
Shannon Bradshaw, Eoin Brazil
& Kristina Chodorow

MongoDB
 The Defi nitive Guide
Powerful and Scalable Data Storage

MongoDB
 The Defi nitive Guide

Third
Edition

Shannon Bradshaw, Eoin Brazil

Powerful and Scalable Data Storage

Shannon Bradshaw, Eoin Brazil, and
Kristina Chodorow

MongoDB: The Definitive Guide
Powerful and Scalable Data Storage

THIRD EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95446-1

[LSI]

MongoDB: The Definitive Guide
by Shannon Bradshaw, Eoin Brazil, and Kristina Chodorow

Copyright © 2020 Shannon Bradshaw and Eoin Brazil. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Nicole Taché
Production Editor: Kristen Brown
Copyeditor: Rachel Head
Proofreader: Christina Edwards

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2010: First Edition
May 2013: Second Edition
December 2019: Third Edition

Revision History for the Third Edition
2019-12-09: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491954461 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. MongoDB: The Definitive Guide, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491954461

This book is dedicated to our families for the time, space, and support they provided to
make our work on this book possible and for their love.

For Anna, Sigourney, Graham, and Beckett. —Shannon

And for Gemma, Clodagh, and Bronagh. —Eoin

Table of Contents

Preface. xv

Part I. Introduction to MongoDB

1. Introduction. 3
Ease of Use 3
Designed to Scale 4
Rich with Features… 5
…Without Sacrificing Speed 6
The Philosophy 6

2. Getting Started. 7
Documents 7
Collections 8

Dynamic Schemas 8
Naming 9

Databases 10
Getting and Starting MongoDB 11
Introduction to the MongoDB Shell 13

Running the Shell 13
A MongoDB Client 14
Basic Operations with the Shell 14

Data Types 16
Basic Data Types 16
Dates 18

v

Arrays 19
Embedded Documents 19
_id and ObjectIds 20

Using the MongoDB Shell 22
Tips for Using the Shell 22
Running Scripts with the Shell 23
Creating a .mongorc.js 25
Customizing Your Prompt 26
Editing Complex Variables 27
Inconvenient Collection Names 28

3. Creating, Updating, and Deleting Documents. 29
Inserting Documents 29

insertMany 29
Insert Validation 32
insert 33

Removing Documents 33
drop 34

Updating Documents 35
Document Replacement 35
Using Update Operators 37
Upserts 46
Updating Multiple Documents 49
Returning Updated Documents 49

4. Querying. 53
Introduction to find 53

Specifying Which Keys to Return 54
Limitations 55

Query Criteria 55
Query Conditionals 55
OR Queries 56
$not 57

Type-Specific Queries 57
null 57
Regular Expressions 58
Querying Arrays 59
Querying on Embedded Documents 63

$where Queries 65
Cursors 66

vi | Table of Contents

Limits, Skips, and Sorts 67
Avoiding Large Skips 68
Immortal Cursors 70

Part II. Designing Your Application

5. Indexes. 75
Introduction to Indexes 75

Creating an Index 78
Introduction to Compound Indexes 81
How MongoDB Selects an Index 84
Using Compound Indexes 85
How $ Operators Use Indexes 104
Indexing Objects and Arrays 114
Index Cardinality 116

explain Output 116
When Not to Index 125
Types of Indexes 126

Unique Indexes 126
Partial Indexes 128

Index Administration 129
Identifying Indexes 130
Changing Indexes 130

6. Special Index and Collection Types. 133
Geospatial Indexes 133

Types of Geospatial Queries 134
Using Geospatial Indexes 136
Compound Geospatial Indexes 144
2d Indexes 144

Indexes for Full Text Search 146
Creating a Text Index 147
Text Search 148
Optimizing Full-Text Search 151
Searching in Other Languages 151

Capped Collections 151
Creating Capped Collections 154
Tailable Cursors 154

Time-To-Live Indexes 155

Table of Contents | vii

Storing Files with GridFS 156
Getting Started with GridFS: mongofiles 156
Working with GridFS from the MongoDB Drivers 157
Under the Hood 158

7. Introduction to the Aggregation Framework. 161
Pipelines, Stages, and Tunables 161
Getting Started with Stages: Familiar Operations 163
Expressions 168
$project 169
$unwind 174
Array Expressions 181
Accumulators 186

Using Accumulators in Project Stages 186
Introduction to Grouping 187

The _id Field in Group Stages 192
Group Versus Project 195

Writing Aggregation Pipeline Results to a Collection 198

8. Transactions. 199
Introduction to Transactions 199

A Definition of ACID 200
How to Use Transactions 200
Tuning Transaction Limits for Your Application 205

Timing and Oplog Size Limits 205

9. Application Design. 207
Schema Design Considerations 207

Schema Design Patterns 208
Normalization Versus Denormalization 211

Examples of Data Representations 212
Cardinality 216
Friends, Followers, and Other Inconveniences 216

Optimizations for Data Manipulation 219
Removing Old Data 219

Planning Out Databases and Collections 220
Managing Consistency 221
Migrating Schemas 222
Managing Schemas 223
When Not to Use MongoDB 223

viii | Table of Contents

Part III. Replication

10. Setting Up a Replica Set. 227
Introduction to Replication 227
Setting Up a Replica Set, Part 1 228
Networking Considerations 229
Security Considerations 230
Setting Up a Replica Set, Part 2 230
Observing Replication 233
Changing Your Replica Set Configuration 238
How to Design a Set 241

How Elections Work 243
Member Configuration Options 244

Priority 244
Hidden Members 245
Election Arbiters 246
Building Indexes 247

11. Components of a Replica Set. 249
Syncing 249

Initial Sync 251
Replication 253
Handling Staleness 253

Heartbeats 253
Member States 254

Elections 255
Rollbacks 255

When Rollbacks Fail 259

12. Connecting to a Replica Set from Your Application. 261
Client−to−Replica Set Connection Behavior 261
Waiting for Replication on Writes 263

Other Options for “w” 265
Custom Replication Guarantees 265

Guaranteeing One Server per Data Center 265
Guaranteeing a Majority of Nonhidden Members 267
Creating Other Guarantees 267

Sending Reads to Secondaries 268
Consistency Considerations 268

Table of Contents | ix

Load Considerations 269
Reasons to Read from Secondaries 269

13. Administration. 271
Starting Members in Standalone Mode 271
Replica Set Configuration 272

Creating a Replica Set 272
Changing Set Members 273
Creating Larger Sets 274
Forcing Reconfiguration 274

Manipulating Member State 275
Turning Primaries into Secondaries 275
Preventing Elections 275

Monitoring Replication 275
Getting the Status 276
Visualizing the Replication Graph 279
Replication Loops 280
Disabling Chaining 281
Calculating Lag 281
Resizing the Oplog 282
Building Indexes 283
Replication on a Budget 285

Part IV. Sharding

14. Introduction to Sharding. 289
What Is Sharding? 289

Understanding the Components of a Cluster 290
Sharding on a Single-Machine Cluster 291

15. Configuring Sharding. 303
When to Shard 303
Starting the Servers 304

Config Servers 304
The mongos Processes 305
Adding a Shard from a Replica Set 306
Adding Capacity 310
Sharding Data 310

How MongoDB Tracks Cluster Data 311

x | Table of Contents

Chunk Ranges 312
Splitting Chunks 314

The Balancer 316
Collations 317
Change Streams 317

16. Choosing a Shard Key. 319
Taking Stock of Your Usage 319
Picturing Distributions 320

Ascending Shard Keys 320
Randomly Distributed Shard Keys 323
Location-Based Shard Keys 325

Shard Key Strategies 327
Hashed Shard Key 327
Hashed Shard Keys for GridFS 328
The Firehose Strategy 329
Multi-Hotspot 330

Shard Key Rules and Guidelines 334
Shard Key Limitations 334
Shard Key Cardinality 334

Controlling Data Distribution 334
Using a Cluster for Multiple Databases and Collections 335
Manual Sharding 336

17. Sharding Administration. 339
Seeing the Current State 339

Getting a Summary with sh.status() 339
Seeing Configuration Information 341

Tracking Network Connections 348
Getting Connection Statistics 348
Limiting the Number of Connections 354

Server Administration 356
Adding Servers 356
Changing Servers in a Shard 356
Removing a Shard 356

Balancing Data 359
The Balancer 360
Changing Chunk Size 361
Moving Chunks 362
Jumbo Chunks 364

Table of Contents | xi

Refreshing Configurations 367

Part V. Application Administration

18. Seeing What Your Application Is Doing. 371
Seeing the Current Operations 371

Finding Problematic Operations 374
Killing Operations 375
False Positives 375
Preventing Phantom Operations 375

Using the System Profiler 376
Calculating Sizes 379

Documents 379
Collections 380
Databases 385

Using mongotop and mongostat 386

19. An Introduction to MongoDB Security. 389
MongoDB Authentication and Authorization 389

Authentication Mechanisms 389
Authorization 390
Using x.509 Certificates to Authenticate Both Members and Clients 392

A Tutorial on MongoDB Authentication and Transport Layer Encryption 395
Establish a CA 395
Generate and Sign Member Certificates 400
Generate and Sign Client Certificates 401
Bring Up the Replica Set Without Authentication and

Authorization Enabled 401
Create the Admin User 402
Restart the Replica Set with Authentication and Authorization Enabled 403

20. Durability. 405
Durability at the Member Level Through Journaling 405
Durability at the Cluster Level Using Write Concern 407

The w and wtimeout Options for writeConcern 407
The j (Journaling) Option for writeConcern 408

Durability at a Cluster Level Using Read Concern 408
Durability of Transactions Using a Write Concern 409
What MongoDB Does Not Guarantee 410

xii | Table of Contents

Checking for Corruption 410

Part VI. Server Administration

21. Setting Up MongoDB in Production. 415
Starting from the Command Line 415

File-Based Configuration 419
Stopping MongoDB 420
Security 421

Data Encryption 422
SSL Connections 423

Logging 423

22. Monitoring MongoDB. 425
Monitoring Memory Usage 425

Introduction to Computer Memory 426
Tracking Memory Usage 426
Tracking Page Faults 427
I/O Wait 429

Calculating the Working Set 429
Some Working Set Examples 431

Tracking Performance 431
Tracking Free Space 433
Monitoring Replication 433

23. Making Backups. 437
Backup Methods 437
Backing Up a Server 438

Filesystem Snapshot 438
Copying Data Files 442
Using mongodump 443

Specific Considerations for Replica Sets 446
Specific Considerations for Sharded Clusters 446

Backing Up and Restoring an Entire Cluster 447
Backing Up and Restoring a Single Shard 447

24. Deploying MongoDB. 449
Designing the System 449

Choosing a Storage Medium 449

Table of Contents | xiii

Recommended RAID Configurations 450
CPU 451
Operating System 451
Swap Space 452
Filesystem 452

Virtualization 453
Memory Overcommitting 453
Mystery Memory 453
Handling Network Disk I/O Issues 453
Using Non-Networked Disks 455

Configuring System Settings 455
Turning Off NUMA 455
Setting Readahead 457
Disabling Transparent Huge Pages (THP) 458
Choosing a Disk Scheduling Algorithm 458
Disabling Access Time Tracking 459
Modifying Limits 460

Configuring Your Network 461
System Housekeeping 462

Synchronizing Clocks 462
The OOM Killer 463
Turn Off Periodic Tasks 463

A. Installing MongoDB. 465

B. MongoDB Internals. 469

Index. 475

xiv | Table of Contents

Preface

How This Book Is Organized
This book is split up into six sections, covering development, administration, and
deployment information.

Getting Started with MongoDB
In Chapter 1 we provide background on MongoDB: why it was created, the goals it is
trying to accomplish, and why you might choose to use it for a project. We go into
more detail in Chapter 2, which provides an introduction to the core concepts and
vocabulary of MongoDB. Chapter 2 also provides a first look at working with Mon‐
goDB, getting you started with the database and the shell. The next two chapters
cover the basic material that developers need to know to work with MongoDB. In
Chapter 3, we describe how to perform those basic write operations, including how to
do them with different levels of safety and speed. Chapter 4 explains how to find
documents and create complex queries. This chapter also covers how to iterate
through results and gives options for limiting, skipping, and sorting results.

Developing with MongoDB
Chapter 5 covers what indexing is and how to index your MongoDB collections.
Chapter 6 explains how to use several special types of indexes and collections. Chap‐
ter 7 covers a number of techniques for aggregating data with MongoDB, including
counting, finding distinct values, grouping documents, the aggregation framework,
and writing these results to a collection. Chapter 8 introduces transactions: what they
are, how best to use them for your application, and how to tune. Finally, this section
finishes with a chapter on designing your application: Chapter 9 goes over tips for
writing an application that works well with MongoDB.

xv

Replication
The replication section starts with Chapter 10, which gives you a quick way to set up
a replica set locally and covers many of the available configuration options. Chap‐
ter 11 then covers the various concepts related to replication. Chapter 12 shows how
replication interacts with your application and Chapter 13 covers the administrative
aspects of running a replica set.

Sharding
The sharding section starts in Chapter 14 with a quick local setup. Chapter 15 then
gives an overview of the components of the cluster and how to set them up. Chap‐
ter 16 has advice on choosing a shard key for a variety of applications. Finally, Chap‐
ter 17 covers administering a sharded cluster.

Application Administration
The next two chapters cover many aspects of MongoDB administration from the per‐
spective of your application. Chapter 18 discusses how to introspect what MongoDB
is doing. Chapter 19 covers security in MongoDb and how to configure authentica‐
tion as well as authorization for your deployment. Chapter 20 explains how Mon‐
goDB stores data durably.

Server Administration
The final section is focused on server administration. Chapter 21 covers common
options when starting and stopping MongoDB. Chapter 22 discusses what to look for
and how to read stats when monitoring. Chapter 23 describes how to take and restore
backups for each type of deployment. Finally, Chapter 24 discusses a number of sys‐
tem settings to keep in mind when deploying MongoDB.

Appendixes
Appendix A explains MongoDB’s versioning scheme and how to install it on Win‐
dows, OS X, and Linux. Appendix B details how MongoDB works internally: its stor‐
age engine, data format, and wire protocol.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, collection names, database names,
filenames, and file extensions.

xvi | Preface

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, command-line utilities, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/mongodb-the-definitive-guide-3e/mongodb-the-definitive-guide-3e.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of

Preface | xvii

https://github.com/mongodb-the-definitive-guide-3e/mongodb-the-definitive-guide-3e
mailto:bookquestions@oreilly.com

example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “MongoDB: The Defini‐
tive Guide, Third Edition by Shannon Bradshaw, Eoin Brazil, and Kristina Chodorow
(O’Reilly). Copyright 2020 Shannon Bradshaw and Eoin Brazil, 978-1-491-95446-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/mongoDB_TDG_3e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

xviii | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://www.oreilly.com
https://oreil.ly/mongoDB_TDG_3e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xix

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Introduction to MongoDB

CHAPTER 1

Introduction

MongoDB is a powerful, flexible, and scalable general-purpose database. It combines
the ability to scale out with features such as secondary indexes, range queries, sorting,
aggregations, and geospatial indexes. This chapter covers the major design decisions
that made MongoDB what it is.

Ease of Use
MongoDB is a document-oriented database, not a relational one. The primary reason
for moving away from the relational model is to make scaling out easier, but there are
some other advantages as well.

A document-oriented database replaces the concept of a “row” with a more flexible
model, the “document.” By allowing embedded documents and arrays, the document-
oriented approach makes it possible to represent complex hierarchical relationships
with a single record. This fits naturally into the way developers in modern object-
oriented languages think about their data.

There are also no predefined schemas: a document’s keys and values are not of fixed
types or sizes. Without a fixed schema, adding or removing fields as needed becomes
easier. Generally, this makes development faster as developers can quickly iterate. It is
also easier to experiment. Developers can try dozens of models for the data and then
choose the best one to pursue.

3

Designed to Scale
Dataset sizes for applications are growing at an incredible pace. Increases in available
bandwidth and cheap storage have created an environment where even small-scale
applications need to store more data than many databases were meant to handle. A
terabyte of data, once an unheard-of amount of information, is now commonplace.

As the amount of data that developers need to store grows, developers face a difficult
decision: how should they scale their databases? Scaling a database comes down to
the choice between scaling up (getting a bigger machine) or scaling out (partitioning
data across more machines). Scaling up is often the path of least resistance, but it has
drawbacks: large machines are often very expensive, and eventually a physical limit is
reached where a more powerful machine cannot be purchased at any cost. The alter‐
native is to scale out: to add storage space or increase throughput for read and write
operations, buy additional servers, and add them to your cluster. This is both cheaper
and more scalable; however, it is more difficult to administer a thousand machines
than it is to care for one.

MongoDB was designed to scale out. The document-oriented data model makes it
easier to split data across multiple servers. MongoDB automatically takes care of bal‐
ancing data and load across a cluster, redistributing documents automatically and
routing reads and writes to the correct machines, as shown in Figure 1-1.

Figure 1-1. Scaling out MongoDB using sharding across multiple servers

The topology of a MongoDB cluster, or whether there is in fact a cluster rather than a
single node at the other end of a database connection, is transparent to the applica‐
tion. This allows developers to focus on programming the application, not scaling it.

4 | Chapter 1: Introduction

Likewise, if the topology of an existing deployment needs to change in order to, for
example, scale to support greater load, the application logic can remain the same.

Rich with Features…
MongoDB is a general-purpose database, so aside from creating, reading, updating,
and deleting data, it provides most of the features you would expect from a database
management system and many others that set it apart. These include:

Indexing
MongoDB supports generic secondary indexes and provides unique, compound,
geospatial, and full-text indexing capabilities as well. Secondary indexes on hier‐
archical structures such as nested documents and arrays are also supported and
enable developers to take full advantage of the ability to model in ways that best
suit their applications.

Aggregation
MongoDB provides an aggregation framework based on the concept of data pro‐
cessing pipelines. Aggregation pipelines allow you to build complex analytics
engines by processing data through a series of relatively simple stages on the
server side, taking full advantage of database optimizations.

Special collection and index types
MongoDB supports time-to-live (TTL) collections for data that should expire at a
certain time, such as sessions and fixed-size (capped) collections, for holding
recent data, such as logs. MongoDB also supports partial indexes limited to only
those documents matching a criteria filter in order to increase efficiency and
reduce the amount of storage space required.

File storage
MongoDB supports an easy-to-use protocol for storing large files and file
metadata.

Some features common to relational databases are not present in MongoDB, notably
complex joins. MongoDB supports joins in a very limited way through use of the
$lookup aggregation operator introduced in the 3.2 release. In the 3.6 release, more
complex joins are possible using multiple join conditions as well as unrelated subqu‐
eries. MongoDB’s treatment of joins were architectural decisions to allow for greater
scalability, because both of those features are difficult to provide efficiently in a dis‐
tributed system.

Rich with Features… | 5

…Without Sacrificing Speed
Performance is a driving objective for MongoDB, and has shaped much of its design.
It uses opportunistic locking in its WiredTiger storage engine to maximize concur‐
rency and throughput. It uses as much RAM as it can as its cache and attempts to
automatically choose the correct indexes for queries. In short, almost every aspect of
MongoDB was designed to maintain high performance.

Although MongoDB is powerful, incorporating many features from relational sys‐
tems, it is not intended to do everything that a relational database does. For some
functionality, the database server offloads processing and logic to the client side (han‐
dled either by the drivers or by a user’s application code). Its maintenance of this
streamlined design is one of the reasons MongoDB can achieve such high
performance.

The Philosophy
Throughout this book, we will take the time to note the reasoning or motivation
behind particular decisions made in the development of MongoDB. Through those
notes we hope to share the philosophy behind MongoDB. The best way to summarize
the MongoDB project, however, is by referencing its main focus—to create a full-
featured data store that is scalable, flexible, and fast.

6 | Chapter 1: Introduction

CHAPTER 2

Getting Started

MongoDB is powerful but easy to get started with. In this chapter we’ll introduce
some of the basic concepts of MongoDB:

• A document is the basic unit of data for MongoDB and is roughly equivalent to a
row in a relational database management system (but much more expressive).

• Similarly, a collection can be thought of as a table with a dynamic schema.
• A single instance of MongoDB can host multiple independent databases, each of

which contains its own collections.
• Every document has a special key, "_id", that is unique within a collection.
• MongoDB is distributed with a simple but powerful tool called the mongo shell.

The mongo shell provides built-in support for administering MongoDB instances
and manipulating data using the MongoDB query language. It is also a fully func‐
tional JavaScript interpreter that enables users to create and load their own
scripts for a variety of purposes.

Documents
At the heart of MongoDB is the document: an ordered set of keys with associated val‐
ues. The representation of a document varies by programming language, but most
languages have a data structure that is a natural fit, such as a map, hash, or dictionary.
In JavaScript, for example, documents are represented as objects:

{"greeting" : "Hello, world!"}

This simple document contains a single key, "greeting", with a value of "Hello,
world!". Most documents will be more complex than this simple one and often will
contain multiple key/value pairs:

7

{"greeting" : "Hello, world!", "views" : 3}

As you can see, values in documents are not just “blobs.” They can be one of several
different data types (or even an entire embedded document—see “Embedded Docu‐
ments” on page 19). In this example the value for "greeting" is a string, whereas the
value for "views" is an integer.

The keys in a document are strings. Any UTF-8 character is allowed in a key, with a
few notable exceptions:

• Keys must not contain the character \0 (the null character). This character is
used to signify the end of a key.

• The . and $ characters have some special properties and should be used only in
certain circumstances, as described in later chapters. In general, they should be
considered reserved, and drivers will complain if they are used inappropriately.

MongoDB is type-sensitive and case-sensitive. For example, these documents are
distinct:

{"count" : 5}
{"count" : "5"}

as are these:

{"count" : 5}
{"Count" : 5}

A final important thing to note is that documents in MongoDB cannot contain dupli‐
cate keys. For example, the following is not a legal document:

{"greeting" : "Hello, world!", "greeting" : "Hello, MongoDB!"}

Collections
A collection is a group of documents. If a document is the MongoDB analog of a row
in a relational database, then a collection can be thought of as the analog to a table.

Dynamic Schemas
Collections have dynamic schemas. This means that the documents within a single
collection can have any number of different “shapes.” For example, both of the follow‐
ing documents could be stored in a single collection:

{"greeting" : "Hello, world!", "views": 3}
{"signoff": "Good night, and good luck"}

Note that the previous documents have different keys, different numbers of keys, and
values of different types. Because any document can be put into any collection, the
question often arises: “Why do we need separate collections at all?” With no need for

8 | Chapter 2: Getting Started

separate schemas for different kinds of documents, why should we use more than one
collection? There are several good reasons:

• Keeping different kinds of documents in the same collection can be a nightmare
for developers and admins. Developers need to make sure that each query is only
returning documents adhering to a particular schema or that the application
code performing a query can handle documents of different shapes. If we’re
querying for blog posts, it’s a hassle to weed out documents containing author
data.

• It’s much faster to get a list of collections than to extract a list of the types of
documents in a collection. For example, if we had a "type" field in each docu‐
ment that specified whether the document was a “skim,” “whole,” or “chunky
monkey,” it would be much slower to find those three values in a single collection
than to have three separate collections and query the correct collection.

• Grouping documents of the same kind together in the same collection allows for
data locality. Getting several blog posts from a collection containing only posts
will likely require fewer disk seeks than getting the same posts from a collection
containing posts and author data.

• We begin to impose some structure on our documents when we create indexes.
(This is especially true in the case of unique indexes.) These indexes are defined
per collection. By putting only documents of a single type into the same collec‐
tion, we can index our collections more efficiently.

There are sound reasons for creating a schema and for grouping related types of
documents together. While not required by default, defining schemas for your appli‐
cation is good practice and can be enforced through the use of MongoDB’s documen‐
tation validation functionality and object–document mapping libraries available for
many programming languages.

Naming
A collection is identified by its name. Collection names can be any UTF-8 string, with
a few restrictions:

• The empty string ("") is not a valid collection name.
• Collection names may not contain the character \0 (the null character), because

this delineates the end of a collection name.
• You should not create any collections with names that start with system., a prefix

reserved for internal collections. For example, the system.users collection con‐
tains the database’s users, and the system.namespaces collection contains informa‐
tion about all of the database’s collections.

Collections | 9

• User-created collections should not contain the reserved character $ in their
names. The various drivers available for the database do support using $ in col‐
lection names because some system-generated collections contain it, but you
should not use $ in a name unless you are accessing one of these collections.

Subcollections
One convention for organizing collections is to use namespaced subcollections sepa‐
rated by the . character. For example, an application containing a blog might have a
collection named blog.posts and a separate collection named blog.authors. This is for
organizational purposes only—there is no relationship between the blog collection (it
doesn’t even have to exist) and its “children.”

Although subcollections do not have any special properties, they are useful and are
incorporated into many MongoDB tools. For instance:

• GridFS, a protocol for storing large files, uses subcollections to store file meta‐
data separately from content chunks (see Chapter 6 for more information about
GridFS).

• Most drivers provide some syntactic sugar for accessing a subcollection of a given
collection. For example, in the database shell, db.blog will give you the blog col‐
lection, and db.blog.posts will give you the blog.posts collection.

Subcollections are a good way to organize data in MongoDB for many use cases.

Databases
In addition to grouping documents by collection, MongoDB groups collections into
databases. A single instance of MongoDB can host several databases, each grouping
together zero or more collections. A good rule of thumb is to store all data for a single
application in the same database. Separate databases are useful when storing data for
several applications or users on the same MongoDB server.

Like collections, databases are identified by name. Database names can be any UTF-8
string, with the following restrictions:

• The empty string (“”) is not a valid database name.
• A database name cannot contain any of these characters: /, \, ., ", *, <, >, :, |, ?, $,

(a single space), or \0 (the null character). Basically, stick with alphanumeric
ASCII.

• Database names are case-insensitive.
• Database names are limited to a maximum of 64 bytes.

10 | Chapter 2: Getting Started

Historically, prior to the use of the WiredTiger storage engine, database names
became files on your filesystem. It is no longer the case. This explains why many of
the previous restrictions exist in the first place.

There are also some reserved database names, which you can access but which have
special semantics. These are as follows:

admin
The admin database plays a role in authentication and authorization. In addition,
access to this database is required for some administrative operations. See Chap‐
ter 19 for more information about the admin database.

local
This database stores data specific to a single server. In replica sets, local stores
data used in the replication process. The local database itself is never replicated.
(See Chapter 10 for more information about replication and the local database.)

config
Sharded MongoDB clusters (see Chapter 14) use the config database to store
information about each shard.

By concatenating a database name with a collection in that database you can get a
fully qualified collection name, which is called a namespace. For instance, if you are
using the blog.posts collection in the cms database, the namespace of that collection
would be cms.blog.posts. Namespaces are limited to 120 bytes in length and, in prac‐
tice, should be fewer than 100 bytes long. For more on namespaces and the internal
representation of collections in MongoDB, see Appendix B.

Getting and Starting MongoDB
To start the server, run the mongod executable in the Unix command-line environ‐
ment of your choice:

$ mongod
2016-04-27T22:15:55.871-0400 I CONTROL [initandlisten] MongoDB starting :
pid=8680 port=27017 dbpath=/data/db 64-bit host=morty
2016-04-27T22:15:55.872-0400 I CONTROL [initandlisten] db version v4.2.0
2016-04-27T22:15:55.872-0400 I CONTROL [initandlisten] git version:
34e65e5383f7ea1726332cb175b73077ec4a1b02
2016-04-27T22:15:55.872-0400 I CONTROL [initandlisten] allocator: system
2016-04-27T22:15:55.872-0400 I CONTROL [initandlisten] modules: none
2016-04-27T22:15:55.872-0400 I CONTROL [initandlisten] build environment:
2016-04-27T22:15:55.872-0400 I CONTROL [initandlisten] distarch: x86_64
2016-04-27T22:15:55.872-0400 I CONTROL [initandlisten] target_arch: x86_64
2016-04-27T22:15:55.872-0400 I CONTROL [initandlisten] options: {}
2016-04-27T22:15:55.889-0400 I JOURNAL [initandlisten]
journal dir=/data/db/journal
2016-04-27T22:15:55.889-0400 I JOURNAL [initandlisten] recover :

Getting and Starting MongoDB | 11

no journal files
present, no recovery needed
2016-04-27T22:15:55.909-0400 I JOURNAL [durability] Durability thread started
2016-04-27T22:15:55.909-0400 I JOURNAL [journal writer] Journal writer thread
started
2016-04-27T22:15:55.909-0400 I CONTROL [initandlisten]
2016-04-27T22:15:56.777-0400 I NETWORK [HostnameCanonicalizationWorker]
Starting hostname canonicalization worker
2016-04-27T22:15:56.778-0400 I FTDC [initandlisten] Initializing full-time
diagnostic data capture with directory '/data/db/diagnostic.data'
2016-04-27T22:15:56.779-0400 I NETWORK [initandlisten] waiting for connections
on port 27017

If you’re on Windows, run this:

> mongod.exe

For detailed information on installing MongoDB on your system,
see Appendix A or the appropriate installation tutorial in the Mon‐
goDB documentation.

When run with no arguments, mongod will use the default data directory, /data/db/
(or \data\db\ on the current volume on Windows). If the data directory does not
already exist or is not writable, the server will fail to start. It is important to create the
data directory (e.g., mkdir -p /data/db/) and to make sure your user has permission
to write to the directory before starting MongoDB.

On startup, the server will print some version and system information and then begin
waiting for connections. By default MongoDB listens for socket connections on port
27017. The server will fail to start if that port is not available—the most common
cause of this is another instance of MongoDB that is already running.

You should always secure your mongod instances. See Chapter 19
for more information on securing MongoDB.

You can safely stop mongod by typing Ctrl-C in the command-line-environment from
which you launched the mongod server.

For more information on starting or stopping MongoDB, see
Chapter 21.

12 | Chapter 2: Getting Started

https://oreil.ly/5WP5e

Introduction to the MongoDB Shell
MongoDB comes with a JavaScript shell that allows interaction with a MongoDB
instance from the command line. The shell is useful for performing administrative
functions, inspecting a running instance, or just exploring MongoDB. The mongo
shell is a crucial tool for using MongoDB. We’ll use it extensively throughout the rest
of the text.

Running the Shell
To start the shell, run the mongo executable:

$ mongo
MongoDB shell version: 4.2.0
connecting to: test
>

The shell automatically attempts to connect to a MongoDB server running on the
local machine on startup, so make sure you start mongod before starting the shell.

The shell is a full-featured JavaScript interpreter, capable of running arbitrary Java‐
Script programs. To illustrate this, let’s perform some basic math:

> x = 200;
200
> x / 5;
40

We can also leverage all of the standard JavaScript libraries:

> Math.sin(Math.PI / 2);
1
> new Date("20109/1/1");
ISODate("2019-01-01T05:00:00Z")
> "Hello, World!".replace("World", "MongoDB");
Hello, MongoDB!

We can even define and call JavaScript functions:

> function factorial (n) {
... if (n <= 1) return 1;
... return n * factorial(n - 1);
... }
> factorial(5);
120

Note that you can create multiline commands. The shell will detect whether the Java‐
Script statement is complete when you press Enter. If the statement is not complete,
the shell will allow you to continue writing it on the next line. Pressing Enter three
times in a row will cancel the half-formed command and get you back to the >
prompt.

Introduction to the MongoDB Shell | 13

A MongoDB Client
Although the ability to execute arbitrary JavaScript is useful, the real power of the
shell lies in the fact that it is also a standalone MongoDB client. On startup, the shell
connects to the test database on a MongoDB server and assigns this database connec‐
tion to the global variable db. This variable is the primary access point to your Mon‐
goDB server through the shell.

To see the database to which db is currently assigned, type in db and hit Enter:

> db
test

The shell contains some add-ons that are not valid JavaScript syntax but were imple‐
mented because of their familiarity to users of SQL shells. The add-ons do not pro‐
vide any extra functionality, but they are nice syntactic sugar. For instance, one of the
most important operations is selecting which database to use:

> use video
switched to db video

Now if you look at the db variable, you can see that it refers to the video database:

> db
video

Because this is a JavaScript shell, typing a variable name will cause the name to be
evaluated as an expression. The value (in this case, the database name) is then
printed.

You may access collections from the db variable. For example:

> db.movies

returns the movies collection in the current database. Now that we can access a collec‐
tion in the shell, we can perform almost any database operation.

Basic Operations with the Shell
We can use the four basic operations, create, read, update, and delete (CRUD), to
manipulate and view data in the shell.

Create

The insertOne function adds a document to a collection. For example, suppose we
want to store a movie. First, we’ll create a local variable called movie that is a Java‐
Script object representing our document. It will have the keys "title", "director",
and "year" (the year it was released):

14 | Chapter 2: Getting Started

> movie = {"title" : "Star Wars: Episode IV - A New Hope",
... "director" : "George Lucas",
... "year" : 1977}
{
 "title" : "Star Wars: Episode IV - A New Hope",
 "director" : "George Lucas",
 "year" : 1977
}

This object is a valid MongoDB document, so we can save it to the movies collection
using the insertOne method:

> db.movies.insertOne(movie)
{
 "acknowledged" : true,
 "insertedId" : ObjectId("5721794b349c32b32a012b11")
}

The movie has been saved to the database. We can see it by calling find on the
collection:

> db.movies.find().pretty()
{
 "_id" : ObjectId("5721794b349c32b32a012b11"),
 "title" : "Star Wars: Episode IV - A New Hope",
 "director" : "George Lucas",
 "year" : 1977
}

We can see that an "_id" key was added and that the other key/value pairs were saved
as we entered them. The reason for the sudden appearance of the "_id" field is
explained at the end of this chapter.

Read

find and findOne can be used to query a collection. If we just want to see one docu‐
ment from a collection, we can use findOne:

> db.movies.findOne()
{
 "_id" : ObjectId("5721794b349c32b32a012b11"),
 "title" : "Star Wars: Episode IV - A New Hope",
 "director" : "George Lucas",
 "year" : 1977
}

find and findOne can also be passed criteria in the form of a query document. This
will restrict the documents matched by the query. The shell will automatically display
up to 20 documents matching a find, but more can be fetched. (See Chapter 4 for
more information on querying.)

Introduction to the MongoDB Shell | 15

Update

If we would like to modify our post, we can use updateOne. updateOne takes (at least)
two parameters: the first is the criteria to find which document to update, and the
second is a document describing the updates to make. Suppose we decide to enable
reviews for the movie we created earlier. We’ll need to add an array of reviews as the
value for a new key in our document.

To perform the update, we’ll need to use an update operator, set:

> db.movies.updateOne({title : "Star Wars: Episode IV - A New Hope"},
... {$set : {reviews: []}})
WriteResult({"nMatched": 1, "nUpserted": 0, "nModified": 1})

Now the document has a "reviews" key. If we call find again, we can see the new
key:

> db.movies.find().pretty()
{
 "_id" : ObjectId("5721794b349c32b32a012b11"),
 "title" : "Star Wars: Episode IV - A New Hope",
 "director" : "George Lucas",
 "year" : 1977,
 "reviews" : []
}

See “Updating Documents” on page 35 for detailed information on updating
documents.

Delete

deleteOne and deleteMany permanently delete documents from the database. Both
methods take a filter document specifying criteria for the removal. For example, this
would remove the movie we just created:

> db.movies.deleteOne({title : "Star Wars: Episode IV - A New Hope"})

Use deleteMany to delete all documents matching a filter.

Data Types
The beginning of this chapter covered the basics of what a document is. Now that you
are up and running with MongoDB and can try things in the shell, this section will
dive a little deeper. MongoDB supports a wide range of data types as values in docu‐
ments. In this section, we’ll outline all the supported types.

Basic Data Types
Documents in MongoDB can be thought of as “JSON-like” in that they are conceptu‐
ally similar to objects in JavaScript. JSON is a simple representation of data: the speci‐

16 | Chapter 2: Getting Started

http://www.json.org

fication can be described in about one paragraph (the website proves it) and lists only
six data types. This is a good thing in many ways: it’s easy to understand, parse, and
remember. On the other hand, JSON’s expressive capabilities are limited because the
only types are null, boolean, numeric, string, array, and object.

Although these types allow for an impressive amount of expressivity, there are a cou‐
ple of additional types that are crucial for most applications, especially when working
with a database. For example, JSON has no date type, which makes working with
dates even more annoying than it usually is. There is a number type, but only one—
there is no way to differentiate floats and integers, never mind any distinction
between 32-bit and 64-bit numbers. There is no way to represent other commonly
used types, either, such as regular expressions or functions.

MongoDB adds support for a number of additional data types while keeping JSON’s
essential key/value–pair nature. Exactly how values of each type are represented
varies by language, but this is a list of the commonly supported types and how they
are represented as part of a document in the shell. The most common types are:

Null
The null type can be used to represent both a null value and a nonexistent field:

{"x" : null}

Boolean
There is a boolean type, which can be used for the values true and false:

{"x" : true}

Number
The shell defaults to using 64-bit floating-point numbers. Thus, these numbers
both look “normal” in the shell:

{"x" : 3.14}

{"x" : 3}

For integers, use the NumberInt or NumberLong classes, which represent 4-byte or
8-byte signed integers, respectively.

{"x" : NumberInt("3")}
{"x" : NumberLong("3")}

String
Any string of UTF-8 characters can be represented using the string type:

{"x" : "foobar"}

Date
MongoDB stores dates as 64-bit integers representing milliseconds since the Unix
epoch (January 1, 1970). The time zone is not stored:

Data Types | 17

{"x" : new Date()}

Regular expression
Queries can use regular expressions using JavaScript’s regular expression syntax:

{"x" : /foobar/i}

Array
Sets or lists of values can be represented as arrays:

{"x" : ["a", "b", "c"]}

Embedded document
Documents can contain entire documents embedded as values in a parent
document:

{"x" : {"foo" : "bar"}}

Object ID
An object ID is a 12-byte ID for documents:

{"x" : ObjectId()}

See the section “_id and ObjectIds” on page 20 for details.

There are also a few less common types that you may need, including:

Binary data
Binary data is a string of arbitrary bytes. It cannot be manipulated from the shell.
Binary data is the only way to save non-UTF-8 strings to the database.

Code
MongoDB also makes it possible to store arbitrary JavaScript in queries and
documents:

{"x" : function() { /* ... */ }}

Finally, there are a few types that are mostly used internally (or superseded by other
types). These will be described in the text as needed.

For more information on MongoDB’s data format, see Appendix B.

Dates
In JavaScript, the Date class is used for MongoDB’s date type. When creating a new
Date object, always call new Date(), not just Date(). Calling the constructor as a
function (i.e., not including new) returns a string representation of the date, not an
actual Date object. This is not MongoDB’s choice; it is how JavaScript works. If you
are not careful to always use the Date constructor, you can end up with a mishmash
of strings and dates. Strings do not match dates and vice versa, so this can cause prob‐
lems with removing, updating, querying…pretty much everything.

18 | Chapter 2: Getting Started

For a full explanation of JavaScript’s Date class and acceptable formats for the con‐
structor, see section 15.9 of the ECMAScript specification.

Dates in the shell are displayed using local time zone settings. However, dates in the
database are just stored as milliseconds since the epoch, so they have no time zone
information associated with them. (Time zone information could, of course, be stored
as the value for another key.)

Arrays
Arrays are values that can be used interchangeably for both ordered operations (as
though they were lists, stacks, or queues) and unordered operations (as though they
were sets).

In the following document, the key "things" has an array value:

{"things" : ["pie", 3.14]}

As you can see from this example, arrays can contain different data types as values (in
this case, a string and a floating-point number). In fact, array values can be any of the
supported value types for normal key/value pairs, even nested arrays.

One of the great things about arrays in documents is that MongoDB “understands”
their structure and knows how to reach inside of arrays to perform operations on
their contents. This allows us to query on arrays and build indexes using their con‐
tents. For instance, in the previous example, MongoDB can query for all documents
where 3.14 is an element of the "things" array. If this is a common query, you can
even create an index on the "things" key to improve the query’s speed.

MongoDB also allows atomic updates that modify the contents of arrays, such as
reaching into the array and changing the value "pie" to pi. We’ll see more examples
of these types of operations throughout the text.

Embedded Documents
A document can be used as the value for a key. This is called an embedded document.
Embedded documents can be used to organize data in a more natural way than just a
flat structure of key/value pairs.

For example, if we have a document representing a person and want to store that per‐
son’s address, we can nest this information in an embedded "address" document:

{
 "name" : "John Doe",
 "address" : {
 "street" : "123 Park Street",
 "city" : "Anytown",
 "state" : "NY"

Data Types | 19

http://www.ecma-international.org

 }
}

The value for the "address" key in this example is an embedded document with its
own key/value pairs for "street", "city", and "state".

As with arrays, MongoDB “understands” the structure of embedded documents and
is able to reach inside them to build indexes, perform queries, or make updates.

We’ll discuss schema design in-depth later, but even from this basic example we can
begin to see how embedded documents can change the way we work with data. In a
relational database, the previous document would probably be modeled as two sepa‐
rate rows in two different tables (people and addresses). With MongoDB we can
embed the "address" document directly within the "person" document. Thus, when
used properly, embedded documents can provide a more natural representation of
information.

The flip side of this is that there can be more data repetition with MongoDB. Suppose
addresses was a separate table in a relational database and we needed to fix a typo in
an address. When we did a join with people and addresses, we’d get the updated
address for everyone who shares it. With MongoDB, we’d need to fix the typo in each
person’s document.

_id and ObjectIds
Every document stored in MongoDB must have an "_id" key. The "_id" key’s value
can be any type, but it defaults to an ObjectId. In a single collection, every document
must have a unique value for "_id", which ensures that every document in a collec‐
tion can be uniquely identified. That is, if you had two collections, each one could
have a document where the value for "_id" was 123. However, neither collection
could contain more than one document with an "_id" of 123.

ObjectIds

ObjectId is the default type for "_id". The ObjectId class is designed to be light‐
weight, while still being easy to generate in a globally unique way across different
machines. MongoDB’s distributed nature is the main reason why it uses ObjectIds as
opposed to something more traditional, like an autoincrementing primary key: it is
difficult and time-consuming to synchronize autoincrementing primary keys across
multiple servers. Because MongoDB was designed to be a distributed database, it was
important to be able to generate unique identifiers in a sharded environment.

ObjectIds use 12 bytes of storage, which gives them a string representation that is 24
hexadecimal digits: 2 digits for each byte. This causes them to appear larger than they
are, which makes some people nervous. It’s important to note that even though an

20 | Chapter 2: Getting Started

ObjectId is often represented as a giant hexadecimal string, the string is actually
twice as long as the data being stored.

If you create multiple new ObjectIds in rapid succession, you can see that only the
last few digits change each time. In addition, a couple of digits in the middle of the
ObjectId will change if you space the creations out by a couple of seconds. This is
because of the manner in which ObjectIds are created. The 12 bytes of an ObjectId
are generated as follows:

0 1 2 3 4 5 6 7 8 9 10 11
Timestamp Random Counter (random start value)

The first four bytes of an ObjectId are a timestamp in seconds since the epoch. This
provides a couple of useful properties:

• The timestamp, when combined with the next five bytes (which will be described
in a moment), provides uniqueness at the granularity of a second.

• Because the timestamp comes first, ObjectIds will sort in rough insertion order.
This is not a strong guarantee but does have some nice properties, such as mak‐
ing ObjectIds efficient to index.

• In these four bytes exists an implicit timestamp of when each document was cre‐
ated. Most drivers expose a method for extracting this information from an
ObjectId.

Because the current time is used in ObjectIds, some users worry that their servers
will need to have synchronized clocks. Although synchronized clocks are a good idea
for other reasons (see “Synchronizing Clocks” on page 462), the actual timestamp
doesn’t matter to ObjectIds, only that it is often new (once per second) and
increasing.

The next five bytes of an ObjectId are a random value. The final three bytes are a
counter that starts with a random value to avoid generating colliding ObjectIds on
different machines.

These first nine bytes of an ObjectId therefore guarantee its uniqueness across
machines and processes for a single second. The last three bytes are simply an incre‐
menting counter that is responsible for uniqueness within a second in a single pro‐
cess. This allows for up to 2563 (16,777,216) unique ObjectIds to be generated per
process in a single second.

Data Types | 21

Autogeneration of _id

As stated earlier, if there is no "_id" key present when a document is inserted, one
will be automatically added to the inserted document. This can be handled by the
MongoDB server but will generally be done by the driver on the client side.

Using the MongoDB Shell
This section covers how to use the shell as part of your command-line toolkit, cus‐
tomize it, and use some of its more advanced functionality.

Although we connected to a local mongod instance above, you can connect your shell
to any MongoDB instance that your machine can reach. To connect to a mongod on a
different machine or port, specify the hostname, port, and database when starting the
shell:

$ mongo some-host:30000/myDB
MongoDB shell version: 4.2.0
connecting to: some-host:30000/myDB
>

db will now refer to some-host:30000’s myDB database.

Sometimes it is handy to not connect to a mongod at all when starting the mongo
shell. If you start the shell with --nodb, it will start up without attempting to connect
to anything:

$ mongo --nodb
MongoDB shell version: 4.2.0
>

Once started, you can connect to a mongod at your leisure by running new
Mongo("hostname"):

> conn = new Mongo("some-host:30000")
connection to some-host:30000
> db = conn.getDB("myDB")
myDB

After these two commands, you can use db normally. You can use these commands to
connect to a different database or server at any time.

Tips for Using the Shell
Because mongo is simply a JavaScript shell, you can get a great deal of help for it by
simply looking up JavaScript documentation online. For MongoDB-specific function‐
ality, the shell includes built-in help that can be accessed by typing help:

22 | Chapter 2: Getting Started

> help
 db.help() help on db methods
 db.mycoll.help() help on collection methods
 sh.help() sharding helpers
 ...

 show dbs show database names
 show collections show collections in current database
 show users show users in current database
 ...

Database-level help is provided by db.help() and collection-level help by
db.foo.help().

A good way of figuring out what a function is doing is to type it without the paren‐
theses. This will print the JavaScript source code for the function. For example, if you
are curious about how the update function works or cannot remember the order of
parameters, you can do the following:

> db.movies.updateOne
function (filter, update, options) {
 var opts = Object.extend({}, options || {});

 // Check if first key in update statement contains a $
 var keys = Object.keys(update);
 if (keys.length == 0) {
 throw new Error("the update operation document must contain at
 least one atomic operator");
 }
 ...

Running Scripts with the Shell
In addition to using the shell interactively, you can also pass the shell JavaScript files
to execute. Simply pass in your scripts at the command line:

$ mongo script1.js script2.js script3.js
MongoDB shell version: 4.2.1
connecting to: mongodb://127.0.0.1:27017
MongoDB server version: 4.2.1

loading file: script1.js
I am script1.js
loading file: script2.js
I am script2.js
loading file: script3.js
I am script3.js
...

The mongo shell will execute each script listed and exit.

Using the MongoDB Shell | 23

If you want to run a script using a connection to a nondefault host/port mongod,
specify the address first, then the script(s):

$ mongo server-1:30000/foo --quiet script1.js script2.js script3.js

This would execute the three scripts with db set to the foo database on server-1:30000.

You can print to stdout in scripts (as the preceding scripts did) using the print func‐
tion. This allows you to use the shell as part of a pipeline of commands. If you’re
planning to pipe the output of a shell script to another command, use the --quiet
option to prevent the “MongoDB shell version v4.2.0” banner from printing.

You can also run scripts from within the interactive shell using the load function:

> load("script1.js")
I am script1.js
true
>

Scripts have access to the db variable (as well as any other global). However, shell
helpers such as use db or show collections do not work from files. There are valid
JavaScript equivalents to each of these, as shown in Table 2-1.

Table 2-1. JavaScript equivalents to shell helpers

Helper Equivalent
use video db.getSisterDB("video")

show dbs db.getMongo().getDBs()

show collections db.getCollectionNames()

You can also use scripts to inject variables into the shell. For example, you could have
a script that simply initializes helper functions that you commonly use. The following
script, for instance, may be helpful for Part III and Part IV. It defines a function, con
nectTo, that connects to the locally running database on the given port and sets db to
that connection:

// defineConnectTo.js

/**
 * Connect to a database and set db.
 */
var connectTo = function(port, dbname) {
 if (!port) {
 port = 27017;
 }

 if (!dbname) {
 dbname = "test";
 }

24 | Chapter 2: Getting Started

 db = connect("localhost:"+port+"/"+dbname);
 return db;
};

If you load this script in the shell, connectTo is now defined:

> typeof connectTo
undefined
> load('defineConnectTo.js')
> typeof connectTo
function

In addition to adding helper functions, you can use scripts to automate common
tasks and administrative activities.

By default, the shell will look in the directory that you started the shell in (use pwd()
to see what directory that is). If the script is not in your current directory, you can
give the shell a relative or absolute path to it. For example, if you wanted to put your
shell scripts in ~/my-scripts, you could load defineConnectTo.js with load("/home/
myUser/my-scripts/defineConnectTo.js"). Note that load cannot resolve ~.

You can use run to run command-line programs from the shell. You can pass argu‐
ments to the function as parameters:

> run("ls", "-l", "/home/myUser/my-scripts/")
sh70352| -rw-r--r-- 1 myUser myUser 2012-12-13 13:15 defineConnectTo.js
sh70532| -rw-r--r-- 1 myUser myUser 2013-02-22 15:10 script1.js
sh70532| -rw-r--r-- 1 myUser myUser 2013-02-22 15:12 script2.js
sh70532| -rw-r--r-- 1 myUser myUser 2013-02-22 15:13 script3.js

This is of limited use, generally, as the output is formatted oddly and it doesn’t sup‐
port pipes.

Creating a .mongorc.js
If you have frequently loaded scripts, you might want to put them in your .mongorc.js
file. This file is run whenever you start up the shell.

For example, suppose you would like the shell to greet you when you log in. Create a
file called .mongorc.js in your home directory, and then add the following lines to it:

// .mongorc.js

var compliment = ["attractive", "intelligent", "like Batman"];
var index = Math.floor(Math.random()*3);

print("Hello, you're looking particularly "+compliment[index]+" today!");

Then, when you start the shell, you’ll see something like:

Using the MongoDB Shell | 25

$ mongo
MongoDB shell version: 4.2.1
connecting to: test
Hello, you're looking particularly like Batman today!
>

More practically, you can use this script to set up any global variables you’d like to
use, alias long names to shorter ones, and override built-in functions. One of the
most common uses for .mongorc.js is to remove some of the more “dangerous” shell
helpers. You can override functions like dropDatabase or deleteIndexes with no-
ops or undefine them altogether:

var no = function() {
 print("Not on my watch.");
};

// Prevent dropping databases
db.dropDatabase = DB.prototype.dropDatabase = no;

// Prevent dropping collections
DBCollection.prototype.drop = no;

// Prevent dropping an index
DBCollection.prototype.dropIndex = no;

// Prevent dropping indexes
DBCollection.prototype.dropIndexes = no;

Now if you try to call any of these functions, it will simply print an error message.
Note that this technique does not protect you against malicious users; it can only help
with fat-fingering.

You can disable loading your .mongorc.js by using the --norc option when starting
the shell.

Customizing Your Prompt
The default shell prompt can be overridden by setting the prompt variable to either a
string or a function. For example, if you are running a query that takes minutes to
complete, you may want to have a prompt that displays the current time so you can
see when the last operation finished:

prompt = function() {
 return (new Date())+"> ";
};

Another handy prompt might show the current database you’re using:

26 | Chapter 2: Getting Started

prompt = function() {
 if (typeof db == 'undefined') {
 return '(nodb)> ';
 }

 // Check the last db operation
 try {
 db.runCommand({getLastError:1});
 }
 catch (e) {
 print(e);
 }

 return db+"> ";
};

Note that prompt functions should return strings and be very cautious about catching
exceptions: it can be extremely confusing if your prompt turns into an exception!

In general, your prompt function should include a call to getLastError. This catches
errors on writes and reconnects you automatically if the shell gets disconnected (e.g.,
if you restart mongod).

The .mongorc.js file is a good place to set your prompt if you want to always use a
custom one (or set up a couple of custom prompts that you can switch between in the
shell).

Editing Complex Variables
The multiline support in the shell is somewhat limited: you cannot edit previous
lines, which can be annoying when you realize that the first line has a typo and you’re
currently working on line 15. Thus, for larger blocks of code or objects, you may want
to edit them in an editor. To do so, set the EDITOR variable in the shell (or in your
environment, but since you’re already in the shell…):

> EDITOR="/usr/bin/emacs"

Now, if you want to edit a variable, you can say edit varname—for example:

> var wap = db.books.findOne({title: "War and Peace"});
> edit wap

When you’re done making changes, save and exit the editor. The variable will be
parsed and loaded back into the shell.

Add EDITOR="/path/to/editor"; to your .mongorc.js file and you won’t have to
worry about setting it again.

Using the MongoDB Shell | 27

Inconvenient Collection Names
Fetching a collection with the db.collectionName syntax almost always works, unless
the collection name is a reserved word or is an invalid JavaScript property name.

For example, suppose we are trying to access the version collection. We cannot say
db.version because db.version is a method on db (it returns the version of the run‐
ning MongoDB server):

> db.version
function () {
 return this.serverBuildInfo().version;
}

To actually access the version collection, you must use the getCollection function:

> db.getCollection("version");
test.version

This can also be used for collection names with characters that aren’t valid JavaScript
property names, such as foo-bar-baz and 123abc (JavaScript property names can only
contain letters, numbers, $ and _, and cannot start with a number).

Another way of getting around invalid properties is to use array-access syntax. In
JavaScript, x.y is identical to x['y']. This means that subcollections can be accessed
using variables, not just literal names. Thus, if you needed to perform some operation
on every blog subcollection, you could iterate through them with something like this:

var collections = ["posts", "comments", "authors"];

for (var i in collections) {
 print(db.blog[collections[i]]);
}

instead of this:

print(db.blog.posts);
print(db.blog.comments);
print(db.blog.authors);

Note that you cannot do db.blog.i, which would be interpreted as test.blog.i, not
test.blog.posts. You must use the db.blog[i] syntax for i to be interpreted as a
variable.

You can use this technique to access awkwardly named collections:

> var name = "@#&!"
> db[name].find()

Attempting to query db.@#&! would be illegal, but db[name] would work.

28 | Chapter 2: Getting Started

CHAPTER 3

Creating, Updating, and
Deleting Documents

This chapter covers the basics of moving data into and out of the database, including
the following:

• Adding new documents to a collection
• Removing documents from a collection
• Updating existing documents
• Choosing the correct level of safety versus speed for all of these operations

Inserting Documents
Inserts are the basic method for adding data to MongoDB. To insert a single docu‐
ment, use the collection’s insertOne method:

> db.movies.insertOne({"title" : "Stand by Me"})

insertOne will add an "_id" key to the document (if you do not supply one) and
store the document in MongoDB.

insertMany
If you need to insert multiple documents into a collection, you can use insertMany.
This method enables you to pass an array of documents to the database. This is far
more efficient because your code will not make a round trip to the database for each
document inserted, but will insert them in bulk.

In the shell, you can try this out as follows:

29

> db.movies.drop()
true
> db.movies.insertMany([{"title" : "Ghostbusters"},
... {"title" : "E.T."},
... {"title" : "Blade Runner"}]);
{
 "acknowledged" : true,
 "insertedIds" : [
 ObjectId("572630ba11722fac4b6b4996"),
 ObjectId("572630ba11722fac4b6b4997"),
 ObjectId("572630ba11722fac4b6b4998")
]
}
> db.movies.find()
{ "_id" : ObjectId("572630ba11722fac4b6b4996"), "title" : "Ghostbusters" }
{ "_id" : ObjectId("572630ba11722fac4b6b4997"), "title" : "E.T." }
{ "_id" : ObjectId("572630ba11722fac4b6b4998"), "title" : "Blade Runner" }

Sending dozens, hundreds, or even thousands of documents at a time can make
inserts significantly faster.

insertMany is useful if you are inserting multiple documents into a single collection.
If you are just importing raw data (e.g., from a data feed or MySQL), there are
command-line tools like mongoimport that can be used instead of a batch insert. On
the other hand, it is often handy to munge data before saving it to MongoDB (con‐
verting dates to the date type or adding a custom "_id", for example). In such cases
insertMany can be used for importing data, as well.

Current versions of MongoDB do not accept messages longer than 48 MB, so there is
a limit to how much can be inserted in a single batch insert. If you attempt to insert
more than 48 MB, many drivers will split up the batch insert into multiple 48 MB
batch inserts. Check your driver documentation for details.

When performing a bulk insert using insertMany, if a document halfway through the
array produces an error of some type, what happens depends on whether you have
opted for ordered or unordered operations. As the second parameter to insertMany
you may specify an options document. Specify true for the key "ordered" in the
options document to ensure documents are inserted in the order they are provided.
Specify false and MongoDB may reorder the inserts to increase performance.
Ordered inserts is the default if no ordering is specified. For ordered inserts, the array
passed to insertMany defines the insertion order. If a document produces an inser‐
tion error, no documents beyond that point in the array will be inserted. For unor‐
dered inserts, MongoDB will attempt to insert all documents, regardless of whether
some insertions produce errors.

In this example, because ordered inserts is the default, only the first two documents
will be inserted. The third document will produce an error, because you cannot insert
two documents with the same "_id":

30 | Chapter 3: Creating, Updating, and Deleting Documents

> db.movies.insertMany([
 ... {"_id" : 0, "title" : "Top Gun"},
 ... {"_id" : 1, "title" : "Back to the Future"},
 ... {"_id" : 1, "title" : "Gremlins"},
 ... {"_id" : 2, "title" : "Aliens"}])
2019-04-22T12:27:57.278-0400 E QUERY [js] BulkWriteError: write
error at item 2 in bulk operation :
BulkWriteError({
 "writeErrors" : [
 {
 "index" : 2,
 "code" : 11000,
 "errmsg" : "E11000 duplicate key error collection:
 test.movies index: _id_ dup key: { _id: 1.0 }",
 "op" : {
 "_id" : 1,
 "title" : "Gremlins"
 }
 }
],
 "writeConcernErrors" : [],
 "nInserted" : 2,
 "nUpserted" : 0,
 "nMatched" : 0,
 "nModified" : 0,
 "nRemoved" : 0,
 "upserted" : []
})
BulkWriteError@src/mongo/shell/bulk_api.js:367:48
BulkWriteResult/this.toError@src/mongo/shell/bulk_api.js:332:24
Bulk/this.execute@src/mongo/shell/bulk_api.js:1186:23
DBCollection.prototype.insertMany@src/mongo/shell/crud_api.js:314:5
@(shell):1:1

If instead we specify unordered inserts, the first, second, and fourth documents in the
array are inserted. The only insert that fails is the third document, again because of a
duplicate "_id" error:

> db.movies.insertMany([
... {"_id" : 3, "title" : "Sixteen Candles"},
... {"_id" : 4, "title" : "The Terminator"},
... {"_id" : 4, "title" : "The Princess Bride"},
... {"_id" : 5, "title" : "Scarface"}],
... {"ordered" : false})
2019-05-01T17:02:25.511-0400 E QUERY [thread1] BulkWriteError: write
error at item 2 in bulk operation :
BulkWriteError({
 "writeErrors" : [
 {
 "index" : 2,
 "code" : 11000,
 "errmsg" : "E11000 duplicate key error index: test.movies.$_id_

Inserting Documents | 31

 dup key: { : 4.0 }",
 "op" : {
 "_id" : 4,
 "title" : "The Princess Bride"
 }
 }
],
 "writeConcernErrors" : [],
 "nInserted" : 3,
 "nUpserted" : 0,
 "nMatched" : 0,
 "nModified" : 0,
 "nRemoved" : 0,
 "upserted" : []
})
BulkWriteError@src/mongo/shell/bulk_api.js:367:48
BulkWriteResult/this.toError@src/mongo/shell/bulk_api.js:332:24
Bulk/this.execute@src/mongo/shell/bulk_api.js:1186.23
DBCollection.prototype.insertMany@src/mongo/shell/crud_api.js:314:5
@(shell):1:1

If you study these examples closely, you might note that the output of these two calls
to insertMany hints that other operations besides simply inserts might be supported
for bulk writes. While insertMany does not support operations other than insert,
MongoDB does support a Bulk Write API that enables you to batch together a num‐
ber of operations of different types in one call. While that is beyond the scope of this
chapter, you can read about the Bulk Write API in the MongoDB documentation.

Insert Validation
MongoDB does minimal checks on data being inserted: it checks the document’s
basic structure and adds an "_id" field if one does not exist. One of the basic struc‐
ture checks is size: all documents must be smaller than 16 MB. This is a somewhat
arbitrary limit (and may be raised in the future); it is mostly intended to prevent bad
schema design and ensure consistent performance. To see the Binary JSON (BSON)
size, in bytes, of the document doc, run Object.bsonsize(doc) from the shell.

To give you an idea of how much data 16 MB is, the entire text of War and Peace is
just 3.14 MB.

These minimal checks also mean that it is fairly easy to insert invalid data (if you are
trying to). Thus, you should only allow trusted sources, such as your application
servers, to connect to the database. All of the MongoDB drivers for major languages
(and most of the minor ones, too) do check for a variety of invalid data (documents
that are too large, contain non-UTF-8 strings, or use unrecognized types) before
sending anything to the database.

32 | Chapter 3: Creating, Updating, and Deleting Documents

https://docs.mongodb.org/manual/core/bulk-write-operations/

insert
In versions of MongoDB prior to 3.0, insert was the primary method for inserting
documents into MongoDB. MongoDB drivers introduced a new CRUD API at the
same time as the MongoDB 3.0 server release. As of MongoDB 3.2 the mongo shell
also supports this API, which includes insertOne and insertMany as well as several
other methods. The goal of the current CRUD API is to make the semantics of all
CRUD operations consistent and clear across the drivers and the shell. While meth‐
ods such as insert are still supported for backward compatibility, they should not be
used in applications going forward. You should instead prefer insertOne and insert
Many for creating documents.

Removing Documents
Now that there’s data in our database, let’s delete it. The CRUD API provides
deleteOne and deleteMany for this purpose. Both of these methods take a filter
document as their first parameter. The filter specifies a set of criteria to match against
in removing documents. To delete the document with the "_id" value of 4, we use
deleteOne in the mongo shell as illustrated here:

> db.movies.find()
{ "_id" : 0, "title" : "Top Gun"}
{ "_id" : 1, "title" : "Back to the Future"}
{ "_id" : 3, "title" : "Sixteen Candles"}
{ "_id" : 4, "title" : "The Terminator"}
{ "_id" : 5, "title" : "Scarface"}
> db.movies.deleteOne({"_id" : 4})
{ "acknowledged" : true, "deletedCount" : 1 }
> db.movies.find()
{ "_id" : 0, "title" : "Top Gun"}
{ "_id" : 1, "title" : "Back to the Future"}
{ "_id" : 3, "title" : "Sixteen Candles"}
{ "_id" : 5, "title" : "Scarface"}

In this example, we used a filter that could only match one document since "_id"
values are unique in a collection. However, we can also specify a filter that matches
multiple documents in a collection. In this case, deleteOne will delete the first docu‐
ment found that matches the filter. Which document is found first depends on several
factors, including the order in which the documents were inserted, what updates were
made to the documents (for some storage engines), and what indexes are specified.
As with any database operation, be sure you know what effect your use of deleteOne
will have on your data.

To delete all the documents that match a filter, use deleteMany:

Removing Documents | 33

> db.movies.find()
{ "_id" : 0, "title" : "Top Gun", "year" : 1986 }
{ "_id" : 1, "title" : "Back to the Future", "year" : 1985 }
{ "_id" : 3, "title" : "Sixteen Candles", "year" : 1984 }
{ "_id" : 4, "title" : "The Terminator", "year" : 1984 }
{ "_id" : 5, "title" : "Scarface", "year" : 1983 }
> db.movies.deleteMany({"year" : 1984})
{ "acknowledged" : true, "deletedCount" : 2 }
> db.movies.find()
{ "_id" : 0, "title" : "Top Gun", "year" : 1986 }
{ "_id" : 1, "title" : "Back to the Future", "year" : 1985 }
{ "_id" : 5, "title" : "Scarface", "year" : 1983 }

As a more realistic use case, suppose you want to remove every user from the mail‐
ing.list collection where the value for "opt-out" is true:

> db.mailing.list.deleteMany({"opt-out" : true})

In versions of MongoDB prior to 3.0, remove was the primary method for deleting
documents. MongoDB drivers introduced the deleteOne and deleteMany methods at
the same time as the MongoDB 3.0 server release, and the shell began supporting
these methods in MongoDB 3.2. While remove is still supported for backward com‐
patibility, you should use deleteOne and deleteMany in your applications. The cur‐
rent CRUD API provides a cleaner set of semantics and, especially for multidocument
operations, helps application developers avoid a couple of common pitfalls with the
previous API.

drop
It is possible to use deleteMany to remove all documents in a collection:

> db.movies.find()
{ "_id" : 0, "title" : "Top Gun", "year" : 1986 }
{ "_id" : 1, "title" : "Back to the Future", "year" : 1985 }
{ "_id" : 3, "title" : "Sixteen Candles", "year" : 1984 }
{ "_id" : 4, "title" : "The Terminator", "year" : 1984 }
{ "_id" : 5, "title" : "Scarface", "year" : 1983 }
> db.movies.deleteMany({})
{ "acknowledged" : true, "deletedCount" : 5 }
> db.movies.find()

Removing documents is usually a fairly quick operation. However, if you want to
clear an entire collection, it is faster to drop it:

> db.movies.drop()
true

and then recreate any indexes on the empty collection.

Once data has been removed, it is gone forever. There is no way to undo a delete or
drop operation or recover deleted documents, except, of course, by restoring a

34 | Chapter 3: Creating, Updating, and Deleting Documents

previously backed up version of the data. See Chapter 23 for a detailed discussion of
MongoDB backup and restore.

Updating Documents
Once a document is stored in the database, it can be changed using one of several
update methods: updateOne, updateMany, and replaceOne. updateOne and update
Many each take a filter document as their first parameter and a modifier document,
which describes changes to make, as the second parameter. replaceOne also takes a
filter as the first parameter, but as the second parameter replaceOne expects a docu‐
ment with which it will replace the document matching the filter.

Updating a document is atomic: if two updates happen at the same time, whichever
one reaches the server first will be applied, and then the next one will be applied.
Thus, conflicting updates can safely be sent in rapid-fire succession without any
documents being corrupted: the last update will “win.” The Document Versioning
pattern (see “Schema Design Patterns” on page 208) is worth considering if you don’t
want the default behavior.

Document Replacement
replaceOne fully replaces a matching document with a new one. This can be useful to
do a dramatic schema migration (see Chapter 9 for scheme migration strategies). For
example, suppose we are making major changes to a user document, which looks like
the following:

{
 "_id" : ObjectId("4b2b9f67a1f631733d917a7a"),
 "name" : "joe",
 "friends" : 32,
 "enemies" : 2
}

We want to move the "friends" and "enemies" fields to a "relationships" subdo‐
cument. We can change the structure of the document in the shell and then replace
the database’s version with a replaceOne:

> var joe = db.users.findOne({"name" : "joe"});
> joe.relationships = {"friends" : joe.friends, "enemies" : joe.enemies};
{
 "friends" : 32,
 "enemies" : 2
}
> joe.username = joe.name;
"joe"
> delete joe.friends;
true
> delete joe.enemies;

Updating Documents | 35

true
> delete joe.name;
true
> db.users.replaceOne({"name" : "joe"}, joe);

Now, doing a findOne shows that the structure of the document has been updated:

{
 "_id" : ObjectId("4b2b9f67a1f631733d917a7a"),
 "username" : "joe",
 "relationships" : {
 "friends" : 32,
 "enemies" : 2
 }
}

A common mistake is matching more than one document with the criteria and then
creating a duplicate "_id" value with the second parameter. The database will throw
an error for this, and no documents will be updated.

For example, suppose we create several documents with the same value for "name",
but we don’t realize it:

> db.people.find()
{"_id" : ObjectId("4b2b9f67a1f631733d917a7b"), "name" : "joe", "age" : 65}
{"_id" : ObjectId("4b2b9f67a1f631733d917a7c"), "name" : "joe", "age" : 20}
{"_id" : ObjectId("4b2b9f67a1f631733d917a7d"), "name" : "joe", "age" : 49}

Now, if it’s Joe #2’s birthday, we want to increment the value of his "age" key, so we
might say this:

> joe = db.people.findOne({"name" : "joe", "age" : 20});
{
 "_id" : ObjectId("4b2b9f67a1f631733d917a7c"),
 "name" : "joe",
 "age" : 20
}
> joe.age++;
> db.people.replaceOne({"name" : "joe"}, joe);
E11001 duplicate key on update

What happened? When you do the update, the database will look for a document
matching {"name" : "joe"}. The first one it finds will be the 65-year-old Joe. It will
attempt to replace that document with the one in the joe variable, but there’s already
a document in this collection with the same "_id". Thus, the update will fail, because
"_id" values must be unique. The best way to avoid this situation is to make sure that
your update always specifies a unique document, perhaps by matching on a key like
"_id". For the preceding example, this would be the correct update to use:

> db.people.replaceOne({"_id" : ObjectId("4b2b9f67a1f631733d917a7c")}, joe)

36 | Chapter 3: Creating, Updating, and Deleting Documents

Using "_id" for the filter will also be efficient since"_id" values form the basis for the
primary index of a collection. We’ll cover primary and secondary indexes and how
indexing affects updates and other operations more in Chapter 5.

Using Update Operators
Usually only certain portions of a document need to be updated. You can update spe‐
cific fields in a document using atomic update operators. Update operators are special
keys that can be used to specify complex update operations, such as altering, adding,
or removing keys, and even manipulating arrays and embedded documents.

Suppose we’re keeping website analytics in a collection and want to increment a
counter each time someone visits a page. We can use update operators to do this
increment atomically. Each URL and its number of page views is stored in a docu‐
ment that looks like this:

{
 "_id" : ObjectId("4b253b067525f35f94b60a31"),
 "url" : "www.example.com",
 "pageviews" : 52
}

Every time someone visits a page, we can find the page by its URL and use the "$inc"
modifier to increment the value of the "pageviews" key:

> db.analytics.updateOne({"url" : "www.example.com"},
... {"$inc" : {"pageviews" : 1}})
{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }

Now, if we do a findOne, we see that "pageviews" has increased by one:

> db.analytics.findOne()
{
 "_id" : ObjectId("4b253b067525f35f94b60a31"),
 "url" : "www.example.com",
 "pageviews" : 53
}

When using operators, the value of "_id" cannot be changed. (Note that "_id" can be
changed by using whole-document replacement.) Values for any other key, including
other uniquely indexed keys, can be modified.

Getting started with the “$set” modifier

"$set" sets the value of a field. If the field does not yet exist, it will be created. This
can be handy for updating schemas or adding user-defined keys. For example, sup‐
pose you have a simple user profile stored as a document that looks something like
the following:

Updating Documents | 37

> db.users.findOne()
{
 "_id" : ObjectId("4b253b067525f35f94b60a31"),
 "name" : "joe",
 "age" : 30,
 "sex" : "male",
 "location" : "Wisconsin"
}

This is a pretty bare-bones user profile. If the user wanted to store his favorite book in
his profile, he could add it using "$set":

> db.users.updateOne({"_id" : ObjectId("4b253b067525f35f94b60a31")},
... {"$set" : {"favorite book" : "War and Peace"}})

Now the document will have a "favorite book" key:

> db.users.findOne()
{
 "_id" : ObjectId("4b253b067525f35f94b60a31"),
 "name" : "joe",
 "age" : 30,
 "sex" : "male",
 "location" : "Wisconsin",
 "favorite book" : "War and Peace"
}

If the user decides that he actually enjoys a different book, "$set" can be used again
to change the value:

> db.users.updateOne({"name" : "joe"},
... {"$set" : {"favorite book" : "Green Eggs and Ham"}})

"$set" can even change the type of the key it modifies. For instance, if our fickle user
decides that he actually likes quite a few books, he can change the value of the "favor
ite book" key into an array:

> db.users.updateOne({"name" : "joe"},
... {"$set" : {"favorite book" :
... ["Cat's Cradle", "Foundation Trilogy", "Ender's Game"]}})

If the user realizes that he actually doesn’t like reading, he can remove the key alto‐
gether with "$unset":

> db.users.updateOne({"name" : "joe"},
... {"$unset" : {"favorite book" : 1}})

Now the document will be the same as it was at the beginning of this example.

You can also use "$set" to reach in and change embedded documents:

> db.blog.posts.findOne()
{
 "_id" : ObjectId("4b253b067525f35f94b60a31"),

38 | Chapter 3: Creating, Updating, and Deleting Documents

 "title" : "A Blog Post",
 "content" : "...",
 "author" : {
 "name" : "joe",
 "email" : "joe@example.com"
 }
}
> db.blog.posts.updateOne({"author.name" : "joe"},
... {"$set" : {"author.name" : "joe schmoe"}})

> db.blog.posts.findOne()
{
 "_id" : ObjectId("4b253b067525f35f94b60a31"),
 "title" : "A Blog Post",
 "content" : "...",
 "author" : {
 "name" : "joe schmoe",
 "email" : "joe@example.com"
 }
}

You must always use a $-modifier for adding, changing, or removing keys. A com‐
mon error people make when starting out is to try to set the value of a key to some
other value by doing an update that resembles this:

> db.blog.posts.updateOne({"author.name" : "joe"},
... {"author.name" : "joe schmoe"})

This will result in an error. The update document must contain update operators.
Previous versions of the CRUD API did not catch this type of error. Earlier update
methods would simply complete a whole document replacement in such situations. It
is this type of pitfall that led to the creation of a new CRUD API.

Incrementing and decrementing

The "$inc" operator can be used to change the value for an existing key or to create a
new key if it does not already exist. It’s useful for updating analytics, karma, votes, or
anything else that has a changeable, numeric value.

Suppose we are creating a game collection where we want to save games and update
scores as they change. When a user starts playing, say, a game of pinball, we can insert
a document that identifies the game by name and the user playing it:

> db.games.insertOne({"game" : "pinball", "user" : "joe"})

When the ball hits a bumper, the game should increment the player’s score. Since
points in pinball are given out pretty freely, let’s say that the base unit of points a
player can earn is 50. We can use the "$inc" modifier to add 50 to the player’s score:

> db.games.updateOne({"game" : "pinball", "user" : "joe"},
... {"$inc" : {"score" : 50}})

Updating Documents | 39

If we look at the document after this update, we’ll see the following:

> db.games.findOne()
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "game" : "pinball",
 "user" : "joe",
 "score" : 50
}

The "score" key did not already exist, so it was created by "$inc" and set to the
increment amount: 50.

If the ball lands in a “bonus” slot, we want to add 10,000 to the score. We can do this
by passing a different value to "$inc":

> db.games.updateOne({"game" : "pinball", "user" : "joe"},
... {"$inc" : {"score" : 10000}})

Now if we look at the game, we’ll see the following:

> db.games.findOne()
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "game" : "pinball",
 "user" : "joe",
 "score" : 10050
}

The "score" key existed and had a numeric value, so the server added 10,000 to it.

"$inc" is similar to "$set", but it is designed for incrementing (and decrementing)
numbers. "$inc" can be used only on values of type integer, long, double, or decimal.
If it is used on any other type of value, it will fail. This includes types that many lan‐
guages will automatically cast into numbers, like nulls, booleans, or strings of
numeric characters:

> db.strcounts.insert({"count" : "1"})
WriteResult({ "nInserted" : 1 })
> db.strcounts.update({}, {"$inc" : {"count" : 1}})
WriteResult({
 "nMatched" : 0,
 "nUpserted" : 0,
 "nModified" : 0,
 "writeError" : {
 "code" : 16837,
 "errmsg" : "Cannot apply $inc to a value of non-numeric type.
 {_id: ObjectId('5726c0d36855a935cb57a659')} has the field 'count' of
 non-numeric type String"
 }
})

40 | Chapter 3: Creating, Updating, and Deleting Documents

Also, the value of the "$inc" key must be a number. You cannot increment by a
string, array, or other nonnumeric value. Doing so will give a “Modifier "$inc"
allowed for numbers only” error message. To modify other types, use "$set" or one
of the following array operators.

Array operators
An extensive class of update operators exists for manipulating arrays. Arrays are
common and powerful data structures: not only are they lists that can be referenced
by index, but they can also double as sets.

Adding elements. "$push" adds elements to the end of an array if the array exists and
creates a new array if it does not. For example, suppose that we are storing blog posts
and want to add a "comments" key containing an array. We can push a comment onto
the nonexistent "comments" array, which will create the array and add the comment:

> db.blog.posts.findOne()
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "title" : "A blog post",
 "content" : "..."
}
> db.blog.posts.updateOne({"title" : "A blog post"},
... {"$push" : {"comments" :
... {"name" : "joe", "email" : "joe@example.com",
... "content" : "nice post."}}})
{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }
> db.blog.posts.findOne()
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "title" : "A blog post",
 "content" : "...",
 "comments" : [
 {
 "name" : "joe",
 "email" : "joe@example.com",
 "content" : "nice post."
 }
]
}

Now, if we want to add another comment, we can simply use "$push" again:

> db.blog.posts.updateOne({"title" : "A blog post"},
... {"$push" : {"comments" :
... {"name" : "bob", "email" : "bob@example.com",
... "content" : "good post."}}})
{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }
> db.blog.posts.findOne()
{

Updating Documents | 41

 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "title" : "A blog post",
 "content" : "...",
 "comments" : [
 {
 "name" : "joe",
 "email" : "joe@example.com",
 "content" : "nice post."
 },
 {
 "name" : "bob",
 "email" : "bob@example.com",
 "content" : "good post."
 }
]
}

This is the “simple” form of "push", but you can use it for more complex array opera‐
tions as well. The MongoDB query language provides modifiers for some operators,
including "$push". You can push multiple values in one operation using the "$each"
modifer for "$push":

> db.stock.ticker.updateOne({"_id" : "GOOG"},
... {"$push" : {"hourly" : {"$each" : [562.776, 562.790, 559.123]}}})

This would push three new elements onto the array.

If you only want the array to grow to a certain length, you can use the "$slice"
modifier with "$push" to prevent an array from growing beyond a certain size, effec‐
tively making a “top N” list of items:

> db.movies.updateOne({"genre" : "horror"},
... {"$push" : {"top10" : {"$each" : ["Nightmare on Elm Street", "Saw"],
... "$slice" : -10}}})

This example limits the array to the last 10 elements pushed.

If the array is smaller than 10 elements (after the push), all elements will be kept. If
the array is larger than 10 elements, only the last 10 elements will be kept. Thus,
"$slice" can be used to create a queue in a document.

Finally, you can apply the "$sort" modifier to "$push" operations before trimming:

> db.movies.updateOne({"genre" : "horror"},
... {"$push" : {"top10" : {"$each" : [{"name" : "Nightmare on Elm Street",
... "rating" : 6.6},
... {"name" : "Saw", "rating" : 4.3}],
... "$slice" : -10,
... "$sort" : {"rating" : -1}}}})

42 | Chapter 3: Creating, Updating, and Deleting Documents

This will sort all of the objects in the array by their "rating" field and then keep the
first 10. Note that you must include "$each"; you cannot just "$slice" or "$sort" an
array with "$push".

Using arrays as sets. You might want to treat an array as a set, only adding values if
they are not present. This can be done using "$ne" in the query document. For exam‐
ple, to push an author onto a list of citations, but only if they aren’t already there, use
the following:

> db.papers.updateOne({"authors cited" : {"$ne" : "Richie"}},
... {$push : {"authors cited" : "Richie"}})

This can also be done with "$addToSet", which is useful for cases where "$ne" won’t
work or where "$addToSet" describes what is happening better.

For example, suppose you have a document that represents a user. You might have a
set of email addresses that they have added:

> db.users.findOne({"_id" : ObjectId("4b2d75476cc613d5ee930164")})
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "username" : "joe",
 "emails" : [
 "joe@example.com",
 "joe@gmail.com",
 "joe@yahoo.com"
]
}

When adding another address, you can use “$addToSet" to prevent duplicates:

> db.users.updateOne({"_id" : ObjectId("4b2d75476cc613d5ee930164")},
... {"$addToSet" : {"emails" : "joe@gmail.com"}})
{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 0 }
> db.users.findOne({"_id" : ObjectId("4b2d75476cc613d5ee930164")})
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "username" : "joe",
 "emails" : [
 "joe@example.com",
 "joe@gmail.com",
 "joe@yahoo.com",
]
}
> db.users.updateOne({"_id" : ObjectId("4b2d75476cc613d5ee930164")},
... {"$addToSet" : {"emails" : "joe@hotmail.com"}})
{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }
> db.users.findOne({"_id" : ObjectId("4b2d75476cc613d5ee930164")})
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "username" : "joe",

Updating Documents | 43

 "emails" : [
 "joe@example.com",
 "joe@gmail.com",
 "joe@yahoo.com",
 "joe@hotmail.com"
]
}

You can also use "$addToSet" in conjunction with "$each" to add multiple unique
values, which cannot be done with the "$ne"/"$push" combination. For instance, you
could use these operators if the user wanted to add more than one email address:

> db.users.updateOne({"_id" : ObjectId("4b2d75476cc613d5ee930164")},
... {"$addToSet" : {"emails" : {"$each" :
... ["joe@php.net", "joe@example.com", "joe@python.org"]}}})
{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }
> db.users.findOne({"_id" : ObjectId("4b2d75476cc613d5ee930164")})
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "username" : "joe",
 "emails" : [
 "joe@example.com",
 "joe@gmail.com",
 "joe@yahoo.com",
 "joe@hotmail.com"
 "joe@php.net"
 "joe@python.org"
]
}

Removing elements. There are a few ways to remove elements from an array. If you
want to treat the array like a queue or a stack, you can use "$pop", which can remove
elements from either end. {"$pop" : {"key" : 1}} removes an element from the
end of the array. {"$pop" : {"key" : -1}} removes it from the beginning.

Sometimes an element should be removed based on specific criteria, rather than its
position in the array. "$pull" is used to remove elements of an array that match the
given criteria. For example, suppose we have a list of things that need to be done, but
not in any specific order:

> db.lists.insertOne({"todo" : ["dishes", "laundry", "dry cleaning"]})

If we do the laundry first, we can remove it from the list with the following:

> db.lists.updateOne({}, {"$pull" : {"todo" : "laundry"}})

Now if we do a find, we’ll see that there are only two elements remaining in the array:

> db.lists.findOne()
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "todo" : [

44 | Chapter 3: Creating, Updating, and Deleting Documents

 "dishes",
 "dry cleaning"
]
}

Pulling removes all matching documents, not just a single match. If you have an array
that looks like [1, 1, 2, 1] and pull 1, you’ll end up with a single-element array,
[2].

Array operators can be used only on keys with array values. For example, you cannot
push onto an integer or pop off of a string. Use "$set" or "$inc" to modify scalar
values.

Positional array modifications. Array manipulation becomes a little trickier when you
have multiple values in an array and want to modify some of them. There are two
ways to manipulate values in arrays: by position or by using the position operator
(the $ character).

Arrays use 0-based indexing, and elements can be selected as though their index were
a document key. For example, suppose we have a document containing an array with
a few embedded documents, such as a blog post with comments:

> db.blog.posts.findOne()
{
 "_id" : ObjectId("4b329a216cc613d5ee930192"),
 "content" : "...",
 "comments" : [
 {
 "comment" : "good post",
 "author" : "John",
 "votes" : 0
 },
 {
 "comment" : "i thought it was too short",
 "author" : "Claire",
 "votes" : 3
 },
 {
 "comment" : "free watches",
 "author" : "Alice",
 "votes" : -5
 },
 {
 "comment" : "vacation getaways",
 "author" : "Lynn",
 "votes" : -7
 }
]
}

Updating Documents | 45

If we want to increment the number of votes for the first comment, we can say the
following:

> db.blog.updateOne({"post" : post_id},
... {"$inc" : {"comments.0.votes" : 1}})

In many cases, though, we don’t know what index of the array to modify without
querying for the document first and examining it. To get around this, MongoDB has
a positional operator, $, that figures out which element of the array the query docu‐
ment matched and updates that element. For example, if we have a user named John
who updates his name to Jim, we can replace it in the comments by using the posi‐
tional operator:

> db.blog.updateOne({"comments.author" : "John"},
... {"$set" : {"comments.$.author" : "Jim"}})

The positional operator updates only the first match. Thus, if John had left more than
one comment, his name would be changed only for the first comment he left.

Updates using array filters. MongoDB 3.6 introduced another option for updating indi‐
vidual array elements: arrayFilters. This option enables us to modify array ele‐
ments matching particular critera. For example, if we want to hide all comments with
five or more down votes, we can do something like the following:

db.blog.updateOne(
 {"post" : post_id },
 { $set: { "comments.$[elem].hidden" : true } },
 {
 arrayFilters: [{ "elem.votes": { $lte: -5 } }]
 }
)

This command defines elem as the identifier for each matching element in the "com
ments" array. If the votes value for the comment identified by elem is less than or
equal to -5, we will add a field called "hidden" to the "comments" document and set
its value to true.

Upserts
An upsert is a special type of update. If no document is found that matches the filter, a
new document will be created by combining the criteria and updated documents. If a
matching document is found, it will be updated normally. Upserts can be handy
because they can eliminate the need to “seed” your collection: you can often have the
same code create and update documents.

Let’s go back to our example that records the number of views for each page of a web‐
site. Without an upsert, we might try to find the URL and increment the number of

46 | Chapter 3: Creating, Updating, and Deleting Documents

views or create a new document if the URL doesn’t exist. If we were to write this out
as a JavaScript program it might look something like the following:

// check if we have an entry for this page
blog = db.analytics.findOne({url : "/blog"})

// if we do, add one to the number of views and save
if (blog) {
 blog.pageviews++;
 db.analytics.save(blog);
}
// otherwise, create a new document for this page
else {
 db.analytics.insertOne({url : "/blog", pageviews : 1})
}

This means we are making a round trip to the database, plus sending an update or
insert, every time someone visits a page. If we are running this code in multiple pro‐
cesses, we are also subject to a race condition where more than one document can be
inserted for a given URL.

We can eliminate the race condition and cut down the amount of code by just send‐
ing an upsert to the database (the third parameter to updateOne and updateMany is an
options document that enables us to specify this):

> db.analytics.updateOne({"url" : "/blog"}, {"$inc" : {"pageviews" : 1}},
... {"upsert" : true})

This line does exactly what the previous code block does, except it’s faster and atomic!
The new document is created by using the criteria document as a base and applying
any modifier documents to it.

For example, if you do an upsert that matches a key and increments to the value of
that key, the increment will be applied to the match:

> db.users.updateOne({"rep" : 25}, {"$inc" : {"rep" : 3}}, {"upsert" : true})
WriteResult({
 "acknowledged" : true,
 "matchedCount" : 0,
 "modifiedCount" : 0,
 "upsertedId" : ObjectId("5a93b07aaea1cb8780a4cf72")
})
> db.users.findOne({"_id" : ObjectId("5727b2a7223502483c7f3acd")})
{ "_id" : ObjectId("5727b2a7223502483c7f3acd"), "rep" : 28 }

The upsert creates a new document with a "rep" of 25 and then increments that by 3,
giving us a document where "rep" is 28. If the upsert option were not specified,
{"rep" : 25} would not match any documents, so nothing would happen.

Updating Documents | 47

If we run the upsert again (with the criterion {"rep" : 25}), it will create another
new document. This is because the criterion does not match the only document in the
collection. (Its "rep" is 28.)

Sometimes a field needs to be set when a document is created, but not changed on
subsequent updates. This is what "$setOnInsert" is for. "$setOnInsert" is an opera‐
tor that only sets the value of a field when the document is being inserted. Thus, we
could do something like this:

> db.users.updateOne({}, {"$setOnInsert" : {"createdAt" : new Date()}},
... {"upsert" : true})
{
 "acknowledged" : true,
 "matchedCount" : 0,
 "modifiedCount" : 0,
 "upsertedId" : ObjectId("5727b4ac223502483c7f3ace")
}
> db.users.findOne()
{
 "_id" : ObjectId("5727b4ac223502483c7f3ace"),
 "createdAt" : ISODate("2016-05-02T20:12:28.640Z")
}

If we run this update again, it will match the existing document, nothing will be
inserted, and so the "createdAt" field will not be changed:

> db.users.updateOne({}, {"$setOnInsert" : {"createdAt" : new Date()}},
... {"upsert" : true})
{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 0 }
> db.users.findOne()
{
 "_id" : ObjectId("5727b4ac223502483c7f3ace"),
 "createdAt" : ISODate("2016-05-02T20:12:28.640Z")
}

Note that you generally do not need to keep a "createdAt" field, as ObjectIds con‐
tain a timestamp of when the document was created. However, "$setOnInsert" can
be useful for creating padding, initializing counters, and for collections that do not
use ObjectIds.

The save shell helper

save is a shell function that lets you insert a document if it doesn’t exist and update it
if it does. It takes one argument: a document. If the document contains an "_id" key,
save will do an upsert. Otherwise, it will do an insert. save is really just a conve‐
nience function so that programmers can quickly modify documents in the shell:

> var x = db.testcol.findOne()
> x.num = 42

48 | Chapter 3: Creating, Updating, and Deleting Documents

42
> db.testcol.save(x)

Without save, the last line would have been more cumbersome:

db.testcol.replaceOne({"_id" : x._id}, x)

Updating Multiple Documents
So far in this chapter we have used updateOne to illustrate update operations.
updateOne updates only the first document found that matches the filter criteria. If
there are more matching documents, they will remain unchanged. To modify all of
the documents matching a filter, use updateMany. updateMany follows the same
semantics as updateOne and takes the same parameters. The key difference is in the
number of documents that might be changed.

updateMany provides a powerful tool for performing schema migrations or rolling
out new features to certain users. Suppose, for example, we want to give a gift to every
user who has a birthday on a certain day. We can use updateMany to add a "gift" to
their accounts. For example:

> db.users.insertMany([
... {birthday: "10/13/1978"},
... {birthday: "10/13/1978"},
... {birthday: "10/13/1978"}])
{
 "acknowledged" : true,
 "insertedIds" : [
 ObjectId("5727d6fc6855a935cb57a65b"),
 ObjectId("5727d6fc6855a935cb57a65c"),
 ObjectId("5727d6fc6855a935cb57a65d")
]
}
> db.users.updateMany({"birthday" : "10/13/1978"},
... {"$set" : {"gift" : "Happy Birthday!"}})
{ "acknowledged" : true, "matchedCount" : 3, "modifiedCount" : 3 }

The call to updateMany adds a "gift" field to each of the three documents we inser‐
ted into the users collection immediately before.

Returning Updated Documents
For some use cases it is important to return the document modified. In earlier ver‐
sions of MongoDB, findAndModify was the method of choice in such situations. It is
handy for manipulating queues and performing other operations that need get-and-
set−style atomicity. However, findAndModify is prone to user error because it’s a
complex method combining the functionality of three different types of operations:
delete, replace, and update (including upserts).

Updating Documents | 49

MongoDB 3.2 introduced three new collection methods to the shell to accommodate
the functionality of findAndModify, but with semantics that are easier to learn and
remember: findOneAndDelete, findOneAndReplace, and findOneAndUpdate. The
primary difference between these methods and, for example, updateOne is that they
enable you to atomically get the value of a modified document. MongoDB 4.2 exten‐
ded findOneAndUpdate to accept an aggregation pipeline for the update. The pipeline
can consist of the following stages: $addFields and its alias $set, $project and its
alias $unset, and $replaceRoot and its alias $replaceWith.

Suppose we have a collection of processes run in a certain order. Each is represented
with a document that has the following form:

{
 "_id" : ObjectId(),
 "status" : "state",
 "priority" : N
}

"status" is a string that can be "READY", "RUNNING", or "DONE". We need to find the
job with the highest priority in the "READY" state, run the process function, and then
update the status to "DONE". We might try querying for the ready processes, sorting by
priority, and updating the status of the highest-priority process to mark it as
"RUNNING". Once we have processed it, we update the status to "DONE". This looks
something like the following:

var cursor = db.processes.find({"status" : "READY"});
ps = cursor.sort({"priority" : -1}).limit(1).next();
db.processes.updateOne({"_id" : ps._id}, {"$set" : {"status" : "RUNNING"}});
do_something(ps);
db.processes.updateOne({"_id" : ps._id}, {"$set" : {"status" : "DONE"}});

This algorithm isn’t great because it is subject to a race condition. Suppose we have
two threads running. If one thread (call it A) retrieved the document and another
thread (call it B) retrieved the same document before A had updated its status to
"RUNNING", then both threads would be running the same process. We can avoid this
by checking the result as part of the update query, but this becomes complex:

var cursor = db.processes.find({"status" : "READY"});
cursor.sort({"priority" : -1}).limit(1);
while ((ps = cursor.next()) != null) {
 var result = db.processes.updateOne({"_id" : ps._id, "status" : "READY"},
 {"$set" : {"status" : "RUNNING"}});

 if (result.modifiedCount === 1) {
 do_something(ps);
 db.processes.updateOne({"_id" : ps._id}, {"$set" : {"status" : "DONE"}});
 break;
 }
 cursor = db.processes.find({"status" : "READY"});

50 | Chapter 3: Creating, Updating, and Deleting Documents

 cursor.sort({"priority" : -1}).limit(1);
}

Also, depending on timing, one thread may end up doing all the work while another
thread uselessly trails it. Thread A could always grab the process, and then B would
try to get the same process, fail, and leave A to do all the work.

Situations like this are perfect for findOneAndUpdate. findOneAndUpdate can return
the item and update it in a single operation. In this case, it looks like the following:

> db.processes.findOneAndUpdate({"status" : "READY"},
... {"$set" : {"status" : "RUNNING"}},
... {"sort" : {"priority" : -1}})
{
 "_id" : ObjectId("4b3e7a18005cab32be6291f7"),
 "priority" : 1,
 "status" : "READY"
}

Notice that the status is still "READY" in the returned document because the
findOneAndUpdate method defaults to returning the state of the document before it
was modified. It will return the updated document if we set the "returnNewDocu
ment" field in the options document to true. An options document is passed as the
third parameter to findOneAndUpdate:

> db.processes.findOneAndUpdate({"status" : "READY"},
... {"$set" : {"status" : "RUNNING"}},
... {"sort" : {"priority" : -1},
... "returnNewDocument": true})
{
 "_id" : ObjectId("4b3e7a18005cab32be6291f7"),
 "priority" : 1,
 "status" : "RUNNING"
}

Thus, the program becomes the following:

ps = db.processes.findOneAndUpdate({"status" : "READY"},
 {"$set" : {"status" : "RUNNING"}},
 {"sort" : {"priority" : -1},
 "returnNewDocument": true})
do_something(ps)
db.process.updateOne({"_id" : ps._id}, {"$set" : {"status" : "DONE"}})

In addition to this one, there are two other methods you should be aware of.
findOneAndReplace takes the same parameters and returns the document matching
the filter either before or after the replacement, depending on the value of returnNew
Document. findOneAndDelete is similar except it does not take an update document
as a parameter and has a subset of the options of the other two methods. findOneAnd
Delete returns the deleted document.

Updating Documents | 51

CHAPTER 4

Querying

This chapter looks at querying in detail. The main areas covered are as follows:

• You can query for ranges, set inclusion, inequalities, and more by using
$ conditionals.

• Queries return a database cursor, which lazily returns batches of documents as
you need them.

• There are a lot of metaoperations you can perform on a cursor, including skip‐
ping a certain number of results, limiting the number of results returned, and
sorting results.

Introduction to find
The find method is used to perform queries in MongoDB. Querying returns a subset
of documents in a collection, from no documents at all to the entire collection. Which
documents get returned is determined by the first argument to find, which is a docu‐
ment specifying the query criteria.

An empty query document (i.e., {}) matches everything in the collection. If find isn’t
given a query document, it defaults to {}. For example, the following:

> db.c.find()

matches every document in the collection c (and returns these documents in batches).

When we start adding key/value pairs to the query document, we begin restricting
our search. This works in a straightforward way for most types: numbers match num‐
bers, booleans match booleans, and strings match strings. Querying for a simple type
is as easy as specifying the value that you are looking for. For example, to find all

53

documents where the value for "age" is 27, we can add that key/value pair to the
query document:

> db.users.find({"age" : 27})

If we have a string we want to match, such as a "username" key with the value "joe",
we use that key/value pair instead:

> db.users.find({"username" : "joe"})

Multiple conditions can be strung together by adding more key/value pairs to the
query document, which gets interpreted as “condition1 AND condition2 AND …
AND conditionN.” For instance, to get all users who are 27-year-olds with the user‐
name “joe,” we can query for the following:

> db.users.find({"username" : "joe", "age" : 27})

Specifying Which Keys to Return
Sometimes you do not need all of the key/value pairs in a document returned. If this
is the case, you can pass a second argument to find (or findOne) specifying the keys
you want. This reduces both the amount of data sent over the wire and the time and
memory used to decode documents on the client side.

