[image: First Edition.]
Maven: The Definitive Guide

Sonatype Company

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596517335/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.
Preface

Although there are a number of references for Maven online, there is
 no single, well-written narrative for introducing Maven that can serve as
 both an authoritative reference and an introduction. What we’ve tried to
 do with this effort is provide such a narrative coupled with useful
 reference material.
Maven... What Is It?

The answer to this question depends on your own perspective. The
 great majority of Maven users are going to call Maven a “build tool”: a
 tool used to build deployable artifacts from source code. Build
 engineers and project managers might refer to Maven as something more
 comprehensive: a project management tool. What is the difference? A
 build tool such as Ant is focused solely on preprocessing, compilation,
 packaging, testing, and distribution. A project management tool such as
 Maven provides a superset of features found in a build tool. In addition
 to providing build capabilities, Maven can also run reports, generate a
 web site, and facilitate communication among members of a working
 team.
Here is a more formal definition of Apache Maven: Maven is a project
 management tool that encompasses a Project Object Model, a set of
 standards, a project lifecycle, a dependency management system, and
 logic for executing plugin goals at defined phases in a lifecycle. When
 you use Maven, you describe your project using a well-defined Project
 Object Model, Maven can then apply cross-cutting logic from a set of
 shared (or custom) plugins.
Don’t let the fact that Maven is a “project management” tool scare
 you away. If you are just looking for a build tool, Maven will do the
 job. In fact, the first few chapters of Part II
 will deal with the most common use case: using Maven to build and
 distribute your project.

Font Conventions

This book follows certain conventions for font usage.
 Understanding these conventions upfront makes it easier to use this
 book:
	Italic
	Used for filenames, file extensions, URLs, application
 names, emphasis, and new terms when they are first
 introduced.

	Constant width
	Used for Java™ class names, methods, variables, properties,
 data types, database elements, and snippets of code that appear in
 text.

	 Constant width
 bold
	Used for commands you enter at the command line and to
 highlight new code inserted in a running example.

	 Constant width italic
	Used to annotate output.

Maven Writing Conventions

The book follows certain conventions for naming and font usage in
 relation to Apache Maven. Understanding these conventions upfront makes
 it easier to read this book:
	Compiler plugin
	Maven plugins are capitalized.

	create goal
	Maven goal names are displayed in a constant width
 font.

	plugin
	Maven revolves around the heavy use of plugins, but you
 won’t find plugin defined in the dictionary.
 This book uses “plugin” without a hyphen because it is easier to
 read and write and because it is a standard throughout the Maven
 community.

	Maven Lifecycle, Maven Standard Directory Layout,
 Project Object Model
	Core Maven concepts are capitalized whenever they are
 referenced in the text.

	goalParameter
	A Maven goal parameter is displayed in a constant width
 font.

	compile phase
	Lifecycle phases are displayed in a constant width
 font.

Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless you’re reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O’Reilly books does
 require permission. Answering a question by citing this book and quoting
 example code does not require permission. Incorporating a significant
 amount of example code from this book into your product’s documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Maven: The Definitive Guide by Sonatype. Copyright
 2008 Sonatype, 978-0-596-51733-5.”
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international/local)
	707-829-0104 (fax)

O’Reilly’s web page for this book, where we list errata, examples,
 or any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596517335

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O’Reilly Network,
 see our web site at:
	http://www.oreilly.com

Acknowledgments

Sonatype would like to thank the following contributors who have
 provided feedback that improved the quality of this book. Thanks to Chad
 Gorshing, Marcus Biel, Brian Dols, Mangalaganesh Balasubramanian, Marius
 Kruger, and Mark Stewart. Special thanks to Joel Costigliola for helping
 debug and correct the Spring web chapter. Stan Guillory was practically
 a contributing author given the number of corrections he posted to the
 book’s Get Satisfaction page. Thank you, Stan. Special thanks to Richard
 Coasby of Bamboo for acting as the provisional grammar
 consultant.
Sarah Schneider and Marlowe Shaeffer of O’Reilly Media, and Mark
 Jewett of Appingo, should receive medals for the extreme patience they
 displayed as this book continued to miss schedule after schedule. Thank
 you, Sarah, and the entire production department for making this book a
 success. Thanks to Mike Loukides and Mike Hendrickson for providing the
 necessary editorial oversight to make sure that we were given enough
 time and feedback to publish a book that will remain relevant in the
 months and years to come.
Thanks to all of the authors, especially Bruce Snyder, Brian Fox,
 John Casey, Jason van Zyl, and Eugene Kuleshov. Everyone at Sonatype
 played a part in the content of this book, and everyone worked together
 to help us create a foundation for this documentation.
Thanks to all of our contributing authors, especially Eric
 Redmond.
Tim O’Brien would like to thank his perfect wife, Susan, and
 child, Josephine.

Part I. Introduction

The two chapters in this brief introduction describe Maven,
 explain how it stacks up to and improves on other build tools throughout
 time, and show you how to install and run it on all platforms. If you’ve
 already installed Maven and are familiar with the core concepts of the
 tool, you might want to skip ahead to Part II. Then again, even if you are already
 somewhat familiar with Maven, you might want to peruse some of the
 propaganda in this introduction so you’re prepared when people start
 asking you why your organization or project should use Maven. After this
 section, you should have a better idea of what Maven is, what makes it
 different from some of the other options out there, and how to install
 it and learn more from the built-in help facilities.

Chapter 1. Introducing Apache Maven

Convention over Configuration

Convention over configuration is a simple concept. Systems,
 libraries, and frameworks should assume reasonable defaults without
 requiring that unnecessary configuration systems should “just work.”
 Popular frameworks such as Ruby on Rails and EJB3 have started to
 adhere to these principles in reaction to the configuration complexity
 of frameworks such as the initial Enterprise JavaBeans™ (EJB)
 specifications. An illustration of convention over configuration is
 something like EJB3 persistence. All you need to do to make a
 particular bean persistent is to annotate that class with
 @Entity. The framework will then assume table
 names and column names from the name of the class and the names of the
 properties. Hooks are provided for you to override these names if the
 need arises, but, in most cases, you will find that using the
 framework-supplied defaults results in a faster project
 execution.
Maven incorporates the concept by providing sensible default
 behaviors for projects. Without customization, source code is assumed
 to be in ${basedir}/src/main/java
 and resources are assumed to be in ${basedir}/src/main/resources. Tests are
 assumed to be in ${basedir}/src/test, and a project is
 assumed to produce a JAR (Java ARchive) file. Maven assumes that you
 want to compile byte code to ${basedir}/target/classes and then create a
 distributable JAR file in ${basedir}/target. Although this might seem
 trivial, consider the fact that most Ant-based builds have to define
 the locations of these directories in every subproject. Maven’s
 adoption of convention over configuration goes further than just
 simple directory locations; Maven’s core plugins apply a common set of
 conventions for compiling source code, packaging distributions,
 generating web sites, and many other processes. Maven’s strength comes
 from the fact that it is “opinionated.” It has a defined lifecycle and
 a set of common plugins that know how to build libraries and web
 applications. If you follow the convention, Maven will require almost
 zero effort—just put your source in the correct directory, and Maven
 will take care of the rest.
One side effect of using systems that follow “convention over
 configuration” is that end users might feel that they are forced to
 use a particular setup. While it is certainly true that Maven has some
 central opinions that shouldn’t be challenged, most of the defaults
 can be customized. For example, the location of a project’s source
 code and resources can be customized, names of JAR files can be
 customized, and through the development of custom plugins, almost any
 behavior can be tailored to your specific environment’s requirements.
 If you don’t follow convention, Maven will allow you to customize
 defaults in order to adapt to your requirements.

A Common Interface

Before Maven provided a common interface for building software,
 every single project had someone dedicated to managing a completely
 custom build system, and developers had to take time away from
 developing software to learn about the idiosyncrasies of each new
 project they wanted to contribute to. In 2001, you’d take a completely
 different approach to building a project such as Apache Turbine than you would to
 building a project such as Tomcat. If a new source
 analysis tool came out that would perform static analysis on source
 code, or if someone developed a new unit testing framework, everyone
 would have to drop what they were doing and figure out how to fit it
 into each project’s custom build environment. How would you run unit
 tests? There were a thousand different answers. This environment was
 characterized by endless arguments about tools and build procedures.
 The age before Maven was an age of inefficiency—the age of the “Build
 Engineer.”
Today, most open source developers have used or are currently
 using Maven to manage new software projects. This transition is less
 about developers moving from one build tool to another and more about
 developers starting to adopt a common interface for project builds. As
 software systems have become more modular, build systems have become
 more complex, and the number of projects has skyrocketed. Before
 Maven, when you wanted to check out a project such as Apache ActiveMQ or Apache ServiceMix from
 Subversion and build it from source, you really had to set aside about
 an hour to figure out the build system for each particular project.
 What does the project need to build? What libraries do I need to
 download? Where do I put them? What goals can I execute in the build?
 In the best case, it took a few minutes to figure out a new project’s
 build, and in the worst cases (like the old Servlet API implementation
 in the Jakarta Project), a project’s build was so difficult it would
 take many hours just to get to the point where a new contributor could
 edit source and compile the project. These days, with Maven, you check
 it out from source, and you run mvn
 install.
Although Maven provides an array of benefits, including
 dependency management and reuse of common build logic through plugins,
 the core reason it has succeeded is that it has defined a common
 interface for building software. When you see that a project such as
 Apache Wicket uses
 Maven, you can assume that you’ll be able to check it out from source
 and build it with mvn install
 without much hassle. You know where the ignition key goes, and you
 know that the gas pedal is on the right and the brake is on the
 left.

Universal Reuse Through Maven Plugins

The core of Maven is pretty dumb; it doesn’t know how to do much
 beyond parsing a few XML documents and keeping
 track of a lifecycle and a few plugins. Maven has been designed to
 delegate most responsibility to a set of Maven plugins that can affect
 the Maven lifecycle and offer access to goals. Most of the action in
 Maven happens in plugin goals that take care of things like compiling
 source, packaging bytecode, publishing sites, and any other task that
 needs to happen in a build. The Maven you download from Apache doesn’t
 know much about packaging a WAR file or running
 JUnit tests; most of Maven’s intelligence is implemented in the
 plugins, and the plugins are retrieved from the Maven repository. In
 fact, the first time you run something like mvn install with a brand new Maven
 installation, it retrieves most of the core Maven plugins from the
 central Maven repository. This is more than just a trick to minimize
 the download size of the Maven distribution; this is behavior that
 allows you to upgrade a plugin to add capability to your project’s
 build. The fact that Maven retrieves both dependencies and plugins
 from the remote repository allows for universal reuse of build
 logic.
The Maven Surefire plugin is responsible for running unit tests.
 At some point between version 1.0 and the version that is in wide use
 today, someone decided to add support for the TestNG unit testing
 framework in addition to the support for JUnit. This happened in a way
 that didn’t break backward compatibility—if you were using the
 Surefire plugin to compile and execute JUnit 3 unit tests, and you
 upgraded to the most recent version of the Surefire plugin, your tests
 continued to execute without fail. You also gained new functionality,
 so if you wanted to execute unit tests in TestNG, you now had that
 ability, thanks to the efforts of the maintainers of the Surefire
 plugin. You also gained the ability to run annotated JUnit 4 unit
 tests. You gained all of these capabilities without having to upgrade
 your Maven installation or install new software. Most importantly, nothing about your project
 had to change aside from a version number for a plugin in a
 POM.
It is this mechanism that affects much more than the Surefire
 plugin: projects are compiled with a Compiler plugin, projects are
 turned into JAR files with a Jar plugin, and there
 are plugins for running reports, plugins for executing JRuby and
 Groovy code, as well as plugins to publish sites to remote servers.
 Maven has abstracted common build tasks into plugins that are
 maintained centrally and shared universally. If the state of the art
 changes in any area of the build, if some new unit testing framework
 is released or if some new tool is made available, you don’t have to
 be the one to hack your project’s custom build system to support it.
 You benefit from the fact that plugins are downloaded from a remote
 repository and maintained centrally. This is what is meant by
 universal reuse through Maven plugins.

Conceptual Model of a “Project”

Maven maintains a model of a project: you are not just compiling
 source code into bytecode, you are developing a description of a
 software project and assigning a unique set of coordinates to a
 project. You are describing the attributes of the project. What is the
 project’s license? Who develops and contributes to the project? What
 other projects does this project depend on? Maven is more than just a
 “build tool”; it is more than just an improvement on tools such as
 make and Ant; it is a platform that encompasses a
 new semantics related to software projects and software development.
 This definition of a model for every project enables such features
 as:
	Dependency management
	A project is defined as unique coordinates that consists
 of a group identifier, artifact identifier, and version.
 Projects can now use these coordinates to declare
 dependencies.

	Remote repositories
	Related to dependency management, we can use the
 coordinates defined in the Maven Project Object Model
 (POM) to create repositories of Maven
 artifacts.

	Universal reuse of build logic
	Plugins are coded to work with the POM;
 they are not designed to operate on specific files in known
 locations. Everything is abstracted into the model—plugin
 configuration and customization happens in the model.

	Tool portability and integration
	Tools such as Eclipse, NetBeans, and IntelliJ now have a
 common place to find information about a project. Before the
 advent of Maven, every integrated development environment
 (IDE) had a different way to store what was
 essentially a custom POM. Maven has
 standardized this description, and although each IDE continues
 to maintain custom project files, they can be easily generated
 from the model.

	Easy searching and filtering of project artifacts
	Tools such as Nexus allow you to index and search the
 contents of a repository using the information stored in the
 POM.

Maven has provided a foundation for the beginnings of a
 consistent semantic description of a software project.

Is Maven an Alternative to XYZ?

So, sure, Maven is an alternative to Ant, but Apache Ant continues to be a
 great, widely used tool. It has been the reigning champion of Java
 builds for years, and you can integrate Ant build scripts with your
 project’s Maven build very easily. This is a common usage pattern for
 a Maven project. On the other hand, as more and more open source
 projects move to Maven as a project management platform, working
 developers are starting to realize that Maven not only simplifies the
 task of build management, it is helping to encourage a common
 interface between developers and software projects. Maven is more of a
 platform than a tool. Although you can consider Maven an alternative
 to Ant, you are comparing apples to oranges. “Maven” includes more
 than just a build tool.
This is the central point that makes all of the Maven versus
 Ant, Maven versus Buildr, Maven versus Gradle arguments irrelevant.
 Maven isn’t totally defined by the mechanics of your build system. It
 isn’t about scripting the various tasks in your build as much as it is
 about encouraging a set of standards, a common interface, a lifecycle,
 a standard repository format, a standard directory layout, etc. It
 certainly isn’t about what format the POM happens
 to be in, i.e., XML versus YAML
 versus Ruby. Maven is much larger than that, and Maven refers to much
 more than the tool itself. When this book talks about Maven, it is
 referring to the constellation of software, systems, and standards
 that support it. Buildr, Ivy, Gradle—all of these tools interact with
 the repository format that Maven helped create, and you could just as
 easily use a tool such as Nexus to support a build written entirely in
 Buildr. Nexus is introduced in Chapter 16.
Although Maven is an alternative to many of these tools, the
 community needs to evolve beyond seeing technology as a zero-sum game
 between unfriendly competitors in a contest for users and developers.
 This might be how large corporations relate to one another, but it has
 very little relevance to the way that open source communities work.
 The headline “Who’s winning? Ant or Maven?” isn’t very constructive.
 If you force us to answer this question, we’re definitely going to say
 that Maven is a superior alternative to Ant as a foundational
 technology for a build; at the same time, Maven’s boundaries are
 constantly shifting and the Maven community is constantly trying to
 seek out new ways to become more ecumenical, interoperable, and
 cooperative. The core tenets of Maven are declarative builds,
 dependency management, repository managers, and universal reuse
 through plugins, but the specific incarnation of these ideas at any
 given moment is less important than the sense that the open source
 community is collaborating to reduce the inefficiency of
 “enterprise-scale builds.”

Comparing Maven and Ant

Although the previous section should convince you that the
 authors of this book have no interest in creating a feud between
 Apache Ant and Apache Maven, we are cognizant of the fact that most
 organizations have to make a decision between Ant and Maven. In this
 section, we compare and contrast the tools.
Ant excels at build process; it is a build system modeled after
 make with targets and dependencies. Each target
 consists of a set of instructions that are coded in
 XML. There is a copy task and a
 javac task as well as a jar
 task. When you use Ant, you supply it with specific instructions for
 compiling and packaging your output. Look at the simple build.xml file shown in Example 1-1.
Example 1-1. A simple Ant build.xml file
<project name="my-project" default="dist" basedir=".">
 <description>
 simple example build file
 </description>
 <!-- set global properties for this build -->
 <property name="src" location="src/main/java"/>
 <property name="build" location="target/classes"/>
 <property name="dist" location="target"/>

 <target name="init">
 <!-- Create the time stamp -->
 <tstamp/>
 <!-- Create the build directory structure used by compile -->
 <mkdir dir="${build}"/>
 </target>

 <target name="compile" depends="init"
 description="compile the source " >
 <!-- Compile the java code from ${src} into ${build} -->
 <javac srcdir="${src}" destdir="${build}"/>
 </target>

 <target name="dist" depends="compile"
 description="generate the distribution" >
 <!-- Create the distribution directory -->
 <mkdir dir="${dist}/lib"/>

 <!-- Put everything in ${build} into the MyProject-${DSTAMP}.jar file -->
 <jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar" basedir="${build}"/>
 </target>

 <target name="clean"
 description="clean up" >
 <!-- Delete the ${build} and ${dist} directory trees -->
 <delete dir="${build}"/>
 <delete dir="${dist}"/>
 </target>
</project>

In this simple Ant example, you can see how you have to tell Ant
 exactly what to do. There is a compile goal that includes the
 javac task, which compiles the source in the
 src/main/java directory to the
 target/classes directory. You
 have to tell Ant exactly where your source is, where you want the
 resulting bytecode to be stored, and how to package this all into a
 JAR file. Although some recent developments help
 make Ant less procedural, a developer’s experience with Ant is in
 coding a procedural language written in XML.
Contrast the previous Ant example with a Maven example. In
 Maven, to create a JAR file from some Java source, all you need to do
 is create a simple pom.xml, place
 your source code in ${basedir}/src/main/java, and then run
 mvn install from the command line.
 The example Maven pom.xml that
 achieves the same results as the simple Ant file listed in Example 1-1 is shown in Example 1-2.
Example 1-2. A simple Maven pom.xml
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>my-project</artifactId>
 <version>1.0</version>
</project>

That’s all you need in your pom.xml. Running mvn install from the command line will
 process resources, compile source, execute unit tests, create a
 JAR, and install the JAR in a
 local repository for reuse in other projects. Without modification,
 you can run mvn site and then find
 an index.html file in target/site that contains links to Javadoc
 and a few reports about your source code.
Admittedly, this is the simplest possible example project: a
 project that contains only source code and produces a
 JAR; a project that follows Maven conventions and
 doesn’t require any dependencies or customization. If we want to start
 customizing the behavior, our pom.xml is going to grow in size, and in
 the largest of projects, you can see collections of very complex Maven
 POMs that contain a great deal of plugin
 customization and dependency declarations. But even when your
 project’s POM files become more substantial, they
 hold an entirely different kind of information from the build file of
 a similarly sized project using Ant. Maven POMs
 contain declarations: “This is a JAR project,” and
 “The source code is in src/main/java.” Ant build files contain
 explicit instructions: “This is project,” “The source is in src/main/java,” “Run javac against this directory,” “Put the
 results in target/classses,”
 “Create a JAR from the”, etc. Where Ant has to
 be explicit about the process, there is something “built-in” to Maven
 that just knows where the source code is and how it should be
 processed.
The differences between Ant and Maven in this example
 are:
	Apache Ant
		Ant doesn’t have formal conventions such as a common
 project directory structure; you have to tell Ant
 exactly where to find the source and
 where to put the output. Informal conventions have emerged
 over time, but they haven’t been codified into the
 product.

	Ant is procedural; you have to tell Ant exactly what
 to do and when to do it. You have to tell it to compile,
 then copy, then compress.

	Ant doesn’t have a lifecycle; you have to define
 goals and goal dependencies. You have to attach a sequence
 of tasks to each goal manually.

	Apache Maven
		Maven has conventions: in the example, it already
 knew where your source code was because you followed the
 convention. It put the bytecode in target/classes, and it produced
 a JAR file in target.

	Maven is declarative; all you had to do was create a
 pom.xml file and put
 your source in the default directory. Maven took care of
 the rest.

	Maven has a lifecycle, which you invoked when you
 executed mvn install.
 This command told Maven to execute a series of sequence
 steps until it reached the lifecycle. As a side effect of
 this journey through the lifecycle, Maven executed a
 number of default plugin goals that did things such as
 compile and create a JAR.

Maven has built-in intelligence about common project tasks in
 the form of Maven plugins. If you want to write and execute unit
 tests, all you need to do is write the tests, place them in ${basedir}/src/test/java, add a test-scoped dependency on either TestNG or
 JUnit, and run mvn test. If you
 want to deploy a web application and not a JAR, all
 you need to do is change you project type to WAR and put your docroot
 in ${basedir}/src/main/webapp.
 Sure, you could do all of this with Ant, but you would be writing the
 instructions from scratch. In Ant, you would first have to figure out
 where the JUnit JAR file should be, and then you
 would have to create a classpath that includes the JUnit
 JAR file, and then you would tell Ant where it
 should look for test source code, write a goal that compiles the test
 source to bytecode, and execute the unit tests with JUnit.
Without supporting technologies such as antlibs and Ivy (and
 even with these supporting technologies), Ant has the feeling of a
 custom procedural build. An efficient set of Maven
 POMs in a project that adheres to Maven’s assumed
 conventions has surprisingly little XML compared to
 the Ant alternative. Another benefit of Maven is the reliance on
 widely shared Maven plugins. Everyone uses the Maven Surefire plugin
 for unit testing, and if someone adds support for a new unit testing
 framework, you can gain new capabilities in your own build just by
 incrementing the version of a particular Maven plugin in your
 project’s POM.
The decision to use Maven or Ant isn’t a binary one, and Ant
 still has a place in a complex build. If your current build contains
 some highly customized process, or if you’ve written some Ant scripts
 to complete a specific process in a specific way that cannot be
 adapted to the Maven standards, you can still use these scripts with
 Maven. Ant is made available as a core Maven plugin. Custom Maven
 plugins can be implemented in Ant, and Maven projects can be
 configured to execute Ant scripts within the Maven project
 lifecycle.

Summary

This introduction has been kept purposefully short. We have
 covered a basic outline of what Maven is and how it stacks up to and
 improves on other build tools throughout time. The next chapter will
 explain how to install and run Maven, and Chapter 3 will dive into a simple project and show
 how Maven can perform phenomenal tasks with the smallest amount of
 configuration.

Chapter 2. Installing and Running Maven

This chapter contains very detailed instructions for installing
 Maven on a number of different platforms. Instead of assuming a
 level of familiarity with installing software and setting environment
 variables, we’ve opted to be as thorough as possible to minimize any
 problems that might arise due to a partial installation. The only thing
 this chapter assumes is that you’ve already installed a suitable Java
 Development Kit (JDK). If you are just interested in installation, you
 can move on to the rest of the book after reading through the “Downloading Maven” and
 “Installing Maven”
 sections. If you are interested in the details of your Maven
 installation, this entire chapter will give you an overview of what
 you’ve installed and the Apache Software License.
Verify Your Java Installation

Although Maven can run on Java 1.4, this book assumes that you
 are running at least Java 5. Go with the most recent stable
 JDK available for your operating system. Either Java 5 or Java 6 will
 work with all of the examples in this book:
% java -version
java version "1.6.0_02"
Java(TM) SE Runtime Environment (build 1.6.0_02-b06)
Java HotSpot(TM) Client VM (build 1.6.0_02-b06, mixed mode, sharing)
Maven works with all certified Java-compatible development kits,
 and a few noncertified implementations of Java. The examples in this
 book were written and tested against the official Java Development Kit
 releases downloaded from the Sun Microsystems web site. If you’re
 working with a Linux distribution, you may need to download Sun’s
 JDK yourself and make sure it’s the version you’re
 invoking (by running java -version, as shown
 earlier). Now that Sun has open sourced Java, this will hopefully
 improve in the future, and we’ll get the Sun Java Runtime Environment
 (JRE) and JDK by default even in
 purist distributions. Until that day, you may need to do some of your
 own downloading.

Downloading Maven

You can download Maven from the Apache Maven project web site by
 going to http://maven.apache.org/download.html.
When downloading Maven, make sure you choose the latest version
 of Apache Maven from the web site. The latest version of Maven at the
 time of this writing is Maven 2.0.9. If you are not familiar with the
 Apache Software License, you should get acquainted with the terms of
 the license before you start using the product. More information on
 the Apache Software License can be found in About the Apache Software License,” later in this
 chapter.

Installing Maven

There are wide differences between operating systems such as Mac
 OS X and Microsoft Windows, and there are subtle
 differences between different versions of Windows. Luckily, the
 process of installing Maven on all of these operating systems is
 relatively painless and straightforward. The following sections
 outline the recommended best-practice for installing Maven on a
 variety of operating systems.
Installing Maven on Mac OS X

You can download a binary release of Maven from http://maven.apache.org/download.html. Download the
 current release of Maven in a format that is convenient for you to
 work with. Pick an appropriate place for it to live, and expand the
 archive there. If you expanded the archive into the directory
 /usr/local/maven-2.0.9, you may
 want to create a symbolic link to make it easier to work with and to
 avoid the need to change any environment configuration when you
 upgrade to a newer version:
/usr/local % ln -s maven-2.0.9 maven
/usr/local % export M2_HOME=/usr/local/maven
/usr/local % export PATH=${M2_HOME}/bin:${PATH}
Once Maven is installed, you need to do a couple of things to
 make it work correctly. You need to add its bin directory in the distribution (in
 this example, /usr/local/maven/bin) to your command
 path. You also need to set the environment variable
 M2_HOME to the top-level directory you installed (in this
 example, /usr/local/maven).
Note
Installation instructions are the same for both OS
 X Tiger and Leopard. It has been reported that Maven
 2.0.6 is shipping with a preview release of Xcode. If you have
 installed XCode, run mvn from
 the command line to check availability. XCode installs Maven in
 /usr/share/maven. We
 recommend installing the most recent version of Maven 2.0.9, as
 there have been a number of bug fixes and improvements since Maven
 2.0.9 was released.

You’ll need to add both M2_HOME and
 PATH to a script that will run every time you log in.
 To do this, add the following lines to .bash_login:
export M2_HOME=/usr/local/maven
export PATH=${M2_HOME}/bin:${PATH}
Once you’ve added these lines to your own environment, you
 will be able to run Maven from the command line.
Note
These installation instructions assume that you are running
 bash.

Installing Maven on Microsoft Windows

Installing Maven on Windows is very similar to installing
 Maven on Mac OS X, the main differences
 being the installation location and the setting of an environment
 variable. This book assumes a Maven installation directory located
 at c:\Program
 Files\maven-2.0.9, but it won’t make a difference if you
 install Maven in another directory as long as you configure the
 proper environment variables. Once you’ve unpacked Maven in the
 installation directory, you will need to set two environment
 variables—PATH and M2_HOME. To set
 these environment variables from the command line, type in
 the following commands:
C:\Users\tobrien > set M2_HOME=c:\Program Files\maven-2.0.9
C:\Users\tobrien > set PATH=%PATH%;%M2_HOME%\bin
Setting these environment variables on the command line will
 allow you to run Maven in your current session, but unless you add
 them to the system environment variables through the control panel,
 you’ll have to execute these two lines every time you log into your
 system. Set both M2_HOME and PATH to
 point to your Maven installation.

Installing Maven on Linux

To install Maven on a Linux machine, follow the exact
 procedure outlined in Installing Maven on Mac OS X,” earlier in this
 chapter.

Installing Maven on FreeBSD or OpenBSD

To install Maven on a FreeBSD or OpenBSD machine, follow the
 exact procedure outlined in Installing Maven on Mac OS X,” earlier in this
 chapter.

Testing a Maven Installation

Once Maven is installed, you can see if it is installed properly
 by running mvn -v from
 the command line. If Maven has been installed, you should see
 something resembling the following output:
~/examples $ mvn -v
Maven 2.0.9
If you see this output, you know that Maven has been
 successfully installed. If you do not see this output and your
 operating system cannot find the mvn command, make sure that your
 PATH and M2_HOME environment variables
 have been properly set.

Maven Installation Details

Maven’s download measures in at roughly 1.5 MiB.[1] It has attained such a slim download size because the core of Maven has been
 designed to retrieve plugins and dependencies from a remote repository
 on demand. When you start using Maven, it will start to download
 plugins to a local repository as described in the section User-Specific Configuration and Repository,” later in this chapter. In
 case you are curious, let’s take a quick look at what is in Maven’s installation directory:
/usr/local/maven $ ls -p1
LICENSE.txt
NOTICE.txt
README.txt
bin/
boot/
conf/
lib/
LICENSE.txt contains the
 software license for Apache Maven. This license is described in some detail
 later in the section About the Apache Software License.”
 NOTICE.txt contains some notices
 and attributions required by libraries that Maven depends on. README.txt contains some installation
 instructions. bin/ contains the
 mvn script that executes Maven. boot/ contains a JAR file (classwords-1.1.jar) that is responsible for
 creating the Class Loader in which Maven executes. conf/ contains a global settings.xml that can
 be used to customize the behavior of your Maven installation. If
 you need to customize Maven, it is customary to override any settings
 in a settings.xml file stored
 in ~/.m2. lib/ contains a single JAR file (maven-core-2.0.9-uber.jar) that contains
 the core of Maven.
User-Specific Configuration and Repository

Once you start using Maven extensively, you’ll notice that
 Maven has created some local user-specific configuration files and a
 local repository in your home directory. In ~/.m2, there will be:
	settings.xml
	A file containing user-specific configuration for
 authentication, repositories, and other
 information to customize the behavior of Maven.

	repository/
	This directory contains your local Maven repository.
 When you download a dependency from a remote Maven
 repository, Maven stores a copy of the dependency in your
 local repository.

Note
In Unix (and OS X), your home directory will be referred to
 using a tilde (i.e., ~/bin
 refers to /home/tobrien/bin).
 In Windows, we will also be using ~ to refer to your home directory. In
 Windows XP, your home directory is C:\Documents and Settings\tobrien, and
 in Windows Vista, your home directory is C:\Users\tobrien. From this point
 forward, you should translate paths such as ~/m2 to your operating system’s equivalent.

Upgrading a Maven Installation

If you’ve installed Maven on a Mac OS X or Unix machine
 according to the details given in Installing Maven on Mac OS X” and Installing Maven on Linux,” it should be easy to
 upgrade to newer versions of Maven when they become available.
 Simply install the newer version of Maven (/usr/local/maven-2.future) next to the
 existing version of Maven
 (/usr/local/maven-2.0.9). Then,
 switch the symbolic link /usr/local/maven from /usr/local/maven-2.0.9 to /usr/local/maven-2.future. Since you’ve
 already set your M2_HOME variable to point to
 /usr/local/maven, you won’t
 need to change any environment variables.
If you’ve installed Maven on a Windows machine, simply unpack
 Maven to c:\Program
 Files\maven-2.future and update your M2_HOME
 variable.

Getting Help with Maven

Although this book aims to be a comprehensive reference, there
 are going to be topics we miss and special situations and
 tips that are not covered. The core of Maven is very simple, but the
 real work in Maven happens in the plugins, and there are too many
 plugins available to cover them all in one book. When you encounter
 problems and features that are not covered in this book, we suggest
 searching for answers at the following locations:
	http://maven.apache.org
	This is the first place you should look; the Maven web
 site contains a wealth of information and documentation. Every
 plugin has a few pages of documentation, and it provides a
 series of “quick start” documents that will be helpful in
 addition to the contents of this book. Although the Maven site
 contains plenty of information, it can also be a frustrating,
 confusing, and overwhelming. A custom Google search box on the
 main Maven page will search known Maven sites for information.
 This provides better results than a generic Google
 search.

	Maven user mailing list
	The Maven user mailing list is the place for users to ask
 questions. Before you ask a question on the user mailing list,
 you will want to search for any previous discussion that might
 relate to your question. It is bad form to ask a question that
 has already been asked without first checking to see whether an
 answer already exists in the archives. There are a number of
 useful mailing list archive browsers; we’ve found Nabble to be
 the most useful. You can browse the user mailing list archives
 here: http://www.nabble.com/Maven---Users-f178.html.
 You can join the user mailing list by following the instructions
 available here: http://maven.apache.org/mail-lists.html.

	http://www.sonatype.com
	Sonatype maintains an online copy of this book and other
 tutorials related to Apache Maven.

Note
Despite the best efforts of some very dedicated Maven
 contributors, the Maven web site is poorly organized and full of
 incomplete (and sometimes misleading) snippets of documentation.
 Throughout the Maven community there is a lack of a common standards
 for plugin documentation. Some plugins are heavily documented,
 whereas others lack even the most basic instructions for usage.
 Often your best bet is to search for a solution in the archives of
 the user mailing list. If you really want to help, submit a patch to
 the Maven site (or this book).

Using the Maven Help Plugin

Throughout the book, we will be introducing Maven plugins and
 talking about Maven Project Object Model
 (POM) files, settings files, and profiles. There
 are going to be times when you need a tool to help you make sense of
 some of the models that Maven is using and what goals are available on
 a specific plugin. The Maven Help plugin allows you to list active
 Maven profiles, display an effective POM, print the
 effective settings, or list the attributes of a Maven plugin.
Note
For a conceptual overview of the POM and plugins, see Chapter 3.

The Maven Help plugin has four goals. The first three
 goals—active-profiles, effective-pom, and
 effective-settings—describe a particular project
 and must be run in the base directory of a project. The last
 goal—describe—is slightly more complex, showing you
 information about a plugin or a plugin goal. The following commands
 provide some general information about the four goals:
	help:active-profiles
	Lists the profiles (project, user, global) that are active
 for the build.

	help:effective-pom
	Displays the effective POM for the
 current build, with the active profiles factored in.

	help:effective-settings
	Prints out the calculated settings for the project, given
 any profile enhancement and the inheritance of the global
 settings into the user-level settings.

	help:describe
	Describes the attributes of a plugin. This need not run
 under an existing project directory. You must give at least the
 groupId and artifactId of
 the plugin you wish to describe.

Describing a Maven Plugin

Once you start using Maven, you’ll spend most of your time
 trying to get more information about plugins. You’ll want to
 know: How do plugins work? What are the configuration parameters?
 What are the goals? The help:describe goal is
 something you’ll use very frequently to retrieve this information.
 With the plugin parameter, you can specify a
 plugin you wish to investigate, passing in either the plugin prefix
 (e.g., maven-help-plugin as
 help) or the
 groupId:artifact[:version], where
 version is optional. For example, the
 following command uses the Help plugin’s describe goal to print out information
 about the Maven Help plugin:
$ mvn help:describe -Dplugin=help
...
Group Id: org.apache.maven.plugins
Artifact Id: maven-help-plugin
Version: 2.0.1
Goal Prefix: help
Description:

The Maven Help plugin provides goals aimed at helping to make sense out of
 the build environment. It includes the ability to view the effective
 POM and settings files, after inheritance and active profiles
 have been applied, as well as a describe a particular plugin goal to give
 usage information.
...

Executing the describe goal
 with the plugin parameter prints out the Maven coordinates for the
 plugin, the goal prefix, and a brief description of the plugin.
 Although this information is helpful, you’ll usually be looking for
 more detail than this. If you want the Help plugin to print a full
 list of goals with parameters, execute the
 help:describe goal with the parameter
 full as follows:
$ mvn help:describe -Dplugin=help -Dfull
...
Group Id: org.apache.maven.plugins
Artifact Id: maven-help-plugin
Version: 2.0.1
Goal Prefix: help
Description:

The Maven Help plugin provides goals aimed at helping to make sense out of
 the build environment. It includes the ability to view the effective
 POM and settings files, after inheritance and active profiles have been
 applied, as well as a describe a particular plugin goal to give usage
 information.

Mojos:

===
Goal: 'active-profiles'
===
Description:

Lists the profiles which are currently active for this build.

Implementation: org.apache.maven.plugins.help.ActiveProfilesMojo
Language: java

Parameters:

[0] Name: output
Type: java.io.File
Required: false
Directly editable: true
Description:

This is an optional parameter for a file destination for the output of
this mojo...the listing of active profiles per project.

[1] Name: projects
Type: java.util.List
Required: true
Directly editable: false
Description:

This is the list of projects currently slated to be built by Maven.

This mojo doesn't have any component requirements.
===

... remove the other goals ...

This option is great for discovering all of a plugin’s goals
 as well as their parameters. But sometimes this gives you far more
 information than you need. To get information about a single goal,
 set the mojo parameter as well as the
 plugin parameter. The following command lists all
 of the
 information about the Compiler plugin’s compile
 goal:
$ mvn help:describe -Dplugin=compiler -Dmojo=compile -Dfull
Note
What’s a Mojo? In Maven, a plugin goal is known as a
 Mojo.

About the Apache Software License

Apache Maven is released under the Apache License, version 2.0.
 If you want to read this license, you can look at ${M2_HOME}/LICENSE.txt or read it on the
 Open Source Initiative’s web site at http://www.opensource.org/licenses/apache2.0.php.
Chances are good that, if you are reading this book, you are not
 a lawyer. If you are wondering what the Apache License, version 2.0
 means, the Apache Software Foundation has assembled a very helpful
 Frequently Asked Questions (FAQ) page about the license, available
 here: http://www.apache.org/foundation/licence-FAQ.html.
 Here’s the answer to the frequently asked question “I am not a lawyer.
 What does it all mean?”:
[This license] allows you to:
	Freely download and use Apache software, in whole or in
 part, for personal, company internal, or commercial
 purposes;

	Use Apache software in packages or distributions that you
 create.

It forbids you to:
	Redistribute any piece of Apache-originated software
 without proper attribution;

	Use any marks owned by the Apache Software Foundation in
 any way that might state or imply that the Foundation endorses
 your distribution;

	Use any marks owned by the Apache Software Foundation in
 any way that might state or imply that you created the Apache
 software in question.

It requires you to:
	Include a copy of the license in any redistribution you
 may make that includes Apache software;

	Provide clear attribution to the Apache Software
 Foundation for any distributions that include Apache
 software.

It does not require you to:
	Include the source of the Apache software itself, or of
 any modifications you may have made to it, in any redistribution
 you may assemble that includes it;

	Submit changes that you make to the software back to the
 Apache Software Foundation (though such feedback is
 encouraged).

This ends the installation information. The next part of the
 book contains Maven examples.

[1] Ever purchased a 200 GB hard drive only to realize that it
 showed up as less than 200 GiB when you installed it? Computers
 understand Gibibytes, but retailers sell products using Gigabytes.
 MiB stands for Mebibyte, which is defined as
 220 or
 10242. These binary prefix standards
 are endorsed by the Institute of Electrical and Electronics
 Engineers (IEEE), the International Committee
 for Weights and Measures (CIPM), and the
 International Electrotechnical Commission
 (IEC). For more information about Kibibytes,
 Mebibytes, Gibibytes, and Tebibytes, see http://en.wikipedia.org/wiki/Mebibyte.

Part II. Maven by Example

The first Maven book was Maven: A Developer’s
 Notebook (O’Reilly). That book introduced Maven in a series
 of steps via a conversation between you and a colleague who already knew
 how to use Maven. The idea behind the (now-retired) Developer’s Notebook
 series was that developers learn best when they are sitting next to
 other developers and going through the same thought processes, learning
 to code by doing and experimenting. Although the series was successful,
 the Notebook format had limitations. Notebooks were designed to be
 “goal-focused” books that take you through a series of steps to achieve
 very specific goals. By contrast, larger reference books provide
 comprehensive material that covers the entirety of the topic.
If you read Maven: A Developer’s Notebook,
 you’ll learn how to create a simple project or a project that creates a
 WAR from a set of source files. But if you want to find out the
 specifics of something like the Assembly plugin, you’ll hit an impasse.
 Because there is currently no well-written reference material for Maven,
 you have to hunt through plugin documentation on the Maven web site or
 cull from a series of mailing lists. Once you really dig into Maven, you
 end up reading through thousands of HTML pages on the Maven site written
 by hundreds of developers, each with a different idea of what it means
 to document a plugin. Despite the best efforts of well-meaning
 volunteers, reading through plugin documentation on the Maven site is
 frustrating at best, and at worst, it’s a reason to abandon Maven. Quite
 often, Maven users get stuck because they just can’t find an
 answer.
This lack of an authoritative (or definitive) reference manual has
 held Maven back for a few years, and it has been something of a
 dampening force on Maven adoption. With Maven: The Definitive
 Guide, we intend to change that situation by providing a
 comprehensive reference in Part III. In Part
 II, we’re preserving the narrative progression of a Developer’s
 Notebook; it is valuable material that helps people learn Maven by
 example. Thus, here we “introduce by doing,” and in Part III, we fill in the blanks and dig into the
 details. Where Part III might use a reference
 table and a program listing detached from an example project, Part II is
 motivated by real examples.
After reading this part, you should have everything you need to
 start using Maven. You might need to refer to Part III only when you start customizing Maven by
 writing custom plugins or when you want more detail about specific
 plugins.

Chapter 3. A Simple Maven Project

Introduction

In this chapter, we introduce a simple project created from
 scratch using the Maven Archetype plugin. This elementary application
 provides us with the opportunity to discuss some core Maven concepts
 while you follow along with the development of the project.
Before you can start using Maven for complex, multimodule
 builds, we have to start with the basics. If you’ve used Maven before,
 you’ll notice that it does a good job of taking care of the details.
 Your builds tend to “just work,” and you only really need to dive into
 the details of Maven when you want to customize the default behavior
 or write a custom plugin. However, when you do need to dive into the
 details, a thorough understanding of the core concepts is essential.
 This chapter aims to introduce you to the simplest possible Maven
 project and then presents some of the core concepts that make Maven a
 solid build platform. After reading it, you’ll have an fundamental
 understanding of the build lifecycle, Maven repositories, dependency
 management, and the Project Object Model
 (POM).
Downloading This Chapter’s Example

This chapter develops a very simple example that will be used
 to explore core concepts of Maven. If you follow the
 steps as described, you shouldn’t need to download the examples to
 recreate the code produced by Maven. We will be using the Maven
 Archetype plugin to create this simple project, and in this chapter
 we won’t modify the project in any way. If you would prefer to read
 this chapter with the final example source code, the example project
 may be downloaded with the book’s example code at http://www.sonatype.com/book/mvn-examples-1.0.zip or
 http://www.sonatype.com/book/mvn-examples-1.0.tar.gz.
 Unzip this archive in any directory, and then go to the ch03/ directory. There you will see a
 directory named simple/, which
 contains the source code for this chapter. If you wish to follow
 along with the example code in a web browser, go to http://www.sonatype.com/book/examples-1.0
 and click on the ch03/ directory.

Creating a Simple Project

To start a new Maven project, use the Maven Archetype plugin
 from the command line:
$ mvn archetype:create -DgroupId=org.sonatype.mavenbook.ch03 \
 -DartifactId=simple \
 -DpackageName=org.sonatype.mavenbook
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] artifact org.apache.maven.plugins:maven-archetype-plugin: checking for \
 updates from central
[INFO] ---
[INFO] Building Maven Default Project
[INFO] task-segment: [archetype:create] (aggregator-style)
[INFO] --
[INFO] [archetype:create]
[INFO] artifact org.apache.maven.archetypes:maven-archetype-quickstart: \
 checking for updates from central
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook.ch03
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook
[INFO] Parameter: basedir, Value: /Users/tobrien/svnw/sonatype/examples
[INFO] Parameter: package, Value: org.sonatype.mavenbook
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: simple
[INFO] * End of debug info from resources from generated POM *
[INFO] Archetype created in dir: /Users/tobrien/svnw/sonatype/examples/simple

mvn is the Maven 2 command.
 archetype:create is called a Maven goal. If you
 are familiar with Apache Ant, a Maven goal is analogous to
 an Ant target; both describe a unit of work to be completed in a
 build. The -Dname=value pairs are arguments that
 are passed to the goal and take the form of -D
 properties, similar to the system property options you might pass to
 the Java Virtual Machine via the command line. The purpose of the
 archetype:create goal is to quickly create a
 project from an archetype. In this context, an archetype is defined as “an original model or type
 after which other similar things are patterned; a prototype.”[2] A number of archetypes are available in Maven for
 anything from a simple Swing application to a complex web application.
 In this chapter, we are going to use the most basic archetype to
 create a simple skeleton starter project. The plugin is the prefix
 archetype, and the goal is create.
Once we’ve generated a project, take a look at the
 directory structure Maven created under the simple
 directory:
simple/[image: 1]
simple/pom.xml[image: 2]
 /src/
 /src/main/[image: 3]
 /main/java
 /src/test/[image: 4]
 /test/java
This generated directory adheres to the Maven Standard
 Directory Layout. We’ll get into more details later in this
 chapter, but for now, let’s just try to understand these few basic
 directories:
	[image: 1]
	The Maven Archetype plugin creates a directory that matches
 the artifactId. Simple. This is known as the
 project’s base directory.

	[image: 2]
	Every Maven project has what is known as a Project Object
 Model (POM) in a file named pom.xml. This file describes the
 project, configures plugins, and declares dependencies.

	[image: 3]
	Our project’s source code and resources are placed
 under src/main. In
 the case of our simple Java project, this will consist of a few Java classes and some
 properties files. In another project, this could be the document
 root of a web application or configuration files for an
 application server. In a Java project, Java classes are placed in
 src/main/java, and classpath resources are placed in src/main/resources.

	[image: 4]
	Our project’s test cases are located in src/test.
 Under this directory, Java classes such as JUnit or TestNG tests
 are placed in src/test/java,
 and classpath resources for tests are located in src/test/resources.

The Maven Archetype plugin generated a single class
 org.sonatype.mavenbook.App, which is a 13-line
 Java class with a static main function that prints out a
 message:
package org.sonatype.mavenbook;

/**
 * Hello world!
 *
 */
public class App
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

The simplest Maven archetype generates the simplest possible
 program: a program that prints “Hello World!” to standard
 output.

Building a Simple Project

Once you have created the project with the Maven Archetype
 plugin by following the directions from the previous section (Creating a Simple Project”) you will want to build and package
 the application. To do so, run mvn
 install from the directory that contains the pom.xml:
$ mvn install
[INFO] Scanning for projects...
[INFO] ---
[INFO] Building simple
[INFO] task-segment: [install]
[INFO] ---
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Compiling 1 source file to /simple/target/classes
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Compiling 1 source file to /simple/target/test-classes
[INFO] [surefire:test]
[INFO] Surefire report directory: /simple/target/surefire-reports

 T E S T S

Running org.sonatype.mavenbook.AppTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.105 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] [jar:jar]
[INFO] Building jar: /simple/target/simple-1.0-SNAPSHOT.jar
[INFO] [install:install]
[INFO] Installing /simple/target/simple-1.0-SNAPSHOT.jar to \
 ~/.m2/repository/org/sonatype/mavenbook/ch03/simple/1.0-SNAPSHOT/ \
 simple-1.0-SNAPSHOT.jar

You’ve just created, compiled, tested, packaged, and installed
 the simplest possible Maven project. To prove to yourself that this
 program works, run it from the command line:
$ java -cp target/simple-1.0-SNAPSHOT.jar org.sonatype.mavenbook.App
Hello World!

Simple Project Object Model

When Maven executes, it looks to the Project Object Model
 for information about the project. The
 POM answers such questions as: What type of project
 is this? What is the project’s name? Are there any build
 customizations for this project? Example 3-1 shows the default pom.xml file created by the Maven Archetype
 plugin’s create goal.
Example 3-1. Simple project’s pom.xml file
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.ch03</groupId>
 <artifactId>simple</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>simple</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

This pom.xml file is the
 most basic POM you will ever deal with for a Maven
 project. Usually a POM file is considerably more
 complex, defining multiple dependencies and customizing plugin
 behavior. The first few elements—groupId,
 artifactId, packaging,
 version—are known as the Maven coordinates, which uniquely identify
 a project. name and url are
 descriptive elements of the POM, providing a
 human-readable name and associating the project with a project web
 site. Lastly, the dependencies
 element defines a single, test-scoped dependency on a unit testing
 framework called JUnit. These topics will be further introduced in the
 next section, Core Concepts,” and in Chapter 9. All you need to know at this point is
 that the pom.xml is the file that
 makes Maven go.
Maven always executes against an effective
 POM, a combination of settings from this project’s
 pom.xml, all parent
 POMs, a Super POM defined within
 Maven, user-defined settings, and active profiles. All projects
 ultimately extend the Super POM, which defines a
 set of sensible default configuration settings and which is fully
 explained in Chapter 9. Although your
 project might have a relatively minimal pom.xml, the contents of your project’s
 POM are interpolated with the contents of all
 parent POMs, user settings, and any active
 profiles. To see this “effective” POM, run the
 following command in the simple project’s base directory:
$ mvn help:effective-pom
When you run this, you should see a much larger
 POM that exposes the default settings of Maven.
 This goal can come in handy if you are trying to debug a build and
 want to see how all of the current project’s ancestor POMs are
 contributing to the effective POM. For more information about the
 Maven Help plugin, see Using the Maven Help Plugin” in
 Chapter 2.

Core Concepts

Now that we’ve just run Maven for the first time, this is a good
 point to introduce a few of the core concepts of Maven. In
 Example 3-1, you generated a project
 that consisted of a POM and some code assembled in
 the Maven Standard Directory Layout. You then executed Maven with a
 lifecycle phase as an argument that prompted Maven to execute a series
 of Maven plugin goals. Lastly, you installed a Maven artifact into
 your local repository. Wait—what is a “lifecycle”? What is a “local
 repository”? The following section defines some of Maven’s central
 concepts.
Maven Plugins and Goals

In the previous section, we ran Maven with two different types
 of command-line arguments. The first command was a
 single plugin goal, the create goal of the
 Archetype plugin. The second execution of Maven was a lifecycle
 phase, install. To execute a single Maven plugin goal, we used the
 syntax mvn archetype:create,
 where archetype is the identifier of a plugin and
 create is the identifier of a goal. When Maven
 executes a plugin goal, it prints out the plugin identifier and goal
 identifier to standard output:
$ mvn archetype:create -DgroupId=org.sonatype.mavenbook.ch03 \
 -DartifactId=simple \
 -DpackageName=org.sonatype.mavenbook
...
[INFO] [archetype:create]
[INFO] artifact org.apache.maven.archetypes:maven-archetype-quickstart: \
 checking for updates from central
...

A Maven plugin is a collection of one or more goals (see Figure 3-1).
 Examples of Maven plugins can be simple core plugins such as the Jar
 plugin that contains goals for creating JAR
 files, the Compiler plugin that contains goals for compiling source
 code and unit tests, or the Surefire plugin that contains goals for
 executing unit tests and generating reports. Other, more specialized
 Maven plugins include the Hibernate3 plugin, for integration with
 the popular persistence library Hibernate, and the JRuby plugin,
 which allows you to execute Ruby as part of a Maven build or to
 write Maven plugins in Ruby. Maven also provides you with the
 ability to define custom plugins. A custom plugin can be written in
 any number of languages, including Java, Ant, Groovy, BeanShell,
 and, as previously mentioned, Ruby.
[image: A plugin contains goals]

Figure 3-1. A plugin contains goals

A goal is a specific task that may be executed as a
 standalone goal or along with other goals as part of a larger
 build. A goal is a “unit of work” in Maven. Examples of goals
 include the compile goal in the Compiler plugin,
 which compiles all of the source code for a project, or the
 test goal of the Surefire plugin, which can
 execute unit tests. Goals are configured via configuration
 properties that can be used to customize behavior. For example, the
 compile goal of the Compiler plugin defines a set
 of configuration parameters
 that allow you to specify the target JDK version or whether to use
 the compiler optimizations. In
 the previous example, we passed in the configuration parameters groupId
 and artifactId to the create
 goal of the Archetype plugin via the command-line parameters
 -DgroupId=org.sonatype.mavenbook.ch03 and
 -DartifactId=simple. We also passed the
 packageName parameter to the create goal as
 org.sonatype.mavenbook. If we had omitted the
 packageName parameter, the package name would
 have defaulted to
 org.sonatype.mavenbook.ch03.
Note
When referring to a plugin goal, we frequently use the
 shorthand notation: pluginId:goalId.
 For example, when referring to the create goal in the Archetype plugin,
 we write archetype:create.

Goals define parameters that can define sensible default
 values. In the
 archetype:create example, we
 did not specify what kind of archetype the goal was to create on our
 command line; we simply passed in a groupId and
 an artifactId. This is our first brush
 with convention over configuration.
 The convention, or default, for the create goal
 is to create a simple project called Quickstart. The
 create goal defines a configuration property
 archetypeArtifactId that has a default value of
 maven-archetype-quickstart.
 The Quickstart archetype generates a minimal project shell that
 contains a POM and a single class. The Archetype
 plugin is far more powerful than this first example suggests, but it
 is a great way to get new projects started fast. Later in this book,
 we’ll show you how the Archetype plugin can be used to generate more
 complex projects such as web applications, and how you can use the
 Archetype plugin to define your own set of projects.
The core of Maven has little to do with the specific tasks
 involved in your project’s build. By itself, Maven doesn’t know how
 to compile your code or even how to make a JAR
 file. It delegates all of this work to Maven plugins like the
 Compiler plugin and the Jar plugin, which are downloaded on an
 as-needed basis and periodically updated from the central Maven
 repository. When you download Maven, you are getting the core of
 Maven, which consists of a very basic shell that knows only how to
 parse the command line, manage a classpath, parse a
 POM file, and download Maven plugins as needed.
 By keeping the Compiler plugin separate from Maven’s core and
 providing for an update mechanism, Maven makes it easier for users
 to have access to the latest options in the compiler. In this way,
 Maven plugins allow for universal reusability of common build logic.
 You are not defining the compile task in a build file; you are using
 a Compiler plugin that is shared by every user of Maven. If there is
 an improvement to the Compiler plugin, every project that uses Maven
 can immediately benefit from this change. (And, if you don’t like
 the Compiler plugin, you can override it with your own
 implementation.)

Maven Lifecycle

The second command we ran in the previous section was mvn install.
 This command didn’t specify a plugin goal; instead, it specified a
 Maven lifecycle phase. A phase is a step in what Maven calls the
 “build lifecycle.” The build lifecycle is an ordered sequence of
 phases involved in building a project. Maven can support a number of
 different lifecycles, but the one that’s most often used is the
 default Maven lifecycle, which begins with a phase to
 validate the basic integrity of the project and ends with a phase
 that involves deploying a project to production. Lifecycle phases
 are intentionally vague, defined solely as validation, testing, or
 deployment, and they may mean different things to different
 projects. For example, the package phase in a
 project that produces a JAR, means “package this
 project into a JAR”; in a project that produces a web application,
 the package phase may produce a
 WAR file. Figure 3-2
 shows a simplified representation of the default Maven
 lifecycle.
[image: A lifecycle is a sequence of phases]

Figure 3-2. A lifecycle is a sequence of phases

Plugin goals can be attached to a lifecycle phase. As Maven moves through the
 phases in a lifecycle, it will execute the goals attached to each
 particular phase. Each phase may have zero or more goals bound to
 it. In the previous section, when you ran mvn install, you might have noticed that
 more than one goal was executed. Examine the output after running
 mvn install and take note of the
 various goals that are executed. When this simple example reached
 the package phase, it executed the
 jar goal in the Jar plugin. Since our simple
 Quickstart project has (by default) a jar
 packaging type, the jar:jar goal is bound to the
 package phase (see Figure 3-3).
[image: A goal binds to a phase]

Figure 3-3. A goal binds to a phase

We know that the package phase is going to
 create a JAR file for a project with
 jar packaging. But what of the goals preceding
 it, such as compiler:compile and surefire:test? These goals are
 executed as Maven steps through the phases preceding
 package in the Maven lifecycle; executing a phase will first execute
 all proceeding phases in order, ending with the phase specified on
 the command line. Each phase corresponds to zero or more goals, and
 since we haven’t performed any plugin configuration or
 customization, this example binds a set of standard plugin goals to
 the default lifecycle. The following goals are executed in order
 when Maven walks through the default lifecycle ending with
 package:
	resources:resources
	The resources goal of the
 Resources plugin is bound to the
 process-resources phase. This goal copies
 all of the resources from src/main/resources and any other
 configured resource directories to the output
 directory.

	compiler:compile
	The compile goal of the Compiler
 plugin is bound to the compile
 phase. This goal compiles all of the source code from
 src/main/java or any
 other configured source directories to the output
 directory.

	resources:testResources
	The testResources goal of the
 Resources plugin is bound to the
 process-test-resources phase. This goal
 copies all of the resources from src/test/resources and any other
 configured test resource directories to a test output
 directory.

	compiler:testCompile
	The testCompile goal of the
 Compiler plugin is bound to the
 test-compile phase. This goal compiles test
 cases from src/test/java
 and any other configured test source directories to a test
 output directory.

	surefire:test
	The test goal of the Surefire plugin
 is bound to the test phase.
 This goal executes all of the tests and creates output files
 that capture detailed results. By default, this goal will
 terminate a build if there is a test failure.

	jar:jar
	The jar goal of the Jar plugin is
 bound to the package phase. This
 goal packages the output directory into a JAR file.

[image: Bound goals are run when their phases execute]

Figure 3-4. Bound goals are run when their phases execute

To summarize, when we run mvn
 install, Maven executes all phases up to
 install, and in the process of stepping through
 the lifecycle phases, it executes all goals bound to each phase (see
 Figure 3-4). Instead
 of executing a Maven lifecycle goal, you could achieve the same
 results by specifying a sequence of plugin goals as follows:
mvn resources:resources \
 compiler:compile \
 resources:testResources \
 compiler:testCompile \
 surefire:test \
 jar:jar

Executing the package phase is preferable
 to keeping track of all of the goals involved in a particular build.
 It also allows every project that uses Maven to adhere to a
 well-defined set of standards. The lifecycle is what allows a
 developer to jump from one Maven project to another without having
 to know very much about the details of each particular project’s
 build. If you can build one Maven project, you can build them
 all.

Maven Coordinates

The Archetype plugin created a project with a file
 named pom.xml. This is
 the Project Object Model (POM), a declarative
 description of a project. When Maven executes a goal, each goal has
 access to the information defined in a project’s
 POM. When the jar:jar goal
 needs to create a JAR file, it looks to the
 POM to find out what the JAR file’s name is. When
 the compiler:compile task compiles Java source
 code into bytecode, it looks to the POM to see if
 there are any parameters for the compile goal. Goals execute in the
 context of a POM. Goals are actions we wish to
 take upon a project, and a project is defined by a
 POM. The POM names the
 project, provides a set of unique identifiers (coordinates) for a
 project, and defines the relationships between this project and
 others through dependencies, parents, and prerequisites. A
 POM can also customize plugin behavior and supply
 information about the community and developers involved in a
 project.
Maven coordinates define a set of identifiers that can be used
 to uniquely identify a project, a dependency, or a plugin in a Maven
 POM. Take a look at the POM
 shown in Figure 3-5.
[image: A Maven project’s coordinates]

Figure 3-5. A Maven project’s coordinates

We’ve highlighted the Maven coordinates for this project:
 groupId, artifactId, version and
 packaging. These combined identifiers make up a
 project’s coordinates.[3] Just as in any other coordinate system, a Maven
 coordinate is an address for a specific point in “space”: from
 general to specific. Maven pinpoints a project via its coordinates
 when one project relates to another, either as a dependency, a
 plugin, or a parent project reference. Maven coordinates are often
 written using a colon as a delimiter in the following format:
 groupId:artifactId:packaging:version. In the pom.xml file for our current project, its
 coordinate is represented as
 mavenbook:my-app:jar:1.0-SNAPSHOT. This notation also
 applies to project dependencies. Our project relies on JUnit version
 3.8.1, and it contains a dependency on
 junit:junit:jar:3.8.1. Here is some more
 information about each part of the coordinate:
	groupId
	The group, company, team, organization, project, or
 other group. The convention for group identifiers is
 that they begin with the reverse domain name of the
 organization that creates the project. Projects from Sonatype
 would have a groupId that begins with
 com.sonatype, and projects in the Apache
 Software Foundation would have a groupId
 that starts with org.apache.

	artifactId
	A unique identifier under groupId
 that represents a single project.

	version
	A specific release of a project. Projects that have
 been released have a fixed version identifier that
 refers to a specific version of the project. Projects
 undergoing active development can use a special identifier
 that marks a version as a SNAPSHOT.

The packaging format of a project is also an important
 component in the Maven coordinates, but it isn’t a part of a
 project’s unique identifiers. A project’s
 groupId:artifactId:version make
 that project unique; you can’t have a project with the same three
 groupId, artifactId, and
 version identifiers.
	packaging
	The type of project, defaulting to
 jar, describing the packaged output produced by a
 project. A project with packaging jar
 produces a JAR archive; a project with
 packaging war produces a web
 application.

These four elements become the key to locating and using one
 particular project in the vast space of other “Mavenized” projects
 (see Figure 3-6). Maven repositories
 (public, private, and local) are organized according to these
 identifiers. When this project is installed into the local Maven
 repository, it immediately becomes locally available to any other
 project that wishes to use it. All you must do is add it as a
 dependency of another project using the unique Maven coordinates for
 a specific artifact.
[image: Maven space is a coordinate system of projects]

Figure 3-6. Maven space is a coordinate system of projects

Maven Repositories

When you run Maven for the first time, you will notice that
 Maven downloads a number of files from a remote Maven repository. If
 the simple project described in this chapter is the first time you
 run Maven, the first thing it will do is download the latest release
 of the Resources plugin when it triggers the
 resources:resource goal. In Maven, artifacts and
 plugins are retrieved from a remote repository when they are needed.
 One of the reasons the initial Maven download is so small (1.5 MiB)
 is that Maven doesn’t ship with much in the way of plugins. Maven
 ships with the bare minimum and fetches from a remote repository
 when it needs to. Maven ships with a default remote repository
 location (http://repo1.maven.org/maven2),
 which it uses to download the core Maven plugins and
 dependencies.
Often you will be writing a project that depends on libraries
 that are neither free nor publicly distributed. In that case, you
 will either need to set up a custom repository inside your
 organization’s network or download and install the dependencies
 manually. The default remote repositories can be replaced or
 augmented with references to custom Maven repositories maintained by
 your organization. Multiple products are available that allow
 organizations to manage and maintain mirrors of the public Maven
 repositories.
What makes a Maven repository? It’s defined by structure. A
 repository is a collection of project artifacts stored in a
 structure and format that can be easily understood by Maven.
 Everything is stored in a directory structure that closely matches a
 project’s coordinates. You can see this structure by opening up a
 web browser and going to the central Maven repository at http://repo1.maven.org/maven2/. You will notice that
 an artifact with the coordinates
 org.apache.commons:commons-email:1.1 is available
 under the directory /org/apache/commons/commons-email/1.1/ in
 a file named commons-email-1.1.jar. The standard for a
 Maven repository is to store an artifact in a directory relative to
 the root of the repository:
/<groupId>/<artifactId>/<version>/<artifactId>-<version>.<packaging>
Maven downloads artifacts and plugins from a remote repository
 to your local machine and stores these artifacts in your
 local Maven repository. Once Maven has downloaded an artifact from
 the remote repository, it never needs to download that artifact
 again, as Maven will always look for the artifact in the local
 repository before looking elsewhere. On Windows XP, your local
 repository is likely in C:\Documents and
 Settings\USERNAME\.m2\repository, and on Windows Vista,
 your local repository is in C:\Users\USERNAME\.m2\repository. On
 Unix systems, your local Maven repository is available in ~/.m2/repository. When you build a
 project such as the simple one you created in the previous section,
 the install phase executes a goal that installs
 your project’s artifacts in your local Maven repository.
In your local repository, you should be able to see the
 artifact created by your simple project. If you run the mvn install command, Maven will install
 our project’s artifact in your local repository. Try it:
$ mvn install
...
[INFO] [install:install]
[INFO] Installing .../simple-1.0-SNAPSHOT.jar to \
 ~/.m2/repository/org/sonatype/mavenbook/simple/1.0-SNAPSHOT/ \
 simple-1.0-SNAPSHOT.jar
...
As you can see from the output of this command, Maven
 installed our project’s JAR file into our local
 repository. Maven uses the local repository to share dependencies
 across local projects. If you develop two projects—project-a and project-b—and project-b depends on the artifact produced
 by project-a, Maven will retrieve
 project-a’s artifact from your
 local repository when it is building project-b. A Maven repository is both a
 local cache of artifacts downloaded from a remote repository and a
 mechanism for allowing your projects to depend on each other.

Maven’s Dependency Management

In this chapter’s simple example project, Maven resolved
 the coordinates of the JUnit
 dependency—junit:junit:3.8.1—to a path in a Maven
 repository: /junit/junit/3.8.1/junit-3.8.1.jar. The
 ability to locate an artifact in a repository based on Maven
 coordinates gives us the ability to define dependencies in a
 project’s POM. If you examine the simple
 project’s pom.xml file, you
 will see that there is a section that deals with dependencies, and that this section
 contains a single dependency—JUnit.
A more complex project would contain more than one dependency,
 or it might contain dependencies that depend on other artifacts.
 Support for transitive dependencies is one of Maven’s most
 powerful features. Let’s say your project depends on a library that,
 in turn, depends on 5 or 10 other libraries (Spring or Hibernate,
 for example). Instead of having to track down all of these
 dependencies and list them in your pom.xml explicitly, you can simply depend
 on the library you are interested in and Maven will add the
 dependencies of this library to your project’s dependencies
 implicitly. Maven will also take care of working out conflicts
 between dependencies, and provides you with the ability to customize
 the default behavior and exclude certain transitive
 dependencies.
Let’s take a look at a dependency that was downloaded to your
 local repository when you ran the previous example. Look in your
 local repository path under ~/.m2/repository/junit/junit/3.8.1/. If you
 have been following this chapter’s examples, there will be a file
 named junit-3.8.1.jar and a
 junit-3.8.1.pom file, in
 addition to a few checksum files that Maven uses to verify the
 authenticity of a downloaded artifact. Note that Maven doesn’t just
 download the JUnit JAR file, it also downloads a
 POM file for the JUnit dependency. The fact that
 Maven downloads POM files in addition to
 artifacts is central to Maven’s support for transitive
 dependencies.
When you install your project’s artifact in the local
 repository, you will also notice that Maven publishes a slightly
 modified version of the project’s pom.xml file in the same directory as the
 JAR file. Storing a POM file
 in the repository gives other projects information about this
 project, most importantly what dependencies it has. If Project B
 depends on Project A, it also depends on Project A’s dependencies.
 When Maven resolves a dependency artifact from a set of Maven
 coordinates, it also retrieves the POM and
 consults the dependencies POM to find any
 transitive dependences. These transitive dependencies are then added
 as dependencies of the current project.
A dependency in Maven isn’t just a JAR
 file; it’s a POM file that, in turn, may declare
 dependencies on other artifacts. These dependencies of dependencies
 are called transitive dependencies, and they are made possible by
 the fact that the Maven repository stores more than just bytecode;
 it stores metadata about artifacts. Figure 3-7 shows a
 possible scenario for transitive dependencies.
[image: Maven resolves transitive dependencies]

Figure 3-7. Maven resolves transitive dependencies

In this figure, project-a
 depends on project-b and project-c, project-b depends on project-d, and project-c depends on project-e. The full set of direct and
 transitive dependencies for project-a would be project-b, project-c, project-d, and project-e, but all project-a has to do is define a dependency
 on project-b and project-c. Transitive dependencies come in
 handy when your project relies on other projects with several small
 dependencies (such as Hibernate, Apache Struts, or the Spring
 Framework). Maven also provides you with the ability to exclude
 transitive dependencies from a project’s classpath.
Maven also provides for different dependency scopes. The
 simple project’s pom.xml contains a single
 dependency—junit:junit:jar:3.8.1—with a scope of
 test. When a dependency has a scope of
 test, it will not be available to the
 compile goal of the Compiler plugin. It will be
 added to the classpath for only the
 compiler:testCompile and
 surefire:test goals.
When you create a JAR for a project,
 dependencies are not bundled with the generated artifact; they are
 used only for compilation. When you use Maven to create a
 WAR or an EAR file, you can
 configure Maven to bundle dependencies with the generated artifact,
 and you can also configure it to exclude certain dependencies from
 the WAR file using the
 provided scope. The provided
 scope tells Maven that a dependency is needed for compilation, but
 should not be bundled with the output of a build. This scope comes
 in handy when you are developing a web application. You’ll need to
 compile your code against the Servlet specification, but you don’t
 want to include the Servlet API
 JAR in your web application’s WEB-INF/lib directory.

Site Generation and Reporting

Another important feature of Maven is its ability to
 generate documentation and reports. In your simple project’s
 directory, execute the following command:
$ mvn site

This will execute the site lifecycle phase.
 Unlike the default build lifecycle that manages generation of code,
 manipulation of resources, compilation, packaging, etc., this
 lifecycle is concerned solely with processing site content under the
 src/site directories and
 generating reports. After this command executes, you should see a
 project web site in the target/site directory. Load target/site/index.html and you should see
 a basic shell of a project site. This shell contains some reports
 under “Project Reports” in the lefthand navigation menu, and it also
 contains information about the project, the dependencies, and
 developers associated with it under “Project Information.” The
 simple project’s web site is mostly empty, since the
 POM contains very little information about itself
 beyond a coordinate, a name, a URL, and a single
 test dependency.
On this site, you’ll notice that some default reports are
 available. A unit test report communicates the success and failure
 of all unit tests in the project. Another report generates Javadoc
 for the project’s API. Maven provides a full
 range of configurable reports, such as the Clover report that
 examines unit test coverage, the JXR report that
 generates cross-referenced HTML source code
 listings useful for code reviews, the PMD report
 that analyzes source code for various coding problems, and the
 JDepend report that analyzes the dependencies between packages in a
 codebase. You can customize site reports by configuring which
 reports are included in a build via the pom.xml file.

Summary

In this chapter, we have created a simple project, packaged the
 project into a JAR file, installed that JAR into the Maven repository
 for use by other projects, and generated a site with documentation. We
 accomplished this without writing a single line of code or touching a
 single configuration file. We also took some time to develop
 definitions for some of the core concepts of Maven. In the next
 chapter, we’ll start customizing and modifying our project pom.xml file to add dependencies and
 configure unit tests.

[2] The American Heritage Dictionary of the English
 Language

[3] There is a fifth, seldom-used coordinate named
 classifier, which we will introduce later in
 the book. You can feel free to ignore classifiers for
 now.

Chapter 4. Customizing a Maven Project

Introduction

This chapter expands on the information introduced in Chapter 3. We’re going to create a simple
 project generated with the Maven Archetype plugin, add some
 dependencies, add some source code, and customize the project to suit
 our needs. By the end of this chapter, you will know how to start
 using Maven to create real projects.
Downloading This Chapter’s Example

We’ll be developing a useful program that interacts with a
 Yahoo! Weather web service. Although you should be able to follow
 along with this chapter without the example source code, we
 recommend that you download a copy of the code to use as a
 reference. This chapter’s example project may be downloaded with the
 book’s example code at http://www.sonatype.com/book/mvn-examples-1.0.zip or
 http://www.sonatype.com/book/mvn-examples-1.0.tar.gz.
 Unzip this archive in any directory, and then go to the ch04/ directory. There you will see a
 directory named simple-weather/, which contains the Maven
 project developed in this chapter. If you wish to follow along with
 the example code in a web browser, go to http://www.sonatype.com/book/examples-1.0
 and click on the ch04/
 directory.

Defining the Simple Weather Project

Before we start customizing this project, let’s take a step back
 and talk about the simple weather project. What is it? It’s
 a contrived example, created to demonstrate some of the features of
 Maven. It is an application that is representative of the kind you
 might need to build. The simple weather application is a basic
 command-line-driven application that takes a zip code and retrieves
 some data from the Yahoo! Weather RSS feed. It then
 parses the result and prints the result to standard output.
We chose this example for a number of reasons. First, it is
 straightforward. A user supplies input via the command line, the app
 takes that zip code, makes a request to Yahoo! Weather, parses the
 result, and formats some simple data to the screen. This example is a
 simple main() function and some supporting
 classes; there is no enterprise framework to introduce and explain,
 just XML parsing and some logging statements.
 Second, it gives us a good excuse to introduce some interesting
 libraries such as Velocity,
 Dom4J, and Log4J. Although this book is focused on Maven, we won’t shy
 away from an opportunity to introduce interesting utilities. Lastly,
 it is an example that can be introduced, developed, and deployed in a
 single chapter.
Yahoo! Weather RSS

Before you build this application, you should know something
 about the Yahoo! Weather RSS feed. To
 start with, the service is made available under the following
 terms:
The feeds are provided free of charge for use by individuals
 and nonprofit organizations for personal, noncommercial uses. We
 ask that you provide attribution to Yahoo! Weather in connection
 with your use of the feeds.

In other words, if you are thinking of integrating these feeds
 into your commercial web site, think again—this feed is for
 personal, noncommercial use. The use we’re encouraging in this
 chapter is personal educational use. For more information about
 these terms of service, see the Yahoo Weather! API
 documentation here: http://developer.yahoo.com/weather/.

Creating the Simple Weather Project

First, let’s use the Maven Archetype plugin to create a
 basic skeleton for the simple weather project. Execute the
 following command to create a new project:
$ mvn archetype:create -DgroupId=org.sonatype.mavenbook.ch04 \
 -DartifactId=simple-weather \
 -DpackageName=org.sonatype.mavenbook \
 -Dversion=1.0
[INFO] [archetype:create]
[INFO] artifact org.apache.maven.archetypes:maven-archetype-quickstart: \
 checking for updates from central
[INFO] --
[INFO] Using following parameters for creating Archetype: \
 maven-archetype-quickstart:RELEASE
[INFO] --
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook.ch04
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook
[INFO] Parameter: basedir, Value: ~/examples
[INFO] Parameter: package, Value: org.sonatype.mavenbook
[INFO] Parameter: version, Value: 1.0
[INFO] Parameter: artifactId, Value: simple-weather
[INFO] *** End of debug info from resources from generated POM ***
[INFO] Archetype created in dir: ~/examples/simple-weather
Once the Maven Archetype plugin creates the project, go into the
 simple-weather directory and take
 a look at the pom.xml file. You
 should see the XML document that’s shown in Example 4-1.
Example 4-1. Initial POM for the simple-weather project
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.ch04</groupId>
 <artifactId>simple-weather</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>
 <name>simple-weather2</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Notice that we passed in the version
 parameter to the archetype:create goal. This
 overrides the default value of 1.0-SNAPSHOT. In this project, we’re
 developing the 1.0 version of the
 simple-weather project, as you can see in
 the pom.xml version
 element.

Customize Project Information

Before we start writing code, let’s customize the
 project information a bit. We want to add some information
 about the project’s license, the organization, and a few of the
 developers associated with the project. This is all standard
 information you would expect to see in most projects. Example 4-2 shows the XML that
 supplies the organizational information, the licensing information,
 and the developer information.
Example 4-2. Adding organizational, legal, and developer information to
 the pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
...

 <name>simple-weather</name>
 <url>http://www.sonatype.com</url>

 <licenses>
 <license>
 <name>Apache 2</name>
 <url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
 <distribution>repo</distribution>
 <comments>A business-friendly OSS license</comments>
 </license>
 </licenses>

 <organization>
 <name>Sonatype</name>
 <url>http://www.sonatype.com</url>
 </organization>

 <developers>
 <developer>
 <id>jason</id>
 <name>Jason Van Zyl</name>
 <email>jason@maven.org</email>
 <url>http://www.sonatype.com</url>
 <organization>Sonatype</organization>
 <organizationUrl>http://www.sonatype.com</organizationUrl>
 <roles>
 <role>developer</role>
 </roles>
 <timezone>-6</timezone>
 </developer>
 </developers>
...
</project>

The ellipses in this example are shorthand for an abbreviated
 listing. Whenever you see a pom.xml with “...” directly after the
 project element’s start tag and directly before the
 end tag, it indicates that we are not showing the entire pom.xml file. In this case, the
 licenses, organization, and
 developers elements are all added before
 the dependencies element.

Add New Dependencies

The simple weather application will need to complete the
 following three tasks: retrieve XML data from
 Yahoo! Weather, parse the XML from Yahoo, and then
 print formatted output to standard output. To accomplish these tasks,
 we have to introduce some new dependencies to our project’s pom.xml. To parse the
 XML response from Yahoo!, we’ll use Dom4J and
 Jaxen; to format the output of this command-line program, we’ll use
 Velocity; and we also need to add a dependency for Log4J, which we
 will be using for logging. After we add these dependencies,
 our dependencies element will look like
 Example 4-3.
Example 4-3. Adding Dom4J, Jaxen, Velocity, and Log4J as
 dependencies
<project>
 [...]
 <dependencies>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.14</version>
 </dependency>
 <dependency>
 <groupId>dom4j</groupId>
 <artifactId>dom4j</artifactId>
 <version>1.6.1</version>
 </dependency>
 <dependency>
 <groupId>jaxen</groupId>
 <artifactId>jaxen</artifactId>
 <version>1.1.1</version>
 </dependency>
 <dependency>
 <groupId>velocity</groupId>
 <artifactId>velocity</artifactId>
 <version>1.5</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 [...]
</project>

As you can see, we’ve added four more dependency elements in
 addition to the existing element that was referencing the
 test-scoped dependency on JUnit. If you add these
 dependencies to the project’s pom.xml file and then run mvn install, you will see Maven downloading
 all of these dependencies and other transitive dependencies to your
 local Maven repository.
How did we find these dependencies? Did we just “know”
 the appropriate groupId and
 artifactId values? Some of the dependencies are so
 common (such as Log4J) that you’ll just remember what the
 groupId and artifactId are every
 time you need to use them. As for Velocity, Dom4J, and Jaxen, we
 located them using the very helpful web site http://www.mvnrepository.com. This site provides a
 search interface for the Maven repository that you can use to search
 for dependencies. To test this yourself, visit http://www.mvnrepository.com and search for some
 commonly used libraries such as Hibernate or the Spring Framework.
 When you search for an artifact on this site, it will show you an
 artifactId and all of the versions known to the
 central Maven repository. Clicking on the details for a specific
 version will load a page that contains the dependency element you’ll
 need to copy and paste into your own project’s pom.xml. If you need to find a dependency,
 you’ll want to check out http://www.mvnrepository.com,
 because you’ll often find that certain libraries have more than one
 groupId. With this tool, you can make sense of
 the Maven repository.

Simple Weather Source Code

The simple weather command-line application consists of the
 following five Java classes:
	org.sonatype.mavenbook.weather.Main
	The Main class contains
 a static main() function, and is the
 entry point for this system.

	org.sonatype.mavenbook.weather.Weather
	The Weather class is a
 straightforward Java bean that holds the location of our weather
 report and some key facts, such as the temperature and
 humidity.

	org.sonatype.mavenbook.weather.YahooRetriever
	The YahooRetriever class connects
 to Yahoo! Weather and returns an InputStream of the data from
 the feed.

	org.sonatype.mavenbook.weather.YahooParser
	The YahooParser class parses the
 XML from Yahoo! Weather, and returns a
 Weather object.

	org.sonatype.mavenbook.weather.WeatherFormatter
	The WeatherFormatter class takes a
 Weather object, creates a
 VelocityContext, and evaluates a Velocity
 template.

