuration, run the container with a combination of the
following flags:

-m / --memory: A hard limit on the maximum amount of memory that a
container can use. Allocations of new memory over this limit will fail, and the
kernel will terminate a process in your container that will usually be the main one
running the service.
--memory-swap: The total amount of memory including swap that the container
can use. This must be used with the previous option and be larger than it. By
default, a container can use up to twice the amount of allowed memory
maximum for a container. Setting this to -1 allows the container to use as much
swap as the host has.

https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html

The Limits of Scaling and the Workarounds Chapter 7

[178]

--memory-swappiness: How eager the system will be to move pages from
physical memory to on-disk swap space. The value is between 0 and 100, where
0 means that pages will try to stay in resident RAM as much as possible, and vice
versa. On most machines this value is 80 and will be used as the default, but
since swap space access is very slow compared to RAM, my recommendation is
to set this number as close to 0 as you can afford.
--memory-reservation: A soft limit for the RAM usage of a service, which is
generally used only for the detection of resource contentions with the generally
expected RAM usage so that the orchestration engine can schedule tasks for
maximum usage density. This flag does not have any guarantees that it will keep
the service's RAM usage below this level.

There are a few more flags that can be used for memory limiting, but even the preceding list
is a bit more verbose than you will probably ever need to worry about. For most
deployments, big and small, you will probably only need to use -m and set a low value of -
-memory-swappiness, the latter usually being done on the host itself through
the sysctl.d boot setting so that all services will utilize it.

You can check what your swappiness setting is by running sysctl
vm.swappiness. If you would like to change this, and in most cluster
deployments you will, you can set this value by running the following
command:
$ echo "vm.swappiness = 10" | sudo tee -a
/etc/sysctl.d/60-swappiness.conf

To see this in action, we will first run one of the most resource-intensive frameworks (JBoss)
with a limit of 30 MB of RAM and see what happens:

$ docker run -it \
 --rm \
 -m 30m \
 jboss/wildfly

Unable to find image 'jboss/wildfly:latest' locally
latest: Pulling from jboss/wildfly
<snip>
Status: Downloaded newer image for jboss/wildfly:latest
===

 JBoss Bootstrap Environment

 JBOSS_HOME: /opt/jboss/wildfly

 JAVA: /usr/lib/jvm/java/bin/java

The Limits of Scaling and the Workarounds Chapter 7

[179]

 JAVA_OPTS: -server -Xms64m -Xmx512m -XX:MetaspaceSize=96M -
XX:MaxMetaspaceSize=256m -Djava.net.preferIPv4Stack=true -
Djboss.modules.system.pkgs=org.jboss.byteman -Djava.awt.headless=true

===

*** JBossAS process (57) received KILL signal ***

As expected, the container used up too much RAM and was promptly killed by the kernel.
Now, what if we try the same thing but give it 400 MB of RAM?

$ docker run -it \
 --rm \
 -m 400m \
 jboss/wildfly
===

 JBoss Bootstrap Environment

 JBOSS_HOME: /opt/jboss/wildfly

 JAVA: /usr/lib/jvm/java/bin/java

 JAVA_OPTS: -server -Xms64m -Xmx512m -XX:MetaspaceSize=96M -
XX:MaxMetaspaceSize=256m -Djava.net.preferIPv4Stack=true -
Djboss.modules.system.pkgs=org.jboss.byteman -Djava.awt.headless=true

===

14:05:23,476 INFO [org.jboss.modules] (main) JBoss Modules version
1.5.2.Final
<snip>
14:05:25,568 INFO [org.jboss.ws.common.management] (MSC service thread
1-6) JBWS022052: Starting JBossWS 5.1.5.Final (Apache CXF 3.1.6)
14:05:25,667 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0060:
Http management interface listening on http://127.0.0.1:9990/management
14:05:25,667 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0051:
Admin console listening on http://127.0.0.1:9990
14:05:25,668 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025:
WildFly Full 10.1.0.Final (WildFly Core 2.2.0.Final) started in 2532ms -
Started 331 of 577 services (393 services are lazy, passive or on-demand)

The Limits of Scaling and the Workarounds Chapter 7

[180]

Our container can now start without any issues!

If you have worked a lot with applications in bare metal environments, you might be asking
yourselves why exactly the JBoss JVM didn't know ahead of time that it wouldn't be able to
run within such a constrained environment and fail even sooner. The answer here lies in a
really unfortunate quirk (though I think it might be considered a feature depending on your
point of view) of cgroups that presents the host's resources unaltered to the container even
though the container itself is constrained. You can see this pretty easily if you run a
memory-limited container and print out the available RAM limits:

$ # Let's see what a low allocation shows
$ docker run -it --rm -m 30m ubuntu /usr/bin/free -h
 total used free shared buff/cache
available
Mem: 7.6G 1.4G 4.4G 54M 1.8G
5.9G
Swap: 0B 0B 0B

$ # What about a high one?
$ docker run -it --rm -m 900m ubuntu /usr/bin/free -h
 total used free shared buff/cache
available
Mem: 7.6G 1.4G 4.4G 54M 1.8G
5.9G
Swap: 0B 0B 0B

As you can imagine, this causes all kinds of cascade issues with applications launched in a
cgroup limited container such as this, the primary one being that the application does not
know that there is a limit at all so it will just go and try to do its job assuming that it has full
access to the available RAM. Once the application reaches the predefined limits, the app
process will usually be killed and the container will die. This is a huge problem with apps
and runtimes that can react to high memory pressures as they might be able to use less
RAM in the container but because they cannot identify that they are running constrained,
they tend to gobble up memory at a much higher rate than they should.

The Limits of Scaling and the Workarounds Chapter 7

[181]

Sadly, things are even worse on this front for containers. You must not only give the service
a big enough RAM limit to start it, but also enough that it can handle any dynamically
allocated memory during the full duration of the service. If you do not, the same situation
will occur but at a much less predictable time. For example, if you ran an NGINX container
with only a 4 MB of RAM limit, it will start just fine but after a few connections to it, the
memory allocation will cross the threshold and the container will die. The service may then
restart the task and unless you have a logging mechanism or your orchestration provides
good tooling for it, you will just end up with a service that has a running state but, in
actuality, it is unable to process any requests.

If that wasn't enough, you also really should not arbitrarily assign high limits either. This is
due to the fact that one of the purposes of containers is to maximize service density for a
given hardware configuration. By setting limits that are statistically nearly impossible to be
reached by the running service, you are effectively wasting those resources because they
can't be used by other services. In the long run, this increases both the cost of your
infrastructure and the resources needed to maintain it, so there is a high incentive to keep
the service limited by the minimum amount that can run it safely instead of using really
high limits.

Orchestration tooling generally prevents overcommiting resources,
although there has been some progress to support this feature in both
Docker Swarm and Kubernetes, where you can specify a soft limit
(memory request) versus the true limit (memory limit). However, even
with those parameters, tweaking the RAM setting is a really challenging
task because you may get either under-utilization or constant
rescheduling, so all the topics covered here are still very relevant. For
more information on orchestration-specific handling of overcommiting, I
suggest you read the latest documentation for your specific orchestration
tool.

The Limits of Scaling and the Workarounds Chapter 7

[182]

So, when looking at all the things we must keep in mind, tweaking the limits is closer to an
art form than anything else because it is almost like a variation of the famous bin-packing
problem (https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​Bin_ ​packing_ ​problem), but also adds the
statistical component of the service on top of it, because you might need to figure out the
optimum service availability compared to wasted resources due to loose limits.

Let's say we have a service with the following distribution:

Three physical hosts with 2 GB RAM each (yes, this is really low, but it is to
demonstrate the issues on smaller scales)
Service 1 (database) that has a memory limit of 1.5 GB, two tasks, and has a 1
percent chance of running over the hard limit
Service 2 (application) that has a memory limit of 0.5 GB, three tasks, and has a
5 percent chance of running over the hard limit
Service 3 (data processing service) that has a memory limit of 0.5 GB, three tasks,
and has a 5 percent chance of running over the hard limit

A scheduler may allocate the services in this manner:

https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem

The Limits of Scaling and the Workarounds Chapter 7

[183]

WARNING! You should always have spare capacity on your clusters for
rolling service updates, so having the configuration similar to the one
shown in the diagram would not work well in the real world. Generally,
this extra capacity is also a fuzzy value, just like RAM limits. Generally,
my formula for it is the following, but feel free to tweak it as needed:
overcapacity = avg(service_sizes) * avg(service_counts) *
avg(max_rolling_service_restarts)

We will discuss this a bit more further in the text.

What if we take our last example and now say that we should just run with 1 percent OOM
failure rates across the board, increasing our Service 2 and Service 3 memory limit from 0.5
GB to 0.75 GB, without taking into account that maybe having higher failure rates on the
data processing service and application tasks might be acceptable (or even not noticeable if
you are using messaging queues) to the end users?

The new service spread would now look like this:

Our new configuration has a massive amount of pretty obvious issues:

25 percent reduction in service density. This number should be as high as
possible to get all the benefits of using microservices.
25 percent reduction in hardware utilization. Effectively, 1/4 of the available
hardware resources are being wasted in this setup.

The Limits of Scaling and the Workarounds Chapter 7

[184]

Node count has increased by 66 percent. Most cloud providers charge by the
number of machines you have running assuming they are the same type. By
making this change you have effectively raised your cloud costs by 66 percent
and may need that much extra ops support to keep your cluster working.

Even though this example has been intentionally rigged to cause the biggest impact when
tweaked, it should be obvious that slight changes to these limits can have massive
repercussions on your whole infrastructure. While in real-world scenarios this impact will
be reduced because there will be larger host machines than in the example which will make
them better able to stack smaller (relative to total capacity) services in the available space, do
not underestimate the cascading effects of increasing service resource allocations.

CPU limits
Just like in our previous section about memory limits for services, docker run also
supports a variety of CPU settings and parameters to tweak the computational needs of
your services:

-c/--cpu-shares: On a high-load host, all tasks are weighted equally by
default. Setting this on a task or service (from the default of 1024) will increase or
decrease the percentage of CPU utilization that the task can be scheduled for.
--cpu-quota: This flag sets the number of microseconds that a task or service
can use the CPU within a default block of time of 100 milliseconds (100,000
microseconds). For example, to only allow a maximum of 50% of a single CPU's
core usage to a task, you would set this flag to 50000. For multiple cores, you
would need to increase this value accordingly.
--cpu-period: This changes the previous quota flag default interval in
microseconds over which the cpu-quota is being evaluated (100
milliseconds/100,000 microseconds) and either reduces it or increases it to
inversely affect the CPU resource allocation to a service.
--cpus: A float value that combines parts of both cpu-quota and cpu-period
to limit the number of CPU core allocations to the task. For example, if you only
want a task to use up to a quarter of a single CPU resource, you would set this to
0.25 and it would have the same effect as --cpu-quota 25000 --cpu-period
100000.

The Limits of Scaling and the Workarounds Chapter 7

[185]

--cpuset-cpus: This array flag allows the service to only run on specified CPUs
indexed from 0. If you wanted a service to use only CPUs 0 and 3, you could use
--cpuset-cpus "0,3". This flag also supports entering values as a range (that
is 1-3).

While it might seem like a lot of options to consider, in most cases you will only need to
tweak the --cpu-shares and --cpus flags, but it is possible that you will need much more
granular control over the resources that they provide.

How about we see what the --cpu-shares value can do for us? For this, we need to
simulate resource contention and in the next example, we will try to do this by
incrementing an integer variable as many times as we can within a period of 60 seconds in
as many containers as there are CPUs on the machine. The code is a bit gnarly, but most of
it is to get the CPU to reach resource contention levels on all cores.

Add the following to a file called cpu_shares.sh (also available on https:/ ​/​github. ​com/
sgnn7/​deploying_​with_ ​docker):

#!/bin/bash -e

CPU_COUNT=$(nproc --all)
START_AT=$(date +%s)
STOP_AT=$(($START_AT + 60))

echo "Detected $CPU_COUNT CPUs"
echo "Time range: $START_AT -> $STOP_AT"

declare -a CONTAINERS

echo "Allocating all cores but one with default shares"
for ((i = 0; i < $CPU_COUNT - 1; i++)); do
 echo "Starting container $i"
 CONTAINERS[i]=$(docker run \
 -d \
 ubuntu \
 /bin/bash -c "c=0; while [$STOP_AT -gt \$(date +%s)];
do c=\$((c + 1)); done; echo \$c")
done

echo "Starting container with high shares"
 fast_task=$(docker run \
 -d \
 --cpu-shares 8192 \
 ubuntu \
 /bin/bash -c "c=0; while [$STOP_AT -gt \$(date +%s)]; do
c=\$((c + 1)); done; echo \$c")

https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker
https://github.com/sgnn7/deploying_with_docker

The Limits of Scaling and the Workarounds Chapter 7

[186]

 CONTAINERS[$((CPU_COUNT - 1))]=$fast_task

echo "Waiting full minute for containers to finish..."
sleep 62

for ((i = 0; i < $CPU_COUNT; i++)); do
 container_id=${CONTAINERS[i]}
 echo "Container $i counted to $(docker logs $container_id)"
 docker rm $container_id >/dev/null
done

Now we will run this code and see the effects of our flag:

$ # Make the file executable
$ chmod +x ./cpu_shares.sh

$ # Run our little program
$./cpu_shares.sh
Detected 8 CPUs
Time range: 1507405189 -> 1507405249
Allocating all cores but one with default shares
Starting container 0
Starting container 1
Starting container 2
Starting container 3
Starting container 4
Starting container 5
Starting container 6
Starting container with high shares
Waiting full minute for containers to finish...
Container 0 counted to 25380
Container 1 counted to 25173
Container 2 counted to 24961
Container 3 counted to 24882
Container 4 counted to 24649
Container 5 counted to 24306
Container 6 counted to 24280
Container 7 counted to 31938

While the container with the high --cpu-share value didn't get the full increase in count
that might have been expected, if we ran the benchmark over a longer period of time with a
tighter CPU-bound loop, the difference would be much more drastic. But even in our small
example you can see that the last container had a distinct advantage over all the other
running containers on the machine.

The Limits of Scaling and the Workarounds Chapter 7

[187]

To see how the --cpus flag compares, let's take a look at what it can do on an uncontended
system:

$ # First without any limiting
$ time docker run -it \
 --rm \
 ubuntu \
 /bin/bash -c 'for ((i=0; i<100; i++)); do sha256sum
/bin/bash >/dev/null; done'
real 0m1.902s
user 0m0.030s
sys 0m0.006s

$ # Now with only a quarter of the CPU available
$ time docker run -it \
 --rm \
 --cpus=0.25 \
 ubuntu \
 /bin/bash -c 'for ((i=0; i<100; i++)); do sha256sum
/bin/bash >/dev/null; done'
real 0m6.456s
user 0m0.018s
sys 0m0.017s

As you can see, the --cpus flag is really good for ensuring that a task will not use any more
CPU than the specified value even if there is no contention for resources on the machine.

Keep in mind that there are a few more options for limiting resource usage
for containers that are a bit outside of the scope of the general ones that we
have covered already, but they are mainly for device-specific limitations
(such as device IOPS). If you are interested in seeing all of the available
ways to limit resources to a task or a service, you should be able to find
them all at https:/ ​/ ​docs. ​docker. ​com/ ​engine/ ​reference/ ​run/ ​#runtime-
constraints- ​on- ​resources.

https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources

The Limits of Scaling and the Workarounds Chapter 7

[188]

Pitfall avoidance
In most small and medium deployments, you will never see the same problems that you
will start seeing when you scale up beyond them, so this section is to show you the most
common issues that you will encounter and how to work around them in the cleanest way
possible. While this list should cover most of the glaring issues you will encounter, some of
your own will need custom fixes. You shouldn't be scared to make those changes because
almost all host OS installations are just not geared towards the configuration that a high-
load multi-container would need.