For example, if you have a user collection and you are interested only in the
"username" and "email" keys, you could return just those keys with the following
query:

> db.users.find({}, {"username" : 1, "email" : 1})
{
 "_id" : ObjectId("4ba0f0dfd22aa494fd523620"),
 "username" : "joe",
 "email" : "joe@example.com"
}

As you can see from the previous output, the "_id" key is returned by default, even if
it isn’t specifically requested.

You can also use this second parameter to exclude specific key/value pairs from the
results of a query. For instance, you may have documents with a variety of keys, and
the only thing you know is that you never want to return the "fatal_weakness" key:

> db.users.find({}, {"fatal_weakness" : 0})

This can also prevent "_id" from being returned:

> db.users.find({}, {"username" : 1, "_id" : 0})
{
 "username" : "joe",
}

54 | Chapter 4: Querying

Limitations
There are some restrictions on queries. The value of a query document must be a
constant as far as the database is concerned. (It can be a normal variable in your own
code.) That is, it cannot refer to the value of another key in the document. For exam‐
ple, if we were keeping inventory and we had both "in_stock" and "num_sold" keys,
we couldn’t compare their values by querying the following:

> db.stock.find({"in_stock" : "this.num_sold"}) // doesn't work

There are ways to do this (see “$where Queries” on page 65), but you will usually get
better performance by restructuring your document slightly, such that a “normal”
query will suffice. In this example, we could instead use the keys "initial_stock"
and "in_stock". Then, every time someone buys an item, we decrement the value of
the "in_stock" key by one. Finally, we can do a simple query to check which items
are out of stock:

> db.stock.find({"in_stock" : 0})

Query Criteria
Queries can go beyond the exact matching described in the previous section; they can
match more complex criteria, such as ranges, OR-clauses, and negation.

Query Conditionals
"$lt", "$lte", "$gt", and "$gte" are all comparison operators, corresponding to <,
<=, >, and >=, respectively. They can be combined to look for a range of values. For
example, to look for users who are between the ages of 18 and 30, we can do this:

> db.users.find({"age" : {"$gte" : 18, "$lte" : 30}})

This would find all documents where the "age" field was greater than or equal to 18
AND less than or equal to 30.

These types of range queries are often useful for dates. For example, to find people
who registered before January 1, 2007, we can do this:

> start = new Date("01/01/2007")
> db.users.find({"registered" : {"$lt" : start}})

Depending on how you create and store dates, an exact match might be less useful,
since dates are stored with millisecond precision. Often you want a whole day, week,
or month, making a range query necessary.

To query for documents where a key’s value is not equal to a certain value, you must
use another conditional operator, "$ne", which stands for “not equal.” If you want to
find all users who do not have the username “joe,” you can query for them using this:

Query Criteria | 55

> db.users.find({"username" : {"$ne" : "joe"}})

"$ne" can be used with any type.

OR Queries
There are two ways to do an OR query in MongoDB. "$in" can be used to query for a
variety of values for a single key. "$or" is more general; it can be used to query for
any of the given values across multiple keys.

If you have more than one possible value to match for a single key, use an array of
criteria with "$in". For instance, suppose we’re running a raffle and the winning
ticket numbers are 725, 542, and 390. To find all three of these documents, we can
construct the following query:

> db.raffle.find({"ticket_no" : {"$in" : [725, 542, 390]}})

"$in" is very flexible and allows you to specify criteria of different types as well as
values. For example, if we are gradually migrating our schema to use usernames
instead of user ID numbers, we can query for either by using this:

> db.users.find({"user_id" : {"$in" : [12345, "joe"]}})

This matches documents with a "user_id" equal to 12345 and documents with a
"user_id" equal to "joe".

If "$in" is given an array with a single value, it behaves the same as directly matching
the value. For instance, {ticket_no : {$in : [725]}} matches the same documents
as {ticket_no : 725}.

The opposite of "$in" is "$nin", which returns documents that don’t match any of
the criteria in the array. If we want to return all of the people who didn’t win anything
in the raffle, we can query for them with this:

> db.raffle.find({"ticket_no" : {"$nin" : [725, 542, 390]}})

This query returns everyone who did not have tickets with those numbers.

"$in" gives you an OR query for a single key, but what if we need to find documents
where "ticket_no" is 725 or "winner" is true? For this type of query, we’ll need to
use the "$or" conditional. "$or" takes an array of possible criteria. In the raffle case,
using "$or" would look like this:

> db.raffle.find({"$or" : [{"ticket_no" : 725}, {"winner" : true}]})

"$or" can contain other conditionals. If, for example, we want to match any of the
three "ticket_no" values or the "winner" key, we can use this:

> db.raffle.find({"$or" : [{"ticket_no" : {"$in" : [725, 542, 390]}},
... {"winner" : true}]})

56 | Chapter 4: Querying

With a normal AND-type query, you want to narrow down your results as far as pos‐
sible in as few arguments as possible. OR-type queries are the opposite: they are most
efficient if the first arguments match as many documents as possible.

While "$or" will always work, use "$in" whenever possible as the query optimizer
handles it more efficiently.

$not
"$not" is a metaconditional: it can be applied on top of any other criteria. As an
example, let’s consider the modulus operator, "$mod". "$mod" queries for keys whose
values, when divided by the first value given, have a remainder of the second value:

> db.users.find({"id_num" : {"$mod" : [5, 1]}})

The previous query returns users with "id_num"s of 1, 6, 11, 16, and so on. If we
want, instead, to return users with "id_num"s of 2, 3, 4, 5, 7, 8, 9, 10, 12, etc., we can
use "$not":

> db.users.find({"id_num" : {"$not" : {"$mod" : [5, 1]}}})

"$not" can be particularly useful in conjunction with regular expressions to find all
documents that don’t match a given pattern (regular expression usage is described in
the section “Regular Expressions” on page 58).

Type-Specific Queries
As covered in Chapter 2, MongoDB has a wide variety of types that can be used in a
document. Some of these types have special behavior when querying.

null
null behaves a bit strangely. It does match itself, so if we have a collection with the
following documents:

> db.c.find()
{ "_id" : ObjectId("4ba0f0dfd22aa494fd523621"), "y" : null }
{ "_id" : ObjectId("4ba0f0dfd22aa494fd523622"), "y" : 1 }
{ "_id" : ObjectId("4ba0f148d22aa494fd523623"), "y" : 2 }

we can query for documents whose "y" key is null in the expected way:

> db.c.find({"y" : null})
{ "_id" : ObjectId("4ba0f0dfd22aa494fd523621"), "y" : null }

However, null also matches “does not exist.” Thus, querying for a key with the value
null will return all documents lacking that key:

> db.c.find({"z" : null})
{ "_id" : ObjectId("4ba0f0dfd22aa494fd523621"), "y" : null }

Type-Specific Queries | 57

{ "_id" : ObjectId("4ba0f0dfd22aa494fd523622"), "y" : 1 }
{ "_id" : ObjectId("4ba0f148d22aa494fd523623"), "y" : 2 }

If we only want to find keys whose value is null, we can check that the key is null
and exists using the "$exists" conditional:

> db.c.find({"z" : {"$eq" : null, "$exists" : true}})

Regular Expressions
"$regex" provides regular expression capabilities for pattern matching strings in
queries. Regular expressions are useful for flexible string matching. For example, if we
want to find all users with the name “Joe” or “joe,” we can use a regular expression to
do case-insensitive matching:

> db.users.find({"name" : {"$regex" : /joe/i } })

Regular expression flags (e.g., i) are allowed but not required. If we want to match
not only various capitalizations of “joe,” but also “joey,” we can continue to improve
our regular expression:

> db.users.find({"name" : /joey?/i})

MongoDB uses the Perl Compatible Regular Expression (PCRE) library to match reg‐
ular expressions; any regular expression syntax allowed by PCRE is allowed in
MongoDB. It is a good idea to check your syntax with the JavaScript shell before
using it in a query to make sure it matches what you think it matches.

MongoDB can leverage an index for queries on prefix regular
expressions (e.g., /^joey/). Indexes cannot be used for case-
insensitive searches (/^joey/i). A regular expression is a “prefix
expression” when it starts with either a caret (^) or a left anchor
(\A). If the regular expression uses a case-sensitive query, then if an
index exists for the field, the matches can be conducted against val‐
ues in the index. If it also is a prefix expression, then the search can
be limited to the values within the range created by that prefix from
the index.

Regular expressions can also match themselves. Very few people insert regular
expressions into the database, but if you insert one, you can match it with itself:

> db.foo.insertOne({"bar" : /baz/})
> db.foo.find({"bar" : /baz/})
{
 "_id" : ObjectId("4b23c3ca7525f35f94b60a2d"),
 "bar" : /baz/
}

58 | Chapter 4: Querying

Querying Arrays
Querying for elements of an array is designed to behave the way querying for scalars
does. For example, if the array is a list of fruits, like this:

> db.food.insertOne({"fruit" : ["apple", "banana", "peach"]})

the following query will successfully match the document:

> db.food.find({"fruit" : "banana"})

We can query for it in much the same way as we would if we had a document that
looked like the (illegal) document {"fruit" : "apple", "fruit" : "banana",
"fruit" : "peach"}.

“$all”

If you need to match arrays by more than one element, you can use "$all". This
allows you to match a list of elements. For example, suppose we create a collection
with three elements:

> db.food.insertOne({"_id" : 1, "fruit" : ["apple", "banana", "peach"]})
> db.food.insertOne({"_id" : 2, "fruit" : ["apple", "kumquat", "orange"]})
> db.food.insertOne({"_id" : 3, "fruit" : ["cherry", "banana", "apple"]})

Then we can find all documents with both "apple" and "banana" elements by query‐
ing with "$all":

> db.food.find({fruit : {$all : ["apple", "banana"]}})
{"_id" : 1, "fruit" : ["apple", "banana", "peach"]}
{"_id" : 3, "fruit" : ["cherry", "banana", "apple"]}

Order does not matter. Notice "banana" comes before "apple" in the second result.
Using a one-element array with "$all" is equivalent to not using "$all". For
instance, {fruit : {$all : ['apple']} will match the same documents as
{fruit : 'apple'}.

You can also query by exact match using the entire array. However, exact match will
not match a document if any elements are missing or superfluous. For example, this
will match the first of our three documents:

> db.food.find({"fruit" : ["apple", "banana", "peach"]})

But this will not:

> db.food.find({"fruit" : ["apple", "banana"]})

and neither will this:

> db.food.find({"fruit" : ["banana", "apple", "peach"]})

If you want to query for a specific element of an array, you can specify an index using
the syntax key.index:

Type-Specific Queries | 59

> db.food.find({"fruit.2" : "peach"})

Arrays are always 0-indexed, so this would match the third array element against the
string "peach".

“$size”

A useful conditional for querying arrays is "$size", which allows you to query for
arrays of a given size. Here’s an example:

> db.food.find({"fruit" : {"$size" : 3}})

One common query is to get a range of sizes. "$size" cannot be combined with
another $ conditional (in this example, "$gt"), but this query can be accomplished by
adding a "size" key to the document. Then, every time you add an element to the
array, increment the value of "size". If the original update looked like this:

> db.food.update(criteria, {"$push" : {"fruit" : "strawberry"}})

it can simply be changed to this:

> db.food.update(criteria,
... {"$push" : {"fruit" : "strawberry"}, "$inc" : {"size" : 1}})

Incrementing is extremely fast, so any performance penalty is negligible. Storing
documents like this allows you to do queries such as this:

> db.food.find({"size" : {"$gt" : 3}})

Unfortunately, this technique doesn’t work as well with the "$addToSet" operator.

“$slice”

As mentioned earlier in this chapter, the optional second argument to find specifies
the keys to be returned. The special "$slice" operator can be used to return a subset
of elements for an array key.

For example, suppose we had a blog post document and we wanted to return the first
10 comments:

> db.blog.posts.findOne(criteria, {"comments" : {"$slice" : 10}})

Alternatively, if we wanted the last 10 comments, we could use −10:

> db.blog.posts.findOne(criteria, {"comments" : {"$slice" : -10}})

"$slice" can also return pages in the middle of the results by taking an offset and the
number of elements to return:

> db.blog.posts.findOne(criteria, {"comments" : {"$slice" : [23, 10]}})

This would skip the first 23 elements and return the 24th through 33rd. If there were
fewer than 33 elements in the array, it would return as many as possible.

60 | Chapter 4: Querying

Unless otherwise specified, all keys in a document are returned when "$slice" is
used. This is unlike the other key specifiers, which suppress unmentioned keys from
being returned. For instance, if we had a blog post document that looked like this:

{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "title" : "A blog post",
 "content" : "...",
 "comments" : [
 {
 "name" : "joe",
 "email" : "joe@example.com",
 "content" : "nice post."
 },
 {
 "name" : "bob",
 "email" : "bob@example.com",
 "content" : "good post."
 }
]
}

and we did a "$slice" to get the last comment, we’d get this:

> db.blog.posts.findOne(criteria, {"comments" : {"$slice" : -1}})
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "title" : "A blog post",
 "content" : "...",
 "comments" : [
 {
 "name" : "bob",
 "email" : "bob@example.com",
 "content" : "good post."
 }
]
}

Both "title" and "content" are still returned, even though they weren’t explicitly
included in the key specifier.

Returning a matching array element

"$slice" is helpful when you know the index of the element, but sometimes you
want whichever array element matched your criteria. You can return the matching
element with the $ operator. Given the previous blog example, you could get Bob’s
comment back with:

> db.blog.posts.find({"comments.name" : "bob"}, {"comments.$" : 1})
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "comments" : [

Type-Specific Queries | 61

 {
 "name" : "bob",
 "email" : "bob@example.com",
 "content" : "good post."
 }
]
}

Note that this only returns the first match for each document: if Bob had left multiple
comments on this post, only the first one in the "comments" array would be returned.

Array and range query interactions
Scalars (nonarray elements) in documents must match each clause of a query’s crite‐
ria. For example, if you queried for {"x" : {"$gt" : 10, "$lt" : 20}}, "x" would
have to be both greater than 10 and less than 20. However, if a document’s "x" field is
an array, the document matches if there is an element of "x" that matches each part of
the criteria but each query clause can match a different array element.

The best way to understand this behavior is to see an example. Suppose we have the
following documents:

{"x" : 5}
{"x" : 15}
{"x" : 25}
{"x" : [5, 25]}

If we wanted to find all documents where "x" is between 10 and 20, we might naively
structure a query as db.test.find({"x" : {"$gt" : 10, "$lt" : 20}}) and
expect to get back one document: {"x" : 15}. However, running this, we get two:

> db.test.find({"x" : {"$gt" : 10, "$lt" : 20}})
{"x" : 15}
{"x" : [5, 25]}

Neither 5 nor 25 is between 10 and 20, but the document is returned because 25
matches the first clause (it is greater than 10) and 5 matches the second clause (it is
less than 20).

This makes range queries against arrays essentially useless: a range will match any
multielement array. There are a couple of ways to get the expected behavior.

First, you can use "$elemMatch" to force MongoDB to compare both clauses with a
single array element. However, the catch is that "$elemMatch" won’t match nonarray
elements:

> db.test.find({"x" : {"$elemMatch" : {"$gt" : 10, "$lt" : 20}}})
> // no results

The document {"x" : 15} no longer matches the query, because the "x" field is not
an array. That said, you should have a good reason for mixing array and scalar values

62 | Chapter 4: Querying

in a field. Many uses cases do not require mixing. For those, "$elemMatch" provides a
good solution for range queries on array elements.

If you have an index over the field that you’re querying on (see Chapter 5), you can
use min and max to limit the index range traversed by the query to your "$gt" and
"$lt" values:

> db.test.find({"x" : {"$gt" : 10, "$lt" : 20}}).min({"x" : 10}).max({"x" : 20})
{"x" : 15}

Now this will only traverse the index from 10 to 20, missing the 5 and 25 entries. You
can only use min and max when you have an index on the field you are querying for,
though, and you must pass all fields of the index to min and max.

Using min and max when querying for ranges over documents that may include arrays
is generally a good idea. The index bounds for a "$gt"/"$lt" query over an array is
inefficient. It basically accepts any value, so it will search every index entry, not just
those in the range.

Querying on Embedded Documents
There are two ways of querying for an embedded document: querying for the whole
document or querying for its individual key/value pairs.

Querying for an entire embedded document works identically to a normal query. For
example, if we have a document that looks like this:

{
 "name" : {
 "first" : "Joe",
 "last" : "Schmoe"
 },
 "age" : 45
}

we can query for someone named Joe Schmoe with the following:

> db.people.find({"name" : {"first" : "Joe", "last" : "Schmoe"}})

However, a query for a full subdocument must exactly match the subdocument. If Joe
decides to add a middle name field, suddenly this query won’t work anymore; it
doesn’t match the entire embedded document! This type of query is also order-
sensitive: {"last" : "Schmoe", "first" : "Joe"} would not be a match.

If possible, it’s usually a good idea to query for just a specific key or keys of an embed‐
ded document. Then, if your schema changes, all of your queries won’t suddenly
break because they’re no longer exact matches. You can query for embedded keys
using dot notation:

> db.people.find({"name.first" : "Joe", "name.last" : "Schmoe"})

Type-Specific Queries | 63

Now, if Joe adds more keys, this query will still match his first and last names.

This dot notation is the main difference between query documents and other docu‐
ment types. Query documents can contain dots, which mean “reach into an embed‐
ded document.” Dot notation is also the reason that documents to be inserted cannot
contain the . character. Oftentimes people run into this limitation when trying to
save URLs as keys. One way to get around it is to always perform a global replace
before inserting or after retrieving, substituting a character that isn’t legal in URLs for
the dot character.

Embedded document matches can get a little tricky as the document structure gets
more complicated. For example, suppose we are storing blog posts and we want to
find comments by Joe that were scored at least a 5. We could model the post as
follows:

> db.blog.find()
{
 "content" : "...",
 "comments" : [
 {
 "author" : "joe",
 "score" : 3,
 "comment" : "nice post"
 },
 {
 "author" : "mary",
 "score" : 6,
 "comment" : "terrible post"
 }
]
}

Now, we can’t query using db.blog.find({"comments" : {"author" : "joe",

"score" : {"$gte" : 5}}}). Embedded document matches have to match the
whole document, and this doesn’t match the "comment" key. It also wouldn’t work to
do db.blog.find({"comments.author" : "joe", "comments.score" : {"$gte" :
5}}), because the author criterion could match a different comment than the score
criterion. That is, it would return the document shown above: it would match
"author" : "joe" in the first comment and "score" : 6 in the second comment.

To correctly group criteria without needing to specify every key, use "$elemMatch".
This vaguely named conditional allows you to partially specify criteria to match a sin‐
gle embedded document in an array. The correct query looks like this:

> db.blog.find({"comments" : {"$elemMatch" :
... {"author" : "joe", "score" : {"$gte" : 5}}}})

"$elemMatch" allows you to “group” your criteria. As such, it’s only needed when you
have more than one key you want to match on in an embedded document.

64 | Chapter 4: Querying

$where Queries
Key/value pairs are a fairly expressive way to query, but there are some queries that
they cannot represent. For queries that cannot be done any other way, there are
"$where" clauses, which allow you to execute arbitrary JavaScript as part of your
query. This allows you to do (almost) anything within a query. For security, use of
"$where" clauses should be highly restricted or eliminated. End users should never be
allowed to execute arbitrary "$where" clauses.

The most common case for using "$where" is to compare the values for two keys in a
document. For instance, suppose we have documents that look like this:

> db.foo.insertOne({"apple" : 1, "banana" : 6, "peach" : 3})
> db.foo.insertOne({"apple" : 8, "spinach" : 4, "watermelon" : 4})

We’d like to return documents where any two of the fields are equal. For example, in
the second document, "spinach" and "watermelon" have the same value, so we’d like
that document returned. It’s unlikely MongoDB will ever have a $ conditional for this,
so we can use a "$where" clause to do it with JavaScript:

> db.foo.find({"$where" : function () {
... for (var current in this) {
... for (var other in this) {
... if (current != other && this[current] == this[other]) {
... return true;
... }
... }
... }
... return false;
... }});

If the function returns true, the document will be part of the result set; if it returns
false, it won’t be.

"$where" queries should not be used unless strictly necessary: they are much slower
than regular queries. Each document has to be converted from BSON to a JavaScript
object and then run through the "$where" expression. Indexes cannot be used to sat‐
isfy a "$where" either. Hence, you should use "$where" only when there is no other
way of doing the query. You can cut down on the penalty by using other query filters
in combination with "$where". If possible, an index will be used to filter based on the
non-$where clauses; the "$where" expression will be used only to fine-tune the
results. MongoDB 3.6 added the $expr operator which allows the use of aggregation
expressions with the MongoDB query language. It is faster than $where as it does not
execute JavaScript and is recommended as a replacement to this operator where
possible.

Another way of doing complex queries is to use one of the aggregation tools, which
are covered in Chapter 7.

$where Queries | 65

Cursors
The database returns results from find using a cursor. The client-side implementa‐
tions of cursors generally allow you to control a great deal about the eventual output
of a query. You can limit the number of results, skip over some number of results, sort
results by any combination of keys in any direction, and perform a number of other
powerful operations.

To create a cursor with the shell, put some documents into a collection, do a query on
them, and assign the results to a local variable (variables defined with "var" are
local). Here, we create a very simple collection and query it, storing the results in the
cursor variable:

> for(i=0; i<100; i++) {
... db.collection.insertOne({x : i});
... }
> var cursor = db.collection.find();

The advantage of doing this is that you can look at one result at a time. If you store
the results in a global variable or no variable at all, the MongoDB shell will automati‐
cally iterate through and display the first couple of documents. This is what we’ve
been seeing up until this point, and it is often the behavior you want for seeing what’s
in a collection but not doing actual programming with the shell.

To iterate through the results, you can use the next method on the cursor. You can
use hasNext to check whether there is another result. A typical loop through result
looks like the following:

> while (cursor.hasNext()) {
... obj = cursor.next();
... // do stuff
... }

cursor.hasNext() checks that the next result exists, and cursor.next() fetches it.

The cursor class also implements JavaScript’s iterator interface, so you can use it in a
forEach loop:

> var cursor = db.people.find();
> cursor.forEach(function(x) {
... print(x.name);
... });
adam
matt
zak

When you call find, the shell does not query the database immediately. It waits until
you start requesting results to send the query, which allows you to chain additional
options onto a query before it is performed. Almost every method on a cursor object

66 | Chapter 4: Querying

returns the cursor itself, so that you can chain options in any order. For instance, all
of the following are equivalent:

> var cursor = db.foo.find().sort({"x" : 1}).limit(1).skip(10);
> var cursor = db.foo.find().limit(1).sort({"x" : 1}).skip(10);
> var cursor = db.foo.find().skip(10).limit(1).sort({"x" : 1});

At this point, the query has not been executed yet. All of these functions merely build
the query. Now, suppose we call the following:

> cursor.hasNext()

At this point, the query will be sent to the server. The shell fetches the first 100 results
or first 4 MB of results (whichever is smaller) at once so that the next calls to next or
hasNext will not have to make trips to the server. After the client has run through the
first set of results, the shell will again contact the database and ask for more results
with a getMore request. getMore requests basically contain an identifier for the cursor
and ask the database if there are any more results, returning the next batch if there
are. This process continues until the cursor is exhausted and all results have been
returned.

Limits, Skips, and Sorts
The most common query options are limiting the number of results returned, skip‐
ping a number of results, and sorting. All these options must be added before a query
is sent to the database.

To set a limit, chain the limit function onto your call to find. For example, to only
return three results, use this:

> db.c.find().limit(3)

If there are fewer than three documents matching your query in the collection, only
the number of matching documents will be returned; limit sets an upper limit, not a
lower limit.

skip works similarly to limit:

> db.c.find().skip(3)

This will skip the first three matching documents and return the rest of the matches.
If there are fewer than three documents in your collection, it will not return any
documents.

sort takes an object: a set of key/value pairs where the keys are key names and the
values are the sort directions. The sort direction can be 1 (ascending) or −1 (descend‐
ing). If multiple keys are given, the results will be sorted in that order. For instance, to
sort the results by "username" ascending and "age" descending, we do the following:

> db.c.find().sort({username : 1, age : -1})

Cursors | 67

These three methods can be combined. This is often handy for pagination. For exam‐
ple, suppose that you are running an online store and someone searches for mp3. If
you want 50 results per page sorted by price from high to low, you can do the
following:

> db.stock.find({"desc" : "mp3"}).limit(50).sort({"price" : -1})

If that person clicks Next Page to see more results, you can simply add a skip to the
query, which will skip over the first 50 matches (which the user already saw on page
1):

> db.stock.find({"desc" : "mp3"}).limit(50).skip(50).sort({"price" : -1})

However, large skips are not very performant; there are suggestions for how to avoid
them in the next section.

Comparison order
MongoDB has a hierarchy as to how types compare. Sometimes you will have a single
key with multiple types: for instance, integers and booleans, or strings and nulls. If
you do a sort on a key with a mix of types, there is a predefined order that they will be
sorted in. From least to greatest value, this ordering is as follows:

1. Minimum value
2. Null
3. Numbers (integers, longs, doubles, decimals)
4. Strings
5. Object/document
6. Array
7. Binary data
8. Object ID
9. Boolean

10. Date
11. Timestamp
12. Regular expression
13. Maximum value

Avoiding Large Skips
Using skip for a small number of documents is fine. But for a large number of results,
skip can be slow, since it has to find and then discard all the skipped results. Most

68 | Chapter 4: Querying

databases keep more metadata in the index to help with skips, but MongoDB does
not yet support this, so large skips should be avoided. Often you can calculate the
results of the next query based on the previous one.

Paginating results without skip

The easiest way to do pagination is to return the first page of results using limit and
then return each subsequent page as an offset from the beginning:

> // do not use: slow for large skips
> var page1 = db.foo.find(criteria).limit(100)
> var page2 = db.foo.find(criteria).skip(100).limit(100)
> var page3 = db.foo.find(criteria).skip(200).limit(100)
...

However, depending on your query, you can usually find a way to paginate without
skips. For example, suppose we want to display documents in descending order based
on "date". We can get the first page of results with the following:

> var page1 = db.foo.find().sort({"date" : -1}).limit(100)

Then, assuming the date is unique, we can use the "date" value of the last document
as the criterion for fetching the next page:

var latest = null;

// display first page
while (page1.hasNext()) {
 latest = page1.next();
 display(latest);
}

// get next page
var page2 = db.foo.find({"date" : {"$lt" : latest.date}});
page2.sort({"date" : -1}).limit(100);

Now the query does not need to include a skip.

Finding a random document
One fairly common problem is how to get a random document from a collection. The
naive (and slow) solution is to count the number of documents and then do a find,
skipping a random number of documents between zero and the size of the collection:

> // do not use
> var total = db.foo.count()
> var random = Math.floor(Math.random()*total)
> db.foo.find().skip(random).limit(1)

It is actually highly inefficient to get a random element this way: you have to do a
count (which can be expensive if you are using criteria), and skipping large numbers
of elements can be time-consuming.

Cursors | 69

It takes a little forethought, but if you know you’ll be looking up a random element in
a collection, there’s a much more efficient way to do so. The trick is to add an extra
random key to each document when it is inserted. For instance, if we’re using the
shell, we could use the Math.random() function (which creates a random number
between 0 and 1):

> db.people.insertOne({"name" : "joe", "random" : Math.random()})
> db.people.insertOne({"name" : "john", "random" : Math.random()})
> db.people.insertOne({"name" : "jim", "random" : Math.random()})

Now, when we want to find a random document from the collection, we can calculate
a random number and use that as a query criterion, instead of using skip:

> var random = Math.random()
> result = db.people.findOne({"random" : {"$gt" : random}})

There is a slight chance that random will be greater than any of the "random" values in
the collection, and no results will be returned. We can guard against this by simply
returning a document in the other direction:

> if (result == null) {
... result = db.people.findOne({"random" : {"$lte" : random}})
... }

If there aren’t any documents in the collection, this technique will end up returning
null, which makes sense.

This technique can be used with arbitrarily complex queries; just make sure to have
an index that includes the random key. For example, if we want to find a random
plumber in California, we can create an index on "profession", "state", and
"random":

> db.people.ensureIndex({"profession" : 1, "state" : 1, "random" : 1})

This allows us to quickly find a random result (see Chapter 5 for more information
on indexing).

Immortal Cursors
There are two sides to a cursor: the client-facing cursor and the database cursor that
the client-side one represents. We have been talking about the client-side one up until
now, but we are going to take a brief look at what’s happening on the server.

On the server side, a cursor takes up memory and resources. Once a cursor runs out
of results or the client sends a message telling it to die, the database can free the
resources it was using. Freeing these resources lets the database use them for other
things, which is good, so we want to make sure that cursors can be freed quickly
(within reason).

70 | Chapter 4: Querying

There are a couple of conditions that can cause the death (and subsequent cleanup) of
a cursor. First, when a cursor finishes iterating through the matching results, it will
clean itself up. Another way is that, when a cursor goes out of scope on the client side,
the drivers send the database a special message to let it know that it can kill that cur‐
sor. Finally, even if the user hasn’t iterated through all the results and the cursor is still
in scope, after 10 minutes of inactivity, a database cursor will automatically “die.” This
way, if a client crashes or is buggy, MongoDB will not be left with thousands of open
cursors.

This “death by timeout” is usually the desired behavior: very few applications expect
their users to sit around for minutes at a time waiting for results. However, some‐
times you might know that you need a cursor to last for a long time. In that case,
many drivers have implemented a function called immortal, or a similar mechanism,
which tells the database not to time out the cursor. If you turn off a cursor’s timeout,
you must iterate through all of its results or kill it to make sure it gets closed. Other‐
wise, it will sit around in the database hogging resources until the server is restarted.

Cursors | 71

PART II

Designing Your Application

CHAPTER 5

Indexes

This chapter introduces MongoDB indexes. Indexes enable you to perform queries
efficiently. They’re an important part of application development and are even
required for certain types of queries. In this chapter we will cover:

• What indexes are and why you’d want to use them
• How to choose which fields to index
• How to enforce and evaluate index usage
• Administrative details on creating and removing indexes

As you’ll see, choosing the right indexes for your collections is critical to
performance.

Introduction to Indexes
A database index is similar to a book’s index. Instead of looking through the whole
book, the database takes a shortcut and just looks at an ordered list with references to
the content. This allows MongoDB to query orders of magnitude faster.

A query that does not use an index is called a collection scan, which means that the
server has to “look through the whole book” to find a query’s results. This process is
basically what you’d do if you were looking for information in a book without an
index: you’d start at page 1 and read through the whole thing. In general, you want to
avoid making the server do collection scans because the process is very slow for large
collections.

Let’s look at an example. To get started, we’ll create a collection with 1 million docu‐
ments in it (or 10 million or 100 million, if you have the patience):

75

> for (i=0; i<1000000; i++) {
... db.users.insertOne(
... {
... "i" : i,
... "username" : "user"+i,
... "age" : Math.floor(Math.random()*120),
... "created" : new Date()
... }
...);
... }

Then we’ll look at the differences in performance for queries on this collection, first
without an index and then with an index.

If we do a query on this collection, we can use the explain command to see what
MongoDB is doing when it executes the query. The preferred way to use the explain
command is through the cursor helper method that wraps this command. The
explain cursor method provides information on the execution of a variety of CRUD
operations. This method may be run in several verbosity modes. We’ll look at execu
tionStats mode since this helps us understand the effect of using an index to satisfy
queries. Try querying on a specific username to see an example:

> db.users.find({"username": "user101"}).explain("executionStats")
{
 "queryPlanner" : {
 "plannerVersion" : 1,
 "namespace" : "test.users",
 "indexFilterSet" : false,
 "parsedQuery" : {
 "username" : {
 "$eq" : "user101"
 }
 },
 "winningPlan" : {
 "stage" : "COLLSCAN",
 "filter" : {
 "username" : {
 "$eq" : "user101"
 }
 },
 "direction" : "forward"
 },
 "rejectedPlans" : []
 },
 "executionStats" : {
 "executionSuccess" : true,
 "nReturned" : 1,
 "executionTimeMillis" : 419,
 "totalKeysExamined" : 0,
 "totalDocsExamined" : 1000000,
 "executionStages" : {

76 | Chapter 5: Indexes

 "stage" : "COLLSCAN",
 "filter" : {
 "username" : {
 "$eq" : "user101"
 }
 },
 "nReturned" : 1,
 "executionTimeMillisEstimate" : 375,
 "works" : 1000002,
 "advanced" : 1,
 "needTime" : 1000000,
 "needYield" : 0,
 "saveState" : 7822,
 "restoreState" : 7822,
 "isEOF" : 1,
 "invalidates" : 0,
 "direction" : "forward",
 "docsExamined" : 1000000
 }
 },
 "serverInfo" : {
 "host" : "eoinbrazil-laptop-osx",
 "port" : 27017,
 "version" : "4.0.12",
 "gitVersion" : "5776e3cbf9e7afe86e6b29e22520ffb6766e95d4"
 },
 "ok" : 1
}

“explain Output” on page 116 will explain the output fields; for now you can ignore
almost all of them. For this example, we want to look at the nested document that is
the value of the "executionStats" field. In this document, "totalDocsExamined" is
the number of documents MongoDB looked at while trying to satisfy the query,
which, as you can see, is every document in the collection. That is, MongoDB had to
look through every field in every document. This took nearly half a second to accom‐
plish on my laptop (the "executionTimeMillis" field shows the number of milli‐
seconds it took to execute the query).

The "nReturned" field of the "executionStats" document shows the number of
results returned: 1, which makes sense because there is only one user with the user‐
name "user101". Note that MongoDB had to look through every document in the
collection for matches because it did not know that usernames are unique.

To enable MongoDB to respond to queries efficiently, all query patterns in your appli‐
cation should be supported by an index. By query patterns, we simply mean the dif‐
ferent types of questions your application asks of the database. In this example, we
queried the users collection by username. That is an example of a specific query pat‐
tern. In many applications, a single index will support several query patterns. We will
discuss tailoring indexes to query patterns in a later section.

Introduction to Indexes | 77

Creating an Index
Now let’s try creating an index on the "username" field. To create an index, we’ll use
the createIndex collection method:

> db.users.createIndex({"username" : 1})
{
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 1,
 "numIndexesAfter" : 2,
 "ok" : 1
}

Creating the index should take no longer than a few seconds, unless you made your
collection especially large. If the createIndex call does not return after a few seconds,
run db.currentOp() (in a different shell) or check your mongod’s log to see the index
build’s progress.

Once the index build is complete, try repeating the original query:

> db.users.find({"username": "user101"}).explain("executionStats")
{
 "queryPlanner" : {
 "plannerVersion" : 1,
 "namespace" : "test.users",
 "indexFilterSet" : false,
 "parsedQuery" : {
 "username" : {
 "$eq" : "user101"
 }
 },
 "winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
 "stage" : "IXSCAN",
 "keyPattern" : {
 "username" : 1
 },
 "indexName" : "username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "username" : [
 "[\"user101\", \"user101\"]"
]

78 | Chapter 5: Indexes

 }
 }
 },
 "rejectedPlans" : []
 },
 "executionStats" : {
 "executionSuccess" : true,
 "nReturned" : 1,
 "executionTimeMillis" : 1,
 "totalKeysExamined" : 1,
 "totalDocsExamined" : 1,
 "executionStages" : {
 "stage" : "FETCH",
 "nReturned" : 1,
 "executionTimeMillisEstimate" : 0,
 "works" : 2,
 "advanced" : 1,
 "needTime" : 0,
 "needYield" : 0,
 "saveState" : 0,
 "restoreState" : 0,
 "isEOF" : 1,
 "invalidates" : 0,
 "docsExamined" : 1,
 "alreadyHasObj" : 0,
 "inputStage" : {
 "stage" : "IXSCAN",
 "nReturned" : 1,
 "executionTimeMillisEstimate" : 0,
 "works" : 2,
 "advanced" : 1,
 "needTime" : 0,
 "needYield" : 0,
 "saveState" : 0,
 "restoreState" : 0,
 "isEOF" : 1,
 "invalidates" : 0,
 "keyPattern" : {
 "username" : 1
 },
 "indexName" : "username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "username" : [

Introduction to Indexes | 79

 "[\"user101\", \"user101\"]"
]
 },
 "keysExamined" : 1,
 "seeks" : 1,
 "dupsTested" : 0,
 "dupsDropped" : 0,
 "seenInvalidated" : 0
 }
 }
 },
 "serverInfo" : {
 "host" : "eoinbrazil-laptop-osx",
 "port" : 27017,
 "version" : "4.0.12",
 "gitVersion" : "5776e3cbf9e7afe86e6b29e22520ffb6766e95d4"
 },
 "ok" : 1
}

This explain output is more complex, but for now you can continue to ignore all the
fields other than "nReturned", "totalDocsExamined", and "executionTimeMillis"
in the "executionStats" nested document. As you can see, the query is now almost
instantaneous and, even better, has a similar runtime when querying, for example, for
any username:

> db.users.find({"username": "user999999"}).explain("executionStats")

An index can make a dramatic difference in query times. However, indexes have their
price: write operations (inserts, updates, and deletes) that modify an indexed field will
take longer. This is because in addition to updating the document, MongoDB has to
update indexes when your data changes. Typically, the tradeoff is worth it. The tricky
part becomes figuring out which fields to index.

MongoDB’s indexes work almost identically to typical relational
database indexes, so if you are familiar with those, you can just
skim this section for syntax specifics.

To choose which fields to create indexes for, look through your frequent queries and
queries that need to be fast and try to find a common set of keys from those. For
instance, in the preceding example, we were querying on "username". If that were a
particularly common query or were becoming a bottleneck, indexing "username"
would be a good choice. However, if this were an unusual query or one that’s only
done by administrators who don’t care how long it takes, it would not be a good
choice for indexing.

80 | Chapter 5: Indexes

Introduction to Compound Indexes
The purpose of an index is to make your queries as efficient as possible. For many
query patterns it is necessary to build indexes based on two or more keys. For exam‐
ple, an index keeps all of its values in a sorted order, so it makes sorting documents
by the indexed key much faster. However, an index can only help with sorting if it is a
prefix of the sort. For example, the index on "username" wouldn’t help much for this
sort:

> db.users.find().sort({"age" : 1, "username" : 1})

This sorts by "age" and then "username", so a strict sorting by "username" isn’t terri‐
bly helpful. To optimize this sort, you could make an index on "age" and
"username":

> db.users.createIndex({"age" : 1, "username" : 1})

This is called a compound index and is useful if your query has multiple sort direc‐
tions or multiple keys in the criteria. A compound index is an index on more than
one field.

Suppose we have a users collection that looks something like this, if we run a query
with no sorting (called natural order):

> db.users.find({}, {"_id" : 0, "i" : 0, "created" : 0})
{ "username" : "user0", "age" : 69 }
{ "username" : "user1", "age" : 50 }
{ "username" : "user2", "age" : 88 }
{ "username" : "user3", "age" : 52 }
{ "username" : "user4", "age" : 74 }
{ "username" : "user5", "age" : 104 }
{ "username" : "user6", "age" : 59 }
{ "username" : "user7", "age" : 102 }
{ "username" : "user8", "age" : 94 }
{ "username" : "user9", "age" : 7 }
{ "username" : "user10", "age" : 80 }
...

If we index this collection by {"age" : 1, "username" : 1}, the index will have a
form we can represent as follows:

[0, "user100020"] -> 8623513776
[0, "user1002"] -> 8599246768
[0, "user100388"] -> 8623560880
...
[0, "user100414"] -> 8623564208
[1, "user100113"] -> 8623525680
[1, "user100280"] -> 8623547056
[1, "user100551"] -> 8623581744
...
[1, "user100626"] -> 8623591344
[2, "user100191"] -> 8623535664

Introduction to Indexes | 81

[2, "user100195"] -> 8623536176
[2, "user100197"] -> 8623536432
...

Each index entry contains an age and a username and points to a record identifier. A
record identifier is used internally by the storage engine to locate the data for a docu‐
ment. Note that "age" fields are ordered to be strictly ascending and, within each age,
usernames are also in ascending order. In this example dataset, each age has approxi‐
mately 8,000 usernames associated with it. Here we’ve included only those necessary
to convey the general idea.

The way MongoDB uses this index depends on the type of query you’re doing. These
are the three most common ways:

db.users.find({"age" : 21}).sort({"username" : -1})

This is an equality query, which searches for a single value. There may be multi‐
ple documents with that value. Due to the second field in the index, the results
are already in the correct order for the sort: MongoDB can start with the last
match for {"age" : 21} and traverse the index in order:

[21, "user100154"] -> 8623530928
[21, "user100266"] -> 8623545264
[21, "user100270"] -> 8623545776
[21, "user100285"] -> 8623547696
[21, "user100349"] -> 8623555888
...

This type of query is very efficient: MongoDB can jump directly to the correct
age and doesn’t need to sort the results because traversing the index returns the
data in the correct order.

Note that sort direction doesn’t matter: MongoDB can traverse the index in either
direction.

db.users.find({"age" : {"$gte" : 21, "$lte" : 30}})

This is a range query, which looks for documents matching multiple values (in
this case, all ages between 21 and 30). MongoDB will use the first key in the
index, "age", to return the matching documents, like so:

[21, "user100154"] -> 8623530928
[21, "user100266"] -> 8623545264
[21, "user100270"] -> 8623545776
...
[21, "user999390"] -> 8765250224
[21, "user999407"] -> 8765252400
[21, "user999600"] -> 8765277104
[22, "user100017"] -> 8623513392
...
[29, "user999861"] -> 8765310512

82 | Chapter 5: Indexes

[30, "user100098"] -> 8623523760
[30, "user100155"] -> 8623531056
[30, "user100168"] -> 8623532720
...

In general, if MongoDB uses an index for a query it will return the resulting
documents in index order.

db.users.find({"age" : {"$gte" : 21, "$lte" : 30}}).sort({"username" :

1})

This is a multivalue query, like the previous one, but this time it has a sort. As
before, MongoDB will use the index to match the criteria. However, the index
doesn’t return the usernames in sorted order and the query requested that the
results be sorted by username. This means MongoDB will need to sort the results
in memory before returning them, rather than simply traversing an index in
which the documents are already sorted in the desired order. This type of query
is usually less efficient as a consequence.

Of course, the speed depends on how many results match your criteria: if your
result set is only a couple of documents MongoDB won’t have much work to do
to sort them, but if there are more results it will be slower or may not work at all.
If you have more than 32 MB of results MongoDB will just error out, refusing to
sort that much data:

Error: error: {
 "ok" : 0,
 "errmsg" : "Executor error during find command: OperationFailed:
Sort operation used more than the maximum 33554432 bytes of RAM. Add
an index, or specify a smaller limit.",
 "code" : 96,
 "codeName" : "OperationFailed"
}

If you need to avoid this error, then you must create an index sup‐
porting the sort operation (https://docs.mongodb.com/manual/refer
ence/method/cursor.sort/index.html#sort-index-use) or use sort in
conjunction with limit to reduce the results to below 32 MB.

One other index you can use in the last example is the same keys in reverse order:
{"username" : 1, "age" : 1}. MongoDB will then traverse all the index entries,
but in the order you want them back in. It will pick out the matching documents
using the "age" part of the index:

Introduction to Indexes | 83

https://docs.mongodb.com/manual/reference/method/cursor.sort/index.html#sort-index-use
https://docs.mongodb.com/manual/reference/method/cursor.sort/index.html#sort-index-use

[user0, 4]
[user1, 67]
[user10, 11]
[user100, 92]
[user1000, 10]
[user10000, 31]
[user100000, 21] -> 8623511216
[user100001, 52]
[user100002, 69]
[user100003, 27] -> 8623511600
[user100004, 22] -> 8623511728
[user100005, 95]
...

This is good in that it does not require any giant in-memory sorts. However, it does
have to scan the entire index to find all the matches. Putting the sort key first is gen‐
erally a good strategy when designing compound indexes. As we’ll see shortly, this is
one of several best practices when considering how to construct compound indexes
with consideration for equality queries, multivalue queries, and sorting.

How MongoDB Selects an Index
Now let’s take a look at how MongoDB chooses an index to satisfy a query. Let’s imag‐
ine we have five indexes. When a query comes in, MongoDB looks at the query’s
shape. The shape has to do with what fields are being searched on and additional
information, such as whether or not there is a sort. Based on that information, the
system identifies a set of candidate indexes that it might be able to use in satisfying
the query.

Let’s assume we have a query come in, and three of our five indexes are identified as
candidates for this query. MongoDB will then create three query plans, one for each
of these indexes, and run the query in three parallel threads, each using a different
index. The objective here is to see which one is able to return results the fastest.

Visually, we can think of this as a race, as pictured in Figure 5-1. The idea here is that
the first query plan to reach a goal state is the winner. But more importantly, going
forward it will be selected as the index to use for queries that have that same query
shape. The plans are raced against each other for a period (referred to as the trial
period), after which the results of each race are used to calculate the overall winning
plan.

84 | Chapter 5: Indexes

Figure 5-1. How the MongoDB Query Planner selects an index, visualized as a race

To win the race, a query thread must be the first to either return all the query results
or return a trial number of results in sort order. The sort order portion of this is
important given how expensive it is to perform in-memory sorts.

The real value of racing several query plans against one another is that for subsequent
queries that have the same query shape, the MongoDB server will know which index
to select. The server maintains a cache of query plans. A winning plan is stored in the
cache for future use for queries of that shape. Over time, as a collection changes and
as the indexes change, eventually a query plan might be evicted from the cache and
MongoDB will, again, experiment with possible query plans to find the one that
works best for the current collection and set of indexes. Other events that will lead to
plans being evicted from the cache are if we rebuild a given index, add or drop an
index, or explicitly clear the plan cache. Finally, the query plan cache does not survive
a restart of a mongod process.

Using Compound Indexes
In the previous sections, we’ve been using compound indexes, which are indexes with
more than one key in them. Compound indexes are a little more complicated to think
about than single-key indexes, but they are very powerful. This section covers them
in more depth.

Introduction to Indexes | 85

Here, we will walk through an example that gives you an idea of the type of thinking
you need to do when you are designing compound indexes. The goal is for our read
and write operations to be as efficient as possible—but as with so many things, this
requires some upfront thinking and some experimentation.

To be sure we get the right indexes in place, it is necessary to test our indexes under
some real-world workloads and make adjustments from there. However, there are
some best practices we can apply as we design our indexes.

First, we need to consider the selectivity of the index. We are interested in the degree
to which, for a given query pattern, the index is going to minimize the number of
records scanned. We need to consider selectivity in light of all operations necessary to
satisfy a query, and sometimes make tradeoffs. We will need to consider, for example,
how sorts are handled.

Let’s look at an example. For this, we will use a student dataset containing approxi‐
mately one million records. Documents in this dataset resemble the following:

{
 "_id" : ObjectId("585d817db4743f74e2da067c"),
 "student_id" : 0,
 "scores" : [
 {
 "type" : "exam",
 "score" : 38.05000060199827
 },
 {
 "type" : "quiz",
 "score" : 79.45079445008987
 },
 {
 "type" : "homework",
 "score" : 74.50150548699534
 },
 {
 "type" : "homework",
 "score" : 74.68381684615845
 }
],
 "class_id" : 127
}

We will begin with two indexes and look at how MongoDB uses these indexes (or
doesn’t) in order to satisfy queries. These two indexes are created as follows:

> db.students.createIndex({"class_id": 1})
> db.students.createIndex({student_id: 1, class_id: 1})

In working with this dataset, we will consider the following query, because it illus‐
trates several of the issues that we have to think about in designing our indexes:

86 | Chapter 5: Indexes

> db.students.find({student_id:{$gt:500000}, class_id:54})
... .sort({student_id:1})
... .explain("executionStats")

Note that in this query we are requesting all records with an ID greater than 500,000,
so about half of the records. We are also constraining the search to records for the
class with ID 54. There are about 500 classes represented in this dataset. Finally, we
are sorting in ascending order based on "student_id". Note that this is the same field
on which we are doing a multivalue query. Throughout this example we will look at
the execution stats that the explain method provides to illustrate how MongoDB will
handle this query.

If we run the query, the output of the explain method tells us how MongoDB used
indexes to satisfy it:

{
 "queryPlanner": {
 "plannerVersion": 1,
 "namespace": "school.students",
 "indexFilterSet": false,
 "parsedQuery": {
 "$and": [
 {
 "class_id": {
 "$eq": 54
 }
 },
 {
 "student_id": {
 "$gt": 500000
 }
 }
]
 },
 "winningPlan": {
 "stage": "FETCH",
 "inputStage": {
 "stage": "IXSCAN",
 "keyPattern": {
 "student_id": 1,
 "class_id": 1
 },
 "indexName": "student_id_1_class_id_1",
 "isMultiKey": false,
 "multiKeyPaths": {
 "student_id": [],
 "class_id": []
 },
 "isUnique": false,
 "isSparse": false,
 "isPartial": false,

Introduction to Indexes | 87

 "indexVersion": 2,
 "direction": "forward",
 "indexBounds": {
 "student_id": [
 "(500000.0, inf.0]"
],
 "class_id": [
 "[54.0, 54.0]"
]
 }
 }
 },
 "rejectedPlans": [
 {
 "stage": "SORT",
 "sortPattern": {
 "student_id": 1
 },
 "inputStage": {
 "stage": "SORT_KEY_GENERATOR",
 "inputStage": {
 "stage": "FETCH",
 "filter": {
 "student_id": {
 "$gt": 500000
 }
 },
 "inputStage": {
 "stage": "IXSCAN",
 "keyPattern": {
 "class_id": 1
 },
 "indexName": "class_id_1",
 "isMultiKey": false,
 "multiKeyPaths": {
 "class_id": []
 },
 "isUnique": false,
 "isSparse": false,
 "isPartial": false,
 "indexVersion": 2,
 "direction": "forward",
 "indexBounds": {
 "class_id": [
 "[54.0, 54.0]"
]
 }
 }
 }
 }
 }
]

88 | Chapter 5: Indexes

 },
 "executionStats": {
 "executionSuccess": true,
 "nReturned": 9903,
 "executionTimeMillis": 4325,
 "totalKeysExamined": 850477,
 "totalDocsExamined": 9903,
 "executionStages": {
 "stage": "FETCH",
 "nReturned": 9903,
 "executionTimeMillisEstimate": 3485,
 "works": 850478,
 "advanced": 9903,
 "needTime": 840574,
 "needYield": 0,
 "saveState": 6861,
 "restoreState": 6861,
 "isEOF": 1,
 "invalidates": 0,
 "docsExamined": 9903,
 "alreadyHasObj": 0,
 "inputStage": {
 "stage": "IXSCAN",
 "nReturned": 9903,
 "executionTimeMillisEstimate": 2834,
 "works": 850478,
 "advanced": 9903,
 "needTime": 840574,
 "needYield": 0,
 "saveState": 6861,
 "restoreState": 6861,
 "isEOF": 1,
 "invalidates": 0,
 "keyPattern": {
 "student_id": 1,
 "class_id": 1
 },
 "indexName": "student_id_1_class_id_1",
 "isMultiKey": false,
 "multiKeyPaths": {
 "student_id": [],
 "class_id": []
 },
 "isUnique": false,
 "isSparse": false,
 "isPartial": false,
 "indexVersion": 2,
 "direction": "forward",
 "indexBounds": {
 "student_id": [
 "(500000.0, inf.0]"
],

Introduction to Indexes | 89

 "class_id": [
 "[54.0, 54.0]"
]
 },
 "keysExamined": 850477,
 "seeks": 840575,
 "dupsTested": 0,
 "dupsDropped": 0,
 "seenInvalidated": 0
 }
 }
 },
 "serverInfo": {
 "host": "SGB-MBP.local",
 "port": 27017,
 "version": "3.4.1",
 "gitVersion": "5e103c4f5583e2566a45d740225dc250baacfbd7"
 },
 "ok": 1
}

As with most data output from MongoDB, the explain output is JSON. Let’s look
first at the bottom half of this output, which is almost entirely the execution stats. The
"executionStats" field contains statistics that describe the completed query execu‐
tion for the winning query plan. We will look at query plans and the query plan out‐
put from explain a little later.

Within "executionStats", first we will look at "totalKeysExamined". This is how
many keys within the index MongoDB walked through in order to generate the result
set. We can compare "totalKeysExamined" to "nReturned" to get a sense for how
much of the index MongoDB had to traverse in order to find just the documents
matching the query. In this case, 850,477 index keys were examined in order to locate
the 9,903 matching documents.

This means that the index used in order to satisfy this query was not very selective.
This is further emphasized by the fact that this query took more than 4.3 seconds to
run, as indicated by the "executionTimeMillis" field. Selectivity is one of our key
objectives when we are designing an index, so let’s figure out where we went wrong
with the existing indexes for this query.

Near the top of the explain output is the winning query plan (see the field "winning
Plan"). A query plan describes the steps MongoDB used to satisfy a query. This is, in
JSON form, the specific outcome of racing a couple of different query plans against
one another. In particular, we are interested in what indexes were used and whether
MongoDB had to do an in-memory sort. Below the winning plan are the rejected
plans. We’ll look at both.

90 | Chapter 5: Indexes

In this case, the winning plan used a compound index based on "student_id" and
"class_id". This is evident in the following portion of the explain output:

"winningPlan": {
 "stage": "FETCH",
 "inputStage": {
 "stage": "IXSCAN",
 "keyPattern": {
 "student_id": 1,
 "class_id": 1
 },

The explain output presents the query plan as a tree of stages. A stage can have one
or more input stages, depending on how many child stages it has. An input stage pro‐
vides the documents or index keys to its parent. In this case, there was one input
stage, an index scan, and that scan provided the record IDs for documents matching
the query to its parent, the "FETCH" stage. The "FETCH" stage, then, will retrieve the
documents themselves and return them in batches as the client requests them.

The losing query plan—there is only one—would have used an index based on
"class_id" but then it would have had to do an in-memory sort. That is what the
following portion of this particular query plan means. When you see a "SORT" stage
in a query plan, it means that MongoDB would have been unable to sort the result set
in the database using an index and instead would have had to do an in-memory sort:

"rejectedPlans": [
 {
 "stage": "SORT",
 "sortPattern": {
 "student_id": 1
 },

For this query, the index that won is one that was able to return sorted output. To win
it only had to reach a trial number of sorted result documents. For the other plan to
win, that query thread would have had to return the entire result set (nearly 10,000
documents) first, since those would then need to be sorted in memory.

The issue here is one of selectivity. The multivalue query we are running specifies a
broad range of "student_id" values, because it’s requesting records for which the
"student_id" is greater than 500,000. That’s about half the records in our collection.
Here again, for convenience, is the query we are running:

> db.students.find({student_id:{$gt:500000}, class_id:54})
... .sort({student_id:1})
... .explain("executionStats")

Now, I’m sure you can see where we are headed here. This query contains both a mul‐
tivalue portion and an equality portion. The equality portion is that we are asking for
all records in which "class_id" is equal to 54. There are only about 500 classes in

Introduction to Indexes | 91

this dataset, and while there are a large number of students with grades in those
classes, "class_id" would serve as a much more selective basis on which to execute
this query. It is this value that constrains our result set to just under 10,000 records
rather than the approximately 850,000 that were identified by the multivalue portion
of this query.

In other words, it would be better, given the indexes we have, if we were to use the
index based on just "class_id"—the one in the losing query plan. MongoDB pro‐
vides two ways of forcing the database to use a particular index. However, I cannot
stress strongly enough that you should use these ways of overriding what would be
the outcome of the query planner with caution. These are not techniques you should
use in a production deployment.

The cursor hint method enables us to specify a particular index to use, either by
specifying its shape or its name. An index filter uses a query shape, which is a combi‐
nation of a query, sort, and projection specification. The planCacheSetFilter func‐
tion can be used with an index filter to limit the query optimizer to only considering
indexes specified in the index filter. If an index filter exists for a query shape, Mon‐
goDB will ignore hint. Index filters only persist for the duration of the mongod server
process; they do not persist after shutdown.

If we change our query slightly to use hint, as in the following example, the explain
output will be quite different:

> db.students.find({student_id:{$gt:500000}, class_id:54})
... .sort({student_id:1})
... .hint({class_id:1})
... .explain("executionStats")

The resulting output shows that we are now down from having scanned roughly
850,000 index keys to just about 20,000 in order to get to our result set of just under
10,000. In addition, the execution time is only 272 milliseconds rather than the 4.3
seconds we saw with the query plan using the other index:

{
 "queryPlanner": {
 "plannerVersion": 1,
 "namespace": "school.students",
 "indexFilterSet": false,
 "parsedQuery": {
 "$and": [
 {
 "class_id": {
 "$eq": 54
 }
 },
 {
 "student_id": {
 "$gt": 500000

92 | Chapter 5: Indexes

 }
 }
]
 },
 "winningPlan": {
 "stage": "SORT",
 "sortPattern": {
 "student_id": 1
 },
 "inputStage": {
 "stage": "SORT_KEY_GENERATOR",
 "inputStage": {
 "stage": "FETCH",
 "filter": {
 "student_id": {
 "$gt": 500000
 }
 },
 "inputStage": {
 "stage": "IXSCAN",
 "keyPattern": {
 "class_id": 1
 },
 "indexName": "class_id_1",
 "isMultiKey": false,
 "multiKeyPaths": {
 "class_id": []
 },
 "isUnique": false,
 "isSparse": false,
 "isPartial": false,
 "indexVersion": 2,
 "direction": "forward",
 "indexBounds": {
 "class_id": [
 "[54.0, 54.0]"
]
 }
 }
 }
 }
 },
 "rejectedPlans": []
 },
 "executionStats": {
 "executionSuccess": true,
 "nReturned": 9903,
 "executionTimeMillis": 272,
 "totalKeysExamined": 20076,
 "totalDocsExamined": 20076,
 "executionStages": {
 "stage": "SORT",

Introduction to Indexes | 93

 "nReturned": 9903,
 "executionTimeMillisEstimate": 248,
 "works": 29982,
 "advanced": 9903,
 "needTime": 20078,
 "needYield": 0,
 "saveState": 242,
 "restoreState": 242,
 "isEOF": 1,
 "invalidates": 0,
 "sortPattern": {
 "student_id": 1
 },
 "memUsage": 2386623,
 "memLimit": 33554432,
 "inputStage": {
 "stage": "SORT_KEY_GENERATOR",
 "nReturned": 9903,
 "executionTimeMillisEstimate": 203,
 "works": 20078,
 "advanced": 9903,
 "needTime": 10174,
 "needYield": 0,
 "saveState": 242,
 "restoreState": 242,
 "isEOF": 1,
 "invalidates": 0,
 "inputStage": {
 "stage": "FETCH",
 "filter": {
 "student_id": {
 "$gt": 500000
 }
 },
 "nReturned": 9903,
 "executionTimeMillisEstimate": 192,
 "works": 20077,
 "advanced": 9903,
 "needTime": 10173,
 "needYield": 0,
 "saveState": 242,
 "restoreState": 242,
 "isEOF": 1,
 "invalidates": 0,
 "docsExamined": 20076,
 "alreadyHasObj": 0,
 "inputStage": {
 "stage": "IXSCAN",
 "nReturned": 20076,
 "executionTimeMillisEstimate": 45,
 "works": 20077,
 "advanced": 20076,

94 | Chapter 5: Indexes

 "needTime": 0,
 "needYield": 0,
 "saveState": 242,
 "restoreState": 242,
 "isEOF": 1,
 "invalidates": 0,
 "keyPattern": {
 "class_id": 1
 },
 "indexName": "class_id_1",
 "isMultiKey": false,
 "multiKeyPaths": {
 "class_id": []
 },
 "isUnique": false,
 "isSparse": false,
 "isPartial": false,
 "indexVersion": 2,
 "direction": "forward",
 "indexBounds": {
 "class_id": [
 "[54.0, 54.0]"
]
 },
 "keysExamined": 20076,
 "seeks": 1,
 "dupsTested": 0,
 "dupsDropped": 0,
 "seenInvalidated": 0
 }
 }
 }
 }
 },
 "serverInfo": {
 "host": "SGB-MBP.local",
 "port": 27017,
 "version": "3.4.1",
 "gitVersion": "5e103c4f5583e2566a45d740225dc250baacfbd7"
 },
 "ok": 1
}

However, what we really want to see is "nReturned" very close to "totalKeysExa
mined". In addition, we would like avoid having to use hint in order to more effi‐
ciently execute this query. The way to address both of these concerns is to design a
better index.

A better index for the query pattern in question is one based on "class_id" and "stu
dent_id", in that order. With "class_id" as the prefix, we are using the equality fil‐
ter in our query to restrict the keys considered within the index. This is the most

Introduction to Indexes | 95

selective component of our query, and therefore effectively constrains the number of
keys MongoDB needs to consider to satisfy this query. We can build this index as
follows:

> db.students.createIndex({class_id:1, student_id:1})

While not true for absolutely every dataset, in general you should design compound
indexes such that fields on which you will be using equality filters come before those
on which your application will use multivalue filters.

With our new index in place, if we rerun our query, this time no hinting is required
and we can see from the "executionStats" field in the explain output that we have
a fast query (37 milliseconds) for which the number of results returned ("nRe
turned") is equal to the number of keys scanned in the index ("totalKeysExa
mined"). We can also see that this is due to the fact that the "executionStages",
which reflect the winning query plan, contain an index scan that makes use of the
new index we created:

...
"executionStats": {
 "executionSuccess": true,
 "nReturned": 9903,
 "executionTimeMillis": 37,
 "totalKeysExamined": 9903,
 "totalDocsExamined": 9903,
 "executionStages": {
 "stage": "FETCH",
 "nReturned": 9903,
 "executionTimeMillisEstimate": 36,
 "works": 9904,
 "advanced": 9903,
 "needTime": 0,
 "needYield": 0,
 "saveState": 81,
 "restoreState": 81,
 "isEOF": 1,
 "invalidates": 0,
 "docsExamined": 9903,
 "alreadyHasObj": 0,
 "inputStage": {
 "stage": "IXSCAN",
 "nReturned": 9903,
 "executionTimeMillisEstimate": 0,
 "works": 9904,
 "advanced": 9903,
 "needTime": 0,
 "needYield": 0,
 "saveState": 81,
 "restoreState": 81,
 "isEOF": 1,
 "invalidates": 0,

96 | Chapter 5: Indexes

 "keyPattern": {
 "class_id": 1,
 "student_id": 1
 },
 "indexName": "class_id_1_student_id_1",
 "isMultiKey": false,
 "multiKeyPaths": {
 "class_id": [],
 "student_id": []
 },
 "isUnique": false,
 "isSparse": false,
 "isPartial": false,
 "indexVersion": 2,
 "direction": "forward",
 "indexBounds": {
 "class_id": [
 "[54.0, 54.0]"
],
 "student_id": [
 "(500000.0, inf.0]"
]
 },
 "keysExamined": 9903,
 "seeks": 1,
 "dupsTested": 0,
 "dupsDropped": 0,
 "seenInvalidated": 0
 }
 }
},

Considering what we know about how indexes are built, you can probably see why
this works. The [class_id, student_id] index is composed of key pairs such as the
following. Since the student IDs are ordered within these key pairs, in order to satisfy
our sort MongoDB simply needs to walk all the key pairs beginning with the first one
for class_id 54:

...
[53, 999617]
[53, 999780]
[53, 999916]
[54, 500001]
[54, 500009]
[54, 500048]
...

In considering the design of a compound index, we need to know how to address
equality filters, multivalue filters, and sort components of common query patterns
that will make use of the index. It is necessary to consider these three factors for all
compound indexes, and if you design your index to balance these concerns correctly,

Introduction to Indexes | 97

you will get the best performance out of MongoDB for your queries. While we’ve
addressed all three factors for our example query with the [class_id, student_id]
index, the query as written represents a special case of the compound index problem
because we’re sorting on one of the fields we are also filtering on.

To remove the special-case nature of this example, let’s sort on final grade instead,
changing our query to the following:

> db.students.find({student_id:{$gt:500000}, class_id:54})
... .sort({final_grade:1})
... .explain("executionStats")

If we run this query and look at the explain output, we see that we’re now doing an
in-memory sort. While the query is still fast at only 136 milliseconds, it is an order of
magnitude slower than when sorting on "student_id", because we are now doing an
in-memory sort. We can see that we are doing an in-memory sort because the win‐
ning query plan now contains a "SORT" stage:

...
"executionStats": {
 "executionSuccess": true,
 "nReturned": 9903,
 "executionTimeMillis": 136,
 "totalKeysExamined": 9903,
 "totalDocsExamined": 9903,
 "executionStages": {
 "stage": "SORT",
 "nReturned": 9903,
 "executionTimeMillisEstimate": 36,
 "works": 19809,
 "advanced": 9903,
 "needTime": 9905,
 "needYield": 0,
 "saveState": 315,
 "restoreState": 315,
 "isEOF": 1,
 "invalidates": 0,
 "sortPattern": {
 "final_grade": 1
 },
 "memUsage": 2386623,
 "memLimit": 33554432,
 "inputStage": {
 "stage": "SORT_KEY_GENERATOR",
 "nReturned": 9903,
 "executionTimeMillisEstimate": 24,
 "works": 9905,
 "advanced": 9903,
 "needTime": 1,
 "needYield": 0,
 "saveState": 315,

98 | Chapter 5: Indexes

 "restoreState": 315,
 "isEOF": 1,
 "invalidates": 0,
 "inputStage": {
 "stage": "FETCH",
 "nReturned": 9903,
 "executionTimeMillisEstimate": 24,
 "works": 9904,
 "advanced": 9903,
 "needTime": 0,
 "needYield": 0,
 "saveState": 315,
 "restoreState": 315,
 "isEOF": 1,
 "invalidates": 0,
 "docsExamined": 9903,
 "alreadyHasObj": 0,
 "inputStage": {
 "stage": "IXSCAN",
 "nReturned": 9903,
 "executionTimeMillisEstimate": 12,
 "works": 9904,
 "advanced": 9903,
 "needTime": 0,
 "needYield": 0,
 "saveState": 315,
 "restoreState": 315,
 "isEOF": 1,
 "invalidates": 0,
 "keyPattern": {
 "class_id": 1,
 "student_id": 1
 },
 "indexName": "class_id_1_student_id_1",
 "isMultiKey": false,
 "multiKeyPaths": {
 "class_id": [],
 "student_id": []
 },
 "isUnique": false,
 "isSparse": false,
 "isPartial": false,
 "indexVersion": 2,
 "direction": "forward",
 "indexBounds": {
 "class_id": [
 "[54.0, 54.0]"
],
 "student_id": [
 "(500000.0, inf.0]"
]
 },

Introduction to Indexes | 99

 "keysExamined": 9903,
 "seeks": 1,
 "dupsTested": 0,
 "dupsDropped": 0,
 "seenInvalidated": 0
 }
 }
 }
 }
},
...

If we can avoid an in-memory sort with a better index design, we should. This will
allow us to scale more easily with respect to dataset size and system load.

But to do that, we are going to have to make a tradeoff. This is commonly the case
when designing compound indexes.

As is so often necessary for compound indexes, in order to avoid an in-memory sort
we need to examine more keys than the number of documents we return. To use the
index to sort, MongoDB needs to be able to walk the index keys in order. This means
that we need to include the sort field among the compound index keys.

The keys in our new compound index should be ordered as follows: [class_id,
final_grade, student_id]. Note that we include the sort component immediately
after the equality filter, but before the multivalue filter. This index will very selectively
narrow the set of keys considered for this query. Then, by walking the key triplets
matching the equality filter in this index, MongoDB can identify the records that
match the multivalue filter and those records will be ordered properly by final grade
in ascending order.

This compound index forces MongoDB to examine keys for more documents than
will end up being in our result set. However, by using the index to ensure we have
sorted documents, we save execution time. We can construct the new index using the
following command:

> db.students.createIndex({class_id:1, final_grade:1, student_id:1})

Now, if we once again issue our query:

> db.students.find({student_id:{$gt:500000}, class_id:54})
... .sort({final_grade:1})
... .explain("executionStats")

we get the following "executionStats" in the output from explain. This will vary
depending on your hardware and what else is going on in the system, but you can see
that the winning plan no longer includes an in-memory sort. It is instead using the
index we just created to satisfy the query, including the sort:

100 | Chapter 5: Indexes

"executionStats": {
 "executionSuccess": true,
 "nReturned": 9903,
 "executionTimeMillis": 42,
 "totalKeysExamined": 9905,
 "totalDocsExamined": 9903,
 "executionStages": {
 "stage": "FETCH",
 "nReturned": 9903,
 "executionTimeMillisEstimate": 34,
 "works": 9905,
 "advanced": 9903,
 "needTime": 1,
 "needYield": 0,
 "saveState": 82,
 "restoreState": 82,
 "isEOF": 1,
 "invalidates": 0,
 "docsExamined": 9903,
 "alreadyHasObj": 0,
 "inputStage": {
 "stage": "IXSCAN",
 "nReturned": 9903,
 "executionTimeMillisEstimate": 24,
 "works": 9905,
 "advanced": 9903,
 "needTime": 1,
 "needYield": 0,
 "saveState": 82,
 "restoreState": 82,
 "isEOF": 1,
 "invalidates": 0,
 "keyPattern": {
 "class_id": 1,
 "final_grade": 1,
 "student_id": 1
 },
 "indexName": "class_id_1_final_grade_1_student_id_1",
 "isMultiKey": false,
 "multiKeyPaths": {
 "class_id": [],
 "final_grade": [],
 "student_id": []
 },
 "isUnique": false,
 "isSparse": false,
 "isPartial": false,
 "indexVersion": 2,
 "direction": "forward",
 "indexBounds": {
 "class_id": [
 "[54.0, 54.0]"

Introduction to Indexes | 101

],
 "final_grade": [
 "[MinKey, MaxKey]"
],
 "student_id": [
 "(500000.0, inf.0]"
]
 },
 "keysExamined": 9905,
 "seeks": 2,
 "dupsTested": 0,
 "dupsDropped": 0,
 "seenInvalidated": 0
 }
 }
},

This section has provided a concrete example of some best practices for designing
compound indexes. While these guidelines do not hold for every situation, they do
for most and should be the first ideas you consider when constructing a compound
index.

To recap, when designing a compound index:

• Keys for equality filters should appear first.
• Keys used for sorting should appear before multivalue fields.
• Keys for multivalue filters should appear last.

Design your compound index using these guidelines and then test it under real-world
workloads for the range of query patterns your index is designed to support.

Choosing key directions
So far, all of our index entries have been sorted in ascending, or least-to-greatest,
order. However, if you need to sort on two (or more) criteria, you may need to have
index keys go in different directions. For example, going back to our earlier example
with the users collection, suppose we wanted to sort the collection by age from
youngest to oldest and by name from Z−A. Our previous indexes would not be very
efficient for this problem: within each age group users were sorted by username in
ascending order (A−Z, not Z−A). The compound indexes we’ve been using so far do
not hold the values in any useful order for getting "age" ascending and "username"
descending.

To optimize compound sorts in different directions, we need to use an index with
matching directions. In this example, we could use {"age" : 1, "username" : -1},
which would organize the data as follows:

102 | Chapter 5: Indexes

[21, user999600] -> 8765277104
[21, user999407] -> 8765252400
[21, user999390] -> 8765250224
...
[21, user100270] -> 8623545776
[21, user100266] -> 8623545264
[21, user100154] -> 8623530928
...
[30, user100168] -> 8623532720
[30, user100155] -> 8623531056
[30, user100098] -> 8623523760

The ages are arranged from youngest to oldest, and within each age, the usernames
are sorted from Z to A (or rather 9 to 0, given our usernames).

If our application also needed to optimize sorting by {"age" : 1, "username" : 1},
we would have to create a second index with those directions. To figure out which
directions to use for an index, simply match the directions your sort is using. Note
that inverse indexes (multiplying each direction by −1) are equivalent: {"age" : 1,
"username" : -1} suits the same queries that {"age" : -1, "username" : 1} does.

Index direction only really matters when you’re sorting based on multiple criteria. If
you’re only sorting by a single key, MongoDB can just as easily read the index in the
opposite order. For example, if you had a sort on {"age" : -1} and an index on
{"age" : 1}, MongoDB could optimize it just as well as if you had an index on
{"age" : -1} (so don’t create both!). The direction only matters for multikey sorts.

Using covered queries
In the preceding examples, the index was always used to find the correct document
and then follow a pointer back to fetch the actual document. However, if your query
is only looking for the fields that are included in the index, it does not need to fetch
the document. When an index contains all the values requested by a query, the query
is considered to be covered. Whenever practical, use covered queries in preference to
going back to documents. You can make your working set much smaller that way.

To make sure a query can use the index only, you should use projections (which limit
the fields returned to only those specified in your query; see “Specifying Which Keys
to Return” on page 54) to avoid returning the "_id" field (unless it is part of the
index). You may also have to index fields that you aren’t querying on, so you should
balance your need for faster queries with the overhead this will add on writes.

If you run explain on a covered query, the result has an "IXSCAN" stage that is not a
descendant of a "FETCH" stage, and in the "executionStats", the value of "totalDoc
sExamined" is 0.

Introduction to Indexes | 103

Implicit indexes
Compound indexes can do “double duty” and act like different indexes for different
queries. If we have an index on {"age" : 1, "username" : 1}, the "age" field is
sorted identically to the way it would be if we had an index on just {"age" : 1}.
Thus, the compound index can be used the way an index on {"age" : 1} by itself
would be.

This can be generalized to as many keys as necessary: if an index has N keys, you get a
“free” index on any prefix of those keys. For example, if we have an index that looks
like {"a": 1, "b": 1, "c": 1, ..., "z": 1}, we effectively have indexes on
{"a": 1}, {"a": 1, "b" : 1}, {"a": 1, "b": 1, "c": 1}, and so on.

Note that this doesn’t hold for any subset of keys: queries that would use the index
{"b": 1} or {"a": 1, "c": 1} (for example) will not be optimized. Only queries
that can use a prefix of the index can take advantage of it.

How $ Operators Use Indexes
Some queries can use indexes more efficiently than others; some queries cannot use
indexes at all. This section covers how various query operators are handled by
MongoDB.

Inefficient operators

In general, negation is inefficient. "$ne" queries can use an index, but not very well.
They must look at all the index entries other than the one specified by "$ne", so they
basically have to scan the entire index. For example, for a collection with an index on
the field named "i", here are the index ranges traversed for such a query:

db.example.find({"i" : {"$ne" : 3}}).explain()
{
 "queryPlanner" : {
 ...,
 "parsedQuery" : {
 "i" : {
 "$ne" : "3"
 }
 },
 "winningPlan" : {
 {
 ...,
 "indexBounds" : {
 "i" : [
 [
 {
 "$minElement" : 1
 },
 3

104 | Chapter 5: Indexes

],
 [
 3,
 {
 "$maxElement" : 1
 }
]
]
 }
 }
 },
 "rejectedPlans" : []
 },
 "serverInfo" : {
 ...,
 }
}

This query looks at all index entries less than 3 and all index entries greater than 3.
This can be efficient if a large swath of your collection is 3, but otherwise it must
check almost everything.

"$not" can sometimes use an index but often does not know how. It can reverse basic
ranges ({"key" : {"$lt" : 7}} becomes {"key" : {"$gte" : 7}}) and regular
expressions. However, most other queries with "$not" will fall back to doing a table
scan. "$nin" always uses a table scan.

If you need to perform one of these types of queries quickly, figure out if there’s
another clause that you could add to the query that could use an index to filter the
result set down to a small number of documents before MongoDB attempts to do
nonindexed matching.

Ranges
Compound indexes can help MongoDB efficiently execute queries with multiple clau‐
ses. When designing an index with multiple fields, put fields that will be used in exact
matches first (e.g., "x" : 1) and ranges last (e.g., "y": {"$gt" : 3, "$lt" : 5}).
This allows the query to find an exact value for the first index key and then search
within that for a second index range. For example, suppose we were querying for a
specific age and a range of usernames using an {"age" : 1, "username" : 1}
index. We would get fairly exact index bounds:

> db.users.find({"age" : 47, "username" :
... {"$gt" : "user5", "$lt" : "user8"}}).explain('executionStats')
{
 "queryPlanner" : {
 "plannerVersion" : 1,
 "namespace" : "test.users",
 "indexFilterSet" : false,

Introduction to Indexes | 105

 "parsedQuery" : {
 "$and" : [
 {
 "age" : {
 "$eq" : 47
 }
 },
 {
 "username" : {
 "$lt" : "user8"
 }
 },
 {
 "username" : {
 "$gt" : "user5"
 }
 }
]
 },
 "winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
 "stage" : "IXSCAN",
 "keyPattern" : {
 "age" : 1,
 "username" : 1
 },
 "indexName" : "age_1_username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "age" : [],
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "age" : [
 "[47.0, 47.0]"
],
 "username" : [
 "(\"user5\", \"user8\")"
]
 }
 }
 },
 "rejectedPlans" : [
 {
 "stage" : "FETCH",
 "filter" : {

106 | Chapter 5: Indexes

 "age" : {
 "$eq" : 47
 }
 },
 "inputStage" : {
 "stage" : "IXSCAN",
 "keyPattern" : {
 "username" : 1
 },
 "indexName" : "username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "username" : [
 "(\"user5\", \"user8\")"
]
 }
 }
 }
]
 },
 "executionStats" : {
 "executionSuccess" : true,
 "nReturned" : 2742,
 "executionTimeMillis" : 5,
 "totalKeysExamined" : 2742,
 "totalDocsExamined" : 2742,
 "executionStages" : {
 "stage" : "FETCH",
 "nReturned" : 2742,
 "executionTimeMillisEstimate" : 0,
 "works" : 2743,
 "advanced" : 2742,
 "needTime" : 0,
 "needYield" : 0,
 "saveState" : 23,
 "restoreState" : 23,
 "isEOF" : 1,
 "invalidates" : 0,
 "docsExamined" : 2742,
 "alreadyHasObj" : 0,
 "inputStage" : {
 "stage" : "IXSCAN",
 "nReturned" : 2742,
 "executionTimeMillisEstimate" : 0,

Introduction to Indexes | 107

 "works" : 2743,
 "advanced" : 2742,
 "needTime" : 0,
 "needYield" : 0,
 "saveState" : 23,
 "restoreState" : 23,
 "isEOF" : 1,
 "invalidates" : 0,
 "keyPattern" : {
 "age" : 1,
 "username" : 1
 },
 "indexName" : "age_1_username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "age" : [],
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "age" : [
 "[47.0, 47.0]"
],
 "username" : [
 "(\"user5\", \"user8\")"
]
 },
 "keysExamined" : 2742,
 "seeks" : 1,
 "dupsTested" : 0,
 "dupsDropped" : 0,
 "seenInvalidated" : 0
 }
 }
 },
 "serverInfo" : {
 "host" : "eoinbrazil-laptop-osx",
 "port" : 27017,
 "version" : "4.0.12",
 "gitVersion" : "5776e3cbf9e7afe86e6b29e22520ffb6766e95d4"
 },
 "ok" : 1
}

The query goes directly to "age" : 47 and then searches within that for usernames
between "user5" and "user8".

108 | Chapter 5: Indexes

Conversely, suppose we use an index on {"username" : 1, "age" : 1}. This
changes the query plan, as the query must look at all users between "user5" and
"user8" and pick out the ones with "age" : 47:

> db.users.find({"age" : 47, "username" : {"$gt" : "user5", "$lt" : "user8"}})
 .explain('executionStats')
{
 "queryPlanner" : {
 "plannerVersion" : 1,
 "namespace" : "test.users",
 "indexFilterSet" : false,
 "parsedQuery" : {
 "$and" : [
 {
 "age" : {
 "$eq" : 47
 }
 },
 {
 "username" : {
 "$lt" : "user8"
 }
 },
 {
 "username" : {
 "$gt" : "user5"
 }
 }
]
 },
 "winningPlan" : {
 "stage" : "FETCH",
 "filter" : {
 "age" : {
 "$eq" : 47
 }
 },
 "inputStage" : {
 "stage" : "IXSCAN",
 "keyPattern" : {
 "username" : 1
 },
 "indexName" : "username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",

Introduction to Indexes | 109

 "indexBounds" : {
 "username" : [
 "(\"user5\", \"user8\")"
]
 }
 }
 },
 "rejectedPlans" : [
 {
 "stage" : "FETCH",
 "inputStage" : {
 "stage" : "IXSCAN",
 "keyPattern" : {
 "username" : 1,
 "age" : 1
 },
 "indexName" : "username_1_age_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "username" : [],
 "age" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "username" : [
 "(\"user5\", \"user8\")"
],
 "age" : [
 "[47.0, 47.0]"
]
 }
 }
 }
]
 },
 "executionStats" : {
 "executionSuccess" : true,
 "nReturned" : 2742,
 "executionTimeMillis" : 369,
 "totalKeysExamined" : 333332,
 "totalDocsExamined" : 333332,
 "executionStages" : {
 "stage" : "FETCH",
 "filter" : {
 "age" : {
 "$eq" : 47
 }
 },

110 | Chapter 5: Indexes

 "nReturned" : 2742,
 "executionTimeMillisEstimate" : 312,
 "works" : 333333,
 "advanced" : 2742,
 "needTime" : 330590,
 "needYield" : 0,
 "saveState" : 2697,
 "restoreState" : 2697,
 "isEOF" : 1,
 "invalidates" : 0,
 "docsExamined" : 333332,
 "alreadyHasObj" : 0,
 "inputStage" : {
 "stage" : "IXSCAN",
 "nReturned" : 333332,
 "executionTimeMillisEstimate" : 117,
 "works" : 333333,
 "advanced" : 333332,
 "needTime" : 0,
 "needYield" : 0,
 "saveState" : 2697,
 "restoreState" : 2697,
 "isEOF" : 1,
 "invalidates" : 0,
 "keyPattern" : {
 "username" : 1
 },
 "indexName" : "username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "username" : [
 "(\"user5\", \"user8\")"
]
 },
 "keysExamined" : 333332,
 "seeks" : 1,
 "dupsTested" : 0,
 "dupsDropped" : 0,
 "seenInvalidated" : 0
 }
 }
 },
 "serverInfo" : {
 "host" : "eoinbrazil-laptop-osx",

Introduction to Indexes | 111

 "port" : 27017,
 "version" : "4.0.12",
 "gitVersion" : "5776e3cbf9e7afe86e6b29e22520ffb6766e95d4"
 },
 "ok" : 1
}

This forces MongoDB to scan 100 times the number of index entries as using the pre‐
vious index would. Using two ranges in a query basically always forces this less-
efficient query plan.

OR queries
As of this writing, MongoDB can only use one index per query. That is, if you create
one index on {"x" : 1} and another index on {"y" : 1} and then do a query on
{"x" : 123, "y" : 456}, MongoDB will use one of the indexes you created, not
both. The only exception to this rule is "$or". "$or" can use one index per "$or"
clause, as "$or" performs two queries and then merges the results:

db.foo.find({"$or" : [{"x" : 123}, {"y" : 456}]}).explain()
{
 "queryPlanner" : {
 "plannerVersion" : 1,
 "namespace" : "foo.foo",
 "indexFilterSet" : false,
 "parsedQuery" : {
 "$or" : [
 {
 "x" : {
 "$eq" : 123
 }
 },
 {
 "y" : {
 "$eq" : 456
 }
 }
]
 },
 "winningPlan" : {
 "stage" : "SUBPLAN",
 "inputStage" : {
 "stage" : "FETCH",
 "inputStage" : {
 "stage" : "OR",
 "inputStages" : [
 {
 "stage" : "IXSCAN",
 "keyPattern" : {
 "x" : 1
 },

112 | Chapter 5: Indexes

 "indexName" : "x_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "x" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "x" : [
 "[123.0, 123.0]"
]
 }
 },
 {
 "stage" : "IXSCAN",
 "keyPattern" : {
 "y" : 1
 },
 "indexName" : "y_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "y" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "y" : [
 "[456.0, 456.0]"
]
 }
 }
]
 }
 }
 },
 "rejectedPlans" : []
 },
 "serverInfo" : {
 ...,
 },
 "ok" : 1
}

As you can see, this explain required two separate queries on the two indexes (as
indicated by the two "IXSCAN" stages). In general, doing two queries and merging the

Introduction to Indexes | 113

results is much less efficient than doing a single query; thus, whenever possible, pre‐
fer "$in" to "$or".

If you must use an "$or", keep in mind that MongoDB needs to look through the
results of both queries and remove any duplicates (documents that matched more
than one "$or" clause).

When running "$in" queries there is no way, other than sorting, to control the order
of documents returned. For example, {"x" : {"$in" : [1, 2, 3]}} will return
documents in the same order as {"x" : {"$in" : [3, 2, 1]}}.

Indexing Objects and Arrays
MongoDB allows you to reach into your documents and create indexes on nested
fields and arrays. Embedded object and array fields can be combined with top-level
fields in compound indexes, and although they are special in some ways, they mostly
behave the way “normal” index fields behave.

Indexing embedded docs
Indexes can be created on keys in embedded documents in the same way that they are
created on normal keys. If we had a collection where each document represented a
user, we might have an embedded document that described each user’s location:

{
 "username" : "sid",
 "loc" : {
 "ip" : "1.2.3.4",
 "city" : "Springfield",
 "state" : "NY"
 }
}

We could put an index on one of the subfields of "loc", say "loc.city", to speed up
queries using that field:

> db.users.createIndex({"loc.city" : 1})

You can go as deep as you’d like with these: you could index "x.y.z.w.a.b.c" (and
so on) if you wanted.

Note that indexing the embedded document itself ("loc") has very different behavior
than indexing a field of that embedded document ("loc.city"). Indexing the entire
subdocument will only help queries that are querying for the entire subdocument.
The query optimizer could only use an index on "loc" for queries that described the
whole subdocument with fields in the correct order (e.g., db.users.find({"loc" :
{"ip" : "123.456.789.000", "city" : "Shelbyville", "state" : "NY"}}})). It

114 | Chapter 5: Indexes

could not use the index for queries that looked like db.users.find({"loc.city" :
"Shelbyville"}).

Indexing arrays
You can also index arrays, which allows you to use the index to search for specific
array elements efficiently.

Suppose we have a collection of blog posts where each document is a post. Each post
has a "comments" field, which is an array of "comment" subdocuments. If we wanted
to be able to find the most recently commented-on blog posts, we could create an
index on the "date" key in the array of embedded "comments" documents of our blog
post collection:

> db.blog.createIndex({"comments.date" : 1})

Indexing an array creates an index entry for each element of the array, so if a post had
20 comments, it would have 20 index entries. This makes array indexes more expen‐
sive than single-value ones: for a single insert, update, or remove, every array entry
might have to be updated (potentially thousands of index entries).

Unlike the "loc" example in the previous section, you cannot index an entire array as
a single entity: indexing an array field indexes each element of the array, not the array
itself.

Indexes on array elements do not keep any notion of position: you cannot use an
index for a query that is looking for a specific array element, such as "comments.4".

You can, incidentally, index a specific array entry, as in:

> db.blog.createIndex({"comments.10.votes": 1})

However, this index would only be useful for queries for exactly the 11th array ele‐
ment (arrays start at index 0).

Only one field in an index entry can be from an array. This is to avoid the explosive
number of index entries you’d get from multiple multikey indexes: every possible pair
of elements would have to be indexed, causing indexes to be n*m entries per docu‐
ment. For example, suppose we had an index on {"x" : 1, "y" : 1}:

> // x is an array - legal
> db.multi.insert({"x" : [1, 2, 3], "y" : 1})
>
> // y is an array - still legal
> db.multi.insert({"x" : 1, "y" : [4, 5, 6]})
>
> // x and y are arrays - illegal!
> db.multi.insert({"x" : [1, 2, 3], "y" : [4, 5, 6]})
cannot index parallel arrays [y] [x]

Introduction to Indexes | 115

Were MongoDB to index the final example, it would have to create index entries for
{"x" : 1, "y" : 4}, {"x" : 1, "y" : 5}, {"x" : 1, "y" : 6}, {"x" : 2, "y" :
4}, {"x" : 2, "y" : 5}, {"x" : 2, "y" : 6}, {"x" : 3, "y" : 4}, {"x" : 3,
"y" : 5}, and {"x" : 3, "y" : 6} (and these arrays are only three elements long).

Multikey index implications
If any document has an array field for the indexed key, the index immediately is flag‐
ged as a multikey index. You can see whether an index is multikey from explain’s
output: if a multikey index was used, the "isMultikey" field will be true. Once an
index has been flagged as multikey, it can never be un-multikeyed, even if all of the
documents containing arrays in that field are removed. The only way to un-multikey
it is to drop and recreate it.

Multikey indexes may be a bit slower than non-multikey indexes. Many index entries
can point at a single document, so MongoDB may need to do some deduplication
before returning results.

Index Cardinality
Cardinality refers to how many distinct values there are for a field in a collection.
Some fields, such as "gender" or "newsletter opt-out", might only have two possi‐
ble values, which is considered a very low cardinality. Others, such as "username" or
"email", might have a unique value for every document in the collection, which is
high cardinality. Still others fall somewhere in between, such as "age" or "zip code".

In general, the greater the cardinality of a field, the more helpful an index on that
field can be. This is because the index can quickly narrow the search space to a much
smaller result set. For a low-cardinality field, an index generally cannot eliminate as
many possible matches.

For example, suppose we had an index on "gender" and were looking for women
named Susan. We could only narrow down the result space by approximately 50%
before referring to individual documents to look up "name". Conversely, if we
indexed by "name", we could immediately narrow down our result set to the tiny frac‐
tion of users named Susan, and then we could refer to those documents to check the
gender.

As a rule of thumb, try to create indexes on high-cardinality keys or at least put high-
cardinality keys first in compound indexes (before low-cardinality keys).

explain Output
As you’ve seen, explain gives you lots of information about your queries. It’s one of
the most important diagnostic tools there is for slow queries. You can find out which

116 | Chapter 5: Indexes

indexes are being used and how by looking at a query’s "explain" output. For any
query, you can add a call to explain at the end (the way you would add a sort or
limit, but explain must be the last call).

There are two types of explain output that you’ll see most commonly: for indexed
and nonindexed queries. Special index types may create slightly different query plans,
but most fields should be similar. Also, sharding returns a conglomerate of explains
(as covered in Chapter 14), as it runs the query on multiple servers.

The most basic type of explain is on a query that doesn’t use an index. You can tell
that a query doesn’t use an index because it uses a "COLLSCAN".

The output of an explain on a query that uses an index varies, but in the simplest
case it looks something like this if we add an index on imdb.rating:

> db.users.find({"age" : 42}).explain('executionStats')
{
 "queryPlanner" : {
 "plannerVersion" : 1,
 "namespace" : "test.users",
 "indexFilterSet" : false,
 "parsedQuery" : {
 "age" : {
 "$eq" : 42
 }
 },
 "winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
 "stage" : "IXSCAN",
 "keyPattern" : {
 "age" : 1,
 "username" : 1
 },
 "indexName" : "age_1_username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "age" : [],
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "age" : [
 "[42.0, 42.0]"
],
 "username" : [
 "[MinKey, MaxKey]"

explain Output | 117

]
 }
 }
 },
 "rejectedPlans" : []
 },
 "executionStats" : {
 "executionSuccess" : true,
 "nReturned" : 8449,
 "executionTimeMillis" : 15,
 "totalKeysExamined" : 8449,
 "totalDocsExamined" : 8449,
 "executionStages" : {
 "stage" : "FETCH",
 "nReturned" : 8449,
 "executionTimeMillisEstimate" : 10,
 "works" : 8450,
 "advanced" : 8449,
 "needTime" : 0,
 "needYield" : 0,
 "saveState" : 66,
 "restoreState" : 66,
 "isEOF" : 1,
 "invalidates" : 0,
 "docsExamined" : 8449,
 "alreadyHasObj" : 0,
 "inputStage" : {
 "stage" : "IXSCAN",
 "nReturned" : 8449,
 "executionTimeMillisEstimate" : 0,
 "works" : 8450,
 "advanced" : 8449,
 "needTime" : 0,
 "needYield" : 0,
 "saveState" : 66,
 "restoreState" : 66,
 "isEOF" : 1,
 "invalidates" : 0,
 "keyPattern" : {
 "age" : 1,
 "username" : 1
 },
 "indexName" : "age_1_username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "age" : [],
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,

118 | Chapter 5: Indexes

 "direction" : "forward",
 "indexBounds" : {
 "age" : [
 "[42.0, 42.0]"
],
 "username" : [
 "[MinKey, MaxKey]"
]
 },
 "keysExamined" : 8449,
 "seeks" : 1,
 "dupsTested" : 0,
 "dupsDropped" : 0,
 "seenInvalidated" : 0
 }
 }
 },
 "serverInfo" : {
 "host" : "eoinbrazil-laptop-osx",
 "port" : 27017,
 "version" : "4.0.12",
 "gitVersion" : "5776e3cbf9e7afe86e6b29e22520ffb6766e95d4"
 },
 "ok" : 1
}

This output first tells you what index was used: imdb.rating. Next is how many
documents were actually returned as a result: "nReturned". Note that this doesn’t
necessarily reflect how much work MongoDB did to answer the query (i.e., how
many indexes and documents it had to search). "totalKeysExamined" reports the
number of index entries scanned while "totalDocsExamined" indicates how many
documents were scanned. The number of documents scanned is reflected in "nscan
nedObjects".

The output also shows that there were no rejectedPlans and that it used a bounded
search on the index within the value 42.0.

"executionTimeMillis" reports how fast the query was executed, from the server
receiving the request to when it sent a response. However, it may not always be the
number you are looking for. If MongoDB tried multiple query plans, "executionTime
Millis" will reflect how long it took all of them to run, not the one chosen as the
best.

Now that you know the basics, here is a breakdown of some of the more important
fields in more detail:

"isMultiKey" : false

If this query used a multikey index (see “Indexing Objects and Arrays” on page
114).

explain Output | 119

"nReturned" : 8449

The number of documents returned by the query.

"totalDocsExamined" : 8449

The number of times MongoDB had to follow an index pointer to the actual
document on disk. If the query contains criteria that are not part of the index or
requests fields that aren’t contained in the index, MongoDB must look up the
document each index entry points to.

"totalKeysExamined" : 8449

The number of index entries looked at, if an index was used. If this was a table
scan, it is the number of documents examined.

"stage" : "IXSCAN"

If MongoDB was able to fulfill this query using an index; if not "COLSCAN" would
indicate it had to perform a collection scan to fulfill the query.

In this example, MongoDB found all matching documents using the index,
which we know because "totalKeysExamined" is the same as "totalDocsExa
mined". However, the query was told to return every field in the matching docu‐
ments and the index only contained the "age" and "username" fields.

"needYield" : 0

The number of times this query yielded (paused) to allow a write request to pro‐
ceed. If there are writes waiting to go, queries will periodically release their lock
and allow them to continue. On this system, there were no writes waiting so the
query never yielded.

"executionTimeMillis" : 15

The number of milliseconds it took the database to execute the query. The lower
this number is, the better.

"indexBounds" : {...}

A description of how the index was used, giving ranges of the index traversed. In
this example, as the first clause in the query was an exact match, the index only
needed to look at that value: 42. The second index key was a free variable,
because the query didn’t specify any restrictions to it. Thus, the database looked
for values between negative infinity ("$minElement" : 1) and infinity ("$maxEle
ment" : 1) for usernames within "age" : 42.