Although we won’t dwell on the code here, we will provide all
 the necessary code for you to get the example working. We assume that
 most readers have downloaded the examples that accompany this book,
 but we’re also mindful of those who may wish to follow the example in
 this chapter step-by-step. The sections that follow list classes in
 the simple-weather project. Each of these classes
 should be placed in the same package:
 org.sonatype.mavenbook.weather.
Let’s remove the App and the
 AppTest classes created by
 archetype:create and add our new package. In a
 Maven project, all of a project’s source code is stored in src/main/java. From the base directory of
 the new project, execute the following commands:
$ cd src/test/java/org/sonatype/mavenbook
$ rm AppTest.java
$ cd ../../../../../..
$ cd src/main/java/org/sonatype/mavenbook
$ rm App.java
$ mkdir weather
$ cd weather
This creates a new package named
 org.sonatype.mavenbook.weather. Now we need to put
 some classes in this directory. Using your favorite text editor,
 create a new file named Weather.java with the contents shown
 in Example 4-4.
Example 4-4. simple-weather’s Weather model object
package org.sonatype.mavenbook.weather;

public class Weather {
 private String city;
 private String region;
 private String country;
 private String condition;
 private String temp;
 private String chill;
 private String humidity;

 public Weather() {}

 public String getCity() { return city; }
 public void setCity(String city) { this.city = city; }

 public String getRegion() { return region; }
 public void setRegion(String region) { this.region = region; }

 public String getCountry() { return country; }
 public void setCountry(String country) { this.country = country; }

 public String getCondition() { return condition; }
 public void setCondition(String condition) { this.condition = condition; }

 public String getTemp() { return temp; }
 public void setTemp(String temp) { this.temp = temp; }

 public String getChill() { return chill; }
 public void setChill(String chill) { this.chill = chill; }

 public String getHumidity() { return humidity; }
 public void setHumidity(String humidity) { this.humidity = humidity; }
}

The Weather class defines a simple bean
 that is used to hold the weather information parsed from the Yahoo!
 Weather feed. This feed provides a wealth of information, from the
 sunrise and sunset times to the speed and direction of the wind. To
 keep this example as simple as possible, the
 Weather model object keeps track of only the
 temperature, chill, humidity, and a textual description of current
 conditions.
Now, in the same directory, create a file named Main.java. This Main
 class will hold the static main()
 function—the entry point for this example. See Example 4-5.
Example 4-5. simple-weather’s Main class
package org.sonatype.mavenbook.weather;

import java.io.InputStream;

import org.apache.log4j.PropertyConfigurator;

public class Main {

 public static void main(String[] args) throws Exception {
 // Configure Log4J
 PropertyConfigurator.configure(Main.class.getClassLoader()
 .getResource("log4j.properties"));

 // Read the Zip Code from the Command-line (if none supplied, use 60202)
 String zipcode = "60202";
 try {
 zipcode = args[0]);
 } catch(Exception e) {}

 // Start the program
 new Main(zipcode).start();
 }

 private String zip;

 public Main(String zip) {
 this.zip = zip;
 }

 public void start() throws Exception {
 // Retrieve Data
 InputStream dataIn = new YahooRetriever().retrieve(zip);

 // Parse Data
 Weather weather = new YahooParser().parse(dataIn);

 // Format (Print) Data
 System.out.print(new WeatherFormatter().format(weather));
 }
}

The main() function shown in this
 example configures Log4J by retrieving a resource from the classpath.
 It then tries to read a zip code from the command line. If an
 exception is thrown while it is trying to read the zip code, the
 program will default to a zip code of 60202. Once it has a zip code,
 it instantiates an instance of Main and calls
 the start() method on an instance of
 Main. The start()
 method calls out to the YahooRetriever to retrieve the
 weather XML. The
 YahooRetriever returns an InputStream, which is then passed to
 the YahooParser. The
 YahooParser parses the Yahoo! Weather
 XML and returns a Weather
 object. Finally, the WeatherFormatter takes a
 Weather object and spits out a formatted
 String, which is printed to standard
 output.
Create a file named YahooRetriever.java in the same directory
 with the contents shown in Example 4-6.
Example 4-6. simple-weather’s YahooRetriever class
package org.sonatype.mavenbook.weather;

import java.io.InputStream;
import java.net.URL;
import java.net.URLConnection;

import org.apache.log4j.Logger;

public class YahooRetriever {

 private static Logger log = Logger.getLogger(YahooRetriever.class);

 public InputStream retrieve(int zipcode) throws Exception {
 log.info("Retrieving Weather Data");
 String url = "http://weather.yahooapis.com/forecastrss?p=" + zipcode;
 URLConnection conn = new URL(url).openConnection();
 return conn.getInputStream();
 }
}

This simple class opens a URLConnection
 to the Yahoo! Weather API and returns an
 InputStream. To create something to parse this
 feed, we’ll need to create the YahooParser.java file in the same
 directory. See Example 4-7.
Example 4-7. simple-weather’s YahooParser class
package org.sonatype.mavenbook.weather;

import java.io.InputStream;
import java.util.HashMap;
import java.util.Map;

import org.apache.log4j.Logger;
import org.dom4j.Document;
import org.dom4j.DocumentFactory;
import org.dom4j.io.SAXReader;

public class YahooParser {

 private static Logger log = Logger.getLogger(YahooParser.class);

 public Weather parse(InputStream inputStream) throws Exception {
 Weather weather = new Weather();

 log.info("Creating XML Reader");
 SAXReader xmlReader = createXmlReader();
 Document doc = xmlReader.read(inputStream);

 log.info("Parsing XML Response");
 weather.setCity(doc.valueOf("/rss/channel/y:location/@city"));
 weather.setRegion(doc.valueOf("/rss/channel/y:location/@region"));
 weather.setCountry(doc.valueOf("/rss/channel/y:location/@country"));
 weather.setCondition(doc.valueOf("/rss/channel/item/y:condition/@text"));
 weather.setTemp(doc.valueOf("/rss/channel/item/y:condition/@temp"));
 weather.setChill(doc.valueOf("/rss/channel/y:wind/@chill"));
 weather.setHumidity(doc.valueOf("/rss/channel/y:atmosphere/@humidity"));

 return weather;
 }

 private SAXReader createXmlReader() {
 Map<String,String> uris = new HashMap<String,String>();
 uris.put("y", "http://xml.weather.yahoo.com/ns/rss/1.0");

 DocumentFactory factory = new DocumentFactory();
 factory.setXPathNamespaceURIs(uris);

 SAXReader xmlReader = new SAXReader();
 xmlReader.setDocumentFactory(factory);
 return xmlReader;
 }
}

The YahooParser is the most complex class
 in this example. We’re not going to dive into the details of Dom4J or
 Jaxen here, but the class deserves some explanation.
 YahooParser’s parse()
 method takes an InputStream and returns a
 Weather object. To do this, it needs to parse
 an XML document with Dom4J. Since we’re interested
 in elements under the Yahoo! Weather XML namespace,
 we need to create a namespace-aware SAXReader
 in the createXmlReader() method. Once we
 create this reader and parse the document, we get an
 org.dom4j.Document object back. Instead of
 iterating through child elements, we simply address each piece of
 information we need using an XPath expression. Dom4J provides the
 XML parsing in this example, and Jaxen provides the
 XPath capabilities.
Once we’ve created a Weather object, we
 need to format our output for human consumption. Create a file named
 WeatherFormatter.java in the same
 directory as the other classes. See Example 4-8.
Example 4-8. simple-weather’s WeatherFormatter class
package org.sonatype.mavenbook.weather;

import java.io.InputStreamReader;
import java.io.Reader;
import java.io.StringWriter;

import org.apache.log4j.Logger;
import org.apache.velocity.VelocityContext;
import org.apache.velocity.app.Velocity;

public class WeatherFormatter {

 private static Logger log = Logger.getLogger(WeatherFormatter.class);

 public String format(Weather weather) throws Exception {
 log.info("Formatting Weather Data");
 Reader reader =
 new InputStreamReader(getClass().getClassLoader()
 .getResourceAsStream("output.vm"));
 VelocityContext context = new VelocityContext();
 context.put("weather", weather);
 StringWriter writer = new StringWriter();
 Velocity.evaluate(context, writer, "", reader);
 return writer.toString();
 }
}

The WeatherFormatter uses Velocity to
 render a template. The format() method takes
 a Weather bean and spits out a formatted
 String. The first thing the
 format() method does is load a Velocity
 template from the classpath named output.vm. We then create a
 VelocityContext, which is populated with a
 single Weather object named
 weather. A StringWriter is
 created to hold the results of the template merge. The template is
 then evaluated with a call to
 Velocity.evaluate(), and the results are
 returned as a String.
Before we can run this example, we’ll need to add some resources
 to our
 classpath.

Add Resources

This project depends on two classpath resources: the Main class that configures Log4J
 with a classpath resource named log4j.properties, and the
 WeatherFormatter that references a Velocity
 template from the classpath named output.vm. Both of these resources need to
 be in the default package (or the root of the classpath).
To add these resources, we’ll need to create a new directory
 from the base directory of the project: src/main/resources. Since this directory
 was not created by the archetype:create task, we need to
 create it by executing the following commands from the project’s base
 directory:
$ cd src/main
$ mkdir resources
$ cd resources
Once the resources directory is created, we can add the two
 resources. First, add the log4j.properties file in the resources directory, as shown in Example 4-9.
Example 4-9. simple-weather’s Log4J configuration file
Set root category priority to INFO and its only appender to CONSOLE.
log4j.rootCategory=INFO, CONSOLE

CONSOLE is set to be a ConsoleAppender using a PatternLayout.
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.Threshold=INFO
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
log4j.appender.CONSOLE.layout.ConversionPattern=%-4r %-5p %c{1} %x - %m%n

This log4j.properties file
 simply configures Log4J to print all log messages to standard output
 using a PatternLayout. Lastly, we need to
 create the output.vm, which is
 the Velocity template used to render the output of this command-line
 program. Create output.vm in the
 resources/ directory. See Example 4-10.
Example 4-10. simple-weather’s output Velocity template

 Current Weather Conditions for:
 ${weather.city}, ${weather.region}, ${weather.country}

 Temperature: ${weather.temp}
 Condition: ${weather.condition}
 Humidity: ${weather.humidity}
 Wind Chill: ${weather.chill}

This template contains a number of references to a variable
 named weather, which is the
 Weather bean that was passed to the
 WeatherFormatter. The
 ${weather.temp} syntax is shorthand for retrieving
 and displaying the value of the temp bean property.
 Now that we have all of our project’s code in the right place, we can
 use Maven to run the example.

Running the Simple Weather Program

Using the Exec plugin from the Codehaus Mojo project, we
 can execute this program. To execute the
 Main class, run the following command from the
 project’s base directory:
$ mvn install
$ mvn exec:java -Dexec.mainClass=org.sonatype.mavenbook.weather.Main
...
[INFO] [exec:java]
0 INFO YahooRetriever - Retrieving Weather Data
134 INFO YahooParser - Creating XML Reader
333 INFO YahooParser - Parsing XML Response
420 INFO WeatherFormatter - Formatting Weather Data

 Current Weather Conditions for:
 Evanston, IL, US

 Temperature: 45
 Condition: Cloudy
 Humidity: 76
 Wind Chill: 38

...
We didn’t supply a command-line argument to the
 Main class, so we ended up with the default zip
 code, 60202. To supply a zip code, we would use the
 -Dexec.args argument and pass in a zip code:
$ mvn exec:java -Dexec.mainClass=org.sonatype.mavenbook.weather.Main \
 -Dexec.args="70112"
...
[INFO] [exec:java]
0 INFO YahooRetriever - Retrieving Weather Data
134 INFO YahooParser - Creating XML Reader
333 INFO YahooParser - Parsing XML Response
420 INFO WeatherFormatter - Formatting Weather Data

 Current Weather Conditions for:
 New Orleans, LA, US

 Temperature: 82
 Condition: Fair
 Humidity: 71
 Wind Chill: 82

[INFO] Finished at: Sun Aug 31 09:33:34 CDT 2008
...
As you can see, we’ve successfully executed the simple weather
 command-line tool, retrieved some data from Yahoo! Weather, parsed the
 result, and formatted the resulting data with Velocity. We achieved
 all of this without doing much more than writing our project’s source
 code and adding some minimal configuration to the pom.xml. Notice that no “build process” was
 involved. We didn’t need to define how or where the Java compiler
 compiles our source to bytecode, and we didn’t need to instruct the
 build system how to locate the bytecode when we executed the example
 application. All we needed to do to include a few dependencies was
 locate the appropriate Maven coordinates.
The Maven Exec Plugin

The Exec plugin allows you to execute Java classes and
 other scripts. It is not a core Maven plugin, but it is
 available from the Mojo project hosted by Codehaus. For a full
 description of the Exec plugin, run:
$ mvn help:describe -Dplugin=exec -Dfull
This will list all of the goals that are available in the
 Maven Exec plugin. The Help plugin will also list all of the valid
 parameters for the Exec plugin. If you would like to customize the
 behavior of the Exec plugin to pass in command-line arguments, you
 should use the documentation provided by
 help:describe as a guide. Although the Exec
 plugin is useful, you shouldn’t rely on it as a way to execute your
 application outside of running tests during development. For a more
 robust solution, use the Maven Assembly plugin that is demonstrated
 in the section Building a Packaged Command-Line Application,” later in
 this chapter.

Exploring Your Project Dependencies

The Exec plugin makes it possible for us to run the simplest
 weather program without having to load the appropriate dependencies
 into the classpath. In any other build system, we would have to copy
 all of the program dependencies into some sort of lib/ directory containing a collection of
 JAR files. Then, we would have to write a simple
 script that includes our program’s bytecode and all of our
 dependencies in a classpath. Only then could we run java org.sonatype.mavenbook.weather.Main.
 The Exec plugin leverages the fact that Maven already knows how to
 create and manage your classpath and dependencies.
This is convenient, but it’s also nice to know exactly what is
 being included in your project’s classpath. Although the project
 depends on a few libraries such as Dom4J, Log4J, Jaxen, and
 Velocity, it also relies on a few transitive dependencies. If you
 need to find out what is on the classpath, you can use the Maven
 Dependency plugin to print out a list of resolved dependencies. To print out this list
 for the simple weather project, execute the
 dependency:resolve goal:
$ mvn dependency:resolve
...
[INFO] [dependency:resolve]
[INFO]
[INFO] The following files have been resolved:
[INFO] com.ibm.icu:icu4j:jar:2.6.1 (scope = compile)
[INFO] commons-collections:commons-collections:jar:3.1 (scope = compile)
[INFO] commons-lang:commons-lang:jar:2.1 (scope = compile)
[INFO] dom4j:dom4j:jar:1.6.1 (scope = compile)
[INFO] jaxen:jaxen:jar:1.1.1 (scope = compile)
[INFO] jdom:jdom:jar:1.0 (scope = compile)
[INFO] junit:junit:jar:3.8.1 (scope = test)
[INFO] log4j:log4j:jar:1.2.14 (scope = compile)
[INFO] oro:oro:jar:2.0.8 (scope = compile)
[INFO] velocity:velocity:jar:1.5 (scope = compile)
[INFO] xalan:xalan:jar:2.6.0 (scope = compile)
[INFO] xerces:xercesImpl:jar:2.6.2 (scope = compile)
[INFO] xerces:xmlParserAPIs:jar:2.6.2 (scope = compile)
[INFO] xml-apis:xml-apis:jar:1.0.b2 (scope = compile)
[INFO] xom:xom:jar:1.0 (scope = compile)

As you can see, our project has a very large set of
 dependencies. Although we included direct dependencies on only 4
 libraries, we appear to be depending on 15 dependencies in total.
 Dom4J depends on Xerces and the XML Parser APIs,
 whereas Jaxen depends on Xalan being available in the classpath. The
 Dependency plugin will print out the final combination of
 dependencies under which your project is being compiled. If you
 would like to know about the entire dependency tree of your project,
 you can run the dependency:tree goal.
$ mvn dependency:tree
...
[INFO] [dependency:tree]
[INFO] org.sonatype.mavenbook.ch04:simple-weather:jar:1.0
[INFO] +- log4j:log4j:jar:1.2.14:compile
[INFO] +- dom4j:dom4j:jar:1.6.1:compile
[INFO] | \- xml-apis:xml-apis:jar:1.0.b2:compile
[INFO] +- jaxen:jaxen:jar:1.1.1:compile
[INFO] | +- jdom:jdom:jar:1.0:compile
[INFO] | +- xerces:xercesImpl:jar:2.6.2:compile
[INFO] | \- xom:xom:jar:1.0:compile
[INFO] | +- xerces:xmlParserAPIs:jar:2.6.2:compile
[INFO] | +- xalan:xalan:jar:2.6.0:compile
[INFO] | \- com.ibm.icu:icu4j:jar:2.6.1:compile
[INFO] +- velocity:velocity:jar:1.5:compile
[INFO] | +- commons-collections:commons-collections:jar:3.1:compile
[INFO] | +- commons-lang:commons-lang:jar:2.1:compile
[INFO] | \- oro:oro:jar:2.0.8:compile
[INFO] +- org.apache.commons:commons-io:jar:1.3.2:test
[INFO] \- junit:junit:jar:3.8.1:test
...
If you’re truly adventurous or want to see the full dependency
 trail, including artifacts that were rejected due to conflicts and
 other reasons, run Maven with the debug flag:
$ mvn install -X
...
[DEBUG] org.sonatype.mavenbook.ch04:simple-weather:jar:1.0 (selected for null)
[DEBUG] log4j:log4j:jar:1.2.14:compile (selected for compile)
[DEBUG] dom4j:dom4j:jar:1.6.1:compile (selected for compile)
[DEBUG] xml-apis:xml-apis:jar:1.0.b2:compile (selected for compile)
[DEBUG] jaxen:jaxen:jar:1.1.1:compile (selected for compile)
[DEBUG] jaxen:jaxen:jar:1.1-beta-6:compile (removed - causes a cycle
 in the graph)
[DEBUG] jaxen:jaxen:jar:1.0-FCS:compile (removed - causes a cycle in
 the graph)
[DEBUG] jdom:jdom:jar:1.0:compile (selected for compile)
[DEBUG] xml-apis:xml-apis:jar:1.3.02:compile (removed - nearer found:
 1.0.b2)
[DEBUG] xerces:xercesImpl:jar:2.6.2:compile (selected for compile)
[DEBUG] xom:xom:jar:1.0:compile (selected for compile)
[DEBUG] xerces:xmlParserAPIs:jar:2.6.2:compile (selected for compile)
[DEBUG] xalan:xalan:jar:2.6.0:compile (selected for compile)
[DEBUG] xml-apis:xml-apis:1.0.b2.
[DEBUG] com.ibm.icu:icu4j:jar:2.6.1:compile (selected for compile)
[DEBUG] velocity:velocity:jar:1.5:compile (selected for compile)
[DEBUG] commons-collections:commons-collections:jar:3.1:compile
 (selected for compile)
[DEBUG] commons-lang:commons-lang:jar:2.1:compile (selected for compile)
[DEBUG] oro:oro:jar:2.0.8:compile (selected for compile)
[DEBUG] junit:junit:jar:3.8.1:test (selected for test)
...
In the debug output, we see some of the guts of the dependency
 management system at work. What you see here is the tree of
 dependencies for this project. Maven is printing out the full Maven
 coordinates for all of your project’s dependencies and the dependencies of your dependencies (and
 the dependencies of your dependencies’ dependencies). You can see
 that simple-weather depends on
 jaxen, which depends on xom,
 which in turn depends on icu4j. You can also see
 that Maven is creating a graph of dependencies, eliminating
 duplicates, and resolving any conflicts between different versions.
 If you are having problems with dependencies, it is often helpful to
 dig a little deeper than the list generated by
 dependency:resolve. Turning on the debug output
 allows you to see Maven’s dependency mechanism at work.

Writing Unit Tests

Maven has built-in support for unit tests, and testing is a part
 of the default Maven lifecycle. Let’s add some unit tests
 to our simple weather project. First, let’s create the
 org.sonatype.mavenbook.weather package under
 src/test/java:
$ cd src/test/java
$ cd org/sonatype/mavenbook
$ mkdir weather
$ cd weather
At this point, we will create two unit tests. The first will
 test the YahooParser, and the second will test
 the WeatherFormatter. In the weather package, create a file named
 YahooParserTest.java with the
 contents shown in Example 4-11.
Example 4-11. simple-weather’s YahooParserTest unit test
package org.sonatype.mavenbook.weather.yahoo;

import java.io.InputStream;

import junit.framework.TestCase;

import org.sonatype.mavenbook.weather.Weather;
import org.sonatype.mavenbook.weather.YahooParser;

public class YahooParserTest extends TestCase {

 public YahooParserTest(String name) {
 super(name);
 }

 public void testParser() throws Exception {
 InputStream nyData =
 getClass().getClassLoader().getResourceAsStream("ny-weather.xml");
 Weather weather = new YahooParser().parse(nyData);
 assertEquals("New York", weather.getCity());
 assertEquals("NY", weather.getRegion());
 assertEquals("US", weather.getCountry());
 assertEquals("39", weather.getTemp());
 assertEquals("Fair", weather.getCondition());
 assertEquals("39", weather.getChill());
 assertEquals("67", weather.getHumidity());
 }
}

This YahooParserTest extends the
 TestCase class defined by JUnit. It follows the
 usual pattern for a JUnit test: a constructor that takes a single
 String argument that calls the constructor of
 the superclass, and a series of public methods that begin with
 “test” that are invoked as unit
 tests. We define a single test method,
 testParser, which tests the
 YahooParser by parsing an
 XML document with known values. The test
 XML document is named ny-weather.xml and is loaded from the
 classpath. We’ll add test resources in Adding Unit Test Resources.” In our Maven project’s
 directory layout, the ny-weather.xml file is found in the
 directory that contains test resources—${basedir}/src/test/resources
 under
 org/sonatype/mavenbook/weather/yahoo/ny-weather.xml. The
 file is read as an InputStream and passed to
 the parse() method on
 YahooParser. The
 parse() method returns a
 Weather object, which is then tested with a
 series of calls to assetEquals(), a method
 defined by TestCase.
In the same directory, create a file named WeatherFormatterTest.java. See Example 4-12.
Example 4-12. simple-weather’s WeatherFormatterTest unit test
package org.sonatype.mavenbook.weather.yahoo;

import java.io.InputStream;

import org.apache.commons.io.IOUtils;

import org.sonatype.mavenbook.weather.Weather;
import org.sonatype.mavenbook.weather.WeatherFormatter;
import org.sonatype.mavenbook.weather.YahooParser;

import junit.framework.TestCase;

public class WeatherFormatterTest extends TestCase {

 public WeatherFormatterTest(String name) {
 super(name);
 }

 public void testFormat() throws Exception {
 InputStream nyData =
 getClass().getClassLoader().getResourceAsStream("ny-weather.xml");
 Weather weather = new YahooParser().parse(nyData);
 String formattedResult = new WeatherFormatter().format(weather);
 InputStream expected =
 getClass().getClassLoader().getResourceAsStream("format-expected.dat");
 assertEquals(IOUtils.toString(expected).trim(),
 formattedResult.trim());
 }
}

The second unit test in this simple project tests the
 WeatherFormatter. Like the YahooParserTest, the
 WeatherFormatterTest also extends JUnit’s
 TestCase class. The single test function reads
 the same test resource from ${basedir}/src/test/resources under the
 org/sonatype/mavenbook/weather/yahoo
 directory via this unit test’s classpath. We’ll add test resources in
 the section Adding Unit Test Resources,” later in
 this chapter. WeatherFormatterTest runs this sample
 input file through the YahooParser, which spits
 out a Weather object, and this object is then
 formatted with the WeatherFormatter. Since the
 WeatherFormatter prints out a
 String, we need to test it against some
 expected input. Our expected input has been captured in a text file
 named format-expected.dat, which
 is in the same directory as ny-weather.xml. To compare the test’s
 output to the expected output, we read this expected output in as an
 InputStream and use Apache Commons IO’s
 IOUtils class to convert this file to a
 String. This String is
 then compared to the test output using
 assertEquals().

Adding Test-Scoped Dependencies

In WeatherFormatterTest, we used a
 utility from Apache Commons IO—the
 IOUtils class. IOUtils
 provides a number of helpful static functions that take most of the
 work out of input/output operations. In this particular unit test, we
 used IOUtils.toString()
 to copy the format-expected.dat
 classpath resource to a String. We could have
 done this without using Commons IO, but it would have required an
 extra six or seven lines of code to deal with the various
 InputStreamReader and StringWriter objects. The main reason
 we used Commons IO was to give us an excuse to add a test-scoped dependency on Commons IO.
A test-scoped dependency is a
 dependency that is available on the classpath only during test
 compilation and test execution. If your project has
 war or ear packaging, a test-scoped dependency would not be included
 in the project’s output archive. To add a test-scoped dependency, add the
 dependency element to your project’s dependencies section, as shown in
 Example 4-13.
Example 4-13. Adding a test-scoped dependency
<project>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-io</artifactId>
 <version>1.3.2</version>
 <scope>test</scope>
 </dependency>
 ...
 </dependencies>
</project>

After you add this dependency to the pom.xml, run mvn
 dependency:resolve and you should see that
 commons-io is now listed as a dependency with scope
 test. We need to do one more thing before we are
 ready to run this project’s unit tests: create the classpath resources these unit tests depend on. Dependency
 scopes are explained in detail in Dependency Scope” in Chapter 8.

Adding Unit Test Resources

A unit test has access to a set of resources that are specific
 to tests. Often, you’ll store files containing expected
 results and files containing dummy input in the test classpath. In
 this project, we’re storing a test XML document for
 YahooParserTest named ny-weather.xml and a file containing
 expected output from the WeatherFormatter in
 format-expected.dat.
To add test resources, you’ll need to create the src/test/resources
 directory. This is the default directory in which Maven looks for unit
 test resources. To create this directory, execute the following
 commands from your project’s base directory:
$ cd src/test
$ mkdir resources
$ cd resources
Once you’ve created the resources/ directory, create a file named
 format-expected.dat there. See
 Example 4-14.
Example 4-14. simple-weather’s WeatherFormatterTest expected output

 Current Weather Conditions for:
 New York, NY, US

 Temperature: 39
 Condition: Fair
 Humidity: 67
 Wind Chill: 39

This file should look familiar. It is the same output that was
 generated previously when you ran the simple weather project with the
 Maven Exec plugin. The second file you’ll need to add to the resources
 directory is ny-weather.xml. See
 Example 4-15.
Example 4-15. simple-weather’s YahooParserTest XML input
<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<rss version="2.0" xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0"
 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">
 <channel>
 <title>Yahoo! Weather - New York, NY</title>
 <link>http://us.rd.yahoo.com/dailynews/rss/weather/New_York__NY/</link>
 <description>Yahoo! Weather for New York, NY</description>
 <language>en-us</language>
 <lastBuildDate>Sat, 10 Nov 2007 8:51 pm EDT</lastBuildDate>

 <ttl>60</ttl>
 <yweather:location city="New York" region="NY" country="US" />
 <yweather:units temperature="F" distance="mi" pressure="in" speed="mph" />
 <yweather:wind chill="39" direction="0" speed="0" />
 <yweather:atmosphere humidity="67" visibility="1609" pressure="30.18"
 rising="1" />
 <yweather:astronomy sunrise="6:36 am" sunset="4:43 pm" />
 
 <item>
 <title>Conditions for New York, NY at 8:51 pm EDT</title>

 <geo:lat>40.67</geo:lat>
 <geo:long>-73.94</geo:long>
 <link>http://us.rd.yahoo.com/dailynews/rss/weather/New_York__NY/\</link>
 <pubDate>Sat, 10 Nov 2007 8:51 pm EDT</pubDate>
 <yweather:condition text="Fair" code="33" temp="39"
 date="Sat, 10 Nov 2007 8:51 pm EDT" />
 <description><![CDATA[

 Current Conditions:

 Fair, 39 F

 Forecast:

 Sat - Partly Cloudy. High: 45 Low: 32

 Sun - Sunny. High: 50 Low: 38

]]></description>
 <yweather:forecast day="Sat" date="10 Nov 2007" low="32" high="45"
 text="Partly Cloudy" code="29" />

<yweather:forecast day="Sun" date="11 Nov 2007" low="38" high="50"
 text="Sunny" code="32" />
 <guid isPermaLink="false">10002_2007_11_10_20_51_EDT</guid>
 </item>
</channel>
</rss>

This file contains a test XML document for
 the YahooParserTest. We store this file so that
 we can test the YahooParser without having to
 retrieve an XML response
 from Yahoo! Weather.

Executing Unit Tests

Now that your project has unit tests, let’s run them. You don’t
 have to do anything special to run a unit test; the
 test phase is a normal part of the Maven lifecycle.
 You run Maven tests whenever you run mvn
 package or mvn install.
 If you would like to run all the lifecycle phases up to and including
 the test phase, run mvn
 test:
$ mvn test
...
[INFO] [surefire:test]
[INFO] Surefire report directory: ~/examples/simple-weather/target/\
 surefire-reports

 T E S T S

Running org.sonatype.mavenbook.weather.yahoo.WeatherFormatterTest
0 INFO YahooParser - Creating XML Reader
177 INFO YahooParser - Parsing XML Response
239 INFO WeatherFormatter - Formatting Weather Data
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.547 sec
Running org.sonatype.mavenbook.weather.yahoo.YahooParserTest
475 INFO YahooParser - Creating XML Reader
483 INFO YahooParser - Parsing XML Response
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.018 sec

Results :

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

Executing mvn test from the
 command line causes Maven to execute all lifecycle phases up to the
 test phase. The Maven Surefire plugin has a test goal that is bound to the test phase. This test goal executes all of the unit tests
 that this project can find under src/test/java. In the case of this project,
 you can see that the Surefire plugin’s test goal executes
 WeatherFormatterTest and
 YahooParserTest. When the Surefire plugin runs
 the JUnit tests, it also generates XML and text
 reports in the ${basedir}/target/surefire-reports
 directory. If your tests are failing, you should look in this
 directory for details such as stack traces and error messages
 generated by your unit tests.
Ignoring Test Failures

You will often find yourself developing on a system that has
 failing unit tests. If you are practicing Test-Driven Development
 (TDD), you might use test failure as a measure of
 how close your project is to completeness. If you have failing unit
 tests, and you would still like to produce build output, you are
 going to have to tell Maven to ignore build failures. When Maven
 encounters a build failure, its default behavior is to stop the
 current build. To continue building a project even when the Surefire
 plugin encounters failed test cases, you’ll need to set the
 testFailureIgnore configuration property of the
 Surefire plugin to true. See
 Example 4-16.
Example 4-16. Ignoring unit test failures
<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <testFailureIgnore>true</testFailureIgnore>
 </configuration>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

The plugin documents (http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html)
 show that this parameter declares an expression, as shown in Example 4-17.
Example 4-17. Plugin parameter expressions
 testFailureIgnore Set this to true to ignore a failure during \
 testing. Its use is NOT RECOMMENDED, but quite \
 convenient on occasion.

 * Type: boolean
 * Required: No
 * Expression: ${maven.test.failure.ignore}

This expression can be set from the command line using the
 -D parameter:
$ mvn test -Dmaven.test.failure.ignore=true

Skipping Unit Tests

You may want to configure Maven to skip unit tests
 altogether. Maybe you have a very large system where the unit
 tests take minutes to complete and you don’t want to wait for them
 before producing output. Or maybe you are working with a legacy
 system that has a series of failing unit tests, and instead of
 fixing them, you just want to produce a JAR.
 Maven allows you to skip unit tests using the
 skip parameter of the Surefire plugin. To skip
 tests from the command line, simply add the
 maven.test.skip property to any goal:
$ mvn install -Dmaven.test.skip=true
...
[INFO] [compiler:testCompile]
[INFO] Not compiling test sources
[INFO] [surefire:test]
[INFO] Tests are skipped.
...
When the Surefire plugin reaches the test
 goal, it will skip the unit tests if the
 maven.test.skip properties is set to true. Another way to configure Maven to
 skip unit tests is to add the configuration shown in Example 4-18 to your project’s pom.xml. To do
 this, you would add a plugin element to your
 build configuration.
Example 4-18. Skipping unit tests
<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

Building a Packaged Command-Line Application

In the Running the Simple Weather Program” section, earlier
 in this chapter, we executed our application using the
 Maven Exec plugin. Although that plugin executed the program and
 produced some output, you shouldn’t look to Maven as an execution
 container for your applications. If you are distributing this
 command-line application to others, you will probably want to
 distribute a JAR or an archive as a
 ZIP or TAR’d
 GZIP file. This section outlines a process for
 using a predefined assembly descriptor in the Maven Assembly plugin to produce a
 distributable JAR file, which contains the
 project’s bytecode and all of the dependencies.
You can use the Maven Assembly plugin to create arbitrary
 distributions for your applications. Use it to assemble the output of
 your project in any format you desire by defining a custom assembly
 descriptor. In a later chapter, we will show you how to create a
 custom assembly descriptor that produces a more complex archive for
 the simple weather application. In this chapter, we’re going to use
 the predefined jar-with-dependencies format. To
 configure the Assembly Plugin, we need to add the
 plugin configuration shown in Example 4-19 to our existing build
 configuration in the pom.xml.
Example 4-19. Configuring the Maven Assembly descriptor
<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

Once you’ve added this configuration, you can build the assembly
 by running mvn assembly:assembly,
 like so:
$ mvn install assembly:assembly
...
[INFO] [jar:jar]
[INFO] Building jar: ~/examples/simple-weather/target/simple-weather-1.0.jar
[INFO] [assembly:assembly]
[INFO] Processing DependencySet (output=)
[INFO] Expanding: \
 .m2/repository/dom4j/dom4j/1.6.1/dom4j-1.6.1.jar into \
 /tmp/archived-file-set.1437961776.tmp
[INFO] Expanding: .m2/repository/commons-lang/commons-lang/2.1/\
 commons-lang-2.1.jar
 into /tmp/archived-file-set.305257225.tmp
... (Maven Expands all dependencies into a temporary directory) ...
[INFO] Building jar: \
 ~/examples/simple-weather/target/\
 simple-weather-1.0-jar-with-dependencies.jar

Once the assembly is assembled in target/simple-weather-1.0-jar-with-dependencies.jar, you can run the
 Main class again from the command line. To run
 the simple weather app’s Main class, execute
 the following from your project’s base directory:
$ cd target
$ java -cp simple-weather-1.0-jar-with-dependencies.jar \
 org.sonatype.mavenbook.weather.Main 10002
0 INFO YahooRetriever - Retrieving Weather Data
221 INFO YahooParser - Creating XML Reader
399 INFO YahooParser - Parsing XML Response
474 INFO WeatherFormatter - Formatting Weather Data

 Current Weather Conditions for:
 New York, NY, US

 Temperature: 44
 Condition: Fair
 Humidity: 40
 Wind Chill: 40

The jar-with-dependencies format creates a
 single JAR file that includes all of the bytecode
 from the simple-weather project as well as the
 unpacked bytecode from all of the dependencies. This somewhat
 unconventional format produces a 9 MiB JAR file
 containing approximately 5,290 classes, but it does provide for an
 easy distribution format for applications you’ve developed with Maven.
 Later in this book, we’ll show you how to create a custom assembly
 descriptor to produce a more standard distribution.

Chapter 5. A Simple Web Application

Introduction

In this chapter, we create a simple web application with the
 Maven Archetype plugin. We’ll run this web application in a
 Servlet container named Jetty, add some dependencies, write a simple
 Servlet, and generate a WAR file. At the end of
 this chapter, you will be able to start using Maven to accelerate the
 development of web applications.
Downloading This Chapter’s Example

The example in this chapter is generated with the Maven
 Archetype plugin. While you should be able to follow the development
 of this chapter without the example source code, we recommend
 downloading a copy of the example code to use as a reference. This
 chapter’s example project may be downloaded with the book’s example
 code at http://www.sonatype.com/book/mvn-examples-1.0.zip or
 http://www.sonatype.com/book/mvn-examples-1.0.tar.gz.
 Unzip this archive in any directory, and then go to the ch05/ directory. In the ch05/ directory you will see a directory
 named simple-webapp/ that
 contains the Maven project developed in this chapter. If you wish to
 follow along with the example code in a web browser, go to http://www.sonatype.com/book/examples-1.0
 and click on the ch05/ directory.

Defining the Simple Web Application

We’ve purposefully kept this chapter focused on Plain-Old Web
 Applications (POWA)—a servlet and a JavaServer
 Pages (JSP) page. We’re not going to tell you how
 to develop your Struts 2, Tapestry, Wicket, Java Server Faces
 (JSF), or Waffle application in the next 20-odd
 pages, and we’re not going to get into integrating an Inversion of
 Control (IoC) container such as Plexus, Guice, or
 the Spring Framework. The goal of this chapter is to show you the
 basic facilities that Maven provides for developing web
 applications—no more, no less. Later in this book, we’re going to take
 a look at developing two web applications: one that uses Hibernate,
 Velocity, and the Spring Framework; and the other that uses
 Plexus.

Creating the Simple Web Project

To create your web application project, run mvn
 archetype:create with an artifactId and a
 groupId. Specify the
 archetypeArtifactId as
 maven-archetype-webapp. Running this will create
 the appropriate directory structure and Maven
 POM:
~/examples$ mvn archetype:create -DgroupId=org.sonatype.mavenbook.ch05 \
 -DartifactId=simple-webapp \
 -DpackageName=org.sonatype.mavenbook \
 -DarchetypeArtifactId=maven-archetype-webapp
[INFO] [archetype:create]
[INFO] --
[INFO] Using following parameters for creating Archetype:
 maven-archetype-webapp:RELEASE
[INFO] --
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook.ch05
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook
[INFO] Parameter: basedir, Value: ~/examples
[INFO] Parameter: package, Value: org.sonatype.mavenbook
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] Parameter: artifactId, Value: simple-webapp
[INFO] ********************* End of debug info from resources from
 generated POM *******
[INFO] Archetype created in dir: ~/examples/simple-webapp
Once the Maven Archetype plugin creates the project, change
 directories into the simple-web directory and take a look
 at the pom.xml. You should see
 the XML document shown in Example 5-1.
Example 5-1. Initial POM for the simple-web project
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.ch05</groupId>
 <artifactId>simple-webapp</artifactId>
 <packaging>war</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>simple-webapp Maven Webapp</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <finalName>simple-webapp</finalName>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Notice the packaging element contains the
 value war. This packaging type is
 what configures Maven to produce a web application archive in a
 WAR file. A project with war packaging is going to create a
 WAR file in the target/ directory. The default name of this
 file is ${artifactId}-${version}.war. In this
 project, the default WAR would be generated in
 target/simple-webapp-1.0-SNAPSHOT.war. In
 the simple-webapp project, we’ve
 customized the name of the generated WAR file by
 adding a finalName element inside of this project’s
 build configuration. With a finalName of simple-webapp, the package phase produces a
 WAR file in target/simple-webapp.war.

Configuring the Jetty Plugin

Once you’ve compiled, tested, and packaged your web
 application, you’ll likely want to deploy it to a servlet container
 and test the index.jsp that was
 created by the Maven Archetype plugin. Normally, this would involve
 downloading something like Jetty or Apache Tomcat, unpacking a
 distribution, copying your application’s WAR file
 to a webapps/ directory, and then
 starting your container. Although you can still do such a thing, there
 is no need. Instead, you can use the Maven Jetty plugin to run your
 web application within Maven. To do this, we’ll need to configure the
 Maven Jetty plugin in our project’s pom.xml. Add the plugin element shown in Example 5-2 to your project’s build
 configuration.
Example 5-2. Configuring the Jetty plugin
<project>
 [...]
 <build>
 <finalName>simple-webapp</finalName>
 <plugins>
 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 </plugins>
 </plugins>
 </build>
 [...]
</project>

Once you’ve configured the Maven Jetty plugin in your project’s
 pom.xml, you can then invoke the
 run goal of the Jetty plugin to
 start your web application in the Jetty Servlet container. Run
 mvn jetty:run as follows:
~/examples$ mvn jetty:run
...
[INFO] [jetty:run]
[INFO] Configuring Jetty for project: simple-webapp Maven Webapp
[INFO] Webapp source directory = \
 /Users/tobrien/svnw/sonatype/examples/simple-webapp/src/
 main/webapp
[INFO] web.xml file = \
 /Users/tobrien/svnw/sonatype/examples/simple-webapp/src/
 main/webapp/WEB-INF/web.xml
[INFO] Classes = /Users/tobrien/svnw/sonatype/examples/simple-webapp/
 target/classes
2007-11-17 22:11:50.532::INFO: Logging to STDERR via
 org.mortbay.log.StdErrLog
[INFO] Context path = /simple-webapp
[INFO] Tmp directory = determined at runtime
[INFO] Web defaults = org/mortbay/jetty/webapp/webdefault.xml
[INFO] Web overrides = none
[INFO] Webapp directory = \
 /Users/tobrien/svnw/sonatype/examples/simple-webapp/src/
 main/webapp
[INFO] Starting jetty 6.1.6rc1 ...
2007-11-17 22:11:50.673::INFO: jetty-6.1.6rc1
2007-11-17 22:11:50.846::INFO: No Transaction manager found - if\
 your webapp requires one, please configure one.
2007-11-17 22:11:51.057::INFO: Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server
After Maven starts the Jetty Servlet container, load the URL
 http://localhost:8080/simple-webapp/
 in a web browser. The simple index.jsp generated by the Archetype is
 trivial; it contains a second-level heading with the text “Hello
 World!”. Maven expects the document root of the web application to be
 stored in src/main/webapp. This
 is the directory where you will find the index.jsp file shown in Example 5-3.
Example 5-3. Contents of src/main/webapp/index.jsp
<html>
 <body>
 <h2>Hello World!</h2>
 </body>
</html>

In src/main/webapp/WEB-INF,
 we will find the smallest possible web application descriptor in web.xml, shown in Example 5-4.
Example 5-4. Contents of src/main/webapp/WEB-INF/web.xml
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
 <display-name>Archetype Created Web Application</display-name>
</web-app>

Adding a Simple Servlet

A web application with a single JSP page and no configured
 servlets is next to useless. Let’s add a simple servlet to this
 application and make some changes to the pom.xml and web.xml to support this change. First,
 we’ll need to create a new package under src/main/java named
 org.sonatype.mavenbook.web:
$ mkdir -p src/main/java/org/sonatype/mavenbook/web
$ cd src/main/java/org/sonatype/mavenbook/web
Once you’ve created this package, change to the src/main/java/org/sonatype/mavenbook/web
 directory and create a class named
 SimpleServlet in SimpleServlet.java, which contains the code
 shown in Example 5-5.
Example 5-5. SimpleServlet class
package org.sonatype.mavenbook.web;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 PrintWriter out = response.getWriter();
 out.println("SimpleServlet Executed");
 out.flush();
 out.close();
 }
}

Our SimpleServlet class is just that: a
 servlet that prints a simple message to the response’s
 Writer. To add this servlet to your web
 application and map it to a request path, add the
 servlet and servlet-mapping
 elements shown in Example 5-6 to your
 project’s web.xml file. The
 web.xml file can be found in
 src/main/webapp/WEB-INF.
Example 5-6. Mapping the simple servlet
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
 <display-name>Archetype Created Web Application</display-name>
 <servlet>
 <servlet-name>simple</servlet-name>
 <servlet-class>org.sonatype.mavenbook.web.SimpleServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>simple</servlet-name>
 <url-pattern>/simple</url-pattern>
 </servlet-mapping>
</web-app>

Everything is in place to test this servlet; the class is in
 src/main/java and the web.xml has been updated. Before we launch
 the Jetty plugin, compile your project by running mvn compile:
~/examples$ mvn compile
...
[INFO] [compiler:compile]
[INFO] Compiling 1 source file to ~/examples/ch05/simple-webapp/target/classes
[INFO] --
[ERROR] BUILD FAILURE
[INFO] --
[INFO] Compilation failure

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[4,0] \
 package javax.servlet does not exist

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[5,0] \
 package javax.servlet.http does not exist

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[7,35] \
 cannot find symbol
 symbol: class HttpServlet
 public class SimpleServlet extends HttpServlet {

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[8,22] \
 cannot find symbol
 symbol : class HttpServletRequest
 location: class org.sonatype.mavenbook.web.SimpleServlet

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[9,22] \
 cannot find symbol
 symbol : class HttpServletResponse
 location: class org.sonatype.mavenbook.web.SimpleServlet

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[10,15] \
 cannot find symbol
 symbol : class ServletException
 location: class org.sonatype.mavenbook.web.SimpleServlet

The compilation fails because your Maven project doesn’t have a
 dependency on the Servlet API. In the next section,
 we’ll add the Servlet API to this
 project’s POM.

Adding J2EE Dependencies

To write a servlet, we’ll need to add the Servlet API as a project dependency. The
 Servlet specification is a JAR file that can be
 downloaded from Sun Microsystems at http://java.sun.com/products/servlet/download.html.
 Once the JAR file is downloaded, you’ll need to
 install the resulting JAR in your local Maven
 repository located at ~/.m2/repository. The same process will have to
 be repeated for all of the Java Platform Enterprise Edition
 (J2EE) APIs maintained by Sun
 Microsystems—Java Naming and Directory Interface
 (JNDI), Java Database Connectivity
 (JDBC), Servlet, JSP, Java
 Transaction API (JTA), and others. If this strikes
 you as somewhat tedious, you are not alone. Lucky for you, there is a
 simpler alternative to downloading all of these libraries and
 installing them manually—Apache Geronimo’s independent open source
 implementations.
For years, the only way to get the Servlet specification
 JAR was to download it directly from Sun
 Microsystems. You had to go to the Sun web site, agree to a
 click-through licensing agreement, and only then could you access the
 Servlet JAR. This was all necessary because the Sun
 specification JARs were not made available under a
 license that allowed for redistribution. Manually downloading Sun
 artifacts was something you just had to do to write a Servlet or to
 use JDBC from a Maven project for a few years. It
 was tedious and annoying until the Apache Geronimo project was able to
 create a Sun-certified implementation of a number of enterprise
 specifications releasing these specification JARs
 under the Apache Software License version 2.0, a license that allows
 for free redistribution of source and binary. Now, for the purposes of
 your programming, there is little to no difference between the Servlet
 API JAR downloaded from Sun
 Microsystems and the Servlet API
 JAR implemented by the Apache Geronimo project.
 Both have passed a rigorous Test Compatibility Kit
 (TCK) from Sun Microsystems.
Adding a dependency on something like the JSP
 API or the Servlet API is now
 very straightforward, and it does not require you to manually download
 a JAR file from a web site and install it in your
 local repository. The catch is that you have to know where to look:
 what groupId,
 artifactId, and version to use
 to reference the appropriate Apache Geronimo implementation. To add
 the Servlet specification API as a dependency to
 your project’s POM, add the dependency element
 shown in Example 5-7 to
 pom.xml.
Example 5-7. Add the Servlet 2.4 specification as a dependency
<project>
 [...]
 <dependencies>
 [...]
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-servlet_2.4_spec</artifactId>
 <version>1.1.1</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 [...]
</project>

The groupId for all of the Apache Geronimo
 specification implementations is
 org.apache.geronimo.specs. The
 artifactId contains the version of the
 specification that you are most familiar with; for example, if you
 were going to include the Servlet 2.3 specification, you would have an
 artifactId of geronimo-servlet_2.3_spec, and if you were
 targeting the Servlet 2.4 specification, your
 artifactId would be geronimo-servlet_2.4_spec. As for the
 version, you’ll have to take a look at the public Maven repository to
 figure out which version you should use. For versions, your best bet
 is going to be the latest version for a particular specification
 implementation. If you are looking for a specific alternative to a Sun
 specification from the Apache Geronimo project, we’ve assembled a list
 of available specifications in Appendix B.
It is also worth pointing out that we have used the provided scope for this dependency. This
 tells Maven that the JAR is “provided” by the container and thus
 should not be included in the WAR.
If you were interested in writing a custom
 JSP tag for this simple web application, you would need to
 add a dependency on the JSP 2.0 spec. Use the
 configuration shown in Example 5-8 to add this
 dependency.
Example 5-8. Adding the JSP 2.0 specification as a dependency
<project>
 [...]
 <dependencies>
 [...]
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-jsp_2.0_spec</artifactId>
 <version>1.1</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 [...]
</project>

Once you’ve add the Servlet specification as a dependency, run
 mvn clean install followed by
 mvn jetty:run.
[tobrien@t1 simple-webapp]$ mvn clean install
...
[tobrien@t1 simple-webapp]$ mvn jetty:run
[INFO] [jetty:run]
...
2007-12-14 16:18:31.305::INFO: jetty-6.1.6rc1
2007-12-14 16:18:31.453::INFO: No Transaction manager found - if your webapp\
 requires one, please configure one.
2007-12-14 16:18:32.745::INFO: Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

At this point, you should be able to retrieve the output of the
 SimpleServlet. From the command line, you can
 use curl to print the
 output of this servlet to standard output:
~/examples$ curl http://localhost:8080/simple-webapp/simple
SimpleServlet Executed

Conclusion

After reading this chapter, you should be able to bootstrap a
 simple web application. This chapter didn’t dwell on the million
 different ways to create a complete web application. Other chapters
 provide a more comprehensive overview of projects that involve some of the more popular
 web frameworks
 and technologies.

Chapter 6. A Multimodule Project

Introduction

In this chapter, we create a multimodule project that combines
 the examples from the two previous chapters. The simple-weather code developed in Chapter 4 will be combined with the simple-webapp project defined in Chapter 5 to create a web application that retrieves and
 displays weather forecast information on a web page. At the end of
 this chapter, you will be able to use Maven to develop complex,
 multimodule projects.
Downloading This Chapter’s Example

The multimodule project developed in this example consists of
 modified versions of the projects developed in Chapters 4 and 5, and we are not
 using the Maven Archetype plugin to generate this multimodule
 project. We strongly recommend downloading a copy of the example
 code to use as a supplemental reference while reading the content in
 this chapter. This chapter’s example project may be downloaded with
 the book’s example code at http://www.sonatype.com/book/mvn-examples-1.0.zip or
 http://www.sonatype.com/book/mvn-examples-1.0.tar.gz.
 Unzip this archive in any directory, and then go to the
 ch06/ directory. There you will
 see a directory named simple-parent/, which contains the
 multimodule Maven project developed in this chapter. In this
 directory, you will see a pom.xml and the two submodule
 directories, simple-weather/
 and simple-webapp/. If you wish
 to follow along with the example code in a web browser, go to http://www.sonatype.com/book/examples-1.0
 and click on the ch06/ directory.

The Simple Parent Project

A multimodule project is defined by a parent
 POM referencing one or more submodules. In the simple-parent/ directory, you will find the
 parent POM (also called the top-level
 POM) in simple-parent/pom.xml. See Example 6-1.
Example 6-1. simple-parent project POM
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.sonatype.mavenbook.ch06</groupId>
 <artifactId>simple-parent</artifactId>
 <packaging>pom</packaging>
 <version>1.0</version>
 <name>Chapter 6 Simple Parent Project</name>

 <modules>
 <module>simple-weather</module>
 <module>simple-webapp</module>
 </modules>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Notice that the parent defines a set of Maven coordinates: the
 groupId is
 com.sonatype.maven,
 the artifactId is simple-parent,
 and the version is 1.0. The
 parent project doesn’t create a JAR or a
 WAR like our previous projects; instead, it is
 simply a POM that refers to other Maven projects.
 The appropriate packaging for a project like
 simple-parent that simply provides a Project Object
 Model is pom. The next section in the pom.xml lists the project’s submodules.
 These modules are defined in the modules element,
 and each module element corresponds to a
 subdirectory of the simple-parent/ directory. Maven knows to
 look in these directories for pom.xml files, and it will add submodules
 to the list of Maven projects included in a build.
Lastly, we define some settings that will be inherited by all
 submodules. The simple-parent build configuration
 configures the target for all Java compilation to be the Java 5
 JVM. Since the Compiler plugin is bound to the
 lifecycle by default, we can use the
 pluginManagement section do to this. We will
 discuss pluginManagement in more detail in later
 chapters, but the separation between providing configuration to
 default plugins and actually binding plugins is much easier to see
 when they are separated this way. The dependencies element adds JUnit 3.8.1 as a
 global dependency. Both the build configuration and the dependencies
 are inherited by all submodules. Using POM inheritance allows you to
 add common dependencies for universal dependencies such as JUnit or
 Log4J.

The Simple Weather Module

The first submodule we’re going to look at is the
 simple-weather submodule. This submodule contains
 all of the classes that take care of interacting with and
 parsing the Yahoo! Weather feeds. See Example 6-2.
Example 6-2. simple-weather module POM
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.ch06</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-weather</artifactId>
 <packaging>jar</packaging>

 <name>Chapter 6 Simple Weather API</name>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <testFailureIgnore>true</testFailureIgnore>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

 <dependencies>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.14</version>
 </dependency>
 <dependency>
 <groupId>dom4j</groupId>
 <artifactId>dom4j</artifactId>
 <version>1.6.1</version>
 </dependency>
 <dependency>
 <groupId>jaxen</groupId>
 <artifactId>jaxen</artifactId>
 <version>1.1.1</version>
 </dependency>
 <dependency>
 <groupId>velocity</groupId>
 <artifactId>velocity</artifactId>
 <version>1.5</version>
 </dependency>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-io</artifactId>
 <version>1.3.2</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

In simple-weather’s pom.xml file, we see this module
 referencing a parent POM using a set of Maven coordinates. The parent POM for
 simple-weather is identified by a
 groupId of
 org.sonatype.mavenbook, an
 artifactId of simple-parent, and
 a version of 1.0. See Example 6-3.
Example 6-3. The WeatherService class
package org.sonatype.mavenbook.weather;

import java.io.InputStream;

public class WeatherService {

 public WeatherService() {}

 public String retrieveForecast(String zip) throws Exception {
 // Retrieve Data
 InputStream dataIn = new YahooRetriever().retrieve(zip);

 // Parse Data
 Weather weather = new YahooParser().parse(dataIn);

 // Format (Print) Data
 return new WeatherFormatter().format(weather);
 }
}

The WeatherService class is defined in
 src/main/java/org/sonatype/mavenbook/weather,
 and it simply calls out to the three objects defined in Chapter 4. In this chapter’s example, we’re creating a
 separate project that contains service objects that are referenced in
 the web application project. This is a common model in enterprise Java
 development; often a complex application consists of more than just a
 single, simple web application. You might have an enterprise
 application that consists of multiple web applications and some
 command-line applications. Often, you’ll want to refactor common logic
 to a service class that can be reused across a number of projects.
 This is the justification for creating a
 WeatherService class; by doing so, you can see
 how the simple-webapp project references a service
 object defined in simple-weather.
The retrieveForecast() method takes a
 String containing a zip code. This zip code
 parameter is then passed to the
 YahooRetriever’s
 retrieve() method, which gets the
 XML from Yahoo! Weather. The XML
 returned from YahooRetriever is then passed to
 the parse() method on
 YahooParser which returns a
 Weather object. This
 Weather object is then formatted into a
 presentable String by the
 WeatherFormatter.

The Simple Web Application Module

The simple-webapp module is the second
 submodule referenced in the simple-parent
 project. This web application project depends on the
 simple-weather module, and it contains some simple
 servlets that present the results of the Yahoo! Weather service query.
 See Example 6-4.
Example 6-4. simple-webapp module POM
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.ch06</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>

 <artifactId>simple-webapp</artifactId>
 <packaging>war</packaging>
 <name>simple-webapp Maven Webapp</name>
 <dependencies>
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-servlet_2.4_spec</artifactId>
 <version>1.1.1</version>
 </dependency>
 <dependency>
 <groupId>org.sonatype.mavenbook.ch06</groupId>
 <artifactId>simple-weather</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>
 <build>
 <finalName>simple-webapp</finalName>
 <plugins>
 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
</project>

This simple-weather module defines a very
 simple servlet that reads a zip code from an HTTP request, calls the
 WeatherService shown in Example 6-3, and prints the results to
 the response’s Writer. See Example 6-5.
Example 6-5. simple-webapp WeatherServlet
package org.sonatype.mavenbook.web;

import org.sonatype.mavenbook.weather.WeatherService;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class WeatherServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String zip = request.getParameter("zip");
 WeatherService weatherService = new WeatherService();
 PrintWriter out = response.getWriter();
 try {
 out.println(weatherService.retrieveForecast(zip));
 } catch(Exception e) {
 out.println("Error Retrieving Forecast: " + e.getMessage());
 }
 out.flush();
 out.close();
 }
}

In WeatherServlet, we instantiate an
 instance of the WeatherService class defined in
 simple-weather. The zip code supplied in the
 request parameter is passed to the retrieveForecast() method, and the
 resulting test is printed to the response’s
 Writer.
Finally, to tie all of this together is the web.xml for
 simple-webapp in src/main/webapp/WEB-INF. The
 servlet and servlet-mapping
 elements in the web.xml shown in
 Example 6-6 map the request path
 /weather to the
 WeatherServlet.
Example 6-6. simple-webapp web.xml
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
 <display-name>Archetype Created Web Application</display-name>
 <servlet>
 <servlet-name>simple</servlet-name>
 <servlet-class>org.sonatype.mavenbook.web.SimpleServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>weather</servlet-name>
 <servlet-class>org.sonatype.mavenbook.web.WeatherServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>simple</servlet-name>
 <url-pattern>/simple</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>weather</servlet-name>
 <url-pattern>/weather</url-pattern>
 </servlet-mapping>
</web-app>

Building the Multimodule Project

With the simple-weather project containing
 all the general code for interacting with the Yahoo!
 Weather service and the simple-webapp project
 containing a simple servlet, it is time to compile and package the
 application into a WAR file. To do this, you will want
 to compile and install both projects in the appropriate order; since
 simple-webapp depends on
 simple-weather, the
 simple-weather JAR needs to be
 created before the simple-webapp project can
 compile. To do this, you will run mvn clean
 install from the simple-parent
 project:
~/examples/ch06/simple-parent$ mvn clean install
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] Simple Parent Project
[INFO] simple-weather
[INFO] simple-webapp Maven Webapp
[INFO] --
[INFO] Building simple-weather
[INFO] task-segment: [clean, install]
[INFO] --
[...]
[INFO] [install:install]
[INFO] Installing simple-weather-1.0.jar to simple-weather-1.0.jar
[INFO] --
[INFO] Building simple-webapp Maven Webapp
[INFO] task-segment: [clean, install]
[INFO] --
[...]
[INFO] [install:install]
[INFO] Installing simple-webapp.war to simple-webapp-1.0.war
[INFO]
[INFO] --
[INFO] Reactor Summary:
[INFO] --
[INFO] Simple Parent Project SUCCESS [3.041s]
[INFO] simple-weather .. SUCCESS [4.802s]
[INFO] simple-webapp Maven Webapp SUCCESS [3.065s]
[INFO] --

When Maven is executed against a project with submodules, Maven
 first loads the parent POM and locates all of the
 submodule POMs. Maven then puts all of these
 project POMs into something called the Maven
 Reactor, which analyzes the dependencies between modules. The Reactor
 takes care of ordering components to ensure that interdependent
 modules are compiled and installed in the proper order.
Note
The Reactor preserves the order of modules as defined in the
 POM unless changes need to be made. A helpful
 mental model for this is to picture that modules with dependencies
 on sibling projects are “pushed down” the list until the dependency
 ordering is satisfied. On rare occasions, it may be handy to
 rearrange the module order of your build—for example, if you want a
 frequently unstable module toward the beginning of the build.

Once the Reactor figures out the order in which projects must be
 built, Maven executes the specified goals for every module in a
 multimodule build. In this example, you can see that Maven builds
 simple-weather before
 simple-webapp, effectively executing mvn clean install for each submodule.
Note
When you run Maven from the command line, you’ll frequently
 want to specify the clean lifecycle phase before
 any other lifecycle stages. When you specify
 clean, you make sure that Maven is going to
 remove old output before it compiles and packages an application.
 Running clean isn’t necessary, but it is a useful
 precaution to make sure that you are performing a “clean
 build.”

Running the Web Application

Once the multimodule project has been installed with mvn clean install from the parent project,
 simple-project, you can then change directories
 into the simple-webapp project and run the run goal of the Jetty plugin:
~/examples/ch06/simple-parent/simple-webapp $ mvn jetty:run
[INFO] ---
[INFO] Building simple-webapp Maven Webapp
[INFO] task-segment: [jetty:run]
[INFO] ---
[...]
[INFO] [jetty:run]
[INFO] Configuring Jetty for project: simple-webapp Maven Webapp
[...]
[INFO] Webapp directory = ~/examples/ch06/simple-parent/simple-webapp/src/
 main/webapp
[INFO] Starting jetty 6.1.6rc1 ...
2007-11-18 1:58:26.980::INFO: jetty-6.1.6rc1
2007-11-18 1:58:26.125::INFO: No Transaction manager found - if your webapp\
 requires one, please configure one.
2007-11-18 1:58:27.633::INFO: Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

Once Jetty has started, load http://localhost:8080/simple-webapp/weather?zip=01201
 in a browser and you should see the
 formatted weather output.

Chapter 7. Multimodule Enterprise Project

Introduction

In this chapter, we create a multimodule project that evolves
 the examples from Chapters 5 and 6 into a project that uses the Spring
 Framework and Hibernate to create both a simple web application and a
 command-line utility to read data from the Yahoo! Weather feed. The
 simple-weather code developed in Chapter 4 will be combined with the
 simple-webapp project defined in Chapter 5. In the process of creating this multimodule project,
 we’ll explore Maven and discuss the different ways it can be used to
 create modular projects that encourage reuse.
Downloading This Chapter’s Example

The multimodule project developed in this example consists of
 modified versions of the projects developed in Chapters 4 and 5, and we are not
 using the Maven Archetype plugin to generate this multimodule
 project. We strongly recommend downloading a copy of the example
 code to use as a supplemental reference while reading the content in
 this chapter. Without the examples, you won’t be able to recreate
 this chapter’s example code. This chapter’s example project may be
 downloaded with the book’s example code at http://www.sonatype.com/book/mvn-examples-1.0.zip or
 http://www.sonatype.com/book/mvn-examples-1.0.tar.gz.
 Unzip this archive in any directory, and then go to the ch07/ directory. In the ch07/ directory, you will see a directory
 named simple-parent/ that
 contains the multimodule Maven project developed in this chapter. In
 the simple-parent/ project
 directory you will see a pom.xml and the five submodule
 directories simple-model/,
 simple-persist/, simple-command/, simple-weather/, and simple-webapp/. If
 you wish to follow along with the example code in a web browser, go
 to http://www.sonatype.com/book/examples-1.0
 and click on the ch07/
 directory.

Multimodule Enterprise Project

Presenting the complexity of a massive enterprise-level
 project far exceeds the scope of this book. Such projects are
 characterized by multiple databases, integration with external systems, and subprojects that
 may be divided by departments. These projects usually span thousands
 of lines of code and involve the effort of tens or hundreds of
 software developers. Although such a complete example is outside the
 scope of this book, we can provide you with a sample project that
 suggests the complexity of a larger Enterprise application. In the
 conclusion, we suggest some possibilities for modularity beyond that
 presented in this chapter.
In this chapter, we’re going to look at a multimodule Maven
 project that will produce two applications: a command-line query
 tool for the Yahoo! Weather feed, and a web application that queries
 the Yahoo! Weather feed. Both of these applications will store the
 results of queries in an embedded database. Each will allow the user
 to retrieve historical weather data from this embedded database.
 Both applications will reuse application logic and share a
 persistence library. This chapter’s example builds upon the Yahoo!
 Weather parsing code introduced in Chapter 4.
 This project is divided into five submodules as shown in Figure 7-1.
[image: Multimodule enterprise application module relationships]

Figure 7-1. Multimodule enterprise application module
 relationships

In Figure 7-1, you
 can see that there are five submodules of simple-parent. They are:
	simple-model
	This module defines a simple object model that models
 the data returned from the Yahoo! Weather feed. This object
 model contains the Weather,
 Condition, Atmosphere,
 Location, and
 Wind objects. When our application
 parses the Yahoo! Weather feed, the parsers defined in
 simple-weather will parse the
 XML and create
 Weather objects, which are then used by
 the application. This project contains model objects annotated
 with Hibernate 3 Annotations, which are used by the logic in
 simple-persist to map each
 model object to a corresponding table in a relational
 database.

	simple-weather
	This module contains all of the logic required to
 retrieve data from the Yahoo! Weather feed and parse the
 resulting XML. The XML
 returned from this feed is converted into the model objects
 defined in simple-model.
 simple-weather has a dependency on
 simple-model.
 simple-weather defines a
 WeatherService object that is
 referenced by both the simple-command and
 simple-webapp projects.

	simple-persist
	This module contains some Data Access Objects
 (DAO) that are configured to store
 Weather objects in an embedded
 database. Both of the applications defined in this multimodule
 project will use the DAOs defined in
 simple-persist to store data in an embedded
 database. The DAOs defined in this project
 understand and return the model objects defined in
 simple-model.
 simple-persist has a direct dependency on
 simple-model, and it depends on the
 Hibernate Annotations present on the model objects.

	simple-webapp
	The web application project contains two Spring
 MVC Controller implementations that use the
 WeatherService defined in
 simple-weather and the
 DAOs defined in
 simple-persist.
 simple-webapp has a direct dependency on
 simple-weather and
 simple-persist; it has a transitive
 dependency on simple-model.

	simple-command
	This module contains a simple command-line tool that can
 be used to query the Yahoo! Weather feed. This project
 contains a class with a static main()
 function and interacts with the
 WeatherService defined in
 simple-weather and the
 DAOs defined in
 simple-persist.
 simple-command has a direct dependency on
 simple-weather and
 simple-persist; it has a transitive
 dependency on simple-model.

This chapter contains a contrived example simple enough to
 introduce in a book, yet complex enough to justify a set of five
 submodules. Our contrived example has a model project with five
 classes, a persistence library with two service classes, and a
 weather parsing library with five or six classes, but a real-world
 system might have a model project with a hundred objects, several
 persistence libraries, and service libraries spanning multiple
 departments. Although we’ve tried to make sure that the code
 contained in this example is straightforward enough to comprehend in
 a single sitting, we’ve also gone out of our way to build a modular
 project. You might be tempted to look at the examples in this
 chapter and walk away with the idea that Maven encourages too much
 complexity given that our model project has only five classes.
 Although using Maven does suggest a certain level of modularity, do
 realize that we’ve gone out of our way to complicate our simple
 example projects for the purpose of demonstrating Maven’s
 multimodule features.

Technology Used in This Example

This chapter’s example involves some technology that, while
 popular, is not directly related to Maven. These technologies are
 the Spring Framework and Hibernate. The Spring Framework
 is an Inversion of Control (IoC) container and a
 set of frameworks that aim to simplify interaction with various
 J2EE libraries. Using the Spring Framework as a
 foundational framework for application development gives you access
 to a number of helpful abstractions that can take much of the
 meddlesome busywork out of dealing with persistence frameworks such
 as Hibernate or iBATIS or enterprise APIs such as
 JDBC, JNDI, and Java Message
 Service (JMS). The Spring Framework has grown in
 popularity over the past few years as a replacement for the
 heavyweight enterprise
 standards coming out of Sun Microsystems. Hibernate is a widely used
 Object-Relational Mapping framework that allows you to interact with
 a relational database as if it were a collection of Java objects.
 This example focuses on building a simple web application and a
 command-line application that uses the Spring Framework to expose a
 set of reusable components to applications and that also uses
 Hibernate to persist weather data in an embedded database.
We’ve decided to include references to these frameworks to
 demonstrate how one would construct projects using these
 technologies when using Maven. Although we make brief efforts to
 introduce these technologies throughout this chapter, we will not go
 out of our way to fully explain these technologies. For more
 information about the Spring Framework, please see the project’s web
 site at http://www.springframework.org/. For
 more information about Hibernate and Hibernate Annotations, please see the project’s
 web site at http://www.hibernate.org. This
 chapter uses Hyper-threaded Structured Query Language Database
 (HSQLDB) as an embedded database; for more
 information about this database, see the project’s web site at
 http://hsqldb.org/.

The Simple Parent Project

This simple-parent project has a pom.xml that
 references five submodules: simple-command,
 simple-model, simple-weather,
 simple-persist, and
 simple-webapp. The top-level pom.xml is shown in Example 7-1.
Example 7-1. simple-parent project POM
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.sonatype.mavenbook.ch07</groupId>
 <artifactId>simple-parent</artifactId>
 <packaging>pom</packaging>
 <version>1.0</version>
 <name>Chapter 7 Simple Parent Project</name>

 <modules>
 <module>simple-command</module>
 <module>simple-model</module>
 <module>simple-weather</module>
 <module>simple-persist</module>
 <module>simple-webapp</module>
 </modules>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Note the similarities between this parent POM
 and the parent POM defined in Example 6-1. The only real difference
 between these two POMs is the list of submodules.
 Where the earlier example listed only two submodules, this parent
 POM lists five submodules. The next few sections
 explore each of these five submodules in some detail. Because our
 example uses Java annotations, we’ve configured the compiler to target
 the Java 5 JVM.

The Simple Model Module

The first thing most enterprise projects need is an object
 model. An object model captures the core set of domain objects in
 any system. A banking system might have an object model that consists
 of Account, Customer,
 and Transaction objects, or a system to capture
 and communicate sports scores might have Team
 and Game objects. Whatever it is, there’s a
 good chance that you’ve modeled the concepts in your system in an
 object model. It is a common practice in Maven projects to separate
 this project into a separate project that is widely referenced. In
 this example system, we are capturing each query to the Yahoo! Weather
 feed with a Weather object that references four
 other objects. Wind direction, chill, and speed are stored in a
 Wind object. Location data including the zip
 code, city, region, and country are stored in a
 Location class. Atmospheric conditions such as
 the humidity, maximum visibility, barometric pressure, and whether the
 pressure is rising or falling is stored in an
 Atmosphere class. A textual description of
 conditions, the temperature, and the data of the observation is stored
 in a Condition class. See Figure 7-2.
[image: Simple object model for weather data]

Figure 7-2. Simple object model for weather data

The pom.xml file for this
 simple model object contains one dependency that bears some
 explanation. Our object model is annotated with Hibernate Annotations. We use these
 annotations to map the model objects in this model to tables in a
 relational database. The dependency is
 org.hibernate:hibernate-annotations:3.3.0.ga. Take
 a look at the pom.xml shown in
 Example 7-2, and then look at the
 next few examples for some illustrations of these annotations.
Example 7-2. simple-model pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.ch07</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-model</artifactId>
 <packaging>jar</packaging>

 <name>Simple Object Model</name>

 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>3.3.0.ga</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 <version>3.3.0.ga</version>
 </dependency>
 </dependencies>
</project>

In src/main/java/org/sonatype/mavenbook/weather/model,
 we have Weather.java, which
 contains the annotated Weather model object.
 The Weather object is a simple Java bean.
 This means that we have private member variables like
 id, location,
 condition, wind,
 atmosphere, and date exposed
 with public getter and setter methods that adhere to the following
 pattern: if a property is named name, there will be a public no-arg getter
 method named getName(), and there will be a
 one-argument setter named setName(String name). Although we
 show the getter and setter method for the id
 property, we’ve omitted most of the getters and setters for most of
 the other properties to save a few trees. See Example 7-3.

Example 7-3. Annotated Weather model object
package org.sonatype.mavenbook.weather.model;

import javax.persistence.*;

import java.util.Date;

@Entity
@NamedQueries({
 @NamedQuery(name="Weather.byLocation",
 query="from Weather w where w.location = :location")
})
public class Weather {

 @Id
 @GeneratedValue(strategy=GenerationType.IDENTITY)
 private Integer id;

 @ManyToOne(cascade=CascadeType.ALL)
 private Location location;

 @OneToOne(mappedBy="weather",cascade=CascadeType.ALL)
 private Condition condition;

 @OneToOne(mappedBy="weather",cascade=CascadeType.ALL)
 private Wind wind;

 @OneToOne(mappedBy="weather",cascade=CascadeType.ALL)
 private Atmosphere atmosphere;

 private Date date;

 public Weather() {}

 public Integer getId() { return id; }
 public void setId(Integer id) { this.id = id; }

 // All getter and setter methods omitted...
}

In the Weather class, we are using
 Hibernate annotations to provide guidance to the
 simple-persist project. These annotations are used
 by Hibernate to map an object to a table in a relational database.
 Although a full explanation of Hibernate annotations is beyond the
 scope of this chapter, here is a brief explanation for the curious. The
 @Entity annotation marks this class as a
 persistent entity. We’ve omitted the @Table annotation on this class,
 so Hibernate is going to use the name of the class as the name of the
 table to map Weather to. The @NamedQueries annotation defines
 a query that is used by the WeatherDAO in
 simple-persist. The query language in the @NamedQuery annotation is written in
 something called Hibernate Query Language
 (HQL). Each member variable is annotated with
 annotations that define the type of column and any relationships
 implied by that column:
	Id
	The id property is annotated with
 @Id. This marks the id
 property as the property that contains the primary key in a
 database table. The @GeneratedValue
 controls how new primary key values are generated. In the case
 of id, we’re using the
 IDENTITY
 GenerationType, which will use the
 underlying database’s identity generation facilities.

	Location
	Each Weather object instance
 corresponds to a Location object. A
 Location object represents a zip code,
 and the @ManyToOne makes sure that
 Weather objects that point to the same
 Location object reference the same
 instance. The cascade attribute of the
 @ManyToOne makes sure that we persist a
 Location object every time we persist a
 Weather object.

	Condition,
 Wind, Atmosphere
	Each of these objects is mapped as a
 @OneToOne with the
 CascadeType of ALL.
 This means that every time we save a
 Weather object, we’ll be inserting a row
 into the Weather table, the
 Condition table, the Wind
 table, and the Atmosphere table.

	Date
	Date is not annotated. This means that
 Hibernate is going to use all of the column defaults to define
 this mapping. The column name is going to be date, and the column type is going to
 be the appropriate time to match the Date
 object.
Note
If you have a property you wish to omit from a table
 mapping, you would annotate that property with
 @Transient.

Next, take a look at one of the secondary model objects,
 Condition, shown in Example 7-4. This class also resides
 in src/main/java/org/sonatype/mavenbook/weather/model.
Example 7-4. simple-model’s Condition model object
package org.sonatype.mavenbook.weather.model;

import javax.persistence.*;

@Entity
public class Condition {

 @Id
 @GeneratedValue(strategy=GenerationType.IDENTITY)
 private Integer id;

 private String text;
 private String code;
 private String temp;
 private String date;

 @OneToOne(cascade=CascadeType.ALL)
 @JoinColumn(name="weather_id", nullable=false)
 private Weather weather;

 public Condition() {}

 public Integer getId() { return id; }
 public void setId(Integer id) { this.id = id; }

 // All getter and setter methods omitted...
}

The Condition class resembles the
 Weather class. It is annotated as an
 @Entity, and it has similar annotations on the
 id property. The text,
 code, temp, and
 date properties are all left with the default
 column settings, and the weather property is
 annotated with a @OneToOne annotation and
 another annotation that references the associated
 Weather object with a foreign key column named
 weather_id.

The Simple Weather Module

The next module we’re going to examine could be considered
 something of a “service.” The Simple Weather module is the module
 that contains all of the logic necessary to retrieve and parse the
 data from the Yahoo! Weather RSS feed. Although
 Simple Weather contains three Java classes and one JUnit test, it is
 going to present a single component,
 WeatherService, to both the Simple Web
 Application and the Simple Command-line Utility. Very often an
 enterprise project will contain several API modules
 that contain critical business logic or logic that interacts with
 external systems. A banking system might have a module that retrieves
 and parses data from a third-party data provider, and a system to
 display sports scores might interact with an XML
 feed that presents real-time scores for basketball or soccer. In Example 7-5, this module
 encapsulates all of the network activity and XML
 parsing that is involved in the interaction with Yahoo! Weather. Other
 modules can depend on this module and simply call out to the
 retrieveForecast()
 method on WeatherService, which takes a zip
 code as an argument and which returns a Weather
 object.
Example 7-5. simple-weather module POM
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.ch07</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-weather</artifactId>
 <packaging>jar</packaging>

 <name>Simple Weather API</name>

 <dependencies>
 <dependency>
 <groupId>org.sonatype.mavenbook.ch07</groupId>
 <artifactId>simple-model</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.14</version>
 </dependency>
 <dependency>
 <groupId>dom4j</groupId>
 <artifactId>dom4j</artifactId>
 <version>1.6.1</version>
 </dependency>
 <dependency>
 <groupId>jaxen</groupId>
 <artifactId>jaxen</artifactId>
 <version>1.1.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-io</artifactId>
 <version>1.3.2</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

The simple-weather POM
 extends the simple-parent POM,
 sets the packaging to jar, and then adds the
 following dependencies:
	org.sonatype.mavenbook.ch07:simple-model:1.0
	simple-weather parses the Yahoo!
 Weather RSS feed into a
 Weather object. It has a direct
 dependency on simple-model.

	log4j:log4j:1.2.14
	simple-weather uses the Log4J library
 to print log messages.

	dom4j:dom4j:1.6.1 and
 jaxen:jaxen:1.1.1
	Both of these dependencies are used to parse the
 XML returned from Yahoo! Weather.

	org.apache.commons:commons-io:1.3.2
 (scope=test)
	This test-scoped
 dependency is used by the
 YahooParserTest.

Next is the WeatherService class, shown
 in Example 7-6. This class is
 going to look very similar to the
 WeatherService class from Example 6-3. Although the
 WeatherService is the same, there are some
 subtle differences in this chapter’s example. This version’s
 retrieveForecast() method returns a
 Weather object, and the formatting is going to
 be left to the applications that call
 WeatherService. The other major change is that
 the YahooRetriever and
 YahooParser are both bean properties of the
 WeatherService bean.
Example 7-6. The WeatherService class
package org.sonatype.mavenbook.weather;

import java.io.InputStream;

import org.sonatype.mavenbook.weather.model.Weather;

public class WeatherService {

 private YahooRetriever yahooRetriever;
 private YahooParser yahooParser;

 public WeatherService() {}

 public Weather retrieveForecast(String zip) throws Exception {
 // Retrieve Data
 InputStream dataIn = yahooRetriever.retrieve(zip);

 // Parse DataS
 Weather weather = yahooParser.parse(zip, dataIn);

 return weather;
 }

 public YahooRetriever getYahooRetriever() {
 return yahooRetriever;
 }

 public void setYahooRetriever(YahooRetriever yahooRetriever) {
 this.yahooRetriever = yahooRetriever;
 }

 public YahooParser getYahooParser() {
 return yahooParser;
 }

 public void setYahooParser(YahooParser yahooParser) {
 this.yahooParser = yahooParser;
 }
}

Finally, in this project we have an XML file
 that is used by the Spring Framework to create something called
 an ApplicationContext. First, some
 explanation: both of our applications, the web application and the
 command-line utility, need to interact with the
 WeatherService class, and they both do so by
 retrieving an instance of this class from a Spring
 ApplicationContext using the name
 weatherService. Our web application uses a Spring
 MVC controller that is associated with an instance
 of WeatherService, and our command-line utility
 loads the WeatherService from an
 ApplicationContext in a static
 main() function. To encourage reuse, we’ve
 included an applicationContext-weather.xml file in
 src/main/resources, which is
 available on the classpath. Modules that depend on the
 simple-weather module can load this application
 context using the
 ClasspathXmlApplicationContext in the Spring
 Framework. They can then reference a named instance of the
 WeatherService named
 weatherService. See Example 7-7.
Example 7-7. Spring ApplicationContext for the simple-weather
 module
<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 default-lazy-init="true">

 <bean id="weatherService"
 class="org.sonatype.mavenbook.weather.WeatherService">
 <property name="yahooRetriever" ref="yahooRetriever"/>
 <property name="yahooParser" ref="yahooParser"/>
 </bean>

 <bean id="yahooRetriever"
 class="org.sonatype.mavenbook.weather.YahooRetriever"/>

 <bean id="yahooParser"
 class="org.sonatype.mavenbook.weather.YahooParser"/>
</beans>

This document defines three beans:
 yahooParser, yahooRetriever, and
 weatherService. The
 weatherService bean is an instance of
 WeatherService, and this XML
 document populates the yahooParser and
 yahooRetriever properties with references to the
 named instances of the corresponding classes. Think of this applicationContext-weather.xml file as defining the
 architecture of a subsystem in this multimodule project. Projects like
 simple-webapp and simple-command
 can reference this context and retrieve an instance of
 WeatherService that already has relationships
 to instances of YahooRetriever and
 YahooParser.

The Simple Persist Module

This module defines two very simple Data Access Objects (DAOs).
 A DAO is an object that provides an interface for persistence
 operations. In an application that makes use of an Object-Relational
 Mapping (ORM) framework such as Hibernate, DAOs are usually defined
 around objects. In this project, we are defining two DAO objects:
 WeatherDAO and
 LocationDAO. The WeatherDAO
 class allows us to save a Weather object to a
 database and retrieve a Weather object by id, and to retrieve
 Weather objects that match a specific
 Location. The LocationDAO has a
 method that allows us to retrieve a Location object by zip code. First,
 let’s take a look at the simple-persist POM in Example 7-8.
Example 7-8. simple-persist POM
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.ch07</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-persist</artifactId>
 <packaging>jar</packaging>

 <name>Simple Persistence API</name>

 <dependencies>
 <dependency>
 <groupId>org.sonatype.mavenbook.ch07</groupId>
 <artifactId>simple-model</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 <version>3.2.5.ga</version>
 <exclusions>
 <exclusion>
 <groupId>javax.transaction</groupId>
 <artifactId>jta</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>3.3.0.ga</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 <version>3.3.0.ga</version>
 </dependency>
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-jta_1.1_spec</artifactId>
 <version>1.1</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 <version>2.0.7</version>
 </dependency>
 </dependencies>
</project>

This POM file references
 simple-parent as a parent POM,
 and it defines a few dependencies. The dependencies listed in
 simple-persist’s POM are:
	org.sonatype.mavenbook.ch07:simple-model:1.0
	Just like the simple-weather module,
 this persistence module references the core model objects
 defined in simple-model.

	org.hibernate:hibernate:3.2.5.ga
	We define a dependency on Hibernate version 3.2.5.ga, but notice that we’re
 excluding a dependency of Hibernate. We’re doing this because
 the
 javax.transaction:javax
 dependency is not available in the public Maven
 repository. This dependency happens to be one of those Sun
 dependencies that has not yet made it into the free central
 Maven repository. To avoid an annoying message telling us to go
 download these nonfree dependencies, we simple exclude this
 dependency from Hibernate and add a dependency on...

	org.apache.geronimo.specs:geronimo-jta_1.1_spec:1.1
	Just like the Servlet and JSP APIs, the Apache Geronimo
 project was nice enough to release a certified version of many
 of the enterprise APIs under an Apache
 License. This means that whenever a component tells you that it
 depends on the JDBC, JNDI,
 and JTA APIs (among
 others), you can look for a corresponding library under the
 org.apache.geronimo.specs groupId.

	org.springframework:spring:2.0.7
	This includes the entire Spring Framework as a
 dependency.
Note
It is generally a good practice to depend on only the
 components of Spring you happen to be using. The Spring
 Framework project has been nice enough to create focused
 artifacts such as spring-hibernate3.