WARNING! Many of the values and tweaks in this section have been
based on personal experiences with deploying Docker clusters in the
cloud. Depending on your combination of cloud provider, OS distribution,
and infrastructure-specific configurations, the values may not need
changing from the defaults, and some may even be detrimental to your
system if used verbatim without spending some time learning what they
mean and how to modify them. If you continue reading this section, please
use the examples only as examples on how to change the values and not as
something to copy/paste directly into configuration management tooling.

ulimits
ulimit settings are little-known settings to most Linux desktop users, but they are a really
painful and often-encountered issue when working with servers. In a nutshell, ulimit
settings control many aspects around a process' resource usage just like our Docker
resource tweaks we covered earlier and they are applied to every process and shell that has
been started. These limits are almost always set on distributions to prevent a stray process
from taking down your machine, but the numbers have usually been chosen with regular
desktop usage in mind, so trying to run server-type code on unchanged systems is bound to
hit at least the open file limit, and possibly some other limits.

The Limits of Scaling and the Workarounds Chapter 7

[189]

We can use ulimit -a to see what our current (also called soft) settings are:

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 29683
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 29683
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

As you can see, there are only a few things set here, but there is one that stands out: our
"open files" limit (1024) is fine for general applications, but if we run many services that
handle a large number of open files (such as a decent amount of Docker containers), this
value must be changed or you will hit errors and your services will effectively die.

You can change this value for your current shell with ulimit -S <flag> <value>:

$ ulimit -n
1024

$ # Set max open files to 2048
$ ulimit -S -n 2048

$ # Let's see the full list again
$ ulimit -a
<snip>
open files (-n) 2048
<snip>

But what if we try to set this to something really high?

$ ulimit -S -n 10240
bash: ulimit: open files: cannot modify limit: Invalid argument

The Limits of Scaling and the Workarounds Chapter 7

[190]

Here, we have now encountered the hard limit imposed by the system. This limit is
something that will need to be changed at the system level if we want to modify it beyond
those values. We can check what these hard limits are with ulimit -H -a:

$ ulimit -H -a | grep '^open files'
open files (-n) 4096

So, if we want to increase our open files number beyond 4096, we really need to change the
system-level settings. Also, even if the soft limit of 4086 is fine with us, the setting is only
for our own shell and its child processes, so it won't affect any other service or process on
the system.

If you really wanted to, you actually can change the ulimit settings of an
already-running process with prlimit from the util-linux package,
but this method of adjusting the values is discouraged because the settings
do not persist during process restarts and are thus pretty useless for that
purpose. With that said, if you want to find out whether your ulimit
settings have been applied to a service that is already running, this CLI
tool is invaluable, so don't be afraid to use it in those cases.

To change this setting, you need to do a combination of options that is dependent on your
distribution:

Create a security limits configuration file. You can do this rather simply by
adding a few lines to something like /etc/security/limits.d/90-ulimit-
open-files-increase.conf. The following example sets the open file soft
limit on root and then on all other accounts (* does not apply to the root
account) to 65536. You should find out what the appropriate value is for your
system ahead of time:

root soft nofile 65536
root hard nofile 65536
* soft nofile 65536
* hard nofile 65536

Add the pam_limits module to Pluggable Authentication Module (PAM). This
will, in turn, affect all user sessions with the previous ulimit change setting
because some distributions do not have it included otherwise your changes might
not persist. Add the following to /etc/pam.d/common-session:

session required pam_limits.so

The Limits of Scaling and the Workarounds Chapter 7

[191]

Alternatively, on some distributions, you can directly add the setting to the
affected service definition in systemd in an override file:

LimitNOFILE=65536

Overriding systemd services is a somewhat lengthy and distracting topic
for this section, but it is a very common strategy for tweaking third-party
services running on cluster deployments with that init system, so it is a
very valuable skill to have. If you would like to know more about this
topic, you can find a condensed version of the process at https:/ ​/
askubuntu. ​com/ ​a/ ​659268, and if you want the detailed version the
upstream documentation can be found at https:/ ​/​www. ​freedesktop. ​org/
software/ ​systemd/ ​man/ ​systemd. ​service. ​html.

CAUTION! In the first example, we used the * wildcard, which affects all
accounts on the machine. Generally, you want to isolate this setting to
only the affected service accounts, if possible, for security reasons. We also
used root because root values are specifically set by name in some
distributions, which overrides the * wildcard setting due to the higher
specificity. If you want to learn more about limits, you can find more
information on these settings at https:/ ​/​linux. ​die. ​net/ ​man/ ​5/​limits.
conf.

Max file descriptors
In the same way that we have a maximum open file limit for sessions and processes, the
kernel itself has a limit for the maximum open file descriptors across the whole system. If
this limit is reached, no other files will be able to be opened, and thus this needs tweaking
on machines that may have a large number of files open at any one time.

This value is part of the kernel parameters and as such can be seen with sysctl:

$ sysctl fs.file-max
fs.file-max = 757778

While on this machine the value seems reasonable, I have seen a few older distributions
with a surprisingly low value that will get easily hit with errors if you are running a
number of containers on the system.

https://askubuntu.com/a/659268
https://askubuntu.com/a/659268
https://askubuntu.com/a/659268
https://askubuntu.com/a/659268
https://askubuntu.com/a/659268
https://askubuntu.com/a/659268
https://askubuntu.com/a/659268
https://askubuntu.com/a/659268
https://askubuntu.com/a/659268
https://askubuntu.com/a/659268
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf
https://linux.die.net/man/5/limits.conf

The Limits of Scaling and the Workarounds Chapter 7

[192]

Most kernel configuration settings we discuss here and later in this
chapter can be temporarily changed with sysctl -w <key>="<value>".
However, since those values are reset back to defaults on each reboot, they
usually are of no long-term use for us and are not going to be covered
here, but keep in mind that you can use such techniques if you need to
debug a live system or apply a temporary time-sensitive fix.

To change this to a value that will persist across reboots, we will need to add the following
to the /etc/sysctl.d folder (that is, /etc/sysctl.d/10-file-descriptors-
increase.conf):

fs.file-max = 1000000

After this change, reboot, and you should now be able to open up to 1 million file handles
on the machine!

Socket buffers
To increase performance, it is usually highly advantageous to increase the size of the socket
buffers because they are no longer doing the work of a single machine but the work of as
many Docker containers as you have running on top of regular machine connectivity. For
this, there are a few settings that you should probably set to make sure that the socket
buffers are not struggling to keep up with all the traffic passing through them. At the time
of writing this book, most of these default buffer settings are generally pretty tiny when the
machine starts (200 KB in a few machines that I've checked) and they are supposed to be
dynamically scaled, but you can force them to be much larger from the start.

On an Ubuntu LTS 16.04 installation, the following are the default ones for the buffer
settings (though yours may vary):

net.core.optmem_max = 20480
net.core.rmem_default = 212992
net.core.rmem_max = 212992
net.core.wmem_default = 212992
net.core.wmem_max = 212992
net.ipv4.tcp_rmem = 4096 87380 6291456
net.ipv4.tcp_wmem = 4096 16384 4194304

The Limits of Scaling and the Workarounds Chapter 7

[193]

We will dial these values up to some sensible defaults by adding the following to
/etc/sysctl.d/10-socket-buffers.conf, but be sure to use values that make sense in
your environment:

net.core.optmem_max = 40960
net.core.rmem_default = 16777216
net.core.rmem_max = 16777216
net.core.wmem_default = 16777216
net.core.wmem_max = 16777216
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 87380 16777216

By increasing these values, our buffers start large and should be able to handle quite a bit of
traffic with much better throughput, which is what we want in a clustering environment.

Ephemeral ports
If you aren't familiar with ephemeral ports, they are the port numbers that all outbound
connections get assigned if the originating port is not explicitly specified on the connection,
which is the vast majority of them. For example, if you do any kind of outbound HTTP
request with almost every client library, you will most likely have one of these ephemeral
ports assigned as the return communication port for your connection.

To see some sample ephemeral port usage on your machine, you can use netstat:

$ netstat -an | grep ESTABLISHED
tcp 0 0 192.168.56.101:46496 <redacted>:443
ESTABLISHED
tcp 0 0 192.168.56.101:45512 <redacted>:443
ESTABLISHED
tcp 0 0 192.168.56.101:42014 <redacted>:443
ESTABLISHED
<snip>
tcp 0 0 192.168.56.101:45984 <redacted>:443
ESTABLISHED
tcp 0 0 192.168.56.101:56528 <redacted>:443
ESTABLISHED

As you develop systems with multiple services with numerous outbound connections
(which is practically mandatory when working with Docker services), you may notice that
there are limits on the number of ports you are allowed to use and are likely to find that
these ports may overlap with the ranges that some of your internal Docker services are
using, causing intermittent and often annoying connectivity issues. In order to fix these
issues, changes need to be made to the ephemeral port range.

The Limits of Scaling and the Workarounds Chapter 7

[194]

Since these are also kernel settings, we can see what our current ranges are with sysctl,
just like we did in a couple of earlier examples:

$ sysctl net.ipv4.ip_local_port_range
net.ipv4.ip_local_port_range = 32768 60999

You can see that our range is in the upper half of the port allocations, but any service that
may start listening within that range could be in trouble. It is also possible that we may
need more than 28,000 ports.

You may be curious how you get or set the ipv6 settings for this
parameter, but luckily (at least for now) this same setting key is used for
both ipv4 and ipv6 ephemeral port ranges. At some point, this setting
name may change, but I think we are at least a couple of years away from
that.

To change this value, we can either use sysctl -w for a temporary change or sysctl.d
for a permanent change:

$ # First the temporary change to get us up to 40000
$ # ports. For our services, we separately have to
$ # ensure none listen on any ports above 24999.
$ sudo sysctl -w net.ipv4.ip_local_port_range="25000 65000"
net.ipv4.ip_local_port_range = 25000 65000

$ # Sanity check
$ sysctl net.ipv4.ip_local_port_range
net.ipv4.ip_local_port_range = 25000 65000

$ # Now for the permanent change (requires restart)
$ echo "net.ipv4.ip_local_port_range = 25000 65000" | sudo tee
/etc/sysctl.d/10-ephemeral-ports.conf

With this change, we have effectively increased the number of outbound connections we
can support by over 30%, but we could have just as easily used the same setting to ensure
that ephemeral ports do not collide with other running services.

The Limits of Scaling and the Workarounds Chapter 7

[195]

Netfilter tweaks
Sadly, the settings we have seen so far are not the only things that need tweaking with
increased network connections to your server. As you increase the load on your server, you
may also begin to see nf_conntrack: table full errors in your dmesg and/or kernel
logs. For those unfamiliar with netfilter, it is a kernel module that tracks all Network
Address Translation (NAT) sessions in a hashed table that adds any new connections to it
and clears them after they are closed and a predefined timeout is reached, so as you
increase the connection volume from and to a single machine, you will most likely find that
the majority of these related settings are defaulted rather conservatively and are in need of
tweaking (though your distribution may vary--make sure to verify yours!):

$ sysctl -a | grep nf_conntrack
net.netfilter.nf_conntrack_buckets = 65536
<snip>
net.netfilter.nf_conntrack_generic_timeout = 600
<snip>
net.netfilter.nf_conntrack_max = 262144
<snip>
net.netfilter.nf_conntrack_tcp_timeout_close = 10
net.netfilter.nf_conntrack_tcp_timeout_close_wait = 60
net.netfilter.nf_conntrack_tcp_timeout_established = 432000
net.netfilter.nf_conntrack_tcp_timeout_fin_wait = 120
net.netfilter.nf_conntrack_tcp_timeout_last_ack = 30
net.netfilter.nf_conntrack_tcp_timeout_max_retrans = 300
net.netfilter.nf_conntrack_tcp_timeout_syn_recv = 60
net.netfilter.nf_conntrack_tcp_timeout_syn_sent = 120
net.netfilter.nf_conntrack_tcp_timeout_time_wait = 120
net.netfilter.nf_conntrack_tcp_timeout_unacknowledged = 300
<snip>

Quite a few of these can be changed, but the usual suspects for errors that need tweaking
are as follows:

net.netfilter.nf_conntrack_buckets: Controls the size of the hash table
for the connections. Increasing this is advisable, although it can be substituted
with a more aggressive timeout. Note that this cannot be set with regular
sysctl.d settings, but instead needs to be set with a kernel module parameter.
net.netfilter.nf_conntrack_max: The number of entries to hold. By default,
this is four times the value of the previous entry.

The Limits of Scaling and the Workarounds Chapter 7

[196]

net.netfilter.nf_conntrack_tcp_timeout_established: This keeps the
mapping for an open connection for up to five days (!). This is generally almost
mandatory to reduce in order to not overflow your connection tracking table, but
don't forget that it needs to be above the TCP keepalive timeout or you will get
unexpected connection breaks.

To apply the last two settings, you need to add the following to /etc/sysctl.d/10-
conntrack.conf and adjust the values for your own infrastructure configuration:

net.netfilter.nf_conntrack_tcp_timeout_established = 43200
net.netfilter.nf_conntrack_max = 524288

netfilter is a massively complex topic to cover in a small section, so
reading up on its impacts and configuration settings is highly
recommended before changing these numbers. To get an idea of each of
the settings, you can visit https:/ ​/​www. ​kernel. ​org/ ​doc/ ​Documentation/
networking/ ​nf_ ​conntrack- ​sysctl. ​txt and read up about it.

For a bucket count, you need to directly change the nf_conntrack hashsize kernel
module parameter:

echo '131072' | sudo tee /sys/module/nf_conntrack/parameters/hashsize

Finally, to ensure that the right order is followed when loading the netfilter module so these
values persist correctly, you will probably also need to add the following to the end of
/etc/modules:

nf_conntrack_ipv4
nf_conntrack_ipv6

If everything was done correctly, your next restart should have all of the netfilter settings
we talked about set.

Multi-service containers
Multi-service containers are a particularly tricky topic to broach, as the whole notion and
recommended use of Docker is that you are only running single-process services within the
container. Because of that, there is quite a bit of implicit pressure not to cover this topic
because it can easily be misused and abused by developers who do not understand the
reasons why this practice is strongly discouraged.

https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt

The Limits of Scaling and the Workarounds Chapter 7

[197]

However, with that said and out of the way, there will be times where you will need to run
multiple processes in a tight logical grouping where a multi-container solution would not
make sense or it would be overly kludgey, which is why this topic is still important to
cover. Having said all that, I cannot stress enough that you should only use this type of
service collocation as a last resort.

Before we even write a single line of code, we must discuss an architectural issue with
multiple processes running within the same container, which is called the PID 1 problem.
The crux of this issue is that Docker containers run in an isolated environment in which
they do not get help from the host's init process in reaping orphaned child processes.
Consider an example process Parent Process, that is a basic executable that starts
another process called Child Process, but as some point after that, if the associated
Parent Process exits or is killed you will be left with the zombie Child Process
loitering around in your container since Parent Process is gone and there is no other
orphan reaping process running within the container sandbox. If the container exits, then
the zombie processes will get cleaned up because they are all wrapped in a namespace, but
for long-running tasks this can present a serious problem for running multiple processes
inside a single image.

Terminology here might be confusing, but what was meant in simple
terms is that every process is supposed be removed (also known as
reaped) from the process table after it exits, either by the parent process
or some other designated process (usually init) in the hierarchy that will
take ownership of of it in order to finalize it. A process that does not have
a running parent process in this context is called an orphan process.

Some tools have the ability to reap these zombie processes (such as Bash and a few other
shells), but even they aren't good enough init processes for our containers because they do
not pass signals such as SIGKILL, SIGINT, and others to child processes, so stopping the
container or pressing things such as Ctrl + C in the Terminal are of no use and will not
terminate the container. If you really want to run multiple processes inside the container,
your launching process must do orphan reaping and signal passing to children. Since we
don't want to use the full init system like systemd from the container, there are a couple of
alternatives here, but in the recent versions of Docker we now have the --init flag, which
can run our containers with a real init runner process.

Let's see this in action and try to exit a program where the starting process is bash:

$ # Let's try to run 'sleep' and exit with <Ctrl>-C
$ docker run -it \
 ubuntu \
 bash -c 'sleep 5000'
^C^C^C^C^C^C^C^C^C^C

The Limits of Scaling and the Workarounds Chapter 7

[198]

<Ctrl-C not working>

$ # On second terminal
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
c7b69001271d ubuntu "bash -c 'sleep 5000'" About a minute ago Up About a
minute

$ # Can we stop it?
$ docker stop c7b69001271d
<nothing happening>
^C

$ # Last resort - kill the container!
$ docker kill c7b69001271d
c7b69001271d

This time, we'll run our container with the --init flag:

$ docker run -it \
 --init \
 ubuntu \
 bash -c 'sleep 5000'
^C

$ # <Ctrl>-C worked just fine!