Let’s take a look at a slightly more complicated example. Suppose you have an index
on {"username" : 1, "age" : 1} and an index on {"age" : 1, "username" : 1}.
What happens if you query for "username" and "age"? Well, it depends on the query:

> db.users.find({"age" : {$gt : 10}, "username" : "user2134"}).explain()
{

120 | Chapter 5: Indexes

 "queryPlanner" : {
 "plannerVersion" : 1,
 "namespace" : "test.users",
 "indexFilterSet" : false,
 "parsedQuery" : {
 "$and" : [
 {
 "username" : {
 "$eq" : "user2134"
 }
 },
 {
 "age" : {
 "$gt" : 10
 }
 }
]
 },
 "winningPlan" : {
 "stage" : "FETCH",
 "filter" : {
 "age" : {
 "$gt" : 10
 }
 },
 "inputStage" : {
 "stage" : "IXSCAN",
 "keyPattern" : {
 "username" : 1
 },
 "indexName" : "username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "username" : [
 "[\"user2134\", \"user2134\"]"
]
 }
 }
 },
 "rejectedPlans" : [
 {
 "stage" : "FETCH",
 "inputStage" : {
 "stage" : "IXSCAN",

explain Output | 121

 "keyPattern" : {
 "age" : 1,
 "username" : 1
 },
 "indexName" : "age_1_username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "age" : [],
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "age" : [
 "(10.0, inf.0]"
],
 "username" : [
 "[\"user2134\", \"user2134\"]"
]
 }
 }
 }
]
 },
 "serverInfo" : {
 "host" : "eoinbrazil-laptop-osx",
 "port" : 27017,
 "version" : "4.0.12",
 "gitVersion" : "5776e3cbf9e7afe86e6b29e22520ffb6766e95d4"
 },
 "ok" : 1
}

We are querying for an exact match on "username" and a range of values for "age",
so the database chooses to use the {"username" : 1, "age" : 1} index, reversing
the terms of the query. If, on the other hand, we query for an exact age and a range of
names, MongoDB will use the other index:

> db.users.find({"age" : 14, "username" : /.*/}).explain()
{
 "queryPlanner" : {
 "plannerVersion" : 1,
 "namespace" : "test.users",
 "indexFilterSet" : false,
 "parsedQuery" : {
 "$and" : [
 {
 "age" : {
 "$eq" : 14

122 | Chapter 5: Indexes

 }
 },
 {
 "username" : {
 "$regex" : ".*"
 }
 }
]
 },
 "winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
 "stage" : "IXSCAN",
 "filter" : {
 "username" : {
 "$regex" : ".*"
 }
 },
 "keyPattern" : {
 "age" : 1,
 "username" : 1
 },
 "indexName" : "age_1_username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "age" : [],
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "age" : [
 "[14.0, 14.0]"
],
 "username" : [
 "[\"\", {})",
 "[/.*/, /.*/]"
]
 }
 }
 },
 "rejectedPlans" : [
 {
 "stage" : "FETCH",
 "filter" : {
 "age" : {
 "$eq" : 14
 }
 },

explain Output | 123

 "inputStage" : {
 "stage" : "IXSCAN",
 "filter" : {
 "username" : {
 "$regex" : ".*"
 }
 },
 "keyPattern" : {
 "username" : 1
 },
 "indexName" : "username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "username" : [
 "[\"\", {})",
 "[/.*/, /.*/]"
]
 }
 }
 }
]
 },
 "serverInfo" : {
 "host" : "eoinbrazil-laptop-osx",
 "port" : 27017,
 "version" : "4.0.12",
 "gitVersion" : "5776e3cbf9e7afe86e6b29e22520ffb6766e95d4"
 },
 "ok" : 1
}

If you find that Mongo is using different indexes than you want it to for a query, you
can force it to use a certain index by using hint. For instance, if you want to make
sure MongoDB uses the {"username" : 1, "age" : 1} index on the previous query,
you could say the following:

> db.users.find({"age" : 14, "username" : /.*/}).hint({"username" : 1, "age" : 1})

If a query is not using the index that you want it to and you use a
hint to change it, run an explain on the hinted query before
deploying. If you force MongoDB to use an index on a query that it
does not know how to use an index for, you could end up making
the query less efficient than it was without the index.

124 | Chapter 5: Indexes

When Not to Index
Indexes are most effective at retrieving small subsets of data, and some types of quer‐
ies are faster without indexes. Indexes become less and less efficient as you need to
get larger percentages of a collection because using an index requires two lookups:
one to look at the index entry and one following the index’s pointer to the document.
A collection scan only requires one: looking at the document. In the worst case
(returning all of the documents in a collection) using an index would take twice as
many lookups and would generally be significantly slower than a collection scan.

Unfortunately, there isn’t a hard-and-fast rule about when an index helps and when it
hinders as it really depends on the size of your data, indexes, documents, and average
result set (Table 5-1). As a rule of thumb, an index often speeds things up if the query
is returning 30% or more of the collection. However, this number can vary from 2%
to 60%. Table 5-1 summarizes the conditions in which indexes or collection scans
tend to work better.

Table 5-1. Properties that affect the effectiveness of indexes

Indexes often work well for Collection scans often work well for
Large collections Small collections
Large documents Small documents
Selective queries Nonselective queries

Let’s say we have an analytics system that collects statistics. Our application queries
the system for all documents for a given account to generate a nice graph of all data
from an hour ago to the beginning of time:

> db.entries.find({"created_at" : {"$lt" : hourAgo}})

We index "created_at" to speed up this query.

When we first launch, the result set is tiny and the query returns instantly. But after a
couple of weeks, it starts being a lot of data, and after a month this query is already
taking too long to run.

For most applications, this is probably the “wrong” query: do you really want a query
that’s returning most of your dataset? Most applications, particularly those with large
datasets, do not. However, there are some legitimate cases where you may want most
or all of your data. For example, you might be exporting this data to a reporting sys‐
tem or using it for a batch job. In these cases, you would like to return this large pro‐
portion of the dataset as fast as possible.

When Not to Index | 125

Types of Indexes
There are a few index options you can specify when building an index that change the
way the index behaves. The most common variations are described in the following
sections, and more advanced or special-case options are described in the next
chapter.

Unique Indexes
Unique indexes guarantee that each value will appear at most once in the index. For
example, if you want to make sure no two documents can have the same value in the
"username" key, you can create a unique index with a partialFilterExpression for
only documents with a firstname field (more on this option later in the chapter):

> db.users.createIndex({"firstname" : 1},
... {"unique" : true, "partialFilterExpression":{
 "firstname": {$exists: true } } })
{
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 3,
 "numIndexesAfter" : 4,
 "ok" : 1
}

For example, suppose you tried to insert the following documents in the users
collection:

> db.users.insert({firstname: "bob"})
WriteResult({ "nInserted" : 1 })
> db.users.insert({firstname: "bob"})
WriteResult({
 "nInserted" : 0,
 "writeError" : {
 "code" : 11000,
 "errmsg" : "E11000 duplicate key error collection: test.users index:
 firstname_1 dup key: { : \"bob\" }"
 }
})

If you check the collection, you’ll see that only the first "bob" was stored. Throwing
duplicate key exceptions is not very efficient, so use the unique constraint for the
occasional duplicate, not to filter out zillions of duplicates a second.

A unique index that you are probably already familiar with is the index on "_id",
which is automatically created whenever you create a collection. This is a normal
unique index (aside from the fact that it cannot be dropped, as other unique indexes
can be).

126 | Chapter 5: Indexes

If a key does not exist, the index stores its value as null for that
document. This means that if you create a unique index and try to
insert more than one document that is missing the indexed field,
the inserts will fail because you already have a document with a
value of null. See “Partial Indexes” on page 128 for advice on han‐
dling this.

In some cases a value won’t be indexed. Index buckets are of limited size and if an
index entry exceeds it, it just won’t be included in the index. This can cause confusion
as it makes a document “invisible” to queries that use the index. Prior to MongoDB
4.2, a field was required to be smaller than 1,024 bytes to be included in an index. In
MongoDB 4.2 and later, this constraint was removed. MongoDB does not return any
sort of error or warning if a document’s fields cannot be indexed due to size. This
means that keys longer than 8 KB will not be subject to the unique index constraints:
you can insert identical 8 KB strings, for example.

Compound unique indexes
You can also create a compound unique index. If you do this, individual keys can
have the same values, but the combination of values across all keys in an index entry
can appear in the index at most once.

For example, if we had a unique index on {"username" : 1, "age" : 1}, the fol‐
lowing inserts would be legal:

> db.users.insert({"username" : "bob"})
> db.users.insert({"username" : "bob", "age" : 23})
> db.users.insert({"username" : "fred", "age" : 23})

However, attempting to insert a second copy of any of these documents would cause a
duplicate key exception.

GridFS, the standard method for storing large files in MongoDB (see “Storing Files
with GridFS” on page 156), uses a compound unique index. The collection that holds
the file content has a unique index on {"files_id" : 1, "n" : 1}, which allows
documents that look like (in part) the following:

{"files_id" : ObjectId("4b23c3ca7525f35f94b60a2d"), "n" : 1}
{"files_id" : ObjectId("4b23c3ca7525f35f94b60a2d"), "n" : 2}
{"files_id" : ObjectId("4b23c3ca7525f35f94b60a2d"), "n" : 3}
{"files_id" : ObjectId("4b23c3ca7525f35f94b60a2d"), "n" : 4}

Note that all of the values for "files_id" are the same, but "n" is different.

Dropping duplicates
If you attempt to build a unique index on an existing collection, it will fail to build if
there are any duplicate values:

Types of Indexes | 127

> db.users.createIndex({"age" : 1}, {"unique" : true})
WriteResult({
 "nInserted" : 0,
 "writeError" : {
 "code" : 11000,
 "errmsg" : "E11000 duplicate key error collection:
 test.users index: age_1 dup key: { : 12 }"
 }
})

Generally, you’ll need to process your data (the aggregation framework can help) and
figure out where the duplicates are and what to do with them.

Partial Indexes
As mentioned in the previous section, unique indexes count null as a value, so you
cannot have a unique index with more than one document missing the key. However,
there are lots of cases where you may want the unique index to be enforced only if the
key exists. If you have a field that may or may not exist but must be unique when it
does, you can combine the "unique" option with the "partial" option.

Partial indexes in MongoDB are only created on a subset of the
data. This is unlike sparse indexes on relational databases, which
create fewer index entries pointing to a block of data—however, all
blocks of data will have an associated sparse index entry in
RDBMS.

To create a partial index, include the "partialFilterExpression" option. Partial
indexes represent a superset of the functionality offered by sparse indexes, with a
document representing the filter expression you wish to create it on. For example, if
providing an email address was optional but, if provided, should be unique, we could
do:

> db.users.ensureIndex({"email" : 1}, {"unique" : true, "partialFilterExpression" :
... { email: { $exists: true } }})

Partial indexes do not necessarily have to be unique. To make a nonunique partial
index, simply do not include the "unique" option.

One thing to be aware of is that the same query can return different results depending
on whether or not it uses the partial index. For example, suppose we have a collection
where most of the documents have "x" fields, but one does not:

> db.foo.find()
{ "_id" : 0 }
{ "_id" : 1, "x" : 1 }
{ "_id" : 2, "x" : 2 }
{ "_id" : 3, "x" : 3 }

128 | Chapter 5: Indexes

When we do a query on "x", it will return all matching documents:

> db.foo.find({"x" : {"$ne" : 2}})
{ "_id" : 0 }
{ "_id" : 1, "x" : 1 }
{ "_id" : 3, "x" : 3 }

If we create a partial index on "x", the "_id" : 0 document won’t be included in the
index. So now if we query on "x", MongoDB will use the index and not return the
{"_id" : 0} document:

> db.foo.find({"x" : {"$ne" : 2}})
{ "_id" : 1, "x" : 1 }
{ "_id" : 3, "x" : 3 }

You can use hint to force it to do a table scan if you need documents with missing
fields.

Index Administration
As shown in the previous section, you can create new indexes using the createIndex
function. An index only needs to be created once per collection. If you try to create
the same index again, nothing will happen.

All of the information about a database’s indexes is stored in the system.indexes col‐
lection. This is a reserved collection, so you cannot modify its documents or remove
documents from it. You can manipulate it only through the createIndex, createIn
dexes, and dropIndexes database commands.

When you create an index, you can see its metainformation in system.indexes. You
can also run db.collectionName.getIndexes() to see information about all the
indexes on a given collection:

> db.students.getIndexes()
[
 {
 "v" : 2,
 "key" : {
 "_id" : 1
 },
 "name" : "_id_",
 "ns" : "school.students"
 },
 {
 "v" : 2,
 "key" : {
 "class_id" : 1
 },
 "name" : "class_id_1",
 "ns" : "school.students"

Index Administration | 129

 },
 {
 "v" : 2,
 "key" : {
 "student_id" : 1,
 "class_id" : 1
 },
 "name" : "student_id_1_class_id_1",
 "ns" : "school.students"
 }
]

The important fields are "key" and "name". The key can be used for hinting and other
places where an index must be specified. This is a place where field order matters: an
index on {"class_id" : 1, "student_id" : 1} is not the same as an index on
{"student_id" : 1, "class_id" : 1}. The index name is used as an identifier for a
lot of administrative index operations, such as dropIndexes. Whether or not the
index is multikey is not specified in its spec.

The "v" field is used internally for index versioning. If you have any indexes that do
not have at least a "v" : 1 field, they are being stored in an older, less efficient for‐
mat. You can upgrade them by ensuring that you’re running at least MongoDB ver‐
sion 2.0 and dropping and rebuilding the indexes.

Identifying Indexes
Each index in a collection has a name that uniquely identifies that index and is used
by the server to delete or manipulate it. Index names are, by default, key

name1_dir1_keyname2_dir2_..._keynameN_dirN, where keynameX is the index’s key
and dirX is the index’s direction (1 or -1). This can get unwieldy if indexes contain
more than a couple of keys, so you can specify your own name as one of the options
to createIndex:

> db.soup.createIndex({"a" : 1, "b" : 1, "c" : 1, ..., "z" : 1},
... {"name" : "alphabet"})

There is a limit to the number of characters in an index name, so complex indexes
may need custom names to be created. A call to getLastError will show if the index
creation succeeded or why it didn’t.

Changing Indexes
As your application grows and changes, you may find that your data or queries have
changed and that indexes that used to work well no longer do. You can remove
unneeded indexes using the dropIndex command:

> db.people.dropIndex("x_1_y_1")
{ "nIndexesWas" : 3, "ok" : 1 }

130 | Chapter 5: Indexes

Use the "name" field from the index description to specify which index to drop.

Building new indexes is time-consuming and resource-intensive. Prior to version 4.2,
MongoDB will build an index as fast as possible, blocking all reads and writes on a
database until the index build has finished. If you would like your database to remain
somewhat responsive to reads and writes, use the "background" option when build‐
ing an index. This forces the index build to occasionally yield to other operations, but
may still have a severe impact on your application (see “Building Indexes” on page
283 for more information). Background indexing is also much slower than fore‐
ground indexing. MongoDB version 4.2 introduced a new approach, the hybrid index
build. It only holds the exclusive lock at the beginning and end of the index build.
The rest of the build process yields to interleaving read and write operations. This
replaces both the foreground and the background index build type in MongoDB 4.2.

If you have the choice, creating indexes on existing documents is slightly faster than
creating the index first and then inserting all documents.

There is more on the operational aspects of building indexes in Chapter 19.

Index Administration | 131

CHAPTER 6

Special Index and Collection Types

This chapter covers the special collections and index types MongoDB has available,
including:

• Capped collections for queue-like data
• TTL indexes for caches
• Full-text indexes for simple string searching
• Geospatial indexes for 2D and spherical geometries
• GridFS for storing large files

Geospatial Indexes
MongoDB has two types of geospatial indexes: 2dsphere and 2d. 2dsphere indexes
work with spherical geometries that model the surface of the earth based on the
WGS84 datum. This datum models the surface of the earth as an oblate spheroid,
meaning that there is some flattening at the poles. Distance calculations using
2sphere indexes, therefore, take the shape of the earth into account and provide a
more accurate treatment of distance between, for example, two cities, than do 2d
indexes. Use 2d indexes for points stored on a two-dimensional plane.

2dsphere allows you to specify geometries for points, lines, and polygons in the Geo‐
JSON format. A point is given by a two-element array, representing [longitude, lati
tude]:

133

http://www.geojson.org/
http://www.geojson.org/

{
 "name" : "New York City",
 "loc" : {
 "type" : "Point",
 "coordinates" : [50, 2]
 }
}

A line is given by an array of points:

{
 "name" : "Hudson River",
 "loc" : {
 "type" : "LineString",
 "coordinates" : [[0,1], [0,2], [1,2]]
 }
}

A polygon is specified the same way a line is (an array of points), but with a different
"type":

{
 "name" : "New England",
 "loc" : {
 "type" : "Polygon",
 "coordinates" : [[0,1], [0,2], [1,2]]
 }
}

The field that we are naming, "loc" in this example, can be called anything, but the
field names in the embedded object are specified by GeoJSON and cannot be
changed.

You can create a geospatial index using the "2dsphere" type with createIndex:

> db.openStreetMap.createIndex({"loc" : "2dsphere"})

To create a 2dsphere index, pass a document to createIndex that specifies the field
containing geometries you want to index for the collection in question and specify
"2dsphere" as the value.

Types of Geospatial Queries
There are three types of geospatial queries that you can perform: intersection, within,
and nearness. You specify what you’re looking for as a GeoJSON object that looks like
{"$geometry" : geoJsonDesc}.

134 | Chapter 6: Special Index and Collection Types

For example, you can find documents that intersect the query’s location using the
"$geoIntersects" operator:

> var eastVillage = {
... "type" : "Polygon",
... "coordinates" : [
... [
... [-73.9732566, 40.7187272],
... [-73.9724573, 40.7217745],
... [-73.9717144, 40.7250025],
... [-73.9714435, 40.7266002],
... [-73.975735, 40.7284702],
... [-73.9803565, 40.7304255],
... [-73.9825505, 40.7313605],
... [-73.9887732, 40.7339641],
... [-73.9907554, 40.7348137],
... [-73.9914581, 40.7317345],
... [-73.9919248, 40.7311674],
... [-73.9904979, 40.7305556],
... [-73.9907017, 40.7298849],
... [-73.9908171, 40.7297751],
... [-73.9911416, 40.7286592],
... [-73.9911943, 40.728492],
... [-73.9914313, 40.7277405],
... [-73.9914635, 40.7275759],
... [-73.9916003, 40.7271124],
... [-73.9915386, 40.727088],
... [-73.991788, 40.7263908],
... [-73.9920616, 40.7256489],
... [-73.9923298, 40.7248907],
... [-73.9925954, 40.7241427],
... [-73.9863029, 40.7222237],
... [-73.9787659, 40.719947],
... [-73.9772317, 40.7193229],
... [-73.9750886, 40.7188838],
... [-73.9732566, 40.7187272]
...]
...]}
> db.openStreetMap.find(
... {"loc" : {"$geoIntersects" : {"$geometry" : eastVillage}}})

This would find all point-, line-, and polygon-containing documents that had a point
in the East Village in New York City.

You can use "$geoWithin" to query for things that are completely contained in an
area (for instance, “What restaurants are in the East Village?”):

> db.openStreetMap.find({"loc" : {"$geoWithin" : {"$geometry" : eastVillage}}})

Geospatial Indexes | 135

Unlike our first query, this will not return things that merely pass through the East
Village (such as streets) or partially overlap it (such as a polygon describing
Manhattan).

Finally, you can query for nearby locations with "$near":

> db.openStreetMap.find({"loc" : {"$near" : {"$geometry" : eastVillage}}})

Note that "$near" is the only geospatial operator that implies a sort: results from
"$near" are always returned in order of distance, from closest to farthest.

Using Geospatial Indexes
MongoDB’s geospatial indexing allows you to efficiently execute spatial queries on a
collection that contains geospatial shapes and points. To showcase the capabilities of
geospatial features and compare different approaches, we will go through the process
of writing queries for a simple geospatial application. We’ll go a little deeper into a
few concepts central to geospatial indexes and then demonstrate their use with "$geo
Within", "$geoIntersects", and "$geoNear".

Suppose we are designing a mobile application to help users find restaurants in New
York City. The application must:

• Determine the neighborhood the user is currently in.
• Show the number of restaurants in that neighborhood.
• Find restaurants within a specified distance.

We will use a 2dsphere index to query on this spherical geometry data.

2D versus spherical geometry in queries
Geospatial queries can use either spherical or 2D (flat) geometries, depending on
both the query and the type of index in use. Table 6-1 shows what kind of geometry
each geospatial operator uses.

Table 6-1. Query types and geometries in MongoDB

Query type Geometry type
$near (GeoJSON point, 2dsphere index) Spherical
$near (legacy coordinates, 2d index) Flat
$geoNear (GeoJSON point, 2dsphere index) Spherical
$geoNear (legacy coordinates, 2d index) Flat
$nearSphere (GeoJSON point, 2dsphere index) Spherical
$nearSphere (legacy coordinates, 2d index)a Spherical
$geoWithin : { $geometry: ... } Spherical

136 | Chapter 6: Special Index and Collection Types

Query type Geometry type
$geoWithin: { $box: ... } Flat
$geoWithin: { $polygon: ... } Flat
$geoWithin : { $center: ... } Flat
$geoWithin : { $centerSphere: ... } Spherical
$geoIntersects Spherical
a Use GeoJSON points instead.

Note also that 2d indexes support both flat geometries and distance-only calculations
on spheres (i.e., using $nearSphere). However, queries using spherical geometries
will be more performant and accurate with a 2dsphere index.

Note also that the $geoNear operator is an aggregation operator. The aggregation
framework is discussed in Chapter 7. In addition to the $near query operation, the
$geoNear aggregation operator and the special command geoNear enable us to query
for nearby locations. Keep in mind that the $near query operator will not work on
collections that are distributed using sharding, MongoDB’s scaling solution (see
Chapter 15).

The geoNear command and the $geoNear aggregation operator require that a collec‐
tion have at most one 2dsphere index and at most one 2d index, whereas geospatial
query operators (e.g., $near and $geoWithin) permit collections to have multiple
geospatial indexes.

The geospatial index restriction for the geoNear command and the $geoNear aggre‐
gation operator exists because neither the geoNear command nor the $geoNear syn‐
tax includes the location field. As such, index selection among multiple 2d indexes or
2dsphere indexes is ambiguous.

No such restriction applies for geospatial query operators; these operators take a loca‐
tion field, eliminating the ambiguity.

Distortion
Spherical geometry will appear distorted when visualized on a map due to the nature
of projecting a three-dimensional sphere, such as the earth, onto a flat plane.

For example, take the specification of the spherical square defined by the longitude,
latitude points (0,0), (80,0), (80,80), and (0,80). Figure 6-1 depicts the area covered by
this region.

Geospatial Indexes | 137

Figure 6-1. The spherical square defined by the points (0,0), (80,0), (80, 80), and (0,80)

Searching for restaurants
In this example, we will work with neighborhood and restaurant datasets based in
New York City. You can download the example datasets from GitHub.

We can import the datasets into our database using the mongoimport tool as follows:

$ mongoimport <path to neighborhoods.json> -c neighborhoods
$ mongoimport <path to restaurants.json> -c restaurants

138 | Chapter 6: Special Index and Collection Types

https://oreil.ly/rpGna
https://oreil.ly/JXYd-

We can create a 2dsphere index on each collection using the createIndex command
in the mongo shell:

> db.neighborhoods.createIndex({location:"2dsphere"})
> db.restaurants.createIndex({location:"2dsphere"})

Exploring the data
We can get a sense for the schema used for documents in these collections with a cou‐
ple of quick queries in the mongo shell:

> db.neighborhoods.find({name: "Clinton"})
{
 "_id": ObjectId("55cb9c666c522cafdb053a4b"),
 "geometry": {
 "coordinates": [
 [
 [-73.99,40.77],
 .
 .
 .
 [-73.99,40.77],
 [-73.99,40.77]]
]
],
 "type": "Polygon"
 },
 "name": "Clinton"
}

> db.restaurants.find({name: "Little Pie Company"})
{
 "_id": ObjectId("55cba2476c522cafdb053dea"),
 "location": {
 "coordinates": [
 -73.99331699999999,
 40.7594404
],
 "type": "Point"
 },
 "name": "Little Pie Company"
}

The neighborhood document in the previous code corresponds to the area of New
York City shown in Figure 6-2.

Geospatial Indexes | 139

https://oreil.ly/NMUhn

Figure 6-2. The Hell’s Kitchen (Clinton) neighborhood of New York City

The bakery corresponds to the location shown in Figure 6-3.

140 | Chapter 6: Special Index and Collection Types

Figure 6-3. The Little Pie Company at 424 West 43rd Street

Finding the current neighborhood
Assuming the user’s mobile device can give a reasonably accurate location user, it is
simple to find the user’s current neighborhood with $geoIntersects.

Suppose the user is located at −73.93414657 longitude and 40.82302903 latitude. To
find the current neighborhood (Hell’s Kitchen), we can specify a point using the spe‐
cial $geometry field in GeoJSON format:

> db.neighborhoods.findOne({geometry:{$geoIntersects:{$geometry:{type:"Point",
... coordinates:[-73.93414657,40.82302903]}}}})

This query will return the following result:

{
 "_id":ObjectId("55cb9c666c522cafdb053a68"),

Geospatial Indexes | 141

 "geometry":{
 "type":"Polygon",
 "coordinates":[[[-73.93383000695911,40.81949109558767],...]]},
 "name":"Central Harlem North-Polo Grounds"
}

Finding all restaurants in the neighborhood
We can also query to find all restaurants contained in a given neighborhood. To do
so, we can execute the following in the mongo shell to find the neighborhood contain‐
ing the user, and then count the restaurants within that neighborhood. For example,
to find all the restaurants in the Hell’s Kitchen neighborhood:

> var neighborhood = db.neighborhoods.findOne({
 geometry: {
 $geoIntersects: {
 $geometry: {
 type: "Point",
 coordinates: [-73.93414657,40.82302903]
 }
 }
 }
});

> db.restaurants.find({
 location: {
 $geoWithin: {
 // Use the geometry from the neighborhood object we retrieved above
 $geometry: neighborhood.geometry
 }
 }
 },
 // Project just the name of each matching restaurant
 {name: 1, _id: 0});

This query will tell you that there are 127 restaurants in the requested neighborhood
that have the following names:

{
 "name": "White Castle"
}
{
 "name": "Touch Of Dee'S"
}
{
 "name": "Mcdonald'S"
}
{
 "name": "Popeyes Chicken & Biscuits"
}
{
 "name": "Make My Cake"

142 | Chapter 6: Special Index and Collection Types

}
{
 "name": "Manna Restaurant Ii"
}
...
{
 "name": "Harlem Coral Llc"
}

Finding restaurants within a distance

To find restaurants within a specified distance of a point, you can use either "$geoWi
thin" with "$centerSphere" to return results in unsorted order, or "$nearSphere"
with "$maxDistance" if you need results sorted by distance.

To find restaurants within a circular region, use "$geoWithin" with "$center
Sphere". "$centerSphere" is a MongoDB-specific syntax to denote a circular region
by specifying the center and the radius in radians. "$geoWithin" does not return the
documents in any specific order, so it might return the furthest documents first.

The following will find all restaurants within five miles of the user:

> db.restaurants.find({
 location: {
 $geoWithin: {
 $centerSphere: [
 [-73.93414657,40.82302903],
 5/3963.2
]
 }
 }
})

"$centerSphere"’s second argument accepts the radius in radians. The query con‐
verts the distance to radians by dividing by the approximate equatorial radius of the
earth, 3963.2 miles.

Applications can use "$centerSphere" without having a geospatial index. However,
geospatial indexes support much faster queries than the unindexed equivalents. Both
2dsphere and 2d geospatial indexes support "$centerSphere".

You may also use "$nearSphere" and specify a "$maxDistance" term in meters. This
will return all restaurants within five miles of the user in sorted order from nearest to
farthest:

> var METERS_PER_MILE = 1609.34;
db.restaurants.find({
 location: {
 $nearSphere: {
 $geometry: {
 type: "Point",

Geospatial Indexes | 143

 coordinates: [-73.93414657,40.82302903]
 },
 $maxDistance: 5*METERS_PER_MILE
 }
 }
});

Compound Geospatial Indexes
As with other types of indexes, you can combine geospatial indexes with other fields
to optimize more complex queries. A possible query mentioned earlier was: “What
restaurants are in Hell’s Kitchen?” Using only a geospatial index, we could narrow the
field to everything in Hell’s Kitchen, but narrowing it down to only “restaurants” or
“pizza” would require another field in the index:

> db.openStreetMap.createIndex({"tags" : 1, "location" : "2dsphere"})

Then we can quickly find a pizza place in Hell’s Kitchen:

> db.openStreetMap.find({"loc" : {"$geoWithin" :
... {"$geometry" : hellsKitchen.geometry}},
... "tags" : "pizza"})

We can have the “vanilla” index field either before or after the "2dsphere" field,
depending on whether we’d like to filter by the vanilla field or the location first.
Choose whichever is more selective (i.e., will filter out more results as the first index
term).

2d Indexes
For nonspherical maps (videogame maps, time series data, etc.) you can use a "2d"
index instead of "2dsphere":

> db.hyrule.createIndex({"tile" : "2d"})

2d indexes assume a perfectly flat surface, instead of a sphere. Thus, 2d indexes
should not be used with spheres unless you don’t mind massive distortion around the
poles.

Documents should use a two-element array for their "2d" indexed field. The elements
in this array should reflect the longitude and lattitude coordinates, respectively. A
sample document might look like this:

{
 "name" : "Water Temple",
 "tile" : [32, 22]
}

Do not use a 2d index if you plan to store GeoJSON data—they can only index points.
You can store an array of points, but it will be stored as exactly that: an array of

144 | Chapter 6: Special Index and Collection Types

points, not a line. This is an important distinction for "$geoWithin" queries, in par‐
ticular. If you store a street as an array of points, the document will match
"$geoWithin" if one of those points is within the given shape. However, the line cre‐
ated by those points might not be wholly contained in the shape.

By default, 2d indexes assume that your values are going to range from −180 to 180. If
you are expecting larger or smaller bounds, you can specify what the minimum and
maximum values will be as options to createIndex:

> db.hyrule.createIndex({"light-years" : "2d"}, {"min" : -1000, "max" : 1000})

This will create a spatial index calibrated for a 2,000 × 2,000 square.

2d indexes support the "$geoWithin", "$nearSphere", and "$near" query selectors.
Use "$geoWithin" to query for points within a shape defined on a flat surface. "$geo
Within" can query for all points within a rectangle, polygon, circle, or sphere; it uses
the "$geometry" operator to specify the GeoJSON object. Returning to our grid
indexed as follows:

> db.hyrule.createIndex({"tile" : "2d"})

the following queries for documents within a rectangle defined by [10, 10] at the
bottom-left corner and by [100, 100] at the top-right corner:

> db.hyrule.find({
 tile: {
 $geoWithin: {
 $box: [[10, 10], [100, 100]]
 }
 }
})

$box takes a two-element array: the first element specifies the coordinates of the
lower-left corner and the second element the upper right.

To query for documents that are within the circle centered on [−17 , 20.5] and with a
radius of 25 we can issue the following command:

> db.hyrule.find({
 tile: {
 $geoWithin: {
 $center: [[-17, 20.5] , 25]
 }
 }
})

The following query returns all documents with coordinates that exist within the pol‐
ygon defined by [0, 0], [3, 6], and [6 , 0]:

> db.hyrule.find({
 tile: {
 $geoWithin: {

Geospatial Indexes | 145

 $polygon: [[0, 0], [3, 6], [6, 0]]
 }
 }
})

You specify a polygon as an array of points. The final point in the list will be “connec‐
ted to” the first point to form the polygon. This example would locate all documents
containing points within the given triangle.

MongoDB also supports rudimentary spherical queries on flat 2d indexes for legacy
reasons. In general, spherical calculations should use a 2dsphere index, as described
in “2D versus spherical geometry in queries” on page 136. However, to query for leg‐
acy coordinate pairs within a sphere, use "$geoWithin" with the “$centerSphere”
operator. Specify an array that contains:

• The grid coordinates of the circle’s center point
• The circle’s radius measured in radians

For example:

> db.hyrule.find({
 loc: {
 $geoWithin: {
 $centerSphere: [[88, 30], 10/3963.2]
 }
 }
})

To query for nearby points, use "$near". Proximity queries return the documents
with coordinate pairs closest to the defined point and sort the results by distance.
This finds all of the documents in the hyrule collection in order by distance from the
point (20, 21):

> db.hyrule.find({"tile" : {"$near" : [20, 21]}})

A default limit of 100 documents is applied if no limit is specified. If you don’t need
that many results, you should set a limit to conserve server resources. For example,
the following code returns the 10 documents nearest to (20, 21):

> db.hyrule.find({"tile" : {"$near" : [20, 21]}}).limit(10)

Indexes for Full Text Search
text indexes in MongoDB support full-text search requirements. This type of text
index should not be confused with the MongoDB Atlas Full-Text Search Indexes,
which utilize Apache Lucene for additional text search capabilities when compared to
MongoDB text indexes. Use a text index if your application needs to enable users to

146 | Chapter 6: Special Index and Collection Types

submit keyword queries that should match titles, descriptions, and text in other fields
within a collection.

In previous chapters, we’ve queried for strings using exact matches and regular
expressions, but these techniques have some limitations. Searching a large block of
text for a regular expression is slow, and it’s tough to take morphology (e.g., that
“entry” should match “entries”) and other challenges presented by human language
into account. text indexes give you the ability to search text quickly and provide sup‐
port for common search engine requirements such as language-appropriate tokeniza‐
tion, stop words, and stemming.

text indexes require a number of keys proportional to the words in the fields being
indexed. As a consequence, creating a text index can consume a large amount of sys‐
tem resources. You should create such an index at a time when it will not negatively
impact the performance of your application for users or build the index in the back‐
ground, if possible. To ensure good performance, as with all indexes, you should also
take care that any text index you create fits in RAM. See Chapter 19 for more infor‐
mation on creating indexes with minimal impact on your application.

Writes to a collection require that all indexes are updated. If you are using text search,
strings will be tokenized and stemmed and the index updated in, potentially, many
places. For this reason, writes involving text indexes are usually more expensive than
writes to single-field, compound, or even multikey indexes. Thus, you will tend to see
poorer write performance on text-indexed collections than on others. They will also
slow down data movement if you are sharding: all text must be reindexed when it is
migrated to a new shard.

Creating a Text Index
Suppose we have a collection of Wikipedia articles that we want to index. To run a
search over the text, we first need to create a text index. The following call to crea
teIndex will create the index based on the terms in both the "title" and "body"
fields:

> db.articles.createIndex({"title": "text",
 "body" : "text"})

This is not like a “normal” compound index where there is an ordering on the keys.
By default, each field is given equal consideration in a text index. You can control the
relative importance MongoDB attaches to each field by specifying weights:

> db.articles.createIndex({"title": "text",
 "body": "text"},
 {"weights" : {
 "title" : 3,
 "body" : 2}})

Indexes for Full Text Search | 147

This would weight the "title" field at a ratio of 3:2 in comparison to the "body"
field.

You cannot change field weights after index creation (without dropping the index and
recreating it), so you may want to play with weights on a sample dataset before creat‐
ing the index on your production data.

For some collections, you may not know which fields a document will contain. You
can create a full-text index on all string fields in a document by creating an index on
"$**"—this not only indexes all top-level string fields, but also searches embedded
documents and arrays for string fields:

> db.articles.createIndex({"$**" : "text"})

Text Search
Use the "$text" query operator to perform text searches on a collection with a text
index. "$text" will tokenize the search string using whitespace and most punctua‐
tion as delimiters, and perform a logical OR of all such tokens in the search string.
For example, you could use the following query to find all articles containing any of
the terms “impact,” “crater,” or “lunar.” Note that because our index is based on terms
in both the title and body of an article, this query will match documents in which
those terms are found in either field. For the purposes of this example, we will project
the title so that we can fit more results on the page:

> db.articles.find({"$text": {"$search": "impact crater lunar"}},
 {title: 1}
).limit(10)
{ "_id" : "170375", "title" : "Chengdu" }
{ "_id" : "34331213", "title" : "Avengers vs. X-Men" }
{ "_id" : "498834", "title" : "Culture of Tunisia" }
{ "_id" : "602564", "title" : "ABC Warriors" }
{ "_id" : "40255", "title" : "Jupiter (mythology)" }
{ "_id" : "80356", "title" : "History of Vietnam" }
{ "_id" : "22483", "title" : "Optics" }
{ "_id" : "8919057", "title" : "Characters in The Legend of Zelda series" }
{ "_id" : "20767983", "title" : "First inauguration of Barack Obama" }
{ "_id" : "17845285", "title" : "Kushiel's Mercy" }

You can see that the results with our initial query are not terribly relevant. As with all
technologies, it’s important to have a good grasp of how text indexes work in Mon‐
goDB in order to use them effectively. In this case, there are two problems with the
way we’ve issued the query. The first is that our query is pretty broad, given that
MongoDB issues the query using a logical OR of “impact,” “crater,” and “lunar.” The
second problem is that, by default, a text search does not sort the results by relevance.

We can begin to address the problem of the query itself by using a phrase in our
query. You can search for exact phrases by wrapping them in double quotes. For

148 | Chapter 6: Special Index and Collection Types

example, the following will find all documents containing the phrase “impact crater.”
Possibly surprising is that MongoDB will issue this query as “impact crater” AND
“lunar”:

> db.articles.find({$text: {$search: "\"impact crater\" lunar"}},
 {title: 1}
).limit(10)
{ "_id" : "2621724", "title" : "Schjellerup (crater)" }
{ "_id" : "2622075", "title" : "Steno (lunar crater)" }
{ "_id" : "168118", "title" : "South Pole–Aitken basin" }
{ "_id" : "1509118", "title" : "Jackson (crater)" }
{ "_id" : "10096822", "title" : "Victoria Island structure" }
{ "_id" : "968071", "title" : "Buldhana district" }
{ "_id" : "780422", "title" : "Puchezh-Katunki crater" }
{ "_id" : "28088964", "title" : "Svedberg (crater)" }
{ "_id" : "780628", "title" : "Zeleny Gai crater" }
{ "_id" : "926711", "title" : "Fracastorius (crater)" }

To make sure the semantics of this are clear, let’s look at an expanded example. For
the following query, MongoDB will issue the query as “impact crater” AND (“lunar”
OR “meteor”). MongoDB performs a logical AND of the phrase with the individual
terms in the search string and a logical OR of the individual terms with one another:

> db.articles.find({$text: {$search: "\"impact crater\" lunar meteor"}},
 {title: 1}
).limit(10)

If you want to issue a logical AND between individual terms in a query, treat each
term as a phrase by wrapping it in quotes. The following query will return documents
containing “impact crater” AND “lunar” AND “meteor”:

> db.articles.find({$text: {$search: "\"impact crater\" \"lunar\" \"meteor\""}},
 {title: 1}
).limit(10)
{ "_id" : "168118", "title" : "South Pole–Aitken basin" }
{ "_id" : "330593", "title" : "Giordano Bruno (crater)" }
{ "_id" : "421051", "title" : "Opportunity (rover)" }
{ "_id" : "2693649", "title" : "Pascal Lee" }
{ "_id" : "275128", "title" : "Tektite" }
{ "_id" : "14594455", "title" : "Beethoven quadrangle" }
{ "_id" : "266344", "title" : "Space debris" }
{ "_id" : "2137763", "title" : "Wegener (lunar crater)" }
{ "_id" : "929164", "title" : "Dawes (lunar crater)" }
{ "_id" : "24944", "title" : "Plate tectonics" }

Now that you have a better understanding of using phrases and logical ANDs in your
queries, let’s return to the problem of the results not being sorted by relevance. While
the preceding results are certainly relevant, this is mostly due to the fairly strict query
we’ve issued. We can do better by sorting for relevance.

Indexes for Full Text Search | 149

Text queries cause some metadata to be associated with each query result. The meta‐
data is not displayed in the query results unless we explicitly project it using the
$meta operator. So, in addition to the title, we will project the relevance score calcula‐
ted for each document. The relevance score is stored in the metadata field named
"textScore". For this example, we’ll return to our query of “impact crater” AND
“lunar”:

> db.articles.find({$text: {$search: "\"impact crater\" lunar"}},
 {title: 1, score: {$meta: "textScore"}}
).limit(10)
{"_id": "2621724", "title": "Schjellerup (crater)", "score": 2.852987132352941}
{"_id": "2622075", "title": "Steno (lunar crater)", "score": 2.4766639610389607}
{"_id": "168118", "title": "South Pole–Aitken basin", "score": 2.980198136295181}
{"_id": "1509118", "title": "Jackson (crater)", "score": 2.3419137286324787}
{"_id": "10096822", "title": "Victoria Island structure",
 "score": 1.782051282051282}
{"_id": "968071", "title": "Buldhana district", "score": 1.6279783393501805}
{"_id": "780422", "title": "Puchezh-Katunki crater", "score": 1.9295977011494254}
{"_id": "28088964", "title": "Svedberg (crater)", "score": 2.497767857142857}
{"_id": "780628", "title": "Zeleny Gai crater", "score": 1.4866071428571428}
{"_id": "926711", "title": "Fracastorius (crater)", "score": 2.7511877111486487}

Now you can see the relevance score projected with the title for each result. Note that
they are not sorted. To sort the results in order of relevance score, we must add a call
to sort, again using $meta to specify the "textScore" field value. Note that we must
use the same field name in our sort as we used in our projection. In this case, we used
the field name "score" for the relevance score value displayed in our search results.
As you can see, the results are now sorted in decreasing order of relevance:

> db.articles.find({$text: {$search: "\"impact crater\" lunar"}},
 {title: 1, score: {$meta: "textScore"}}
).sort({score: {$meta: "textScore"}}).limit(10)
{"_id": "1621514", "title": "Lunar craters", "score": 3.1655242042922014}
{"_id": "14580008", "title": "Kuiper quadrangle", "score": 3.0847527829208814}
{"_id": "1019830", "title": "Shackleton (crater)", "score": 3.076471119932001}
{"_id": "2096232", "title": "Geology of the Moon", "score": 3.064981949458484}
{"_id": "927269", "title": "Messier (crater)", "score": 3.0638183133686008}
{"_id": "206589", "title": "Lunar geologic timescale", "score": 3.062029540854157}
{"_id": "14536060", "title": "Borealis quadrangle", "score": 3.0573010719646687}
{"_id": "14609586", "title": "Michelangelo quadrangle",
 "score": 3.057224063486582}
{"_id": "14568465", "title": "Shakespeare quadrangle",
 "score": 3.0495256481056443}
{"_id": "275128", "title": "Tektite", "score" : 3.0378807169646915}

Text search is also available in the aggregation pipeline. We discuss the aggregation
pipeline in Chapter 7.

150 | Chapter 6: Special Index and Collection Types

Optimizing Full-Text Search
There are a couple of ways to optimize full-text searches. If you can first narrow your
search results by other criteria, you can create a compound index with a prefix of
those criteria and then the full-text fields:

> db.blog.createIndex({"date" : 1, "post" : "text"})

This is referred to as partitioning the full-text index, as it breaks it into several smaller
trees based on "date" (in this example). This makes full-text searches for a specific
date or date range much faster.

You can also use a postfix of other criteria to cover queries with the index. For exam‐
ple, if we were only returning the "author" and "post" fields, we could create a com‐
pound index on both:

> db.blog.createIndex({"post" : "text", "author" : 1})

These prefix and postfix forms can be combined:

> db.blog.createIndex({"date" : 1, "post" : "text", "author" : 1})

Searching in Other Languages
When a document is inserted (or the index is first created), MongoDB looks at the
index’s fields and stems each word, reducing it to an essential unit. However, different
languages stem words in different ways, so you must specify what language the index
or document is in. text indexes allow a "default_language" option to be specified,
which defaults to "english" but can be set to a number of other languages (see the
online documentation for an up-to-date list).

For example, to create a French-language index, we could say:

> db.users.createIndex({"profil" : "text",
 "intérêts" : "text"},
 {"default_language" : "french"})

Then French would be used for stemming, unless otherwise specified. You can, on a
per-document basis, specify another stemming language by having a "language"
field that describes the document’s language:

> db.users.insert({"username" : "swedishChef",
... "profile" : "Bork de bork", language : "swedish"})

Capped Collections
“Normal” collections in MongoDB are created dynamically and automatically grow in
size to fit additional data. MongoDB also supports a different type of collection, called
a capped collection, which is created in advance and is fixed in size (see Figure 6-4).

Capped Collections | 151

https://oreil.ly/eUt0Z

Figure 6-4. New documents are inserted at the end of the queue

Having fixed-size collections brings up an interesting question: what happens when
we try to insert into a capped collection that is already full? The answer is that capped
collections behave like circular queues: if we’re out of space, the oldest document will
be deleted, and the new one will take its place (see Figure 6-5). This means that cap‐
ped collections automatically age out the oldest documents as new documents are
inserted.

Certain operations are not allowed on capped collections. Documents cannot be
removed or deleted (aside from the automatic age-out described earlier), and updates
that would cause documents to grow in size are disallowed. By preventing these two
operations, we guarantee that documents in a capped collection are stored in inser‐
tion order and that there is no need to maintain a free list for space from removed
documents.

152 | Chapter 6: Special Index and Collection Types

Figure 6-5. When the queue is full, the oldest element will be replaced by the newest

Capped collections have a different access pattern than most MongoDB collections:
data is written sequentially over a fixed section of disk. This makes them tend to per‐
form writes quickly on spinning disks, especially if they can be given their own disk
(so as not to be “interrupted” by other collections’ random writes).

In general, MongoDB TTL indexes are recommended over capped collections
because they perform better with the WiredTiger storage engine. TTL indexes expire
and remove data from normal collections based on the value of a date-typed field and
a TTL value for the index. These are covered in more depth later in this chapter.

Capped collections cannot be sharded. If an update or a replace‐
ment operation changes the document size in a capped collection,
the operation will fail.

Capped collections tend to be useful for logging, although they lack flexibility: you
cannot control when data ages out, other than setting a size when you create the
collection.

Capped Collections | 153

Creating Capped Collections
Unlike normal collections, capped collections must be explicitly created before they
are used. To create a capped collection, use the create command. From the shell, this
can be done using createCollection:

> db.createCollection("my_collection", {"capped" : true, "size" : 100000});

The previous command creates a capped collection, my_collection, that has a fixed
size of 100,000 bytes.

createCollection can also specify a limit on the number of documents in a capped
collection:

> db.createCollection("my_collection2",
 {"capped" : true, "size" : 100000, "max" : 100});

You could use this to keep, say, the latest 10 news articles or limit a user to 1,000
documents.

Once a capped collection has been created, it cannot be changed (it must be dropped
and recreated if you wish to change its properties). Thus, you should think carefully
about the size of a large collection before creating it.

When limiting the number of documents in a capped collection,
you must specify a size limit as well. Age-out will be based on
whichever limit is reached first: it can neither hold more than
"max" documents nor take up more than "size" space.

Another option for creating a capped collection is to convert an existing regular col‐
lection into a capped collection. This can be done using the convertToCapped
command—in the following example, we convert the test collection to a capped col‐
lection of 10,000 bytes:

> db.runCommand({"convertToCapped" : "test", "size" : 10000});
{ "ok" : true }

There is no way to “uncap” a capped collection (other than dropping it).

Tailable Cursors
Tailable cursors are a special type of cursor that are not closed when their results are
exhausted. They were inspired by the tail -f command and, similar to that com‐
mand, will continue fetching output for as long as possible. Because the cursors do
not die when they run out of results, they can continue to fetch new results as docu‐
ments are added to the collection. Tailable cursors can be used only on capped collec‐
tions, since insert order is not tracked for normal collections. For the vast majority of
uses, change streams, covered in Chapter 16, are recommended over tailable cursors

154 | Chapter 6: Special Index and Collection Types

as they offer vastly more control and configuration plus they work with normal
collections.

Tailable cursors are often used for processing documents as they are inserted onto a
“work queue” (the capped collection). Because tailable cursors will time out after 10
minutes of no results, it is important to include logic to requery the collection if they
die. The mongo shell does not allow you to use tailable cursors, but using one in PHP
looks something like the following:

$cursor = $collection->find([], [
 'cursorType' => MongoDB\Operation\Find::TAILABLE_AWAIT,
 'maxAwaitTimeMS' => 100,
]);

while (true) {
 if ($iterator->valid()) {
 $document = $iterator->current();
 printf("Consumed document created at: %s\n", $document->createdAt);
 }

 $iterator->next();
}

The cursor will process results or wait for more results to arrive until it times out or
someone kills the query operation.

Time-To-Live Indexes
As mentioned in the previous section, capped collections give you limited control
over when their contents are overwritten. If you need a more flexible age-out system,
TTL indexes allow you to set a timeout for each document. When a document rea‐
ches a preconfigured age, it will be deleted. This type of index is useful for caching
use cases such as session storage.

You can create a TTL index by specifying the "expireAfterSeconds" option in the
second argument to createIndex:

> // 24-hour timeout
> db.sessions.createIndex({"lastUpdated" : 1}, {"expireAfterSeconds" : 60*60*24})

This creates a TTL index on the "lastUpdated" field. If a document’s "lastUpdated"
field exists and is a date, the document will be removed once the server time is
"expireAfterSeconds" seconds ahead of the document’s time.

To prevent an active session from being removed, you can update the "lastUpdated"
field to the current time whenever there is activity. Once "lastUpdated" is 24 hours
old, the document will be removed.

Time-To-Live Indexes | 155

MongoDB sweeps the TTL index once per minute, so you should not depend on to-
the-second granularity. You can change the "expireAfterSeconds" using the coll
Mod command:

> db.runCommand({"collMod" : "someapp.cache" , "index" : { "keyPattern" :
... {"lastUpdated" : 1} , "expireAfterSeconds" : 3600 } });

You can have multiple TTL indexes on a given collection. They cannot be compound
indexes but can be used like “normal” indexes for the purposes of sorting and query
optimization.

Storing Files with GridFS
GridFS is a mechanism for storing large binary files in MongoDB. There are several
reasons why you might consider using GridFS for file storage:

• Using GridFS can simplify your stack. If you’re already using MongoDB, you
might be able to use GridFS instead of a separate tool for file storage.

• GridFS will leverage any existing replication or autosharding that you’ve set up
for MongoDB, so getting failover and scale-out for file storage is easier.

• GridFS can alleviate some of the issues that certain filesystems can exhibit when
being used to store user uploads. For example, GridFS does not have issues with
storing large numbers of files in the same directory.

There are some downsides, too:

• Performance is slower. Accessing files from MongoDB will not be as fast as going
directly through the filesystem.

• You can only modify documents by deleting them and resaving the whole thing.
MongoDB stores files as multiple documents, so it cannot lock all of the chunks
in a file at the same time.

GridFS is generally best when you have large files you’ll be accessing in a sequential
fashion that won’t be changing much.

Getting Started with GridFS: mongofiles
The easiest way to try out GridFS is by using the mongofiles utility. mongofiles is
included with all MongoDB distributions and can be used to upload, download, list,
search for, or delete files in GridFS.

As with any of the other command-line tools, run mongofiles --help to see the
options available for mongofiles.

156 | Chapter 6: Special Index and Collection Types

The following session shows how to use mongofiles to upload a file from the filesys‐
tem to GridFS, list all of the files in GridFS, and download a file that we’ve previously
uploaded:

$ echo "Hello, world" > foo.tx
$ mongofiles put foo.txt
2019-10-30T10:12:06.588+0000 connected to: localhost
2019-10-30T10:12:06.588+0000 added file: foo.txt
$ mongofiles list
2019-10-30T10:12:41.603+0000 connected to: localhost
foo.txt 13
$ rm foo.txt
$ mongofiles get foo.txt
2019-10-30T10:13:23.948+0000 connected to: localhost
2019-10-30T10:13:23.955+0000 finished writing to foo.txt
$ cat foo.txt
Hello, world

In the previous example, we perform three basic operations using mongofiles: put,
list, and get. The put operation takes a file in the filesystem and adds it to GridFS.
list will list any files that have been added to GridFS. get does the inverse of put: it
takes a file from GridFS and writes it to the filesystem. mongofiles also supports two
other operations: search for finding files in GridFS by filename and delete for
removing a file from GridFS.

Working with GridFS from the MongoDB Drivers
All the client libraries have GridFS APIs. For example, with PyMongo (the Python
driver for MongoDB) you can perform the same series of operations (this assumes
Python 3 and a locally running mongod on port 27017) as we did with mongofiles as
follows:

>>> import pymongo
>>> import gridfs
>>> client = pymongo.MongoClient()
>>> db = client.test
>>> fs = gridfs.GridFS(db)
>>> file_id = fs.put(b"Hello, world", filename="foo.txt")
>>> fs.list()
['foo.txt']
>>> fs.get(file_id).read()
b'Hello, world'

The API for working with GridFS from PyMongo is very similar to that of mongofiles:
you can easily perform the basic put, get, and list operations. Almost all the
MongoDB drivers follow this basic pattern for working with GridFS, while often
exposing more advanced functionality as well. For driver-specific information on
GridFS, please check out the documentation for the specific driver you’re using.

Storing Files with GridFS | 157

Under the Hood
GridFS is a lightweight specification for storing files that is built on top of normal
MongoDB documents. The MongoDB server actually does almost nothing to
“special-case” the handling of GridFS requests; all the work is handled by the client-
side drivers and tools.

The basic idea behind GridFS is that we can store large files by splitting them up into
chunks and storing each chunk as a separate document. Because MongoDB supports
storing binary data in documents, we can keep the storage overhead for chunks to a
minimum. In addition to storing each chunk of a file, we store a single document that
groups the chunks together and contains metadata about the file.

The chunks for GridFS are stored in their own collection. By default chunks will use
the collection fs.chunks, but this can be overridden. Within the chunks collection the
structure of the individual documents is pretty simple:

{
 "_id" : ObjectId("..."),
 "n" : 0,
 "data" : BinData("..."),
 "files_id" : ObjectId("...")
}

Like any other MongoDB document, a chunk has its own unique "_id". In addition,
it has a couple of other keys:

"files_id"

The "_id" of the file document that contains the metadata for the file this chunk
is from

"n"

The chunk’s position in the file, relative to the other chunks

"data"

The bytes in this chunk of the file

The metadata for each file is stored in a separate collection, which defaults to fs.files.
Each document in the files collection represents a single file in GridFS and can con‐
tain any custom metadata that should be associated with that file. In addition to any
user-defined keys, there are a couple of keys that are mandated by the GridFS
specification:

"_id"

A unique ID for the file—this is what will be stored in each chunk as the value for
the "files_id" key.

158 | Chapter 6: Special Index and Collection Types

"length"

The total number of bytes making up the content of the file.

"chunkSize"

The size of each chunk comprising the file, in bytes. The default is 255 KB, but
this can be adjusted if needed.

"uploadDate"

A timestamp representing when this file was stored in GridFS.

"md5"

An MD5 checksum of this file’s contents, generated on the server side.

Of all the required keys, perhaps the most interesting (or least self-explanatory) is
"md5". The value for "md5" is generated by the MongoDB server using the filemd5
command, which computes the MD5 checksum of the uploaded chunks. This means
that users can check the value of the "md5" key to ensure that a file was uploaded
correctly.

As mentioned previously, you are not limited to the required fields in fs.files: feel free
to keep any other file metadata in this collection as well. You might want to keep
information such as download count, MIME type, or user rating with a file’s meta‐
data.

Once you understand the underlying GridFS specification, it becomes trivial to
implement features that the driver you’re using might not provide helpers for. For
example, you can use the distinct command to get a list of unique filenames stored
in GridFS:

> db.fs.files.distinct("filename")
["foo.txt" , "bar.txt" , "baz.txt"]

This allows your application a great deal of flexibility in loading and collecting infor‐
mation about files. We’ll change direction slightly in the next chapter, as we introduce
the aggregation framework. It offers a range of data analytic tools to process the data
in your database.

Storing Files with GridFS | 159

CHAPTER 7

Introduction to the
Aggregation Framework

Many applications require data analysis of one form or another. MongoDB provides
powerful support for running analytics natively using the aggregation framework. In
this chapter, we introduce this framework and some of the fundamental tools it pro‐
vides. We’ll cover:

• The aggregation framework
• Aggregation stages
• Aggregation expressions
• Aggregation accumulators

In the next chapter we’ll dive deeper and look at more advanced aggregation features,
including the ability to perform joins across collections.

Pipelines, Stages, and Tunables
The aggregation framework is a set of analytics tools within MongoDB that allow you
to do analytics on documents in one or more collections.

The aggregation framework is based on the concept of a pipeline. With an aggrega‐
tion pipeline we take input from a MongoDB collection and pass the documents from
that collection through one or more stages, each of which performs a different opera‐
tion on its inputs (Figure 7-1). Each stage takes as input whatever the stage before it
produced as output. The inputs and outputs for all stages are documents—a stream of
documents, if you will.

161

Figure 7-1. The aggregation pipeline

If you’re familiar with pipelines in a Linux shell, such as bash, this is a very similar
idea. Each stage has a specific job that it does. It expects a specific form of document
and produces a specific output, which is itself a stream of documents. At the end of
the pipeline we get access to the output, in much the same way that we would by exe‐
cuting a find query. That is, we get a stream of documents back that we can then use
to do additional work, whether it’s creating a report of some kind, generating a web‐
site, or some other type of task.

Now, let’s dive in a little deeper and consider the individual stages. An individual
stage of an aggregation pipeline is a data processing unit. It takes in a stream of input
documents one at a time, processes each document one at a time, and produces an
output stream of documents one at a time (Figure 7-2).

Figure 7-2. Stages of the aggregation pipeline

Each stage provides a set of knobs, or tunables, that we can control to parameterize
the stage to perform whatever task we’re interested in doing. A stage performs a
generic, general-purpose task of some kind, and we parameterize the stage for the
particular collection that we’re working with and exactly what we would like that
stage to do with those documents.

These tunables typically take the form of operators that we can supply that will mod‐
ify fields, perform arithmetic operations, reshape documents, or do some sort of
accumulation task or a variety of other things.

Before we start looking at some concrete examples, there’s one more aspect of pipe‐
lines that is especially important to keep in mind as you begin to work with them.
Frequently, we want to include the same type of stage multiple times within a single
pipeline (Figure 7-3). For example, we may want to perform an initial filter so that we

162 | Chapter 7: Introduction to the Aggregation Framework

don’t have to pass the entire collection into our pipeline. Later, following some addi‐
tional processing, we might then want to filter further, applying a different set of
criteria.

Figure 7-3. Repeated stages in the aggregation pipeline

To recap, pipelines work with MongoDB collections. They’re composed of stages,
each of which does a different data processing task on its input and produces docu‐
ments as output to be passed to the next stage. Finally, at the end of the processing, a
pipeline produces output that we can then do something with in our application or
that we can send to a collection for later use. In many cases, in order to perform the
analysis we need to do, we will include the same type of stage multiple times within
an individual pipeline.

Getting Started with Stages: Familiar Operations
To get started developing aggregation pipelines, we will look at building some pipe‐
lines that involve operations that are already familiar to you. For this we will look at
the match, project, sort, skip, and limit stages.

To work through these aggregation examples, we will use a collection of company
data. The collection has a number of fields that specify details about the companies,
such as name, a short description of the company, and when the company was
founded.

There are also fields describing the rounds of funding a company has gone through,
important milestones for the company, whether or not the company has been
through an initial public offering (IPO), and, if so, the details of the IPO. Here’s an
example document containing data on Facebook, Inc.:

{
 "_id" : "52cdef7c4bab8bd675297d8e",
 "name" : "Facebook",
 "category_code" : "social",
 "founded_year" : 2004,
 "description" : "Social network",
 "funding_rounds" : [{
 "id" : 4,
 "round_code" : "b",
 "raised_amount" : 27500000,

Getting Started with Stages: Familiar Operations | 163

 "raised_currency_code" : "USD",
 "funded_year" : 2006,
 "investments" : [
 {
 "company" : null,
 "financial_org" : {
 "name" : "Greylock Partners",
 "permalink" : "greylock"
 },
 "person" : null
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "Meritech Capital Partners",
 "permalink" : "meritech-capital-partners"
 },
 "person" : null
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "Founders Fund",
 "permalink" : "founders-fund"
 },
 "person" : null
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "SV Angel",
 "permalink" : "sv-angel"
 },
 "person" : null
 }
]
 },
 {
 "id" : 2197,
 "round_code" : "c",
 "raised_amount" : 15000000,
 "raised_currency_code" : "USD",
 "funded_year" : 2008,
 "investments" : [
 {
 "company" : null,
 "financial_org" : {
 "name" : "European Founders Fund",
 "permalink" : "european-founders-fund"
 },
 "person" : null
 }

164 | Chapter 7: Introduction to the Aggregation Framework

]
 }],
 "ipo" : {
 "valuation_amount" : NumberLong("104000000000"),
 "valuation_currency_code" : "USD",
 "pub_year" : 2012,
 "pub_month" : 5,
 "pub_day" : 18,
 "stock_symbol" : "NASDAQ:FB"
 }
}

As our first aggregation example, let’s do a simple filter looking for all companies that
were founded in 2004:

db.companies.aggregate([
 {$match: {founded_year: 2004}},
])

This is equivalent to the following operation using find:

db.companies.find({founded_year: 2004})

Now let’s add a project stage to our pipeline to reduce the output to just a few fields
per document. We’ll exclude the "_id" field, but include "name" and
"founded_year". Our pipeline will be as follows:

db.companies.aggregate([
 {$match: {founded_year: 2004}},
 {$project: {
 _id: 0,
 name: 1,
 founded_year: 1
 }}
])

If we run this, we get output that looks like the following:

{"name": "Digg", "founded_year": 2004 }
{"name": "Facebook", "founded_year": 2004 }
{"name": "AddThis", "founded_year": 2004 }
{"name": "Veoh", "founded_year": 2004 }
{"name": "Pando Networks", "founded_year": 2004 }
{"name": "Jobster", "founded_year": 2004 }
{"name": "AllPeers", "founded_year": 2004 }
{"name": "blinkx", "founded_year": 2004 }
{"name": "Yelp", "founded_year": 2004 }
{"name": "KickApps", "founded_year": 2004 }
{"name": "Flickr", "founded_year": 2004 }
{"name": "FeedBurner", "founded_year": 2004 }
{"name": "Dogster", "founded_year": 2004 }
{"name": "Sway", "founded_year": 2004 }
{"name": "Loomia", "founded_year": 2004 }
{"name": "Redfin", "founded_year": 2004 }

Getting Started with Stages: Familiar Operations | 165

{"name": "Wink", "founded_year": 2004 }
{"name": "Techmeme", "founded_year": 2004 }
{"name": "Eventful", "founded_year": 2004 }
{"name": "Oodle", "founded_year": 2004 }
...

Let’s unpack this aggregation pipeline in a little more detail. The first thing you will
notice is that we’re using the aggregate method. This is the method we call when we
want to run an aggregation query. To aggregate, we pass in an aggregation pipeline. A
pipeline is an array with documents as elements. Each of the documents must stipu‐
late a particular stage operator. In this example, we have a pipeline that has two
stages: a match stage for filtering and a project stage with which we’re limiting the
output to just two fields per document.

The match stage filters against the collection and passes the resulting documents to
the project stage one at a time. The project stage then performs its operation, reshap‐
ing the documents, and passes the output out of the pipeline and back to us.

Now let’s extend our pipeline a bit further to include a limit stage. We’re going to
match using the same query, but we’ll limit our result set to five and then project out
the fields we want. For simplicity, let’s limit our output to just the names of each
company:

db.companies.aggregate([
 {$match: {founded_year: 2004}},
 {$limit: 5},
 {$project: {
 _id: 0,
 name: 1}}
])

The result is as follows:

{"name": "Digg"}
{"name": "Facebook"}
{"name": "AddThis"}
{"name": "Veoh"}
{"name": "Pando Networks"}

Note that we’ve constructed this pipeline so that we limit before the project stage. If
we ran the project stage first and then the limit, as in the following query, we would
get exactly the same results, but we’d have to pass hundreds of documents through the
project stage before finally limiting the results to five:

db.companies.aggregate([
 {$match: {founded_year: 2004}},
 {$project: {
 _id: 0,
 name: 1}},
 {$limit: 5}
])

166 | Chapter 7: Introduction to the Aggregation Framework

Regardless of what types of optimizations the MongoDB query planner might be
capable of in a given release, you should always consider the efficiency of your aggre‐
gation pipeline. Ensure that you are limiting the number of documents that need to
be passed on from one stage to another as you build your pipeline.

This requires careful consideration of the entire flow of documents through a pipe‐
line. In the case of the preceding query, we’re only interested in the first five docu‐
ments that match our query, regardless of how they are sorted, so it’s perfectly fine to
limit as our second stage.

However, if the order matters, then we’ll need to sort before the limit stage. Sorting
works in a manner similar to what we have seen already, except that in the aggrega‐
tion framework, we specify sort as a stage within a pipeline as follows (in this case, we
will sort by name in ascending order):

db.companies.aggregate([
 { $match: { founded_year: 2004 } },
 { $sort: { name: 1} },
 { $limit: 5 },
 { $project: {
 _id: 0,
 name: 1 } }
])

We get the following result from our companies collection:

{"name": "1915 Studios"}
{"name": "1Scan"}
{"name": "2GeeksinaLab"}
{"name": "2GeeksinaLab"}
{"name": "2threads"}

Note that we’re looking at a different set of five companies now, getting instead the
first five documents in alphanumeric order by name.

Finally, let’s take a look at including a skip stage. Here, we sort first, then skip the first
10 documents and again limit our result set to 5 documents:

db.companies.aggregate([
 {$match: {founded_year: 2004}},
 {$sort: {name: 1}},
 {$skip: 10},
 {$limit: 5},
 {$project: {
 _id: 0,
 name: 1}},
])

Let’s review our pipeline one more time. We have five stages. First, we’re filtering the
companies collection, looking only for documents where the "founded_year" is 2004.
Then we’re sorting based on the name in ascending order, skipping the first 10

Getting Started with Stages: Familiar Operations | 167

matches, and limiting our end results to 5. Finally, we pass those five documents on
to the project stage, where we reshape the documents such that our output docu‐
ments contain just the company name.

Here, we’ve looked at constructing pipelines using stages that perform operations that
should already be familiar to you. These operations are provided in the aggregation
framework because they are necessary for the types of analytics that we’ll want to
accomplish using stages discussed in later sections. As we move through the rest of
this chapter, we will take a deep dive into the other operations that the aggregation
framework provides.

Expressions
As we move deeper into our discussion of the aggregation framework, it is important
to have a sense of the different types of expressions available for use as you construct
aggregation pipelines. The aggregation framework supports many different classes of
expressions:

• Boolean expressions allow us to use AND, OR, and NOT expressions.
• Set expressions allow us to work with arrays as sets. In particular, we can get the

intersection or union of two or more sets. We can also take the difference of two
sets and perform a number of other set operations.

• Comparison expressions enable us to express many different types of range filters.
• Arithmetic expressions enable us to calculate the ceiling, floor, natural log, and

log, as well as perform simple arithmetic operations like multiplication, division,
addition, and subtraction. We can even do more complex operations, such as cal‐
culating the square root of a value.

• String expressions allow us to concatenate, find substrings, and perform opera‐
tions having to do with case and text search operations.

• Array expressions provide a lot of power for manipulating arrays, including the
ability to filter array elements, slice an array, or just take a range of values from a
specific array.

• Variable expressions, which we won’t dive into too deeply, allow us to work with
literals, expressions for parsing date values, and conditional expressions.

• Accumulators provide the ability to calculate sums, descriptive statistics, and
many other types of values.

168 | Chapter 7: Introduction to the Aggregation Framework

$project
Now we’re going to take a deeper dive into the project stage and reshaping docu‐
ments, exploring the types of reshaping operations that should be most common in
the applications that you develop. We have seen some simple projections in aggrega‐
tion pipelines, and now we’ll take a look at some that are a little more complex.

First, let’s look at promoting nested fields. In the following pipeline, we are doing a
match:

db.companies.aggregate([
 {$match: {"funding_rounds.investments.financial_org.permalink": "greylock" }},
 {$project: {
 _id: 0,
 name: 1,
 ipo: "$ipo.pub_year",
 valuation: "$ipo.valuation_amount",
 funders: "$funding_rounds.investments.financial_org.permalink"
 }}
]).pretty()

As an example of the relevant fields for documents in our companies collection, let’s
again look at a portion of the Facebook document:

{
 "_id" : "52cdef7c4bab8bd675297d8e",
 "name" : "Facebook",
 "category_code" : "social",
 "founded_year" : 2004,
 "description" : "Social network",
 "funding_rounds" : [{
 "id" : 4,
 "round_code" : "b",
 "raised_amount" : 27500000,
 "raised_currency_code" : "USD",
 "funded_year" : 2006,
 "investments" : [
 {
 "company" : null,
 "financial_org" : {
 "name" : "Greylock Partners",
 "permalink" : "greylock"
 },
 "person" : null
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "Meritech Capital Partners",
 "permalink" : "meritech-capital-partners"
 },
 "person" : null

$project | 169

 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "Founders Fund",
 "permalink" : "founders-fund"
 },
 "person" : null
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "SV Angel",
 "permalink" : "sv-angel"
 },
 "person" : null
 }
]
 },
 {
 "id" : 2197,
 "round_code" : "c",
 "raised_amount" : 15000000,
 "raised_currency_code" : "USD",
 "funded_year" : 2008,
 "investments" : [
 {
 "company" : null,
 "financial_org" : {
 "name" : "European Founders Fund",
 "permalink" : "european-founders-fund"
 },
 "person" : null
 }
]
 }],
 "ipo" : {
 "valuation_amount" : NumberLong("104000000000"),
 "valuation_currency_code" : "USD",
 "pub_year" : 2012,
 "pub_month" : 5,
 "pub_day" : 18,
 "stock_symbol" : "NASDAQ:FB"
 }
}

Going back to our match:

db.companies.aggregate([
 {$match: {"funding_rounds.investments.financial_org.permalink": "greylock" }},
 {$project: {
 _id: 0,
 name: 1,

170 | Chapter 7: Introduction to the Aggregation Framework

 ipo: "$ipo.pub_year",
 valuation: "$ipo.valuation_amount",
 funders: "$funding_rounds.investments.financial_org.permalink"
 }}
]).pretty()

we are filtering for all companies that had a funding round in which Greylock Part‐
ners participated. The permalink value, "greylock", is the unique identifier for such
documents. Here is another view of the Facebook document with just the relevant
fields displayed:

{
 ...
 "name" : "Facebook",
 ...
 "funding_rounds" : [{
 ...
 "investments" : [{
 ...
 "financial_org" : {
 "name" : "Greylock Partners",
 "permalink" : "greylock"
 },
 ...
 },
 {
 ...
 "financial_org" : {
 "name" : "Meritech Capital Partners",
 "permalink" : "meritech-capital-partners"
 },
 ...
 },
 {
 ...
 "financial_org" : {
 "name" : "Founders Fund",
 "permalink" : "founders-fnd"
 },
 ...
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "SV Angel",
 "permalink" : "sv-angel"
 },
 ...
 }],
 ...
]},
 {

$project | 171

 ...
 "investments" : [{
 ...
 "financial_org" : {
 "name" : "European Founders Fund",
 "permalink" : "european-founders-fund"
 },
 ...
 }]
 }],
 "ipo" : {
 "valuation_amount" : NumberLong("104000000000"),
 "valuation_currency_code" : "USD",
 "pub_year" : 2012,
 "pub_month" : 5,
 "pub_day" : 18,
 "stock_symbol" : "NASDAQ:FB"
 }
}

The project stage we have defined in this aggregation pipeline will suppress the "_id"
and include the "name". It will also promote some nested fields. This project uses dot
notation to express field paths that reach into the "ipo" field and the "fund
ing_rounds" field to select values from those nested documents and arrays. This
project stage will make those the values of top-level fields in the documents it pro‐
duces as output, as shown here:

{
 "name" : "Digg",
 "funders" : [
 [
 "greylock",
 "omidyar-network"
],
 [
 "greylock",
 "omidyar-network",
 "floodgate",
 "sv-angel"
],
 [
 "highland-capital-partners",
 "greylock",
 "omidyar-network",
 "svb-financial-group"
]
]
}
{
 "name" : "Facebook",
 "ipo" : 2012,
 "valuation" : NumberLong("104000000000"),

172 | Chapter 7: Introduction to the Aggregation Framework

 "funders" : [
 [
 "accel-partners"
],
 [
 "greylock",
 "meritech-capital-partners",
 "founders-fund",
 "sv-angel"
],
 ...
 [
 "goldman-sachs",
 "digital-sky-technologies-fo"
]
]
}
{
 "name" : "Revision3",
 "funders" : [
 [
 "greylock",
 "sv-angel"
],
 [
 "greylock"
]
]
}
...

In the output, each document has a "name" field and a "funders" field. For those
companies that have gone through an IPO, the "ipo" field contains the year the com‐
pany went public and the "valuation" field contains the value of the company at the
time of the IPO. Note that in all of these documents, these are top-level fields and the
values for those fields were promoted from nested documents and arrays.

The $ character used to specify the values for ipo, valuation, and funders in our
project stage indicates that the values should be interpreted as field paths and used to
select the value that should be projected for each field, respectively.

One thing you might have noticed is that we’re seeing multiple values printed out for
funders. In fact, we’re seeing an array of arrays. Based on our review of the Facebook
example document, we know that all of the funders are listed within an array called
"investments". Our stage specifies that we want to project the financial_org.perma
link value for each entry in the "investments" array, for every funding round. So, an
array of arrays of funders’ names is built up.

In later sections we will look at how to perform arithmetic and other operations on
strings, dates, and a number of other value types to project documents of all shapes

$project | 173

and sizes. Just about the only thing we can’t do from a project stage is change the data
type for a value.

$unwind
When working with array fields in an aggregation pipeline, it is often necessary to
include one or more unwind stages. This allows us to produce output such that there
is one output document for each element in a specified array field.

Figure 7-4. $unwind takes an array from the input document and creates an output
document for each element in that array

In the example in Figure 7-4, we have an input document that has three keys and
their corresponding values. The third key has as its value an array with three ele‐
ments. $unwind if run on this type of input document and configured to unwind the
key3 field will produce documents that look like those shown at the bottom of
Figure 7-4. The thing that might not be intuitive to you about this is that in each of
these output documents there will be a key3 field, but that field will contain a single
value rather than an array value, and there will be a separate document for each one
of the elements that were in this array. In other words, if there were 10 elements in
the array, the unwind stage would produce 10 output documents.

Let’s go back to our companies example, and take a look at the use of an unwind stage.
We’ll start with the following aggregation pipeline. Note that in this pipeline, as in the
previous section, we are simply matching on a specific funder and promoting values
from embedded funding_rounds documents using a project stage:

db.companies.aggregate([
 {$match: {"funding_rounds.investments.financial_org.permalink": "greylock"} },
 {$project: {
 _id: 0,
 name: 1,
 amount: "$funding_rounds.raised_amount",
 year: "$funding_rounds.funded_year"
 }}
])

174 | Chapter 7: Introduction to the Aggregation Framework

Once again, here’s an example of the data model for documents in this collection:

{
 "_id" : "52cdef7c4bab8bd675297d8e",
 "name" : "Facebook",
 "category_code" : "social",
 "founded_year" : 2004,
 "description" : "Social network",
 "funding_rounds" : [{
 "id" : 4,
 "round_code" : "b",
 "raised_amount" : 27500000,
 "raised_currency_code" : "USD",
 "funded_year" : 2006,
 "investments" : [
 {
 "company" : null,
 "financial_org" : {
 "name" : "Greylock Partners",
 "permalink" : "greylock"
 },
 "person" : null
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "Meritech Capital Partners",
 "permalink" : "meritech-capital-partners"
 },
 "person" : null
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "Founders Fund",
 "permalink" : "founders-fund"
 },
 "person" : null
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "SV Angel",
 "permalink" : "sv-angel"
 },
 "person" : null
 }
]
 },
 {
 "id" : 2197,
 "round_code" : "c",
 "raised_amount" : 15000000,

$unwind | 175

 "raised_currency_code" : "USD",
 "funded_year" : 2008,
 "investments" : [
 {
 "company" : null,
 "financial_org" : {
 "name" : "European Founders Fund",
 "permalink" : "european-founders-fund"
 },
 "person" : null
 }
]
 }],
 "ipo" : {
 "valuation_amount" : NumberLong("104000000000"),
 "valuation_currency_code" : "USD",
 "pub_year" : 2012,
 "pub_month" : 5,
 "pub_day" : 18,
 "stock_symbol" : "NASDAQ:FB"
 }
}

Our aggregation query will produce results such as the following:

{
 "name" : "Digg",
 "amount" : [
 8500000,
 2800000,
 28700000,
 5000000
],
 "year" : [
 2006,
 2005,
 2008,
 2011
]
}
{
 "name" : "Facebook",
 "amount" : [
 500000,
 12700000,
 27500000,
 ...

The query produces documents that have arrays for both "amount" and "year",
because we’re accessing the "raised_amount" and "funded_year" for every element
in the "funding_rounds" array.

176 | Chapter 7: Introduction to the Aggregation Framework

To fix this, we can include an unwind stage before our project stage in this aggrega‐
tion pipeline, and parameterize this by specifying that it is the "funding_rounds"
array that should be unwound (Figure 7-5).

Figure 7-5. The outline of our aggregation pipeline so far, matching for “greylock” then
unwinding the “funding_rounds”, and finally projecting out the name, amount, and year
for each of the funding rounds

Returning again to our Facebook example, we can see that for each funding round
there is a "raised_amount" field and a "funded_year" field.

The unwind stage will produce an output document for each element of the "fund
ing_rounds" array. In this example our values are strings, but regardless of the type
of value, the unwind stage will produce an output document for each one. Here’s the
updated aggregation query:

db.companies.aggregate([
 { $match: {"funding_rounds.investments.financial_org.permalink": "greylock"} },
 { $unwind: "$funding_rounds" },
 { $project: {
 _id: 0,
 name: 1,
 amount: "$funding_rounds.raised_amount",
 year: "$funding_rounds.funded_year"
 } }
])

The unwind stage produces an exact copy of every one of the documents that it
receives as input. All the fields will have the same key and value, with the exception of
the "funding_rounds" field. Rather than being an array of "funding_rounds" docu‐
ments, instead it will have a value that is a single document, which corresponds to an
individual funding round:

{"name": "Digg", "amount": 8500000, "year": 2006 }
{"name": "Digg", "amount": 2800000, "year": 2005 }
{"name": "Digg", "amount": 28700000, "year": 2008 }
{"name": "Digg", "amount": 5000000, "year": 2011 }
{"name": "Facebook", "amount": 500000, "year": 2004 }
{"name": "Facebook", "amount": 12700000, "year": 2005 }
{"name": "Facebook", "amount": 27500000, "year": 2006 }
{"name": "Facebook", "amount": 240000000, "year": 2007 }
{"name": "Facebook", "amount": 60000000, "year": 2007 }

$unwind | 177

{"name": "Facebook", "amount": 15000000, "year": 2008 }
{"name": "Facebook", "amount": 100000000, "year": 2008 }
{"name": "Facebook", "amount": 60000000, "year": 2008 }
{"name": "Facebook", "amount": 200000000, "year": 2009 }
{"name": "Facebook", "amount": 210000000, "year": 2010 }
{"name": "Facebook", "amount": 1500000000, "year": 2011 }
{"name": "Revision3", "amount": 1000000, "year": 2006 }
{"name": "Revision3", "amount": 8000000, "year": 2007 }
...

Now let’s add an additional field to our output documents. In doing so, we’ll actually
identify a small problem with this aggregation pipeline as currently written:

db.companies.aggregate([
 { $match: {"funding_rounds.investments.financial_org.permalink": "greylock"} },
 { $unwind: "$funding_rounds" },
 { $project: {
 _id: 0,
 name: 1,
 funder: "$funding_rounds.investments.financial_org.permalink",
 amount: "$funding_rounds.raised_amount",
 year: "$funding_rounds.funded_year"
 } }
])

In adding the "funder" field we now have a field path value that will access the
"investments" field of the "funding_rounds" embedded document that it gets from
the unwind stage and, for the financial organization, selects the permalink value.
Note that this is very similar to what we’re doing in our match filter. Let’s have a look
at our output:

{
 "name" : "Digg",
 "funder" : [
 "greylock",
 "omidyar-network"
],
 "amount" : 8500000,
 "year" : 2006
}
{
 "name" : "Digg",
 "funder" : [
 "greylock",
 "omidyar-network",
 "floodgate",
 "sv-angel"
],
 "amount" : 2800000,
 "year" : 2005
}
{

178 | Chapter 7: Introduction to the Aggregation Framework

 "name" : "Digg",
 "funder" : [
 "highland-capital-partners",
 "greylock",
 "omidyar-network",
 "svb-financial-group"
],
 "amount" : 28700000,
 "year" : 2008
}
...
{
 "name" : "Farecast",
 "funder" : [
 "madrona-venture-group",
 "wrf-capital"
],
 "amount" : 1500000,
 "year" : 2004
}
{
 "name" : "Farecast",
 "funder" : [
 "greylock",
 "madrona-venture-group",
 "wrf-capital"
],
 "amount" : 7000000,
 "year" : 2005
}
{
 "name" : "Farecast",
 "funder" : [
 "greylock",
 "madrona-venture-group",
 "par-capital-management",
 "pinnacle-ventures",
 "sutter-hill-ventures",
 "wrf-capital"
],
 "amount" : 12100000,
 "year" : 2007
}

To understand what we’re seeing here, we need to go back to our document and look
at the "investments" field.

The "funding_rounds.investments" field is itself an array. Multiple funders can par‐
ticipate in each funding round, so "investments" will list every one of those funders.
Looking at the results, as we originally saw with the "raised_amount" and "fun

$unwind | 179

ded_year" fields, we’re now seeing an array for "funder" because "investments" is
an array-valued field.

Another problem is that because of the way we’ve written our pipeline, many docu‐
ments are passed to the project stage that represent funding rounds that Greylock did
not participate in. We can see this by looking at the funding rounds for Farecast. This
problem stems from the fact that our match stage selects all companies where Grey‐
lock participated in at least one funding round. If we are interested in considering
only those funding rounds in which Greylock actually participated, we need to figure
out a way to filter differently.

One possibility is to reverse the order of our unwind and match stages—that is to say,
do the unwind first and then do the match. This guarantees that we will only match
documents coming out of the unwind stage. But in thinking through this approach, it
quickly becomes clear that, with unwind as the first stage, we would be doing a scan
through the entire collection.

For efficiency, we want to match as early as possible in our pipeline. This enables the
aggregation framework to make use of indexes, for example. So, in order to select
only those funding rounds in which Greylock participated, we can include a second
match stage:

db.companies.aggregate([
 { $match: {"funding_rounds.investments.financial_org.permalink": "greylock"} },
 { $unwind: "$funding_rounds" },
 { $match: {"funding_rounds.investments.financial_org.permalink": "greylock"} },
 { $project: {
 _id: 0,
 name: 1,
 individualFunder: "$funding_rounds.investments.person.permalink",
 fundingOrganization: "$funding_rounds.investments.financial_org.permalink",
 amount: "$funding_rounds.raised_amount",
 year: "$funding_rounds.funded_year"
 } }
])

This pipeline will first filter for companies where Greylock participated in at least one
funding round. It will then unwind the funding rounds and filter again, so that only
documents that represent funding rounds that Greylock actually participated in will
be passed on to the project stage.

As mentioned at the beginning of this chapter, it is often the case that we need to
include multiple stages of the same type. This is a good example: we’re filtering to
reduce the number of documents that we’re looking at initially by narrowing down
our set of documents for consideration to those for which Greylock participated in at
least one funding round. Then, through our unwind stage, we end up with a number
of documents that represent funding rounds from companies that Greylock did, in
fact, fund, but individual funding rounds that Greylock did not participate in. We can

180 | Chapter 7: Introduction to the Aggregation Framework

get rid of all the funding rounds we’re not interested in by simply including another
filter, using a second match stage.

Array Expressions
Now let’s turn our attention to array expressions. As part of our deep dive, we’ll take a
look at using array expressions in project stages.

The first expression we’ll examine is a filter expression. A filter expression selects a
subset of the elements in an array based on filter criteria.

Working again with our companies dataset, we’ll match using the same criteria for
funding rounds in which Greylock participated. Take a look at the rounds field in this
pipeline:

db.companies.aggregate([
 { $match: {"funding_rounds.investments.financial_org.permalink": "greylock"} },
 { $project: {
 _id: 0,
 name: 1,
 founded_year: 1,
 rounds: { $filter: {
 input: "$funding_rounds",
 as: "round",
 cond: { $gte: ["$$round.raised_amount", 100000000] } } }
 } },
 { $match: {"rounds.investments.financial_org.permalink": "greylock" } },
]).pretty()

The rounds field uses a filter expression. The $filter operator is designed to work
with array fields and specifies the options we must supply. The first option to $filter
is input. For input, we simply specify an array. In this case, we use a field path speci‐
fier to identify the "funding_rounds" array found in documents in our companies
collection. Next, we specify the name we’d like to use for this "funding_rounds" array
throughout the rest of our filter expression. Then, as the third option, we need to
specify a condition. The condition should provide criteria used to filter whatever
array we’ve provided as input, selecting a subset. In this case, we’re filtering such that
we only select elements where the "raised_amount" for a "funding_round" is greater
than or equal to 100 million.

In specifying the condition, we’ve made use of $$. We use $$ to reference a variable
defined within the expression we’re working in. The as clause defines a variable
within our filter expression. This variable has the name "round" because that’s what
we labeled it in the as clause. This is to disambiguate a reference to a variable from a
field path. In this case, our comparison expression takes an array of two values and
will return true if the first value provided is greater than or equal to the second value.

Array Expressions | 181

Now let’s consider what documents the project stage of this pipeline will produce,
given this filter. The output documents will have "name", "founded_year", and
"rounds" fields. The values for "rounds" will be arrays composed of the elements that
match our filter condition: that the raised amount is greater than $100,000,000.

In the match stage that follows, as we did previously, we will simply filter the input
documents for those that were funded in some way by Greylock. Documents output
by this pipeline will resemble the following:

{
 "name" : "Dropbox",
 "founded_year" : 2007,
 "rounds" : [
 {
 "id" : 25090,
 "round_code" : "b",
 "source_description" :
 "Dropbox Raises $250M In Funding, Boasts 45 Million Users",
 "raised_amount" : 250000000,
 "raised_currency_code" : "USD",
 "funded_year" : 2011,
 "investments" : [
 {
 "financial_org" : {
 "name" : "Index Ventures",
 "permalink" : "index-ventures"
 }
 },
 {
 "financial_org" : {
 "name" : "RIT Capital Partners",
 "permalink" : "rit-capital-partners"
 }
 },
 {
 "financial_org" : {
 "name" : "Valiant Capital Partners",
 "permalink" : "valiant-capital-partners"
 }
 },
 {
 "financial_org" : {
 "name" : "Benchmark",
 "permalink" : "benchmark-2"
 }
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "Goldman Sachs",
 "permalink" : "goldman-sachs"

182 | Chapter 7: Introduction to the Aggregation Framework

 },
 "person" : null
 },
 {
 "financial_org" : {
 "name" : "Greylock Partners",
 "permalink" : "greylock"
 }
 },
 {
 "financial_org" : {
 "name" : "Institutional Venture Partners",
 "permalink" : "institutional-venture-partners"
 }
 },
 {
 "financial_org" : {
 "name" : "Sequoia Capital",
 "permalink" : "sequoia-capital"
 }
 },
 {
 "financial_org" : {
 "name" : "Accel Partners",
 "permalink" : "accel-partners"
 }
 },
 {
 "financial_org" : {
 "name" : "Glynn Capital Management",
 "permalink" : "glynn-capital-management"
 }
 },
 {
 "financial_org" : {
 "name" : "SV Angel",
 "permalink" : "sv-angel"
 }
 }
]
 }
]
}

Only the "rounds" array items for which the raised amount exceeds $100,000,000 will
pass through the filter. In the case of Dropbox, there is just one round that meets that
criterion. You have a lot of flexibility in how you set up filter expressions, but this is
the basic form and provides a concrete example of a use case for this particular array
expression.

Array Expressions | 183

Next, let’s look at the array element operator. We’ll continue working with funding
rounds, but in this case we simply want to pull out the first round and the last round.
We might be interested, for example, in seeing when these rounds occurred or in
comparing their amounts. These are things we can do with date and arithmetic
expressions, as we’ll see in the next section.

The $arrayElemAt operator enables us to select an element at a particular slot within
an array. The following pipeline provides an example of using $arrayElemAt:

db.companies.aggregate([
 { $match: { "founded_year": 2010 } },
 { $project: {
 _id: 0,
 name: 1,
 founded_year: 1,
 first_round: { $arrayElemAt: ["$funding_rounds", 0] },
 last_round: { $arrayElemAt: ["$funding_rounds", -1] }
 } }
]).pretty()

Note the syntax for using $arrayElemAt within a project stage. We define a field that
we want projected out and as the value specify a document with $arrayElemAt as the
field name and a two-element array as the value. The first element should be a field
path that specifies the array field we want to select from. The second element identi‐
fies the slot within that array that we want. Remember that arrays are 0-indexed.

In many cases, the length of an array is not readily available. To select array slots
starting from the end of the array, use negative integers. The last element in an array
is identified with -1.

A simple output document for this aggregation pipeline would resemble the
following:

{
 "name" : "vufind",
 "founded_year" : 2010,
 "first_round" : {
 "id" : 19876,
 "round_code" : "angel",
 "source_url" : "",
 "source_description" : "",
 "raised_amount" : 250000,
 "raised_currency_code" : "USD",
 "funded_year" : 2010,
 "funded_month" : 9,
 "funded_day" : 1,
 "investments" : []
 },
 "last_round" : {
 "id" : 57219,
 "round_code" : "seed",

184 | Chapter 7: Introduction to the Aggregation Framework

 "source_url" : "",
 "source_description" : "",
 "raised_amount" : 500000,
 "raised_currency_code" : "USD",
 "funded_year" : 2012,
 "funded_month" : 7,
 "funded_day" : 1,
 "investments" : []
 }
}

Related to $arrayElemAt is the $slice expression. This allows us to return not just
one but multiple items from an array in sequence, beginning with a particular index:

db.companies.aggregate([
 { $match: { "founded_year": 2010 } },
 { $project: {
 _id: 0,
 name: 1,
 founded_year: 1,
 early_rounds: { $slice: ["$funding_rounds", 1, 3] }
 } }
]).pretty()

Here, again with the funding_rounds array, we begin at index 1 and take three ele‐
ments from the array. Perhaps we know that in this dataset the first funding round
isn’t all that interesting, or we simply want some early ones but not the very first one.

Filtering and selecting individual elements or slices of arrays are among the more
common operations we need to perform on arrays. Probably the most common,
however, is determining an array’s size or length. To do this we can use the $size
operator:

db.companies.aggregate([
 { $match: { "founded_year": 2004 } },
 { $project: {
 _id: 0,
 name: 1,
 founded_year: 1,
 total_rounds: { $size: "$funding_rounds" }
 } }
]).pretty()

When used in a project stage, a $size expression will simply provide a value that is
the number of elements in the array.

In this section, we’ve explored some of the most common array expressions. There
are many more, and the list grows with each release. Please review the Aggregation
Pipeline Quick Reference in the MongoDB documentation for a summary of all
expressions that are available.

Array Expressions | 185

https://oreil.ly/ZtUES
https://oreil.ly/ZtUES

Accumulators
At this point, we’ve covered a few different types of expressions. Next, let’s look at
what accumulators the aggregation framework has to offer. Accumulators are essen‐
tially another type of expression, but we think about them in their own class because
they calculate values from field values found in multiple documents.

Accumulators the aggregation framework provides enable us to perform operations
such as summing all values in a particular field ($sum), calculating an average ($avg),
etc. We also consider $first and $last to be accumulators because these consider
values in all documents that pass through the stage in which they are used. $max and
$min are two more examples of accumulators that consider a stream of documents
and save just one of the values they see. We can use $mergeObjects to combine mul‐
tiple documents into a single document.

We also have accumulators for arrays. We can $push values onto an array as docu‐
ments pass through a pipeline stage. $addToSet is very similar to $push except that it
ensures no duplicate values are included in the resulting array.

Then there are some expressions for calculating descriptive statistics—for example,
for calculating the standard deviation of a sample and of a population. Both work
with a stream of documents that pass through a pipeline stage.

Prior to MongoDB 3.2, accumulators were available only in the group stage. Mon‐
goDB 3.2 introduced the ability to access a subset of accumulators within the project
stage. The primary difference between the accumulators in the group stage and the
project stage is that in the project stage accumulators such as $sum and $avg must
operate on arrays within a single document, whereas accumulators in the group stage,
as we’ll see in a later section, provide you with the ability to perform calculations on
values across multiple documents.

That’s a quick overview of accumulators to provide some context and set the stage for
our deep dive into examples.

Using Accumulators in Project Stages
We’ll begin with an example of using an accumulator in a project stage. Note that our
match stage filters for documents that contain a "funding_rounds" field and for
which the funding_rounds array is not empty:

db.companies.aggregate([
 { $match: { "funding_rounds": { $exists: true, $ne: []} } },
 { $project: {
 _id: 0,
 name: 1,
 largest_round: { $max: "$funding_rounds.raised_amount" }

186 | Chapter 7: Introduction to the Aggregation Framework

 } }
])

Because the value for $funding_rounds is an array within each company document,
we can use an accumulator. Remember that in project stages accumulators must work
on an array-valued field. In this case, we’re able to do something pretty cool here. We
are easily identifying the largest value in an array by reaching into an embedded
document within that array and projecting the max value in the output documents:

{ "name" : "Wetpaint", "largest_round" : 25000000 }
{ "name" : "Digg", "largest_round" : 28700000 }
{ "name" : "Facebook", "largest_round" : 1500000000 }
{ "name" : "Omnidrive", "largest_round" : 800000 }
{ "name" : "Geni", "largest_round" : 10000000 }
{ "name" : "Twitter", "largest_round" : 400000000 }
{ "name" : "StumbleUpon", "largest_round" : 17000000 }
{ "name" : "Gizmoz", "largest_round" : 6500000 }
{ "name" : "Scribd", "largest_round" : 13000000 }
{ "name" : "Slacker", "largest_round" : 40000000 }
{ "name" : "Lala", "largest_round" : 20000000 }
{ "name" : "eBay", "largest_round" : 6700000 }
{ "name" : "MeetMoi", "largest_round" : 2575000 }
{ "name" : "Joost", "largest_round" : 45000000 }
{ "name" : "Babelgum", "largest_round" : 13200000 }
{ "name" : "Plaxo", "largest_round" : 9000000 }
{ "name" : "Cisco", "largest_round" : 2500000 }
{ "name" : "Yahoo!", "largest_round" : 4800000 }
{ "name" : "Powerset", "largest_round" : 12500000 }
{ "name" : "Technorati", "largest_round" : 10520000 }
...

As another example, let’s use the $sum accumulator to calculate the total funding for
each company in our collection:

db.companies.aggregate([
 { $match: { "funding_rounds": { $exists: true, $ne: []} } },
 { $project: {
 _id: 0,
 name: 1,
 total_funding: { $sum: "$funding_rounds.raised_amount" }
 } }
])

This is just a taste of what you can do using accumulators in project stages. Again,
you’re encouraged to review the Aggregation Pipeline Quick Reference in the Mon‐
goDB docs for a complete overview of the accumulator expressions available.

Introduction to Grouping
Historically, accumulators were the province of the group stage in the MongoDB
aggregation framework. The group stage performs a function that is similar to the

Introduction to Grouping | 187

https://oreil.ly/SZiFx
https://oreil.ly/SZiFx

SQL GROUP BY command. In a group stage, we can aggregate together values from
multiple documents and perform some type of aggregation operation on them, such
as calculating an average. Let’s take a look at an example:

db.companies.aggregate([
 { $group: {
 _id: { founded_year: "$founded_year" },
 average_number_of_employees: { $avg: "$number_of_employees" }
 } },
 { $sort: { average_number_of_employees: -1 } }

])

Here, we’re using a group stage to aggregate together all companies based on the year
they were founded, then calculate the average number of employees for each year.
The output for this pipeline resembles the following:

{ "_id" : { "founded_year" : 1847 }, "average_number_of_employees" : 405000 }
{ "_id" : { "founded_year" : 1896 }, "average_number_of_employees" : 388000 }
{ "_id" : { "founded_year" : 1933 }, "average_number_of_employees" : 320000 }
{ "_id" : { "founded_year" : 1915 }, "average_number_of_employees" : 186000 }
{ "_id" : { "founded_year" : 1903 }, "average_number_of_employees" : 171000 }
{ "_id" : { "founded_year" : 1865 }, "average_number_of_employees" : 125000 }
{ "_id" : { "founded_year" : 1921 }, "average_number_of_employees" : 107000 }
{ "_id" : { "founded_year" : 1835 }, "average_number_of_employees" : 100000 }
{ "_id" : { "founded_year" : 1952 }, "average_number_of_employees" : 92900 }
{ "_id" : { "founded_year" : 1946 }, "average_number_of_employees" : 91500 }
{ "_id" : { "founded_year" : 1947 }, "average_number_of_employees" : 88510.5 }
{ "_id" : { "founded_year" : 1898 }, "average_number_of_employees" : 80000 }
{ "_id" : { "founded_year" : 1968 }, "average_number_of_employees" : 73550 }
{ "_id" : { "founded_year" : 1957 }, "average_number_of_employees" : 70055 }
{ "_id" : { "founded_year" : 1969 }, "average_number_of_employees" : 67635.1 }
{ "_id" : { "founded_year" : 1928 }, "average_number_of_employees" : 51000 }
{ "_id" : { "founded_year" : 1963 }, "average_number_of_employees" : 50503 }
{ "_id" : { "founded_year" : 1959 }, "average_number_of_employees" : 47432.5 }
{ "_id" : { "founded_year" : 1902 }, "average_number_of_employees" : 41171.5 }
{ "_id" : { "founded_year" : 1887 }, "average_number_of_employees" : 35000 }
...