Why depend on Spring? When it comes to Hibernate integration,
 Spring allows us to leverage helper classes such as
 HibernateDaoSupport. For an example of what is
 possible with the help of HibernateDaoSupport,
 take a look at the code for the WeatherDAO in
 Example 7-9.
Example 7-9. simple-persist’s WeatherDAO class
package org.sonatype.mavenbook.weather.persist;

import java.util.ArrayList;
import java.util.List;

import org.hibernate.Query;
import org.hibernate.Session;
import org.springframework.orm.hibernate3.HibernateCallback;
import org.springframework.orm.hibernate3.support.HibernateDaoSupport;

import org.sonatype.mavenbook.weather.model.Location;
import org.sonatype.mavenbook.weather.model.Weather;

public class WeatherDAO extends HibernateDaoSupport[image: 1] {

 public WeatherDAO() {}

 public void save(Weather weather) {[image: 2]
 getHibernateTemplate().save(weather);
 }

 public Weather load(Integer id) {[image: 3]
 return (Weather) getHibernateTemplate().load(Weather.class, id);
 }

 @SuppressWarnings("unchecked")
 public List<Weather> recentForLocation(final Location location) {
 return (List<Weather>) getHibernateTemplate().execute(
 new HibernateCallback() {[image: 4]
 public Object doInHibernate(Session session) {
 Query query = getSession().getNamedQuery("Weather.byLocation");
 query.setParameter("location", location);
 return new ArrayList<Weather>(query.list());
 }
 });
 }
}

That’s it. No, really, you are done writing a class that can
 insert new rows, select by primary key, and find all rows in Weather that join to an id in the Location table. Clearly, we can’t stop this
 book and insert the 500 pages it would take to get you up to speed on
 the intricacies of Hibernate, but we can do some very quick explanation:
	[image: 1]
	This class extends
 HibernateDaoSupport. What this means is
 that the class is going to be associated with a Hibernate
 SessionFactory, which it is going to use to
 create Hibernate Session objects. In
 Hibernate, every operation goes through a
 Session object. A
 Session mediates access to the underlying
 database and takes care of managing the connection to the JDBC
 DataSource. Extending
 HibernateDaoSupport also means that we can
 access the HibernateTemplate using
 getHibernateTemplate().

	[image: 2]
	The save() method takes an instance
 of Weather and calls the
 save() method on a
 HibernateTemplate. The
 HibernateTemplate simplifies calls to
 common Hibernate operations and converts any database-specific
 exceptions to runtime exceptions. Here we call out to
 save(), which inserts a new record into
 the Weather table. Alternatives to
 save() are
 update(), which updates an existing row,
 or saveOrUpdate(), which would either
 save or update depending on the presence of a nonnull
 id property in Weather.

	[image: 3]
	The load() method, once again, is a
 one-liner that just calls a method on an instance of
 HibernateTemplate.
 load() on
 HibernateTemplate takes a
 Class object and a Serializable object. In this
 case, the Serializable corresponds to the
 id value of the Weather
 object to load.

	[image: 4]
	This last method,
 recentForLocation(), calls out to a
 NamedQuery defined in the
 Weather model object. If you can think back
 that far, the Weather model object defined
 a named query Weather.byLocation with a query of
 "from Weather w where w.location = :location". We’re
 loading this NamedQuery using a reference
 to a Hibernate
 Session object inside a
 HibernateCallback that is executed by the
 execute() method on
 HibernateTemplate. You can see in this
 method that we’re populating the named parameter location with the
 parameter passed into the recentForLocation()
 method.

Now is a good time for some clarification.
 HibernateDaoSupport and
 HibernateTemplate are classes from the Spring
 Framework. They were created by the Spring Framework to make writing
 Hibernate DAO objects painless. To support this
 DAO, we’ll need to do some configuration in the
 simple-persist Spring
 ApplicationContext definition. The XML document
 shown in Example 7-10 is stored in src/main/resources in a file named
 applicationContext-persist.xml.
Example 7-10. Spring ApplicationContext for simple-persist
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd"
 default-lazy-init="true">

 <bean id="sessionFactory"
class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean">
 <property name="annotatedClasses">
 <list>
 <value>org.sonatype.mavenbook.weather.model.Atmosphere</value>
 <value>org.sonatype.mavenbook.weather.model.Condition</value>
 <value>org.sonatype.mavenbook.weather.model.Location</value>
 <value>org.sonatype.mavenbook.weather.model.Weather</value>
 <value>org.sonatype.mavenbook.weather.model.Wind</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.show_sql">false</prop>
 <prop key="hibernate.format_sql">true</prop>
 <prop key="hibernate.transaction.factory_class">
 org.hibernate.transaction.JDBCTransactionFactory
 </prop>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </prop>
 <prop key="hibernate.connection.pool_size">0</prop>
 <prop key="hibernate.connection.driver_class">
 org.hsqldb.jdbcDriver
 </prop>
 <prop key="hibernate.connection.url">
 jdbc:hsqldb:data/weather;shutdown=true
 </prop>
 <prop key="hibernate.connection.username">sa</prop>
 <prop key="hibernate.connection.password"></prop>
 <prop key="hibernate.connection.autocommit">true</prop>
 <prop key="hibernate.jdbc.batch_size">0</prop>
 </props>
 </property>
 </bean>

 <bean id="locationDAO"
 class="org.sonatype.mavenbook.weather.persist.LocationDAO">
 <property name="sessionFactory" ref="sessionFactory"/>
 </bean>

 <bean id="weatherDAO"
 class="org.sonatype.mavenbook.weather.persist.WeatherDAO">
 <property name="sessionFactory" ref="sessionFactory"/>
 </bean>
 </beans>

In this application context, we’re accomplishing a few things.
 The sessionFactory bean is the bean from which the
 DAOs retrieve Hibernate
 Session objects. This bean is an instance of
 AnnotationSessionFactoryBean and is supplied
 with a list of annotatedClasses. Note that the list of
 annotated classes is the list of classes defined in our
 simple-model module. Next, the
 sessionFactory is configured with a set of
 Hibernate configuration properties
 (hibernateProperties). In this example, our
 Hibernate properties define a number of settings:
	hibernate.dialect
	This setting controls how SQL is to be
 generated for our database. Since we are using the
 HSQLDB database, our database dialect is set
 to
 org.hibernate.dialect.HSQLDialect.
 Hibernate has dialects for all major databases such as Oracle,
 MySQL, Postgres, and SQL Server.

	hibernate.connection.*
	In this example, we’re configuring the
 JDBC connection properties from the Spring
 configuration. Our applications are configured to run against a
 HSQLDB in the ./data/weather directory. In a
 real enterprise application, it is more likely you would use
 something like JNDI to externalize database
 configuration from your application’s code.

Lastly, in this bean definition file, both of the
 simple-persist DAO objects are
 created and given a reference to the sessionFactory
 bean just defined. Just like the Spring application context in
 simple-weather, this applicationContext-persist.xml file defines
 the architecture of a submodule in a larger enterprise design. If you
 were working with a larger collection of persistence classes, you
 might find it useful to capture them in an application context that is
 separate from your application.
There’s one last piece of the puzzle in
 simple-persist. Later in this chapter, we’re going
 to see how we can use the Maven Hibernate3 plugin to
 generate our database schema from the annotated model objects. For
 this to work properly, the Maven Hibernate3 plugin needs to read the
 JDBC connection configuration parameters, the list
 of annotated classes, and other Hibernate configuration from a file
 named hibernate.cfg.xml
 in src/main/resources. The
 purpose of this file (which duplicates some of the configuration in
 applicationContext-persist.xml)
 is to allow us to leverage the Maven Hibernate3 plugin to generate Data Definition
 Language (DDL) from nothing more than our
 annotations. See Example 7-11.
Example 7-11. simple-persist hibernate.cfg.xml
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
 <session-factory>

 <!-- SQL dialect -->
 <property name="dialect">org.hibernate.dialect.HSQLDialect</property>

 <!-- Database connection settings -->
 <property name="connection.driver_class">org.hsqldb.jdbcDriver</property>
 <property name="connection.url">jdbc:hsqldb:data/weather</property>
 <property name="connection.username">sa</property>
 <property name="connection.password"></property>
 <property name="connection.shutdown">true</property>

 <!-- JDBC connection pool (use the built-in one) -->
 <property name="connection.pool_size">1</property>

 <!-- Enable Hibernate's automatic session context management -->
 <property name="current_session_context_class">thread</property>

 <!-- Disable the second-level cache -->
 <property name="cache.provider_class">org.hibernate.cache.NoCacheProvider</property>

 <!-- Echo all executed SQL to stdout -->
 <property name="show_sql">true</property>

 <!-- disable batching so HSQLDB will propagate errors correctly. -->
 <property name="jdbc.batch_size">0</property>

 <!-- List all the mapping documents we're using -->
 <mapping class="org.sonatype.mavenbook.weather.model.Atmosphere"/>
 <mapping class="org.sonatype.mavenbook.weather.model.Condition"/>
 <mapping class="org.sonatype.mavenbook.weather.model.Location"/>
 <mapping class="org.sonatype.mavenbook.weather.model.Weather"/>
 <mapping class="org.sonatype.mavenbook.weather.model.Wind"/>

 </session-factory>
</hibernate-configuration>

The contents of Examples 7-10 and 7-11 are
 redundant. While the Spring Application Context
 XML is going to be used by the web application and
 the command-line application, the hibernate.cfg.xml exists only to support
 the Maven Hibernate3 plugin. Later in this chapter, we’ll see how to
 use this hibernate.cfg.xml and
 the Maven Hibernate3 plugin to generate a database schema based on the
 annotated object model defined in simple-model.
 This hibernate.cfg.xml file is
 the file that will configure the JDBC connection
 properties and enumerate the list of annotated model classes for the
 Maven Hibernate3 plugin.

The Simple Web Application Module

The web application is defined in a
 simple-webapp project. This simple web application project is going to
 define two Spring MVC Controllers:
 WeatherController and HistoryController. Both of these
 controllers are going to reference components defined in
 simple-weather and
 simple-persist. The Spring container is configured
 in this application’s web.xml,
 which references the applicationContext-weather.xml file in
 simple-weather and the
 applicationContext-persist.xml
 file in simple-persist. The component architecture
 of this simple web application is shown in Figure 7-3.
[image: Spring MVC controllers referencing components in simple-weather and simple-persist]

Figure 7-3. Spring MVC controllers referencing components in
 simple-weather and simple-persist

The POM for simple-webapp is shown in Example 7-12.
Example 7-12. POM for simple-webapp
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.ch07</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>

 <artifactId>simple-webapp</artifactId>
 <packaging>war</packaging>
 <name>Simple Web Application</name>
 <dependencies>
 <dependency> [image: 1]
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-servlet_2.4_spec</artifactId>
 <version>1.1.1</version>
 </dependency>
 <dependency>
 <groupId>org.sonatype.mavenbook.ch07</groupId>
 <artifactId>simple-weather</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.sonatype.mavenbook.ch07</groupId>
 <artifactId>simple-persist</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 <version>2.0.7</version>
 </dependency>
 <dependency>
 <groupId>org.apache.velocity</groupId>
 <artifactId>velocity</artifactId>
 <version>1.5</version>
 </dependency>
 </dependencies>
 <build>
 <finalName>simple-webapp</finalName>
 <plugins>
 <plugin> [image: 2]
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 <dependencies> [image: 3]
 <dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>1.8.0.7</version>
 </dependency> [image: 4]
 </dependencies>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId> [image: 5]
 <artifactId>hibernate3-maven-plugin</artifactId>
 <version>2.0</version>
 <configuration>
 <components>
 <component>
 <name>hbm2ddl</name>
 <implementation>annotationconfiguration</implementation> [image: 6]
 </component>
 </components>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>1.8.0.7</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
</project>

As this book progresses and the examples become more and more
 substantial, you’ll notice that the pom.xml begins to take on some weight. In
 this POM, we’re configuring four dependencies and two plugins. Let’s
 go through this POM in detail and dwell on some of the important
 configuration points:
	[image: 1]
	This simple-webapp project defines four
 dependencies: the Servlet 2.4 specification implementation from
 Apache Geronimo, the simple-weather service library, the
 simple-persist persistence library, and the entire Spring
 Framework 2.0.7.

	[image: 2]
	In our build configuration, we’re going to be configuring
 the Maven Hibernate3 plugin to hit an embedded HSQLDB
 instance. For the Maven Hibernate 3 plugin to successfully connect
 to this database using JDBC, the plugin will need to reference the
 HSQLDB JDBC driver on the classpath. To make a dependency
 available for a plugin, we
 add a reference to the dependency as an extension. You can think
 about extensions as providing you with the ability to add
 something to the classpath for plugin execution. In this case,
 we’re referencing hsqldb:hsqldb:1.8.0.7.

	[image: 3]
	The Maven Jetty plugin couldn’t be easier to add to this
 project; we simply add a plugin element that references the
 appropriate groupId and
 artifactId. The fact that this
 plugin is so trivial to configure means that the plugin developers
 did a good job of providing adequate defaults that don’t need to
 be overridden in most cases. If you did need to override the
 configuration of the Jetty plugin, you would do so by providing a
 configuration element.

	[image: 4]
	In our build configuration, we’re going to be configuring
 the Maven Hibernate3 plugin to hit an embedded HSQLDB instance.
 For the Maven Hibernate3 plugin to successfully connect to this
 database using JDBC, the plugin will need reference the HSQLDB
 JDBC driver on the classpath. To make a dependency available for a
 plugin, we add a dependency declaration right
 inside a plugin declaration. In this case,
 we’re referencing hsqldb:hsqldb:1.8.0.7. The Hibernate
 plugin also needs the JDBC driver to create the database, so we
 have also added this dependency to its configuration.

	[image: 5]
	The Maven Hibernate plugin is when this POM starts to get
 interesting. In the next section, we’re going to run
 the hbm2ddl goal to generate a
 HSQLDB database. In this pom.xml, we’re including a reference to
 version 2.0 of the hibernate3-maven-plugin hosted by the
 Codehaus Mojo plugin.

	[image: 6]
	The Maven Hibernate3 plugin has different ways to obtain
 Hibernate mapping information that are appropriate for different
 usage scenarios of the Hibernate3 plugin. If you were using
 Hibernate Mapping XML (.hbm.xml) files, and you wanted to
 generate model classes using the hbm2java goal, you would set your
 implementation to configuration. If you were using the Hibernate3
 plugin to reverse engineer a database to produce .hbm.xml files and model classes from
 an existing database, you would use an implementation of jdbcconfiguration. In this case, we’re
 simply using an existing annotated object model to generate a
 database. In other words, we have our Hibernate mapping, but we
 don’t yet have a database. In this usage scenario, the appropriate
 implementation value is annotationconfiguration. The Maven
 Hibernate3 plugin is
 discussed in more detail in the later section Running the Web Application.”

Note
A common mistake is to use the extensions
 configuration to add dependencies required by a plugin. This is
 strongly discouraged, as the extensions can cause classpath
 pollution across your project, among other nasty side effects.
 Additionally, the extensions behavior is being
 reworked in 2.1, so you’ll eventually need to change it anyway. The
 only normal use for extensions is to define new
 wagon implementations.

Next, we turn our attention to the two Spring MVC controllers
 that will handle all of the requests. Both of these controllers
 reference the beans defined in simple-weather and
 simple-persist. See Example 7-13.
Example 7-13. simple-webapp WeatherController
package org.sonatype.mavenbook.web;

import org.sonatype.mavenbook.weather.model.Weather;
import org.sonatype.mavenbook.weather.persist.WeatherDAO;
import org.sonatype.mavenbook.weather.WeatherService;
import javax.servlet.http.*;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;

public class WeatherController implements Controller {

 private WeatherService weatherService;
 private WeatherDAO weatherDAO;

 public ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse response) throws Exception {

 String zip = request.getParameter("zip");
 Weather weather = weatherService.retrieveForecast(zip);
 weatherDAO.save(weather);
 return new ModelAndView("weather", "weather", weather);
 }

 public WeatherService getWeatherService() {
 return weatherService;
 }

 public void setWeatherService(WeatherService weatherService) {
 this.weatherService = weatherService;
 }

 public WeatherDAO getWeatherDAO() {
 return weatherDAO;
 }

 public void setWeatherDAO(WeatherDAO weatherDAO) {
 this.weatherDAO = weatherDAO;
 }
}

WeatherController implements the Spring MVC
 Controller interface that mandates the presence of a
 handleRequest() method with the signature
 shown in the example. If you look at the meat of this method, you’ll
 see that it invokes the retrieveForecast()
 method on the weatherService instance variable.
 Unlike the previous chapter, which had a Servlet that instantiated the
 WeatherService class, the
 WeatherController is a bean with a
 weatherService property. The Spring IoC container
 is responsible for wiring the controller
 to the weatherService component. Also
 notice that we’re not using the WeatherFormatter in this Spring
 controller implementation; instead, we’re passing the
 Weather object returned by
 retrieveForecast() to the constructor of
 ModelAndView. This
 ModelAndView class is going to be used to
 render a Velocity template, and this template will have
 references to a ${weather} variable. The weather.vm template is stored in src/main/webapp/WEB-INF/vm and is shown in
 Example 7-14.
In the WeatherController, before we
 render the output of the forecast, we pass the
 Weather object returned by the
 WeatherService to the
 save() method on
 WeatherDAO. Here we are saving this
 Weather object—using Hibernate—to an HSQLDB
 database. Later, in HistoryController, we will
 see how we can retrieve a history of weather forecasts that were saved
 by the WeatherController.
Example 7-14. weather.vm template rendered by WeatherController
Current Weather Conditions for:
 ${weather.location.city}, ${weather.location.region},
 ${weather.location.country}

 Temperature: ${weather.condition.temp}
 Condition: ${weather.condition.text}
 Humidity: ${weather.atmosphere.humidity}
 Wind Chill: ${weather.wind.chill}
 Date: ${weather.date}

The syntax for this Velocity template is straightforward;
 variables are referenced using ${} notation. The
 expression between the curly braces references a property, or a
 property of a property on the weather variable that
 was passed to this template by the
 WeatherController.
The HistoryController is used to retrieve
 recent forecasts that have been requested by the
 WeatherController. Whenever we retrieve a
 forecast from the WeatherController, that
 controller saves the Weather object to the
 database via the WeatherDAO. WeatherDAO then uses Hibernate to
 dissect the Weather object into a series of
 rows in a set of related database tables. The
 HistoryController is shown in Example 7-15.
Example 7-15. simple-web HistoryController
package org.sonatype.mavenbook.web;

import java.util.*;
import javax.servlet.http.*;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;
import org.sonatype.mavenbook.weather.model.*;
import org.sonatype.mavenbook.weather.persist.*;

public class HistoryController implements Controller {

 private LocationDAO locationDAO;
 private WeatherDAO weatherDAO;

 public ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse response) throws Exception {
 String zip = request.getParameter("zip");
 Location location = locationDAO.findByZip(zip);
 List<Weather> weathers = weatherDAO.recentForLocation(location);

 Map<String,Object> model = new HashMap<String,Object>();
 model.put("location", location);
 model.put("weathers", weathers);

 return new ModelAndView("history", model);
 }

 public WeatherDAO getWeatherDAO() {
 return weatherDAO;
 }

 public void setWeatherDAO(WeatherDAO weatherDAO) {
 this.weatherDAO = weatherDAO;
 }

 public LocationDAO getLocationDAO() {
 return locationDAO;
 }

 public void setLocationDAO(LocationDAO locationDAO) {
 this.locationDAO = locationDAO;
 }
}

The HistoryController is wired to two
 DAO objects defined in
 simple-persist. The DAOs are
 bean properties of the HistoryController:
 WeatherDAO and
 LocationDAO. The goal of the
 HistoryController is to retrieve a
 List of Weather objects
 that correspond to the zip parameter. When the
 WeatherDAO saves the
 Weather object to the database, it doesn’t just
 store the zip code; it stores a Location object
 that is related to the Weather object in the
 simple-model. To retrieve a
 List of Weather objects,
 the HistoryController
 first retrieves the Location object that
 corresponds to the zip parameter. It does this by
 invoking the findByZip() method on
 LocationDAO.
Once the Location object has been
 retrieved, the HistoryController will then
 attempt to retrieve recent Weather objects that
 match the given Location. Once the
 List<Weather> has been retrieved, a
 HashMap is created to hold two variables for
 the history.vm Velocity template
 shown in Example 7-16.
Example 7-16. history.vm rendered by the HistoryController

Weather History for: ${location.city}, ${location.region}, ${location.country}

#foreach($weather in $weathers)

 Temperature: $weather.condition.temp
 Condition: $weather.condition.text
 Humidity: $weather.atmosphere.humidity
 Wind Chill: $weather.wind.chill
 Date: $weather.date

#end

The history.vm template in
 src/main/webapp/WEB-INF/vm
 references the location variable to print out
 information about the location of the forecasts retrieved from the
 WeatherDAO. This template then uses a Velocity
 control structure, #foreach, to loop through each element
 in the weathers variable. Each element in
 weathers is assigned to a variable named
 weather, and the template between
 #foreach and #end is rendered for each
 forecast.
You’ve seen these Controller
 implementations, and you’ve seen that they reference other beans
 defined in simple-weather and
 simple-persist. They respond to
 HTTP requests, and they yield control to some
 mysterious templating system that knows how to render Velocity
 templates. All of this magic is configured in a Spring application
 context in src/main/webapp/WEB-INF/weather-servlet.xml.
 This XML configures the controllers and references
 other Spring-managed beans; it is loaded by a ServletContextListener, which is also
 configured to load the applicationContext-weather.xml and
 applicationContext-persist.xml
 from the classpath. Let’s take a closer look at the weather-servlet.xml
 shown in Example 7-17.
Example 7-17. Spring controller configuration weather-servlet.xml
<beans>
 <bean id="weatherController" [image: 1]
 class="org.sonatype.mavenbook.web.WeatherController">
 <property name="weatherService" ref="weatherService"/>
 <property name="weatherDAO" ref="weatherDAO"/>
 </bean>

 <bean id="historyController"
 class="org.sonatype.mavenbook.web.HistoryController">
 <property name="weatherDAO" ref="weatherDAO"/>
 <property name="locationDAO" ref="locationDAO"/>
 </bean>

 <!-- you can have more than one handler defined -->
 <bean id="urlMapping"
 class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
 <property name="urlMap">
 <map>
 <entry key="/weather.x"> [image: 2]
 <ref bean="weatherController" />
 </entry>
 <entry key="/history.x">
 <ref bean="historyController" />
 </entry>
 </map>
 </property>
 </bean>

 <bean id="velocityConfig" [image: 3]
 class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">
 <property name="resourceLoaderPath" value="/WEB-INF/vm/"/>
 </bean>

 <bean id="viewResolver" [image: 4]
 class="org.springframework.web.servlet.view.velocity.VelocityViewResolver">
 <property name="cache" value="true"/>
 <property name="prefix" value=""/>
 <property name="suffix" value=".vm"/>
 <property name="exposeSpringMacroHelpers" value="true"/>
 </bean>
</beans>

	[image: 1]
	The weather-servlet.xml
 defines the two controllers as Spring-managed beans. weatherController has two
 properties that are references to
 weatherService and weatherDAO.
 historyController references the beans
 weatherDAO and locationDAO.
 When this ApplicationContext is created, it
 is created in an environment that has access to the
 ApplicationContexts defined in both
 simple-persist and
 simple-weather. In Example 7-18, you will see how Spring is
 configured to merge components from multiple Spring configuration
 files.

	[image: 2]
	The urlMapping bean defines the
 URL patterns that invoke the WeatherController and the
 HistoryController. In this example, we are
 using the SimpleUrlHandlerMapping and
 mapping /weather.x to
 WeatherController and /history.x to
 HistoryController.

	[image: 3]
	Since we are using the Velocity templating engine, we will
 need to pass in some configuration options. In the
 velocityConfig bean, we are telling Velocity to
 look for all templates in the /WEB-INF/vm directory.

	[image: 4]
	Last, the viewResolver is configured with
 the class VelocityViewResolver. There are a
 number of ViewResolver implementations in
 Spring from a standard ViewResolver to render
 JSP or JSTL (JavaServer
 Pages Standard Tag Library) pages to a resolver that can render
 FreeMarker templates. In this example, we’re configuring the
 Velocity templating engine and setting the default prefix and
 suffix that will be automatically appended to the names of the
 template passed to ModelAndView.

Finally, the simple-webapp project was a
 web.xml that provides the basic
 configuration for the web application. The web.xml file is shown in Example 7-18.
Example 7-18. web.xml for simple-webapp
<web-app id="simple-webapp" version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
 <display-name>Simple Web Application</display-name>

 <context-param> [image: 1]
 <param-name>contextConfigLocation</param-name>
 <param-value>
 classpath:applicationContext-weather.xml
 classpath:applicationContext-persist.xml
 </param-value>
 </context-param>

 <context-param> [image: 2]
 <param-name>log4jConfigLocation</param-name>
 <param-value>/WEB-INF/log4j.properties</param-value>
 </context-param>

 <listener> [image: 3]
 <listener-class>
 org.springframework.web.util.Log4jConfigListener
 </listener-class>
 </listener>

 <listener>
 <listener-class> [image: 4]
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

 <servlet> [image: 5]
 <servlet-name>weather</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping> [image: 6]
 <servlet-name>weather</servlet-name>
 <url-pattern>*.x</url-pattern>
 </servlet-mapping>
</web-app>

	[image: 1]
	Here’s a bit of magic that allows us to reuse applicationContext-weather.xml and
 applicationContext-persist.xml in this
 project. The contextConfigLocation is used by
 the ContextLoaderListener to create an
 ApplicationContext. When the weather
 servlet is created, the weather-servlet.xml from Example 7-17 is going to be evaluated
 with the ApplicationContext created from
 this contextConfigLocation. In this way, you
 can define a set of beans in another project and you can reference
 these beans via the classpath. Since the
 simple-persist and
 simple-weather JARs are
 going to be in WEB-INF/lib,
 all we do is use the classpath:
 prefix to reference these files. (Another option would have been
 to copy these files to /WEB-INF and reference them with
 something like /WEB-INF/applicationContext-persist.xml.)

	[image: 2]
	The log4jConfigLocation is used to tell
 the Log4JConfigListener where to look for
 Log4J logging configuration. In this example, we tell Log4J to
 look in /WEB-INF/log4j.properties.

	[image: 3]
	This makes sure that the Log4J system is configured when the
 web application starts. It is important to put this
 Log4JConfigListener before the
 ContextLoaderListener; otherwise, you may miss
 important logging messages that point to a problem preventing
 application startup. If you have a particularly large set of beans
 managed by Spring and one of them happens to blow up on
 application startup, your application will fail. If you have
 logging initialized before Spring starts, you might have a chance
 to catch a warning or an error. If you don’t have logging
 initialized before Spring starts up, you’ll have no idea why your
 application refuses to start.

	[image: 4]
	The ContextLoaderListener is
 essentially the Spring container. When the application starts, this listener will
 build an ApplicationContext from
 the contextConfigLocation
 parameter.

	[image: 5]
	We define a Spring MVC
 DispatcherServlet with a name of
 weather. This will cause Spring to look for a
 Spring configuration file in /WEB-INF/weather-servlet.xml. You can
 have as many DispatcherServlets as you
 need. A DispatcherServlet can contain one
 or more Spring MVC
 Controller implementations.

	[image: 6]
	All requests ending in .x will be routed to the
 weather servlet. Note that the .x extension has no particular meaning;
 it is an arbitrary choice and you can use whatever
 URL pattern you like.

Running the Web Application

To run the web application, you’ll first need to build the
 database using the Hibernate3 plugin. To do this, run the
 following from the simple-webapp project
 directory:
$ mvn hibernate3:hbm2ddl
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'hibernate3'.
[INFO] org.codehaus.mojo: checking for updates from central
[INFO] ---
[INFO] Building Chapter 7 Simple Web Application
[INFO] task-segment: [hibernate3:hbm2ddl]
[INFO] ---
[INFO] Preparing hibernate3:hbm2ddl
...
10:24:56,151 INFO org.hibernate.tool.hbm2ddl.SchemaExport - schema\
 export complete
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---

Once you’ve done this, there should be a ${basedir}/data directory that will contain
 the HSQLDB database. You can then start the web application
 with:
$ mvn jetty:run
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'jetty'.
[INFO] ---
[INFO] Building Chapter 7 Simple Web Application
[INFO] task-segment: [jetty:run]
[INFO] ---
[INFO] Preparing jetty:run
...
[INFO] [jetty:run]
[INFO] Configuring Jetty for project: Chapter 7 Simple Web Application
...
[INFO] Context path = /simple-webapp
[INFO] Tmp directory = determined at runtime
[INFO] Web defaults = org/mortbay/jetty/webapp/webdefault.xml
[INFO] Web overrides = none
[INFO] Starting jetty 6.1.7 ...
2008-03-25 10:28:03.639::INFO: jetty-6.1.7
...
2147 INFO DispatcherServlet - FrameworkServlet 'weather':
 initialization completed in 1654 ms
2008-03-25 10:28:06.341::INFO:
 Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

Once Jetty is started, you can load http://localhost:8080/simple-webapp/weather.x?zip=60202,
 and you should see the weather for Evanston, Illinois, in your web
 browser. Change the zip code and you should be
 able to get your own weather report:
Current Weather Conditions for: Evanston, IL, US

 * Temperature: 42
 * Condition: Partly Cloudy
 * Humidity: 55
 * Wind Chill: 34
 * Date: Tue Mar 25 10:29:45 CDT 2008

The simple-command Module

The simple-command project is a command-line
 version of the simple-webapp. It is a utility that
 relies on the same dependencies: simple-persist and
 simple-weather. Instead of interacting with this
 application via a web browser, you would run the
 simple-command utility from the command line.
 See Figure 7-4 and Example 7-19.
[image: The simple-command module]

Figure 7-4. The simple-command module

Example 7-19. POM for simple-command
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.ch07</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>

 <artifactId>simple-command</artifactId>
 <packaging>jar</packaging>
 <name>Simple Command Line Tool</name>

 <build>
 <finalName>${project.artifactId}</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <testFailureIgnore>true</testFailureIgnore>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>hibernate3-maven-plugin</artifactId>
 <version>2.1</version>
 <configuration>
 <components>
 <component>
 <name>hbm2ddl</name>
 <implementation>annotationconfiguration</implementation>
 </component>
 </components>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>1.8.0.7</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>org.sonatype.mavenbook.ch07</groupId>
 <artifactId>simple-weather</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.sonatype.mavenbook.ch07</groupId>
 <artifactId>simple-persist</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 <version>2.0.7</version>
 </dependency>
 <dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>1.8.0.7</version>
 </dependency>
 </dependencies>
</project>

This POM creates a JAR
 file that will contain the
 org.sonatype.mavenbook.weather.Main class shown
 in Example 7-20. In this
 POM, we configure the Maven Assembly plugin to use
 a built-in assembly descriptor named
 jar-with-dependencies, which creates a single
 JAR file containing all the bytecode a project
 needs to execute, including the bytecode from the project you are
 building and all the dependency bytecode.
Example 7-20. The Main class for simple-command
package org.sonatype.mavenbook.weather;

import java.util.List;

import org.apache.log4j.PropertyConfigurator;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import org.sonatype.mavenbook.weather.model.Location;
import org.sonatype.mavenbook.weather.model.Weather;
import org.sonatype.mavenbook.weather.persist.LocationDAO;
import org.sonatype.mavenbook.weather.persist.WeatherDAO;

public class Main {

 private WeatherService weatherService;
 private WeatherDAO weatherDAO;
 private LocationDAO locationDAO;

 public static void main(String[] args) throws Exception {
 // Configure Log4J
 PropertyConfigurator.configure(Main.class.getClassLoader().getResource(
 "log4j.properties"));

 // Read the Zip Code from the Command-line (if none supplied, use 60202)
 String zipcode = "60202";
 try {
 zipcode = args[0];
 } catch (Exception e) {
 }

 // Read the Operation from the Command-line (if none supplied use weather)
 String operation = "weather";
 try {
 operation = args[1];
 } catch (Exception e) {
 }

 // Start the program
 Main main = new Main(zipcode);

 ApplicationContext context =
 new ClassPathXmlApplicationContext(
 new String[] { "classpath:applicationContext-weather.xml",
 "classpath:applicationContext-persist.xml" });
 main.weatherService = (WeatherService) context.getBean("weatherService");
 main.locationDAO = (LocationDAO) context.getBean("locationDAO");
 main.weatherDAO = (WeatherDAO) context.getBean("weatherDAO");
 if(operation.equals("weather")) {
 main.getWeather();
 } else {
 main.getHistory();
 }
 }

 private String zip;

 public Main(String zip) {
 this.zip = zip;
 }

 public void getWeather() throws Exception {
 Weather weather = weatherService.retrieveForecast(zip);
 weatherDAO.save(weather);
 System.out.print(new WeatherFormatter().formatWeather(weather));
 }

 public void getHistory() throws Exception {
 Location location = locationDAO.findByZip(zip);
 List<Weather> weathers = weatherDAO.recentForLocation(location);
 System.out.print(new WeatherFormatter().formatHistory(location, weathers));
 }
}

The Main class has a reference to
 WeatherDAO, LocationDAO,
 and WeatherService. The static
 main() method in this class:
	Reads the zip code from the first command-line
 argument.

	Reads the operation from the second command-line argument.
 If the operation is “weather”, the latest weather will be
 retrieved from the web service. If the operation is “history”, the
 program will fetch historical weather records from the local
 database.

	Loads a Spring ApplicationContext
 using two XML files loaded from simple-persist and
 simple-weather.

	Creates an instance of Main.

	Populates the weatherService,
 weatherDAO, and locationDAO
 with beans from the Spring
 ApplicationContext.

	Runs the appropriate method
 getWeather() or
 getHistory(), depending on the specified
 operation.

In the web application, we use Spring
 VelocityViewResolver to render a Velocity
 template. In the standalone implementation, we need to write a simple
 class that renders our weather data with a Velocity template. Example 7-21 is a listing of the
 WeatherFormatter, a class
 with two methods that render the weather report and the weather
 history.
Example 7-21. WeatherFormatter renders weather data using a Velocity
 template
package org.sonatype.mavenbook.weather;

import java.io.InputStreamReader;
import java.io.Reader;
import java.io.StringWriter;
import java.util.List;

import org.apache.log4j.Logger;
import org.apache.velocity.VelocityContext;
import org.apache.velocity.app.Velocity;

import org.sonatype.mavenbook.weather.model.Location;
import org.sonatype.mavenbook.weather.model.Weather;

public class WeatherFormatter {

 private static Logger log = Logger.getLogger(WeatherFormatter.class);

 public String formatWeather(Weather weather) throws Exception {
 log.info("Formatting Weather Data");
 Reader reader =
 new InputStreamReader(getClass().getClassLoader().
 getResourceAsStream("weather.vm"));
 VelocityContext context = new VelocityContext();
 context.put("weather", weather);
 StringWriter writer = new StringWriter();
 Velocity.evaluate(context, writer, "", reader);
 return writer.toString();
 }

 public String formatHistory(Location location, List<Weather> weathers)
 throws Exception {
 log.info("Formatting History Data");
 Reader reader =
 new InputStreamReader(getClass().getClassLoader().
 getResourceAsStream("history.vm"));
 VelocityContext context = new VelocityContext();
 context.put("location", location);
 context.put("weathers", weathers);
 StringWriter writer = new StringWriter();
 Velocity.evaluate(context, writer, "", reader);
 return writer.toString();
 }
}

The weather.vm template
 simply prints the zip code’s city, country, and region as well as the
 current temperature, as shown in Example 7-22. The history.vm template prints the location and
 then iterates through the weather forecast records stored in the local
 database, as shown in Example 7-23. Both of these templates
 are in ${basedir}/src/main/resources.
Example 7-22. The weather.vm Velocity template
**
Current Weather Conditions for:
 ${weather.location.city},
 ${weather.location.region},
 ${weather.location.country}
**

 * Temperature: ${weather.condition.temp}
 * Condition: ${weather.condition.text}
 * Humidity: ${weather.atmosphere.humidity}
 * Wind Chill: ${weather.wind.chill}
 * Date: ${weather.date}

Example 7-23. The history.vm Velocity template
Weather History for:
${location.city},
${location.region},
${location.country}

#foreach($weather in $weathers)
**
 * Temperature: $weather.condition.temp
 * Condition: $weather.condition.text
 * Humidity: $weather.atmosphere.humidity
 * Wind Chill: $weather.wind.chill
 * Date: $weather.date
#end

Running simple-command

The simple-command project is configured to
 create a single JAR containing the bytecode of the
 project and all of the bytecode from the dependencies. To create this
 assembly, run the assembly goal of the Maven
 Assembly plugin from the simple-command project
 directory:
$ mvn assembly:assembly
[INFO] --
[INFO] Building Chapter 7 Simple Command Line Tool
[INFO] task-segment: [assembly:assembly] (aggregator-style)
[INFO] --
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [surefire:test]
...
[INFO] [jar:jar]
[INFO] Building jar: .../simple-parent/simple-command/target/simple-command.jar
[INFO] [assembly:assembly]
[INFO] Processing DependencySet (output=)
[INFO] Expanding: .../.m2/repository/.../simple-weather-1-SNAPSHOT.jar into \
 /tmp/archived-file-set.93251505.tmp
[INFO] Expanding: .../.m2/repository/.../simple-model-1-SNAPSHOT.jar into \
 /tmp/archived-file-set.2012480870.tmp
[INFO] Expanding: .../.m2/repository/../hibernate-3.2.5.ga.jar into \
 /tmp/archived-file-set.1296516202.tmp
... skipping 25 lines of dependency unpacking ...
[INFO] Expanding: .../.m2/repository/.../velocity-1.5.jar into \
 /tmp/archived-file-set.379482226.tmp
[INFO] Expanding: .../.m2/repository/.../commons-lang-2.1.jar into \
 /tmp/archived-file-set.1329200163.tmp
[INFO] Expanding: .../.m2/repository/.../oro-2.0.8.jar into \
 /tmp/archived-file-set.1993155327.tmp
[INFO] Building jar: .../simple-parent/simple-command/target/\
 simple-command-jar-with-dependencies.jar

The build progresses through the lifecycle compiling bytecode,
 running tests, and finally building a JAR for the
 project. Then the assembly:assembly goal creates a
 JAR with dependencies by unpacking all of the
 dependencies to temporary directories and then collecting all of the
 bytecode into a single JAR in target/ that is named simple-command-jar-with-dependencies.jar.
 This “uber” JAR weighs in at 15 MB.
Before you run the command-line tool, you will need to invoke
 the hbm2ddl goal of the Hibernate3 plugin to create
 the HSQLDB database. Do this by running the following command from the
 simple-command directory:
$ mvn hibernate3:hbm2ddl
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'hibernate3'.
[INFO] org.codehaus.mojo: checking for updates from central
[INFO] --
[INFO] Building Chapter 7 Simple Command Line Tool
[INFO] task-segment: [hibernate3:hbm2ddl]
[INFO] --
[INFO] Preparing hibernate3:hbm2ddl
...
10:24:56,151 INFO org.hibernate.tool.hbm2ddl.SchemaExport - export complete
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

Once you run this, you should see a data/ directory under simple-command. This data/ directory holds the HSQLDB database.
 To run the command-line weather forecaster, run the following from the
 simple-command project
 directory:
$ java -cp target/simple-command-jar-with-dependencies.jar \
 org.sonatype.mavenbook.weather.Main 60202
2321 INFO YahooRetriever - Retrieving Weather Data
2489 INFO YahooParser - Creating XML Reader
2581 INFO YahooParser - Parsing XML Response
2875 INFO WeatherFormatter - Formatting Weather Data
**
Current Weather Conditions for:
 Evanston,
 IL,
 US
**

 * Temperature: 75
 * Condition: Partly Cloudy
 * Humidity: 64
 * Wind Chill: 75
 * Date: Wed Aug 06 09:35:30 CDT 2008

To run a history query, execute the following command:
$ java -cp target/simple-command-jar-with-dependencies.jar \
 org.sonatype.mavenbook.weather.Main 60202 history
2470 INFO WeatherFormatter - Formatting History Data
Weather History for:
Evanston, IL, US

**
 * Temperature: 39
 * Condition: Heavy Rain
 * Humidity: 93
 * Wind Chill: 36
 * Date: 2007-12-02 13:45:27.187
**
 * Temperature: 75
 * Condition: Partly Cloudy
 * Humidity: 64
 * Wind Chill: 75
 * Date: 2008-08-06 09:24:11.725
**
 * Temperature: 75
 * Condition: Partly Cloudy
 * Humidity: 64
 * Wind Chill: 75
 * Date: 2008-08-06 09:27:28.475

Conclusion

We’ve spent a great deal of time on topics not directly related
 Maven to get this far. We’ve done this to present a complete and
 meaningful example project that you can use to implement real-world
 systems. We didn’t take any short cuts to produce slick, canned
 results quickly, and we’re not going to dazzle you with some Ruby on
 Rails-esque wizardry and lead you to believe that you can create a
 finished Java Enterprise application in “10 easy minutes!” There’s too
 much of this in the market; there are too many people trying to sell
 you the easiest framework that requires zero investment of time or
 attention. What we’ve tried to do in this chapter is present the
 entire picture, the entire ecosystem of a multimodule build. We’ve
 presented Maven in the context of an application that resembles
 something you might see in the wild—not a fast-food, 10-minute
 screencast that slings mud at Apache Ant and tries to convince you to
 adopt Apache Maven.
If you walk away from this chapter wondering what it has to do
 with Maven, we’ve succeeded. We presented a complex set of projects,
 using popular frameworks, and we tied them together using declarative
 builds. The fact that more than 60% of this chapter was spent
 explaining Spring and Hibernate should tell you that Maven, for the
 most part, stepped out of the way. It worked. It allowed us to focus
 on the application itself, not on the build process. Instead of
 spending time discussing Maven, and the work you would have to do to
 “build a build” that integrated with Spring and Hibernate, we talked
 almost exclusively about the technologies used in this contrived
 project. If you start to use Maven, and you take the time to learn it,
 you really do start to benefit from the fact that you don’t have to
 spend time coding up some procedural build script. You don’t have to
 spend your time worrying about mundane aspects of your build.
You can use the skeleton project introduced in this chapter as
 the foundation for your own, and chances are that if you do, you’ll
 find yourself creating more and more modules as you need them. For
 example, the project on which this chapter was based has two distinct
 model projects, two persistence projects that persist to dramatically
 different databases, several web applications, and a Java mobile
 application. In total, the real-world system it’s based on contains at
 least 15 interrelated modules. The point is that you’ve seen the most
 complex multimodule example we’re going to include in this book, but
 you should also know that this example just scratches the surface of
 what is possible with Maven.
Programming to Interface Projects

This chapter explored a multimodule project that was more
 complex than the simple example presented in Chapter 6, yet it was still a simplification of a
 real-world project. In a larger project, you might find yourself
 building a system resembling Figure 7-5.
[image: An example of a large, complicated system]

Figure 7-5. An example of a large, complicated system

Part III. Maven Reference

Maven needs more than a series of helpful guided introductions.
 This section provides comprehensive reference material.

Chapter 8. Optimizing and Refactoring POMs

Introduction

In Chapter 7, we showed how
 many pieces of Maven come together to produce a fully
 functional multimodule build. Although the example from that chapter
 suggests a real application—one that interacts with a database, a web
 service, and that itself presents two interfaces: one in a web
 application, and one on the command line—that example project is still
 contrived. To present the complexity of a real project would require a
 book far larger than the one you are now reading. Real-life
 applications evolve over years and are often maintained by large,
 diverse groups of developers, each with a different focus. In a
 real-world project, you are often evaluating decisions and designs
 made and created by others. In this chapter, we take a step back from
 the examples you’ve seen in Part II, and we
 ask ourselves if there are any optimizations that might make more
 sense given what we now know about Maven. Maven is a very capable tool
 that can be as simple or as complex as you need it to be. Because of
 this, there are often a million ways to accomplish the same task, and
 there is often no one “right” way to configure your Maven
 project.
Don’t misinterpret that last sentence as a license to go off and
 ask Maven to do something it wasn’t designed for. Although Maven
 allows for a diversity of approach, there is certainly “A Maven Way,”
 and you’ll be more productive using Maven as it was designed to be
 used. All this chapter is trying to do is communicate some of the
 optimizations you can perform on an existing Maven project. Why didn’t
 we just introduce an optimized POM in the first
 place? Designing POMs for pedagogy is a very
 different requirement from designing POMs for
 efficiency. Although it is of course much easier to define a certain
 setting in your ~/.m2/settings.xml than to declare a
 profile in a pom.xml, writing a
 book is mostly about pacing and making sure we’re not introducing
 concepts before you are ready. In Part II,
 we’ve made an effort not to overwhelm you with too much information,
 and, in doing so, we’ve skipped
 some core concepts such as the dependencyManagement
 element introduced later in this chapter.
There are many instances in Part II when
 the authors of this book took a shortcut or glossed over an important
 detail to shuffle you along to the main point of a specific chapter.
 You learned how to create a Maven project, and you compiled and
 installed it without having to wade through hundreds of pages
 introducing every last switch and dial available to you. We’ve done
 this because we believe it is important to deliver the new Maven user
 to a result faster rather than meandering our way through a very long,
 seemingly interminable story. Once you’ve started to use Maven, you
 should know how to analyze your own projects and
 POMs. In this chapter, we take a step back and look
 at what we are left with after the example from Chapter 7.

POM Cleanup

Optimizing a multimodule project’s POM is
 best done in several passes, as there are many areas to
 focus on. In general, we are looking for repetition within a
 POM and across the sibling POMs.
 When you are starting out, or when a project is still evolving
 rapidly, it is acceptable to duplicate some dependencies and plugin
 configurations here and there, but as the project matures and as the
 number of modules increases, you will want to take some time to
 refactor common dependencies and configuration points. Making your
 POMs more efficient will go a long way to helping
 you manage complexity as your project grows. Whenever there is
 duplication of some piece of information, there is usually a better
 way.

Optimizing Dependencies

If you look through the various
 POMs created in Chapter 7,
 note several patterns of replication. The first pattern we can see is
 that some dependencies such as spring and
 hibernate-annotations are declared in several
 modules. The hibernate dependency also has the
 exclusion on javax.transaction replicated in each
 definition. The second pattern of duplication to note is that sometimes
 several dependencies are related and share the same version. This is
 often the case when a project’s release consists of several closely
 coupled components. For example, look at the dependencies on
 hibernate-annotations and
 hibernate-commons-annotations. Both are listed as
 version 3.3.0.ga, and we can expect the versions of
 both these dependencies to change together going forward. Both the
 hibernate-annotations and
 hibernate-commons-annotations are components of the
 same project released by JBoss, and so when there is a new project
 release, both of these dependencies will change. The third and last
 pattern of duplication is the duplication of sibling module dependencies and sibling
 module versions. Maven provides simple mechanisms that let you factor
 all of this duplication into a parent
 POM.
Just as in your project’s source code, any time you have
 duplication in your POMs, you open the door a bit
 for trouble down the road. Duplicated dependency declarations make it
 difficult to ensure consistent versions across a large project. When
 you only have two or three modules, this might not be a primary issue,
 but when your organization is using a large, multimodule Maven build
 to manage hundreds of components across multiple departments, one
 single mismatch between dependencies can cause chaos and confusion. A
 simple version mismatch in a project’s dependency on a bytecode
 manipulation package called
 ASM three levels deep in the project hierarchy
 could throw a wrench into a web application maintained by a completely
 different group of developers who depend on that particular module. Unit tests could pass because they are being
 run with one version of a dependency, but they could fail disastrously
 in production where the bundle (WAR, in this case) was packaged up
 with a different version. If you have tens of projects using something
 like Hibernate Annotations, each repeating and duplicating the
 dependencies and exclusions, the mean time between someone screwing up
 a build is going to be very short. As your Maven projects become more
 complex, your dependency lists are going to grow, and you are going to
 want to consolidate versions and dependency declarations in parent
 POMs.
The duplication of the sibling module versions can introduce
 a particularly nasty problem that is not directly caused
 by Maven and is learned only after you’ve been bitten by this bug a
 few times. If you use the Maven Release plugin to perform your
 releases, all these sibling dependency versions will be updated
 automatically for you, so maintaining them is not the concern. If
 simple-web version 1.3-SNAPSHOT
 depends on simple-persist version
 1.3-SNAPSHOT, and if you are performing a release
 of the 1.3 version of both projects, the Maven Release plugin is smart
 enough to change the versions throughout your multimodule project’s
 POMs automatically. Running the release with the
 Release plugin will automatically increment all of the versions in
 your build to 1.4-SNAPSHOT, and the release plugin
 will commit the code change to the repository. Releasing a huge
 multimodule project couldn’t be easier, until...
Problems occur when developers merge changes to the POM and interfere with a release
 that is in progress. Often a developer merges and occasionally
 mishandles the conflict on the sibling dependency, inadvertently
 reverting that version to a previous release. Since the consecutive
 versions of the dependency are often compatible, it does not show up
 when the developer builds, and won’t show up in any continuous
 integration build system as a failed build. Imagine a very complex
 build where the trunk is full of components at
 1.4-SNAPSHOT, and now imagine that Developer A has
 updated Component A deep within the project’s hierarchy to depend on
 version 1.3-SNAPSHOT of Component B. Even though
 most developers have 1.4-SNAPSHOT, the build
 succeeds if version 1.3-SNAPSHOT and
 1.4-SNAPSHOT of Component B are compatible. Maven
 continues to build the project using the
 1.3-SNAPSHOT version of Component B from the
 developer’s local repositories. Everything seems to be going quite
 smoothly—the project builds, the continuous integration build works
 fine, and so on. Someone might have a mystifying bug related to
 Component B, but she chalks it up to malevolent gremlins and moves on.
 Meanwhile, a pump in the reactor room is steadily building up
 pressure, until something blows....
Someone, let’s call him Mr. Inadvertent, has a merge conflict in
 Component A and mistakenly pegs Component A’s dependency on Component
 B to 1.3-SNAPSHOT, while the rest of the project
 marches on. A bunch of developers have been trying to fix a bug in
 Component B all this time, and they’ve been mystified as to why they
 can’t seem to fix the bug in production. Eventually, someone looks at
 Component A and realizes that the dependency is pointing to the wrong
 version. Hopefully, the bug isn’t large enough to cost money or lives,
 but Mr. Inadvertent feels stupid and people tend to trust him a little
 less than they did before the whole sibling dependency screwup.
 (Ideally, Mr. Inadvertent realizes that this was user error and not
 Maven’s fault, but more likely he starts an awful blog and complains
 about Maven endlessly to make himself feel better.)
Fortunately, dependency duplication and sibling dependency
 mismatch are easily preventable if you make some small changes. The
 first thing we’re going to do is find all the dependencies used in
 more than one project and move them up to the parent
 POM’s dependencyManagement
 section. We’ll leave out the sibling dependencies for now. The
 simple-parent pom now contains the
 following:
<project>
 ...
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 <version>2.0.7</version>
 </dependency>
 <dependency>
 <groupId>org.apache.velocity</groupId>
 <artifactId>velocity</artifactId>
 <version>1.5</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>3.3.0.ga</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 <version>3.3.0.ga</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 <version>3.2.5.ga</version>
 <exclusions>
 <exclusion>
 <groupId>javax.transaction</groupId>
 <artifactId>jta</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>
Once these are moved up, we need to remove the versions for
 these dependencies from each of the POMs;
 otherwise, they will override the
 dependencyManagement defined in the parent project.
 Let’s look at only simple-model for brevity’s
 sake:
<project>
 ...
 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 </dependency>
 </dependencies>
 ...
</project>
The next thing we should do is fix the replication of the
 hibernate-annotations and
 hibernate-commons-annotations version, because
 these should match. We’ll do this by creating a property called
 hibernate-annotations-version. The resulting
 simple-parent section looks like this:
<project>
 ...
 <properties>
 <hibernate.annotations.version>3.3.0.ga</hibernate.annotations.version>
 </properties>

 <dependencyManagement>
 ...
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>${hibernate.annotations.version}</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 <version>${hibernate.annotations.version}</version>
 </dependency>
 ...
 </dependencyManagement>
 ...
</project
The last issue we have to resolve is with the sibling
 dependencies. One technique we could use is to move these up to the
 dependencyManagement section, just like all the
 others, and define the versions of sibling projects in the
 top-level parent project. This is certainly a valid approach, but we
 can also solve the version problem just by using two built-in
 properties—${project.groupId} and
 ${project.version}. Since they are sibling
 dependencies, there is not much value to be gained by enumerating them
 in the parent, so we’ll rely on the built-in
 ${project.version} property. Because they all share
 the same group, we can further future-proof these declarations by
 referring to the current POM’s group using the
 built-in ${project.groupId} property. The simple-command dependency section now looks like
 this:
<project>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-weather</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-persist</artifactId>
 <version>${project.version}</version>
 </dependency>
 ...
 </dependencies>
 ...
</project>
Here’s a summary of the two optimizations we completed that
 reduce duplication of dependencies:
	Pull-up common dependencies to
 dependencyManagement
	If more than one project depends on a specific dependency,
 you can list the dependency in
 dependencyManagement. The parent
 POM can contain a version and a set of
 exclusions; all the child POM needs to do to
 reference this dependency is use the groupId
 and artifactId. Child projects can
 omit the version and exclusions if the dependency is listed in
 dependencyManagement.

	Use built-in project version and groupId for sibling projects
	Use ${project.version} and
 ${project.groupId} when referring to a
 sibling project. Sibling projects almost always share the same
 groupId, and they almost
 always share the same release version. Using
 ${project.version} will help you avoid the
 sibling
 version mismatch problem discussed previously.

Optimizing Plugins

If we take a look at the various plugin configurations, we can
 see the HSQLDB dependencies duplicated
 in several places. Unfortunately,
 dependencyManagement doesn’t apply to plugin
 dependencies, but we can still use a property to consolidate the
 versions. Most complex Maven multimodule projects tend to define all
 versions in the top-level POM. This top-level
 POM then becomes a focal point for changes that
 affect the entire project. Think of version numbers as string literals
 in a Java class; if you are constantly repeating a literal, you’ll
 likely want to make it a variable so that when it needs to be changed,
 you have to change it in only one place. Rolling up the version of
 HSQLDB into a property in the top-level
 POM yields the following properties element:
<project>
 ...
 <properties>
 <hibernate.annotations.version>3.3.0.ga</hibernate.annotations.version>
 <hsqldb.version>1.8.0.7</hsqldb.version>
 </properties>
 ...
</project>
The next thing we notice is that the
 hibernate3-maven-plugin configuration is duplicated
 in the simple-webapp and
 simple-command modules. We can manage the plugin
 configuration in the top-level POM just as we
 managed the dependencies in the top-level POM with
 the dependencyManagement section. To do this, we
 use the pluginManagement element in the
 top-level POM’s build
 element:
<project>
 ...
 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>hibernate3-maven-plugin</artifactId>
 <version>2.1</version>
 <configuration>
 <components>
 <component>
 <name>hbm2ddl</name>
 <implementation>annotationconfiguration</implementation>
 </component>
 </components>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>${hsqldb.version}</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>
 ...
</project>

Optimizing with the Maven Dependency Plugin

On larger projects, additional dependencies often tend to creep
 into a POM as the number of dependencies grow. As
 dependencies change, you are often left with dependencies that are not
 being used, and just as often, you may forget to declare explicit
 dependencies for libraries you require. Because Maven 2.x includes
 transitive dependencies in the compile scope, your project may compile
 properly but fail to run in production. Consider a case where a
 project uses classes from a widely used project such as Jakarta
 Commons BeanUtils. Instead of declaring an explicit dependency on
 BeanUtils, your project simply
 relies on a project such as Hibernate that references BeanUtils as a transitive dependency.
 Your project may compile successfully and run just fine, but if you
 upgrade to a new version of Hibernate that doesn’t depend on
 BeanUtils, you’ll start to get compile and runtime errors, and it
 won’t be immediately obvious why your project stopped compiling. Also,
 because you haven’t explicitly listed a dependency version, Maven
 cannot resolve any version conflicts that may arise.
A good rule of thumb in Maven is to always declare explicit
 dependencies for classes referenced in your code. If you are going to
 be importing Commons BeanUtils classes, you should also be declaring a
 direct dependency on Commons BeanUtils. Fortunately, via bytecode
 analysis, the Maven Dependency plugin is able to assist you in
 uncovering direct references to dependencies. Using the updated POMs
 we previously optimized, let’s look to see if any errors pop
 up:
$ mvn dependency:analyze
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] Chapter 8 Simple Parent Project
[INFO] Chapter 8 Simple Object Model
[INFO] Chapter 8 Simple Weather API
[INFO] Chapter 8 Simple Persistence API
[INFO] Chapter 8 Simple Command Line Tool
[INFO] Chapter 8 Simple Web Application
[INFO] Chapter 8 Parent Project
[INFO] Searching repository for plugin with prefix: 'dependency'.

...

[INFO] --
[INFO] Building Chapter 8 Simple Object Model
[INFO] task-segment: [dependency:analyze]
[INFO] --
[INFO] Preparing dependency:analyze
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [dependency:analyze]
[WARNING] Used undeclared dependencies found:
[WARNING] javax.persistence:persistence-api:jar:1.0:compile
[WARNING] Unused declared dependencies found:
[WARNING] org.hibernate:hibernate-annotations:jar:3.3.0.ga:compile
[WARNING] org.hibernate:hibernate:jar:3.2.5.ga:compile
[WARNING] junit:junit:jar:3.8.1:test

...

[INFO] --
[INFO] Building Chapter 8 Simple Web Application
[INFO] task-segment: [dependency:analyze]
[INFO] --
[INFO] Preparing dependency:analyze
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] No sources to compile
[INFO] [dependency:analyze]
[WARNING] Used undeclared dependencies found:
[WARNING] org.sonatype.mavenbook.ch08:simple-model:jar:1.0:compile
[WARNING] Unused declared dependencies found:
[WARNING] org.apache.velocity:velocity:jar:1.5:compile
[WARNING] javax.servlet:jstl:jar:1.1.2:compile
[WARNING] taglibs:standard:jar:1.1.2:compile
[WARNING] junit:junit:jar:3.8.1:test
In the truncated output just shown, you can see the output of
 the dependency:analyze goal. This goal analyzes the
 project to see whether there are any indirect dependencies, or
 dependencies that are being referenced but are not directly declared.
 In the simple-model project, the Dependency plugin
 indicates a “used undeclared dependency” on
 javax.persistence:persistence-api. To investigate
 further, go to the simple-model directory and run
 the dependency:tree goal, which will list all of
 the project’s direct and transitive dependencies:
$ mvn dependency:tree
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'dependency'.
[INFO] --
[INFO] Building Chapter 8 Simple Object Model
[INFO] task-segment: [dependency:tree]
[INFO] --
[INFO] [dependency:tree]
[INFO] org.sonatype.mavenbook.ch08:simple-model:jar:1.0
[INFO] +- org.hibernate:hibernate-annotations:jar:3.3.0.ga:compile
[INFO] | \- javax.persistence:persistence-api:jar:1.0:compile
[INFO] +- org.hibernate:hibernate:jar:3.2.5.ga:compile
[INFO] | +- net.sf.ehcache:ehcache:jar:1.2.3:compile
[INFO] | +- commons-logging:commons-logging:jar:1.0.4:compile
[INFO] | +- asm:asm-attrs:jar:1.5.3:compile
[INFO] | +- dom4j:dom4j:jar:1.6.1:compile
[INFO] | +- antlr:antlr:jar:2.7.6:compile
[INFO] | +- cglib:cglib:jar:2.1_3:compile
[INFO] | +- asm:asm:jar:1.5.3:compile
[INFO] | \- commons-collections:commons-collections:jar:2.1.1:compile
[INFO] \- junit:junit:jar:3.8.1:test
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

From this output, we can see that the
 persistence-api dependency is coming from
 hibernate. A cursory scan of the source in this
 module will reveal many
 javax.persistence import
 statements confirming that we are, indeed, directly referencing this
 dependency. The simple fix is to add a direct reference to the
 dependency. In this example, we put the dependency version in
 simple-parent’s
 dependencyManagement section because the dependency
 is linked to Hibernate, and the Hibernate version is declared here.
 Eventually you are going to want to upgrade your project’s version of
 Hibernate. Listing the persistence-api dependency
 version near the Hibernate dependency version will make it more
 obvious later when your team modifies the parent
 POM to upgrade the Hibernate version.
If you look at the dependency:analyze output
 from the simple-web module, you will see that we
 also need to add a direct reference to the
 simple-model dependency. The code in
 simple-webapp directly references the model objects
 in simple-model, and the
 simple-model is exposed to
 simple-webapp as a transitive dependency via
 simple-persist. Since this is a sibling dependency
 that shares both the version and
 groupId, the dependency can be defined in
 simple-webapp’s pom.xml using the
 ${project.groupId} and ${project.version}.
How did the Maven Dependency plugin uncover these issues? How
 does dependency:analyze know
 which classes and dependencies are directly referenced by your
 project’s bytecode? The Dependency plugin uses the ObjectWeb ASM
 (http://asm.objectweb.org/)
 toolkit to analyze the raw bytecode. The Dependency
 plugin uses ASM to walk through all the classes in the current
 project, and it builds a list of every other class referenced. It then
 walks through all the dependencies, direct and transitive, and marks
 off the classes discovered in the direct dependencies. Any classes not
 located in the direct dependencies are discovered in the transitive
 dependencies, and the list of “used, undeclared dependencies” is produced.
In contrast, the list of unused, declared dependencies is a
 little trickier to validate, and less useful than the “used,
 undeclared dependencies.” For one, some dependencies are used only at
 runtime or for tests, and they won’t be found in the bytecode. These
 are pretty obvious when you see them in the output; for example, JUnit
 appears in this list, but this is expected because it is used only for
 unit tests. You’ll also notice that the Velocity and Servlet API
 dependencies are listed in this list for the simple-web module. This is also expected
 because, although the project doesn’t have any direct references to
 the classes of these artifacts, they are still essential during
 runtime.
Be careful when removing any unused, declared dependencies
 unless you have very good test coverage, or you might introduce a
 runtime error. A more sinister issue pops up with bytecode
 optimization. For example, it is legal for a compiler to substitute
 the value of a constant and optimize away the reference. Removing this
 dependency will cause the compile to fail, yet the tool shows it as
 unused. Future versions of the Maven Dependency plugin will provide
 better techniques for detecting and/or ignoring these types of
 issues.
You should use the dependency:analyze tool
 periodically to detect these common errors in your projects. It can be
 configured to fail the build if certain conditions are found, and it
 is also available as a report.

Final POMs

As an overview, the final POM files
 are listed as a reference for this chapter. Example 8-1 shows the top-level
 POM for simple-parent.
Example 8-1. Final POM for simple-parent
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.sonatype.mavenbook.ch08</groupId>
 <artifactId>simple-parent</artifactId>
 <packaging>pom</packaging>
 <version>1.0</version>
 <name>Chapter 8 Simple Parent Project</name>

 <modules>
 <module>simple-command</module>
 <module>simple-model</module>
 <module>simple-weather</module>
 <module>simple-persist</module>
 <module>simple-webapp</module>
 </modules>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>hibernate3-maven-plugin</artifactId>
 <version>2.1</version>
 <configuration>
 <components>
 <component>
 <name>hbm2ddl</name>
 <implementation>annotationconfiguration</implementation>
 </component>
 </components>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>${hsqldb.version}</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

 <properties>
 <hibernate.annotations.version>3.3.0.ga</hibernate.annotations.version>
 <hsqldb.version>1.8.0.7</hsqldb.version>
 </properties>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 <version>2.0.7</version>
 </dependency>
 <dependency>
 <groupId>org.apache.velocity</groupId>
 <artifactId>velocity</artifactId>
 <version>1.5</version>
 </dependency>
 <dependency>
 <groupId>javax.persistence</groupId>
 <artifactId>persistence-api</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>${hibernate.annotations.version}</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 <version>${hibernate.annotations.version}</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 <version>3.2.5.ga</version>
 <exclusions>
 <exclusion>
 <groupId>javax.transaction</groupId>
 <artifactId>jta</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

The POM shown in Example 8-2 captures the POM for
 simple-command, the command-line version of the
 tool.
Example 8-2. Final POM for simple-command
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.ch08</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>

 <artifactId>simple-command</artifactId>
 <packaging>jar</packaging>
 <name>Chapter 8 Simple Command Line Tool</name>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>
 <manifest>
 <mainClass>org.sonatype.mavenbook.weather.Main</mainClass>
 <addClasspath>true</addClasspath>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <testFailureIgnore>true</testFailureIgnore>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-weather</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-persist</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 </dependency>
 <dependency>
 <groupId>org.apache.velocity</groupId>
 <artifactId>velocity</artifactId>
 </dependency>
 </dependencies>
</project>

The POM shown in Example 8-3 is the simple-model project’s
 POM. The simple-model project
 contains all of the model objects used throughout the
 application.
Example 8-3. Final POM for simple-model
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.ch08</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-model</artifactId>
 <packaging>jar</packaging>

 <name>Chapter 8 Simple Object Model</name>

 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 </dependency>
 <dependency>
 <groupId>javax.persistence</groupId>
 <artifactId>persistence-api</artifactId>
 </dependency>
 </dependencies>
</project>

The POM shown in Example 8-4 is the simple-persist project’s
 POM. The simple-persist project
 contains all of the persistence logic that is implemented using
 Hibernate.
Example 8-4. Final POM for simple-persist
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.ch08</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-persist</artifactId>
 <packaging>jar</packaging>

 <name>Chapter 8 Simple Persistence API</name>

 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-model</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 </dependency>
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-jta_1.1_spec</artifactId>
 <version>1.1</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 </dependency>
 </dependencies>
</project>

The POM shown in Example 8-5 is the simple-weather project’s
 POM. The simple-weather project
 is the project that contains all of the logic to parse the Yahoo!
 Weather RSS feed. This project depends on the
 simple-model project.
Example 8-5. Final POM for simple-weather
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.ch08</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>simple-weather</artifactId>
 <packaging>jar</packaging>

 <name>Chapter 8 Simple Weather API</name>

 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-model</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.14</version>
 </dependency>
 <dependency>
 <groupId>dom4j</groupId>
 <artifactId>dom4j</artifactId>
 <version>1.6.1</version>
 </dependency>
 <dependency>
 <groupId>jaxen</groupId>
 <artifactId>jaxen</artifactId>
 <version>1.1.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-io</artifactId>
 <version>1.3.2</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Finally, the POM shown in Example 8-6 is the simple-webapp project’s
 POM. The simple-webapp project
 contains a web application that stores retrieved weather forecasts in
 an HSQLDB database and that also interacts with the
 libraries generated by the simple-weather
 project.
Example 8-6. Final POM for simple-webapp
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook.ch08</groupId>
 <artifactId>simple-parent</artifactId>
 <version>1.0</version>
 </parent>

 <artifactId>simple-webapp</artifactId>
 <packaging>war</packaging>
 <name>Chapter 8 Simple Web Application</name>
 <dependencies>
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-servlet_2.4_spec</artifactId>
 <version>1.1.1</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-model</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-weather</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>simple-persist</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>jstl</artifactId>
 <version>1.1.2</version>
 </dependency>
 <dependency>
 <groupId>taglibs</groupId>
 <artifactId>standard</artifactId>
 <version>1.1.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.velocity</groupId>
 <artifactId>velocity</artifactId>
 </dependency>
 </dependencies>
 <build>
 <finalName>simple-webapp</finalName>
 <plugins>
 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 <version>6.1.9</version>
 <dependencies>
 <dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>${hsqldb.version}</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
</project>

Conclusion

This chapter has shown you several techniques for improving the
 control of your dependencies and
 plugins to ease future maintenance of your builds. We recommend
 periodically reviewing your builds in this way to ensure that
 duplication and thus potential
 trouble spots are minimized. As a project matures, new dependencies
 are inevitably introduced, and you may find that a dependency
 previously used in 1 place is now used in 10 and should be moved up.
 The used and unused dependencies list changes over time and can easily be cleaned up with
 the Maven Dependency plugin.

Chapter 9. The Project Object Model

Introduction

This chapter covers the central concept of Maven—the Project
 Object Model (POM). The
 POM is where a project’s identity and structure are
 declared, builds are configured, and projects are related to one
 another. The presence of a pom.xml file defines a Maven
 project.

The POM

Maven projects, dependencies, builds, artifacts: all of these
 are objects to be modeled and described. These objects are described
 by an XML file called a Project Object Model. The
 POM tells Maven what sort of project it is dealing
 with and how to modify default behavior to generate output from
 source. In the same way a Java web application has a web.xml that describes, configures, and
 customizes the application, a Maven project is defined by the presence
 of a pom.xml. It is a
 descriptive declaration of a project for Maven; it is the figurative
 “map” that Maven needs to understand what it is looking at when it
 builds your project.
You could also think of the pom.xml as analogous to a Makefile or an Ant build.xml. When you are using
 GNU make to build something
 like MySQL, you’ll usually have a file named Makefile that contains explicit
 instructions for building a binary from source. When you are using
 Apache Ant, you likely have a file named build.xml that contains explicit
 instructions for cleaning, compiling, packaging, and deploying an
 application. make, Ant, and Maven are similar in
 that they rely on the presence of a commonly named file such as
 Makefile, build.xml, or pom.xml, but that is where the similarities
 end. If you look at a Maven pom.xml, the majority of the
 POM is going to deal with descriptions: Where is
 the source code? Where are the resources? What is the packaging? If
 you look at an Ant build.xml
 file, you’ll see something entirely different. You’ll see explicit
 instructions for tasks such as compiling a set of Java classes. The
 Maven POM is declarative, and although you can
 certainly choose to include some procedural customizations via the
 Maven Ant plugin, for the most part you will not need to get into the
 gritty procedural details of your project’s build.
The POM is also not specific to building Java
 projects. Though most of the examples in this book are geared toward
 Java applications, there is nothing Java-specific in the definition of
 a Maven Project Object Model. Maven’s default plugins are targeted to
 building JAR artifacts from a set of source, tests,
 and resources, but nothing is preventing you from defining a
 POM for a project that contains C# sources and
 produces some proprietary Microsoft binary using Microsoft tools.
 Similarly, nothing is stopping you from defining a
 POM for a technical book. In fact, the source for
 this book and this book’s examples is captured in a multimodule Maven
 project that uses one of the many Maven DocBook plugins to apply the
 standard DocBook XSL to a series of chapter
 XML files. Others have created Maven plugins to
 build Adobe Flex code into Shockwave Components
 (SWCs) and Shockwave Flash files
 (SWFs), and yet others have used Maven to build
 projects written in C.
We’ve established that the POM describes and
 declares; it is unlike Ant or make in that it
 doesn’t provide explicit instructions, and we’ve noted that
 POM concepts are not specific to Java. Diving into
 more specifics, take a look at Figure 9-1 for a survey
 of the contents of a POM.
[image: The Project Object Model]

Figure 9-1. The Project Object Model

The POM contains four categories of
 description and configuration:
	General project information
	This includes a project’s name, the URL
 for a project, the sponsoring organization, and a
 list of developers and contributors along with the license for a
 project.

	Build settings
	In this section, we customize the behavior of the
 default Maven build. We can change the location of source
 and tests, we can add new plugins, we can attach plugin goals to
 the lifecycle, and we can customize the site generation
 parameters.

	Build environment
	The build environment consists of profiles that can
 be activated for use in different environments. For
 example, during development you may want to deploy to a
 development server, whereas in production you want to deploy to
 a production server. The build environment customizes the build
 settings for specific environments and is often supplemented by
 a custom settings.xml
 in ~/.m2. This settings
 file is discussed in Chapter 11 and in the
 section Quick Overview” in Appendix A.

	POM relationships
	A project rarely stands alone; it depends on other
 projects, inherits POM settings from parent
 projects, defines its own coordinates, and may include
 submodules.

The Super POM

Before we dive into some examples of POMs,
 let’s take a quick look at the Super POM. All
 Maven project POMs extend the Super
 POM, which defines a set of defaults shared by
 all projects. This Super POM is a part of the
 Maven installation and can be found in the maven-2.0.9-uber.jar file in ${M2_HOME}/lib. If you look in this
 JAR file, you will find a file named pom-4.0.0.xml under the
 org.apache.maven.project package. The Super
 POM for Maven is shown in Example 9-1.
Example 9-1. The Super POM
<project>
 <modelVersion>4.0.0</modelVersion>
 <name>Maven Default Project</name>

 <repositories>
 <repository>
 <id>central</id> [image: 1]
 <name>Maven Repository Switchboard</name>
 <layout>default</layout>
 <url>http://repo1.maven.org/maven2</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

 <pluginRepositories>
 <pluginRepository>
 <id>central</id> [image: 2]
 <name>Maven Plugin Repository</name>
 <url>http://repo1.maven.org/maven2</url>
 <layout>default</layout>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <updatePolicy>never</updatePolicy>
 </releases>
 </pluginRepository>
 </pluginRepositories>

 <build> [image: 3]
 <directory>target</directory>
 <outputDirectory>target/classes</outputDirectory>
 <finalName>${pom.artifactId}-${pom.version}</finalName>
 <testOutputDirectory>target/test-classes</testOutputDirectory>
 <sourceDirectory>src/main/java</sourceDirectory>
 <scriptSourceDirectory>src/main/scripts</scriptSourceDirectory>
 <testSourceDirectory>src/test/java</testSourceDirectory>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 </resource>
 </resources>
 <testResources>
 <testResource>
 <directory>src/test/resources</directory>
 </testResource>
 </testResources>
 </build>

 <pluginManagement>[image: 4]
 <plugins>
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.1</version>
 </plugin>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-1</version>
 </plugin>
 <plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.0.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.0</version>
 </plugin>
 <plugin>
 <artifactId>maven-deploy-plugin</artifactId>
 <version>2.3</version>
 </plugin>
 <plugin>
 <artifactId>maven-ear-plugin</artifactId>
 <version>2.3.1</version>
 </plugin>
 <plugin>
 <artifactId>maven-ejb-plugin</artifactId>
 <version>2.1</version>
 </plugin>
 <plugin>
 <artifactId>maven-install-plugin</artifactId>
 <version>2.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-javadoc-plugin</artifactId>
 <version>2.4</version>
 </plugin>
 <plugin>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>2.3</version>
 </plugin>
 <plugin>
 <artifactId>maven-rar-plugin</artifactId>
 <version>2.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.0-beta-7</version>
 </plugin>
 <plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-site-plugin</artifactId>
 <version>2.0-beta-6</version>
 </plugin>
 <plugin>
 <artifactId>maven-source-plugin</artifactId>
 <version>2.0.4</version>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.4.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.1-alpha-1</version>
 </plugin>
 </plugins>
 </pluginManagement>

 <reporting>
 <outputDirectory>target/site</outputDirectory>
 </reporting>
</project>

The Super POM defines some standard
 configuration variables that are inherited by all projects. Those
 values are captured in the annotated sections (see also Figure 9-2):
	[image: 1]
	The default Super POM defines a
 single remote Maven repository with an ID of central. This is the central Maven
 repository that all Maven clients are configured to read from by
 default. This setting can be overridden by a custom settings.xml file. Note that the
 default Super POM has disabled snapshot
 artifacts on the central Maven repository. If you need to use a
 snapshot repository, you will need to customize repository
 settings in your pom.xml or
 in your settings.xml.
 Settings and profiles are covered in Chapter 11
 and in the section Quick Overview”
 in Appendix A.

	[image: 2]
	The central Maven repository also contains Maven plugins.
 The default plugin repository is the central Maven
 repository. Snapshots are disabled, and the update policy is set
 to “never,” which means that Maven will never automatically
 update a plugin if a new version is released.

	[image: 3]
	The build element sets the default
 values for directories in the Maven Standard Directory
 layout.

	[image: 4]
	Starting in Maven 2.0.9, default versions of core plugins
 have been provided in the Super POM. This was
 done to provide some stability for users who are not specifying
 versions in their POMs.

[image: The Super POM is always the base parent]

Figure 9-2. The Super POM is always the base parent

The Simplest POM

All Maven POMs inherit defaults from the
 Super POM (introduced earlier in the
 section The Super POM”). If you are just
 writing a simple project that produces a JAR from
 some source in src/main/java,
 want to run your JUnit tests in src/test/java, and want to build a
 project site using mvn site, you
 don’t have to customize anything. All you would need, in this case,
 is the simplest possible POM shown in Example 9-2. This POM defines a
 groupId, artifactId, and
 version: the three required coordinates for every
 project.
Example 9-2. The simplest POM
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.ch08</groupId>
 <artifactId>simplest-project</artifactId>
 <version>1</version>
</project>

Such a simple POM would be more than
 adequate for a simple project—e.g., a Java library that produces a
 JAR file. It isn’t related to any other projects,
 it has no dependencies, and it lacks basic information such as a
 name and a URL. If you were to create this file
 and then create the subdirectory src/main/java with some source code,
 running mvn package would produce
 a JAR in target/simple-project-1.jar.

The Effective POM

This simplest POM brings us to the concept
 of the “effective POM.” Since
 POMs can inherit configuration from other
 POMs, you must always think of a Maven
 POM in terms of the combination of the Super
 POM, plus any parent POMs, and
 finally the current project’s POM. Maven starts
 with the Super POM and then overrides default
 configuration with one or more parent POMs. Then
 it overrides the resulting configuration with the current project’s
 POM. You end up with an effective
 POM that is a mixture of various
 POMs. If you want to see a project’s effective
 POM, you’ll need to run the
 effective-pom goal in the Maven Help plugin,
 which was introduced earlier in the section Using the Maven Help Plugin.” To run the
 effective-pom goal, execute the following in a
 directory with a pom.xml
 file:
$ mvn help:effective-pom
Executing the effective-pom goal should
 print out an XML document capturing the merge
 between the Super POM and the
 POM from Example 9-2.

Real POMs

Instead of typing up a contrived set of
 POMs to walk you through step-by-step, you should take a look
 at the examples in Part II. Maven is
 something of a chameleon; you can pick and choose the features you
 want to take advantage of. Some open source projects may value the
 ability to list developers and contributors, generate clean project
 documentation, and manage releases automatically using the Maven
 Release plugin. On the other hand, someone working in a corporate
 environment on a small team might not be interested in the
 distribution management capabilities of Maven nor the ability to
 list developers. The remainder of this chapter is going to discuss
 features of the POM in isolation. Instead of
 bombarding you with a 10-page listing of a set of related
 POMs, we’re going to focus on creating a good
 reference for specific sections of the POM. In
 this chapter, we discuss relationships between
 POMs, but we don’t illustrate such a project
 here. If you are looking for such an illustration, refer to Chapter 7.

POM Syntax

The POM is always in a file named pom.xml in the base directory of a Maven
 project. This XML document can start with the
 XML declaration, or you can choose to omit it. All
 values in a POM are captured as
 XML elements.
Project Versions

A Maven project’s version encodes a
 release version number that is used to group and order
 releases. Maven versions contain the following parts: major version,
 minor version, incremental version, and qualifier. In a version,
 these parts correspond to the following format:
<major version>.<minor version>.<incremental version>-<qualifier>

For example, the version “1.3.5” has a major version of 1, a
 minor version of 3, and an incremental version of 5. The version “5”
 has a major version of 5 and no minor or incremental version. The
 qualifier exists to capture milestone builds such as alpha and beta
 releases, and the qualifier is separated from the major, minor, and
 incremental versions by a hyphen. For example, the version
 “1.3-beta-01” has a major version of 1, a minor version of 3, and a
 qualifier of beta-01.
Keeping your version numbers aligned with this standard will
 become very important when you start using version ranges in your
 POMs. Version ranges (introduced in the section
 Dependency Version Ranges,” later in this chapter)
 allow you to specify a dependency on a range of versions, and they
 are supported only because Maven has the ability to sort versions
 based on the version release number format introduced in this
 section.
If your version release number matches the format
 <major>.<minor>.<incremental>-<qualifier>,
 your versions will be compared properly; “1.2.3” will be evaluated
 as a more recent build than “1.0.2,” and the comparison will be made
 using the numeric values of the major, minor, and incremental
 versions. If your version release number does not fit the standard
 introduced in this section, your versions will be compared as
 strings; “1.0.1b” will be compared to “1.2.0b” using a String
 comparison.
Version build numbers

One gotcha for release version numbers is the ordering of
 the qualifiers. Take the version release numbers
 “1.2.3-alpha-2” and “1.2.3-alpha-10,” where the “alpha-2” build corresponds to the
 2nd alpha build, and the “alpha-10” build corresponds to the 10th
 alpha build. Even though “alpha-10” should be considered more
 recent than “alpha-2,” Maven is going to sort “alpha-10” before
 “alpha-2” due to a known issue in the way Maven handles version
 numbers.
Maven is supposed to treat the number after the qualifier as
 a build number. In other words, the qualifier should be “alpha,”
 and the build number should be “2.” Even though Maven has been
 designed to separate the build number from the qualifier, this
 parsing is currently broken. As a result, “alpha-2” and “alpha-10”
 are compared using a String comparison, and “alpha-10” comes
 before “alpha-2” alphabetically. To get around this limitation,
 you will need to left-pad your qualified build numbers. If you use
 “alpha-02” and “alpha-10,” this problem will go away, and it will
 continue to work once Maven properly parses the version build
 number.