As you can see, --init was able to take our signal and pass it to all the listening children
processes, and it works well as an orphan process reaper, though the latter is really hard to
show in a basic container. With this flag and its functionality, you should now be able to
run multiple processes with either a shell such as Bash or upgrade to a full process
management tool such as supervisord (http:/ ​/​supervisord. ​org/ ​) without any issues.

Zero-downtime deployments
With every cluster deployment, you will at some point need to think about code
redeployment while minimizing the impact on your users. With small deployments, it is
feasible that you might have a maintenance period in which you turn off everything,
rebuild the new images, and restart the services, but this style of deployment is really not
the way that medium and large clusters should be managed because you want to minimize
any and all direct work needed to maintain the cluster. In fact, even for small clusters,
handling code and configuration upgrades in a seamless manner can be invaluable for
increased productivity.

http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/

The Limits of Scaling and the Workarounds Chapter 7

[199]

Rolling service restarts
If the new service code does not change the fundamental way that it interacts with other
services (inputs and outputs), often the only thing that is needed is a rebuild (or
replacement) of the container image that is then placed into the Docker registry, and then
the service is restarted in an orderly and staggered way. By staggering the restarts, there is
always at least one task that can handle the service request available, and from an external
point of view, this changeover should be completely seamless. Most orchestration tooling
will do this automatically for you if you change or update any settings for a service, but
since they are very implementation-specific we will focus on Docker Swarm for our
examples:

$ # Create a new swarm
$ docker swarm init
Swarm initialized: current node (j4p08hdfou1tyrdqj3eclnfb6) is now a
manager.
<snip>

$ # Create a service based on mainline NGINX and update-delay
$ # of 15 seconds
$ docker service create \
 --detach=true \
 --replicas 4 \
 --name nginx_update \
 --update-delay 15s \
 nginx:mainline
s9f44kn9a4g6sf3ve449fychv

$ # Let's see what we have
$ docker service ps nginx_update
ID NAME IMAGE DESIRED STATE CURRENT STATE
rbvv37cg85ms nginx_update.1 nginx:mainline Running Running 56
seconds ago
y4l76ld41olf nginx_update.2 nginx:mainline Running Running 56
seconds ago
gza13g9ar7jx nginx_update.3 nginx:mainline Running Running 56
seconds ago
z7dhy6zu4jt5 nginx_update.4 nginx:mainline Running Running 56
seconds ago

$ # Update our service to use the stable NGINX branch
$ docker service update \
 --detach=true \
 --image nginx:stable \
 nginx_update
nginx_update

The Limits of Scaling and the Workarounds Chapter 7

[200]

$ # After a minute, we can now see the new service status
$ docker service ps nginx_update
ID NAME IMAGE DESIRED STATE CURRENT
STATE
qa7evkjvdml5 nginx_update.1 nginx:stable Running Running
about a minute ago
rbvv37cg85ms _ nginx_update.1 nginx:mainline Shutdown Shutdown
about a minute ago
qbg0hsd4nxyz nginx_update.2 nginx:stable Running Running
about a minute ago
y4l76ld41olf _ nginx_update.2 nginx:mainline Shutdown Shutdown
about a minute ago
nj5gcf541fgj nginx_update.3 nginx:stable Running Running 30
seconds ago
gza13g9ar7jx _ nginx_update.3 nginx:mainline Shutdown Shutdown 31
seconds ago
433461xm4roq nginx_update.4 nginx:stable Running Running 47
seconds ago
z7dhy6zu4jt5 _ nginx_update.4 nginx:mainline Shutdown Shutdown 48
seconds ago

$ # All our services now are using the new image
$ # and were started staggered!

$ # Clean up
$ docker service rm nginx_update
nginx_update

$ docker swarm leave --force
Node left the swarm.

As you can see, it should be simple enough to do the same thing with your own code
changes without any downtime!

If you want to be able to restart multiple tasks instead of one at a time,
Docker Swarm has an --update-parallelism <count> flag as well
that can be set on a service. When using this flag, --update-delay is still
observed but instead of a single task being restarted, they are done in
batches of <count> size.

The Limits of Scaling and the Workarounds Chapter 7

[201]

Blue-green deployments
Rolling restarts are nice, but sometimes the changes that you need to apply are on the hosts
themselves and will need to be done to every Docker Engine node in the cluster, for
example, if you need to upgrade to a newer orchestration version or to upgrade the OS
release version. In these cases, the generally accepted way of doing this without a large
team for support is usually by something called blue-green deployments. It starts by
deploying a secondary cluster in parallel to the currently running one, possibly tied to the
same data store backend, and then at the most opportune time switching the entry routing
to point to the new cluster. Once all the processing on the original cluster has died down it
is deleted, and the new cluster becomes the main processing group. If done properly, the
impact on the users should be imperceptible and the whole underlying infrastructure has
been changed in the process.

The process starts with the creation of the secondary cluster. At that point there is no
effective change other than testing that the new cluster behaves as expected:

The Limits of Scaling and the Workarounds Chapter 7

[202]

After the secondary cluster is operational, the router swaps the endpoints and the
processing continues on the new cluster:

With the swap made, after all the processing is done, the original cluster is decommissioned
(or left as an emergency backup):

The Limits of Scaling and the Workarounds Chapter 7

[203]

But the application of this deployment pattern on full clusters is not the only use for it--in
some cases, it is possible to do this at the service level within the same cluster, using the
same pattern to swap in a newer component, but there is a better system for that, which we
will cover next.

Blue-turquoise-green deployments
With deployments of code, things get a bit trickier because changing APIs on either the
input or output sides or the database schema can wreak havoc on a cluster with
interspersed versions of code. To get around this problem, there is a modified blue-green
deployment pattern called blue-turquoise-green deployment where the code is attempted
to be kept compatible with all running versions until the new code is deployed, after which
the service is again updated by removing the compat code.

The process here is pretty simple:

The service that uses API version x is replaced with a new version of the service1.
that supports both API version x and API version (x+1) in a rolling fashion. This
provides zero downtime from the user's perspective, but creates a new service
that has the newer API support.
After everything is updated, the service that has the old API version x is removed2.
from the codebase.
Another rolling restart is done on the service to remove traces of the deprecated3.
API so only API version (x+1) support is left.

This approach is extremely valuable when the services you are using need to be persistently
available, and in many cases you could easily replace the API version with the messaging
queue format, if your cluster is based on queues. The transitions are smooth, but there is
overhead in needing to twice modify the service compared to a single time with a hard-
swap, but it is a decent trade-off. This approach is also extremely valuable when the
services in use deal with a database that might need a migration, so you should probably
use this approach when others are not good enough.

The Limits of Scaling and the Workarounds Chapter 7

[204]

Summary
In this chapter, we covered various tools and techniques that you will need as you increase
your infrastructure scale beyond the simple prototypes. By now we should have learned
how to limit service access to host's resources, handle the most common pitfalls with ease,
run multiple services in a single container, and handle zero-downtime deployments and
configuration changes.

In the next chapter, we will spend time working on deploying our own mini version
of Platform-as-a-Service (PAAS) using many of the things we have learned so far.

8
Building Our Own Platform

In previous chapters, we spent a lot of time working on individual pieces of infrastructure
building up little isolated pieces here and there, but in this chapter, we will try to put as
many concepts together and build a minimally-viable Platform-as-a-Service (PaaS). In the
following sections, we will cover these topics:

Configuration Management (CM) tooling
Amazon Web Service (AWS) deployment
Continuous integration/Continuous delivery (CI/CD)

As we build up the core of our services, we will see what it takes to take a small service and
deploy it into the real cloud.

One thing to note here is that this chapter is provided as only a quick primer and a basic
example on real deployments in the cloud since creating a full PaaS infrastructure with all
the bells and whistles is something that is usually so complex that it takes large teams
months or years sometime to work out all the problems. Compounding the issue, the
solutions are usually very specifically tailored to the choices of services and orchestration
tooling running on top of this and as such, consider things you see in this chapter as a
sample of the current ecosystem that you could use in your own deployment but other tools
may be better suited to your specific needs.

Building Our Own Platform Chapter 8

[206]

Configuration management
With every system that depends on a large number of similarly configured machines
(regardless of whether they are physical or virtual ones), there always arises a need for
simple and easy rebuild tooling to help automate the majority of the tasks that have in the
past been done by hand. In the case of PaaS clusters, ideally, all pieces of the infrastructure
are capable of being rebuilt with minimal user intervention into the exact state that is
wanted. In the case of bare-metal PaaS server nodes, this is critically important as any
operation that you have to do manually gets multiplied by the number of nodes you have,
so streamlining this process should be of utmost importance for any kind of production-
ready clustering infrastructure.

Now you may ask yourself, "Why do we care about covering CM tooling?" and the truth of
the matter is that if you do not have proper CM around your container infrastructure, you
are guaranteeing yourself after-hour emergency calls due to various issues such as: the
nodes never joining the cluster, mismatched configurations, unapplied changes, version
incompatibilities, and many other problems that will make you pull your hair out. So to
prevent this set of situations from happening to you, we will really dive deep into this
ecosystem of supporting software.

With that explained and out of the way, we can see some of the options we have available
to choose from for the CM tooling:

Ansible (https:/ ​/​www. ​ansible. ​com)
Puppet (https:/ ​/ ​puppet. ​com)
Chef (https:/ ​/​www. ​chef. ​io/ ​chef/ ​)
SaltStack (https:/ ​/​saltstack. ​com)
A few others that are mostly far weaker in terms of functionality and stability.

Due to the fact that both Puppet and Chef require an agent-based deployment and SaltStack
is trailing in Ansible popularity by a huge margin, for our work here, we will cover Ansible
as the CM tooling of choice but as your needs will probably vary. Use your own
requirements to select the most appropriate tool for the job.

https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://www.ansible.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://puppet.com
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com
https://saltstack.com

Building Our Own Platform Chapter 8

[207]

As a relevant side note from my interactions with the DevOps online
communities, it seems that at the time of writing this material, Ansible is
becoming the de facto standard for CM tooling but it is not without its
flaws. While I would love to recommend its use everywhere for a myriad
of great features, expect complex edge cases of bigger modules to be
marginally reliable and keep in mind that most bugs you will find are
likely to have been already fixed by an unmerged pull request on GitHub
that you might have to apply locally as needed.

WARNING! Choice of configuration management tooling should not be
taken lightly and you should weigh the pros and cons of each before
committing to a single one as this tooling is the hardest to switch out once
you have a few machines managed with it! While many IT and DevOps
professionals treat this choice almost as a way of life (similar to
polarization between vim and emacs users), make sure that you evaluate
your options carefully and logically due to the high costs of switching to a
different one down the road. I have personally never heard of a company
switch CM tooling after running with one for a while though I am sure
there are a few out there.

Ansible
If you have not worked with Ansible before, it is has the following benefits:

It is relatively easy to use (YAML/Ninja2 based)
It only needs an SSH connection to the target
It contains a huge amount of pluggable modules to extend its functionality
(https:/ ​/ ​docs. ​ansible. ​com/ ​ansible/ ​latest/ ​modules_ ​by_​category. ​html),
many of which are in the base install so you usually do not have to worry about
dependencies

https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html
https://docs.ansible.com/ansible/latest/modules_by_category.html

Building Our Own Platform Chapter 8

[208]

If this list doesn't sound good enough, the whole Ansible architecture is extensible, so if
there are no available modules that satisfy your requirements, they are somewhat easy to
write and integrate, and thus Ansible is able to accommodate almost any infrastructure you
may have or want to build. Under the covers, Ansible uses Python and SSH to run
commands directly on the target host but in a much higher-level domain-specific
language (DSL) that makes it very easy and quick for someone to write a server
configuration versus scripting SSH commands directly through something like Bash.

The current Ubuntu LTS version (16.04) comes with Ansible 2.0.0.2, which
should be adequate for most purposes, but using versions that are closer
to upstream ones is often advised for both bug fixes and for new module
additions. If you choose the latter route, make sure to have the version
pinned to ensure consistently working deployments.

Installation
To install Ansible on most Debian-based distributions, generally the process is extremely
simple:

$ # Make sure we have an accurate view of repositories
$ sudo apt-get update

<snip>
Fetched 3,971 kB in 22s (176 kB/s)
Reading package lists... Done

$ # Install the package
$ sudo apt-get install ansible

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
 ansible
0 upgraded, 1 newly installed, 0 to remove and 30 not upgraded.
<snip>
Setting up ansible (2.0.0.2-2ubuntu1) ...

$ # Sanity check
$ ansible --version

ansible 2.0.0.2
 config file = /home/user/checkout/eos-administration/ansible/ansible.cfg
 configured module search path = /usr/share/ansible

Building Our Own Platform Chapter 8

[209]

Basics
The standard layout for a project is usually split into roles that define functionality slices
with the rest of the configurations basically just supporting those roles. The basic file
structure of Ansible projects looks something like this (though more complex setups are
often needed):

.
├── group_vars
│ └── all
├── hosts
├── named-role-1-server.yml
└── roles
 ├── named-role-1
 │ ├── tasks
 │ │ └── main.yml
 │ ├── files
 │ │ └── ...
 │ ├── templates
 │ │ └── ...
 │ └── vars
 │ └── main.yml
 ...

Let us break down the basic structure of this filesystem tree and see how each piece is used
in the bigger picture:

group_vars/all: This file is used to define variables that are used for all of your
playbooks. These can be used in playbooks and templates with variable
expansions ("{{ variable_name }}").
hosts/: This file or a directory lists hosts and groups that you want to manage
and any specific connectivity details like protocol, username, SSH key, and so on.
In documentation, this file is often called the inventory file.
roles/: This holds a list of role definitions that can be applied in a hierarchical
and layered way to a target machine. Usually, it is further subdivided into
tasks/, files/, vars/, and other layout-sensitive structures within each role:

<role_name>/tasks/main.yml: A YAML file that lists the
main steps to execute as part of the role.
<role_name>/files/...: Here you would add static files that
would be copied to target a machine that do not require any pre-
processing.

Building Our Own Platform Chapter 8

[210]

<role_name>/templates/...: In this directory, you would add
template files for role-related tasks. These usually contain
templates that will be copied to the target machine with variable
substitutions.
<role_name>/vars/main.yml: Just like the parent directory
implies, this YAML file holds role-specific variable definitions.

playbooks/: In this directory, you would add all top-level ancillary playbooks
that do not fit well in role definitions.

Usage
Now that we have been introduced to what Ansible looks like and how it operates, it is time
to do something practical with it. What we will do at this point is make an Ansible
deployment configuration to apply some of the system tweaks we covered in the previous
chapter and have Docker ready for us on the machine after running the playbook.

This example is relatively simple but it should show pretty well the ease of
use and power of a decent configuration management tooling. Ansible is
also a massive topic that a small section like this just can not cover in as
much detail as I would like to but the documentation is relatively good
and you can find it at https:/ ​/​docs. ​ansible. ​com/ ​ansible/ ​latest/
index. ​html.

This example (and others) can be found at https:/ ​/ ​github. ​com/ ​sgnn7/
deploying_ ​with_ ​docker/ ​tree/ ​master/ ​chapter_ ​8/​ansible_ ​deployment if
you want to skip the manual typing; however, it might be good practice to
do it once to get the hang of the Ansible YAML file structure.