The output includes documents that have a document as their "_id" value, and then
a report on the average number of employees. This is the type of analysis we might do
as a first step in assessing the correlation between the year in which a company was
founded and its growth, possibly normalizing for how old the company is.

As you can see, the pipeline we built has two stages: a group stage and a sort stage.
Fundamental to the group stage is the "_id" field that we specify as part of the docu‐
ment. This is the value of the $group operator itself, using a very strict interpretation.

We use this field to define what the group stage uses to organize the documents that it
sees. Since the group stage is first, the aggregate command will pass all documents in
the companies collection through this stage. The group stage will take every docu‐

188 | Chapter 7: Introduction to the Aggregation Framework

ment that has the same value for "founded_year" and treat them as a single group. In
constructing the value for this field, this stage will use the $avg accumulator to calcu‐
late an average number of employees for all companies with the same
"founded_year".

You can think of it this way. Each time the group stage encounters a document with a
specific founding year, it adds the value for "number_of_employees" from that docu‐
ment to a running sum of the number of employees and adds one to a count of the
number of documents seen so far for that year. Once all documents have passed
through the group stage, it can then calculate the average using that running sum and
count for every grouping of documents it identified based on the year of founding.

At the end of this pipeline, we sort the documents into descending order by
average_number_of_employees.

Let’s look at another example. One field we’ve not yet considered in the companies
dataset is the relationships. The relationships field appears in documents in the fol‐
lowing form:

{
 "_id" : "52cdef7c4bab8bd675297d8e",
 "name" : "Facebook",
 "permalink" : "facebook",
 "category_code" : "social",
 "founded_year" : 2004,
 ...
 "relationships" : [
 {
 "is_past" : false,
 "title" : "Founder and CEO, Board Of Directors",
 "person" : {
 "first_name" : "Mark",
 "last_name" : "Zuckerberg",
 "permalink" : "mark-zuckerberg"
 }
 },
 {
 "is_past" : true,
 "title" : "CFO",
 "person" : {
 "first_name" : "David",
 "last_name" : "Ebersman",
 "permalink" : "david-ebersman"
 }
 },
 ...
],
 "funding_rounds" : [
 ...
 {

Introduction to Grouping | 189

 "id" : 4,
 "round_code" : "b",
 "source_url" : "http://www.facebook.com/press/info.php?factsheet",
 "source_description" : "Facebook Funding",
 "raised_amount" : 27500000,
 "raised_currency_code" : "USD",
 "funded_year" : 2006,
 "funded_month" : 4,
 "funded_day" : 1,
 "investments" : [
 {
 "company" : null,
 "financial_org" : {
 "name" : "Greylock Partners",
 "permalink" : "greylock"
 },
 "person" : null
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "Meritech Capital Partners",
 "permalink" : "meritech-capital-partners"
 },
 "person" : null
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "Founders Fund",
 "permalink" : "founders-fund"
 },
 "person" : null
 },
 {
 "company" : null,
 "financial_org" : {
 "name" : "SV Angel",
 "permalink" : "sv-angel"
 },
 "person" : null
 }
]
 },
 ...
 "ipo" : {
 "valuation_amount" : NumberLong("104000000000"),
 "valuation_currency_code" : "USD",
 "pub_year" : 2012,
 "pub_month" : 5,
 "pub_day" : 18,
 "stock_symbol" : "NASDAQ:FB"

190 | Chapter 7: Introduction to the Aggregation Framework

 },
 ...
}

The "relationships" field gives us the ability to dive in and look for people who
have, in one way or another, been associated with a relatively large number of compa‐
nies. Let’s take a look at this aggregation:

db.companies.aggregate([
 { $match: { "relationships.person": { $ne: null } } },
 { $project: { relationships: 1, _id: 0 } },
 { $unwind: "$relationships" },
 { $group: {
 _id: "$relationships.person",
 count: { $sum: 1 }
 } },
 { $sort: { count: -1 } }
]).pretty()

We’re matching on relationships.person. If we look at our Facebook example
document, we can see how relationships are structured and get a sense for what it
means to do this. We are filtering for all relationships for which "person" is not null.
Then we project out all relationships for documents that match. We will pass only
relationships to the next stage in the pipeline, which is unwind. We unwind the rela‐
tionships so that every relationship in the array comes through to the group stage that
follows. In the group stage, we use a field path to identify the person within each
"relationship" document. All documents with the same "person" value will be
grouped together. As we saw previously, it’s perfectly fine for a document to be the
value around which we group. So, every match to a document for a first name, last
name, and permalink for a person will be aggregated together. We use the $sum accu‐
mulator to count the number of relationships in which each person has participated.
Finally, we sort into descending order. The output for this pipeline resembles the
following:

{
 "_id" : {
 "first_name" : "Tim",
 "last_name" : "Hanlon",
 "permalink" : "tim-hanlon"
 },
 "count" : 28
}
{
 "_id" : {
 "first_name" : "Pejman",
 "last_name" : "Nozad",
 "permalink" : "pejman-nozad"
 },
 "count" : 24
}

Introduction to Grouping | 191

{
 "_id" : {
 "first_name" : "David S.",
 "last_name" : "Rose",
 "permalink" : "david-s-rose"
 },
 "count" : 24
}
{
 "_id" : {
 "first_name" : "Saul",
 "last_name" : "Klein",
 "permalink" : "saul-klein"
 },
 "count" : 24
}
...

Tim Hanlon is the individual who has participated in the most relationships with
companies in this collection. It could be that Mr. Hanlon has actually had a relation‐
ship with 28 companies, but we can’t know that for sure, because it’s also possible that
he has had multiple relationships with one or more companies, each with a different
title. This example illustrates a very important point about aggregation pipelines:
make sure you fully understand what it is you’re working with as you do calculations,
particularly when you’re calculating aggregate values using accumulator expressions
of some kind.

In this case, we can say that Tim Hanlon appears 28 times in "relationships" docu‐
ments throughout the companies in our collection. We would have to dig a little
deeper to see exactly how many unique companies he was associated with, but we’ll
leave the construction of that pipeline to you as an exercise.

The _id Field in Group Stages
Before we go any further with our discussion of the group stage, let’s talk a little more
about the _id field and look at some best practices for constructing values for this
field in group aggregation stages. We’ll walk through a few examples that illustrate
several different ways in which we commonly group documents. As our first example,
consider this pipeline:

db.companies.aggregate([
 { $match: { founded_year: { $gte: 2013 } } },
 { $group: {
 _id: { founded_year: "$founded_year"},
 companies: { $push: "$name" }
 } },
 { $sort: { "_id.founded_year": 1 } }
]).pretty()

192 | Chapter 7: Introduction to the Aggregation Framework

The output for this pipeline resembles the following:

{
 "_id" : {
 "founded_year" : 2013
 },
 "companies" : [
 "Fixya",
 "Wamba",
 "Advaliant",
 "Fluc",
 "iBazar",
 "Gimigo",
 "SEOGroup",
 "Clowdy",
 "WhosCall",
 "Pikk",
 "Tongxue",
 "Shopseen",
 "VistaGen Therapeutics"
]
}
...

In our output we have documents with two fields: "_id" and "companies". Each of
these documents contains a list of the companies founded in whatever the
"founded_year" is, "companies" being an array of company names.

Notice here how we’ve constructed the "_id" field in the group stage. Why not just
provide the founding year rather than putting it inside a document with a field
labeled "founded_year". The reason we don’t do it that way is that if we don’t label
the group value, it’s not explicit that we are grouping on the year in which the com‐
pany was founded. In order to avoid confusion, it is a best practice to explicitly label
values on which we group.

In some circumstances it might be necessary to use another approach in which our
_id value is a document composed of multiple fields. In this case, we’re actually
grouping documents on the basis of their founding year and category code:

db.companies.aggregate([
 { $match: { founded_year: { $gte: 2010 } } },
 { $group: {
 _id: { founded_year: "$founded_year", category_code: "$category_code" },
 companies: { $push: "$name" }
 } },
 { $sort: { "_id.founded_year": 1 } }
]).pretty()

It is perfectly fine to use documents with multiple fields as our _id value in group
stages. In other cases, it might also be necessary to do something like this:

Introduction to Grouping | 193

db.companies.aggregate([
 { $group: {
 _id: { ipo_year: "$ipo.pub_year" },
 companies: { $push: "$name" }
 } },
 { $sort: { "_id.ipo_year": 1 } }
]).pretty()

In this case, we’re grouping documents based on the year in which the companies had
their IPO, and that year is actually a field of an embedded document. It is common
practice to use field paths that reach into embedded documents as the value on which
to group in a group stage. In this case, the output will resemble the following:

{
 "_id" : {
 "ipo_year" : 1999
 },
 "companies" : [
 "Akamai Technologies",
 "TiVo",
 "XO Group",
 "Nvidia",
 "Blackberry",
 "Blue Coat Systems",
 "Red Hat",
 "Brocade Communications Systems",
 "Juniper Networks",
 "F5 Networks",
 "Informatica",
 "Iron Mountain",
 "Perficient",
 "Sitestar",
 "Oxford Instruments"
]
}

Note that the examples in this section use an accumulator we haven’t seen before:
$push. As the group stage processes documents in its input stream, a $push expres‐
sion will add the resulting value to an array that it builds throughout its run. In the
case of the preceding pipeline, the group stage is building an array composed of com‐
pany names.

Our final example is one we’ve already seen, but it’s included here for the sake of
completeness:

db.companies.aggregate([
 { $match: { "relationships.person": { $ne: null } } },
 { $project: { relationships: 1, _id: 0 } },
 { $unwind: "$relationships" },
 { $group: {
 _id: "$relationships.person",
 count: { $sum: 1 }

194 | Chapter 7: Introduction to the Aggregation Framework

 } },
 { $sort: { count: -1 } }
])

In the preceding example where we were grouping on IPO year, we used a field path
that resolved to a scalar value—the IPO year. In this case, our field path resolves to a
document containing three fields: "first_name“, "last_name", and "permalink".
This demonstrates that the group stage supports grouping on document values.

You’ve now seen several ways in which we can construct _id values in group stages.
In general, bear in mind that what we want to do here is make sure that in our output,
the semantics of our _id value are clear.

Group Versus Project
To round out our discussion of the group aggregation stage, we’ll take a look at a cou‐
ple of additional accumulators that are not available in the project stage. This is to
encourage you to think a little more deeply about what we can do in a project stage
with respect to accumulators, and what we can do in group. As an example, consider
this aggregation query:

db.companies.aggregate([
 { $match: { funding_rounds: { $ne: [] } } },
 { $unwind: "$funding_rounds" },
 { $sort: { "funding_rounds.funded_year": 1,
 "funding_rounds.funded_month": 1,
 "funding_rounds.funded_day": 1 } },
 { $group: {
 _id: { company: "$name" },
 funding: {
 $push: {
 amount: "$funding_rounds.raised_amount",
 year: "$funding_rounds.funded_year"
 } }
 } },
]).pretty()

Here, we begin by filtering for documents for which the array funding_rounds is not
empty. Then we unwind funding_rounds. Therefore, the sort and group stages will
see one document for each element of the funding_rounds array for every company.

Our sort stage in this pipeline sorts on first year, then month, then day, all in ascend‐
ing order. This means that this stage will output the oldest funding rounds first. And
as you are aware from Chapter 5, we can support this type of sort with a compound
index.

In the group stage that follows the sort, we group by company name and use the
$push accumulator to construct a sorted array of funding rounds. The fund

Introduction to Grouping | 195

ing_rounds array will be sorted for each company because we sorted all funding
rounds, globally, in the sort stage.

Documents output from this pipeline will resemble the following:

{
 "_id" : {
 "company" : "Green Apple Media"
 },
 "funding" : [
 {
 "amount" : 30000000,
 "year" : 2013
 },
 {
 "amount" : 100000000,
 "year" : 2013
 },
 {
 "amount" : 2000000,
 "year" : 2013
 }
]
}

In this pipeline, with $push, we are accumulating an array. In this case, we have speci‐
fied our $push expression so that it adds documents to the end of the accumulation
array. Since the funding rounds are in chronological order, pushing onto the end of
the array guarantees that the the funding amounts for each company are sorted in
chronological order.

$push expressions only work in group stages. This is because group stages are
designed to take an input stream of documents and accumulate values by processing
each document in turn. Project stages, on the other hand, work with each document
in their input stream individually.

Let’s take a look at one other example. This is a little longer, but it builds on the previ‐
ous one:

db.companies.aggregate([
 { $match: { funding_rounds: { $exists: true, $ne: [] } } },
 { $unwind: "$funding_rounds" },
 { $sort: { "funding_rounds.funded_year": 1,
 "funding_rounds.funded_month": 1,
 "funding_rounds.funded_day": 1 } },
 { $group: {
 _id: { company: "$name" },
 first_round: { $first: "$funding_rounds" },
 last_round: { $last: "$funding_rounds" },
 num_rounds: { $sum: 1 },
 total_raised: { $sum: "$funding_rounds.raised_amount" }

196 | Chapter 7: Introduction to the Aggregation Framework

 } },
 { $project: {
 _id: 0,
 company: "$_id.company",
 first_round: {
 amount: "$first_round.raised_amount",
 article: "$first_round.source_url",
 year: "$first_round.funded_year"
 },
 last_round: {
 amount: "$last_round.raised_amount",
 article: "$last_round.source_url",
 year: "$last_round.funded_year"
 },
 num_rounds: 1,
 total_raised: 1,
 } },
 { $sort: { total_raised: -1 } }
]).pretty()

Again, we are unwinding funding_rounds and sorting chronologically. However, in
this case, instead of accumulating an array of entries, each entry representing a single
funding_rounds, we are using two accumulators we’ve not yet seen in action: $first
and $last. A $first expression simply saves the first value that passes through the
input stream for the stage. A $last expression simply tracks the values that pass
through the group stage and hangs onto the last one.

As with $push, we can’t use $first and $last in project stages because, again, project
stages are not designed to accumulate values based on multiple documents streaming
through them. Rather, they are designed to reshape documents individually.

In addition to $first and $last, we also use $sum in this example to calculate the
total number of funding rounds. For this expression we can just specify the value, 1.
A $sum expression like this simply serves to count the number of documents that it
sees in each grouping.

Finally, this pipeline includes a fairly complex project stage. However, all it is really
doing is making the output prettier. Rather than show the first_round values, or
entire documents for the first and last funding rounds, this project stage creates a
summary. Note that this maintains good semantics, because each value is clearly
labeled. For first_round we’ll produce a simple embedded document that contains
just the essential details of amount, article, and year, pulling those values from the
original funding round document that will be the value of $first_round. The project
stage does something similar for $last_round. Finally, this project stage just passes
through to output documents the num_rounds and total_raised values for docu‐
ments it receives in its input stream.

Documents output from this pipeline resemble the following:

Introduction to Grouping | 197

{
 "first_round" : {
 "amount" : 7500000,
 "article" : "http://www.teslamotors.com/display_data/pressguild.swf",
 "year" : 2004
 },
 "last_round" : {
 "amount" : 10000000,
 "article" : "http://www.bizjournals.com/sanfrancisco/news/2012/10/10/
 tesla-motors-to-get-10-million-from.html",
 "year" : 2012
 },
 "num_rounds" : 11,
 "total_raised" : 823000000,
 "company" : "Tesla Motors"
}

And with that, we’ve concluded an overview of the group stage.

Writing Aggregation Pipeline Results to a Collection
There are two specific stages, $out and $merge, that can write documents resulting
from the aggregation pipeline to a collection. You can use only one of these two
stages, and it must be the last stage of an aggregation pipeline. $merge was introduced
in MongoDB version 4.2 and is the preferred stage for writing to a collection, if avail‐
able. $out has some limitations: it can only write to the same database, it overwrites
any existing collection if present, and it cannot write to a sharded collection. $merge
can write to any database and collection, sharded or not. $merge can also incorporate
results (insert new documents, merge with existing documents, fail the operation,
keep existing documents, or process all documents with a custom update) when
working with an existing collection. But the real advantage of using $merge is that it
can create on-demand materialized views, where the content of the output collection
is incrementally updated when the pipeline is run.

In this chapter, we have covered a number of different accumulators, some that are
available in the project stage, and we’ve also covered how to think about when to use
group versus project when considering various accumulators. Next, we’ll take a look
at transactions in MongoDB.

198 | Chapter 7: Introduction to the Aggregation Framework

CHAPTER 8

Transactions

Transactions are logical groups of processing in a database, and each group or trans‐
action can contain one or more operations such as reads and/or writes across multi‐
ple documents. MongoDB supports ACID-compliant transactions across multiple
operations, collections, databases, documents, and shards. In this chapter, we intro‐
duce transactions, define what ACID means for a database, highlight how you use
these in your applications, and provide tips for tuning transactions in MongoDB. We
will cover:

• What a transaction is
• How to use transactions
• Tuning transaction limits for your application

Introduction to Transactions
As we mentioned above, a transaction is a logical unit of processing in a database that
includes one or more database operations, which can be read or write operations.
There are situations where your application may require reads and writes to multiple
documents (in one or more collections) as part of this logical unit of processing. An
important aspect of a transaction is that it is never partially completed—it either suc‐
ceeds or fails.

In order to use transactions, your MongoDB deployment must be
on MongoDB version 4.2 or later and your MongoDB drivers must
be updated for MongoDB 4.2 or later. MongoDB provides a Driver
Compatibility Reference page that you can use to ensure your
MongoDB Driver version is compatible.

199

https://oreil.ly/Oe9NE
https://oreil.ly/Oe9NE

A Definition of ACID
ACID is the accepted set of properties a transaction must meet to be a “true” transac‐
tion. ACID is an acronym for Atomicity, Consistency, Isolation, and Durability.
ACID transactions guarantee the validity of your data and of your database’s state
even where power failures or other errors occur.

Atomicity ensures that all operations inside a transaction will either be applied or
nothing will be applied. A transaction can never be partially applied; either it is com‐
mitted or it aborts.

Consistency ensures that if a transaction succeeds, the database will move from one
consistent state to the next consistent state.

Isolation is the property that permits multiple transactions to run at the same time in
your database. It guarantees that a transaction will not view the partial results of any
other transaction, which means multiple parallel transactions will have the same
results as running each of the transactions sequentially.

Durability ensures that when a transaction is committed all data will persist even in
the case of a system failure.

A database is said to be ACID-compliant when it ensures that all these properties are
met and that only successful transactions can be processed. In situations where a fail‐
ure occurs before a transaction is completed, ACID compliance ensures that no data
will be changed.

MongoDB is a distributed database with ACID compliant transactions across replica
sets and/or across shards. The network layer adds an additional level of complexity.
The engineering team at MongoDB provided several chalk and talk videos that
describe how they implemented the necessary features to support ACID transactions.

How to Use Transactions
MongoDB provides two APIs to use transactions. The first is a similar syntax to rela‐
tional databases (e.g., start_transaction and commit_transaction) called the
core API and the second is called the callback API, which is the recommended
approach to using transactions.

The core API does not provide retry logic for the majority of errors and requires the
developer to code the logic for the operations, the transaction commit function, and
any retry and error logic required.

200 | Chapter 8: Transactions

https://www.mongodb.com/transactions

1 The authors are Misha Tyulenev, staff software engineer for sharding; Andy Schwerin, vice president for Dis‐
tributed Systems; Asya Kamsky, principal product manager for Distributed Systems; Randolph Tan, senior
software engineer for sharding; Alyson Cabral, product manager for Distributed Systems; and Jack Mulrow,
software engineer for sharding.

The callback API provides a single function that wraps a large degree of functionality
when compared to the core API, including starting a transaction associated with a
specified logical session, executing a function supplied as the callback function, and
then committing the transaction (or aborting on error). This function also includes
retry logic that handle commit errors. The callback API was added in MongoDB 4.2
to simplify application development with transactions as well as make it easier to add
application retry logic to handle any transaction errors.

In both APIs, the developer is responsible for starting the logical session that will be
used by the transaction. Both APIs require operations in a transaction to be associ‐
ated with a specific logical session (i.e., pass in the session to each operation). A logi‐
cal session in MongoDB tracks the time and sequencing of the operations in the
context of the entire MongoDB deployment. A logical session or server session is part
of the underlying framework used by client sessions to support retryable writes and
causal consistency in MongoDB—both of these features were added in MongoDB
version 3.6 as part of the foundation required to support transactions. A specific
sequence of read and write operations that have a causal relationship reflected by
their ordering is defined as a causally consistent client session in MongoDB. A client
session is started by an application and used to interact with a server session.

In 2019, six senior engineers from MongoDB published a paper at the SIGMOD 2019
conference entitled “Implementation of Cluster-wide Logical Clock and Causal Con‐
sistency in MongoDB”.1 This paper provides a deeper technical explanation of the
mechanics behind logical sessions and causal consistency in MongoDB. The paper
documents the efforts from a multiteam, multiyear engineering project. The work
involved changing aspects of the storage layer, adding a new replication consensus
protocol, modifying the sharding architecture, refactoring sharding cluster metadata,
and adding a global logical clock. These changes provide the foundation required by
the database before ACID-compliant transactions can be added.

The complexity and additional coding required in applications are the main reasons
to recommend the callback API over the core API. These differences between the
APIs are summarized in Table 8-1.

How to Use Transactions | 201

https://oreil.ly/IFLvm
https://oreil.ly/IFLvm

Table 8-1. Comparison of Core API versus Callback API

Core API Callback API
Requires explicit call to start the transaction and commit the
transaction.

Starts a transaction, executes the specified operations,
and commits (or aborts on error).

Does not incorporate error-handling logic for
TransientTransactionError and
UnknownTransactionCommitResult, and instead provides the
flexibility to incorporate custom error handling for these errors.

Automatically incorporates error-handling logic for
TransientTransactionError and
UnknownTransactionCommitResult.

Requires explicit logical session to be passed to API for the
specific transaction.

Requires explicit logical session to be passed to API for
the specific transaction.

To understand the differences between these two APIs, we can compare the APIs
using a simple transaction example for an ecommerce site where an order is placed
and the corresponding items are removed from the available stock as they are sold.
This involves two documents in different collections in a single transaction. The two
operations, which will be the core of our transaction example, are:

 orders.insert_one({"sku": "abc123", "qty": 100}, session=session)
 inventory.update_one({"sku": "abc123", "qty": {"$gte": 100}},
 {"$inc": {"qty": -100}}, session=session)

First, let’s see how the core API can be used in Python for our transaction example.
The two operations of our transaction are highlighted in Step 1 of the program listing
below:

Define the uriString using the DNS Seedlist Connection Format
for the connection
uri = 'mongodb+srv://server.example.com/'
client = MongoClient(uriString)

my_wc_majority = WriteConcern('majority', wtimeout=1000)

Prerequisite / Step 0: Create collections, if they don't already exist.
CRUD operations in transactions must be on existing collections.

client.get_database("webshop",
 write_concern=my_wc_majority).orders.insert_one({"sku":
 "abc123", "qty":0})
client.get_database("webshop",
 write_concern=my_wc_majority).inventory.insert_one(
 {"sku": "abc123", "qty": 1000})

Step 1: Define the operations and their sequence within the transaction
def update_orders_and_inventory(my_session):
 orders = session.client.webshop.orders
 inventory = session.client.webshop.inventory

202 | Chapter 8: Transactions

 with session.start_transaction(
 read_concern=ReadConcern("snapshot"),
 write_concern=WriteConcern(w="majority"),
 read_preference=ReadPreference.PRIMARY):

 orders.insert_one({"sku": "abc123", "qty": 100}, session=my_session)
 inventory.update_one({"sku": "abc123", "qty": {"$gte": 100}},
 {"$inc": {"qty": -100}}, session=my_session)
 commit_with_retry(my_session)

Step 2: Attempt to run and commit transaction with retry logic
def commit_with_retry(session):
 while True:
 try:
 # Commit uses write concern set at transaction start.
 session.commit_transaction()
 print("Transaction committed.")
 break
 except (ConnectionFailure, OperationFailure) as exc:
 # Can retry commit
 if exc.has_error_label("UnknownTransactionCommitResult"):
 print("UnknownTransactionCommitResult, retrying "
 "commit operation ...")
 continue
 else:
 print("Error during commit ...")
 raise

Step 3: Attempt with retry logic to run the transaction function txn_func
def run_transaction_with_retry(txn_func, session):
 while True:
 try:
 txn_func(session) # performs transaction
 break
 except (ConnectionFailure, OperationFailure) as exc:
 # If transient error, retry the whole transaction
 if exc.has_error_label("TransientTransactionError"):
 print("TransientTransactionError, retrying transaction ...")
 continue
 else:
 raise

Step 4: Start a session.
with client.start_session() as my_session:

Step 5: Call the function 'run_transaction_with_retry' passing it the function
to call 'update_orders_and_inventory' and the session 'my_session' to associate
with this transaction.

 try:
 run_transaction_with_retry(update_orders_and_inventory, my_session)
 except Exception as exc:

How to Use Transactions | 203

 # Do something with error. The error handling code is not
 # implemented for you with the Core API.
 raise

Now, let’s look at how the the callback API can be used in Python for this same trans‐
action example. The two operations of our transaction are highlighted in Step 1 of the
program listing below:

Define the uriString using the DNS Seedlist Connection Format
for the connection
uriString = 'mongodb+srv://server.example.com/'
client = MongoClient(uriString)

my_wc_majority = WriteConcern('majority', wtimeout=1000)

Prerequisite / Step 0: Create collections, if they don't already exist.
CRUD operations in transactions must be on existing collections.

client.get_database("webshop",
 write_concern=my_wc_majority).orders.insert_one({"sku":
 "abc123", "qty":0})
client.get_database("webshop",
 write_concern=my_wc_majority).inventory.insert_one(
 {"sku": "abc123", "qty": 1000})

Step 1: Define the callback that specifies the sequence of operations to
perform inside the transactions.

def callback(my_session):
 orders = my_session.client.webshop.orders
 inventory = my_session.client.webshop.inventory

 # Important:: You must pass the session variable 'my_session' to
 # the operations.

 orders.insert_one({"sku": "abc123", "qty": 100}, session=my_session)
 inventory.update_one({"sku": "abc123", "qty": {"$gte": 100}},
 {"$inc": {"qty": -100}}, session=my_session)

#. Step 2: Start a client session.

with client.start_session() as session:

Step 3: Use with_transaction to start a transaction, execute the callback,
and commit (or abort on error).

 session.with_transaction(callback,
 read_concern=ReadConcern('local'),
 write_concern=my_write_concern_majority,
 read_preference=ReadPreference.PRIMARY)
}

204 | Chapter 8: Transactions

In MongoDB multidocument transactions, you may only perform
read/write (CRUD) operations on existing collections or databases.
As shown in our example, you must first create a collection outside
of a transaction if you wish to insert it into a transaction. Create,
drop, or index operations are not permitted in a transaction.

Tuning Transaction Limits for Your Application
There are a few parameters that are important to be aware of when using transac‐
tions. They can be adjusted to ensure your application can make the optimal use of
transactions.

Timing and Oplog Size Limits
There are two main categories of limits in MongoDB transactions. The first relates to
timing limits of the transaction, controlling how long a specific transaction can run,
the time a transaction will wait to acquire locks, and the maximum length that all
transactions will run. The second category specifically relates to the MongoDB oplog
entry and size limits for an individual entry.

Time limits
The default maximum runtime of a transaction is one minute or less. This can be
increased by modifying the limit controlled by transactionLifetimeLimitSec
onds at a mongod instance level. In the case of sharded clusters, the parameter
must be set on all shard replica set members. After this time has elapsed, a trans‐
action will be considered expired and will be aborted by a cleanup process, which
runs periodically. The cleanup process will run once every 60 seconds or every
transactionLifetimeLimitSeconds/2, whichever is lower.

To explicitly set a time limit on a transaction, it is recommended that you specify
a maxTimeMS on commitTransaction. If maxTimeMS is not set then transaction
LifetimeLimitSeconds will be used or if it is set but would exceed transaction
LifetimeLimitSeconds then transactionLifetimeLimitSeconds will be used
instead.

The default maximum time a transaction will wait to acquire the locks it needs
for the operations in the transaction is 5 ms. This can be increased by modifying
the limit controlled by maxTransactionLockRequestTimeoutMillis. If the
transaction is unable to acquire the locks within this time, it will abort. maxTran
sactionLockRequestTimeoutMillis can be set to 0, -1, or a number greater than
0. Setting it to 0 means a transaction will abort if it is unable to immediately
acquire all the locks it requires. A setting of -1 will use the operation-specific
timeout as specified by maxTimeMS. Any number greater than 0 configures the

Tuning Transaction Limits for Your Application | 205

wait time to that time in seconds as the specified period that a transaction will
attempt to acquire the required locks.

Oplog size limits
MongoDB will create as many oplog entries as required for the write operations
in a transaction. However, each oplog entry must be within the BSON document
size limit of 16MB.

Transactions provide a useful feature in MongoDB to ensure consistency, but they
should be used with the rich document model. The flexibility of this model and using
best practices such as schema design patterns will help avoid the use of transactions
for most situations. Transactions are a powerful feature, best used sparingly in your
applications.

206 | Chapter 8: Transactions

CHAPTER 9

Application Design

This chapter covers designing applications to work effectively with MongoDB. It
discusses:

• Schema design considerations
• Trade-offs when deciding whether to embed data or to reference it
• Tips for optimization
• Consistency considerations
• How to migrate schemas
• How to manage schemas
• When MongoDB isn’t a good choice of data store

Schema Design Considerations
A key aspect of data representation is the design of the schema, which is the way your
data is represented in your documents. The best approach to this design is to repre‐
sent the data the way your application wants to see it. Thus, unlike in relational data‐
bases, you first need to understand your queries and data access patterns before
modeling your schema.

Here are the key aspects you need to consider when designing a schema:

Constraints
You need to understand any database or hardware limitations. You also need to
consider a number of MongoDB’s specific aspects, such as the maximum docu‐
ment size of 16 MB, that full documents get read and written from disk, that an

207

update rewrites the whole document, and that atomic updates are at the docu‐
ment level.

Access patterns of your queries and of your writes
You will need to identify and quantify the workload of your application and of
the wider system. The workload encompasses both the reads and the writes in
your application. Once you know when queries are running and how frequently,
you can identify the most common queries. These are the queries you need to
design your schema to support. Once you have identified these queries, you
should try to minimize the number of queries and ensure in your design that
data that gets queried together is stored in the same document.

Data not used in these queries should be put into a different collection. Data that
is infrequently used should also be moved to a different collection. It is worth
considering if you can separate your dynamic (read/write) data and your static
(mostly read) data. The best performance results occur when you prioritize your
schema design for your most common queries.

Relation types
You should consider which data is related in terms of your application’s needs, as
well as the relationships between documents. You can then determine the best
approaches to embed or reference the data or documents. You will need to work
out how you can reference documents without having to perform additional
queries, and how many documents are updated when there is a relationship
change. You must also consider if the data structure is easy to query, such as with
nested arrays (arrays in arrays), which support modeling certain relationships.

Cardinality
Once you have determined how your documents and your data are related, you
should consider the cardinality of these relationships. Specifically, is it one-to-
one, one-to-many, many-to-many, one-to-millions, or many-to-billions? It is
very important to establish the cardinality of the relationships to ensure you use
the best format to model them in your MongoDB schema. You should also con‐
sider whether the object on the many/millions side is accessed separately or only
in the context of the parent object, as well as the ratio of updates to reads for the
data field in question. The answers to these questions will help you to determine
whether you should embed documents or reference documents and if you should
be denormalizing data across documents.

Schema Design Patterns
Schema design is important in MongoDB, as it impacts directly on application perfor‐
mance. There are many common issues in schema design that can be addressed
through the use of known patterns, or “building blocks.” It is best practice in schema
design to use one or more of these patterns together.

208 | Chapter 9: Application Design

Scheme design patterns that might apply include:

Polymorphic pattern
This is suitable where all documents in a collection have a similar, but not identi‐
cal, structure. It involves identifying the common fields across the documents
that support the common queries that will be run by the application. Tracking
specific fields in the documents or subdocuments will help identify the differ‐
ences between the data and different code paths or classes/subclasses that can be
coded in your application to manage these differences. This allows for the use of
simple queries in a single collection of not-quite-identical documents to improve
query performance.

Attribute pattern
This is suitable when there are a subset of fields in a document that share com‐
mon features on which you want to sort or query, or when the fields you need to
sort on only exist in a subset of the documents, or when both of these conditions
are true. It involves reshaping the data into an array of key/value pairs and creat‐
ing an index on the elements in this array. Qualifiers can be added as additional
fields to these key/value pairs. This pattern assists in targeting many similar fields
per document so that fewer indexes are required and queries become simpler to
write.

Bucket pattern
This is suitable for time series data where the data is captured as a stream over a
period of time. It is much more efficient in MongoDB to “bucket” this data into a
set of documents each holding the data for a particular time range than it is to
create a document per point in time/data point. For example, you might use a
one-hour bucket and place all readings for that hour in an array in a single docu‐
ment. The document itself will have start and end times indicating the period this
“bucket” covers.

Outlier pattern
This addresses the rare instances where a few queries of documents fall outside
the normal pattern for the application. It is an advanced schema pattern designed
for situations where popularity is a factor. This can be seen in social networks
with major influencers, book sales, movie reviews, etc. It uses a flag to indicate
the document is an outlier and stores the additional overflow into one or more
documents that refer back to the first document via the "_id". The flag will be
used by your application code to make the additional queries to retrieve the over‐
flow document(s).

Computed pattern
This is used when data needs to be computed frequently, and it can also be used
when the data access pattern is read-intensive. This pattern recommends that the

Schema Design Considerations | 209

calculations be done in the background, with the main document being updated
periodically. This provides a valid approximation of the computed fields or docu‐
ments without having to continuously generate these for individual queries. This
can significantly reduce the strain on the CPU by avoiding repetition of the same
calculations, particularly in use cases where reads trigger the calculation and you
have a high read-to-write ratio.

Subset pattern
This is used when you have a working set that exceeds the available RAM of the
machine. This can be caused by large documents that contain a lot of informa‐
tion that isn’t being used by your application. This pattern suggests that you split
frequently used data and infrequently used data into two separate collections. A
typical example might be an ecommerce application keeping the 10 most recent
reviews of a product in the “main” (frequently accessed) collection and moving
all the older reviews into a second collection queried only if the application needs
more than the last 10 reviews.

Extended Reference pattern
This is used for scenarios where you have many different logical entities or
“things,” each with their own collection, but you may want to gather these entities
together for a specific function. A typical ecommerce schema might have sepa‐
rate collections for orders, customers, and inventory. This can have a negative
performance impact when we want to collect together all the information for a
single order from these separate collections. The solution is to identify the fre‐
quently accessed fields and duplicate these within the order document. In the
case of an ecommerce order, this would be the name and address of the customer
we are shipping the item to. This pattern trades off the duplication of data for a
reduction in the number of queries necessary to collate the information together.

Approximation pattern
This is useful for situations where resource-expensive (time, memory, CPU
cycles) calculations are needed but where exact precision is not absolutely
required. An example of this is an image or post like/love counter or a page view
counter, where knowing the exact count (e.g., whether it’s 999,535 or 1,000,0000)
isn’t necessary. In these situations, applying this pattern can greatly reduce the
number of writes—for example, by only updating the counter after every 100 or
more views instead of after every view.

Tree pattern
This can be applied when you have a lot of queries and have data that is primarily
hierarchical in structure. It follows the earlier concept of storing data together
that is typically queried together. In MongoDB, you can easily store a hierarchy
in an array within the same document. In the example of the ecommerce site,
specifically its product catalog, there are often products that belong to multiple

210 | Chapter 9: Application Design

categories or to categories that are part of other categories. An example might be
“Hard Drive,” which is itself a category but comes under the “Storage” category,
which itself is under the “Computer Parts” category, which is part of the “Elec‐
tronics” category. In this kind of scenario, we would have a field that would track
the entire hierarchy and another field that would hold the immediate category
(“Hard Drive”). The entire hierarchy field, kept in an array, provides the ability to
use a multikey index on those values. This ensures all items related to categories
in the hierarchy will be easily found. The immediate category field allows all
items directly related to this category to be found.

Preallocation pattern
This was primarily used with the MMAP storage engine, but there are still uses
for this pattern. The pattern recommends creating an initial empty structure that
will be populated later. An example use could be for a reservation system that
manages a resource on a day-by-day basis, keeping track of whether it is free or
already booked/unavailable. A two-dimensional structure of resources (x) and
days (y) makes it trivially easy to check availability and perform calculations.

Document Versioning pattern
This provides a mechanism to enable retention of older revisions of documents.
It requires an extra field to be added to each document to track the document
version in the “main” collection, and an additional collection that contains all the
revisions of the documents. This pattern makes a few assumptions: specifically,
that each document has a limited number of revisions, that there are not large
numbers of documents that need to be versioned, and that the queries are pri‐
marily done on the current version of each document. In situations where these
assumptions are not valid, you may need to modify the pattern or consider a dif‐
ferent schema design pattern.

MongoDB provides several useful resources online on patterns and schema design.
MongoDB University offers a free course, M320 Data Modeling, as well as a “Building
with Patterns” blog series.

Normalization Versus Denormalization
There are many ways to represent data, and one of the most important issues to con‐
sider is how much you should normalize your data. Normalization refers to dividing
up data into multiple collections with references between collections. Each piece of
data lives in one collection, although multiple documents may reference it. Thus, to
change the data, only one document must be updated. The MongoDB Aggregation
Framework offers joins with the $lookup stage, which performs a left outer join by
adding documents to the “joined” collection where there is a matching document in
the source collection—it adds a new array field to each matched document in the

Normalization Versus Denormalization | 211

https://oreil.ly/BYtSr
https://oreil.ly/MjSld
https://oreil.ly/MjSld

“joined” collection with the details of the document from the source collection. These
reshaped documents are then available in the next stage for further processing.

Denormalization is the opposite of normalization: embedding all of the data in a sin‐
gle document. Instead of documents containing references to one definitive copy of
the data, many documents may have copies of the data. This means that multiple
documents need to be updated if the information changes, but enables all related data
to be fetched with a single query.

Deciding when to normalize and when to denormalize can be difficult: typically, nor‐
malizing makes writes faster and denormalizing makes reads faster. Thus, you need
to decide what trade-offs make sense for your application.

Examples of Data Representations
Suppose we are storing information about students and the classes that they are tak‐
ing. One way to represent this would be to have a students collection (each student is
one document) and a classes collection (each class is one document). Then we could
have a third collection (studentClasses) that contains references to the students and
the classes they are taking:

> db.studentClasses.findOne({"studentId" : id})
{
 "_id" : ObjectId("512512c1d86041c7dca81915"),
 "studentId" : ObjectId("512512a5d86041c7dca81914"),
 "classes" : [
 ObjectId("512512ced86041c7dca81916"),
 ObjectId("512512dcd86041c7dca81917"),
 ObjectId("512512e6d86041c7dca81918"),
 ObjectId("512512f0d86041c7dca81919")
]
}

If you are familiar with relational databases, you may have seen this type of join table
before (although typically you’d have one student and one class per document,
instead of a list of class "_id"s). It’s a bit more MongoDB-ish to put the classes in an
array, but you usually wouldn’t want to store the data this way because it requires a lot
of querying to get to the actual information.

Suppose we wanted to find the classes a student was taking. We’d query for the stu‐
dent in the students collection, query studentClasses for the course "_id"s, and then
query the classes collection for the class information. Thus, finding this information
would take three trips to the server. This is generally not the way you want to struc‐
ture data in MongoDB, unless the classes and students are changing constantly and
reading the data does not need to be done quickly.

We can remove one of the dereferencing queries by embedding class references in the
student’s document:

212 | Chapter 9: Application Design

{
 "_id" : ObjectId("512512a5d86041c7dca81914"),
 "name" : "John Doe",
 "classes" : [
 ObjectId("512512ced86041c7dca81916"),
 ObjectId("512512dcd86041c7dca81917"),
 ObjectId("512512e6d86041c7dca81918"),
 ObjectId("512512f0d86041c7dca81919")
]
}

The "classes" field keeps an array of "_id"s of classes that John Doe is taking.
When we want to find out information about those classes, we can query the classes
collection with those "_id"s. This only takes two queries. This is a fairly popular way
to structure data that does not need to be instantly accessible and changes, but not
constantly.

If we need to optimize reads further, we can get all of the information in a single
query by fully denormalizing the data and storing each class as an embedded docu‐
ment in the "classes" field:

{
 "_id" : ObjectId("512512a5d86041c7dca81914"),
 "name" : "John Doe",
 "classes" : [
 {
 "class" : "Trigonometry",
 "credits" : 3,
 "room" : "204"
 },
 {
 "class" : "Physics",
 "credits" : 3,
 "room" : "159"
 },
 {
 "class" : "Women in Literature",
 "credits" : 3,
 "room" : "14b"
 },
 {
 "class" : "AP European History",
 "credits" : 4,
 "room" : "321"
 }
]
}

The upside of this is that it only takes one query to get the information. The down‐
sides are that it takes up more space and is more difficult to keep in sync. For exam‐
ple, if it turns out that physics was supposed to be worth four credits (not three),

Normalization Versus Denormalization | 213

every student in the physics class would need to have their document updated
(instead of just updating a central “Physics” document).

Finally, you can use the Extended Reference pattern mentioned earlier, which is a
hybrid of embedding and referencing—you create an array of subdocuments with the
frequently used information, but with a reference to the actual document for more
information:

{
 "_id" : ObjectId("512512a5d86041c7dca81914"),
 "name" : "John Doe",
 "classes" : [
 {
 "_id" : ObjectId("512512ced86041c7dca81916"),
 "class" : "Trigonometry"
 },
 {
 "_id" : ObjectId("512512dcd86041c7dca81917"),
 "class" : "Physics"
 },
 {
 "_id" : ObjectId("512512e6d86041c7dca81918"),
 "class" : "Women in Literature"
 },
 {
 "_id" : ObjectId("512512f0d86041c7dca81919"),
 "class" : "AP European History"
 }
]
}

This approach is also a nice option because the amount of information embedded can
change over time as your requirements change: if you want to include more or less
information on a page, you can embed more or less of it in the document.

Another important consideration is how often this information will change, versus
how often it’s read. If it will be updated regularly, then normalizing it is a good idea.
However, if it changes infrequently, then there is little benefit to optimizing the
update process at the expense of every read your application performs.

For example, a textbook normalization use case is to store a user and their address in
separate collections. However, people’s addresses rarely change, so you generally
shouldn’t penalize every read on the off chance that someone’s moved. Your applica‐
tion should embed the address in the user document.

If you decide to use embedded documents and you need to update them, you should
set up a cron job to ensure that any updates you do are successfully propagated to
every document. For example, suppose you attempt to do a multi-update but the
server crashes before all of the documents have been updated. You need a way to
detect this and retry the update.

214 | Chapter 9: Application Design

In terms of update operators, "$set" is idempotent but "$inc" is not. Idempotent
operations will have the same outcome whether tried once or several times; in the
case of a network error, retrying the operation will be sufficient for the update to
occur. In the case of operators that are not idempotent, the operation should be bro‐
ken into two operations that are individually idempotent and safe to retry. This can
be achieved by including a unique pending token in the first operation and having
the second operation use both a unique key and the unique pending token. This
approach allows "$inc" to be idempotent because each individual updateOne opera‐
tion is idempotent.

To some extent, the more information you are generating, the less of it you should
embed. If the content of the embedded fields or number of embedded fields is sup‐
posed to grow without bound then they should generally be referenced, not embed‐
ded. Things like comment trees or activity lists should be stored as their own
documents, not embedded. It is also worth considering using the Subset pattern
(described in “Schema Design Patterns” on page 208) to store the most recent items
(or some other subset) in the document.

Finally, the fields that are included should be integral to the data in the document. If a
field is almost always excluded from your results when you query for a document, it’s
a good sign that it may belong in another collection. These guidelines are summar‐
ized in Table 9-1.

Table 9-1. Comparison of embedding versus references

Embedding is better for... References are better for...
Small subdocuments Large subdocuments
Data that does not change regularly Volatile data
When eventual consistency is acceptable When immediate consistency is necessary
Documents that grow by a small amount Documents that grow by a large amount
Data that you’ll often need to perform a second query to fetch Data that you’ll often exclude from the results
Fast reads Fast writes

Suppose we had a users collection. Here are some example fields we might have in the
user documents and an indication of whether or not they should be embedded:

Account preferences
These are only relevant to this user document, and will probably be exposed with
other user information in the document. Account preferences should generally
be embedded.

Recent activity
This depends on how much recent activity grows and changes. If it is a fixed-size
field (say, the last 10 things), it might be useful to embed this information or to
implement the Subset pattern.

Normalization Versus Denormalization | 215

Friends
Generally this information should not be embedded, or at least not fully. See
“Friends, Followers, and Other Inconveniences” on page 216.

All of the content this user has produced
This should not be embedded.

Cardinality
Cardinality is an indication of how many references a collection has to another collec‐
tion. Common relationships are one-to-one, one-to-many, or many-to-many. For
example, suppose we had a blog application. Each post has a title, so that’s a one-to-
one relationship. Each author has many posts, so that’s a one-to-many relationship.
And posts have many tags and tags refer to many posts, so that’s a many-to-many
relationship.

When using MongoDB, it can be conceptually useful to split “many” into subcatego‐
ries: “many” and “few.” For example, you might have a one-to-few relationship
between authors and posts: each author only writes a few posts. You might have
many-to-few relation between blog posts and tags: you probably have many more
blog posts than you have tags. However, you’d have a one-to-many relationship
between blog posts and comments: each post has many comments.

Determining few versus many relations can help you decide what to embed versus
what to reference. Generally, “few” relationships will work better with embedding,
and “many” relationships will work better as references.

Friends, Followers, and Other Inconveniences
Keep your friends close and your enemies embedded.

This section covers considerations for social graph data. Many social applications
need to link people, content, followers, friends, and so on. Figuring out how to bal‐
ance embedding and referencing this highly connected information can be tricky, but
generally following, friending, or favoriting can be simplified to a publication/
subscription system: one user is subscribing to notifications from another. Thus,
there are two basic operations that need to be efficient: storing subscribers and noti‐
fying all interested parties of an event.

There are three ways people typically implement subscribing. The first option is to
put the producer in the subscriber’s document, which looks something like this:

{
 "_id" : ObjectId("51250a5cd86041c7dca8190f"),
 "username" : "batman",
 "email" : "batman@waynetech.com"
 "following" : [
 ObjectId("51250a72d86041c7dca81910"),

216 | Chapter 9: Application Design

 ObjectId("51250a7ed86041c7dca81936")
]
}

Now, given a user’s document, you can issue a query like the following to find all of
the activities that have been published that they might be interested in:

db.activities.find({"user" : {"$in" :
 user["following"]}})

However, if you need to find everyone who is interested in a newly published activity,
you’d have to query the "following" field across all users.

Alternatively, you could append the followers to the producer’s document, like so:

{
 "_id" : ObjectId("51250a7ed86041c7dca81936"),
 "username" : "joker",
 "email" : "joker@mailinator.com"
 "followers" : [
 ObjectId("512510e8d86041c7dca81912"),
 ObjectId("51250a5cd86041c7dca8190f"),
 ObjectId("512510ffd86041c7dca81910")
]
}

Whenever this user does something, all the users you need to notify are right there.
The downside is that now you need to query the whole users collection to find every‐
one a user follows (the opposite limitation as in the previous case).

Either of these options comes with an additional downside: they make your user
documents larger and more volatile. The "following" (or "followers") field often
won’t even need to be returned: how often do you want to list every follower? Thus,
the final option neutralizes these downsides by normalizing even further and storing
subscriptions in another collection. Normalizing this far is often overkill, but it can
be useful for an extremely volatile field that often isn’t returned with the rest of the
document. "followers" may be a sensible field to normalize this way.

In this case you keep a collection that matches publishers to subscribers, with docu‐
ments that look something like this:

{
 "_id" : ObjectId("51250a7ed86041c7dca81936"), // followee's "_id"
 "followers" : [
 ObjectId("512510e8d86041c7dca81912"),
 ObjectId("51250a5cd86041c7dca8190f"),
 ObjectId("512510ffd86041c7dca81910")
]
}

This keeps your user documents svelte but means an extra query is needed to get the
followers.

Normalization Versus Denormalization | 217

Dealing with the Wil Wheaton effect
Regardless of which strategy you use, embedding only works with a limited number
of subdocuments or references. If you have celebrity users, they may overflow any
document that you’re storing followers in. The typical way of compensating for this is
to use the Outlier pattern discussed in “Schema Design Patterns” on page 208 and
have a “continuation” document, if necessary. For example, you might have:

> db.users.find({"username" : "wil"})
{
 "_id" : ObjectId("51252871d86041c7dca8191a"),
 "username" : "wil",
 "email" : "wil@example.com",
 "tbc" : [
 ObjectId("512528ced86041c7dca8191e"),
 ObjectId("5126510dd86041c7dca81924")
]
 "followers" : [
 ObjectId("512528a0d86041c7dca8191b"),
 ObjectId("512528a2d86041c7dca8191c"),
 ObjectId("512528a3d86041c7dca8191d"),
 ...
]
}
{
 "_id" : ObjectId("512528ced86041c7dca8191e"),
 "followers" : [
 ObjectId("512528f1d86041c7dca8191f"),
 ObjectId("512528f6d86041c7dca81920"),
 ObjectId("512528f8d86041c7dca81921"),
 ...
]
}
{
 "_id" : ObjectId("5126510dd86041c7dca81924"),
 "followers" : [
 ObjectId("512673e1d86041c7dca81925"),
 ObjectId("512650efd86041c7dca81922"),
 ObjectId("512650fdd86041c7dca81923"),
 ...
]
}

Then add application logic to support fetching the documents in the “to be contin‐
ued” ("tbc") array.

218 | Chapter 9: Application Design

Optimizations for Data Manipulation
To optimize your application, you must first determine what its bottleneck is by eval‐
uating its read and write performance. Optimizing reads generally involves having
the correct indexes and returning as much of the information as possible in a single
document. Optimizing writes usually involves minimizing the number of indexes you
have and making updates as efficient as possible.

There is often a trade-off between schemas that are optimized for writing quickly and
those that are optimized for reading quickly, so you may have to decide which is more
important for your application. Factor in not only the importance of reads versus
writes, but also their proportions: if writes are more important but you’re doing a
thousand reads to every write, you may still want to optimize reads first.

Removing Old Data
Some data is only important for a brief time: after a few weeks or months it is just
wasting storage space. There are three popular options for removing old data: using
capped collections, using TTL collections, and dropping collections per time period.

The easiest option is to use a capped collection: set it to a large size and let old data
“fall off ” the end. However, capped collections pose certain limitations on the opera‐
tions you can do and are vulnerable to spikes in traffic, temporarily lowering the
length of time that they can hold. See “Capped Collections” on page 151 for more
information.

The second option is to use a TTL collections. This gives you finer-grain control over
when documents are removed, but it may not be fast enough for collections with a
very high write volume: it removes documents by traversing the TTL index the same
way a user-requested remove would. If a TTL collection can keep up, though, this is
probably the easiest solution to implement. See “Time-To-Live Indexes” on page 155
for more information about TTL indexes.

The final option is to use multiple collections: for example, one collection per month.
Every time the month changes, your application starts using this month’s (empty) col‐
lection and searching for data in both the current and previous months’ collections.
Once a collection is older than, say, six months, you can drop it. This strategy can
keep up with nearly any volume of traffic, but it’s more complex to build an applica‐
tion around because you have to use dynamic collection (or database) names and
possibly query multiple databases.

Optimizations for Data Manipulation | 219

Planning Out Databases and Collections
Once you have sketched out what your documents look like, you must decide what
collections or databases to put them in. This is often a fairly intuitive process, but
there are some guidelines to keep in mind.

In general, documents with a similar schema should be kept in the same collection.
MongoDB generally disallows combining data from multiple collections, so if there
are documents that need to be queried or aggregated together, those are good candi‐
dates for putting in one big collection. For example, you might have documents that
are fairly different “shapes,” but if you’re going to be aggregating them, they should all
live in the same collection (or you can use the $merge stage if they are in separate col‐
lections or databases).

For collections, the big issues to consider are locking (you get a read/write lock per
document) and storage. Generally, if you have a high-write workload you may need
to consider using multiple physical volumes to reduce I/O bottlenecks. Each database
can reside in its own directory when you use the --directoryperdb option, allowing
you to mount different databases to different volumes. Thus, you may want all items
within a database to be of similar “quality,” with a similar access pattern or similar
traffic levels.

For example, suppose you have an application with several components: a logging
component that creates a huge amount of not-very-valuable data, a user collection,
and a couple of collections for user-generated data. These collections are high-value:
it is important that user data is safe. There is also a high-traffic collection for social
activities, which is of lower importance but not quite as unimportant as the logs. This
collection is mainly used for user notifications, so it is almost an append-only
collection.

Splitting these up by importance, you might end up with three databases: logs, activi‐
ties, and users. The nice thing about this strategy is that you may find that your
highest-value data is also what you have the least of (e.g., users probably don’t gener‐
ate as much data as logging does). You might not be able to afford an SSD for your
entire dataset, but you might be able to get one for your users, or you might use
RAID10 for users and RAID0 for logs and activities.

Be aware that there are some limitations when using multiple databases prior to
MongoDB 4.2 and the introduction of the $merge operator in the Aggregation
Framework, which allows you to store results from an aggregation from one database
to a different database and a different collection within that database. An additional
point to note is that the renameCollection command is slower when copying an
existing collection from one database to a different database, as it must copy all the
documents to the new database.

220 | Chapter 9: Application Design

Managing Consistency
You must figure out how consistent your application’s reads need to be. MongoDB
supports a huge variety of consistency levels, from always being able to read your
own writes to reading data of unknown oldness. If you’re reporting on the last year of
activity, you might only need data that’s correct to the last couple of days. Conversely,
if you’re doing real-time trading, you might need to immediately read the latest
writes.

To understand how to achieve these varying levels of consistency, it is important to
understand what MongoDB is doing under the hood. The server keeps a queue of
requests for each connection. When the client sends a request, it will be placed at the
end of its connection’s queue. Any subsequent requests on the connection will occur
after the previously enqueued operation is processed. Thus, a single connection has a
consistent view of the database and can always read its own writes.

Note that this is a per-connection queue: if we open two shells, we will have two con‐
nections to the database. If we perform an insert in one shell, a subsequent query in
the other shell might not return the inserted document. However, within a single
shell, if we query for a document after inserting it, the document will be returned.
This behavior can be difficult to duplicate by hand, but on a busy server interleaved
inserts and queries are likely to occur. Often developers run into this when they insert
data in one thread and then check that it was successfully inserted in another. For a
moment or two, it looks like the data was not inserted, and then it suddenly appears.

This behavior is especially worth keeping in mind when using the Ruby, Python, and
Java drivers, because all three use connection pooling. For efficiency, these drivers
open multiple connections (a pool) to the server and distribute requests across them.
They all, however, have mechanisms to guarantee that a series of requests is processed
by a single connection. There is detailed documentation on connection pooling for
the various languages in the MongoDB Drivers Connection Monitoring and Pooling
specification.

When you send reads to a replica set secondary (see Chapter 12), this becomes an
even larger issue. Secondaries may lag behind the primary, leading to reading data
from seconds, minutes, or even hours ago. There are several ways to deal with this,
the easiest being to simply send all reads to the primary if you care about staleness.

MongoDB offers the readConcern option to control the consistency and isolation
properties of the data being read. It can be combined with writeConcern to control
the consistency and availability guarantees made to your application. There are five
levels: "local", "available", "majority", "linearizable", and "snapshot".
Depending on the application, in cases where you want to avoid read staleness you
could consider using "majority", which returns only durable data that has been
acknowledged by the majority of the replica set members and will not be rolled back.

Managing Consistency | 221

https://oreil.ly/nAt9i
https://oreil.ly/nAt9i

1 The authors are William Schultz, senior software engineer for replication; Tess Avitabile, team lead of the rep‐
lication team; and Alyson Cabral, product manager for Distributed Systems.

"linearizable" may also be an option: it returns data that reflects all successful
majority-acknowledged writes that have completed prior to the start of the read oper‐
ation. MongoDB may wait for concurrently executing writes to finish before return‐
ing the results with the "linearizable" readConcern.

Three senior engineers from MongoDB published a paper called “Tunable Consis‐
tency in MongoDB” at the PVLDB conference in 2019.1 This paper outlines the dif‐
ferent MongoDB consistency models used for replication and how application
developers can utilize the various models.

Migrating Schemas
As your application grows and your needs change, your schema may have to grow
and change as well. There are a couple of ways of accomplishing this, but regardless
of the method you choose, you should carefully document each schema that your
application has used. Ideally, you should consider if the Document Versioning pattern
(see “Schema Design Patterns” on page 208) is applicable.

The simplest method is to simply have your schema evolve as your application
requires, making sure that your application supports all old versions of the schema
(e.g., accepting the existence or nonexistence of fields or dealing with multiple possi‐
ble field types gracefully). But this technique can become messy, particularly if you
have conflicting schema versions. For instance, one version might require a "mobile"
field, another version might require not having a "mobile" field but instead require a
different field, and yet another version might treat the "mobile" field as optional.
Keeping track of these shifting requirements can gradually turn your code into
spaghetti.

To handle changing requirements in a slightly more structured way, you can include a
"version" field (or just "v") in each document and use that to determine what your
application will accept for document structure. This enforces your schema more rig‐
orously: a document has to be valid for some version of the schema, if not the current
one. However, it still requires supporting old versions.

The final option is to migrate all of your data when the schema changes. Generally
this is not a good idea: MongoDB allows you to have a dynamic schema in order to
avoid migrates because they put a lot of pressure on your system. However, if you do
decide to change every document, you will need to ensure that all the documents
were successfully updated. MongoDB supports transactions, which support this type

222 | Chapter 9: Application Design

https://oreil.ly/PfcBx
https://oreil.ly/PfcBx

of migration. If MongoDB crashes in the middle of a transaction, the older schema
will be retained.

Managing Schemas
MongoDB introduced schema validation in version 3.2, which allows for validation
during updates and insertions. In version 3.6 it added JSON Schema validation via
the $jsonSchema operator, which is now the recommended method for all schema
validation in MongoDB. At the time of writing MongoDB supports draft 4 of JSON
Schema, but please check the documentation for the most up-to-date information on
this feature.

Validation does not check existing documents until they are modified, and it is con‐
figured per collection. To add validation to an existing collection, you use the coll
Mod command with the validator option. You can add validation to a new collection
by specifying the validator option when using db.createCollection(). MongoDB
also provides two additional options, validationLevel and validationAction. vali
dationLevel determines how strictly validation rules are applied to existing docu‐
ments during an update, and validationAction decides whether an error plus
rejection or a warning with allowance for illegal documents should occur.

When Not to Use MongoDB
While MongoDB is a general-purpose database that works well for most applications,
it isn’t good at everything. There are a few reasons you might need to avoid it:

• Joining many different types of data across many different dimensions is some‐
thing relational databases are fantastic at. MongoDB isn’t supposed to do this well
and most likely never will.

• One of the big (if, hopefully, temporary) reasons to use a relational database over
MongoDB is if you’re using tools that don’t support it. From SQLAlchemy to
WordPress, there are thousands of tools that just weren’t built to support Mon‐
goDB. The pool of tools that do support it is growing, but its ecosystem is hardly
the size of relational databases’ yet.

Managing Schemas | 223

PART III

Replication

CHAPTER 10

Setting Up a Replica Set

This chapter introduces MongoDB’s high-availability system: replica sets. It covers:

• What replica sets are
• How to set up a replica set
• What configuration options are available for replica set members

Introduction to Replication
Since the first chapter, we’ve been using a standalone server, a single mongod server.
It’s an easy way to get started but a dangerous way to run in production. What if your
server crashes or becomes unavailable? Your database will be unavailable for at least a
little while. If there are problems with the hardware, you might have to move your
data to another machine. In the worst case, disk or network issues could leave you
with corrupt or inaccessible data.

Replication is a way of keeping identical copies of your data on multiple servers and is
recommended for all production deployments. Replication keeps your application
running and your data safe, even if something happens to one or more of your
servers.

With MongoDB, you set up replication by creating a replica set. A replica set is a
group of servers with one primary, the server taking writes, and multiple secondaries,
servers that keep copies of the primary’s data. If the primary crashes, the secondaries
can elect a new primary from amongst themselves.

If you are using replication and a server goes down, you can still access your data
from the other servers in the set. If the data on a server is damaged or inaccessible,
you can make a new copy of the data from one of the other members of the set.

227

1 See https://github.com/mongodb-the-definitive-guide-3e/mongodb-the-definitive-guide-3e.

This chapter introduces replica sets and covers how to set up replication on your sys‐
tem. If you are less interested in replication mechanics and simply want to create a
replica set for testing/development or production, use MongoDB’s cloud solution,
MongoDB Atlas. It’s easy to use and provides a free-tier option for experimentation.
Alternatively, to manage MongoDB clusters in your own infrastructure, you can use
Ops Manager.

Setting Up a Replica Set, Part 1
In this chapter, we’ll show you how to set up a three-node replica set on a single
machine so you can start experimenting with replica set mechanics. This is the type
of setup that you might script just to get a replica set up and running and then poke
at it with administrative commands in the mongo shell or simulate network partitions
or server failures to better understand how MongoDB handles high availability and
disaster recovery. In production, you should always use a replica set and allocate a
dedicated host to each member to avoid resource contention and provide isolation
against server failure. To provide further resilience, you should also use the DNS
Seedlist Connection format to specify how your applications connect to your replica
set. The advantage to using DNS is that servers hosting your MongoDB replica set
members can be changed in rotation without needing to reconfigure the clients
(specifically, their connection strings).

Given the variety of virtualization and cloud options available, it is nearly as easy to
bring up a test replica set with each member on a dedicated host. We’ve provided a
Vagrant script to allow you to experiment with this option.1

To get started with our test replica set, let’s first create separate data directories for
each node. On Linux or macOS, run the following command in the terminal to create
the three directories:

$ mkdir -p ~/data/rs{1,2,3}

This will create the directories ~/data/rs1, ~/data/rs2, and ~/data/rs3 (~ identifies
your home directory).

On Windows, to create these directories, run the following in the Command Prompt
(cmd) or PowerShell:

> md c:\data\rs1 c:\data\rs2 c:\data\rs3

Then, on Linux or macOS, run each of the following commands in a separate
terminal:

228 | Chapter 10: Setting Up a Replica Set

https://github.com/mongodb-the-definitive-guide-3e/mongodb-the-definitive-guide-3e
https://atlas.mongodb.com
https://oreil.ly/-X6yp
https://oreil.ly/cCORE
https://oreil.ly/cCORE

$ mongod --replSet mdbDefGuide --dbpath ~/data/rs1 --port 27017 \
 --smallfiles --oplogSize 200
$ mongod --replSet mdbDefGuide --dbpath ~/data/rs2 --port 27018 \
 --smallfiles --oplogSize 200
$ mongod --replSet mdbDefGuide --dbpath ~/data/rs3 --port 27019 \
 --smallfiles --oplogSize 200

On Windows, run each of the following commands in its own Command Prompt or
PowerShell window:

> mongod --replSet mdbDefGuide --dbpath c:\data\rs1 --port 27017 \
 --smallfiles --oplogSize 200
> mongod --replSet mdbDefGuide --dbpath c:\data\rs2 --port 27018 \
 --smallfiles --oplogSize 200
> mongod --replSet mdbDefGuide --dbpath c:\data\rs3 --port 27019 \
 --smallfiles --oplogSize 200

Once you’ve started them, you should have three separate mongod processes running.

In general, the principles we will walk through in the rest of this
chapter apply to replica sets used in production deployments where
each mongod has a dedicated host. However, there are additional
details pertaining to securing replica sets that we address in Chap‐
ter 19; we’ll touch on those just briefly here as a preview.

Networking Considerations
Every member of a set must be able to make connections to every other member of
the set (including itself). If you get errors about members not being able to reach
other members that you know are running, you may have to change your network
configuration to allow connections between them.

The processes you’ve launched can just as easily be running on separate servers.
However, with the release of MongoDB 3.6, mongod binds to localhost (127.0.0.1)
only by default. In order for each member of replica set to communicate with the oth‐
ers, you must also bind to an IP address that is reachable by other members. If we
were running a mongod instance on a server with a network interface having an IP
address of 198.51.100.1 and we wanted to run it as a member of replica set with each
member on different servers, we could specify the command-line parameter --
bind_ip or use bind_ip in the configuration file for this instance:

$ mongod --bind_ip localhost,192.51.100.1 --replSet mdbDefGuide \
 --dbpath ~/data/rs1 --port 27017 --smallfiles --oplogSize 200

We would make similar modifications to launch the other mongods as well in this
case, regardless of whether we’re running on Linux, macOS, or Windows.

Networking Considerations | 229

Security Considerations
Before you bind to IP addresses other than localhost, when configuring a replica set,
you should enable authorization controls and specify an authentication mechanism.
In addition, it is a good idea to encrypt data on disk and communication among rep‐
lica set members and between the set and clients. We’ll go into more detail on secur‐
ing replica sets in Chapter 19.

Setting Up a Replica Set, Part 2
Returning to our example, with the work we’ve done so far, each mongod does not yet
know that the others exist. To tell them about one another, we need to create a config‐
uration that lists each of the members and send this configuration to one of our mon‐
god processes. It will take care of propagating the configuration to the other
members.

In a fourth terminal, Windows Command Prompt, or PowerShell window, launch a
mongo shell that connects to one of the running mongod instances. You can do this by
typing the following command. With this command, we’ll connect to the mongod
running on port 27017:

$ mongo --port 27017

Then, in the mongo shell, create a configuration document and pass this to the rs.ini
tiate() helper to initiate a replica set. This will initiate a replica set containing three
members and propagate the configuration to the rest of the mongods so that a replica
set is formed:

> rsconf = {
 _id: "mdbDefGuide",
 members: [
 {_id: 0, host: "localhost:27017"},
 {_id: 1, host: "localhost:27018"},
 {_id: 2, host: "localhost:27019"}
]
 }
> rs.initiate(rsconf)
{ "ok" : 1, "operationTime" : Timestamp(1501186502, 1) }

There are several important parts of a replica set configuration document. The con‐
fig’s "_id" is the name of the replica set that you passed in on the command line (in
this example, "mdbDefGuide"). Make sure that this name matches exactly.

The next part of the document is an array of members of the set. Each of these needs
two fields: an "_id" that is an integer and unique among the replica set members, and
a hostname.

230 | Chapter 10: Setting Up a Replica Set

Note that we are using localhost as a hostname for the members in this set. This is for
example purposes only. In later chapters where we discuss securing replica sets, we’ll
look at configurations that are more appropriate for production deployments. Mon‐
goDB allows all-localhost replica sets for testing locally but will protest if you try to
mix localhost and non-localhost servers in a config.

This config document is your replica set configuration. The member running on
localhost:27017 will parse the configuration and send messages to the other members,
alerting them of the new configuration. Once they have all loaded the configuration,
they will elect a primary and start handling reads and writes.

Unfortunately, you cannot convert a standalone server to a replica
set without some downtime for restarting it and initializing the set.
Thus, even if you only have one server to start out with, you may
want to configure it as a one-member replica set. That way, if you
want to add more members later, you can do so without downtime.

If you are starting a brand-new set, you can send the configuration to any member in
the set. If you are starting with data on one of the members, you must send the con‐
figuration to the member with data. You cannot initiate a replica set with data on
more than one member.

Once initiated, you should have a fully functional replica set. The replica set should
elect a primary. You can view the status of a replica set using rs.status(). The out‐
put from rs.status() tells you quite a bit about the replica set, including a number
of things we’ve not yet covered, but don’t worry, we’ll get there! For now, take a look
at the members array. Note that all three of our mongod instances are listed in this
array and that one of them, in this case the mongod running on port 27017, has been
elected primary. The other two are secondaries. If you try this for yourself you will
certainly have different values for "date" and the several Timestamp values in this
output, but you might also find that a different mongod was elected primary (that’s
totally fine):

> rs.status()
{
 "set" : "mdbDefGuide",
 "date" : ISODate("2017-07-27T20:23:31.457Z"),
 "myState" : 1,
 "term" : NumberLong(1),
 "heartbeatIntervalMillis" : NumberLong(2000),
 "optimes" : {
 "lastCommittedOpTime" : {
 "ts" : Timestamp(1501187006, 1),
 "t" : NumberLong(1)
 },
 "appliedOpTime" : {

Setting Up a Replica Set, Part 2 | 231

 "ts" : Timestamp(1501187006, 1),
 "t" : NumberLong(1)
 },
 "durableOpTime" : {
 "ts" : Timestamp(1501187006, 1),
 "t" : NumberLong(1)
 }
 },
 "members" : [
 {
 "_id" : 0,
 "name" : "localhost:27017",
 "health" : 1,
 "state" : 1,
 "stateStr" : "PRIMARY",
 "uptime" : 688,
 "optime" : {
 "ts" : Timestamp(1501187006, 1),
 "t" : NumberLong(1)
 },
 "optimeDate" : ISODate("2017-07-27T20:23:26Z"),
 "electionTime" : Timestamp(1501186514, 1),
 "electionDate" : ISODate("2017-07-27T20:15:14Z"),
 "configVersion" : 1,
 "self" : true
 },
 {
 "_id" : 1,
 "name" : "localhost:27018",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 508,
 "optime" : {
 "ts" : Timestamp(1501187006, 1),
 "t" : NumberLong(1)
 },
 "optimeDurable" : {
 "ts" : Timestamp(1501187006, 1),
 "t" : NumberLong(1)
 },
 "optimeDate" : ISODate("2017-07-27T20:23:26Z"),
 "optimeDurableDate" : ISODate("2017-07-27T20:23:26Z"),
 "lastHeartbeat" : ISODate("2017-07-27T20:23:30.818Z"),
 "lastHeartbeatRecv" : ISODate("2017-07-27T20:23:30.113Z"),
 "pingMs" : NumberLong(0),
 "syncingTo" : "localhost:27017",
 "configVersion" : 1
 },
 {
 "_id" : 2,
 "name" : "localhost:27019",

232 | Chapter 10: Setting Up a Replica Set

 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 508,
 "optime" : {
 "ts" : Timestamp(1501187006, 1),
 "t" : NumberLong(1)
 },
 "optimeDurable" : {
 "ts" : Timestamp(1501187006, 1),
 "t" : NumberLong(1)
 },
 "optimeDate" : ISODate("2017-07-27T20:23:26Z"),
 "optimeDurableDate" : ISODate("2017-07-27T20:23:26Z"),
 "lastHeartbeat" : ISODate("2017-07-27T20:23:30.818Z"),
 "lastHeartbeatRecv" : ISODate("2017-07-27T20:23:30.113Z"),
 "pingMs" : NumberLong(0),
 "syncingTo" : "localhost:27017",
 "configVersion" : 1
 }
],
 "ok" : 1,
 "operationTime" : Timestamp(1501187006, 1)
}

rs Helper Functions
rs is a global variable that contains replication helper functions (run rs.help() to see
the helpers it exposes). These functions are almost always just wrappers around data‐
base commands. For example, the following database command is equivalent to
rs.initiate(config):

> db.adminCommand({"replSetInitiate" : config})

It is good to have familiarity with both the helpers and the underlying commands,
because it might be easier to use the command form instead of the helper.

Observing Replication
If your replica set elected the mongod on port 27017 as primary, then the mongo shell
used to initiate the replica set is currently connected to the primary. You should see
the prompt change to something like the following:

mdbDefGuide:PRIMARY>

This indicates that we are connected to the primary of the replica set having the
"_id" "mdbDefGuide". To simplify and for the sake of clarity, we’ll abbreviate the
mongo shell prompt to just > throughout the replication examples.

Observing Replication | 233

If your replica set elected a different node primary, quit the shell and connect to the
primary by specifying the correct port number in the command line, as we did when
launching the mongo shell earlier. For example, if your set’s primary is on port 27018,
connect using the following command:

$ mongo --port 27018

Now that you’re connected to the primary, try doing some writes and see what hap‐
pens. First, insert 1,000 documents:

> use test
> for (i=0; i<1000; i++) {db.coll.insert({count: i})}
>
> // make sure the docs are there
> db.coll.count()
1000

Now check one of the secondaries and verify that it has a copy of all of these docu‐
ments. You could do this by quitting the shell and connecting using the port number
of one of the secondaries, but it’s easy to acquire a connection to one of the seconda‐
ries by instantiating a connection object using the Mongo constructor within the shell
you’re already running.

First, use your connection to the test database on the primary to run the isMaster
command. This will show you the status of the replica set, in a much more concise
form than rs.status(). It is also a convenient means of determining which member
is primary when writing application code or scripting:

> db.isMaster()
{
 "hosts" : [
 "localhost:27017",
 "localhost:27018",
 "localhost:27019"
],
 "setName" : "mdbDefGuide",
 "setVersion" : 1,
 "ismaster" : true,
 "secondary" : false,
 "primary" : "localhost:27017",
 "me" : "localhost:27017",
 "electionId" : ObjectId("7fffffff0000000000000004"),
 "lastWrite" : {
 "opTime" : {
 "ts" : Timestamp(1501198208, 1),
 "t" : NumberLong(4)
 },
 "lastWriteDate" : ISODate("2017-07-27T23:30:08Z")
 },
 "maxBsonObjectSize" : 16777216,
 "maxMessageSizeBytes" : 48000000,

234 | Chapter 10: Setting Up a Replica Set

 "maxWriteBatchSize" : 1000,
 "localTime" : ISODate("2017-07-27T23:30:08.722Z"),
 "maxWireVersion" : 6,
 "minWireVersion" : 0,
 "readOnly" : false,
 "compression" : [
 "snappy"
],
 "ok" : 1,
 "operationTime" : Timestamp(1501198208, 1)
}

If at any point an election is called and the mongod you’re connected to becomes a
secondary, you can use the isMaster command to determine which member has
become primary. The output here tells us that localhost:27018 and localhost:27019 are
both secondaries, so we can use either for our purposes. Let’s instantiate a connection
to localhost:27019:

> secondaryConn = new Mongo("localhost:27019")
connection to localhost:27019
>
> secondaryDB = secondaryConn.getDB("test")
test

Now, if we attempt to do a read on the collection that has been replicated to the sec‐
ondary, we’ll get an error. Let’s attempt to do a find on this collection and then
review the error and why we get it:

> secondaryDB.coll.find()
Error: error: {
 "operationTime" : Timestamp(1501200089, 1),
 "ok" : 0,
 "errmsg" : "not master and slaveOk=false",
 "code" : 13435,
 "codeName" : "NotMasterNoSlaveOk"
}

Secondaries may fall behind the primary (or lag) and not have the most current
writes, so secondaries will refuse read requests by default to prevent applications from
accidentally reading stale data. Thus, if you attempt to query a secondary, you’ll get
an error stating that it’s not the primary. This is to protect your application from acci‐
dentally connecting to a secondary and reading stale data. To allow queries on the
secondary, we can set an “I’m okay with reading from secondaries” flag, like so:

> secondaryConn.setSlaveOk()

Note that slaveOk is set on the connection (secondaryConn), not the database
(secondaryDB).

Now you’re all set to read from this member. Query it normally:

Observing Replication | 235

> secondaryDB.coll.find()
{ "_id" : ObjectId("597a750696fd35621b4b85db"), "count" : 0 }
{ "_id" : ObjectId("597a750696fd35621b4b85dc"), "count" : 1 }
{ "_id" : ObjectId("597a750696fd35621b4b85dd"), "count" : 2 }
{ "_id" : ObjectId("597a750696fd35621b4b85de"), "count" : 3 }
{ "_id" : ObjectId("597a750696fd35621b4b85df"), "count" : 4 }
{ "_id" : ObjectId("597a750696fd35621b4b85e0"), "count" : 5 }
{ "_id" : ObjectId("597a750696fd35621b4b85e1"), "count" : 6 }
{ "_id" : ObjectId("597a750696fd35621b4b85e2"), "count" : 7 }
{ "_id" : ObjectId("597a750696fd35621b4b85e3"), "count" : 8 }
{ "_id" : ObjectId("597a750696fd35621b4b85e4"), "count" : 9 }
{ "_id" : ObjectId("597a750696fd35621b4b85e5"), "count" : 10 }
{ "_id" : ObjectId("597a750696fd35621b4b85e6"), "count" : 11 }
{ "_id" : ObjectId("597a750696fd35621b4b85e7"), "count" : 12 }
{ "_id" : ObjectId("597a750696fd35621b4b85e8"), "count" : 13 }
{ "_id" : ObjectId("597a750696fd35621b4b85e9"), "count" : 14 }
{ "_id" : ObjectId("597a750696fd35621b4b85ea"), "count" : 15 }
{ "_id" : ObjectId("597a750696fd35621b4b85eb"), "count" : 16 }
{ "_id" : ObjectId("597a750696fd35621b4b85ec"), "count" : 17 }
{ "_id" : ObjectId("597a750696fd35621b4b85ed"), "count" : 18 }
{ "_id" : ObjectId("597a750696fd35621b4b85ee"), "count" : 19 }
Type "it" for more

You can see that all of our documents are there.

Now, try to write to a secondary:

> secondaryDB.coll.insert({"count" : 1001})
WriteResult({ "writeError" : { "code" : 10107, "errmsg" : "not master" } })
> secondaryDB.coll.count()
1000

You can see that the secondary does not accept the write. A secondary will only per‐
form writes that it gets through replication, not from clients.

There is one other interesting feature that you should try out: automatic failover. If
the primary goes down, one of the secondaries will automatically be elected primary.
To test this, stop the primary:

> db.adminCommand({"shutdown" : 1})

You’ll see some error messages generated when you run this command because the
mongod running on port 27017 (the member we’re connected to) will terminate and
the shell we’re using will lose its connection:

2017-07-27T20:10:50.612-0400 E QUERY [thread1] Error: error doing query:
 failed: network error while attempting to run command 'shutdown' on host
 '127.0.0.1:27017' :
DB.prototype.runCommand@src/mongo/shell/db.js:163:1
DB.prototype.adminCommand@src/mongo/shell/db.js:179:16
@(shell):1:1
2017-07-27T20:10:50.614-0400 I NETWORK [thread1] trying reconnect to
 127.0.0.1:27017 (127.0.0.1) failed

236 | Chapter 10: Setting Up a Replica Set

2017-07-27T20:10:50.615-0400 I NETWORK [thread1] reconnect
 127.0.0.1:27017 (127.0.0.1) ok
MongoDB Enterprise mdbDefGuide:SECONDARY>
2017-07-27T20:10:56.051-0400 I NETWORK [thread1] trying reconnect to
 127.0.0.1:27017 (127.0.0.1) failed
2017-07-27T20:10:56.051-0400 W NETWORK [thread1] Failed to connect to
 127.0.0.1:27017, in(checking socket for error after poll), reason:
 Connection refused
2017-07-27T20:10:56.051-0400 I NETWORK [thread1] reconnect
 127.0.0.1:27017 (127.0.0.1) failed failed
MongoDB Enterprise >
MongoDB Enterprise > secondaryConn.isMaster()
2017-07-27T20:11:15.422-0400 E QUERY [thread1] TypeError:
 secondaryConn.isMaster is not a function :
@(shell):1:1

This isn’t a problem. It won’t cause the shell to crash. Go ahead and run isMaster on
the secondary to see who has become the new primary:

> secondaryDB.isMaster()

The output from isMaster should look something like this:

{
 "hosts" : [
 "localhost:27017",
 "localhost:27018",
 "localhost:27019"
],
 "setName" : "mdbDefGuide",
 "setVersion" : 1,
 "ismaster" : true,
 "secondary" : false,
 "primary" : "localhost:27018",
 "me" : "localhost:27019",
 "electionId" : ObjectId("7fffffff0000000000000005"),
 "lastWrite" : {
 "opTime" : {
 "ts" : Timestamp(1501200681, 1),
 "t" : NumberLong(5)
 },
 "lastWriteDate" : ISODate("2017-07-28T00:11:21Z")
 },
 "maxBsonObjectSize" : 16777216,
 "maxMessageSizeBytes" : 48000000,
 "maxWriteBatchSize" : 1000,
 "localTime" : ISODate("2017-07-28T00:11:28.115Z"),
 "maxWireVersion" : 6,
 "minWireVersion" : 0,
 "readOnly" : false,
 "compression" : [
 "snappy"
],

Observing Replication | 237

 "ok" : 1,
 "operationTime" : Timestamp(1501200681, 1)
}

Note that the primary has switched to 27018. Your primary may be the other server;
whichever secondary noticed that the primary was down first will be elected. Now
you can send writes to the new primary.

isMaster is a very old command, predating replica sets to when
MongoDB only supported master/slave replication. Thus, it does
not use the replica set terminology consistently: it still calls the pri‐
mary a “master.” You can generally think of “master” as equivalent
to “primary” and “slave” as equivalent to “secondary.”

Go ahead and bring back up the server we had running at localhost:27017. You simply
need to find the command-line interface from which you launched it. You’ll see some
messages indicating that it terminated. Just run it again using the same command you
used to launch it originally.

Congratulations! You just set up, used, and even poked a little at a replica set to force
a shutdown and an election for a new primary.

There are a few key concepts to remember:

• Clients can send a primary all the same operations they could send a standalone
server (reads, writes, commands, index builds, etc.).

• Clients cannot write to secondaries.
• Clients, by default, cannot read from secondaries. You can enable this by explic‐

itly setting an “I know I’m reading from a secondary” setting on the connection.

Changing Your Replica Set Configuration
Replica set configurations can be changed at any time: members can be added,
removed, or modified. There are shell helpers for some common operations. For
example, to add a new member to the set, you can use rs.add:

> rs.add("localhost:27020")

Similarly, you can remove members:

> rs.remove("localhost:27017")
{ "ok" : 1, "operationTime" : Timestamp(1501202441, 2) }

You can check that a reconfiguration succeeded by running rs.config() in the shell.
It will print the current configuration:

238 | Chapter 10: Setting Up a Replica Set

> rs.config()
{
 "_id" : "mdbDefGuide",
 "version" : 3,
 "protocolVersion" : NumberLong(1),
 "members" : [
 {
 "_id" : 1,
 "host" : "localhost:27018",
 "arbiterOnly" : false,
 "buildIndexes" : true,
 "hidden" : false,
 "priority" : 1,
 "tags" : {

 },
 "slaveDelay" : NumberLong(0),
 "votes" : 1
 },
 {
 "_id" : 2,
 "host" : "localhost:27019",
 "arbiterOnly" : false,
 "buildIndexes" : true,
 "hidden" : false,
 "priority" : 1,
 "tags" : {

 },
 "slaveDelay" : NumberLong(0),
 "votes" : 1
 },
 {
 "_id" : 3,
 "host" : "localhost:27020",
 "arbiterOnly" : false,
 "buildIndexes" : true,
 "hidden" : false,
 "priority" : 1,
 "tags" : {

 },
 "slaveDelay" : NumberLong(0),
 "votes" : 1
 }
],
 "settings" : {
 "chainingAllowed" : true,
 "heartbeatIntervalMillis" : 2000,
 "heartbeatTimeoutSecs" : 10,
 "electionTimeoutMillis" : 10000,
 "catchUpTimeoutMillis" : -1,

Changing Your Replica Set Configuration | 239

 "getLastErrorModes" : {

 },
 "getLastErrorDefaults" : {
 "w" : 1,
 "wtimeout" : 0
 },
 "replicaSetId" : ObjectId("597a49c67e297327b1e5b116")
 }
}

Each time you change the configuration, the "version" field will increase. It starts at
version 1.

You can also modify existing members, not just add and remove them. To make mod‐
ifications, create the configuration document that you want in the shell and call
rs.reconfig(). For example, suppose we have a configuration such as the one shown
here:

> rs.config()
{
 "_id" : "testReplSet",
 "version" : 2,
 "members" : [
 {
 "_id" : 0,
 "host" : "198.51.100.1:27017"
 },
 {
 "_id" : 1,
 "host" : "localhost:27018"
 },
 {
 "_id" : 2,
 "host" : "localhost:27019"
 }
]
}

Someone accidentally added member 0 by IP address, instead of its hostname. To
change that, first we load the current configuration in the shell and then we change
the relevant fields:

> var config = rs.config()
> config.members[0].host = "localhost:27017"

Now that the config document is correct, we need to send it to the database using the
rs.reconfig() helper:

> rs.reconfig(config)

240 | Chapter 10: Setting Up a Replica Set

rs.reconfig() is often more useful than rs.add() and rs.remove() for complex
operations, such as modifying members’ configurations or adding/removing multiple
members at once. You can use it to make any legal configuration change you need:
simply create the config document that represents your desired configuration and
pass it to rs.reconfig().

How to Design a Set
To plan out your set, there are certain concepts that you must be familiar with. The
next chapter goes into more detail about these, but the most important is that replica
sets are all about majorities: you need a majority of members to elect a primary, a pri‐
mary can only stay primary as long as it can reach a majority, and a write is safe when
it’s been replicated to a majority. This majority is defined to be “more than half of all
members in the set,” as shown in Table 10-1.

Table 10-1. What is a majority?

Number of members in the set Majority of the set
1 1
2 2
3 2
4 3
5 3
6 4
7 4

Note that it doesn’t matter how many members are down or unavailable; majority is
based on the set’s configuration.

For example, suppose that we have a five-member set and three members go down, as
shown in Figure 10-1. There are still two members up. These two members cannot
reach a majority of the set (at least three members), so they cannot elect a primary. If
one of them were primary, it would step down as soon as it noticed that it could not
reach a majority. After a few seconds, your set would consist of two secondaries and
three unreachable members.

How to Design a Set | 241

Figure 10-1. With a minority of the set available, all members will be secondaries

Many users find this frustrating: why can’t the two remaining members elect a pri‐
mary? The problem is that it’s possible that the other three members didn’t actually go
down, and that it was instead the network that went down, as shown in Figure 10-2.
In this case, the three members on the left will elect a primary, since they can reach a
majority of the set (three members out of five). In the case of a network partition, we
do not want both sides of the partition to elect a primary, because then the set would
have two primaries. Both primaries would be writing to the database, and the datasets
would diverge. Requiring a majority to elect or stay a primary is a neat way of avoid‐
ing ending up with more than one primary.

Figure 10-2. For the members, a network partition looks identical to servers on the other
side of the partition going down

It is important to configure your set in such a way that you’ll usually be able to have
one primary. For example, in the five-member set described here, if members 1, 2,
and 3 are in one data center and members 4 and 5 are in another, there should almost
always be a majority available in the first data center (it’s more likely to have a net‐
work break between data centers than within them).

There are a couple of common configurations that are recommended:

• A majority of the set in one data center, as in Figure 10-2. This is a good design if
you have a primary data center where you always want your replica set’s primary
to be located. So long as your primary data center is healthy, you will have a

242 | Chapter 10: Setting Up a Replica Set

primary. However, if that data center becomes unavailable, your secondary data
center will not be able to elect a new primary.

• An equal number of servers in each data center, plus a tie-breaking server in a
third location. This is a good design if your data centers are “equal” in preference,
since generally servers from either data center will be able to see a majority of the
set. However, it involves having three separate locations for servers.

More complex requirements might require different configurations, but you should
keep in mind how your set will acquire a majority under adverse conditions.

All of these complexities would disappear if MongoDB supported having more than
one primary. However, this would bring its own host of complexities. With two pri‐
maries, you would have to handle conflicting writes (e.g., if someone updates a docu‐
ment on one primary and someone deletes it on another primary). There are two
popular ways of handling conflicts in systems that support multiple writers: manual
reconciliation or having the system arbitrarily pick a “winner.” Neither of these
options is a very easy model for developers to code against, seeing as you can’t be sure
that the data you’ve written won’t change out from under you. Thus, MongoDB chose
to only support having a single primary. This makes development easier but can
result in periods when the replica set is read-only.

How Elections Work
When a secondary cannot reach a primary, it will contact all the other members and
request that it be elected primary. These other members do several sanity checks: Can
they reach a primary that the member seeking election cannot? Is the member seek‐
ing election up to date with replication? Is there any member with a higher priority
available that should be elected instead?

In version 3.2, MongoDB introduced version 1 of the replication protocol. Protocol
version 1 is based on the RAFT consensus protocol developed by Diego Ongaro and
John Ousterhout at Stanford University. It is best described as RAFT-like and is tail‐
ored to include a number of replication concepts that are specific to MongoDB, such
as arbiters, priority, nonvoting members, write concern, etc. Protocol version 1 pro‐
vided the foundation for new features such as a shorter failover time and greatly
reduces the time to detect false primary situations. It also prevents double voting
through the use of term IDs.

RAFT is a consensus algorithm that is broken into relatively inde‐
pendent subproblems. Consensus is the process through which
multiple servers or processes agree on values. RAFT ensures con‐
sensus such that the same series of commands produces the same
series of results and arrives at the same series of states across the
members of a deployment.

How to Design a Set | 243

Replica set members send heartbeats (pings) to each other every two seconds. If a
heartbeat does not return from a member within 10 seconds, the other members
mark the delinquent member as inaccessible. The election algorithm will make a
“best-effort” attempt to have the secondary with the highest priority available call an
election. Member priority affects both the timing and the outcome of elections; sec‐
ondaries with higher priority call elections relatively sooner than secondaries with
lower priority, and are also more likely to win. However, a lower-priority instance can
be elected as primary for brief periods, even if a higher-priority secondary is avail‐
able. Replica set members continue to call elections until the highest-priority member
available becomes primary.

To be elected primary, a member must be up to date with replication, as far as the
members it can reach know. All replicated operations are strictly ordered by an
ascending identifier, so the candidate must have operations later than or equal to
those of any member it can reach.

Member Configuration Options
The replica sets we have set up so far have been fairly uniform in that every member
has the same configuration as every other member. However, there are many situa‐
tions when you don’t want members to be identical: you might want one member to
preferentially be primary or make a member invisible to clients so that no read
requests can be routed to it. These and many other configuration options can be
specified in the member subdocuments of the replica set configuration. This section
outlines the member options that you can set.

Priority
Priority is an indication of how strongly this member “wants” to become primary. Its
value can range from 0 to 100, and the default is 1. Setting "priority" to 0 has a spe‐
cial meaning: members with a priority of 0 can never become primary. These are
called passive members.

The highest-priority member will always be elected primary (so long as it can reach a
majority of the set and has the most up-to-date data). For example, suppose you add a
member with a priority of 1.5 to the set, like so:

> rs.add({"host" : "server-4:27017", "priority" : 1.5})

Assuming the other members of the set have priority 1, once server-4 caught up with
the rest of the set, the current primary would automatically step down and server-4
would elect itself. If server-4 was, for some reason, unable to catch up, the current pri‐
mary would stay primary. Setting priorities will never cause your set to go primary-
less. It will also never cause a member that is behind to become primary (until it has
caught up).

244 | Chapter 10: Setting Up a Replica Set

The absolute value of "priority" only matters in relation to whether it is greater or
less than the other priorities in the set: members with priorities of 100, 1, and 1 will
behave the same way as members of another set with priorities 2, 1, and 1.

Hidden Members
Clients do not route requests to hidden members, and hidden members are not pre‐
ferred as replication sources (although they will be used if more desirable sources are
not available). Thus, many people will hide less powerful or backup servers.

For example, suppose you had a set that looked like this:

> rs.isMaster()
{
 ...
 "hosts" : [
 "server-1:27107",
 "server-2:27017",
 "server-3:27017"
],
 ...
}

To hide server-3, you could add the hidden: true field to its configuration. A mem‐
ber must have a priority of 0 to be hidden (you can’t have a hidden primary):

> var config = rs.config()
> config.members[2].hidden = true
0
> config.members[2].priority = 0
0
> rs.reconfig(config)

Now running isMaster will show:

> rs.isMaster()
{
 ...
 "hosts" : [
 "server-1:27107",
 "server-2:27017"
],
 ...
}

rs.status() and rs.config() will still show the member; it only disappears from
isMaster. When clients connect to a replica set, they call isMaster to determine the
members of the set. Thus, hidden members will never be used for read requests.

To unhide a member, change the hidden option to false or remove the option
entirely.

Member Configuration Options | 245

Election Arbiters
A two-member set has clear disadvantages for majority requirements. However, many
people with small deployments do not want to keep three copies of their data, feeling
that two is enough and that keeping a third copy is not worth the administrative,
operational, and financial costs.

For these deployments, MongoDB supports a special type of member called an
arbiter, whose only purpose is to participate in elections. Arbiters hold no data and
aren’t used by clients: they just provide a majority for two-member sets. In general,
deployments without arbiters are preferable.

As arbiters don’t have any of the traditional responsibilities of a mongod server, you
can run an arbiter as a lightweight process on a wimpier server than you’d generally
use for MongoDB. It’s often a good idea, if possible, to run an arbiter in a separate
failure domain from the other members, so that it has an “outside perspective” on the
set, as described in the deployment recommendations in “How to Design a Set” on
page 241.

You start up an arbiter in the same way that you start a normal mongod, using the
--replSet name option and an empty data directory. You can add it to the set using
the rs.addArb() helper:

> rs.addArb("server-5:27017")

Equivalently, you can specify the "arbiterOnly" option in the member
configuration:

> rs.add({"_id" : 4, "host" : "server-5:27017", "arbiterOnly" : true})

An arbiter, once added to the set, is an arbiter forever: you cannot reconfigure an
arbiter to become a nonarbiter, or vice versa.

One other thing that arbiters are good for is breaking ties in larger clusters. If you
have an even number of nodes, you may have half the nodes vote for one member
and half for another. An arbiter can cast the deciding vote. There are a few things to
keep in mind when using arbiters, though; we’ll look at these next.

Use at most one arbiter
Note that, in both of the use cases just described, you need at most one arbiter. You do
not need an arbiter if you have an odd number of nodes. A common misconception
seems to be that you should add extra arbiters “just in case.” However, it doesn’t help
elections go any faster or provide any additional data safety to add extra arbiters.

Suppose you have a three-member set. Two members are required to elect a primary.
If you add an arbiter, you’ll have a four-member set, so three members will be

246 | Chapter 10: Setting Up a Replica Set

required to choose a primary. Thus, your set is potentially less stable: instead of
requiring 67% of your set to be up, you’re now requiring 75%.

Having extra members can also make elections take longer. If you have an even num‐
ber of nodes because you added an arbiter, your arbiters can cause ties, not prevent
them.

The downside to using an arbiter
If you have a choice between a data node and an arbiter, choose a data node. Using an
arbiter instead of a data node in a small set can make some operational tasks more
difficult. For example, suppose you are running a replica set with two “normal” mem‐
bers and one arbiter, and one of the data-holding members goes down. If that mem‐
ber is well and truly dead (the data is unrecoverable), you will have to get a copy of
the data from the current primary to the new server you’ll be using as a secondary.
Copying data can put a lot of stress on a server, and thus slow down your application.
(Generally, copying a few gigabytes to a new server is trivial but more than a hundred
starts becoming impractical.)

Conversely, if you have three data-holding members, there’s more “breathing room” if
a server completely dies. You can use the remaining secondary to bootstrap a new
server instead of depending on your primary.

In the two-member-plus-arbiter scenario, the primary is the last remaining good
copy of your data and the one trying to handle load from your application while
you’re trying to get another copy of your data online.

Thus, if possible, use an odd number of “normal” members instead of an arbiter.

In three-member replica sets with a primary-secondary-arbiter
(PSA) architecture or sharded clusters with a three-member PSA
shard, there is a known issue with cache pressure increasing if
either of the two data-bearing nodes are down and the "majority"
read concern is enabled. Ideally, you should replace the arbiter with
a data-bearing member for these deployments. Alternatively, to
prevent storage cache pressure the "majority" read concern can be
disabled on each of the mongod instances in the deployment or
shards.

Building Indexes
Sometimes a secondary does not need to have the same (or any) indexes that exist on
the primary. If you are using a secondary only for backup data or offline batch jobs,
you might want to specify "buildIndexes" : false in the member’s configuration.
This option prevents the secondary from building any indexes.