SNAPSHOT versions

Maven versions can contain a string literal to signify that
 a project is currently under active development. If a
 version contains the string “SNAPSHOT,” then Maven will expand
 this token to a date and time value converted to
 UTC (Coordinated Universal Time) when you
 install or release this component. For example, if your project
 has a version of “1.0-SNAPSHOT” and you deploy this project’s
 artifacts to a Maven repository, Maven would expand this version
 to “1.0-20080207-230803-1” if you were to deploy a release at
 11:08 PM on February 7th, 2008 UTC. In other
 words, when you deploy a snapshot, you are not making a release of
 a software component; you are releasing a snapshot of a component
 at a specific time.
Why would you use this? Snapshot versions are used for
 projects under active development. If your project depends on a
 software component that is under active development, you can
 depend on a snapshot release, and Maven will periodically attempt
 to download the latest snapshot from a repository when you run a
 build. Similarly, if the next release of your system is going to
 have a version “1.4,” your project would have a “1.4-SNAPSHOT”
 version until it was formally released.
As a default setting, Maven will not check for snapshot
 releases on remote repositories; to depend on snapshot releases,
 users must explicitly enable the ability to download snapshots
 using a repository or
 pluginRepository element in the
 POM.
When releasing a project, you should resolve all
 dependencies on snapshot versions to dependencies on released
 versions. If a project depends on a snapshot, it is not stable, as
 the dependencies may change over time. Artifacts published to
 nonsnapshot Maven repositories such as http://repo1.maven.org/maven2 cannot depend on
 snapshot versions, since Maven’s Super POM has
 disabled snapshots from the central repository. Snapshot versions
 are for development only.

Property References

A POM can include references to properties
 preceded by a dollar sign and surrounded by two curly
 braces. For example, consider the following
 POM:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>project-a</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <build>
 <finalName>${project.groupId}-${project.artifactId}</finalName>
 </build>
</project>
If you put this XML in a pom.xml and run mvn help:effective-pom, you will see that
 the output contains the line:
...
<finalName>org.sonatype.mavenbook-project-a</finalName>
...
When Maven reads a POM, it replaces
 references to properties when it loads the POM
 XML. Maven properties occur frequently in
 advanced Maven usage, and they are similar to properties in other
 systems, such as Ant or Velocity. They are simply variables
 delimited by ${...}. Maven provides three
 implicit variables that can be used to access environment variables,
 POM information, and Maven settings:
	env
	The env variable exposes environment
 variables exposed by your operating system or
 shell. For example, a reference to
 ${env.PATH} in a Maven
 POM would be replaced by the
 ${PATH} environment variable (or
 %PATH% in Windows).

	project
	The project variable exposes
 the POM. You can use a
 dot-notated (.) path to reference the value of a
 POM element. For example, in this section
 we used the groupId and
 artifactId to set the
 finalName element in the build
 configuration. The syntax for this property reference was:
 ${project.groupId}-${project.artifactId}.

	settings
	The settings variable exposes Maven
 settings information. You can use a dot-notated
 (.) path to reference the value of an element in a settings.xml file. For example,
 ${settings.offline} would reference the
 value of the offline element in ~/.m2/settings.xml.

Note
You may see older builds that use
 ${pom.xxx} or just ${xxx} to
 reference POM properties. These methods have
 been deprecated, and only ${project.xxx} should be
 used.

In addition to the three implicit variables, you can reference
 system properties and any custom properties set in the
 Maven POM or in a build profile:
	Java system properties
	All properties accessible via getProperties() on
 java.lang.System are exposed as
 POM properties. Some examples of system
 properties are: ${user.name}, ${user.home},
 ${java.home}, and
 ${os.name}. A full list of system
 properties can be found in the Javadoc for the
 java.lang.System class.

	x
	Arbitrary properties can be set with a properties element in a
 pom.xml or settings.xml,
 or properties can be loaded from external files. If you set a
 property named fooBar in your pom.xml, that same property is
 referenced with ${fooBar}. Custom
 properties come in handy when you are building a system that
 filters resources and targets different deployment platforms.
 Here is the syntax for setting ${foo}=bar in a
 POM:
<properties>
 <foo>bar</foo>
</properties>

For a more comprehensive list of available properties, see Chapter 13.

Project Dependencies

Maven can manage both internal and external dependencies.
 An external dependency for a Java project might be a
 library such as Plexus, the Spring Framework, or Log4J. An internal
 dependency is illustrated by a web application project depending on
 another project that contains service classes, model objects, or
 persistence logic. Example 9-3 shows some
 examples of project dependencies.
Example 9-3. Project dependencies
<project>
 ...
 <dependencies>
 <dependency>
 <groupId>org.codehaus.xfire</groupId>
 <artifactId>xfire-java5</artifactId>
 <version>1.2.5</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-servlet_2.4_spec</artifactId>
 <version>1.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 ...
</project>

The first dependency is a compile dependency on the XFire
 SOAP library from Codehaus. You would use this type
 of dependency if your project depended on this library for
 compilation, testing, and during execution. The second dependency is a
 test-scoped dependency on JUnit. You would
 use a test-scoped dependency when
 you need to reference this library only during testing. The last
 dependency in Example 9-3 is a dependency on the
 Servlet 2.4 API as implemented by the Apache
 Geronimo project. The last dependency is scoped as a provided
 dependency. You would use a provided scope when the application you
 are developing needs a library for compilation and testing, but this
 library is supplied by a container at runtime.
Dependency Scope

Example 9-3 briefly introduced three of
 the five dependency scopes: compile, test, and provided. Scope controls which
 dependencies are available in which classpath, and which
 dependencies are included with an application. Let’s explore each
 scope in detail:
	compile
	compile is the
 default scope; all dependencies are compile-scoped if a scope is not
 supplied. compile
 dependencies are available in all classpaths, and they are
 packaged.

	provided
	provided dependencies
 are used when you expect the JDK or a
 container to provide them. For example, if you were developing a web
 application, you would need the Servlet API
 available on the compile classpath to compile a servlet, but
 you wouldn’t want to include the Servlet
 API in the packaged WAR;
 the Servlet API JAR is
 supplied by your application server or servlet container.
 provided dependencies are
 available on the compilation classpath (not runtime). They are
 not transitive, nor are they packaged.

	runtime
	runtime dependencies
 are required to execute and test the system, but they are not required for
 compilation. For example, you may need a
 JDBC API
 JAR at compile time and the
 JDBC driver implementation only at
 runtime.

	test
	test-scoped
 dependencies are not required during the normal operation of an application, and they are
 available only during test compilation and execution phases.
 The test scope was
 previously introduced in Adding Test-Scoped Dependencies” in Chapter 4.

	system
	The system scope is
 similar to provided except
 that you have to provide an explicit path to the
 JAR on the local file system. This is
 intended to allow compilation against native objects that may
 be part of the system libraries. The artifact is assumed to
 always be available and is not looked up in a repository. If
 you declare the scope to be system, you must also provide the
 systemPath element. Note that this scope is
 not recommended (you should always try to reference
 dependencies in a public or custom Maven repository).

Optional Dependencies

Assume that you are working on a library that provides caching
 behavior. Instead of writing a caching system from
 scratch, you want to use some of the existing libraries that provide
 caching on the file system and distributed caches. Also assume that
 you want to give the end user an option to cache on the file system
 or to use an in-memory distributed cache. To cache on the file
 system, you’ll want to use a freely available library called EHCache
 (http://ehcache.sourceforge.net/),
 and to cache in a distributed in-memory cache, you want to use
 another freely available caching library named SwarmCache (http://swarmcache.sourceforge.net/).
 You’ll code an interface and create a library that can be configured
 to use either EHCache or SwarmCache, but you want to avoid adding a
 dependency on both caching libraries to any project that depends on
 your library.
In other words, you need both libraries to compile this
 library project, but you don’t want both libraries to show up as
 transitive runtime dependencies for the project that uses your
 library. You can accomplish this by using optional dependencies as
 shown in Example 9-4.
Example 9-4. Declaring optional dependencies
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>my-project</artifactId>
 <version>1.0.0</version>
 <dependencies>
 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache</artifactId>
 <version>1.4.1</version>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>swarmcache</groupId>
 <artifactId>swarmcache</artifactId>
 <version>1.0RC2</version>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.13</version>
 </dependency>
 </dependencies>
</project>

Once you’ve declared these dependencies as optional, you are
 required to include them explicitly in the project that depends on
 my-project. For example, if you were writing an
 application that depended on my-project and
 wanted to use the EHCache implementation, you would need to add the
 following dependency element to your
 project:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>my-application</artifactId>
 <version>1.0.0</version>
 <dependencies>
 <dependency>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>my-project</artifactId>
 <version>1.0.0</version>
 </dependency>
 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>swarmcache</artifactId>
 <version>1.4.1</version>
 </dependency>
 </dependencies>
</project>
In an ideal world, you wouldn’t have to use optional
 dependencies. Instead of having one large project with a series of
 optional dependencies, you would separate the EHCache-specific code to a
 my-project-ehcache submodule and the
 SwarmCache-specific code to a
 my-project-swarmcache submodule. This way,
 instead of requiring projects that reference
 my-project to specifically add a dependency,
 projects can just reference a particular implementation project and
 benefit from the transitive dependency.

Dependency Version Ranges

You don’t just have to depend on a specific version of
 a dependency; you can specify a range of versions that
 would satisfy a given dependency. For example, you can specify that
 your project depends on version 3.8 or greater of JUnit, or anything
 between versions 1.2.10 and 1.2.14 of JUnit. You do this by
 surrounding one or more version numbers with the following
 characters:
	(,)
	Exclusive quantifiers

	[,]
	Inclusive quantifiers

For example, if you wished to access any JUnit
 version greater than or equal to 3.8 but less than 4.0, your
 dependency would be as shown in Example 9-5.
Example 9-5. Specifying a dependency range: JUnit 3.8–JUnit 4.0
<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>[3.8,4.0)</version>
 <scope>test</scope>
</dependency>

If you want to depend on any version of JUnit no higher
 than 3.8.1, you would specify only an upper inclusive
 boundary, as shown in Example 9-6.
Example 9-6. Specifying a dependency range: JUnit <= 3.8.1
<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>[,3.8.1]</version>
 <scope>test</scope>
</dependency>

A version before or after the comma means +/– infinity, and is
 not required. For example, “[4.0,)” means any version greater than
 or equal to 4.0. “(,2.0)” is any version less than 2.0. “[1.2]”
 means only version 1.2, and nothing else.
Note
When declaring a “normal” version such as 3.8.2 for JUnit,
 internally this is represented as “allow anything, but prefer
 3.8.2.” This means that when a conflict is detected, Maven is
 allowed to use the conflict algorithms to choose the best version.
 If you specify [3.8.2], only 3.8.2 will be used and nothing else.
 If somewhere else there is a dependency that specifies [3.8.1],
 you would get a build failure telling you of the conflict. We
 point this out to make you aware of the option, but use it
 sparingly and only when really needed. The preferred way to
 resolve this is via
 dependencyManagement.

Transitive Dependencies

A transitive dependency is a dependency of a dependency.
 If project-a depends on
 project-b, which in turn depends on
 project-c, then project-c is
 considered a transitive dependency of project-a.
 If project-c depended on
 project-d, then project-d
 would also be considered a transitive dependency of
 project-a. Part of Maven’s appeal is that it can
 manage transitive dependencies and shield the developer from having
 to keep track of all of the dependencies required to compile and run
 an application. You can just depend on something like the Spring
 Framework and not have to worry about tracking down every last
 dependency of the Spring Framework.
Maven accomplishes this by building a graph of dependencies
 and dealing with any conflicts and overlaps that might occur. For
 example, if Maven sees that two projects depend on the same
 groupId and artifactId, it
 will sort out which dependency to use automatically, always favoring
 the more recent version of a dependency. Although this sounds
 convenient, there are some edge cases where transitive dependencies
 can cause some configuration issues. For these scenarios, you can
 use a dependency exclusion.
Transitive dependencies and scope

Each of the scopes outlined earlier in the section Dependency Scope” affects not just the scope
 of the dependency in the declaring project, but also
 how it acts as a transitive dependency. The easiest way to convey
 this information is through a table, as in Table 9-1. Scopes in the top row
 represent the scope of a transitive dependency. Scopes in the
 leftmost column represent the scope of a direct dependency. The
 intersection of the row and column is the scope that is assigned
 to a transitive dependency. A blank cell in this table means that
 the transitive dependency will be omitted.
Table 9-1. How scope affects transitive dependencies
	-	compile	provided	runtime	test
	compile	compile	-	runtime	-
	provided	provided	provided	provided	-
	runtime	runtime	-	runtime	-
	test	test	-	test	-

To illustrate the relationship of transitive dependency
 scope to direct dependency scope, consider the following example.
 If project-a contains a test-scoped dependency on
 project-b, which contains a compile-scoped dependency on
 project-c, then project-c
 would be a test-scoped
 transitive dependency of project-a.
You can think of this as a transitive boundary that acts as
 a filter on dependency scope. Transitive dependencies that are
 provided- and test-scoped usually do not affect a
 project. The exception to this rule is that a provided-scoped transitive dependency to
 a provided-scope direct
 dependency is still a provided
 dependency of a project. Transitive dependencies that are compile- and
 runtime-scoped usually affect a
 project regardless of the scope of a direct dependency. Transitive
 dependencies that are compile-scoped will have the same
 scope regardless of the scope of the direct dependency. Transitive
 dependencies that are runtime-scoped will generally have the
 same scope of the direct dependency except when the direct
 dependency has a scope of compile. When a transitive dependency is
 runtime-scoped and a direct is
 compile-scoped, the direct
 dependency and the transitive dependency will have an effective
 scope of runtime.

Conflict Resolution

There will be times when you need to exclude a
 transitive dependency, such as when you are depending on a
 project that depends on another project, but you would like to
 either exclude the dependency altogether or replace the transitive
 dependency with another dependency that provides the same
 functionality. Example 9-7 shows an example of a
 dependency element that adds a dependency on
 project-a, but excludes the transitive dependency
 project-b.
Example 9-7. Excluding a transitive dependency
<dependency>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>project-a</artifactId>
 <version>1.0</version>
 <exclusions>
 <exclusion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>project-b</artifactId>
 </exclusion>
 </exclusions>
</dependency>

Often, you will want to replace a transitive dependency with
 another implementation. For example, if you are depending on a
 library that depends on the Sun JTA
 API, you may want to replace the declared
 transitive dependency. Hibernate is one example. Hibernate depends
 on the Sun JTA API
 JAR, which is not available in the central Maven
 repository because it cannot be freely redistributed. Fortunately,
 the Apache Geronimo project has created an independent
 implementation of this library that can be freely redistributed. To
 replace a transitive dependency with another dependency, you would
 exclude the transitive dependency and declare a dependency on the
 project you wanted instead. Example 9-8
 shows an example of a such replacement.
Example 9-8. Excluding and replacing a transitive dependency
<dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 <version>3.2.5.ga</version>
 <exclusions>
 <exclusion>
 <groupId>javax.transaction</groupId>
 <artifactId>jta</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-jta_1.1_spec</artifactId>
 <version>1.1</version>
 </dependency>
</dependencies>

In this example, nothing is marking the dependency on
 geronimo-jta_1.1_spec as a replacement; it just
 happens to be a library that provides the same
 API as the original JTA
 dependency. Here are some other reasons you might want to exclude or
 replace transitive dependencies:
	The groupId or
 artifactId of the artifact has changed, where
 the current project requires an alternately named version from a
 dependency’s version, resulting in two copies of the same
 project in the classpath. Normally, Maven would capture this
 conflict and use a single version of the project, but when
 groupId or artifactId are different, Maven
 will consider this to be two different libraries.

	An artifact is not used in your project, and the
 transitive dependency has not been marked as an optional
 dependency. In this case, you might want to exclude a dependency
 because it isn’t something your system needs, and you are trying
 to cut down on the number of libraries distributed with an
 application.

	An artifact that is provided by your runtime container,
 and thus should not be included with your build. An example of
 this is if a dependency depends on something like the Servlet
 API and you want to make sure that the dependency is not
 included in a web application’s WEB-INF/lib directory.

	You want to exclude a dependency that might be an
 API with multiple implementations. This is
 the situation illustrated by Example 9-8; a Sun API
 requires click-wrap licensing and a time-consuming manual
 install into a custom repository (Sun’s JTA
 JAR) versus a freely distributed version of
 the same API available in the central Maven
 repository (Geronimo’s JTA
 implementation).

Dependency Management

Once you’ve adopted Maven at your super-complex enterprise and
 you have 220 interrelated Maven projects, you are
 going to start wondering if there is a better way to get a handle on
 dependency versions. If every single project that uses a dependency
 like the MySQL Java connector needs to independently list the
 version number of the dependency, you are going to run into problems
 when you need to upgrade to a new version. Because the version
 numbers are distributed throughout your project tree, you are going
 to have to manually edit each of the pom.xml files that reference a dependency
 to make sure that you are changing the version number everywhere.
 Even with find, xargs, and awk, you are still running the risk of
 missing a single POM.
Luckily, Maven provides a way for you to consolidate
 dependency version numbers in the
 dependencyManagement element. You’ll usually see
 the dependencyManagement element in a top-level
 parent POM for an organization or project. Using
 the dependencyManagement
 element in a pom.xml allows you
 to reference a dependency in a child project without having to
 explicitly list the version. Maven will walk up the parent-child
 hierarchy until it finds a project with a
 dependencyManagement element; it will then use
 the version specified in this
 dependencyManagement element.
For example, if you have a large set of projects that make use
 of the MySQL Java connector version 5.1.2, you could define the
 dependencyManagement element shown in Example 9-9 in your multimodule project’s
 top-level POM.
Example 9-9. Defining dependency versions in a top-level POM
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>a-parent</artifactId>
 <version>1.0.0</version>
 ...
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.2</version>
 </dependency>
 ...
 <dependencies>
 </dependencyManagement>

Then, in a child project, you can add a dependency to the
 MySQL Java connector using the following dependency
 XML:
<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>a-parent</artifactId>
 <version>1.0.0</version>
 </parent>
 <artifactId>project-a</artifactId>
 ...
 <dependencies>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 </dependency>
 </dependencies>
</project>
You should notice that the child project did not have to
 explicitly list the version of the
 mysql-connector-java dependency. Because this
 dependency was defined in the top-level POM’s
 dependencyManagement element, the version number
 is going to propagate to the child project’s dependency on
 mysql-connector-java. Note that if this child
 project did define a version, it would override the version listed
 in the top-level POM’s
 dependencyManagement section. That is, the
 dependencyManagement version is used only when
 the child does not declare a version directly.
Dependency management in a top-level POM is
 different from just defining a dependency on a widely shared parent
 POM. For starters, all dependencies are
 inherited. If mysql-connector-java were listed as
 a dependency of the top-level parent project, every single project
 in the hierarchy would have a reference to this dependency. Instead
 of adding in unnecessary dependencies, using
 dependencyManagement allows you to consolidate
 and centralize the management of dependency versions without adding
 dependencies that are inherited by all children. In other words, the
 dependencyManagement element
 is equivalent to an environment variable that allows you to declare
 a dependency anywhere below a project without specifying a version
 number.

Project Relationships

One of the compelling reasons to use Maven is that it makes
 the process of tracking down dependencies (and dependencies
 of dependencies) very easy. When a project depends on an artifact of
 another project, we can say that this artifact is a dependency. In the
 case of a Java project, this can be as simple as a project depending
 on an external dependency such as Log4J or JUnit. Although
 dependencies can model external dependencies, they can also manage the
 dependencies between a set of related projects; if
 project-a depends on project-b,
 Maven is smart enough to know that project-b must
 be built before project-a.
Relationships are not only about dependencies and figuring out
 what one project needs to be able to build an artifact. Maven can
 model the relationship of a project to a parent, and the relationship
 of a project to submodules. This section gives an overview of the
 various relationships between projects and how such relationships are
 configured.
More on Coordinates

Coordinates define a unique location for a project. They
 were first introduced in Chapter 3. Projects are related to one another
 using Maven coordinates. project-a doesn’t just
 depend on project-b; a project with a groupId, artifactId, and version depends on another project with a
 groupId, artifactId, and version. To review, a Maven coordinate is
 made up of three components:
	groupId
	A groupId groups a set of
 related artifacts. Group identifiers generally resemble
 a Java package name. For example, the
 groupId org.apache.maven
 is the base groupId for all
 artifacts produced by the Apache Maven project. Group
 identifiers are translated into paths in the Maven repository;
 for example, the org.apache.maven groupId can be found in /maven2/org/apache/maven on http://repo1.maven.org/maven2/org/apache/maven.

	artifactId
	The artifactId is the project’s main
 identifier. When you generate an artifact, this
 artifact is going to be named with the
 artifactId. When you refer to a project,
 you are going to refer to it using the
 artifactId. The
 artifactId, groupId
 combination must be unique. In other words, you can’t have two
 separate projects with the same artifactId
 and groupId; artifactIds
 are unique within a particular
 groupId.
Note
Although dots (.)
 are commonly used in groupIds, you should
 try to avoid using them in artifactIds.
 They can cause issues when trying to parse a fully qualified
 name down into the subcomponents.

	version
	When an artifact is released, it is released with a
 version number. This version number is a numeric
 identifier such as “1.0,” “1.1.1,” or “1.1.2-alpha-01.” You
 can also use what is known as a snapshot version. A snapshot version is a
 version for a component that is under development. Snapshot
 version numbers always end in SNAPSHOT; for example,
 “1.0-SNAPSHOT,” “1.1.1-SNAPSHOT,” and “1-SNAPSHOT.” The section Project Versions,” earlier in this chapter,
 introduced versions and version ranges.

There is a fourth, less-used qualifier:
	classifier
	You would use a classifier if you were releasing the
 same code, but needed to produce two separate
 artifacts for technical reasons. For example, if you wanted to
 build two separate artifacts of a JAR, one
 compiled with the Java 1.4 compiler and another compiled with
 the Java 6 compiler, you might use the classifier to produce
 two separate JAR artifacts under the same
 groupId:artifactId:version
 combination. If your project uses native extensions, you might
 use the classifier to produce an artifact for each target
 platform. Classifiers are commonly used to package up an
 artifact’s sources, Javadocs, or binary assemblies.

When we talk of dependencies in this book, we often use the
 following shorthand notation to describe a dependency:
 groupId:artifactId:version.
 To refer to the 2.5 release of the Spring Framework, we would refer
 to it as org.springframework:spring:2.5. When you
 ask Maven to print out a list of dependencies with the Maven
 Dependency plugin, you will also see that Maven tends to print out
 log messages with this shorthand dependency notation.

Multimodule Projects

Multimodule projects are projects that contain a list of
 modules to build. A multimodule project always has a
 packaging of pom and rarely
 produces an artifact. A multimodule project exists only to group
 projects together in a build. Figure 9-3
 shows a project hierarchy that includes two parent projects with
 packaging of pom, and three projects with
 packaging of jar.
[image: Multimodule project relationships]

Figure 9-3. Multimodule project relationships

The directory structure on the file system would also mirror
 the module relationships. A set of projects illustrated by Figure 9-3 would have the following directory
 structure:
top-group/pom.xml
top-group/sub-group/pom.xml
top-group/sub-group/project-a/pom.xml
top-group/sub-group/project-b/pom.xml
top-group/project-c/pom.xml
The projects are related to one another because
 top-group and sub-group are
 referencing sub-modules in a
 POM. For example, the
 org.sonatype.mavenbook:top-group project is a
 multimodule project with packaging of type pom.
 top-group’s pom.xml would include the modules element
 shown in Example 9-10.
Example 9-10. top-group modules element
<project>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>top-group</artifactId>
 ...
 <modules>
 <module>sub-group</module>
 <module>project-c</module>
 </modules>
 ...
</project>

When Maven is reading the top-group
 POM, it will look at the modules element and see that
 top-group references the projects
 sub-group and project-c. Maven
 will then look for a pom.xml in
 each of these subdirectories. Maven repeats this process for each of
 the submodules: it will read the sub-group/pom.xml and see that the
 sub-group project references two projects with
 the modules element shown in Example 9-11.
Example 9-11. sub-group modules element
<project>
 ...
 <modules>
 <module>project-a</module>
 <module>project-b</module>
 </modules>
 ...
</project>

Note that we call the projects under the multimodule projects
 “modules” and not “children” or “child projects.” This is
 purposeful, so as not to confuse projects grouped by multimodule
 projects with projects that inherit POM
 information from each other.

Project Inheritance

There are going to be times when you want a project to
 inherit values from a parent POM. You might be building a
 large system, and you don’t want to have to repeat the same
 dependency elements over and over again. You can avoid repeating
 yourself if your projects make use of inheritance via the parent
 element. When a project specifies a parent, it inherits the
 information in the parent project’s POM. It can then override and
 add to the values specified in this parent POM.
All Maven POMs inherit values from a parent
 POM. If a POM does not specify
 a direct parent using the parent element, that
 POM will inherit values from the Super POM. Example 9-12 shows the parent
 element of project-a, which inherits the
 POM defined by the a-parent
 project.
Example 9-12. Project inheritance
<project>
 <parent>
 <groupId>com.training.killerapp</groupId>
 <artifactId>a-parent</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <artifactId>project-a</artifactId>
 ...
</project>

Running mvn
 help:effective-pom in project-a would
 show a POM that is the result of merging the
 Super POM with the POM defined
 by a-parent and the POM
 defined in project-a. The implicit and explicit
 inheritance relationships for project-a are shown
 in Figure 9-4.
[image: Project inheritance for a-parent and project-a]

Figure 9-4. Project inheritance for a-parent and project-a

When a project specifies a parent project, Maven uses
 that parent POM as a starting point before it
 reads the current project’s POM. It inherits
 everything, including the groupId and
 version number. You’ll notice that
 project-a does not specify either; both
 groupId and version are
 inherited from a-parent. With a parent element,
 all a POM really needs to define is an
 artifactId. This isn’t mandatory;
 project-a could have a different
 groupId and version, but by
 not providing values, Maven will use the values specified in the
 parent POM. If you start using Maven to manage
 and build large multimodule projects, you will often be creating
 many projects that share a common groupId and
 version.
When you inherit a POM, you can choose to
 live with the inherited POM information or to
 selectively override it. The following is a list of items a Maven
 POM inherits from its parent
 POM:
	Identifiers (at least one of groupId or
 artifactId must be overridden)

	Dependencies

	Developers and contributors

	Plugin lists

	Reports lists

	Plugin executions (executions with matching IDs are
 merged)

	Plugin configuration

When Maven inherits dependencies, it will add dependencies of
 child projects to the dependencies defined in parent projects. You
 can use this feature of Maven to specify widely used dependencies
 across all projects that inherit from a top-level
 POM. For example, if your system makes universal
 use of the Log4J logging framework, you can list this dependency in
 your top-level POM. Any projects that inherit
 POM information from this project will
 automatically have Log4J as a dependency. Similarly, if you need to
 make sure that every project is using the same version of a Maven
 plugin, you can list that version explicitly in a top-level
 parent POM’s pluginManagement section.
Maven assumes that the parent POM is
 available from the local repository, or available in the parent
 directory (../pom.xml) of the
 current project. If neither location is valid, this default behavior
 may be overridden via the relativePath element.
 For example, some organizations prefer a flat project structure
 where a parent project’s pom.xml isn’t in the parent directory of
 a child project. It might be in a sibling directory to the project.
 If your child project were in a directory named ./project-a and the parent project were
 in a directory named ./a-parent, you could specify the
 relative location of parent-a’s POM with the
 following configuration:
<project>
 <parent>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>a-parent</artifactId>
 <version>1.0-SNAPSHOT</version>
 <relativePath>../a-parent/pom.xml</relativePath>
 </parent>
 <artifactId>project-a</artifactId>
</project>

POM Best Practices

Maven can be used to manage everything from simple,
 single-project systems to builds that involve hundreds of interrelated
 submodules. Part of the learning process with Maven isn’t just
 figuring out the syntax for configuring Maven; it is learning the
 “Maven Way”—that is, the current set of best practices for organizing
 and building projects using Maven. This section attempts to distill
 some of this knowledge to help you adopt best practices from the start
 without having to wade through years of discussions on the Maven
 mailing lists.
Grouping Dependencies

If you have a set of dependencies that are logically
 grouped together, you can create a project with pom packaging that groups dependencies
 together. For example, let’s assume that your application uses
 Hibernate, a popular Object-Relational Mapping framework. Every
 project that uses Hibernate might also have a dependency on the
 Spring Framework and a MySQL JDBC driver. Instead
 of having to include these dependencies in every project that uses
 Hibernate, Spring, and MySQL, you could create a special
 POM that does nothing more than declare a set of
 common dependencies. You could create a project called
 persistence-deps (short for “persistence
 dependencies”) and have every project that needs to do persistence
 depend on this convenience project. See Example 9-13.
Example 9-13. Consolidating dependencies in a single POM project
<project>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>persistence-deps</artifactId>
 <version>1.0</version>
 <packaging>pom</packaging>
 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 <version>${hibernateVersion}</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>${hibernateAnnotationsVersion}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-hibernate3</artifactId>
 <version>${springVersion}</version>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>${mysqlVersion}</version>
 </dependency>
 </dependencies>
 <properties>
 <mysqlVersion>(5.1,)</mysqlVersion>
 <springVersion>(2.0.6,)</springVersion>
 <hibernateVersion>3.2.5.ga</hibernateVersion>
 <hibernateAnnotationsVersion>3.3.0.ga</hibernateAnnotationsVersion>
 </properties>
</project>

If you create this project in a directory named
 persistence-deps, all you need to do is create
 this pom.xml and run mvn install. Since the packaging type is
 pom, this POM is installed in your local
 repository. You can now add this project as a dependency, and all of
 its dependencies will be added to your project. When you declare a
 dependency on this persistence-deps project, as
 shown in Example 9-14, don’t forget to
 specify the dependency type as pom.
Example 9-14. Declaring a dependency on a POM
<project>
 <description>This is a project requiring JDBC</description>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>persistence-deps</artifactId>
 <version>1.0</version>
 <type>pom</type>
 </dependency>
 </dependencies>
</project>

If you later decide to switch to a different
 JDBC driver (for example,
 JTDS), just replace the dependencies in the
 persistence-deps project to use
 net.sourceforge.jtds:jtds
 instead of mysql:mysql-java-connector and update
 the version number. All projects depending on
 persistence-deps will use JTDS
 if they decide to update to the newer version. Consolidating related
 dependencies is a good way to cut down on the length of pom.xml files that start having to depend
 on a large number of dependencies. If you need to share a large
 number of dependencies between projects, you could also just
 establish parent-child relationships between projects and refactor
 all common dependencies to the parent project, but the disadvantage
 of the parent-child approach is that a project can have only one
 parent. Sometimes it makes more sense to group similar dependencies
 together and reference a pom
 dependency. This way, your project can reference as many of these
 consolidated dependency POMs as it needs.
Note
Maven uses the depth of a dependency in the tree when
 resolving conflicts using a nearest-wins approach. Using the
 dependency grouping technique pushes those dependencies one level down
 in the tree. Keep this in mind when choosing between grouping in a
 POM or using
 dependencyManagement in a parent
 POM.

Multimodule Versus Inheritance

There is a difference between inheriting from a parent project
 and being managed by a multimodule project. A parent
 project is one that passes its values to its children. A multimodule
 project simply manages a group of other subprojects or modules. The
 multimodule relationship is defined from the topmost level
 downwards. When setting up a multimodule project, you are simply
 telling a project that its build should include the specified
 modules. Multimodule builds are to be used to group modules together
 in a single build. The parent-child relationship is defined from the
 leaf node upward. The parent-child relationship deals more with the
 definition of a particular project. When you associate a child with
 its parent, you are telling Maven that a project’s
 POM is derived from another.
To illustrate the decision process that goes into choosing a
 design that uses inheritance versus multimodule, or both approaches,
 consider the following two examples: the Maven project used to
 generate this book, and a hypothetical project that contains a
 number of logically grouped modules.
Simple project

First, let’s take a look at the Maven book project. The
 inheritance and multimodule relationships are shown in Figure 9-5.
[image: maven-book multimodule versus inheritance]

Figure 9-5. maven-book multimodule versus inheritance

When we built this Maven book you are reading, we ran
 mvn package in a multimodule
 project named maven-book. This multimodule
 project includes two submodules: book-examples
 and book-chapters. Neither of these projects
 share the same parent; they are related only in that they are
 modules in the maven-book project.
 book-examples builds the ZIP
 and TGZ archives you downloaded to get this
 book’s example. When we ran the book-examples
 build from book-examples/
 directory with mvn package, it
 had no knowledge that it was a part of the larger
 maven-book project.
 book-examples doesn’t really care about
 maven-book; all it knows in life is that its
 parent is the topmost sonatype POM and
 that it creates an archive of examples. In this case, the
 maven-book project exists only as a convenience
 and as an aggregator of modules.
The book projects do all define a parent. Each of the three
 projects—maven-book,
 book-examples, and
 book-chapters—all list a shared “corporate”
 parent: sonatype. This is a common practice in
 organizations that have adopted Maven. Instead of having every
 project extend the Super POM by default, some
 organizations define a top-level corporate POM
 that serves as the default parent when a project doesn’t have any
 good reason to depend on another. In this book example, there is
 no compelling reason to have book-examples and
 book-chapters share the same parent
 POM; they are entirely different projects that
 have a different set of dependencies, have a different build
 configuration, and use drastically different plugins to create the
 content you are now reading. The sonatype
 POM gives the organization a chance to
 customize the default behavior of Maven and supply some
 organization-specific information to configure deployment settings and build
 profiles.

Multimodule enterprise project

Let’s take a look at an example that provides a more
 accurate picture of a real-world project where inheritance
 and multimodule relationships exist side by side. Figure 9-6 shows a collection of projects that
 resemble a typical set of projects in an enterprise application.
 There is a top-level POM for the corporation
 with an artifactId of
 sonatype. There is also a multimodule project
 named big-system that references submodules
 server-side and
 client-side.
[image: Enterprise multimodule versus inheritance]

Figure 9-6. Enterprise multimodule versus inheritance

What’s going on in this figure? Let’s try to deconstruct the
 confusing set of arrows. First, take a look at
 big-system. The big-system
 might be the project on which you would run mvn package to build and test the entire
 system. big-system references submodules
 client-side and server-side.
 Each of these projects effectively rolls up all of the code that
 runs on either the server or on the client. Let’s focus on the
 server-side project. Under the
 server-side project, we have a project called
 server-lib and a multimodule project named
 web-apps. Under web-apps, we
 have two Java web applications: client-web and
 admin-web.
Let’s start with the parent-child relationships from
 client-web and admin-web to
 web-apps. Since both of the web applications
 are implemented in the same web application framework (let’s say
 Wicket), both projects would share the same set of core
 dependencies. The dependencies on the Servlet
 API, the JSP
 API, and Wicket would all be captured in the
 web-apps project. Both
 client-web and admin-web
 also need to depend on server-lib. This
 dependency would be defined as a dependency between web-apps and
 server-lib. Because
 client-web and admin-web
 share so much configuration by inheriting from
 web-apps, both client-web
 and admin-web will have very small
 POMs containing little more than identifiers, a
 parent declaration, and a final build name.
Next, we focus on the parent-child relationship from
 web-apps and server-lib to
 server-side. In this case, let’s just assume
 that there is a separate working group of developers who work on
 the server-side code and another group of developers who work on
 the client-side code. The list of developers would be configured
 in the server-side POM and inherited by all of
 the child projects underneath it: web-apps,
 server-lib, client-web, and
 admin-web. We could also imagine that the
 server-side project might have different build
 and deployment settings that are unique to the development for the
 server side. The server-side project might
 define a build profile that only makes sense for all of the
 server-side projects. This build profile might
 contain the database host and credentials, or the
 server-side project’s POM
 might configure a specific version of the Maven Jetty plugin,
 which should be universal across all projects that inherit the
 server-side POM.
In this example, the main reason to use parent-child
 relationships is shared dependencies and common configuration for
 a group of projects that are logically related. All of the
 projects below big-system are related to one
 another as submodules, but not all submodules are configured to
 point back to a parent project that is included as a submodule.
 Everything is a submodule for reasons of convenience: to build the
 entire system, just go to the big-system
 project directory and run mvn
 package. Look more closely at the figure and you’ll see
 that there is no parent-child relationship between
 server-side and big-system.
 Why is this? POM inheritance is very powerful,
 but it can be overused. When it makes sense to share dependencies
 and build configurations, a parent-child relationship should be
 used. When it doesn’t make sense is when there are distinct
 differences between two projects. Take, for example, the
 server-side and client-side
 projects. It is possible to create a system where
 client-side and server-side
 inherited a common POM from
 big-system, but as soon as a significant
 divergence between the two child projects develops, you have to
 figure out creative ways to factor out common build configuration
 to big-system without affecting all of the
 children. Even though client-side and
 server-side might both depend on Log4J, they
 also might have distinct plugin configurations.
You may reach a certain point, defined more by style and
 experience, where you decide that minimal duplication of
 configuration is a small price to pay for allowing projects such
 as client-side and
 server-side to remain completely independent.
 Designing a huge set of 30-plus projects that all inherit five
 levels of POM configuration isn’t always the best idea. In such a
 setup, you might not have to duplicate your Log4J dependency more
 than once, but you’ll also end up having to wade through five
 levels of POM just to figure out how Maven calculated your
 effective POM—all of this complexity to avoid duplicating five
 lines of dependency declaration. In Maven, there is a “Maven Way,”
 but there are also many ways to accomplish the same thing. It all
 boils down to preference and
 style. For the most part, you won’t go wrong if all of your
 submodules turn out to define back-references to the same project
 as a parent, but your use of Maven may evolve over time.

Prototype parent projects

Take the example shown in Figure 9-7
 as another hypothetical and creative way to use
 inheritance and multimodule builds to reuse dependencies.
[image: Using parent projects as “prototypes” for specialized projects]

Figure 9-7. Using parent projects as “prototypes” for specialized
 projects

This figure represents yet another way to think about
 inheritance and multimodule projects. In this example, you have
 two distinct systems: system-a and
 system-b. Each define independent applications.
 system-a defines two modules,
 a-lib and a-swing.
 system-a and a-lib both
 define the top-level sonatype
 POM as a parent project, but the
 a-swing project defines
 swing-proto as a parent project. In this
 system, swing-proto supplies a foundational
 POM for Swing applications, and the
 struts-proto project provides a foundational
 POM for Struts 2 web applications. While the
 sonatype POM provides high-level information
 such as the groupId, organization information,
 and build profiles, struts-proto defines all of
 the dependencies that you need to create a Struts application.
 This approach would work well if your development is characterized
 by many independent applications that each have to follow the same
 set of rules. If you are creating a lot of Struts applications but
 they are not really related to one another, you might just define
 everything you need in
 struts-proto. The downside to this approach is
 that you won’t be able to use parent-child relationships within the
 system-a and system-b
 project hierarchies to share
 information like developers and other build configurations. A
 project can have only one parent.
The other downside of this approach is that as soon as you
 have one project that “breaks the mold,” you’ll either have to
 override the prototype parent POM or find a way
 to factor customizations into the shared parent, without those
 customizations affecting all the children. In general, using POMs
 as prototypes for specialized project “types” isn’t a
 recommended practice.

Chapter 10. The Build Lifecycle

Introduction

Maven models projects as nouns that are described by a
 POM. The POM captures the
 identity of a project: What does a project contain? What type of
 packaging does a project need? Does the project have a parent? What
 are the dependencies? We’ve explored the idea of describing a project
 in the previous chapters, but we haven’t introduced the mechanism that
 allows Maven to act upon these objects. In Maven, the “verbs” are
 goals packaged in Maven plugins that are tied to phases in a build
 lifecycle. A Maven lifecycle consists of a sequence of named phases:
 prepare-resources, compile, package, and install, among others. There is a phase that
 captures compilation and a phase that captures packaging. There are
 pre- and postphases that can be used to register goals that must run
 prior to compilation, or tasks that must be run after a particular
 phase. When you tell Maven to build a project, you are telling Maven
 to step through a defined sequence of phases and to execute any goals
 that may have been registered with each phase.
A build lifecycle is an organized sequence of phases that exist
 to give order to a set of goals. Those goals are chosen and bound by
 the packaging type of the project being acted upon. There are three
 standard lifecycles in Maven: clean, default (sometimes called build), and site. In this chapter, you will learn how
 Maven ties goals to lifecycle phases and how the lifecycle can be
 customized. You will also learn about the default lifecycle
 phases.
Clean Lifecycle (clean)

The first lifecycle you’ll be interested in is the simplest
 lifecycle in Maven. Running mvn clean invokes the clean lifecycle that
 consists of three lifecycle phases:
	pre-clean

	clean

	post-clean

The interesting phase in the clean lifecycle is the clean phase. The Clean plugin’s
 clean goal
 (clean:clean) is bound to the
 clean phase in the clean
 lifecycle. The clean:clean goal deletes the
 output of a build by deleting the build directory. If you haven’t
 customized the location of the build directory, it will be the
 ${basedir}/target directory as
 defined by the Super POM. When you execute the
 clean:clean goal, you do not do so by executing
 the goal directly with mvn
 clean:clean; you do so by executing the
 clean phase of the clean
 lifecycle. Executing the clean phase gives Maven
 an opportunity to execute any other goals that may be bound to the
 pre-clean phase.
For example, suppose you wanted to trigger an antrun:run goal task to echo a
 notification on pre-clean, or to make an archive
 of a project’s build directory before it is deleted. Simply running
 the clean:clean goal will not execute the
 lifecycle at all, but specifying the clean phase
 will use the clean lifecycle and advance through
 the three lifecycle phases until it reaches the
 clean phase. Example 10-1 shows a build configuration that
 binds the antrun:run goal to the
 pre-clean phase to echo an alert that the project
 artifact is about to be deleted. In this example, the
 antrun:run goal is being used to execute some
 arbitrary Ant commands to check for an existing project artifact. If
 the project’s artifact is about to be deleted, it will print this to
 the screen.
Example 10-1. Triggering a goal on pre-clean
<project>
 ...
 <build>
 <plugins>... <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <executions>
 <execution>
 <id>file-exists</id>
 <phase>pre-clean</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <tasks>
 <!-- adds the ant-contrib tasks (if/then/else used below) -->
 <taskdef resource="net/sf/antcontrib/antcontrib.properties" />
 <available file="${project.build.directory}/${project.build.finalName}.jar"
 property="file.exists" value="true" />

 <if>
 <not>
 <isset property="file.exists" />
 </not>
 <then>
 <echo>No
 ${project.build.finalName}.${project.packaging} to
 delete</echo>
 </then>
 <else>
 <echo>Deleting
 ${project.build.finalName}.${project.packaging}</echo>
 </else>
 </if>
 </tasks>
 </configuration>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>ant-contrib</groupId>
 <artifactId>ant-contrib</artifactId>
 <version>1.0b2</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
</project>

Running mvn clean on a
 project with this build configuration will produce output similar
 to the following:

[INFO] Scanning for projects...
[INFO] --
[INFO] Building Your Project
[INFO] task-segment: [clean]
[INFO] --
[INFO] [antrun:run {execution: file-exists}]
[INFO] Executing tasks
 [echo] Deleting your-project-1.0-SNAPSHOT.jar
[INFO] Executed tasks
[INFO] [clean:clean]
[INFO] Deleting directory ~/corp/your-project/target
[INFO] Deleting directory ~/corp/your-project/target/classes
[INFO] Deleting directory ~/corp/your-project/target/test-classes
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 1 second
[INFO] Finished at: Wed Nov 08 11:46:26 CST 2006
[INFO] Final Memory: 2M/5M
[INFO] --

In addition to configuring Maven to run a goal during the
 pre-clean phase, you can also customize the Clean
 plugin to delete files to the build output directory. You can
 configure the plugin to remove specific files in a
 fileSet. Example 10-2
 configures clean to remove all
 .class files in a directory
 named target-other/ using
 standard Ant file wildcards: * and
 **.
Example 10-2. Customizing the behavior of the Clean plugin
<project>
 <modelVersion>4.0.0</modelVersion>
 ...
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <configuration>
 <filesets>
 <fileset>
 <directory>target-other</directory>
 <includes>
 <include>*.class</include>
 </includes>
 </fileset>
 </filesets>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Default Lifecycle (default)

Most Maven users will be familiar with the default lifecycle.
 It is a general model of a build process for a software
 application. The first phase is validate, and the
 last phase is deploy. The phases in the default
 Maven lifecycle are shown in Table 10-1.
Table 10-1. Maven lifecycle phases
	Lifecycle phase	Description
	validate	Validate that the project is correct and all
 necessary information is available to complete a
 build.
	generate-sources	Generate any source code for inclusion in compilation.
	process-sources	Process the source code; for example, to filter
 any values.
	generate-resources	Generate resources for inclusion in the package.
	process-resources	Copy and process the resources into the
 destination directory, ready for packaging.
	compile	Compile the source code of the project.
	process-classes	Post-process the generated files from compilation;
 for example, to do bytecode enhancement on Java
 classes.
	generate-test-sources	Generate any test source code for inclusion
 in compilation.
	process-test-sources	Process the test source code; for example, to filter
 any values.
	generate-test-resources	Create resources for testing.
	process-test-resources	Copy and process the resources into the test
 destination directory.
	test-compile	Compile the test source code into the test
 destination directory.
	test	Run tests using a suitable unit testing framework.
 These tests should not require the code be packaged
 or deployed.
	prepare-package	Perform any operations necessary to prepare a
 package before the actual packaging. This often
 results in an unpacked, processed version of the package
 (coming in Maven 2.1+).
	package	Take the compiled code and package it in
 its distributable format, such as a
 JAR, WAR, or
 EAR.
	pre-integration-test	Perform actions required before integration tests
 are executed. This may involve things such as
 setting up the required environment.
	integration-test	Process and deploy the package if necessary into
 an environment where integration tests can be
 run.
	post-integration-test	Perform actions required after integration tests
 have been executed. This may include cleaning up
 the environment.
	verify	Run any checks to verify the package is valid and
 meets quality criteria.
	install	Install the package into the local repository, for
 use as a dependency in other projects
 locally.
	deploy	Copies the final package to the remote repository
 for sharing with other developers and projects
 (usually relevant only during a
 formal release).

Site Lifecycle (site)

Maven does more than build software artifacts from project; it
 can also generate project documentation and reports about
 the project, or about a collection of projects. Project
 documentation and site generation have a dedicated lifecycle that
 contains four phases:
	pre-site

	site

	post-site

	site-deploy

The default goals bound to the site lifecycle are:
	site (site:site)

	site-deploy (site:deploy)

The packaging type does not usually alter this lifecycle,
 since packaging types are concerned primarily with artifact
 creation, not with the type of site generated. The Site plugin kicks off
 the execution of Doxia (http://maven.apache.org/doxia/)
 document generation and other report generation plugins. You can
 generate a site from a Maven project by running the following
 command:
$ mvn site

For more information about Maven site
 generation, see Chapter 15.

Package-Specific Lifecycles

The specific goals bound to each phase default to a set of goals
 specific to a project’s packaging. A project with
 jar packaging has a different set of default goals
 from a project with a packaging of war.
 The packaging element affects the steps
 required to build a project. For an example of how the packaging
 affects the build, consider two projects: one with
 pom packaging and the other with
 jar packaging. The project with
 pom packaging will run the
 site:attach-descriptor goal during the
 package phase, and the project with
 jar packaging will run the
 jar:jar goal instead.
The following sections describe the lifecycle for all built-in
 packaging types in Maven. Use these sections to find out which default
 goals are mapped to default lifecycle phases.
JAR

JAR is the default packaging type—the most
 common and thus the most commonly encountered
 lifecycle configuration. The default goals for the
 JAR lifecycle are shown in Table 10-2.
Table 10-2. Default goals for JAR packaging
	Lifecycle phase	Goal
	process-resources	resources:resources
	compile	compiler:compile
	process-test-resources	resources:testResources
	test-compile	compiler:testCompile
	test	surefire:test
	package	jar:jar
	install	install:install
	deploy	deploy:deploy

POM

POM is the simplest packaging type. The
 artifact that it generates is itself only, rather than
 a JAR, SAR, or
 EAR. There is no code to test or compile, and
 there are no resources to process. The default goals for projects
 with POM packaging are shown in Table 10-3.
Table 10-3. Default goals for POM packaging
	Lifecycle phase	Goal
	package	site:attach-descriptor
	install	install:install
	deploy	deploy:deploy

Maven Plugin

This packaging type is similar to the jar
 packaging type with three additions: plugin:descriptor,
 plugin:addPluginArtifactMetadata, and
 plugin:updateRegistry. These goals generate a
 descriptor file and perform some modifications to the repository
 data. The default goals for projects with plugin packaging are shown
 in Table 10-4.
Table 10-4. Default goals for plugin packaging
	Lifecycle phase	Goal
	generate-resources	plugin:descriptor
	process-resources	resources:resources
	compile	compiler:compile
	process-test-resources	resources:testResources
	test-compile	compiler:testCompile
	test	surefire:test
	package	jar:jar, plugin:addPluginArtifactMetadata
	install	install:install,
 plugin:updateRegistry
	deploy	deploy:deploy

EJB

EJBs, or Enterprise JavaBeans, are a common
 data access mechanism for model-driven development in
 Enterprise Java. Maven provides support for EJB 2
 and 3. You must configure the EJB plugin to
 specifically package for EJB 3; otherwise, the
 plugin defaults to 2.1 and looks for the presence of certain
 EJB configuration files. The default goals for
 projects with EJB packaging are shown in Table 10-5.
Table 10-5. Default goals for EJB packaging
	Lifecycle phase	Goal
	process-resources	resources:resources
	compile	compiler:compile
	process-test-resources	resources:testResources
	test-compile	compiler:testCompile
	test	surefire:test
	package	ejb:ejb
	install	install:install
	deploy	deploy:deploy

WAR

The WAR packaging type is similar to
 the JAR and EJB
 types. The exception being the package goal of
 war:war. Note that the war:war
 plugin requires a web.xml
 configuration in your src/main/webapp/WEB-INF directory. The
 default goals for projects with WAR packaging are
 shown in Table 10-6.
Table 10-6. Default goals for WAR packaging
	Lifecycle phase	Goal
	process-resources	resources:resources
	compile	compiler:compile
	process-test-resources	resources:testResources
	test-compile	compiler:testCompile
	test	surefire:test
	package	war:war
	install	install:install
	deploy	deploy:deploy

EAR

EARs are probably the simplest
 Java Enterprise Edition (EE)
 constructs, consisting primarily of the deployment descriptor
 application.xml file, some
 resources, and some modules. The EAR plugin has a
 goal named generate-application-xml that
 generates the application.xml
 based on the configuration in the EAR project’s
 POM. The default goals for projects with
 EAR packaging are shown in Table 10-7.
Table 10-7. Default goals for EAR packaging
	Lifecycle phase	Goal
	generate-resources	ear:generate-application-xml
	process-resources	resources:resources
	package	ear:ear
	install	install:install
	deploy	deploy:deploy

Other Packaging Types

This is not an exhaustive list of every packaging type
 available for Maven. There are a number of packaging formats
 available through external projects and plugins: the
 NAR (native archive) packaging type, the
 SWF and SWC packaging types
 for projects that produce Adobe Flash and Flex content, and many
 others. You can also define a custom packaging type and customize the default lifecycle
 goals to suit your own project packaging requirements.
To use one of these custom packaging types, you need two
 things: a plugin that defines the lifecycle for a custom packaging
 type and a repository that contains this plugin. Some custom
 packaging types are defined in plugins available from the central
 Maven repository. Example 10-3
 shows an example of a project that references the Israfil Flex
 plugin and uses a custom packaging type of SWF to
 produce output from Adobe Flex source.
Example 10-3. Custom packaging type for Adobe Flex (SWF)
<project>
 ...
 <packaging>swf</packaging>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>net.israfil.mojo</groupId>
 <artifactId>maven-flex2-plugin</artifactId>
 <version>1.4-SNAPSHOT</version>
 <extensions>true</extensions>
 <configuration>
 <debug>true</debug>
 <flexHome>${flex.home}</flexHome>
 <useNetwork>true</useNetwork>
 <main>org/sonatype/mavenbook/Main.mxml</main>
 </configuration>
 </plugin>
 </plugins>
 </build>
 ...
</project>

We will show you how to create your own packaging type later
 in this chapter, but this example should give you an idea of what
 you’ll need to do to reference a custom packaging type. All you need
 to do is reference the plugin that supplies the custom packaging
 type. The Israfil Flex plugin is a third-party Maven plugin hosted
 at Google Code. For more information about this plugin and to learn
 how to use Maven to compile Adobe Flex, go to http://code.google.com/p/israfil-mojo. This plugin
 supplies the lifecycle shown in Table 10-8 for the
 SWF packaging type.
Table 10-8. Default lifecycle for SWF packaging
	Lifecycle phase	Goal
	compile	flex2:compile-swc
	install	install
	deploy	deploy

Common Lifecycle Goals

Many of the packaging lifecycles have similar goals. If you look
 at the goals bound to the WAR and
 JAR lifecycles, you’ll see that they differ only in
 the package phase. The package
 phase of the WAR lifecycle calls
 war:war and the package phase of
 the JAR lifecycle calls jar:jar.
 Most of the lifecycles you will come into contact with share some
 common lifecycle goals for managing resources, running tests, and
 compiling source code. In this section, we’ll explore some of these
 common lifecycle goals in detail.
Process Resources

Most lifecycles bind the
 resources:resources goal to the process-resources
 phase. The process-resources phase “processes”
 resources and copies them to the output directory. If you haven’t
 customized the default directory locations defined in the Super
 POM, this means that Maven will copy the files
 from ${basedir}/src/main/resources to
 ${basedir}/target/classes or
 the directory defined in ${project.build.outputDirectory}. In
 addition to copying the resources to the output directory, Maven can
 also apply a filter to the resources that allows you to replace
 tokens within resource file. Just as variables are referenced in a
 POM using ${...} notation, you
 can reference variables in your project’s resources using the same
 syntax. Coupled with build profiles, such a facility can be used to
 produce build artifacts that target different deployment platforms.
 This is something that is common in environments that need to
 produce output for development, testing, staging, and production
 platforms from the same project. For more information about build
 profiles, see Chapter 11.
To illustrate resource filtering, assume that you have a
 project with an XML file in src/main/resources/META-INF/service.xml.
 You want to externalize some configuration variables to a properties
 file. In other words, you might want to reference a
 JDBC URL, username, and
 password for your database, and you don’t want to put these values
 directly into the service.xml
 file. Instead, you would like to use a properties file to capture
 all of the configuration points for your program. Doing this will
 allow you to consolidate all configuration into a single properties
 file and make it easier to change configuration values when you need
 to target a new deployment environment. First, take a look at the
 contents of service.xml in
 src/main/resources/META-INF,
 shown in Example 10-4.
Example 10-4. Using properties in project resources
<service>
 <!-- This URL was set by project version ${project.version} -->
 <url>${jdbc.url}</url>
 <user>${jdbc.username}</user>
 <password>${jdbc.password}</password>
</service>

This XML file uses the same property
 reference syntax you can use in the POM. In fact,
 the first variable referenced is the project
 variable that is also an implicit variable made available in the
 POM. The project variable
 provides access to POM information. The next
 three variable references are jdbc.url,
 jdbc.username, and
 jdbc.password. These custom variables are defined
 in a properties file, src/main/filters/default.properties, shown in Example 10-5.
Example 10-5. default.properties in src/main/filters
jdbc.url=jdbc:hsqldb:mem:mydb
jdbc.username=sa
jdbc.password=

To configure resource filtering with this default.properties file, we need to
 specify two things in a project’s POM: a list of
 properties files in the filters element of the
 build configuration, and a flag telling Maven that the
 resources directory is to be filtered. The default Maven behavior is
 to skip filtering and just copy the resources to the output
 directory; you’ll need to explicitly configure the resource filter,
 or Maven will skip the step altogether. This default ensures that
 Maven’s resource-filtering feature doesn’t surprise you out of
 nowhere, clobbering any ${...} references you
 didn’t want it to replace. See Example 10-6.
Example 10-6. Filter resources (replacing properties)
<build>
 <filters>
 <filter>src/main/filters/default.properties</filter>
 </filters>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 </resource>
 </resources>
</build>

As with all directories in Maven, the resources directory does
 not need to be in src/main/resources. This is just the
 default value defined in the Super POM. You
 should also note that you don’t need to consolidate all of your
 resources into a single directory. You can always separate resources
 into separate directories under src/main. Assume that you have a project
 that contains hundreds of XML documents and
 hundreds of images. Instead of mixing the resources in the src/main/resources directory, you might
 want to create two directories—src/main/xml and src/main/images—to hold this content. To
 add directories to the list of resource directories, you would add
 the resource elements shown in Example 10-7 to your build
 configuration.
Example 10-7. Configuring additional resource directories
<build>
 ...
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 </resource>
 <resource>
 <directory>src/main/xml</directory>
 </resource>
 <resource>
 <directory>src/main/images</directory>
 </resource>
 </resources>
 ...
</build>

When you are building a project that produces a console
 application or a command-line tool, you’ll often find yourself
 writing simple shell scripts that need to reference the
 JAR produced by a build. When you are using the
 assembly plugin to produce a distribution for an application as a
 ZIP or TAR, you might place
 all of your scripts in a directory such as src/main/command. In the
 POM resource configuration shown in Example 10-8, you’ll see how we can use resource
 filtering and a reference to the project variable to capture the
 final output name of the JAR. For more
 information about the Maven Assembly plugin, see Chapter 12.
Example 10-8. Filtering script resources
<build>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>simple-cmd</artifactId>
 <version>2.3.1</version>
 ...
 <resources>
 <resource>
 <filtering>true</filtering>
 <directory>${basedir}/src/main/command</directory>
 <includes>
 <include>run.bat</include>
 <include>run.sh</include>
 </includes>
 <targetPath>${basedir}</targetPath>
 </resource>
 <resource>
 <directory>${basedir}/src/main/resources</directory>
 </resource>
 </resources>
 ...
</build>

If you run mvn
 process-resources in this project, you will end up with
 two files, run.sh and run.bat, in
 ${basedir}. We’ve singled out these two files in
 a resource element, configuring filtering, and
 set the targetPath to be
 ${basedir}. In a second
 resource element, we’ve configured the default
 resources path to be copied to the default output directory without
 any filtering. Example 10-8 shows you how to
 declare two resource directories and supply them with different
 filtering and target directory preferences. The project from Example 10-8 would contain a run.bat file in src/main/command with the following
 content:
@echo off
java -jar ${project.build.finalName}.jar %*

After running mvn
 process-resources, a file named run.bat would appear in ${basedir} with the following
 content:
@echo off
java -jar simple-cmd-2.3.1.jar %*

The ability to customize filtering for specific subsets of
 resources is another reason why complex projects with many different
 kinds of resources often find it advantageous to separate resources
 into multiple directories. The alternative to storing different
 kinds of resources with different filtering requirements in
 different directories is to use a more complex set of include and
 exclude patterns to match all resource files that match a
 certain pattern.

Compile

Most lifecycles bind the Compiler plugin’s compile goal to the
 compile phase. This phase calls out to
 compile:compile, which is configured to compile
 all of the source code and copy the bytecode to the build output
 directory. If you haven’t customized the values defined in the Super
 POM, compile:compile is going
 to compile everything from src/main/java to target/classes. The Compiler plugin calls
 out to javac and uses default
 source and target settings of 1.3 and 1.1. In other words, the
 Compiler plugin assumes that your Java source conforms to Java 1.3
 and that you are targeting a Java 1.1 JVM. If you would like to
 change these settings, you’ll need to supply the target and source
 configuration to the Compiler plugin in your project’s POM, as shown
 in Example 10-9.
Example 10-9. Setting the source and target versions for the Compiler
 plugin
<project>
 ...
 <build>
 ...
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 ...
 </build>
 ...
</project>

Notice we are configuring the Compiler plugin, and not the
 specific compile:compile goal. If we were going
 to configure the source and target for just the
 compile:compile goal, we would place the
 configuration element below an
 execution element for the
 compile:compile goal. We’ve configured the target
 and source for the plugin because compile:compile
 isn’t the only goal we’re interested in configuring. The Compiler
 plugin is reused when Maven
 compiles tests using the compile:testCompile
 goal, and configuring target
 and source at the plugin level allows us to define it once for all
 goals in a plugin.
If you need to customize the location of the source code, you
 can do so by changing the build configuration. If you wanted to
 store your project’s source code in src/java instead of src/main/java, and if you wanted build
 output to go to classes instead
 of target/classes, you could
 always override the default sourceDirectory defined by
 the Super
 POM, as shown in Example 10-10.
Example 10-10. Overriding the default source directory
<build>
 ...
 <sourceDirectory>src/java</sourceDirectory>
 <outputDirectory>classes</outputDirectory>
 ...
</build>

Warning
Although you may think it’s necessary to bend Maven to your
 own ideas of project directory structure, we can’t emphasize
 enough that you should sacrifice these ideas in favor of the Maven
 defaults. This isn’t because we’re trying to brainwash you into
 accepting the Maven Way; it’s because your project will be easier
 for people to understand if it adheres to the most basic
 conventions. So forget about designing your own project directory
 structure. Don’t do it.

Process Test Resources

The process-test-resources phase is
 almost indistinguishable from the
 process-resources phase. There are some
 trivial differences in the POM, but most
 everything else is the same. You can filter test resources just as
 you filter regular resources. The default location for test
 resources is defined in the Super POM as
 src/test/resources, and the
 default output directory for test resources is target/test-classes defined in ${project.build.testOutputDirectory}.

Test Compile

The test-compile phase is almost identical
 to the compile phase. The only
 difference is that test-compile is going to
 invoke compile:testCompile to compile source from
 the test source directory to
 the test build output directory. If you haven’t customized the
 default directories from the Super POM,
 compile:testCompile is going to compile the
 source in src/test/java to the
 target/test-classes
 directory.
As with the source code directory, if you want to customize
 the location of the test source code and the output of test
 compilation, you can do so by overriding the testSourceDirectory and the testOutputDirectory. If you wanted to
 store test source in src-test/
 instead of src/test/java, and
 you wanted to save test bytecode to classes-test/ instead of target/test-classes, you would use the
 configuration shown in Example 10-11.
Example 10-11. Overriding the location of test source and output
<build>
 ...
 <testSourceDirectory>src-test</testSourceDirectory>
 <testOutputDirectory>classes-test</testOutputDirectory>
 ...
</build>

Test

Most lifecycles bind the test goal of the Surefire plugin to
 the test phase. The Surefire plugin is Maven’s unit
 testing plugin. The default behavior of Surefire is to look for all
 classes ending in *Test in the
 test source directory and to run them as JUnit (http://www.junit.org) tests. The
 Surefire plugin can also be configured to run TestNG (http://www.testng.org) unit
 tests.
After running mvn test, you
 should also notice that the Surefire plugin produces a number of
 reports in target/surefire-reports. This report’s
 directory will have two files for each test executed by the Surefire
 plugin: an XML document containing execution
 information for the test, and a text file containing the output of
 the unit test. If there is a problem during the test phase and a
 unit test has failed, you can use the output of Maven and the
 contents of this directory to track down the cause of a test
 failure. This surefire-reports/
 directory is also used during site generation to create an
 easy-to-read summary of all the unit tests in a project.
If you are working on a project that has some failing unit
 tests, but you want the project to produce output, you’ll need to
 configure the Surefire plugin to continue a build even if it
 encounters a failure. The default behavior is to stop a build
 whenever a unit test failure is encountered. To override this
 behavior, you’ll need to set the testFailureIgnore configuration
 property on the Surefire plugin to true, as shown in Example 10-12.
Example 10-12. Configuring Surefire to ignore test failures
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <testFailureIgnore>true</testFailureIgnore>
 </configuration>
 </plugin>
 ...
 </plugins>
</build>

If you would like to skip tests altogether, you can do so by
 executing the following command:
$ mvn install -Dmaven.test.skip=true
The maven.test.skip variable controls both
 the Compiler and the Surefire plugin. If you pass in
 maven.test.skip, you’ve told Maven to ignore
 tests altogether.

Install

The install goal of the Install plugin is
 almost always bound to the install
 lifecycle phase. This install:install goal simply
 installs a project’s main artifact to the local repository. If you
 have a project with a groupId of
 org.sonatype.mavenbook, an artifactId of
 simple-test, and a version of
 1.0.2, the install:install goal is going to copy
 the JAR file from target/simple-test-1.0.2.jar to ~/.m2/repository/org/sonatype/mavenbook/simple-test/1.0.2/simple-test-1.0.2.jar. If the project has
 POM packaging, this goal will copy the
 POM to the local repository.

Deploy

The deploy goal of the Deploy plugin is
 usually bound to the deploy lifecycle
 phase. This phase is used to deploy an artifact to a remote Maven
 repository, which is usually required to update a remote repository
 when you are performing a release. The deployment procedure can be
 as simple as copying a file to another directory or as complex as
 transferring a file over SCP using a public key.
 Deployment settings usually involve transporting credentials to a
 remote repository, and as such, deployment settings are usually not
 stored in a pom.xml. Instead,
 deployment settings are more frequently found in an individual
 user’s ~/.m2/settings.xml. For
 now, all you need to know is that the
 deploy:deploy goal is bound to the
 deploy phase and that it takes care of
 transporting an artifact to a published repository and updating any
 repository information that might be affected by
 such a deployment.

Chapter 11. Build Profiles

What Are They For?

Profiles allow for the ability to customize a particular build
 for a particular environment; profiles enable portability
 between different build environments.
What do we mean by different build environments? Two example
 build environments are production and development. When you are
 working in a development environment, your system might be configured
 to read from a development database instance running on your local
 machine, whereas in production your system is configured to read from
 the production database. Maven allows you to define any number of
 build environments (build profiles) that can override any of the
 settings in the pom.xml. You can
 configure your application to read from your local, development
 instance of a database in your
 “development” profile, and you can configure it to read from the
 production database in the
 “production” profile. Profiles can also be activated by the
 environment and platform; you can customize a build to run differently
 depending on the operating system or the installed
 JDK version. Before we talk about using and
 configuring Maven profiles, we need to define the concept of “build
 portability.”
What Is Build Portability?

A build’s “portability” is a measure of how easy it is to take
 a particular project and build it in different
 environments. A build that works without any custom configuration or
 customization of properties files is more portable than a build that
 requires a great deal of work to build from scratch. The most
 portable projects tend to be widely used open source projects such
 as Apache Commons or Apache Velocity, which ship with Maven builds
 that require little or no customization. Put simply, the most
 portable project builds tend to just work out of the box, and the
 least portable builds require you to jump through hoops and
 configure platform specific paths to locate build tools. Before we
 show you how to achieve build portability, let’s survey the
 different kinds of portability we are talking about.
Nonportable builds

The lack of portability is exactly what all build tools are
 made to prevent; however, any tool can be configured to
 be nonportable (even Maven). A nonportable project is buildable
 only under a specific set of circumstances and criteria (e.g.,
 your local machine). Unless you are working by yourself and you
 have no plans to ever deploy your application to another machine,
 it is best to avoid nonportability entirely. A nonportable build
 runs only on a single machine; it is a “one-off.” Maven is
 designed to discourage nonportable builds by offering the ability
 to customize builds using profiles.
When a new developer gets the source for a nonportable
 project, he will not be able to build the project without
 rewriting large portions of a build script.

Environment portability

A build exhibits environment portability if it has a
 mechanism for customizing behavior and configuration when
 targeting different environments. For example, a project that
 contains a reference to a test database in a test environment and
 a production database in a production environment is
 environmentally portable. It is likely that this build has a
 different set of properties for each environment. When you move to
 a different environment, one that is not defined and has no
 profile created for it, the project will not work. Hence, it is
 only portable between defined environments.
When a new developer gets the source for an environmentally
 portable project, she will have to run the build within a defined
 environment, or she will have to create a custom environment to
 successfully build the project.

Organizational (in-house) portability

The center of this level of portability is a project’s
 requirement that only a select few may access
 internal resources such as source control or an internally
 maintained Maven repository. A project at a large corporation may
 depend on a database available only to in-house developers, or an
 open source project might require a specific level of credentials
 to publish a web site and deploy the products of a build to a
 public repository.
If you attempt to build an in-house project from scratch
 outside of the in-house network (for example, outside of a
 corporate firewall), the build will fail. It may fail because
 certain required custom plugins are unavailable, or project
 dependencies cannot be found because you don’t have the
 appropriate credentials to retrieve dependencies from a custom
 remote repository. Such a project is only portable across
 environments in a single organization.

Wide (universal) portability

Anyone may download a widely portable project’s source and
 compile and install it without customizing a build
 for a specific environment. This is the highest level of
 portability; anything less requires extra work for those who wish
 to build your project. This level of portability is especially
 important for open source projects, which depend on the ability
 for would-be contributors to easily download and build from
 source.
Any developer could download the source for a widely
 portable project.

Selecting an Appropriate Level of Portability

Clearly, you’ll want to avoid creating the worst-case
 scenario: the nonportable build. You may have had the
 misfortune to work or study at an organization that has critical
 applications with nonportable builds. In such organizations, you
 cannot deploy an application without the help of a specific
 individual on a specific machine. In such an organization, it is
 also very difficult to introduce new project dependencies or changes
 without coordinating the change with the single person who maintains
 such a nonportable build. Nonportable builds tend to grow in highly
 political environments when one individual or group needs to exert
 control over how and when a project is built and deployed. “How do
 we build the system? Oh, we’ve got to call Jack and ask him to build
 it for us; no one else deploys to production.” This is a dangerous
 situation that is more common that you would think. If you work for
 this organization, Maven and Maven profiles provide a way out of
 this mess.
On the opposite end of the portability spectrum are widely
 portable builds. Widely portable builds are generally
 the most difficult build systems to attain. These builds restrict
 your dependencies to those projects and tools that may be freely
 distributed and are publicly available. Many commercial software
 packages might be excluded from the most portable builds because
 they cannot be downloaded before you have accepted a certain
 license. Wide portability also restricts dependencies to those
 pieces of software that may be distributed as Maven artifacts. For
 example, if you depend on Oracle JDBC drivers,
 your users will have to download and install them manually; this is
 not widely portable, as you will have to distribute a set of
 environment setup instructions for people interested in building
 your application. On the other hand, you could use a
 JDBC driver that is available from the public
 Maven repositories such as MySQL or
 HSQLDB.
As stated previously, open source projects benefit from having
 the most widely portable builds possible. Widely portable builds
 reduce the inefficiencies associated with contributing to a project.
 In an open source project (such as Maven), there are two distinct
 groups: end users and developers. When an end user uses a project
 like Maven and decides to contribute a patch to the project, he has
 to make the transition from using the output of a build to running a
 build. He first has to become a developer, and if it is difficult to
 learn how to build a project, this end user has a disincentive to
 take the time to contribute to a project. In a widely portable
 project, an end user doesn’t have to follow a set of arcane build
 instructions to start becoming a developer; she can download the
 source, modify the source, build, and submit a contribution without
 asking someone to help her set up a build environment. When the cost
 of contributing source back to an open source project is lower,
 you’ll see an increase in source code contributions, especially casual
 contributions, which can make the difference between a project’s
 success and a project’s failure. One side effect of Maven’s adoption
 across a wide group of open source projects is that it has made it
 easier for developers to contribute code to various open source
 projects.

Portability Through Maven Profiles

A profile in Maven is an alternative set of configuration values
 that set or override default values. Using a profile,
 you can customize a build for different environments. Profiles are
 configured in the pom.xml and are
 given an identifier. Then you can run Maven with a command-line flag
 that tells Maven to execute goals in a specific profile. The pom.xml shown in Example 11-1 uses a production profile to override the default settings of the Compiler plugin.
Example 11-1. Using a Maven profile to override production compiler
 settings
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>simple</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>simple</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <profiles>[image: 1]
 <profile>
 <id>production</id>[image: 2]
 <build>[image: 3]
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <debug>false</debug>[image: 4]
 <optimize>true</optimize>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
</project>

In this example, we’ve added a profile named production that overrides the default
 configuration of the Maven Compiler plugin. Let’s examine the syntax
 of this profile in detail:
	[image: 1]
	The profiles element is in the pom.xml. It
 contains one or more profile elements. Since
 profiles override the default settings in a pom.xml, the
 profiles element is usually listed as the last
 element in a pom.xml.

	[image: 2]
	Each profile has to have an id element.
 This id element contains the name
 that is used to invoke this profile from the command line. A
 profile is invoked by passing the -Pprofile_id
 command-line argument to Maven.

	[image: 3]
	A profile element can contain many of the
 elements that can appear under the project
 element of a POM XML document. In this example, we’re overriding
 the behavior of the Compiler plugin, and we have to override the
 plugin configuration that is normally enclosed in a
 build and a plugins
 element.

	[image: 4]
	We’re overriding the configuration of the Maven Compiler
 plugin. We’re making sure that the bytecode produced by the
 production profile doesn’t contain debug information and that the
 bytecode has gone through the compiler’s optimization
 routines.

To execute mvn install under
 the production profile, you need to
 pass the -Pproduction argument on the command
 line. To verify that the production
 profile overrides the default Compiler plugin configuration, execute
 Maven with debug output enabled (-X) as follows:
~/examples/profile $ mvn clean install -Pproduction -X
... (omitting debugging output) ...
[DEBUG] Configuring mojo
 'org.apache.maven.plugins:maven-compiler-plugin:2.0.2:testCompile' -->
[DEBUG] (f) basedir = ~\examples\profile
[DEBUG] (f) buildDirectory = ~\examples\profile\target
...
[DEBUG] (f) compilerId = javac
[DEBUG] (f) debug = false
[DEBUG] (f) failOnError = true
[DEBUG] (f) fork = false
[DEBUG] (f) optimize = true
[DEBUG] (f) outputDirectory =
 c:\Users\tobrien\svnw\sonatype\examples\profile\target\test-classes
[DEBUG] (f) outputFileName = simple-1.0-SNAPSHOT
[DEBUG] (f) showDeprecation = false
[DEBUG] (f) showWarnings = false
[DEBUG] (f) staleMillis = 0
[DEBUG] (f) verbose = false
[DEBUG] -- end configuration --
... (omitting debugging output) ...

This excerpt from the debug output of Maven shows the
 configuration of the Compiler plugin under the production profile. As
 shown in the output, debug is set to false and optimize is set
 to true.
Overriding a Project Object Model

Although the previous example showed you how to override the
 default configuration properties of a single Maven plugin, you
 still don’t know exactly what a Maven profile is allowed to
 override. The short answer to that question is that a Maven profile
 can override almost everything you would have in a pom.xml. The Maven POM
 contains an element under project called profiles
 containing a project’s alternate configurations, and under this
 element are profile elements that define each profile. Each profile
 must have an id, and other than that, it can
 contain almost any of the elements one would expect to see under
 project. The XML document in Example 11-2 shows all of the
 elements, a profile is allowed to override.
Example 11-2. Elements allowed in a profile
<project>
 <profiles>
 <profile>
 <build>
 <defaultGoal>...</defaultGoal>
 <finalName>...</finalName>
 <resources>...</resources>
 <testResources>...</testResources>
 <plugins>...</plugins>
 </build>
 <reporting>...</reporting>
 <modules>...</modules>
 <dependencies>...</dependencies>
 <dependencyManagement>...</dependencyManagement>
 <distributionManagement>...</distributionManagement>
 <repositories>...</repositories>
 <pluginRepositories>...</pluginRepositories>
 <properties>...</properties>
 </profile>
 </profiles>
</project>

A profile can override an element shown with ellipses. A
 profile can override the final name of a project’s artifact in a
 profile, the dependencies, and the behavior of a project’s build via
 plugin configuration. A profile can also override the configuration
 of distribution settings depending on the profile. For example, if
 you needed to publish an artifact to a staging server in a staging
 profile, you would create a staging profile that overrides
 the
 distributionManagement element in a
 profile.

Profile Activation

In the previous section, we showed you how to create a profile
 that overrides default behavior for a specific target
 environment. In the previous build, the default build was designed for
 development, and the production
 profile exists to provide configuration for a production environment.
 What happens when you need to provide customizations based on
 variables such as operating systems or JDK version?
 Maven provides a way to “activate” a profile for different
 environmental parameters. This is called profile activation.
Take the following example. Assume we have a Java library that
 has a specific feature available only in the Java 6 release—the
 Scripting Engine as defined in JSR-223 (see http://jcp.org/en/jsr/detail?id=223).
 You’ve separated the portion of the library that deals with the
 scripting library into a separate Maven project, and you want people
 running Java 5 to be able to build the project without attempting to
 build the Java 6 specific library extension. You can do this by using
 a Maven profile that adds the script extension module to the build
 only when the build is running within a Java 6 JDK.
 First, let’s take a look at our project’s directory layout and how we
 want developers to build the system.
When someone runs mvn install
 with a Java 6 JDK, you want the build to include
 the simple-script project’s build;
 when they are running in Java 5, you would like to skip the simple-script project build. If you failed
 to skip the simple-script project
 build in Java 5, your build would fail because Java 5 does not have
 ScriptEngine on the classpath. Let’s take a
 look at the library project’s pom.xml shown in Example 11-3.
Example 11-3. Dynamic inclusion of submodules using profile
 activation
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>simple</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>simple</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <profiles>
 <profile>
 <id>jdk16</id>
 <activation>[image: 1]
 <jdk>1.6</jdk>
 </activation>
 <modules>[image: 2]
 <module>simple-script</module>
 </modules>
 </profile>
 </profiles>
</project>

If you run mvn install under
 Java 1.6, you will see Maven descending into the simple-script subdirectory to build the
 simple-script project. If you are
 running mvn install in Java 1.5,
 the build will not try to build the simple-script submodule. Let’s explore this
 activation configuration in more detail:
	[image: 1]
	The activation element lists the
 conditions for profile activation. In this example, we’ve
 specified that this profile will be activated by Java versions
 that begin with “1.6.” This would include “1.6.0_03,” “1.6.0_02,”
 or any other string that begins with “1.6.” Activation parameters
 are not limited to Java version; for a full list of activation
 parameters, see the next section, Activation Configuration.”

	[image: 2]
	In this profile, we are adding the module simple-script. Adding this module will
 cause Maven to look in the simple-script/ subdirectory for a
 pom.xml.

Activation Configuration

Activations can contain one or more selectors, including JDK
 versions, operating system parameters, files, and properties. A
 profile is activated when all activation criteria has been
 satisfied. For example, a profile could list an operating system
 family of Windows and a JDK version of 1.4; this profile will be
 activated only when the build is executed on a Windows machine
 running Java 1.4. If the profile is active, then all elements
 override the corresponding project-level elements as if the profile
 were included with the -P
 command-line argument. Example 11-4 lists a profile that is
 activated by a very specific combination of operating system
 parameters, properties, and a JDK version.
Example 11-4. Profile activation parameters: JDK version, OS parameters,
 and properties
<project>
 ...
 <profiles>
 <profile>
 <id>dev</id>
 <activation>
 <activeByDefault>false</activeByDefault>[image: 1]
 <jdk>1.5</jdk>[image: 2]
 <os>
 <name>Windows XP</name>[image: 3]
 <family>Windows</family>
 <arch>x86</arch>
 <version>5.1.2600</version>
 </os>
 <property>
 <name>mavenVersion</name>[image: 4]
 <value>2.0.5</value>
 </property>
 <file>
 <exists>file2.properties</exists>[image: 5]
 <missing>file1.properties</missing>
 </file>
 </activation>
 ...
 </profile>
 </profiles>
</project>

This example defines a very narrow set of activation
 parameters. Let’s examine each activation criterion in
 detail:
	[image: 1]
	The activeByDefault element controls
 whether this profile is considered active by
 default.

	[image: 2]
	This profile will be active only for JDK versions that
 begin with “1.5.” This includes “1.5.0_01” and “1.5.1.”

	[image: 3]
	This profile targets a very specific version of Windows
 XP: version 5.1.2600 on a 32-bit platform. If your project uses
 the native plugin to build a C program, you might find yourself
 writing projects for specific platforms.

	[image: 4]
	The property element tells Maven to
 activate this profile if the property mavenVersion is set to the value
 2.0.5.
 mavenVersion is an implicit property that is
 available to all Maven builds.

	[image: 5]
	The file element allows us to activate
 a profile based on the presence (or absence) of
 files. The dev profile will
 be activated if a file named file2.properties exists in the base
 directory of the project. The dev profile will be activated only if
 there is no file named file1.properties file in the base
 directory of the project.

Activation by the Absence of a Property

You can activate a profile based on the value of a property
 such as environment.type. You can activate
 a development profile if
 environment.type equals dev, or a production profile if
 environment.type equals prod. You can also activate a profile in
 the absence of a property. The configuration shown in Example 11-5 activates a profile if the
 property environment.type is not present during
 Maven execution.
Example 11-5. Activating profiles in the absence of a property
<project>
 ...
 <profiles>
 <profile>
 <id>development</id>
 <activation>
 <property>
 <name>!environment.type</name>
 </property>
 </activation>
 </profile>
 </profiles>
</project>

Note the exclamation point prefixing the property name. The
 exclamation point is often referred to as the “bang” character and
 signifies “not.” This profile is activated when no
 ${environment.type} property is set.