First, we will need to create our file structure for holding files. We will call our main role
swarm_node and since our whole machine is just going to be a swarm node, we will name
our top-level deployment playbook the same:

$ # First we create our deployment source folder and move there
$ mkdir ~/ansible_deployment
$ cd ~/ansible_deployment/

$ # Next we create the directories we will need
$ mkdir -p roles/swarm_node/files roles/swarm_node/tasks

$ # Make a few placeholder files
$ touch roles/swarm_node/tasks/main.yml \
 swarm_node.yml \

https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment
https://github.com/sgnn7/deploying_with_docker/tree/master/chapter_8/ansible_deployment

Building Our Own Platform Chapter 8

[211]

 hosts

$ # Let's see what we have so far
$ tree
.
├── hosts
├── roles
│ └── swarm_node
│ ├── files
│ └── tasks
│ └── main.yml
└── swarm_node.yml
4 directories, 3 files

Now let's add the following content to the top-level swarm_node.yml. This will be the
main entry point for Ansible and it basically just defines target hosts and roles that we want
to be run on them:

- name: Swarm node setup
 hosts: all

 become: True

 roles:
 - swarm_node

YAML files are whitespace structured so make sure that you do not omit
any spacing when editing this file. In general, all nesting levels are two
spaces farther than the parent, key/values are defined with colons, and
lists are itemized with a - (minus) prefix. For more information, about the
YAML structure go to https:/ ​/​en.​wikipedia. ​org/ ​wiki/ ​YAML#Syntax.

What we are doing here should be mostly obvious:

hosts: all: Run this on all the defined servers in the inventory file. Generally,
this would be just a DNS name but since we will only have a single machine
target, all should be fine.
become: True: Since we use SSH to run things on the target and the SSH user is
usually not root, we need to tell Ansible that it needs to elevate permissions with
sudo for the commands that we will run. If the user requires a password to use
sudo, you can specify it when invoking the playbook with the ansible-
playbook -K flag, but we will be using AWS instances later in the chapter which
do not require one.

https://en.wikipedia.org/wiki/YAML#Syntax
https://en.wikipedia.org/wiki/YAML#Syntax
https://en.wikipedia.org/wiki/YAML#Syntax
https://en.wikipedia.org/wiki/YAML#Syntax
https://en.wikipedia.org/wiki/YAML#Syntax
https://en.wikipedia.org/wiki/YAML#Syntax
https://en.wikipedia.org/wiki/YAML#Syntax
https://en.wikipedia.org/wiki/YAML#Syntax
https://en.wikipedia.org/wiki/YAML#Syntax
https://en.wikipedia.org/wiki/YAML#Syntax
https://en.wikipedia.org/wiki/YAML#Syntax
https://en.wikipedia.org/wiki/YAML#Syntax
https://en.wikipedia.org/wiki/YAML#Syntax

Building Our Own Platform Chapter 8

[212]

roles: swarm_mode: This is a list of roles we want to apply to the targets which
is for now just a single one called swarm_node. This name must match a folder
name in roles/.

Next in line for defining will be our system tweaking configuration files that we covered in
the previous chapter for things like increases in file descriptor maximum, ulimits, and a
couple of others. Add the following files and their respective content to the
roles/swarm_node/files/ folder:

conntrack.conf:

net.netfilter.nf_conntrack_tcp_timeout_established = 43200
net.netfilter.nf_conntrack_max = 524288

file-descriptor-increase.conf:

fs.file-max = 1000000

socket-buffers.conf:

net.core.optmem_max = 40960
net.core.rmem_default = 16777216
net.core.rmem_max = 16777216
net.core.wmem_default = 16777216
net.core.wmem_max = 16777216
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 87380 16777216

ulimit-open-files-increase.conf:

root soft nofile 65536
root hard nofile 65536
* soft nofile 65536
* hard nofile 65536

Building Our Own Platform Chapter 8

[213]

With those added, our tree should look a bit more like this now:

.
├── hosts
├── roles
│ └── swarm_node
│ ├── files
│ │ ├── conntrack.conf
│ │ ├── file-descriptor-increase.conf
│ │ ├── socket-buffers.conf
│ │ └── ulimit-open-files-increase.conf
│ └── tasks
│ └── main.yml
└── swarm_node.yml

With most of the files in place, we can now finally move onto the main configuration file--
roles/swarm_mode/tasks/main.yml. In it, we will lay out our configuration steps one
by one using Ansible's modules and DSL to:

apt-get dist-upgrade the image for security.
Apply various improvements to machine configuration files in order to perform
better as a Docker host.
Install Docker.

To simplify understanding the following Ansible configuration code, it would be good to
also keep this structure in mind since it underpins each discrete step we will use and is
pretty easy to understand after you see it a couple of times:

- name: A descriptive step name that shows in output
 module_name:
 module_arg1: arg_value
 module_arg2: arg2_value
 module_array_arg3:
 - arg3_item1
 ...
 ...

Building Our Own Platform Chapter 8

[214]

You can find all module documentation we use in the playbook below at
the main Ansible website (https:/ ​/ ​docs. ​ansible. ​com/ ​ansible/ ​latest/
list_ ​of_ ​all_ ​modules. ​html). We will avoid getting too deep in module
documentation here due to the sheer volume of information that will
generally be a distraction to the purpose of this section.

You can also find module-specific documentation that we used here too:
- https:/ ​/​docs. ​ansible. ​com/​ansible/ ​latest/ ​apt_ ​module. ​html
- https:/ ​/​docs. ​ansible. ​com/​ansible/ ​latest/ ​copy_ ​module. ​html
- https:/ ​/​docs. ​ansible. ​com/​ansible/ ​latest/ ​lineinfile_ ​module. ​html
- https:/ ​/​docs. ​ansible. ​com/​ansible/ ​latest/ ​command_ ​module. ​html
- https:/ ​/​docs. ​ansible. ​com/​ansible/ ​latest/ ​apt_ ​key_ ​module. ​html
-
 https://docs.ansible.com/ansible/latest/apt_repository_module.ht
ml

Let us see what that main installation playbook (roles/swarm_mode/tasks/main.yml)
should look like:

- name: Dist-upgrading the image
 apt:
 upgrade: dist
 force: yes
 update_cache: yes
 cache_valid_time: 3600

- name: Fixing ulimit through limits.d
 copy:
 src: "{{ item }}.conf"
 dest: /etc/security/limits.d/90-{{ item }}.conf
 with_items:
 - ulimit-open-files-increase

- name: Fixing ulimits through pam_limits
 lineinfile:
 dest: /etc/pam.d/common-session
 state: present
 line: "session required pam_limits.so"

- name: Ensuring server-like kernel settings are set
 copy:
 src: "{{ item }}.conf"
 dest: /etc/sysctl.d/10-{{ item }}.conf

https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/apt_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/copy_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/lineinfile_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/command_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_key_module.html
https://docs.ansible.com/ansible/latest/apt_repository_module.html
https://docs.ansible.com/ansible/latest/apt_repository_module.html

Building Our Own Platform Chapter 8

[215]

 with_items:
 - socket-buffers
 - file-descriptor-increase
 - conntrack

Bug: https://github.com/systemd/systemd/issues/1113
- name: Working around netfilter loading order
 lineinfile:
 dest: /etc/modules
 state: present
 line: "{{ item }}"
 with_items:
 - nf_conntrack_ipv4
 - nf_conntrack_ipv6

- name: Increasing max connection buckets
 command: echo '131072' > /sys/module/nf_conntrack/parameters/hashsize

Install Docker
- name: Fetching Docker's GPG key
 apt_key:
 keyserver: hkp://pool.sks-keyservers.net
 id: 58118E89F3A912897C070ADBF76221572C52609D

- name: Adding Docker apt repository
 apt_repository:
 repo: 'deb https://apt.dockerproject.org/repo {{ ansible_distribution |
lower }}-{{ ansible_distribution_release | lower }} main'
 state: present

- name: Installing Docker
 apt:
 name: docker-engine
 state: installed
 update_cache: yes
 cache_valid_time: 3600

WARNING! This configuration has no hardening for the image to be
comfortably placed on the internet live so use care and add whatever
securing steps and tooling you require into this playbook before doing
your real deployment. At the absolute least I would suggest installing
the fail2ban package but you may have alternative strategies (e.g.
seccomp, grsecurity, AppArmor, etc).

Building Our Own Platform Chapter 8

[216]

In this file, we sequentially ordered the steps one by one to configure the machine from base
to a system fully capable of running Docker containers by using some of the core Ansible
modules and the configuration files we created earlier. One thing that might not be very
obvious is our use of the {{ ansible_distribution | lower }} type variables but in
those, we are using Ansible facts (https:/ ​/​docs. ​ansible. ​com/ ​ansible/ ​latest/ ​playbooks_
variables.​html) gathered about the system we are running on and passing them though a
Ninja2 lower() filter to ensure that the variables are lowercase. By doing this for the
repository endpoint, we can use the same configuration without problems on almost any
deb-based server target without much trouble as the variables will be substituted to the
appropriate values.

At this point, the only thing we would need to do in order to apply this configuration to a
machine is to add our server IP/DNS to hosts file and run the playbook with ansible-
playbook <options> swarm_node.yml. But since we want to run this on an Amazon
infrastructure, we will stop here and see how we can take these configuration steps and
from them create an Amazon Machine Image (AMI) on which we can start any number of
Elastic Compute Cloud (EC2) instances that are identical and have already been fully
configured.

Amazon Web Services setup
To continue onto our Amazon Machine Image (AMI) building section, we cannot go any
further without having a working AWS account and an associated API key so we will do
that first before continuing further. To avoid ambiguity, be aware that almost all AWS
services cost money to use and your use of the API may incur charges for you even for
things that you might not readily expect (that is, bandwidth usage, AMI snapshot storage,
and on) so use it accordingly.

AWS is a massively complex piece of machinery, exponentially more than
Ansible, and covering everything that you might need to know about it is
impossible to do within the scope of this book. But we will try here to
provide you with enough relevant instructions for you to have a place to
start from. If you decide you want to learn more about AWS, their
documentation is generally pretty great and you can find it at https:/ ​/
aws.​amazon. ​com/ ​documentation/ ​.

https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbooks_variables.html
https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/

Building Our Own Platform Chapter 8

[217]

Creating an account
While the process is pretty straightforward, it has changed a couple of times in very
significant ways, so detailing the full process here with no way to update it would would
end up being a disservice to you so to create the account, I will guide you to the link that
has the most up-to-date information on how to do it, which is https:/ ​/ ​aws.​amazon. ​com/
premiumsupport/​knowledge- ​center/ ​create- ​and- ​activate- ​aws-​account/ ​. In general, the
start of the process is at https:/ ​/ ​aws. ​amazon. ​com/ ​ and you can begin it by clicking on the
yellow Sign Up or Create an AWS Account button on the top right of the screen and
following the instructions:

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/

Building Our Own Platform Chapter 8

[218]

Getting API keys
With the AWS account created, we now need to get our API keys so that we can access and
use our resources through the various tools we want to use:

Sign in to your console by going to https://<account_id or1.
alias>.signin.aws.amazon.com/console. Note that you may need to sign in
as the root account initially to do this (small blue link below the Sign In button,
as shown in the following screenshot) if you did not create a user when you
registered the account:

Navigate to the IAM page at https:/ ​/​console. ​aws.​amazon. ​com/ ​iam/​ and click2.
on the Users link on the left-hand side of the screen.

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Building Our Own Platform Chapter 8

[219]

Click on Add user to start the user creation process.3.

CAUTION! Make sure that the Programmatic access checkbox is ticked, or
else your AWS API keys will not work for our examples.

Building Our Own Platform Chapter 8

[220]

For the permissions, we will give this user full administrator access. For4.
production services, you will want to limit this to only the needed level of access:

Building Our Own Platform Chapter 8

[221]

Follow the rest of the wizard and make a record of the key ID and key secret, as5.
these will be your API credentials for AWS:

 Using the API keys
To use the API keys in the easiest way, you can export variables in your shell that will get
picked up by the tooling; however, you will need to do this on every Terminal where you
are working with AWS APIs:

$ export AWS_ACCESS_KEY_ID="AKIABCDEFABCDEF"
$ export AWS_SECRET_ACCESS_KEY="123456789ABCDEF123456789ABCDEF"
$ export AWS_REGION="us-west-1"

Alternatively, if you have the awscli tool installed (sudo apt-get install awscli),
you can just run aws configure:

$ aws configure
AWS Access Key ID [None]: AKIABCDEFABCEF
AWS Secret Access Key [None]: 123456789ABCDEF123456789ABCDEF
Default region name [None]: us-west-1
Default output format [None]: json

There are many other ways to set your credentials as well through things like profiles but it
really all depends on your expected usage case. For more information on these options, you
can refer to the official documentation at https:/ ​/​docs. ​aws. ​amazon. ​com/ ​cli/ ​latest/
userguide/​cli-​chap- ​getting- ​started. ​html.

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Building Our Own Platform Chapter 8

[222]

So with the key available and configured for CLI use, we can now proceed onto building
custom AMI images with Packer.

HashiCorp Packer
As we previously implied, our CM scripts are really not that optimal if we have to run them
every time on a new machine that we add to the cluster or the cloud infrastructure in
general. While we can do that, we really shouldn't, since in a perfect world the cluster nodes
should be a flexible group that can spawn and kill instances depending on the usage with
minimal user intervention so requiring a manual setup of each new machine is simply
untenable even at the smallest cluster scales. With AMI image creation we can pre-bake a
templated base system image with Ansible a single time, when the image is being made. By
doing that, we can launch any new machine with this same image and our interaction with
a running system would be kept at a minimum since everything would ideally be already
configured.

To make these machine images, HashiCorp Packer (https:/ ​/​www. ​packer. ​io/ ​) allows us to
do exactly that by applying a provisioning run of our CM tool of choice (Ansible) and
outputting a ready-to-use image for any of the big cloud providers. By doing this, you could
have the desired state of the cluster nodes (or any other server configuration) permanently
enshrined in an image, and for any node addition needs for the cluster all you would need
to do is spawn more VM instances based on the same Packer image.

Installation
Due to the fact that Packer is written in Go programming language, to install Packer, you
only need to download the binary from their website found at https:/ ​/​www. ​packer. ​io/
downloads.​html. You can usually do something like the following for a quick installation:

$ # Get the archive
$ wget -q --show-progress
https://releases.hashicorp.com/packer/1.1.1/packer_<release>.zip
packer_<release>.zip 100%[==>]
15.80M 316KB/s in 40s

$ # Extract our binary
$ unzip packer_<release>.zip
Archive: packer_<release>.zip
 inflating: packer

$ # Place the binary somewhere in your path
$ sudo mv packer /usr/local/bin/

https://www.packer.io/
https://www.packer.io/
https://www.packer.io/
https://www.packer.io/
https://www.packer.io/
https://www.packer.io/
https://www.packer.io/
https://www.packer.io/
https://www.packer.io/
https://www.packer.io/
https://www.packer.io/downloads.html
https://www.packer.io/downloads.html
https://www.packer.io/downloads.html
https://www.packer.io/downloads.html
https://www.packer.io/downloads.html
https://www.packer.io/downloads.html
https://www.packer.io/downloads.html
https://www.packer.io/downloads.html
https://www.packer.io/downloads.html
https://www.packer.io/downloads.html
https://www.packer.io/downloads.html
https://www.packer.io/downloads.html

Building Our Own Platform Chapter 8

[223]

$ packer --version
1.1.1

CAUTION! Packer binaries only provide TLS authentication for their
runner without any form of signature checking, so the assurance that the
program was published by HashiCorp itself is orders of magnitude lower
than a GPG-signed apt repository that Docker uses; so, exercise extra care
when getting it this way or build it from source (https:/ ​/​github. ​com/
hashicorp/ ​packer).

Usage
Using Packer is actually relatively easy as all you need in most cases is the Ansible setup
code and a relatively small packer.json file. Add this content to packer.json in our
Ansible deployment configuration from the earlier section:

{
 "builders": [
 {
 "ami_description": "Cluster Node Image",
 "ami_name": "cluster-node",
 "associate_public_ip_address": true,
 "force_delete_snapshot": true,
 "force_deregister": true,
 "instance_type": "m3.medium",
 "region": "us-west-1",
 "source_ami": "ami-1c1d217c",
 "ssh_username": "ubuntu",
 "type": "amazon-ebs"
 }
],
 "provisioners": [
 {
 "inline": "sudo apt-get update && sudo apt-get install -y ansible",
 "type": "shell"
 },
 {
 "playbook_dir": ".",
 "playbook_file": "swarm_node.yml",
 "type": "ansible-local"
 }
]
}

https://github.com/hashicorp/packer
https://github.com/hashicorp/packer
https://github.com/hashicorp/packer
https://github.com/hashicorp/packer
https://github.com/hashicorp/packer
https://github.com/hashicorp/packer
https://github.com/hashicorp/packer
https://github.com/hashicorp/packer
https://github.com/hashicorp/packer
https://github.com/hashicorp/packer

Building Our Own Platform Chapter 8

[224]

If it is not obvious, what we have here in this configuration file is the provisioners and
builders sections, which in general correspond to Packer inputs and outputs, respectively.
In our preceding example, we first install Ansible through the shell provisioner since the
next step requires it, and then run the main.yml playbook from our current directory with
the ansible-local provisioner on a base AMI. After applying all the changes, we save the
result as a new Elastic Block Store (EBS) optimized AMI image.