Member Configuration Options | 247

https://oreil.ly/p6nUm
https://oreil.ly/p6nUm

This is a permanent setting: members that have "buildIndexes" : false specified
can never be reconfigured to be “normal” index-building members again. If you want
to change a non-index-building member to an index-building one, you must remove
it from the set, delete all of its data, add it to the set again, and allow it to resync from
scratch.

As with hidden members, this option requires the member’s priority to be 0.

248 | Chapter 10: Setting Up a Replica Set

CHAPTER 11

Components of a Replica Set

This chapter covers how the pieces of a replica set fit together, including:

• How replica set members replicate new data
• How bringing up new members works
• How elections work
• Possible server and network failure scenarios

Syncing
Replication is concerned with keeping an identical copy of data on multiple servers.
The way MongoDB accomplishes this is by keeping a log of operations, or oplog, con‐
taining every write that a primary performs. This is a capped collection that lives in
the local database on the primary. The secondaries query this collection for opera‐
tions to replicate.

Each secondary maintains its own oplog, recording each operation it replicates from
the primary. This allows any member to be used as a sync source for any other mem‐
ber, as shown in Figure 11-1. Secondaries fetch operations from the member they are
syncing from, apply the operations to their dataset, and then write the operations to
their oplog. If applying an operation fails (which should only happen if the underly‐
ing data has been corrupted or in some way differs from the primary’s), the secon‐
dary will exit.

249

Figure 11-1. Oplogs keep an ordered list of write operations that have occurred; each
member has its own copy of the oplog, which should be identical to the primary’s (mod‐
ulo some lag)

If a secondary goes down for any reason, when it restarts it will start syncing from the
last operation in its oplog. As operations are applied to data and then written to the
oplog, the secondary may replay operations that it has already applied to its data.
MongoDB is designed to handle this correctly: replaying oplog ops multiple times
yields the same result as replaying them once. Each operation in the oplog is idempo‐
tent. That is, oplog operations produce the same results whether applied once or mul‐
tiple times to the target dataset.

Because the oplog is a fixed size, it can only hold a certain number of operations. In
general, the oplog will use space at approximately the same rate as writes come into
the system: if you’re writing 1 KB/minute on the primary, your oplog is probably
going to fill up at about 1 KB/minute. However, there are a few exceptions: operations
that affect multiple documents, such as removes or a multi-updates, will be exploded
into many oplog entries. The single operation on the primary will be split into one
oplog op per document affected. Thus, if you remove 1,000,000 documents from a
collection with db.coll.remove(), it will become 1,000,000 oplog entries removing
one document at a time. If you are doing lots of bulk operations, this can fill up your
oplog more quickly than you might expect.

In most cases, the default oplog size is sufficient. If you can predict your replica set’s
workload to resemble one of the following patterns, then you might want to create an
oplog that is larger than the default. Conversely, if your application predominantly
performs reads with a minimal amount of write operations, a smaller oplog may be
sufficient. These are the kinds of workloads that might require a larger oplog size:

Updates to multiple documents at once
The oplog must translate multi-updates into individual operations in order to
maintain idempotency. This can use a great deal of oplog space without a corre‐
sponding increase in data size or disk use.

250 | Chapter 11: Components of a Replica Set

Deletions equal the same amount of data as inserts
If you delete roughly the same amount of data as you insert, the database will not
grow significantly in terms of disk use, but the size of the operation log can be
quite large.

Significant number of in-place updates
If a significant portion of the workload is updates that do not increase the size of
the documents, the database records a large number of operations but the quan‐
tity of data on disk does not change.

Before mongod creates an oplog, you can specify its size with the oplogSizeMB option.
However, after you have started a replica set member for the first time, you can only
change the size of the oplog using the “Change the Size of the Oplog” procedure.

MongoDB uses two forms of data synchronization: an initial sync to populate new
members with the full dataset, and replication to apply ongoing changes to the entire
dataset. Let’s take a closer look at each of these.

Initial Sync
MongoDB performs an initial sync to copy all the data from one member of the rep‐
lica set to another member. When a member of the set starts up, it will check if it is in
a valid state to begin syncing from someone. If it is in a valid state, it will attempt to
make a full copy of the data from another member of the set. There are several steps
to the process, which you can follow in the mongod’s log.

First, MongoDB clones all databases except the local database. The mongod scans
every collection in each source database and inserts all the data into its own copies of
these collections on the target member. Prior to beginning the clone operations, any
existing data on the target member will be dropped.

Only do an initial sync for a member if you do not want the data in
your data directory or have moved it elsewhere, as mongod’s first
action is to delete it all.

In MongoDB 3.4 and later, the initial sync builds all the collection indexes as the
documents are copied for each collection (in earlier versions, only the "_id" indexes
are built during this stage). It also pulls newly added oplog records during the data
copy, so you should ensure that the target member has enough disk space in the local
database to store these records during this data copy stage.

Once all the databases are cloned, the mongod uses the oplog from the source to
update its dataset to reflect the current state of the replica set, applying all changes to
the dataset that occurred while the copy was in progress. These changes might

Syncing | 251

https://oreil.ly/mh5SX

include any type of write (inserts, updates, and deletes), and this process might mean
that mongod has to reclone certain documents that were moved and therefore missed
by the cloner.

This is roughly what the logs will look like if some documents had to be recloned.
Depending on the level of traffic and the types of operations that where happening on
the sync source, you may or may not have missing objects:

Mon Jan 30 15:38:36 [rsSync] oplog sync 1 of 3
Mon Jan 30 15:38:36 [rsBackgroundSync] replSet syncing to: server-1:27017
Mon Jan 30 15:38:37 [rsSyncNotifier] replset setting oplog notifier to
 server-1:27017
Mon Jan 30 15:38:37 [repl writer worker 2] replication update of non-mod
 failed:
 { ts: Timestamp 1352215827000|17, h: -5618036261007523082, v: 2, op: "u",
 ns: "db1.someColl", o2: { _id: ObjectId('50992a2a7852201e750012b7') },
 o: { $set: { count.0: 2, count.1: 0 } } }
Mon Jan 30 15:38:37 [repl writer worker 2] replication info
 adding missing object
Mon Jan 30 15:38:37 [repl writer worker 2] replication missing object
 not found on source. presumably deleted later in oplog

At this point, the data should exactly match the dataset as it existed at some point on
the primary. The member finishes the initial sync process and transitions to normal
syncing, which allows it to become a secondary.

Doing an initial sync is very easy from an operator’s perspective: just start up a mon‐
god with a clean data directory. However, it is often preferable to restore from a
backup instead, as covered in Chapter 23. Restoring from a backup is often faster
than copying all of your data through mongod.

Also, cloning can ruin the sync source’s working set. Many deployments end up with
a subset of their data that’s frequently accessed and always in memory (because the
OS is accessing it often). Performing an initial sync forces the member to page all of
its data into memory, evicting the frequently used data. This can slow down a mem‐
ber dramatically as requests that were being handled by data in RAM are suddenly
forced to go to disk. However, for small datasets and servers with some breathing
room, initial syncing is a good, easy option.

One of the most common issues people run into with initial sync is it taking too long.
In these cases, the new member can “fall off ” the end of sync source’s oplog: it gets so
far behind the sync source that it can no longer catch up because the sync source’s
oplog has overwritten the data the member would need to use to continue replicating.

There is no way to fix this other than attempting the initial sync at a less busy time or
restoring from a backup. The initial sync cannot proceed if the member has fallen off
of the sync source’s oplog. “Handling Staleness” on page 253 covers this in more
depth.

252 | Chapter 11: Components of a Replica Set

Replication
The second type of synchronization MongoDB performs is replication. Secondary
members replicate data continuously after the initial sync. They copy the oplog from
their sync source and apply these operations in an asynchronous process. Secondaries
may automatically change their sync-from source as needed, in response to changes
in the ping time and the state of other members’ replication. There are several rules
that govern which members a given node can sync from. For example, replica set
members with one vote cannot sync from members with zero votes, and secondaries
avoid syncing from delayed members and hidden members. Elections and different
classes of replica set members are discussed in later sections.

Handling Staleness
If a secondary falls too far behind the actual operations being performed on the sync
source, the secondary will go stale. A stale secondary is unable to catch up because
every operation in the sync source’s oplog is too far ahead: it would be skipping oper‐
ations if it continued to sync. This could happen if the secondary has had downtime,
has more writes than it can handle, or is too busy handling reads.

When a secondary goes stale, it will attempt to replicate from each member of the set
in turn to see if there’s anyone with a longer oplog that it can bootstrap from. If there
is no one with a long-enough oplog, replication on that member will halt and it will
need to be fully resynced (or restored from a more recent backup).

To avoid out-of-sync secondaries, it’s important to have a large oplog so that the pri‐
mary can store a long history of operations. A larger oplog will obviously use more
disk space, but in general this is a good tradeoff to make because disk space tends to
be cheap and little of the oplog is typically in use, so it doesn’t take up much RAM. A
general rule of thumb is that the oplog should provide coverage (replication window)
for two to three days’ worth of normal operations. For more information on sizing
the oplog, see “Resizing the Oplog” on page 282.

Heartbeats
Members need to know about the other members’ states: who’s primary, who they can
sync from, and who’s down. To keep an up-to-date view of the set, a member sends
out a heartbeat request to every other member of the set every two seconds. A heart‐
beat request is a short message that checks everyone’s state.

One of the most important functions of heartbeats is to let the primary know if it can
reach a majority of the set. If a primary can no longer reach a majority of the servers,
it will demote itself and become a secondary (see “How to Design a Set” on page 241).

Heartbeats | 253

Member States
Members also communicate what state they are in via heartbeats. We’ve already dis‐
cussed two states: primary and secondary. There are several other normal states that
you’ll often see members be in:

STARTUP
This is the state a member is in when it’s first started, while MongoDB is attempt‐
ing to load its replica set configuration. Once the configuration has been loaded,
it transitions to STARTUP2.

STARTUP2
This state lasts throughout the initial sync process, which typically takes just a
few seconds. The member forks off a couple of threads to handle replication and
elections and then transitions into the next state: RECOVERING.

RECOVERING
This state indicates that the member is operating correctly but is not available for
reads. You may see it in a variety of situations.

On startup, a member has to make a few checks to make sure it’s in a valid state
before accepting reads; therefore, all members go through the RECOVERING
state briefly on startup before becoming secondaries. A member can also go into
this state during long-running operations such as compacting or in response to
the replSetMaintenance command.

A member will also go into the RECOVERING state if it has fallen too far behind
the other members to catch up. This is, generally, a failure state that requires
resyncing the member. The member does not go into an error state at this point
because it lives in hope that someone will come online with a long-enough oplog
that it can bootstrap itself back to non-staleness.

ARBITER
Arbiters (see “Election Arbiters” on page 246) have a special state and should
always be in this state during normal operation.

There are also a few states that indicate a problem with the system. These include:

DOWN
If a member was up but then becomes unreachable, it will enter this state. Note
that a member reported as “down” might, in fact, still be up, just unreachable due
to network issues.

UNKNOWN
If a member has never been able to reach another member, it will not know what
state it’s in, so it will report it as UNKNOWN. This generally indicates that the

254 | Chapter 11: Components of a Replica Set

https://oreil.ly/6mJu-

unknown member is down or that there are network problems between the two
members.

REMOVED
This is the state of a member that has been removed from the set. If a removed
member is added back into the set, it will transition back into its “normal” state.

ROLLBACK
This state is used when a member is rolling back data, as described in “Rollbacks”
on page 255. At the end of the rollback process, a server will transition back into
the RECOVERING state and then become a secondary.

Elections
A member will seek election if it cannot reach a primary (and is itself eligible to
become primary). A member seeking election will send out a notice to all of the
members it can reach. These members may know why this member is an unsuitable
primary: it may be behind in replication or there may already be a primary that the
member seeking election cannot reach. In these cases, the other members will vote
against the candidate.

Assuming that there is no reason to object, the other members will vote for the mem‐
ber seeking election. If the member seeking election receives votes from a majority of
the set, the election was successful and the member will transition into PRIMARY
state. If it did not receive a majority if votes, it will remain a secondary and may try to
become a primary again later. A primary will remain primary until it cannot reach a
majority of members, goes down, or is stepped down, or the set is reconfigured.

Assuming that the network is healthy and a majority of the servers are up, elections
should be fast. It will take a member up to two seconds to notice that a primary has
gone down (due to the heartbeats mentioned earlier) and it will immediately start an
election, which should only take a few milliseconds. However, the situation is often
nonoptimal: an election may be triggered due to networking issues or overloaded
servers responding too slowly. In these cases, an election might take more time—even
up to a few minutes.

Rollbacks
The election process described in the previous section means that if a primary does a
write and goes down before the secondaries have a chance to replicate it, the next pri‐
mary elected may not have the write. For example, suppose we have two data centers,
one with the primary and a secondary, and the other with three secondaries, as
shown in Figure 11-2.

Elections | 255

Figure 11-2. A possible two-data-center configuration

Suppose that there is a network partition between the two data centers, as shown in
Figure 11-3. The servers in the first data center are up to operation 126, but that data
center hasn’t yet replicated to the servers in the other data center.

Figure 11-3. Replication across data centers can be slower than within a single data
center

The servers in the other data center can still reach a majority of the set (three out of
five servers). Thus, one of them may be elected primary. This new primary begins
taking its own writes, as shown in Figure 11-4.

Figure 11-4. Unreplicated writes won’t match writes on the other side of a network
partition

256 | Chapter 11: Components of a Replica Set

When the network is repaired, the servers in the first data center will look for opera‐
tion 126 to start syncing from the other servers, but will not be able to find it. When
this happens, A and B will begin a process called rollback. Rollback is used to undo
ops that were not replicated before failover. The servers with 126 in their oplogs will
look back through the oplogs of the servers in the other data center for a common
point. They’ll find that operation 125 is the latest operation that matches. Figure 11-5
shows what the oplogs would look like. A apparently crashed before replicating ops
126−128, so these operations are not present on B, which has more recent operations.
A will have to roll back these three operations before resuming syncing.

Figure 11-5. Two members with conflicting oplogs—the last common op was 125, so as
B has more recent operations A will need to roll back ops 126-128

At this point, the server will go through the ops it has and write its version of each
document affected by those ops to a .bson file in a rollback directory of your data
directory. Thus, if (for example) operation 126 was an update, it will write the docu‐
ment updated by 126 to <collectionName>.bson. Then it will copy the version of that
document from the current primary.

The following is a paste of the log entries generated from a typical rollback:

Fri Oct 7 06:30:35 [rsSync] replSet syncing to: server-1
Fri Oct 7 06:30:35 [rsSync] replSet our last op time written: Oct 7
 06:30:05:3
Fri Oct 7 06:30:35 [rsSync] replset source's GTE: Oct 7 06:30:31:1
Fri Oct 7 06:30:35 [rsSync] replSet rollback 0
Fri Oct 7 06:30:35 [rsSync] replSet ROLLBACK
Fri Oct 7 06:30:35 [rsSync] replSet rollback 1
Fri Oct 7 06:30:35 [rsSync] replSet rollback 2 FindCommonPoint
Fri Oct 7 06:30:35 [rsSync] replSet info rollback our last optime: Oct 7
 06:30:05:3
Fri Oct 7 06:30:35 [rsSync] replSet info rollback their last optime: Oct 7
 06:30:31:2
Fri Oct 7 06:30:35 [rsSync] replSet info rollback diff in end of log times:
 -26 seconds
Fri Oct 7 06:30:35 [rsSync] replSet rollback found matching events at Oct 7
 06:30:03:4118
Fri Oct 7 06:30:35 [rsSync] replSet rollback findcommonpoint scanned : 6
Fri Oct 7 06:30:35 [rsSync] replSet replSet rollback 3 fixup
Fri Oct 7 06:30:35 [rsSync] replSet rollback 3.5
Fri Oct 7 06:30:35 [rsSync] replSet rollback 4 n:3

Rollbacks | 257

Fri Oct 7 06:30:35 [rsSync] replSet minvalid=Oct 7 06:30:31 4e8ed4c7:2
Fri Oct 7 06:30:35 [rsSync] replSet rollback 4.6
Fri Oct 7 06:30:35 [rsSync] replSet rollback 4.7
Fri Oct 7 06:30:35 [rsSync] replSet rollback 5 d:6 u:0
Fri Oct 7 06:30:35 [rsSync] replSet rollback 6
Fri Oct 7 06:30:35 [rsSync] replSet rollback 7
Fri Oct 7 06:30:35 [rsSync] replSet rollback done
Fri Oct 7 06:30:35 [rsSync] replSet RECOVERING
Fri Oct 7 06:30:36 [rsSync] replSet syncing to: server-1
Fri Oct 7 06:30:36 [rsSync] replSet SECONDARY

The server begins syncing from another member (server-1, in this case) and realizes
that it cannot find its latest operation on the sync source. At that point, it starts the
rollback process by going into the ROLLBACK state (replSet ROLLBACK).

At step 2, it finds the common point between the two oplogs, which was 26 seconds
ago. It then begins undoing the operations from the last 26 seconds from its oplog.
Once the rollback is complete, it transitions into the RECOVERING state and begins
syncing normally again.

To apply operations that have been rolled back to the current primary, first use mon‐
gorestore to load them into a temporary collection:

$ mongorestore --db stage --collection stuff \
 /data/db/rollback/important.stuff.2018-12-19T18-27-14.0.bson

Then examine the documents (using the shell) and compare them to the current con‐
tents of the collection from whence they came. For example, if someone had created a
“normal” index on the rollback member and a unique index on the current primary,
you’d want to make sure that there weren’t any duplicates in the rolled-back data and
resolve them if there were.

Once you have a version of the documents that you like in your staging collection,
load it into your main collection:

> staging.stuff.find().forEach(function(doc) {
... prod.stuff.insert(doc);
... })

If you have any insert-only collections, you can directly load the rollback documents
into the collection. However, if you are doing updates on the collection you will need
to be more careful about how you merge rollback data.

One often-misused member configuration option is the number of votes each mem‐
ber has. Manipulating the number of votes is almost always not what you want to do
and causes a lot of rollbacks (which is why it was not included in the list of member
configuration options in the last chapter). Do not change the number of votes unless
you are prepared to deal with regular rollbacks.

For more information on preventing rollbacks, see Chapter 12.

258 | Chapter 11: Components of a Replica Set

When Rollbacks Fail
In older versions of MongoDB, it could decide that the rollback was too large to
undertake. Since MongoDB version 4.0, there is no limit on the amount of data that
can be rolled back. A rollback in versions before 4.0 can fail if there are more than
300 MB of data or about 30 minutes of operations to roll back. In these cases, you
must resync the node that is stuck in rollback.

The most common cause of this is when secondaries are lagging and the primary
goes down. If one of the secondaries becomes primary, it will be missing a lot of oper‐
ations from the old primary. The best way to make sure you don’t get a member stuck
in rollback is to keep your secondaries as up to date as possible.

Rollbacks | 259

CHAPTER 12

Connecting to a Replica Set
from Your Application

This chapter covers how applications interact with replica sets, including:

• How connections and failovers work
• Waiting for replication on writes
• Routing reads to the correct member

Client−to−Replica Set Connection Behavior
MongoDB client libraries (“drivers” in MongoDB parlance) are designed to manage
communication with MongoDB servers, regardless of whether the server is a stand‐
alone MongoDB instance or a replica set. For replica sets, by default, drivers will con‐
nect to the primary and route all traffic to it. Your application can perform reads and
writes as though it were talking to a standalone server while your replica set quietly
keeps hot standbys ready in the background.

Connections to a replica set are similar to connections to a single server. Use the
MongoClient class (or equivalent) in your driver and provide a seed list for the driver
to connect to. A seed list is simply a list of server addresses. Seeds are members of the
replica set your application will read from and write data to. You do not need to list
all members in the seed list (although you can). When the driver connects to the
seeds, it will discover the other members from them. A connection string usually
looks something like this:

"mongodb://server-1:27017,server-2:27017,server-3:27017"

See your driver’s documentation for details.

261

To provide further resilience, you should also use the DNS Seedlist Connection for‐
mat to specify how your applications connect to your replica set. The advantage to
using DNS is that servers hosting your MongoDB replica set members can be
changed in rotation without needing to reconfigure the clients (specifically, their con‐
nection strings).

All MongoDB drivers adhere to the server discovery and monitoring (SDAM) spec.
They persistently monitor the topology of your replica set to detect any changes in
your application’s ability to reach all members of the set. In addition, the drivers
monitor the set to maintain information on which member is the primary.

The purpose of replica sets is to make your data highly available in the face of net‐
work partitions or servers going down. In ordinary circumstances, replica sets
respond gracefully to such problems by electing a new primary so that applications
can continue to read and write data. If a primary goes down, the driver will automati‐
cally find the new primary (once one is elected) and will route requests to it as soon
as possible. However, while there is no reachable primary, your application will be
unable to perform writes.

There may be no primary available for a brief time (during an election) or for an
extended period of time (if no reachable member can become primary). By default,
the driver will not service any requests—read or write—during this period. If neces‐
sary to your application, you can configure the driver to use secondaries for read
requests.

A common desire is to have the driver hide the entire election process (the primary
going away and a new primary being elected) from the user. However, no driver han‐
dles failover this way, for a few reasons. First, a driver can only hide a lack of primary
for so long. Second, a driver often finds out that the primary went down because an
operation failed, which means that the driver doesn’t know whether or not the pri‐
mary processed the operation before going down. This is a fundamental distributed
systems problem that is impossible to avoid, so we need a strategy for dealing with it
when it emerges. Should we retry the operation on the new primary, if one is elected
quickly? Assume it got through on the old primary? Check and see if the new pri‐
mary has the operation?

The correct strategy, it turns out, is to retry at most one time. Huh? To explain, let’s
consider our options. These boil down to the following: don’t retry, give up after
retrying some fixed number of times, or retry at most once. We also need to consider
the type of error that could be the source of our problem. There are three types of
errors we might see in attempting to write to a replica set: a transient network error, a
persistent outage (either network or server), or an error caused by a command the
server rejects as incorrect (e.g., not authorized). For each type of error, let’s consider
our retry options.

262 | Chapter 12: Connecting to a Replica Set from Your Application

https://oreil.ly/Uq4za
https://oreil.ly/Uq4za
https://oreil.ly/ZsS8p

For the sake of this discussion, let’s look at the example of a write to simply increment
a counter. If our application attempts to increment our counter but gets no response
from the server, we don’t know whether the server received the message and per‐
formed the update. So, if we follow a strategy of not retrying this write, for a transient
network error, we might undercount. For a persistent outage or a command error not
retrying is the correct strategy, because no amount of retrying the write operation will
have the desired effect.

If we follow a strategy of retrying some fixed number of times, for transient network
errors, we might overcount (in the case where our first attempt succeeded). For a per‐
sistent outage or command error, retrying multiple times will simply waste cycles.

Let’s look now at the strategy of retrying just once. For a transient network error, we
might overcount. For a persistent outage or command error, this is the correct strat‐
egy. However, what if we could ensure that our operations are idempotent? Idempo‐
tent operations are those that have the same outcome whether we do them once or
multiple times. With idempotent operations, retrying network errors once has the
best chance of correctly dealing with all three types of errors.

As of MongoDB 3.6, the server and all MongoDB drivers support a retryable writes
option. See your driver’s documentation for details on how to use this option. With
retryable writes, the driver will automatically follow the retry-at-most-once strategy.
Command errors will be returned to the application for client-side handling. Net‐
work errors will be retried once after an appropriate delay that should accommodate
a primary election under ordinary circumstances. With retryable writes turned on,
the server maintains a unique identifier for each write operation and can therefore
determine when the driver is attempting to retry a command that already succeeded.
Rather than apply the write again, it will simply return a message indicating the write
succeeded and thereby overcome the problem caused by the transient network issue.

Waiting for Replication on Writes
Depending on the needs of your application, you might want to require that all writes
are replicated to a majority of the replica set before they are acknowledged by the
server. In the rare circumstance where the primary of a set goes down and the newly
elected primary (formerly a secondary) did not replicate the very last writes to the
former primary, those writes will be rolled back when the former primary comes back
up. They can be recovered, but it requires manual intervention. For many applica‐
tions, having a small number of writes rolled back is not a problem. In a blog applica‐
tion, for example, there is little real danger in rolling back one or two comments from
one reader.

However, for other applications, rollback of any writes should be avoided. Suppose
your application sends a write to the primary. It receives confirmation that the write

Waiting for Replication on Writes | 263

was written, but the primary crashes before any secondaries have had a chance to
replicate that write. Your application thinks that it’ll be able to access that write, but
the current members of the replica set don’t have a copy of it.

At some point, a secondary may be elected primary and start taking new writes.
When the former primary comes back up, it will discover that it has writes that the
current primary does not. To correct this, it will undo any writes that do not match
the sequence of operations on the current primary. These operations are not lost, but
they are written to special rollback files that have to be manually applied to the cur‐
rent primary. MongoDB cannot automatically apply these writes, since they may con‐
flict with other writes that have happened since the crash. Thus, the writes essentially
disappear until an admin gets a chance to apply the rollback files to the current pri‐
mary (see Chapter 11 for more details on rollbacks).

The requirement of writing to a majority prevents this situation: if the application
gets a confirmation that a write succeeded, then the new primary will have to have a
copy of the write to be elected (a member must be up to date to be elected primary).
If the application does not receive acknowledgment from the server or receives an
error, then it will know to try again, because the write was not propagated to a major‐
ity of the set before the primary crashed.

Thus, to ensure that writes will be persisted no matter what happens to the set, we
must ensure that each write propagates to a majority of the members of the set. We
can achieve this using writeConcern.

As of MongoDB 2.6, writeConcern is integrated with write operations. For example,
in JavaScript, we can use writeConcern as follows:

try {
 db.products.insertOne(
 { "_id": 10, "item": "envelopes", "qty": 100, type: "Self-Sealing" },
 { writeConcern: { "w" : "majority", "wtimeout" : 100 } }
);
} catch (e) {
 print (e);
}

The specific syntax in your driver will vary depending on the programming language,
but the semantics remain the same. In the example here, we specify a write concern of
"majority". Upon success, the server will respond with a message such as the
following:

{ "acknowledged" : true, "insertedId" : 10 }

But the server will not respond until this write operation has replicated to a majority
of the members of the replica set. Only then will our application receive acknowledg‐
ment that this write succeeded. If the write does not succeed within the timeout we’ve
specified, the server will respond with an error message:

264 | Chapter 12: Connecting to a Replica Set from Your Application

WriteConcernError({
 "code" : 64,
 "errInfo" : {
 "wtimeout" : true
 },
 "errmsg" : "waiting for replication timed out"
})

Write concern majority and the replica set election protocol ensure that in the event
of a primary election, only secondaries that are up to date with acknowledged writes
can be elected primary. In this way, we guarantee that rollback will not happen. With
the timeout option, we also have a tunable setting that enables us to detect and flag
any long-running writes at the application layer.

Other Options for “w”
"majority" is not the only writeConcern option. MongoDB also lets you specify an
arbitrary number of servers to replicate to by passing "w" a number, as shown here:

db.products.insertOne(
 { "_id": 10, "item": "envelopes", "qty": 100, type: "Self-Sealing" },
 { writeConcern: { "w" : 2, "wtimeout" : 100 } }
);

This will wait until two members (the primary and one secondary) have the write.

Note that the "w" value includes the primary. If you want the write propagated to n
secondaries, you should set "w" to n+1 (to include the primary). Setting "w" : 1 is
the same as not passing the "w" option at all because it just checks that the write was
successful on the primary.

The downside to using a literal number is that you have to change your application if
your replica set configuration changes.

Custom Replication Guarantees
Writing to a majority of a set is considered “safe.” However, some sets may have more
complex requirements: you may want to make sure that a write makes it to at least
one server in each data center or a majority of the nonhidden nodes. Replica sets
allow you to create custom rules that you can pass to "getLastError" to guarantee
replication to whatever combination of servers you need.

Guaranteeing One Server per Data Center
Network issues between data centers are much more common than within data cen‐
ters, and it is more likely for an entire data center to go dark than an equivalent smat‐
tering of servers across multiple data centers. Thus, you might want some data center
−specific logic for writes. Guaranteeing a write to every data center before confirming

Custom Replication Guarantees | 265

success means that, in the case of a write followed by the data center going offline,
every other data center will have at least one local copy.

To set this up, we first classify the members by data center. We do this by adding a
"tags" field to their replica set configuration:

> var config = rs.config()
> config.members[0].tags = {"dc" : "us-east"}
> config.members[1].tags = {"dc" : "us-east"}
> config.members[2].tags = {"dc" : "us-east"}
> config.members[3].tags = {"dc" : "us-east"}
> config.members[4].tags = {"dc" : "us-west"}
> config.members[5].tags = {"dc" : "us-west"}
> config.members[6].tags = {"dc" : "us-west"}

The "tags" field is an object, and each member can have multiple tags. It might be a
“high quality” server in the "us-east" data center, for example, in which case we’d
want a "tags" field such as {"dc": "us-east", "quality" : "high"}.

The second step is to add a rule by creating a "getLastErrorModes" field in our rep‐
lica set config. The name "getLastErrorModes" is vestigial in the sense that prior to
MongoDB 2.6, applications used a method called "getLastError" to specify write
concern. In replica configs, for "getLastErrorModes" each rule is of the form
"name" : {"key" : number}}. "name" is the name for the rule, which should describe
what the rule does in a way that clients can understand, as they’ll be using this name
when they call getLastError. In this example, we might call this rule "eachDC" or
something more abstract such as "user-level safe".

The "key" field is the key field from the tags, so in this example it will be "dc". The
number is the number of groups that are needed to fulfill this rule. In this case, number
is 2 (because we want at least one server from "us-east" and one from "us-west").
number always means “at least one server from each of number groups.”

We add "getLastErrorModes" to the replica set config as follows and reconfigure to
create the rule:

> config.settings = {}
> config.settings.getLastErrorModes = [{"eachDC" : {"dc" : 2}}]
> rs.reconfig(config)

"getLastErrorModes" lives in the "settings" subobject of a replica set config, which
contains a few set-level optional settings.

Now we can use this rule for writes:

db.products.insertOne(
 { "_id": 10, "item": "envelopes", "qty": 100, type: "Self-Sealing" },
 { writeConcern: { "w" : "eachDC", wtimeout : 1000 } }
);

266 | Chapter 12: Connecting to a Replica Set from Your Application

Note that rules are somewhat abstracted away from the application developer: they
don’t have to know which servers are in "eachDC" to use the rule, and the rule can
change without their application having to change. We could add a data center or
change set members and the application would not have to know.

Guaranteeing a Majority of Nonhidden Members
Often, hidden members are somewhat second-class citizens: you’re never going to fail
over to them and they certainly aren’t taking any reads. Thus, you may only care that
nonhidden members received a write and let the hidden members sort it out for
themselves.

Suppose we have five members, host0 through host4, host4 being a hidden member.
We want to make sure that a majority of the nonhidden members have a write—that
is, at least three of host0, host1, host2, and host3. To create a rule for this, first we tag
each of the nonhidden members with its own tag:

> var config = rs.config()
> config.members[0].tags = [{"normal" : "A"}]
> config.members[1].tags = [{"normal" : "B"}]
> config.members[2].tags = [{"normal" : "C"}]
> config.members[3].tags = [{"normal" : "D"}]

The hidden member, host4, is not given a tag.

Now we add a rule for the majority of these servers:

> config.settings.getLastErrorModes = [{"visibleMajority" : {"normal" : 3}}]
> rs.reconfig(config)

Finally, we can use this rule in our application:

db.products.insertOne(
 { "_id": 10, "item": "envelopes", "qty": 100, type: "Self-Sealing" },
 { writeConcern: { "w" : "visibleMajority", wtimeout : 1000 } }
);

This will wait until at least three of the nonhidden members have the write.

Creating Other Guarantees
The rules you can create are limitless. Remember that there are two steps to creating a
custom replication rule:

1. Tag members by assigning them key/value pairs. The keys describe classifica‐
tions; for example, you might have keys such as "data_center" or "region" or
"serverQuality". Values determine which group a server belongs to within a
classification. For example, for the key "data_center", you might have some
servers tagged "us-east", some "us-west", and others "aust".

Custom Replication Guarantees | 267

2. Create a rule based on the classifications you create. Rules are always of the form
{"name" : {"key" : number}}, where at least one server from number groups
must have a write before it has succeeded. For example, you could create a rule
{"twoDCs" : {"data_center" : 2}}, which would mean that at least one server
in two of the data centers tagged must confirm a write before it is successful.

Then you can use this rule in getLastErrorModes.

Rules are immensely powerful ways to configure replication, although they are com‐
plex to understand and set up. Unless you have fairly involved replication require‐
ments, you should be perfectly safe sticking with "w" : "majority".

Sending Reads to Secondaries
By default, drivers will route all requests to the primary. This is generally what you
want, but you can configure other options by setting read preferences in your driver.
Read preferences let you specify the types of servers queries should be sent to.

Sending read requests to secondaries is generally a bad idea. There are some specific
situations in which it makes sense, but you should generally send all traffic to the pri‐
mary. If you are considering sending reads to secondaries, make sure to weigh the
pros and cons very carefully before allowing it. This section covers why it’s a bad idea
and the specific conditions when it makes sense to do so.

Consistency Considerations
Applications that require strongly consistent reads should not read from secondaries.

Secondaries should usually be within a few milliseconds of the primary. However,
there is no guarantee of this. Sometimes secondaries can fall behind by minutes,
hours, or even days due to load, misconfiguration, network errors, or other issues.
Client libraries cannot tell how up to date a secondary is, so clients will cheerfully
send queries to secondaries that are far behind. Hiding a secondary from client reads
can be done but is a manual process. Thus, if your application needs data that is pre‐
dictably up to date, it should not read from secondaries.

If your application needs to read its own writes (e.g., insert a document and then
query for it and find it) you should not send the read to a secondary (unless the write
waits for replication to all secondaries using "w" as shown earlier). Otherwise, an
application may perform a successful write, attempt to read the value, and not be able
to find it (because it sent the read to a secondary that hasn’t replicated yet). Clients
can issue requests faster than replication can copy operations.

To always send read requests to the primary, set your read preference to primary (or
leave it alone, since primary is the default). If there is no primary, queries will error

268 | Chapter 12: Connecting to a Replica Set from Your Application

out. This means that your application cannot perform queries if the primary goes
down. However, it is certainly an acceptable option if your application can deal
with downtime during failovers or network partitions or if getting stale data is
unacceptable.

Load Considerations
Many users send reads to secondaries to distribute load. For example, if your servers
can only handle 10,000 queries a second and you need to handle 30,000, you might
set up a couple of secondaries and have them take some of the load. However, this is a
dangerous way to scale because it’s easy to accidentally overload your system and dif‐
ficult to recover from once you do.

For example, suppose that you have the situation just described: 30,000 reads per sec‐
ond. You decide to create a replica set with four members (one of these would be con‐
figured as nonvoting, to prevent ties in elections) to handle this: each secondary is
well below its maximum load and the system works perfectly.

Until one of the secondaries crashes.

Now each of the remaining members are handling 100% of their possible load. If you
need to rebuild the member that crashed, it may need to copy data from one of the
other servers, overwhelming the remaining servers. Overloading a server often makes
it perform slower, lowering the set’s capacity even further and forcing other members
to take on more load, causing them to slow down in a death spiral.

Overloading can also cause replication to slow down, making the remaining seconda‐
ries fall behind. Suddenly you have a member down and a member lagging, and
everything is too overloaded to have any wiggle room.

If you have a good idea of how much load a server can take, you might feel like you
can plan this out better: use five servers instead of four and the set won’t be overloa‐
ded if one goes down. However, even if you plan it out perfectly (and only lose the
number of servers you expected), you still have to fix the situation with the other
servers under more stress than they would be otherwise.

A better choice is to use sharding to distribute load. We’ll cover how to set sharding
up in Chapter 14.

Reasons to Read from Secondaries
There are a few cases in which it’s reasonable to send application reads to secondaries.
For instance, you may want your application to still be able to perform reads if the
primary goes down (and you do not care if those reads are somewhat stale). This is
the most common case for distributing reads to secondaries: you’d like a temporary

Sending Reads to Secondaries | 269

read-only mode when your set loses a primary. This read preference is called primary
Preferred.

One common argument for reading from secondaries is to get low-latency reads. You
can specify nearest as your read preference to route requests to the lowest-latency
member based on average ping time from the driver to the replica set member. If
your application needs to access the same document with low latency in multiple data
centers, this is the only way to do it. If, however, your documents are more location-
based (application servers in this data center need low-latency access to some of your
data, or application servers in another data center need low-latency access to other
data), this should be done with sharding. Note that you must use sharding if your
application requires low-latency reads and low-latency writes: replica sets only allow
writes to one location (wherever the primary is).

You must be willing to sacrifice consistency if you are reading from members that
may not have replicated all the writes yet. Alternatively, you could sacrifice write
speed if you wanted to wait until writes had been replicated to all members.

If your application can truly function acceptably with arbitrarily stale data, you can
use the secondary or secondaryPreferred read preferences. secondary will always
send read requests to a secondary. If there are no secondaries available, this will error
out rather than send reads to the primary. It can be used for applications that do not
care about stale data and want to use the primary for writes only. If you have any con‐
cerns about staleness of data, this is not recommended.

secondaryPreferred will send read requests to a secondary if one is available. If no
secondaries are available, requests will be sent to the primary.

Sometimes, read load is drastically different than write load—i.e., you’re reading
entirely different data than you’re writing. You might want dozens of indexes for off‐
line processing that you don’t want to have on the primary. In this case, you might
want to set up a secondary with different indexes than the primary. If you’d like to use
a secondary for this purpose, you’d probably create a connection directly to it from
the driver, instead of using a replica set connection.

Consider which of the options makes sense for your application. You can also com‐
bine options: if some read requests must be from the primary, use primary for those.
If you are OK with other reads not having the most up-to-date data, use primaryPre
ferred for those. And if certain requests require low latency over consistency, use
nearest for those.

270 | Chapter 12: Connecting to a Replica Set from Your Application

CHAPTER 13

Administration

This chapter covers replica set administration, including:

• Performing maintenance on individual members
• Configuring sets under a variety of circumstances
• Getting information about and resizing your oplog
• Doing some more exotic set configurations
• Converting from master/slave to a replica set

Starting Members in Standalone Mode
A lot of maintenance tasks cannot be performed on secondaries (because they involve
writes) and shouldn’t be performed on primaries because of the impact this could
have on application performance. Thus, the following sections frequently mention
starting up a server in standalone mode. This means restarting the member so that it
is a standalone server, not a member of a replica set (temporarily).

To start up a member in standalone mode, first look at the command-line options
used to start it. Suppose they look something like this:

> db.serverCmdLineOpts()
{
 "argv" : ["mongod", "-f", "/var/lib/mongod.conf"],
 "parsed" : {
 "replSet": "mySet",
 "port": "27017",
 "dbpath": "/var/lib/db"
 },

271

 "ok" : 1
}

To perform maintenance on this server we can restart it without the replSet option.
This will allow us to read and write to it as a normal standalone mongod. We don’t
want the other servers in the set to be able to contact it, so we’ll make it listen on a
different port (so that the other members won’t be able to find it). Finally, we want to
keep the dbpath the same, as we are presumably starting it up this way to manipulate
the server’s data somehow.

First, we shut down the server from the mongo shell:

> db.shutdownServer()

Then, in an operating system shell (e.g., bash), we restart mongod on another port
and without the replSet parameter:

$ mongod --port 30000 --dbpath /var/lib/db

It will now be running as a standalone server, listening on port 30000 for connec‐
tions. The other members of the set will attempt to connect to it on port 27017 and
assume that it is down.

When we have finished performing maintenance on the server, we can shut it down
and restart it with its original options. It will automatically sync up with the rest of
the set, replicating any operations that it missed while it was “away.”

Replica Set Configuration
Replica set configuration is always kept in a document in the local.system.replset col‐
lection. This document is the same on all members of the set. Never update this docu‐
ment using update. Always use an rs helper or the replSetReconfig command.

Creating a Replica Set
You create a replica set by starting up the mongods that you want to be members and
then passing one of them a configuration through rs.initiate():

> var config = {
... "_id" : <setName>,
... "members" : [
... {"_id" : 0, "host" : <host1>},
... {"_id" : 1, "host" : <host2>},
... {"_id" : 2, "host" : <host3>}
...]}
> rs.initiate(config)

272 | Chapter 13: Administration

You should always pass a config object to rs.initiate(). If you do
not, MongoDB will attempt to automatically generate a config for a
one-member replica set; it might not use the hostname that you
want or correctly configure the set.

You only call rs.initiate() on one member of the set. The member that receives the
configuration will pass it on to the other members.

Changing Set Members
When you add a new set member, it should either have nothing in its data directory
—in which case it will perform an initial sync—or have a copy of the data from
another member (see Chapter 23 for more information about backing up and restor‐
ing replica set members).

Connect to the primary and add a new member as follows:

> rs.add("spock:27017")

Alternatively, you can specify a more complex member config as a document:

> rs.add({"host" : "spock:27017", "priority" : 0, "hidden" : true})

You can also remove members by their "host" field:

> rs.remove("spock:27017")

You can change a member’s settings by reconfiguring. There are a few restrictions in
changing a member’s settings:

• You cannot change a member’s "_id".
• You cannot make the member you’re sending the reconfig to (generally the pri‐

mary) priority 0.
• You cannot turn an arbiter into a nonarbiter, or vice versa.
• You cannot change a member’s "buildIndexes" field from false to true.

Notably, you can change a member’s "host" field. Thus, if you incorrectly specify a
host (say, if you use a public IP instead of a private one) you can later go back and
simply change the config to use the correct IP.

To change a hostname, you could do something like this:

> var config = rs.config()
> config.members[0].host = "spock:27017"
spock:27017
> rs.reconfig(config)

Replica Set Configuration | 273

This same strategy applies to changing any other option: fetch the config with rs.con
fig(), modify any parts of it that you wish, and reconfigure the set by passing
rs.reconfig() the new configuration.

Creating Larger Sets
Replica sets are limited to 50 members in total and only 7 voting members. This is to
reduce the amount of network traffic required for everyone to heartbeat everyone
else and to limit the amount of time elections take.

If you are creating a replica set that has more than seven members, every additional
member must be given zero votes. You can do this by specifying it in the member’s
config:

> rs.add({"_id" : 7, "host" : "server-7:27017", "votes" : 0})

This prevents these members from casting positive votes in elections.

Forcing Reconfiguration
When you permanently lose a majority of a set, you may want to reconfigure the set
while it doesn’t have a primary. This is a little tricky, as usually you’d send the reconfig
to the primary. In this case, you can force-reconfigure the set by sending
a reconfig command to a secondary. Connect to a secondary in the shell and pass it a
reconfig with the "force" option:

> rs.reconfig(config, {"force" : true})

Forced reconfigurations follow the same rules as a normal reconfiguration: you must
send a valid, well-formed configuration with the correct options. The "force" option
doesn’t allow invalid configs; it just allows a secondary to accept a reconfig.

Forced reconfigurations bump the replica set "version" number by a large amount.
You may see it jump by tens or hundreds of thousands. This is normal: it is to prevent
version number collisions (just in case there’s a reconfig on either side of a network
partition).

When the secondary receives the reconfig, it will update its configuration and pass
the new config along to the other members. The other members of the set will only
pick up on a change of config if they recognize the sending server as a member of
their current config. Thus, if some of your members have changed hostnames, you
should force reconfig from a member that kept its old hostname. If every member has
a new hostname, you should shut down each member of the set, start a new one up in
standalone mode, change its local.system.replset document manually, and then restart
the member.

274 | Chapter 13: Administration

Manipulating Member State
There are several ways to manually change a member’s state for maintenance or in
response to load. Note that there is no way to force a member to become primary,
however, other than configuring the set appropriately—in this case, by giving the rep‐
lica set member a priority higher than any other member of the set.

Turning Primaries into Secondaries
You can demote a primary to a secondary using the stepDown function:

> rs.stepDown()

This makes the primary step down into SECONDARY state for 60 seconds. If no
other primary is elected in that time period, it will be able to attempt a reelection. If
you would like it to remain a secondary for a longer or shorter amount of time, you
can specify your own number of seconds for it to stay in SECONDARY state:

> rs.stepDown(600) // 10 minutes

Preventing Elections
If you need to do some maintenance on the primary but don’t want any of the other
eligible members to become primary in the interim, you can force them to stay sec‐
ondaries by running freeze on each of them:

> rs.freeze(10000)

Again, this takes a number of seconds for the member to remain a secondary.

If you finish whatever maintenance you’re doing on the primary before this time
elapses and want to unfreeze the other members, simply run the command again on
each of them, giving a timeout of 0 seconds:

> rs.freeze(0)

An unfrozen member will be able to hold an election, if it chooses.

You can also unfreeze primaries that have been stepped down by running
rs.freeze(0).

Monitoring Replication
It is important to be able to monitor the status of a set: not only that all members are
up, but what states they are in and how up to date the replication is. There are several
commands you can use to see replica set information. MongoDB hosting services
and management tools including Atlas, Cloud Manager, and Ops Manager (see Chap‐

Manipulating Member State | 275

ter 22) also provide mechanisms to monitor replication and dashboards on the key
replication metrics.

Often issues with replication are transient: a server could not reach another server,
but now it can. The easiest way to see issues like this is to look at the logs. Make sure
you know where the logs are being stored (and that they are being stored) and that
you can access them.

Getting the Status
One of the most useful commands you can run is replSetGetStatus, which gets the
current information about every member of the set (from the view of the member
you’re running it on). There is a helper for this command in the shell:

> rs.status()

 "set" : "replset",
 "date" : ISODate("2019-11-02T20:02:16.543Z"),
 "myState" : 1,
 "term" : NumberLong(1),
 "heartbeatIntervalMillis" : NumberLong(2000),
 "optimes" : {
 "lastCommittedOpTime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "readConcernMajorityOpTime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "appliedOpTime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "durableOpTime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 }
 },

 "members" : [
 {
 "_id" : 0,
 "name" : "m1.example.net:27017",
 "health" : 1,
 "state" : 1,
 "stateStr" : "PRIMARY",
 "uptime" : 269,
 "optime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)

276 | Chapter 13: Administration

 },
 "optimeDate" : ISODate("2019-11-02T20:02:14Z"),
 "infoMessage" : "could not find member to sync from",
 "electionTime" : Timestamp(1478116933, 1),
 "electionDate" : ISODate("2019-11-02T20:02:13Z"),
 "configVersion" : 1,
 "self" : true
 },
 {
 "_id" : 1,
 "name" : "m2.example.net:27017",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 14,
 "optime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "optimeDurable" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "optimeDate" : ISODate("2019-11-02T20:02:14Z"),
 "optimeDurableDate" : ISODate("2019-11-02T20:02:14Z"),
 "lastHeartbeat" : ISODate("2019-11-02T20:02:15.618Z"),
 "lastHeartbeatRecv" : ISODate("2019-11-02T20:02:14.866Z"),
 "pingMs" : NumberLong(0),
 "syncingTo" : "m3.example.net:27017",
 "configVersion" : 1
 },
 {
 "_id" : 2,
 "name" : "m3.example.net:27017",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 14,
 "optime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "optimeDurable" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "optimeDate" : ISODate("2019-11-02T20:02:14Z"),
 "optimeDurableDate" : ISODate("2019-11-02T20:02:14Z"),
 "lastHeartbeat" : ISODate("2019-11-02T20:02:15.619Z"),
 "lastHeartbeatRecv" : ISODate("2019-11-02T20:02:14.787Z"),
 "pingMs" : NumberLong(0),
 "syncingTo" : "m1.example.net:27018",

Monitoring Replication | 277

 "configVersion" : 1
 }
],
 "ok" : 1
}

These are some of the most useful fields:

"self"

This field is only present in the member rs.status() was run on—in this case,
server-2 (m1.example.net:27017).

"stateStr"

A string describing the state of the server. See “Member States” on page 254 for
descriptions of the various states.

"uptime"

The number of seconds a member has been reachable, or the time since this
server was started for the "self" member. Thus, server-1 has been up for 269 sec‐
onds, and server-2 and server-3 for 14 seconds.

"optimeDate"

The last optime in each member’s oplog (where that member is synced to). Note
that this is the state of each member as reported by the heartbeat, so the optime
reported here may be off by a couple of seconds.

"lastHeartbeat"

The time this server last received a heartbeat from the "self" member. If there
have been network issues or the server has been busy, this may be longer than
two seconds ago.

"pingMs"

The running average of how long heartbeats to this server have taken. This is
used in determining which member to sync from.

"errmsg"

Any status message that the member chose to return in the heartbeat request.
These are often merely informational, not error messages. For example, the
"errmsg" field in server-3 indicates that this server is in the process of initial
syncing. The hexadecimal number 507e9a30:851 is the timestamp of the opera‐
tion this member needs to get to to complete the initial sync.

There are several fields that give overlapping information. "state" is the same as
"stateStr"; it’s simply the internal ID for the state. "health" merely reflects whether
a given server is reachable (1) or unreachable (0), which is also shown by "state"
and "stateStr" (they’ll be UNKNOWN or DOWN if the server is unreachable). Similarly,
"optime" and "optimeDate" are the same value represented in two ways: one

278 | Chapter 13: Administration

represents milliseconds since the epoch ("t" : 135...) and the other is a more
human-readable date.

Note that this report is from the point of view of whichever mem‐
ber of the set you run it on: the information it contains may be
incorrect or out of date due to network issues.

Visualizing the Replication Graph
If you run rs.status() on a secondary, there will be a top-level field called
"syncingTo". This gives the host that this member is replicating from. By running
the replSetGetStatus command on each member of the set, you can figure out the
replication graph. For example, assuming server1 was a connection to server1,
server2 was a connection to server2, and so on, you might have something like:

> server1.adminCommand({replSetGetStatus: 1})['syncingTo']
server0:27017
> server2.adminCommand({replSetGetStatus: 1})['syncingTo']
server1:27017
> server3.adminCommand({replSetGetStatus: 1})['syncingTo']
server1:27017
> server4.adminCommand({replSetGetStatus: 1})['syncingTo']
server2:27017

Thus, server0 is the replication source for server1, server1 is the replication source for
server2 and server3, and server2 is the replication source for server4.

MongoDB determines who to sync to based on ping time. When one member heart‐
beats another, it times how long that request takes. MongoDB keeps a running aver‐
age of these times. When a member has to choose another member to sync from, it
looks for the one that is closest to it and ahead of it in replication (thus, you cannot
end up with a replication cycle: members will only replicate from the primary or sec‐
ondaries that are further ahead).

This means that if you bring up a new member in a secondary data center, it is more
likely to sync from another member in that data center than a member in your pri‐
mary data center (thus minimizing WAN traffic), as shown in Figure 13-1.

However, there is a downside to automatic replication chaining: more replication
hops means that it takes a bit longer to replicate writes to all servers. For example,
let’s say that everything is in one data center but, due to the vagaries of network
speeds when you added members, MongoDB ends up replicating in a line, as shown
in Figure 13-2.

Monitoring Replication | 279

Figure 13-1. New secondaries will generally choose to sync from a member in the same
data center

Figure 13-2. As replication chains get longer, it takes longer for all members to get a copy
of the data

This is highly unlikely, but not impossible. It is, however, probably undesirable: each
secondary in the chain will have to be a bit further behind than the secondary “in
front” of it. You can fix this by modifying the replication source for a member using
the replSetSyncFrom command (or the rs.syncFrom() helper).

Connect to the secondary whose replication source you want to change and run this
command, passing it the server you’d prefer this member to sync from:

> secondary.adminCommand({"replSetSyncFrom" : "server0:27017"})

It may take a few seconds to switch sync sources, but if you run rs.status() on that
member again, you should see that the "syncingTo" field now says "server0:27017".

This member (server4) will now continue replicating from server0 until server0
becomes unavailable or, if it happened to be a secondary, falls significantly behind the
other members.

Replication Loops
A replication loop is when members end up replicating from one another—for exam‐
ple, A is syncing from B who is syncing from C who is syncing from A. As none of the
members in a replication loop can be a primary, the members will not receive any
new operations to replicate and will fall behind.

280 | Chapter 13: Administration

Replication loops should be impossible when members choose who to sync from
automatically. However, you can force replication loops using the replSetSyncFrom
command. Inspect the rs.status() output carefully before manually changing sync
targets, and be careful not to create loops. The replSetSyncFrom command will warn
you if you do not choose to sync from a member that is strictly ahead, but it will
allow it.

Disabling Chaining
Chaining is when a secondary syncs from another secondary (instead of the primary).
As mentioned earlier, members may decide to sync from other members automati‐
cally. You can disable chaining, forcing everyone to sync from the primary, by chang‐
ing the "chainingAllowed" setting to false (if not specified, it defaults to true):

> var config = rs.config()
> // create the settings subobject, if it does not already exist
> config.settings = config.settings || {}
> config.settings.chainingAllowed = false
> rs.reconfig(config)

With "chainingAllowed" set to false, all members will sync from the primary. If the
primary becomes unavailable, they will fall back to syncing from secondaries.

Calculating Lag
One of the most important metrics to track for replication is how well the secondaries
are keeping up with the primary. Lag is how far behind a secondary is, which means
the difference between the timestamp of the last operation the primary has per‐
formed and the timestamp of the last operation the secondary has applied.

You can use rs.status() to see a member’s replication state, but you can also get a
quick summary by running rs.printReplicationInfo() or rs.printSlaveReplica
tionInfo().

rs.printReplicationInfo() gives a summary of the primary’s oplog, including its
size and the date range of its operations:

> rs.printReplicationInfo();
 configured oplog size: 10.48576MB
 log length start to end: 3590 secs (1.00hrs)
 oplog first event time: Tue Apr 10 2018 09:27:57 GMT-0400 (EDT)
 oplog last event time: Tue Apr 10 2018 10:27:47 GMT-0400 (EDT)
 now: Tue Apr 10 2018 10:27:47 GMT-0400 (EDT)

In this example, the oplog is about 10 MB (10 MiB) and is only able to fit about an
hour of operations.

Monitoring Replication | 281

If this were a real deployment, the oplog should probably be larger (see the next sec‐
tion for instructions on changing oplog size). We want the log length to be at least as
long as the time it takes to do a full resync. That way, we don’t run into a case where a
secondary falls off the end of the oplog before finishing its initial sync.

The log length is computed by taking the time difference between
the first and last operation in the oplog once the oplog has filled up.
If the server has just started with nothing in the oplog, then the
earliest operation will be relatively recent. In that case, the log
length will be small, even though the oplog probably still has free
space available. The length is a more useful metric for servers that
have been operating long enough to write through their entire
oplog at least once.

You can also use the rs.printSlaveReplicationInfo() function to get the syncedTo
value for each member and the time when the last oplog entry was written to each
secondary, as shown in the following example:

> rs.printSlaveReplicationInfo();
source: m1.example.net:27017
 syncedTo: Tue Apr 10 2018 10:27:47 GMT-0400 (EDT)
 0 secs (0 hrs) behind the primary
source: m2.example.net:27017
 syncedTo: Tue Apr 10 2018 10:27:43 GMT-0400 (EDT)
 0 secs (0 hrs) behind the primary
source: m3.example.net:27017
 syncedTo: Tue Apr 10 2018 10:27:39 GMT-0400 (EDT)
 0 secs (0 hrs) behind the primary

Remember that a replica set member’s lag is calculated relative to the primary, not
against “wall time.” This usually is irrelevant, but on very low-write systems, this can
cause phantom replication lag “spikes.” For example, suppose you do a write once an
hour. Right after that write, before it’s replicated, the secondary will look like it’s an
hour behind the primary. However, it’ll be able to catch up with that “hour” of opera‐
tions in a few milliseconds. This can sometimes cause confusion when monitoring a
low-throughput system.

Resizing the Oplog
Your primary’s oplog should be thought of as your maintenance window. If your pri‐
mary has an oplog that is an hour long, then you only have one hour to fix anything
that goes wrong before your secondaries fall too far behind and must be resynced
from scratch. Thus, you generally want to have an oplog that can hold a couple days’
to a week’s worth of data, to give yourself some breathing room if something goes
wrong.

282 | Chapter 13: Administration

Unfortunately, there’s no easy way to tell how long your oplog is going to be before it
fills up. The WiredTiger storage engine allows online resizing of your oplog while
your server is running. You should perform these steps on each secondary replica set
member first; once these have been changed, then and only then should you make the
changes to your primary. Remember that each server that could become a primary
should have a large enough oplog to give you a sane maintenance window.

To increase the size of your oplog, perform the following steps:

1. Connect to the replica set member. If authentication is enabled, be sure to use a
user with privileges that can modify the local database.

2. Verify the current size of the oplog:
> use local
> db.oplog.rs.stats(1024*1024).maxSize

This will display the collection size in megabytes.

3. Change the oplog size of the replica set member:
> db.adminCommand({replSetResizeOplog: 1, size: 16000})

The following operation changes the oplog size of the replica
set member to 16 gigabytes, or 16000 megabytes.

4. Finally, if you have reduced the size of the oplog, you may need to run the com
pact to reclaim the disk space allocated. This should not be run against a mem‐
ber while it is a primary. Please see the “Change the Size of the Oplog” tutorial in
the MongoDB documentation for more details on this case and on the entire pro‐
cedure.

You generally should not decrease the size of your oplog: although it may be months
long, there is usually ample disk space for it and it does not use up any valuable
resources like RAM or CPU.

Building Indexes
If you send an index build to the primary, the primary will build the index normally
and then the secondaries will build the index when they replicate the “build index”

Monitoring Replication | 283

https://oreil.ly/krv0R
https://oreil.ly/krv0R

operation. Although this is the easiest way to build an index, index builds are
resource-intensive operations that can make members unavailable. If all of your sec‐
ondaries start building an index at the same time, almost every member of your set
will be offline until the index build completes. This process is only for replica sets; for
a sharded cluster, please see the MongoDB documentation tutorial about building
indexes on a sharded cluster.

You must stop all writes to a collection when you are creating a
"unique" index. If the writes are not stopped, you can end up with
inconsistent data across the replica set members.

Therefore, you may want to build an index on one member at a time to minimize the
impact on your application. To accomplish this, do the following:

1. Shut down a secondary.
2. Restart it as a standalone server.
3. Build the index on the standalone server.
4. When the index build is complete, restart the server as a member of the replica

set. When restarting this member, you need to remove the disableLogicalSes
sionCacheRefresh parameter if it is present in your command-line options or
configuration file.

5. Repeat steps 1 through 4 for each secondary in the replica set.

You should now have a set where every member other than the primary has the index
built. Now there are two options, and you should choose the one that will impact
your production system the least:

1. Build the index on the primary. If you have an “off ” time when you have less traf‐
fic, that would probably be a good time to build it. You also might want to modify
read preferences to temporarily shunt more load onto secondaries while the build
is in progress.
The primary will replicate the index build to the secondaries, but they will
already have the index so it will be a no-op for them.

2. Step down the primary, then follow steps 2 through 4 of the procedure outlined
previously. This requires a failover, but you will have a normally functioning pri‐
mary while the old primary is building its index. After its index build is com‐
plete, you can reintroduce it to the set.

Note that you could also use this technique to build different indexes on a secondary
than you have on the rest of the set. This could be useful for offline processing, but

284 | Chapter 13: Administration

https://oreil.ly/wJNeE
https://oreil.ly/wJNeE

make sure a member with different indexes can never become primary: its priority
should always be 0.

If you are building a unique index, make sure that the primary is not inserting dupli‐
cates or that you build the index on the primary first. Otherwise, the primary could
be inserting duplicates that would then cause replication errors on secondaries. If this
occurs, the secondary will shut itself down. You will have to restart it as a standalone
server, remove the unique index, and restart it.

Replication on a Budget
If it is difficult to get more than one high-quality server, consider getting a secondary
server that is strictly for disaster recovery, with less RAM and CPU, slower disk I/O,
etc. The good server will always be your primary and the cheaper server will never
handle any client traffic (configure your clients to send all reads to the primary). Here
are the options to set for the cheaper box:

"priority" : 0

You do not want this server to ever become primary.

"hidden" : true

You do not want clients ever sending reads to this secondary.

"buildIndexes" : false

This is optional, but it can decrease the load this server has to handle considera‐
bly. If you ever need to restore from this server, you’ll need to rebuild the indexes.

"votes" : 0

If you only have two machines, set "votes" on this secondary to 0 so that the
primary can stay primary if this machine goes down. If you have a third server
(even just your application server), run an arbiter on that instead of setting
"votes" to 0.

This will give you the safety and security of having a secondary without having to
invest in two high-performance servers.

Monitoring Replication | 285

PART IV

Sharding

CHAPTER 14

Introduction to Sharding

This chapter covers how to scale with MongoDB. We’ll look at:

• What sharding is and the components of a cluster
• How to configure sharding
• The basics of how sharding interacts with your application

What Is Sharding?
Sharding refers to the process of splitting data up across machines; the term partition‐
ing is also sometimes used to describe this concept. By putting a subset of data on
each machine, it becomes possible to store more data and handle more load without
requiring larger or more powerful machines—just a larger quantity of less-powerful
machines. Sharding may be used for other purposes as well, including placing more
frequently accessed data on more performant hardware or splitting a dataset based on
geography to locate a subset of documents in a collection (e.g., for users based in a
particular locale) close to the application servers from which they are most com‐
monly accessed.

Manual sharding can be done with almost any database software. With this approach,
an application maintains connections to several different database servers, each of
which are completely independent. The application manages storing different data on
different servers and querying against the appropriate server to get data back. This
setup can work well but becomes difficult to maintain when adding or removing
nodes from the cluster or in the face of changing data distributions or load patterns.

MongoDB supports autosharding, which tries to both abstract the architecture away
from the application and simplify the administration of such a system. MongoDB

289

allows your application to ignore the fact that it isn’t talking to a standalone Mon‐
goDB server, to some extent. On the operations side, MongoDB automates balancing
data across shards and makes it easier to add and remove capacity.

Sharding is the most complex way of configuring MongoDB, both from a develop‐
ment and an operational point of view. There are many components to configure and
monitor, and data moves around the cluster automatically. You should be comfortable
with standalone servers and replica sets before attempting to deploy or use a sharded
cluster. Also, as with replica sets, the recommended means of configuring and
deploying sharded clusters is through either MongoDB Ops Manager or MongoDB
Atlas. Ops Manager is recommended if you need to maintain control of your com‐
puting infrastructure. MongoDB Atlas is recommended if you can leave the infra‐
structure management to MongoDB (you have the option of running in Amazon
AWS, Microsoft Azure, or Google Compute Cloud).

Understanding the Components of a Cluster
MongoDB’s sharding allows you to create a cluster of many machines (shards) and
break up a collection across them, putting a subset of data on each shard. This allows
your application to grow beyond the resource limits of a standalone server or replica
set.

Many people are confused about the difference between replication
and sharding. Remember that replication creates an exact copy of
your data on multiple servers, so every server is a mirror image of
every other server. Conversely, every shard contains a different
subset of data.

One of the goals of sharding is to make a cluster of 2, 3, 10, or even hundreds of
shards look like a single machine to your application. To hide these details from the
application, we run one or more routing processes called a mongos in front of the
shards. A mongos keeps a “table of contents” that tells it which shard contains which
data. Applications can connect to this router and issue requests normally, as shown in
Figure 14-1. The router, knowing what data is on which shard, is able to forward the
requests to the appropriate shard(s). If there are responses to a request the router col‐
lects them and, if necessary, merges them, and sends them back to the application. As
far as the application knows, it’s connected to a standalone mongod, as illustrated in
Figure 14-2.

290 | Chapter 14: Introduction to Sharding

Figure 14-1. Sharded client connection

Figure 14-2. Nonsharded client connection

Sharding on a Single-Machine Cluster
We’ll start by setting up a quick cluster on a single machine. First, start a mongo shell
with the --nodb and --norc options:

$ mongo --nodb --norc

To create a cluster, use the ShardingTest class. Run the following in the mongo shell
you just launched:

st = ShardingTest({
 name:"one-min-shards",
 chunkSize:1,
 shards:2,
 rs:{
 nodes:3,
 oplogSize:10
 },
 other:{
 enableBalancer:true
 }
});

The chunksize option is covered in Chapter 17. For now, simply set it to 1. As for the
other options passed to ShardingTest here, name simply provides a label for our

Sharding on a Single-Machine Cluster | 291

sharded cluster, shards specifies that our cluster will be composed of two shards (we
do this to keep the resource requirements low for this example), and rs defines each
shard as a three-node replica set with an oplogSize of 10 MiB (again, to keep
resource shard as a three-node replica set with an oplogSize of 10 MiB (again, to
keep resource utilization low). Though it is possible to run one standalone mongod
for each shard, it paints a clearer picture of the typical architecture of a sharded clus‐
ter if we create each shard as a replica set. In the last option specified, we are instruct‐
ing ShardingTest to enable the balancer once the cluster is spun up. This will ensure
that data is evenly distributed across both shards.

ShardingTest is a class designed for internal use by MongoDB Engineering and is
therefore undocumented externally. However, because it ships with the MongoDB
server, it provides the most straightforward means of experimenting with a sharded
cluster. ShardingTest was originally designed to support server test suites and is still
used for this purpose. By default it provides a number of conveniences that help in
keeping resource utilization as small as possible and in setting up the relatively com‐
plex architecture of a sharded cluster. It makes an assumption about the presence of
a /data /db directory on your machine; if ShardingTest fails to run then create this
directory and rerun the command again.

When you run this command, ShardingTest will do a lot for you automatically. It
will create a new cluster with two shards, each of which is a replica set. It will config‐
ure the replica sets and launch each node with the necessary options to establish rep‐
lication protocols. It will launch a mongos to manage requests across the shards so
that clients can interact with the cluster as if communicating with a standalone mon‐
god, to some extent. Finally, it will launch an additional replica set for the config
servers that maintain the routing table information necessary to ensure queries are
directed to the correct shard. Remember that the primary use cases for sharding are
to split a dataset to address hardware and cost constraints or to provide better perfor‐
mance to applications (e.g., geographical partitioning). MongoDB sharding provides
these capabilities in a way that is seamless to the application in many respects.

Once ShardingTest has finished setting up your cluster, you will have 10 processes
up and running to which you can connect: two replica sets of three nodes each, one
config server replica set of three nodes, and one mongos. By default, these processes
should begin at port 20000. The mongos should be running at port 20009. Other pro‐
cesses you have running on your local machine and previous calls to ShardingTest
can have an effect on which ports ShardingTest uses, but you should not have too
much difficulty determining the ports on which your cluster processes are running.

Next, you’ll connect to the mongos to play around with the cluster. Your entire cluster
will be dumping its logs to your current shell, so open up a second terminal window
and launch another mongo shell:

$ mongo --nodb

292 | Chapter 14: Introduction to Sharding

Use this shell to connect to your cluster’s mongos. Again, your mongos should be run‐
ning on port 20009:

> db = (new Mongo("localhost:20009")).getDB("accounts")

Note that the prompt in your mongo shell should change to reflect that you are con‐
nected to a mongos. Now you are in the situation shown earlier, in Figure 14-1: the
shell is the client and is connected to a mongos. You can start passing requests to the
mongos and it’ll route them to the shards. You don’t really have to know anything
about the shards, like how many there are or what their addresses are. So long as
there are some shards out there, you can pass the requests to the mongos and allow it
to forward them appropriately.

Start by inserting some data:

> for (var i=0; i<100000; i++) {
... db.users.insert({"username" : "user"+i, "created_at" : new Date()});
... }
> db.users.count()
100000

As you can see, interacting with mongos works the same way as interacting with a
standalone server does.

You can get an overall view of your cluster by running sh.status(). It will give you a
summary of your shards, databases, and collections:

> sh.status()
--- Sharding Status ---
sharding version: {
 "_id": 1,
 "minCompatibleVersion": 5,
 "currentVersion": 6,
 "clusterId": ObjectId("5a4f93d6bcde690005986071")
}
shards:
{
 "_id" : "one-min-shards-rs0",
 "host" :
 "one-min-shards-rs0/MBP:20000,MBP:20001,MBP:20002",
 "state" : 1 }
{ "_id" : "one-min-shards-rs1",
 "host" :
 "one-min-shards-rs1/MBP:20003,MBP:20004,MBP:20005",
 "state" : 1 }
active mongoses:
 "3.6.1" : 1
autosplit:
 Currently enabled: no
balancer:
 Currently enabled: no
 Currently running: no

Sharding on a Single-Machine Cluster | 293

 Failed balancer rounds in last 5 attempts: 0
 Migration Results for the last 24 hours:
 No recent migrations
databases:
 { "_id" : "accounts", "primary" : "one-min-shards-rs1",
 "partitioned" : false }
 { "_id" : "config", "primary" : "config",
 "partitioned" : true }
 config.system.sessions
shard key: { "_id" : 1 }
unique: false
balancing: true
chunks:
 one-min-shards-rs0 1
 { "_id" : { "$minKey" : 1 } } -->> { "_id" : { "$maxKey" : 1 } }
 on : one-min-shards-rs0 Timestamp(1, 0)

sh is similar to rs, but for sharding: it is a global variable that
defines a number of sharding helper functions, which you can see
by running sh.help(). As you can see from the sh.status() out‐
put, you have two shards and two databases (config is created
automatically).

Your accounts database may have a different primary shard than the one shown here.
A primary shard is a “home base” shard that is randomly chosen for each database.
All of your data will be on this primary shard. MongoDB cannot automatically dis‐
tribute your data yet because it doesn’t know how (or if) you want it to be distributed.
You have to tell it, per collection, how you want it to distribute data.

A primary shard is different from a replica set primary. A primary
shard refers to the entire replica set composing a shard. A primary
in a replica set is the single server in the set that can take writes.

To shard a particular collection, first enable sharding on the collection’s database. To
do so, run the enableSharding command:

> sh.enableSharding("accounts")

Now sharding is enabled on the accounts database, which allows you to shard collec‐
tions within the database.

When you shard a collection, you choose a shard key. This is a field or two that Mon‐
goDB uses to break up data. For example, if you chose to shard on "username", Mon‐
goDB would break up the data into ranges of usernames: "a1-steak-sauce" through
"defcon", "defcon1" through "howie1998", and so on. Choosing a shard key can be

294 | Chapter 14: Introduction to Sharding

thought of as choosing an ordering for the data in the collection. This is a similar
concept to indexing, and for good reason: the shard key becomes the most important
index on your collection as it gets bigger. To even create a shard key, the field(s) must
be indexed.

So, before enabling sharding, you have to create an index on the key you want to
shard by:

> db.users.createIndex({"username" : 1})

Now you can shard the collection by "username":

> sh.shardCollection("accounts.users", {"username" : 1})

Although we are choosing a shard key without much thought here, it is an important
decision that should be carefully considered in a real system. See Chapter 16 for more
advice on choosing a shard key.

If you wait a few minutes and run sh.status() again, you’ll see that there’s a lot more
information displayed than there was before:

> sh.status()
--- Sharding Status ---
sharding version: {
 "_id" : 1,
 "minCompatibleVersion" : 5,
 "currentVersion" : 6,
 "clusterId" : ObjectId("5a4f93d6bcde690005986071")
}
shards:
 { "_id" : "one-min-shards-rs0",
 "host" :
 "one-min-shards-rs0/MBP:20000,MBP:20001,MBP:20002",
 "state" : 1 }
 { "_id" : "one-min-shards-rs1",
 "host" :
 "one-min-shards-rs1/MBP:20003,MBP:20004,MBP:20005",
 "state" : 1 }
active mongoses:
 "3.6.1" : 1
autosplit:
 Currently enabled: no
balancer:
 Currently enabled: yes
 Currently running: no
 Failed balancer rounds in last 5 attempts: 0
 Migration Results for the last 24 hours:
 6 : Success
databases:
 { "_id" : "accounts", "primary" : "one-min-shards-rs1",
 "partitioned" : true }
accounts.users

Sharding on a Single-Machine Cluster | 295

 shard key: { "username" : 1 }
 unique: false
 balancing: true
 chunks:
 one-min-shards-rs0 6
 one-min-shards-rs1 7
 { "username" : { "$minKey" : 1 } } -->>
 { "username" : "user17256" } on : one-min-shards-rs0 Timestamp(2, 0)
 { "username" : "user17256" } -->>
 { "username" : "user24515" } on : one-min-shards-rs0 Timestamp(3, 0)
 { "username" : "user24515" } -->>
 { "username" : "user31775" } on : one-min-shards-rs0 Timestamp(4, 0)
 { "username" : "user31775" } -->>
 { "username" : "user39034" } on : one-min-shards-rs0 Timestamp(5, 0)
 { "username" : "user39034" } -->>
 { "username" : "user46294" } on : one-min-shards-rs0 Timestamp(6, 0)
 { "username" : "user46294" } -->>
 { "username" : "user53553" } on : one-min-shards-rs0 Timestamp(7, 0)
 { "username" : "user53553" } -->>
 { "username" : "user60812" } on : one-min-shards-rs1 Timestamp(7, 1)
 { "username" : "user60812" } -->>
 { "username" : "user68072" } on : one-min-shards-rs1 Timestamp(1, 7)
 { "username" : "user68072" } -->>
 { "username" : "user75331" } on : one-min-shards-rs1 Timestamp(1, 8)
 { "username" : "user75331" } -->>
 { "username" : "user82591" } on : one-min-shards-rs1 Timestamp(1, 9)
 { "username" : "user82591" } -->>
 { "username" : "user89851" } on : one-min-shards-rs1 Timestamp(1, 10)
 { "username" : "user89851" } -->>
 { "username" : "user9711" } on : one-min-shards-rs1 Timestamp(1, 11)
 { "username" : "user9711" } -->>
 { "username" : { "$maxKey" : 1 } } on : one-min-shards-rs1 Timestamp(1, 12)
 { "_id" : "config", "primary" : "config", "partitioned" : true }
config.system.sessions
 shard key: { "_id" : 1 }
 unique: false
 balancing: true
 chunks:
 one-min-shards-rs0 1
 { "_id" : { "$minKey" : 1 } } -->>
 { "_id" : { "$maxKey" : 1 } } on : one-min-shards-rs0 Timestamp(1, 0)

The collection has been split up into 13 chunks, where each chunk is a subset of your
data. These are listed by shard key range (the {"username" : minValue} -->>

{"username" : maxValue} denotes the range of each chunk). Looking at the "on" :
shard part of the output, you can see that these chunks have been evenly distributed
between the shards.

This process of a collection being split into chunks is shown graphically in Figures
14-3 through 14-5. Before sharding, the collection is essentially a single chunk.
Sharding splits it into smaller chunks based on the shard key, as shown in

296 | Chapter 14: Introduction to Sharding

Figure 14-4. These chunks can then be distributed across the cluster, as Figure 14-5
shows.

Figure 14-3. Before a collection is sharded, it can be thought of as a single chunk from
the smallest value of the shard key to the largest

Figure 14-4. Sharding splits the collection into many chunks based on shard key ranges

Figure 14-5. Chunks are evenly distributed across the available shards

Notice the keys at the beginning and end of the chunk list: $minKey and $maxKey.
$minKey can be thought of as “negative infinity.” It is smaller than any other value in
MongoDB. Similarly, $maxKey is like “positive infinity.” It is greater than any other
value. Thus, you’ll always see these as the “caps” on your chunk ranges. The values for
your shard key will always be between $minKey and $maxKey. These values are
actually BSON types and should not be used in your application; they are mainly for
internal use. If you wish to refer to them in the shell, use the MinKey and MaxKey
constants.

Now that the data is distributed across multiple shards, let’s try doing some queries.
First, try a query on a specific username:

> db.users.find({username: "user12345"})
{
 "_id" : ObjectId("5a4fb11dbb9ce6070f377880"),

Sharding on a Single-Machine Cluster | 297

 "username" : "user12345",
 "created_at" : ISODate("2018-01-05T17:08:45.657Z")
}

As you can see, querying works normally. However, let’s run an explain to see what
MongoDB is doing under the covers:

> db.users.find({username: "user12345"}}).explain()
{
 "queryPlanner" : {
 "mongosPlannerVersion" : 1,
 "winningPlan" : {
 "stage" : "SINGLE_SHARD",
 "shards" : [{
 "shardName" : "one-min-shards-rs0",
 "connectionString" :
 "one-min-shards-rs0/MBP:20000,MBP:20001,MBP:20002",
 "serverInfo" : {
 "host" : "MBP",
 "port" : 20000,
 "version" : "3.6.1",
 "gitVersion" : "025d4f4fe61efd1fb6f0005be20cb45a004093d1"
 },
 "plannerVersion" : 1,
 "namespace" : "accounts.users",
 "indexFilterSet" : false,
 "parsedQuery" : {
 "username" : {
 "$eq" : "user12345"
 }
 },
 "winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
 "stage" : "SHARDING_FILTER",
 "inputStage" : {
 "stage" : "IXSCAN",
 "keyPattern" : {
 "username" : 1
 },
 "indexName" : "username_1",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "username" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",
 "indexBounds" : {
 "username" : [
 "[\"user12345\", \"user12345\"]"

298 | Chapter 14: Introduction to Sharding

]
 }
 }
 }
 },
 "rejectedPlans" : []
 }]
 }
 },
 "ok" : 1,
 "$clusterTime" : {
 "clusterTime" : Timestamp(1515174248, 1),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 },
 "operationTime" : Timestamp(1515173700, 201)
}

From the "winningPlan" field in the explain output, we can see that our cluster sat‐
isfied this query using a single shard, one-min-shards-rs0. Based on the output of
sh.status() shown earlier, we can see that user12345 does fall within the key range
for the first chunk listed for that shard in our cluster.

Because "username" is the shard key, mongos was able to route the query directly to
the correct shard. Contrast that with the results for querying for all of the users:

> db.users.find().explain()
{
 "queryPlanner":{
 "mongosPlannerVersion":1,
 "winningPlan":{
 "stage":"SHARD_MERGE",
 "shards":[
 {
 "shardName":"one-min-shards-rs0",
 "connectionString":
 "one-min-shards-rs0/MBP:20000,MBP:20001,MBP:20002",
 "serverInfo":{
 "host":"MBP.fios-router.home",
 "port":20000,
 "version":"3.6.1",
 "gitVersion":"025d4f4fe61efd1fb6f0005be20cb45a004093d1"
 },
 "plannerVersion":1,
 "namespace":"accounts.users",
 "indexFilterSet":false,
 "parsedQuery":{

 },
 "winningPlan":{

Sharding on a Single-Machine Cluster | 299

 "stage":"SHARDING_FILTER",
 "inputStage":{
 "stage":"COLLSCAN",
 "direction":"forward"
 }
 },
 "rejectedPlans":[

]
 },
 {
 "shardName":"one-min-shards-rs1",
 "connectionString":
 "one-min-shards-rs1/MBP:20003,MBP:20004,MBP:20005",
 "serverInfo":{
 "host":"MBP.fios-router.home",
 "port":20003,
 "version":"3.6.1",
 "gitVersion":"025d4f4fe61efd1fb6f0005be20cb45a004093d1"
 },
 "plannerVersion":1,
 "namespace":"accounts.users",
 "indexFilterSet":false,
 "parsedQuery":{

 },
 "winningPlan":{
 "stage":"SHARDING_FILTER",
 "inputStage":{
 "stage":"COLLSCAN",
 "direction":"forward"
 }
 },
 "rejectedPlans":[

]
 }
]
 }
 },
 "ok":1,
 "$clusterTime":{
 "clusterTime":Timestamp(1515174893, 1),
 "signature":{
 "hash":BinData(0, "AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId":NumberLong(0)
 }
 },
 "operationTime":Timestamp(1515173709, 514)
}

300 | Chapter 14: Introduction to Sharding

As you can see from this explain, this query has to visit both shards to find all the
data. In general, if we are not using the shard key in the query, mongos will have to
send the query to every shard.

Queries that contain the shard key and can be sent to a single shard or a subset of
shards are called targeted queries. Queries that must be sent to all shards are called
scatter-gather (broadcast) queries: mongos scatters the query to all the shards and then
gathers up the results.

Once you are finished experimenting, shut down the set. Switch back to your original
shell and hit Enter a few times to get back to the command line, then run st.stop()
to cleanly shut down all of the servers:

> st.stop()

If you are ever unsure of what an operation will do, it can be helpful to use
ShardingTest to spin up a quick local cluster and try it out.

Sharding on a Single-Machine Cluster | 301

CHAPTER 15

Configuring Sharding

In the previous chapter, you set up a “cluster” on one machine. This chapter covers
how to set up a more realistic cluster and how each piece fits. In particular, you’ll
learn:

• How to set up config servers, shards, and mongos processes
• How to add capacity to a cluster
• How data is stored and distributed

When to Shard
Deciding when to shard is a balancing act. You generally do not want to shard too
early because it adds operational complexity to your deployment and forces you to
make design decisions that are difficult to change later. On the other hand, you do
not want to wait too long to shard because it is difficult to shard an overloaded sys‐
tem without downtime.

In general, sharding is used to:

• Increase available RAM
• Increase available disk space
• Reduce load on a server
• Read or write data with greater throughput than a single mongod can handle

Thus, good monitoring is important to decide when sharding will be necessary. Care‐
fully measure each of these metrics. Generally people speed toward one of these bot‐
tlenecks much faster than the others, so figure out which one your deployment will

303

need to provision for first and make plans well in advance about when and how you
plan to convert your replica set.

Starting the Servers
The first step in creating a cluster is to start up all of the processes required. As men‐
tioned in the previous chapter, you need to set up the mongos and the shards. There’s
also a third component, the config servers, which are an important piece. Config
servers are normal mongod servers that store the cluster configuration: which replica
sets host the shards, what collections are sharded by, and on which shard each chunk
is located. MongoDB 3.2 introduced the use of replica sets as config servers. Replica
sets replace the original syncing mechanism used by config servers; the ability to use
that mechanism was removed in MongoDB 3.4.

Config Servers
Config servers are the brains of your cluster: they hold all of the metadata about
which servers hold what data. Thus, they must be set up first, and the data they hold
is extremely important: make sure that they are running with journaling enabled and
that their data is stored on nonephemeral drives. In production deployments, your
config server replica set should consist of at least three members. Each config server
should be on a separate physical machine, preferable geographically distributed.

The config servers must be started before any of the mongos processes, as mongos
pulls its configuration from them. To begin, run the following commands on three
separate machines to start your config servers:

$ mongod --configsvr --replSet configRS --bind_ip localhost,198.51.100.51 mongod
 --dbpath /var/lib/mongodb

$ mongod --configsvr --replSet configRS --bind_ip localhost,198.51.100.52 mongod
 --dbpath /var/lib/mongodb

$ mongod --configsvr --replSet configRS --bind_ip localhost,198.51.100.53 mongod
 --dbpath /var/lib/mongodb

Then initiate the config servers as a replica set. To do this, connect a mongo shell to
one of the replica set members:

$ mongo --host <hostname> --port <port>

and use the rs.initiate() helper:

> rs.initiate(
 {
 _id: "configRS",
 configsvr: true,
 members: [
 { _id : 0, host : "cfg1.example.net:27019" },

304 | Chapter 15: Configuring Sharding

 { _id : 1, host : "cfg2.example.net:27019" },
 { _id : 2, host : "cfg3.example.net:27019" }
]
 }
)

Here we’re using configRS as the replica set name. Note that this name appears both
on the command line when instantiating each config server and in the call to
rs.initiate().

The --configsvr option indicates to the mongod that you are planning to use it as a
config server. On a server running with this option, clients (i.e., other cluster compo‐
nents) cannot write data to any database other than config or admin.

The admin database contains the collections related to authentication and authoriza‐
tion, as well as the other system.* collections for internal use. The config database con‐
tains the collections that hold the sharded cluster metadata. MongoDB writes data to
the config database when the metadata changes, such as after a chunk migration or a
chunk split.

When writing to config servers, MongoDB uses a writeConcern level of "majority".
Similarly, when reading from config servers, MongoDB uses a readConcern level of
"majority". This ensures that sharded cluster metadata will not be committed to the
config server replica set until it can’t be rolled back. It also ensures that only metadata
that will survive a failure of the config servers will be read. This is necessary to ensure
all mongos routers have a consistent view of how data is organized in a sharded
cluster.

In terms of provisioning, config servers should be provisioned adequately in terms of
networking and CPU resources. They only hold a table of contents of the data in the
cluster so the storage resources required are minimal. They should be deployed on
separate hardware to avoid contention for the machine’s resources.

If all of your config servers are lost, you must dig through the data
on your shards to figure out which data is where. This is possible,
but slow and unpleasant. Take frequent backups of config server
data. Always take a backup of your config servers before perform‐
ing any cluster maintenance.

The mongos Processes
Once you have three config servers running, start a mongos process for your applica‐
tion to connect to. mongos processes need to know where the config servers are, so
you must always start mongos with the --configdb option:

$ mongos --configdb \
 configRS/cfg1.example.net:27019, \

Starting the Servers | 305

 cfg2.example.net:27019,cfg3.example.net:27019 \
--bind_ip localhost,198.51.100.100 --logpath /var/log/mongos.log

By default, mongos runs on port 27017. Note that it does not need a data directory
(mongos holds no data itself; it loads the cluster configuration from the config servers
on startup). Make sure that you set --logpath to save the mongos log somewhere
safe.

You should start a small number of mongos processes and locate them as close to all
the shards as possible. This improves performance of queries that need to access mul‐
tiple shards or which perform scatter/gather operations. The minimal setup is at least
two mongos processes to ensure high availability. It is possible to run tens or hun‐
dreds of mongos processes but this causes resource contention on the config servers.
The recommended approach is to provide a small pool of routers.

Adding a Shard from a Replica Set
Finally, you’re ready to add a shard. There are two possibilities: you may have an
existing replica set or you may be starting from scratch. We will cover starting from
an existing set. If you are starting from scratch, initialize an empty set and follow the
steps outlined here.

If you already have a replica set serving your application, that will become your first
shard. To convert it into a shard, you need to make some small configuration modifi‐
cations to the members and then tell the mongos how to find the replica set that will
comprise the shard.

For example, if you have a replica set named rs0 on svr1.example.net, svr2.exam‐
ple.net, and svr3.example.net, you would first connect to one of the members using
the mongo shell:

$ mongo srv1.example.net

Then use rs.status() to determine which member is the primary and which are
secondaries:

> rs.status()
 "set" : "rs0",
 "date" : ISODate("2018-11-02T20:02:16.543Z"),
 "myState" : 1,
 "term" : NumberLong(1),
 "heartbeatIntervalMillis" : NumberLong(2000),
 "optimes" : {

 "lastCommittedOpTime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },

306 | Chapter 15: Configuring Sharding

 "readConcernMajorityOpTime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "appliedOpTime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "durableOpTime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 }
 },

 "members" : [
 {
 "_id" : 0,
 "name" : "svr1.example.net:27017",
 "health" : 1,
 "state" : 1,
 "stateStr" : "PRIMARY",
 "uptime" : 269,
 "optime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "optimeDate" : ISODate("2018-11-02T20:02:14Z"),
 "infoMessage" : "could not find member to sync from",
 "electionTime" : Timestamp(1478116933, 1),
 "electionDate" : ISODate("2018-11-02T20:02:13Z"),
 "configVersion" : 1,
 "self" : true
 },
 {
 "_id" : 1,
 "name" : "svr2.example.net:27017",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 14,
 "optime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "optimeDurable" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "optimeDate" : ISODate("2018-11-02T20:02:14Z"),
 "optimeDurableDate" : ISODate("2018-11-02T20:02:14Z"),
 "lastHeartbeat" : ISODate("2018-11-02T20:02:15.618Z"),
 "lastHeartbeatRecv" : ISODate("2018-11-02T20:02:14.866Z"),

Starting the Servers | 307

 "pingMs" : NumberLong(0),
 "syncingTo" : "m1.example.net:27017",
 "configVersion" : 1
 },
 {
 "_id" : 2,
 "name" : "svr3.example.net:27017",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 14,
 "optime" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "optimeDurable" : {
 "ts" : Timestamp(1478116934, 1),
 "t" : NumberLong(1)
 },
 "optimeDate" : ISODate("2018-11-02T20:02:14Z"),
 "optimeDurableDate" : ISODate("2018-11-02T20:02:14Z"),
 "lastHeartbeat" : ISODate("2018-11-02T20:02:15.619Z"),
 "lastHeartbeatRecv" : ISODate("2018-11-02T20:02:14.787Z"),
 "pingMs" : NumberLong(0),
 "syncingTo" : "m1.example.net:27017",
 "configVersion" : 1
 }
],
 "ok" : 1
}

Beginning with MongoDB 3.4, for sharded clusters, mongod instances for shards must
be configured with the --shardsvr option, either via the configuration file setting
sharding.clusterRole or via the command-line option --shardsvr.

You will need to do this for each of the members of the replica set you are in the pro‐
cess of converting to a shard. You’ll do this by first restarting each secondary in turn
with the --shardsvr option, then stepping down the primary and restarting it with
the --shardsvr option.

After shutting down a secondary, restart it as follows:

$ mongod --replSet "rs0" --shardsvr --port 27017
 --bind_ip localhost,<ip address of member>

Note that you’ll need to use the correct IP address for each secondary for the
--bind_ip parameter.

Now connect a mongo shell to the primary:

$ mongo m1.example.net

308 | Chapter 15: Configuring Sharding

and step it down:

> rs.stepDown()

Then restart the former primary with the --shardsvr option:

$ mongod --replSet "rs0" --shardsvr --port 27017
 --bind_ip localhost,<ip address of the former primary>

Now you’re ready to add your replica set as a shard. Connect a mongo shell to the
admin database of the mongos:

$ mongo mongos1.example.net:27017/admin

And add a shard to the cluster using the sh.addShard() method:

> sh.addShard(
 "rs0/svr1.example.net:27017,svr2.example.net:27017,svr3.example.net:27017")

You can specify all the members of the set, but you do not have to. mongos will auto‐
matically detect any members that were not included in the seed list. If you run
sh.status(), you’ll see that MongoDB soon lists the shard as

rs0/svr1.example.net:27017,svr2.example.net:27017,svr3.example.net:27017

The set name, rs0, is taken on as an identifier for this shard. If you ever want to
remove this shard or migrate data to it, you can use rs0 to describe it. This works bet‐
ter than using a specific server (e.g., svr1.example.net), as replica set membership and
status can change over time.

Once you’ve added the replica set as a shard you can convert your application from
connecting to the replica set to connecting to the mongos. When you add the shard,
mongos registers that all the databases in the replica set are “owned” by that shard, so
it will pass through all queries to your new shard. mongos will also automatically han‐
dle failover for your application as your client library would: it will pass the errors
through to you.

Test failing over a shard’s primary in a development environment to ensure that your
application handles the errors received from mongos correctly (they should be identi‐
cal to the errors that you receive from talking to the primary directly).

Once you have added a shard, you must set up all clients to send
requests to the mongos instead of contacting the replica set. Shard‐
ing will not function correctly if some clients are still making
requests to the replica set directly (not through the mongos). Switch
all clients to contacting the mongos immediately after adding the
shard and set up a firewall rule to ensure that they are unable to
connect directly to the shard.

Starting the Servers | 309

Prior to MongoDB 3.6 it was possible to create a standalone mongod as a shard. This
is no longer an option in versions of MongoDB later than 3.6. All shards must be rep‐
lica sets.

Adding Capacity
When you want to add more capacity, you’ll need to add more shards. To add a new,
empty shard, create a replica set. Make sure it has a distinct name from any of your
other shards. Once it is initialized and has a primary, add it to your cluster by run‐
ning the addShard command through mongos, specifying the new replica set’s name
and its hosts as seeds.

If you have several existing replica sets that are not shards, you can add all of them as
new shards in your cluster so long as they do not have any database names in com‐
mon. For example, if you had one replica set with a blog database, one with a calendar
database, and one with mail, tel, and music databases, you could add each replica set
as a shard and end up with a cluster with three shards and five databases. However, if
you had a fourth replica set that also had a database named tel, mongos would refuse
to add it to the cluster.

Sharding Data
MongoDB won’t distribute your data automatically until you tell it how to do so. You
must explicitly tell both the database and the collection that you want them to be dis‐
tributed. For example, suppose you wanted to shard the artists collection in the music
database on the "name" key. First, you’d enable sharding for the database:

> db.enableSharding("music")

Sharding a database is always a prerequisite to sharding one of its collections.

Once you’ve enabled sharding on the database level, you can shard a collection by
running sh.shardCollection():

> sh.shardCollection("music.artists", {"name" : 1})

Now the artists collection will be sharded by the "name" key. If you are sharding an
existing collection there must be an index on the "name" field; otherwise, the shard
Collection call will return an error. If you get an error, create the index (mongos will
return the index it suggests as part of the error message) and retry the shardCollec
tion command.

If the collection you are sharding does not yet exist, mongos will automatically create
the shard key index for you.

The shardCollection command splits the collection into chunks, which are the units
MongoDB uses to move data around. Once the command returns successfully,

310 | Chapter 15: Configuring Sharding

MongoDB will begin balancing the collection across the shards in your cluster. This
process is not instantaneous. For large collections it may take hours to finish this ini‐
tial balancing. This time can be reduced with presplitting where chunks are created
on the shards prior to loading the data. Data loaded after this point will be inserted
directly to the current shard without requiring additional balancing.

How MongoDB Tracks Cluster Data
Each mongos must always know where to find a document, given its shard key. Theo‐
retically, MongoDB could track where each and every document lived, but this
becomes unwieldy for collections with millions or billions of documents. Thus, Mon‐
goDB groups documents into chunks, which are documents in a given range of the
shard key. A chunk always lives on a single shard, so MongoDB can keep a small table
of chunks mapped to shards.

For example, if a user collection’s shard key is {"age" : 1}, one chunk might be all
documents with an "age" field between 3 and 17. If mongos gets a query for {"age" :
5}, it can route the query to the shard where this chunk lives.

As writes occur, the number and size of the documents in a chunk might change.
Inserts can make a chunk contain more documents, and removes fewer. For example,
if we were making a game for children and preteens, our chunk for ages 3−17 might
get larger and larger (one would hope). Almost all of our users would be in that
chunk and so would be on a single shard, somewhat defeating the point of distribut‐
ing our data. Thus, once a chunk grows to a certain size, MongoDB automatically
splits it into two smaller chunks. In this example, the original chunk might be split
into one chunk containing documents with ages 3 through 11 and another with ages
12 through 17. Note that these two chunks still cover the entire age range that the
original chunk covered: 3−17. As these new chunks grow, they can be split into still
smaller chunks until there is a chunk for each age.

You cannot have chunks with overlapping ranges, like 3−15 and 12−17. If you could,
MongoDB would need to check both chunks when attempting to find an age in the
overlap, like 14. It is more efficient to only have to look in one place, particularly once
chunks begin moving around the cluster.

A document always belongs to one and only one chunk. One consequence of this rule
is that you cannot use an array field as your shard key, since MongoDB creates multi‐
ple index entries for arrays. For example, if a document had [5, 26, 83] in its "age"
field, it would belong in up to three chunks.

How MongoDB Tracks Cluster Data | 311

A common misconception is that the data in a chunk is physically
grouped on disk. This is incorrect: chunks have no effect on how
mongod stores collection data.

Chunk Ranges
Each chunk is described by the range it contains. A newly sharded collection starts off
with a single chunk, and every document lives in this chunk. This chunk’s bounds are
negative infinity to infinity, shown as $minKey and $maxKey in the shell.

As this chunk grows, MongoDB will automatically split it into two chunks, with the
range negative infinity to <some value> and <some value> to infinity. <some value>
is the same for both chunks: the lower chunk contains everything up to (but not
including) <some value>, and the upper chunk contains <some value> and every‐
thing higher.

This may be more intuitive with an example. Suppose we were sharding by "age" as
described earlier. All documents with "age" between 3 and 17 are contained in one
chunk: 3 ≤ "age" < 17. When this is split, we end up with two ranges: 3 ≤ "age" <
12 in one chunk and 12 ≤ "age" < 17 in the other. 12 is called the split point.

Chunk information is stored in the config.chunks collection. If you looked at the con‐
tents of that collection, you’d see documents that looked something like this (some
fields have been omitted for clarity):

> db.chunks.find(criteria, {"min" : 1, "max" : 1})
{
 "_id" : "test.users-age_-100.0",
 "min" : {"age" : -100},
 "max" : {"age" : 23}
}
{
 "_id" : "test.users-age_23.0",
 "min" : {"age" : 23},
 "max" : {"age" : 100}
}
{
 "_id" : "test.users-age_100.0",
 "min" : {"age" : 100},
 "max" : {"age" : 1000}
}

Based on the config.chunks documents shown, here are a few examples of where vari‐
ous documents would live:

312 | Chapter 15: Configuring Sharding

{"_id" : 123, "age" : 50}

This document would live in the second chunk, as that chunk contains all docu‐
ments with "age" between 23 and 100.