External Profiles

If you start making extensive use of Maven profiles, you may
 want to separate your profiles from your POM in a separate file
 named profiles.xml. You can mix
 and match profiles defined in the pom.xml with profiles defined in the
 external profiles.xml file. Just
 place the profiles element into profiles.xml in
 ${basedir} and run Maven as you normally would.
 This profiles.xml file would look
 something like Example 11-6.
Example 11-6. Placing profiles in a profiles.xml file
 <profiles>
 <profile>
 <id>development</id>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <debug>true</debug>
 <optimize>false</optimize>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 <profile>
 <id>production</id>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <debug>false</debug>
 <optimize>true</optimize>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>

You might find that your profiles have grown so large that you
 are having trouble managing the pom.xml, or you might just find separating
 the pom.xml
 from the profiles.xml file is a cleaner
 approach to putting everything into a single file. You can invoke
 profiles stored in profiles.xml
 the same way you would invoke them if they were defined in
 the pom.xml.

Settings Profiles

Project profiles are useful when a specific project needs to
 customize a build setting for a specific environment,
 but why would you want to override a build setting for every project
 in Maven? How do you do something like add an internal repository that
 is consulted on every Maven build? You can do this with a settings
 profile. Where project profiles are concerned with overriding the
 configuration of a specific project, settings profiles can be applied
 to any and all projects you build with Maven. You can place settings
 profiles in two locations: a user-specific settings profile defined in ~/.m2/settings.xml or
 a global settings profile defined in ${M2_HOME}/conf/settings.xml. Here is an
 example of a settings profile defined in ~/.m2/settings.xml that might set some
 user-specific configuration properties for all builds. The settings.xml file shown in Example 11-7 is defined for
 user tobrien.
Example 11-7. Defining user-specific settings profiles
 (~/.m2/settings.xml)
<settings>
 <profiles>
 <profile>
 <id>dev</id>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>sign</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <keystore>/home/tobrien/java/keystore</keystore>
 <alias>tobrien</alias>
 <storepass>s3cr3tp@ssw0rd</storepass>
 <signedjar>${project.build.directory}/signed/
 ${project.build.finalName}.jar</signedjar>
 <verify>true</verify>
 </configuration>
 </plugin>
 </profile>
 </profiles>
</settings>

The previous example is a plausible use of a user-specific
 settings profile. This example sets user-specific settings like the
 password and alias to use when signing a JAR file during a release.
 These are configuration parameters you wouldn’t want to store in a
 project’s shared pom.xml or a
 profiles.xml file because they
 involve some secrets that should not be public.
The downside of settings profiles is that they tend to interfere
 with project portability. If the previous example were an open source
 project, a new developer would not be able to sign a JAR until he had
 manually configured a settings profile and talked to one of the
 existing developers. In this case, the security requirements of
 signing a JAR are in conflict with the larger goal of achieving a
 universally portable project build. On most open source projects,
 there are tasks that require security credentials, such as publishing
 an artifact to a remote repository, publishing a project’s web site,
 or signing a JAR file. For these tasks, the highest level of
 portability we can hope for is organizational portability. These
 higher-security tasks usually require some manual setup and
 configuration of a profile.
Instead of explicitly specifying the name of the profile with
 the -P command-line argument, you can define a list of
 active profiles that are activated for every project you run. For
 example, if you wanted to activate the dev profile defined in settings.xml for every project you run, you
 would add the section shown in Example 11-8 to your ~/.m2/settings.xml file.
Example 11-8. Defining active settings profiles
<settings>
 ...
 <activeProfiles>
 <activeProfile>dev</activeProfile>
 </activeProfiles>
</settings>

This will activate settings profiles only, not project profiles
 with matching id elements. For example, if
 you have a project with a profile defined in its pom.xml with an id of
 dev, it will not be affected by the
 activeProfile set in your settings.xml. This activeProfile setting affects only
 profiles defined in your settings.xml file.
Global Settings Profiles

Just like settings profiles, you can also define a set of
 global profiles in ${M2_HOME}/conf/settings.xml. Profiles
 defined in this configuration file are available across all users
 using a specific installation of Maven. The ability to define a
 global settings profile is useful if you are creating a customized
 distribution of Maven for a specific organization and you want to
 ensure that every user of Maven has access to a set of build
 profiles that ensure in-house portability. If you need to add custom
 plugin repositories or define a custom set of plugins that are used
 only by your organization, you could distribute a copy of Maven to
 your users that has these settings “baked in.” The configuration of
 global settings profiles is the same as the configuration of user-specific
 settings profiles.

Listing Active Profiles

Maven profiles can be defined in either pom.xml,
 profiles.xml, ~/.m2/settings.xml, or ${M2_HOME}/conf/settings.xml. With
 these four levels, there’s no good way of keeping track of profiles
 available to a particular project without remembering which profiles
 are defined in these four files. To make it easier to keep track of
 which profiles are available and where they have been defined, the
 Maven Help plugin defines a goal, active-profiles, that lists all the active
 profiles and where they have been defined. You can run the active-profiles goal as follows:
$ mvn help:active-profiles
Active Profiles for Project 'My Project':

The following profiles are active:

 - my-settings-profile (source: settings.xml)
 - my-external-profile (source: profiles.xml)
 - my-internal-profile (source: pom.xml)

Tips and Tricks

Profiles can encourage build portability. If your build needs
 subtle customizations to work on different platforms, or if you
 need your build to produce different results for different target
 platforms, project profiles increase build portability. Settings
 profiles generally decrease build portability by adding extra-project
 information that must be communicated from developer to developer. The
 following sections provide some guidelines and some ideas for applying
 Maven profiles to your project.
Common Environments

One of the core motivations for Maven project profiles was to
 provide for environment-specific configuration
 settings. In a development environment, you might want to produce
 bytecode with debug information and configure your system to use a
 development database instance. In a production environment, you
 might want to produce a signed JAR and configure the system to use a
 production database. In this chapter, we defined a number of
 environments with identifiers such as dev and prod. A simpler way to do this would be to
 define profiles that are activated by environment properties and to
 use these common environment properties across all of your projects.
 For example, if every project had a development profile activated by a
 property named environment.type having a value of dev, and if those same projects had a
 production profile activated by a
 property named environment.type having a value of
 prod, you could create a default
 profile in your settings.xml
 that always set environment.type to dev on your development machine. That way,
 each project defines a dev
 profile activated by the same environment variable. Let’s see how
 this is done; the settings.xml
 shown in Example 11-9 defines a
 profile in ~/.m2/settings.xml
 that sets the environment.type property to
 dev.
Example 11-9. ~/.m2/settings.xml defines a default profile setting
 environment.type
<settings>
 <profiles>
 <profile>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <environment.type>dev</environment.type>
 </properties>
 </profile>
 </profiles>
</settings>

This means that every time you run Maven on your machine, this
 profile will be activated and the property
 environment.type will have the value dev. You can then use this property to
 activate profiles defined in a project’s pom.xml. Let’s take a look in Example 11-10 at how a project’s pom.xml would define a profile activated
 by environment.type having
 the value dev.
Example 11-10. project profile activated by environment.type equal to
 dev
<project>
 ...
 <profiles>
 <profile>
 <id>development</id>
 <activation>
 <property>
 <name>environment.type</name>
 <value>dev</value>
 </property>
 </activation>
 <properties>
 <database.driverClassName>com.mysql.jdbc.Driver</database.driverClassName>
 <database.url>jdbc:mysql://localhost:3306/app_dev</database.url>
 <database.user>development_user</database.user>
 <database.password>development_password</database.password>
 </properties>
 </profile>
 <profile>
 <id>production</id>
 <activation>
 <property>
 <name>environment.type</name>
 <value>prod</value>
 </property>
 </activation>
 <properties>
 <database.driverClassName>com.mysql.jdbc.Driver</database.driverClassName>
 <database.url>jdbc:mysql://master01:3306,slave01:3306/app_prod</database.url>
 <database.user>prod_user</database.user>
 </properties>
 </profile>
 </profiles>
</project>

This project defines some properties such as
 database.url and
 database.user, which might be used to configure
 another Maven plugin configured in the pom.xml. There are plugins available that can manipulate
 the database and run SQL, and plugins such as the Maven Hibernate3
 plugin can generate annotated model objects for use in persistence
 frameworks. A few of these plugins can be configured in a pom.xml using these properties. These
 properties can also be used to filter resources. In this example,
 because we’ve defined a profile in ~/.m2/settings.xml that sets
 environment.type to dev, the development profile will always
 be activated when we run Maven on our development machine.
 Alternatively, if we wanted to override this default, we could set a
 property on the command line. If we need to activate the production
 profile, we can always run Maven with:
~/examples/profiles $ mvn install -Denvironment.type=prod
Setting a property on the command line will override the
 default property set in ~/.m2/settings.xml. We could have just
 defined a profile with an id of “dev” and invoked
 it directly with the -P
 command-line argument, but using this
 environment.type property allows us to code other
 project pom.xml files to this
 standard. Every project in the codebase can have a profile that is
 activated by the same environment.type property
 set in every user’s ~/.m2/settings.xml. In this way,
 developers can share common configuration for development without defining this configuration
 in nonportable settings.xml files.

Protecting Secrets

This best practice builds on the previous section. In Example 11-10, the production profile does not contain
 the database.password
 property. We’ve done this on purpose to illustrate the concept of
 putting secrets in your user-specific settings.xml. If you were developing an
 application at a large organization that values security, it is
 likely that the majority of the development group will not know the
 password to the production database. In an organization that draws a
 bold line between the development group and the operations group,
 this will be the norm. Developers may have access to a development
 and a staging environment, but they might not have (or want to have)
 access to the production database. There are a number of reasons why
 this makes sense, particularly if an organization is dealing with
 extremely sensitive financial, intelligence, or medical information.
 In this scenario, the production environment build may be carried
 out only by a lead developer or by a member of the production
 operations group. When they run this build using the prod environment.type,
 they will need to define this variable in their settings.xml, as shown in Example 11-11.
Example 11-11. Storing secrets in a user-specific settings profile
<settings>
 <profiles>
 <profile>
 <activeByDefault>true</activeByDefault>
 <properties>
 <environment.type>prod</environment.type>
 <database.password>m1ss10nimp0ss1bl3</database.password>
 </properties>
 </profile>
 </profiles>
</settings>

This user has defined a default profile that sets the
 environment.type to prod and also set the production password.
 When the project is executed, the production profile is activated by
 the environment.type property and the
 database.password property is populated. This
 way, you can put all of the production-specific configuration into a
 project’s pom.xml and leave out
 only the single secret necessary to access the production
 database.
Note
Secrets usually conflict with wide portability, but this
 makes sense. You wouldn’t want to share your secrets
 openly.

Platform Classifiers

Let’s assume that you have a library or a project that
 produces platform-specific customizations. Even though Java is
 platform-neutral, there are times when you might need to write some
 code that invokes platform-specific native code. Another possibility
 is that you’ve written some C code that is compiled by the Maven
 Native plugin and you want to produce a qualified artifact depending
 on the build platform. You can set a classifier with the Maven
 Assembly plugin or with the Maven Jar plugin. The pom.xml shown in Example 11-12 produces a qualified artifact
 using profiles that are activated by operating system parameters.
 For more information about the Maven Assembly plugin, see Chapter 12.
Example 11-12. Qualifying artifacts with platform-activated project
 profiles
<project>
 ...
 <profiles>
 <profile>
 <id>windows</id>
 <activation>
 <os>
 <family>windows</family>
 </os>
 </activation>
 <build>
 <plugins>
 <plugin
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <classifier>win</classifier>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 <profile>
 <id>linux</id>
 <activation>
 <os>
 <family>unix</family>
 </os>
 </activation>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <classifier>linux</classifier>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
</project>

If the operating system is in the Windows family, this
 pom.xml qualifies the JAR
 artifact with “-win”. If the
 operating system is in the Unix family, the artifact is qualified
 with “-linux”. This pom.xml successfully adds the qualifiers
 to the artifacts, but it is more verbose than it needs to be due to
 the redundant configuration of the Maven Jar plugin in both
 profiles. This example could be rewritten to use variable
 substitution to minimize redundancy, as shown in Example 11-13.
Example 11-13. Qualifying artifacts with platform-activated project
 profiles and variable substitution
<project>
 ...
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <classifier>${envClassifier}</classifier>
 </configuration>
 </plugin>
 </plugins>
 </build>
 ...
 <profiles>
 <profile>
 <id>windows</id>
 <activation>
 <os>
 <family>windows</family>
 </os>
 </activation>
 <properties>
 <envClassifier>win</envClassifier>
 </properties>
 </profile>
 <profile>
 <id>linux</id>
 <activation>
 <os>
 <family>unix</family>
 </os>
 </activation>
 <properties>
 <envClassifier>linux</envClassifier>
 </properties>
 </profile>
 </profiles>
</project>

In this pom.xml, each
 profile doesn’t need to include a build element
 to configure the Jar plugin. Instead, each profile is activated by
 the operating system family and sets the
 envClassifier property to either win or linux. This
 envClassifier is then referenced in the default
 pom.xml
 build element to add a classifier to the
 project’s JAR artifact. The JAR artifact will be named
 ${finalName}-${envClassifier}.jar
 and included as a dependency using the dependency
 syntax shown in Example 11-14.
Example 11-14. Depending on a qualified artifact
 <dependency>
 <groupId>com.mycompany</groupId>
 <artifactId>my-project</artifactId>
 <version>1.0</version>
 <classifier>linux</classifier>
 </dependency>

Summary

When used judiciously, profiles can make it very easy to
 customize a build for different platforms. If something in your build
 needs to define a platform-specific path for something like an
 application server, you can put these configuration points in a
 profile that is activated by an operating system parameter. If you
 have a project that needs to produce different artifacts for
 different environments, you can customize the build behavior for
 different environments and platforms via profile-specific plugin
 behavior. Using profiles, builds can become portable. There is no need
 to rewrite your build logic to support a new environment; just
 override the configuration that needs to change and share the configuration points that
 can be shared.

Chapter 12. Maven Assemblies

Introduction

Maven provides plugins that are used to create the most common
 archive types, most of which are consumable as
 dependencies of other projects. Some examples include the
 JAR, WAR,
 EJB, and EAR plugins. As
 discussed in Chapter 10, these plugins correspond to
 different project packaging types, each with slightly different build
 processes. Although Maven has plugins and customized lifecycles to
 support standard packaging types, there are times when you’ll need to
 create an archive or directory with a custom layout. Such custom
 archives are called Maven Assemblies.
There are any number of reasons why you may want to build custom
 archives for your project. Perhaps the most common is the project
 distribution. The word “distribution” means many different things to
 different people (and projects), depending on how the project is meant
 to be used. Essentially, these are archives that provide a convenient
 way for users to install or otherwise make use of the project’s
 releases. In some cases, this may mean bundling a web application with
 an application server like Jetty. In others, it could mean bundling
 API documentation alongside source and compiled binaries like JAR
 files. Assemblies usually come in handy when you are building the
 final distribution of a product. For example, products such as Nexus
 (introduced in Chapter 16) are the result
 of large, multimodule Maven projects, and the final archive you
 download from Sonatype was created using a Maven Assembly.
In most cases, the Assembly plugin is ideally suited to the
 process of building project distributions. However, assemblies
 don’t have to be distribution archives; assemblies are intended to
 provide Maven users with the flexibility they need to produce
 customized archives of all kinds. Essentially, assemblies are intended
 to fill the gaps between the standard archive formats provided by
 project package types. Of course, you could write an entire Maven
 plugin simply to generate your own custom archive format, along with a
 new lifecycle-mapping and artifact-handling configuration to tell
 Maven how to deploy it. But the Assembly plugin makes this unnecessary
 in most cases by providing generalized support for creating your own
 archive recipe, so you don’t have to spend so much time writing Maven
 code.

Assembly Basics

Before we go any further, it’s best to take a minute and talk
 about the two main goals in the Assembly plugin:
 assembly:assembly and the single
 mojo. We list these two goals in different ways to
 reflect the difference in how they’re used. The assembly:assembly goal is designed to
 be invoked directly from the command line and should never be bound to
 a build lifecycle phase. In contrast, the single
 mojo is designed to be a part of your everyday build and should be
 bound to a phase in your project’s build lifecycle.
The main reason for this difference is that the
 assembly:assembly goal is what Maven terms an
 aggregator mojo—that is, a mojo
 that is designed to run at most once in a build, regardless of how
 many projects are being built. It draws its configuration from the
 root project, usually the top-level POM or the
 command line. When bound to a lifecycle, an aggregator mojo can have some nasty side
 effects. It can force the execution of the package
 lifecycle phase to execute ahead of time, and it can result in builds
 that end up executing the package phase
 twice.
Because the assembly:assembly goal is an
 aggregator mojo, it raises some
 issues in multimodule Maven
 builds, and it should be called only as a standalone mojo from the
 command line. Never bind an assembly:assembly execution to a
 lifecycle phase. assembly:assembly was the original goal
 in the Assembly plugin and was never designed to be part of the
 standard build process for a project. As it became clear that assembly
 archives were a legitimate requirement for projects to produce, the
 single mojo was developed. The single mojo assumes
 that it has been bound to the correct part of the build process so
 that it will have access to the project files and artifacts it needs
 to execute within the lifecycle of a large multimodule Maven project.
 In a multimodule environment, it will execute as many times as it is
 bound to the different module POMs. Unlike
 assembly:assembly, single will
 never force the execution of another lifecycle phase ahead of
 itself.
The Assembly plugin provides several other goals in addition to
 these two. However, discussion of these other Mojos is beyond the
 scope of this chapter, because they serve exotic or obsolete use
 cases, and because they are almost never needed. Whenever possible,
 you should definitely stick to using
 assembly:assembly for assemblies generated from the
 command line, and to single for assemblies bound to
 lifecycle phases.
Predefined Assembly Descriptors

Although many people opt to create their own archive
 recipes—called assembly descriptors—this isn’t strictly necessary.
 The Assembly plugin provides built-in descriptors for several common
 archive types that you can use immediately without writing a line of
 configuration. The following assembly descriptors are predefined in
 the Maven Assembly
 plugin:
	bin
	The bin descriptor is used to bundle
 project LICENSE, README, and NOTICE files with the project’s
 main artifact, assuming this project builds a JAR as its main
 artifact. Think of this as the smallest possible binary
 distribution for completely self-contained projects.

	jar-with-dependencies
	The jar-with-dependencies descriptor
 builds a JAR archive with the
 contents of the main project JAR, along
 with the unpacked contents of all the project’s runtime
 dependencies. Coupled with an appropriate
 Main-Class Manifest entry (discussed in
 “Plugin Configuration” later in this chapter), this descriptor
 can produce a self-contained, executable
 JAR for your project, even if the project
 has dependencies.

	project
	The project descriptor simply
 archives the project directory structure as it exists in your
 file system and, most likely, in your version control
 system. Of course, the target directory is omitted, as are any
 version-control metadata files such as the CVS/ and .svn/ directories we’re all used to
 seeing. Basically, the point of this descriptor is to create a
 project archive that, when unpacked, can be built using
 Maven.

	src
	The src descriptor produces an
 archive of your project source and pom.xml
 files, along with any LICENSE, README, and NOTICE files that are in the
 project’s root directory. This precursor to the project
 descriptor produces an archive that can be built by Maven in
 most cases. However, because of its assumption that all source
 files and resources reside in the standard src/ directory, it has the
 potential to leave out nonstandard directories and files that
 are nonetheless critical to some builds.

Building an Assembly

The Assembly plugin can be executed in one of two ways: you
 can invoke it directly from the command line, or you can configure
 it as part of your standard build process by binding it to a phase
 of your project’s build lifecycle. Direct invocation has its uses,
 particularly for one-off assemblies that are not considered part of your
 project’s core deliverables. In most cases, you’ll probably want to
 generate the assemblies for your project as part of its standard
 build process. Doing this has the effect of including your custom
 assemblies whenever the project is installed or deployed into
 Maven’s repositories, so they are always available to your
 users.
As an example of the direct invocation of the Assembly plugin,
 suppose that you want to ship off a copy of your project that people
 can build from source. Instead of just deploying the end product of
 the build, you’ll want to include the source as well. You won’t need
 to do this often, so it doesn’t make sense to add the configuration
 to your POM. Instead, you can use the following
 command:
$ mvn -DdescriptorId=project assembly:single
...
[INFO] [assembly:single]
[INFO] Building tar : /Users/~/mvn-examples-1.0/assemblies/direct-invocation/\
 target/direct-invocation-1.0-SNAPSHOT-project.tar.gz
[INFO] Building tar : /Users/~/mvn-examples-1.0/assemblies/direct-invocation/\
 target/direct-invocation-1.0-SNAPSHOT-project.tar.bz2
[INFO] Building zip: /Users/~/mvn-examples-1.0/assemblies/direct-invocation/\
 target/direct-invocation-1.0-SNAPSHOT-project.zip
...
Suppose you want to produce an executable
 JAR from your project. If your project is totally
 self-contained with no dependencies, you can achieve this with the
 main project artifact using the archive configuration of the
 JAR plugin. However, most projects have
 dependencies, and those dependencies must be incorporated in any
 executable JAR. In that case, you want to make
 sure that every time the main project JAR is
 installed or deployed, your executable JAR goes
 along with it.
Assuming the main class for the project is
 org.sonatype.mavenbook.App, the
 POM configuration shown in Example 12-1 will create an executable
 JAR.
Example 12-1. Assembly descriptor for executable JAR
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <artifactId>executable-jar</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <name>Assemblies Executable Jar Example</name>
 <url>http://sonatype.com/book</url>
 <dependencies>
 <dependency>
 <groupId>commons-lang</groupId>
 <artifactId>commons-lang</artifactId>
 <version>2.4</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-2</version>
 <executions>
 <execution>
 <id>create-executable-jar</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <descriptorRefs>
 <descriptorRef>
 jar-with-dependencies
 </descriptorRef>
 </descriptorRefs>
 <archive>
 <manifest>
 <mainClass>org.sonatype.mavenbook.App</mainClass>
 </manifest>
 </archive>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

You should notice two things about the configuration just
 shown. First, we’re using the descriptorRefs
 configuration section instead of the descriptorId
 parameter we used previously. This allows multiple assembly types to
 be built from the same Assembly plugin execution, while still
 supporting our use case with relatively little extra configuration.
 Second, the archive element under
 configuration sets the
 Main-Class manifest attribute in the generated
 JAR. This section is commonly available in
 plugins that create JAR files, such as the
 JAR plugin used for the default project package
 type.
Now you can produce the executable JAR
 simply by executing mvn package.
 Afterward, we’ll also get a directory listing for the target
 directory, just to verify that the executable JAR
 was generated. Finally, just to prove that we actually do have an
 executable JAR, we’ll try executing it:
$ mvn package
... (output omitted) ...
[INFO] [jar:jar]
[INFO] Building jar: /Users/~/mvn-examples-1.0/assemblies/executable-jar/target/\
 executable-jar-1.0-SNAPSHOT.jar
[INFO] [assembly:single {execution: create-executable-jar}]
[INFO] Processing DependencySet (output=)
[INFO] Building jar: /Users/~/mvn-examples-1.0/assemblies/executable-jar/target/\
 executable-jar-1.0-SNAPSHOT-jar-with-dependencies.jar
... (output omitted) ...
$ ls -1 target
... (output omitted) ...
executable-jar-1.0-SNAPSHOT-jar-with-dependencies.jar
executable-jar-1.0-SNAPSHOT.jar
... (output omitted) ...
$ java -jar \
 target/executable-jar-1.0-SNAPSHOT-jar-with-dependencies.jar
Hello, World!
From this output, you can see that the normal project build
 now produces a new artifact in addition
 to the main JAR file. The new one has a
 classifier of jar-with-dependencies. Finally, we
 verified that the new JAR actually is executable,
 and that executing the JAR produced the desired
 output of “Hello, World!”

Assemblies as Dependencies

When you generate assemblies as part of your normal build
 process, those assembly archives will be attached to your main
 project’s artifact. This means they will be installed and deployed
 alongside the main artifact, and are then resolvable in much the
 same way. Each assembly artifact is given the same basic coordinate
 (groupId, artifactId, and
 version) as the main project. However, these
 artifacts are attachments, which in Maven means they are derivative
 works based on some aspect of the main project build. To provide a
 couple of examples, source assemblies contain the
 raw inputs for the project build, and
 jar-with-dependencies assemblies contain the
 project’s classes plus its dependencies. Attached artifacts are
 allowed to circumvent the Maven requirement of “one project, one
 artifact” precisely because of this derivative quality.
Since assemblies are (normally) attached artifacts, each must
 have a classifier to distinguish it from the main artifact, in
 addition to the normal artifact coordinate. By default, the
 classifier is the same as the assembly descriptor’s identifier. When
 using the built-in assembly descriptors, as shown earlier, the
 assembly descriptor’s identifier is generally also the same as the
 identifier used in the descriptorRef for that
 type of assembly.
Once you’ve deployed an assembly alongside your main project
 artifact, how can you use that assembly as a dependency in another
 project? The answer is fairly straightforward. Recall the
 discussions in the earlier sections Maven Coordinates” in Chapter 3 and More on Coordinates” in Chapter 9 about project dependencies in Maven.
 Projects depend on other projects using a combination of four basic
 elements, referred to as a project’s coordinates:
 groupId, artifactId,
 version, and packaging. In
 Platform Classifiers” in Chapter 11, we explained that multiple platform-specific
 variants of a project’s artifact are available, and the project
 specifies a classifier
 element with a value of either win or
 linux to select the appropriate dependency
 artifact for the target platform. Assembly artifacts can be used as
 dependencies using the required coordinates of a project plus the
 classifier under which the assembly was installed or deployed. If
 the assembly is not a JAR archive, we also need to declare its
 type.

Assembling Assemblies via Assembly Dependencies

How’s that for a confusing section title? Let’s try to set up
 a scenario that explains the idea of assembling
 assemblies. Imagine you want to create an archive that itself
 contains some project assemblies. Assume you have a multimodule
 build, and you want to deploy an assembly that contains a set of
 related project assemblies. In this section’s example, we will
 create a bundle of “buildable” project directories for a set of
 projects that are commonly used together. For simplicity, we’ll
 reuse the two built-in assembly descriptors discussed
 earlier—project and
 jar-with-dependencies. In this particular
 example, it is assumed that each project creates the
 project assembly in addition to its main
 JAR artifact. Assume that every project in a
 multimodule build binds the
 single goal to the package
 phase and uses the project
 descriptorRef. Every project in a multimodule
 will inherit the configuration from a top-level pom.xml, whose
 pluginManagement element is shown in Example 12-2.
Example 12-2. Configuring the project assembly in top-level POM
<project>
 ...
 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-2</version>
 <executions>
 <execution>
 <id>create-project-bundle</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <descriptorRefs>
 <descriptorRef>project</descriptorRef>
 </descriptorRefs>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>
 ...
</project>

Each project POM references the managed
 plugin configuration from Example 12-2
 using a minimal plugin declaration in its build section, as shown in
 Example 12-3.
Example 12-3. Activating the Assembly plugin configuration in child
 projects
<build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 </plugin>
 </plugins>
</build>

To produce the set of project assemblies, run mvn install from the top-level directory.
 You should see Maven installing artifacts with classifiers in your
 local repository:
$ mvn install
...
[INFO] Installing ~/mvn-examples-1.0/assemblies/as-dependencies/project-parent/\
 second-project/target/second-project-1.0-SNAPSHOT-project.tar.gz to
 ~/.m2/repository/org/sonatype/mavenbook/assemblies/second-project/1.0-SNAPSHOT/\
 second-project-1.0-SNAPSHOT-project.tar.gz
...
[INFO] Installing ~/mvn-examples-1.0/assemblies/as-dependencies/project-parent/\
 second-project/target/second-project-1.0-SNAPSHOT-project.tar.bz2 to
 ~/.m2/repository/org/sonatype/mavenbook/assemblies/second-project/1.0-SNAPSHOT/\
 second-project-1.0-SNAPSHOT-project.tar.bz2
...
[INFO] Installing ~/mvn-examples-1.0/assemblies/as-dependencies/project-parent/\
 second-project/target/second-project-1.0-SNAPSHOT-project.zip to
 ~/.m2/repository/org/sonatype/mavenbook/assemblies/second-project/1.0-SNAPSHOT/\\
 second-project-1.0-SNAPSHOT-project.zip
...
When you run install, Maven
 will copy each project’s main artifact and each assembly to your
 local Maven repository. All of these artifacts are now available for
 reference as dependencies in other projects locally. If your
 ultimate goal is to create a bundle that includes assemblies from
 multiple projects, you can do so by creating another project that
 will include other project’s assemblies as dependencies. This bundling project (aptly named project-bundle) is responsible for
 creating the bundled assembly. The POM for the
 bundling project would resemble the XML document shown in Example 12-4.
Example 12-4. POM for the assembly bundling project
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <artifactId>project-bundle</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 <name>Assemblies-as-Dependencies Example Project Bundle</name>
 <url>http://sonatype.com/book</url>
 <dependencies>
 <dependency>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <artifactId>first-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <classifier>project</classifier>
 <type>zip</type>
 </dependency>
 <dependency>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <artifactId>second-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <classifier>project</classifier>
 <type>zip</type>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-2</version>
 <executions>
 <execution>
 <id>bundle-project-sources</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <descriptorRefs>
 <descriptorRef>
 jar-with-dependencies
 </descriptorRef>
 </descriptorRefs>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

This bundling project’s POM references the
 two assemblies from first-project and
 second-project. Instead of referencing the main
 artifact of each project, the bundling project’s
 POM specifies a classifier of
 project and a type of zip.
 This tells Maven to resolve the ZIP archive that
 was created by the project assembly. Note that
 the bundling project generates a
 jar-with-dependencies assembly.
 jar-with-dependencies does not create a
 particularly elegant bundle; it simply creates a
 JAR file with the unpacked contents of all of the
 dependencies. jar-with-dependencies is really
 just telling Maven to take all of the dependencies, unpack them, and
 then create a single archive that includes the output of the current
 project. In this project, it has the effect of creating a single
 JAR file that puts the two project assemblies
 from first-project and
 second-project side by side.
This example illustrates how the basic capabilities of the
 Maven Assembly plugin can be combined without the need for a custom
 assembly descriptor. It achieves the purpose of creating a single
 archive that contains the project directories for multiple projects
 side by side. This time, the
 jar-with-dependencies is just a storage format,
 so we don’t need to specify a Main-Class manifest
 attribute. To build the bundle, we just build the
 project-bundle project normally:
$ mvn package
...
[INFO] [assembly:single {execution: bundle-project-sources}]
[INFO] Processing DependencySet (output=)
[INFO] Building jar: ~/downloads/mvn-examples-1.0/assemblies/as-dependencies/\
 project-bundle/target/project-bundle-1.0-SNAPSHOT-jar-with-dependencies.jar
To verify that the project-bundle assembly contains the
 unpacked contents of the assembly dependencies, run jar tf:
$ java tf \
 target/project-bundle-1.0-SNAPSHOT-jar-with-dependencies.jar
...
first-project-1.0-SNAPSHOT/pom.xml
first-project-1.0-SNAPSHOT/src/main/java/org/sonatype/mavenbook/App.java
first-project-1.0-SNAPSHOT/src/test/java/org/sonatype/mavenbook/AppTest.java
...
second-project-1.0-SNAPSHOT/pom.xml
second-project-1.0-SNAPSHOT/src/main/java/org/sonatype/mavenbook/App.java
second-project-1.0-SNAPSHOT/src/test/java/org/sonatype/mavenbook/AppTest.java
After reading this section, the title “Assembling Assemblies
 via Assembly Dependencies” should make more sense. You’ve assembled
 assemblies from two projects into an assembly using a bundling
 project that has a dependency on each of the assemblies.

Overview of the Assembly Descriptor

When the standard assembly descriptors introduced earlier in the
 section Assembly Basics” are not adequate, you
 will need to define your own assembly descriptor. The assembly
 descriptor is an XML document that defines the structure and contents
 of an assembly. See Figure 12-1.
[image: Assembly descriptor]

Figure 12-1. Assembly descriptor

The assembly descriptor contains five main configuration
 sections, plus two additional sections: one for specifying standard
 assembly-descriptor fragments, called component descriptors, and
 another for specifying custom file processor classes to help manage
 the assembly-production process. These five sections are:
	Base configuration
	This section contains the information required by all
 assemblies, plus some additional configuration
 options related to the format of the entire archive, such as the
 base path to use for all archive entries. For the assembly
 descriptor to be valid, you must at least specify the assembly
 ID, at least one format, and at least one of the other sections
 shown in this list.

	File information
	The configurations in this segment of the assembly
 descriptor apply to specific files on the file system within
 the project’s directory structure. This segment contains two
 main sections: files and
 fileSets. You use files
 and fileSets to control the permissions of
 files in an assembly and to include or exclude files from an
 assembly.

	Dependency information
	Almost all projects of any size depend on other projects.
 When creating distribution archives, project
 dependencies are usually included in the end product of an
 assembly. This section manages the way dependencies are included
 in the resulting archive, and allows you to specify whether
 dependencies are unpacked, added directly to the lib/ directory, or mapped to new file
 names. This section also allows you to control the permissions
 of dependencies in the assembly as well as which dependencies
 are included in an assembly.

	Repository information
	At times, it’s useful to isolate the sum total of all
 artifacts necessary to build a project, whether
 they’re dependency artifacts, POMs of
 dependency artifacts, or even a project’s own POM ancestry (your
 parent POM, its parent, and so on). This
 section allows you to include one or more artifact-repository
 directory structures inside your assembly, with various
 configuration options. The Assembly plugin does not have the
 ability to include plugin artifacts in these repositories
 yet.

	Module information
	This section of the assembly descriptor allows you to take
 advantage of these parent-child relationships when
 assembling your custom archive, and to include source files,
 artifacts, and dependencies from your project’s modules. This is
 the most complex section of the assembly descriptor, because it
 allows you to work with modules and submodules in two ways: as a
 series of fileSets (via the sources section) or as a series
 of dependencySets (via the
 binaries section).

The Assembly Descriptor

This section is a tour of the assembly descriptor, which
 contains some guidelines for developing a custom assembly
 descriptor. The Assembly plugin is one of the largest plugins in the
 Maven ensemble, and one of the most flexible.
Property References in Assembly Descriptors

Any property discussed in the section Maven Properties” in Chapter 13 can be referenced in an assembly descriptor. Before any
 assembly descriptor is used by Maven, it is interpolated using
 information from the POM and the current build
 environment. All properties supported for interpolation within the
 POM itself are valid for use in assembly
 descriptors, including
 POM properties, POM element
 values, system properties, user-defined properties, and
 operating-system environment variables.
The only exceptions to this interpolation step are elements in
 various sections of the descriptor
 named outputDirectory,
 outputDirectoryMapping, or outputFileNameMapping. The reason
 these are held back in their raw form is to allow artifact- or
 module-specific information to be applied when resolving expressions
 in these values, on a per-item basis.

Required Assembly Information

Two essential pieces of information are required for every
 assembly: the id and the list of
 archive formats to produce. In practice, at least one other section
 of the descriptor is required, since most archive format components
 will choke if they don’t have at least one file to include. But
 without at least one format and an
 id, there is no archive to create. The
 id is used both in the archive’s file name, and
 as part of the archive’s artifact classifier in the Maven
 repository. The format string also controls the archiver-component instance that will create
 the final assembly archive. All assembly descriptors must contain an
 id and at least one format.
 See Example 12-5.
Example 12-5. Required assembly descriptor elements
<assembly>
 <id>bundle</id>
 <formats>
 <format>zip</format>
 </formats>
 ...
</assembly>

The assembly id can be any string that does
 not contain spaces. The standard practice is to use dashes when you
 must separate words within the assembly id. If
 you were creating an assembly to create an interesting unique
 package structure, you would give your assembly an
 id of something like
 interesting-unique-package. The Maven Assembly
 plugin also supports multiple formats within a single
 assembly descriptor, allowing
 you to create the familiar .zip, .tar.gz, and .tar.bz2 distribution archive set with
 ease. If you don’t find the archive format you need, you can also
 create a custom format. Custom formats are discussed in the section
 componentDescriptors and containerDescriptorHandlers,” later in this
 chapter. The Assembly plugin supports several archive formats natively,
 including:
	jar

	zip

	tar

	bzip2

	gzip

	tar.gz

	tar.bz2

	rar

	war

	ear

	sar

	dir

The id and format are
 essential because they will become a part of the coordinates for the
 assembled archive. The example from Example 12-5 will create an assembly artifact
 of type zip with a classifier of
 bundle.

Controlling the Contents of an Assembly

In theory, id and format
 are the only absolute requirements for a valid assembly
 descriptor; however, many assembly archivers will fail if they do not
 have at least one file to include in the output archive. The task of
 defining the files to be included in the assembly is handled by the
 five main sections of the assembly descriptor:
 files, fileSets,
 dependencySets, repositories,
 and moduleSets. To explore these sections most
 effectively, we’ll start by discussing the most elemental section:
 files. Then, we’ll move onto the two most commonly
 used sections, fileSets and
 dependencySets. Once you understand the workings of
 fileSets and dependencySets,
 it’s easier to understand repositories and
 moduleSets.
Files Section

The files section is the simplest part of
 the assembly descriptor. It is designed for files that
 have a definite location relative to your project’s directory. Using
 this section, you have absolute control over the exact set of files
 that are included in your assembly, exactly what they are named, and
 where they will reside in the archive. See Example 12-6.
Example 12-6. Including a JAR file in an assembly using files
<assembly>
 ...
 <files>
 <file>
 <source>target/my-app-1.0.jar</source>
 <outputDirectory>lib</outputDirectory>
 <destName>my-app.jar</destName>
 <fileMode>0644</fileMode>
 </file>
 </files>
 ...
</assembly>

Assuming you were building a project called
 my-app with a version of 1.0,
 Example 12-6 would include your project’s
 JAR in the assembly’s lib/ directory, trimming the version from
 the filename in the process so the final filename is simply
 my-app.jar. It would then make the
 JAR readable by everyone and writable by the user
 who owns it (this is what the mode 0644 means for files, using Unix
 four-digit octal permission notation). For more information about
 the format of the value in fileMode, see the Wikipedia entry on
 four-digit octal notation (http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_additional_permissions).
You could build a very complex assembly using file entries, if
 you knew the full list of files to be included. Even if you didn’t
 know the full list before the build started, you could probably use
 a custom Maven plugin to discover that list and generate the
 assembly descriptor using references like the one just shown.
 Although the files section gives you fine-grained
 control over the permission, location, and name of each file in the
 assembly archive, listing a file element for
 every file in a large archive would be a tedious exercise. For the
 most part, you will be operating on groups of files and dependencies
 using fileSets. The remaining four file-inclusion
 sections are designed to help you include entire sets of files that
 match a particular criteria.

fileSets Section

Similar to the files section, fileSets are intended for files
 that have a definite location relative to your project’s directory
 structure. However, unlike the files section,
 fileSets describe sets of
 files, defined by file and path patterns they match (or don’t
 match), and the general directory structure in which they are
 located. The simplest fileSet just specifies the
 directory where the files are located:
<assembly>
 ...
 <fileSets>
 <fileSet>
 <directory>src/main/java</directory>
 </fileSet>
 </fileSets>
 ...
</assembly>
This fileset simply includes the contents of the src/main/java directory from our project.
 It takes advantage of many default settings in the section, so let’s
 discuss those briefly.
First, you’ll notice that we haven’t told the file set where
 within the assembly matching files should be located. By default,
 the destination directory (specified with outputDirectory) is the same as the
 source directory (in our case, src/main/java). Additionally, we haven’t
 specified any inclusion or exclusion file patterns. When these are
 empty, the file set assumes that all files within the source
 directory are included, with some important exceptions. The
 exceptions to this rule pertain mainly to source-control metadata files and
 directories, and are controlled by the
 useDefaultExcludes flag, which defaults to
 true. When active,
 useDefaultExcludes will keep directories such as
 .svn/ and CVS/ from being added to the assembly
 archive. The section Default Exclusion Patterns for fileSets,”
 later in this chapter, provides a detailed list of the default
 exclusion patterns.
If we want more control over this file set, we can specify it
 more explicitly. Example 12-7 shows a
 fileSet element with all of the default elements
 specified.
Example 12-7. Including files with fileSet
<assembly>
 ...
 <fileSets>
 <fileSet>
 <directory>src/main/java</directory>
 <outputDirectory>src/main/java</outputDirectory>
 <includes>
 <include>**</include>
 </include>
 <useDefaultExcludes>true</useDefaultExcludes>
 <fileMode>0644</fileMode>
 <directoryMode>0755</directoryMode>
 </fileSet>
 </fileSets>
 ...
</assembly>

The includes section uses a list
 of include elements, which contain
 path patterns. These patterns may contain wildcards, such as
 **, which matches one or more
 directories, or *, which matches
 part of a filename, and ?, which
 matches a single character in a filename. Example 12-7 uses a fileMode
 entry to specify that files in this set should be readable by all,
 but only writable by the owner. Since the fileSet
 includes directories, we also have the option of specifying a
 directoryMode that works in much the same way as
 the fileMode. Since a directory’s execute
 permission is what allows users to list its contents, we want to
 make sure directories are executable in addition to being readable.
 Like files, only the owner can write to directories in this
 set.
The fileSet entry offers some other options
 as well. First, it allows for an excludes section
 with a form identical to the includes
 section. These exclusion patterns allow you to exclude specific file
 patterns from a fileSet. Include patterns take
 precedence over exclude patterns. Additionally, you can set
 the filtering flag to true if you want to substitute property
 values for expressions within the included files. Expressions can be
 delimited either by ${ and }
 (standard Maven expressions such as ${project.groupId}) or by
 @ and @ (standard Ant
 expressions such as @project.groupId@). You can
 adjust the line ending of your files using the lineEnding
 element. Valid values for lineEnding are:
	keep
	Preserve line endings from original files (this is the
 default value)

	unix
	Unix-style line endings

	lf
	Only a line feed character

	dos
	MS-DOS-style line endings

	crlf
	Carriage return followed by a line feed

Finally, if you want to ensure that all file-matching patterns
 are used, you can use the useStrictFiltering
 element with a value of true (the default is
 false). This can be especially useful if unused
 patterns may signal missing files in an intermediary output
 directory. When useStrictFiltering is set to
 true, the Assembly plugin will fail if an
 include pattern is not satisfied. In other words,
 if you have an include pattern that includes a
 file from a build, and that file is not present, setting
 useStrictFiltering to true
 will cause a failure if Maven cannot find the file to be
 included.

Default Exclusion Patterns for fileSets

When you use the default exclusion patterns, the Maven
 Assembly plugin is going to be ignoring more than just
 SVN and CVS information. By
 default, the exclusion patterns are defined by the DirectoryScanner
 (http://svn.codehaus.org/plexus/plexus-utils/trunk/src/main/java/org/codehaus/plexus/util/DirectoryScanner.java)
 class in the plexus-utils project (http://plexus.codehaus.org/plexus-utils/)
 hosted at Codehaus. The array of exclude patterns
 is defined as a static, final String array
 named DEFAULTEXCLUDES in
 DirectoryScanner. The contents of this
 variable are shown in Example 12-8.
Example 12-8. Definition of default exclusion patterns from
 plexus-utils
 public static final String[] DEFAULTEXCLUDES = {
 // Miscellaneous typical temporary files
 "**/*~",
 "**/#*#",
 "**/.#*",
 "**/%*%",
 "**/._*",

 // CVS
 "**/CVS",
 "**/CVS/**",
 "**/.cvsignore",

 // SCCS
 "**/SCCS",
 "**/SCCS/**",

 // Visual SourceSafe
 "**/vssver.scc",

 // Subversion
 "**/.svn",
 "**/.svn/**",

 // Arch
 "**/.arch-ids",
 "**/.arch-ids/**",

 //Bazaar
 "**/.bzr",
 "**/.bzr/**",

 //SurroundSCM
 "**/.MySCMServerInfo",

 // Mac
 "**/.DS_Store"
 };

This default array of patterns excludes temporary files from
 editors such as GNU Emacs (http://www.gnu.org/software/emacs/)
 and other common temporary files from Macs and a few common source
 control systems (although Visual SourceSafe is more of a curse than
 a source control system). If you need to override these default
 exclusion patterns, you set useDefaultExcludes to
 false and then define a set of
 exclusion patterns in your own
 assembly descriptor.

dependencySets Section

One of the most common requirements for assemblies is the
 inclusion of a project’s dependencies in an assembly
 archive. Where files and
 fileSets deal with files in your project,
 dependency files don’t have a location in your project. The
 artifacts your project depends on have to be resolved by Maven
 during the build. Dependency artifacts are abstract; they lack a
 definite location and are resolved using a symbolic set of Maven
 coordinates. Whereas file and
 fileSet specifications require a concrete source
 path, dependencies are included or excluded from an assembly using a
 combination of Maven coordinates and dependency scopes.
The simplest dependencySet is an empty
 element:
<assembly>
 ...
 <dependencySets>
 <dependencySet/>
 </dependencySets>
 ...
</assembly>
The dependencySet just shown will match all
 runtime dependencies of your project (runtime scope includes the compile scope implicitly), and it will add
 these dependencies to the root directory of your assembly archive.
 It will also copy the current project’s main artifact into the root
 of the assembly archive, if it exists.
Note
Wait… I thought dependencySet was about
 including my project’s dependencies, not my project’s main
 archive? This counterintuitive side effect was a widely used bug
 in the 2.1 version of the Assembly plugin, and because Maven puts
 an emphasis on backward compatibility, this counterintuitive and
 incorrect behavior needed to be preserved between a 2.1 and 2.2
 release. You can control this behavior by changing the
 useProjectArtifact flag to
 false.

Although the default dependency set can be quite useful with
 no configuration whatsoever, this section of the assembly descriptor
 also supports a wide array of configuration options, allowing you to
 tailor its behavior to your specific requirements. For example, the
 first thing you might do to the dependency set shown previously is
 exclude the current project artifact by setting the
 useProjectArtifact flag to
 false (again, its default value is
 true for legacy reasons). This will allow you to
 manage the current project’s build output separately from its
 dependency files. Alternatively, you might choose to unpack the
 dependency artifacts by setting the unpack flag
 to true (it is false by
 default). When unpack is set to true, the Assembly plugin will
 combine the unpacked contents of all matching dependencies inside
 the archive’s root directory.
From this point, there are several things you might choose to
 do with this dependency set. The upcoming sections discuss how to
 define the output location for dependency sets and how to include
 and exclude dependencies by scope. Finally, we’ll expand on the
 unpacking functionality of the dependency set by exploring some
 advanced options for unpacking dependencies.
Customizing dependency output location

Two configuration options are used in concert to define the
 location for a dependency file within the assembly
 archive: outputDirectory and
 outputFileNameMapping. You may want to
 customize the location of dependencies in your assembly using
 properties of the dependency artifacts themselves. Let’s say you
 want to put all the dependencies in directories that match the
 dependency artifact’s groupId. In this case,
 you would use the outputDirectory element of
 the dependencySet, and you would supply
 something like this:
<assembly>
 ...
 <dependencySets>
 <dependencySet>
 <outputDirectory>${artifact.groupId}</outputDirectory>
 </dependencySet>
 </dependencySets>
 ...
</assembly>
This would have the effect of placing every single
 dependency in a subdirectory that matches the name of each
 dependency artifact’s groupId.
If you want to perform a further customization and remove
 the version numbers from all dependencies, you can customize the
 output file name for each dependency using the
 outputFileNameMapping element as
 follows:
<assembly>
 ...
 <dependencySets>
 <dependencySet>
 <outputDirectory>${artifact.groupId}</outputDirectory>
 <outputFileNameMapping>
 ${module.groupId}-${module.artifactId}.${module.extension}
 </outputFileNameMapping>
 </dependencySet>
 </dependencySets>
 ...
</assembly>
In the example just shown, a dependency on
 commons:commons-codec version 1.3 would end up
 in the file
 commons/commons-codec.jar.

Interpolation of properties in dependency output
 location

As mentioned in the Property References in Assembly Descriptors”
 section, earlier in this chapter, neither of these elements are interpolated with the
 rest of the assembly descriptor because their raw values have to
 be interpreted using additional, artifact-specific expression
 resolvers.
The artifact expressions available for these two elements
 vary only slightly. In both cases, all of the
 ${project.*}, ${pom.*}, and
 ${*} expressions that are available in the
 POM and the rest of the assembly descriptor are
 also available here. For the outputFileNameMapping element, the
 following process is applied to resolve expressions:
	If the expression matches the pattern
 ${artifact.*}:
	Match against the dependency’s
 Artifact instance (resolves:
 groupId, artifactId,
 version,
 baseVersion, scope,
 classifier, and
 file.*).

	Match against the dependency’s
 ArtifactHandler instance (resolves:
 expression).

	Match against the project instance associated with
 the dependency’s artifact (resolves: mainly POM
 properties).

	If the expression matches the patterns
 ${pom.*} or
 ${project.*}, match against the project
 instance (MavenProject) of the
 current build.

	If the expression matches the pattern
 ${dashClassifier?} and the artifact
 instance contains a nonnull classifier, resolve to the
 classifier preceded by a dash
 (-classifier). Otherwise,
 resolve to an empty string.

	Attempt to resolve the expression against the project
 instance of the current build.

	Attempt to resolve the expression against the POM
 properties of the current build.

	Attempt to resolve the expression against the available
 system properties.

	Attempt to resolve the expression against the available
 operating-system environment variables.

The outputDirectory value is interpolated
 in much the same way, the difference being that there is no
 available ${artifact.*} information, only the
 ${project.*} instance for the particular
 artifact. Therefore, the expressions just shown associated with
 those classes (numbers 1a, 1b, and 3 in the process listing) are
 unavailable.
How do you know when to use
 outputDirectory and
 outputFileNameMapping? When dependencies are
 unpacked, only the outputDirectory is used to
 calculate the output location. When dependencies are managed as
 whole files (not unpacked), both outputDirectory and
 outputFileNameMapping can be used together.
 When used together, the result is the equivalent of:
<archive-root-dir>/<outputDirectory>/<outputFileNameMapping>
When outputDirectory is missing, it is
 not used. When outputFileNameMapping is
 missing, its default value is:
${artifact.artifactId}-${artifact.version}${dashClassifier?}.${artifact.extension}

Including and excluding dependencies by scope

In Chapter 9, we noted that
 all project dependencies have one scope or another.
 Scope determines when in the build process that dependency
 normally would be used. For instance, test-scoped dependencies are not
 included in the classpath during compilation of the main project
 sources, but they are included in the classpath when compiling
 unit test sources. This is because your project’s main source code
 should not contain any code specific to testing, since testing is
 not a function of the project (it’s a function of the project’s
 build process). Similarly, provided-scoped dependencies are assumed
 to be present in the environment of any eventual deployment.
 However, if a project depends on a particular provided dependency, it is likely to
 require that dependency in order to compile. Therefore, provided-scoped dependencies are present
 in the compilation classpath, but not in the dependency set that
 should be bundled with the project’s artifact or assembly.
Also from Chapter 9, recall that
 some dependency scopes imply others. For instance, the
 runtime dependency scope implies the
 compile scope, since all compile-time
 dependencies (except for those in the provided
 scope) will be required for the code to execute. A number of
 complex relationships exist between the various dependency scopes
 that control how the scope of a direct dependency affects the
 scope of a transitive dependency. In a Maven Assembly descriptor,
 we can use scopes to apply different settings to different sets of
 dependencies accordingly.
For instance, if we plan to bundle a web application with
 Jetty (http://www.mortbay.org/jetty-6/)
 to create a completely self-contained application, we’ll need to
 include all provided-scope dependencies
 somewhere in the Jetty directory structure we’re including. This
 ensures those provided
 dependencies actually are present in the runtime environment.
 Non-provided, runtime dependencies will still land in
 the WEB-INF/lib directory, so these two dependency
 sets must be processed separately. These dependency sets might
 look similar to the XML shown in Example 12-9.
Example 12-9. Defining dependency sets using scope
<assembly>
 ...
 <dependencySets>
 <dependencySet>
 <scope>provided</scope>
 <outputDirectory>lib/${project.artifactId}</outputDirectory>
 </dependencySet>
 <dependencySet>
 <scope>runtime</scope>
 <outputDirectory>
 webapps/${webContextName}/WEB-INF/lib
 </outputDirectory>
 </dependencySet>
 </dependencySets>
 ...
</assembly>

provided-scoped
 dependencies are added to the lib/ directory in the assembly root,
 which is assumed to be a libraries directory that will be included
 in the Jetty global runtime classpath. We’re using a subdirectory
 named for the project’s artifactId in order to
 make it easier to track the origin of a particular library.
 runtime dependencies are
 included in the WEB-INF/lib
 path of the web application, which is located within a
 subdirectory of the standard Jetty webapps/ directory that is named using
 a custom POM property called
 webContextName. What we’ve done in Example 12-9 is separate
 application-specific dependencies from dependencies that will be
 present in a Servlet that contains global classpath.
However, simply separating according to scope may not be
 enough, particularly in the case of a web application. It’s
 conceivable that one or more runtime dependencies will actually be
 bundles of standardized, noncompiled resources for use in the web
 application. For example, consider a set of web applications that
 reuse a common set of JavaScript, Cascading Style Sheets (CSS),
 SWF, and image resources. To make these resources easy to
 standardize, it’s common practice to bundle them up in an archive
 and deploy them to the Maven repository. At that point, they can
 be referenced as standard Maven dependencies—possibly with a
 dependency type of zip—that are normally
 specified with a runtime scope. Remember, these are resources, not
 binary dependencies of the application code itself; therefore,
 it’s not appropriate to blindly include them in the WEB-INF/lib
 directory. Instead, these resource archives should be separated
 from binary runtime dependencies and unpacked into the web
 application document root somewhere. In order to achieve this kind
 of separation, we’ll need to use inclusion and exclusion patterns
 that apply to the coordinates of a specific dependency.
In other words, say you have three or four web application
 that reuse the same resources, and you want to create an assembly
 that puts provided dependencies
 into lib/, puts runtime dependencies into webapps/<contextName>/WEB-INF/lib,
 and then unpacks a specific runtime dependency into your web
 application’s document root. You can do this because the assembly
 allows you to define multiple include and exclude patterns for a given
 dependencySet element. Read the next section
 for more
 development of this idea.

Fine-tuning: dependency includes and excludes

A resource dependency might be as simple as a set of
 resources (CSS, JavaScript, and images) in a project that has
 an assembly that creates a ZIP archive.
 Depending on the particulars of our web application, we might be
 able to distinguish resource dependencies from binary dependencies
 solely according to type. Most web applications are going to
 depend on other dependencies of type jar, and
 it is possible that we can state with certainty that all
 dependencies of type zip are resource
 dependencies. Or we might have a situation where resources are
 stored in jar format, but have a classifier of
 something like resources. In either case, we
 can specify an inclusion pattern to target these resource
 dependencies and apply logic different than that used for binary
 dependencies. We’ll specify these tuning patterns using the
 includes and excludes
 sections of the dependencySet.
Both includes and excludes are list sections, meaning they
 accept the subelements include and
 exclude respectively. Each
 include or exclude element
 contains a string value, which can contain wildcards. Each string
 value can match dependencies in a few different ways. Generally
 speaking, three identity pattern formats are supported:
	groupId:artifactId—version-less
 key
	You would use this pattern to match a dependency by
 only the groupId and the
 artifactId.

	groupId:artifactId:type[:classifier]—conflict
 id
	The pattern allows you to specify a wider set of
 coordinates to create a more specific include/exclude pattern.

	groupId:artifactId:type[:classifier]:version—full
 artifact identity
	If you need to get really specific, you can specify
 all the coordinates.

All of these pattern formats support the wildcard character
 *, which can match any
 subsection of the identity and is not limited to matching single
 identity parts (sections between : characters). Also, note that the
 classifier section is optional, because patterns matching
 dependencies that don’t have classifiers do not need to account
 for the classifier section in the pattern.
In the example given earlier, where the key distinction is
 the artifact type zip, and none of the
 dependencies have classifiers, the following pattern would match
 resource dependencies, assuming that they were of type
 zip:
*:zip
This pattern makes use of the second dependency identity:
 the dependency’s conflict id.
 Now that we have a pattern that distinguishes resource
 dependencies from binary dependencies, we can modify our
 dependency sets to handle resource archives differently, as shown
 in Example 12-10.
Example 12-10. Using dependency excludes and includes in
 dependencySets
<assembly>
 ...
 <dependencySets>
 <dependencySet>
 <scope>provided</scope>
 <outputDirectory>lib/${project.artifactId}</outputDirectory>
 </dependencySet>
 <dependencySet>
 <scope>runtime</scope>
 <outputDirectory>
 webapps/${webContextName}/WEB-INF/lib
 </outputDirectory>
 <excludes>
 <exclude>*:zip</exclude>
 </excludes>
 </dependencySet>
 <dependencySet>
 <scope>runtime</scope>
 <outputDirectory>
 webapps/${webContextName}/resources
 </outputDirectory>
 <includes>
 <include>*:zip</include>
 </includes>
 <unpack>true</unpack>
 </dependencySet>
 </dependencySets>
 ...
</assembly>

In this example, the runtime-scoped dependency set from our
 previous example has been updated to exclude resource
 dependencies. Only binary dependencies (non-zip dependencies) should be added to the
 WEB-INF/lib directory of the
 web application. Resource dependencies now have their own
 dependency set, which is configured to include these dependencies
 in the resources directory of the web application. The
 includes section in the last
 dependencySet reverses the exclusion from the
 previous dependencySet, so that resource
 dependencies are included using the same identity pattern (i.e.,
 *:zip). The last
 dependencySet refers to the shared resource
 dependency, and it is configured to unpack the shared resource
 dependency in the document root of the web application.
Example 12-10 was based on the
 assumption that our shared resources project dependency had a type
 that differed from all the other dependencies. What if the shared
 resource dependency had the same type as all the other
 dependencies? How could you differentiate the dependency? In that
 case, if the shared resource dependency had been bundled as a JAR
 with the classifier resources, you could change
 to the identity pattern and match those dependencies
 instead:
*:jar:resources
Rather than matching on artifacts with a type of
 zip and no classifier, we’re matching on
 artifacts with a classifier of resources and a
 type of jar.
Just like the fileSets section,
 dependencySets support the
 useStrictFiltering flag. When enabled, any
 specified patterns that don’t match one or more dependencies will
 cause the assembly—and consequently, the build—to fail. This can
 be particularly useful as a safety valve to make sure your project
 dependencies and assembly descriptors are synchronized and
 interacting as you expect them to. By default, this flag is set to
 false for the purposes of backward compatibility.

Transitive dependencies, project attachments, and project
 artifacts

The dependencySet section supports two
 more general mechanisms for tuning the subset of
 matching artifacts: transitive selection options and options for
 working with project artifacts. Both of these features are a
 product of the need to support legacy configurations that applied
 a somewhat more liberal definition of the word “dependency.” As a
 prime example, consider the project’s own main artifact.
 Typically, this would not be considered a dependency, yet older
 versions of the Assembly plugin included the project artifact in
 calculations of dependency sets. To provide backward compatibility
 with this “feature,” the 2.2 releases (currently at 2.2-beta-2) of
 the Assembly plugin support a flag in the
 dependencySet called
 useProjectArtifact, whose default value is
 true. By default, dependency sets will attempt
 to include the project artifact itself in calculations about which
 dependency artifacts match and which don’t. If you’d rather deal
 with the project artifact separately, set this flag to
 false.
Tip
We recommend that you always set useProjectArtifact to
 false.

As a natural extension to the inclusion of the project
 artifact, the project’s attached artifacts can also be managed
 within a dependencySet using the useProjectAttachments flag (whose
 default value is false). Enabling this flag
 allows patterns that specify classifiers and types to match on
 artifacts that are “attached” to the main project artifact; that
 is, they share the same basic
 groupId/artifactId/version
 identity, but differ in type and
 classifier from the main artifact. This could
 be useful for including Javadoc or source JARs in an
 assembly.
Aside from dealing with the project’s own artifacts, it’s
 also possible to fine-tune the dependency set using two
 transitive-resolution flags. The first, called useTransitiveDependencies (and set
 to true by default), simply specifies whether
 the dependency set should consider transitive dependencies at all
 when determining the matching artifact set to be included. As an
 example of how this could be used, consider what happens when your
 POM has a dependency on another assembly. That
 assembly (most likely) will have a classifier that separates it
 from the main project artifact, making it an attachment. However,
 one quirk of the Maven dependency-resolution process is that the
 transitive-dependency information for the main artifact is still
 used when resolving the assembly artifact. If the assembly bundles
 its project dependencies inside itself, using transitive
 dependency resolution here would effectively duplicate those
 dependencies. To avoid this, we simply set
 useTransitiveDependencies to
 false for the dependency set that handles that
 assembly dependency.
The other transitive-resolution flag is far more subtle.
 It’s called useTransitiveFiltering
 and has a default value of false. To understand
 what this flag does, we first need to understand what information
 is available for any given artifact during the resolution process.
 When an artifact is a dependency of a dependency (that is, removed
 at least one level from your own POM), it has
 what Maven calls a “dependency trail,” which is maintained as a list of
 strings that correspond to the full artifact identities
 (groupId:artifactId:type:[classifier:]version)
 of all dependencies between your POM and the
 artifact that owns that dependency trail. If you remember the
 three types of artifact identities available for pattern matching
 in a dependency set, you’ll notice that the entries in the
 dependency trail—the full artifact
 identity—correspond to the third type. When
 useTransitiveFiltering is set to
 true, the entries in an artifact’s dependency trail can cause the
 artifact to be included or excluded in the same way its own
 identity can.
If you’re considering using transitive filtering, be
 careful! A given artifact can be included from multiple places in
 the transitive-dependency graph, but as of Maven 2.0.9, only the
 first inclusion’s trail will be tracked for this type of matching.
 This can lead to subtle problems when collecting the dependencies
 for your project.
Warning
Most assemblies don’t really need this level of control
 over dependency sets; consider carefully whether yours truly
 does. Hint: it probably doesn’t.

Advanced unpacking options

As we discussed previously, some project dependencies may
 need to be unpacked in order to create a working
 assembly archive. In the examples we have shown, the decision to
 unpack or not was simple. We didn’t take into account what needed
 to be unpacked or, more importantly, what should not have been
 unpacked. To gain more control over the dependency unpacking
 process, we can configure the unpackOptions
 element of the dependencySet. Using this
 section, we have the ability to choose which file patterns to
 include or exclude from the assembly, and whether included files should be
 filtered to resolve expressions using current
 POM information. In fact, the options available
 for unpacking dependency sets are fairly similar to those
 available for including files from the project directory
 structure, using the filesets descriptor section.
To continue our web application example, suppose some of the
 resource dependencies have been bundled with a file that details
 their distribution license. In the case of our web application,
 we’ll handle third-party license notices by way of a NOTICES file included in our own
 bundle, so we don’t want to include the license file from the
 resource dependency. To exclude this file, we simply add it to the
 unpack options inside the dependency set that handles resource
 artifacts, as shown in Example 12-11.
Example 12-11. Excluding files from a dependency unpack
<asembly>
 ...
 <dependencySets>
 <dependencySet>
 <scope>runtime</scope>
 <outputDirectory>
 webapps/${webContextName}/resources
 </outputDirectory>
 <includes>
 <include>*:zip</include>
 </includes>
 <unpack>true</unpack>
 <unpackOptions>
 <excludes>
 <exclude>**/LICENSE*</exclude>
 </excludes>
 </unpackOptions>
 </dependencySet>
 </dependencySets>
 ...
</assembly>

Notice that the exclude we’re using looks
 very similar to those used in fileSet
 declarations. Here, we’re blocking any file starting with the word
 LICENSE in any directory
 within our resource artifacts. You can think of the unpack options
 section as a lightweight fileSet applied to
 each dependency matched within that dependency set. In other
 words, it is a fileSet by way of an
 unpacked dependency. Just as we specified an
 exclusion pattern for files within resource dependencies in order
 to block certain files, you can also choose which restricted set
 of files to include using the includes section. The same code that
 processes inclusions and exclusions on fileSets
 has been reused for processing
 unpackOptions.
In addition to file inclusion and exclusion, the unpack
 options on a dependency set also provides a
 filtering flag, whose default value is false.
 Again, this should be familiar from our earlier discussion of
 filesets. In both cases, expressions using either the Maven syntax
 of ${property} or the Ant syntax of
 @property@ are supported. However, filtering is
 a particularly nice feature to have for dependency sets, since it
 effectively allows you to create standardized, versioned resource
 templates that are then customized to each assembly as they are
 included. Once you start mastering the use of filtered, unpacked
 dependencies that store shared resources, you will be able to
 start abstracting
 repeated resources into common resource projects.

Summarizing dependency sets

Finally, it’s worth mentioning that dependency sets support
 the same fileMode and
 directoryMode configuration options that
 filesets do, though you should remember that the
 directoryMode setting will be used only when
 dependencies are unpacked.

moduleSets Sections

Multimodule builds are generally stitched together using
 the parent and modules sections of
 interrelated POMs. Typically, parent
 POMs specify their children in a modules section that, under normal
 circumstances, causes the child POMs to be
 included in the build process of the parent. Exactly how this
 relationship is constructed can have important implications for the
 ways in which the Assembly plugin can participate in this process,
 but we’ll discuss that later. For now, it’s enough to keep in mind
 this parent-module relationship as we discuss the
 moduleSets section.
Projects are stitched together into multimodule builds because
 they are part of a larger system. These projects are designed to be
 used together, and a single module in a larger build has little
 practical value on its own. In this way, the structure of the
 project’s build is related to the way in which we expect the project
 (and its modules) to be used. If we consider the project from the
 user’s perspective, it makes sense that the ideal end goal of that
 build would be a single, distributable file that the user can
 consume directly with minimum installation hassle. Since Maven
 multimodule builds typically follow a top-down structure, where
 dependency information, plugin configurations, and other information
 trickles down from parent to child, it seems natural that the task
 of rolling all of these modules into a single distribution file
 should fall to the topmost project. This is where the
 moduleSet comes into the picture.
Module sets allow the inclusion of resources that belong to
 each module in the project structure into the final assembly
 archive. Just as you can select a group of files to include in an
 assembly using a fileSet and a
 dependencySet, you can include a set of files and
 resources using a moduleSet to refer to modules
 in a multimodule build. They achieve this by enabling two basic
 types of module-specific inclusion: file-based and artifact-based.
 Before we get into the specifics and differences between file-based
 and artifact-based inclusion of module resources into an assembly,
 let’s talk a little about selecting which modules to process.
Module selection

By now, you should be familiar with
 includes and excludes
 patterns as they are used throughout the assembly descriptor to
 filter files and dependencies. When you are referring to modules
 in an assembly descriptor, you will also use the
 includes and excludes
 patterns to define rules that apply to different sets of modules.
 The difference in moduleSet
 includes and excludes is
 that these rules do not allow for wildcard patterns. (As of the
 2.2-beta-2 release, this feature has not really seen much demand,
 so it hasn’t been implemented.) Instead, each
 include or exclude value is
 simply the groupId and
 artifactId for the module, separated by a
 colon, like this:
groupId:artifactId
In addition to includes and
 excludes, the moduleSet also
 supports an additional selection tool: the includeSubModules flag (whose
 default value is true). The parent-child
 relationship in any multimodule build structure is not strictly
 limited to two tiers of projects. In fact, you can include any
 number of tiers, or layers, in your build. Any project that is a
 module of a module of the current project is considered a
 submodule. In some cases, you may want to deal with each
 individual module in the build separately (including submodules).
 For example, this is often simplest when dealing with
 artifact-based contributions from these modules. To do this, you
 would simply leave the useSubModules flag set to the
 default of true.
When you’re trying to include files from each module’s
 directory structure, you may wish to process that module’s
 directory structure only once. If your project directory structure
 mirrors that of the parent-module relationships that are included
 in the POMs, this approach would allow file
 patterns such as **/src/main/java to apply not only to
 that direct module’s project directory, but also to the
 directories of its own modules as well. In case you don’t want to
 process submodules directly (they will instead be processed as
 subdirectories within your own project’s modules), you should set
 the useSubModules flag to
 false.
Once we’ve determined how module selection should proceed
 for the module set in question, we’re ready to
 choose what to include from each module. As mentioned earlier,
 this can include files or artifacts from the module
 project.

Sources section

Suppose you want to include the source of all modules in
 your project’s assembly, but you would like to exclude a
 particular module. Maybe you have a project named
 secret-sauce that contains secret and sensitive
 code that you don’t want to distribute with your project. The
 simplest way to accomplish this is to use a
 moduleSet that includes each project’s
 directory in ${module.basedir.name} and that
 excludes the secret-sauce module from the
 assembly. See Example 12-12.
Example 12-12. Including and excluding modules with a moduleSet
<assembly>
 ...
 <moduleSets>
 <moduleSet>
 <includeSubModules>false</includeSubModules>
 <excludes>
 <exclude>
 com.mycompany.application:secret-sauce
 </exclude>
 </excludes>
 <sources>
 <outputDirectoryMapping>
 ${module.basedir.name}
 </outputDirectoryMapping>
 <excludeSubModuleDirectories>
 false
 </excludeSubModuleDirectories>
 <fileSets>
 <fileSet>
 <directory>/</directory>
 <excludes>
 <exclude>**/target</exclude>
 </excludes>
 </fileSet>
 </fileSets>
 </sources>
 </moduleSet>
 </moduleSets>
 ...
</assembly>

In this example, since we’re dealing with each module’s
 sources, it’s simpler to deal only with direct modules of the
 current project, handling submodules using filepath wildcard
 patterns in the file set. We set the
 includeSubModules element to
 false so we don’t have to worry about
 submodules showing up in the root directory of the assembly
 archive. The exclude element will take care of
 excluding the secret-sauce module. We’re not
 going to include the project sources for the
 secret-sauce module; they’re, well,
 secret.
Normally, module sources are included in the assembly under
 a subdirectory named after the module’s
 artifactId. However, since Maven allows modules
 that are not in directories named after the module project’s
 artifactId, it’s often better to use the
 expression ${module.basedir.name} to preserve
 the module directory’s actual name (${module.basedir.name} is the same
 as calling
 MavenProject.getBasedir().getName()). It
 is critical to remember that modules are not required to be
 subdirectories of the project that declares them. If your project
 has a particularly strange directory structure, you may need to
 resort to special moduleSet declarations that
 include specific projects and account for your own project’s
 idiosyncrasies.
Warning
Try to minimize your own project’s idiosyncracies.
 Although Maven is flexible, if you find yourself doing too much
 configuration, there is likely an easier way.

Continuing through Example 12-12, since we’re not
 processing submodules explicitly in this module set, we need to
 make sure submodule directories are not excluded from the source
 directories we consider for each direct module. By setting the
 excludeSubModuleDirectories flag to
 false, this allows us to apply the same file
 pattern to directory structures within a submodule of the one
 we’re processing. Finally in Example 12-12, we’re not interested in
 any output of the build process for this module set. We exclude
 the target/ directory from
 all modules.
It’s also worth mentioning that the
 sources section supports
 fileSet-like elements directly within itself, in addition
 to supporting nested fileSets. These
 configuration elements are used to provide backward compatibility
 to previous versions of the Assembly plugin (versions 2.1 and
 under) that didn’t support multiple distinct file sets for the
 same module without creating a separate module
 set declaration. They are deprecated and should not be
 used.

Interpolation of outputDirectoryMapping in
 moduleSets

In the section Customizing dependency output location,”
 earlier in this chapter, we used the element outputDirectoryMapping to change
 the name of the directory under which each module’s sources would
 be included. The expressions contained in this element are
 resolved in exactly the same way as the
 outputFileNameMapping, used in dependency sets.
 (See the explanation of this algorithm in the section dependencySets Section,” earlier in this
 chapter.)
In Example 12-12, we used
 the expression ${module.basedir.name}. You
 might notice that the root of that expression,
 module, is not listed in the mapping-resolution
 algorithm from the dependency sets section; this object root is
 specific to configurations within moduleSets.
 It works in exactly the same way as the
 ${artifact.*} references available in the
 outputFileNameMapping element, except it is
 applied to the module’s MavenProject,
 Artifact, and
 ArtifactHandler instances instead of those
 from a dependency artifact.

Binaries section

Just as the sources section is primarily
 concerned with including a module in its source
 form, the binaries section is primarily
 concerned with including the module’s build output, or its
 artifacts. Though this section functions primarily as a way of
 specifying dependencySets that apply to each
 module in the set, a few additional features unique to module
 artifacts are worth exploring: attachmentClassifier and includeDependencies. In addition,
 the binaries section contains options similar
 to the dependencySet
 section that relate to the handling of the module artifact itself.
 These are: unpack,
 outputFileNameMapping,
 outputDirectory,
 directoryMode, and fileMode.
 Finally, module binaries can contain a
 dependencySets section to specify how each
 module’s dependencies should be included in the assembly archive.
 First, let’s take a look at how the options mentioned here can be
 used to manage the module’s own artifacts.
Suppose we want to include the Javadoc JARs for each of our
 modules inside our assembly. In this case, we don’t care about
 including the module dependencies; we just want
 the Javadoc JAR. However, since this particular JAR is always
 going to be present as an attachment to the main project artifact,
 we need to specify which classifier to use to retrieve it. For
 simplicity, we won’t cover unpacking the module Javadoc JARs,
 since this configuration is exactly the same as what we used for
 dependency sets earlier in this chapter. The resulting module set
 might look similar to Example 12-13.
Example 12-13. Including Javadoc from modules in an assembly
<assembly>
 ...
 <moduleSets>
 <moduleSet>
 <binaries>
 <attachmentClassifier>javadoc</attachmentClassifier>
 <includeDependencies>false</includeDependencies>
 <outputDirectory>apidoc-jars</outputDirectory>
 </binaries>
 </moduleSet>
 </moduleSets>
 ...
</assembly>

In this example, we don’t explicitly set the includeSubModules flag, since
 it’s true by default. However, we definitely
 want to process all modules—even submodules—using this module set, since we’re
 not using any sort of file pattern that could match on submodule
 directory structures within. The attachmentClassifier grabs the
 attached artifact with the javadoc classifier for each module
 processed. The includeDependencies element tells
 the Assembly plugin that we’re not interested in any of the
 module’s dependencies, just the javadoc attachment. Finally,
 the outputDirectory element tells
 the Assembly plugin to put all of the Javadoc JARs into a
 directory named apidoc-jars/
 off the assembly root directory.
Although we’re not doing anything too complicated in this
 example, it’s important to understand that the same changes to the
 expression-resolution algorithm discussed for the
 outputDirectoryMapping element of the sources
 section also apply here. That is, whatever was available as
 ${artifact.*} inside a
 dependencySet’s outputFileNameMapping configuration
 is also available here as ${module.*}. The same
 applies for outputFileNameMapping when used
 directly within a binaries section.
Finally, let’s examine an example where we simply want to
 process the module’s artifact and its runtime dependencies. In this case, we
 want to separate the artifact set for each module into separate
 directory structures, according to the module’s
 artifactId and version. The
 resulting module set is surprisingly simply, and it looks like the
 listing in Example 12-14.
Example 12-14. Including module artifacts and dependencies in an
 assembly
<assembly>
 ...
 <moduleSets>
 <moduleSet>
 <binaries>
 <outputDirectory>
 ${module.artifactId}-${module.version}
 </outputDirectory>
 <dependencySets>
 <dependencySet/>
 </dependencySets>
 </binaries>
 </moduleSet>
 </moduleSets>
 ...
</assembly>

In this example, we’re using the empty
 dependencySet element, since that should
 include all runtime
 dependencies by default, with no configuration. With the outputDirectory specified at the
 binaries level, all dependencies should be included alongside the
 module’s own artifact in the same directory, so we don’t even need
 to specify that in our dependency set.
For the most part, module binaries are fairly
 straightforward. In both parts—the main part, concerned with
 handling the module artifact itself, and the dependency sets,
 concerned with the module’s
 dependencies—the configuration options are very similar to those
 in a dependency set. Of course, the binaries section also provides
 options for controlling whether dependencies are included and
 which main-project artifact you want to use.
Like the sources section, the
 binaries section contains a couple of
 configuration options that are provided solely for backward
 compatibility and that should be considered deprecated. These
 include the includes and
 excludes subsections.

moduleSets, parent POMs, and the
 binaries section

Finally, we close the discussion about module handling with
 a strong warning. There are subtle interactions
 between Maven’s internal design as it relates to parent-module
 relationships and the execution of a module-set’s
 binaries section. When a POM
 declares a parent, that parent must be resolved in some way or
 other before the POM in question can be built.
 If the parent is in the Maven repository, there is no problem.
 However, as of Maven 2.0.9, this can cause big problems if that
 parent is a higher-level POM in the same build,
 particularly if that parent POM expects to
 build an assembly using its modules’ binaries.
Maven 2.0.9 sorts projects in a multimodule build according
 to their dependencies, with a given project’s dependencies being
 built ahead of itself. The problem is that the parent element is
 considered a dependency, which means the parent project’s build
 must complete before the child project is built. If part of that
 parent’s build process includes the creation of an assembly that
 uses module binaries, those binaries will not exist yet, and
 therefore cannot be included, causing the assembly to fail. This
 is a complex and subtle issue that severely limits the usefulness
 of the module binaries section of the assembly descriptor. In
 fact, it has been filed in the bug tracker for the Assembly plugin
 at http://jira.codehaus.org/browse/MASSEMBLY-97.
 Hopefully, future versions of Maven will find a way to restore
 this functionality, since the parent-first requirement may not be
 completely necessary.

Repositories Section

The repositories section represents a
 slightly more exotic feature in the assembly descriptor, since few applications
 other than Maven can take full advantage of a Maven-repository
 directory structure. For this reason, and because many of its
 features closely resemble those in the
 dependencySets section, we won’t spend too much
 time on the repositories section of the assembly
 descriptor. In most cases, users who understand dependency sets
 should have no trouble constructing repositories via the Assembly
 plugin. We’re not going to motivate you to use the
 repositories section; we’re not going to go
 through the business of setting up a use case and walking you
 through the process. We’re just going to bring up a few caveats for
 those of you who find the need to use the
 repositories section.
Having said that, two features particular to the
 repositories section deserve some mention. The
 first is the includeMetadata flag. When set to
 true, it includes metadata such as the list of
 real versions that correspond to -SNAPSHOT
 virtual versions, and by default it’s set to
 false. At present, the only metadata included
 when this flag is true is the information
 downloaded from Maven’s central repository.
The second feature is called groupVersionAlignments. Again,
 this section is a list of individual
 groupVersionAlignment configurations, whose
 purpose is to normalize all included artifacts for a particular
 groupId to use a single
 version. Each alignment entry consists of two
 mandatory elements—id and
 version—along with an optional section called
 excludes that supplies a list of
 artifactId string values that are to be excluded
 from this realignment. Unfortunately, this realignment doesn’t seem
 to modify the POMs involved in the
 repository—neither those related to realigned artifacts nor those
 that depend on realigned artifacts—so it’s difficult to imagine what
 the practical application for this sort of realignment would
 be.
In general, it’s simplest to apply the same principles you
 would use in dependency sets to repositories when adding them to
 your assembly descriptor. Although the repositories section does support the
 extra options mentioned earlier, they are mainly provided for
 backward compatibility and will probably be deprecated in future
 releases.