AWS Elastic Block Store (EBS) is a service that provides block device
storage to EC2 instances (these instances are basically just VMs). To the
machine, these look like regular hard disks and can be formatted to
whatever filesystem you want and are used to persist data in a permanent
manner in the Amazon Cloud. They have configurable size and levels of
performance; however, as you might expect, the price goes up as those
two settings increase. The only other thing to keep in mind is that while
you can move the drive around EC2 instances just like you would move a
physical disk, you cannot move an EBS volume across availability zones.
A simple workaround is to copy the data over.

"AMI image" phrase expands into "Amazon Machine Image image", which
is a really quirky way to phrase things, but just like the sister phrase "PIN
number", it flows much better when used that way and will be
intentionally referred to in that way in this section. If you're curious about
this particularity of the English language, you should peruse the Wiki
page for RAS syndrome at https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​RAS_
syndrome.

For the builders section, it will be helpful to explain some of the parameters in more detail
as they may not be obvious from reading the JSON file:

- type: What type of image are we building (EBS-optimized one in our case).
- region: What region will this AMI build in.
- source_ami: What is our base AMI? See section below for more info on
this.
- instance_type: Type of instance to use when building the AMI - bigger
machine == faster builds.
- ami_name: Name of the AMI that will appear in the UI.
- ami_description: Description for the AMI.
- ssh_username: What username to use to connect to base AMI. For Ubuntu,
this is usually "ubuntu".
- associate_public_ip_address: Do we want this builder to have an external
IP. Usually this needs to be true.
- force_delete_snapshot: Do we want to delete the old block device snapshot
if same AMI is rebuilt?
- force_deregister: Do we want to replace the old AMI when rebuilding?

https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome
https://en.wikipedia.org/wiki/RAS_syndrome

Building Our Own Platform Chapter 8

[225]

You can find more information on this particular builder type and its
available options at https:/ ​/​www. ​packer. ​io/ ​docs/ ​builders/ ​amazon- ​ebs.
html.

Choosing the right AMI base image
Unlike selecting the base Docker image to extend that we covered in earlier chapters,
choosing the correct AMI to use Packer on is sadly not a simple task. Some distributions are
regularly updated, so the IDs change. The IDs are also unique per AWS region and you may
want hardware or paravirtualization (HVM vs PV). On top of all this, you also have to chose
the right one for your storage needs (instance-store, ebs, and ebs-ssd at the time of
writing this book), creating an absolutely un-intuitive matrix of options.

If you have not worked with Amazon Elastic Compute Cloud (EC2) and EBS, the storage
options are a bit confusing to newcomers but they mean the following:

instance-store: This type of storage is local to the EC2 VM that is running, has
space varied depending on the VM type (usually very little though), and gets
completely discarded anytime the VM is terminated (a stopped or rebooted VM
retains its state though). Instance store is great for nodes that do not need to keep
any state but should not be used for machines that you want to have data
retained on; however, you can mount a separate EBS drive to an instance--store
VM independently if you want to have persistent storage and also utilize the
stateless storage.
ebs: This storage type creates and associates an EBS volume backed by older
magnetic spinning hard drives (relatively slow vs solid-state drives) anytime an
EC2 instance is started with this specific image, so the data is always kept
around. This option is good if you want to have your data persisted or the
instance-store volumes are not big enough. As of today though, this option is
being actively deprecated, so it is likely that it will disappear in the future.
ebs-ssd: This option is pretty much the same as the preceding one, but using
Solid State Devices (SSD) that are much faster but much more expensive per
gigabyte of allocation as the backing store.

https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon-ebs.html

Building Our Own Platform Chapter 8

[226]

Another thing that we need to choose is the virtualization type:

Paravirtualization / pv: This type of virtualization is older and uses software to
chain load your image, so it was capable to run on a much more diverse
hardware. While it was faster long time ago, today it is generally slower than the
hardware virtualization.
Hardware virtualization / hvm: This type of virtualization uses CPU-level
instructions to run your image in a completely isolated environment akin to
running the image directly on bare-metal hardware. While it depends on specific
Intel VT CPU technology implementations, it is generally much better performant
than pv virtualization, so in most cases, you should probably use it over other
options, especially if you are not sure which one to choose.

With our new knowledge of the available options, we can now figure out what image we
will use as the base. For our designated OS version (Ubuntu LTS), you can use the helper
page at https:/​/ ​cloud- ​images. ​ubuntu. ​com/​locator/ ​ec2/ ​ to find the right one:

https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/

Building Our Own Platform Chapter 8

[227]

For our test builds, we will be using us-west-1 region, Ubuntu 16.04 LTS version
(xenial), 64-bit architecture (amd64), hvm virtualization, and ebs-ssd storage so we can
use the filters at the bottom of the page to narrow things down:

As you can see, the list collapses to one choice and in our packer.json we will use
ami-1c1d217c.

Since this list is updated with AMIs that have newer security patches, it is
very likely that by the time you are reading this section the AMI ID will be
something else on your end. Because of that, do not be alarmed if you see
discrepancies between values we have found here and what you have
available to you while reading of this chapter.

Building the AMI
WARNING! Running this Packer build will for sure incur some (albeit
barely a couple of US dollars at the time of writing this book) charges on
your AWS account due to usage of non-free instance type, snapshot use,
and AMI use, some possibly recurring. Refer to the pricing documentation
of AWS for those services to estimate the amount that you will be charged.
As an additional note, it is also good practice to clean up everything either
from the console or CLI after you finish working with AWS objects that
will not be kept around since it will ensure that you do not get additional
charges after working with this code.

With the packer.json in place, we can now do a build of our image. We will first install the pre-requisites
(python-boto and awscli), then check the access, and finally build our AMI:

$ # Install python-boto as it is a prerequisite for Amazon builders
$ # Also get awscli to check if credentials have been set correctly
$ sudo apt-get update && sudo apt-get install -y python-boto awscli
<snip>

$ # Check that AWS API credentials are properly set.
$ # If you see errors, consult the previous section on how to do this
$ aws ec2 describe-volumes

Building Our Own Platform Chapter 8

[228]

{
 "Volumes": [
]
}

$ # Go to the proper directory if we are not in it
$ cd ~/ansible_deployment

$ # Build our AMI and use standardized output format
$ packer build -machine-readable packer.json

<snip>
1509439711,,ui,say,==> amazon-ebs: Provisioning with shell script:
/tmp/packer-shell105349087
<snip>
1509439739,,ui,message, amazon-ebs: Setting up ansible (2.0.0.2-2ubuntu1)
...
1509439741,,ui,message, amazon-ebs: Setting up python-selinux (2.4-3build2)
...
1509439744,,ui,say,==> amazon-ebs: Provisioning with Ansible...
1509439744,,ui,message, amazon-ebs: Uploading Playbook directory to Ansible
staging directory...
<snip>
1509439836,,ui,message, amazon-ebs: TASK [swarm_node : Installing Docker]
**
1509439855,,ui,message, amazon-ebs: [0;33mchanged: [127.0.0.1][0m
1509439855,,ui,message, amazon-ebs:
1509439855,,ui,message, amazon-ebs: PLAY RECAP

1509439855,,ui,message, amazon-ebs: [0;33m127.0.0.1[0m :
[0;32mok[0m[0;32m=[0m[0;32m10[0m [0;33mchanged[0m[0;33m=[0m[0;33m9[0m
unreachable=0 failed=0
1509439855,,ui,message, amazon-ebs:
1509439855,,ui,say,==> amazon-ebs: Stopping the source instance...
<snip>
1509439970,,ui,say,Build 'amazon-ebs' finished.
1509439970,,ui,say,--> amazon-ebs: AMIs were created:\nus-west-1: ami-
a694a8c6\n

Success! With this new image ID that you can see at the end of the output (ami-a694a8c6),
we can now launch instances in EC2 with this AMI and they will have all the tweaks we
have applied as well as have Docker pre-installed!

Building Our Own Platform Chapter 8

[229]

Deployments to AWS
With just the bare images and no virtual machines to run them on, our previous Packer
work has not gotten us yet fully into an automated working state. To really get there, we
will now need to tie everything together with more Ansible glue to complete the
deployment. The encapsulation hierarchy of the different stages should conceptually look
something like this:

As you can see from the diagram, we will take a layered approach to deployments:

In the innermost level, we have the Ansible scripts to take a bare machine, VM, or
an AMI to the configuration state we want it to be in.
Packer encapsulates that process and produces static AMI images that are further
usable on Amazon EC2 cloud offerings.
Ansible then finally encapsulates everything mentioned previously by deploying
machines with those static, Packer-created images.

The road to automated infrastructure deployment
Now that we know what we want, how can we do it? Luckily for us, as hinted in the
previous list, Ansible can do that part for us; we just need to write a couple of configuration
files. But AWS is very complex here so it will not be as simple as just starting an instance
since we want an isolated VPC environment. However, since we will only manage one
server, we don't really care much for inter-VPC networking, so that will make things a bit
easier.

Building Our Own Platform Chapter 8

[230]

We first need to consider all the steps that will be required. Some of these will be very
foreign to most of you as AWS is pretty complex and most developers do not usually work
on networking, but they are the minimum necessary steps to have an isolated VPC without
clobbering the default settings of your account:

Set up the VPC for a specific virtual network.
Create and tie a subnet to it. Without this, our machines will not be able to use the
network on it.
Set up a virtual Internet gateway and attach it to the VPC for unresolvable
addresses with a routing table. If we do not do this, the machines will not be able
to use the Internet.
Set up a security group (firewall) whitelist of ports that we want to be able to
access our server (SSH and HTTP ports). By default all ports are blocked so this
makes sure that the launched instances are reachable.
Finally, provision the VM instance using the configured VPC for networking.

To tear down everything, we will need to do the same thing, but just in reverse.

First, we need some variables that will be shared across both deploy
and teardown playbooks. Create a group_vars/all file in the same directory as the big
Ansible example that we have been working on in this chapter:

Region that will accompany all AWS-related module usages
aws_region: us-west-1

ID of our Packer-built AMI
cluster_node_ami: ami-a694a8c6

Key name that will be used to manage the instances. Do not
worry about what this is right now - we will create it in a bit
ssh_key_name: swarm_key

Define the internal IP network for the VPC
swarm_vpc_cidr: "172.31.0.0/16"

Now we can write our deploy.yml in the same directory that packer.json is in, using
some of those variables:

The difficulties of this deployment is starting to scale up significantly from
our previous examples and there is no good way to cover all the
information that is spread between dozens of AWS, networking, and
Ansible topics to describe it in a concise way, but here are some links to
the modules we will use that, if possible, you should read before
proceeding:

Building Our Own Platform Chapter 8

[231]

- https:/ ​/​docs. ​ansible. ​com/​ansible/ ​latest/ ​ec2_ ​vpc_ ​net_ ​module. ​html
- https:/ ​/​docs. ​ansible. ​com/​ansible/ ​latest/ ​set_ ​fact_ ​module. ​html
- https:/ ​/​docs. ​ansible. ​com/​ansible/ ​latest/ ​ec2_ ​vpc_ ​subnet_ ​module.
html

- https:/ ​/​docs. ​ansible. ​com/​ansible/ ​latest/ ​ec2_ ​vpc_ ​igw_ ​module. ​html
- https:/ ​/​docs. ​ansible. ​com/​ansible/ ​latest/ ​ec2_ ​vpc_ ​route_ ​table_
module. ​html
- https:/ ​/​docs. ​ansible. ​com/​ansible/ ​latest/ ​ec2_ ​group_ ​module. ​html
- https:/ ​/​docs. ​ansible. ​com/​ansible/ ​latest/ ​ec2_ ​module. ​html

- hosts: localhost
 connection: local
 gather_facts: False

 tasks:
 - name: Setting up VPC
 ec2_vpc_net:
 region: "{{ aws_region }}"
 name: "Swarm VPC"
 cidr_block: "{{ swarm_vpc_cidr }}"
 register: swarm_vpc

 - set_fact:
 vpc: "{{ swarm_vpc.vpc }}"

 - name: Setting up the subnet tied to the VPC
 ec2_vpc_subnet:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc.id }}"
 cidr: "{{ swarm_vpc_cidr }}"
 resource_tags:
 Name: "Swarm subnet"
 register: swarm_subnet

 - name: Setting up the gateway for the VPC
 ec2_vpc_igw:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc.id }}"
 register: swarm_gateway

 - name: Setting up routing table for the VPC network
 ec2_vpc_route_table:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc.id }}"
 lookup: tag
 tags:
 Name: "Swarm Routing Table"

https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_net_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/set_fact_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_subnet_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_igw_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_vpc_route_table_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_group_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html
https://docs.ansible.com/ansible/latest/ec2_module.html

Building Our Own Platform Chapter 8

[232]

 subnets:
 - "{{ swarm_subnet.subnet.id }}"
 routes:
 - dest: 0.0.0.0/0
 gateway_id: "{{ swarm_gateway.gateway_id }}"

 - name: Setting up security group / firewall
 ec2_group:
 region: "{{ aws_region }}"
 name: "Swarm SG"
 description: "Security group for the swarm"
 vpc_id: "{{ vpc.id }}"
 rules:
 - cidr_ip: 0.0.0.0/0
 proto: tcp
 from_port: 22
 to_port: 22
 - cidr_ip: 0.0.0.0/0
 proto: tcp
 from_port: 80
 to_port: 80
 rules_egress:
 - cidr_ip: 0.0.0.0/0
 proto: all
 register: swarm_sg

 - name: Provisioning cluster node
 ec2:
 region: "{{ aws_region }}"
 image: "{{ cluster_node_ami }}"
 key_name: "{{ ssh_key_name }}"
 instance_type: "t2.medium"
 group_id: "{{ swarm_sg.group_id }}"
 vpc_subnet_id: "{{ swarm_subnet.subnet.id }}"
 source_dest_check: no
 assign_public_ip: yes
 monitoring: no
 instance_tags:
 Name: cluster-node
 wait: yes
 wait_timeout: 500

What we are doing here closely matches our earlier plan but now we have concrete
deployment code to match it up against:

We set up the VPC with the ec2_vpc_net module.1.

Building Our Own Platform Chapter 8

[233]

We create our subnet and associate it to the VPC with the ec2_vpc_subnet2.
module.

The Internet virtual gateway for our cloud is created with ec2_vpc_igw.3.
Internet gateway is then made to resolve any addresses that are not within the4.
same network.
ec2_group module is used to enable ingress and egress networking but only5.
port 22 (SSH) and port 80 (HTTP) are allowed in.
Finally, our EC2 instance is created within the newly configured VPC with6.
the ec2 module.