{"_id" : 456, "age" : 100}

This document would live in the third chunk, as lower bounds are inclusive. The
second chunk contains all documents up to "age" : 100, but not any documents
where "age" equals 100.

{"_id" : 789, "age" : -101}

This document would not be in any of these chunks. It would be in some chunk
with a range lower than the first chunk’s.

With a compound shard key, shard ranges work the same way that sorting by the two
keys would work. For example, suppose that we had a shard key on {"username" :
1, "age" : 1}. Then we might have chunk ranges such as:

{
 "_id" : "test.users-username_MinKeyage_MinKey",
 "min" : {
 "username" : { "$minKey" : 1 },
 "age" : { "$minKey" : 1 }
 },
 "max" : {
 "username" : "user107487",
 "age" : 73
 }
}
{
 "_id" : "test.users-username_\"user107487\"age_73.0",
 "min" : {
 "username" : "user107487",
 "age" : 73
 },
 "max" : {
 "username" : "user114978",
 "age" : 119
 }
}
{
 "_id" : "test.users-username_\"user114978\"age_119.0",
 "min" : {
 "username" : "user114978",
 "age" : 119
 },
 "max" : {
 "username" : "user122468",
 "age" : 68
 }
}

How MongoDB Tracks Cluster Data | 313

Thus, mongos can easily find which chunk someone with a given username (or a
given username and age) lives in. However, given just an age, mongos would have to
check all, or almost all, of the chunks. If we wanted to be able to target queries on age
to the right chunk, we’d have to use the “opposite” shard key: {"age" : 1, "user
name" : 1}. This is often a point of confusion: a range over the second half of a shard
key will cut across multiple chunks.

Splitting Chunks
Each shard primary mongod tracks their current chunks and, once they reach a cer‐
tain threshold, checks if the chunk needs to be split, as shown in Figures 15-1 and
15-2. If the chunk does need to be split, the mongod will request the global chunk size
configuration value from the config servers. It will then perform the chunk split and
update the metadata on the config servers. New chunk documents are created on the
config servers and the old chunk’s range ("max") is modified. If the chunk is the top
chunk of the shard, then the mongod will request the balancer move this chunk to a
different shard. The idea is to prevent a shard from becoming “hot” where the shard
key uses a monotonically increasing key.

A shard may not be able to find any split points, though, even for a large chunk, as
there are a limited number of ways to legally split a chunk. Any two documents with
the same shard key must live in the same chunk, so chunks can only be split between
documents where the shard key’s value changes. For example, if the shard key was
"age", the following chunk could be split at the points where the shard key changed,
as indicated:

{"age" : 13, "username" : "ian"}
{"age" : 13, "username" : "randolph"}
------------ // split point
{"age" : 14, "username" : "randolph"}
{"age" : 14, "username" : "eric"}
{"age" : 14, "username" : "hari"}
{"age" : 14, "username" : "mathias"}
------------ // split point
{"age" : 15, "username" : "greg"}
{"age" : 15, "username" : "andrew"}

The primary mongod for the shard only requests that the top chunk for a shard when
split be moved to the balancer. The other chunks will remain on the shard unless
manually moved.

If, however, the chunk contained the following documents, it could not be split
(unless the application started inserting fractional ages):

{"age" : 12, "username" : "kevin"}
{"age" : 12, "username" : "spencer"}
{"age" : 12, "username" : "alberto"}
{"age" : 12, "username" : "tad"}

314 | Chapter 15: Configuring Sharding

Thus, having a variety of values for your shard key is important. Other important
properties will be covered in the next chapter.

If one of the config servers is down when a mongod tries to do a split, the mongod
won’t be able to update the metadata (as shown in Figure 15-3). All config servers
must be up and reachable for splits to happen. If the mongod continues to receive
write requests for the chunk, it will keep trying to split the chunk and fail. As long as
the config servers are not healthy, splits will continue not to work, and all the split
attempts can slow down the mongod and the shard involved (which repeats the pro‐
cess shown in Figures 15-1 through 15-3 for each incoming write). This process of
mongod repeatedly attempting to split a chunk and being unable to is called a split
storm. The only way to prevent split storms is to ensure that your config servers are
up and healthy as much of the time as possible.

Figure 15-1. When a client writes to a chunk, the mongod will check its split threshold
for the chunk

Figure 15-2. If the split threshold has been reached, the mongod will send a request to the
balancer to migrate the top chunk; otherwise the chunk remains on the shard

How MongoDB Tracks Cluster Data | 315

Figure 15-3. The mongod chooses a split point and attempts to inform the config server,
but cannot reach it; thus, it is still over its split threshold for the chunk and any subse‐
quent writes will trigger this process again

The Balancer
The balancer is responsible for migrating data. It regularly checks for imbalances
between shards and, if it finds an imbalance, will begin migrating chunks. In Mon‐
goDB version 3.4+, the balancer is located on the primary member of the config
server replica set; prior to this version, each mongos used to play the part of “the bal‐
ancer” occasionally.

The balancer is a background process on the primary of the config server replica set,
which monitors the number of chunks on each shard. It becomes active only when a
shard’s number of chunks reaches a specific migration threshold.

In MongoDB 3.4+, the number of concurrent migrations increased
to one migration per shard with a maximum number of concurrent
migrations being half the total number of shards. In earlier ver‐
sions only one concurrent migration in total was supported.

Assuming that some collections have hit the threshold, the balancer will begin
migrating chunks. It chooses a chunk from the overloaded shard and asks the shard if
it should split the chunk before migrating. Once it does any necessary splits, it
migrates the chunk(s) to a machine with fewer chunks.

An application using the cluster does not need be aware that the data is moving: all
reads and writes are routed to the old chunk until the move is complete. Once the
metadata is updated, any mongos process attempting to access the data in the old
location will get an error. These errors should not be visible to the client: the mongos
will silently handle the error and retry the operation on the new shard.

This is a common cause of errors you might see in mongos logs that relate to being
“unable to setShardVersion.” When a mongos gets this type of error, it looks up the
new location of the data from the config servers, updates its chunk table, and
attempts the request again. If it successfully retrieves the data from the new location,

316 | Chapter 15: Configuring Sharding

it will return it to the client as though nothing went wrong (but it will print a message
in the log that the error occurred).

If the mongos is unable to retrieve the new chunk location because the config servers
are unavailable, it will return an error to the client. This is another reason why it is
important to always have config servers up and healthy.

Collations
Collations in MongoDB allow for the specification of language-specific rules for
string comparison. Examples of these rules include how lettercase and accent marks
are compared. It is possible to shard a collection that is a default collation. There are
two requirements: the collection must have an index whose prefix is the shard key,
and the index must also have the collation { locale: "simple" }.

Change Streams
Change Streams allow applications to track real-time changes to the data in the data‐
base. Prior to MongoDB 3.6, this was only possible by tailing the oplog and was a
complex error-prone operation. Change streams provide a subscription mechanism
for all data changes on a collection, a set of collections, a database, or across a full
deployment. The aggregation framework is used by this feature. It allows applications
to filter for specific changes or to transform the change notifications received. In a
sharded cluster, all change stream operations must be issued against a mongos.

The changes across a sharded cluster are kept ordered through the use of a global log‐
ical clock. This guarantees the order of changes, and stream notifications can be
safely interpreted by the order of their receipt. The mongos needs to check with each
shard upon receipt of a change notification, to ensure that no shard has seen more
recent changes. The activity level of the cluster and the geographical distribution of
the shards can both impact the response time for this checking. The use of notifica‐
tion filters can improve the response time in these situations.

There are a few notes and caveats when using change streams with
a sharded cluster. You open a change stream by issuing an open
change stream operation. In sharded deployments, this must be
issued against a mongos. If an update operation with multi: true
is run against a sharded collection with an open change stream,
then it is possible for notifications to be sent for orphaned docu‐
ments. If a shard is removed, it may cause an open change stream
cursor to close—furthermore, that cursor may not be fully
resumable.

Collations | 317

CHAPTER 16

Choosing a Shard Key

The most important task when using sharding is choosing how your data will be dis‐
tributed. To make intelligent choices about this, you have to understand how
MongoDB distributes data. This chapter helps you make a good choice of shard key
by covering:

• How to decide among multiple possible shard keys
• Shard keys for several use cases
• What you can’t use as a shard key
• Some alternative strategies if you want to customize how data is distributed
• How to manually shard your data

It assumes that you understand the basic components of sharding as covered in the
previous two chapters.

Taking Stock of Your Usage
When you shard a collection you choose a field or two to use to split up the data. This
key (or keys) is called a shard key. Once you shard a collection you cannot change
your shard key, so it is important to choose correctly.

To choose a good shard key, you need to understand your workload and how your
shard key is going to distribute your application’s requests. This can be difficult to
picture, so try to work out some examples—or, even better, try it out on a backup
dataset with sample traffic. This section has lots of diagrams and explanations, but
there is no substitute for trying it on your own data.

For each collection that you’re planning to shard, start by answering the following
questions:

319

• How many shards are you planning to grow to? A three-shard cluster has a great
deal more flexibility than a thousand-shard cluster. As a cluster gets larger, you
should not plan to fire off queries that can hit all shards, so almost all queries
must include the shard key.

• Are you sharding to decrease read or write latency? (Latency refers to how long
something takes; e.g., a write takes 20 ms, but you need it to take 10 ms.)
Decreasing write latency usually involves sending requests to geographically
closer or more powerful machines.

• Are you sharding to increase read or write throughput? (Throughput refers to
how many requests the cluster can handle at the same time; e.g., the cluster can
do 1,000 writes in 20 ms, but you need it to do 5,000 writes in 20 ms.) Increasing
throughput usually involves adding more parallelization and making sure that
requests are distributed evenly across the cluster.

• Are you sharding to increase system resources (e.g., give MongoDB more RAM
per GB of data)? If so, you want to keep the working set size as small as possible.

Use these answers to evaluate the following shard key descriptions and decide
whether the shard key you’re considering would work well in your situation. Does it
give you the targeted queries that you need? Does it change the throughput or latency
of your system in the ways you need? If you need a compact working set, does it pro‐
vide that?

Picturing Distributions
The most common ways people choose to split their data are via ascending, random,
and location-based keys. There are other types of keys that could be used, but most
use cases fall into one of these categories. The different types of distributions are dis‐
cussed in the following sections.

Ascending Shard Keys
Ascending shard keys are generally something like a "date" field or ObjectId—any‐
thing that steadily increases over time. An autoincrementing primary key is another
example of an ascending field, albeit one that doesn’t show up in MongoDB much
(unless you’re importing from another database).

Suppose that we shard on an ascending field, like "_id" on a collection using
ObjectIds. If we shard on "_id", then the data will be split into chunks of "_id"
ranges, as in Figure 16-1. These chunks will be distributed across our sharded cluster
of, let’s say, three shards, as shown in Figure 16-2.

320 | Chapter 16: Choosing a Shard Key

Figure 16-1. The collection is split into ranges of ObjectIds; each range is a chunk

Suppose we create a new document. Which chunk will it be in? The answer is the
chunk with the range ObjectId("5112fae0b4a4b396ff9d0ee5") through $maxKey.
This is called the max chunk, as it is the chunk containing $maxKey.

If we insert another document, it will also be in the max chunk. In fact, every subse‐
quent insert will be into the max chunk! Every insert’s "_id" field will be closer to
infinity than the previous one (because ObjectIds are always ascending), so they will
all go into the max chunk.

Picturing Distributions | 321

Figure 16-2. Chunks are distributed across shards in a random order

This has a couple of interesting (and often undesirable) properties. First, all of your
writes will be routed to one shard (shard0002, in this case). This chunk will be the
only one growing and splitting, as it is the only one that receives inserts. As you insert
data, new chunks will “fall off ” of this chunk, as shown in Figure 16-3.

322 | Chapter 16: Choosing a Shard Key

Figure 16-3. The max chunk continues growing and being split into multiple chunks

This pattern often makes it more difficult for MongoDB to keep chunks evenly bal‐
anced because all the chunks are being created by one shard. Therefore, MongoDB
must constantly move chunks to other shards instead of correcting the small imbal‐
ances that might occur in more evenly distributed systems.

In MongoDB 4.2, the move of the autosplit functionality to the
shard primary mongod added top chunk optimization to address
the ascending shard key pattern. The balancer will decide in which
other shard to place the top chunk. This helps avoid a situation in
which all new chunks are created on just one shard.

Randomly Distributed Shard Keys
At the other end of the spectrum are randomly distributed shard keys. Randomly dis‐
tributed keys could be usernames, email addresses, UUIDs, MD5 hashes, or any other
key that has no identifiable pattern in your dataset.

Suppose the shard key is a random number between 0 and 1. We’ll end up with a ran‐
dom distribution of chunks on the various shards, as shown in Figure 16-4.

Picturing Distributions | 323

Figure 16-4. As in the previous section, chunks are distributed randomly around the
cluster

As more data is inserted, the data’s random nature means that inserts should hit every
chunk fairly evenly. You can prove this to yourself by inserting 10,000 documents and
seeing where they end up:

> var servers = {}
> var findShard = function (id) {
... var explain = db.random.find({_id:id}).explain();
... for (var i in explain.shards) {
... var server = explain.shards[i][0];

324 | Chapter 16: Choosing a Shard Key

... if (server.n == 1) {

... if (server.server in servers) {

... servers[server.server]++;

... } else {

... servers[server.server] = 1;

... }

... }

... }

... }
> for (var i = 0; i < 10000; i++) {
... var id = ObjectId();
... db.random.insert({"_id" : id, "x" : Math.random()});
... findShard(id);
... }
> servers
{
 "spock:30001" : 2942,
 "spock:30002" : 4332,
 "spock:30000" : 2726
}

As writes are randomly distributed, the shards should grow at roughly the same rate,
limiting the number of migrates that need to occur.

The only downside to randomly distributed shard keys is that MongoDB isn’t effi‐
cient at randomly accessing data beyond the size of RAM. However, if you have the
capacity or don’t mind the performance hit, random keys nicely distribute load across
your cluster.

Location-Based Shard Keys
Location-based shard keys may be things like a user’s IP, latitude and longitude, or
address. They’re not necessarily related to a physical location field: the “location”
might be a more abstract way that data should be grouped together. In any case, a
location-based key is a key where documents with some similarity fall into a range
based on this field. This can be handy for both putting data close to its users and
keeping related data together on disk. It may also be a legal requirement to remain
compliant with GDPR or other similar data privacy legislation. MongoDB uses Zoned
Sharding to manage this.

In MongoDB 4.0.3+, you can define the zones and the zone ranges
prior to sharding a collection, which populates chunks for both the
zone ranges and for the shard key values as well as performing an
initial chunk distribution of these. This greatly reduces the com‐
plexity for sharded zone setup.

Picturing Distributions | 325

For example, suppose we have a collection of documents that are sharded on IP
address. Documents will be organized into chunks based on their IPs and randomly
spread across the cluster, as shown in Figure 16-5.

Figure 16-5. A sample distribution of chunks in the IP address collection

If we wanted certain chunk ranges to be attached to certain shards, we could zone
these shards and then assign chunk ranges to each zone. In this example, suppose that
we wanted to keep certain IP blocks on certain shards: say, 56.*.*.* (the United States
Postal Service’s IP block) on shard0000 and 17.*.*.* (Apple’s IP block) on either
shard0000 or shard0002. We do not care where the other IPs live. We could request
that the balancer do this by setting up zones:

> sh.addShardToZone("shard0000", "USPS")
> sh.addShardToZone("shard0000", "Apple")
> sh.addShardToZone("shard0002", "Apple")

Next, we create the rules:

> sh.updateZoneKeyRange("test.ips", {"ip" : "056.000.000.000"},
... {"ip" : "057.000.000.000"}, "USPS")

This attaches all IPs greater than or equal to 56.0.0.0 and less than 57.0.0.0 to the
shard zoned as "USPS". Next, we add a rule for Apple:

> sh.updateZoneKeyRange("test.ips", {"ip" : "017.000.000.000"},
... {"ip" : "018.000.000.000"}, "Apple")

When the balancer moves chunks, it will attempt to move chunks with those ranges
to those shards. Note that this process is not immediate. Chunks that were not cov‐
ered by a zone key range will be moved around normally. The balancer will continue
attempting to distribute chunks evenly among shards.

326 | Chapter 16: Choosing a Shard Key

Shard Key Strategies
This section presents a number of shard key options for various types of applications.

Hashed Shard Key
For loading data as fast as possible, hashed shard keys are the best option. A hashed
shard key can make any field randomly distributed, so it is a good choice if you’re
going to be using an ascending key in a lot of queries but want writes to be randomly
distributed.

The trade-off is that you can never do a targeted range query with a hashed shard key.
If you will not be doing range queries, though, hashed shard keys are a good option.

To create a hashed shard key, first create a hashed index:

> db.users.createIndex({"username" : "hashed"})

Next, shard the collection with:

> sh.shardCollection("app.users", {"username" : "hashed"})
{ "collectionsharded" : "app.users", "ok" : 1 }

If you create a hashed shard key on a nonexistent collection, shardCollection
behaves interestingly: it assumes that you want evenly distributed chunks, so it imme‐
diately creates a bunch of empty chunks and distributes them around your cluster.
For example, suppose our cluster looked like this before creating the hashed shard
key:

> sh.status()
--- Sharding Status ---
 sharding version: { "_id" : 1, "version" : 3 }
 shards:
 { "_id" : "shard0000", "host" : "localhost:30000" }
 { "_id" : "shard0001", "host" : "localhost:30001" }
 { "_id" : "shard0002", "host" : "localhost:30002" }
 databases:
 { "_id" : "admin", "partitioned" : false, "primary" : "config" }
 { "_id" : "test", "partitioned" : true, "primary" : "shard0001" }

Immediately after shardCollection returns there are two chunks on each shard,
evenly distributing the key space across the cluster:

> sh.status()
--- Sharding Status ---
 sharding version: { "_id" : 1, "version" : 3 }
 shards:
 { "_id" : "shard0000", "host" : "localhost:30000" }
 { "_id" : "shard0001", "host" : "localhost:30001" }
 { "_id" : "shard0002", "host" : "localhost:30002" }

Shard Key Strategies | 327

 databases:
 { "_id" : "admin", "partitioned" : false, "primary" : "config" }
 { "_id" : "test", "partitioned" : true, "primary" : "shard0001" }
 test.foo
 shard key: { "username" : "hashed" }
 chunks:
 shard0000 2
 shard0001 2
 shard0002 2
 { "username" : { "$MinKey" : true } }
 -->> { "username" : NumberLong("-6148914691236517204") }
 on : shard0000 { "t" : 3000, "i" : 2 }
 { "username" : NumberLong("-6148914691236517204") }
 -->> { "username" : NumberLong("-3074457345618258602") }
 on : shard0000 { "t" : 3000, "i" : 3 }
 { "username" : NumberLong("-3074457345618258602") }
 -->> { "username" : NumberLong(0) }
 on : shard0001 { "t" : 3000, "i" : 4 }
 { "username" : NumberLong(0) }
 -->> { "username" : NumberLong("3074457345618258602") }
 on : shard0001 { "t" : 3000, "i" : 5 }
 { "username" : NumberLong("3074457345618258602") }
 -->> { "username" : NumberLong("6148914691236517204") }
 on : shard0002 { "t" : 3000, "i" : 6 }
 { "username" : NumberLong("6148914691236517204") }
 -->> { "username" : { "$MaxKey" : true } }
 on : shard0002 { "t" : 3000, "i" : 7 }

Note that there are no documents in the collection yet, but when you start inserting
them, writes should be evenly distributed across the shards from the get-go. Ordinar‐
ily, you would have to wait for chunks to grow, split, and move to start writing to
other shards. With this automatic priming, you’ll immediately have chunk ranges on
all shards.

There are some limitations on what your shard key can be if you’re
using a hashed shard key. First, you cannot use the unique option.
As with other shard keys, you cannot use array fields. Finally, be
aware that floating-point values will be rounded to whole numbers
before hashing, so 1 and 1.999999 will both be hashed to the same
value.

Hashed Shard Keys for GridFS
Before attempting to shard GridFS collections, make sure that you understand how
GridFS stores data (see Chapter 6 for an explanation).

In the following explanation, the term “chunks” is overloaded since GridFS splits files
into chunks and sharding splits collections into chunks. Thus, the two types of
chunks are referred to as “GridFS chunks” and “sharding chunks.”

328 | Chapter 16: Choosing a Shard Key

GridFS collections are generally excellent candidates for sharding, as they contain
massive amounts of file data. However, neither of the indexes that are automatically
created on fs.chunks are particularly good shard keys: {"_id" : 1} is an ascending
key and {"files_id" : 1, "n" : 1} picks up fs.files’s "_id" field, so it is also an
ascending key.

However, if you create a hashed index on the "files_id" field, each file will be ran‐
domly distributed across the cluster, and a file will always be contained in a single
chunk. This is the best of both worlds: writes will go to all shards evenly and reading
a file’s data will only ever have to hit a single shard.

To set this up, you must create a new index on {"files_id" : "hashed"} (as of this
writing, mongos cannot use a subset of the compound index as a shard key). Then
shard the collection on this field:

> db.fs.chunks.ensureIndex({"files_id" : "hashed"})
> sh.shardCollection("test.fs.chunks", {"files_id" : "hashed"})
{ "collectionsharded" : "test.fs.chunks", "ok" : 1 }

As a side note, the fs.files collection may or may not need to be sharded, as it will be
much smaller than fs.chunks. You can shard it if you would like, but it is not likely to
be necessary.

The Firehose Strategy
If you have some servers that are more powerful than others, you might want to let
them handle proportionally more load than your less-powerful servers. For example,
suppose you have one shard that can handle 10 times the load of your other
machines. Luckily, you have 10 other shards. You could force all inserts to go to the
more powerful shard, and then allow the balancer to move older chunks to the other
shards. This would give lower-latency writes.

To use this strategy, we have to pin the highest chunk to the more powerful shard.
First, we zone this shard:

> sh.addShardToZone("<shard-name>", "10x")

Then we pin the current value of the ascending key through infinity to that shard, so
all new writes go to it:

> sh.updateZoneKeyRange("<dbName.collName>", {"_id" : ObjectId()},
... {"_id" : MaxKey}, "10x")

Now all inserts will be routed to this last chunk, which will always live on the shard
zoned "10x".

However, ranges from now through infinity will be trapped on this shard unless we
modify the zone key range. To get around this, we could set up a cron job to update
the key range once a day, like this:

Shard Key Strategies | 329

> use config
> var zone = db.tags.findOne({"ns" : "<dbName.collName>",
... "max" : {"<shardKey>" : MaxKey}})
> zone.min.<shardKey> = ObjectId()
> db.tags.save(zone)

Then all of the previous day’s chunks would be able to move to other shards.

Another downside of this strategy is that it requires some changes to scale. If your
most powerful server can no longer handle the number of writes coming in, there is
no trivial way to split the load between this server and another.

If you do not have a high-performance server to firehose into or you are not using
zone sharding, do not use an ascending key as the shard key. If you do, all writes will
go to a single shard.

Multi-Hotspot
Standalone mongod servers are most efficient when doing ascending writes. This con‐
flicts with sharding, in that sharding is most efficient when writes are spread over the
cluster. The technique described here basically creates multiple hotspots—optimally
several on each shard—so that writes are evenly balanced across the cluster but,
within a shard, ascending.

To accomplish this, we use a compound shard key. The first value in the compound
key is a rough, random value with low-ish cardinality. You can picture each value in
the first part of the shard key as a chunk, as shown in Figure 16-6. This will eventually
work itself out as you insert more data, although it will probably never be divided up
this neatly (right on the $minKey lines). However, if you insert enough data, you
should eventually have approximately one chunk per random value. As you continue
to insert data, you’ll end up with multiple chunks with the same random value, which
brings us to the second part of the shard key.

330 | Chapter 16: Choosing a Shard Key

Figure 16-6. A subset of the chunks: each chunk contains a single state and a range of
“_id” values

The second part of the shard key is an ascending key. This means that within a chunk,
values are always increasing, as shown in the sample documents in Figure 16-7. Thus,
if you had one chunk per shard, you’d have the perfect setup: ascending writes on
every shard, as shown in Figure 16-8. Of course, having n chunks with n hotspots
spread across n shards isn’t very extensible: add a new shard and it won’t get any
writes because there’s no hotspot chunk to put on it. Thus, you want a few hotspot
chunks per shard (to give you room to grow), but not too many. Having a few hotspot
chunks will keep the effectiveness of ascending writes, but having, say, a thousand
hotspots on a shard will end up being equivalent to random writes.

Shard Key Strategies | 331

Figure 16-7. A sample list of inserted documents (note that all “_id” values are
increasing)

332 | Chapter 16: Choosing a Shard Key

Figure 16-8. The inserted documents, split into chunks (note that, within each chunk, the
“_id” values are increasing)

You can picture this setup as each chunk being a stack of ascending documents.
There are multiple stacks on each shard, each ascending until the chunk is split. Once
a chunk is split, only one of the new chunks will be a hotspot chunk: the other chunk
will essentially be “dead” and never grow again. If the stacks are evenly distributed
across the shards, writes will be evenly distributed.

Shard Key Strategies | 333

Shard Key Rules and Guidelines
There are several practical restrictions to be aware of before choosing a shard key.

Determining which key to shard on and creating shard keys should be reminiscent of
indexing because the two concepts are similar. In fact, often your shard key may just
be the index you use most often (or some variation on it).

Shard Key Limitations
Shard keys cannot be arrays. sh.shardCollection() will fail if any key has an array
value, and inserting an array into that field is not allowed.

Once inserted, a document’s shard key value may be modified unless the shard key
field is an immutable _id field. In older versions of MongoDB prior to 4.2, it was not
possible to modify a document’s shard key value.

Most special types of indexes cannot be used for shard keys. In particular, you cannot
shard on a geospatial index. Using a hashed index for a shard key is allowed, as cov‐
ered previously.

Shard Key Cardinality
Whether your shard key jumps around or increases steadily, it is important to choose
a key with values that will vary. As with indexes, sharding performs better on high-
cardinality fields. If, for example, you had a "logLevel" key that had only values
"DEBUG", "WARN", or "ERROR", MongoDB wouldn’t be able to break up your data into
more than three chunks (because there would be only three different values for the
shard key). If you have a key with little variation and want to use it as a shard key
anyway, you can do so by creating a compound shard key on that key and a key that
varies more, like "logLevel" and "timestamp". It is important that the combination
of keys has high cardinality.

Controlling Data Distribution
Sometimes, automatic data distribution will not fit your requirements. This section
gives you some options beyond choosing a shard key and allowing MongoDB to do
everything automatically.

As your cluster gets larger or busier, these solutions become less practical. However,
for small clusters, you may want more control.

334 | Chapter 16: Choosing a Shard Key

Using a Cluster for Multiple Databases and Collections
MongoDB evenly distributes collections across every shard in your cluster, which
works well if you’re storing homogeneous data. However, if you have a log collection
that is “lower value” than your other data, you might not want it taking up space on
your more expensive servers. Or, if you have one powerful shard, you might want to
use it for only a real-time collection and not allow other collections to use it. You can
create separate clusters, but you can also give MongoDB specific directions about
where you want it to put certain data.

To set this up, use the sh.addShardToZone() helper in the shell:

> sh.addShardToZone("shard0000", "high")
> // shard0001 - no zone
> // shard0002 - no zone
> // shard0003 - no zone
> sh.addShardToZone("shard0004", "low")
> sh.addShardToZone("shard0005", "low")

Then you can assign different collections to different shards. For instance, for your
super-important real-time collection:

> sh.updateZoneKeyRange("super.important", {"<shardKey>" : MinKey},
... {"<shardKey>" : MaxKey}, "high")

This says, “for negative infinity to infinity for this collection, store it on shards tagged
"high".” This means that no data from the super.important collection will be stored
on any other server. Note that this does not affect how other collections are dis‐
tributed: they will still be evenly distributed between this shard and the others.

You can perform a similar operation to keep the log collection on a low-quality
server:

> sh.updateZoneKeyRange("some.logs", {"<shardKey>" : MinKey},
... {"<shardKey>" : MaxKey}, "low")

The log collection will now be split evenly between shard0004 and shard0005.

Assigning a zone key range to a collection does not affect it instantly. It is an instruc‐
tion to the balancer stating that, when it runs, these are the viable targets to move the
collection to. Thus, if the entire log collection is on shard0002 or evenly distributed
among the shards, it will take a little while for all of the chunks to be migrated to
shard0004 and shard0005.

As another example, perhaps you have a collection that you don’t want on the shard
zoned "high", but you don’t care which other shard it goes on. You can zone all of the
non-high-performance shards to create a new grouping. Shards can have as many
zones as you need:

Controlling Data Distribution | 335

> sh.addShardToZone("shard0001", "whatever")
> sh.addShardToZone("shard0002", "whatever")
> sh.addShardToZone("shard0003", "whatever")
> sh.addShardToZone("shard0004", "whatever")
> sh.addShardToZone("shard0005", "whatever")

Now you can specify that you want this collection (call it normal.coll) distributed
across these five shards:

> sh.updateZoneKeyRange("normal.coll", {"<shardKey>" : MinKey},
... {"<shardKey>" : MaxKey}, "whatever")

You cannot assign collections dynamically—i.e., you can’t say,
“when a collection is created, randomly home it to a shard.” How‐
ever, you could have a cron job that went through and did this for
you.

If you make a mistake or change your mind, you can remove a shard from a zone
with sh.removeShardFromZone():

> sh.removeShardFromZone("shard0005", "whatever")

If you remove all shards from zones described by a zone key range (e.g., if you
remove shard0000 from the zone "high"), the balancer won’t distribute the data any‐
where because there aren’t any valid locations listed. All the data will still be readable
and writable; it just won’t be able to migrate until you modify your tags or tag ranges.

To remove a key range from a zone, use sh.removeRangeFromZone(). The following
is an example. The range specified must be an exact match to a range previously
defined for the namespace some.logs and a given zone:

> sh.removeRangeFromZone("some.logs", {"<shardKey>" : MinKey},
... {"<shardKey>" : MaxKey})

Manual Sharding
Sometimes, for complex requirements or special situations, you may prefer to have
complete control over which data is distributed where. You can turn off the balancer
if you don’t want data to be automatically distributed and use the moveChunk com‐
mand to manually distribute data.

To turn off the balancer, connect to a mongos (any mongos is fine) using the mongo
shell and disable the balancer using the shell helper sh.stopBalancer():

> sh.stopBalancer()

If there is currently a migrate in progress, this setting will not take effect until the
migrate has completed. However, once any in-flight migrations have finished, the

336 | Chapter 16: Choosing a Shard Key

balancer will stop moving data around. To verify no migrations are in progress after
disabling, issue the following in the mongo shell:

> use config
> while(sh.isBalancerRunning()) {
... print("waiting...");
... sleep(1000);
... }

Once the balancer is off, you can move data around manually (if necessary). First,
find out which chunks are where by looking at config.chunks:

> db.chunks.find()

Now, use the moveChunk command to migrate chunks to other shards. Specify the
lower bound of the chunk to be migrated and give the name of the shard that you
want to move the chunk to:

> sh.moveChunk(
... "test.manual.stuff",
... {user_id: NumberLong("-1844674407370955160")},
... "test-rs1")

However, unless you are in an exceptional situation, you should use MongoDB’s auto‐
matic sharding instead of doing it manually. If you end up with a hotspot on a shard
that you weren’t expecting, you might end up with most of your data on that shard.

In particular, do not combine setting up unusual distributions manually with running
the balancer. If the balancer detects an uneven number of chunks it will simply
reshuffle all of your work to get the collection evenly balanced again. If you want
uneven distribution of chunks, use the zone sharding technique discussed in “Using a
Cluster for Multiple Databases and Collections” on page 335.

Controlling Data Distribution | 337

CHAPTER 17

Sharding Administration

As with replica sets, you have a number of options for administering sharded clusters.
Manual administration is one option. These days it is becoming increasingly com‐
mon to use tools such as Ops Manager and Cloud Manager and the Atlas Database-
as-a-Service (DBaaS) offering for all cluster administration. In this chapter, we will
demonstrate how to administer a sharded cluster manually, including:

• Inspecting the cluster’s state: who its members are, where data is held, and what
connections are open

• Adding, removing, and changing members of a cluster
• Administering data movement and manually moving data

Seeing the Current State
There are several helpers available to find out what data is where, what the shards are,
and what the cluster is doing.

Getting a Summary with sh.status()
sh.status() gives you an overview of your shards, databases, and sharded collec‐
tions. If you have a small number of chunks, it will print a breakdown of which
chunks are where as well. Otherwise it will simply give the collection’s shard key and
report how many chunks each shard has:

> sh.status()
--- Sharding Status ---
sharding version: {
 "_id" : 1,
 "minCompatibleVersion" : 5,

339

 "currentVersion" : 6,
 "clusterId" : ObjectId("5bdf51ecf8c192ed922f3160")
}
shards:
 { "_id" : "shard01",
 "host" : "shard01/localhost:27018,localhost:27019,localhost:27020",
 "state" : 1 }
 { "_id" : "shard02",
 "host" : "shard02/localhost:27021,localhost:27022,localhost:27023",
 "state" : 1 }
 { "_id" : "shard03",
 "host" : "shard03/localhost:27024,localhost:27025,localhost:27026",
 "state" : 1 }
active mongoses:
 "4.0.3" : 1
autosplit:
 Currently enabled: yes
balancer:
 Currently enabled: yes
 Currently running: no
 Failed balancer rounds in last 5 attempts: 0
 Migration Results for the last 24 hours:
 6 : Success
 databases:
 { "_id" : "config", "primary" : "config", "partitioned" : true }
 config.system.sessions
 shard key: { "_id" : 1 }
 unique: false
 balancing: true
 chunks:
 shard01 1
 { "_id" : { "$minKey" : 1 } } -->>
 { "_id" : { "$maxKey" : 1 } } on : shard01 Timestamp(1, 0)
 { "_id" : "video", "primary" : "shard02", "partitioned" : true,
 "version" :
 { "uuid" : UUID("3d83d8b8-9260-4a6f-8d28-c3732d40d961"),
 "lastMod" : 1 } }
 video.movies
 shard key: { "imdbId" : "hashed" }
 unique: false
 balancing: true
 chunks:
 shard01 3
 shard02 4
 shard03 3
 { "imdbId" : { "$minKey" : 1 } } -->>
 { "imdbId" : NumberLong("-7262221363006655132") } on :
 shard01 Timestamp(2, 0)
 { "imdbId" : NumberLong("-7262221363006655132") } -->>
 { "imdbId" : NumberLong("-5315530662268120007") } on :
 shard03 Timestamp(3, 0)
 { "imdbId" : NumberLong("-5315530662268120007") } -->>

340 | Chapter 17: Sharding Administration

 { "imdbId" : NumberLong("-3362204802044524341") } on :
 shard03 Timestamp(4, 0)
 { "imdbId" : NumberLong("-3362204802044524341") } -->>
 { "imdbId" : NumberLong("-1412311662519947087") }
 on : shard01 Timestamp(5, 0)
 { "imdbId" : NumberLong("-1412311662519947087") } -->>
 { "imdbId" : NumberLong("524277486033652998") } on :
 shard01 Timestamp(6, 0)
 { "imdbId" : NumberLong("524277486033652998") } -->>
 { "imdbId" : NumberLong("2484315172280977547") } on :
 shard03 Timestamp(7, 0)
 { "imdbId" : NumberLong("2484315172280977547") } -->>
 { "imdbId" : NumberLong("4436141279217488250") } on :
 shard02 Timestamp(7, 1)
 { "imdbId" : NumberLong("4436141279217488250") } -->>
 { "imdbId" : NumberLong("6386258634539951337") } on :
 shard02 Timestamp(1, 7)
 { "imdbId" : NumberLong("6386258634539951337") } -->>
 { "imdbId" : NumberLong("8345072417171006784") } on :
 shard02 Timestamp(1, 8)
 { "imdbId" : NumberLong("8345072417171006784") } -->>
 { "imdbId" : { "$maxKey" : 1 } } on :
 shard02 Timestamp(1, 9)

Once there are more than a few chunks, sh.status() will summarize the chunk stats
instead of printing each chunk. To see all chunks, run sh.status(true) (the true
tells sh.status() to be verbose).

All the information sh.status() shows is gathered from your config database.

Seeing Configuration Information
All of the configuration information about your cluster is kept in collections in the
config database on the config servers. The shell has several helpers for exposing this
information in a more readable way. However, you can always directly query the con‐
fig database for metadata about your cluster.

Never connect directly to your config servers, as you do not want
to take the chance of accidentally changing or removing config
server data. Instead, connect to the mongos process and use the
config database to see its data, as you would for any other database:

> use config

If you manipulate config data through mongos (instead of connect‐
ing directly to the config servers), mongos will ensure that all of
your config servers stay in sync and prevent various dangerous
actions like accidentally dropping the config database.

Seeing the Current State | 341

In general, you should not directly change any data in the config database (exceptions
are noted in the following sections). If you change anything, you will generally have
to restart all of your mongos servers to see its effect.

There are several collections in the config database. This section covers what each one
contains and how it can be used.

config.shards
The shards collection keeps track of all the shards in the cluster. A typical document
in the shards collection might look something like this:

> db.shards.find()
{ "_id" : "shard01",
 "host" : "shard01/localhost:27018,localhost:27019,localhost:27020",
 "state" : 1 }
{ "_id" : "shard02",
 "host" : "shard02/localhost:27021,localhost:27022,localhost:27023",
 "state" : 1 }
{ "_id" : "shard03",
 "host" : "shard03/localhost:27024,localhost:27025,localhost:27026",
 "state" : 1 }

The shard’s "_id" is picked up from the replica set name, so each replica set in your
cluster must have a unique name.

When you update your replica set configuration (e.g., adding or removing members),
the "host" field will be updated automatically.

config.databases
The databases collection keeps track of all of the databases, sharded and not, that the
cluster knows about:

> db.databases.find()
{ "_id" : "video", "primary" : "shard02", "partitioned" : true,
 "version" : { "uuid" : UUID("3d83d8b8-9260-4a6f-8d28-c3732d40d961"),
 "lastMod" : 1 } }

If enableSharding has been run on a database, "partitioned" will be true. The "pri
mary" is the database’s “home base.” By default, all new collections in that database
will be created on the database’s primary shard.

config.collections
The collections collection keeps track of all sharded collections (nonsharded collec‐
tions are not shown). A typical document looks something like this:

> db.collections.find().pretty()
{
 "_id" : "config.system.sessions",

342 | Chapter 17: Sharding Administration

 "lastmodEpoch" : ObjectId("5bdf53122ad9c6907510c22d"),
 "lastmod" : ISODate("1970-02-19T17:02:47.296Z"),
 "dropped" : false,
 "key" : {
 "_id" : 1
 },
 "unique" : false,
 "uuid" : UUID("7584e4cd-fac4-4305-a9d4-bd73e93621bf")
}
{
 "_id" : "video.movies",
 "lastmodEpoch" : ObjectId("5bdf72c021b6e3be02fabe0c"),
 "lastmod" : ISODate("1970-02-19T17:02:47.305Z"),
 "dropped" : false,
 "key" : {
 "imdbId" : "hashed"
 },
 "unique" : false,
 "uuid" : UUID("e6580ffa-fcd3-418f-aa1a-0dfb71bc1c41")
}

The important fields are:

"_id"

The namespace of the collection.

"key"

The shard key. In this case, it is a hashed shard key on "imdbId".

"unique"

Indicates that the shard key is not a unique index. By default, the shard key is not
unique.

config.chunks
The chunks collection keeps a record of each chunk in all the collections. A typical
document in the chunks collection looks something like this:

> db.chunks.find().skip(1).limit(1).pretty()
{
 "_id" : "video.movies-imdbId_MinKey",
 "lastmod" : Timestamp(2, 0),
 "lastmodEpoch" : ObjectId("5bdf72c021b6e3be02fabe0c"),
 "ns" : "video.movies",
 "min" : {
 "imdbId" : { "$minKey" : 1 }
 },
 "max" : {
 "imdbId" : NumberLong("-7262221363006655132")
 },
 "shard" : "shard01",
 "history" : [

Seeing the Current State | 343

 {
 "validAfter" : Timestamp(1541370579, 3096),
 "shard" : "shard01"
 }
]
}

The most useful fields are:

"_id"

The unique identifier for the chunk. Generally this is the namespace, shard key,
and lower chunk boundary.

"ns"

The collection that this chunk is from.

"min"

The smallest value in the chunk’s range (inclusive).

"max"

All values in the chunk are smaller than this value.

"shard"

Which shard the chunk resides on.

The "lastmod" field tracks chunk versioning. For example, if the chunk
"video.movies-imdbId_MinKey" were split into two chunks, we’d want a way of dis‐
tinguishing the new, smaller "video.movies-imdbId_MinKey" chunks from their pre‐
vious incarnation as a single chunk. Thus, the first component of the Timestamp value
reflects the number of times a chunk has been migrated to a new shard. The second
component of this value reflects the number of splits. The "lastmodEpoch" field
specifies the collection’s creation epoch. It is used to differentiate requests for the
same collection name in the cases where the collection was dropped and immediately
recreated.

sh.status() uses the config.chunks collection to gather most of its information.

config.changelog
The changelog collection is useful for keeping track of what a cluster is doing, since it
records all of the splits and migrations that have occurred.

Splits are recorded in a document that looks like this:

> db.changelog.find({what: "split"}).pretty()
{
 "_id" : "router1-2018-11-05T09:58:58.915-0500-5be05ab2f8c192ed922ffbe7",
 "server" : "bob",
 "clientAddr" : "127.0.0.1:64621",
 "time" : ISODate("2018-11-05T14:58:58.915Z"),

344 | Chapter 17: Sharding Administration

 "what" : "split",
 "ns" : "video.movies",
 "details" : {
 "before" : {
 "min" : {
 "imdbId" : NumberLong("2484315172280977547")
 },
 "max" : {
 "imdbId" : NumberLong("4436141279217488250")
 },
 "lastmod" : Timestamp(9, 1),
 "lastmodEpoch" : ObjectId("5bdf72c021b6e3be02fabe0c")
 },
 "left" : {
 "min" : {
 "imdbId" : NumberLong("2484315172280977547")
 },
 "max" : {
 "imdbId" : NumberLong("3459137475094092005")
 },
 "lastmod" : Timestamp(9, 2),
 "lastmodEpoch" : ObjectId("5bdf72c021b6e3be02fabe0c")
 },
 "right" : {
 "min" : {
 "imdbId" : NumberLong("3459137475094092005")
 },
 "max" : {
 "imdbId" : NumberLong("4436141279217488250")
 },
 "lastmod" : Timestamp(9, 3),
 "lastmodEpoch" : ObjectId("5bdf72c021b6e3be02fabe0c")
 }
 }
}

The "details" field gives information about what the original document looked like
and what it was split into.

This output shows what the first chunk split of a collection looks like. Note that the
second component of "lastmod" for each new chunk was updated so that the values
are Timestamp(9, 2) and Timestamp(9, 3), respectively.

Migrations are a bit more complicated and actually create four separate changelog
documents: one noting the start of the migrate, one for the “from” shard, one for the
“to” shard, and one for the commit that occurs when the migration is finalized. The
middle two documents are of interest because these give a breakdown of how long
each step in the process took. This can give you an idea of whether it’s the disk, net‐
work, or something else that is causing a bottleneck on migrates.

For example, the document created by the “from” shard looks like this:

Seeing the Current State | 345

> db.changelog.findOne({what: "moveChunk.to"})
{
 "_id" : "router1-2018-11-04T17:29:39.702-0500-5bdf72d32ad9c69075112f08",
 "server" : "bob",
 "clientAddr" : "",
 "time" : ISODate("2018-11-04T22:29:39.702Z"),
 "what" : "moveChunk.to",
 "ns" : "video.movies",
 "details" : {
 "min" : {
 "imdbId" : { "$minKey" : 1 }
 },
 "max" : {
 "imdbId" : NumberLong("-7262221363006655132")
 },
 "step 1 of 6" : 965,
 "step 2 of 6" : 608,
 "step 3 of 6" : 15424,
 "step 4 of 6" : 0,
 "step 5 of 6" : 72,
 "step 6 of 6" : 258,
 "note" : "success"
 }
}

Each of the steps listed in "details" is timed and the "stepN of N" messages show
how long each step took, in milliseconds.

When the “from” shard receives a moveChunk command from the mongos, it:

1. Checks the command parameters.
2. Confirms with the config servers that it can acquire a distributed lock for the

migrate.
3. Tries to contact the “to” shard.
4. Copies the data. This is referred to and logged as “the critical section.”
5. Coordinates with the “to” shard and config servers to confirm the migration.

Note that the “to” and “from” shards must be in close communication starting at
"step4 of 6": the shards directly talk to one another and the config server to per‐
form the migration. If the “from” server has flaky network connectivity during the
final steps, it may end up in a state where it cannot undo the migration and cannot
move forward with it. In this case, the mongod will shut down.

The “to” shard’s changelog document is similar to the “from” shard’s, but the steps are
a bit different. It looks like this:

> db.changelog.find({what: "moveChunk.from", "details.max.imdbId":
 NumberLong("-7262221363006655132")}).pretty()
{

346 | Chapter 17: Sharding Administration

 "_id" : "router1-2018-11-04T17:29:39.753-0500-5bdf72d321b6e3be02fabf0b",
 "server" : "bob",
 "clientAddr" : "127.0.0.1:64743",
 "time" : ISODate("2018-11-04T22:29:39.753Z"),
 "what" : "moveChunk.from",
 "ns" : "video.movies",
 "details" : {
 "min" : {
 "imdbId" : { "$minKey" : 1 }
 },
 "max" : {
 "imdbId" : NumberLong("-7262221363006655132")
 },
 "step 1 of 6" : 0,
 "step 2 of 6" : 4,
 "step 3 of 6" : 191,
 "step 4 of 6" : 17000,
 "step 5 of 6" : 341,
 "step 6 of 6" : 39,
 "to" : "shard01",
 "from" : "shard02",
 "note" : "success"
 }
}

When the “to” shard receives a command from the “from” shard, it:

1. Migrates indexes. If this shard has never held chunks from the migrated collec‐
tion before, it needs to know what fields are indexed. If this isn’t the first time a
chunk from this collection is being moved to this shard, then this should be a
no-op.

2. Deletes any existing data in the chunk range. There might be data left over from a
failed migration or restore procedure that we wouldn’t want to interfere with the
current data.

3. Copies all documents in the chunk to the “to” shard.
4. Replays any operations that happened to these documents during the copy (on

the “to” shard).
5. Waits for the “to” shard to have replicated the newly migrated data to a majority

of servers.
6. Commits the migrate by changing the chunk’s metadata to say that it lives on the

“to” shard.

config.settings
This collection contains documents representing the current balancer settings and
chunk size. By changing the documents in this collection, you can turn the balancer

Seeing the Current State | 347

on or off or change the chunk size. Note that you should always connect to mongos,
not the config servers directly, to change values in this collection.

Tracking Network Connections
There are a lot of connections between the components of a cluster. This section cov‐
ers some sharding-specific information (see Chapter 24 for more information on
networking).

Getting Connection Statistics
The command connPoolStats returns information regarding the open outgoing con‐
nections from the current database instance to other members of the sharded cluster
or replica set.

To avoid interference with any running operations, connPoolStats does not take any
locks. As such, the counts may change slightly as connPoolStats gathers information,
resulting in slight differences between the hosts and pools connection counts:

> db.adminCommand({"connPoolStats": 1})
{
 "numClientConnections" : 10,
 "numAScopedConnections" : 0,
 "totalInUse" : 0,
 "totalAvailable" : 13,
 "totalCreated" : 86,
 "totalRefreshing" : 0,
 "pools" : {
 "NetworkInterfaceTL-TaskExecutorPool-0" : {
 "poolInUse" : 0,
 "poolAvailable" : 2,
 "poolCreated" : 2,
 "poolRefreshing" : 0,
 "localhost:27027" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 1,
 "refreshing" : 0
 },
 "localhost:27019" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 1,
 "refreshing" : 0
 }
 },
 "NetworkInterfaceTL-ShardRegistry" : {
 "poolInUse" : 0,
 "poolAvailable" : 1,
 "poolCreated" : 13,

348 | Chapter 17: Sharding Administration

 "poolRefreshing" : 0,
 "localhost:27027" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 13,
 "refreshing" : 0
 }
 },
 "global" : {
 "poolInUse" : 0,
 "poolAvailable" : 10,
 "poolCreated" : 71,
 "poolRefreshing" : 0,
 "localhost:27026" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 8,
 "refreshing" : 0
 },
 "localhost:27027" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 1,
 "refreshing" : 0
 },
 "localhost:27023" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 7,
 "refreshing" : 0
 },
 "localhost:27024" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 6,
 "refreshing" : 0
 },
 "localhost:27022" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 9,
 "refreshing" : 0
 },
 "localhost:27019" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 8,
 "refreshing" : 0
 },
 "localhost:27021" : {
 "inUse" : 0,
 "available" : 1,

Tracking Network Connections | 349

 "created" : 8,
 "refreshing" : 0
 },
 "localhost:27025" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 9,
 "refreshing" : 0
 },
 "localhost:27020" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 8,
 "refreshing" : 0
 },
 "localhost:27018" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 7,
 "refreshing" : 0
 }
 }
 },
 "hosts" : {
 "localhost:27026" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 8,
 "refreshing" : 0
 },
 "localhost:27027" : {
 "inUse" : 0,
 "available" : 3,
 "created" : 15,
 "refreshing" : 0
 },
 "localhost:27023" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 7,
 "refreshing" : 0
 },
 "localhost:27024" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 6,
 "refreshing" : 0
 },
 "localhost:27022" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 9,

350 | Chapter 17: Sharding Administration

 "refreshing" : 0
 },
 "localhost:27019" : {
 "inUse" : 0,
 "available" : 2,
 "created" : 9,
 "refreshing" : 0
 },
 "localhost:27021" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 8,
 "refreshing" : 0
 },
 "localhost:27025" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 9,
 "refreshing" : 0
 },
 "localhost:27020" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 8,
 "refreshing" : 0
 },
 "localhost:27018" : {
 "inUse" : 0,
 "available" : 1,
 "created" : 7,
 "refreshing" : 0
 }
 },
 "replicaSets" : {
 "shard02" : {
 "hosts" : [
 {
 "addr" : "localhost:27021",
 "ok" : true,
 "ismaster" : true,
 "hidden" : false,
 "secondary" : false,
 "pingTimeMillis" : 0
 },
 {
 "addr" : "localhost:27022",
 "ok" : true,
 "ismaster" : false,
 "hidden" : false,
 "secondary" : true,
 "pingTimeMillis" : 0
 },

Tracking Network Connections | 351

 {
 "addr" : "localhost:27023",
 "ok" : true,
 "ismaster" : false,
 "hidden" : false,
 "secondary" : true,
 "pingTimeMillis" : 0
 }
]
 },
 "shard03" : {
 "hosts" : [
 {
 "addr" : "localhost:27024",
 "ok" : true,
 "ismaster" : false,
 "hidden" : false,
 "secondary" : true,
 "pingTimeMillis" : 0
 },
 {
 "addr" : "localhost:27025",
 "ok" : true,
 "ismaster" : true,
 "hidden" : false,
 "secondary" : false,
 "pingTimeMillis" : 0
 },
 {
 "addr" : "localhost:27026",
 "ok" : true,
 "ismaster" : false,
 "hidden" : false,
 "secondary" : true,
 "pingTimeMillis" : 0
 }
]
 },
 "configRepl" : {
 "hosts" : [
 {
 "addr" : "localhost:27027",
 "ok" : true,
 "ismaster" : true,
 "hidden" : false,
 "secondary" : false,
 "pingTimeMillis" : 0
 }
]
 },
 "shard01" : {
 "hosts" : [

352 | Chapter 17: Sharding Administration

 {
 "addr" : "localhost:27018",
 "ok" : true,
 "ismaster" : false,
 "hidden" : false,
 "secondary" : true,
 "pingTimeMillis" : 0
 },
 {
 "addr" : "localhost:27019",
 "ok" : true,
 "ismaster" : true,
 "hidden" : false,
 "secondary" : false,
 "pingTimeMillis" : 0
 },
 {
 "addr" : "localhost:27020",
 "ok" : true,
 "ismaster" : false,
 "hidden" : false,
 "secondary" : true,
 "pingTimeMillis" : 0
 }
]
 }
 },
 "ok" : 1,
 "operationTime" : Timestamp(1541440424, 1),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1541440424, 1),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

In this output:

• "totalAvailable" shows the total number of available outgoing connections
from the current mongod/mongos instance to other members of the sharded clus‐
ter or replica set.

• "totalCreated" reports the total number of outgoing connections ever created
by the current mongod/mongos instance to other members of the sharded cluster
or replica set.

• "totalInUse" provides the total number of outgoing connections from the cur‐
rent mongod/mongos instance to other members of the sharded cluster or replica
set that are currently in use.

Tracking Network Connections | 353

• "totalRefreshing" displays the total number of outgoing connections from the
current mongod/mongos instance to other members of the sharded cluster or rep‐
lica set that are currently being refreshed.

• "numClientConnections" identifies the number of active and stored outgoing
synchronous connections from the current mongod/mongos instance to other
members of the sharded cluster or replica set. These represent a subset of the
connections reported by "totalAvailable", "totalCreated", and
"totalInUse".

• "numAScopedConnection" reports the number of active and stored outgoing
scoped synchronous connections from the current mongod/mongos instance to
other members of the sharded cluster or replica set. These represent a subset of
the connections reported by "totalAvailable", "totalCreated", and
"totalInUse".

• "pools" shows connection statistics (in use/available/created/refreshing) grou‐
ped by the connection pools. A mongod or mongos has two distinct families of
outgoing connection pools:
— DBClient-based pools (the “write path,” identified by the field name "global"

in the "pools" document)
— NetworkInterfaceTL-based pools (the “read path”)

• "hosts" shows connection statistics (in use/available/created/refreshing) grou‐
ped by the hosts. It reports on connections between the current mongod/mongos
instance and each member of the sharded cluster or replica set.

You might see connections to other shards in the output of connPoolStats. These
indicate that shards are connecting to other shards to migrate data. The primary of
one shard will connect directly to the primary of another shard and “suck” its data.

When a migrate occurs, a shard sets up a ReplicaSetMonitor (a process that moni‐
tors replica set health) to track the health of the shard on the other side of the
migrate. mongod never destroys this monitor, so you may see messages in one replica
set’s log about the members of another replica set. This is totally normal and should
have no effect on your application.

Limiting the Number of Connections
When a client connects to a mongos, the mongos creates a connection to at least one
shard to pass along the client’s request. Thus, every client connection into a mongos
yields at least one outgoing connection from mongos to the shards.

If you have many mongos processes, they may create more connections than your
shards can handle: by default a mongos will accept up to 65,536 connections (the

354 | Chapter 17: Sharding Administration

same as mongod), so if you have 5 mongos processes with 10,000 client connections
each, they may be attempting to create 50,000 connections to a shard!

To prevent this, you can use the --maxConns option to your command-line configura‐
tion for mongos to limit the number of connections it can create. The following for‐
mula can be used to calculate the maximum number of connections a shard can
handle from a single mongos:

maxConns = maxConnsPrimary − (numMembersPerReplicaSet × 3) −
(other x 3) / numMongosProcesses

Breaking down the pieces of this formula:

maxConnsPrimary
The maximum number of connections on the Primary, typically set to 20,000 to
avoid overwhelming the shard with connections from the mongos.

(numMembersPerReplicaSet × 3)
The primary creates a connection to each secondary and each secondary creates
two connections to the primary, for a total of three connections.

(other x 3)
Other is the number of miscellaneous processes that may connect to your mon‐
gods, such as monitoring or backup agents, direct shell connections (for adminis‐
tration), or connections to other shards for migrations.

numMongosProcesses
The total number of mongos in the sharded cluster.

Note that --maxConns only prevents mongos from creating more than this many con‐
nections. It doesn’t do anything particularly helpful when this limit is reached: it will
simply block requests, waiting for connections to be “freed.” Thus, you must prevent
your application from using this many connections, especially as your number of
mongos processes grows.

When a MongoDB instance exits cleanly it closes all connections before stopping.
The members that were connected to it will immediately get socket errors on those
connections and be able to refresh them. However, if a MongoDB instance suddenly
goes offline due to a power loss, crash, or network problems, it probably won’t cleanly
close all of its sockets. In this case, other servers in the cluster may be under the
impression that their connection is healthy until they try to perform an operation on
it. At that point, they will get an error and refresh the connection (if the member is up
again at that point).

This is a quick process when there are only a few connections. However, when there
are thousands of connections that must be refreshed one by one you can get a lot of

Tracking Network Connections | 355

errors because each connection to the downed member must be tried, determined to
be bad, and reestablished. There isn’t a particularly good way of preventing this, aside
from restarting processes that get bogged down in a reconnection storm.

Server Administration
As your cluster grows, you’ll need to add capacity or change configurations. This sec‐
tion covers how to add and remove servers in your cluster.

Adding Servers
You can add new mongos processes at any time. Make sure their --configdb option
specifies the correct set of config servers and they should be immediately available for
clients to connect to.

To add new shards, use the addShard command as shown in Chapter 15.

Changing Servers in a Shard
As you use your sharded cluster, you may want to change the servers in individual
shards. To change a shard’s membership, connect directly to the shard’s primary (not
through the mongos) and issue a replica set reconfig. The cluster configuration will
pick up the change and update config.shards automatically. Do not modify con‐
fig.shards by hand.

The only exception to this is if you started your cluster with standalone servers as
shards, not replica sets.

Changing a shard from a standalone server to a replica set
The easiest way to do this is to add a new, empty replica set shard and then remove
the standalone server shard (as discussed in the next section). Migrations will take
care of moving your data to the new shard.

Removing a Shard
In general, shards should not be removed from a cluster. If you are regularly adding
and removing shards, you are putting a lot more stress on the system than necessary.
If you add too many shards it is better to let your system grow into them, not remove
them and add them back later. However, if necessary, you can remove shards.

First make sure that the balancer is on. The balancer will be tasked with moving all
the data on the shard you want to remove to other shards in a process called draining.
To start draining, run the removeShard command. removeShard takes the shard’s
name and drains all the chunks on that shard to the other shards:

356 | Chapter 17: Sharding Administration

> db.adminCommand({"removeShard" : "shard03"})
{
 "msg" : "draining started successfully",
 "state" : "started",
 "shard" : "shard03",
 "note" : "you need to drop or movePrimary these databases",
 "dbsToMove" : [],
 "ok" : 1,
 "operationTime" : Timestamp(1541450091, 2),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1541450091, 2),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

Draining can take a long time if there are a lot of chunks or large chunks to move. If
you have jumbo chunks (see “Jumbo Chunks” on page 364), you may have to tem‐
porarily increase the chunk size to allow draining to move them.

If you want to keep tabs on how much has been moved, run removeShard again to
give you the current status:

> db.adminCommand({"removeShard" : "shard02"})
{
 "msg" : "draining ongoing",
 "state" : "ongoing",
 "remaining" : {
 "chunks" : NumberLong(3),
 "dbs" : NumberLong(0)
 },
 "note" : "you need to drop or movePrimary these databases",
 "dbsToMove" : [
 "video"
],
 "ok" : 1,
 "operationTime" : Timestamp(1541450139, 1),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1541450139, 1),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

You can run removeShard as many times as you want.

Server Administration | 357

Chunks may have to be split to be moved, so you may see the number of chunks
increase in the system during the drain. For example, suppose we have a five-shard
cluster with the following chunk distributions:

test-rs0 10
test-rs1 10
test-rs2 10
test-rs3 11
test-rs4 11

This cluster has a total of 52 chunks. If we remove test-rs3, we might end up with:

test-rs0 15
test-rs1 15
test-rs2 15
test-rs4 15

The cluster now has 60 chunks, 18 of which came from shard test-rs3 (11 were there
to start and 7 were created from draining splits).

Once all the chunks have been moved, if there are still databases that have the
removed shard as their primary, you’ll need to remove them before the shard can be
removed. Each database in a sharded cluster has a primary shard. If the shard you
want to remove is also the primary of one of the cluster’s databases, removeShard lists
the database in the "dbsToMove" field. To finish removing the shard, you must either
move the database to a new shard after migrating all data from the shard or drop the
database, deleting the associated data files. The output of removeShard will be some‐
thing like:

> db.adminCommand({"removeShard" : "shard02"})
{
 "msg" : "draining ongoing",
 "state" : "ongoing",
 "remaining" : {
 "chunks" : NumberLong(3),
 "dbs" : NumberLong(0)
 },
 "note" : "you need to drop or movePrimary these databases",
 "dbsToMove" : [
 "video"
],
 "ok" : 1,
 "operationTime" : Timestamp(1541450139, 1),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1541450139, 1),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

358 | Chapter 17: Sharding Administration

To finish the remove, move the listed databases with the movePrimary command:

> db.adminCommand({"movePrimary" : "video", "to" : "shard01"})
{
 "ok" : 1,
 "operationTime" : Timestamp(1541450554, 12),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1541450554, 12),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

Once you have done this, run removeShard one more time:

> db.adminCommand({"removeShard" : "shard02"})
{
 "msg" : "removeshard completed successfully",
 "state" : "completed",
 "shard" : "shard03",
 "ok" : 1,
 "operationTime" : Timestamp(1541450619, 2),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1541450619, 2),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

This is not strictly necessary, but it confirms that you have completed the process. If
there are no databases that have this shard as their primary, you will get this response
as soon as all chunks have been migrated off the shard.

Once you have started a shard draining, there is no built-in way to
stop it.

Balancing Data
In general, MongoDB automatically takes care of balancing data. This section covers
how to enable and disable this automatic balancing as well as how to intervene in the
balancing process.

Balancing Data | 359

The Balancer
Turning off the balancer is a prerequisite to nearly any administrative activity. There
is a shell helper to make this easier:

> sh.setBalancerState(false)
{
 "ok" : 1,
 "operationTime" : Timestamp(1541450923, 2),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1541450923, 2),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

With the balancer off a new balancing round will not begin, but turning it off will not
force an ongoing balancing round to stop immediately—migrations generally cannot
stop on a dime. Thus, you should check the config.locks collection to see whether or
not a balancing round is still in progress:

> db.locks.find({"_id" : "balancer"})["state"]
0

0 means the balancer is off.

Balancing puts load on your system: the destination shard must query the source
shard for all the documents in a chunk and insert them, and then the source shard
must delete them. There are two circumstances in particular where migrations can
cause performance problems:

1. Using a hotspot shard key will force constant migrations (as all new chunks will
be created on the hotspot). Your system must have the capacity to handle the flow
of data coming off of your hotspot shard.

2. Adding a new shard will trigger a stream of migrations as the balancer attempts
to populate it.

If you find that migrations are affecting your application’s performance, you can
schedule a window for balancing in the config.settings collection. Run the following
update to only allow balancing between 1 p.m. and 4 p.m. First make sure the bal‐
ancer is on, then schedule the window:

> sh.setBalancerState(true)
{
 "ok" : 1,
 "operationTime" : Timestamp(1541451846, 4),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1541451846, 4),

360 | Chapter 17: Sharding Administration

 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}
> db.settings.update(
 { _id: "balancer" },
 { $set: { activeWindow : { start : "13:00", stop : "16:00" } } },
 { upsert: true }
)
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

If you set a balancing window, monitor it closely to ensure that mongos can actually
keep your cluster balanced in the time that you have allotted it.

You must be careful if you plan to combine manual balancing with the automatic bal‐
ancer, since the automatic balancer always determines what to move based on the
current state of the set and does not take into account the set’s history. For example,
suppose you have shardA and shardB, each holding 500 chunks. shardA is getting a
lot of writes, so you turn off the balancer and move 30 of the most active chunks to
shardB. If you turn the balancer back on at this point, it will immediately swoop in
and move 30 chunks (possibly a different 30) back from shardB to shardA to balance
the chunk counts.

To prevent this, move 30 quiescent chunks from shardB to shardA before starting the
balancer. That way there will be no imbalance between the shards and the balancer
will be happy to leave things as they are. Alternatively, you could perform 30 splits on
shardA’s chunks to even out the chunk counts.

Note that the balancer only uses number of chunks as a metric, not size of data. Mov‐
ing a chunk is called a migration and is how MongoDB balances data across your
cluster. Thus, a shard with a few large chunks may end up as the target of a migration
from a shard with many small chunks (but a smaller data size).

Changing Chunk Size
There can be anywhere from zero to millions of documents in a chunk. Generally, the
larger a chunk is, the longer it takes to migrate to another shard. In Chapter 14, we
used a chunk size of 1 MB, so that we could see chunk movement easily and quickly.
This is generally impractical in a live system; MongoDB would be doing a lot of
unnecessary work to keep shards within a few megabytes of each other in size. By
default chunks are 64 MB, which generally provides a good balance between ease of
migration and migratory churn.

Sometimes you may find that migrations are taking too long with 64 MB chunks. To
speed them up, you can decrease your chunk size. To do this, connect to mongos
through the shell and update the config.settings collection:

Balancing Data | 361

> db.settings.findOne()
{
 "_id" : "chunksize",
 "value" : 64
}
> db.settings.save({"_id" : "chunksize", "value" : 32})
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

The previous update would change your chunk size to 32 MB. Existing chunks would
not be changed immediately, however; automatic splitting only occurs on insert or
update. Thus, if you lower the chunk size, it may take time for all chunks to split to
the new size.

Splits cannot be undone. If you increase the chunk size, existing chunks grow only
through insertion or updates until they reach the new size. The allowed range of the
chunk size is between 1 and 1,024 MB, inclusive.

Note that this is a cluster-wide setting: it affects all collections and databases. Thus, if
you need a small chunk size for one collection and a large chunk size for another, you
may have to compromise with a chunk size in between the two ideals (or put the col‐
lections in different clusters).

If MongoDB is doing too many migrations or your documents are
large, you may want to increase your chunk size.

Moving Chunks
As mentioned earlier, all the data in a chunk lives on a certain shard. If that shard
ends up with more chunks than the other shards, MongoDB will move some chunks
off it.

You can manually move chunks using the moveChunk shell helper:

> sh.moveChunk("video.movies", {imdbId: 500000}, "shard02")
{ "millis" : 4079, "ok" : 1 }

This would move the chunk containing the document with an "imdbId" of 500000 to
the shard named shard02. You must use the shard key ("imdbId", in this case) to find
which chunk to move. Generally, the easiest way to specify a chunk is by its lower
bound, although any value in the chunk will work (the upper bound will not, as it is
not actually in the chunk). This command will move the chunk before returning, so it
may take a while to run. The logs are the best place to see what it is doing if it takes a
long time.

If a chunk is larger than the max chunk size, mongos will refuse to move it:

362 | Chapter 17: Sharding Administration

> sh.moveChunk("video.movies", {imdbId: NumberLong("8345072417171006784")},
 "shard02")
{
 "cause" : {
 "chunkTooBig" : true,
 "estimatedChunkSize" : 2214960,
 "ok" : 0,
 "errmsg" : "chunk too big to move"
 },
 "ok" : 0,
 "errmsg" : "move failed"
}

In this case, you must manually split the chunk before moving it, using the splitAt
command:

> db.chunks.find({ns: "video.movies", "min.imdbId":
 NumberLong("6386258634539951337")}).pretty()
{
 "_id" : "video.movies-imdbId_6386258634539951337",
 "ns" : "video.movies",
 "min" : {
 "imdbId" : NumberLong("6386258634539951337")
 },
 "max" : {
 "imdbId" : NumberLong("8345072417171006784")
 },
 "shard" : "shard02",
 "lastmod" : Timestamp(1, 9),
 "lastmodEpoch" : ObjectId("5bdf72c021b6e3be02fabe0c"),
 "history" : [
 {
 "validAfter" : Timestamp(1541370559, 4),
 "shard" : "shard02"
 }
]
}
> sh.splitAt("video.movies", {"imdbId":
 NumberLong("7000000000000000000")})
{
 "ok" : 1,
 "operationTime" : Timestamp(1541453304, 1),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1541453306, 5),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}
> db.chunks.find({ns: "video.movies", "min.imdbId":
 NumberLong("6386258634539951337")}).pretty()
{

Balancing Data | 363

1 MongoDB 4.4 is planning to add a new parameter (forceJumbo) in the moveChunk function, as well as a new
balancer configuration setting attemptToBalanceJumboChunks to address jumbo chunks. The details are in
this JIRA ticket describing the work.

 "_id" : "video.movies-imdbId_6386258634539951337",
 "lastmod" : Timestamp(15, 2),
 "lastmodEpoch" : ObjectId("5bdf72c021b6e3be02fabe0c"),
 "ns" : "video.movies",
 "min" : {
 "imdbId" : NumberLong("6386258634539951337")
 },
 "max" : {
 "imdbId" : NumberLong("7000000000000000000")
 },
 "shard" : "shard02",
 "history" : [
 {
 "validAfter" : Timestamp(1541370559, 4),
 "shard" : "shard02"
 }
]
}

Once the chunk has been split into smaller pieces, it should be movable. Alternatively,
you can raise the max chunk size and then move it, but you should break up large
chunks whenever possible. Sometimes, though, chunks cannot be broken up—we’ll
look at this situation next.1

Jumbo Chunks
Suppose you choose the "date" field as your shard key. The "date" field in this col‐
lection is a string that looks like "year/month/day", which means that mongos can
create at most one chunk per day. This works fine for a while, until your application
suddenly goes viral and gets a thousand times its typical traffic for one day.

This day’s chunk is going to be much larger than any other day’s, but it is also com‐
pletely unsplittable because every document has the same value for the shard key.

Once a chunk is larger than the max chunk size set in config.settings, the balancer will
not be allowed to move the chunk. These unsplittable, unmovable chunks are called
jumbo chunks and they are inconvenient to deal with.

Let’s take an example. Suppose you have three shards, shard1, shard2, and shard3. If
you use the hotspot shard key pattern described in “Ascending Shard Keys” on page
320, all your writes will be going to one shard—say, shard1. The shard primary mon‐
god will request that the balancer move each new top chunk evenly between the other

364 | Chapter 17: Sharding Administration

https://jira.mongodb.org/browse/SERVER-42273

shards, but the only chunks that the balancer can move are the nonjumbo chunks, so
it will migrate all the small chunks off the hot shard.

Now all the shards will have roughly the same number of chunks, but all of shard2
and shard3’s chunks will be less than 64 MB in size. And if jumbo chunks are being
created, more and more of shard1’s chunks will be more than 64 MB in size. Thus,
shard1 will fill up a lot faster than the other two shards, even though the number of
chunks is perfectly balanced between the three.

Thus, one of the indicators that you have jumbo chunk problems is that one shard’s
size is growing much faster than the others. You can also look at the output of sh.sta
tus() to see if you have jumbo chunks—they will be marked with the jumbo attribute:

> sh.status()
...
 { "x" : -7 } -->> { "x" : 5 } on : shard0001
 { "x" : 5 } -->> { "x" : 6 } on : shard0001 jumbo
 { "x" : 6 } -->> { "x" : 7 } on : shard0001 jumbo
 { "x" : 7 } -->> { "x" : 339 } on : shard0001
...

You can use the dataSize command to check chunk sizes. First, use the config.chunks
collection to find the chunk ranges:

> use config
> var chunks = db.chunks.find({"ns" : "acme.analytics"}).toArray()

Then use these chunk ranges to find possible jumbo chunks:

> use <dbName>
> db.runCommand({"dataSize" : "<dbName.collName>",
... "keyPattern" : {"date" : 1}, // shard key
... "min" : chunks[0].min,
... "max" : chunks[0].max})
{
 "size" : 33567917,
 "numObjects" : 108942,
 "millis" : 634,
 "ok" : 1,
 "operationTime" : Timestamp(1541455552, 10),
 "$clusterTime" : {
 "clusterTime" : Timestamp(1541455552, 10),
 "signature" : {
 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
 "keyId" : NumberLong(0)
 }
 }
}

Be careful, though—the dataSize command does have to scan the chunk’s data to
figure out how big it is. If you can, narrow down your search by using your

Balancing Data | 365

knowledge of your data: were jumbo chunks created on a certain date? For example, if
July 1 was a really busy day, look for chunks with that day in their shard key range.

If you’re using GridFS and sharding by "files_id", you can look
at the fs.files collection to find a file’s size.

Distributing jumbo chunks
To fix a cluster thrown off-balance by jumbo chunks, you must evenly distribute
them among the shards.

This is a complex manual process, but should not cause any downtime (it may cause
slowness, as you’ll be migrating a lot of data). In the following description, the shard
with the jumbo chunks is referred to as the “from” shard. The shards that the jumbo
chunks are migrated to are called the “to” shards. Note that you may have multiple
“from” shards that you wish to move chunks off of. Repeat these steps for each:

1. Turn off the balancer. You don’t want the balancer trying to “help” during this
process:

> sh.setBalancerState(false)

2. MongoDB will not allow you to move chunks larger than the max chunk size, so
temporarily increase the chunk size. Make a note of what your original chunk
size is and then change it to something large, like 10000. Chunk size is specified
in megabytes:

> use config
> db.settings.findOne({"_id" : "chunksize"})
{
 "_id" : "chunksize",
 "value" : 64
}
> db.settings.save({"_id" : "chunksize", "value" : 10000})

3. Use the moveChunk command to move jumbo chunks off the “from” shard.
4. Run splitChunk on the remaining chunks on the “from” shard until it has

roughly the same number of chunks as the “to” shards.
5. Set the chunk size back to its original value:

> db.settings.save({"_id" : "chunksize", "value" : 64})

6. Turn on the balancer:
> sh.setBalancerState(true)

366 | Chapter 17: Sharding Administration

When the balancer is turned on again, it will once again be unable to move the jumbo
chunks; they are essentially held in place by their size.

Preventing jumbo chunks
As the amount of data you are storing grows, the manual process described in the
previous section becomes unsustainable. Thus, if you’re having problems with jumbo
chunks, you should make it a priority to prevent them from forming.

To prevent jumbo chunks, modify your shard key to have more granularity. You want
almost every document to have a unique value for the shard key, or at least to never
have more than the chunk size’s worth of data with a single shard key value.

For example, if you were using the year/month/day key described earlier, it could
quickly be made more fine-grained by adding hours, minutes, and seconds. Similarly,
if you’re sharding on something coarse-grained like log level, you can add to your
shard key a second field with a lot of granularity, such as an MD5 hash or UUID.
Then you can always split a chunk, even if the first field is the same for many
documents.

Refreshing Configurations
As a final tip, sometimes mongos will not update its configuration correctly from the
config servers. If you ever get a configuration that you don’t expect or a mongos seems
to be out of date or cannot find data that you know is there, use the flushRouterCon
fig command to manually clear all caches:

> db.adminCommand({"flushRouterConfig" : 1})

If flushRouterConfig does not work, restarting all your mongos or mongod processes
clears any cached data.

Balancing Data | 367

PART V

Application Administration

CHAPTER 18

Seeing What Your Application Is Doing

Once you have an application up and running, how do you know what it’s doing?
This chapter covers how to figure out what kinds of queries MongoDB is running,
how much data is being written, and other details about what it’s actually doing.
You’ll learn about:

• Finding slow operations and killing them
• Getting and interpreting statistics about your collections and databases
• Using command-line tools to give you a picture of what MongoDB is doing

Seeing the Current Operations
An easy way to find slow operations is to see what is running. Anything slow is more
likely to show up and have been running for longer. It’s not guaranteed, but it’s a good
first step to see what might be slowing down an application.

To see the operations that are running, use the db.currentOp() function:

> db.currentOp()
{
 "inprog": [{
 "type" : "op",
 "host" : "eoinbrazil-laptop-osx:27017",
 "desc" : "conn3",
 "connectionId" : 3,
 "client" : "127.0.0.1:57181",
 "appName" : "MongoDB Shell",
 "clientMetadata" : {
 "application" : {
 "name" : "MongoDB Shell"
 },

371

 "driver" : {
 "name" : "MongoDB Internal Client",
 "version" : "4.2.0"
 },
 "os" : {
 "type" : "Darwin",
 "name" : "Mac OS X",
 "architecture" : "x86_64",
 "version" : "18.7.0"
 }
 },
 "active" : true,
 "currentOpTime" : "2019-09-03T23:25:46.380+0100",
 "opid" : 13594,
 "lsid" : {
 "id" : UUID("63b7df66-ca97-41f4-a245-eba825485147"),
 "uid" : BinData(0,"47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=")
 },
 "secs_running" : NumberLong(0),
 "microsecs_running" : NumberLong(969),
 "op" : "insert",
 "ns" : "sample_mflix.items",
 "command" : {
 "insert" : "items",
 "ordered" : false,
 "lsid" : {
 "id" : UUID("63b7df66-ca97-41f4-a245-eba825485147")
 },
 "$readPreference" : {
 "mode" : "secondaryPreferred"
 },
 "$db" : "sample_mflix"
 },
 "numYields" : 0,
 "locks" : {
 "ParallelBatchWriterMode" : "r",
 "ReplicationStateTransition" : "w",
 "Global" : "w",
 "Database" : "w",
 "Collection" : "w"
 },
 "waitingForLock" : false,
 "lockStats" : {
 "ParallelBatchWriterMode" : {
 "acquireCount" : {
 "r" : NumberLong(4)
 }
 },
 "ReplicationStateTransition" : {
 "acquireCount" : {
 "w" : NumberLong(4)
 }

372 | Chapter 18: Seeing What Your Application Is Doing

 },
 "Global" : {
 "acquireCount" : {
 "w" : NumberLong(4)
 }
 },
 "Database" : {
 "acquireCount" : {
 "w" : NumberLong(4)
 }
 },
 "Collection" : {
 "acquireCount" : {
 "w" : NumberLong(4)
 }
 },
 "Mutex" : {
 "acquireCount" : {
 "r" : NumberLong(196)
 }
 }
 },
 "waitingForFlowControl" : false,
 "flowControlStats" : {
 "acquireCount" : NumberLong(4)
 }
 }],
 "ok": 1
}

This displays a list of operations that the database is performing. Here are some of the
more important fields in the output:

"opid"

The operation’s unique identifier. You can use this number to kill an operation
(see “Killing Operations” on page 375).

"active"

Whether this operation is running. If this field is false, it means the operation
has yielded or is waiting for a lock.

"secs_running"

The duration of this operation in seconds. You can use this to find queries that
are taking too long.

"microsecs_running"

The duration of this operation in microseconds. You can use this to find queries
that are taking too long.

Seeing the Current Operations | 373

"op"

The type of operation. This is generally "query", "insert", "update", or
"remove". Note that database commands are processed as queries.

"desc"

An identifier for the client. This can be correlated with messages in the logs.
Every log message related to the connection in our example will be prefixed with
[conn3], so you can use this to grep the logs for relevant information.

"locks"

A description of the types of locks taken by this operation.

"waitingForLock"

Whether this operation is currently blocking, waiting to acquire a lock.

"numYields"

The number of times this operation has yielded, releasing its lock to allow other
operations to go. Generally, any operation that searches for documents (queries,
updates, and removes) can yield. An operation will only yield if there are other
operations enqueued and waiting to take its lock. Basically, if there are no opera‐
tions in the "waitingForLock" state, the current operations will not yield.

"lockstats.timeAcquiringMicros"

How long it took this operation to acquire the locks it needed.

You can filter currentOp to only look for operations fulfilling certain criteria, such as
operations on a certain namespace or ones that have been running for a certain
length of time. You filter the results by passing in a query argument:

> db.currentOp(
 {
 "active" : true,
 "secs_running" : { "$gt" : 3 },
 "ns" : /^db1\./
 }
)

You can query on any field in currentOp, using all the normal query operators.

Finding Problematic Operations
The most common use for db.currentOp() is looking for slow operations. You can
use the filtering technique described in the previous section to find all queries that
take longer than a certain amount of time, which may suggest a missing index or
improper field filtering.

374 | Chapter 18: Seeing What Your Application Is Doing

Sometimes people will find that unexpected queries are running, generally because
there’s an app server running an old or buggy version of the software. The "client"
field can help you track down where unexpected operations are coming from.

Killing Operations
If you find an operation that you want to stop, you can kill it by passing db.killOp()
its "opid":

> db.killOp(123)

Not all operations can be killed. In general, operations can only be killed when they
yield—so updates, finds, and removes can all be killed, but operations holding or
waiting for a lock usually cannot be killed.

Once you have sent a “kill” message to an operation, it will have a "killed" field in
the db.currentOp() output. However, it won’t actually be dead until it disappears
from the list of current operations.

In MongoDB 4.0, the killOP method was extended to allow it to run on a mongos. It
can now kill queries (read operations) that are running across more than one shard in
a cluster. In previous versions, this involved manually issuing the kill command
across each shard on the respective primary mongod.

False Positives
If you look for slow operations, you may see some long-running internal operations
listed. There are several long-running requests MongoDB may have running,
depending on your setup. The most common are the replication thread (which will
continue fetching more operations from the sync source for as long as possible) and
the writeback listener for sharding. Any long-running query on local.oplog.rs can be
ignored, as well as any writebacklistener commands.

If you kill either of these operations, MongoDB will just restart them. However, you
generally should not do that. Killing the replication thread will briefly halt replica‐
tion, and killing the writeback listener may cause mongos to miss legitimate write
errors.

Preventing Phantom Operations
There is an odd, MongoDB-specific issue that you may run into, particularly if you’re
bulk-loading data into a collection. Suppose you have a job that is firing thousands of
update operations at MongoDB and MongoDB is grinding to a halt. You quickly stop
the job and kill off all the updates that are currently occurring. However, you con‐
tinue to see new updates appearing as soon as you kill the old ones, even though the
job is no longer running!

Seeing the Current Operations | 375

https://oreil.ly/95e3x

If you are loading data using unacknowledged writes, your application will fire writes
at MongoDB, potentially faster than MongoDB can process them. If MongoDB gets
backed up, these writes will pile up in the operating system’s socket buffer. When you
kill the writes MongoDB is working on, this allows MongoDB to start processing the
writes in the buffer. Even if you stop the client from sending writes, any writes that
made it into the buffer will get processed by MongoDB, since they’ve already been
“received” (just not processed).

The best way to prevent these phantom writes is to do acknowledged writes: make
each write wait until the previous write is complete, not just until the previous write is
sitting in a buffer on the database server.

Using the System Profiler
To find slow operations you can use the system profiler, which records operations in
a special system.profile collection. The profiler can give you tons of information about
operations that are taking a long time, but at a cost: it slows down mongod’s overall
performance. Thus, you may only want to turn on the profiler periodically to capture
a slice of traffic. If your system is already heavily loaded, you may wish to use another
technique described in this chapter to diagnose issues.

By default, the profiler is off and does not record anything. You can turn it on by run‐
ning db.setProfilingLevel() in the shell:

> db.setProfilingLevel(2)
{ "was" : 0, "slowms" : 100, "ok" : 1 }

Level 2 means “profile everything.” Every read and write request received by the data‐
base will be recorded in the system.profile collection of the current database. Profiling
is enabled per-database and incurs a heavy performance penalty: every write has to be
written an extra time and every read has to take a write lock (because it must write an
entry to the system.profile collection). However, it will give you an exhaustive listing
of what your system is doing:

> db.foo.insert({x:1})
> db.foo.update({},{$set:{x:2}})
> db.foo.remove()
> db.system.profile.find().pretty()
{
 "op" : "insert",
 "ns" : "sample_mflix.foo",
 "command" : {
 "insert" : "foo",
 "ordered" : true,
 "lsid" : {
 "id" : UUID("63b7df66-ca97-41f4-a245-eba825485147")
 },
 "$readPreference" : {

376 | Chapter 18: Seeing What Your Application Is Doing

 "mode" : "secondaryPreferred"
 },
 "$db" : "sample_mflix"
 },
 "ninserted" : 1,
 "keysInserted" : 1,
 "numYield" : 0,
 "locks" : { ... },
 "flowControl" : {
 "acquireCount" : NumberLong(3)
 },
 "responseLength" : 45,
 "protocol" : "op_msg",
 "millis" : 33,
 "client" : "127.0.0.1",
 "appName" : "MongoDB Shell",
 "allUsers" : [],
 "user" : ""
}
{
 "op" : "update",
 "ns" : "sample_mflix.foo",
 "command" : {
 "q" : {

 },
 "u" : {
 "$set" : {
 "x" : 2
 }
 },
 "multi" : false,
 "upsert" : false
 },
 "keysExamined" : 0,
 "docsExamined" : 1,
 "nMatched" : 1,
 "nModified" : 1,
 "numYield" : 0,
 "locks" : { ... },
 "flowControl" : {
 "acquireCount" : NumberLong(1)
 },
 "millis" : 0,
 "planSummary" : "COLLSCAN",
 "execStats" : { ...
 "inputStage" : {
 ...
 }
 },
 "ts" : ISODate("2019-09-03T22:39:33.856Z"),
 "client" : "127.0.0.1",

Using the System Profiler | 377

 "appName" : "MongoDB Shell",
 "allUsers" : [],
 "user" : ""
}
{
 "op" : "remove",
 "ns" : "sample_mflix.foo",
 "command" : {
 "q" : {

 },
 "limit" : 0
 },
 "keysExamined" : 0,
 "docsExamined" : 1,
 "ndeleted" : 1,
 "keysDeleted" : 1,
 "numYield" : 0,
 "locks" : { ... },
 "flowControl" : {
 "acquireCount" : NumberLong(1)
 },
 "millis" : 0,
 "planSummary" : "COLLSCAN",
 "execStats" : { ...
 "inputStage" : { ... }
 },
 "ts" : ISODate("2019-09-03T22:39:33.858Z"),
 "client" : "127.0.0.1",
 "appName" : "MongoDB Shell",
 "allUsers" : [],
 "user" : ""
}

You can use the "client" field to see which users are sending which operations to the
database. If you’re using authentication, you can see which user is doing each opera‐
tion, too.

Often, you do not care about most of the operations that your database is doing, just
the slow ones. For this, you can set the profiling level to 1. By default, level 1 profiles
operations that take longer than 100 ms. You can also specify a second argument,
which defines what “slow” means to you. This would record all operations that took
longer than 500 ms:

> db.setProfilingLevel(1, 500)
{ "was" : 2, "slowms" : 100, "ok" : 1 }

To turn profiling off, set the profiling level to 0:

> db.setProfilingLevel(0)
{ "was" : 1, "slowms" : 500, "ok" : 1 }

378 | Chapter 18: Seeing What Your Application Is Doing

It’s generally not a good idea to set slowms to a low value. Even with profiling off,
slowms has an effect on mongod: it sets the threshold for printing slow operations in
the log. Thus, if you set slowms to 2, every operation that takes longer than 2 ms will
show up in the log, even with profiling off. So, if you lower slowms to profile some‐
thing, you might want to raise it again before turning off profiling.

You can see the current profiling level with db.getProfilingLevel(). The profiling
level is not persistent: restarting the database clears the level.

There are command-line options for configuring the profiling level, namely --
profile level and --slowms time, but bumping up the profiling level is generally a
temporary debugging measure, not something you want to add to your configuration
long-term.

In MongoDB 4.2, profiler entries and diagnostic log messages were extended for
read/write operations to help improve the identification of slow queries, with the
addition of the queryHash and planCacheKey fields. The queryHash string represents
a hash of the query shape and is dependent only on the query shape. Each query
shape is associated with a queryHash, making it easier to highlight those queries using
the same shape. The planCacheKey is the hash of the key for the plan cache entry
associated with the query. It includes the details of both the query shape and the cur‐
rently available indexes for the shape. These help you correlate the available informa‐
tion from the profiler to assist with query performance diagnosis.

If you turn on profiling and the system.profile collection does not already exist, Mon‐
goDB creates a small capped collection for it (a few megabytes in size). If you want to
run the profiler for an extended period of time, this may not be enough space for the
number of operations you need to record. You can make a larger system.profile collec‐
tion by turning off profiling, dropping the system.profile collection, and creating a
new system.profile capped collection that is the size you desire. Then enable profiling
on the database.

Calculating Sizes
In order to provision the correct amount of disk and RAM, it is useful to know how
much space documents, indexes, collections, and databases are taking up. See “Calcu‐
lating the Working Set” on page 429 for information on calculating your working set.

Documents
The easiest way to get the size of a document is to use the shell’s Object.bsonsize()
function. Pass in any document to get the size it would be when stored in MongoDB.

For example, you can see that storing _ids as ObjectIds is more efficient than storing
them as strings:

Calculating Sizes | 379

> Object.bsonsize({_id:ObjectId()})
22
> // ""+ObjectId() converts the ObjectId to a string
> Object.bsonsize({_id:""+ObjectId()})
39

More practically, you can pass in documents directly from your collections:

> Object.bsonsize(db.users.findOne())

This shows you exactly how many bytes a document is taking up on disk. However,
this does not count padding or indexes, which can often be significant factors in the
size of a collection.

Collections
For seeing information about a whole collection, there is a stats function:

>db.movies.stats()
{
 "ns" : "sample_mflix.movies",
 "size" : 65782298,
 "count" : 45993,
 "avgObjSize" : 1430,
 "storageSize" : 45445120,
 "capped" : false,
 "wiredTiger" : {
 "metadata" : {
 "formatVersion" : 1
 },
 "creationString" : "access_pattern_hint=none,allocation_size=4KB,\
 app_metadata=(formatVersion=1),assert=(commit_timestamp=none,\
 read_timestamp=none),block_allocation=best,block_compressor=\
 snappy,cache_resident=false,checksum=on,colgroups=,collator=,\
 columns=,dictionary=0,encryption=(keyid=,name=),exclusive=\
 false,extractor=,format=btree,huffman_key=,huffman_value=,\
 ignore_in_memory_cache_size=false,immutable=false,internal_item_\
 max=0,internal_key_max=0,internal_key_truncate=true,internal_\
 page_max=4KB,key_format=q,key_gap=10,leaf_item_max=0,leaf_key_\
 max=0,leaf_page_max=32KB,leaf_value_max=64MB,log=(enabled=true),\
 lsm=(auto_throttle=true,bloom=true,bloom_bit_count=16,bloom_\
 config=,bloom_hash_count=8,bloom_oldest=false,chunk_count_limit\
 =0,chunk_max=5GB,chunk_size=10MB,merge_custom=(prefix=,start_\
 generation=0,suffix=),merge_max=15,merge_min=0),memory_page_image\
 _max=0,memory_page_max=10m,os_cache_dirty_max=0,os_cache_max=0,\
 prefix_compression=false,prefix_compression_min=4,source=,split_\
 deepen_min_child=0,split_deepen_per_child=0,split_pct=90,type=file,\
 value_format=u",
 "type" : "file",
 "uri" : "statistics:table:collection-14--2146526997547809066",
 "LSM" : {
 "bloom filter false positives" : 0,
 "bloom filter hits" : 0,

380 | Chapter 18: Seeing What Your Application Is Doing

 "bloom filter misses" : 0,
 "bloom filter pages evicted from cache" : 0,
 "bloom filter pages read into cache" : 0,
 "bloom filters in the LSM tree" : 0,
 "chunks in the LSM tree" : 0,
 "highest merge generation in the LSM tree" : 0,
 "queries that could have benefited from a Bloom filter
 that did not exist" : 0,
 "sleep for LSM checkpoint throttle" : 0,
 "sleep for LSM merge throttle" : 0,
 "total size of bloom filters" : 0
 },
 "block-manager" : {
 "allocations requiring file extension" : 0,
 "blocks allocated" : 1358,
 "blocks freed" : 1322,
 "checkpoint size" : 39219200,
 "file allocation unit size" : 4096,
 "file bytes available for reuse" : 6209536,
 "file magic number" : 120897,
 "file major version number" : 1,
 "file size in bytes" : 45445120,
 "minor version number" : 0
 },
 "btree" : {
 "btree checkpoint generation" : 22,
 "column-store fixed-size leaf pages" : 0,
 "column-store internal pages" : 0,
 "column-store variable-size RLE encoded values" : 0,
 "column-store variable-size deleted values" : 0,
 "column-store variable-size leaf pages" : 0,
 "fixed-record size" : 0,
 "maximum internal page key size" : 368,
 "maximum internal page size" : 4096,
 "maximum leaf page key size" : 2867,
 "maximum leaf page size" : 32768,
 "maximum leaf page value size" : 67108864,
 "maximum tree depth" : 0,
 "number of key/value pairs" : 0,
 "overflow pages" : 0,
 "pages rewritten by compaction" : 1312,
 "row-store empty values" : 0,
 "row-store internal pages" : 0,
 "row-store leaf pages" : 0
 },
 "cache" : {
 "bytes currently in the cache" : 40481692,
 "bytes dirty in the cache cumulative" : 40992192,
 "bytes read into cache" : 37064798,
 "bytes written from cache" : 37019396,
 "checkpoint blocked page eviction" : 0,
 "data source pages selected for eviction unable to be evicted" : 32,

Calculating Sizes | 381

 "eviction walk passes of a file" : 0,
 "eviction walk target pages histogram - 0-9" : 0,
 "eviction walk target pages histogram - 10-31" : 0,
 "eviction walk target pages histogram - 128 and higher" : 0,
 "eviction walk target pages histogram - 32-63" : 0,
 "eviction walk target pages histogram - 64-128" : 0,
 "eviction walks abandoned" : 0,
 "eviction walks gave up because they restarted their walk twice" : 0,
 "eviction walks gave up because they saw too many pages
 and found no candidates" : 0,
 "eviction walks gave up because they saw too many pages
 and found too few candidates" : 0,
 "eviction walks reached end of tree" : 0,
 "eviction walks started from root of tree" : 0,
 "eviction walks started from saved location in tree" : 0,
 "hazard pointer blocked page eviction" : 0,
 "in-memory page passed criteria to be split" : 0,
 "in-memory page splits" : 0,
 "internal pages evicted" : 8,
 "internal pages split during eviction" : 0,
 "leaf pages split during eviction" : 0,
 "modified pages evicted" : 1312,
 "overflow pages read into cache" : 0,
 "page split during eviction deepened the tree" : 0,
 "page written requiring cache overflow records" : 0,
 "pages read into cache" : 1330,
 "pages read into cache after truncate" : 0,
 "pages read into cache after truncate in prepare state" : 0,
 "pages read into cache requiring cache overflow entries" : 0,
 "pages requested from the cache" : 3383,
 "pages seen by eviction walk" : 0,
 "pages written from cache" : 1334,
 "pages written requiring in-memory restoration" : 0,
 "tracked dirty bytes in the cache" : 0,
 "unmodified pages evicted" : 8
 },
 "cache_walk" : {
 "Average difference between current eviction generation
 when the page was last considered" : 0,
 "Average on-disk page image size seen" : 0,
 "Average time in cache for pages that have been visited
 by the eviction server" : 0,
 "Average time in cache for pages that have not been visited
 by the eviction server" : 0,
 "Clean pages currently in cache" : 0,
 "Current eviction generation" : 0,
 "Dirty pages currently in cache" : 0,
 "Entries in the root page" : 0,
 "Internal pages currently in cache" : 0,
 "Leaf pages currently in cache" : 0,
 "Maximum difference between current eviction generation
 when the page was last considered" : 0,

382 | Chapter 18: Seeing What Your Application Is Doing

 "Maximum page size seen" : 0,
 "Minimum on-disk page image size seen" : 0,
 "Number of pages never visited by eviction server" : 0,
 "On-disk page image sizes smaller than a single allocation unit" : 0,
 "Pages created in memory and never written" : 0,
 "Pages currently queued for eviction" : 0,
 "Pages that could not be queued for eviction" : 0,
 "Refs skipped during cache traversal" : 0,
 "Size of the root page" : 0,
 "Total number of pages currently in cache" : 0
 },
 "compression" : {
 "compressed page maximum internal page size
 prior to compression" : 4096,
 "compressed page maximum leaf page size
 prior to compression " : 131072,
 "compressed pages read" : 1313,
 "compressed pages written" : 1311,
 "page written failed to compress" : 1,
 "page written was too small to compress" : 22
 },
 "cursor" : {
 "bulk loaded cursor insert calls" : 0,
 "cache cursors reuse count" : 0,
 "close calls that result in cache" : 0,
 "create calls" : 1,
 "insert calls" : 0,
 "insert key and value bytes" : 0,
 "modify" : 0,
 "modify key and value bytes affected" : 0,
 "modify value bytes modified" : 0,
 "next calls" : 0,
 "open cursor count" : 0,
 "operation restarted" : 0,
 "prev calls" : 1,
 "remove calls" : 0,
 "remove key bytes removed" : 0,
 "reserve calls" : 0,
 "reset calls" : 2,
 "search calls" : 0,
 "search near calls" : 0,
 "truncate calls" : 0,
 "update calls" : 0,
 "update key and value bytes" : 0,
 "update value size change" : 0
 },
 "reconciliation" : {
 "dictionary matches" : 0,
 "fast-path pages deleted" : 0,
 "internal page key bytes discarded using suffix compression" : 0,
 "internal page multi-block writes" : 0,
 "internal-page overflow keys" : 0,

Calculating Sizes | 383

 "leaf page key bytes discarded using prefix compression" : 0,
 "leaf page multi-block writes" : 0,
 "leaf-page overflow keys" : 0,
 "maximum blocks required for a page" : 1,
 "overflow values written" : 0,
 "page checksum matches" : 0,
 "page reconciliation calls" : 1334,
 "page reconciliation calls for eviction" : 1312,
 "pages deleted" : 0
 },
 "session" : {
 "object compaction" : 4
 },
 "transaction" : {
 "update conflicts" : 0
 }
 },
 "nindexes" : 5,
 "indexBuilds" : [],
 "totalIndexSize" : 46292992,
 "indexSizes" : {
 "_id_" : 446464,
 "$**_text" : 44474368,
 "genres_1_imdb.rating_1_metacritic_1" : 724992,
 "tomatoes_rating" : 307200,
 "getMovies" : 339968
 },
 "scaleFactor" : 1,
 "ok" : 1
}

stats starts with the namespace ("sample_mflix.movies") and then the count of all
documents in the collection. The next couple of fields have to do with the size of the
collection. "size" is what you’d get if you called Object.bsonsize() on each element
in the collection and added up all the sizes: it’s the actual number of bytes in memory
the documents in the collection are taking up when uncompressed. Equivalently, if
you take the "avgObjSize" and multiply it by "count", you’ll get "size" uncom‐
pressed in memory.