Managing the Assembly’s Root Directory

Now that we’ve made it through the main body of the
 assembly descriptor, we can close the discussion of
 content-related descriptor sections with something lighter:
 root-directory naming and site-directory handling.
Some may consider it a stylistic concern, but it’s often
 important to have control over the name of the root directory for
 your assembly, or to decide whether the root directory is there at
 all. Fortunately, two configuration options in the root of the
 assembly descriptor make managing the archive root directory simple:
 includeBaseDirectory and baseDirectory. In cases such as
 executable JAR files, you probably don’t want a root directory at
 all. To skip it, simply set the
 includeBaseDirectory flag to
 false. (It’s true by default.)
 This will result in an archive that, when unpacked, may create more
 than one directory in the unpack target directory. Although this is
 considered bad form for archives that are meant to be unpacked
 before use, it’s not so bad for archives that are consumable as
 is.
In other cases, you may want to guarantee the name of the
 archive root directory regardless of the POM’s
 version or other information. By default, the
 baseDirectory element has a value equal to
 ${project.artifactId}-${project.version}.
 However, we can easily set this element to any value that consists
 of literal strings and expressions that can be interpolated from the
 current POM, such as
 ${project.groupId}-${project.artifactId}.
 This could be very good news for your documentation team! (We all
 have those, right?)
Another configuration available is the
 includeSiteDirectory flag, whose default value is
 false. If your project build has also constructed
 a web site document root using the site lifecycle or the Site plugin goals,
 that output can be included by setting this flag to
 true. However, this feature is a bit limited,
 since it includes only the outputDirectory from
 the reporting section of the current POM (by
 default, target/site) and
 doesn’t take into consideration any site directories that may be
 available in module projects. Use it if you want, but a good
 fileSet specification or
 moduleSet specification with sources configured
 could serve equally well, if not better. This is yet another example
 of legacy configuration currently supported by the Assembly plugin
 for the purpose of backward compatibility. Your mileage may vary. If
 you really want to include a site that is aggregated from many
 modules, you’ll want to consider using a fileSet
 or moduleSet instead of
 setting includeSiteDirectory to
 true.

componentDescriptors and containerDescriptorHandlers

To round out our exploration of the assembly descriptor, we
 should touch briefly on two other sections:
 containerDescriptorHandlers and
 componentDescriptors. The containerDescriptorHandlers section
 refers to custom components that you use to extend the capabilities
 of the Assembly plugin. Specifically, these custom components allow
 you to define and handle special files that may need to be merged
 from the multiple constituents used to create your assembly. A good
 example of this might be a custom
 container-descriptor handler that merged web.xml files from constituent WAR or
 WAR-fragment files included in your assembly, in order to create the
 single web-application descriptor required for
 you to use the resulting assembly archive as a WAR file.
The componentDescriptors section allows you
 to reference external assembly-descriptor fragments and
 include them in the current descriptor. Component references can be
 any of the following (in this order):
	Relative filepaths, e.g., src/main/assembly/component.xml

	Artifact references, e.g.,
 groupId:artifactId:version[:type[:classifier]]

	Classpath resources, e.g., /assemblies/component.xml

	URLs, e.g., http://www.sonatype.com/component.xml

Incidentally, when resolving a component descriptor, the
 Assembly plugin tries those different strategies in that exact
 order. The first one to succeed is used.
Component descriptors can contain many of the same
 content-oriented sections available in the
 assembly descriptor itself, with the exception of
 moduleSets, which is considered so specific to
 each project that it’s not a good candidate for reuse. Also included
 in a component descriptor is the
 containerDescriptorHandlers section, which we
 briefly discussed earlier.
 Component descriptors cannot contain formats, assembly IDs, or any
 configuration related to the base directory of the assembly archive,
 all of which are also considered unique to a particular assembly
 descriptor. Though it may make sense to allow sharing of the
 formats section, this has not been implemented as
 of the 2.2-beta-2 Assembly plugin release.

Best Practices

The Assembly plugin provides enough flexibility to solve
 many problems in a number of different ways. If your project
 has a unique requirement, there’s a good chance that you can use the
 methods documented in this chapter to achieve almost any assembly
 structure. This section of the chapter details some common best
 practices that, if adhered to, will make your experiences with the
 Assembly plugin more productive and less painful.
Standard, Reusable Assembly Descriptors

Up till now, we’ve been talking mainly about one-off solutions
 for building a particular type of assembly. But what do
 you do if you have dozens of projects that all need a particular
 type of assembly? In short, how can we reuse the effort we’ve
 invested to get our assemblies just the way we like them across more
 than one project without copying and pasting our assembly
 descriptor?
The simplest answer is to create a standardized, versioned
 artifact out of the assembly descriptor, and deploy it. Once that’s
 done, you can specify that the Assembly plugin section of your
 project’s POM include the
 assembly-descriptor artifact as a
 plugin-level dependency, which will prompt Maven
 to resolve and include that artifact in the plugin’s classpath. At that point, you
 can use the assembly descriptor via the descriptorRefs configuration section
 in the Assembly plugin declaration. To illustrate, consider this
 example assembly descriptor:
<assembly>
 <id>war-fragment</id>
 <formats>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <dependencySets>
 <dependencySet>
 <outputDirectory>WEB-INF/lib</outputDirectory>
 </dependencySet>
 </dependencySets>
 <fileSets>
 <fileSet>
 <directory>src/main/webapp</directory>
 <outputDirectory>/</outputDirectory>
 <excludes>
 <exclude>**/web.xml</exclude>
 </excludes>
 </fileSet>
 </fileSets>
</assembly>
Included in your project, this descriptor would be a useful
 way to bundle the project contents so that they could be unpacked
 directly into an existing web application, so you can add to it (an
 extending feature, say). However, if your team builds more than one
 of these web-fragment projects, the team will
 likely want to reuse this descriptor rather than duplicate it. To
 deploy this descriptor as its own artifact, we’re going to put it in
 its own project, under the src/main/resources/assemblies
 directory.
The project structure for this
 assembly-descriptor artifact will look similar to
 the following:
|-- pom.xml
`-- src
 `-- main
 `-- resources
 `-- assemblies
 `-- web-fragment.xml

Notice the path of our web-fragment
 descriptor file. By default, Maven includes the files from the
 src/main/resources directory
 structure in the final JAR, which means our assembly descriptor will
 be included with no extra configuration on our part. Also notice the
 assemblies/ path prefix: the
 Assembly plugin expects this path prefix on all descriptors provided
 in the plugin classpath. It’s important that we put our descriptor
 in the appropriate relative location, so it will be picked up by the
 Assembly plugin as it executes.
Remember, this project is separate from your actual
 web-fragment project now; the assembly descriptor
 has become its own artifact with its own version and, possibly, its
 own release cycle. Once you install this new project using Maven,
 you’ll be able to reference it in your
 web-fragment projects. For clarity, the build
 process should look something like this:
$ mvn install
(...)
[INFO] [install:install]
[INFO] Installing (...)/web-fragment-descriptor/target/\
 web-fragment-descriptor-1.0-SNAPSHOT.jar
 to /Users/~/.m2/repository/org/sonatype/mavenbook/assemblies/\
 web-fragment-descriptor/1.0-SNAPSHOT/\
 web-fragment-descriptor-1.0-SNAPSHOT.jar
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 5 seconds
(...)
Since there are no sources for the
 web-fragment-descriptor project, the resulting
 jar artifact will include nothing but our
 web-fragment assembly descriptor. Now, let’s use
 this new descriptor artifact:
<project>
 (...)
 <artifactId>my-web-fragment</artifactId>
 (...)
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-2</version>
 <dependencies>
 <dependency>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <artifactId>web-fragment-descriptor</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <id>assemble</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <descriptorRefs>
 <descriptorRef>web-fragment</descriptorRef>
 </descriptorRefs>
 </configuration>
 </execution>
 </executions>
 </plugin>
 (...)
 </plugins>
 </build>
 (...)
</project>

Two things are special about this Assembly plugin
 configuration:
	We have to include a plugin-level dependency declaration
 on our new web-fragment-descriptor artifact
 in order to have access to the assembly descriptor via the
 plugin’s classpath.

	Since we’re using a classpath reference instead of a file
 in the local project directory structure, we must use the
 descriptorRefs section instead of the
 descriptor section. Also, notice that
 although the assembly descriptor is actually in the assemblies/web-fragment.xml location
 within the plugin’s classpath, we reference it without the
 assemblies/ prefix. This is
 because the Assembly plugin assumes that built-in assembly
 descriptors will always reside in the classpath under this path
 prefix.

Now, you’re free to reuse the POM
 configuration above in as many projects as you like, with the
 assurance that all of their web-fragment
 assemblies will turn out the same. As you need to make adjustments
 to the assembly format—maybe to include other resources, or to
 fine-tune the dependency and file sets—you can simply increment the
 version of the assembly descriptor’s project and release it again.
 POMs referencing the assembly-descriptor artifact can then
 adopt this new version of the descriptor as they are able.
One final point about assembly-descriptor
 reuse: you may want to consider sharing the plugin configuration
 itself as well as publishing the descriptor as an artifact. This is
 a fairly easy step; you simply add the configuration listed earlier
 to the pluginManagement
 section of your parent POM, and then reference
 the managed plugin configuration from your module
 POM, like this:
(...)
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 </plugin>
(...)
If you’ve added the rest of the plugin’s configuration—listed
 in the previous example—to the
 pluginManagement section of
 the project’s parent POM, then each project inheriting from that
 parent POM can add a minimal entry (such as the
 one just shown) and take advantage of an advanced assembly format in
 their own builds.

Distribution (Aggregating) Assemblies

As we mentioned, the Assembly plugin provides multiple ways
 of creating many archive formats. Distribution archives
 are typically very good examples of this, since they often combine
 modules from a multimodule build, along with their dependencies and,
 possibly, other files and artifacts besides these. The distribution
 aims to include all these different sources into a single archive
 that the user can download, unpack, and run with convenience.
 However, we also examined some of the potential drawbacks of using
 the moduleSets section of the assembly
 descriptor—namely, that the parent-child relationships between
 POMs in a build can prevent the availability of
 module artifacts in some cases.
Specifically, if module POMs reference as
 their parent the POM that contains the Assembly plugin configuration, that
 parent project will be built ahead of the module projects when the
 multimodule build executes. The parent’s assembly expects to find
 artifacts in place for its modules, but these module projects are
 waiting on the parent itself to finish building. A gridlock
 situation is reached, and the parent build cannot succeed (since
 it’s unable to find artifacts for its module projects). In other
 words, the child project depends on the parent project, which in
 turn depends on the child project.
As an example, consider the following assembly descriptor,
 designed to be used from the top-level project of a multimodule
 hierarchy:
<assembly>
 <id>distribution</id>
 <formats>
 <format>zip</format>
 <format>tar.gz</format>
 <format>tar.bz2</format>
 </formats>

 <moduleSets>
 <moduleSet>
 <includes>
 <include>*-web</include>
 </includes>
 <binaries>
 <outputDirectory>/</outputDirectory>
 <unpack>true</unpack>
 <includeDependencies>true</includeDependencies>
 <dependencySets>
 <dependencySet>
 <outputDirectory>/WEB-INF/lib</outputDirectory>
 </dependencySet>
 </dependencySets>
 </binaries>
 </moduleSet>
 <moduleSet>
 <includes>
 <include>*-addons</include>
 </includes>
 <binaries>
 <outputDirectory>/WEB-INF/lib</outputDirectory>
 <includeDependencies>true</includeDependencies>
 <dependencySets>
 <dependencySet/>
 </dependencySets>
 </binaries>
 </moduleSet>
 </moduleSets>
</assembly>
Given a parent project called app-parent with three modules called
 app-core, app-web, and
 app-addons, notice what happens when we try to
 execute this multimodule build:
$ mvn package
[INFO] Reactor build order:
[INFO] app-parent <----- PARENT BUILDS FIRST
[INFO] app-core
[INFO] app-web
[INFO] app-addons
[INFO] ---
[INFO] Building app-parent
[INFO] task-segment: [package]
[INFO] ---
[INFO] [site:attach-descriptor]
[INFO] [assembly:single {execution: distro}]
[INFO] Reading assembly descriptor: src/main/assembly/distro.xml
[INFO] ---
[ERROR] BUILD ERROR
[INFO] ---
[INFO] Failed to create assembly: Artifact:
org.sonatype.mavenbook.assemblies:app-web:jar:1.0-SNAPSHOT (included by \
 module) does not have an artifact with a file. Please ensure the \
 package phase is run before the assembly is generated.
...
The parent project (app-parent) builds
 first. This is because each of the other projects lists
 POM as its parent, which causes it to be forced
 to the front of the build order. The app-web
 module, which is the first module to be processed in the assembly
 descriptor, hasn’t been built yet. Therefore, it has no artifact
 associated with it, and the assembly cannot succeed.
One workaround for this is to remove the
 executions section of the Assembly plugin
 declaration that binds the plugin to the package
 lifecycle phase in the parent POM, keeping the
 configuration section intact. Then, execute Maven with two
 command-line tasks: the first, package, to build the multimodule project
 graph, and a second, assembly:assembly, as a direct invocation
 of the assembly plugin to consume the artifacts built on the
 previous run and create the distribution assembly. The command line
 for such a build might look like this:
$ mvn package assembly:assembly
However, this approach has several drawbacks. First, it makes
 the distribution-assembly process more of a manual task
 that can increase the complexity and potential for error in the
 overall build process significantly. Additionally, it could mean
 that attached artifacts—which are associated in memory as the
 project build executes—are not reachable on the second pass without
 resorting to file-system references.
Instead of using a moduleSet to collect the
 artifacts from your multimodule build, it often makes more sense to
 employ a low-tech approach: using a dedicated distribution project
 module and interproject dependencies. In this approach, you create a
 new module in your build whose sole purpose is to assemble the
 distribution. This module POM contains dependency
 references to all the other modules in the project hierarchy, and it
 configures the Assembly plugin to be bound the
 package phase of its build lifecycle. The
 assembly descriptor itself uses the
 dependencySets section instead of the
 moduleSets section to collect module artifacts
 and determine where to include them in the resulting assembly
 archive. This approach escapes the pitfalls associated with the
 parent-child relationship discussed earlier, and has the additional
 advantage of using a simpler configuration section within the
 assembly descriptor itself to do the job.
To do this, we can create a new project structure that’s very
 similar to the one used for the module-set approach. With the
 addition of a new distribution project, we might end up with five
 POMs in total: app-parent,
 app-core, app-web,
 app-addons, and
 app-distribution. The new
 app-distribution POM looks
 similar to the following:
<project>
 <parent>
 <artifactId>app-parent</artifactId>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>app-distribution</artifactId>
 <name>app-distribution</name>

 <dependencies>
 <dependency>
 <artifactId>app-web</artifactId>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <version>1.0-SNAPSHOT</version>
 <type>war</type>
 </dependency>
 <dependency>
 <artifactId>app-addons</artifactId>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 <!-- Not necessary since it's brought in via app-web.
 <dependency> [2]
 <artifactId>app-core</artifactId>
 <groupId>org.sonatype.mavenbook.assemblies</groupId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 -->
 </dependencies>
</project>

Notice that we have to include dependencies for the other
 modules in the project structure, since we don’t have a
 modules section to rely on in this
 POM. Also, notice that we’re not using an
 explicit dependency on app-core. Since it’s also
 a dependency of app-web, we don’t need to process
 it (or avoid processing it) twice.
Next, when we move the distro.xml assembly descriptor into the
 app-distribution project, we must also change it
 to use a dependencySets section, like
 this:
<assembly>
 ...
 <dependencySets>
 <dependencySet>
 <includes>
 <include>*-web</include>
 </includes>
 <useTransitiveDependencies>false</useTransitiveDependencies>
 <outputDirectory>/</outputDirectory>
 <unpack>true</unpack>
 </dependencySet>
 <dependencySet>
 <excludes>
 <exclude>*-web</exclude>
 </excludes>
 <useProjectArtifact>false</useProjectArtifact>
 <outputDirectory>/WEB-INF/lib</outputDirectory>
 </dependencySet>
 </dependencySets>
 ...
</assembly>

This time, if we run the build from the top-level project
 directory, we get better news:
$ mvn package
(...)
[INFO] ---
[INFO] Reactor Summary:
[INFO] ---
[INFO] module-set-distro-parentSUCCESS [3.070s]
[INFO] app-core SUCCESS [2.970s]
[INFO] app-web SUCCESS [1.424s]
[INFO] app-addons SUCCESS [0.543s]
[INFO] app-distribution SUCCESS [2.603s]
[INFO] ---
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 10 seconds
[INFO] Finished at: Thu May 01 18:00:09 EDT 2008
[INFO] Final Memory: 16M/29M
[INFO] ---
As you can see, the dependency-set approach is much more
 stable and—at least until Maven’s internal project-sorting logic
 catches up with the Assembly plugin’s capabilities—involves fewer
 opportunities for things to go wrong when running a
 build.

Summary

As we’ve seen in this chapter, the Maven Assembly plugin offers
 quite a bit of potential for creating custom archive formats. Although
 the details of these assembly archives can be complex, they certainly
 don’t have to be in all cases, as we saw with built-in assembly
 descriptors. Even if your aim is to include your project’s
 dependencies and selected project files in some unique, archived
 directory structure, writing a custom assembly descriptor doesn’t have
 to be an arduous task.
Assemblies are useful for a wide array of applications, but they
 are most commonly used as application distributions of various sorts.
 And, though there are many different ways to use the Assembly plugin,
 using standardized assembly-descriptor artifacts
 and avoiding moduleSets when creating distributions
 containing binaries are two sure ways to avoid
 problems.

Chapter 13. Properties and Resource Filtering

Introduction

Throughout this book, you will notice references to properties
 that can be used in a POM file. Sibling
 dependencies in a multiproject build can be referenced using the
 ${project.groupId} and
 ${project.version} properties, and any part of the
 POM can be referenced by prefixing the variable
 name with “project.” Environment
 variables and Java System properties can be referenced, as well as
 values from your ~/.m2/settings.xml file. What you haven’t yet
 seen is an enumeration of the possible property values and some
 discussion about how they can be used to help you create portable
 builds. This chapter provides such an enumeration.
If you’ve been using property references in your
 POM, you should also know that Maven has a feature
 called resource filtering that allows you to replace property
 references in any resource files stored under src/main/resources. By default, this
 feature is disabled to prevent accidental replacement of property
 references. This feature can be used to target builds toward a
 specific platform and to externalize important build variables to
 properties files, POMs, or profiles. This chapter
 introduces the resource filtering feature and provides a brief
 discussion of how it can be used to create portable enterprise
 builds.

Maven Properties

You can use Maven properties in a pom.xml file or in any resource that is
 being processed by the Maven Resource plugin’s filtering
 features. A property is always surrounded by ${ and
 }. For example, to reference the
 project.version property, one would write:
${project.version}
Some implicit properties are available in any Maven project,
 namely:
	project.*
	Maven Project Object Model. You can use the project.* prefix to
 reference values in a Maven POM.

	settings.*
	Maven settings. You use the settings.*
 prefix to reference values from your Maven
 settings in ~/.m2/settings.xml.

	env.*
	Environment variables such as PATH
 and M2_HOME can be referenced
 using the env.* prefix.

	System properties
	Any property that can be retrieved from the System.getProperty()
 method can be referenced as a Maven property.

In addition to these implicit properties, a Maven
 POM, Maven settings, or a Maven profile can define
 a set of arbitrary, user-defined properties. The following sections
 provide more detail on the various properties available in a Maven
 project.
Maven Project Properties

When a Maven Project Property is referenced, the property name
 is referencing a property of the Maven Project Object
 Model. Specifically, you are referencing a property of the
 org.apache.maven.model.Model class that is
 being exposed as the implicit variable project. When you reference a
 property using this implicit variable, you are using simple dot
 notation to reference a bean property of the
 Model object. For example, when you reference
 ${project.version}, you are really invoking the
 getVersion() method on
 the instance of Model that is being exposed
 as project.
The POM is also represented in the
 pom.xml document present in all
 Maven projects. Anything in a Maven POM can be
 referenced with a property. A complete reference for the
 POM structure is available at http://maven.apache.org/ref/2.0.9/maven-model/maven.html.
 The following list shows some common property references from the
 Maven project:
	project.groupId and
 project.version
	Projects in a large, multimodule build often share the
 same groupId and version
 identifiers. When you are declaring
 interdependencies between two modules that share the same
 groupId and version, it
 is a good idea to use a property reference for both:
<dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>sibling-project</artifactId>
 <version>${project.version}</version>
 </dependency>
</dependencies>

	project.artifactId
	A project’s artifactId is often used
 as the name of a deliverable. For example, in a project with
 war packaging, you will
 want to generate a WAR file without the
 version identifiers. To do this, you would reference the
 project.artifactId in your
 POM file like this:
<build>
 <finalName>${project.artifactId}</finalName>
</build>

	project.name and
 project.description
	The name and project description can often be useful
 properties to reference from documentation.
 Instead of having to worry that all of your site documents
 maintain the same short descriptions, you can just reference
 these properties.

	project.build.*
	If you are ever trying to reference output directories
 in Maven, you should never use a literal value such
 as target/classes.
 Instead, you should use property references to refer to these
 directories:
	project.build.sourceDirectory

	project.build.scriptSourceDirectory

	project.build.testSourceDirectory

	project.build.outputDirectory

	project.build.testOutputDirectory

	project.build.directory

sourceDirectory,
 scriptSourceDirectory, and
 testSourceDirectory provide access to the
 source directories for the project.
 outputDirectory and testOutputDirectory provide
 access to the directories where Maven is going to put bytecode
 or other build output. directory refers to
 the directory that contains all of these output
 directories.

	Other project property references
	There are hundreds of properties to reference in a
 POM. A complete reference for the
 POM structure is available at http://maven.apache.org/ref/2.0.9/maven-model/maven.html.

For a full list of properties available on the Maven
 Model object, take a look at the Javadoc for
 the maven-model project here: http://maven.apache.org/ref/2.0.9/maven-model/apidocs/index.html.
 Once you load this Javadoc, take a look at the
 Model class. From this
 Model class Javadoc, you should be able to
 navigate to the POM property you wish to
 reference. If you need to reference the output directory of the
 build, you can use the Maven Model Javadoc to
 see that the output directory is referenced via
 model.getBuild().getOutputDirectory();
 this method call would be translated to the Maven property reference
 ${project.build.outputDirectory}.
For more information about the Maven
 Model module—the module that defines the
 structure of the POM—see the Maven Model project
 page at http://maven.apache.org/ref/2.0.9/maven-model.

Maven Settings Properties

You can also reference any properties in the Maven Local
 Settings file, which is usually stored in ~/.m2/settings.xml. This file contains
 user-specific configuration, such as the location of the local
 repository and any servers, profiles, and mirrors configured by a
 specific user.
A full reference for the Local Settings file and corresponding
 properties is available here: http://maven.apache.org/ref/2.0.9/maven-settings/settings.html.

Environment Variable Properties

Environment variables can be referenced with the env.* prefix. Some interesting environment variables are listed
 here:
	env.PATH
	Contains the current PATH in which
 Maven is running. The PATH contains
 a list of directories used to locate executable scripts and
 programs.

	env.HOME
	On *nix systems, this variable points to a user’s home
 directory. Instead of referencing this, you
 should use the ${user.home}
 property.

	env.JAVA_HOME
	Contains the Java installation directory. This can point
 to either a Java Development Kit
 (JDK) installation or a Java Runtime
 Environment (JRE). Instead of using this,
 you should consider referencing the
 ${java.home} property.

	env.M2_HOME
	Contains the Maven 2 installation directory.

While they are available, you should always use the Java
 System properties if you have the choice. If you need a user’s home
 directory, use ${user.home} instead of ${env.HOME}. If you do this, you’ll
 end up with a more portable build that is more likely to adhere to
 the Write-One-Run-Anywhere (WORA) promise of the
 Java platform.

Java System Properties

Maven exposes all properties from java.lang.System. Anything you
 can retrieve from System.getProperty() you
 can reference in a Maven property. Table 13-1 lists the available
 properties.
Table 13-1. Java system properties
	System property	Description
	java.version	Java Runtime Environment version
	java.vendor	Java Runtime Environment vendor
	java.vendor.url	Java vendor URL
	java.home	Java installation directory
	java.vm.specification.version	Java Virtual Machine specification version
	java.vm.specification.vendor	Java Virtual Machine specification vendor
	java.vm.specification.name	Java Virtual Machine specification name
	java.vm.version	Java Virtual Machine implementation version
	java.vm.vendor	Java Virtual Machine implementation vendor
	java.vm.name	Java Virtual Machine implementation name
	java.specification.version	Java Runtime Environment specification
 version
	java.specification.vendor	Java Runtime Environment specification vendor
	java.specification.name	Java Runtime Environment specification name
	java.class.version	Java class format version number
	java.class.path	Java classpath
	java.ext.dirs	Path of extension directory or directories
	os.name	Operating system name
	os.arch	Operating system architecture
	os.version	Operating system version
	file.separator	File separator (“/” on UNIX, “\” on Windows)
	path.separator	Path separator (“:” on UNIX, “;” on Windows)
	line.separator	Line separator (“\n” on UNIX and Windows)
	user.name	User’s account name
	user.home	User’s home directory
	user.dir	User’s current working directory

User-Defined Properties

In addition to the implicit properties provided by
 the POM, Maven Settings, environment
 variables, and the Java system properties, you have the ability to
 define your own arbitrary properties. Properties can be defined in a
 POM or in a profile. The properties set in a
 POM or in a Maven profile can be referenced just
 like any other property available throughout Maven. User-defined
 properties can be referenced in a POM, or they
 can be used to filter resources via the Maven Resource plugin. Example 13-1 is an example of defining some
 arbitrary properties in a Maven POM.
Example 13-1. User-defined properties in a POM
<project>
 ...
 <properties>
 <arbitrary.property.a>This is some text</arbitrary.property.a>
 <hibernate.version>3.3.0.ga</hibernate.version>
 </properties>
 ...
 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
 <version>${hibernate.version}</version>
 </dependency>
 </dependencies>
 ...
</project>

This example defines two properties:
 arbitrary.property.a and
 hibernate.version. The
 hibernate.version is referenced in a dependency
 declaration. Using the period character (.) as a separator in property names is a
 standard practice throughout Maven POMs and
 profiles. There is nothing special about using a period as a
 separator; to Maven, hibernate.version is just a
 key used to retrieve the property value 3.3.0.ga.
 Example 13-2 shows you how to
 define a property in a profile from a Maven
 POM.
Example 13-2. User-defined properties in a profile in a POM
<project>
 ...
 <profiles>
 <profile>
 <id>some-profile</id>
 <properties>
 <arbitrary.property>This is some text</arbitrary.property>
 </properties>
 </profile>
 </profiles>
 ...
</project>

This example demonstrates the process of defining a
 user-defined property in a profile from a Maven
 POM. For more information about user-defined
 properties and profiles, see Chapter 11.

Resource Filtering

You can use Maven to perform variable replacement on
 project resources. When resource filtering is activated, Maven
 will scan resources for references to Maven property references
 surrounded by ${ and }. When it
 finds these references, it will replace them with the appropriate
 value in much the same way that the properties defined in the previous
 section can be referenced from a POM. This feature
 is especially helpful when you need to parameterize a build with
 different configuration values depending on the target deployment
 platform.
Often a .properties file or
 an XML document in src/main/resources will contain a reference
 to an external resource, such as a database or a network location that
 needs to be configured differently depending on the target deployment
 environment. For example, a system that reads data from a database has
 an XML document that contains the
 JDBC URL along with credentials
 for the database. If you need to use a different database in
 development and a different database in production, you can use a
 technology such as Java Naming and Directory Interface
 (JNDI) to externalize the configuration from the
 application in an application server, or you can create a build that
 knows how to replace variables with different values depending on the
 target platform.
Using Maven resource filtering, you can reference Maven
 properties and then use Maven profiles to define different
 configuration values for different target deployment environments. To
 illustrate this feature, assume you have a project that uses the
 Spring Framework to configure a BasicDataSource
 from the Apache Commons Database Connection Pool (DBCP) project
 (http://commons.apache.org/dbcp).
 Your project may contain a file in src/main/resources named applicationContact.xml that contains the
 XML listed in Example 13-3.
Example 13-3. Referencing Maven properties from a resource
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <bean id="someDao" class="com.example.SomeDao">
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <bean id="dataSource" destroy-method="close"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName" value="${jdbc.driverClassName}"/>
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
 </bean>
</beans>

Your program would read this file at runtime, and your build
 would replace the references to properties such as
 jdbc.url and jdbc.username with
 the values you defined in your pom.xml. Resource filtering is disabled by
 default to prevent any unintentional resource filtering. To turn on
 resource filter, you need to use the resources child element of the build element in a POM.
 Example 13-4 shows a POM that
 defines the variables referenced in Example 13-3 and activates resource filtering for
 every resource under src/main/resources.
Example 13-4. Defining variables and activating resource filtering
<project>
 ...
 <properties>
 <jdbc.driverClassName>com.mysql.jdbc.Driver</jdbc.driverClassName>
 <jdbc.url>jdbc:mysql://localhost:3306/development_db</jdbc.url>
 <jdbc.username>dev_user</jdbc.username>
 <jdbc.password>s3cr3tw0rd</jdbc.password>
 </properties>
 ...
 <build>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 </resource>
 </resources>
 </build>
 ...
 <profiles>
 <profile>
 <id>production</id>
 <properties>
 <jdbc.driverClassName>oracle.jdbc.driver.OracleDriver</jdbc.driverClassName>
 <jdbc.url>jdbc:oracle:thin:@proddb01:1521:PROD</jdbc.url>
 <jdbc.username>prod_user</jdbc.username>
 <jdbc.password>s00p3rs3cr3t</jdbc.password>
 </properties>
 </profile>
 </profiles>
</project>

The four variables are defined in the
 properties element, and resource filtering is
 activated for resources under
 src/main/resources. Resource
 filtering is deactivated by default, and to activate it you must
 explicitly set filtering to true
 for the resources stored in your project. Filtering is deactivated by
 default to prevent accidental, unintentional filtering during your
 build. If you build a project with the resource from Example 13-3 and the POM from Example 13-4, and if you list the contents of the
 resource in target/classes, you
 should see that it contains the filtered resource:
$ mvn install
...
$ cat target/classes/applicationContext.xml
...
 <bean id="dataSource" destroy-method="close"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
 <property name="url" value="jdbc:mysql://localhost:3306/development_db"/>
 <property name="username" value="dev_user"/>
 <property name="password" value="s3cr3tw0rd"/>
 </bean>
...
The POM in Example 13-4
 also defines a production profile under the
 profiles/profile element that overrides the
 default properties with values that would be appropriate for a
 production environment. In this particular POM, the
 default values for the database connection are for a local MySQL
 database installed on a developer’s machine. When the project is built
 with the production profile activated, Maven will
 configure the system to connect to a production Oracle database using
 a different driver class, URL, username, and password. If you build a
 project with the resource from Example 13-3 and
 the POM from Example 13-4, with the
 production profile activated, and if you list the
 contents of the resource in target/classes, you should see that it
 contains the filtered resource with production values:
$ mvn -Pproduction install
...
$ cat target/classes/applicationContext.xml
...
 <bean id="dataSource" destroy-method="close"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="url" value="jdbc:oracle:thin:@proddb01:1521:PROD"/>
 <property name="username" value="prod_user"/>
 <property name="password" value="s00p3rs3cr3t"/>
 </bean>
...

Chapter 14. Maven and Eclipse: m2eclipse

Introduction

The Eclipse Integrated Development Environment (IDE) is the most
 widely used IDE for Java development
 today. Eclipse has a huge number of plugins (see http://www.eclipseplugincentral.com/), and innumerable
 organizations are developing their own software on top of it. Quite
 simply, Eclipse is ubiquitous. The m2Eclipse project
 provides support for Maven within the Eclipse IDE,
 and in this chapter, we will explore the features it provides to help
 you use Maven with Eclipse.
m2eclipse

The m2Eclipse plugins (see http://m2eclipse.codehaus.org/)
 provide Maven integration for Eclipse. m2Eclipse also has hooks into
 the features of both the Subclipse plugin (see http://subclipse.tigris.org/) and the Mylyn plugin (see http://www.eclipse.org/mylyn/).
 The Subclipse plugin provides the m2eclipse plugin with the ability to
 interact with Subversion repositories, and the Mylyn plugin provides
 the m2eclipse plugin with the ability to interact with a task-focused
 interface that can keep track of development context. Just a few of
 the features m2eclipse provides include:
	Creating and importing Maven projects

	Dependency management and integration with the Eclipse
 classpath

	Automatic dependency downloads and updates

	Artifact Javadoc and source resolution

	Creating projects with Maven archetypes

	Browsing and searching remote Maven repositories

	POM management with automatic update to
 dependency list

	Materializing a project from a Maven
 POM

	Checking out a Maven project from several
 SCM repositories

	Adapting nested multimodule Maven projects to the Eclipse
 IDE

	Integration with Web Tools Project
 (WTP)

	Integration with AspectJ Development Tools
 (AJDT)

	Integration with Subclipse

	Integration with Mylyn

	Form-based POM Editor

	Graphical display of dependency graph

	GUI presentation of Dependency Tree and
 resolved dependencies

m2eclipse has many more features beyond those listed here, and
 this chapter introduces some of the more impressive features that are
 currently available. Let’s get started by installing the m2Eclipse
 plugin.
Installing the m2eclipse Plugin

To install the m2Eclipse plugin, you need to install some prerequisites. You need to be
 running Eclipse 3.2 or higher, JDK 1.4 or higher,
 and you also need to make sure that Eclipse is running on a
 JDK, not a JRE. Once you have
 Eclipse and a compatible JDK, you need to install
 two Eclipse plugins: Subclipse and Mylyn.
Installing Prerequisites

You can install these prerequisites when you install
 m2eclipse; just add a new remote update site to Eclipse for each
 of the prerequisite components. To do so, go to Help → Software Updates → Find and Install.... Selecting this menu item will load the
 Install/Update dialog box. Choose the “Search for new features to
 install” option and click Next. You will then be presented with a
 list of “Update sites to visit.” Click New Remote Site..., and add a new update
 site for each new prerequisite. Add a new remote site for each
 plugin, and then make sure that the remote site is selected. After
 you click Finish, Eclipse
 will ask you to select plugins components to install. Select the
 components you want to install, and Eclipse will download, install,
 and configure your plugins.
Note that if you are using a recent build of Eclipse 3.4
 (Ganymede; see http://www.eclipse.org/ganymede), your plugin
 installation experience may be slightly different. In Ganymede, you
 will select Help → Software Updates..., which will load the “Software Updates and Add-ons”
 dialog. In this dialog, choose the Available Software panel and
 click on Add Site..., which
 will load the simple “Add Site” dialog. Enter the
 URL of the update site you wish to add, and click
 OK. In the “Software Updates
 and Add-ons” dialog, the available plugins from an update site will
 appear as soon as the site is added. You can then select the modules
 you want to install and click the Install... button. Eclipse will then
 resolve all the dependencies for the selected plugins and will ask
 you to agree to the plugin license. After Eclipse installs new
 plugins, it will likely ask you for permission to restart.
Installing Subclipse

To install Subclipse, use the following Eclipse plugin update
 site:
	Subclipse 1.2
	http://subclipse.tigris.org/update_1.2.x

For other versions of Subclipse, and for more information
 about the Subclipse plugin, please see the Subclipse project’s web
 site at http://subclipse.tigris.org/.
Installing Mylyn

To install JIRA integration with Mylyn, add the Mylyn extras Eclipse update URL. You’ll
 want to do this if your organization uses Atlassian’s
 JIRA for issue tracking. To install Mylyn, use the
 following update sites:
	Mylyn (Eclipse 3.3)
	http://download.eclipse.org/tools/mylyn/update/e3.3

	Mylyn (Eclipse 3.4)
	http://download.eclipse.org/tools/mylyn/update/e3.4

	Mylyn extras (JIRA support)
	http://download.eclipse.org/tools/mylyn/update/extras

For more information about the Mylyn project, see the
 project’s web site at http://www.eclipse.org/mylyn/.
Installing AspectJ Development Tools (AJDT)

If you are installing the 0.9.4 release of
 m2eclipse, you may also want to install both the Web Tools
 Platform (WTP) and the AspectJ Development
 Tools (AJDT). To install the
 AJDT, use one of the following update URLs in
 Eclipse:
	AJDT (Eclipse 3.3)
	http://download.eclipse.org/tools/ajdt/33/update

	AJDT (Eclipse 3.4)
	http://download.eclipse.org/tools/ajdt/34/dev/update

For more information about the AJDT
 project, see the project’s web site at http://www.eclipse.org/ajdt/.
Installing the Web Tools Platform (WTP)

To install the Web Tools Platform
 (WTP), use one of the following update URLs in Eclipse,
 or just look for the Web Tools Project in the Discovery Site,
 which should already be in your Eclipse remote update sites
 list:
	WTP
	http://download.eclipse.org/webtools/updates/

For more information about the Web Tools
 Platform project, see the project’s web site at http://www.eclipse.org/webtools/.
Installing m2eclipse

Once you’ve installed the prerequisites, you can install the
 m2eclipse plugin from the following Eclipse update
 URL:
	m2eclipse plugin
	http://m2eclipse.sonatype.org/update/

If you would like to install the latest snapshot development
 version of the plugin, you should use the
 update-dev URL
 instead:
	m2eclipse plugin (development snapshot)
	http://m2eclipse.sonatype.org/update-dev/

To install m2eclipse, just add the appropriate update site for
 m2eclipse. Go to Help → Software Updates → Find and Install.... Selecting this menu item will load the
 Install/Update dialog box. Choose the “Search for new features to
 install” option, and click Next. You will then be presented with a
 list of “Update sites to visit.” Click New Remote Site..., and add a new update
 site for m2eclipse. Add a new remote site for m2eclipse, and then
 make sure that the remote site is selected. After you click
 Finish, Eclipse will ask you
 to select plugins components to install. Select the components you
 want to install, and Eclipse will download, install, and configure
 m2eclipse.
If you’ve installed the plugin successfully, you should see a
 Maven option
 in the list of preferences options when you go to Window → Preferences....
Enabling the Maven Console

Before we begin to examine the features of m2eclipse, let’s first enable the Maven console. Open the Console
 View by going to Window → Show View → Console. Then, click on the little arrow on the righthand side
 of the Open Console icon and select Maven Console, as shown in Figure 14-1.
[image: Enabling the Maven console in Eclipse]

Figure 14-1. Enabling the Maven console in Eclipse

Maven Console shows the Maven output that normally appears on
 the console when running Maven from the command line. It is useful to
 be able to see what Maven is doing and to work with Maven debug output
 to diagnose issues.
Creating a Maven Project

When using Maven, project creation takes place through the use
 of a Maven archetype. In Eclipse, project creation takes place via the new
 project wizard. The new project wizard inside of Eclipse offers a
 plethora of templates for creating new projects. The m2eclipse plugin
 improves on this wizard to provide the following additional capabilities:
	Checking out a Maven project from a SCM repository

	Creating a Maven project using a Maven archetype

	Creating a Maven POM file

As shown in Figure 14-2, all three of
 these options are important to developers using Maven. Let’s take a
 look at each option in the sections that follow.
[image: Creating a new project with m2eclipse wizards]

Figure 14-2. Creating a new project with m2eclipse wizards

Checking Out a Maven Project from SCM

m2eclipse provides the ability to check out a project directly
 from a SCM repository. Simply enter the SCM information for a project, and
 it will check it out for you to a location of your choice, as shown
 in Figure 14-3.
[image: Checking out a new project from Subversion]

Figure 14-3. Checking out a new project from Subversion

This dialog offers additional options for specifying a
 particular revision, either by browsing the revisions in a
 Subversion repository or simply by entering the revision number
 manually. These features reuse of some of the features in the
 Subclipse plugin to interact with the Subversion repository. In
 addition to Subversion, the m2eclipse plugin also supports the
 following SCM providers:
	Bazaar

	Clearcase

	CVS

	git

	hg

	Perforce

	Starteam

	Subversion

	Synergy

	Visual SourceSafe

Creating a Maven Project from a Maven Archetype

m2eclipse offers the ability to create a Maven project using a
 Maven archetype. There are many Maven archetypes provided in the list
 that comes with m2eclipse, as shown in Figure 14-4.
[image: Creating a new project with a Maven archetype]

Figure 14-4. Creating a new project with a Maven archetype

The list of archetypes in Figure 14-4 is generated by something
 called the Nexus Indexer. Nexus is a repository manager that will be
 introduced in Chapter 16. The Nexus
 Indexer is a file that contains an index of the entire Maven
 repository, and m2eclipse uses it to list all of the available
 archetypes in the entire Maven repository. At the time of this
 writing, m2eclipse has approximately 90 archetypes in this archetype
 dialog. Highlights of this list include:
	Standard Maven archetypes to create
	Maven Plugins

	Simple Web Applications

	Simple Projects

	New Maven Archetypes

	Databinder
 archetypes (data-driven Wicket applications)
 under net.databinder

	Apache
 Cocoon archetypes under
 org.apache.cocoon

	Apache
 Directory Server archetypes under
 org.apache.directory.server

	Apache
 Geronimo archetypes under
 org.apache.geronimo.buildsupport

	Apache
 MyFaces archetypes under
 org.apache.myfaces.buildtools

	Apache
 Tapestry archetypes under
 org.apache.tapestry

	Apache
 Wicket archetypes under
 org.apache.wicket

	AppFuse
 archetypes under
 org.appfuse.archetypes

	Codehaus
 Cargo archetypes under
 org.codehaus.cargo

	Codehaus
 Castor archetypes under
 org.codehaus.castor

	Groovy-based
 Maven plugin archetypes (deprecated)[4] under
 org.codehaus.mojo.groovy

	Jini archetypes

	Mule
 archetypes under org.mule.tools

	Objectweb
 Fractal archetypes under
 org.objectweb.fractal

	Objectweb
 Petals archetypes under
 org.objectweb.petals

	ops4j archetypes under
 org.ops4j

	Parancoe
 under org.parancoe

	slf4j archetypes under
 org.slf4j

	Spring
 Framework OSGI and Web Services
 archetypes under org.springframework

	Trails
 Framework archetypes under
 org.trailsframework

And these were just the archetypes that were listed under the
 Nexus Indexer catalog, if you switch catalogs, you’ll see other
 archetypes. Though your results may vary, the following additional
 archetypes were available in the Internal catalog:
	Atlassian
 Confluence plugin archetype under
 com.atlassian.maven.archetypes

	Apache
 Struts archetypes under
 org.apache.struts

	Apache Shale archetypes under
 org.apache.shale

A catalog is simply a reference to a repository index. You can
 manage the set of catalogs that the m2eclipse plugin knows about by
 clicking on the Configure...
 button next to the catalog drop-down. If you have your
 own archetypes to add to this list, you can click on Add Archetype... and add them.
Once you choose an archetype, Maven will retrieve the
 appropriate artifact from the Maven repository and create a new
 Eclipse project with the selected archetype.
Creating a Maven Module

m2eclipse provides the ability to create a Maven
 module, as shown in Figure 14-5. Creating a Maven module is
 almost identical to creating a Maven project, as it also creates a
 new Maven project using a Maven archetype. However, a Maven module
 is a subproject of another Maven project typically known as a parent
 project.
[image: Creating a new Maven module]

Figure 14-5. Creating a new Maven module

When creating a new Maven module you must select a parent
 project that already exists inside of Eclipse. Clicking the browse
 button displays a list of projects that already exist, as shown in
 Figure 14-6.
[image: Selecting a parent project for a new Maven module]

Figure 14-6. Selecting a parent project for a new Maven module

After selecting a parent project from the list, you are
 returned to the New Maven Module window, and the Parent Project
 field is populated as shown in Figure 14-5. Clicking Next will display the standard list of
 archetypes described earlier in the section Creating a Maven Project from a Maven Archetype” so you can choose which one
 should be used to create the Maven module.
Create a Maven POM File

Another important feature that m2eclipse offers is the ability
 to create a new Maven POM file. m2eclipse provides a wizard that helps you easily
 create a new POM file inside a project that is
 already in Eclipse. This POM creation wizard is shown in Figure 14-7.
[image: Creating a new POM]

Figure 14-7. Creating a new POM

Creating a new Maven POM is just a matter of
 selecting a project, entering the Group ID, Artifact ID, Version,
 choosing the Packaging type, and providing a Name in the fields
 provided by m2eclipse. Click the Next button to start adding
 dependencies, as shown in Figure 14-8.
[image: Adding dependencies to a new POM]

Figure 14-8. Adding dependencies to a new POM

As you can see, no dependencies are in the
 POM yet. Just click the Add button to query the central Maven
 repository for dependencies, as shown in Figure 14-9.
[image: Querying the central repository for dependencies]

Figure 14-9. Querying the central repository for dependencies

Querying for dependencies is as easy as entering the
 groupId for the artifact you need. Figure 14-9 shows a query for
 org.apache.commons with
 commons-vfs expanded to see which versions are
 available. Highlighting the 1.1-SNAPSHOT version of
 commons-vfs and clicking OK takes you back to the dependency
 selection where you can either query for more artifacts or just click
 finish to create the POM. When you search for
 dependencies, m2eclipse is making use of the same Nexus repository
 index that is used in the Nexus Repository Manager from Chapter 16.
Now that the you’ve seen the m2eclipse features for creating a
 new project, let’s look at a similar set of features for importing
 projects into Eclipse.
Importing Maven Projects

m2eclipse provides three options for importing a Maven project
 into Eclipse, including:
	Import an existing Maven project

	Check out a Maven project from SCM

	Materialize a Maven project

Figure 14-10 shows the wizard for
 importing projects with the options for Maven provided by
 m2eclipse.
[image: Importing a Maven project]

Figure 14-10. Importing a Maven project

The dialog in Figure 14-10 is displayed
 when you use the File → Import command in Eclipse and then filter the options by
 entering the word “maven” in the filter field. As noted earlier, three
 options are available for importing a Maven project into Eclipse,
 including: Maven Projects, Check out Maven Project from Subversion,
 and Materialize Maven Projects.
Importing a Maven project from Subversion is identical to
 creating a Maven project from Subversion, as discussed in the previous
 section, so discussion of it here would be redundant. Let’s move on
 now to review the other two options for importing a Maven project into
 Eclipse.
Importing a Maven Project

m2eclipse can import a Maven project with an existing
 pom.xml. By pointing at the
 directory where a Maven project is located, m2eclipse detects all
 the Maven POMs in the project and provides a
 hierarchical list of them as shown in Figure 14-11.
[image: Importing a multimodule Maven project]

Figure 14-11. Importing a multimodule Maven project

Figure 14-11 displays the view
 of the project being imported. Notice that all the
 POMs from the project are listed in a hierarchy.
 This allows you to easily select which POMs (and
 therefore which projects) you want to be imported into Eclipse. Once
 you select the project you would like to import, m2eclipse will
 import and build the project(s) using Maven.
Materializing a Maven Project

m2eclipse also offers the ability to “materialize” a Maven
 project. Materialization is similar to the process of
 checking out a Maven project from Subversion, but instead of
 manually entering the URL to the project’s
 Subversion repository, the Subversion URL is
 discovered from the project’s root POM file. You
 can use this feature to “materialize” projects from nothing more
 than a POM file if the POM
 file has the appropriate elements to specify the location of a
 source repository. Using this feature, you can browse the central
 Maven repository for projects and materialize them into Eclipse
 projects. This comes in handy if your project depends on a
 third-party open source library and you need to get your hands on
 the source code. Instead of tracking down the project web site and
 figuring out how to check it out of Subversion, just use the
 m2eclipse project to magically materialize the Eclipse
 project.
Figure 14-12 shows the wizard
 after choosing to materialize Maven projects.
[image: Materializing a Maven project]

Figure 14-12. Materializing a Maven project

Notice that the dialog box for Maven artifacts in Figure 14-12 is empty. This is because no
 projects have been added yet. To add a project, you must click the
 Add button on the right side
 and select a dependency to add from the central Maven repository.
 Figure 14-13 shows how to add a
 project.
[image: Selecting artifact to materialize]

Figure 14-13. Selecting artifact to materialize

Upon entering a query, candidate dependencies will be located
 in the local Maven repository. After a few seconds of indexing the
 local Maven repository, the list of candidate dependencies appears. Select
 the dependency to add and click OK so that they are added to the
 list, as shown in Figure 14-14.
[image: Materializing Apache Camel]

Figure 14-14. Materializing Apache Camel

Upon adding a dependency, you have the option of telling the
 m2eclipse plugin to check out all projects for the
 artifact.
Running Maven Builds

m2eclipse modifies the Run
 As... and Debug As...
 menus to allow you to run a Maven build within Eclipse. Figure 14-15 shows the Run As... menu for an m2eclipse project.
 From this menu you can run one of the more common lifecycle phases
 such as clean, install, or package. You can also load up the Run
 configuration dialog window and configure a Maven build with
 parameters and more options.
[image: Running an Eclipse build with Run As...]

Figure 14-15. Running an Eclipse build with Run As...

If you need to configure a Maven build with more options, you
 can choose Run
 Configurations... and create a new Maven build. Figure 14-16 shows the Run dialog for configuring a
 Maven build.
[image: Configuring a Maven build as a run configuration]

Figure 14-16. Configuring a Maven build as a run configuration

The Run configuration dialog allows you to specify multiple
 goals and profiles. It exposes options such as “skip tests” and
 “update snapshots” and allows you to customize everything from the
 project to the JRE to the environment variable. You can use this
 dialog to support any custom Maven build that you wish to launch with
 m2eclipse.
Working with Maven Projects

The m2eclipse plugin also provides a set of features for working
 with Maven projects once they are inside Eclipse. Many features make Maven in Eclipse easier to use, so
 let’s dive right into them. In the previous section, I materialized a
 Maven project and selected a subproject from the Apache Camel project
 named camel-core. We’ll use that project to
 demonstrate these features.
By right-clicking on the camel-core project and selecting the Maven
 menu item, you can see the available Maven features. Figure 14-17 shows a screenshot of
 this.
[image: Available Maven features]

Figure 14-17. Available Maven features

Notice in Figure 14-17 the
 available Maven features for the camel-core project, including:
	Adding dependencies and plugins

	Updating dependencies, snapshots and source folders

	Creating a Maven module

	Downloading the source

	Opening Project URLs such as the Project Web Page, Issue
 Tracker, Source Control, and Continuous Integration tool

	Enabling/disabling workspace resolution, nested Maven
 modules and dependency management

These features are also big timesavers, so let’s review them
 briefly.
Adding and Updating Dependencies and Plugins

Let’s say we’d like to add a dependency or a plugin to the
 camel-core POM. For the sake of demonstration, we’re going to add
 commons-lang as a dependency. (Please note that
 the functionality for adding a dependency and a plugin is exactly
 the same, so we’ll demonstrate it by adding a dependency.)
m2eclipse offers two options for adding dependencies to a
 project. The first option is manually editing the
 POM file to type in the XML to
 add the dependency. The downside to manually editing the
 POM file to add a dependency is that you must
 already know the information about the artifact, or use the features
 discussed in the next section to manually locate the artifact
 information in the repository indexes. The upside is that after
 manually adding the dependency and saving the
 POM, the project’s Maven Dependencies container
 will be automatically updated to include the new dependency. Figure 14-18 shows how I added a dependency
 for commons-lang to the
 camel-console POM and the
 Maven Dependencies container was automatically updated to included
 it.
[image: Manually adding a dependency to the project’s POM]

Figure 14-18. Manually adding a dependency to the project’s POM

Manually adding a dependency works well, but it requires more
 work than the second approach. Upon manually adding the dependency element to the
 POM, the Eclipse progress in the lower righthand
 corner of the Eclipse workbench reflects the action, as shown in
 Figure 14-19.
[image: Updating Maven dependencies]

Figure 14-19. Updating Maven dependencies

The second option for adding a dependency is much easier
 because you don’t have to know any information about the artifact
 other than its groupId. Figure 14-20 shows this
 functionality.
[image: Searching for a dependency]

Figure 14-20. Searching for a dependency

By simply entering a groupId into the query
 field, m2eclipse queries the repository indexes and even shows a
 version of the artifact that is currently in your local Maven
 repository. This option is preferred because it is such a tremendous
 timesaver. With m2eclipse, you no longer need to hunt through the
 central Maven repository for an artifact version.
Creating a Maven Module

m2eclipse makes it very easy to create a series of nested
 projects in a multimodule Maven project. If you have a parent project, and you want to add a
 module to the project, just right click on the project, go the Maven
 menu, and choose New Maven Module Project. m2eclipse will walk you
 through the project creation process to create a new project, then
 it will update the parent project’s POM to include the module
 reference. Before m2eclipse came along it was very difficult to use
 a hierarchy of Maven projects within Eclipse. With m2eclipse, the
 details of the underlying relationships between parent and child
 projects are integrated into the development environment.
Downloading Source

If the central Maven repository contains a source artifact for
 a particular project, you can download the source from the
 repository and expose it to the Eclipse environment. When you are trying to debug a complex issue in
 Eclipse, nothing can be easier than being able to right-click on a
 third-party dependency and drill into the code in the Eclipse
 debugger. Select this option, and m2eclipse will attempt to download
 the source artifact from the Maven repository. If it is unable to
 retrieve this source artifact, you should ask the maintainers of the
 project in question to upload the appropriate Maven source bundle to
 the central Maven repository.
Opening Project Pages

A Maven POM contains some valuable
 URLs that a developer may need to
 consult. These are the project’s web page, the
 URL for the source code repository, a
 URL for a continuous integration system such as
 Hudson, and a URL for an issue tracker. If these
 URLs are present in a project’s
 POM, m2eclipse will open these project pages in a
 browser.
Resolving Dependencies

You can configure a project to resolve dependencies from a
 workspace. This has the effect of altering the way that Maven
 locates dependency artifacts. If a project is configured to resolve
 dependencies from the workspace, these artifacts do not need to be
 present in your local repository. Assume that
 project-a and project-b are
 both in the same Eclipse workspace, and that
 project-a depends on
 project-b. If workspace resolution is disabled,
 the m2eclipse Maven build for project-a will
 succeed only if project-b’s artifact is present
 in the local repository. If workspace resolution is enabled,
 m2eclipse will resolve the dependency via the eclipse workspace. In
 other words, when workspace resolution is enabled, project’s don’t
 have to be installed in the local repository to relate to one
 another.
You can also disable dependency management. This has the
 effect of telling m2eclipse to stop trying to manage your project’s
 classpath, and it will remove the Maven Dependencies classpath
 container from your project. If you do this, you are essentially on
 your own when it comes to managing your project’s
 classpath.
Working with Maven Repositories

m2eclipse also provides some tools to make working with Maven
 repositories a bit easier. These tools provide functionality for:
	Searching for artifacts

	Searching for Java classes

	Indexing Maven repositories

Searching For Maven Artifacts and Java classes

m2eclipse adds a couple of items to the Eclipse navigation
 menu that make searching for Maven artifacts and Java classes easy
 work. Each option is available by clicking on the Navigate menu, as shown in Figure 14-21.
[image: Searching for artifacts and classes]

Figure 14-21. Searching for artifacts and classes

Notice the available options in Figure 14-21 under the Eclipse Navigate menu named Open Maven POM... and Open Type from Maven.... The
 Open Maven POM... option
 allows you to search the Maven repository for a given
 POM, as shown in Figure 14-22.
[image: Searching for a POM]

Figure 14-22. Searching for a POM

Upon selecting an artifact and clicking OK, the POM for that
 artifact is opened in Eclipse for browsing or editing. This is handy
 when you need to take a quick look at the POM for
 a given artifact.
The second m2eclipse option in the Navigate menu is named Open Type from Maven.... This feature
 allows you to search for a Java class by name in a remote
 repository. Upon opening this dialog, simply type “factorybean” and
 you’ll see many classes with the name
 FactoryBean in them, as shown in Figure 14-23.
[image: Searching the repository for a class]

Figure 14-23. Searching the repository for a class

This is a big timesaving feature because it means that
 manually searching through artifacts in a Maven repository for a
 particular class is a thing of the past. If you need to use a
 specific class, just fire up Eclipse, go to the Navigate menu, and search for the class.
 m2eclipse will show you the list of artifacts in which it
 appears.
Indexing Maven Repositories

The Maven Indexes view allows you to manually navigate to
 POMs in a remote repository and open them in
 Eclipse. To see this view, go to View → Show View → Other, type the word “maven” into the search box, and you
 should see a view named Maven Indexes, as shown in Figure 14-24.
[image: Show Maven Indexes view]

Figure 14-24. Show Maven Indexes view

Select this view, and click OK. This will show the Maven Indexes
 view, as shown in Figure 14-25.
[image: Maven Indexes view]

Figure 14-25. Maven Indexes view

Additionally, Figure 14-26
 shows the Maven Indexes view after you manually navigate to locate a
 POM.
[image: Locating a POM from the Indexes view]

Figure 14-26. Locating a POM from the Indexes view

After finding the apache-camel artifact,
 double-clicking on it will open it in Eclipse for browsing or
 editing.
These features make working with remote repositories from
 inside of Eclipse so much easier and faster. After all the hours you
 may have spent doing these types of tasks by manually over the last
 few years—visiting repositories through a web browser, downloading
 artifacts, and grepping through them for classes and POMs—you’ll
 find that m2eclipse is a welcome improvement.
Using the Form-Based POM Editor

The latest release of the m2eclipse plugin has a form-based
 POM editor that allows you to edit every part of a project’s
 pom.xml with an easy-to-use
 GUI interface. To open the POM
 editor, click on a project’s pom.xml file. If you have customized the
 editors for a pom.xml file, and
 the POM editor is not the default editor, you may need to right-click
 on the file and choose Open With... → Maven POM Editor. The POM editor will then display
 the Overview tab, as shown in Figure 14-27.
One common complaint about Maven is that it forces a developer
 to confront large and often overwhelming XML
 documents in a highly complex multimodule project build. Although the
 authors of this book believe this is a small price to pay for the
 flexibility of a tool such as Maven, the graphical
 POM editor is a tool that makes it possible for
 people to use Maven without ever having to know about the
 XML structure behind a Maven
 POM.
[image: Overview tab of POM editor for idiom-core]

Figure 14-27. Overview tab of POM editor for idiom-core

The project shown in Figure 14-27 is a project with an
 artifactId of idiom-core. You’ll
 notice that most of the fields in this idiom-core
 project are blank. There is no groupId or
 version, and there is no SCM
 information supplied in the POM editor. This is
 because
 idiom-core inherits most of this information from a
 parent project named idiom. If we open the
 pom.xml for the parent project in
 the POM editor, we’ll see the Overview tab shown in
 Figure 14-28.
That “open folder” icon on the various list entries throughout
 the POM editor indicate that the corresponding
 entry is present in the Eclipse workspace, and the “jar” icon
 indicates artifacts that are referenced from the Maven repository. You
 can double-click those entries to open their POMs in the POM editor.
 This works for modules, dependencies, plugins, and other elements that
 have corresponding Maven artifacts. Underlined labels in several
 POM editor sections represent hyperlinks that can
 be used to open the POM editor for corresponding
 Maven artifacts.
[image: Overview tab of POM editor for idiom parent project]

Figure 14-28. Overview tab of POM editor for idiom parent project

In this parent POM, we see that the
 groupId and version are defined
 and that the parent POM supplies much of the
 information that was missing in the idiom-core
 project. The POM editor will show you the contents
 of the POM that you are editing, and it will not
 show you any of the inherited values. If you want to look at the
 idiom-core project’s effective
 POM in the POM editor, you can
 use the Show Effective POM
 action in the tool bar in the upper-righthand corner of the
 POM editor, which shows a left bracket and an
 equals sign on a page with a blue M. It will load the effective
 POM for idiom-core in the
 POM editor, as shown in Figure 14-29.
[image: Effective POM for idiom-core]

Figure 14-29. Effective POM for idiom-core

This effective view of the POM merges the
 idiom-core POM with the ancestor
 POMs (the parent, the grandparent, etc.)—similar to
 the mvn help:effective-pom
 command—and displays the POM editor with the
 effective values. Because the POM editor displays a
 composite view of many different merged POMs, this
 effective POM editor is read-only, and you will not
 be able to update any of the fields in this effective
 POM view.
If you are looking at the POM editor for the
 idiom-core project as shown in Figure 14-27, you can also navigate to
 the parent POM using the Open Parent POM action from the
 POM editor tool bar in the upper-righthand corner
 of the POM editor.
The POM editor shows a number of tabs
 displaying various information from the POM. The
 final tab exposes the pom.xml as
 an XML document. The Dependencies tab, shown in
 Figure 14-30, exposes an
 easy-to-use interface for adding and editing dependencies to your
 project, as well as for editing the
 dependencyManagement section of the
 POM. This dependency management screen is also
 integrated with the artifact searching facilities in the m2eclipse
 plugin. You can use actions from the editor sections as well as
 Ctrl-Space typing assistance for the fields in the Dependency Details
 section.
If you need to know more about one of the artifacts, you can use
 Open Web Page action from
 the Dependency Details section tool bar to check the project web
 page.
[image: Dependencies tab of the POM editor]

Figure 14-30. Dependencies tab of the POM editor

The Build tab shown in Figure 14-31 provides access to the
 contents of the build element. From
 this tab you can customize source directories, add extensions, change
 the default goal name, and add resources directories.
[image: Build tab of the POM editor]

Figure 14-31. Build tab of the POM editor

We have shown only a small subset of the POM
 editor here. If you are interested in seeing the rest of the tabs,
 please download and install the m2eclipse plugin.
Analyzing Project Dependencies in m2eclipse

The latest release of m2eclipse contains a
 POM editor that provides some dependency analysis
 tools. These tools promise to change the way users maintain and
 monitor a project’s transitive dependencies. One of Maven’s main
 attractions is the fact that it manages a project’s dependencies. If
 you are writing an application that depends on the Spring Framework’s
 Hibernate3 integration, all you need to do is depend on the
 spring-hibernate3 artifact from the central Maven
 repository. Maven then reads this artifact’s POM
 and adds all of the necessary transitive dependencies. Although this
 is a great feature that attracts people to Maven in the first place,
 it can become confusing when a project depends on tens of
 dependencies, each with tens of transitive dependencies.
Problems begin to occur when you depend on a project with a
 poorly crafted POM that fails to flag dependencies
 as optional, or when you start encountering conflicts between
 transitive dependencies. If one of your requirements is to exclude a
 dependency such as commons-logging or the
 servlet-api, or if you need to find out why a
 certain dependency is showing up under a specific scope you will
 frequently need to invoke the dependency:tree and
 dependency:resolve goals from the command-line to
 track down the offending transitive dependencies.
This is where the POM editor in m2eclipse
 comes in handy. If you open a project with many dependencies, you can
 open the Dependency Tree tab and see a two-column display of
 dependencies, as shown in Figure 14-32. The lefthand side
 of the panel displays a tree of dependencies. The first level of the
 tree consists of direct dependencies from your project, and each
 subsequent level lists the dependencies of each dependency. This
 lefthand side is a great way to figure out how a specific dependency
 made its way into your project’s resolved dependencies. The righthand
 side of this panel displays the resolved dependencies. This is the
 list of effective dependencies after all conflicts and scopes have
 been applied, and it is the effective list of dependencies that your
 project will use for compilation, testing, and packaging.
[image: Dependency Tree tab of the POM editor]

Figure 14-32. Dependency Tree tab of the POM editor

The feature that makes the Dependency Tree tab so valuable is
 that it can be used as an investigative tool to figure out how a
 specific dependency made it into the list of resolved dependencies.
 Searching and filtering functionality available in the editor makes it
 really easy to search and browse through the project dependencies. You
 can use Search entry field from the editor tool bar and the
 Sort and Filter actions from the Dependency
 Hierarchy and Resolved Dependencies sections to navigate through
 dependencies. Figure 14-33
 shows what happens when you click on commons-logging in the Resolved
 Dependencies list. When filtering is enabled in the Dependencies
 Hierarchy section, clicking on a resolved dependency filters the
 hierarchy on the lefthand side of the panel to show all of the nodes
 that contributed to the resolved dependency. If you are trying to get
 rid of a resolved dependency, you can use this tool to find out which
 dependencies (and which transitive dependencies) are contributing the
 artifact to your resolved dependencies. In other words, if you are
 trying to get rid of something like commons-logging
 from your dependency set, the Dependency Tree tab is the tool you will
 likely want to use.
[image: Locating dependencies in the Dependency Tree]

Figure 14-33. Locating dependencies in the Dependency Tree

m2eclipse also provides you with the ability to view your
 project’s dependencies as a graph. Figure 14-34 shows the dependencies of
 idiom-core. The topmost box is the
 idiom-core project, and the other dependencies are
 shown below it. Direct dependencies are linked from the top box, and
 the transitive dependencies are linked from those. You can select a
 specific node in the graph to highlight the linked dependencies, or
 you can use the Search field at the top of the page to find matching
 nodes.
Note that the “open folder” icon on each graph node indicates
 that the corresponding artifact is present in the Eclipse workspace,
 and the “jar” icon indicates that the node’s artifact is referenced
 from the Maven repository.
[image: Viewing the dependencies of a project as a graph]

Figure 14-34. Viewing the dependencies of a project as a graph

The graph presentation can be changed by right-clicking in the
 editor. You can choose to show artifact IDs, group IDs, versions,
 scopes, or whether you want to wrap node text or show icons. Figure 14-35 shows the same graph
 from Figure 14-34 but with a radial
 layout.
[image: Radial layout of dependency graph]

Figure 14-35. Radial layout of dependency graph

Maven Preferences

The ability to adjust the Maven preferences and some Maven
 options is an important aspect of developing with Maven, and m2eclipse offers the ability to tweak these items
 via the Maven preferences page inside of Eclipse. Typically, when
 using Maven on the command line, such preferences and options are
 available from files in your ~/.m2 directory and as command-line
 options. m2eclipse provides access to some of the most important
 preferences and options from the Eclipse IDE. Figure 14-36 shows the Maven preferences
 page in Eclipse.
[image: Maven preferences for Eclipse]

Figure 14-36. Maven preferences for Eclipse

The checkboxes in the top section of Figure 14-36 provide you with the
 ability to:
	Run Maven in offline mode, disabling any downloads from
 remote repositories

	Enable debug output in the Maven console

	Download source JARs for artifacts from remote Maven
 repositories

	Download Javadoc JARs for artifacts from remote Maven
 repositories

	Download and update local indexes for remote repositories
 on startup

The next section offers a pop-up menu to select which goal you’d
 like to be executed when a project is imported and when the source
 folders for a given project are updated. The default goal is named
 process-resources, which copies and process the
 resources for the project into the destination directory to make the
 project ready for packaging. Customizing this list of goals can come
 in handy if you need to run any custom goals that process resources or
 generate supporting configuration.
If you need help selecting a goal, click the Select... button to see the Goals dialog.
 The dialog on the lefthand side ofFigure 14-37 shows the Goals dialog with a
 list of all the phases in the default Maven lifecycle.
[image: Maven Goals dialogs]

Figure 14-37. Maven Goals dialogs

When you see the Goals dialog for the first time, you might be
 overwhelmed by the number of goals it lists. There are literally
 hundreds of Maven plugins, for everything from generating a database
 to running integration tests to performing static analysis to
 generating web services with XFire. Over 200 plugins with selectable
 goals are listed in the Goals dialog. The dialog on the righthand side
 of Figure 14-37 shows the Goals
 dialog with the Tomcat Maven plugin’s goals highlighted. You can
 always narrow down the list of goals shown in this dialog by typing
 some text in the search field. As you type in text, m2eclipse reduces
 the list of available goals to those that contain the text in the
 search field.
Another Maven preference page is the Maven installations
 configuration page, shown in Figure 14-38.
[image: Maven installations preference page]

Figure 14-38. Maven installations preference page

This page allows you to add other Maven installations to the
 Eclipse environment. If you want to use a different version of Maven
 with the m2eclipse plugin, you can configure multiple installations of
 Maven from this configuration page. This is very similar to the
 ability to add more than one Java Virtual Machine to be run inside of
 Eclipse. An embedded version of the Maven known as the Maven Embedder is already
 specified. This is what is used to execute Maven inside of Eclipse. If
 you have another installation of Maven that you want to use instead of
 the Maven Embedder, you can add another Maven runtime by clicking on
 the Add... button. Figure 14-38 shows a configuration
 page that lists the Maven Embedder, Maven 2.0.9, and an installation
 of Maven 2.1-SNAPSHOT.
The installations configuration page also allows you to specify
 the location of the global Maven settings file. If you do not specify
 the location of this file on the configuration page, Maven will use
 the default global settings file found in conf/settings.xml of the selected Maven
 installation. You can also customize the location of your user
 settings file from the default location of ~/.m2/settings.xml, and you can customize
 the location of your local Maven repository from the default location
 of ~/.m2/repository.
Also available in the Eclipse preferences is the ability to
 enable a decorator called the Maven Version Decorator. This preference provides a given project’s current
 version on the Eclipse Package Explorer and is shown in Figure 14-39.
[image: Enabling the Maven Version Decorator]

Figure 14-39. Enabling the Maven Version Decorator

To enable this preference, simply check the Maven Version
 Decorator option that is highlighted in Figure 14-39. If the Maven Version Decorator
 is not enabled, a project will list only its name and relative path in
 the Package Explorer, as shown in Figure 14-40.
[image: Package Explorer without Maven Version Decorator]

Figure 14-40. Package Explorer without Maven Version Decorator

Upon enabling the Maven Version Decorator, the project name will
 include the current project version, as shown in Figure 14-41.
[image: Package Explorer with Maven Version Decorator enabled]

Figure 14-41. Package Explorer with Maven Version Decorator enabled

This is a helpful feature that provides you with the project
 version at a glance instead of requiring you to open the
 POM to locate the version element.
Summary

m2eclipse is more than just a simple plugin that adds Maven
 support to Eclipse; it is a comprehensive integration that will make
 everything from creating new projects to locating third-party
 dependencies orders of magnitude easier. m2eclipse is the first step
 toward an IDE that is aware of the rich semantic
 treasure that is the central Maven repository. As more people come to
 use m2eclipse, more projects are going to be releasing Maven archetypes, and more
 projects are going to see value in publishing source artifacts to the Maven repository. If you’ve tried to use Eclipse and
 Maven together without a tool that can comprehend the hierarchical
 project relationships that are central to any multimodule Maven
 project, you will know that the ability to work with nested projects
 is essential to smooth integration between the Eclipse
 IDE and Maven.

[4] Don’t use the Groovy Maven plugin in Codehaus’ Mojo
 project. Jason Dillon has moved the Groovy Maven
 integration to the Groovy project in Codehaus. For more
 information, see http://groovy.codehaus.org/GMaven.

Chapter 15. Site Generation

Introduction

Successful software applications are rarely produced by a team
 of one. When we’re talking about any software worth
 writing, we’re usually dealing with teams of collaborating developers
 ranging anywhere in size from a handful of programmers working in a
 small team to hundreds or thousands of programmers working in a large
 distributed environment. Most open source projects (such as Maven)
 succeed or fail based on the presence or absence of well-written
 documentation for a widely distributed, ad hoc collection of users and
 developers. In all environments, it is important for projects to have
 an easy way to publish and maintain online documentation. Software
 development is primarily an exercise in collaboration and
 communication, and publishing a Maven site is one way to make sure
 that your project is communicating with your end users.
A web site for an open source project is often the foundation
 for both the end user and developer communities alike. End users look
 to a project’s web site for tutorials, user guides,
 API documentation, and mailing list archives, and
 developers look to a project’s web site for design documents, code
 reports, issue tracking, and release plans. Large open source projects
 may be integrated with wikis, issue trackers, and continuous
 integration systems that help augment a project’s online documentation
 with material that reflects the current status of ongoing development.
 If a new open source project has an inadequate web site that fails to
 convey basic information to prospective users, if often is a sign that
 the project in question will fail to be adopted. In other words, for
 an open source project, the site and the documentation are as
 important to the formation of a community as the code itself.
Maven can be used to create a project web site to capture
 information that is relevant to both the end user and the developer
 audience. Out of the box, Maven can generate reports on everything
 from unit test failures to package coupling to code quality. Maven
 provides you with the ability to write simple web pages and render
 those pages against a consistent project template. Maven can publish
 site content in multiple formats, including XHTML
 and PDF. Maven can be used to generate API
 documents and can also be used to embed Javadoc and source code in
 your project’s binary release archive. Once you’ve used Maven to
 generate all of your project’s end user and developer documentation,
 you can then use Maven to publish your web site to a remote
 server.

Building a Project Site with Maven

To illustrate the process of building a project web site, let’s
 create a sample Maven project with the Archetype plugin:
$ mvn archetype:create -DgroupId=org.sonatype.mavenbook -DartifactId=sample-project

This creates the simplest possible Maven project with one Java
 class in src/main/java and a
 simple POM. You can then build a Maven site by
 simply running mvn site. To build
 the site and preview the result in a browser, you can run mvn site:run. This will build the site and
 start an embedded instance of Jetty:
$ cd sample-project
$ mvn site:run
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'site'.
[INFO] --
[INFO] Building sample-project
[INFO] task-segment: [site:run] (aggregator-style)
[INFO] --
[INFO] Setting property: classpath.resource.loader.class =>
 'org.codehaus.plexus.velocity.ContextClassLoaderResourceLoader'.
[INFO] Setting property: velocimacro.messages.on => 'false'.
[INFO] Setting property: resource.loader => 'classpath'.
[INFO] Setting property: resource.manager.logwhenfound => 'false'.
[INFO] [site:run]
2008-04-26 11:52:26.981::INFO: Logging to STDERR via org.mortbay.log.StdErrLog
[INFO] Starting Jetty on http://localhost:8080/
2008-04-26 11:52:26.046::INFO: jetty-6.1.5
2008-04-26 11:52:26.156::INFO: NO JSP Support for /, did not find
 org.apache.jasper.servlet.JspServlet
2008-04-26 11:52:26.244::INFO: Started SelectChannelConnector@0.0.0.0:8080

Once Jetty starts and is listening to port 8080, you can see the
 project’s site when you go to http://localhost:8080/ in a web browser. You can view
 the results in Figure 15-1.
[image: Simple generated Maven site]

Figure 15-1. Simple generated Maven site

If you click around on this simple site, you’ll see that it
 isn’t very helpful as a real project site. There’s just nothing there
 (and it doesn’t look very good). Since the
 sample-project hasn’t configured any developers,
 mailing lists, issue tracking providers, or source code repositories,
 all of these pages on the project site will have no information. Even
 the index page of the site states, “There is currently no description
 associated with this project.” To customize the site, you’ll have to
 start adding content to the project and to the project’s
 POM.
If you are going to use the Maven Site plugin to build your
 project’s site, you’ll want to customize it. You will want to populate
 some of the important fields in the POM that tell
 Maven about the people participating in the project, and you’ll want
 to customize the lefthand
 navigation menu and the links visible in the header of the page. To
 customize the contents of the site and affect the contents of the
 lefthand navigation menu, you will need to edit the site descriptor.

Customizing the Site Descriptor

When you add content to the site, you are going to want to
 modify the lefthand navigation menu that is generated with
 your site. The site descriptor shown in Example 15-1 customizes the logo in the
 upper-lefthand corner of the site. In addition to customizing the
 header of the site, this descriptor adds a menu section to the
 lefthand navigation menu under the heading “Sample Project.” This menu
 contains a single link to an overview page.
Example 15-1. An initial site descriptor
<project name="Sample Project">
 <bannerLeft>
 <name>Sonatype</name>
 <src>images/logo.png</src>
 <href>http://www.sonatype.com</href>
 </bannerLeft>
 <body>
 <menu name="Sample Project">
 <item name="Overview" href="index.html"/>
 </menu>
 <menu ref="reports"/>
 </body>
</project>

This site descriptor references one image. This logo.png image should be placed in
 ${basedir}/src/site/resources/images.
 In addition to the change to the site descriptor, you’ll want to
 create a simple index.apt page in
 ${basedir}/src/site/apt. Put the
 following content in index.apt;
 it will be transformed to the index.html and serve as the first page a
 user sees when they come to your project’s Maven-generated web
 site:
 Welcome to the Sample Project, we hope you enjoy your time
 on this project site. We've tried to assemble some
 great user documentation and developer information, and
 we're really excited that you've taken the time to visit
 this site.

What is Sample Project

 Well, it's easy enough to explain. This sample project is
 a sample of a project with a Maven-generated site from
 Maven: The Definitive Guide. A dedicated team of volunteers
 help maintain this sample site, and so on and so forth.

To preview the site, run mvn clean
 site followed by mvn
 site:run:
$ mvn clean site
$ mvn site:run
Once you do this, load the page in a browser by going to http://localhost:8080. You should see something similar
 to the screenshot in Figure 15-2.
[image: Customized sample project web site]

Figure 15-2. Customized sample project web site

Customizing the Header Graphics

To customize the graphics that appear in the upper lefthand
 and righthand corners of the page, you can use the
 bannerLeft and bannerRight
 elements in a site descriptor, as shown in Example 15-2.
Example 15-2. Adding a bannerLeft and bannerRight to a site
 descriptor
<project name="Sample Project">

 <bannerLeft>
 <name>Left Banner</name>
 <src>images/banner-left.png</src>
 <href>http://www.google.com</href>
 </bannerLeft>

 <bannerRight>
 <name>Right Banner</name>
 <src>images/banner-right.png</src>
 <href>http://www.yahoo.com</href>
 </bannerRight>
 ...
</project>

Both the bannerLeft and
 bannerRight elements take
 name, src, and
 href child elements. In the site descriptor just
 shown, the Maven Site plugin will generate a site with banner-left.png in the lefthand corner of
 the page and banner-right.png
 in the righthand corner of the page. Maven is going to look in
 ${basedir}/src/site/resources/images for
 these images.

Customizing the Navigation Menu

To customize the contents of the navigation menu, use
 the menu element with
 item child elements. The menu
 element adds a section to the lefthand navigation menu. Each item is
 rendered as a link in that menu. See Example 15-3.
Example 15-3. Creating menu items in a site descriptor
<project name="Sample Project">
 ...
 <body>

 <menu name="Sample Project">
 <item name="Introduction" href="index.html"/>
 <item name="News" href="news.html"/>
 <item name="Features" href="features.html"/>
 <item name="Installation" href="installation.html"/>
 <item name="Configuration" href="configuration.html"/>
 <item name="FAQ" href="faq.html"/>
 </menu>
 ...
 </body>
</project>

Menu items can also be nested. If you nest items, you will be
 creating a collapsible menu in the lefthand navigation menu. Example 15-4 adds a “Developer Resources” link, which
 links to /developer/index.html.
 When a user is looking at the Developer Resources page, the menu
 items below the Developer Resources menu item will be
 expanded.
Example 15-4. Adding a link to the site menu
<project name="Sample Project">
 ...
 <body>
 ...
 <menu name="Sample Project">
 ...
 <item name="Developer Resources" href="/developer/index.html" collapse="true">
 <item name="System Architecture" href="/developer/architecture.html"/>
 <item name="Embedder's Guide" href="/developer/embedding.html"/>
 </item>
 </menu>
 ...
 </body>
</project>

When an item has the collapse attribute set
 to true, Maven will collapse the item until a
 user is viewing that specific page. In Example 15-4, when the user is not looking at the
 Developer Resources page, Maven will not display the System
 Architecture and Embedder’s Guide links; instead, it will display an
 arrow pointing to the Developer Resources link. When the user is
 viewing the Developer Resources page, it will show these links with
 an arrow pointing down.

Site Directory Structure

Maven places all site document under src/site. Documents of similar format are
 placed in subdirectories of src/site. All Almost Plain Text
 (APT) documents should be in src/site/apt, all FAQ Markup Language
 (FML) documents should be in src/site/fml, and XDoc documents should be
 in src/site/xdoc. The site
 descriptor should be in src/site/site.xml, and all resources should
 be stored under src/site/resources. When the Maven Site
 plugin builds a web site, it will copy everything in the resources
 directory to the root of the site. If you store an image in src/site/resources/images/test.png, you would refer to the
 image from your site documentation using the relative path images/test.png.
The following example shows the location of all files in a
 project that contains APT, FML,
 HTML, XHTML, and some XDoc. Note
 that the XHTML content is simply stored in the
 resources/ directory. The
 architecture.html file will not
 be processed by Doxia; it will simply be copied to the output
 directory. You can use this approach if you want to include
 unprocessed HTML content and you don’t want to take
 advantage of the templating and formatting capabilities of Doxia and
 the Maven Site plugin:
sample-project
+- src/
 +- site/
 +- apt/
 | +- index.apt
 | +- about.apt
 | |
 | +- developer/
 | +- embedding.apt
 |
 +- fml/
 | +- faq.fml
 |
 +- resources/
 | +- images/
 | | +- banner-left.png
 | | +- banner-right.png
 | |
 | +- architecture.html
 | +- jira-roadmap-export-2007-03-26.html
 |
 +- xdoc/
 | +- xml-example.xml
 |
 +- site.xml

Note that the developer documentation is stored in src/site/apt/developer/embedding.apt. This
 extra directory below the apt
 directory will be reflected in the location of the resulting
 HTML page on the site. When the Site plugin renders
 the contents of the src/site/apt
 directory, it will produce HTML output in
 directories relative to the site root. If a file is in the apt directory, it will be in the root
 directory of the generated web site. If a file is in the apt/developer directory, it will be
 generated in the developer/
 directory of the web
 site.

Writing Project Documentation

Maven uses a documentation-processing engine called Doxia that
 reads multiple source formats into a common document
 model. Doxia can then manipulate documents and render the result in
 several output formats, such as PDF or
 XHTML. To write documentation for your project, you
 will need to write your content in a format that can be parsed by
 Doxia. Doxia currently has support for Almost Plain Text (APT), XDoc (a Maven 1.x
 documentation format), XHTML, and
 FML (useful for FAQ documents)
 formats.
This chapter provides only a cursory introduction to the
 APT format. For a deeper understanding of the
 APT format, or for an in-depth introduction to XDoc
 or FML, please see the following resources:
	APT reference
	http://maven.apache.org/doxia/format.html

	XDoc reference
	http://jakarta.apache.org/site/jakarta-site2.html

	FML reference
	http://maven.apache.org/doxia/references/fml-format.html

APT Example

Example 15-5 shows a simple
 APT document with an introductory paragraph and a
 simple list. Note that the list is terminated by the pseudoelement
 [].
Example 15-5. APT document

Introduction to Sample Project

Brian Fox

26-Mar-2008

Welcome to Sample Project

 This is a sample project, welcome! We're excited that you've decided to read the
 index page of this Sample Project. We hope you enjoy the simple sample project
 we've assembled for you.

 Here are some useful links to get you started:

 * {{{news.html}News}}

 * {{{features.html}Features}}

 * {{{faq.html}FAQ}}

 []

If the APT document from this example is
 placed in src/site/apt/index.apt, the Maven Site
 plugin will parse the APT using Doxia and produce
 XHTML content in index.html.