As we mentioned earlier, the tear-down should be very similar but in reverse and contain a
lot more state: absent arguments. Let's put the following in destroy.yml in the same
folder:

- hosts: localhost
 connection: local
 gather_facts: False

 tasks:
 - name: Finding VMs to delete
 ec2_remote_facts:
 region: "{{ aws_region }}"
 filters:
 "tag:Name": "cluster-node"
 register: deletable_instances

 - name: Deleting instances
 ec2:
 region: "{{ aws_region }}"
 instance_ids: "{{ item.id }}"
 state: absent
 wait: yes
 wait_timeout: 600
 with_items: "{{ deletable_instances.instances }}"
 when: deletable_instances is defined

 # v2.0.0.2 doesn't have ec2_vpc_net_facts so we have to fake it to get
VPC info
 - name: Finding route table info
 ec2_vpc_route_table_facts:
 region: "{{ aws_region }}"
 filters:
 "tag:Name": "Swarm Routing Table"
 register: swarm_route_table

Building Our Own Platform Chapter 8

[234]

 - set_fact:
 vpc: "{{ swarm_route_table.route_tables[0].vpc_id }}"
 when: swarm_route_table.route_tables | length > 0

 - name: Removing security group
 ec2_group:
 region: "{{ aws_region }}"
 name: "Swarm SG"
 state: absent
 description: ""
 vpc_id: "{{ vpc }}"
 when: vpc is defined

 - name: Deleting gateway
 ec2_vpc_igw:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc }}"
 state: absent
 when: vpc is defined

 - name: Deleting subnet
 ec2_vpc_subnet:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc }}"
 cidr: "{{ swarm_vpc_cidr }}"
 state: absent
 when: vpc is defined

 - name: Deleting route table
 ec2_vpc_route_table:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc }}"
 state: absent
 lookup: tag
 tags:
 Name: "Swarm Routing Table"
 when: vpc is defined

 - name: Deleting VPC
 ec2_vpc_net:
 region: "{{ aws_region }}"
 name: "Swarm VPC"
 cidr_block: "{{ swarm_vpc_cidr }}"
 state: absent

If the deploy playbook was readable, then this playbook should be generally easy to
understand and as we mentioned, it just runs the same steps in reverse, removing any
infrastructure pieces we already created.

Building Our Own Platform Chapter 8

[235]

Running the deployment and tear-down playbooks
If you remember, earlier in our group_vars definition, we had a key variable
(ssh_key_name: swarm_key) that at this point becomes relatively important as without a
working key we can neither deploy nor start our VM, so let's do that now. We will use
awscli and jq--a JSON parsing tool that will reduce the amount of work we do, but it is
possible to do without it as well through the GUI console:

$ # Create the key with AWS API and save the private key to ~/.ssh
directory
$ aws ec2 create-key-pair --region us-west-1 \
 --key-name swarm_key | jq -r '.KeyMaterial' >
~/.ssh/ec2_swarm_key

$ # Check that its not empty by checking the header
$ head -1 ~/.ssh/ec2_swarm_key
-----BEGIN RSA PRIVATE KEY-----

$ # Make sure that the permissions are correct on it
$ chmod 600 ~/.ssh/ec2_swarm_key

$ # Do a sanity check that it has the right size and permissions
$ ls -la ~/.ssh/ec2_swarm_key
-rw------- 1 sg sg 1671 Oct 31 16:52 /home/sg/.ssh/ec2_swarm_key

With the key in place, we can finally run our deploy script:

$ ansible-playbook deploy.yml
 [WARNING]: provided hosts list is empty, only localhost is available

PLAY

TASK [Setting up VPC]
**
ok: [localhost]

TASK [set_fact]
**
ok: [localhost]

TASK [Setting up the subnet]

ok: [localhost]

TASK [Setting up the gateway]

Building Our Own Platform Chapter 8

[236]

**
ok: [localhost]

TASK [Setting up routing table]
**
ok: [localhost]

TASK [Setting up security group]

ok: [localhost]

TASK [Provisioning cluster node]

changed: [localhost]

PLAY RECAP

localhost : ok=7 changed=1 unreachable=0 failed=0

$ # Great! It looks like it deployed the machine!

$ # Let's see what we have. First we need to figure out what the external
IP is
$ aws ec2 describe-instances --region us-west-1 \
 --filters Name=instance-state-
name,Values=running \
 --query
'Reservations[*].Instances[*].PublicIpAddress'
[
 [
 "52.53.240.17"
]
]

$ # Now let's try connecting to it
ssh -i ~/.ssh/ec2_swarm_key ubuntu@52.53.240.17

<snip>
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '52.53.240.17' (ECDSA) to the list of known
hosts.
<snip>

ubuntu@ip-172-31-182-20:~$ # Yay! Do we have Docker?
ubuntu@ip-172-31-182-20:~$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

ubuntu@ip-172-31-182-20:~$ # Create our single-server swarm

Building Our Own Platform Chapter 8

[237]

ubuntu@ip-172-31-182-20:~$ sudo docker swarm init
Swarm initialized: current node (n2yc2tedm607rvnjs72fjgl1l) is now a
manager.
<snip>

ubuntu@ip-172-31-182-20:~$ # Here we can now do anything else that's needed
ubuntu@ip-172-31-182-20:~$ # Though you would normally automate everything

If you see errors similar to "No handler was ready to
authenticate. 1 handlers were checked.

['HmacAuthV4Handler'] Check your credentials", ensure that
you have your AWS credentials set properly.

Looks like everything is working! At this point, we could literally deploy our previously
built 3-tier application if we wanted to. As we are done with our example and since we
have our mini PaaS working, we can go back and clean up things by running the
destroy.yml playbook:

ubuntu@ip-172-31-182-20:~$ # Get out of our remote machine
ubuntu@ip-172-31-182-20:~$ exit
logout
Connection to 52.53.240.17 closed.

$ # Let's run the cleanup script
ansible-playbook destroy.yml
 [WARNING]: provided hosts list is empty, only localhost is available

PLAY

TASK [Finding VMs to delete]

ok: [localhost]

TASK [Deleting instances]
**
changed: [localhost] => <snip>

TASK [Finding route table info]
**
ok: [localhost]

TASK [set_fact]
**
ok: [localhost]

Building Our Own Platform Chapter 8

[238]

TASK [Removing security group]

changed: [localhost]

TASK [Deleting gateway]
**
changed: [localhost]

TASK [Deleting subnet]

changed: [localhost]

TASK [Deleting route table]
**
changed: [localhost]

TASK [Deleting VPC]
**
changed: [localhost]

PLAY RECAP

localhost : ok=9 changed=6 unreachable=0 failed=0

And with that, we have automated deployments and teardowns of our infrastructure with
single commands. While the example is pretty limited in scope, it should give you some
ideas on how to expand beyond that with auto-scaling groups, orchestration management
AMIs, registry deployment, and data persistence that would turn this into a full-fledged
PaaS.

Continuous integration/Continuous delivery
As you make more services, you will notice that manual deployments of changes from
source control and builds are taking up more time due to the need to figure out which
image dependencies belong where, which image actually needs rebuilding (if you run a
mono-repo), if the service changed at all, and many other ancillary issues. In order to
simplify and streamline our deployment process, we will need to find a way to make this
whole system fully automated so that the only thing needed to deploy a new version of
services is a commit of a change to a branch of your code repository.

Building Our Own Platform Chapter 8

[239]

As of today, the most popular automation server called Jenkins is generally used in such
function to do this build automation and deployment of Docker images and infrastructure
but others like Drone, Buildbot, Concoure, etc have been rising fast through the ranks of
very capable software CI/CD tooling too but none have so far reached the same acceptance
levels from the industry yet. Since Jenkins is also relatively easy to use, we can do a quick
demonstration of its power, and while the example is a bit simplistic, it should make it
obvious on how this can be used for much more.

Since Jenkins will need awscli, Ansible, and python-boto, we have to make a new
Docker image based on the Jenkins that is available from Docker Hub. Create a new folder
and add a Dockerfile with the following content in it:

FROM jenkins

USER root
RUN apt-get update && \
 apt-get install -y ansible \
 awscli \
 python-boto

USER jenkins

Now we build and run our server:

$ # Let's build our image
$ docker build -t jenkins_with_ansible

Sending build context to Docker daemon 2.048kB
Step 1/4 : FROM jenkins
<snip>
Successfully tagged jenkins_with_ansible:latest

$ # Run Jenkins with a local volume for the configuration
$ mkdir jenkins_files
$ docker run -p 8080:8080 \
 -v $(pwd)/jenkins_files:/var/jenkins_home \
 jenkins_with_ansible

Running from: /usr/share/jenkins/jenkins.war
<snip>
Jenkins initial setup is required. An admin user has been created and a
password generated.
Please use the following password to proceed to installation:

3af5d45c2bf04fffb88e97ec3e92127a

This may also be found at: /var/jenkins_home/secrets/initialAdminPassword

Building Our Own Platform Chapter 8

[240]

<snip>
INFO: Jenkins is fully up and running

While it is still running, let's go to the main page and enter the installation password that
we got a warning for during the image start. Go to http://localhost:8080 and enter the
password that was in your logs:

Building Our Own Platform Chapter 8

[241]

Click on Install Suggested Plugins on the next window and then after the relevant
downloads are finished, select Continue as admin on the last installer page, which should
lead you to the main landing page:

Building Our Own Platform Chapter 8

[242]

Click on create new jobs, name it redeploy_infrastructure, and make it a Freestyle
project:

Building Our Own Platform Chapter 8

[243]

Next, we will configure the job with our Git repository endpoint so that it builds on any
commits to the master branch:

As our build step, when the repository trigger activates, we will destroy and deploy the
infrastructure, effectively replacing it with a newer version. Add a new build step of
Execute Shell type and add the following to it:

Export needed AWS credentials
export AWS_DEFAULT_REGION="us-west-1"
export AWS_ACCESS_KEY_ID="AKIABCDEFABCDEF"
export AWS_SECRET_ACCESS_KEY="123456789ABCDEF123456789ABCDEF"

Change to relevant directory
cd chapter_8/aws_deployment

Redeploy the service by cleaning up the old deployment

Building Our Own Platform Chapter 8

[244]

and deploying a new one
ansible-playbook destroy.yml
ansible-playbook deploy.yml

The job should look quite a bit similar to this:

Building Our Own Platform Chapter 8

[245]

Save the changes with Save, which should take you to the build's main page. Here, click on
the Build Now button and once the build appears on the left side build list, click on its
progress bar or the dropdown next to its name and select View Log:

Building Our Own Platform Chapter 8

[246]

Success! As you can see, with Jenkins and a small configuration, we just made an
automated deployment of our simple infrastructure. It is crude but effective though
normally you would not want to redeploy everything but just the pieces that have changed
and have the Jenkins live in-cluster, but that are somewhat more-involved endeavors that
will be left to the reader as possible points of improvement.

Resource considerations
Since Jenkins runs on top of a Java VM, it will eat up available RAM at an alarming rate and
is usually the biggest hog of usage along with being the most frequent out-of-memory
(OOM) culprit I have had experience with. In even the lightest use cases, plan to allocate at
least 1 GB of RAM to Jenkins workers or risk various failures at the most inopportune
stages of your build pipelines. As a general rule, most Jenkins installation at this time will
not have many problems with 2 GB of RAM allocated to them, but due to the price of RAM
in VM instances, you can try to scale things back until you reach the acceptable levels of
performance.

The last thing to also pay attention to is that the Jenkins image is also a bulky one relatively
speaking, weighing in at about a hefty 800 MB, so keep in mind that moving this container
is really not as easy nor fast as some other tooling that we have been using.

First-deploy circular dependency
When using Jenkins within your cluster as a Dockerized service to chain-build all other
images, it is important for me to mention a common pitfall where you will inevitably have
the issue with new deployments where Jenkins is not available initally since at the cluster
initialization stage no images are usually available in the registry and the default Jenkins
Docker image is not configured in any way. On top of all this, since you often need an
already-running Jenkins instance to build a newer Jenkins image, you will be in the the
classic Catch-22 situation. You may have a reflex to build Jenkins manually as a followup
deployment step, but you must resist the urge to do so if you want to really have
infrastructure that is mostly hands-off.

Building Our Own Platform Chapter 8

[247]

The general workaround to this is problem of bootstrapping Jenkins on a clean cluster has
generally been something as shown in the following diagram:

The cluster deployment is done first to ensure that we have a way t build our bootstrap
image, and the Docker Registry is used to store the image after it is built. Following this,
we build the Jenkins image on any available Docker Engine node and push it to the registry
so that the service will have the right image to start with. If needed, we then launch the
mentioned service using the same configuration management tool (like Ansible) or the
orchestration tooling and wait for the auto-start job that will build all other remaining
images which should populate the registry with all the other images needed to run the full
cluster. The basic idea here is to do the initial bootstrap through CM tooling and then let the
Jenkins service rebuild all the other images and (re)start the tasks.

In large-scale deployments, it is also possible to use your cluster
orchestration to schedule and handle this bootstrap procedure instead of
the CM tooling but due to the vast differences between each orchestration
engine, these steps may vary wildly between them.

Building Our Own Platform Chapter 8

[248]

Further generic CI/CD uses
Good CI tooling like Jenkins can do much more than the things we covered here; they all
require significant investment of time and effort to get working, but the benefits are pretty
significant if you can get them implemented:

Self-building: As mentioned in the workaround previously, you can have
Jenkins build its own image when the configuration changes and have it redeploy
itself.
Deployment of only changed Docker images: If you use Docker caching, you
can check whether the new build created a different image hash and only deploy
if it did. Doing this will prevent pointless work and have your infrastructure
always running the newest code.
Timed Docker pruning: You can run cleanup jobs (or any other jobs similar to
cron) on Jenkins that will free up or manage your Docker nodes to avoid
manual interactions.

This list can also include: automated releases, failure notifications, build tracking, and quite
a few other things that can be gained as well but suffice it to say, you really want a working
CI pipeline in any non-trivial deployment.

A rule of thumb is that if you need to do something manually that can be automated with
some timers and shell script, most CI tooling (like Jenkins) is there to help you out, so don't
be afraid to try different and creative uses for it. With a full array of options and other
tooling we have covered in this chapter, you can go to sleep soundly knowing that your
clusters are going to be fine for a little while without needing constant babysitting.

Building Our Own Platform Chapter 8

[249]

Summary
In this chapter, we have covered more on how you would truly deploy a PaaS
infrastructure and the following topics that were required for it were examined in depth:
configuration Management tooling with Ansible, cloud image management with
HashiCorp Packer, and continuous integration with Jenkins. With the knowledge gained
here, you should now be able to use the various tooling we discussed and create your own
mini-PaaS for your own service deployments, and with some additional work, you can turn
it into a full-scale PaaS!

In the next chapter, we will take a look at how we can take our current Docker and
infrastructure work and take it even bigger. We will also cover what direction this field
might be moving toward, so if you would like to gain insights into the largest of
deployments in the world, stick around.

9
Exploring the Largest-Scale

Deployments
In earlier chapters, we covered many different aspects of deploying Docker containers, but
if we are to turn our examples into a global service that would withstand the throughput of
many millions of requests a second, a few things will still need to be addressed and this
chapter was specifically written to go over the most important ones in some detail. Since
implementations of topics covered here would involve enough material to be books on their
own and infrastructure would differ wildly depending on a multitude of factors, the text
here will be mostly on the theory side, but the previous understanding of services we
gained in the text leading up to this chapter should be good enough to give you ideas on
how you can proceed with the least amount of pain.

In its core, the topics we will cover revolve around choosing the right technologies and then
following three basic ideas:

Automate everything!
Really, automate it all!
Yes, automate even those one-off things you do every few weeks

It might be a joke, but hopefully by now it should be clear that one of the main points of all
of this work (besides isolation) is to remove any human interaction from your system in
regards to keeping your services running so that you and your team can focus on actually
developing services and not wasting time on deployments.

Exploring the Largest-Scale Deployments Chapter 9

[251]

Maintaining quorums
In our previous examples, we mostly worked with a single-node manager but if you want
resilience, you must ensure that there are minimal points of failure that will take your
whole infrastructure down and a single orchestration management node is absolutely not
enough for production services regardless of whether you use Swarm, Kubernetes,
Marathon, or something else as your orchestration tooling. From the best practices
perspective, you would want to have at least three or more management nodes in your
cluster that are spread across three or more of your cloud's Availability Zones (AZ) or
equivalent grouping to really ensure stability at scales since data center outages have been
known to happen and have caused serious issues to companies that did not mitigate these
types of circumstances.

While in most orchestration platforms you can have any number of backing management
nodes (or backing key-value stores in some cases), you will always have to balance
resiliency vs speed due to the fact that with more nodes comes better capability to handle
failures of larger parts of the system, but changes to this system (such as node additions and
removals) must reach more points that will all have to agree, thus making it slower to
process data. In most cases where this 3+ availability zone topology is required, we will
need to go in details about quorums—the concept we lightly covered earlier, which is the
backbone of all high availability (HA) systems.