As mentioned earlier, a total count of the documents’ bytes leaves out the space saved
by compressing a collection. "storageSize" can be a smaller figure than "size",
reflecting the space saved by compression.

"nindexes" is the number of indexes on the collection. An index is not counted in
"nindexes" until it finishes being built and cannot be used until it appears in this list.
In general, indexes will be a lot larger than the amount of data they store. You can
minimize this free space by having right-balanced indexes (as described in “Introduc‐
tion to Compound Indexes” on page 81). Indexes that are randomly distributed will

384 | Chapter 18: Seeing What Your Application Is Doing

generally be approximately 50% free space, whereas ascending-order indexes will be
10% free space.

As your collections get bigger, it may become difficult to read stats output with sizes
in the billions of bytes or beyond. Thus, you can pass in a scaling factor: 1024 for kil‐
obytes, 1024*1024 for megabytes, and so on. For example, this would get the collec‐
tion stats in terabytes:

> db.big.stats(1024*1024*1024*1024)

Databases
Databases have a stats function that’s similar to collections’:

> db.stats()
{
 "db" : "sample_mflix",
 "collections" : 5,
 "views" : 0,
 "objects" : 98308,
 "avgObjSize" : 819.8680982219148,
 "dataSize" : 80599593,
 "storageSize" : 53620736,
 "numExtents" : 0,
 "indexes" : 12,
 "indexSize" : 47001600,
 "scaleFactor" : 1,
 "fsUsedSize" : 355637043200,
 "fsTotalSize" : 499963174912,
 "ok" : 1
}

First, we have the name of the database, the number of collections it contains, and the
number of views for the database. "objects" is the total count of documents across
all collections in this database.

The bulk of the document contains information about the size of your data.
"fsTotalSize" should always be the largest: it is the total size of the disk capacity on
the filesystem where the MongoDB instance stores data. "fsUsedSize" represents the
total space used in that filesystem by MongoDB currently. This should correspond to
the total space used by all the files in your data directory.

The next-largest field is generally going to be "dataSize", which is the size of the
uncompressed data held in this database. This doesn’t match "storageSize" because
data is typically compressed in WiredTiger. "indexSize" is the amount of space all of
the indexes for this database take up.

db.stats() can take a scale argument the same way that the collections’ stats func‐
tion can. If you call db.stats() on a nonexistent database, the values will all be zero.

Calculating Sizes | 385

Keep in mind that listing databases on a system with a high lock percent can be very
slow and block other operations. Avoid doing it, if possible.

Using mongotop and mongostat
MongoDB comes with a few command-line tools that can help you determine what
it’s doing by printing stats every few seconds.

mongotop is similar to the top Unix utility: it gives you an overview of which collec‐
tions are busiest. You can also run mongotop --locks to give you locking statistics for
each database.

mongostat gives server-wide information. By default, mongostat prints out a list of
statistics once per second, although this is configurable by passing a different number
of seconds on the command line. Each of the fields gives a count of how many times
the activity has happened since the field was last printed:

insert/query/update/delete/getmore/command

Simple counts of how many of each of these operations there have been.

flushes

How many times mongod has flushed data to disk.

mapped

The amount of memory mongod has mapped. This is generally roughly the size
of your data directory.

vsize

The amount of virtual memory mongod is using. This is generally twice the size
of your data directory (once for the mapped files, once again for journaling).

res

The amount of memory mongod is using. This should generally be as close as
possible to all the memory on the machine.

locked db

The database that spent the most time locked in the last timeslice. This field
reports the percent of time the database was locked combined with how long the
global lock was held, meaning that this value might be over 100%.

idx miss %

The percentage of index accesses that had to page fault (because the index entry
or section of index being searched was not in memory, so mongod had to go to
disk). This is the most confusingly named field in the output.

386 | Chapter 18: Seeing What Your Application Is Doing

qr|qw

The queue size for reads and writes (i.e., how many reads and writes are block‐
ing, waiting to be processed).

ar|aw

How many active clients there are (i.e., clients currently performing reads and
writes).

netIn

The number of network bytes in, as counted by MongoDB (not necessarily the
same as what the OS would measure).

netOut

The number of network bytes out, as counted by MongoDB.

conn

The number of connections this server has open, both incoming and outgoing.

time

The time at which these statistics were taken.

You can run mongostat on a replica set or sharded cluster. If you use the --discover
option, mongostat will try to find all the members of the set or cluster from the mem‐
ber it initially connects to and will print one line per server per second for each. For a
large cluster, this can get unmanageable fast, but it can be useful for small clusters and
tools that can consume the data and present it in a more readable form.

mongostat is a great way to get a quick snapshot of what your database is doing, but
for long-term monitoring a tool like MongoDB Atlas or Ops Manager is preferred
(see Chapter 22).

Using mongotop and mongostat | 387

CHAPTER 19

An Introduction to MongoDB Security

To protect your MongoDB cluster and the data it holds, you will want to employ the
following security measures:

• Enable authorization and enforce authentication
• Encrypt communication
• Encrypt data

This chapter demonstrates how to address the first two security measures with a tuto‐
rial on using MongoDB’s support for x.509 to configure authentication and transport
layer encryption to ensure secure communications among clients and servers in a
MongoDB replica set. We will touch on encrypting data at the storage layer in a later
chapter.

MongoDB Authentication and Authorization
While authentication and authorization are closely connected, it is important to note
that authentication is distinct from authorization. The purpose of authentication is to
verify the identity of a user, while authorization determines the verified user’s access
to resources and operations.

Authentication Mechanisms
Enabling authorization on a MongoDB cluster enforces authentication and ensures
users can only perform actions they are authorized for, as determined by their roles.
The Community version of MongoDB provides support for SCRAM (Salted Chal‐
lenge Response Authentication Mechanism) and x.509 certificate authentication. In
addition to SCRAM and x.509, MongoDB Enterprise supports Kerberos authentica‐
tion and LDAP proxy authentication. See the documentation for details on the vari‐

389

https://oreil.ly/RQ5Jp

ous authentication mechanisms that MongoDB supports. In this chapter, we will
focus on x.509 authentication. An x.509 digital certificate uses the widely accepted x.
509 public key infrastructure (PKI) standard to verify that a public key belongs to the
presenter.

Authorization
When adding a user in MongoDB, you must create the user in a specific database.
That database is the authentication database for the user; you can use any database for
this purpose. The username and authentication database serves as a unique identifier
for a user. However, a user’s privileges are not limited to their authentication data‐
base. When creating a user, you can specify the operations the user may perform on
any resources to which they should have access. Resources include the cluster, data‐
bases, and collections.

MongoDB provides a number of built-in roles that grant commonly needed permis‐
sions for database users. These include the following:

read

Read data on all nonsystem collections and on the following system collections:
system.indexes, system.js, and system.namespaces.

readWrite

Provides same privileges as read, plus the ability to modify data on all nonsystem
collections and the system.js collection.

dbAdmin

Perform administrative tasks such as schema-related tasks, indexing, and gather‐
ing statistics (does not grant privileges for user and role management).

userAdmin

Create and modify roles and users on the current database.

dbOwner

Combines the privileges granted by the readWrite, dbAdmin, and userAdmin
roles.

clusterManager

Perform management and monitoring actions on the cluster.

clusterMonitor

Provides read-only access to monitoring tools such as the MongoDB Cloud Man‐
ager and Ops Manager monitoring agent.

hostManager

Monitor and manage servers.

390 | Chapter 19: An Introduction to MongoDB Security

clusterAdmin

Combines the privileges granted by the clusterManager, clusterMonitor, and host‐
Manager roles, plus the dropDatabase action.

backup

Provides sufficient privileges to use the MongoDB Cloud Manager backup agent
or the Ops Manager backup agent, or to use mongodump to back up an entire
mongod instance.

restore

Provides privileges needed to restore data from backups that do not include sys‐
tem.profile collection data.

readAnyDatabase

Provides same privileges as read on all databases except local and config, plus the
listDatabases action on the cluster as a whole.

readWriteAnyDatabase

Provides same privileges as readWrite on all databases except local and config,
plus the listDatabases action on the cluster as a whole.

userAdminAnyDatabase

Provides same privileges as userAdmin on all databases except local and config
(effectively a superuser role).

dbAdminAnyDatabase

Provides same privileges as dbAdmin on all databases except local and config, plus
the listDatabases action on the cluster as a whole.

root

Provides access to the operations and all the resources of the readWriteAnyData‐
base, dbAdminAnyDatabase, userAdminAnyDatabase, clusterAdmin, restore, and
backup roles combined.

You may also create what are known as “user-defined roles,” which are custom roles
that group together authorization to perform specific operations and label them with
a name so that you may grant this set of permissions to multiple users easily.

A deep dive on built-in roles or user-defined roles is beyond the scope of this chapter.
However, this introduction should give you a pretty good idea of what’s possible with
MongoDB authorization. For greater detail, please see the authorization section of the
MongoDB documentation.

To ensure that you can add new users as needed, you must first create an admin user.
MongoDB does not create a default root or admin user when enabling authentication
and authorization, regardless of the authentication mode you are using (x.509 is no
exception).

MongoDB Authentication and Authorization | 391

https://docs.mongodb.com/manual/core/authorization/
https://docs.mongodb.com/manual/core/authorization/

In MongoDB, authentication and authorization are not enabled by default. You must
explicitly enable them by using the --auth option to the mongod command or specify‐
ing a value of "enabled" for the security.authorization setting in a MongoDB
config file.

To configure a replica set, first bring it up without authentication and authorization
enabled, then create the admin user and the users you’ll need for each client.

Using x.509 Certificates to Authenticate Both Members and Clients
Given that all production MongoDB clusters are composed of multiple members, to
secure a cluster, it is essential that all services communicating within the cluster
authenticate with one another. Each member of a replica set must authenticate with
the others in order to exchange data. Likewise, clients must authenticate with the pri‐
mary and any secondaries that they communicate with.

For x.509, it’s necessary that a trusted certification authority (CA) sign all certificates.
Signing certifies that the named subject of a certificate owns the public key associated
with that certificate. A CA acts as a trusted third party to prevent man-in-the-middle
attacks.

Figure 19-1 depicts x.509 authentication used to secure a three-member MongoDB
replica set. Note the authentication among the client and members of the replica set
and the trust relationships with the CA.

392 | Chapter 19: An Introduction to MongoDB Security

Figure 19-1. Overview of the trust hierarchy for X.509 authentication for the three-
member replica set used in this chapter

The members and the client each have their own certificate signed by the CA. For
production use, your MongoDB deployment should use valid certificates generated
and signed by a single certificate authority. You or your organization can generate and
maintain an independent certificate authority, or you can use certificates generated by
a third-party TLS/SSL vendor.

We will refer to certificates used for internal authentication to verify membership in a
cluster as member certificates. Both member certificates and client certificates (used
to authenticate clients) have a structure resembling the following:

Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number: 1 (0x1)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=NY, L=New York, O=MongoDB, CN=CA-SIGNER
 Validity
 Not Before: Nov 11 22:00:03 2018 GMT
 Not After : Nov 11 22:00:03 2019 GMT
 Subject: C=US, ST=NY, L=New York, O=MongoDB, OU=MyServers, CN=server1
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)

MongoDB Authentication and Authorization | 393

 Modulus:
 00:d3:1c:29:ba:3d:29:44:3b:2b:75:60:95:c8:83:
 fc:32:1a:fa:29:5c:56:f3:b3:66:88:7f:f9:f9:89:
 ff:c2:51:b9:ca:1d:4c:d8:b8:5a:fd:76:f5:d3:c9:
 95:9c:74:52:e9:8d:5f:2e:6b:ca:f8:6a:16:17:98:
 dc:aa:bf:34:d0:44:33:33:f3:9d:4b:7e:dd:7a:19:
 1b:eb:3b:9e:21:d9:d9:ba:01:9c:8b:16:86:a3:52:
 a3:e6:e4:5c:f7:0c:ab:7a:1a:be:c6:42:d3:a6:01:
 8e:0a:57:b2:cd:5b:28:ee:9d:f5:76:ca:75:7a:c1:
 7c:42:d1:2a:7f:17:fe:69:17:49:91:4b:ca:2e:39:
 b4:a5:e0:03:bf:64:86:ca:15:c7:b2:f7:54:00:f7:
 02:fe:cf:3e:12:6b:28:58:1c:35:68:86:3f:63:46:
 75:f1:fe:ac:1b:41:91:4f:f2:24:99:54:f2:ed:5b:
 fd:01:98:65:ac:7a:7a:57:2f:a8:a5:5a:85:72:a6:
 9e:fb:44:fb:3b:1c:79:88:3f:60:85:dd:d1:5c:1c:
 db:62:8c:6a:f7:da:ab:2e:76:ac:af:6d:7d:b1:46:
 69:c1:59:db:c6:fb:6f:e1:a3:21:0c:5f:2e:8e:a7:
 d5:73:87:3e:60:26:75:eb:6f:10:c2:64:1d:a6:19:
 f3:0b
 Exponent: 65537 (0x10001)
 Signature Algorithm: sha256WithRSAEncryption
 5d:dd:b2:35:be:27:c2:41:4a:0d:c7:8c:c9:22:05:cd:eb:88:
 9d:71:4f:28:c1:79:71:3c:6d:30:19:f4:9c:3d:48:3a:84:d0:
 19:00:b1:ec:a9:11:02:c9:a6:9c:74:e7:4e:3c:3a:9f:23:30:
 50:5a:d2:47:53:65:06:a7:22:0b:59:71:b0:47:61:62:89:3d:
 cf:c6:d8:b3:d9:cc:70:20:35:bf:5a:2d:14:51:79:4b:7c:00:
 30:39:2d:1d:af:2c:f3:32:fe:c2:c6:a5:b8:93:44:fa:7f:08:
 85:f0:01:31:29:00:d4:be:75:7e:0d:f9:1a:f5:e9:75:00:9a:
 7b:d0:eb:80:b1:01:00:c0:66:f8:c9:f0:35:6e:13:80:70:08:
 5b:95:53:4b:34:ec:48:e3:02:88:5c:cd:a0:6c:b4:bc:65:15:
 4d:c8:41:9d:00:f5:e7:f2:d7:f5:67:4a:32:82:2a:04:ae:d7:
 25:31:0f:34:e8:63:a5:93:f2:b5:5a:90:71:ed:77:2a:a6:15:
 eb:fc:c3:ac:ef:55:25:d1:a1:31:7a:2c:80:e3:42:c2:b3:7d:
 5e:9a:fc:e4:73:a8:39:50:62:db:b1:85:aa:06:1f:42:27:25:
 4b:24:cf:d0:40:ca:51:13:94:97:7f:65:3e:ed:d9:3a:67:08:
 79:64:a1:ba
-----BEGIN CERTIFICATE-----
MIIDODCCAiACAQEwDQYJKoZIhvcNAQELBQAwWTELMAkGA1UEBhMCQ04xCzAJBgNV
BAgMAkdEMREwDwYDVQQHDAhTaGVuemhlbjEWMBQGA1UECgwNTW9uZ29EQiBDaGlu
YTESMBAGA1UEAwwJQ0EtU0lHTkVSMB4XDTE4MTExMTIyMDAwM1oXDTE5MTExMTIy
MDAwM1owazELMAkGA1UEBhMCQ04xCzAJBgNVBAgMAkdEMREwDwYDVQQHDAhTaGVu
emhlbjEWMBQGA1UECgwNTW9uZ29EQiBDaGluYTESMBAGA1UECwwJTXlTZXJ2ZXJz
MRAwDgYDVQQDDAdzZXJ2ZXIxMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKC
AQEA0xwpuj0pRDsrdWCVyIP8Mhr6KVxW87NmiH/5+Yn/wlG5yh1M2Lha/Xb108mV
nHRS6Y1fLmvK+GoWF5jcqr800EQzM/OdS37dehkb6zueIdnZugGcixaGo1Kj5uRc
9wyrehq+xkLTpgGOCleyzVso7p31dsp1esF8QtEqfxf+aRdJkUvKLjm0peADv2SG
yhXHsvdUAPcC/s8+EmsoWBw1aIY/Y0Z18f6sG0GRT/IkmVTy7Vv9AZhlrHp6Vy+o
pVqFcqae+0T7Oxx5iD9ghd3RXBzbYoxq99qrLnasr219sUZpwVnbxvtv4aMhDF8u
jqfVc4c+YCZ1628QwmQdphnzCwIDAQABMA0GCSqGSIb3DQEBCwUAA4IBAQBd3bI1
vifCQUoNx4zJIgXN64idcU8owXlxPG0wGfScPUg6hNAZALHsqRECyaacdOdOPDqf
IzBQWtJHU2UGpyILWXGwR2FiiT3Pxtiz2cxwIDW/Wi0UUXlLfAAwOS0dryzzMv7C
xqW4k0T6fwiF8AExKQDUvnV+Dfka9el1AJp70OuAsQEAwGb4yfA1bhOAcAhblVNL

394 | Chapter 19: An Introduction to MongoDB Security

NOxI4wKIXM2gbLS8ZRVNyEGdAPXn8tf1Z0oygioErtclMQ806GOlk/K1WpBx7Xcq
phXr/MOs71Ul0aExeiyA40LCs31emvzkc6g5UGLbsYWqBh9CJyVLJM/QQMpRE5SX
f2U+7dk6Zwh5ZKG6
-----END CERTIFICATE-----

For use with x.509 authentication in MongoDB, member certificates must have the
following properties:

• A single CA must issue all x.509 certificates for the members of the cluster.
• The Distinguished Name (DN), found in the subject of the member certificate,

must specify a nonempty value for at least one of the following attributes: Orga‐
nization (O), Organizational Unit (OU), or Domain Component (DC).

• The O, OU, and DC attributes must match those from the certificates for the other
cluster members.

• The Common Name (CN) or a Subject Alternative Name (SAN) must match the
hostname of the server used by the other members of the cluster.

A Tutorial on MongoDB Authentication and Transport
Layer Encryption
In this tutorial we will set up a root CA and an intermediate CA. Best practice recom‐
mends signing the server and client certificates with the intermediate CA.

Establish a CA
Before we can generate signed certificates for the members of our replica set, we must
first address the issue of a certificate authority. As mentioned previously, we can
either generate and maintain an independent certificate authority or use certificates
generated by a third-party TLS/SSL vendor. We will generate our own CA to use for
the running example in this chapter. Note that you may access all the code examples
in this chapter from the GitHub repository maintained for this book. The examples
are drawn from a script you can use to deploy a secure replica set. You’ll see com‐
ments from this script throughout these examples.

Generate a root CA
To generate our CA, we will use OpenSSL. To follow along, please make sure you
have access to OpenSSL on your local machine.

A root CA is at the top of the certificate chain. This is the ultimate source of trust.
Ideally, a third-party CA should be used. However, in the case of an isolated network
(typical in a large enterprise environment) or for testing purposes, you’ll need to use a
local CA.

A Tutorial on MongoDB Authentication and Transport Layer Encryption | 395

First, we’ll initialize some variables:

dn_prefix="/C=US/ST=NY/L=New York/O=MongoDB"
ou_member="MyServers"
ou_client="MyClients"
mongodb_server_hosts=("server1" "server2" "server3")
mongodb_client_hosts=("client1" "client2")
mongodb_port=27017

Then, we’ll create a key pair and store it in the file root-ca.key:

!!! In production you will want to password-protect the keys
openssl genrsa -aes256 -out root-ca.key 4096
openssl genrsa -out root-ca.key 4096

Next, we’ll create a configuration file to hold our OpenSSL settings that we will use to
generate the certificates:

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
default_bits = 4096
default_keyfile = server-key.pem
default_md = sha256
distinguished_name = req_dn
req_extensions = v3_req
x509_extensions = v3_ca # The extensions to add to the self-signed cert

[v3_req]
subjectKeyIdentifier = hash
basicConstraints = CA:FALSE
keyUsage = critical, digitalSignature, keyEncipherment
nsComment = "OpenSSL Generated Certificate"
extendedKeyUsage = serverAuth, clientAuth

[req_dn]
countryName = Country Name (2-letter code)
countryName_default = US
countryName_min = 2
countryName_max = 2

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = NY
stateOrProvinceName_max = 64

localityName = Locality Name (eg, city)

396 | Chapter 19: An Introduction to MongoDB Security

localityName_default = New York
localityName_max = 64

organizationName = Organization Name (eg, company)
organizationName_default = MongoDB
organizationName_max = 64

organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Education
organizationalUnitName_max = 64

commonName = Common Name (eg, YOUR name)
commonName_max = 64

[v3_ca]
Extensions for a typical CA

subjectKeyIdentifier = hash
basicConstraints = critical,CA:true
authorityKeyIdentifier = keyid:always,issuer:always

Key usage: this is typical for a CA certificate. However, since it will
prevent it being used as a test self-signed certificate it is best
left out by default.
keyUsage = critical,keyCertSign,cRLSign

Then, using the openssl req command, we will create the root certificate. Since the
root is the very top of the authority chain, we’ll self-sign this certificate using the pri‐
vate key we created in the previous step (stored in root-ca.key). The -x509 option tells
the openssl req command we want to self-sign the certificate using the private key
supplied to the -key option. The output is a file called root-ca.crt:

openssl req -new -x509 -days 1826 -key root-ca.key -out root-ca.crt \
 -config openssl.cnf -subj "$dn_prefix/CN=ROOTCA"

If you take a look at the root-ca.crt file, you’ll find that it contains the public certificate
for the root CA. You can verify the contents by taking a look at a human-readable
version of the certificate produced by this command:

openssl x509 -noout -text -in root-ca.crt

The output from this command will resemble the following:

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 1e:83:0d:9d:43:75:7c:2b:d6:2a:dc:7e:a2:a2:25:af:5d:3b:89:43
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C = US, ST = NY, L = New York, O = MongoDB, CN = ROOTCA
 Validity
 Not Before: Sep 11 21:17:24 2019 GMT

A Tutorial on MongoDB Authentication and Transport Layer Encryption | 397

 Not After : Sep 10 21:17:24 2024 GMT
 Subject: C = US, ST = NY, L = New York, O = MongoDB, CN = ROOTCA
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public-Key: (4096 bit)
 Modulus:
 00:e3:de:05:ae:ba:c9:e0:3f:98:37:18:77:02:35:
 e7:f6:62:bc:c3:ae:38:81:8d:04:88:da:6c:e0:57:
 c2:90:86:05:56:7b:d2:74:23:54:f8:ca:02:45:0f:
 38:e7:e2:0b:69:ea:f6:c8:13:8f:6c:2d:d6:c1:72:
 64:17:83:4e:68:47:cf:de:37:ed:6e:38:b2:ab:3a:
 e4:45:a8:fa:08:90:a0:f3:0d:3a:14:d8:9a:8d:69:
 e7:cf:93:1a:71:53:4f:13:29:50:b0:2f:b6:b8:19:
 2a:40:21:15:90:43:e7:d8:d8:f3:51:e5:95:58:87:
 6c:45:9f:61:fc:b5:97:cf:5b:4e:4a:1f:72:c9:0c:
 e9:8c:4c:d1:ca:df:b3:a4:da:b4:10:83:81:01:b1:
 c8:09:22:76:c7:1e:96:c7:e6:56:27:8d:bc:fb:17:
 ed:d9:23:3f:df:9c:ef:03:20:cc:c3:c4:55:cc:9f:
 ad:d4:8d:81:95:c3:f1:87:f8:d4:5a:5e:e0:a8:41:
 27:c8:0d:52:91:e4:2b:db:25:d6:b7:93:8d:82:33:
 7a:a7:b8:e8:cd:a8:e2:94:3d:d6:16:e1:4e:13:63:
 3f:77:08:10:cf:23:f6:15:7c:71:24:97:ef:1c:a2:
 68:0f:82:e2:f7:24:b3:aa:70:1a:4a:b4:ca:4d:05:
 92:5e:47:a2:3d:97:82:f6:d8:c8:04:a7:91:6c:a4:
 7d:15:8e:a8:57:70:5d:50:1c:0b:36:ba:78:28:f2:
 da:5c:ed:4b:ea:60:8c:39:e6:a1:04:26:60:b3:e2:
 ee:4f:9b:f9:46:3c:7e:df:82:88:29:c2:76:3e:1a:
 a4:81:87:1f:ce:9e:41:68:de:6c:f3:89:df:ae:02:
 e7:12:ee:93:20:f1:d2:d6:3d:36:58:ee:71:bf:b3:
 c5:e7:5a:4b:a0:12:89:ed:f7:cc:ec:34:c7:b2:28:
 a8:1a:87:c6:8b:5e:d2:c8:25:71:ba:ff:d0:82:1b:
 5e:50:a9:8a:c6:0c:ea:4b:17:a6:cc:13:0a:53:36:
 c6:9d:76:f2:95:cc:ac:b9:64:d5:72:fc:ab:ce:6b:
 59:b1:3a:f2:49:2f:2c:09:d0:01:06:e4:f2:49:85:
 79:82:e8:c8:bb:1a:ab:70:e3:49:97:9f:84:e0:96:
 c2:6d:41:ab:59:0c:2e:70:9a:2e:11:c8:83:69:4b:
 f1:19:97:87:c3:76:0e:bb:b0:2c:92:4a:07:03:6f:
 57:bf:a9:ec:19:85:d6:3d:f8:de:03:7f:1b:9a:2f:
 6c:02:72:28:b0:69:d5:f9:fb:3d:2e:31:8f:61:50:
 59:a6:dd:43:4b:89:e9:68:4b:a6:0d:9b:00:0f:9a:
 94:61:71
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 8B:D6:F8:BD:B7:82:FC:13:BC:61:3F:8B:FA:84:24:3F:A2:14:C8:27
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Authority Key Identifier:
 keyid:8B:D6:F8:BD:B7:82:FC:13:BC:61:3F:8B:FA:84:24:3F:A2:14:C8:27
 DirName:/C=US/ST=NY/L=New York/O=MongoDB/CN=ROOTCA
 serial:1E:83:0D:9D:43:75:7C:2B:D6:2A:DC:7E:A2:A2:25:AF:5D:3B:89:43

398 | Chapter 19: An Introduction to MongoDB Security

 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
 Signature Algorithm: sha256WithRSAEncryption
 c2:cc:79:40:8b:7b:a1:87:3a:ec:4a:71:9d:ab:69:00:bb:6f:
 56:0a:25:3b:8f:bd:ca:4d:4b:c5:27:28:3c:7c:e5:cf:84:ec:
 2e:2f:0d:37:35:52:6d:f9:4b:07:fb:9b:da:ea:5b:31:0f:29:
 1f:3c:89:6a:10:8e:ae:20:30:8f:a0:cf:f1:0f:41:99:6a:12:
 5f:5c:ce:15:d5:f1:c9:0e:24:c4:81:70:df:ad:a0:e1:0a:cc:
 52:d4:3e:44:0b:61:48:a9:26:3c:a3:3d:2a:c3:ca:4f:19:60:
 da:f7:7a:4a:09:9e:26:42:50:05:f8:74:13:4b:0c:78:f1:59:
 39:1e:eb:2e:e1:e2:6c:cc:4d:96:95:79:c2:8b:58:41:e8:7a:
 e6:ad:37:e4:87:d7:ed:bb:7d:fa:47:dd:46:dd:e7:62:5f:e9:
 fe:17:4b:e3:7a:0e:a1:c5:80:78:39:b7:6c:a6:85:cf:ba:95:
 d2:8d:09:ab:2d:cb:be:77:9b:3c:22:12:ca:12:86:42:d8:c5:
 3c:31:a0:ed:92:bc:7f:3f:91:2d:ec:db:01:bd:26:65:56:12:
 a3:56:ba:d8:d3:6e:f3:c3:13:84:98:2a:c7:b3:22:05:68:fa:
 8e:48:6f:36:8e:3f:e5:4d:88:ef:15:26:4c:b1:d3:7e:25:84:
 8c:bd:5b:d2:74:55:cb:b3:fa:45:3f:ee:ef:e6:80:e9:f7:7f:
 25:a6:6e:f2:c4:22:f7:b8:40:29:02:f1:5e:ea:8e:df:80:e0:
 60:f1:e5:3a:08:81:25:d5:cc:00:8f:5c:ac:a6:02:da:27:c0:
 cc:4e:d3:f3:14:60:c1:12:3b:21:b4:f7:29:9b:4c:34:39:3c:
 2a:d1:4b:86:cc:c7:de:f3:f7:5e:8f:9d:47:2e:3d:fe:e3:49:
 70:0e:1c:61:1c:45:a0:5b:d6:48:49:be:6d:f9:3c:49:26:d8:
 8b:e6:a1:b2:61:10:fe:0c:e8:44:2c:33:cd:3c:1d:c2:de:c2:
 06:98:7c:92:7b:c4:06:a5:1f:02:8a:03:53:ec:bd:b7:fc:31:
 f3:2a:c1:0e:6a:a5:a8:e4:ea:4d:cc:1d:07:a9:3f:f6:0e:35:
 5d:99:31:35:b3:43:90:f3:1c:92:8e:99:15:13:2b:8f:f6:a6:
 01:c9:18:05:15:2a:e3:d0:cc:45:66:d3:48:11:a2:b9:b1:20:
 59:42:f7:88:15:9f:e0:0c:1d:13:ae:db:09:3d:bf:7a:9d:cf:
 b2:41:1e:7a:fa:6b:35:20:03:58:a1:6c:02:19:21:5f:25:fc:
 ba:2f:fc:79:d7:92:e7:37:77:14:10:d9:33:b6:e5:fb:7a:46:
 ab:d1:86:70:88:92:59:c3

Create an intermediate CA for signing
Now that we’ve created our root CA, we will create an intermediate CA for signing
member and client certificates. An intermediate CA is nothing more than a certificate
signed using our root certificate. It is a best practice to use an intermediate CA to sign
server (i.e., member) and client certificates. Typically, a CA will use different inter‐
mediate CAs for signing different categories of certificates. If the intermediate CA is
compromised and the certificate needs to be revoked, only a portion of the trust tree
is affected instead of all certificates signed by the CA, as would be the case if the root
CA were used to sign all certificates.

again, in production you would want to password protect your signing key:
openssl genrsa -aes256 -out signing-ca.key 4096
openssl genrsa -out signing-ca.key 4096

openssl req -new -key signing-ca.key -out signing-ca.csr \
 -config openssl.cnf -subj "$dn_prefix/CN=CA-SIGNER"
openssl x509 -req -days 730 -in signing-ca.csr -CA root-ca.crt -CAkey \

A Tutorial on MongoDB Authentication and Transport Layer Encryption | 399

 root-ca.key -set_serial 01 -out signing-ca.crt -extfile openssl.cnf \
 -extensions v3_ca

Note that in the statements above we are using the openssl req command followed
by the openssl ca command to sign our signing certificate using our root certificate.
The openssl req command creates a signing request and the openssl ca command
uses that request as input to create a signed intermediate (signing) certificate.

As a last step in creating our signing CA, we will concatenate our root certificate
(containing our root public key) and signing certificate (containing our signing pub‐
lic key) into a single pem file. This file will be supplied to our mongod or client pro‐
cess later as the value of the --tlsCAFile option.

cat root-ca.crt > root-ca.pem
cat signing-ca.crt >> root-ca.pem

With the root CA and signing CA set up, we are now ready to create the member and
client certificates used for authentication in our MongoDB cluster.

Generate and Sign Member Certificates
Member certificates are typically referred to as x.509 server certificates. Use this type
of certificate for mongod and mongos processes. Members of a MongoDB cluster use
these certificates to verify membership in the cluster. Stated another way, one mongod
authenticates itself with other members of a replica set using a server certificate.

To generate certificates for the members of our replica set, we will use a for loop to
generate multiple certificates.

Pay attention to the OU part of the subject in "openssl req" command
for host in "${mongodb_server_hosts[@]}"; do
 echo "Generating key for $host"
 openssl genrsa -out ${host}.key 4096
 openssl req -new -key ${host}.key -out ${host}.csr -config openssl.cnf \
 -subj "$dn_prefix/OU=$ou_member/CN=${host}"
 openssl x509 -req -days 365 -in ${host}.csr -CA signing-ca.crt -CAkey \
 signing-ca.key -CAcreateserial -out ${host}.crt -extfile openssl.cnf \
 -extensions v3_req
 cat ${host}.crt > ${host}.pem
 cat ${host}.key >> ${host}.pem
done

Three steps are involved with each certificate:

• Use the openssl genrsa command to create a new key pair.
• Use the openssl req command to generate a signing request for the key.
• Use the openssl x509 command to sign and output a certificate using the signing

CA.

400 | Chapter 19: An Introduction to MongoDB Security

Notice the variable $ou_member. This signifies the difference between server certifi‐
cates and client certificates. Server and client certificates must differ in the organiza‐
tion part of the Distinguished Names. More specifically, they must differ in at least
one of the O, OU, or DC values.

Generate and Sign Client Certificates
Client certificates are used by the mongo shell, MongoDB Compass, MongoDB utilit‐
ies and tools and, of course, by applications using a MongoDB driver. Generating cli‐
ent certificates follows essentially the same process as for member certificates. The
one difference is our use of the variable $ou_client. This ensure that the combina‐
tion of the O, OU, and DC values will be different from those of the server certificates
generated above.

Pay attention to the OU part of the subject in "openssl req" command
for host in "${mongodb_client_hosts[@]}"; do
 echo "Generating key for $host"
 openssl genrsa -out ${host}.key 4096
 openssl req -new -key ${host}.key -out ${host}.csr -config openssl.cnf \
-subj "$dn_prefix/OU=$ou_client/CN=${host}"
 openssl x509 -req -days 365 -in ${host}.csr -CA signing-ca.crt -CAkey \
 signing-ca.key -CAcreateserial -out ${host}.crt -extfile openssl.cnf \
 -extensions v3_req
 cat ${host}.crt > ${host}.pem
 cat ${host}.key >> ${host}.pem
done

Bring Up the Replica Set Without Authentication and
Authorization Enabled
We can start each member of our replica set without auth enabled as follows. Previ‐
ously, when working with replica sets we’ve not enabled auth so this should look
familiar. Here again we are making use of a few variables we defined in “Generate a
root CA” on page 395 (or see the full script for this chapter) and a loop to launch each
member (mongod) of our replica set.

mport=$mongodb_port
for host in "${mongodb_server_hosts[@]}"; do
 echo "Starting server $host in non-auth mode"
 mkdir -p ./db/${host}
 mongod --replSet set509 --port $mport --dbpath ./db/$host \
 --fork --logpath ./db/${host}.log
 let "mport++"
done

Once each mongod has started, we can then initialize a replica set using these
mongods.

A Tutorial on MongoDB Authentication and Transport Layer Encryption | 401

myhostname=`hostname`
cat > init_set.js <<EOF
rs.initiate();
mport=$mongodb_port;
mport++;
rs.add("localhost:" + mport);
mport++;
rs.add("localhost:" + mport);
EOF
mongo localhost:$mongodb_port init_set.js

Note that the code above simply constructs a series of commands, stores these com‐
mands in a JavaScript file, and then runs the mongo shell to execute the small script
that was created. Together, these commands, when executed in the mongo shell, will
connect to the mongod running on port 27017 (value of the $mongodb_port variable
set in “Generate a root CA” on page 395), initiate the replica set, and then add each of
the other two mongods (on ports 27018 and 27019) to the replica set.

Create the Admin User
Now, we’ll create an admin user based on one of the client certificates we created in
“Generate and Sign Client Certificates” on page 401. We will authenticate as this user
when connecting from the mongo shell or another client to perform administrative
tasks. To authenticate with a client certificate, you must first add the value of the sub‐
ject from the client certificate as a MongoDB user. Each unique x.509 client certificate
corresponds to a single MongoDB user; i.e., you cannot use a single client certificate
to authenticate more than one MongoDB user. We must add the user in the $external
database; i.e., the authentication database is the $external database.

First, we’ll get the subject from our client certificate using the openssl x509 command.

openssl x509 -in client1.pem -inform PEM -subject -nameopt RFC2253 | grep subject

This should result in the following output:

subject= CN=client1,OU=MyClients,O=MongoDB,L=New York,ST=NY,C=US

To create our admin user, we’ll first connect to the primary of our replica set using
the mongo shell.

mongo --norc localhost:27017

From within the mongo shell, we will issue the following command:

db.getSiblingDB("$external").runCommand(
 {
 createUser: "CN=client1,OU=MyClients,O=MongoDB,L=New York,ST=NY,C=US",
 roles: [
 { role: "readWrite", db: 'test' },
 { role: "userAdminAnyDatabase", db: "admin" },
 { role: "clusterAdmin", db:"admin"}

402 | Chapter 19: An Introduction to MongoDB Security

],
 writeConcern: { w: "majority" , wtimeout: 5000 }
 }
);

Note the use of the $external database in this command and the fact that we’ve speci‐
fied the subject of our client certificate as the user name.

Restart the Replica Set with Authentication and
Authorization Enabled
Now that we have an admin user, we can restart the replica set with authentication
and authorization enabled and connect as a client. Without a user of any kind, it
would be impossible to connect to a replica set with auth enabled.

Let’s stop the replica set in it’s current form (without auth enabled).

kill $(ps -ef | grep mongod | grep set509 | awk '{print $2}')

We are now ready to restart the replica set with auth enabled. In a production envi‐
ronment, we would copy each of the certificate and key files to their corresponding
hosts. Here we’re doing everything on localhost to make things easier. To initiate a
secure replica set we will add the following command-line options to each invocation
of mongod:

• --tlsMode

• --clusterAuthMode

• --tlsCAFile—root CA file (root-ca.key)
• --tlsCertificateKeyFile—certificate file for the mongod
• --tlsAllowInvalidHostnames—only used for testing; allows invalid hostnames

Here the file we provide as the value of the tlsCAFile option is used to establish a
trust chain. As you recall the root-ca.key file contains the certificate of the root CA as
well as the signing CA. By providing this file to the mongod process, we are stating
our desire to trust the certificate contained in this file as well as all other certificates
signed by these certificates.

Okay, let’s do this.

mport=$mongodb_port
for host in "${mongodb_server_hosts[@]}"; do
 echo "Starting server $host"
 mongod --replSet set509 --port $mport --dbpath ./db/$host \
 --tlsMode requireTLS --clusterAuthMode x509 --tlsCAFile root-ca.pem \
 --tlsAllowInvalidHostnames --fork --logpath ./db/${host}.log \
 --tlsCertificateKeyFile ${host}.pem --tlsClusterFile ${host}.pem \
 --bind_ip 127.0.0.1

A Tutorial on MongoDB Authentication and Transport Layer Encryption | 403

 let "mport++"
done

And with that, we have a three-member replica set secured using x.509 certificates for
authentication and transport-layer encryption. The only thing left to do is to connect
with the mongo shell. We’ll use the client1 certificate to authenticate, because that is
the certificate for which we created an admin user.

mongo --norc --tls --tlsCertificateKeyFile client1.pem --tlsCAFile root-ca.pem \
--tlsAllowInvalidHostnames --authenticationDatabase "\$external" \
--authenticationMechanism MONGODB-X509

Once connected, we encourage you to experiment by inserting some data to a collec‐
tion. You should also attempt to connect using any other user (e.g., using the
client2.pem). Connections attempts will result in errors like the following.

mongo --norc --tls --tlsCertificateKeyFile client2.pem --tlsCAFile root-ca.pem \
--tlsAllowInvalidHostnames --authenticationDatabase "\$external" \
--authenticationMechanism MONGODB-X509
MongoDB shell version v4.2.0
2019-09-11T23:18:31.696+0100 W NETWORK [js] The server certificate does not
match the host name. Hostname: 127.0.0.1 does not match
2019-09-11T23:18:31.702+0100 E QUERY [js] Error: Could not find user
"CN=client2,OU=MyClients,O=MongoDB,L=New York,ST=NY,C=US" for db "$external" :
connect@src/mongo/shell/mongo.js:341:17
@(connect):3:6
2019-09-11T23:18:31.707+0100 F - [main] exception: connect failed
2019-09-11T23:18:31.707+0100 E - [main] exiting with code 1

In the tutorial in this chapter, we’ve looked at an example of using x.509 certificates as
a basis for authentication and to encrypt communication among clients and members
of a replica set. The same procedure works for sharded clusters as well. With respect
to securing a MongoDB cluster, please keep the following in mind:

• The directories, root CA and signing CA, as well as the host itself where you gen‐
erate and sign certificates for the member machines or clients, should be pro‐
tected from unauthorized access.

• For simplicity, the root CA and signing CA keys are not password protected in
this tutorial. In production it is necessary to use passwords to protect the key
from unauthorized use.

We encourage you to download and experiment with the demo scripts we have pro‐
vided for this chapter in the book’s GitHub repository.

404 | Chapter 19: An Introduction to MongoDB Security

CHAPTER 20

Durability

Durability is a property of database systems that guarantees that write operations that
have been committed to the database will survive permanently. For example, if a
ticket reservation system reports that your concert seats have been booked, then your
seats will remain booked even if some part of the reservation system crashes. For
MongoDB, we need to consider durability at the cluster (or more specifically, replica
set) level.

In this chapter, we will cover:

• How MongoDB guarantees durability at the replica set member level through
journaling

• How MongoDB guarantees durability at the cluster level using write concern
• How to configure your application and MongoDB cluster to give you the level of

durability you need
• How MongoDB guarantees durability at the cluster level using read concern
• How to set the durability level for transactions in replica sets

Throughout this chapter, we will discuss durability in replica sets. A three-member
replica set is the most basic cluster recommended for production applications. The
discussion here applies to replica sets with more members and to sharded clusters.

Durability at the Member Level Through Journaling
To provide durability in the event of a server failure, MongoDB uses a write-ahead
log (WAL) called the journal. A WAL is a commonly used technique for durability in
database systems. The idea is that we simply write a representation of the changes to
be made to the database to a durable medium (i.e., to disk) before applying those

405

1 MongoDB uses a different format for writes to the local database, which stores data used in the replication
process and other instance-specific data, but the principles and application are similar.

changes to the database itself. In many database systems, a WAL is used to provide
the atomicity database property as well. However, MongoDB uses other techniques to
ensure atomic writes.

Beginning in MongoDB 4.0, as an application performs writes to a replica set, for the
data in all replicated collections MongoDB creates journal entries using the same for‐
mat as the oplog.1 As discussed in Chapter 11, MongoDB uses statement-based repli‐
cation based on an operations log, or oplog. The statements in the oplog are a
representation of the actual MongoDB changes made to each document affected by a
write. Therefore, oplog statements are easy to apply to any member of a replica set
regardless of version, hardware, or any other differences between replica set mem‐
bers. In addition, each oplog statement is idempotent, meaning that it can be applied
any number of times and the outcome will always be the same change to the database.

Like most databases, MongoDB maintains in-memory views of both the journal and
the database data files. By default, it flushes journal entries to disk every 50 milli‐
seconds and flushes database files to disk every 60 seconds. The 60-second interval
for flushing data files is called a checkpoint. The journal is used to provide durability
for data written since the last checkpoint. With respect to durability concerns, if the
server suddenly stops, when it’s restarted the journal can be used to replay any writes
that were not flushed to disk before the shutdown.

For the journal files, MongoDB creates a subdirectory named journal under the
dbPath directory. WiredTiger (MongoDB’s default storage engine) journal files have
names with the format WiredTigerLog.<sequence>, where <sequence> is a zero-
padded number starting from 0000000001. Except for very small log records, Mon‐
goDB compresses the data written to the journal. Journal files have a maximum size
limit of approximately 100 MB. Once a journal file exceeds that limit, MongoDB cre‐
ates a new journal file and begins writing new records there. Because journal files are
only needed to recover data since the last checkpoint, MongoDB automatically
removes “old” journal files—i.e., those written prior to the most recent checkpoint—
once a new checkpoint is written.

If there is a crash (or kill -9), mongod will replay its journal files on startup. By
default, the greatest extent of lost writes are those made in the last 100 ms plus the
time it takes to flush the journal writes to disk.

If your application requires a shorter interval for journal flushes, you have two
options. One is to change the interval using the --journalCommitInterval option to
the mongod command. This option accepts values ranging from 1 to 500 ms. The
other option, which we’ll look at in the next section, is to specify in the write concern

406 | Chapter 20: Durability

that all writes should journal to disk. Shortening the interval for journaling to disk
will negatively impact performance, so you need to be sure of the implications for
your applications before changing the journaling default.

Durability at the Cluster Level Using Write Concern
With write concern, you can specify what level of acknowledgment your application
requires in response to write requests. In a replica set, network partitions, server fail‐
ures, or data center outages may keep writes from being replicated to every member,
or even a majority of the members. When a normal state is restored to the replica set,
it is possible that writes not replicated to a majority of members will be rolled back. In
those situations, clients and the database may have a different view of what data has
been committed.

There are applications for which it might be acceptable in some circumstances to
have writes rolled back. For example, it might be okay to roll back a small number of
comments in a social application of some kind. MongoDB supports a range of dura‐
bility guarantees at the cluster level to enable application designers to select the dura‐
bility level that works best for their use case.

The w and wtimeout Options for writeConcern
The MongoDB query language supports specifying a write concern for all insert and
update methods. As an example, suppose we have an ecommerce application and
want to ensure that all orders are durable. Writing an order to the database might
look something like the following:

try {
 db.products.insertOne(
 { sku: "H1100335456", item: "Electric Toothbrush Head", quantity: 3 },
 { writeConcern: { w : "majority", wtimeout : 100 } }
);
} catch (e) {
 print (e);
}

All insert and update methods take a second parameter, a document. Within that
document you can specify a value for writeConcern. In the preceding example, the
write concern we have specified indicates that we want to see an acknowledgment
from the server that the write completed successfully only if the write was successfully
replicated to a majority of the members of our application’s replica set. In addition,
the write should return an error if it is not replicated to a majority of replica set mem‐
bers in 100 ms or less. In the case of such an error, MongoDB does not undo success‐
ful data modifications performed before the write concern exceeded the time limit—
it will be up to the application to choose how to handle timeouts in such situations. In
general, you should configure the wtimeout value so that only in unusual circumstan‐

Durability at the Cluster Level Using Write Concern | 407

ces will the application experience timeouts and any actions your application takes in
response to a timeout error will ensure the correct state for your data. In most cases,
your application should attempt to determine whether the timeout was a result of a
transient slowdown in network communications or something more signficant.

As the value for w in the write concern document, you may specify "majority" (as
was done in this example). Alternatively, you may specify an integer between zero
and the number of members in the replica set. Finally, it is possible to tag replica set
members, say to identify those on SSDs versus spinning disks or those used for
reporting versus OLTP workloads. You may specify a tag set as the value of w to
ensure that writes will only be acknowledged once committed to at least one member
of the replica set matching the provided tag set.

The j (Journaling) Option for writeConcern
In addition to providing a value for the w option, you may also request acknowledg‐
ment that the write operation has been written to the journal by using the j option in
the write concern document. With a value of true for j, MongoDB acknowledges a
successful write only after the requested number of members (the value for w) have
written the operation to their on-disk journal. Continuing our example, if we want to
ensure all writes are journaled on a majority of members, we can update the code as
follows:

try {
 db.products.insertOne(
 { sku: "H1100335456", item: "Electric Toothbrush Head", quantity: 3 },
 { writeConcern: { w : "majority", wtimeout : 100, j : true } }
);
} catch (e) {
 print (e);
}

Without waiting for journaling, there is a brief window of about 100 ms on each
member when, if the server process or hardware goes down, a write could be lost.
However, waiting for journaling before acknowledging writes to members of a replica
set does have a performance penalty.

It is essential that in addressing durability concerns for your applications, you care‐
fully evaluate the requirements your application has and weigh the performance
impacts of the durability settings you select.

Durability at a Cluster Level Using Read Concern
In MongoDB, read concerns allow for the configuration of when results are read.
This can allow clients to see write results before those writes are durable. A read con‐
cern can be used with a write concern to control the level of consistency and

408 | Chapter 20: Durability

availability guarantees made to an application. They should not be confused with
read preferences, which deal with where the data is read from; specifically, read
preferences determine the data bearing member(s) in the replica set. The default read
preferences is to read from the primary.

Read concern determines the consistency and isolation properties of the data being
read. The default readConcern is local, which returns data with no guarantees that
the data has been written to the majority of the data bearing replica set members.
This can result in the data being rolled back in the future. The majority concern
returns only durable data (will not be rolled back) that has been acknowledged by the
majority of replica set members. In MongoDB 3.4, the linearizable concern was
added. It ensures data returned reflects all successful majority-acknowledged writes
that have completed prior to the start of the read operation. It may wait for concur‐
rently executing writes to finish before providing results.

In the same fashion, with write concerns you will need to weight the performance
impacts of the read concerns against the durability and isolation guarantees they
provide before selecting the appropriate concern for your application.

Durability of Transactions Using a Write Concern
In MongoDB, operations on individual documents are atomic. You can use embed‐
ded documents and arrays to express relationships between entities in a single docu‐
ment rather than using a normalized data model splitting entities and relationships
across multiple collections. As a result, many applications do not require multi-
document transactions.

However, for use cases that require atomicity for updates to multiple documents,
MongoDB provides the ability to perform multi-document transactions against rep‐
lica sets. Multi-document transactions can be used across multiple operations, docu‐
ments, collections, and databases.

Transactions require that all data changes within the transaction are successful. If any
operation fails, the transaction aborts and all data changes are discarded. If all opera‐
tions are successful, all data changes made in the transaction are saved and the writes
become visible to future reads.

As with individual write operations, you may specify a write concern for transactions.
You set the write concern at the transaction level, not at the individual operation
level. At the time of the commit, transactions use the transaction-level write concern
to commit the write operations. Write concerns set for individual operations inside
the transaction will be ignored.

You can set the write concern for the transaction commit at the transaction start. A
write concern of 0 is not supported for transactions. If you use a write concern of 1

Durability of Transactions Using a Write Concern | 409

for a transaction, it can be rolled back if there is a failover. You may use a writeCon
cern of "majority" to ensure transactions are durable in the face of network and
server failures that might force a failover in a replica set. The following provides an
example:

function updateEmployeeInfo(session) {
 employeesCollection = session.getDatabase("hr").employees;
 eventsCollection = session.getDatabase("reporting").events;

 session.startTransaction({writeConcern: { w: "majority" } });

 try{
 employeesCollection.updateOne({ employee: 3 },
 { $set: { status: "Inactive" } });
 eventsCollection.insertOne({ employee: 3, status: { new: "Inactive",
 old: "Active" } });
 } catch (error) {
 print("Caught exception during transaction, aborting.");
 session.abortTransaction();
 throw error;
 }

 commitWithRetry(session);
}

What MongoDB Does Not Guarantee
There are a couple of situations where MongoDB cannot guarantee durability, such as
if there are hardware issues or filesystem bugs. In particular, if a hard disk is corrupt,
there is nothing MongoDB can do to protect your data.

Also, different varieties of hardware and software may have different durability guar‐
antees. For example, some cheaper or older hard disks report a write’s success while
the write is queued up to be written, not when it has actually been written. MongoDB
cannot defend against misreporting at this level: if the system crashes, data may be
lost.

Basically, MongoDB is only as safe as the underlying system: if the hardware or file‐
system destroys the data, MongoDB cannot prevent it. Use replication to defend
against system issues. If one machine fails, hopefully another will still be functioning
correctly.

Checking for Corruption
The validate command can be used to check a collection for corruption. To run
validate on the movies collection, do:

410 | Chapter 20: Durability

db.movies.validate({full: true})
{
 "ns" : "sample_mflix.movies",
 "nInvalidDocuments" : NumberLong(0),
 "nrecords" : 45993,
 "nIndexes" : 5,
 "keysPerIndex" : {
 "_id_" : 45993,
 "$**_text" : 3671341,
 "genres_1_imdb.rating_1_metacritic_1" : 94880,
 "tomatoes_rating" : 45993,
 "getMovies" : 45993
 },
 "indexDetails" : {
 "$**_text" : {
 "valid" : true
 },
 "_id_" : {
 "valid" : true
 },
 "genres_1_imdb.rating_1_metacritic_1" : {
 "valid" : true
 },
 "getMovies" : {
 "valid" : true
 },
 "tomatoes_rating" : {
 "valid" : true
 }
 },
 "valid" : true,
 "warnings" : [],
 "errors" : [],
 "extraIndexEntries" : [],
 "missingIndexEntries" : [],
 "ok" : 1
}

The main field you’re looking for is "valid", which will hopefully be true. If it is not,
validate will give some details about the corruption it found.

Most of the output from validate describes internal structures of the collection and
timestamps used to understand the order of operations across a cluster. These are not
particularly useful for debugging. (See Appendix B for more information on collec‐
tion internals.)

You can only run validate on collections, and it will also check the associated
indexes in the field indexDetails. However, this requires a full validate, which is
configured with the { full: true } option.

Checking for Corruption | 411

PART VI

Server Administration

CHAPTER 21

Setting Up MongoDB in Production

In Chapter 2, we covered the basics of starting MongoDB. This chapter will go into
more detail about which options are important for setting up MongoDB in produc‐
tion, including:

• Commonly used options
• Starting up and shutting down MongoDB
• Security-related options
• Logging considerations

Starting from the Command Line
The MongoDB server is started with the mongod executable. mongod has many config‐
urable startup options; to view all of them, run mongod --help from the command
line. A couple of the options are widely used and important to be aware of:

--dbpath

Specify an alternate directory to use as the data directory; the default is /data/db/
(or, on Windows, \data\db\ on the MongoDB binary’s volume). Each mongod
process on a machine needs its own data directory, so if you are running three
instances of mongod on one machine, you’ll need three separate data directories.
When mongod starts up, it creates a mongod.lock file in its data directory, which
prevents any other mongod process from using that directory. If you attempt to
start another MongoDB server using the same data directory, it will give an error:

exception in initAndListen: DBPathInUse: Unable to lock the
 lock file: \ data/db/mongod.lock (Resource temporarily unavailable).
 Another mongod instance is already running on the

415

 data/db directory,
 \ terminating

--port

Specify the port number for the server to listen on. By default, mongod uses port
27017, which is unlikely to be used by another process (besides other mongod pro‐
cesses). If you would like to run more than one mongod process on a single
machine, you’ll need to specify different ports for each one. If you try to start
mongod on a port that is already being used, it will give an error:

Failed to set up listener: SocketException: Address already in use.

--fork

On Unix-based systems, fork the server process, running MongoDB as a
daemon.

If you are starting up mongod for the first time (with an empty data directory), it
can take the filesystem a few minutes to allocate database files. The parent pro‐
cess will not return from forking until the preallocation is done and mongod is
ready to start accepting connections. Thus, fork may appear to hang. You can tail
the log to see what it is doing. You must use --logpath if you specify --fork.

--logpath

Send all output to the specified file rather than outputting on the command line.
This will create the file if it does not exist, assuming you have write permissions
to the directory. It will also overwrite the log file if it already exists, erasing any
older log entries. If you’d like to keep old logs around, use the --logappend
option in addition to --logpath (highly recommended).

--directoryperdb

Put each database in its own directory. This allows you to mount different data‐
bases on different disks, if necessary or desired. Common uses for this are
putting a local database on its own disk (replication) or moving a database to a
different disk if the original one fills up. You could also put databases that handle
more load on faster disks and databases with a lower load on slower disks. This
basically gives you more flexibility to move things around later.

--config

Use a configuration file for additional options not specified on the command
line. This is typically used to make sure options are the same between restarts.
See “File-Based Configuration” on page 419 for details.

For example, to start the server as a daemon listening on port 5586 and sending all
output to mongodb.log, we could run this:

$./mongod --dbpath data/db --port 5586 --fork --logpath
 mongodb.log --logappend 2019-09-06T22:52:25.376-0500 I CONTROL [main]

416 | Chapter 21: Setting Up MongoDB in Production

 Automatically disabling TLS 1.0, \ to force-enable TLS 1.0 specify
 --sslDisabledProtocols 'none' about to fork child process, waiting until
 server is ready for connections. forked process: 27610 child process
 started successfully, parent exiting

When you first install and start MongoDB, it is a good idea to look at the log. This
might be an easy thing to miss, especially if MongoDB is being started from an init
script, but the log often contains important warnings that prevent later errors from
occurring. If you don’t see any warnings in the MongoDB log on startup, then you are
all set. (Startup warnings will also appear on shell startup.)

If there are any warnings in the startup banner, take note of them. MongoDB will
warn you about a variety of issues: that you’re running on a 32-bit machine (which
MongoDB is not designed for), that you have NUMA enabled (which can slow your
application to a crawl), or that your system does not allow enough open file descrip‐
tors (MongoDB uses a lot of file descriptors).

The log preamble won’t change when you restart the database, so feel free to run
MongoDB from an init script and ignore the logs, once you know what they say.
However, it’s a good idea to check again each time you do an install, upgrade, or
recover from a crash, just to make sure MongoDB and your system are on the same
page.

When you start the database, MongoDB will write a document to the local.startup_log
collection that describes the version of MongoDB, underlying system, and flags used.
We can look at this document using the mongo shell:

> use local
switched to db local
> db.startup_log.find().sort({startTime: -1}).limit(1).pretty()
{
 "_id" : "server1-1544192927184",
 "hostname" : "server1.example.net",
 "startTime" : ISODate("2019-09-06T22:50:47Z"),
 "startTimeLocal" : "Fri Sep 6 22:57:47.184",
 "cmdLine" : {
 "net" : {
 "port" : 5586
 },
 "processManagement" : {
 "fork" : true
 },
 "storage" : {
 "dbPath" : "data/db"
 },
 "systemLog" : {
 "destination" : "file",
 "logAppend" : true,
 "path" : "mongodb.log"
 }

Starting from the Command Line | 417

 },
 "pid" : NumberLong(27278),
 "buildinfo" : {
 "version" : "4.2.0",
 "gitVersion" : "a4b751dcf51dd249c5865812b390cfd1c0129c30",
 "modules" : [
 "enterprise"
],
 "allocator" : "system",
 "javascriptEngine" : "mozjs",
 "sysInfo" : "deprecated",
 "versionArray" : [
 4,
 2,
 0,
 0
],
 "openssl" : {
 "running" : "Apple Secure Transport"
 },
 "buildEnvironment" : {
 "distmod" : "",
 "distarch" : "x86_64",
 "cc" : "gcc: Apple LLVM version 8.1.0 (clang-802.0.42)",
 "ccflags" : "-mmacosx-version-min=10.10 -fno-omit\
 -frame-pointer -fno-strict-aliasing \
 -ggdb -pthread -Wall
 -Wsign-compare -Wno-unknown-pragmas \
 -Winvalid-pch -Werror -O2 -Wno-unused\
 -local-typedefs -Wno-unused-function
 -Wno-unused-private-field \
 -Wno-deprecated-declarations \
 -Wno-tautological-constant-out-of\
 -range-compare
 -Wno-unused-const-variable -Wno\
 -missing-braces -Wno-inconsistent\
 -missing-override
 -Wno-potentially-evaluated-expression \
 -Wno-exceptions -fstack-protector\
 -strong -fno-builtin-memcmp",
 "cxx" : "g++: Apple LLVM version 8.1.0 (clang-802.0.42)",
 "cxxflags" : "-Woverloaded-virtual -Werror=unused-result \
 -Wpessimizing-move -Wredundant-move \
 -Wno-undefined-var-template -stdlib=libc++ \
 -std=c++14",
 "linkflags" : "-mmacosx-version-min=10.10 -Wl, \
 -bind_at_load -Wl,-fatal_warnings \
 -fstack-protector-strong \
 -stdlib=libc++",
 "target_arch" : "x86_64",
 "target_os" : "macOS"
 },

418 | Chapter 21: Setting Up MongoDB in Production

 "bits" : 64,
 "debug" : false,
 "maxBsonObjectSize" : 16777216,
 "storageEngines" : [
 "biggie",
 "devnull",
 "ephemeralForTest",
 "inMemory",
 "queryable_wt",
 "wiredTiger"
]
 }
}

This collection can be useful for tracking upgrades and changes in behavior.

File-Based Configuration
MongoDB supports reading configuration information from a file. This can be useful
if you have a large set of options you want to use or are automating the task of
starting up MongoDB. To tell the server to get options from a configuration file, use
the -f or --config flags. For example, run mongod --config ~/.mongodb.conf to
use ~/.mongodb.conf as a configuration file.

The options supported in a configuration file are the same as those accepted at the
command line. However, the format is different. As of MongoDB 2.6, MongoDB con‐
figuration files use the YAML format. Here’s an example configuration file:

systemLog:
 destination: file
 path: "mongod.log"
 logAppend: true
storage:
 dbPath: data/db
processManagement:
 fork: true
net:
 port: 5586
...

This configuration file specifies the same options we used earlier when starting with
regular command-line arguments. Note that these same options are reflected in the
startup_log collection document we looked at in the previous section. The only real
difference is that the options are specified using JSON rather than YAML.

In MongoDB 4.2, expansion directives were added to allow the loading of specific
configuration file options or loading of the entire configuration file. The advantage of
expansion directives is that confidential information, such as passwords and security
certificates, does not have to be stored in the config file directly. The --configExpand
command-line option enables this feature and must include the expansion directives

Starting from the Command Line | 419

you wish to enable. __rest and __exec are the current implementation of the expan‐
sion directives in MongoDB. The __rest expansion directive loads specific configu‐
ration file values or loads the entire configuration file from a REST endpoint. The
__exec expansion directive loads specific configuration file values or loads the entire
configuration file from a shell or terminal command.

Stopping MongoDB
Being able to safely stop a running MongoDB server is at least as important as being
able to start one. There are a couple of different options for doing this effectively.

The cleanest way to shut down a running server is to use the shutdown command,
{"shutdown" : 1}. This is an admin command and must be run on the admin data‐
base. The shell features a helper function to make this easier:

> use admin
switched to db admin
> db.shutdownServer()
server should be down...

When run on a primary, the shutdown command steps down the primary and waits
for a secondary to catch up before shutting down the server. This minimizes the
chance of rollback, but the shutdown isn’t guaranteed to succeed. If there is no secon‐
dary available that can catch up within a few seconds, the shutdown command will
fail and the (former) primary will not shut down:

> db.shutdownServer()
{
 "closest" : NumberLong(1349465327),
 "difference" : NumberLong(20),
 "errmsg" : "no secondaries within 10 seconds of my optime",
 "ok" : 0
}

You can force the shutdown command to shut down a primary by using the force
option:

db.adminCommand({"shutdown" : 1, "force" : true})

This is equivalent to sending a SIGINT or SIGTERM signal (all three of these options
result in a clean shutdown, but there may be unreplicated data). If the server is run‐
ning as the foreground process in a terminal, a SIGINT can be sent by pressing Ctrl-
C. Otherwise, a command like kill can be used to send the signal. If mongod had
10014 as its PID, the command would be kill -2 10014 (SIGINT) or kill 10014
(SIGTERM).

420 | Chapter 21: Setting Up MongoDB in Production

When mongod receives a SIGINT or SIGTERM, it will do a clean shutdown. This
means it will wait for any running operations or file preallocations to finish (this
could take a moment), close all open connections, flush all data to disk, and halt.

Security
Do not set up publicly addressable MongoDB servers. You should restrict access as
tightly as possible between the outside world and MongoDB. The best way to do this
is to set up firewalls and only allow MongoDB to be reachable on internal network
addresses. Chapter 24 covers what connections it’s necessary to allow between
MongoDB servers and clients.

Beyond firewalls, there are a few options you can add to your config file to make it
more secure:

--bind_ip

Specify the interfaces that you want MongoDB to listen on. Generally you want
this to be an internal IP: something application servers and other members of
your cluster can access but that is inaccessible to the outside world. localhost is
fine for mongos processes if you’re running the application server on the same
machine. For config servers and shards, they’ll need to be addressable from other
machines, so stick with non-localhost addresses.

Starting in MongoDB 3.6, mongod and mongos processes bind to localhost by
default. When bound only to localhost, mongod and mongos will only accept con‐
nections from clients running on the same machine. This helps limit the expo‐
sure of unsecured MongoDB instances. To bind to other addresses, use the
net.bindIp configuration file setting or the --bind_ip command-line option to
specify a list of hostnames or IP addresses.

--nounixsocket

Disable listening on the UNIX domain socket. If you’re not planning to connect
via filesystem socket, you might as well disallow it. You would only connect via
filesystem socket on a machine that is also running an application server: you
must be local to use a filesystem socket.

--noscripting

Disable server-side JavaScript execution. Some security issues that have been
reported with MongoDB have been JavaScript-related, so it’s generally safer to
disallow it, if your application allows.

Security | 421

Several shell helpers assume that JavaScript is available on the
server, notably sh.status(). You will see errors if you attempt
to run any of these helpers with JavaScript disabled.

Data Encryption
Data encryption is available in MongoDB Enterprise. These options are not sup‐
ported in the Community version of MongoDB.

The data encryption process includes the following steps:

• Generate a master key.
• Generate keys for each database.
• Encrypt data with the database keys.
• Encrypt the database keys with the master key.

When using data encryption, all data files are encrypted in the filesystem. Data is only
unencrypted in memory and during transmission. To encrypt all of MongoDB’s net‐
work traffic, you can use TLS/SSL. The data encryption options that MongoDB
Enterprise users can add to their config files are:

--enableEncryption

Enables encryption in the WiredTiger storage engine. With this option, data
stored in memory and on disk will be encrypted. This is sometimes referred to as
“encryption at rest.” You must set this to true in order to pass in encryption keys
and to configure encryption. This option is false by default.

--encryptionCipherMode

Set the cipher mode for encryption at rest in WiredTiger. There are two modes
available: AES256-CBC and AES256-GCM. AES256-CBC is an acronym for 256-
bit Advanced Encryption Standard in Cipher Block Chaining Mode. AES256-
GCM uses Galois/Counter Mode. Both are standard encryption ciphers. As of
MongoDB 4.0, MongoDB Enterprise on Windows no longer supports AES256-
GCM.

--encryptionKeyFile

Specify the path to the local keyfile if you are managing keys using a process
other than the Key Management Interoperability Protocol (KMIP).

MongoDB Enterprise also supports key management using KMIP. A discussion of
KMIP is beyond the scope of this book. Please see the MongoDB documentation for
details on using KMIP with MongoDB.

422 | Chapter 21: Setting Up MongoDB in Production

https://oreil.ly/TeA4t
https://oreil.ly/TeA4t

SSL Connections
As we saw in Chapter 18, MongoDB supports transport encryption using TLS/SSL.
This feature is available in all editions of MongoDB. By default, connections to Mon‐
goDB transfer data unencrypted. However, TLS/SSL ensures transport encryption.
MongoDB uses native TSL/SSL libraries available on your operating system. Use the
option --tlsMode and related options to configure TLS/SSL. Refer to Chapter 18 for
more detail, and consult your driver’s documentation on how to create TLS/SSL con‐
nections using your language.

Logging
By default, mongod sends its logs to stdout. Most init scripts use the --logpath
option to send logs to a file. If you have multiple MongoDB instances on a single
machine (say, a mongod and a mongos), make sure that their logs are stored in sepa‐
rate files. Be sure that you know where the logs are and have read access to the files.

MongoDB spits out a lot of log messages, but please do not run with the --quiet
option (which suppresses some of them). Leaving the log level at the default is usually
perfect: there is enough information for basic debugging (why is this slow, why isn’t
this starting up, etc.), but the logs do not take up too much space.

If you are debugging a specific issue with your application, there are a couple of
options for getting more information from the logs. You can change the log level by
running the setParameter command, or by setting the log level at startup time by
passing it as a string using the --setParameter option.

> db.adminCommand({"setParameter" : 1, "logLevel" : 3})

You can also change the log level for a particular component. This is helpful if you are
debugging a specific aspect of your application and require more information, but
only from that component. In this example, we set the default log verbosity to 1 and
the query component verbosity to 2:

> db.adminCommand({"setParameter" : 1, logComponentVerbosity:
 { verbosity: 1, query: { verbosity: 2 }}})

Remember to turn the log level back down to 0 when you’re done debugging, or your
logs may be needlessly noisy. You can turn the level all the way up to 5, at which point
mongod will print out almost every action it takes, including the contents of every
request handled. This can cause a lot of I/O as mongod writes everything to the log
file, which can slow down a busy system. Turning on profiling is a better option if you
need to see every operation as it’s happening.

By default, MongoDB logs information about queries that take longer than 100 ms to
run. If 100 ms is too short or too long for your application, you can change the thres‐
hold with setProfilingLevel:

Logging | 423

> // Only log queries that take longer than 500 ms
> db.setProfilingLevel(1, 500)
{ "was" : 0, "slowms" : 100, "ok" : 1 }
> db.setProfilingLevel(0)
{ "was" : 1, "slowms" : 500, "ok" : 1 }

The second line will turn off profiling, but the value in milliseconds given in the first
line will continue to be used as a threshold for the log (across all databases). You can
also set this parameter by restarting MongoDB with the --slowms option.

Finally, set up a cron job that rotates your log every day or week. If MongoDB was
started with --logpath, sending the process a SIGUSR1 signal will make it rotate the
log. There is also a logRotate command that does the same thing:

> db.adminCommand({"logRotate" : 1})

You cannot rotate logs if MongoDB was not started with --logpath.

424 | Chapter 21: Setting Up MongoDB in Production

CHAPTER 22

Monitoring MongoDB

Before you deploy, it is important to set up some type of monitoring. Monitoring
should allow you to track what your server is doing and alert you if something goes
wrong. This chapter will cover:

• How to track MongoDB’s memory usage
• How to track application performance metrics
• How to diagnose replication issues

We’ll use example graphs from MongoDB Ops Manager to demonstrate what to look
for when monitoring (see installation instructions for Ops Manager). The monitoring
capabilities of MongoDB Atlas (MongoDB’s cloud database service) are very similar.
MongoDB also offers a free monitoring service that monitors standalones and replica
sets. It keeps the monitoring data for 24 hours after it has been uploaded and pro‐
vides coarse-grained statistics on operation execution times, memory usage, CPU
usage, and operation counts.

If you do not want to use Ops Manager, Atlas, or MongoDB’s free monitoring service,
please use some type of monitoring. It will help you detect potential issues before they
cause problems and diagnose issues when they occur.

Monitoring Memory Usage
Accessing data in memory is fast, and accessing data on disk is slow. Unfortunately,
memory is expensive (and disk is cheap), and typically MongoDB uses up memory
before any other resource. This section covers how to monitor MongoDB’s interac‐
tions with the CPU, disk, and memory, and what to watch for.

425

https://oreil.ly/D4751

Introduction to Computer Memory
Computers tend to have a small amount of fast-to-access memory and a large amount
of slow-to-access disk. When you request a page of data that is stored on disk (and
not yet in memory), your system page faults and copies the page from disk into mem‐
ory. It can then access the page in memory extremely quickly. If your program stops
regularly using the page and your memory fills up with other pages, the old page will
be evicted from memory and only live on disk again.

Copying a page from disk into memory takes a lot longer than reading a page from
memory. Thus, the less MongoDB has to copy data from disk, the better. If MongoDB
can operate almost entirely in memory, it will be able to access data much faster.
Thus, MongoDB’s memory usage is one of the most important stats to track.

Tracking Memory Usage
MongoDB reports on three “types” of memory in Ops Manager: resident memory,
virtual memory, and mapped memory. Resident memory is the memory that Mon‐
goDB explicitly owns in RAM. For example, if you query for a document and it is
paged into memory, that page is added to MongoDB’s resident memory.

MongoDB is given an address for that page. This address isn’t the literal address of
the page in RAM; it’s a virtual address. MongoDB can pass it to the kernel and the
kernel will look up where the page really lives. This way, if the kernel needs to evict
the page from memory, MongoDB can still use the address to access it. MongoDB
will request the memory from the kernel, the kernel will look at its page cache, see
that the page is not there, page fault to copy the page into memory, and return it to
MongoDB.

If your data fits entirely in memory, the resident memory should be approximately
the size of your data. When we talk about data being “in memory,” we’re always talk‐
ing about the data being in RAM.

MongoDB’s mapped memory includes all of the data MongoDB has ever accessed (all
the pages of data it has addresses for). It will usually be about the size of your dataset.

Virtual memory is an abstraction provided by the operating system that hides the
physical storage details from the software process. Each process sees a contiguous
address space of memory that it can use. In Ops Manager, the virtual memory use of
MongoDB is typically twice the size of the mapped memory.

Figure 22-1 shows the Ops Manager graph for memory information, which describes
how much virtual, resident, and mapped memory MongoDB is using. Mapped mem‐
ory is relevant only for older (pre-4.0) deployments using the MMAP storage engine.
Now that MongoDB uses the WiredTiger storage engine, you should see zero usage
for mapped memory. On a machine dedicated to MongoDB, resident memory should

426 | Chapter 22: Monitoring MongoDB

be a little less than the total memory size (assuming your working set is as large or
larger than memory). Resident memory is the statistic that actually tracks how much
data is in physical RAM, but by itself this does not tell you much about how
MongoDB is using memory.

Figure 22-1. From the top line to the bottom: virtual, resident, and mapped memory

If your data fits entirely in memory, resident should be approximately the size of your
data. When we talk about data being “in memory,” we’re always talking about the data
being in RAM.

As you can see from Figure 22-1, memory metrics tend to be fairly steady, but as your
dataset grows virtual memory (top line) will grow with it. Resident memory (middle
line) will grow to the size of your available RAM and then hold steady.

Tracking Page Faults
You can use other statistics to find out how MongoDB is using memory, not just how
much of each type it has. One useful stat is the number of page faults, which tells you
how often the data MongoDB is looking for is not in RAM. Figures 22-2 and 22-3 are
graphs that show page faults over time. Figure 22-3 is page faulting less than
Figure 22-2, but by itself this information is not very useful. If the disk in Figure 22-2
can handle that many faults and the application can handle the delay of the disk seeks,
there is no particular problem with having so many faults (or more). On the other
hand, if your application cannot handle the increased latency of reading data from
disk, you have no choice but to store all of your data in memory (or use SSDs).

Monitoring Memory Usage | 427

Figure 22-2. A system that is page faulting hundreds of times a minute

Figure 22-3. A system that is page faulting a few times a minute

Regardless of how forgiving the application is, page faults become a problem when
the disk is overloaded. The amount of load a disk can handle isn’t linear: once a disk
begins getting overloaded, each operation must queue for a longer and longer period
of time, creating a chain reaction. There is usually a tipping point where disk perfor‐
mance begins degrading quickly. Thus, it is a good idea to stay away from the maxi‐
mum load that your disk can handle.

Track your page fault numbers over time. If your application is
behaving well with a certain number of page faults, you have a
baseline for how many page faults the system can handle. If page
faults begin to creep up and performance deteriorates, you have a
threshold to alert on.

You can see page fault stats per database by looking at the "page_faults" field of
serverStatus’s output:

> db.adminCommand({"serverStatus": 1})["extra_info"]
{ "note" : "fields vary by platform", "page_faults" : 50 }

428 | Chapter 22: Monitoring MongoDB

"page_faults" gives you a count of how many times MongoDB has had to go to disk
(since startup).

I/O Wait
Page faults in general are closely tied to how long the CPU is idling waiting for the
disk, called I/O wait. Some I/O wait is normal; MongoDB has to go to disk some‐
times, and although it tries not to block anything when it does, it cannot completely
avoid it. The important thing is that I/O wait is not increasing or near 100%, as
shown in Figure 22-4. This indicates that the disk is getting overloaded.

Figure 22-4. I/O wait hovering around 100%

Calculating the Working Set
In general, the more data you have in memory, the faster MongoDB will perform.
Thus, in order from fastest to slowest, an application could have:

1. The entire dataset in memory. This is nice to have but is often too expensive or
infeasible. It may be necessary for applications that depend on fast response
times.

2. The working set in memory. This is the most common choice.
Your working set is the data and indexes that your application uses. This may be
everything, but generally there’s a core dataset (e.g., the users collection and the
last month of activity) that covers 90% of requests. If this working set fits in
RAM, MongoDB will generally be fast: it only has to go to disk for a few
“unusual” requests.

3. The indexes in memory.
4. The working set of indexes in memory.
5. No useful subset of data in memory. If possible, avoid this. It will be slow.

Calculating the Working Set | 429

You must know what your working set is (and how large it is) to know if you can keep
it in memory. The best way to calculate the size of the working set is to track common
operations to find out how much your application is reading and writing. For exam‐
ple, suppose your application creates 2 GB of new data per week and 800 MB of that
data is regularly accessed. Users tend to access data up to a month old, and data that’s
older than that is mostly unused. Your working set size is probably about 3.2 GB (800
MB/week × 4 weeks), plus a fudge factor for indexes, so call it 5 GB.

One way to think about this is to track data accessed over time, as shown in
Figure 22-5. If you choose a cutoff where 90% of your requests fall, like in
Figure 22-6, then the data (and indexes) generated in that period of time form your
working set. You can measure for that amount of time to figure out how much your
dataset grows. Note that this example uses time, but it’s possible that there’s another
access pattern that makes more sense for your application (time being the most com‐
mon one).

Figure 22-5. A plot of data accesses by age of data

Figure 22-6. The working set is data used in the requests before the cutoff of “frequent
requests” (indicated by the vertical line in the graph)

430 | Chapter 22: Monitoring MongoDB

Some Working Set Examples
Suppose that you have a 40 GB working set. A total of 90% of requests hit the work‐
ing set, and 10% hit other data. If you have 500 GB of data and 50 GB of RAM, your
working set fits entirely in RAM. Once your application has accessed the data it usu‐
ally accesses (a process called preheating), it should never have to go to disk again for
the working set. It then has 10 GB of space available for the 460 GB of less-frequently-
accessed data. Obviously, MongoDB will almost always have to go to disk for the non‐
working set data.

On the other hand, suppose your working set does not fit in RAM—say, if you have
only 35 GB of RAM. Then the working set will generally take up most of the RAM.
The working set has a higher probability of staying in RAM because it’s accessed
more frequently, but at some point the less-frequently-accessed data will have to be
paged in, evicting the working set (or other less-frequently-accessed data). Thus,
there is a constant churn back and forth from disk: accessing the working set does not
have predictable performance anymore.

Tracking Performance
Performance of queries is often important to track and keep consistent. There are
several ways to track if MongoDB is having trouble with the current request load.

CPU can be I/O bound with MongoDB (indicated by a high I/O wait). The Wire‐
dTiger storage engine is multithreaded and can take advantage of additional CPU
cores. This can be seen in a higher level of usage across CPU metrics when compared
with the older MMAP storage engine. However, if user or system time is approaching
100% (or 100% multiplied by the number of CPUs you have), the most common
cause is that you’re missing an index on a frequently used query. It is a good idea to
track CPU usage (particularly after deploying a new version of your application) to
ensure that all your queries are behaving as they should.

Note that the graph shown in Figure 22-7 is fine: if there is a low number of page
faults, I/O wait may be dwarfed by other CPU activities. It is only when the other
activities creep up that bad indexes may be a culprit.

Tracking Performance | 431

Figure 22-7. A CPU with minimal I/O wait: the top line is user and the lower line is
system; the other stats are very close to 0%

A similar metric is queuing: how many requests are waiting to be processed by Mon‐
goDB. A request is considered queued when it is waiting for the lock it needs to do a
read or a write. Figure 22-8 shows a graph of read and write queues over time. No
queues are preferred (basically an empty graph), but this graph is nothing to be
alarmed about. In a busy system, it isn’t unusual for an operation to have to wait a bit
for the correct lock to be available.

Figure 22-8. Read and write queues over time

The WiredTiger storage engine provides document-level concurrency, which allows
for multiple simultaneous writes to the same collection. This has drastically improved
the performance of concurrent operations. The ticketing system used controls the
number of threads in use to avoid starvation: it issues tickets for read and write oper‐
ations (128 of each, by default), after which point new read or write operations
will queue. The wiredTiger.concurrentTransactions.read.available and wired
Tiger.concurrentTransactions.write.available fields of serverStatus can be
used to track when the number of available tickets reaches zero, indicating the respec‐
tive operations are now queuing up.

432 | Chapter 22: Monitoring MongoDB

You can see if requests are piling up by looking at the number of requests enqueued.
Generally, the queue size should be low. A large and ever-present queue is an indica‐
tion that mongod cannot keep up with its load. You should decrease the load on that
server as fast as possible.

Tracking Free Space
One other metric that is basic but important to monitor is disk usage. Sometimes
users wait until their disk runs out of space before they think about how they want to
handle it. By monitoring your disk usage and tracking free disk space, you can pre‐
dict how long your current drive will be sufficient and plan in advance what to do
when it is not.

As you run out of space, there are several options:

• If you are using sharding, add another shard.
• If you have unused indexes, remove them. These can be identified using the

aggregation $indexStats for a specific collection.
• If you have not run a compaction operation, then do so on a secondary to see if it

assists. This is normally only useful in cases where a large amount of data or
indexes have been removed from a collection and will not be replaced.

• Shut down each member of the replica set (one at a time) and copy its data to a
larger disk, which can then be mounted. Restart the member and proceed to the
next.

• Replace members of your replica set with members with a larger drive: remove
an old member and add a new member, and allow that one to catch up with the
rest of the set. Repeat for each member of the set.

• If you are using the directoryperdb option and you have a particularly fast-
growing database, move it to its own drive. Then mount the volume as a direc‐
tory in your data directory. This way the rest of your data doesn’t have to be
moved.

Regardless of the technique you choose, plan ahead to minimize the impact on your
application. You need time to take backups, modify each member of your set in turn,
and copy your data from place to place.

Monitoring Replication
Replication lag and oplog length are important metrics to track. Lag is when the sec‐
ondaries cannot keep up with the primary. It’s calculated by subtracting the time of
the last op applied on a secondary from the time of the last op on the primary. For
example, if a secondary just applied an op with the timestamp 3:26:00 p.m. and the

Tracking Free Space | 433

primary just applied an op with the timestamp 3:29:45 p.m., the secondary is lagging
by 3 minutes and 45 seconds. You want lag to be as close to 0 as possible, and it is
generally on the order of milliseconds. If a secondary is keeping up with the primary,
the replication lag should look something like the graph shown in Figure 22-9: basi‐
cally 0 all the time.

Figure 22-9. A replica set with no lag; this is what you want to see

If a secondary cannot replicate writes as fast as the primary can write, you’ll start see‐
ing a nonzero lag. The most extreme case of this is when replication is stuck: the sec‐
ondary cannot apply any more operations for some reason. At this point, lag will
grow by one second per second, creating the steep slope shown in Figure 22-10. This
could be caused by network issues or a missing "_id" index, which is required on
every collection for replication to function properly.

If a collection is missing an "_id" index, take the server out of the
replica set, start it as a standalone server, and build the "_id"
index. Make sure you create the "_id" index as a unique index.
Once created, the "_id" index cannot be dropped or changed
(other than by dropping the whole collection).

If a system is overloaded, a secondary may gradually fall behind. Some replication
will still be happening, so you generally won’t see the characteristic “one second per
second” slope in the graph. Still, it’s important to be aware if the secondaries cannot
keep up with peak traffic or are gradually falling further behind.

434 | Chapter 22: Monitoring MongoDB

Figure 22-10. Replication getting stuck and, just before February 10, beginning to
recover; the vertical lines are server restarts

Primaries do not throttle writes to “help” secondaries catch up, so it’s common for
secondaries to fall behind on overloaded systems (particularly as MongoDB tends to
prioritize writes over reads, which means replication can be starved on the primary).
You can force throttling of the primary to some extent by using "w" with your write
concern. You also might want to try removing load from the secondary by routing
any requests it was handling to another member.

If you are on an extremely underloaded system, you may see another interesting pat‐
tern: sudden spikes in replication lag, as shown in Figure 22-11. The spikes shown are
not actually lag—they are caused by variations in sampling. The mongod is processing
one write every couple of minutes. Because lag is measured as the difference between
timestamps on the primary and secondary, measuring the timestamp of the secon‐
dary right before a write on the primary makes it look minutes behind. If you
increase the write rate, these spikes should disappear.

Figure 22-11. A low-write system can cause “phantom” lag

The other important replication metric to track is the length of each member’s oplog.
Every member that might become primary should have an oplog longer than a day. If

Monitoring Replication | 435

a member may be a sync source for another member, it should have an oplog longer
than the time an initial sync takes to complete. Figure 22-12 shows what a standard
oplog-length graph looks like. This oplog has an excellent length: 1,111 hours is over
a month of data! In general, oplogs should be as long as you can afford the disk space
to make them. Given the way they’re used, they take up basically no memory, and a
long oplog can mean the difference between a painful ops experience and an easy
one.

Figure 22-12. A typical oplog-length graph

Figure 22-13 shows a slightly unusual variation caused by a fairly short oplog and
variable traffic. This is still healthy, but the oplog on this machine is probably too
short (between 6 and 11 hours of maintenance). The administrator may want to make
the oplog longer when they get a chance.

Figure 22-13. Oplog-length graph of an application with daily traffic peaks

436 | Chapter 22: Monitoring MongoDB

CHAPTER 23

Making Backups

It is important to make regular backups of your system. Backups are good protection
against most types of failure, and very little can’t be solved by restoring from a clean
backup. This chapter covers the common options for making backups:

• Single-server backups, including snapshot backup and restore procedure
• Special considerations for backing up replica sets
• Baking up a sharded cluster

Backups are only useful if you are confident about deploying them in an emergency.
Thus, for any backup technique you choose, be sure to practice both making backups
and restoring from them until you are comfortable with the restore procedure.

Backup Methods
There are a number of options for backing up clusters in MongoDB. MongoDB Atlas,
the official MongoDB cloud service, provides both continuous backups and cloud
provider snapshots. Continuous backups take incremental backups of data in your
cluster, ensuring your backups are typically just a few seconds behind the operating
system. Cloud provider snapshots provide localized backup storage using the snap‐
shot functionality of the cluster’s cloud service provider (e.g., Amazon Web Services,
Microsoft Azure, or Google Cloud Platform). The best backup solution for the major‐
ity of scenarios is continuous backups.

MongoDB also provides backup capability through Cloud Manager and Ops Man‐
ager. Cloud Manager is a hosted backup, monitoring, and automation service for
MongoDB. Ops Manager is an on-premise solution that has similar functionality to
Cloud Manager.

437

For individuals and teams managing MongoDB clusters directly, there are several
backup strategies. We will outline these strategies in the rest of this chapter.

Backing Up a Server
There are a variety of ways to create backups. Regardless of the method, making a
backup can cause strain on a system: it generally requires reading all your data into
memory. Thus, backups should generally be done on replica set secondaries (as
opposed to the primary) or, for standalone servers, at an off time.

The techniques in this section apply to any mongod, whether a standalone server or a
member of a replica set, unless otherwise noted.

Filesystem Snapshot
Filesystem snapshots use system-level tools to create copies of the device that holds
MongoDB’s data files. These methods complete quickly and work reliably, but require
additional system configuration outside of MongoDB.

MongoDB 3.2 added support for volume-level backup of MongoDB instances using
the WiredTiger storage engine when those instances’ data files and journal files reside
on separate volumes. However, to create a coherent backup, the database must be
locked and all writes to the database must be suspended during the backup process.

Prior to MongoDB 3.2, creating volume-level backups of MongoDB instances using
WiredTiger required that the data files and journal reside on the same volume.

Snapshots work by creating pointers between the live data and a special snapshot vol‐
ume. These pointers are theoretically equivalent to “hard links.” As the working data
diverges from the snapshot, the snapshot process uses a copy-on-write strategy. As a
result, the snapshot only stores modified data.

After making the snapshot, you mount the snapshot image on your filesystem and
copy data from the snapshot. The resulting backup contains a full copy of all data.

The database must be valid when the snapshot takes place. This means that all writes
accepted by the database need to be fully written to disk: either to the journal or to
data files. If there are writes that are not on disk when the backup occurs, the backup
will not reflect these changes.

For the WiredTiger storage engine, the data files reflect a consistent state as of the last
checkpoint. Checkpoints occur every minute.

Snapshots create an image of an entire disk or volume. Unless you need to back up
your entire system, consider isolating your MongoDB data files, journal (if applica‐
ble), and configuration on one logical disk that doesn’t contain any other data.

438 | Chapter 23: Making Backups

Alternatively, store all MongoDB data files on a dedicated device so that you can
make backups without duplicating extraneous data.

Ensure that you copy data from snapshots onto other systems. This ensures that data
is safe from site failures.

If your mongod instance has journaling enabled, then you can use any kind of filesys‐
tem or volume/block-level snapshot tool to create backups.

If you manage your own infrastructure on a Linux-based system, configure your sys‐
tem using the Linux Logical Volume Manager (LVM) to provide your disk packages
and provide snapshot capability. LVM allows for the flexible combination and divi‐
sion of physical disk partitions, enabling dynamically resizable filesystems. You can
also use LVM-based setups within a cloud/virtualized environment.

In the initial setup of LVM, first we assign disk partitions to physical volumes
(pvcreate), then one or more of these are then assigned to a volume group
(vgcreate), and then we create logical volumes (lvcreate) referring to the volume
groups. We can build a filesystem on the logical volume (mkfs), which when created
can be mounted for use (mount).

Snapshot backup and restore procedure
This section provides an overview of a simple backup process using LVM on a Linux
system. While the tools, commands, and paths may be (slightly) different on your sys‐
tem, the following steps provide a high-level overview of the backup operation.

Only use the following procedure as a guideline for a backup system and infrastruc‐
ture. Production backup systems must consider a number of application-specific
requirements and factors unique to specific environments.

To create a snapshot with LVM, issue a command as root in the following format:

lvcreate --size 100M --snapshot --name mdb-snap01 /dev/vg0/mongodb

This command creates an LVM snapshot (with the --snapshot option) named mdb-
snap01 of the mongodb volume in the vg0 volume group, which will be located
at /dev/vg0/mdb-snap01. The location and paths to your systems, volume groups,
and devices may vary slightly depending on your operating system’s LVM
configuration.

The snapshot has a cap of 100 MB, because of the parameter --size 100M. This size
does not reflect the total amount of the data on the disk, but rather the amount of
differences between the current state of /dev/vg0/mongodb and the snapshot
(/dev/vg0/mdb-snap01).

Backing Up a Server | 439

The snapshot will exist when the command returns. You can restore directly from the
snapshot at any time, or create a new logical volume and restore from the snapshot to
the alternate image.

While snapshots are great for creating high-quality backups quickly, they are not
ideal as a format for storing backup data. Snapshots typically depend and reside on
the same storage infrastructure as the original disk images. Therefore, it’s crucial that
you archive these snapshots and store them elsewhere.

After creating a snapshot, mount the snapshot and copy the data to separate storage.
Alternatively, take a block-level copy of the snapshot image, such as with the follow‐
ing procedure:

umount /dev/vg0/mdb-snap01

dd if=/dev/vg0/mdb-snap01 | gzip > mdb-snap01.gz

This command sequence does the following:

• Ensures that the /dev/vg0/mdb-snap01 device is not mounted
• Performs a block-level copy of the entire snapshot image using the dd command

and compresses the result in a gzipped file in the current working directory

The dd command will create a large .gz file in your current working
directory. Make sure that you run this command in a filesystem that
has enough free space.

To restore a snapshot created with LVM, issue the following sequence of commands:

lvcreate --size 1G --name mdb-new vg0

gzip -d -c mdb-snap01.gz | dd of=/dev/vg0/mdb-new

mount /dev/vg0/mdb-new /srv/mongodb

This sequence does the following:

• Creates a new logical volume named mdb-new, in the /dev/vg0 volume group.
The path to the new device will be /dev/vg0/mdb-new. You can use a different
name, and change 1G to your desired volume size.

• Uncompresses and unarchives the mdb-snap01.gz file into the mdb-new disk
image.

440 | Chapter 23: Making Backups

• Mounts the mdb-new disk image to the /srv/mongodb directory. Modify the
mount point to correspond to your MongoDB data file location or other location
as needed.

The restored snapshot will have a stale mongod.lock file. If you do not remove this
file from the snapshot, MongoDB may assume that the stale lock file indicates an
unclean shutdown. If you’re running with storage.journal.enabled enabled and
you do not use db.fsyncLock(), you do not need to remove the mongod.lock file. If
you use db.fsyncLock() you will need to remove the lock.

To restore a backup without writing to a compressed .gz file, use the following
sequence of commands:

umount /dev/vg0/mdb-snap01

lvcreate --size 1G --name mdb-new vg0

dd if=/dev/vg0/mdb-snap01 of=/dev/vg0/mdb-new

mount /dev/vg0/mdb-new /srv/mongodb

You can implement off-system backups using the combined process and SSH. This
sequence is identical to procedures explained previously, except that it archives and
compresses the backup on a remote system using SSH:

umount /dev/vg0/mdb-snap01

dd if=/dev/vg0/mdb-snap01 | ssh username@example.com gzip > /opt/backup/

mdb-snap01.gz

lvcreate --size 1G --name mdb-new vg0

ssh username@example.com gzip -d -c /opt/backup/mdb-snap01.gz | dd

of=/dev/vg0/mdb-new

mount /dev/vg0/mdb-new /srv/mongodb

Starting in MongoDB 3.2, for the purpose of volume-level backup of MongoDB
instances using WiredTiger, the data files and the journal are no longer required to
reside on a single volume. However, the database must be locked and all writes to the
database must be suspended during the backup process to ensure the consistency of
the backup.

If your mongod instance is either running without journaling or has the journal files
on a separate volume, you must flush all writes to disk and lock the database to pre‐
vent writes during the backup process. If you have a replica set configuration, then
for your backup use a secondary that is not receiving reads (i.e., a hidden member).

Backing Up a Server | 441

To do this, issue the db.fsyncLock() method in the mongo shell:

> db.fsyncLock();

Then perform the backup operation described previously.

After the snapshot completes, unlock the database by issuing the following command
in the mongo shell:

> db.fsyncUnlock();

This process is described more fully in the following section.

Copying Data Files
Another way of creating single-server backups is to make a copy of everything in the
data directory. Because you cannot copy all of the files at the same moment without
filesystem support, you must prevent the data files from changing while you are mak‐
ing the copy. This can be accomplished with a command called fsyncLock:

> db.fsyncLock()

This command locks the database against any further writes and then flushes all dirty
data to disk (fsync), ensuring that the files in the data directory have the latest con‐
sistent information and are not changing.

Once this command has been run, mongod will enqueue all incoming writes. It will
not process any further writes until it has been unlocked. Note that this command
stops writes to all databases (not just the one db is connected to).

Once the fsyncLock command returns, copy all of the files in your data directory to a
backup location. On Linux, this can be done with a command such as:

$ cp -R /data/db/* /mnt/external-drive/backup

Make sure that you copy absolutely every file and folder from the data directory to
the backup location. Excluding files or directories may make the backup unusable or
corrupt.

Once you have finished copying the data, unlock the database to allow it to take
writes again:

> db.fsyncUnlock()

Your database will begin handling writes again normally.