FML Example

Many projects maintain a Frequently Asked Questions (FAQ) page. Example 15-6 shows an example of an FML
 document.
Example 15-6. FAQ markup language document
<?xml version="1.0" encoding="UTF-8"?>
<faqs title="Frequently Asked Questions">
 <part id="General">
 <faq id="sample-project-sucks">
 <question>Sample project doesn't work. Why does sample project suck?</question>
 <answer>
 <p>
 We resent that question. Sample wasn't designed to work, it was designed to
 show you how to use Maven. If you really think this project sucks, then
 keep it to yourself. We're not interested in your pestering questions.
 </p>
 </answer>
 </faq>
 <faq id="sample-project-source">
 <question>I want to put some code in Sample Project, how do I do this?</question>
 <answer>
 <p>
 If you want to add code to this project, just start putting Java source in
 src/main/java. If you want to put some source code in this FAQ, use the
 source element:
 </p>
 <source>
 for(int i = 0; i < 1234; i++) {
 // do something brilliant
 }
 </source>
 </answer>
 </faq>
 </part>
</faqs>

Deploying Your Project Web Site

Once your project’s documentation has been written and
 you’ve created a site to be proud of, you will want to deploy
 it a server. To deploy your site, you’ll use the Maven Site plugin,
 which can take care of deploying your project’s site to a remote
 server using a number of methods, including File Transfer Protocol
 (FTP), Secure Copy (SCP), and
 Distributed Authoring and Versioning (DAV). To
 deploy the site using DAV, configure the site entry
 of the distributionManagement section in the POM, as shown in Example 15-7.
Example 15-7. Configuring site deployment
<project>
 ...
 <distributionManagement>
 <site>
 <id>sample-project.website</id>
 <url>dav:https://dav.sample.com/sites/sample-project</url>
 </site>
 </distributionManagement>
 ...
</project>

The url in distribution management has a
 leading indicator dav, which tells the Maven Site
 plugin to deploy the site to a URL that is able to
 understand WebDAV. Once you have added the
 distributionManagement section to the
 sample-project POM, you can try
 deploying the site:
$ mvn clean site-deploy

If you have a properly configured server that can understand
 WebDAV, Maven will deploy your project’s web site
 to the remote server. If you are deploying this project to a site and
 server visible to the public, you are going to want to configure your
 web server to access for credentials. If your web server asks for a
 username and password (or other credentials), you can configure these
 values in your ~/.m2/settings.xml.
Configuring Server Authentication

To configure a username and password combination for use
 during the site deployment, we’ll include the code shown in Example 15-8 in $HOME/.m2/settings.xml.
Example 15-8. Storing server authentication in user-specific
 settings
<settings>
 ...
 <servers>
 <server>
 <id>sample-project.website</id>
 <username>jdcasey</username>
 <password>b@dp@ssw0rd</password>
 </server>
 ...
 </servers>
 ...
</settings>

The server authentication section can contain a number of
 authentication elements. In the event that you’re
 using SCP for deployment, you may wish to use
 public-key authentication. To
 do this, specify the publicKey and
 passphrase elements instead of the password element. You may still want
 to configure the username element, depending on
 your server’s configuration.

Configuring File and Directory Modes

If you are working with a large group of developers, you’ll
 want to make sure that your web site’s files end up with the
 proper user and group permissions after they are published to the
 remote server. To configure specific file and directory modes for
 use during the site deployment, include the code shown in Example 15-9 in $HOME/.m2/settings.xml.
Example 15-9. Configuring file and directory modes on remote
 servers
<settings>
 ...
 <servers>
 ...
 <server>
 <id>hello-world.website</id>
 ...
 <directoryPermissions>0775</directoryPermissions>
 <filePermissions>0664</filePermissions>
 </server>
 </servers>
 ...
</settings>

These settings will make any directories readable and writable
 by either the owner or members of the owner’s primary group; the
 anonymous users will have access only to read and list the
 directory. Similarly, the owner or members of the owner’s primary
 group will have access to read and write any files, with the rest of
 the world restricted to read-only
 access.

Customizing Site Appearance

The default Maven template leaves much to be desired. If you
 wish to customize your project’s web site beyond simply adding
 content, navigational elements, and custom logos, Maven offers several
 mechanisms for customizing your web site that allow successively
 deeper access to content decoration and web site structure. For small,
 per-project tweaks, providing a custom site.css is often enough. However, if you
 want your customizations to be reusable across multiple projects, or
 if your customizations involve changing the XHTML
 that Maven generates, you should consider creating your own Maven web
 site skin.
Customizing the Site CSS

The easiest way to affect the look and feel of your project’s
 web site is through the project’s site.css. Just like any images or
 XHTML content you provide for the web site, the
 site.css file goes in the
 src/site/resources directory.
 Maven expects this file to be in the src/site/resources/css subdirectory. With
 CSS, it is possible to change text styling
 properties, layout properties, and even add background images and
 custom bullet graphics. For example, if we decided to make the menu
 heading stand out a little more, we might try the following style in
 src/site/resources/css/site.css:
#navcolumn h5 {
 font-size: smaller;
 border: 1px solid #aaaaaa;
 background-color: #bbb;
 margin-top: 7px;
 margin-bottom: 2px;
 padding-top: 2px;
 padding-left: 2px;
 color: #000;
}

When you regenerate the web site, the menu headers should be
 framed by a gray background and separated from the rest of the menu
 by some extra margin space. Using this file, any structure in the
 Maven-generated web site can be decorated with custom
 CSS. When you change site.css in a specific Maven project, the
 changes will apply to that specific project. If you are interested
 in making changes that will apply to more than one Maven project,
 you can create a custom skin for the Maven Site plugin.
Tip
No good reference exists for the structure of the default
 Maven site template. If you are attempting to customize the style
 of your Maven project, you should use a Firefox extension such as
 Firebug as a tool to explore the Document Object Model
 (DOM) for your project’s pages.

Create a Custom Site Template

If the default Maven Site structure just doesn’t do it for
 you, you can always customize the Maven site template.
 Customizing the Maven Site template gives you complete control over
 the ultimate output of the Maven plugin, and it is possible to
 customize your project’s site template to the point where it hardly
 resembles the structure of a default Maven site template.
The Site plugin uses a rendering engine called Doxia, which in
 turn uses a Velocity template to render the XHTML
 for each page. To change the page structure that is rendered by
 default, we can configure the site plugin in our
 POM to use a custom page template. The site
 template is fairly complex, and you’ll need to have a good starting
 point for your customization. Start by copying the default Velocity
 template from Doxia’s Subversion repository, default-site.vm (see http://svn.apache.org/viewvc/maven/doxia/doxia-sitetools/trunk/doxia-site-renderer/src/main/resources/org/apache/maven/doxia/siterenderer/resources/default-site.vm?revision=595592)
 to src/site/site.vm. This
 template is written in a templating language called Velocity.
 Velocity is a simple templating language that supports simple macro
 definition and allows you to access an object’s methods and
 properties using simple notation. A full introduction is beyond the
 scope of this book; for more information about Velocity and a full
 introduction, please go to the Velocity project site at http://velocity.apache.org.
The default-site.xml
 template is fairly involved, but the change required to customize
 the lefthand menu is relatively straightforward. If you are trying
 to change the appearance of a menuItem, locate
 the menuItem macro. It resides in a section that
 looks like this:
#macro (menuItem $item)
 ...
#end

If you replace the macro definition with the following macro
 definition, you will inject JavaScript references into each menu
 item, which will allow the reader to expand or collapse the menu
 tree without suffering through a full page reload:
#macro (menuItem $item $listCount)
 #set ($collapse = "none")
 #set ($currentItemHref = $PathTool.calculateLink($item.href, $relativePath))
 #set ($currentItemHref = $currentItemHref.replaceAll("\\", "/"))

 #if ($item && $item.items && $item.items.size() > 0)
 #if ($item.collapse == false)
 #set ($collapse = "collapsed")
 #else
 ## By default collapsed
 #set ($collapse = "collapsed")
 #end

 #set ($display = false)
 #displayTree($display $item)

 #if ($alignedFileName == $currentItemHref || $display)
 #set ($collapse = "expanded")
 #end
 #end
 <li class="$collapse">
 #if ($item.img)
 #if (! ($item.img.toLowerCase().startsWith("http") ||
 $item.img.toLowerCase().startsWith("https")))
 #set ($src = $PathTool.calculateLink($item.img, $relativePath))
 #set ($src = $item.img.replaceAll("\\", "/"))

 #else

 #end
 #end
 #if ($alignedFileName == $currentItemHref)
 $item.name
 #else
 #if ($item && $item.items && $item.items.size() > 0)
 $item.name
 #else
 $item.name
 #end
 #end
 #if ($item && $item.items && $item.items.size() > 0)
 #if ($collapse == "expanded")
 <ul id="list$listCount" style="display:block">
 #else
 <ul id="list$listCount" style="display:none">
 #end
 #foreach($subitem in $item.items)
 #set ($listCounter = $listCounter + 1)
 #menuItem($subitem $listCounter)
 #end

 #end

#end

This change adds a new parameter to the
 menuItem macro. For the new functionality to
 work, you will need to change references to this macro, or the
 resulting template may produce unwanted or internally inconsistent
 XHTML. To finish changing these references, make
 a similar replacement in the mainMenu macro. Find
 this macro by looking for something similar to the following
 template snippet:
#macro (mainMenu $menus)
 ...
#end

Replace the mainMenu macro with the
 following implementation:
#macro (mainMenu $menus)
 #set ($counter = 0)
 #set ($listCounter = 0)
 #foreach($menu in $menus)
 #if ($menu.name)
 <h5 onclick="expand('menu$counter')">$menu.name</h5>
 #end
 <ul id="menu$counter" style="display:block">
 #foreach($item in $menu.items)
 #menuItem($item $listCounter)
 #set ($listCounter = $listCounter + 1)
 #end

 #set ($counter = $counter + 1)
 #end
#end

This new mainMenu macro is compatible with
 the new menuItem macro just shown, and it also
 provides support for a JavaScript-enabled top-level menu. Clicking
 on a top-level menu item with children will expand the menu and
 allow users to see the entire tree without waiting for a page to
 load.
The change to the menuItem macro introduced
 an expand() JavaScript function. This
 method needs to be added to the main XHTML
 template at the bottom of this template file. Find the section that
 looks similar to the following:
 <head>
 ...
 <meta http-equiv="Content-Type" content="text/html;
 charset=${outputEncoding}" />
 ...
 </head>

and replace it with this:
 <head>
 ...
 <meta http-equiv="Content-Type" content="text/html;
 charset=${outputEncoding}" />
 <script type="text/javascript">
 function expand(item) {
 var expandIt = document.getElementById(item);
 if(expandIt.style.display == "block") {
 expandIt.style.display = "none";
 expandIt.parentNode.className = "collapsed";
 } else {
 expandIt.style.display = "block";
 expandIt.parentNode.className = "expanded";
 }
 }
 </script>
 #if ($decoration.body.head)
 #foreach($item in $decoration.body.head.getChildren())
 #if ($item.name == "script")
 $item.toUnescapedString()
 #else
 $item.toString()
 #end
 #end
 #end
 </head>

After modifying the default site template, you’ll need to
 configure your project’s POM to reference this
 new site template. To customize the site template, you’ll need to
 use the templateDirectory and template
 configuration properties of the Maven Site plugin. See Example 15-10.
Example 15-10. Customizing the page template in a project’s POM
<project>
 ...
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-site-plugin</artifactId>
 <configuration>
 <templateDirectory>src/site</templateDirectory>
 <template>site.vm</template>
 </configuration>
 </plugin>
 </plugins>
 </build>
 ...
</project>

Now you should be able to regenerate your project web site.
 When you do, you may notice that the resources and
 CSS for the Maven site are missing. When a Maven
 project customizes the site template, the Site plugin expects the
 project to supply all of the default images and
 CSS. To seed your project’s resources, you may
 want to copy the resources from the default Doxia site renderer
 project to your own project’s resources directory by executing the
 following commands:
$ svn co \
 http://svn.apache.org/repos/asf/maven/doxia/doxia-sitetools/trunk/\
 doxia-site-renderer
$ rm \
 doxia-site-renderer/src/main/resources/org/apache/maven/doxia/\
 siterenderer/resources/css/maven-theme.css
$ cp -rf \
 doxia-site-renderer/src/main/resources/org/apache/maven/doxia/\
 siterenderer/resources/*sample-project/src/site/resources

Check out the doxia-site-renderer project,
 remove the default maven-theme.css file, and then copy all
 the resources to your project’s src/site/resources directory.
When you regenerate the site, you’ll notice that a few menu
 items look like regular unstyled text. This is caused by a quirky
 interaction between the site’s CSS and the new
 custom page template. It can be fixed by modifying the site.css to restore the proper link color
 for these menus. Simply add this:
li.collapsed, li.expanded, a:link {
 color:#36a;
}

After regenerating the site, the menu’s link color should be
 corrected. If you applied the new site template to the same sample-project from this chapter, you’ll
 notice that the menu now consists of a tree. Clicking on “Developer
 Resources” no longer takes you to the “Developer Resources” page;
 instead, it expands the submenu. Since you’ve turned the Developer
 Resources menu item into a dynamically folding submenu, you have
 lost the ability to reach the developer/index.apt page. To address this
 change, you should add an Overview link to the submenu that
 references the same page, as shown in Example 15-11.
Example 15-11. Adding a menu item to a site descriptor
<project name="Hello World">
 ...
 <menu name="Main Menu">
 ...
 <item name="Developer Resources" collapse="true">
 <item name="Overview" href="/developer/index.html"/>
 <item name="System Architecture" href="/developer/architecture.html"/>
 <item name="Embedder's Guide" href="/developer/embedding.html"/>
 </item>
 </menu>
 ...
</project>

Reusable Web Site Skins

If your organization has created many Maven project sites, you
 will likely want to reuse site template and
 CSS customizations throughout an organization. If
 you want 30 projects to share the same CSS and
 site template, you can use Maven’s support for skinning. Maven Site
 skins allow you to package up resources and templates that can be
 reused by other projects in lieu of duplicating your site template
 for each project that needs to be customized.
Although you can define your own skin, you may want to
 consider using one of Maven’s alternate skins. You can choose from
 several skins. These each provide their own layout for navigation,
 content, logos, and templates:
	Maven classic skin
	org.apache.maven.skins:maven-classic-skin:1.0

	Maven default skin
	org.apache.maven.skins:maven-default-skin:1.0

	Maven stylus skin
	org.apache.maven.skins:maven-stylus-skin:1.0.1

You can find an up-to-date and comprehensive listing in the
 Maven repository: http://repo1.maven.org/maven2/org/apache/maven/skins/.
Creating a custom skin is a simple matter of wrapping your
 customized maven-theme.css in a
 Maven project so that it can be referenced by
 groupId, artifactId, and
 version. It can also include resources, such as
 images, and a replacement web site template (written in Velocity)
 that can generate a completely different XHTML
 page structure. In most cases, custom CSS can
 manage the changes you desire. To demonstrate, let’s create a
 designer skin for the sample-project project, starting with a
 custom maven-theme.css.
Before we can start writing our custom CSS,
 we need to create a separate Maven project to allow the
 sample-project site descriptor to reference it.
 First, use Maven’s archetype plugin to create a basic project. Issue
 the following command from the directory above the
 sample-project project’s root directory:
$ mvn archetype:create -DartifactId=sample-site-skin -DgroupId=com.sonatyp.maven

This will create a project (and a directory) called
 sample-site-skin. Change directories to the new
 sample-site-skin directory,
 remove all of the source code and tests, and create a directory to
 store your skin’s resources:
$ cd sample-site-skin
$ rm -rf src/main/java src/test
$ mkdir src/main/resources

Creating a Custom Theme CSS

Next, write a custom CSS for the custom
 skin. The CSS file in a Maven site skin should be placed in
 src/main/resources/css/maven-theme.css.
 Unlike the site.css file, which
 goes in the site-specific source directory for a project, the
 maven-theme.css will be bundled
 in a JAR artifact in your local Maven repository.
 In order for the maven-theme.css file to be included in
 the skin’s JAR file, it must reside in the main
 project resources directory, src/main/resources.
As with the default site template, you will want to start
 customizing your new skin’s CSS from a good
 starting point. Copy the CSS file used by the
 default Maven skin to your project’s maven-theme.css. To get a copy of this
 theme file, save the contents of maven-theme.css (see http://svn.apache.org/viewvc/maven/skins/trunk/maven-default-skin/src/main/resources/css/maven-theme.css?view=co)
 from the maven-default-skin project to src/main/resources/css/maven-theme.css in
 our new skin project.
Now that we have the base theme file in place, customize it
 using the CSS from our old site.css file. Replace the
 #navcolumn h5 CSS block with
 the following:
#navcolumn h5 {
 font-size: smaller;
 border: 1px solid #aaaaaa;
 background-color: #bbb;
 margin-top: 7px;
 margin-bottom: 2px;
 padding-top: 2px;
 padding-left: 2px;
 color: #000;
}

Once you’ve customized the maven-theme.css, build and install the
 sample-site-skin JAR artifact
 to your local Maven repository by running:
$ mvn clean install

Once the installation is complete, switch back to the
 sample-project project
 directory; if you already customized the site.css earlier in this chapter, move
 site.css to site.css.bak so it no longer affects the
 output of the Maven Site plugin:
$ mv src/site/resources/css/site.css src/site/resources/css/site.css.bak

To use the sample-site-skin in the
 sample-project site, you’ll need to add a
 reference to the sample-site-skin artifact in the
 sample-project’s site descriptor. A site
 references a skin in the site descriptor using the skin element, as
 shown in Example 15-12.
Example 15-12. Configuring a custom site skin in site descriptor
<project name="Sample Project">
 ...
 <skin>
 <groupId>org.sonatype.mavenbook</groupId>
 <artifactId>sample-site-skin</artifactId>
 </skin>
 ...
</project>

You can think of a Maven site skin as a site dependency. Site
 skins are referenced as artifacts with a groupId
 and an artifactId. Using a site skin allows you
 to consolidate site customizations to a single project, and makes
 reusing custom CSS and site templates as easy as
 reusing build logic through a custom Maven plugin.

Customizing Site Templates in a Skin

Just as you can customize the site CSS in
 a Maven site skin, you can also customize the site
 template. Doxia’s site-rendering tools will expect to find a file
 called META-INF/maven/site.vm
 inside the skin JAR. To incorporate a custom page
 template, copy the template file into the correct location within
 the sample-site-skin. Copy the custom site
 template developed earlier in the chapter to src/main/resources/META-INF/maven in
 sample-site-skin:
$ mv sample-project/src/site/site.vm \
 sample-site-skin/src/main/resources/META-INF/maven

If you already customized the site template in
 sample-project, remove the Site plugin
 configuration that pointed to this site template. The Site plugin
 will render the site using the site template referenced in the site
 skin:
<plugin>
 <artifactId>maven-site-plugin</artifactId>
 <configuration>
 <templateDirectory>src/site</templateDirectory>
 <template>site.vm</template>
 </configuration>
</plugin>

A Maven site skin is expected to include all of the resources
 it depends on. This includes CSS, images, and
 logos. If you already customized the site template earlier in this
 chapter, you’ve already copied
 the default doxia-site-renderer resources to the
 sample-project’s src/site/resources directory. You’ll need
 to move those files out of the sample-project
 project and into the new sample-site-skin project
 by executing the following commands:
$ cd ..
$ mkdir -p sample-site-skin/src/main/resources/css
$ mv sample-project/src/site/resources/css/maven-base.css \
 sample-site-skin/src/main/resources/css
$ mkdir -p sample-site-skin/src/main/resources/images
$ mv sample-project/src/site/resources/images/logos \
 sample-site-skin/src/main/resources/images
$ mv sample-project/src/site/resources/images/expanded.gif \
 sample-site-skin/src/main/resources/images
$ mv sample/src/site/resources/images/collapsed.gif \
 sample-site-skin/src/main/resources/images

You’ve changed the sample-site-skin, so
 you’ll need to install this skin into your local Maven repository.
 Once you install the skin locally and rebuild the
 sample-project web site, you’ll see that the
 skin’s custom site template was applied to the
 sample-project’s web site. You’ll notice that the
 color of the menu items may be a little off because you haven’t
 added the necessary CSS to the collapsed and
 expanded menu items. To do this, modify src/main/resources/css/maven-theme.css.
 That is, change this:
a:link {
 ...
}

to this:
li.collapsed, li.expanded, a:link {
 ...
}

Rebuild the skin, then regenerate the web site, and you’ll see
 that the menu items have returned to normal. You’ve successfully
 created a Maven theme that can be used to apply
 CSS and templates to a set of
 projects.

Tips and Tricks

This section lists some useful tips and tricks you can use when
 creating a Maven site.
Inject XHTML into HEAD

To inject XHTML into the HEAD element, add a head element to the body element in your project’s Site
 descriptor. Example 15-13 adds a
 feed link to every page in the sample-project web
 site.
Example 15-13. Injecting HTML into the HEAD element
<project name="Hello World">
 ...
 <body>
 <head>
 <link href="http://sample.com/sites/sample-project/feeds/blog"
 type="application/atom+xml"
 id="auto-discovery"
 rel="alternate"
 title="Sample Project Blog" />
 </head>
 ...
 </body>
</project>

Add Links Under Your Site Logo

If you are working on a project that is being developed by an
 organization, you may want to add links under your
 project’s logo. Assuming that your project is a part of the Apache
 Software Foundation, you might want to add a link to the Apache
 Software Foundation web site right below your logo, and you might
 want to add a link to a parent project as well. To add links below
 your site logo, just add a links
 element to the body element in
 the Site descriptor. Each item
 element in the links element will
 be rendered as a link in a bar directly below your project’s logo.
 Example 15-14 will add a link to the
 Apache Software Foundation followed by a link to the Apache Maven
 project.
Example 15-14. Adding links under your site logo
<project name="Hello World">
 ...
 <body>
 ...
 <links>
 <item name="Apache" href="http://www.apache.org"/>
 <item name="Maven" href="http://maven.apache.org"/>
 </links>
 ...
 </body>
</project>

Add Breadcrumbs to Your Site

If your hierarchy exists within a logical hierarchy, you may
 want to place a series of breadcrumbs to give the user a
 sense of context and to give them a way to navigate up the tree to
 projects that might contain the current project as a subproject. To
 configure breadcrumbs, add a breadcrumbs element
 to the body element in the site descriptor. Each
 item element will render a link, and the items in
 the breadcrumbs element will be rendered in
 order. The breadcrumb items should be listed from the highest level
 to the lowest level. In the site descriptor shown in Example 15-15, the Codehaus item would be
 seen to contain the Mojo item.
Example 15-15. Configuring the site’s breadcrumbs
<project name="Sample Project">
 ...
 <body>
 ...
 <breadcrumbs>
 <item name="Codehaus" href="http://www.codehaus.org"/>
 <item name="Mojo" href="http://mojo.codehaus.org"/>
 </breadcrumbs>
 ...
 </body>
</project>

Add the Project Version

When you are documenting a project that has multiple versions,
 it is often very helpful to list the project’s version
 number on every page. To display your project’s version on the web
 site, simply add the version element to your site
 descriptor, as shown in Example 15-16.
Example 15-16. Positioning the version information
<project name="Sample Project">
 ...
 <version position="left"/>
 ...
</project>

This will position the version (in the case of the sample-project project, it will say
 “Version: 1.0-SNAPSHOT”) in the upper lefthand corner of the site,
 just next to the default “Last Published” date. Valid positions for
 the project version are:
	left
	Left side of the bar just below the site logo

	right
	Right side of the bar just below the site logo

	navigation-top
	Top of the menu

	navigation-bottom
	Bottom of the menu

	none
	Suppress the version entirely

Modify the Publication Date Format and Location

In some cases, you may wish to reformat or reposition the
 “Last Published” date for your project web site. Just like
 the project version tip, you can specify the position of the
 publication date by using one of the following (see Example 15-17):
	left
	Left side of the bar just below the site logo

	right
	Right side of the bar just below the site logo

	navigation-top
	Top of the menu

	navigation-bottom
	Bottom of the menu

	none
	Suppress the publication entirely

Example 15-17. Positioning the publish date
<project name="Sample Project">
 ...
 <publishDate position="navigation-bottom"/>
 ...
</project>

By default, the publication date will be formatted using the
 date format string MM/dd/yyyy. You can change
 this format by using the standard notation found in the Javadocs for
 java.text.SimpleDateFormat (see the Javadoc
 for SimpleDateFormat at http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
 for more information). To reformat the date using
 yyyy-MM-dd, use the
 publishDate element as shown in Example 15-18.
Example 15-18. Configuring the publish date format
<project name="Sample Project">
 ...
 <publishDate position="navigation-bottom" format="yyyy-MM-dd"/>
 ...
</project>

Using Doxia Macros

In addition to its advanced document rendering features, Doxia
 also provides a macro engine that allows each input
 format to trigger injection of dynamic content. An excellent example
 of this is the snippet macro, which allows a document to pull a code
 snippet out of a source file that’s available via
 HTTP. Using this macro, a small fragment of
 APT can be rendered into
 XHTML. The following APT code
 calls out to the snippet macro. Please note that this code should be
 on a single continuous line; the backslash character is inserted to
 denote a line break so that this code will fit on the printed page
 (see Example 15-19 for the output):
%{snippet|id=modello-model|url=http://svn.apache.org/repos/asf/maven/archetype/\
trunk/maven-archetype/maven-archetype-model/src/main/mdo/archetype.mdo}

Example 15-19. Output of the snippet macro in XHTML
<div class="source"><pre>

<model>
 <id>archetype</id>
 <name>Archetype</name>
 <description><![CDATA[Maven's model for the archetype descriptor.]]></description>
 <defaults>
 <default>
 <key>package</key>
 <value>org.apache.maven.archetype.model</value>
 </default>
 </defaults>
 <classes>
 <class rootElement="true" xml.tagName="archetype">
 <name>ArchetypeModel</name>
 <description>Describes the assembly layout and packaging.</description>
 <version>1.0.0</version>
 <fields>
 <field>
 <name>id</name>
 <version>1.0.0</version>
 <required>true</required>
 <type>String</type>
 </field>
 ...
 </fields>
 </class>
 </classes>
</model>

</pre></div>

Warning
Doxia macros must not be indented in
 APT source documents. Doing so will result in
 the APT parser skipping the macro
 altogether.

For more information about defining snippets in your code for
 reference by the snippet macro, see the “Guide to the Snippet Macro”
 on the Maven web site at http://maven.apache.org/guides/mini/guide-snippet-macro.html.

Chapter 16. Repository Manager

Introduction

Repository managers serve two purposes: they act as highly
 configurable proxies between your organization and the public Maven
 repositories, and they also provide an organization with a deployment
 destination for your own generated artifacts.
Proxying a Maven repository brings a number of benefits.
 Proxying speeds up builds throughout your organization by installing a
 local cache for all artifacts from the central Maven repository. If a
 developer in your organization needs to download version 2.5 of the
 Spring Framework and you are using Nexus, the dependencies (and the
 dependencies’ dependencies) need to be downloaded from the remote
 repository only once. With a high-speed connection to the Internet,
 this might seem like a minor concern, but if you are constantly asking
 your developers to download hundreds of megabytes of third-party
 dependencies, the real cost savings are going to be the time it takes
 Maven to check for new versions of dependencies and to download them.
 Serving Maven dependencies from a local repository can save you
 hundreds of requests over HTTP, and in very large
 multiproject builds, this can shave minutes from a build.
If your project is relying on a number of snapshot dependencies,
 Maven will need to check for updated version of these snapshots.
 Depending on the configuration of your remote repositories, Maven will
 check for snapshot updates periodically, or it might check for
 snapshot updates on every build. When Maven checks for a snapshot
 update, it needs to interrogate the remote repository for the latest
 version of the snapshot dependency. Depending on your connection to
 the public Internet and the load on the central Maven repository, a
 snapshot update can add seconds to your project’s build for each
 snapshot update. When you host a local repository proxy with a
 repository like Nexus, your repository manager is going to check for
 snapshot updates on a regular schedule, and your applications will be
 able to interact with a local repository. If you develop software with
 a lot of snapshot dependencies, using a local repository manager can
 often shave minutes from a large multimodule project build. Your 5–10
 second snapshot update checks against the public central repository
 are going to execute in hundreds of milliseconds (or less).
In addition to the simple savings in time and bandwidth, a
 repository manager provides an organization with control over what is
 downloaded by Maven. You can include or exclude specific artifacts
 from the public repository. Having this level of control over what is
 downloaded from the central Maven repository is a prerequisite for
 organizations that need strict control over which dependencies are
 used throughout an organization. An organization that wants to
 standardize on a specific version of a dependency such as Hibernate or
 Spring can enforce this standardization by providing access to only a
 specific version of an artifact in a repository manager such as Nexus.
 Other organizations might be concerned with making sure that every
 external dependency has a license compatible with the legal standards
 of that organization. If a corporation is producing an application
 that is distributed, it might want to make sure that no one
 inadvertently adds a dependency on a third-party library that is
 covered under a copy-left license such as the GNU General Public
 License (GPL). Repository managers provide for the level of control that an
 organization needs to make sure that overall architecture and policy can be
 enforced.
Aside from the benefits of mediating access to remote
 repositories, a repository manager also provides something essential
 to full adoption of Maven. Unless you expect every member of your
 organization to download and build every single internal project, you
 will want to provide a mechanism for developers and departments to
 share both snapshots and releases for internal project artifacts.
 Nexus provides your organization with such a deployment target. Once
 you install Nexus, you can start using Maven to deploy snapshots and
 releases to a custom repository managed by Nexus. Over time, this
 central deployment point for internal projects becomes the fabric for
 collaboration between different development teams.
History of Nexus

Tamás Cservenák started working on Proximity in December 2005
 as he was trying to find a way to isolate his own systems from an
 incredibly slow ADSL connection provided by a
 Hungarian ISP. Proximity started as a simple web
 application to proxy artifacts for a small organization with
 connectivity issues. Creating a local on-demand cache for Maven
 artifacts from the central Maven repository gave an organization
 access to the artifacts on the central Maven repository, but it also
 made sure that these artifacts weren’t downloaded over a very slow
 ADSL connection used by a number of developers.
 In 2007, Sonatype asked Tamas to help create a similar product named
 Nexus. Nexus is currently considered the logical next step from
 Proximity. Nexus currently has an active development team, and
 portions of the indexing code from Nexus are also being used in
 m2eclipse.
Installing Nexus

The following subsections explain how to download, install, run,
 configure, and upgrade Nexus on your system.
Downloading Nexus from Sonatype

You can find information about Nexus at http://nexus.sonatype.org. To download Nexus, go to
 http://nexus.sonatype.org/downloads/. Click on
 the Download link and download the appropriate archive for your
 platform. Nexus is available as a ZIP and a
 GZipped TAR file.
Installing Nexus

Installing Nexus is straightforward: unpack the Nexus archive
 in a directory. If you are installing Nexus on a local workstation
 to give it a test run, you can install it in your home directory or
 wherever else you like. Nexus doesn’t have any hardcoded
 directories; it will run from any directory. If you download the
 ZIP archive, run this:
$ unzip nexus-1.0.0-bundle.zip
And if you download the GZipped TAR
 archive, run this:
$ tar xvzf nexus-1.0.0-bundle.tgz
Note
There are some known incompatibilities with the version of
 TAR provided by Solaris and the GZip TAR format. If you are
 installing Nexus on Solaris, you must use the GNU
 tar application or you will end up with
 corrupted files. Please see http://sunsolarisadmin.blogspot.com/2007/03/how-to-install-gnu-tar-in-solaris.html.

If you are installing Nexus on a server, you might want to
 use a directory other than your home directory. On a Unix machine,
 this could be under /usr/local/nexus-1.0.0 with a symbolic
 link /usr/local/nexus to the
 nexus directory. Using a
 generic symbolic link nexus to
 a specific version is a common practice that makes it easier to
 upgrade when a newer version of Nexus is made available:
$ sudo cp nexus-1.0.0-bundle.tgz /usr/local
$ cd /usr/local
$ sudo tar xvzf nexus-1.0.0-bundle.tgz
$ ln -s nexus-1.0.0 nexus
Although it isn’t required for Nexus to run, you may want to
 set an environment variable NEXUS_HOME in your
 environment that points to the installation directory of Nexus. This
 chapter will refer to this location as
 ${NEXUS_HOME}.
Running Nexus

When you start Nexus, you are starting a web server on the
 default port of localhost:8081. Nexus runs within
 a servlet container called Jetty and is started with a native
 service wrapper called the Tanuki
 Java Service Wrapper. This service wrapper can be configured
 to run Nexus as a Windows service or a Unix daemon. To start Nexus,
 you will need to find the appropriate startup script for your
 platform. To see the list of available platforms, list the contents
 of the ${NEXUS_HOME}/bin/jsw
 directory.
The following example code starts Nexus using the script for
 Mac OS X. First we list the contents of the ${NEXUS_HOME}/bin/jsw to show you the
 available platforms, then we make the contents of the bin directory
 executable with chmod. The Mac OS
 X wrapper is started with a call to app
 start, and after that we tail the wrapper.log in ${NEXUS_HOME}/container/logs. Nexus
 will initialize itself and print a message that it is listening on
 localhost:8081:
$ cd Nexus
$ ls ./bin/jsw/
aix-ppc-32/ linux-ppc-64/ solaris-sparc-32/
aix-ppc-64/ linux-x86-32/ solaris-sparc-64/
hpux-parisc-32/ linux-x86-64/ solaris-x86-32/
hpux-parisc-64/ macosx-universal-32/ windows-x86-32/
$ chmod -R a+x bin
$./bin/jsw/macosx-universal-32/nexus start
Nexus Repository Manager...
$ tail -f container/logs/wrapper.log
INFO ... [ServletContainer:default] - SelectChannelConnector@0.0.0.0:8081

At this point, Nexus will be running and listening on port
 8081. To use Nexus, fire up a web browser and type in the URL http://localhost:8081/nexus. Click on the “Log In”
 link in the upper-righthand corner of the web page, and you should
 see the login dialog shown in Figure 16-1.
Tip
The default Nexus username and password are “admin” and
 “admin123”.

[image: Nexus login window]

Figure 16-1. Nexus login window

Post-Install Checklist

Nexus ships with some default passwords and settings for
 repository indexing that need to be changed for your installation to
 be useful (and secure). After installing and running Nexus, you need
 to make sure to complete the following tasks:
	Change the administrative password and email
 address
	The administrative password defaults to “admin123”. The
 first thing you should do to your new Nexus installation is
 change this password. To change the administrative password,
 log in as “admin” with the password “admin123”, and click on
 Change Password
 under the Security menu in the lefthand side of the browser
 window.

	Configure the SMTP settings
	Nexus can send username and password recovery emails. To
 enable this feature, you need to configure Nexus with an SMTP
 host and port, as well as any necessary authentication
 parameters that Nexus needs to connect to a mail server. To
 configure the SMTP settings, load the server configuration
 dialog shown in Customizing Server Configuration.”

	Enable remote index downloads
	Nexus ships with three important proxy repositories: the
 central Maven repository, the Apache snapshot repository, and
 the Codehaus snapshot repository. Each of these repositories
 contains thousands (or tens of thousands) of artifacts, and it
 would be impractical to download the entire contents of each.
 To that end, most repositories maintain a Lucene index that
 catalogs the entire contents and provides for fast and
 efficient searching. Nexus uses these remote indexes to search
 for artifacts, but index downloads are disabled as a default
 setting. To download remote indexes:
	Click on Repositories under the
 Administration menu,
 and change Download Remote Indexes to “true” for the three
 proxy repositories. You’ll need to load the dialog shown
 in Managing Repositories” for each of the
 three repositories.

	Right-click on each proxy repository and select
 “Re-index.” This will trigger Nexus to download the remote
 index files.

It might take Nexus a few minutes to download the entire
 index, but once you have it, you’ll be able to search the
 entire contents of the Maven repository.
Once you’ve enabled remote index downloads, you still
 won’t be able to browse the complete contents of a remote
 repository. Downloading the remote index allows you to search
 for artifacts in a repository, but until you download those
 artifacts from the remote repository, they will not show in
 the repository tree when you are browsing a repository. When
 browsing a repository, you will be shown only artifacts that
 have been downloaded from the remote repository.

Startup Scripts for Linux

You can configure Nexus to start automatically by copying the
 app script to the /etc/init.d directory. On a Linux system
 (tested with Red Hat, Fedora, Ubuntu, or CentOS), perform the
 following operations as the root user:
	Copy either ${NEXUS_HOME}/bin/jsw/linux-ppc-64/app,
 ${NEXUS_HOME}/bin/jsw/linux-x86-32/app,
 or ${NEXUS_HOME}/bin/jsw/linux-x86-64/app
 to /etc/init.d/nexus.

	Make the /etc/init.d/nexus script executable:
 chmod 755
 /etc/init.d/nexus.

	Edit this script changing the following variables:
	Change APP_NAME to “nexus”

	Change APP_LONG_NAME to “Sonatype
 Nexus”

	Add a variable NEXUS_HOME that
 points to your Nexus installation directory

	Add a variable PLATFORM that
 contains either linux-x86-32,
 linux-x86-64, or
 linux-ppc-64

	Change WRAPPER_CMD to ${NEXUS_HOME}/bin/jsw/${PLATFORM}/wrapper

	Change WRAPPER_CONF to ${NEXUS_HOME}/conf/wrapper.conf

	Change PIDDIR to /var/run

	Add a JAVA_HOME variable that
 points to your local Java installation

	Add a ${JAVA_HOME}/bin to the
 PATH

	(Optional.) Set the RUN_AS_USER to
 “nexus”. If you do this, you will need to:
	Create a Nexus user

	Change the owner and group of your Nexus install
 directory to “nexus”

At the end of this, you should have a file in /etc/init.d/nexus that starts with a
 series of configuration properties that look something like this
 (assuming you’ve installed Nexus in /usr/local/nexus and Java in /usr/java/latest):
JAVA_HOME=/usr/java/latest
PATH=${PATH}:${JAVA_HOME}/bin
APP_NAME="nexus"
APP_LONG_NAME="Sonatype Nexus"
NEXUS_HOME=/usr/local/nexus
PLATFORM=linux-x86-64
WRAPPER_CMD="${NEXUS_HOME}/bin/jsw/${PLATFORM}/wrapper"
WRAPPER_CONF="${NEXUS_HOME}/conf/wrapper.conf"
PRIORITY=
PIDDIR="/var/run"
#RUN_AS_USER=nexus

Add Nexus as a service on Red Hat, Fedora, and
 CentOS

This script has the appropriate chkconfig directives, so all you need to
 do to add Nexus as a service is run the following commands:
$ cd /etc/init.d
$ chkconfig --add nexus
$ chkconfig --levels 345 nexus on
$ service nexus start
Starting Sonatype Nexus...
$ tail -f /usr/local/nexus/logs/wrapper.log
The second command adds Nexus as a service to be started and
 stopped with the service
 command and managed by chkconfig command. chkconfig manages the symbolic links in
 /etc/rc[0-6].d that control
 the services that are started and stopped when the operating
 system restarts or transitions between run-levels. The third
 command adds Nexus to run-levels 3, 4, and 5. The service command starts Nexus, and the
 last command tails the wrapper.log to verify that Nexus has
 been started successfully. If Nexus has started successfully, you
 should see a message notifying you that Nexus is listening for
 HTTP connections on a port.
Add Nexus as a service on Ubuntu

The process for setting up Nexus as a service on Ubuntu
 differs slightly from the process used on a Red Hat variant.
 Instead of running chkconfig,
 you should run the following sequence of commands once you’ve
 configured the startup script in /etc/init.d:
$ cd /etc/init.d
$ update-rc.d nexus defaults
$ service nexus start
Starting Sonatype Nexus...
$ tail -f /usr/local/nexus/logs/wrapper.log

Running Nexus Behind a Proxy

This section is entirely optional. Nexus is based on Jetty,
 which is a very high-performance servlet container based on
 Java NIO. From a performance perspective, there is no reason for you
 not to run Nexus by itself without a proxy. Yet, more often than
 not, organizations run applications behind a proxy for security
 concerns and to consolidate
 multiple disparate applications using tools such as
 mod_rewrite and mod_proxy. For
 this reason, we’ve included some brief instructions for
 configuration mod_proxy in Apache HTTPd. We
 assume that you’ve already installed Apache 2 and that you are using
 a virtual host for www.somecompany.com.
Let’s assume that you want to host Nexus behind Apache HTTPd
 at the URL
 http://www.somecompany.com. To do this, you’ll
 need to change the context path that Nexus is served from:
	Edit plexus.xml in
 ${NEXUS_HOME}/conf. You’ll
 see an element named webappInfos that contains the
 relevant elements. Change the contextPath
 element from “/nexus” to
 “/”

	Restart Nexus and verify that it is available on http://localhost:8081/.

	Clear the Base URL in Nexus as shown in
 Customizing Server Configuration” under Application
 Server Settings.

At this point, edit the HTTPd configuration file for the
 www.somecompany.com virtual host. Include the
 following to expose Nexus via mod_proxy at
 http://www.somecompany.com:
ProxyRequests Off
ProxyPreserveHost On

<VirtualHost *:80>
 ServerName www.somecompany.com
 ServerAdmin admin@somecompany.com
 ProxyPass / http://localhost:8081/
 ProxyPassReverse / http://localhost:8081/
 ErrorLog logs/somecompany/nexus/error.log
 CustomLog logs/somecompany/nexus/access.log common
</VirtualHost>
Alternatively, if you just wanted to continue to serve Nexus
 at the /nexus context path, you
 would not change the contextPath in ${NEXUS_HOME}/conf/plexus.xml, and you
 would include the context path in your ProxyPass
 and ProxyPassReverse directives as
 follows:
 ProxyPass /nexus/ http://localhost:8081/nexus/
 ProxyPassReverse /nexus/ http://localhost:8081/nexus/

Apache configuration is going to vary based on your own
 application’s requirements and the way you intend to expose Nexus to
 the outside world. If you need more details about Apache HTTPd and
 mod_proxy, please see http://httpd.apache.org.
Using Nexus

Nexus provides for anonymous access for users who only need to
 search repositories, browse repositories, and peruse the system feeds.
 This anonymous access level changes the navigation menu and some of
 the options available when you right-click on a repository. This
 read-only access displays a user interface shown in Figure 16-2.
[image: Nexus interface for anonymous users]

Figure 16-2. Nexus interface for anonymous users

Browsing Repositories

One of the most straightforward uses of the Nexus is to browse
 the structure of a Maven repository. If you click on the Browse
 Repositories menu item in the Views menu, you should see the display
 shown in Figure 16-3. The top half of
 the figure shows you a list of groups and repositories along with
 the type of the repository and the repository status.
[image: Browsing a Nexus repository]

Figure 16-3. Browsing a Nexus repository

When you are browsing a repository, you can right-click on any
 file and download it directly to your browser. This allows you to
 retrieve specific artifacts manually or examine a
 POM file in the browser.
Note
When browsing a remote repository, you might notice that the
 tree doesn’t contain all of the artifacts in a repository. When
 you browse a proxy repository, Nexus is displaying the artifacts
 that have been cached locally from the remote repository. If you
 don’t see an artifact you expected to see through Nexus, it means
 only that Nexus has yet to cache the artifact locally. If you have
 enabled remote repository index downloads, Nexus will return
 search results that may include artifacts not yet downloaded from
 the remote repository. Figure 16-3 is
 just an example, and you may or may not have the
 maven-default-skin artifact available in your
 installation of Nexus.

Browsing Groups

Nexus contains ordered groups of repositories that allow you
 to expose a series of repositories through a single
 URL. More often than not, an organization is
 going to point Maven at the two default Nexus groups: public
 repositories and public snapshot repositories. Most end users of
 Nexus are not going to know which artifacts are being served from
 which specific repository, and they are going to want to be able to
 browse the public repository. To support this use case, Maven allows
 you to browse the contents of a Nexus group as if it were a single
 merged repository with a tree structure. Figure 16-4 shows the browsing interface
 with a Nexus group selected for browsing. The user experience of
 browsing a Nexus group is no different from that of browsing a Nexus
 repository.
[image: Browsing a Nexus group]

Figure 16-4. Browsing a Nexus group

Searching for Artifacts

In the lefthand navigation area, there is an Artifact Search
 text field next to a magnifying glass. To search for an artifact by
 groupId or artifactId, type in some text and click
 the magnifying glass. Typing in the search term “maven” and clicking
 the magnifying glass should yield a search result similar to Figure 16-5.
[image: Results of an Artifact Search for “maven”]

Figure 16-5. Results of an Artifact Search for “maven”

Once you’ve located the artifact you were looking for, you can
 click on the Download link to download the artifact. Nexus shows you
 50 results at a time and provides links on the bottom of the search
 result panel for you to navigate through the results. If you would
 prefer to see a list of all of the matching artifacts, you can
 select Fetch All from the drop-down at the bottom of the search
 result panel.
In addition to searching by a groupId or an artifactId, Nexus has a feature that
 allows you to search for an artifact by a checksum.
Warning
Let me guess—you installed Nexus, ran to the search box,
 typed in the name of a group or an artifact, clicked the
 magnifying glass, and saw absolutely nothing. No results. Why?
 Nexus won’t retrieve the remote repository indexes by default; you
 need to activate downloading of remote indexes for the three proxy
 repositories that Nexus ships with. Without these indexes, Nexus
 has nothing to search. Find instructions for activating index
 downloads in Post-Install Checklist.”

Browsing System Feeds

Nexus provides feeds that capture system events. You can
 browse these feeds by clicking on System Feeds under the View menu.
 This will show the panel in Figure 16-6. You can use this simple
 interface to browse the most recent reports of artifact deployments, cached artifacts, broken
 artifacts, and storage changes that have occurred in Nexus.
[image: Browsing Nexus system feeds]

Figure 16-6. Browsing Nexus system feeds

These feeds can come in handy if you are working at a large
 organization with multiple development teams deploying to the same
 instance of Nexus. In such an arrangement, all developers in an
 organization can subscribe to the RSS feeds for
 New Deployed Artifacts as a way to ensure that everyone is aware
 when a new release has been pushed to Nexus. Exposing these system
 events as RSS feeds also opens the door to other,
 more creative uses of this information, such as connecting Nexus to
 external automated testing systems. To access the
 RSS feeds for a specific feed, select the feed in
 the System Feeds view panel and then click on the Subscribe button.
 Nexus will load the RSS feed in your browser and
 you can subscribe to the feed in your favorite
 RSS reader.
Six system feeds are available in the System Feeds view, and
 each has a URL that resembles the following:
http://localhost:8081/nexus/service/local/feeds/recentChanges
where recentChanges would be replaced with
 the identifier of the feed you were attempting to read. Available
 system feeds are shown in Table 16-1.
Table 16-1. Available system feeds
	Feed Identifier	Description
	brokenArtifacts	Checksum mismatch, missing checksums, invalid
 POMs
	recentCacheOrDeployments	New artifacts in all repositories (cached or
 deployed)
	recentlyCached	New cached artifacts in all repositories
	recentlyDeployed	New deployed artifacts in all repositories
	recentChanges	All caches, deployments, or deletions
	systemRepositoryStatusChanges	Automatic or user-initiated status changes
 (out-of-service and blocked proxies)
	systemChanges	Booting Nexus, changing configuration, re-indexing,
 and rebuilding of attributes

Browsing Log Files and Configuration

“Logs and Config Files” under the Views menu is visible only
 to administrative users. Clicking on this option brings up the
 dialog shown in Figure 16-7. From this screen,
 you can view the following log and configuration files by clicking
 on the drop-down selection next to the Download button:
	nexus.log
	Think of this as the general application log for Nexus.
 Unless you are an administrative user, you might not have much
 interest in the information in this log. If you are trying to
 debug an error, or if you have uncovered a bug in Nexus,
 you’ll use this log viewer to diagnose problems with
 Nexus.

	nexus.xml
	This XML file contains most of the configuration data
 for your instance of Nexus. It is stored in ${NEXUS_HOME}/runtime/apps/nexus/conf/nexus.xml.

[image: Browsing Nexus logs and configuration]

Figure 16-7. Browsing Nexus logs and configuration

Changing Your Password

If you have the appropriate security privilege, you will see
 an option to change your password in the lefthand side of the
 browser. To change your password, click on Change Password, supply
 your current password, and choose a new password. When you click on
 Change Password at the bottom, as shown in Figure 16-8, your Nexus password will be
 changed.
[image: Changing your Nexus password]

Figure 16-8. Changing your Nexus password

Configuring Maven to Use Nexus Repositories

To use Nexus, you will configure Maven to check Nexus instead of
 the public repositories. To do so, you’ll need to edit your mirror
 settings in your ~/.m2/settings.xml file. First, we’re going
 to demonstrate how to configure Maven to consult your Nexus
 installation instead of retrieving artifacts directly from the central
 Maven repository. After we override the central repository and
 demonstrate that Nexus is working, we’ll circle back to provide a more
 sensible set of settings that will cover both releases and snapshots.
Using the Nexus Central Proxy Repository

To configure Maven to consult Nexus instead of the central
 Maven repository, add the mirror settings from Example 16-1 to your ~/.m2/settings.xml file.
Example 16-1. Configuring Maven settings for Nexus
 (~/.m2/settings.xml)
<?xml version="1.0"?>
<settings>
 ...
 <mirrors>
 <mirror>
 <id>Nexus</id>
 <name>Nexus Public Mirror</name>
 <url>http://localhost:8081/nexus/content/groups/public</url>
 <mirrorOf>central</mirrorOf>
 </mirror>
 </mirrors>
 ...
</settings>

Once you’ve configured Nexus to be the mirror for all
 repositories, Maven will now consult the local installation of Nexus
 instead of going out to the central Maven repository. If Nexus has
 the artifact requested, the artifact will be served from the local
 Nexus installation. If Nexus does not have the artifact, Nexus will
 retrieve it from the remote repository and then add it to the local
 mirror of that remote repository.
To test how Nexus is working, try deleting a directory from
 your local Maven repository and then running a Maven build. If you
 delete ~/.m2/repository/org,
 you’ll be deleting a large number of dependencies (including Maven
 plugins). The next time you run Maven, you should see the
 following:
$ mvn clean install
...
Downloading: http://localhost:8081/nexus/content/groups/public/...
3K downloaded

This output should convince you that Maven is communicating
 with your local installation of Nexus instead of going out to the
 central Maven repository to retrieve an artifact. After you’ve run a
 few builds against your local Nexus installation, you can start to
 browse the contents cached in your local instance of Maven.
Using Nexus for Snapshot Repositories

The Maven settings described earlier in Using the Nexus Central Proxy Repository” will allow you to use the
 Nexus public group. This resolves artifacts from four repositories
 managed by Nexus, but it won’t allow you to reference the
 public-snapshots group that includes the Apache
 and Codehaus snapshots. To configure Maven to use Nexus for both
 releases and plugins, you will have to configure Maven to reference
 the Nexus groups by adding the mirror configuration shown in Example 16-2 to your Maven settings in ~/.m2/settings.xml.
Example 16-2. Configuring Maven to use Nexus for releases and
 snapshots
<settings>
 <mirrors>
 <mirror>
 <!--This is used to direct the public snapshots repo in the
 profile below over to a different nexus group -->
 <id>nexus-public-snapshots</id>
 <mirrorOf>public-snapshots</mirrorOf>
 <url>http://localhost:8081/nexus/content/groups/public-snapshots</url>
 </mirror>
 <mirror>
 <!--This sends everything else to /public -->
 <id>nexus</id>
 <mirrorOf>*</mirrorOf>
 <url>http://localhost:8081/nexus/content/groups/public</url>
 </mirror>
 </mirrors>
 <profiles>
 <profile>
 <id>development</id>
 <repositories>
 <repository>
 <id>central</id>
 <url>http://central</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>central</id>
 <url>http://central</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 <profile>
 <!--this profile will allow snapshots to be searched when activated-->
 <id>public-snapshots</id>
 <repositories>
 <repository>
 <id>public-snapshots</id>
 <url>http://public-snapshots</url>
 <releases><enabled>false</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>public-snapshots</id>
 <url>http://public-snapshots</url>
 <releases><enabled>false</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>
 <activeProfiles>
 <activeProfile>development</activeProfile>
 </activeProfiles>
</settings>

In this example, we have defined two profiles:
 development and
 public-snapshots. The
 development profile is configured to download
 from the central repository with a bogus URL of
 http://central. The
 public-snapshots profile is configured to
 download from the public-snapshots repository with a bogus URL of
 http://public-snapshots. These bogus
 URLs are overridden by two mirror settings in the
 same settings.xml file. The
 first mirror is configured to override the public-snapshots
 repository to the public-snapshots Nexus group. The second mirror
 overrides all other repositories to the public Nexus group. With
 these settings, all builds will include the public Nexus group. If
 you want to include the public-snapshots group, you would have to
 add the public-snapshots
 profile by using the -P flag on
 the command line as follows:
$ mvn -Ppublic-snapshots clean install
Adding Custom Repositories for Missing Dependencies

If you’ve configured your Maven settings.xml to list Nexus as a mirror
 for all public repositories and all public-snapshot repositories,
 you might encounter projects that are unable to retrieve artifacts
 from your local Nexus installation. This usually happens because you
 are trying to build a project that has defined a custom set of
 repositories and
 snapshotRepositories in a pom.xml. This is definitely going to
 happen if you are building open source projects or if you’ve added
 custom third-party Maven repositories to your configuration.
As an example, let’s try to build Apache Shindig from source
 we’ve checked out of the Apache Incubator. What is Apache Shindig?
 It doesn’t matter to this example; all we need is an example project
 we can easily check out from source control and build. If you really
 want to know, Shindig is a project in the Apache Incubator that
 revolves around the OpenSocial API from Google. Shindig aims to
 provide a container that will allow people to execute OpenSocial
 gadgets. It provides us with an interesting example project because
 it depends on some custom Maven repositories for components that
 have yet to be added to the central Maven repository. Using Shindig,
 we can show you what happens when Nexus doesn’t have your artifacts
 and what steps you can take to add repositories to Nexus.
The following example assumes that you have Subversion
 installed and that you are running Subversion from the command line.
 Let’s check out Apache Shindig from the Apache Incubator with
 Subversion and attempt to build it from source. To do this, execute
 the following commands:
$ svn co http://svn.apache.org/repos/asf/incubator/shindig/trunk shindig
... Subversion will checkout the trunk of Apache Shindig ...
$ cd shindig
$ mvn install
... Maven will build Shindig ...
Downloading: http://localhost:8081/nexus/content/groups/public/\
 caja/caja/r2178/caja-r2178.jar
...
[INFO] ---
[ERROR] BUILD ERROR
[INFO] ---
[INFO] Failed to resolve artifact.

Missing:

1) caja:caja:jar:r2178

 Try downloading the file manually from the project website.

...

3 required artifacts are missing.

for artifact:
 org.apache.shindig:shindig-gadgets:jar:1-SNAPSHOT

from the specified remote repositories:
 nexus (http://localhost:8081/nexus/content/groups/public)

The build fails because it is unable to download three
 artifacts. One of the artifacts Maven tries to download has a group
 identifier of caja, an artifact identifier of
 caja, and a version of r2178.
 It is an artifact that is hosted on a custom repository: http://google-caja.googlecode.com/svn/maven. Maven
 fails to download this artifact because your settings.xml is configured to direct all
 mirrors to the public and public-snapshots groups hosted on our
 Nexus installation. Even though the pom.xml for Apache Shindig defines a
 repository and points it to http://google-caja.googlecode.com/svn/maven, Nexus
 won’t retrieve an artifact from a repository it doesn’t know about,
 and you’ve configured all requests for remote artifacts to pass
 through Nexus. In fact, there are two repositories that Nexus
 doesn’t know about in this build: caja and
 oauth. Caja and OAuth are two
 libraries that are still in development. Both projects have been
 “released,” and the versions that Shindig depends on are certainly
 not snapshot releases, but these projects have not been published to
 the central Maven repository. We need to find a way to let Nexus
 know about these repositories before we can build this
 project.
There are two ways to fix this problem. First, you can change
 your settings.xml to override
 specific repository identifiers. Instead of listing the Nexus public
 group as a mirrorOf all repositories, you can
 change the mirrorOf element in your settings.xml to “central”. If you do
 this, Maven will then attempt to download the dependencies directly
 from the oauth and caja
 repositories at the URLs listed in the previous
 code listing. This will work because Maven will only consult Nexus
 for repositories that match those specified in the
 mirrorOf element in settings.xml. If Maven sees the
 repositories identifier caja or
 oauth, and doesn’t see a mirror configured in
 your settings.xml, it will attempt to
 connect to the repository directly.
The second, more interesting option is to add both of these
 repositories to Nexus and then add these repositories to the public
 group. You’ll see how to do this in the next sections.
Adding a New Repository

To add the caja repository, log into Nexus as an administrator
 and click on the Repositories link in the lefthand navigation menu
 in the Configuration section. Clicking on this link should bring up
 a window that lists all the repositories Nexus knows about. You’ll
 then want to create a new proxy repository. To do this, click on the
 Add link that is directly above the list of repositories. When you
 click this button, click the down arrow directly to the right of the
 word Add; this will show a drop-down that has the options Hosted,
 Proxy, and Virtual. Since you are creating a proxy repository, click
 on Proxy. Once you do so, you will see a screen resembling Figure 16-9. Populate the required fields Repository
 ID and Repository Name with “caja” and “Google Caja”. Set the
 Repository Policy to “Release” and the Remote Storage Location to
 http://google-caja.googlecode.com/svn/maven.
[image: Adding a Nexus repository]

Figure 16-9. Adding a Nexus repository

Once you’ve filled out this screen, click on the Save button. Nexus will then be
 configured with the caja proxy repository. Do the same thing for the
 oauth repository. Create a repository with a Repository ID of
 “oauth”, a Release policy, and a Remote Storage Location of http://oauth.googlecode.com/svn/code/maven.
Adding a Repository to a Group

Next, you will need to add both of these new repositories to
 the public Nexus group. To do so, click on the Groups link in the
 lefthand navigation menu in the Configuration section. When you see
 the Group management screen, click on the public group. Clicking on
 the public group should bring up a screen which resembles Figure 16-10.
[image: Adding new repositories to a Nexus group]

Figure 16-10. Adding new repositories to a Nexus group

To add the two new repositories to the public Nexus group,
 find the repositories in the Available Repositories list on the
 right, click on the repository you want to add, and drag it to the
 left to the Ordered Group Repositories list. Once the repository is
 in that list, you can click and drag the repository within the list
 to alter the order in which it will be searched for a matching
 artifact. Once the Google Caja and Google OAuth project repositories
 are added to the public Nexus group, you should be able to build
 Apache Shindig and watch Maven download the Caja and OAuth artifacts
 from the respective repositories.
Note
Nexus makes use of an interesting JavaScript widget library
 called ExtJS. ExtJS
 provides for a number of interesting UI widgets that allow for
 rich interaction such as the drag-and-drop UI for adding
 repositories to a group and reordering the contents of a
 group.

In the last few sections, you encountered a situation where
 you needed to add two custom repositories to a build in order to
 download two libraries (Google Caja and Google OAuth) that are not
 available in the central Maven repository. If you were not using a
 repository manager, you would have added these repositories to the
 repository
 element of your project’s POM, or you would have
 asked all of your developers to modify ~/.m2/settings.xml to reference two new
 repositories. Instead, you used the Nexus repository manager to add
 the two repositories to the public group. If all of the developers
 are configured to point to the public group in Nexus, you can freely
 swap in new repositories without asking your developers to change
 local configurations, and you’ve gained a certain amount of control
 over which repositories are made available to your development
 team.
Configuring Nexus

Many of the configuration screens shown in this section are
 available only to administrative users. Nexus allows the admin user to
 customize the list of repositories, create repository groups,
 customize server settings, and create routes or “rules” that Maven
 will use to include or exclude artifacts from a repository.
Customizing Server Configuration

In a real installation of Nexus, you’ll probably want to
 customize the administrative password to something other than
 “admin123”, and you might want to override the default directories
 that Nexus uses to store repository data. To do this, log in as the
 administrative user and click on Server under Configuration in the
 lefthand navigation menu. The server configuration screen is shown
 in Figures 16-11 and 16-12.
[image: Nexus server configuration (file, SMTP, and HTTP config)]

Figure 16-11. Nexus server configuration (file, SMTP, and HTTP
 config)

[image: Nexus server configuration (security, app server, and HTTP proxy config)]

Figure 16-12. Nexus server configuration (security, app server, and HTTP
 proxy config)

This screen allows you to change:
	Working directory
	Under the File Settings group, you can customize the
 working directory. You may wish to customize the working
 directory if your Nexus installation is going to be mirroring
 very large repositories and you want to put your working
 directory on another partition.

	Log directory
	You can change where Nexus looks for logs. On a Unix
 machine, a common practice is to place all log files under
 /var/log. If you wanted
 to follow this practice, you could create a /var/log/nexus directory with the
 appropriate permissions. Note that this setting does not
 change the logging directory used by Nexus; it simply tells
 Nexus where to look for the logs. To change the location of
 the logs, you will need to change the jul-logging.properties and
 log4j.properties files in
 the runtime/apps/nexus/conf directory
 of your Nexus installation.

	SMTP settings
	Nexus sends email to users who need to recover usernames
 and password. To set this up, you’ll need to configure the
 SMTP server settings in this dialog. This section of the form
 takes an SMTP host and port as well as other parameters
 relating to SMTP authentication and encryption. You can also
 change the From: header of an email from
 Nexus.

	User agent
	This is the identifier Nexus uses when it is making an
 HTTP request. You may want to change this
 if Nexus needs to use an HTTP proxy, and
 the proxy will work only if the user agent is set to a
 specific value.

	Additional URL parameters
	This is a list of extra parameters to place on a
 GET request to a remote repository. You
 could use this to add identifying information to
 requests.

	Request timeout
	The amount of time Nexus will wait for a request to
 succeed when interacting with an external, remote
 repository.

	Request retry attempts
	The number of times Nexus will retry a failed
 HTTP request.

	Security settings
	You can choose to enable or disable security, enable or
 disable anonymous access, and set the username and password
 for anonymous access. If you choose to enable security, you
 are telling Nexus to enforce role-based access control to
 enforce read and write access to repositories.
The anonymous username and password is used to integrate
 with other realms that may need a special username for
 anonymous access. In other words, the username and password
 here are what we attempt to authorize when someone makes an
 anonymous request. You would change the anonymous username to
 “guest” if you wanted to integrate Nexus with Microsoft’s
 Active Directory.

	Application server settings
	This section allows you to change the Base URL for your
 Nexus installation. It is used when generating links in emails
 and RSS feeds. The Sonatype Nexus repository is available on
 http://respository.sonatype.org, and it
 makes use of this Base URL field to ensure that links in
 emails and RSS feeds point to the correct URL.

	HTTP proxy settings
	A number of HTTP proxy settings for Nexus installations
 need to be configured to use an HTTP Proxy. You can specify a
 host, port, and a number of authentication options that might
 be required by your proxy server.

Managing Repositories

To manage Nexus repositories, log in as the administrative
 user and click on Repositories in the Configuration menu in the
 lefthand navigation menu. Nexus provides for three different kinds
 of repositories:
	Proxy repository
	A proxy repository is a proxy of a remote repository. By
 default, Nexus ships with the following configured proxy
 repositories:
	Apache Snapshots
	This repository contains snapshot releases from
 the Apache Software Foundation: http://people.apache.org/repo/m2-snapshot-repository

	Codehaus snapshots
	This repository contains snapshot releases from
 Codehaus: http://snapshots.repository.codehaus.org/

	Central Maven repository
	This is the central Maven repository (for
 releases): http://repo1.maven.org/maven2/

	Hosted repository
	A hosted repository is a repository that is hosted by
 Nexus. Maven ships with the following configured hosted
 repositories:
	3rd party
	This hosted repository should be used for
 third-party dependencies not available in the public
 Maven repositories. Examples of these dependencies could
 be commercial, proprietary libraries such as an Oracle
 JDBC driver that may be referenced by your
 organization.

	Releases
	This hosted repository is where your organization
 will publish internal releases.

	Snapshots
	This hosted repository is where your organization
 will publish internal snapshots.

	Virtual repository
	This serves as an adapter to and from different types of
 repositories. Currently Nexus supports conversion to and from
 Maven 1 repositories and Maven 2 repositories.

[image: Repository configuration screen for a proxy repository]

Figure 16-13. Repository configuration screen for a proxy
 repository

Figure 16-13 shows the Repository
 configuration screen for a proxy repository in Nexus. From this
 screen, you can manage the settings for proxying an external
 repository. You can configure:
	Repository ID
	The repository ID is the identifier that will be used in
 the Nexus URL. For example, the central proxy repository has
 an ID of “central”, which means Maven can access the
 repository directly at http://localhost:8081/nexus/content/repositories/central.
 The Repository ID must be unique in a given Nexus
 installation. An ID is required.

	Repository name
	The display name for a repository. A name is
 required.

	Repository type
	The type of repository (proxy, hosted, or virtual). You
 can’t change the type; it is selected when you create a
 repository.

	Repository policy
	If a proxy repository has a policy of release, it will
 only access released versions from the remote repository. If a
 proxy repository has a policy of snapshot, it will download
 snapshots from the remote repository.

	Default storage location
	Not editable; shown only for reference. This is the
 default storage location for the local cached contents of the
 repository.

	Override storage location
	You can choose to override the storage location for a
 specific repository. You would do this if you were concerned
 about storage and wanted to put the contents of a specific
 repository (such as central) in a different location.

	Remote repository access
	This section tells Nexus where to look for and how to
 interact with the remote Maven repository being
 proxied:
	Remote storage location
	This is the URL of the remote Maven
 repository.

	Download remote indexes (not shown in figure)
	This field controls the downloading of the remote
 indexes. Currently, only central has an index at http://repo1.maven.org/maven2/.index. If
 enabled, Nexus will download the index and use that for
 its searches as well as serve it up to any clients that
 ask for the index (such as m2eclipse). The default for
 new proxy repositories is enabled, but all of the
 default repositories included in Nexus have this option
 disabled. To change this setting for one of the proxy
 repositories that ship with Nexus, change the option,
 save the repository, and then re-index the repository.
 Once this is done, artifact search will return every
 artifact available in the central Maven repository. The
 section Managing Repositories,” earlier in
 this chapter, details the process for re-indexing a
 repository.

	Checksum policy
	Sets the checksum policy for a remote repository.
 This option is set to Warn by
 default. The possible values of this setting are:
	Ignore
	Ignore the checksums entirely.

	Warn
	Print a warning in the log if a checksum is
 not correct.

	StrictIfExists
	Refuse to cache an artifact if the calculated
 checksum is inconsistent with a checksum in the
 repository. Perform this check only if the checksum
 file is present.

	Strict
	Refuse to cache an artifact if the calculated
 checksum is inconsistent or if there is no checksum
 for an artifact.

	Authentication
	This section allows you to set a username,
 password, private key, key passphrase, NT LAN host, and
 NT LAN manager domain for a remote repository.

	Access settings
	This section configures access settings for a
 repository:
	Allow deployment
	If set to true, Nexus will allow Maven to deploy
 artifacts to this repository. This option is visible for
 hosted repositories.

	Allow file browsing
	When set to true, users can browse the contents of
 the repository with a web browser.

	Include in search
	When set to true, this repository is searched when
 you perform an artifact search in Nexus. If this setting
 is false, the contents of the repository are excluded
 from a search.

	Expiration settings
	Nexus maintains a local cache of artifacts and metadata.
 You can configure expiration parameters for a proxy
 repository. The expiration settings are:
	Not found cache TTL
	If Nexus fails to locate an artifact, it will
 cache this result for a given number of minutes. In
 other words, if Nexus can’t find an artifact in a remote
 repository, it will not repeatedly attempt to resolve
 this artifact until the Not Found Cache TTL time has
 been exceeded. The default for this setting is 1440
 minutes (or 24 hours).

	Artifact max age
	Tells Nexus when that maximum age of an artifact
 is before it retrieves a new version from the remote
 repository. The default for this setting is –1 for a
 repository with a release policy and 1440 for a
 repository with snapshot policy.

	Metadata max age
	Nexus retrieves metadata from the remote
 repository. It will retrieve updates to metadata only
 after the Metadata Max Age has been exceeded. The
 default value for this setting is 1440 minutes (or 24
 hours).

	HTTP request settings
	This section lets you change the properties of the HTTP
 request to the remote repository. You can configure the user
 agent of the request, add parameters to a request, and set the
 timeout and retry behavior. This section refers to the HTTP
 request made from Nexus to the remote Maven repository being
 proxied.

	HTTP proxy settings
	This section lets you configure the HTTP proxy for the
 request from Nexus to the remote repository. You can configure
 a proxy host and port plus any authentication settings you
 need to tell Nexus to use an HTTP proxy for all requests to a
 remote repository.

Managing Groups

Groups are a powerful feature of Nexus—they allow you to
 combine multiple repositories in a single URL. Nexus ships with two
 groups: public and public-snapshots. The public group combines the
 three hosted repositories: 3rd party, releases, and snapshots with
 the central Maven repository. The public-snapshots repository
 combines the Apache snapshots and Codehaus snapshots repositories.
 In Configuring Maven to Use Nexus Repositories,” earlier in this
 chapter, we configured Maven via the settings.xml to look for artifacts in the
 public group managed by Nexus. Figure 16-14
 shows the group configuration screen in Nexus; you can see the
 contents of the public group.
[image: Group configuration screen in Nexus]

Figure 16-14. Group configuration screen in Nexus

Note that the order of the repositories listed in Order Group
 Repositories is important. When Nexus searches for an artifact in a
 group of repositories, it returns the first match. To reorder a
 repository in this list, click and the drag the repositories in the
 Ordered Group Repositories selection list.
The order of repositories in a group can be used to influence
 the effective metadata that will be retrieved by Maven from a Nexus
 repository group. We recommend placing release repositories higher
 in the list than snapshot repositories so that LATEST and RELEASE versions are merged appropriately.
 We also recommend placing repositories with a higher probability of
 matching the majority of artifacts higher in this list. If most of
 your artifacts are going to be retrieved from the central Maven
 repository, putting the central repository higher in this list than
 a smaller, more focused repository will be better for performance,
 as Nexus will not interrogate the smaller remote repository for as
 many missing artifacts.
Managing Routes

Nexus routes are like filters you can apply to Nexus groups;
 they allow you to configure Nexus to include or exclude repositories
 from a particular artifact search when Nexus is trying to locate an
 artifact in a Nexus group. There are a number of different scenarios
 in which you might configure a route in Nexus. The most common is
 when you want to make sure that you are retrieving artifacts in a
 particular group ID from a particular repository. This is especially
 useful when you want to make sure that you are trying to retrieve
 your own organization’s artifacts from the hosted release and
 snapshot repositories. Nexus routes are applicable when you are
 trying to resolve an artifact from a Nexus group; using routes
 allows you to modify the repositories Nexus will consult when it
 tries to resolve an artifact from a group of repositories.
[image: Routes configuration screen in Nexus]

Figure 16-15. Routes configuration screen in Nexus

Figure 16-15 shows the route
 configuration screen. Clicking on a route will bring up a screen
 that allows you to configure the properties of the route. The
 configuration options available are:
	URL Pattern
	This is the pattern that Nexus will use to match a
 request to Nexus. If the regular expression in this pattern is
 matched, Nexus will either include or exclude the listed
 repositories from a particular artifact query. In Figure 16-15, the two patterns are:
	.*/(com|org)/somecompany/.*
	This pattern would match all of the paths that
 included either “/com/somecompany/” or
 “/org/somecompany”. The expression in the parentheses
 matches either com or
 org, and the .* matches one or more
 characters. You would use a route like this to match
 your own organization’s artifacts and map these requests
 to the hosted Nexus releases and snapshots
 repositories.

	.*/org/some-oss/.*
	This pattern is used in an exclusive route. It
 matches every path that contains “/org/some-oss/”. This
 particular exclusive route excludes the local hosted
 releases and snapshots directory for all artifacts that
 match this path. When Nexus tries to resolve artifacts
 that match this path, it will exclude the releases and
 snapshots repositories.

	Rule Type
	Rule type can be either “inclusive” or “exclusive.” An
 inclusive rule type defines the set of repositories that
 should be searched for artifacts when the
 URL pattern has been matched. An exclusive
 rule type defines repositories which should not be searched
 for a particular artifact.

	Ordered Route Repositories
	This is an ordered list of repositories which Nexus will
 search to locate a particular artifact. Nexus searches top to
 bottom; if it’s looking for an artifact, it will return the
 first match. When Nexus is looking for metadata, all
 repositories in a group are checked and the results are
 merged. The merging gives preference to the earlier
 repositories. This is relevant when a project is looking for a
 LATEST or a RELEASE
 version. Within a Nexus group, you should define the release
 repositories before the snapshot repositories; otherwise,
 LATEST may incorrectly resolve to a
 snapshot version.

In Figure 16-15, you can see the two
 dummy routes that Nexus has as default routes. The first route is an
 inclusive route; it is provided as an example of a custom route that
 an organization might use to make sure that internally generated
 artifacts are resolved from the releases and snapshots repositories.
 If your organization’s group IDs all start with com.somecompany, and if you deploy
 internally generated artifacts to the releases and snapshots
 repositories, this route will make sure that Nexus doesn’t waste
 time trying to resolve these artifacts from public Maven
 repositories such as the central Maven repository or the Apache
 snapshots repository.
The second dummy route is an exclusive route. This route
 excludes the releases and snapshots repositories when the request
 path contains “/org/some-oss”. This example might make more sense if
 we replaced “some-oss” with “apache” or “codehaus”. If the pattern
 were “/org/apache”, this rule would be telling Nexus to exclude the
 internal releases and snapshots repositories when it is trying to
 resolve these dependencies. In other words, don’t bother looking for
 an Apache dependency in your organization’s internal
 repositories.
What if there is a conflict between two routes? Nexus will
 process inclusive routes before it will process the exclusive
 routes. Remember that Nexus routes only affect Nexus’ resolution of
 artifacts when it is searching a group. When Nexus starts to resolve
 an artifact from a Nexus group, it will start with the list of
 repositories in a group. If there are matching inclusive routes,
 Nexus will then take the intersection of the repositories in the
 group and the repositories in the inclusive Nexus route. The order
 as defined in the Nexus group will not be affected by the Inclusive
 routes. Nexus will then take the result of applying the inclusive
 routes and apply the exclusive routes to this new group. The
 resulting list is then searched for a matching artifact.
One straightforward use of routes is to create one that
 excludes the central Maven repository from all searches for your own
 organization’s hosted artifacts. If you are deploying your own
 artifacts to Nexus under a groupId of
 org.mycompany, and if you are not deploying these
 artifacts to a public repository, you can create a rule that tells
 Nexus not to interrogate central for your own organization’s
 artifacts. This will improve performance because Nexus will not need
 to communicate with a remote repository when it serves your own
 organization’s artifacts. In addition to the performance benefits,
 excluding central from searches for your own artifacts will reduce
 needless queries to the public repositories.
To summarize, there are creative possibilities with routes
 that the designers of Nexus may not have anticipated, but we advise
 you to proceed with caution if you start relying on conflicting or
 overlapping routes. Use routes sparingly, and use course URL
 patterns. As Nexus evolves, there will be more features that allow
 for more fine-grained rules to allow you to prohibit requests for
 specific artifacts and specific versions of artifacts. Remember that
 routes are applied only to Nexus groups, and that routes are not
 used when an artifact is requested from a specific
 repository.
Managing Scheduled Services

Nexus allows you to schedule tasks that will be applied to all
 repositories or to specific repositories on a configurable schedule.
 You can create the following kinds of scheduled services:
	Remove snapshots from a repository
	Often, you will want to remove snapshots from a snapshot
 repository to preserve storage space. When you create a
 scheduled service to remove snapshots, you can specify:
	Minimum snapshots to preserve in a repository

	Snapshot retention (in days)

	Whether snapshots should be removed if an artifact
 has been released

	Clear repository caches
	Nexus maintains information about a proxied remote
 repository to avoid unnecessary network traffic. Clear cache
 simply expires the artifacts so that the next time they are
 requested, Nexus will recheck the remote. This scheduled job
 clears all cached information about a remote repository stored
 in your installation of Nexus and forces Nexus to retrieve
 artifacts and information from the remote repository.

	Evict unused proxied items from repository caches
	Use it or lose it. This scheduled service tells Nexus to
 get rid of all proxied items that haven’t been “used”
 (referenced or retrieved by a client). This can be a good job
 to run if you are try to conserve storage space. In this
 service, you can specify the number of days over which Nexus
 will look for activity before making the decision to evict an
 artifact. (See the upcoming note about deletion.)

	Publish indexes
	Just as Maven downloads an index from a remote
 repository, Nexus can publish an index in the same format.
 This will make it easier for people using m2eclipse or Nexus
 to interact with your repositories.

	Purge nexus timeline
	Nexus maintains a lot of data that relates to the
 interaction between itself, proxied remote repositories, and
 clients on Nexus. While this information can be important for
 purposes of auditing, it can also take up storage space. Using
 this scheduled service, you can tell Nexus to periodically
 purge this information. (See the upcoming note about
 deletion.)

	Rebuild repository attributes
	This scheduled service tells Nexus to walk every file in
 a repository and gather information such as checksums and file
 contents for every file.

	Re-index repositories
	This service tells Nexus to re-index a
 repository.

Note
The evict and purge actions do not delete data from the
 Nexus working directory. They simply move data to be cleared or
 evicted to a trash directory under the Nexus work directory. If
 you want to reclaim disk space, you need to clear the trash on the
 Browse Repositories screen. If something goes wrong with an evict
 or clear service, you can move the data back to the appropriate
 storage location from the trash.

When you create a new service, you can configure it to apply
 to all repositories, the repositories in a Nexus group, or a
 specific Nexus repository. A service can be scheduled to run once at
 a specific date and time, or periodically once every day, week, or
 month. If none of these options suit your specific needs, you can
 select a recurrence of “Advanced” that will allow you to supply your
 own cron expression to specify when the job should execute.
To create a new scheduled service, click on Scheduled Services
 under the Administration menu, and click on the Add button. This
 will bring up the screen shown in Figure 16-16.
[image: Managing Nexus scheduled services]

Figure 16-16. Managing Nexus scheduled services

Managing Security

The latest release of Nexus has role-based access control
 (RBAC), which gives administrators very fine-grained control over
 who can read from a repository (or a subset of repositories), who
 can administer the server, and who can deploy to repositories. The
 security model in Nexus is also so flexible that it allows you to
 specify that only certain users or roles can deploy and manage
 artifacts in a specific repository under a specific groupId or asset class. The default
 configuration of Nexus ships with three roles and three users with a
 standard set of permissions that will make sense for most users. As
 your security requirements evolve, you’ll likely need to customize
 security settings to create protected repositories for multiple
 departments or development groups. Nexus provides a security model
 that can adapt to almost anything.
Nexus’ RBAC system is designed around the following four
 security concepts:
	Privileges
	Privileges are rights to read, update, create, or manage
 resources and perform operations. Nexus ships with a set of
 core privileges that cannot be modified, and you can create
 new privileges to allow for fine-grained targeting of role and
 user permissions for specific repositories.

	Targets
	Privileges are usually associated with resources or
 targets. In the case of Nexus, a target can be a specific
 repository or a set of repositories grouped in something
 called a repository target. A target can also be a subset of a
 repository or a specific asset class within a repository.
 Using a target you can apply to a specific privilege to apply
 to a single groupId.

	Roles
	Collections of privileges can be grouped into roles to
 make it easier to define collections of privileges common to
 certain classes of users. For example, deployment users will
 all have similar sets of permissions. Instead of assigning
 individual privileges to individual users, you use roles to
 make it easier to manage users with similar sets of
 privileges. A role has one or more privilege and/or one or
 more roles.

	Users
	Users can be assigned roles and privileges, and model
 the individuals who will be logging into Nexus and read,
 deploying, or managing repositories.