Quorums in their basic sense are a grouping of the majority of management nodes, which
together can decide whether updates to the cluster are going to be allowed or not. If the
quorum is lost by the fact that half or more management nodes are unavailable, all changes
to the cluster will be stopped to prevent your cluster infrastructure from having effectively
split clusters. To properly divide your network topology for scale in this respect, you must
make sure that you have a minimum of three nodes and/or availability zones as the quorum
majority is lost with a single failure with less than that number. Taking this further, you will
generally also want an odd number of nodes and availability zones since even numbers do
not provide much additional protection for maintaining quorum, as we will see in a
moment.

To start off, let's say that you have five management nodes. To maintain a quorum of this
number, you must have three or more nodes available, but if you have only two availability
zones, the best split you can do is 3-2, which will work fine if a connection is broken or the
AZ with two management nodes goes down, but if the AZ with three nodes goes down, a
quorum cannot be established since two is less than half of the total node count.

Exploring the Largest-Scale Deployments Chapter 9

[252]

Let us now see what kind of resilience we can get with three availability zones. The optimal
layout of this grouping with five management nodes would be 2-2-1 and if you take a closer
look at what happens when any one of the zones goes out, you will see that the quorum is
always maintained since we will either have 3 (2+1) or 4 (2+2) nodes still available from the
rest of the cluster, ensuring that our services run without issues:

Exploring the Largest-Scale Deployments Chapter 9

[253]

Of course, it is also good to show what kind of effect even numbers have on the
effectiveness since we mentioned that they may be a bit troublesome. With four AZs, the
best split that we can make would be 2-1-1-1 across them and with those numbers we can
only tolerate two zones being unavailable if they both contain only one node. With this
setup, we have a 50/50 chance that two zones being unavailable will include the zone with
two nodes within it, putting the number of total nodes unavailable to over 3, and thus the
cluster will be completely offline:

Exploring the Largest-Scale Deployments Chapter 9

[254]

This spread of management nodes across higher counts of AZs for clusters gets much more
stable if you have more availability zones and managers, but for our simple example here,
we can see this effect if we have five management nodes and five availability zones
(1-1-1-1-1 layout). With such a split, due to the quorum requiring at least three nodes, we
will still be fully operational if any two of the five zones are unavailable, increasing your
failure tolerance by 100 percent from the 3-AZ topology; but you can assume that
communication between possibly wildly disparate geographical regions will add plenty of
latency to any updates.

Hopefully, with these examples, it should now be clear what kind of considerations and
calculations you would use when trying to keep your cluster resilient and it is able to
maintain quorum. While the tooling may differ depending on the orchestration tooling (that
is etcd nodes versus Zookeeper nodes), the principles remain relatively the same in almost
all of them, so this section should be relatively portable.

Node automation
As we have worked on making Amazon Machine Images (AMIs) with Packer, we have
seen what kind of thing we can do with pre-baked instance images, but their true power is
only fully harnessed when the whole infrastructure is comprised of them. If your
orchestration management nodes and worker nodes have their own system images, with a
couple of startup scripts also baked-in though the init system (for example, systemd
startup services), you can make instances launched with those images auto-join your cluster
during boot in their predefined roles. Taking this further to a conceptual level, if we extract
all stateful configuration into the image configurations and all dynamic configurations into
a separate service accessible to all nodes such as EC2 user-data or HashiCorp Vault, your
cluster will be almost fully self-configuring besides the initial deployment and image
building.

Exploring the Largest-Scale Deployments Chapter 9

[255]

By having this powerful auto-join capability, you are eliminating most of the manual work
related to scaling your cluster up or down since there is no need for interacting with the VM
instance other than starting it. A rather simple illustration of this architecture is depicted in
the following figure, where orchestration and worker nodes have their own respective
images and self-configure on startup using a shared configuration data provider within the
VPC itself:

CAUTION! To prevent serious security breaches make sure to separate
and isolate any sensitive information to be accessible only by the desired
systems in this configuration service layout. As we mentioned in one of
the early chapters, following security best practices by using need-to-know
practices will ensure that a compromise of a single point (most likely a
worker node) will not be able to spread easily to the rest of your cluster.
As a simple example here, this would include making sure that
management secrets are not readable by worker nodes or their network.

Exploring the Largest-Scale Deployments Chapter 9

[256]

Reactive auto-scaling
With automated self-configuration implemented, we can start looking even bigger by
starting the instances automatically. If you remember auto-scaling groups from earlier
chapters, even that can be automated in most cloud offerings. By using launch
configurations and pre-configured images, like the ones we just talked about, adding or
removing nodes with this setup would be as easy as dialing the desired nodes setting. The
auto-scaling group would increase or decrease the worker instance count and because the
images are self-configuring, that would be the full extent of input needed from you. With
such a simple input, you can make scaling changes to your infrastructure extremely easy
and done through many different ways.

Something to consider here as an even further step in automation is that with some cloud
providers you can trigger these actions in your auto-scaling groups based on their metrics
or even a cron-like schedule as well. In principle, if you have increased load on your cluster
you could trigger a node count increase, and conversely, if the load on either the cluster or
an individual node drops below a pre-defined value you can activate a service drain and
shutdown of a fraction of your nodes to scale the system as needed. For periodic but
predictable demand variations (see https:/ ​/​en.​wikipedia. ​org/ ​wiki/ ​Internet_ ​Rush_ ​Hour
for more info), the scheduled scaling changes we mentioned can make sure that you have
enough resources to handle the expected demand.

Predictive auto-scaling
If you manually dial up and down the node counts and auto-scale on schedule or metric
triggers, you still will have some issues bringing up services you need at exactly the time
you want them to run since services take a bit of time to get online, self-configure, and start
getting propagated to various load balancers in your network. With that type of
architecture, it is likely that your users will be the one discovering that you do not have
enough capacity and your system then reacting to compensate. If you are really striving for
all-out best user experience from your services sometimes you may also need to add one
more layer to your auto-scaling triggers that can predict when your service will need more
resources before they are even actually needed, aptly called predictive scaling.

https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour
https://en.wikipedia.org/wiki/Internet_Rush_Hour

Exploring the Largest-Scale Deployments Chapter 9

[257]

In extremely broad terms, what you would do to add this predictive layer to your
infrastructure is to funnel some fraction of your metrics collected over the last x amount of
time to a machine learning (ML) tool such as TensorFlow (https:/ ​/ ​www.​tensorflow. ​org/​)
and generate a training set that would be able to make the tooling you are using able to
predict with some certainty whether you will need more nodes or not. By using this
method, your services can scale before they will even be needed to do so (!) and in a much
smarter way than simple schedule-based approaches. Systems such as these are pretty
difficult to integrate properly into your pipeline, but if you are working on global scales
with crazy throughput and simple reactive auto-scaling comes up short, it is an avenue
possibly worth exploring.

Training set in machine learning means just a set of training data (in our
case it would be a chunk of our long-term metrics) that you can use to
teach a neural network about how to correctly predict the demand that
you will need.

Like many of the topics in recent chapters, there are actual books written
on this material (machine learning) that would eclipse the content of this
one by volume many times over and would provide only marginal utility
for you here. If you would like to learn more about machine learning in
detail, this Wikipedia page has a good primer on it at https:/ ​/​en.
wikipedia. ​org/ ​wiki/ ​Machine_ ​learning and you can give TensorFlow a
whirl at https:/ ​/​www. ​tensorflow. ​org/​get_ ​started/ ​get_ ​started.

In the end, if you manage to implement some or all of these techniques together, you will
barely need any interventions with your clusters to handle scaling in either direction. As an
added bonus to being able to sleep soundly, you will also save resources since you will be
able to closely match your processing resources with the actual usage of your services
making you, your budget, and your users all happy.

Monitoring
Any service that you rely on in your service delivery should ideally have a way to notify
you if something has gone wrong with it, and I do not mean user feedback here. Most
service development nowadays is moving at incredible speeds and monitoring is one of
those things like backups that most developers do not think about until something
catastrophic happens, so it is something that we should cover a little bit. The big question
that really should determine how you approach this topic is if your users can handle the
downtimes that you will not see without monitoring.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started

Exploring the Largest-Scale Deployments Chapter 9

[258]

Most tiny services might be OK with some outages, but for everything else, this would be at
a bare minimum a couple of angry emails from users and at worst your company losing a
huge percentage of your users, so monitoring at all scales is greatly encouraged.

While it is true that monitoring is maybe considered one of those boring pieces of your
infrastructure to implement, having a way to gain insights into what your cloud is doing at
all times is an absolutely essential part of managing the multitude of disparate systems and
services. By adding monitoring to your Key Performance Indicators (KPIs) you can ensure
that, as a whole, your system is performing as expected and by adding triggers to your
critical monitoring targets you can be instantly alerted to any activity that can potentially
impact your users. Having these type of insights into the infrastructure can both help
reduce user turnover and drive better business decisions.

As we worked through our examples, you may have already come up with ideas of what
you would monitor, but here are some common ones that consistently pop up as the most
useful ones:

Node RAM utilization: If you notice that your nodes aren't using all the RAM
allocated, you can move to smaller ones and vice versa. This generally gets less
useful if you use memory-constrained Docker containers, but it is still a good
metric to keep as you want to make sure you never hit a system-level max
memory utilization on a node or your containers will run with much slower swap
instead.
Node CPU utilization: You can see from this metric if your service density is too
low or too high or if there are spikes in service demands.
Node unexpected terminations: This one is good to track to ensure that your
CI/CD pipeline is not creating bad images, that your configuration services are
online, and a multitude of other issues that could take down your services.
Service unexpected terminations: Finding out why a service is unexpectedly
terminating is critical to ironing out bugs out of any system. Seeing an increase or
a decrease in this value can be good indicators of codebase quality though they
can also indicate a multitude of other problems, both internal and external to
your infrastructure.
Messaging queue sizes: We covered this in a bit of detail before but ballooning
queue sizes indicate that your infrastructure is unable to process data as quickly
as it is generated, so this metric is always good to have.

Exploring the Largest-Scale Deployments Chapter 9

[259]

Connection throughputs: Knowing exactly how much data you are dealing with
can be a good indicator of service load. Comparing this to other collected stats
can also tell you if the problems you are seeing are internally or externally
caused.
Service latencies: Just because there are no failures does not mean that the
service is unusable. By tracking latencies you can see in detail what could use
improving or what is not performing to your expectations.
Kernel panics: Rare but extremely deadly, kernel panics can be a really
disruptive force on your deployed services. Even though it is pretty tricky to
monitor these, keeping track of kernel panics will alert you if there is an
underlying kernel or hardware problem that you will need to start addressing.

This obviously is not an exhaustive list, but it covers some of the more useful ones. As you
develop your infrastructure, you will find that adding monitoring everywhere leads to
better turnarounds on issues and discovery of scalability bugs with your services. So once
you have monitoring added to your infrastructure, don't be afraid to plug it into as many
pieces of your system that you can. At the end of the day, by gaining visibility and
transparency of your whole infrastructure through monitoring, you can make wiser
decisions and build better services, which is exactly what we want.

Evaluating next-gen technologies
Something that I personally have been feeling has been left out of most documentation and
learning material about containers (and most other tech topics) is proper evaluation and
risk assessment of emerging technologies. While the risk of choosing a fundamentally
flawed music player is trivial, choosing a fundamentally flawed cloud technology could tie
you up in years of pain and development that you would otherwise not have needed. With
the speed of tooling creation and development in the cloud space increasing at break-neck
speed, good evaluation techniques are something that you might want to have in your
toolbox of skills as they can save you effort, time, and money in the long run. Hunches are
great but having a solid, repeatable, and deterministic way of evaluating technologies is a
much more likely way to cause long-term success.

Exploring the Largest-Scale Deployments Chapter 9

[260]

Please note that while the advice given here has had a pretty good track
record for me and other people I have talked to over my career, you can
never fully predict the course that a disparate landscape of technologies
will take, especially when most tech start-ups can close their doors at a
moment's notice (i.e. ClusterHQ). So keep in mind that these are all just
points of interest and not a magical list that will make the most common
problems with choosing technologies disappear.

Technological needs
This should be a pretty obvious one, but it needs to be written down. If you have a need for
a feature that is provided by a tool that you do not want to develop in-house, you will not
have much of a choice but to go with it and hope for the best. Luckily, in most cloud
technologies and the tooling modules that supports them, there are usually at least two
competing options fighting for the same users so things are not as dire as they may seem
today even though just a single year back almost everything in this space had a version
number below 1.0. As you evaluate how competing tools fit your needs, also keep in mind
that not every tool is geared towards the same purpose even if they solve the same issues. If
we take an example of current Kubernetes versus Marathon, even though they can both be
used to solve the same service deployment problems, Kubernetes is mostly geared towards
that single purpose but Marathon, for example, can also be used to do scheduling and
cluster management as an additional functionality so we are in the proverbial sense really
comparing apples and oranges.

In broad strokes, your service infrastructure needs will drive your tooling needs so you will
not often end up dealing with your favorite programming language, having easy
integration points, or working with a sane tooling codebase, but integrating a tool that will
save you hundreds or thousands of man-hours is something not to be taken lightly.
Sometimes it might be possible to completely skirt around a technological requirement by
changing pieces of your system's architecture to avoid adding complexity to the system, but
in my personal experience this was almost never easy to do so your mileage may vary.

Exploring the Largest-Scale Deployments Chapter 9

[261]

Popularity
This is probably the most controversial dimension to consider, but also one of the most
important ones to pay attention to when dealing with new technologies. While it is
absolutely true that popularity does not equate to technical merit, it can be assumed that:

More people using a particular tool will be able to provide better integration help.
Solutions to problems will be easier to find.
If the codebase is open source, the project will be more likely to have fixes and
features added to it.

In another way of describing the problem, can you afford to risk weeks/months/years of
integration work on a tool that is unproven or on track to be abandoned in the next couple
of years? If you are a really big shop with massive budgets this might not be an issue but in
most cases, you will not have the opportunity to play with integrating different competing
technologies to see which one is the best. While there are times that there are perfectly valid
cases where taking a calculated chance with a new tool is warranted and desired, in the
majority of cases due to the sheer complexity and longevity of cloud systems the cost of
failure is extremely high, so a pragmatic approach is generally recommended but your
individual requirements may vary, so choose accordingly.

To evaluate this aspect of a project there is a variety of tooling that can be used, but the
simplest and the easiest are the GitHub project forks/stars (for OSS projects), Google Trends
(https:/​/​trends.​google. ​com) projections, and general social media feedback from people
that have used said technology. By looking at movements and shifts in these values,
extrapolation of long-term viability can be made with a relatively good accuracy and
combined together with comparisons against existing tooling can create a good picture of
the general pulse of a project as well. Upwardly-mobile projects generally have been
indicative of superior technological base but in some cases, this was spurred by rejection of
existing tooling or a big marketing push, so don't always think the popular option is better
when evaluating a tool.

https://trends.google.com
https://trends.google.com
https://trends.google.com
https://trends.google.com
https://trends.google.com
https://trends.google.com
https://trends.google.com
https://trends.google.com
https://trends.google.com

Exploring the Largest-Scale Deployments Chapter 9

[262]

In the preceding screenshot, you can see a distinct increase over time in interest in
Kubernetes that somewhat mirrors community adoption and acceptance of that
orchestration tooling. If we were to implement this technology ourselves, we could be
reasonably sure that for some period of time that we would be using a tool that will be
easier to work with and get support for.

Exploring the Largest-Scale Deployments Chapter 9

[263]

When comparing Kubernetes against Marathon and using the same technique, things get
very messy as Marathon is also a very common long-distance running activity, so the
results get muddled with unrelated Google queries. In the following screenshot, we
overlaid the results versus a couple of other cloud-related keywords and you can see that
there's something wrong with our data:

Exploring the Largest-Scale Deployments Chapter 9

[264]

However, taking a look at the top-right side of their GitHub pages and the forks/stars we
can see how they compare (3,483 stars and 810 forks versus 28,444 stars and 10,167 forks):

Compare the preceding GitHub page with the following page:

In this particular example, though, it is very hard to see long-term trends and we've
mentioned that these two do not solve the same kind of problems, on top of which these
two tools have vastly different setup complexity, so proper evaluation is really difficult.