Note that there are some locking issues with authentication and fsyncLock. If you are
using authentication, do not close the shell between calling fsyncLock and
fsyncUnlock. If you disconnect, you may be unable to reconnect and have to restart
mongod. The fsyncLock setting does not persist between restarts; mongod will always
start up unlocked.

442 | Chapter 23: Making Backups

As an alternative to fsyncLock, you can instead shut down mongod, copy the files,
and then start mongod back up again. Shutting down mongod effectively flushes all
changes to disk and prevents new writes from occurring during the backup.

To restore from the copy of the data directory, ensure that mongod is not running and
that the data directory you want to restore into is empty. Copy the backed-up data
files to the data directory, and then start mongod. For example, the following com‐
mand would restore the files backed up with the command shown earlier:

$ cp -R /mnt/external-drive/backup/* /data/db/
$ mongod -f mongod.conf

Despite the warnings about partial data directory copies, you can use this method to
back up individual databases if you know what to copy and where they are using the
--directoryperdb option. To back up an individual database (called, say, myDB),
which is only available if you are using the --directoryperdb option, copy the entire
myDB directory. Partial data directory copies are only possible with the --

directoryperdb option.

You can restore specific databases by copying just the files with the correct database
name into your data directory. You must be starting from a clean shutdown to restore
piecemeal like this. If you had a crash or a hard shutdown, do not attempt to restore a
single database from the backup: replace the entire directory and start the mongod to
allow the journal files to be replayed.

Never use fsyncLock in conjunction with mongodump (described
next). Depending on what else your database is doing, mongodump
may hang forever if the database is locked.

Using mongodump
The final way of making a single-server backup is to use mongodump. mongodump is
mentioned last because it has some downsides. It is slower (both to get the backup
and to restore from it) and it has some issues with replica sets, which are discussed in
“Specific Considerations for Replica Sets” on page 446. However, it also has some
benefits: it is a good way to back up individual databases, collections, and even sub‐
sets of collections.

mongodump has a variety of options that you can see by running mongodump --help.
Here, we will focus on the most useful ones to use for backing up.

To back up all databases, simply run mongodump. If you are running mongodump on
the same machine as the mongod, you can simply specify the port mongod is running
on:

Backing Up a Server | 443

$ mongodump -p 31000

mongodump will create a dump directory in the current directory, which contains a
dump of all your data. This dump directory is organized by database and by collection
into folders and subfolders. The actual data is stored in .bson files, which merely con‐
tain every document in a collection in BSON, concatenated together. You can exam‐
ine .bson files using the bsondump tool, which comes with MongoDB.

You do not even need to have a server running to use mongodump. You can use the
--dbpath option to specify your data directory, and mongodump will use the data files
to copy data:

$ mongodump --dbpath /data/db

You should not use --dbpath if mongod is running.

One issue with mongodump is that it is not an instantaneous backup: the system may
be taking writes while the backup occurs. Thus, you might end up with a situation
where user A begins a backup that causes mongodump to dump the database A, but
while this is happening user B drops A. However, mongodump has already dumped it,
so you’ll end up with a snapshot of the data that is inconsistent with the state on the
original server.

To avoid this, if you are running mongod with --replSet, you can use mongodump’s
--oplog option. This will keep track of all operations that occur on the server while
the dump is taking place, so these operations can be replayed when the backup is
restored. This gives you a consistent point-in-time snapshot of data from the source
server.

If you pass mongodump a replica set connection string (e.g., "setName/

seed1,seed2,seed3"), it will automatically select the primary to dump from. If you
want to use a secondary, you can specify a read preference. The read preference
can be specified by --uri connection string, by the uri readPreferenceTags
option, or by the --readPreference command-line option. For more details on the
various settings and options, please see the mongodump MongoDB documentation
page.

To restore from a mongodump backup, use the mongorestore tool:

$ mongorestore -p 31000 --oplogReplay dump/

If you used the --oplog option to dump the database, you must use the
--oplogReplay option with mongorestore to get the point-in-time snapshot.

If you are replacing data on a running server, you may (or may not) wish to use the
--drop option, which drops a collection before restoring it.

444 | Chapter 23: Making Backups

https://oreil.ly/GH3-O
https://oreil.ly/GH3-O

The behavior of mongodump and mongorestore has changed over time. To prevent
compatibility issues, try to use the same version of both utilities (you can see their
versions by running mongodump --version and mongorestore --version).

From MongoDB version 4.2 and up, you cannot use either mongo‐
dump or mongorestore as a strategy for backing up a sharded clus‐
ter. These tools do not maintain the atomicity guarantees of
transactions across shards.

Moving collections and databases with mongodump and mongorestore
You can restore into an entirely different database and collection than you dumped
from. This can be useful if different environments use different database names (say,
dev and prod) but the same collection names.

To restore a .bson file into a specific database and collection, specify the targets on the
command line:

$ mongorestore --db newDb --collection someOtherColl dump/oldDB/oldColl.bson

It is also possible to use these tools with SSH to perform data migration without any
disk I/O using the archive feature of these tools. This simplifies three stages into one
operation, when previously you had to back up to disk, then copy those backup files
to a target server, and then run mongorestore on that server to restore the backups:

$ ssh eoin@proxy.server.com mongodump --host source.server.com\ --archive
 | ssh eoin@target.server.com mongorestore --archive

Compression can be combined with the archive feature of these tools to further
reduce the size of the information sent while performing a data migration. Here is the
same SSH data migration example using both the archive and compression features
of these tools:

$ ssh eoin@proxy.server.com mongodump --host source.server.com\ --archive
 --gzip | ssh eoin@target.server.com mongorestore --archive --gzip

Administrative complications with unique indexes

If you have a unique index (other than "_id") on any of your collections, you should
consider using a different type of backup than mongodump/mongorestore. Unique
indexes require that the data does not change in ways that would violate the unique
index constraint during the copy. The safest way to ensure this is to choose a method
that “freezes” the data, then make a backup as described in either of the previous two
sections.

If you are determined to use mongodump/mongorestore, you may need to preprocess
your data when you restore from a backup.

Backing Up a Server | 445

Specific Considerations for Replica Sets
The main additional consideration when backing up a replica set is that as well as the
data, you must also capture the state of the replica set to ensure an accurate point-in-
time snapshot of your deployment is made.

Generally, you should make backups from a secondary: this keeps load off of the pri‐
mary, and you can lock a secondary without affecting your application (so long as
your application isn’t sending it read requests). You can use any of the three methods
outlined previously to back up a replica set member, but a filesystem snapshot or data
file copy is recommended. Either of these techniques can be applied to replica set sec‐
ondaries with no modification.

mongodump is not quite as simple to use when replication is enabled. First, if you are
using mongodump, you must take your backups using the --oplog option to get a
point-in-time snapshot; otherwise the backup’s state won’t match the state of any
other members in the cluster. You must also create an oplog when you restore from a
mongodump backup, or the restored member will not know where it was synced to.

To restore a replica set member from a mongodump backup, start the target replica set
member as a standalone server with an empty data directory and run mongorestore on
it (as described in the previous section) with the --oplogReplay option. Now it
should have a complete copy of the data, but it still needs an oplog. Create an oplog
using the createCollection command:

> use local
> db.createCollection("oplog.rs", {"capped" : true, "size" : 10000000})

Specify the size of the collection in bytes. See “Resizing the Oplog” on page 282 for
advice on oplog sizing.

Now you need to populate the oplog. The easiest way to do this is to restore the
oplog.bson backup file from the dump into the local.oplog.rs collection:

$ mongorestore -d local -c oplog.rs dump/oplog.bson

Note that this is not a dump of the oplog itself (dump/local/oplog.rs.bson), but rather
of the oplog operations that occurred during the dump. Once this mongorestore is
complete, you can restart this server as a replica set member.

Specific Considerations for Sharded Clusters
The main additional consideration when backing up a sharded cluster using the
approaches in this chapter is that you can only back up the pieces when they are
active, and sharded clusters are impossible to “perfectly” back up while active: you
can’t get a snapshot of the entire state of the cluster at a point in time. However, this
limitation is generally sidestepped by the fact that as your cluster gets bigger, it

446 | Chapter 23: Making Backups

becomes less and less likely that you’d ever have to restore the whole thing from a
backup. Thus, when dealing with a sharded cluster, we focus on backing up pieces:
the config servers and the replica sets individually. If you need the ability to back up
the whole cluster to a particular point in time or would prefer an automated solution,
you can avail yourself of MongoDB’s Cloud Manager or Atlas backup feature.

Turn off the balancer before performing any of these operations on a sharded cluster
(either backup or restore). You cannot get a consistent snapshot of the world with
chunks flying around. See “Balancing Data” on page 359 for instructions on turning
the balancer on and off.

Backing Up and Restoring an Entire Cluster
When a cluster is very small or in development, you may want to actually dump and
restore the entire thing. You can accomplish this by turning off the balancer and then
running mongodump through the mongos. This creates a backup of all of the shards
on whatever machine mongodump is running on.

To restore from this type of backup, run mongorestore connected to a mongos.

Alternatively, after turning off the balancer you can take filesystem or data directory
backups of each shard and the config servers. However, you will inevitably get copies
from each at slightly different times, which may or may not be a problem. Also, as
soon as you turn on the balancer and a migrate occurs, some of the data you backed
up from one shard will no longer be there.

Backing Up and Restoring a Single Shard
Most often, you’ll only need to restore a single shard in a cluster. If you are not too
picky, you can restore from a backup of that shard using one of the single-server
methods just described.

There is one important issue to be aware of, however. Suppose you make a backup of
your cluster on Monday. On Thursday, your disk melts down and you have to restore
from the backup. In the intervening days, new chunks may have moved to this shard.
Your backup of the shard from Monday will not contain these new chunks. You may
be able to use a config server backup to figure out where the disappearing chunks
lived on Monday, but it is a lot more difficult than simply restoring the shard. In most
cases, restoring the shard and losing the data in those chunks is the preferable route.

You can connect directly to a shard to restore from a backup (instead of going
through mongos).

Specific Considerations for Sharded Clusters | 447

CHAPTER 24

Deploying MongoDB

This chapter gives recommendations for setting up a server to go into production. In
particular, it covers:

• Choosing what hardware to buy and how to set it up
• Using virtualized environments
• Important kernel and disk I/O settings
• Network setup: who needs to connect to whom

Designing the System
You generally want to optimize for data safety and the quickest access you can afford.
This section discusses the best way to accomplish these goals when choosing disks,
RAID configuration, CPUs, and other hardware and low-level software components.

Choosing a Storage Medium
In order of preference, we would like to store and retrieve data from:

1. RAM
2. SSD
3. Spinning disk

Unfortunately, most people have limited budgets or enough data that storing every‐
thing in RAM is impractical and SSDs are too expensive. Thus, the typical deploy‐
ment is a small amount of RAM (relative to total data size) and a lot of space on a

449

spinning disk. If you are in this camp, the important thing is that your working set is
smaller than RAM, and you should be ready to scale out if the working set gets bigger.

If you are able to spend what you like on hardware, buy a lot of RAM and/or SSDs.

Reading data from RAM takes a few nanoseconds (say, 100). Conversely, reading
from disk takes a few milliseconds (say, 10). It can be hard to picture the difference
between these two numbers, so let’s scale them up to more relatable numbers: if
accessing RAM took 1 second, accessing the disk would take over a day!

100 nanoseconds × 10,000,000 = 1 second

10 milliseconds × 10,000,000 = 1.16 days

These are very back-of-the-envelope calculations (your disk might be a bit faster or
your RAM a bit slower), but the magnitude of this difference doesn’t change much.
Thus, we want to access the disk as seldom as possible.

Recommended RAID Configurations
RAID is hardware or software that lets you treat multiple disks as though they were a
single disk. It can be used for reliability, performance, or both. A set of disks using
RAID is referred to as a RAID array (somewhat redundantly, as RAID stands for
redundant array of inexpensive disks).

There are a number of ways to configure RAID, depending on the features you’re
looking for—generally some combination of speed and fault tolerance. These are the
most common varieties:

RAID0
Striping disks for improved performance. Each disk holds part of the data, simi‐
lar to MongoDB’s sharding. Because there are multiple underlying disks, lots of
data can be written to disk at the same time. This improves throughput on writes.
However, if a disk fails and data is lost, there are no copies of it. It also can cause
slow reads, as some data volumes may be slower than others.

RAID1
Mirroring for improved reliability. An identical copy of the data is written to
each member of the array. This has lower performance than RAID0, as a single
member with a slow disk can slow down all writes. However, if a disk fails, you
will still have a copy of the data on another member of the array.

RAID5
Striping disks, plus keeping an extra piece of data about the other data that’s been
stored to prevent data loss on server failure. Basically, RAID5 can handle one

450 | Chapter 24: Deploying MongoDB

disk going down and hide that failure from the user. However, it is slower than
any of the other varieties listed here because it needs to calculate this extra piece
of information whenever data is written. This is particularly expensive with Mon‐
goDB, as a typical workload does many small writes.

RAID10
A combination of RAID0 and RAID1: data is striped for speed and mirrored for
reliability.

We recommend using RAID10: it is safer than RAID0 and can smooth out perfor‐
mance issues that can occur with RAID1. However, some people feel that RAID1 on
top of replica sets is overkill and opt for RAID0. It is a matter of personal preference:
how much risk are you willing to trade for performance?

Do not use RAID5: it is very, very slow.

CPU
MongoDB historically was very light on CPU, but with the use of the WiredTiger
storage engine this is no longer the case. The WiredTiger storage engine is multi‐
threaded and can take advantage of additional CPU cores. You should therefore bal‐
ance your investment between memory and CPU.

When choosing between speed and number of cores, go with speed. MongoDB is bet‐
ter at taking advantage of more cycles on a single processor than increased
parallelization.

Operating System
64-bit Linux is the operating system MongoDB runs best on. If possible, use some fla‐
vor of that. CentOS and Red Hat Enterprise Linux are probably the most popular
choices, but any flavor should work (Ubuntu and Amazon Linux are also common).
Be sure to use the most recent stable version of the operating system, because old,
buggy packages or kernels can sometimes cause issues.

64-bit Windows is also well supported.

Other flavors of Unix are not as well supported: proceed with caution if you’re using
Solaris or one of the BSD variants. Builds for these systems have, at least historically,
had a lot of issues. MongoDB explicitly stopped supporting Solaris in August 2017,
noting a lack of adoption among users.

One important note on cross-compatibility: MongoDB uses the same wire protocol
and lays out data files identically on all systems, so you can deploy on a combination
of operating systems. For example, you could have a mongos process running on
Windows and the mongods that are its shards running on Linux. You can also copy
data files from Windows to Linux or vice versa with no compatibility issues.

Designing the System | 451

Since version 3.4, MongoDB no longer supports 32-bit x86 platforms. Do not run any
type of MongoDB server on a 32-bit machine.

MongoDB works with little-endian architectures and one big-endian architecture:
IBM’s zSeries. Most drivers support both little- and big-endian systems, so you can
run clients on either. However, the server will typically be run on a little-endian
machine.

Swap Space
You should allocate a small amount of swap in case memory limits are reached to pre‐
vent the kernel from killing MongoDB. It doesn’t usually use any swap space, but in
extreme circumstances the WiredTiger storage engine might use some. If this occurs,
then you should consider increasing the memory capacity of your machine or review‐
ing your workload to avoid this problematic situation for performance and for
stability.

The majority of memory MongoDB uses is “slippery”: it’ll be flushed to disk and
replaced with other memory as soon as the system requests the space for something
else. Therefore, database data should never be written to swap space: it’ll be flushed
back to disk first.

However, occasionally MongoDB will use swap for operations that require ordering
data: either building indexes or sorting. It attempts not to use too much memory for
these types of operations, but by performing many of them at the same time you may
be able to force swapping.

If your application is managing to make MongoDB use swap space, you should look
into redesigning the application or reducing load on the swapping server.

Filesystem
For Linux, only the XFS filesystem is recommended for your data volumes with the
WiredTiger storage engine. It is possible to use the ext4 filesystem with WiredTiger,
but be aware there are known performance issues (specifically, that it may stall on
WiredTiger checkpoints).

On Windows, either NTFS or FAT is fine.

Do not use Network File Storage (NFS) directly mounted for Mon‐
goDB storage. Some client versions lie about flushing, randomly
remount and flush the page cache, and do not support exclusive file
locking. Using NFS can cause journal corruption and should be
avoided at all costs.

452 | Chapter 24: Deploying MongoDB

Virtualization
Virtualization is a great way to get cheap hardware and be able to expand fast. How‐
ever, there are some downsides—particularly unpredictable network and disk I/O.
This section covers virtualization-specific issues.

Memory Overcommitting
The memory overcommit Linux kernel setting controls what happens when processes
request too much memory from the operating system. Depending on how it’s set, the
kernel may give memory to processes even if that memory is not actually available (in
the hopes that it’ll become available by the time the process needs it). That’s called
overcommitting: the kernel promises memory that isn’t actually there. This operating
system kernel setting does not work well with MongoDB.

The possible values for vm.overcommit_memory are 0 (the kernel guesses about how
much to overcommit); 1 (memory allocation always succeeds); or 2 (don’t commit
more virtual address space than swap space plus a fraction of the overcommit ratio).
The value 2 is complicated, but it’s the best option available. To set this, run:

$ echo 2 > /proc/sys/vm/overcommit_memory

You do not need to restart MongoDB after changing this operating system setting.

Mystery Memory
Sometimes the virtualization layer does not handle memory provisioning correctly.
Thus, you may have a virtual machine that claims to have 100 GB of RAM available
but only ever allows you to access 60 GB of it. Conversely, we’ve seen people that were
supposed to have 20 GB of memory end up being able to fit an entire 100 GB dataset
into RAM!

Assuming you don’t end up on the lucky side, there isn’t much you can do. If your
operating system readahead is set appropriately and your virtual machine just won’t
use all the memory it should, you may just have to switch virtual machines.

Handling Network Disk I/O Issues
One of the biggest problems with using virtualized hardware is that you are generally
sharing a disk with other tenants, which exacerbates the disk slowness mentioned
previously because everyone is competing for disk I/O. Thus, virtualized disks can
have very unpredictable performance: they can work fine while your neighbors aren’t
busy and suddenly slow down to a crawl if someone else starts hammering the disks.

The other issue is that this storage is often not physically attached to the machine
MongoDB is running on, so even when you have a disk all to yourself I/O will be

Virtualization | 453

slower than it would be with a local disk. There is also the unlikely-but-possible sce‐
nario of your MongoDB server losing its network connection to your data.

Amazon has what is probably the most widely used networked block store, called
Elastic Block Store (EBS). EBS volumes can be connected to Elastic Compute Cloud
(EC2) instances, allowing you to give a machine almost any amount of disk immedi‐
ately. If you are using EC2, you should also enable AWS Enhanced Networking if it’s
available for the instance type, as well as disable the dynamic voltage and frequency
scaling (DVFS) and CPU power-saving modes plus hyperthreading. On the plus side,
EBS makes backups very easy (take a snapshot from a secondary, mount the EBS
drive on another instance, and start up mongod). On the downside, you may
encounter variable performance.

If you require more predictable performance, there are a couple of options. One is to
host MongoDB on your own servers—that way, you know no one else is slowing
things down. However, that’s not an option for a lot of people, so the next best thing
is to get an instance in the cloud that guarantees a certain number of I/O Operations
Per Second (IOPS). See http://docs.mongodb.org for up-to-date recommendations on
hosted offerings.

If you can’t pursue either of these options and you need more disk I/O than an over‐
loaded EBS volume can sustain, there is a way to hack around it. Basically, what you
can do is keep monitoring the volume MongoDB is using. If and when that volume
slows down, immediately kill that instance and bring up a new one with a different
data volume.

There are a couple of statistics to watch for:

• Spiking I/O utilization (“IO wait” on Cloud Manager/Atlas), for obvious reasons.
• Page fault rates spiking. Note that changes in application behavior could also

cause working set changes: you should disable this assassination script before
deploying new versions of your application.

• The number of lost TCP packets going up (Amazon is particularly bad about
this: when performance starts to fall, it drops TCP packets all over the place).

• MongoDB’s read and write queues spiking (this can be seen in Cloud Manager/
Atlas or in mongostat’s qr/qw column).

If your load varies over the day or week, make sure your script takes that into
account: you don’t want a rogue cron job killing off all of your instances because of an
unusually heavy Monday morning rush.

This hack relies on you having recent backups or relatively quick-to-sync datasets. If
you have each instance holding terabytes of data, you might want to pursue an

454 | Chapter 24: Deploying MongoDB

http://docs.mongodb.org

alternative approach. Also, this is only likely to work: if your new volume is also being
hammered, it will be just as slow as the old one.

Using Non-Networked Disks

This section uses Amazon-specific vocabulary. However, it may
apply to other providers.

Ephemeral drives are the actual disks attached to the physical machine your VM is
running on. They don’t have a lot of the problems networked storage does. Local
disks can still be overloaded by other users on the same box, but with a large box you
can be reasonably sure you’re not sharing disks with too many others. Even with a
smaller instance, often an ephemeral drive will give better performance than a net‐
worked drive so long as the other tenants aren’t doing tons of IOPS.

The downside is in the name: these disks are ephemeral. If your EC2 instance goes
down, there’s no guarantee you’ll end up on the same box when you restart the
instance, and then your data will be gone.

Thus, ephemeral drives should be used with care. You should make sure that you do
not store any important or unreplicated data on these disks. In particular, do not put
the journal on these ephemeral drives, or your database on network storage. In gen‐
eral, think of ephemeral drives as a slow cache rather than a fast disk and use them
accordingly.

Configuring System Settings
There are several system settings that can help MongoDB run more smoothly, which
are mostly related to disk and memory access. This section covers each of these
options and how you should tweak them.

Turning Off NUMA
When machines had a single CPU, all RAM was basically the same in terms of access
time. As machines started to have more processors, engineers realized that having all
memory be equally far from each CPU (as shown in Figure 24-1) was less efficient
than having each CPU have some memory that is especially close to it and fast for
that particular CPU to access (Figure 24-2). This architecture, where each CPU has
its own “local” memory, is called nonuniform memory architecture (NUMA).

Configuring System Settings | 455

Figure 24-1. Uniform memory architecture: all memory has the same access cost for each
CPU

Figure 24-2. Nonuniform memory architecture: certain memory is attached to a CPU,
giving the CPU faster access to that memory; CPUs can still access other CPUs’ memory,
but it is more expensive than accessing their own

For lots of applications, NUMA works well: the processors often need different data
because they’re running different programs. However, this works terribly for data‐
bases in general and MongoDB in particular because databases have such different
memory access patterns than other types of applications. MongoDB uses a massive
amount of memory and needs to be able to access memory that is “local” to other
CPUs. However, the default NUMA settings on many systems make this difficult.

CPUs favor using the memory that is attached to them, and processes tend to favor
one CPU over the others. This means that memory often fills up unevenly, potentially
leaving you with one processor using 100% of its local memory and the other pro‐
cessors using only a fraction of their memory, as shown in Figure 24-3.

Figure 24-3. Sample memory usage in a NUMA system

In the scenario in Figure 24-3, suppose CPU1 needs some data that isn’t in memory
yet. It must use its local memory for data that doesn’t have a “home” yet, but its local
memory is full. Thus, it has to evict some of the data in its local memory to make

456 | Chapter 24: Deploying MongoDB

room for the new data, even though there’s plenty of space left in the memory
attached to CPU2! This process tends to cause MongoDB to run much slower than
expected, as it only has a fraction of the memory available that it should have. Mon‐
goDB vastly prefers semiefficient access to more data over extremely efficient access
to less data.

When running MongoDB servers and clients on NUMA hardware, you should con‐
figure a memory interleave policy so that the host behaves in a non-NUMA fashion.
MongoDB checks NUMA settings on startup when deployed on Linux and Windows
machines. If the NUMA configuration may degrade performance, MongoDB prints a
warning.

On Windows, memory interleaving must be enabled through the machine’s BIOS.
Consult your system documentation for details.

When running MongoDB on Linux, you should disable zone reclaim in the sysctl set‐
tings using one of the following commands:

echo 0 | sudo tee /proc/sys/vm/zone_reclaim_mode

sudo sysctl -w vm.zone_reclaim_mode=0

Then, you should use numactl to start your mongod instances, including the config
servers, mongos instances, and any clients. If you do not have the numactl command,
refer to the documentation for your operating system to install the numactl package.

The following command demonstrates how to start a MongoDB instance using
numactl:

numactl --interleave=all <path> <options>

The <path> is the path to the program you are starting and the <options> are any
optional arguments to pass to the program.

To fully disable NUMA behavior, you must perform both operations. For more infor‐
mation, see the documentation.

Setting Readahead
Readahead is an optimization where the operating system reads more data from disk
than was actually requested. This is useful because most workloads that computers
handle are sequential: if you load the first 20 MB of a video, you are probably going to
want the next couple of megabytes of it. Thus, the system will read more from disk
than you actually request and store it in memory, just in case you need it soon.

For the WiredTiger storage engine, you should set readahead to between 8 and 32
regardless of the storage media type (spinning disk, SSD, etc.). Setting it higher bene‐
fits sequential I/O operations, but since MongoDB disk access patterns are typically
random, a higher readahead value provides limited benefit and may even result in

Configuring System Settings | 457

https://oreil.ly/cm-_D

performance degradation. For most workloads, a readahead of between 8 and 32 pro‐
vides optimal MongoDB performance.

In general, you should set the readahead within this range unless testing shows that a
higher value is measurably, repeatably, and reliably beneficial. MongoDB Professional
Support can provide advice and guidance on nonzero readahead configurations.

Disabling Transparent Huge Pages (THP)
THP causes similar issues to high readahead. Do not use this feature unless:

• All of your data fits into memory.
• You have no plans for it to ever grow beyond memory.

MongoDB needs to page in lots of tiny pieces of memory, so using THP can result in
more disk I/O.

Systems move data from disk to memory and back by the page. Pages are generally a
couple of kilobytes (x86 defaults to 4,096-byte pages). If a machine has many giga‐
bytes of memory, keeping track of each of these (relatively tiny) pages can be slower
than just tracking a few larger-granularity pages. THP is a solution that allows you to
have pages that are up to 256 MB (on IA-64 architectures). However, using it means
that you are keeping megabytes of data from one section of disk in memory. If your
data does not fit in RAM, then swapping in larger pieces from disk will just fill up
your memory quickly with data that will need to be swapped out again. Also, flushing
any changes to disk will be slower, as the disk must write megabytes of “dirty” data,
instead of a few kilobytes.

THP was actually developed to benefit databases, so this may be surprising to experi‐
enced database admins. However, MongoDB tends to do a lot less sequential disk
access than relational databases do.

On Windows these are called Large Pages, not Huge Pages. Some
versions of Windows have this feature enabled by default and some
do not, so check and make sure it is turned off.

Choosing a Disk Scheduling Algorithm
The disk controller receives requests from the operating system and processes them
in an order determined by a scheduling algorithm. Sometimes changing this algo‐
rithm can improve disk performance. For other hardware and workloads, it may not
make a difference. The best way to decide which algorithm to use is to test them out

458 | Chapter 24: Deploying MongoDB

yourself on your workload. Deadline and completely fair queueing (CFQ) both tend
to be good choices.

There are a couple of situations where the noop scheduler (a contraction of “no-op”)
is the best choice. If you’re in a virtualized environment, use the noop scheduler. This
scheduler basically passes the operations through to the underlying disk controller as
quickly as possible. It is fastest to do this and let the real disk controller handle any
reordering that needs to happen.

Similarly, on SSDs, the noop scheduler is generally the best choice. SSDs don’t have
the same locality issues that spinning disks do.

Finally, if you’re using a RAID controller with caching, use noop. The cache behaves
like an SSD and will take care of propagating the writes to the disk efficiently.

If you are on a physical server that is not virtualized, the operating system should use
the deadline scheduler. The deadline scheduler caps maximum latency per request
and maintains a reasonable disk throughput that is best for disk-intensive database
applications.

You can change the scheduling algorithm by setting the --elevator option in your
boot configuration.

The option is called "elevator" because the scheduler behaves like
an elevator, picking up people (I/O requests) from different floors
(processes/times) and dropping them off where they want to go in
an arguabley optimal way.

Often all of the algorithms work pretty well; you may not see much of a difference
between them.

Disabling Access Time Tracking
By default, the system tracks when files were last accessed. As the data files used by
MongoDB are very high-traffic, you can get a performance boost by disabling this
tracking. You can do this on Linux by changing atime to noatime in /etc/fstab:

/dev/sda7 /data xfsf rw,noatime 1 2

You must remount the device for the changes to take effect.

atime is more of an issue on older kernels (e.g., ext3); newer ones use relatime as a
default, which is less aggressively updated. Also, be aware that setting noatime can
affect other programs using the partition, such as mutt or backup tools.

Similarly, on Windows you should set the disablelastaccess option. To turn off last
access time recording, run:

Configuring System Settings | 459

C:\> fsutil behavior set disablelastaccess 1

You must reboot for this setting to take effect. Setting this may affect the remote stor‐
age service, but you probably shouldn’t be using a service that automatically moves
your data to other disks anyway.

Modifying Limits
There are two limits that MongoDB tends to blow by: the number of threads a pro‐
cess is allowed to spawn and the number of file descriptors a process is allowed to
open. Both of these should generally be set to unlimited.

Whenever a MongoDB server accepts a connection, it spawns a thread to handle all
activity on that connection. Therefore, if you have 3,000 connections to the database,
the database will have 3,000 threads running (plus a few other threads for non-client-
related tasks). Depending on your application server configuration, your client may
spawn anywhere from a dozen to thousands of connections to MongoDB.

If your client will dynamically spawn more child processes as traffic increases (most
application servers will do this), it is important to make sure that these child pro‐
cesses are not so numerous that they can max out MongoDB’s limits. For example, if
you have 20 application servers, each one of which is allowed to spawn 100 child pro‐
cesses, and each child process can spawn 10 threads that all connect to MongoDB,
that could result in the spawning of 20 × 100 × 10 = 20,000 connections at peak traf‐
fic. MongoDB is probably not going to be very happy about spawning tens of thou‐
sands of threads and, if you run out of threads per process, will simply start refusing
new connections.

The other limit to modify is the number of file descriptors MongoDB is allowed to
open. Every incoming and outgoing connection uses a file descriptor, so the client
connection storm just mentioned would create 20,000 open filehandles.

mongos in particular tends to create connections to many shards. When a client con‐
nects to a mongos and makes a request, the mongos opens connections to any and all
shards necessary to fulfill that request. Thus, if a cluster has 100 shards and a client
connects to a mongos and tries to query for all of its data, the mongos must open 100
connections: one connection to each shard. This can quickly lead to an explosion in
the number of connections, as you can imagine from the previous example. Suppose
a liberally configured app server made a hundred connections to a mongos process.
This could get translated to 100 inbound connections × 100 shards = 10,000 connec‐
tions to shards! (This assumes a nontargeted query on each connection, which would
be a bad design, so this is a somewhat extreme example.)

Thus, there are a few adjustments to make. Many people purposefully configure mon‐
gos processes to only allow a certain number of incoming connections by using the
maxConns option. This is a good way to enforce that your client is behaving well.

460 | Chapter 24: Deploying MongoDB

You should also increase the limit on the number of file descriptors, as the default
(generally 1,024) is simply too low. Set the max number of file descriptors to unlimi‐
ted or, if you’re nervous about that, 20,000. Each system has a different way of chang‐
ing these limits, but in general, make sure that you change both the hard and soft
limits. A hard limit is enforced by the kernel and can only be changed by an adminis‐
trator, whereas a soft limit is user-configurable.

If the maximum number of connections is left at 1,024, Cloud Manager will warn you
by displaying the host in yellow in the host list. If low limits are the issue that trig‐
gered the warning, the Last Ping tab should display a message similar to that shown
in Figure 24-4.

Figure 24-4. Cloud Manager low ulimit (file descriptors) setting warning

Even if you have a nonsharded setup and an application that only uses a small num‐
ber of connections, it’s a good idea to increase the hard and soft limits to at least
4,096. That will stop MongoDB from warning you about them and give you some
breathing room, just in case.

Configuring Your Network
This section covers which servers should have connectivity to which other servers.
Often, for reasons of network security (and sensibility), you may want to limit the
connectivity of MongoDB servers. Note that multiserver MongoDB deployments
should handle networks being partitioned or down, but it isn’t recommended as a
general deployment strategy.

For a standalone server, clients must be able to make connections to the mongod.

Members of a replica set must be able to make connections to every other member.
Clients must be able to connect to all nonhidden, nonarbiter members. Depending
on network configuration, members may also attempt to connect to themselves, so
you should allow mongods to create connections to themselves.

Sharding is a bit more complicated. There are four components: mongos servers,
shards, config servers, and clients. Connectivity can be summarized in the following
three points:

• A client must be able to connect to a mongos.
• A mongos must be able to connect to the shards and config servers.

Configuring Your Network | 461

https://oreil.ly/oTGLL
https://oreil.ly/oTGLL

• A shard must be able to connect to the other shards and the config servers.

The full connectivity chart is described in Table 24-1.

Table 24-1. Sharding connectivity

Connectivity from server type

to server type mongos Shard Config server Client
mongos Not required Not required Not required Required
Shard Required Required Not required Not recommended
Config server Required Required Not required Not recommended
Client Not required Not required Not required Not MongoDB-related

There are three possible values in the table. “Required” means that connectivity
between these two components is required for sharding to work as designed. Mon‐
goDB will attempt to degrade gracefully if it loses these connections due to network
issues, but you shouldn’t purposely configure it that way.

“Not required” means that these two elements never talk in the direction specified, so
no connectivity is needed.

“Not recommended” means that these two elements should never talk, but due to
user error they could. For example, it is recommended that clients only make connec‐
tions to the mongos, not the shards, so that clients do not inadvertently make requests
directly to shards. Similarly, clients should not be able to directly access config servers
so that they cannot accidentally modify config data.

Note that mongos processes and shards talk to config servers, but config servers don’t
make connections to anyone, even one another.

Shards must communicate during migrates: shards connect to one another directly to
transfer data.

As mentioned earlier, replica set members that compose shards should be able to con‐
nect to themselves.

System Housekeeping
This section covers some common issues you should be aware of before deploying.

Synchronizing Clocks
In general, it’s safest to have your systems’ clocks within a second of each other. Rep‐
lica sets should be able to handle nearly any clock skew. Sharding can handle some
skew (if it gets beyond a few minutes, you’ll start seeing warnings in the logs), but it’s

462 | Chapter 24: Deploying MongoDB

best to minimize it. Having in-sync clocks also makes figuring out what’s happening
from logs easier.

You can keep clocks synchronized using the w32tm tool on Windows and the ntp
daemon on Linux.

The OOM Killer
Very occasionally, MongoDB will allocate enough memory that it will be targeted by
the out-of-memory (OOM) killer. This particularly tends to happen during index
builds, as that is one of the only times when MongoDB’s resident memory should put
any strain on the system.

If your MongoDB process suddenly dies with no errors or exit messages in the logs,
check /var/log/messages (or wherever your kernel logs such things) to see if it has any
messages about terminating mongod.

If the kernel has killed MongoDB for memory overuse, you should see something like
this in the kernel log:

kernel: Killed process 2771 (mongod)
kernel: init invoked oom-killer: gfp_mask=0x201d2, order=0, oomkilladj=0

If you were running with journaling, you can simply restart mongod at this point. If
you were not, restore from a backup or resync the data from a replica.

The OOM killer gets particularly nervous if you have no swap space and start run‐
ning low on memory, so a good way to prevent it from going on a spree is to config‐
ure a modest amount of swap. As mentioned earlier, MongoDB should never use it,
but it makes the OOM killer happy.

If the OOM killer kills a mongos, you can simply restart it.

Turn Off Periodic Tasks
Check that there aren’t any cron jobs, antivirus scanners, or daemons that might peri‐
odically pop to life and steal resources. One culprit we’ve seen is package managers’
automatic update. These programs will come to life, consume a ton of RAM and
CPU, and then disappear. This is not something you want running on your produc‐
tion server.

System Housekeeping | 463

APPENDIX A

Installing MongoDB

MongoDB binaries are available for Linux, macOS, Windows, and Solaris. This
means that, on most platforms, you can download an archive from the MongoDB
Download Center page, inflate it, and run the binary.

The MongoDB server requires a directory it can write database files to and a port it
can listen for connections on. This section covers the entire install on the two var‐
iants of system: Windows and everything else (Linux/Unix/macOS).

When we speak of “installing MongoDB,” generally what we are talking about is set‐
ting up mongod, the core database server. mongod can be used as a standalone server
or as a member of a replica set. Most of the time, this will be the MongoDB process
you are using.

Choosing a Version
MongoDB uses a fairly simple versioning scheme: even-point releases are stable, and
odd-point releases are development versions. For example, anything starting with 4.2
is a stable release, such as 4.2.0, 4.2.1, and 4.2.8. Anything starting with 4.3 is a devel‐
opment release, such as 4.3.0, 4.3.2, or 4.3.12. Let’s take the 4.2/4.3 release as a sample
case to demonstrate how the versioning timeline works:

1. MongoDB 4.2.0 is released. This is a major release and will have an extensive
changelog.

2. After the developers start working on the milestones for 4.4 (the next major sta‐
ble release), they release 4.3.0. This is the new development branch, which is
fairly similar to 4.2.0 but probably with an extra feature or two and maybe some
bugs.

465

https://www.mongodb.com/download-center
https://www.mongodb.com/download-center

3. As the developers continue to add features, they will release 4.3.1, 4.3.2, and so
on. These releases should not be used in production.

4. Some minor bug fixes may be backported to the 4.2 branch, which will cause
releases of 4.2.1, 4.2.2, and so on. Developers are conservative about what is
backported; few new features are ever added to a stable release. Generally, only
bug fixes are ported.

5. After all of the major milestones have been reached for 4.4.0, 4.3.7 (or whatever
the latest development release is) will be turned into 4.4.0-rc0.

6. After extensive testing of 4.4.0-rc0, usually there are a couple minor bugs that
need to be fixed. Developers fix these bugs and release 4.4.0-rc1.

7. Developers repeat step 6 until no new bugs are apparent, and then 4.4.0-rc2 (or
whatever the latest release ended up being) is renamed 4.4.0.

8. Developers start over from step 1, incrementing all versions by 0.2.

You can see how close a production release is by browsing the core server roadmap
on the MongoDB bug tracker.

If you are running in production, you should use a stable release. If you are planning
to use a development release in production, ask about it first on the mailing list or
IRC to get the developers’ advice.

If you are just starting development on a project, using a development release may be
a better choice. By the time you deploy to production, there will probably be a stable
release with the features you’re using (MongoDB attempts to stick to a regular cycle
of stable releases every 12 months). However, you must balance this against the possi‐
bility that you may run into server bugs, which can be discouraging to a new user.

Windows Install
To install MongoDB on Windows, download the Windows .msi from the MongoDB
Download Center page. Use the advice in the previous section to choose the correct
version of MongoDB. When you click the link, it will download the .msi. Double-
click the .msi file icon to launch the installer program.

Now you need to make a directory in which MongoDB can write database files. By
default, MongoDB tries to use the \data\db directory on the current drive as its data
directory (e.g., if you’re running mongod on C: on Windows, it’ll use C:\Program Files
\MongoDB\Server\&<VERSION>\data). This will be created automatically for you by
the installer. If you chose to use a directory other than \data\db, you’ll need to specify
the path when you start MongoDB, which is covered in a moment.

Now that you have a data directory, open the command prompt (cmd.exe). Navigate
to the directory where you unzipped the MongoDB binaries and run the following:

466 | Appendix A: Installing MongoDB

http://jira.mongodb.org
https://oreil.ly/nZZd0
https://oreil.ly/nZZd0

$ C:\Program Files\MongoDB\Server\&<VERSION>\bin\mongod.exe

If you chose a directory other than C:\Program Files\MongoDB\Server\&<VERSION>
\data, you’ll have to specify it here, with the --dbpath argument:

$ C:\Program Files\MongoDB\Server\&<VERSION>\bin\mongod.exe \
 --dbpath C:\Documents and Settings\Username\My Documents\db

See Chapter 21 for more common options, or run mongod.exe --help to see all the
options.

Installing as a Service
MongoDB can also be installed as a service on Windows. To do this, simply run it
with the full path, escape any spaces, and use the --install option. For example:

$ C:\Program Files\MongoDB\Server\4.2.0\bin\mongod.exe \
 --dbpath "\"C:\Documents and Settings\Username\My Documents\db\"" \
 --install

It can then be started and stopped from the Control Panel.

POSIX (Linux and Mac OS X) Install
Choose a version of MongoDB, based on the advice in the section “Choosing a Ver‐
sion” on page 465. Go to the MongoDB Download Center and select the correct ver‐
sion for your OS.

If you are using a Mac and are running macOS Catalina 10.15+,
you should use /System/Volumes/Data/db instead of /data/db. This
version made a change that renders the root folder read-only and
resets upon reboot, which would result in the loss of your Mon‐
goDB data folder.

You must create a directory for the database to put its files in. By default the database
will use /data/db, although you can specify any other directory. If you create the
default directory, make sure it has the correct write permissions. You can create the
directory and set the permissions by running the following commands:

 $ mkdir -p /data/db
 $ chown -R $USER:$USER /data/db

mkdir -p creates the directory and all its parents, if necessary (i.e., if the /data direc‐
tory doesn’t exist, it will create the /data directory and then the /data/db directory).
chown changes the ownership of /data/db so that your user can write to it. Of course,
you can also just create a directory in your home folder and specify that MongoDB
should use that when you start the database, to avoid any permissions issues.

Installing MongoDB | 467

https://oreil.ly/XEScg

Decompress the .tar.gz file you downloaded from the MongoDB Download Center:

 $ tar zxf mongodb-linux-x86_64-enterprise-rhel62-4.2.0.tgz
 $ cd mongodb-linux-x86_64-enterprise-rhel62-4.2.0

Now you can start the database:

 $ bin/mongod

Or, if you’d like to use an alternate database path, specify it with the --dbpath option:

$ bin/mongod --dbpath ~/db

You can run mongod.exe --help to see all the possible options.

Installing from a Package Manager
There are also many package managers that can be used to install MongoDB. If you
prefer using one of these, there are official packages for Red Hat, Debian, and Ubuntu
as well as unofficial packages for many other systems. If you use an unofficial version,
make sure it installs a relatively recent version.

On macOS, there are unofficial packages for Homebrew and MacPorts. To use the
MongoDB Homebrew tap, you first install the tap and then install the required ver‐
sion of MongoDB via Homebrew. The following example highlights how to install the
latest production version of MongoDB Community Edition. You can add the custom
tap in a macOS terminal session using:

 $ brew tap mongodb/brew

Then install the latest available production release of MongoDB Community Server
(including all command-line tools) using:

 $ brew install mongodb-community

If you go for the MacPorts version, be forewarned: it takes hours to compile all the
Boost libraries, which are MongoDB prerequisites. Start the download and leave it
overnight.

Regardless of the package manager you use, it is a good idea to figure out where it is
putting the MongoDB log files before you have a problem and need to find them. It’s
important to make sure they’re being saved properly in advance of any possible
issues.

468 | Appendix A: Installing MongoDB

https://oreil.ly/9xoTe

APPENDIX B

MongoDB Internals

It is not necessary to understand MongoDB’s internals to use it effectively, but they
may be of interest to developers who wish to work on tools, contribute, or simply
understand what’s happening under the hood. This appendix covers some of the
basics. The MongoDB source code is available at https://github.com/mongodb/mongo.

BSON
Documents in MongoDB are an abstract concept—the concrete representation of a
document varies depending on the driver/language being used. Because documents
are used extensively for communication in MongoDB, there also needs to be a repre‐
sentation of documents that is shared by all drivers, tools, and processes in the Mon‐
goDB ecosystem. That representation is called Binary JSON, or BSON (no one knows
where the J went).

BSON is a lightweight binary format capable of representing any MongoDB docu‐
ment as a string of bytes. The database understands BSON, and BSON is the format
in which documents are saved to disk.

When a driver is given a document to insert, use as a query, and so on, it will encode
that document to BSON before sending it to the server. Likewise, documents being
returned to the client from the server are sent as BSON strings. This BSON data is
decoded by the driver to its native document representation before being returned to
the client.

The BSON format has three primary goals:

469

https://github.com/mongodb/mongo

Efficiency
BSON is designed to represent data efficiently, without using much extra space.
In the worst case BSON is slightly less efficient than JSON, and in the best case
(e.g., when storing binary data or large numerics), it is much more efficient.

Traversability
In some cases, BSON does sacrifice space efficiency to make the format easier to
traverse. For example, string values are prefixed with a length rather than relying
on a terminator to signify the end of a string. This traversability is useful when
the MongoDB server needs to introspect documents.

Performance
Finally, BSON is designed to be fast to encode to and decode from. It uses C-style
representations for types, which are fast to work with in most programming
languages.

For the exact BSON specification, see http://www.bsonspec.org.

Wire Protocol
Drivers access the MongoDB server using a lightweight TCP/IP wire protocol. The
protocol is documented on the MongoDB documentation site but basically consists
of a thin wrapper around BSON data. For example, an insert message consists of 20
bytes of header data (which includes a code telling the server to perform an insert
and the message length), the collection name to insert into, and a list of BSON docu‐
ments to insert.

Data Files
Inside the MongoDB data directory, which is /data/db/ by default, a separate file will
be stored for each collection and each index. The filenames do not correspond to the
names of the collections or indexes, but you can use the stats within the mongo shell
to identify the related file for a specific collection. The "wiredTiger.uri" field will
contain the name of the file to look for in the MongoDB data directory.

Using stats on the sample_mflix database for the movies collection provides
“collection-14--2146526997547809066” as result in the "wiredTiger.uri" field:

>db.movies.stats()
{
 "ns" : "sample_mflix.movies",
 "size" : 65782298,
 "count" : 45993,
 "avgObjSize" : 1430,
 "storageSize" : 45445120,
 "capped" : false,

470 | Appendix B: MongoDB Internals

http://www.bsonspec.org
https://oreil.ly/rVJAr

 "wiredTiger" : {
 "metadata" : {
 "formatVersion" : 1
 },
 "creationString" : "access_pattern_hint=none,allocation_size=4KB,\
 app_metadata=(formatVersion=1),assert=(commit_timestamp=none,\
 read_timestamp=none),block_allocation=best,\
 block_compressor=snappy,cache_resident=false,checksum=on,\
 colgroups=,collator=,columns=,dictionary=0,\
 encryption=(keyid=,name=),exclusive=false,extractor=,format=btree,\
 huffman_key=,huffman_value=,ignore_in_memory_cache_size=false,\
 immutable=false,internal_item_max=0,internal_key_max=0,\
 internal_key_truncate=true,internal_page_max=4KB,key_format=q,\
 key_gap=10,leaf_item_max=0,leaf_key_max=0,leaf_page_max=32KB,\
 leaf_value_max=64MB,log=(enabled=true),lsm=(auto_throttle=true,\
 bloom=true,bloom_bit_count=16,bloom_config=,bloom_hash_count=8,\
 bloom_oldest=false,chunk_count_limit=0,chunk_max=5GB,\
 chunk_size=10MB,merge_custom=(prefix=,start_generation=0,suffix=),\
 merge_max=15,merge_min=0),memory_page_image_max=0,\
 memory_page_max=10m,os_cache_dirty_max=0,os_cache_max=0,\
 prefix_compression=false,prefix_compression_min=4,source=,\
 split_deepen_min_child=0,split_deepen_per_child=0,split_pct=90,\
 type=file,value_format=u",
 "type" : "file",
 "uri" : "statistics:table:collection-14--2146526997547809066",
 ...
}

The file’s details can then be verified within the MongoDB data directory:

ls -alh collection-14--2146526997547809066.wt
-rw------- 1 braz staff 43M 28 Sep 23:33 collection-14--2146526997547809066.wt

It’s possible to use the aggregation framework to find the URI for each index in a spe‐
cific collection using the following:

db.movies.aggregate([{
 $collStats:{storageStats:{}}}]).next().storageStats.indexDetails
{
 "_id_" : {
 "metadata" : {
 "formatVersion" : 8,
 "infoObj" : "{ \"v\" : 2, \"key\" : { \"_id\" : 1 },\
 \"name\" : \"_id_\", \"ns\" : \"sample_mflix.movies\" }"
 },
 "creationString" : "access_pattern_hint=none,allocation_size=4KB,\
 app_metadata=(formatVersion=8,infoObj={ \"v\" : 2, \"key\" : \
 { \"_id\" : 1 },\"name\" : \"_id_\", \"ns\" : \"sample_mflix.movies\" }),\
 assert=(commit_timestamp=none,read_timestamp=none),block_allocation=best,\
 block_compressor=,cache_resident=false,checksum=on,colgroups=,collator=,\
 columns=,dictionary=0,encryption=(keyid=,name=),exclusive=false,extractor=,\
 format=btree,huffman_key=,huffman_value=,ignore_in_memory_cache_size=false,\
 immutable=false,internal_item_max=0,internal_key_max=0,\

MongoDB Internals | 471

 internal_key_truncate=true,internal_page_max=16k,key_format=u,key_gap=10,\
 leaf_item_max=0,leaf_key_max=0,leaf_page_max=16k,leaf_value_max=0,\
 log=(enabled=true),lsm=(auto_throttle=true,bloom=true,bloom_bit_count=16,\
 bloom_config=,bloom_hash_count=8,bloom_oldest=false,chunk_count_limit=0,\
 chunk_max=5GB,chunk_size=10MB,merge_custom=(prefix=,start_generation=0,\
 suffix=),merge_max=15,merge_min=0),memory_page_image_max=0,\
 memory_page_max=5MB,os_cache_dirty_max=0,os_cache_max=0,\
 prefix_compression=true,prefix_compression_min=4,source=,\
 split_deepen_min_child=0,split_deepen_per_child=0,split_pct=90,type=file,\
 value_format=u",
 "type" : "file",
 "uri" : "statistics:table:index-17--2146526997547809066",
...
 "$**_text" : {
...
 "uri" : "statistics:table:index-29--2146526997547809066",
...
 "genres_1_imdb.rating_1_metacritic_1" : {
...
 "uri" : "statistics:table:index-30--2146526997547809066",
...
}

WiredTiger stores each collection or index in a single arbitrarily large file. The only
limits that impact the potential maximum size of this file are filesystem size limits.

WiredTiger writes a new copy of the full document whenever that document is upda‐
ted. The old copy on disk is flagged for reuse and will eventually be overwritten at a
future point, typically during the next checkpoint. This recycles the space used within
the WiredTiger file. The compact command can be run to move the data within this
file to the start, leaving empty space at the end. At regular intervals, WiredTiger
removes this excess empty space by truncating the file. At the end of the compaction
process, the excess space is returned to the filesystem.

Namespaces
Each database is organized into namespaces, which are mapped to WiredTiger files.
This abstraction separates the storage engine’s internal details from the MongoDB
query layer.

WiredTiger Storage Engine
The default storage engine for MongoDB is the WiredTiger storage engine. When the
server starts up, it opens the data files and begins the checkpointing and journaling
processes. It works in conjunction with the operating system, whose responsibility is
focused on paging data in and out as well as flushing data to disk. This storage engine
has several important properties:

472 | Appendix B: MongoDB Internals

• Compression is on by default for collections and for indexes. The default com‐
pression algorithm is Google’s snappy. Other options include Facebook’s Zstan‐
dard (zstd) and zlib, or indeed no compression. This minimizes storage use in the
database at the expense of additional CPU requirements.

• Document-level concurrency allows for updates on different documents from
multiple clients in a collection as the same time. WiredTiger uses MultiVersion
Concurrency Control (MVCC) to isolate read and write operations to ensure cli‐
ents see a consistent point-in-time view of the data at the start of an operation.

• Checkpointing creates a consistent point-in-time snapshot of the data and occurs
every 60 seconds. It involves writing all the data in the snapshot to disk and
updating the related metadata.

• Journaling with checkpointing ensures there is no point in time where data might
be lost if there was a failure of a mongod process. WiredTiger uses a write-ahead
log (journal) that stores modifications before they are applied.

MongoDB Internals | 473

Index

Symbols
$ (dollar sign)

$ operators (see query operators)
$$ (variable reference), 181
creating indexes on $**, 148
position operator, 45
querying arrays, 61
reserved character, 8, 10

$indexStats operator, 433
$maxKey, 297, 321
$minKey, 297
--configdb option, 305
. (dot)

in subcollections, 10
reserved character, 8

2d indexes, 133, 144-146
2dsphere indexes, 133
32-bit systems, 417, 452
64-bit systems, 451
\0 (the null character), 8, 9

A
access time tracking, 459
accumulators

for arrays, 186
in group versus project stage, 186
purpose of, 186
using in project stage, 186, 195

ACID (Atomicity, Consistency, Isolation, and
Durability), 200

acknowledged writes, 376
$addToSet operator, 43, 186
admin database

contents of, 305

role of, 11
shutdown command, 420

admin user, 391, 402
administration, of applications

application operations, 371-387
durability, 405-411
security considerations, 389-404

administration, of replica sets
manipulating member state, 275
monitoring replication, 275-285
replica set configuration, 272-274
replication on a budget, 285
starting members in standalone mode, 271

administration, of servers
backups, 437-447
deployment, 449-463
monitoring, 425-436
production set up, 415-424

administration, of sharding
adding servers, 356-359
balancing data, 359-367
seeing current state, 339-348
tracking network connections, 348-356

aggregation framework
$project operator, 169-174
$unwind operator, 174-181
accumulators, 186
aggregate method, 166
array expressions in project stages, 181-185
concept of, 161
expression classes supported, 168
group stage

aggregate command, 188

475

aggregating values from multiple docu‐
ments, 187

group and sort stages, 188
_id field, 192-195
versus project stage, 195

individual stages, 162
match, project, sort, skip, and limit stages,

163-168
pipeline efficiency, 167
presorting, 167
purpose of, 161
repeated stages in, 162
tunables in, 162
writing pipeline results to collections, 198

$all operator, 59
antivirus scanners, 463
Apache Lucene, 146
application design

managing consistency, 221
managing schemas, 223
migrating schemas, 222
normalization and denormalization

benefits and drawbacks of, 213
cardinality, 216
data representation examples, 212
defined, 211
embedding versus references, 215
social graph data and, 216
update operators, 215
Wil Wheaton effect, 218

optimizations for data manipulations, 219
planning out databases and collections, 220
schema design considerations, 207
schema design patterns, 208-211
when not to use MongoDB, 223

application operations
calculating sizes

collections, 380
databases, 385
documents, 379

finding problematic, 374
finding slow, 371, 376
genuinely long-running, 375
important fields, 373
killing, 375
preventing phantom, 375
printing stats every few seconds, 386
seeing current, 371

approximation schema design pattern, 210

arbiters, 246
array expressions, using in project stages,

181-185
array operators

adding elements, 41
adding multiple unique values, 44
positional array modifications, 45
preventing duplicates, 43
removing elements, 44
updates using array filters, 46
using arrays as sets, 43

$arrayElemAt operator, 184
arrays

array type, 18
atomic updates, 19
indexing, 115
manipulating, 41-46
querying, 59-63
uses for, 19

atomicity, 200
attribute schema design pattern, 209
--auth option, 392
authentication, 389
authorization, 390
automatic failover, 236
automatic replication chaining, 279, 281
autosharding, 289, 337
$avg operator, 186
AWS Enhanced Networking, 454

B
backup privileges, 391
backups

options for, 437
replica sets, 446
servers

copying data files, 442
filesystem snapshots, 438-442
using mongodump, 443
what to backup, 438

balancer (see also chunks)
draining process, 356-359
firehose strategy and, 329
purpose of, 323
requesting assignments from, 326
role of, 316
turning off, 336, 360

batch insert, 29
big-endian systems, 452

476 | Index

binary data type, 18
--bind_ip parameter, 308, 421
boolean type, 17
$box operator, 145
broadcast (scatter-gather) queries, 301
BSD variants, 451
BSON (Binary JSON) format, 469
bsondump tool, 444
bucket schema design pattern, 209

C
call back API, 200
capacity, adding with shards, 310
capped collections (see also collections)

access pattern in, 153
benefits and drawbacks of, 219
circular queue-like behavior, 152
creating, 154
inability to change, 154
limiting number of documents in, 154
oplogs, 249
restricted operation, 152
tailable cursors, 154
versus normal, 151

capped indexes, versus time-to-live indexes,
153

cardinality
in application design, 216
in shard keys, 334

causal consistency, 201
$centerSphere operator, 143, 146
certification authority (CA), 392
chaining, 281
change streams, 317
changelog collecion, 344-348
checkpoints, 406, 473
chunks

allowed size range, 362
basics of, 311
changing chunk size, 361
checking chunk size, 365
chunk ranges, 312
compound shard keys and, 313
defined, 311
jumbo chunks, 364-367
max chunk, 321
moving, 362
seeing all, 341
sharding chunks versus GridFS chunks, 328

splitting chunks, 314
status overview, 339

circle, querying for points within, 145
client certificates, 393, 401
client libraries, purpose of, 261
clocks, synchronizing, 462
Cloud Manager, 437
clusterAdmin privileges, 391
clusterManager privileges, 390
clusterMonitor privileges, 390
clusters

backup options, 437, 446
components of, 290
durability of, 407
sharding on single-machine, 291-301
tracking cluster data, 311-315
using for multiple databases/collections, 335

code examples, obtaining and using, xvii
code type, 18
collations, 317
collection scans, versus indexes, 75
collections

basics of, 8-10
benefits of separate, 8
calculating size of, 380
capped, 151-155
checking for corruption, 410
chunks and, 312
dealing with inconvenient names, 28
determining busiest, 386
dropping (clearing entire), 34
dynamic schemas, 8
finding random documents in, 69
internal, 9
locking and storage of, 220
moving with mongodump, 445
multiple, 219
naming, 9
planning in application design, 220
querying, 15
sharding, 296
subcollections, 10
time-to-live (TTL), 219
using clusters for multiple, 335
writing aggregation pipeline results to, 198

collMod command, 223
command line, starting MongoDB from,

415-420
comments and questions, xviii

Index | 477

compact command, 472
comparison operators, 55
comparison order, 68
compound indexes

benefits of, 105
best practices, 84, 96
compound unique indexes, 127
defined, 81
geospatial, 144
keys in reverse order, 83
types of queries, 82
using, 85-104

avoiding in-memory sort, 100
choosing key directions, 102
covered queries, 103
design goals, 86, 97
implicit indexes, 104
index selectivity, 86
specifying which index to use, 92

compression, 473
computed schema design pattern, 209
computer memory (see memory)
concurrency, 473
conditionals, query, 55
--config, 416
config database

contents of, 305
options increasing security of, 421
role of, 11
seeing configuration information

config.changelog, 344
config.chunks, 343
config.collections, 342
config.databases, 342
config.settings, 347
config.shards, 342
connecting to mongos process, 341

config servers
best practices, 304
initiating as replica sets, 304
purpose of, 304
starting, 304

--configdb option, 356
--configExpand, 419
--configsvr option, 305
connection pools, 221
connPoolStats command, 348
consistency

defined, 200

managing in application design, 221
core API, 200
corruption, checking for, 410
CPU (central processing unit), 451
crashes, recovering from, 355
create command, 154
createCollection command, 154
cron jobs, turning off, 463
CRUD (create, read, update, and delete)

basic shell operation, 14-16
CRUD API, 33
explain cursor method, 76
optimizations for data manipulation, 219

cursors
avoiding large skips, 68
benefits of, 66
creating, 66
cursor hint method, 92
explain cursor method, 76
immortal, 70
iterating through results, 66
limits, skips, and sort options, 67
sending queries to servers, 67
tailable cursors, 154

D
daemons, turning off, 463
data

balancing, 359-367
controlling distribution of, 334-337
copying data files, 442
data files internals, 470
encrypting, 422
importing, 30
munging, 30
optimizations for manipulating, 219
optimizing for safety and access, 449
removing old, 219
restoring deleted, 34
sharding, 310

data directories, specifying alternate, 415
data types

arrays, 19
basic, 16-18
comparison order, 68
dates, 18
embedded documents, 19
_id keys and ObjectIds, 20-22

databases

478 | Index

ACID compliant, 200
authentication, 390
basics of, 10
calculating size of, 385
connecting to, 22
document-oriented, 3
durability of, 405
locking statistics on, 386
moving data into and out of, 29

(see also documents)
moving with mongodump, 445
naming, 10
placing in own directory, 416
planning in application design, 220
reserved names, 11
user permissions, 390

(see also security considerations)
using clusters for multiple, 335

dataSize command, 365
Date(), 18
dates

creating new Date objects, 18
date type, 17
time zone information, 19

db.adminCommand(), 233
db.chunks.find(), 337
db.coll.remove(), 250
db.createCollection(), 223
db.currentOp(), 371, 374
db.fsyncLock(), 442, 442
db.getCollectionNames(), 24
db.getMongo().getDBs(), 24
db.getProfilingLevel(), 379
db.getSisterDB(), 24
db.help command, 23
db.killOp(), 375
db.serverCmdLineOpts(), 271
db.setProfilingLevel(), 376
db.shutdownServer(), 272
db.stats(), 385
db.users.find, 82
dbAdmin privileges, 390
dbAdminAnyDatabase privileges, 391
dbOwner privileges, 390
--dbpath, 415
debugging, 423
deleteMany method, 16, 33
deleteOne method, 16, 33
demormalization, 213

(see also normalization and denormaliza‐
tion)

deployment
network configuration, 461
system design, 449-452
system housekeeping, 462
system settings configuration, 455-461

choosing disk scheduling algorithm, 458
disabling access time tracking, 459
disabling transparent huge pages, 458
modifying limits, 460
setting readahead, 457
turning off NUMA, 455

virtualization, 453-455
design (see application design)
directories

placing databases in, 416
specifying alternate, 415

--directoryperdb, 416, 433, 443
disk scheduling algorithms, 458
disk usage, tracking, 433
disks, choosing, 449
distinct command, 159
DNS Seedlist Connection format, 228
document versioning schema design pattern,

211
document-level concurrency, 473
document-oriented databases, benefits of, 3
documents

adding to collections, 14
basics of, 7
calculating size of, 379
combining multiple into single, 186
deleting from database, 16
embedded, 18
finding random, 69
inserting, 29-33
removing, 33
replacing, 35
returning updated, 49-51
updating, 35-49
updating multiple, 49, 250
_id key autogeneration, 22

draining process, 356-359
drivers, defined, 261
drop method, 34
dropIndexes command, 129
dump directory, 444
duplicates

Index | 479

dropping in indexes, 127
preventing in arrays, 43, 186

durability
at cluster level using read concern, 408
at cluster level using write concern, 407
at member level through journaling, 405
checking for corruption, 410
defined, 200, 405
of transactions using write concern, 409
situations without guarantee, 410

dynamic schemas, collections, 8
dynamic voltage and frequency scaling (DVFS),

454

E
$each modifier, 42
EDITOR variable, 27
Elastic Block Store (EBS), 454
Elastic Compute Cloud (EC2), 454
elections

election arbiters, 246
how they work, 243
members seeking, 255
preventing, 275
preventing voting, 274
speed of, 255

$elemMatch operator, 62, 64
embedded documents

changing/updating, 38
embedded document type, 18
indexing, 114
querying, 63
uses for, 19

embedding, versus references, 215
--enableEncryption, 422
enableSharding command, 294
--encryptionCipherMode, 422
--encryptionKeyFile, 422
ephemeral drives, 455
exact phrase searches, 148
executionStats mode, 76
explain command, 76, 87
expressions, using array expression in project

stages, 181-185
extended reference schema design pattern, 210

F
files and filesystems

copying data files, 442

data encryption, 422
file-based configuration, 419
filesystem snapshots, 438-442
recommended filesystem, 452
sending output to, 416
storing files with GridFS, 156-159

filter expressions, 181
$filter operator, 181
find method

arguments to, 53
limitations of, 55
multiple conditions, 54
querying collections, 15
specifying which keys to return, 54

findAndModify method, 49
findOne method, 15
findOneAndDelete method, 50
findOneAndReplace method, 50
findOneAndUpdate method, 50
firehose strategy, 329
firewalls, 421
$first operator, 186, 197
flushRouterConfig command, 367
force option, 420
--fork, 416
free space, tracking, 433
fs.chunks collection, 158, 329
fs.files collection, 158, 329
fsyncLock command, 442
full validate, 411
full-text indexes

benefits and drawbacks of, 147
creating, 147
optimizing, 151
phrases and logical ANDs in queries, 148
searching other languages, 151
sorting for relevance, 149
text search, 148
uses for, 146
versus MongoDB Atlas Full-Text Search

Indexes, 146

G
$geoIntersects operator, 135, 136, 141
GeoJSON format, 133, 144
$geoNear operator, 136
geospatial indexes

2d indexes, 144-146
compound, 144

480 | Index

geospatial query types, 134
query types and geometries in MongoDB,

136
types of, 133
using, 136-143

2D versus spherical geometry, 136
distortion, 137
exploring data, 139
finding all restaurants in neighborhoods,

142
finding current neighborhood, 141
finding restaurants within a distance,

143
searching for restaurants, 138

$geoWithin operator, 135, 136, 143, 145, 146
getCollection function, 28
getLastError function, 265
getLastErrorModes field, 266
GridFS

benefits and drawbacks of, 156
hashed shard keys for, 328
how it works, 158
keys in, 158
md5 key, 159
metadata location, 158
mongofiles utility, 156
working with from MongoDB drivers, 157

$group operator, 188
$gt operator, 55
$gte operator, 55

H
hashed shard keys, 327-329
heartbeat requests, 253
help command, 22
hidden members, 245, 267
hint function, 124
hostManager privileges, 390
hotspot shard keys, 360
hyperthreading, 454

I
I/O Operations Per Second (IOPS), 454
I/O wait, 429, 431, 453
_id field, in group stages, 192
_id keys

autogeneration of, 22
basics of, 20

immortal cursors, 70

$in operator, 56, 114
in-place updates, 251
$inc modifier, 37, 39
$inc operator, 215
indexes

background indexing, 131
basic operations

checking build progress, 78
choosing fields to index, 80
compound indexes, 81-104
creating, 78, 129, 131, 134
how MongoDB selects indexes, 84
index cardinality, 116, 208
objects and arrays, 114
query operators, 104-114

benefits and drawbacks of, 80
capped collections, 151-155
changing, 130
compound unique, 127
dropping duplicates in, 127
effectiveness of, 125
example of, 75
explain output

example of, 120
forcing index use, 124
important fields, 119
types of, 117
uses for, 116

for full text search, 146-151
geospatial, 133-146
GridFS file storage, 156-159
hashed, 327
hybrid index build, 131
identifying, 130
implicit, 104
metainformation on, 129
multikey, 116
partial, 128
purpose of, 75, 81
removing unneeded, 130
right-balanced, 384
selectivity of, 86, 90
supporting sort operation, 83
time-to-live (TTL), 155
types of, 126-129
unique, 126, 445
versus collection scans, 75
when not to index, 125

insert method, 33

Index | 481

insertMany method, 29
insertOne method, 14, 29
inserts

multiple documents, 29
ordered versus unordered, 30
single documents, 29
validating, 32

installation
downloading archives, 465
from package managers, 468
POSIX (Linux and Mac OS X), 467
version selection, 465
Windows, 466

isMaster command, 237
isolation, 200

J
joins, relational databases versus MongoDB,

212, 223
--journalCommitInterval, 406
journaling, 405, 473
JSON, MongoDB documents resembling, 16,

469
$jsonSchema operator, 223
jumbo chunks

checking chunk size, 365
defined, 364
distributing, 366
example of, 364
finding, 365
preventing, 367

K
Kerberos authentication, 389
Key Management Interoperability Protocol

(KMIP), 422
keys

adding, changing, or removing, 39
choosing key directions in compound

indexes, 102
disallowed characters, 8
in documents, 7
in MongoDB, 17
limitations on, 64
shard keys, 294
specifying query returns, 54

kill command, 420
killOP method, 375

L
lag, calculating, 281
$last operator, 186, 197
latency

capping maximum, 459
defined, 320
firehose strategy and, 329
increased by reading from disk, 427
reading from secondaries and, 270

LDAP proxy authentication, 389
limits, modifying, 460
Linux Logical Volume Manager (LVM), 439
little-endian systems, 452
load function, 24
local database, role of, 11
local.oplog.rs, 375
local.startup_log collection, 417
local.system.replset collection, 272
locking statistics, 386
logical sessions, 201
--logpath, 416, 423
logRotate command, 424
logs and logging (see also monitoring)

best practices, 423
changing log level, 423
checking log at startup, 417
debugging, 423
default options, 423
rotating logs, 424

long-running requests, 375
$lt operator, 55
$lte operator, 55

M
man-in-the-middle attacks, 392
manual sharding, 289, 336
many-to-many relationships, 216
mapped memory, 426
master/slave replication, 238
Math.random() function, 70
max chunk, 321
$max operator, 186
--maxConns option, 355
$maxDistance operator, 143
MaxKey constant, 297
md5 key, 159
members

configuration options, 244-248
manipulating state, 275

482 | Index

member certificates, 393, 400
member states, 254
obtaining current status of, 276
starting in standalone mode, 271

memory
computer memory basics, 426
I/O wait, 429
memory overcommitting, 453
mystery memory, 453
tracking memory usage, 426
tracking page faults, 427

$merge operator, 198
$mergeObjects operator, 186
$meta operator, 150
$min operator, 186
MinKey constant, 297
$mod operator, 57
mongo shell

.mongorc.js creation, 25
complex variable editing, 27
help command, 22
inconvenient collection names, 28
launching, 230
manipulating and viewing data in, 14-16
MongoDB client, 14
prompt customization, 26
prompt when connected, 293
purpose of, 13
running, 13
running scripts, 23-25
save shell helper, 48
using, 22
viewing startup log, 417

MongoClient class, 261
mongod

connecting to, 22
replica set networking considerations, 229
running, 11
startup options, 415-420
stopping, 12

MongoDB
ACID compliant transactions, 200
approach to learning, xv
basic concepts, 7-11
benefits of, 3-6
consistency models, 222
data types, 16-22
getting and starting, 11
installing, 465-468

internals, 469-473
logical sessions and causal consistency in,

201
shell basics, 13-16
shell use, 22-28
stopping, 420
when not to use, 223

MongoDB Atlas, 228, 290, 437
mongodump, 443-445
mongofiles utility, 156
mongoimport command-line tool, 30
.mongorc.js files, 25
mongorestore, 445
mongos

--configdb option, 305
locating processes near shards, 306
purpose of, 290

mongostat, 386
mongotop, 386
monitoring (see also logs and logging)

calculating the working set, 429
memory usage, 425-429
replication, 433
services available, 425
tracking free space, 433
tracking performance, 431

moveChunk command, 337, 362
multi-hotspot strategy, 330
multiple collections, removing old data with,

219
MultiVersion Concurrency Control (MVCC),

473
munging data, 30
mystery memory, 453

N
namespaces

basics of, 11, 472
filtering for operations on certain, 374

naming
collections, 9
databases, 10
dealing with inconvenient collection names,

28
$ne operator, 43, 55, 104
$near operator, 136
$nearSphere operator, 143
network configuration, 461
networked block stores, 454

Index | 483

networking
for replica sets, 229
tracking network connections, 348

new Date(), 18
new Mongo("hostname"), 22
new users, adding, 391
$nin operator, 56
--nodb option, 22, 291
non-networked disks, 455
nonuniform memory architecture (NUMA),

455
--norc options, 291
normalization and denormalization

benefits and drawbacks of, 213
cardinality, 216
data representation examples, 212
defined, 211
embedding versus references, 215
social graph data and, 216
update operators, 215
Wil Wheaton effect, 218

--noscripting, 421
$not operator, 57, 105
--nounixsocket, 421
null type

querying on, 57
uses for, 17

number type, 17

O
object ID type, 18
Object.bsonsize(), 379
ObjectIDs

basics of, 20
storing _ids as, 379

objects, indexing, 114
one-to-many relationships, 216
one-to-one relationships, 216
operating system, selecting, 451
operations, killing, 375

(see also application operations)
oplogs

avoiding out-of-sync secondaries, 253
changing size of, 251
defining size of, 292
purpose of, 249
resizing, 282
size limits, 206, 250
statement-based replication, 406

syncing, 249
oplogSizeMB option, 251
Ops Manager, 228, 290, 437
$or operator, 56, 112
$out operator, 198
out-of-memory (OOM) killer, 463
outlier schema design pattern, 209
overcommitting, 453

P
page faults, tracking, 427, 431
partialFilterExpression, 126, 128
partitioning, 289
passive members, 244
performance, tracking, 431

(see also monitoring)
periodic tasks, turning off, 463
Perl Compatible Regular Expression (PCRE)

library, 58
permissions, 390
phantom operations, 375
ping time, 279
polymorphic schema design pattern, 209
$pop operator, 44
--port, 416
position operator ($), 45
preallocation schema design pattern, 211
primary shards, 294
primary-secondary-arbiter (PSA) architecture,

247
problematic operations, 374
production set up

checking log, 417
data encryption, 422
file-based configuration, 419
logging, 423
security, 421

(see also security considerations)
servers, 449
SSL connections, 423
starting from command line, 415-420
stopping MongoDB, 420

--profile level, 379
$project operator, 169-174
public key infrastructure (PKI) standard, 390
publication/subscription systems, 216
$pull operator, 44
$push operator, 41, 186, 195
PyMongo, 157

484 | Index

Q
queries

$where queries, 65
across multiple shards, 297
covered queries, 103
criteria for, 55-57
cursors for

avoiding large skips, 68
benefits of, 66
creating, 66
immortal cursors, 70
iterating through results, 66
limits, skips, and sorts, 67
sending queries to servers, 67

dot notation and, 63
enabling efficient, 77
equality queries, 82
explain cursor method, 76
find method, 53-55
limitations, 55
multivalue queries, 83
OR queries, 56
overview of, 53
range queries, 55, 62, 82
scatter-gather (broadcast), 301
shape of, 84
targeted, 301
type-specific

arrays, 59-63
embedded documents, 63
null, 57
regular expressions, 58

query conditionals, 55
query documents, 15
query operators

inefficient, 104
OR, 112
ranges, 105

query patterns
defined, 77
indexes based on two or more keys, 81

questions and comments, xviii
queueing, 432
--quiet option, 24

R
RAFT consensus protocol, 243
RAID (redundant array of independent disk),

450

RAM (random-access memory), 449
random numbers, creating, 70
read concern, 408
read privileges, 390
readahead, 457
readAnyDatabase privileges, 391
readConcern option, 221
reads

optimizing, 219
sending to secondaries, 268-270

readWrite privileges, 390
readWriteAnyDatabase privileges, 391
reconfig command, 274
regular expressions

prefix expressions, 58
querying with, 18, 58

remove method, 34
removeShard command, 356
replaceOne method, 35
replica sets, components of

backups, 446
elections, 255
heartbeats, 253
member states, 254
rollbacks, 255-259
syncing, 249-253

replica sets, configuration of
adding new set members, 273
changing hostnames, 273
changing set members, 273
configuration document, 272
creating larger sets, 274
creating replica sets, 272
forcing reconfiguration, 274
network configuration, 461
removing set members, 273
restrictions on changing, 273

replica sets, connecting to
client-to-replica set behavior, 261
custom replication guarantees, 265-268
purpose of replica sets, 262
retry strategy, 262
sending reads to secondaries, 268-270
waiting for replication on writes, 263

replica sets, setting up
adding new members, 238
benefits of replica sets, 227
best practices, 228
changing configuration, 238-241

Index | 485

checking for reconfiguration success, 238
common configurations, 242
configuration document, 230
designing sets, 241-243
how elections work, 243
key concepts, 238
listing and sending members, 230
localhost versus non-localhost servers, 231
majority of the set, 241
member configuration options

building indexes, 247
election arbiters, 246
hidden members, 245
priority, 244
specifying, 244

minority of the set, 242
modifying existing members, 240
networking considerations, 229
number of primaries, 243
observing replication, 233-238
removing members, 238
security considerations, 230
standalone server conversion, 231
test replica sets, 228
viewing status of, 231

replica sets, sharding and
adding shards from replica sets, 306-310
initiating config servers as, 304
role of config servers, 304

ReplicaSetMonitor, 354
replication

automatic replication chaining, 279
budget approach to, 285
custom guarantees, 265-268
master/slave, 238
monitoring

building indexes, 283
calculating lag, 281
disabling chaining, 281
lag and oplog length, 433
obtaining current information, 276
replication graph, 279
replication loops, 280
resizing oplogs, 282
useful fields, 278
using logs for, 275

observing, 233-238
purpose of, 227, 249
replication protocol, 243

replication thread, 375
statement-based, 406
versus sharding, 290
waiting for on writes, 263

replSet ROLLBACK, 258
replSetGetStatus command, 276
replSetReconfig command, 272
replSetSyncFrom command, 280
resident memory, 426
restore privileges, 391
retry logic, 200
retry-at-most-once strategy, 263
retryable writes option, 263
right-balanced indexes, 384
rollbacks

applying operations to current primary, 258
avoiding, 263
defined, 257
failed, 259
loading documents into main collection,

258
manipulating member votes, 258
ROLLBACK state, 258

root privileges, 391
rs global variable, 233
rs helper functions, 233, 272
rs.add command, 238, 273
rs.config(), 238, 245
rs.help(), 233
rs.initiate(), 230, 272, 304
rs.initiate(config), 233
rs.printReplicationInfo(), 281
rs.printSlaveReplicationInfo(), 281
rs.reconfig(), 240, 274
rs.remove command, 273
rs.status(), 231, 245, 276, 306
rs.syncFrom(), 280

S
sanity checks, 243
save shell helper, 48
scatter-gather (broadcast) queries, 301
schemas

design considerations, 207
design patterns, 208-211
managing, 223
migrating, 35, 222
trade-off between efficient reads and writes,

219

486 | Index

updating, 37
SCRAM (Salted Challenge Response Authenti‐

cation Mechanism), 389
scripts

.mongorc.js files for frequently loaded, 25
running with mongo shell, 23-25

security considerations
authentication mechanisms, 389
authorization, 390
config file options, 421
firewalls, 421
replica sets set up, 230
security.authorization setting, 392
tutorial

bringing up replica set, 401
creating admin user, 402
establishing CA, 395-400
generating/signing client certificates, 401
generating/signing member certificates,

400
restarting replica set, 403

x.509 certificates, 392-395
seed lists, 261
server administration

backups, 437-447
deployment, 449-463
in sharded clusters, 356-359
monitoring, 425-436
production set up, 415-424

server discovery and monitoring (SDAM) spec‐
ification, 262

servers
backing up, 438-445
config servers, 304
connecting to, 22
durability during failures, 405
forking server processes, 416
network configuration, 461
printing statistics about, 386
setting up for production, 449
shutting down, 420
standalone mode, 271, 356

$set modifier, 37
$set operator, 215
$setOnInsert modifier, 48
setParameter command, 423
setProfilingLevel, 423
sh global variable, 294
sh.addShard() method, 309

sh.addShardToZone(), 335
sh.help(), 294
sh.moveChunk(), 337
sh.status(), 294, 339
sh.status(true), 341
sh.stopBalancer(), 336
shard keys, choosing

cardinality, 334
controlling data distribution, 334-337
distribution types

ascending shard keys, 320
location-based shard keys, 325
possibly types, 320
randomly distributed shard keys, 323

hotspot shard keys, 360
initial steps, 319
limitations on shard keys, 328, 334
rules and guidelines, 334
shard key strategies

firehose strategy, 329
hashed shard keys, 327
hashed shard keys for GridFS, 328
multi-hotspot strategy, 330

shardCollection command, 327
sharding, administration of

balancing data
changing chunk size, 361
jumbo chunks, 364-367
moving chunks, 362
turning balancer off, 360

refreshing configurations, 367
seeing current state

configuration information, 341-348
status overview, 339
writeback listener, 375

server administration
adding servers, 356
changing servers in shards, 356
removing shards, 356-359

tracking network connections
connection statistics, 348-354
limiting number of connections, 354

sharding, basics of
autosharding, 289, 337
benefits of sharding, 289
complexity of sharding, 290
compound shard keys, 313, 330
definition of sharding, 289
goals of sharding, 290

Index | 487

manual sharding, 289, 336
number of concurrent migrations allowed,

316
primary shards, 294
primary use case for, 292
processes involved, 304
querying, 297
removing shards, 356-359
sh global variable, 294
shard keys, 294-301

(see also shard keys, choosing)
sharding on single-machine clusters,

291-301
sharding versus replication, 290
uses for sharding, 303
when to shard, 303

sharding, configuration of
backups, 446
balancers, 316
change streams, 317
collations, 317
how MongoDB tracks cluster data, 311-315
network configuration, 461
processes involved, 304
starting the servers

adding capacity, 310
adding shards from replica sets, 306-310
config servers, 304
mongo processes, 305
sharding data, 310

uses for sharding, 303
when to shard, 303

sharding.clusterRole, 308
ShardingTest class, 291
--shardsvr option, 308
shell (see mongo shell)
show collections command, 24
show dbs command, 24
shutdown command, 420
SIGINT signal, 420
SIGTERM signal, 420
$size operator, 60, 185
skips

avoiding large, 68
finding random documents, 69
paginating results without, 69
skipping query results, 67

$slice modifier, 42
$slice operator, 60, 185

slow application operations, 371, 376
--slowms, 379, 424
snapshots, 438-442
social graph data, 216
$sort modifier, 42
space, tracking disk usage, 433
split storms, 315
SSD (solid state drives), 449
SSL connections, 423
st.stop(), 301
staleness, handling, 253
standalone mode, 271, 356
statement-based replication, 406
stats function, 380
stats, printing, 386

(see also application operations)
stdout, 423
storage engine, default, 472
storage medium, choosing, 449
string type, 17
subcollections, 10
subset schema design pattern, 210
$sum operator, 186
swap space, allowance for, 452
syncing

cloning and working sets, 252
handling staleness, 253
initial sync, 251
oplog size, 250
replication, 253
role of oplogs in, 249

system profiler, 376-379
system.indexes collection, 129

T
tailable cursors, 154
targeted queries, 301
TCP/IP wire protocol, 470
$text operator, 148
time-to-live (TTL) collections, removing old

data with, 219
time-to-live (TTL) indexes

creating, 155
uses for, 155
versus capped collections, 153

TLS/SSL encryption, 423
--tlsMode, 423
top Unix utility, 386
transactions

488 | Index

ACID definition, 200
defined, 199
MongoDB versions and drivers supporting,

199
tuning transaction limits, 205-206
using, 200-205

transparent huge pages (THP), 458
transport encryption, 423
tree schema design pattern, 210
two-member-plus-arbiter scenario, 247

U
$unset modifier, 38
$unwind operator, 174-181
update operators

array operators, 41-46
decrementing values, 40
idempotent, 215
incrementing values, 37, 39
removing field values, 38
setting field values, 37
uses for, 37

updateMany method, 47, 49
updateOne method, 16, 47
updates

atomic, 35
configuration document, 272
in-place updates, 251
methods available, 35
multiple documents, 49, 250
replacing documents, 35
returning updated documents, 49
using update operators, 37-46
using upserts, 46

upserts, 46
use video command, 24
user-defined roles, 391
userAdmin privileges, 390
userAdminAnyDatabase privileges, 391
users, adding, 391

V
validate command, 410
validator option, 223
versioning scheme, 465
virtual memory, 426
virtualization

benefits and drawbacks of, 453
memory overcommitting, 453
mystery memory, 453
network disk I/O issues, 453

volume-level backup, 438

W
warnings, in startup banner, 417
WGS84 datum, 133
$where clauses, 65
Wil Wheaton effect, 218
wire protocol, 470
WiredTiger storage engine, 472
working set

calculating size of, 429
examples, 431

write concern
assuring propagation to majority of mem‐

bers, 264
durability of transactions using, 409

write-ahead logs (WAL), 405
writebacklistener commands, 375
writeConcern option, 221, 407
writes

acknowledged, 376
optimizing, 219
waiting for replication on, 263

X
x.509 certificate authentication

support for, 389
using, 392-395

XFS filesystem, 452

Index | 489

About the Authors
Shannon Bradshaw is VP of education at MongoDB. Shannon manages the Mon‐
goDB Documentation and MongoDB University teams. These teams develop and
maintain the majority of MongoDB learning resources used by the MongoDB com‐
munity. Shannon holds a PhD in computer science from Northwestern University.
Prior to MongoDB, Shannon was a computer science professor specializing in infor‐
mation systems and human-information interaction.

Eoin Brazil is a senior curriculum engineer at MongoDB. He works on online and
instructor-led training products delivered through MongoDB University and previ‐
ously held various positions in the technical services support organization within
MongoDB. Eoin holds a PhD and a MSc in computer science from the University of
Limerick and a PgDip in technology commercialization from the National University
of Ireland, Galway. Prior to MongoDB, he led teams in mobile services and in high-
performance computing in the academic research sector.

Kristina Chodorow is a software engineer who worked on the MongoDB core for
five years. She led MongoDB’s replica set development as well as writing the PHP and
Perl drivers. She has given talks on MongoDB at meetups and conferences around the
world and maintains a blog on technical topics at http://www.kchodorow.com. She
currently works at Google.

Colophon
The animal on the cover of MongoDB: The Definitive Guide, Third Edition, is a mon‐
goose lemur, a member of a highly diverse group of primates endemic to Madagascar.
Ancestral lemurs are believed to have inadvertently traveled to Madagascar from
Africa (a trip of at least 350 miles) by raft some 65 million years ago. Freed from com‐
petition with other African species (such as monkeys and squirrels), lemurs adapted
to fill a wide variety of ecological niches, branching into the almost 100 species
known today. These animals’ otherworldly calls, nocturnal activity, and glowing eyes
earned them their name, which comes from the lemures (specters) of Roman myth.
Malagasy culture also associates lemurs with the supernatural, variously considering
them the souls of ancestors, the source of taboo, or spirits bent on revenge. Some vil‐
lages identify a particular species of lemur as the ancestor of their group.

Mongoose lemurs (Eulemur mongoz) are medium-sized lemurs, about 12 to 18 inches
long and 3 to 4 pounds. The bushy tail adds an additional 16 to 25 inches. Females
and young lemurs have white beards, while males have red beards and cheeks. Mon‐
goose lemurs eat fruit and flowers and they act as pollinators for some plants; they are
particularly fond of the nectar of the kapok tree. They may also eat leaves and insects.

http://www.kchodorow.com

Mongoose lemurs inhabit the dry forests of northwestern Madagascar. One of the two
species of lemur found outside of Madagascar, they also live in the Comoros Islands
(where they are believed to have been introduced by humans). They have the unusual
quality of being cathemeral (alternately wakeful during the day and at night), chang‐
ing their activity patterns to suit the wet and dry seasons. Mongoose lemurs are
threatened by habitat loss and they are classified as a vulnerable species.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Copyright
	Table of Contents
	Preface
	How This Book Is Organized
	Getting Started with MongoDB
	Developing with MongoDB
	Replication
	Sharding
	Application Administration
	Server Administration
	Appendixes

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	Part I. Introduction to MongoDB
	Chapter 1. Introduction
	Ease of Use
	Designed to Scale
	Rich with Features…
	…Without Sacrificing Speed
	The Philosophy

	Chapter 2. Getting Started
	Documents
	Collections
	Dynamic Schemas
	Naming

	Databases
	Getting and Starting MongoDB
	Introduction to the MongoDB Shell
	Running the Shell
	A MongoDB Client
	Basic Operations with the Shell

	Data Types
	Basic Data Types
	Dates
	Arrays
	Embedded Documents
	_id and ObjectIds

	Using the MongoDB Shell
	Tips for Using the Shell
	Running Scripts with the Shell
	Creating a .mongorc.js
	Customizing Your Prompt
	Editing Complex Variables
	Inconvenient Collection Names

	Chapter 3. Creating, Updating, and Deleting
 Documents
	Inserting Documents
	insertMany
	Insert Validation
	insert

	Removing Documents
	drop

	Updating Documents
	Document Replacement
	Using Update Operators
	Upserts
	Updating Multiple Documents
	Returning Updated Documents

	Chapter 4. Querying
	Introduction to find
	Specifying Which Keys to Return
	Limitations

	Query Criteria
	Query Conditionals
	OR Queries
	$not

	Type-Specific Queries
	null
	Regular Expressions
	Querying Arrays
	Querying on Embedded Documents

	$where Queries
	Cursors
	Limits, Skips, and Sorts
	Avoiding Large Skips
	Immortal Cursors

	Part II. Designing Your Application
	Chapter 5. Indexes
	Introduction to Indexes
	Creating an Index
	Introduction to Compound Indexes
	How MongoDB Selects an Index
	Using Compound Indexes
	How $ Operators Use Indexes
	Indexing Objects and Arrays
	Index Cardinality

	explain Output
	When Not to Index
	Types of Indexes
	Unique Indexes
	Partial Indexes

	Index Administration
	Identifying Indexes
	Changing Indexes

	Chapter 6. Special Index and Collection Types
	Geospatial Indexes
	Types of Geospatial Queries
	Using Geospatial Indexes
	Compound Geospatial Indexes
	2d Indexes

	Indexes for Full Text Search
	Creating a Text Index
	Text Search
	Optimizing Full-Text Search
	Searching in Other Languages

	Capped Collections
	Creating Capped Collections
	Tailable Cursors

	Time-To-Live Indexes
	Storing Files with GridFS
	Getting Started with GridFS: mongofiles
	Working with GridFS from the MongoDB Drivers
	Under the Hood

	Chapter 7. Introduction to the Aggregation Framework
	Pipelines, Stages, and Tunables
	Getting Started with Stages: Familiar Operations
	Expressions
	$project
	$unwind
	Array Expressions
	Accumulators
	Using Accumulators in Project Stages

	Introduction to Grouping
	The _id Field in Group Stages
	Group Versus Project

	Writing Aggregation Pipeline Results to a Collection

	Chapter 8. Transactions
	Introduction to Transactions
	A Definition of ACID

	How to Use Transactions
	Tuning Transaction Limits for Your Application
	Timing and Oplog Size Limits

	Chapter 9. Application Design
	Schema Design Considerations
	Schema Design Patterns

	Normalization Versus Denormalization
	Examples of Data Representations
	Cardinality
	Friends, Followers, and Other Inconveniences

	Optimizations for Data Manipulation
	Removing Old Data

	Planning Out Databases and Collections
	Managing Consistency
	Migrating Schemas
	Managing Schemas
	When Not to Use MongoDB

	Part III. Replication
	Chapter 10. Setting Up a Replica Set
	Introduction to Replication
	Setting Up a Replica Set, Part 1
	Networking Considerations
	Security Considerations
	Setting Up a Replica Set, Part 2
	Observing Replication
	Changing Your Replica Set Configuration
	How to Design a Set
	How Elections Work

	Member Configuration Options
	Priority
	Hidden Members
	Election Arbiters
	Building Indexes

	Chapter 11. Components of a Replica Set
	Syncing
	Initial Sync
	Replication
	Handling Staleness

	Heartbeats
	Member States

	Elections
	Rollbacks
	When Rollbacks Fail

	Chapter 12. Connecting to a Replica Set from Your
 Application
	Client−to−Replica Set Connection Behavior
	Waiting for Replication on Writes
	Other Options for “w”

	Custom Replication Guarantees
	Guaranteeing One Server per Data Center
	Guaranteeing a Majority of Nonhidden Members
	Creating Other Guarantees

	Sending Reads to Secondaries
	Consistency Considerations
	Load Considerations
	Reasons to Read from Secondaries

	Chapter 13. Administration
	Starting Members in Standalone Mode
	Replica Set Configuration
	Creating a Replica Set
	Changing Set Members
	Creating Larger Sets
	Forcing Reconfiguration

	Manipulating Member State
	Turning Primaries into Secondaries
	Preventing Elections

	Monitoring Replication
	Getting the Status
	Visualizing the Replication Graph
	Replication Loops
	Disabling Chaining
	Calculating Lag
	Resizing the Oplog
	Building Indexes
	Replication on a Budget

	Part IV. Sharding
	Chapter 14. Introduction to Sharding
	What Is Sharding?
	Understanding the Components of a Cluster

	Sharding on a Single-Machine Cluster

	Chapter 15. Configuring Sharding
	When to Shard
	Starting the Servers
	Config Servers
	The mongos Processes
	Adding a Shard from a Replica Set
	Adding Capacity
	Sharding Data

	How MongoDB Tracks Cluster Data
	Chunk Ranges
	Splitting Chunks

	The Balancer
	Collations
	Change Streams

	Chapter 16. Choosing a Shard Key
	Taking Stock of Your Usage
	Picturing Distributions
	Ascending Shard Keys
	Randomly Distributed Shard Keys
	Location-Based Shard Keys

	Shard Key Strategies
	Hashed Shard Key
	Hashed Shard Keys for GridFS
	The Firehose Strategy
	Multi-Hotspot

	Shard Key Rules and Guidelines
	Shard Key Limitations
	Shard Key Cardinality

	Controlling Data Distribution
	Using a Cluster for Multiple Databases and Collections
	Manual Sharding

	Chapter 17. Sharding Administration
	Seeing the Current State
	Getting a Summary with sh.status()
	Seeing Configuration Information

	Tracking Network Connections
	Getting Connection Statistics
	Limiting the Number of Connections

	Server Administration
	Adding Servers
	Changing Servers in a Shard
	Removing a Shard

	Balancing Data
	The Balancer
	Changing Chunk Size
	Moving Chunks
	Jumbo Chunks
	Refreshing Configurations

	Part V. Application Administration
	Chapter 18. Seeing What Your Application Is Doing
	Seeing the Current Operations
	Finding Problematic Operations
	Killing Operations
	False Positives
	Preventing Phantom Operations

	Using the System Profiler
	Calculating Sizes
	Documents
	Collections
	Databases

	Using mongotop and mongostat

	Chapter 19. An Introduction to MongoDB Security
	MongoDB Authentication and Authorization
	Authentication Mechanisms
	Authorization
	Using x.509 Certificates to Authenticate Both Members and
 Clients

	A Tutorial on MongoDB Authentication and Transport Layer
 Encryption
	Establish a CA
	Generate and Sign Member Certificates
	Generate and Sign Client Certificates
	Bring Up the Replica Set Without Authentication and Authorization Enabled
	Create the Admin User
	Restart the Replica Set with Authentication and Authorization Enabled

	Chapter 20. Durability
	Durability at the Member Level Through Journaling
	Durability at the Cluster Level Using Write Concern
	The w and wtimeout Options for writeConcern
	The j (Journaling) Option for writeConcern

	Durability at a Cluster Level Using Read Concern
	Durability of Transactions Using a Write Concern
	What MongoDB Does Not Guarantee
	Checking for Corruption

	Part VI. Server Administration
	Chapter 21. Setting Up MongoDB in Production
	Starting from the Command Line
	File-Based Configuration

	Stopping MongoDB
	Security
	Data Encryption
	SSL Connections

	Logging

	Chapter 22. Monitoring MongoDB
	Monitoring Memory Usage
	Introduction to Computer Memory
	Tracking Memory Usage
	Tracking Page Faults
	I/O Wait

	Calculating the Working Set
	Some Working Set Examples

	Tracking Performance
	Tracking Free Space
	Monitoring Replication

	Chapter 23. Making Backups
	Backup Methods
	Backing Up a Server
	Filesystem Snapshot
	Copying Data Files
	Using mongodump

	Specific Considerations for Replica Sets
	Specific Considerations for Sharded Clusters
	Backing Up and Restoring an Entire Cluster
	Backing Up and Restoring a Single Shard

	Chapter 24. Deploying MongoDB
	Designing the System
	Choosing a Storage Medium
	Recommended RAID Configurations
	CPU
	Operating System
	Swap Space
	Filesystem

	Virtualization
	Memory Overcommitting
	Mystery Memory
	Handling Network Disk I/O Issues
	Using Non-Networked Disks

	Configuring System Settings
	Turning Off NUMA
	Setting Readahead
	Disabling Transparent Huge Pages (THP)
	Choosing a Disk Scheduling Algorithm
	Disabling Access Time Tracking
	Modifying Limits

	Configuring Your Network
	System Housekeeping
	Synchronizing Clocks
	The OOM Killer
	Turn Off Periodic Tasks

	Appendix A. Installing MongoDB
	Choosing a Version
	Windows Install
	Installing as a Service

	POSIX (Linux and Mac OS X) Install
	Installing from a Package Manager

	Appendix B. MongoDB Internals
	BSON
	Wire Protocol
	Data Files
	Namespaces
	WiredTiger Storage Engine

	Index
	About the Authors
	Colophon