Something that is really important that we should mention before moving on to the next
dimension: a common and highly-recommended risk mitigation for immature tooling (this
scenario is much more likely than you might think) is that your own developers can be used
to fix bugs and add features to relevant upstream projects if they are capable and allowed to
work on them. If a tool is such a good fit for your infrastructure and you can throw
development resources behind it, it will not make much of a difference if it is popular or not
as long as you can make it work for you in the way that you are satisfied with.

Exploring the Largest-Scale Deployments Chapter 9

[265]

As a reference data point, countless times during the development of
cloud implementations, the teams that I worked on have found bugs and
issues in upstream projects that we fixed rather quickly and in the process
also helped all the other users of that software instead of potentially
waiting days or weeks for the upstream developers to make time to fix
them. I would highly encourage this type of approach to contributing back
being applied to your workplace if possible since it helps the whole
project's community and indirectly prevents loss of project momentum
due to unfixed bugs.

A team's technical competency
New tooling often has a great initial idea, but due to poor execution or architecture, it
quickly turns into spaghetti code that is un-maintainable and prone to bugs. If design and
implementation are kept to high standards, you can have a better assurance that you will
not get unexpected breakages or at least that the bugs can be easier to find and fix. The
competency of the core project developers plays a huge part in this aspect and since most of
the newer tooling is open-source, taking a look at the codebase can often be very helpful in
this respect.

It is near impossible to put exact guidelines for evaluating projects that span all sorts of
technologies and systems, but there are some red flags that should be treated as warning
signs of potential troubles in the future for the tooling that is used in critical applications:

Lack of tests: Without tests, assurance that the code works is pretty much
eliminated and you are hoping that the developer making changes was careful
enough when implementing new features and that they did not break current
functionality. I have only seen a handful of developers in my life that can be as
mindful of all the edge cases as a test harness, but I would not hold my breath
that the project you are looking into has one of them.
Clever code: From time to time, a project will have one or more developers that
are more concerned about showing their skills off than the maintainability of the
project they are working on and they will almost always turn files they touch into
code that only they can work on, causing future problems with adding features or
fixing bugs. Almost always this type of change is one-directional and after a long
enough period of time it usually ends up in the death of the project (more often
than not in my experience).

Exploring the Largest-Scale Deployments Chapter 9

[266]

A high count of critical bugs open for extended periods of time: For any project,
there will come a time where you will encounter a critical bug that must be fixed
as soon as possible, and by seeing trends in how long fixes take, you can see
whether the team is capable of quickly fixing an issue or whether it pays attention
to the wider community. While more of a subjective metric, it becomes extremely
important as the profile or security posture of your service increases.

You can also use any other metrics for evaluation such as: old and un-merged pull requests,
arbitrarily closed bug reports, and many more as long as you get the right notion of the
codebase's quality. With that knowledge in hand, you can properly evaluate what the
future might hold for your candidate tooling and how your infrastructure can evolve with
it.

Summary
And with that, we have reached the end of our book! In this chapter, we have covered
various things that you will need to take your small service and make it global through
aggressive automation, splitting things into multiple availability zones, and adding
monitoring to your infrastructure. Since cloud technologies are also relatively young, we
have more importantly included some tips on how to evaluate emerging tooling as
objectively as you can to ensure that your projects have the greatest likelihood of success
with the tooling ecosystem changes that will be common for the foreseeable future. By
assuming that things will change in the future and having the tools to handle those changes,
we can be ready to embrace anything that gets thrown at us.

Index

A
advanced networking
 about 149
 DNS configuration 151
 Docker built-in network mappings 153
 Docker communication ports 154
 overlay networks 153
 static host configuration 149
advanced security
 about 164
 Docker socket, mounting into container 164
 host security scans 166
 privileged mode, versus --cap-add 171
 privileged mode, versus --cap-drop 171
 read-only containers 168
Alpine Linux
 URL 146
Amazon EC2 AMI Locator
 URL 226
Amazon Machine Image (AMI)
 about 216, 224
 building 227
Amazon Web Service (AWS)
 about 205
 account, creating 217
 API keys, obtaining 218
 API keys, using 221
 automated infrastructure deployment 229
 deployment, executing 235
 deployments to 229
 references 217, 230
 setup 216
 tear-down playbooks, executing 235
 URL 216
AMI builder
 URL 224

Ansible module-specific documentation
 references 213
Ansible
 basics 209
 installation 208
 references 210
 URL 213, 216
 usage 210
Apache Kafka
 URL 158
Apache Marathon 91
Apache Mesos 91
application servers 56
Atomicity, Consistency, Isolation, and Durability

(ACID) 57
Availability Zones (AZ) 251
AWS CLI
 URL 221

B
Basically Available, Soft state, Eventual

consistency (BASE) 57
bin-packing problem
 URL 182
bind mounts
 about 128
 read-only bind mounts 129
blue-green deployments 201
blue-turquoise-green deployment 203
bull
 URL 159

C
cloud-based offerings
 references 92
ClusterHQ
 URL 136

[268]

Command-line Interface (CLI) 9
Community Edition (CE) 18
competitors
 about 10
 desktop application-level virtualizations 11
 rkt 10
 system-level virtualization 11
Configuration Management (CM)
 about 205, 206
 Ansible 207
 HashiCorp Packer 222
 references 206
container messaging 155
container orchestration
 about 87
 Apache Mesos/Marathon 91
 cloud-based offerings 92
 Docker Swarm 89
 Kubernetes 90
 manager node 87
 node 87
 scaling 87
 service 87
 state reconciliation 88
 task 87
 worker node 87
containerization
 considering 12
containers
 about 9
 building 38, 41
 creating 34
 custom NGINX configuration, applying 37
 debugging 27
 Docker socket, mounting 164
 executing 38, 41
 exploring 28
 extending, FROM used 36
 overview 6, 8
 patches, including 36
 security, layering with limited users 45
Continuous Delivery (CD)
 about 171, 238, 246
 circular dependency, deploying 246
 resource considerations 246

 usage 248
Continuous Integration (CI)
 about 171, 238, 246
 circular dependency, deploying 246
 resource considerations 246
 usage 248
copy-on-write (CoW) 113
CoreOS
 URL 168
cpu_shares.sh
 URL 185
custom NGINX configuration
 applying 37

D
database 57
Database as a Service (DBaaS) 13
DC/OS solution
 URL 92
debugging
 about 145
 container's process space, attaching 146
 Docker daemon 148
desktop application-level virtualizations 11
developer workflow 15
DHCP flags
 URL 151
DNS configuration
 about 151
 URL 152
Docker Bench for Security 166
Docker Cloud
 URL 116
Docker commands 53
Docker deployment 14
Docker Engine API
 URL 164
Docker Hub
 URL 21, 116
Docker image
 about 112
 Docker storage, cleaning up 124
 layering 113
 registry, executing 116
 storage driver 120

[269]

 writable COW layer(s), persisting 114
Docker Registry 247
docker run
 URL 187
Docker stack YAML files
 URL 109
Docker Swarm cluster
 cleaning up 99
 initializing 94
 services, deploying 95
 setting up 93
Docker Swarm orchestration
 application server 100
 cleaning up 111
 database 104
 deploying 105
 Docker stack 108
 dockerfile 104
 index.js 101
 start_nginx.sh 103
 web server 102
Docker Swarm
 about 89
 using, to orchestrate words service 99
Docker-in-Docker (DinD) 171
Docker
 installing 18, 27
 URL 34
 URL, for installation 18
Dockerfile commands 54
Dockerfile
 about 30
 cache, breaking 33
 URL 54, 114
Domain Name System (DNS)
 URL 84
domain-specific language (DSL) 208

E
Elastic Block Store (EBS) 224, 225
Elastic Compute Cloud (EC2) 216, 225
Enterprise Edition (EE) 18
environmental variables
 setting, with ENV 44
ephemeral ports 193

Express
 URL 66

F
First-In, First-Out (FIFO) 155
fork network
 URL 136

G
Google Trends
 URL 261
Graphical User Interfaces (GUIs) 11
group ID (GID)
 security considerations, with volumes 139

H
HashiCorp Packer
 about 222
 AMI base image, selecting 225
 AMI, building 227
 installation 222
 references 222
 URL 222
 usage 223
high availability (HA) 251
high availability pipelines
 about 154
 container messaging 155
 messaging queue, implementing 159

K
Key Performance Indicators (KPIs) 258
Kubernetes 90

L
LABEL 43
Linux capability identifiers
 URL 172
Long Term Support (LTS) 19

M
messaging queue
 dockerfile 161
 implementing 159

[270]

 index.js 159
 package.json 159
module-specific documentation
 references 214
modules
 URL 207
MongoDB driver
 URL 66
monitoring
 about 258
 connection throughputs 259
 kernel panics 259
 node CPU utilization 258
 node RAM utilization 258
 node unexpected terminations 258
 queue sizes, messaging 258
 service latencies 259
 service unexpected terminations 258
multi-service containers 196

N
named volumes 130
Network Address Translation (NAT) 195
networking 78
next-gen technologies
 evaluating 259
 popularity 261, 264
 requisites 260
 technical competency 265
NGINX
 URL 23, 35, 36
node automation
 about 254
 Predictive auto-scaling 256
 reactive auto-scaling 256
node-local storage
 about 128
 bind mounts 128
 named volumes 130
 relocatable volume sync loss 138
 relocatable volumes 132
Node
 URL 66

O
orchestration
 Docker Swarm cluster, setting up 93
 implementing 93
 Swarm, using to orchestrate word service 99
Out of Memory (OOM)
 about 246
 URL 176
overlay networks 153

P
persistent storage
 about 127
 node-local storage 128
pitfall avoidance
 about 188
 ephemeral ports 193
 file descriptors 191
 multi-service containers 196
 Netfilter tweaks 195
 socket buffers 192
 ulimits 188
Platform as a Service (PaaS) 8, 205
Pluggable Authentication Module (PAM) 190
Portainer
 URL 90
ports
 exposing 44
predictive scaling 256
principle of least privilege
 URL 173

Q
quorums
 maintaining 251, 254

R
RabbitMQ
 URL 158
RAS syndrome
 URL 224
read-only containers 168
relocatable volumes 132
REX-Ray

[271]

 URL 135
Rocket (rkt) 10

S
Salted SHA (SSHA) 60
ScatterHQ
 references 136
Service Discovery
 (un)available options, picking 86
 about 78, 81
 client-side discovery pattern 84
 Docker networking, recap 82
 exploring 82
 hybrid systems 85
 server-side discovery pattern 85
Service Level Agreement (SLA) 127
service resources
 CPU limits 184
 limiting 175
 RAM limits 176, 184
service
 application server 62
 building 57
 container security, layering with limited users 44
 creating 41
 credentials, generating at runtime 77
 critical issues, fixing 75
 current user, modifying 46
 database 61
 environment variables, setting with ENV 44
 files, adding from internet 46
 implementation, issues 74
 implementation, limitations 74
 implementing 47, 50, 58, 69
 LABEL 43
 launching 71
 local volume, using 75
 main application logic 64
 overview 55
 ports, exposing 44
 testing 72
 VOLUME directive 45
 web server 58
 working directory, setting 46
 writing 55

setuid flag
 URL 141
Shipyard
 URL 90
socket buffers 192
soft 189
Solid State Devices (SSD) 225
state reconciliation 88
static host configuration 149
storage driver
 about 120
 aufs 122
 btrfs 122
 devicemapper 124
 overlay 123
 overlay2 123
 zfs 122
supervisord
 URL 198
system-level virtualization 11
systemd services
 references 191

T
TensorFlow
 references 257
time-to-live (TTL) 85
Transport Layer Security (TLS) 19

U
user ID (UID)
 security considerations, with volumes 139

V
Virtual Private Cloud (VPC) 55, 93
Virtual Private Network (VPN) 55

W
web server
 about 58
 authentication 60

Y
YAML structure
 URL 211

Z

zero-downtime deployments
 about 198
 blue-green deployments 201
 blue-turquoise-green deployments 203
 service restarts, rolling 199

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Dedications
	Table of Contents
	Preface
	Chapter 1: Containers - Not Just Another Buzzword

	The what and why of containers
	Docker's place
	Introduction to Docker containers

	The competition
	rkt
	System-level virtualization
	Desktop application-level virtualizations

	When should containerization be considered?
	The ideal Docker deployment
	The container mindset
	The developer workflow

	Summary

	Chapter 2: Rolling Up the Sleeves

	Installing Docker
	Debugging containers
	Seeing what the container sees

	Our first Dockerfile
	Breaking the cache

	A container more practical
	Extending another container with FROM
	Ensuring the latest patches are included
	Applying our custom NGINX configuration
	Building and running

	Service from scratch
	Labels
	Setting environment variables with ENV
	Exposing ports
	Container security layering with limited users
	VOLUMEs and data that lives outside of the container
	Setting the working directory
	Adding files from the internet
	Changing the current user
	Putting it all together

	Summary

	Chapter 3: Service Decomposition

	A quick review
	Docker commands
	Dockerfile commands

	Writing a real service
	An overview
	What we are going to build
	The implementation
	Web server
	Authentication

	The database
	The application server
	The main application logic

	Running it all together
	Launching
	Testing

	Limitations and issues with our implementation
	Fixing the critical issues
	Using a local volume
	Generating the credentials at runtime

	Introducing Docker networking
	Summary

	Chapter 4: Scaling the Containers

	Service discovery
	A recap of Docker networking
	Service Discovery in depth
	Client-side discovery pattern
	Server-side discovery pattern
	Hybrid systems
	Picking the (un)available options

	Container orchestration
	State reconciliation
	Docker Swarm
	Kubernetes
	Apache Mesos/Marathon
	Cloud-based offerings

	Implementing orchestration
	Setting up a Docker Swarm cluster
	Initializing a Docker Swarm cluster
	Deploying services
	Cleaning up

	Using Swarm to orchestrate our words service
	The application server
	index.js

	The web server
	Database
	Deploying it all
	The Docker stack
	Clean up

	Summary

	Chapter 5: Keeping the Data Persistent

	Docker image internals
	How images are layered
	Persisting the writable CoW layer(s)

	Running your own image registry
	Underlying storage driver
	aufs
	btrfs / zfs
	overlay and overlay2
	devicemapper

	Cleanup of Docker storage
	Manual cleanup
	Automatic cleanup

	Persistent storage
	Node-local storage
	Bind mounts
	Read-only bind mounts

	Named volumes
	Relocatable volumes
	Relocatable volume sync loss

	UID/GID and security considerations with volumes
	Summary

	Chapter 6: Advanced Deployment Topics

	Advanced debugging
	Attaching to a container's process space
	Debugging the Docker daemon

	Advanced networking
	Static host configuration
	DNS configuration
	Overlay networks
	Docker built-in network mappings
	Docker communication ports

	High availability pipelines
	Container messaging
	Implementing our own messaging queue
	package.json
	index.js
	Dockerfile

	Advanced security
	Mounting the Docker socket into the container
	Host security scans
	Read-only containers
	Base system (package) updates
	Privileged mode versus --cap-add and --cap-drop

	Summary

	Chapter 7: The Limits of Scaling and the Workarounds

	Limiting service resources
	RAM limits
	CPU limits

	Pitfall avoidance
	ulimits
	Max file descriptors
	Socket buffers
	Ephemeral ports
	Netfilter tweaks
	Multi-service containers

	Zero-downtime deployments
	Rolling service restarts
	Blue-green deployments
	Blue-turquoise-green deployments

	Summary

	Chapter 8: Building Our Own Platform

	Configuration management
	Ansible
	Installation
	Basics
	Usage

	Amazon Web Services setup
	Creating an account
	Getting API keys
	 Using the API keys

	HashiCorp Packer
	Installation
	Usage
	Choosing the right AMI base image

	Building the AMI

	Deployments to AWS
	The road to automated infrastructure deployment
	Running the deployment and tear-down playbooks

	Continuous integration/Continuous delivery
	Resource considerations
	First-deploy circular dependency
	Further generic CI/CD uses

	Summary

	Chapter 9: Exploring the Largest-Scale Deployments

	Maintaining quorums
	Node automation
	Reactive auto-scaling
	Predictive auto-scaling

	Monitoring
	Evaluating next-gen technologies
	Technological needs
	Popularity
	A team's technical competency

	Summary

	Index
	Humble bundle_CDP.pdf
	Table of Contents
	Test
	Index