Managing privileges

Nexus has two types of privileges: application privileges,
 which cover actions a user can execute in Nexus, and
 repository-target privileges, which govern the level of access a
 user has to a particular repository or repository target. Behind
 the scenes, a privilege is related to a single REST operation and
 method such as create, update, delete, or read. See Figure 16-17.
[image: Managing security privileges]

Figure 16-17. Managing security privileges

Repository target privileges can apply to individual
 repositories or repository targets. All of the permissions that
 ship with Nexus target repository targets. To create a new
 repository target privilege that targets a specific repository,
 click on the Add button and select a repository from the
 repository drop-down. Application permissions correspond to areas
 of the application to which a user has a specific level of access
 (method). The available methods are create, read, update, and
 delete (CRUD). The list of application permissions are as
 follows:
	Administrator privilege (ALL)

	Artifact download

	Artifact upload

	Checksum search

	Clear repository cache

	Configuration file

	Login to UI

	Logs

	Nexus remote control

	Read repository metadata

	Read repository status

	Rebuild repository attributes

	Re-index

	Repositories

	Repository groups

	Repository routes

	Repository targets

	Repository templates

	RSS feeds

	Scheduled tasks

	Search repositories

	Server settings

	Server status

	Status

	User change password

	User forgot password

	User forgot user ID

	User privileges

	User reset password

	User roles

	Users

	Wastebasket

Managing repository targets

A target is a set of regular expressions to match on a path
 (exactly how the route rules work now). This allows you to define,
 for example, a target called Apache Maven that is org/apache/maven/.* You can then add a
 new privilege that relates to the target and controls the CRUD
 operations for artifacts matching that path (the privilege can
 span multiple repositories if you want). You could thus delegate
 all control of org.apache.maven
 targets to a “Maven” team. In this way, you don’t need to create
 separate repositories for each logical division of your artifacts.
 See Figure 16-18.
[image: Managing repository targets]

Figure 16-18. Managing repository targets

Managing security roles

Nexus ships with three roles: Nexus administrator role,
 Nexus anonymous role, and Nexus deployment role. The administrator
 role grants all privileges, the anonymous role grants read-only
 privileges, and the deployment role grants read and update
 permissions for all repositories. See Figure 16-19.
[image: Managing security roles]

Figure 16-19. Managing security roles

With the repository targets, you have fine-grained control
 over every action in the system. For example, you could make a
 target that includes everything except sources (.*(?!-sources)\.*) and assign that to
 one group while giving yet another group access to everything.
 This means that you can host your public and private artifacts in
 a single repository without giving up control of your private
 artifacts.
Managing users

Nexus ships with three users: admin, anonymous, and
 deployment. The admin user has all privileges, the anonymous user
 has read-only privileges, and the deployment user can both read
 and deploy to repositories. If you need to create users with a
 more focused set of permissions, you can click on Users under
 Security in the lefthand navigation menu. Once you see the list of
 users, you can click on a user to edit that specific user ID,
 name, email, or status. You can also assign or revoke specific
 roles or permissions for a particular user. See Figure 16-20.
[image: Managing users]

Figure 16-20. Managing users

Network Configuration

By default, Nexus listens on port 8081. You can change this
 port by changing the value in ${NEXUS_HOME}/conf/plexus.properties;
 this file is shown in Example 16-3. To change
 the port, stop Nexus, change the value of
 applicationPort in this file, and then restart
 Nexus. Once you do this, you should see a log statement in ${NEXUS_HOME}/logs/wrapper.log telling
 you that Nexus is listening on the altered port.
Example 16-3. Contents of ${NEXUS_HOME}/conf/plexus.properties
applicationPort=8081
runtime=${basedir}/runtime
apps=${runtime}/apps
work=${runtime}/work
webapp=${runtime}/apps/nexus/webapp
nexus.configuration=${runtime}/apps/nexus/conf/nexus.xml

Maintaining Repositories

Once you’ve set up a series of repositories and grouped those
 repositories into Nexus groups, users will be able to see a list of
 repositories in the Nexus UI by clicking on the Repositories link in
 the lefthand navigation menu in the Maintenance section. This will
 bring up a list of repositories. This list will show you the status of
 the remote repository. To test this, edit one of your repositories to
 have a garbage remote storage location URL; you will then notice that
 the status of this repository will change on the Manage Repositories
 screen. Clicking on a repository will bring up a tree view that
 provides users with a way to navigate through the contents of a
 repository.
Right-clicking on a repository will bring up a series of actions
 that can be applied to a repository. The available actions for each
 repository are as follows (some are shown in Figure 16-21):
[image: Repository options (right-click on a repository)]

Figure 16-21. Repository options (right-click on a repository)

	Clear Cache
	Clears the cache for the repository. This causes Nexus to
 check the remote repository for new updates or snapshots. It
 also resets the Not Found Cache.

	Re-Index
	Causes Maven to re-index a repository. Nexus will recreate
 the index it uses to search for a request artifact. If the
 repository has been configured to download the remote index,
 this option will cause Nexus to download the remote index from
 the remote repository.
 Note that if you have enabled the remote index download, the
 remote index may take some time to download from the remote
 repository. You will know that the remote repository has been
 updated for a large remote repository, such as the central Maven
 repository, when the artifact search results start showing
 artifacts that haven’t been cached or requested.

	Rebuild Attributes
	Rebuilds the attributes for a given repository. This will
 cause Nexus to go through the entire repository and process
 every file, updating attributes such as checksums.

	Upload Artifact...
	(Only visible for hosted repositories.) You can use this
 option to upload an artifact to a hosted repository.

	Put Out of Service
	In the Browse Repositories view, you have the option of
 putting a repository “out of service.” When a hosted repository
 is put out of service, no artifacts can be served from that
 repository.

	Block Proxy
	In the Browse Repositories view, you have the option of
 blocking a proxy for a proxy repository. Blocking a proxy
 repository has the side effect of cutting communication between
 Nexus and the remote repository. Although this is a rather blunt
 instrument for controlling the contents of a repository, you can
 use this feature to make
 certain that no new artifacts are downloaded from a remote
 repository.

Uploading Artifacts to Hosted Repositories

If you are using Nexus hosted repositories, the best way to
 deploy an artifact is to use the procedure details covered in the
 upcoming section Deploying Artifacts to Nexus.” But there may
 be times when you just need to upload an artifact to Nexus manually
 for a number of reasons. One frequent reason for uploading an
 artifact manually is that a vendor or proprietary software vendor
 has left you with a single JAR file for something like a commercial
 database and they haven’t bothered to publish this driver’s JAR file
 in a public Maven repository. In this case, you’ll want to upload a
 JAR artifact and supply the Maven coordinates so that Nexus can
 serve it from your third-party hosted repository just like any other
 artifact.
To upload an artifact, select the repository in either the
 Browse Repositories list or the list that is displayed when clicking
 on Repositories in the Administration menu. Right-click on a hosted
 repository, and select Upload
 Artifact.... You should then see the Artifact Upload
 form shown in Figure 16-22.
[image: Manual upload of an artifact to a hosted repository]

Figure 16-22. Manual upload of an artifact to a hosted repository

When you upload an artifact, you must choose a file to upload,
 and then you must either supply a POM file or
 populate the Maven coordinates by selecting Attributes. If you
 upload a JAR file such as test.jar, and then you supply a group ID,
 artifact ID, version, and packaging of org.test,
 test, 1.0, and
 jar, Nexus will upload the file to the
 appropriate directory and create a POM and a few
 checksums for the artifact. If you choose to upload a pom.xml, Nexus will use the group ID,
 artifact ID, version, and packaging of the upload
 POM to find the appropriate location for your
 manually uploaded artifact.
Deploying Artifacts to Nexus

Different organizations have different reasons for deploying
 artifacts to an internal repository. In large organizations with
 hundreds (or thousands) of developers, an internal Maven repository
 can be an efficient way for different departments to share releases
 and development snapshots with one another. Most organizations that
 use Maven will eventually want to start deploying both releases and
 artifacts to a shared, internal repository. Using Nexus, it is easy to
 deploy artifacts to Nexus hosted repositories.
To deploy artifacts to Nexus, supply the repository
 URL in distributionManagement
 and run mvn deploy. Maven will push
 project POMs and artifacts to your Nexus
 installation with a simple HTTP PUT. No extra wagon
 extension is needed in your project’s POM. Nexus
 works with Maven’s built-in
 wagon-http-lightweight.
Configuring Deployment Security

Nexus ships with a deployment user that has a default password
 of deployment123. For this chapter, we’ll assume
 that you are using the default deployment password. To configure
 Maven to deploy to Nexus, add the following server elements to your
 ~/.m2/settings.xml file:
<settings>
 ...
 <servers>
 <server>
 <id>releases</id>
 <username>deployment</username>
 <password>deployment123</password>
 </server>
 <server>
 <id>snapshots</id>
 <username>deployment</username>
 <password>deployment123</password>
 </server>
 <server>
 <id>thirdparty</id>
 <username>deployment</username>
 <password>deployment123</password>
 </server>
 </servers>
 ...
</settings>
You supply security credentials in your own Maven settings
 file in the form of a server name, a username, and a password. When
 you attempt to deploy to a server with an identifier of
 releases or snapshots, Maven
 will consult your settings.xml
 to find these credentials.
Deploying Releases

To deploy a release artifact to Nexus, you need to configure a
 repository in the
 distributionManagement section of your project’s
 POM. Example 16-4 shows
 an example of a release deployment repository that is configured to
 point to the releases repository at http://localhost:8081/nexus/content/repositories/releases.
 This is one of the default hosted repositories that comes configured
 in Nexus.
Example 16-4. Configuring release repository for deployment
<project>
 ...
 <distributionManagement>
 ...
 <repository>
 <id>releases</id>
 <name>Internal Releases</name>
 <url>http://localhost:8081/nexus/content/repositories/releases</url>
 </repository>
 ...
 </distributionManagement>
 ...
</project>

You would replace localhost:8081 with the
 host and port of your Nexus installation. Once your project has this
 configuration, you can deploy an artifact by executing mvn deploy:
$ mvn deploy
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] Sample Project
[INFO] --
[INFO] Building Sample Project
[INFO] task-segment: [deploy]
[INFO] --
[INFO] [site:attach-descriptor]
[INFO] [install:install]
[INFO] Installing ~/svnw/sample/pom.xml to ~/.m2/repository/sample/sample\
 /1.0/sample-1.0.pom
[INFO] [deploy:deploy]
altDeploymentRepository = null
[INFO] Retrieving previous build number from snapshots
Uploading: http://localhost:8081/nexus/content/repositories/releases/\
 sample/sample/1.0/sample-1.0.pom
24K uploaded

Note that Nexus can support multiple hosted repositories; you
 don’t need to stick with the default releases and snapshots
 repositories. You can create different hosted repositories for
 different departments and then combine multiple repositories into a
 single Nexus group.
Deploying Snapshots

To deploy a snapshot artifact to Nexus, you need to configure
 a snapshotRepository in the
 distributionManagement section of your project’s
 POM. Example 16-5 shows
 an example of a snapshot deployment repository that is configured to
 point to the snapshots repository at http://localhost:8081/nexus/content/repositories/snapshots.
Example 16-5. Configuring snapshot repository for deployment
<project>
 ...
 <distributionManagement>
 ...
 <snapshotRepository>
 <id>snapshots</id>
 <name>Internal Snapshots</name>
 <url>http://localhost:8081/nexus/content/repositories/snapshots</url>
 </snapshotRepository>
 ...
 </distributionManagement>
 ...
</project>

You would replace localhost:8081 with the
 host and port of your Nexus installation. Once your project has this
 configuration, you can deploy an artifact by executing mvn deploy. Maven will deploy to the
 snapshotRepository if your project has a snapshot
 version (i.e., 1.0-SNAPSHOT):
$ mvn deploy
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] Sample Project
[INFO] --
[INFO] Building Sample Project
[INFO] task-segment: [deploy]
[INFO] --
[INFO] [site:attach-descriptor]
[INFO] [install:install]
[INFO] Installing ~/svnw/sample/pom.xml to ~/.m2/repository/sample/sample\
 /1.0-SNAPSHOT/sample-1.0-20080402.125302.pom
[INFO] [deploy:deploy]
altDeploymentRepository = null
[INFO] Retrieving previous build number from snapshots
Uploading: http://localhost:8081/nexus/content/repositories/releases/\
 sample/sample/1.0-SNAPSHOT/sample-1.0-20080402.125302.pom
24K uploaded

Deploying Third-Party Artifacts

Your Maven projects may start depending on artifacts that are
 not available from the central Maven repository or any other public
 Maven repository. This can happen for a number of reasons; perhaps
 the artifact in question is a JDBC driver for a
 proprietary database such as Oracle, or perhaps you are depending on
 another JAR that is neither open source nor
 freely available. In these cases, you will have to get your hands on
 the artifact in question and publish it to your own repository.
 Nexus provides a hosted “third-party” repository for just this
 purpose.
To illustrate the process of publishing an artifact to the
 third-party repository, we will use a real artifact: the Oracle
 JDBC drivers. Oracle publishes a widely used
 commercial database product that has a JDBC
 driver that is not present in the central Maven repository. Although
 the central Maven repository maintains some POM
 information for the Oracle JDBC driver at http://repo1.maven.org/maven2/com/oracle/ojdbc14/10.2.0.3.0/,
 there is only a POM that references the Oracle
 site. Let’s say you add the dependency shown in Example 16-6 to your project.
Example 16-6. Oracle JDBC JAR dependency
<project>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>com.oracle</groupId>
 <artifactId>ojdbc14</artifactId>
 <version>10.2.0.3.0</version>
 </dependency>
 ...
 </dependencies>
 ...
</project>

Running a Maven build with this dependency will produce the
 following output:
$ mvn install
...
[INFO] --
[ERROR] BUILD ERROR
[INFO] --
[INFO] Failed to resolve artifact.

Missing:

1) com.oracle:ojdbc14:jar:10.2.0.3.0

 Try downloading the file manually from:
 http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

 Then, install it using the command:
 mvn install:install-file -DgroupId=com.oracle -DartifactId=ojdbc14 \
 -Dversion=10.2.0.3.0 -Dpackaging=jar -Dfile=/path/to/file

Alternatively, if you host your own repository you can deploy the file there:
 mvn deploy:deploy-file -DgroupId=com.oracle -DartifactId=ojdbc14 \
 -Dversion=10.2.0.3.0 -Dpackaging=jar -Dfile=/path/to/file \
 -Durl=[url] -DrepositoryId=[id]

 Path to dependency:
 	1) sample:sample:jar:1.0-SNAPSHOT
 	2) com.oracle:ojdbc14:jar:10.2.0.3.0

1 required artifact is missing.

The Maven build fails because it can’t find the Oracle
 JDBC driver in the Maven repository. To remedy
 this situation, you need to publish the Oracle
 JDBC artifact to your Nexus third-party
 repository. To do so, download the Oracle JDBC
 driver from http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
 and save it to the file ojdbc.jar.
Once you have downloaded the file for this third-party asset,
 we recommend that you use the UI-based upload that was shown in the
 section Uploading Artifacts to Hosted Repositories,” earlier in this
 chapter. Uploading via the UI is easier and less error-prone than
 calling the deploy:deploy-file goal from the
 command line. If you prefer to upload this third-party from the
 command line, execute the following command:
$ mvn deploy:deploy-file -DgroupId=com.oracle -DartifactId=ojdbc14 \
> -Dversion=10.2.0.3.0 -Dpackaging=jar -Dfile=ojdbc.jar \
> -Durl=http://localhost:8081/nexus/content/repositories/thirdparty \
> -DrepositoryId=thirdparty
...
[INFO] [deploy:deploy-file]
Uploading: http://localhost:8081/nexus/content/repositories/thirdparty/\
 com/oracle/ojdbc14/10.2.0.3.0/ojdbc14-10.2.0.3.0.jar
330K uploaded
[INFO] Retrieving previous metadata from thirdparty
[INFO] Uploading repository metadata for: 'artifact com.oracle:ojdbc14'
[INFO] Retrieving previous metadata from thirdparty
[INFO] Uploading project information for ojdbc14 10.2.0.3.0

After you run mvn
 deploy:deploy-file, this artifact will be published to the
 third-party repository in Nexus.
Chapter 17. Writing Plugins

Introduction

Although this chapter covers an advanced topic, don’t let the
 idea of writing a Maven plugin intimidate you. For all of the
 theory and complexity of this tool, the fundamental concepts are easy
 to understand and the mechanics of writing a plugin are straightforward. After you read this chapter,
 you will have a better grasp of what is involved in creating a Maven
 plugin.

Programming Maven

Most of this book has dealt with using Maven, though you haven’t
 yet seen many code examples dealing with Maven customization. In fact,
 you haven’t seen any. This is by design, since 99 out of 100 Maven
 users will never need to write a custom plugin to customize Maven.
 There is an abundance of configurable plugins, and unless your project
 has particularly unique requirements, you will have to work to find a
 reason to write a new plugin. And a very small percentage of people
 who end up writing custom plugins will ever need to crack open the
 source code for Maven and customize a core Maven component. If you
 really needed to customize the behavior of Maven, you would then write
 a plugin. Modifying the core Maven code is as far out of scope for
 most developers as modifying the TCP/IP stack on an operating system;
 it is that abstract for most Maven users.
On the other hand, if you are going to
 start writing a custom plugin, you will have to learn a bit about the
 internals of Maven: How does it manage software components? What does
 a plugin do? How can I customize the lifecycle? This section answers
 some of those questions and introduces a few concepts at the core of
 Maven’s design. Learning how to write a custom Maven plugin is the
 gateway to customizing Maven itself. If you were wondering how to
 begin understanding the code behind Maven, you’ve found the proper
 starting place.
What Is Inversion of Control?

At the heart of Maven is an Inversion of Control (IoC)
 container called Plexus. What does it do? It is a system for managing
 and relating components. Although Martin Fowler wrote a canonical
 essay about IoC, the concept and term have been so heavily
 overloaded in the past few years that it is tough to find a good
 definition of the concept that isn’t a self-reference (or just a
 lazy reference to the aforementioned essay). Instead of resorting to
 a Wikipedia quote, we’ll summarize Inversion of Control and
 Dependency Injection (DI) with an analogy.
Suppose you have a series of components that need to be wired
 together. When you think about components, think stereo components,
 not software components. Imagine several stereo components hooked up
 to a PlayStation 3 and a TiVo that have to interface with an Apple
 TV box as well as a 50” flat panel LCD TV. You bring everything home
 from the electronics store, and you purchase a series of cables that
 you will use to connect it all. You unpack all of these components,
 put them in their right places, and then get to the job of hooking
 up 50,000 coaxial cables and stereo jacks to 50,000 digital inputs
 and network cables. Step back from your home entertainment center
 and turn on the TV; you’ve just performed Dependency Injection, and
 you’ve just been using an IoC container.
So, what does that have to do with anything? Your PlayStation
 3 and a Java bean both provide an interface. The PlayStation 3 has
 two inputs—power and network—and one output to the TV. Your Java
 bean has three properties: power,
 network, and tvOutput. When
 you open the box of your PlayStation 3, it doesn’t provide you with
 detailed pictures and instructions for how to connect it to every
 different kind of TV that might be in every different kind of house,
 and when you look at your Java bean, it just provides a set of
 properties, not an explicit recipe for creating and managing an
 entire system of components. In an IoC container such as Plexus, you
 are responsible for declaring the relationships between a set of
 components that simply provide an interface of inputs and outputs.
 You don’t instantiate objects; Plexus does. Your application’s code
 isn’t responsible for managing the state of components; Plexus is.
 Although it sounds cheesy, when you start up Maven, it starts Plexus
 and manages a system of related components just like your stereo
 system does.
What are the advantages of using an IoC container? Well, what
 is the advantage of buying discrete stereo components? If one
 component breaks, you can drop in a replacement for your PlayStation
 3 without having to spend $20,000 on the entire system. If you are
 unhappy with your TV, you can swap it out without affecting your CD
 player. Most important to you, your stereo components cost less and
 are more capable and reliable because manufacturers can build to a
 set of known inputs and outputs and can focus on building individual
 components. IoC containers and DI encourage disaggregation and the
 emergence of standards. The software industry likes to imagine
 itself as the font of all new ideas, but DI and IoC are really just
 new terms for the concepts of disaggregation and interchangeable
 machinery. If you really want to know about DI and IoC, learn about
 the Model T, the cotton gin, and the emergence of a railroad
 standard in the late 19th century.

Introduction to Plexus

The most important feature of an IoC
 container implemented in Java is the mechanism of Dependency
 Injection. The basic idea of IoC is that the
 control of creating and managing objects is removed from the code
 itself and placed into the power of an IoC
 framework. Using DI in an application that has been programmed to
 interfaces, you can create components that are not bound to specific
 implementations of these interfaces. Instead, you program to
 interfaces and then configure Plexus to connect the appropriate
 implementation to the appropriate component. While your code deals
 with interfaces, you can capture the dependencies between classes
 and components in an XML file that defines
 components, implementation classes, and the relationships between
 your components. In other words, you can write isolated components,
 and then you can wire them together using an XML
 file that defines how the components are wired together. In the case
 of Plexus, system components are defined with an
 XML document that is found in META-INF/plexus/components.xml.
In a Java IoC container, several methods
 exist for injecting dependencies values into a component object:
 constructor, setter, or field injections. Although Plexus is capable
 of all three Dependency Injection techniques, Maven uses only two
 types—field and setter injection:
	Constructor Injection
	Constructor Injection is populating an object’s values
 through its constructor when an instance of the
 object is created. For example, if you had an object of type
 Person that had the constructor
 Person(String name, Job job), you
 could pass in values for both name and
 job via this constructor.

	Setter Injection
	Setter Injection is using the setter method of a
 property on a Java bean to populate object dependencies. For
 example, if you were working with a
 Person object with the properties
 name and job, an
 IoC container that uses Setter Injection
 would create an instance of Person
 using a no-arg constructor. Once it had an instance of
 Person, it would
 proceed to call the setName() and
 setJob() methods.

	Field Injection
	Both Constructor and Setter Injection rely on a call to
 a public method. Using Field Injection, an
 IoC container populates a component’s
 dependencies by setting an object’s fields directly. For
 example, if you were working with a
 Person object that had two fields
 name and job, your
 IoC container would populate these
 dependencies by setting these fields directly (i.e.,
 person.name = "Thomas"; person.job =
 job;).

Why Plexus?

Spring happens to be the most popular IoC container at the
 moment, and there’s a good argument to be made that it
 has affected the Java “ecosystem” for the better, forcing companies
 such as Sun Microsystems to yield more control to the open source
 community and helping open up standards by providing a pluggable,
 component-oriented “bus.” But Spring isn’t the only IoC container in
 open source. There are many IoC containers (such as PicoContainer;
 see http://www.picocontainer.org/).
Years and years ago, when Maven was created, Spring wasn’t a
 mature option. The initial team of committers on Maven were more
 familiar with Plexus because they had invented it, so they decided
 to use it as an IoC container. Although it might not be as popular
 as the Spring Framework, it is no less capable. And the fact that it
 was created by the same person who created Maven makes it a perfect
 fit. After reading this chapter, you will have an idea of how Plexus
 works. If you already use an IoC container, you’ll notice
 similarities and differences between Plexus and the container you
 currently use.
Note
Just because Maven is based on Plexus doesn’t mean that the
 Maven community is “anti-Spring” (we’ve included a whole chapter
 with a Spring example in this book; portions of the Spring project
 are moving to Maven as a build platform). We get the question “Why
 didn’t you use Spring?” often enough that it makes sense for us to
 address it here. We know—Spring is a rock star, we don’t deny it,
 but it is on our continual to-do list to introduce people to (and
 document) Plexus. Choice in the software industry is always a good
 thing.

What Is a Plugin?

A Maven plugin is a Maven artifact that contains a Plugin
 descriptor and one or more Mojos. A Mojo can be
 thought of as a goal in Maven, and every goal corresponds to a Mojo.
 The compiler:compile goal corresponds to the
 CompilerMojo class in the Maven Compiler
 plugin, and the jar:jar goal corresponds to the
 JarMojo class in the Maven Jar plugin. When
 you write your own plugin, you are simply grouping together a set of
 related Mojos (or goals) in a single plugin artifact.
Note
Mojo? What is a Mojo? The word mojo is
 defined as “a magic charm or spell,” “an amulet, often in a small
 flannel bag containing one or more magic items,” and “personal
 magnetism; charm.”[5] Maven uses the term Mojo
 because it is a play on the word Pojo (Plain-Old Java
 Object).

A Mojo is much more than just a goal in Maven; it is a
 component managed by Plexus that can include references to other
 Plexus components.

Plugin Descriptor

A Maven plugin contains a road map for Maven that tells Maven
 about the various Mojos and plugin configurations. This plugin
 descriptor is present in the plugin JAR file in
 META-INF/maven/plugin.xml. When
 Maven loads a plugin, it reads this XML file, and
 instantiates and configures plugin objects to make the Mojos contained
 in a plugin available to Maven.
When you are writing custom Maven plugins, you will almost never
 need to think about writing a plugin descriptor. In Chapter 10, the lifecycle goals bound to the
 maven-plugin packaging type show
 that the plugin:descriptor goal is bound to the
 generate-resources phase. This goal generates a
 plugin descriptor off the annotations present in a plugin’s source
 code. Later in this chapter, you will see how Mojos are annotated, and
 you will also see how the values in these annotations end up in the
 META-INF/maven/plugin.xml
 file.
Example 17-1 shows a plugin descriptor for
 the Maven Zip plugin. This plugin is a contrived plugin that simply
 zips up the output directory and produces an archive. Normally, you
 wouldn’t need to write a custom plugin to create an archive from
 Maven; you could simply use the Maven Assembly plugin that is capable
 of producing a distribution archive in multiple formats. Read through
 the plugin descriptor in this example to get an idea of the content it
 contains.
Example 17-1. Plugin descriptor
<plugin>
 <description></description>
 <groupId>com.training.plugins</groupId>
 <artifactId>maven-zip-plugin</artifactId>
 <version>1-SNAPSHOT</version>
 <goalPrefix>zip</goalPrefix>
 <isolatedRealm>false</isolatedRealm>
 <inheritedByDefault>true</inheritedByDefault>
 <mojos>
 <mojo>
 <goal>zip</goal>
 <description>Zips up the output directory.</description>
 <requiresDirectInvocation>false</requiresDirectInvocation>
 <requiresProject>true</requiresProject>
 <requiresReports>false</requiresReports>
 <aggregator>false</aggregator>
 <requiresOnline>false</requiresOnline>
 <inheritedByDefault>true</inheritedByDefault>
 <phase>package</phase>
 <implementation>com.training.plugins.ZipMojo</implementation>
 <language>java</language>
 <instantiationStrategy>per-lookup</instantiationStrategy>
 <executionStrategy>once-per-session</executionStrategy>
 <parameters>
 <parameter>
 <name>baseDirectory</name>
 <type>java.io.File</type>
 <required>false</required>
 <editable>true</editable>
 <description>Base directory of the project.</description>
 </parameter>
 <parameter>
 <name>buildDirectory</name>
 <type>java.io.File</type>
 <required>false</required>
 <editable>true</editable>
 <description>Directory containing the build files.</description>
 </parameter>
 </parameters>
 <configuration>
 <buildDirectory implementation="java.io.File">
 ${project.build.directory}</buildDirectory>
 <baseDirectory implementation="java.io.File">
 ${basedir}</baseDirectory>
 </configuration>
 <requirements>
 <requirement>
 <role>org.codehaus.plexus.archiver.Archiver</role>
 <role-hint>zip</role-hint>
 <field-name>zipArchiver</field-name>
 </requirement>
 </requirements>
 </mojo>
 </mojos>
 <dependencies>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-io</artifactId>
 <version>1.3.2</version>
 </dependencies>
</plugin>

A plugin descriptor has three parts: the top-level configuration
 of the plugin that contains elements such as
 groupId and artifactId, the
 declaration of Mojos, and the declaration of dependencies. Let’s
 examine each of these sections in more detail.
Top-Level Plugin Descriptor Elements

The top-level configuration values in the plugin element are:
	description
	This element contains a short description of the plugin.
 In the case of the Zip plugin, this description is
 empty.

	groupId, artifactId, version
	Just like everything else in Maven, a plugin needs to
 have a unique coordinate. The groupId, artifactId, and version are used to locate the
 plugin artifact in a Maven repository.

	goalPrefix
	This element controls the prefix used to reference goals
 in a particular plugin. If you were to look at the
 Compiler plugin’s descriptor, you would see that goalPrefix has a value of
 compile, and if you look at the descriptor
 for the Jar plugin, it would have a
 goalPrefix of jar. It is
 important that you choose a distinct goal prefix for your
 custom plugin.

	isolatedRealm
 (deprecated)
	This is a legacy property that is no longer used by
 Maven. It is still present in the system to provide for
 backward compatibility with older plugins. Earlier versions of
 Maven provided a mechanism to load a plugin’s dependencies in
 an isolated ClassLoader. Maven makes
 extensive use of a project called ClassWorlds (http://classworlds.codehaus.org/)
 from the Codehaus community to create hierarchies of
 ClassLoader objects that are modeled by
 a ClassRealm object. Feel free to
 ignore this property and always set it to
 false.

	inheritedByDefault
	If inheritedByDefault
 is set to true, any
 Mojo in this plugin that is configured in a parent project
 will be configured in a child project. If you configure a Mojo
 to execute during a specific phase in a parent project, and
 the plugin has inheritedByDefault set to
 true, this execution will
 be inherited by the child project. If inheritedByDefault is not set
 to true, a goal execution
 defined in a parent project will not be inherited by a child
 project.

Mojo Configuration

Next is the declaration of each Mojo. The plugin element contains an element named mojos that contains a mojo element for each Mojo present in the
 plugin. Each mojo element
 contains the following configuration elements:
	goal
	This is the name of the goal. If you were running
 the compiler:compile goal, then
 compiler would be the plugin’s
 goalPrefix and compile
 would be the name of the goal.

	description
	This contains a short description of the goal to display
 to the users when they use the Help plugin to
 generate plugin documentation.

	requiresDirectInvocation
	If you set this to true, the goal can
 be executed only if it is explicitly executed
 from the command line by the user. If someone tries to bind
 this goal to a lifecycle phase in a POM,
 Maven will print an error message. The default for this
 element is false.

	requiresProject
	This specifies that a given goal cannot be executed
 outside of a project. The goal requires a project with a
 POM. The default value for this requiresProject is
 true.

	requiresReports
	If you were creating a plugin that relies on the
 presence of reports, you would need to set
 requiresReports to true.
 For example, if you were writing a plugin to aggregate
 information from a number of reports, you would set
 requiresReports to true.
 The default for this element is
 false.

	aggregator
	A Mojo descriptor with aggregator set
 to true is supposed to run only
 once during the execution of Maven. It was created to give
 plugin developers the ability to summarize the output of a
 series of builds; for example, to create a plugin that
 summarizes a report across all projects included in a build. A
 goal with aggregator
 set to true should be run against only the
 top-level project in a Maven build. The default value of
 aggregator is false.
 aggregator is slated for deprecation in a
 future release of Maven.

	requiresOnline
	This specifies that a given goal cannot be executed if
 Maven is running in offline mode (e.g., the -o command-line option). If a goal
 depends on a network resource, you would specify a value of
 true for this element and Maven would print
 an error if the goal were executed in offline mode. The
 default for requiresOnline is
 false.

	inheritedByDefault
	If inheritedByDefault is set to
 true, a Mojo that is configured in a parent
 project will be configured in a child project.
 If you configure a Mojo to execute during a specific phase in
 a parent project and the Mojo descriptor has inheritedByDefault set to
 true, this execution will be inherited by
 the child project. If inheritedByDefault is not set
 to true, then a goal execution defined in a
 parent project will not be inherited by a child
 project.

	phase
	If you don’t bind this goal to a specific phase, this
 element defines the default phase for this Mojo.
 If you do not specify a phase element, Maven will require
 the user to explicitly specify a phase in a
 POM.

	implementation
	This element tells Maven which class to instantiate for
 this Mojo. This is a Plexus component property
 (defined in Plexus
 ComponentDescriptor).

	language
	The default language for a Maven Mojo is java. This controls the
 Plexus ComponentFactory used to
 create instances of this Mojo component. This chapter focuses
 on writing Maven plugins in Java, but you can also write Maven
 in a number of alternative languages such as Groovy,
 BeanShell, and Ruby. If you were writing a plugin in one of
 these languages, you would use a language element value other
 than java.

	instantiationStrategy
	This property is a Plexus component configuration
 property; it tells Plexus how to create and manage
 instances of the component. In Maven, all mojos are going to
 be configured with an instantiationStrategy
 of per-lookup; a new instance of the
 component (mojo) is created
 every time it is retrieved from Plexus.

	executionStrategy
	The execution strategy tells Maven when and how to
 execute a Mojo. The valid values are
 once-per-session and
 always. In truth, the valid values can be
 anything. This particular property doesn’t do a thing; it is a
 holdover from an early design of Maven. This property is
 slated for deprecation in a future release of Maven.

	parameters
	This element describes all of the parameters for this
 Mojo. What is the name of the parameter? What is the
 type of parameter? Is it required? Each parameter has the
 following elements:
	name
	This is the name of the parameter (i.e., baseDirectory).

	type
	This is the type (Java class) of the parameters
 (i.e.,
 java.io.File).

	required
	Is the parameter required? If true, the parameter
 must be nonnull when the goal is executed.

	editable
	If a parameter is not editable (if editable is set to
 false), the value of the parameter
 cannot be set in the POM. For
 example, if the plugin descriptor defines the value of
 buildDirectory to be
 ${basedir} in the descriptor, a
 POM cannot override this value to be
 another value in a POM.

	description
	This is a short description to use when generating
 plugin documentation (using the Help
 plugin).

	configuration
	This element provides default values for all of the
 Mojo’s parameters using Maven property notation. This
 example provides a default value for the
 baseDir Mojo parameter and the
 buildDirectory Mojo parameter. In the
 parameter element, the
 implementation specifies the type of the parameter (in this
 case, java.io.File). The value in the
 parameter element contains
 either a hardcoded default or a Maven property
 reference.

	requirements
	This is where the descriptor gets interesting. A Mojo is
 a component that is managed by Plexus, and because
 of this, it has the opportunity to reference other components
 managed by Plexus. This element allows you to define
 dependencies on other components in Plexus.

Although you should know how to read a plugin descriptor, you
 will almost never need to write one of these descriptor files by
 hand. Plugin descriptor files are generated automatically off a set
 of annotations in the source for a Mojo.

Plugin Dependencies

Lastly, the plugin descriptor declares a set of dependencies,
 just like a Maven project. When Maven uses a plugin, it
 will download any required dependencies before it attempts to
 execute a goal from this plugin. In this example, the plugin depends
 on Jakarta Commons IO version 1.3.2.

Writing a Custom Plugin

When you write a custom plugin, you are going to be writing a
 series of Mojos (goals). Every Mojo is a single Java class that
 contains a series of annotations that tell Maven how to generate the
 plugin descriptor described in the previous section. Before you can
 start writing Mojo classes, you will need to create a Maven project
 with the appropriate packaging and POM.
Creating a Plugin Project

To create a plugin project, you should use the Maven
 Archetype plugin. The following command line will create a
 plugin with a groupId of
 org.sonatype.mavenbook.plugins and an
 artifactId of
 first-maven-plugin:
$ mvn archetype:create \
 -DgroupId=org.sonatype.mavenbook.plugins \
 -DartifactId=first-maven-plugin \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DarchetypeArtifactId=maven-archetype-mojo
The Archetype plugin will create a directory named my-first-plugin, which contains the POM
 shown in Example 17-2.
Example 17-2. A plugin project’s POM
<?xml version="1.0" encoding="UTF-8"?><project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <artifactId>first-maven-plugin</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>maven-plugin</packaging>
 <name>first-maven-plugin Maven Mojo</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-api</artifactId>
 <version>2.0</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

The most important element in a plugin project’s
 POM is the packaging element that has a value of
 maven-plugin. This packaging element customizes the Maven
 lifecycle to include the necessary goals to create a plugin
 descriptor. The plugin lifecycle was introduced in the section Maven Plugin” in Chapter 10.
 It is similar to the JAR lifecycle, with three exceptions:
 plugin:descriptor is bound to the
 generate-resources phase,
 plugin:addPluginArtifactMetadata is added to
 the package phase, and plugin:updateRegistry is added to the
 install phase.
The other important piece of a plugin project’s
 POM is the dependency on the Maven plugin API.
 This project depends on version 2.0 of the
 maven-plugin-api, and it also adds in JUnit as a
 test-scoped dependency.

A Simple Java Mojo

In this chapter, we will introduce a Maven Mojo written in
 Java. Each Mojo in the project will implement the
 org.apache.maven.plugin.Mojo interface.
 The Mojo implementation shown in
 the upcoming example implements the Mojo interface by extending
 the
 org.apache.maven.plugin.AbstractMojo class.
 Before we dive into the code for this Mojo, let’s take some time to
 explore the methods on the Mojo interface. Mojo provides the
 following methods:
	void setLog(
 org.apache.maven.monitor.logging.Log log)
	Every Mojo implementation has to
 provide a way for the plugin to communicate the
 progress of a particular goal. Did the goal succeed? Or was
 there a problem during goal execution? When Maven loads and
 executes a Mojo, it will call the
 setLog() method and supply the Mojo
 instance with a suitable logging destination to be used in
 your custom plugin.

	protected Log
 getLog()
	Maven will call setLog()
 before your Mojo is
 executed, and your Mojo can retrieve
 the logging object by calling
 getLog(). Instead of printing out
 status to standard output or the console, your
 Mojo is going to invoke methods on the
 Log object.

	void execute() throws
 org.apache.maven.plugin.MojoExecutionException
	This method is called by Maven when it is time to
 execute your goal.

The Mojo interface is concerned with
 two things: logging the results of goal execution and executing a
 goal. When you are writing a custom plugin, you’ll be extending
 AbstractMojo.
 AbstractMojo takes care of handling the
 setLog() and getLog() implementations and contains an
 abstract execute() method. When you extend
 AbstractMojo, all you
 need to do is implement the execute()
 method. Example 17-3 shows a trivial
 Mojo implement that simply prints out a
 message to the console.
Example 17-3. A simple EchoMojo
package org.sonatype.mavenbook.plugins;

import org.apache.maven.plugin.AbstractMojo;
import org.apache.maven.plugin.MojoExecutionException;
import org.apache.maven.plugin.MojoFailureException;

/**
 * Echos an object string to the output screen.
 * @goal echo
 * @requiresProject false
 */
public class EchoMojo extends AbstractMojo
{
 /**
 * Any Object to print out.
 * @parameter expression="${echo.message}" default-value="Hello Maven World..."
 */
 private Object message;

 public void execute()
 throws MojoExecutionException, MojoFailureException
 {
 getLog().info(message.toString());
 }
}

If you create this Mojo in ${basedir} under
 src/main/java in org/sonatype/mavenbook/mojo/EchoMojo.java
 in the project created in the previous section and run mvn install, you should be able to invoke
 this goal directly from the command line with:
$ mvn org.sonatype.mavenbook.plugins:first-maven-plugin:1.0-SNAPSHOT:echo
That large command is mvn
 followed by the
 groupId:artifactId:version:goal.
 When you run this command, you should see output that contains the
 output of the echo goal with the default message: “Hello Maven
 World....” If you want to customize the message, you can pass the
 value of the message parameter
 with the following command:
$ mvn org.sonatype.mavenbook.plugins:first-maven-plugin:1.0-SNAPSHOT:echo \
 -Decho.message="The Eagle has Landed"
This command will execute the EchoMojo
 and print out the message “The Eagle has Landed”.

Configuring a Plugin Prefix

Specifying the groupId, artifactId,
 version, and goal on the
 command line is cumbersome. To address this, Maven assigns a plugin
 a prefix. Instead of typing:
$ mvn org.apache.maven.plugins:maven-jar-plugin:2.2:jar
You can use the plugin prefix jar and turn
 the command into mvn jar:jar. How
 does Maven resolve something like jar:jar to
 org.apache.mven.plugins:maven-jar:2.3?
 Maven looks at a file in the Maven repository to obtain a list of
 plugins for a specific groupId. By default, Maven
 is configured to look for plugins in two groups:
 org.apache.maven.plugins and
 org.codehaus.mojo. When you specify a new plugin
 prefix such as mvn
 hibernate3:hbm2ddl, Maven will scan the repository
 metadata for the appropriate plugin prefix. First, Maven will scan
 the org.apache.maven.plugins group for the plugin
 prefix hibernate3. If it doesn’t find the plugin
 prefix hibernate3 in the
 org.apache.maven.plugins group, it will scan the
 metadata for the
 org.codehaus.mojo group.
When Maven scans the metadata for a particular
 groupId, it is retrieving an
 XML file from the Maven repository that captures
 metadata about the artifacts contained in a group. This
 XML file is specific for each repository
 referenced; if you are not using a custom Maven repository, you will
 be able to see the Maven metadata for the
 org.apache.maven.plugins group in your local
 Maven repository (~/.m2/repository) under org/apache/maven/plugins/maven-metadata-central.xml.
 Example 17-4 shows a snippet of the
 maven-metadata-central.xml file
 from the org.apache.maven.plugin group.
Example 17-4. Maven metadata for the Maven plugin group
<?xml version="1.0" encoding="UTF-8"?>
<metadata>
 <plugins>
 <plugin>
 <name>Maven Clean Plugin</name>
 <prefix>clean</prefix>
 <artifactId>maven-clean-plugin</artifactId>
 </plugin>
 <plugin>
 <name>Maven Compiler Plugin</name>
 <prefix>compiler</prefix>
 <artifactId>maven-compiler-plugin</artifactId>
 </plugin>
 <plugin>
 <name>Maven Surefire Plugin</name>
 <prefix>surefire</prefix>
 <artifactId>maven-surefire-plugin</artifactId>
 </plugin>
 ...
 </plugins>
</metadata>

As you can see in this example, this maven-metadata-central.xml file in your
 local repository is what makes it possible for you to execute
 mvn surefire:test. Maven scans
 org.apache.maven.plugins and
 org.codehaus.mojo. Plugins from
 org.apache.maven.plugins are considered core Maven plugins, and
 plugins from org.codehaus.mojo are considered extra plugins. The Apache
 Maven project manages the
 org.apache.maven.plugins group, and a separate
 independent open source community manages the Codehaus Mojo project.
 If you would like to start publishing plugins to your own
 groupId, and you would like Maven to
 automatically scan your own groupId for plugin
 prefixes, you can customize the groups that Maven scans for plugins
 in your Maven settings.
If you want to be able to run the
 first-maven-plugin’s echo goal by running
 first:echo, add the
 org.sonatype.mavenbook.plugins
 groupId to your ~/.m2/settings.xml, as shown in Example 17-5. This will prepend the
 org.sonatype.mavenbook.plugins to the list of
 groups that Maven scans for Maven plugins.
Example 17-5. Customizing the plugin groups in Maven settings
<settings>
 ...
 <pluginGroups>
 <pluginGroup>org.sonatype.mavenbook.plugins</pluginGroup>
 </pluginGroups>
</settings>

You can now run mvn
 first:echo from any directory and see that Maven will
 properly resolve the goal prefix to the appropriate plugin
 identifiers. This works because the project adheres to a naming
 convention for Maven plugins. If your plugin project has an
 artifactId that follows the pattern
 maven-first-plugin or
 first-maven-plugin, Maven will automatically
 assign a plugin goal prefix of first to your
 plugin. In other words, when the Maven Plugin plugin is generating
 the plugin descriptor for your plugin and you have not explicitly set
 the goalPrefix in your project, the
 plugin:descriptor goal will
 extract the prefix from your plugin’s artifactId
 when it matches one of the following patterns:
	${prefix}-maven-plugin

	maven-${prefix}-plugin

If you would like to set an explicit plugin prefix, you’ll
 need to configure the Maven Plugin plugin. This is plugin is
 responsible for building the plugin descriptor and performing
 plugin-specific tasks during the package and load phases. The Maven Plugin plugin can
 be configured just like any other plugin in the build element. To set the plugin prefix
 for your plugin, add the build
 element shown in Example 17-6 to the
 first-maven-plugin project’s pom.xml.
Example 17-6. Configuring a plugin prefix
<?xml version="1.0" encoding="UTF-8"?><project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <artifactId>first-maven-plugin</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>maven-plugin</packaging>
 <name>first-maven-plugin Maven Mojo</name>
 <url>http://maven.apache.org</url>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <goalPrefix>blah</goalPrefix>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-api</artifactId>
 <version>2.0</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

This example sets the plugin prefix to
 blah. If you’ve added the
 org.sonatype.mavenbook.plugins
 to the pluginGroups in your ~/.m2/settings.xml, you should be able to
 execute the
 EchoMojo by running mvn echo:blah from any directory.

Logging from a Plugin

Maven takes care of connecting your Mojo to a logging provider
 by calling setLog() prior to the
 execution of your Mojo. It supplies an implementation of
 org.apache.maven.monitor.logging.Log. This
 class exposes methods that you can use to communicate information
 back to the user. This Log class provides
 multiple levels of logging similar to that API
 provided by Log4J.
 Those levels are captured by a series of methods available for each
 level—debug, info, error, and warn. To save trees, we will list only the
 methods for a single logging level—debug:
	void debug(CharSequence message
)
	Prints a message to the debug logging level

	void debug(CharSequence message,
 Throwable t)
	Prints a message to the debug logging level that
 includes the stack trace from the
 Throwable (either
 Exception or
 Error)

	void debug(Throwable t
)
	Prints out the stack trace of the
 Throwable (either
 Exception or
 Error)

Each of the four levels exposes the same three methods. The
 four logging levels serve different purposes. The debug level exists
 for debugging purposes and for people who want to see a very
 detailed picture of the execution of a Mojo. You should use the
 debug logging level to provide as much detail on the execution of a
 Mojo, but you should never assume that a user is going to see the
 debug level. The info level is for general informational
 messages that should be printed as a normal course of operation. If
 you’re building a plugin that compiles code using a compiler, you
 might want to print the output of the compiler to the screen.
The warn logging level is
 used for messages about unexpected events and errors that your Mojo can cope with. If you
 are trying to run a plugin that compiles Ruby source code and there
 is no Ruby source code available, you might want to just print a
 warning message and move on. Warnings are not fatal, but errors are
 usually build-stopping conditions. For the completely unexpected
 error condition, there is the error logging level. You would use
 error if you couldn’t continue
 executing a Mojo. If you are writing a Mojo to compile some Java
 code and the compiler isn’t available, you’d print a message to the
 error level and possibly pass
 along an exception that Maven can print out for the user. You should
 assume that a user is going to see most of the messages in info and all of the messages in error.

Mojo Class Annotations

In the first-maven-plugin example, you
 didn’t write the plugin descriptor yourself; you relied on Maven to
 generate the plugin descriptor from your source code. The descriptor
 was generated using your plugin project’s POM
 information and a set of annotations on your
 EchoMojo class.
 EchoMojo specifies only the
 @goal annotation. Here is a list of other
 annotations you can place on your Mojo
 implementation:
	@goal
 <goalName>
	The only required annotation that gives a name to
 this goal that is unique to this plugin.

	@requiresDependencyResolution
 <requireScope>
	Flags this Mojo as requiring the dependencies in the
 specified scope (or an implied scope) to be
 resolved before it can execute. Supports
 compile, runtime, and
 test. If this annotation had a value of
 test, it would tell Maven that the Mojo
 cannot be executed until the dependencies in the
 test scope had been resolved.

	@requiresProject
 (true|false)
	Marks that this goal must be run inside of a project.
 The default is true. This is opposed to plugins
 such as archetypes that do not.

	@requiresReports
 (true|false)
	If you were creating a plugin that relied on the
 presence of reports, you would need to set
 requiresReports to true.
 The default value of this annotation is
 false.

	@aggregator
 (true|false)
	A Mojo with aggregator set
 to true is supposed to run only
 once during the execution of Maven. It was created to give
 plugin developers the ability to summarize the output of a
 series of builds; for example, to create a plugin that
 summarizes a report across all projects included in a build. A
 goal with aggregator set to
 true should be run against only the
 top-level project in a Maven build. The default value of
 aggregator is
 false.

	@requiresOnline
 (true|false)
	When set to true, Maven must not be
 running in offline mode when this goal is
 executed. Maven will throw an error if you attempt to execute
 this goal offline. The default is
 false.

	@requiresDirectInvocation
	When set to true, the goal can be
 executed only if it is explicitly executed from
 the command line by the user. Maven will throw an error if
 someone tries to bind this goal to a lifecycle phase. The
 default for this annotation is
 false.

	@phase
 <phaseName>
	This annotation specifies the default phase for this
 goal. If you add an execution for this goal to a
 pom.xml and do not
 specify the phase, Maven will bind the goal to the phase
 specified in this annotation by default.

	@execute
 [goal=goalName|phase=phaseName
 [lifecycle=lifecycleId]]
	This annotation can be used in a number of ways. If a
 phase is supplied, Maven will execute a parallel
 lifecycle ending in the specified phase. The results of this
 separate execution will be made available in the Maven
 property ${executedProperty}.
The second way of using this annotation is to specify an
 explicit goal using the prefix:goal
 notation. When you specify only a goal, Maven will execute
 this goal in a parallel environment that will not affect the
 current Maven build.
The third way of using this annotation is to specify a
 phase in an alternate lifecycle using the identifier of a
 lifecycle:
@execute phase="package" lifecycle="zip"
@execute phase="compile"
@execute goal="zip:zip"

If you look at the source for EchoMojo,
 you’ll notice that Maven is not using the standard annotations
 available in Java 5. Instead, it is using Commons
 Attributes. Commons Attributes provided a way for Java
 programmers to use annotations before annotations were a part of the
 Java language specification. Why doesn’t Maven use Java 5
 annotations? Because Maven is designed to target pre-Java 5
 JVMs. Because Maven has to support older versions
 of Java, it cannot use any of the newer features available in Java
 5.

When a Mojo Fails

The execute() method in Mojo throws
 two exceptions:
 MojoExecutionException and MojoFailureException. The
 difference between these two exceptions is both subtle and
 important, and it relates to what happens when a goal execution
 “fails.” A MojoExecutionException is a fatal
 exception: it means something unrecoverable happened. You will throw
 a MojoExecutionException if something happens
 that warrants a complete stop in a build: you are trying to write to
 disk, but there is no space left, or you are trying to publish to a
 remote repository, but you can’t connect to it. Throw a MojoExecutionException if there is
 no chance of a build continuing: that is, something terrible has
 happened, and you want the build to stop and the user to see a
 “BUILD ERROR” message.
A MojoFailureException is something
 less catastrophic: a goal can fail, but it might not be the end of
 the world for your Maven build. A unit test can fail, or an
 MD5 checksum can fail; both of these are
 potential problems, but you don’t want to return an exception that
 is going to kill the entire build. In this situation, you would
 throw a MojoFailureException. Maven
 provides for different “resiliency” settings when it comes to
 project failure. These are described next.
When you run a Maven build, it can involve a series of
 projects, each of which can succeed or fail. You have the option of
 running Maven in three failure modes:
	mvn -ff
	Fail-fast mode: Maven will fail (stop) at the first
 build failure.

	mvn -fae
	Fail-at-end: Maven will fail at the end of the build. If
 a project in the Maven reactor fails, Maven will continue to
 build the rest of the builds and report a failure at the end
 of the build.

	mvn -fn
	Fail never: Maven won’t stop for a failure and won’t
 report a failure.

You might want to ignore failures if you are running a
 continuous integration build and you want to attempt a build,
 regardless of the success or failure of an individual project build.
 As a plugin developer, you’ll have to make a call as to whether a
 particular failure condition is a
 MojoExecutionException or a
 MojoFailureExeception.

Mojo Parameters

Just as important as the execute()
 method and the Mojo annotations is the fact that a Mojo is
 configured via parameters. This section deals with some configuration
 and topics surrounding Mojo parameters.
Supplying Values for Mojo Parameters

In EchoMojo, we declare the message parameter with the
 following annotations:
/**
 * Any Object to print out.
 * @parameter
 * expression="${echo.message}"
 * default-value="Hello Maven World"
 */
private Object message;

The default expression for this parameter is
 ${echo.message}. This means that Maven will try
 to use the value of the echo.message property to
 set the value for message. If the value of the
 echo.message property is null, the default-value
 attribute of the @parameter annotation will be used
 instead. Instead of using the echo.message
 property, we can configure a value for the message parameter of the EchoMojo directly
 in a project’s POM.
We can populate the message
 parameter in the EchoMojo in a few ways.
 First, we can pass in a value from the command line like this
 (assuming that you’ve added org.sonatype.mavenbook.plugins to
 your pluginGroups):
$ mvn first:echo -Decho.message="Hello Everybody"
We can also specify the value of this message parameter by setting a property in our POM or
 in our settings.xml:
<project>
 ...
 <properties>
 <echo.message>Hello Everybody</echo.message>
 </properties>
</project>

This parameter can also be configured directly as a
 configuration value for the plugin. If we wanted to customize the
 message parameter directly, we could use the following build
 configuration, which bypasses the echo.message property and populates the
 Mojo parameter in plugin configuration:
<project>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <artifactId>first-maven-plugin</artifactId>
 <version>1.0-SNAPSHOT</version>
 <configuration>
 <message>Hello Everybody!</message>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>
If we wanted to run the EchoMojo twice
 at difference phases in a lifecycle, and if we wanted to customize
 the message parameter for each
 execution separately, we could configure the parameter value at the
 execution level in a POM like this:
<build>
 <build>
 <plugins>
 <plugin>
 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <artifactId>first-maven-plugin</artifactId>
 <version>1.0-SNAPSHOT</version>
 <executions>
 <execution>
 <id>first-execution</id>
 <phase>generate-resources</phase>
 <goals>
 <goal>echo</goal>
 </goals>
 <configuration>
 <message>The Eagle has Landed!</message>
 </configuration>
 </execution>
 <execution>
 <id>second-execution</id>
 <phase>validate</phase>
 <goals>
 <goal>echo</goal>
 </goals>
 <configuration>
 <message>${project.version}</message>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</build>
Although this last configuration example seems very verbose,
 it illustrates the flexibility of Maven. In the previous
 configuration example, you bound the EchoMojo
 to both the validate and
 generate-resources phases in the default Maven
 lifecycle. The first execution is bound to
 generate-resources; it supplies a string value to
 the message parameter of “The
 Eagle has Landed!”. The second execution is bound to the
 validate phase; it supplies a property reference
 to ${project.version}. When you run mvn install for this project, you’ll see
 that the first:echo goal executes twice and
 prints out two different messages.

Multivalued Mojo Parameters

Plugins can have parameters that accept more than one value.
 Take a look at the ZipMojo shown in
 Example 17-7. Both the
 includes and excludes
 parameters are multivalued String
 arrays that specify the inclusion and exclusion patterns for a
 component that creates a ZIP file.
Example 17-7. A plugin with multivalued parameters
package org.sonatype.mavenbook.plugins
/**
 * Zips up the output directory.
 * @goal zip
 * @phase package
 */
public class ZipMojo extends AbstractMojo
{
 /**
 * The Zip archiver.
 * @parameter expression="${component.org.codehaus.plexus.archiver.Archiver#zip}"
 */
 private ZipArchiver zipArchiver;

 /**
 * Directory containing the build files.
 * @parameter expression="${project.build.directory}"
 */
 private File buildDirectory;

 /**
 * Base directory of the project.
 * @parameter expression="${basedir}"
 */
 private File baseDirectory;

 /**
 * A set of file patterns to include in the zip.
 * @parameter alias="includes"
 */
 private String[] mIncludes;

 /**
 * A set of file patterns to exclude from the zip.
 * @parameter alias="excludes"
 */
 private String[] mExcludes;

 public void setExcludes(String[] excludes) { mExcludes = excludes; }

 public void setIncludes(String[] includes) { mIncludes = includes; }

 public void execute()
 throws MojoExecutionException
 {
 try {
 zipArchiver.addDirectory(buildDirectory, includes, excludes);
 zipArchiver.setDestFile(new File(baseDirectory, "output.zip"));
 zipArchiver.createArchive();
 } catch(Exception e) {
 throw new MojoExecutionException("Could not zip", e);
 }
 }
}

To configure a multivalued Mojo parameter, you use a series of
 elements for each value. If the name of the multivalued parameter is
 includes, you would use an element
 includes with child elements
 include. If the multivalued parameter is
 excludes, you would use an element
 excludes with child elements
 exclude. To configure the ZipMojo to ignore all files ending
 in .txt and all files ending in
 a tilde, you would use the following plugin
 configuration:
<project>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <pluginId>zip-maven-plugin</pluginId>
 <configuration>
 <excludes>
 <exclude>**/*.txt</exclude>
 <exclude>**/*~</exclude>
 </excludes>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Depending on Plexus Components

A Mojo is a component managed by an IoC
 container called Plexus. A Mojo can depend on other
 components managed by Plexus by declaring a Mojo parameter and using
 the @parameter or the
 @component annotation. Example 17-8 shows a
 ZipMojo that depends on a Plexus component
 using the @parameter annotation. This
 dependency could be declared using the
 @component annotation.
Example 17-8. Depending on a Plexus component
/**
 * The Zip archiver.
 * @component role="org.codehaus.plexus.archiver.Archiver" roleHint="zip"
 */
private ZipArchiver zipArchiver;

When Maven instantiates this Mojo, it will then attempt to
 retrieve the Plexus component with the specified role and role hint.
 In this example, the Mojo will be related to a
 ZipArchiver component that will allow the
 ZipMojo to create a ZIP
 file.

Mojo Parameter Annotations

Unless you insist on writing your plugin descriptors by hand,
 you’ll never have to write that XML. Instead, the
 Maven Plugin plugin has a plugin:descriptor goal
 bound to the generate-resources phase. This goal
 generates the plugin descriptor from annotations on your Mojo. To configure
 a Mojo parameter, you should use the following annotations on the
 private member variables for each of your Mojo’s parameters. You can
 also use these annotations on public setter methods, but the most
 common convention for Maven plugins is to annotate private member
 variables directly:
	@parameter
 [alias=”someAlias“]
 [expression="${someExpression}"]
 [default-value=”value“]
	Marks a private field (or a setter method) as a
 parameter. The alias provides the name
 of the parameter. If alias is omitted,
 Maven will use the name of the variable as the parameter name.
 The expression is an expression that Maven
 will evaluate to obtain a value. Usually the expression is a
 property reference such as ${echo.message}.
 default-value is the value that this Mojo
 will use if no value can be derived from the expression or if
 a value was not explicitly supplied via plugin configuration
 in a POM.

	@required
	If this annotation is present, a valid value for this
 parameter is required prior to Mojo execution.
 If Maven tries to execute this Mojo and the parameter has a
 null value, Maven will throw an error when it tries to execute
 this goal.

	@readonly
	If this annotation is present, the user cannot directly
 configure this parameter in the
 POM. You would use this annotation with the
 expression attribute of the
 parameter annotation. For example, if you wanted to make sure
 that a particular parameter always had the value of the
 finalName POM property,
 you would list an expression of
 ${build.finalName} and then add the
 @readOnly annotation. If this were the
 case, the user could change the value of this parameter only
 by changing the value of finalName in the
 POM.

	@component
	Tells Maven to populate a field with a Plexus component.
 A valid value for the
 @component annotation would be:
@component role="org.codehaus.plexus.archiver.Archiver" roleHint="zip"

This would have the effect of retrieving the
 ZipArchiver from Plexus. The ZipArchiver is the archiver
 that corresponds to the role hint zip.
 Instead of component, you could also use
 the @parameter annotation with an
 expression attribute
 of:
@parameter expression="${component.org.codehaus.plexus.archiver.Archiver#zip}"

Although the two annotations are effectively the same,
 the @component annotation is the
 preferred way to configure dependencies on Plexus
 components.

	@deprecated
	The parameter will be deprecated. Users can continue
 configuring this parameter, but a warning
 message will be
 displayed.

Plugins and the Maven Lifecycle

In Chapter 10, you learned that lifecycles can be customized by packaging types. A
 plugin can both introduce a new packaging type and customize the
 lifecycle. In this section, you will learn how you can customize the
 lifecycle from a custom Maven plugin. You will also see how you can
 tell a Mojo to execute a parallel lifecycle.
Executing a Parallel Lifecycle

Let’s assume you write some goal that depends on the output
 from a previous build. Maybe the
 ZipMojo goal can run only if there is output
 to include in an archive. You can specify something like a
 prerequisite goal by using the @execute
 annotation on a Mojo class. This annotation will cause Maven to
 spawn a parallel build and execute a goal or a lifecycle in a
 parallel instance of Maven that isn’t going to affect the current
 build. Maybe you wrote some Mojo that you can run once a day that
 runs mvn install and then
 packages up all of the output in some sort of customized
 distribution format. Your Mojo descriptor could tell Maven that
 before you execute your CustomMojo, you’d
 like it to execute the default lifecycle up to the
 install phase and then expose the results of that
 project to your Mojo as the property
 ${executedProject}. You could then reference
 properties in that project before some sort of
 postprocessing.
Another possibility is that you have a goal that does
 something completely unrelated to the default lifecycle. Let’s
 consider something completely unexpected. Maybe you have a goal that
 turns a WAV file into an MP3
 using something like LAME, but before you do
 that, you want to step through a lifecycle that turns a
 MIDI file to a WAV. (You can
 use Maven for anything; this example isn’t that “far out.”) You’ve
 created a midi-sound lifecycle, and you want to
 include the output of the midi-sound lifecycle’s
 install phase in your web application project,
 which has a war packaging type. Since your
 project is running in the war packaging
 lifecycle, you’ll need to have a goal that effectively forks off an
 isolated build and runs through the midi-source
 lifecycle. You would do this by annotating your mojo with
 @execute lifecycle="midi-source"
 phase="install":
	@execute
 goal="<goal>”
	This will execute the given goal before the execution of
 this one. The goal name is specified using the
 prefix:goal notation.

	@execute
 phase="<phase>”
	This will fork an alternate build lifecycle up to the
 specified phase before continuing to execute the current one.
 If no lifecycle is specified, Maven will use the lifecycle of
 the current build.

	@execute
 lifecycle="<lifecycle>”
 phase="<phase>”
	This will execute the given alternate lifecycle. A
 custom lifecycle can be defined in META-INF/maven/lifecycle.xml.

Creating a Custom Lifecycle

A custom lifecycle must be packaged in the plugin under
 the META-INF/maven/lifecycle.xml file. You
 can include a lifecycle under src/main/resources in META-INF/maven/lifecycle.xml. The
 lifecycle.xml shown in Example 17-9 declares a lifecycle named
 zipcycle that contains only
 the zip goal in a package
 phase.
Example 17-9. Define a custom lifecycle in lifecycle.xml
<lifecycles>
 <lifecycle>
 <id>zipcycle</id>
 <phases>
 <phase>
 <id>package</id>
 <executions>
 <execution>
 <goals>
 <goal>zip</goal>
 </goals>
 </execution>
 </executions>
 </phase>
 </phases>
 </lifecycle>
</lifecycles>

If you wanted to execute the zipcycle phase
 within another build, you could then create a
 ZipForkMojo that uses the
 @execute annotation to tell Maven to step
 through the zipcycle phase to package when the
 ZipForkMojo is executed. See Example 17-10.
Example 17-10. Forking a customer lifecycle from a Mojo
/**
 * Forks a zip lifecycle.
 * @goal zip-fork
 * @execute lifecycle="zipcycle" phase="package"
 */
public class ZipForkMojo extends AbstractMojo
{
 public void execute()
 throws MojoExecutionException
 {
 getLog().info("doing nothing here");
 }
}

Running the ZipForkMojo will fork the
 lifecycle. If you’ve configured your plugin to execute with the goal
 prefix zip, running zip-fork
 should produce something similar to the following output:
$ mvn zip:zip-fork
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'zip'.
[INFO] ---
[INFO] Building Maven Zip Forked Lifecycle Test
[INFO] task-segment: [zip:zip-fork]
[INFO] ---
[INFO] Preparing zip:zip-fork
[INFO] [site:attach-descriptor]
[INFO] [zip:zip]
[INFO] Building zip: ~/maven-zip-plugin/src/projects/zip-lifecycle-test/\
 target/output.zip
[INFO] [zip:zip-fork]
[INFO] doing nothing here
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---
[INFO] Total time: 1 second
[INFO] Finished at: Sun Apr 29 16:10:06 CDT 2007
[INFO] Final Memory: 3M/7M
[INFO] ---

Calling zip-fork spawns another lifecycle.
 Maven executes the zipcycle lifecycle, and then
 it prints out the message from ZipFormMojo’s
 execute method.

Overriding the Default Lifecycle

Once you’ve created your own lifecycle and spawned it from a
 Mojo, the next question you might have is: How do you
 override the default lifecycle? How do you create custom lifecycles
 and then attach them to projects? In Chapter 10,
 we saw that the packaging of a project defines the lifecycle of a
 project. There’s something different about almost every packaging
 type: war attaches different goals to package,
 custom lifecycles such as swf from the Israfil
 Flex 3 plugin attach different goals to the compile phase. When you create a custom
 lifecycle, you can attach that lifecycle to a packaging type by
 supplying some Plexus configuration in your plugin’s archive.
To define a new lifecycle for a new packaging type, you’ll
 need to configure a LifecycleMapping component in
 Plexus. In your plugin project, create a META-INF/plexus/components.xml under
 src/main/resources. In
 components.xml, add the content
 from Example 17-11. Set the name of the
 packaging type under role-hint, and the set of
 phases containing the coordinates of the goals to bind (omit the
 version). Multiple goals can be associated with a phase using a
 comma delimited list.
Example 17-11. Overriding the default lifecycle
<component-set>
 <components>
 <component>
 <role>org.apache.maven.lifecycle.mapping.LifecycleMapping</role>
 <role-hint>zip</role-hint>
 <implementation>org.apache.maven.lifecycle.mapping.DefaultLifecycleMapping
 </implementation>
 <configuration>
 <phases>
 <process-resources>org.apache.maven.plugins:maven-resources-plugin:resources
 </process-resources>
 <compile>org.apache.maven.plugins:maven-compiler-plugin:compile</compile>
 <package>org.sonatype.mavenbook.plugins:maven-zip-plugin:zip</package>
 </phases>
 </configuration>
 </component>
 </components>
</component-set>

If you create a plugin that defines a new packaging type and a
 customized lifecycle, Maven won’t know anything about it until you
 add the plugin to your project’s POM and set the
 extensions element to true. Once
 you do this, Maven will scan your plugin for more than just Mojos to
 execute; it will look for the components.xml under META-INF/plexus, and it will make the
 packaging type available to your project. See Example 17-12.
Example 17-12. Configuring a plugin as an extension
<project>
 ...
 <build>
 ...
 <plugins>
 <plugin>
 <groupId>com.training.plugins</groupId>
 <artifactId>maven-zip-plugin</artifactId>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Once you add the plugin with the extensions element set to true, you can use the custom packaging
 type and your project will be able to execute the custom lifecycle
 associated with that packaging type.

[5] The American Heritage Dictionary of the
 English Language

Chapter 18. Writing Plugins in Alternative Languages

You can write a Mojo in Java, or you can write a Mojo in an
 alternative language. Maven has support for a number of implementation
 languages, and this chapter will show you how to create plugins in three
 languages: Ant, Ruby, and Groovy.
Writing Plugins in Ant

Ant isn’t a language as much as it is a build tool that allows
 you to describe a build as a set of tasks grouped into build targets.
 Ant then allows you to declare dependencies between build targets; for
 example, in Ant you are essentially creating your own lifecycle. An
 Ant build.xml might have an
 install target that depends on a test target that depends on a compile
 target. Ant is something of an ancestor to Maven; it was the
 ubiquitous procedural build tool that almost every project used before
 Maven introduced the concept of wide-scale reusability of common build
 plugins and the concept of a universal lifecycle.
Although Maven is an improvement on Ant, Ant can still be useful
 when describing parts of the build process. Ant provides a set of
 tasks that can come in handy when you need to perform file operations
 or XSLT transformations or any other operation you
 can think of. There is a large library of available Ant tasks for
 everything from running JUnit tests to transforming
 XML to copying files to a remote server using
 SCP. An overview of available Ant tasks can be
 found online in the Apache Ant
 Manual. You can use these tasks as a low-level build
 customization language, and you can also write a Maven plugin where,
 instead of a Mojo written in Java, you can pass parameters to a Mojo
 that is an Ant build target.

Creating an Ant Plugin

To create a Maven plugin using Ant, you need to have a pom.xml and a single Mojo implemented in
 Ant. To get started, create a project directory named firstant-maven-plugin. Place the pom.xml shown in Example 18-1 in this directory.
Example 18-1. POM for an Ant Maven plugin
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <artifactId>firstant-maven-plugin</artifactId>
 <name>Example Ant Mojo - firstant-maven-plugin</name>
 <packaging>maven-plugin</packaging>
 <version>1.0-SNAPSHOT</version>
 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-script-ant</artifactId>
 <version>2.0.9</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>2.4</version>
 <dependencies>
 <dependency>
 <groupId>org.apache.maven.plugin-tools</groupId>
 <artifactId>maven-plugin-tools-ant</artifactId>
 <version>2.4</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
</project>

Next, you will need to create your Ant Mojo. An Ant Mojo
 consists of two parts: the Ant tasks in an XML
 file, and a file that supplies Mojo descriptor information. The Ant
 plugin tools will look for both of these files in ${basedir}/src/main/scripts. One file will
 be named echo.build.xml and will
 contain the Ant XML. See Example 18-2.
Example 18-2. Echo Ant Mojo
<project>
 <target name="echotarget">
 <echo>${message}</echo>
 </target>
</project>

The other file will describe the Echo Ant Mojo and will be in
 the echo.mojos.xml file, also in
 ${basedir}/src/main/scripts. See
 Example 18-3.
Example 18-3. Echo Ant Mojo descriptor
<pluginMetadata>
 <mojos>
 <mojo>
 <goal>echo</goal>
 <call>echotarget</call>
 <description>Echos a Message</description>
 <parameters>
 <parameter>
 <name>message</name>
 <property>message</property>
 <required>false</required>
 <expression>${message}</expression>
 <type>java.lang.Object</type>
 <defaultValue>Hello Maven World</defaultValue>
 <description>Prints a message</description>
 </parameter>
 </parameters>
 </mojo>
 </mojos>
</pluginMetadata>

This echo.mojos.xml file
 configures the Mojo descriptor for this plugin. It supplies the goal
 name “echo”, and it tells Maven which Ant task to call in the
 call element. In addition to configuring the
 description, this XML file configures the
 message parameter to use the expression
 ${message} and to have a default value of “Hello
 Maven World.”
If you’ve configured your plugin groups in ~/.m2/settings.xml to include
 org.sonatype.mavenbook.plugins, you can install
 this Ant plugin by executing the following command at the command
 line:
$ mvn install
[INFO] --
[INFO] Building Example Ant Mojo - firstant-maven-plugin
[INFO] task-segment: [install]
[INFO] --
[INFO] [plugin:descriptor]
[INFO] Using 3 extractors.
[INFO] Applying extractor for language: java
[INFO] Extractor for language: java found 0 mojo descriptors.
[INFO] Applying extractor for language: bsh
[INFO] Extractor for language: bsh found 0 mojo descriptors.
[INFO] Applying extractor for language: ant
[INFO] Extractor for language: ant found 1 mojo descriptors.
...
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

Note that the plugin:descriptor goal finds a
 single Ant mojo descriptor. To run this goal, execute the following
 command:
$ mvn firstant:echo
...
[INFO] [firstant:echo]

echotarget:
 [echo] Hello Maven World
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

The echo goal executes and prints out the
 default value of the message parameter. If you are
 used to Apache Ant build scripts, you will notice that Ant prints out
 the name of the target executed and then adds a logging prefix to the
 output of the echo Ant task.

Writing Plugins in JRuby

Ruby is an object-oriented scripting language that provides a
 rich set of facilities for metaprogramming and reflection. Ruby’s
 reliance on closures and blocks make for a programming style that is
 both compact and powerful. Although Ruby has been around since 1993,
 most people came to know Ruby after it was made popular by a
 Ruby-based web framework known as Ruby on Rails. JRuby is a Ruby
 interpreter written in Java. For more information about the Ruby
 language, see http://www.ruby-lang.org/, and
 for more information about JRuby, see http://jruby.codehaus.org/.
Creating a JRuby Plugin

To create a Maven plugin using JRuby, you need to have a
 pom.xml and a single Mojo
 implemented in Ruby. To get started, create a project directory
 named firstruby-maven-plugin.
 Place the pom.xml shown in
 Example 18-4 in this
 directory.
Example 18-4. POM for a JRuby Maven plugin
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <artifactId>firstruby-maven-plugin</artifactId>
 <name>Example Ruby Mojo - firstruby-maven-plugin</name>
 <packaging>maven-plugin</packaging>
 <version>1.0-SNAPSHOT</version>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>jruby-maven-plugin</artifactId>
 <version>1.0-beta-4</version>
 <scope>runtime</scope>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>2.4</version>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>jruby-maven-plugin</artifactId>
 <version>1.0-beta-4</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
</project>

Next, you will need to create a Mojo implemented in Ruby.
 Maven will look for a Ruby Mojo in ${basedir}/src/main/scripts. Put the Ruby
 class shown in Example 18-5 in ${basedir}/src/main/scripts/echo.rb.
Example 18-5. The Echo Ruby Mojo
Prints a message
@goal "echo"
@phase "validate"
class Echo < Mojo

 # @parameter type="java.lang.String" default-value="Hello Maven World" \
 expression="${message}"
 def message
 end

 def execute
 info $message
 end

end

run_mojo Echo

The Echo class must extend
 Mojo, and it must override the
 execute() method. At the end of the
 echo.rb file, you will need to
 run the mojo with run_mojo Echo. To install this
 plugin, run mvn install:
$ mvn install
[INFO] Scanning for projects...
[INFO] --
[INFO] Building Example Ruby Mojo - firstruby-maven-plugin
[INFO] task-segment: [install]
[INFO] --
...
[INFO] [plugin:descriptor]
...
[INFO] Applying extractor for language: jruby
[INFO] Ruby Mojo File: /echo.rb
[INFO] Extractor for language: jruby found 1 mojo descriptors.
...
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --

During the build, you should see that the Maven Plugin
 plugin’s descriptor goal applies the JRuby
 extractor to create a plugin.xml that captures the annotations
 in the Echo class. If you’ve configured your
 default plugin groups to include
 org.sonatype.mavenbook.plugins, you should be
 able to run this echo goal with the following
 command:
$ mvn firstruby:echo
...
[INFO] [firstruby:echo]
[INFO] Hello Maven World
...

Ruby Mojo Implementations

Ruby Mojos are annotated using comments in Ruby source files.
 A single annotation such as @parameter takes
 a number of attributes, and each of these attributes must be
 specified on the same line. There can be no line breaks between an
 annotations attribute in the Ruby source. Both classes and
 parameters are annotated. Parameters are annotated with four
 annotations: @parameter,
 @required, @readonly,
 and @deprecated. The
 @parameter attribute takes the following
 attributes:
	alias
	An alias for the parameter; an alternate name that can
 be used to populate the same parameter.

	default-value
	Provides a default value to the parameter if the
 supplied value or the parameter expression produces a null
 result. In echo.rb, we
 specify the default as “Hello Maven World”.

	expression
	Contains an expression that can resolve to a Maven
 property or a System property.

	type
	The fully qualified Java type of the parameter. If the
 type is not specified, it will default to
 java.lang.String.

In addition to the @parameter
 annotation, a parameter can take the following annotations:
	@required
 "<true|false>"
	Marks the parameter as being required. The default value
 is false.

	@readonly
 "<true|false>"
	Marks the parameter as read-only. If this is true, you may not override the
 default value or the value from the expression from the
 command line. The default value is false.

	@deprecated
 "<true|false>"
	Marks the parameter as deprecated. The default value is
 false.

Putting this all together, a fully annotated message parameter
 from echo.rb would look like
 the following code:
@parameter type="java.lang.String" default-value="Hello Maven World" \
 expression="${message}"
@readonly true
@required false
@deprecated false
def message
end

Ruby Mojo classes are annotated with the following
 attributes:
	@goal
	Specifies the name of the goal.

	@phase
	The default phase to bind this goal to.

	@requiresDependencyResolution
	True if the Mojo requires that dependencies be resolved
 before execution.

	@aggregator
	Marks this mojo as an aggregator.

	@execute
	Provides the opportunity to execute a goal or lifecycle
 phase before executing this Mojo. The
 @execute annotation takes the following
 attributes:
	goal
	Name of the goal to execute

	phase
	Name of the lifecycle phase to execute

	lifecycle
	Name of the lifecycle (if other than
 default)

For an example of an annotated Mojo class, consider the
 following code example:
Completes some build task
@goal custom-goal
@phase install
@requiresDependencyResolution false
@execute phase=compile
class CustomMojo < Mojo
 ...
end
Mojo parameters can reference Java classes and Maven
 properties. Example 18-6 shows
 you how to get access to the Maven Project object from a Ruby
 Mojo.
Example 18-6. Referencing a Maven Project from a Ruby Mojo
This is a mojo description
@goal test
@phase validate
class Test < Mojo
 # @parameter type="java.lang.String" default-value="nothing" alias="a_string"
 def prop
 end

 # @parameter type="org.apache.maven.project.MavenProject" \
 expression="${project}"
 # @required true
 def project
 end

 def execute
 info "The following String was passed to prop: '#{$prop}'"
 info "My project artifact is: #{$project.artifactId}"
 end
end

run_mojo Test

In the example just shown, we can access properties on the
 Project class using standard Ruby syntax.
 If you put test.rb in
 firstruby-maven-plugin’s src/main/scripts directory, install the
 plugin, and then run it, you will see the following output:
$ mvn install
...
[INFO] [plugin:descriptor]
[INFO] Using 3 extractors.
[INFO] Applying extractor for language: java
...
[INFO] Applying extractor for language: jruby
[INFO] Ruby Mojo File: /echo.rb
[INFO] Ruby Mojo File: /test.rb
[INFO] Extractor for language: jruby found 2 mojo descriptors.
...
$ mvn firstruby:test
...
[INFO] [firstruby:test]
[INFO] The following String was passed to prop: 'nothing'
[INFO] My project artifact is: firstruby-maven-plugin

Logging from a Ruby Mojo

To log from a Ruby Mojo, call the
 info(), debug(),
 and error() methods with a message:
Tests Logging
@goal logtest
@phase validate
class LogTest < Mojo

 def execute
 info "Prints an INFO message"
 error "Prints an ERROR message"
 debug "Prints to the Console"
 end

end

run_mojo LogTest

Raising a MojoError

If there is an unrecoverable error in a Ruby Mojo, you will
 need to raise a MojoError. Example 18-7 shows you how to raise a
 MojoError. This example Mojo prints out a
 message and then raises a MojoError.
Example 18-7. Raising a MojoError from a Ruby Mojo
Prints a Message
@goal error
@phase validate
class Error < Mojo

 # @parameter type="java.lang.String" default-value="Hello Maven World" \
 expression="${message}"
 # @required true
 # @readonly false
 # @deprecated false
 def message
 end

 def execute
 info $message
 raise MojoError.new("This Mojo Raised a MojoError")
 end

end

run_mojo Error

Running this Mojo produces the following output:
$ mvn firstruby:error
...
INFO] [firstruby:error]
[INFO] Hello Maven World
[ERROR] This Mojo Raised a MojoError

Referencing Plexus Components from JRuby

A Ruby Mojo can depend on a Plexus component. To do this, you
 would use the expression attribute of the
 @parameter annotation to specify a role and a
 hint for Plexus. The Ruby Mojo shown in Example 18-8 depends on an Archiver
 component that Maven will retrieve from Plexus.
Example 18-8. Depending on a Plexus component from a Ruby Mojo
This mojo tests plexus integration
@goal testplexus
@phase validate
class TestPlexus < Mojo

 # @parameter type="org.codehaus.plexus.archiver.Archiver" \
expression="${component.org.codehaus.plexus.archiver.Archiver#zip}"
 def archiver
 end

 def execute
 info $archiver
 end
end

run_mojo TestPlexus

Please note that the attributes for an annotation in a Ruby
 Mojo cannot span multiple lines. If you were to run this goal, you
 would see Maven attempt to retrieve a component from Plexus with a
 role of org.codehaus.plexus.arhiver.Archiver and
 a hint of zip.

Writing Plugins in Groovy

Groovy is a dynamic language based on the Java Virtual Machine
 that compiles to Java bytecode. Groovy is a project in the Codehaus
 community. If you are fluent in Java, Groovy will seem like a natural
 choice for a scripting language. Groovy takes the features of Java,
 pares down the syntax a bit, and adds features such as closures,
 duck-typing, and regular expressions. For more information about
 Groovy, please see the Groovy web site at http://groovy.codehaus.org.
Although it is possible to create a Groovy plugin using the
 techniques described in this section, there is a newer project devoted
 to Groovy–Maven integration called GMaven (http://groovy.codehaus.org/GMaven),
 which is scheduled to have a 1.0 release in September 2008. The
 authors of this book encourage you to look into this project as an
 alternative to the methods described in this section.
Creating a Groovy Plugin

To create a Maven plugin using Groovy, you need only two
 files: a pom.xml and a single
 Mojo implemented in Groovy. To get started, create a project
 directory named firstgroovy-maven-plugin. Place the
 pom.xml shown in Example 18-9 in this
 directory.
Example 18-9. POM for a Groovy Maven plugin
<?xml version="1.0" encoding="UTF-8"?>
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.sonatype.mavenbook.plugins</groupId>
 <artifactId>firstgroovy-maven-plugin</artifactId>
 <name>Example Groovy Mojo - firstgroovy-maven-plugin</name>
 <packaging>maven-plugin</packaging>
 <version>1.0-SNAPSHOT</version>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.mojo.groovy</groupId>
 <artifactId>groovy-mojo-support</artifactId>
 <version>1.0-beta-3</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>2.4</version>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo.groovy</groupId>
 <artifactId>groovy-maven-plugin</artifactId>
 <version>1.0-beta-3</version>
 <extensions>true</extensions>
 <executions>
 <execution>
 <goals>
 <goal>generateStubs</goal>
 <goal>compile</goal>
 <goal>generateTestStubs</goal>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

What’s going on in this POM? First, notice
 that the packaging of the POM is
 maven-plugin because we are creating a project
 that will package a Maven plugin. Next, note that the project
 depends on the groovy-mojo-support artifact in
 the org.codehaus.mojo.groovy group.
Then, under src/main/groovy in the directory
 org/sonatype/mavenbook/plugins,
 create a file named EchoMojo.groovy that contains the
 EchoMojo class, as shown in Example 18-10.
Example 18-10. EchoMojo.groovy
package org.sonatype.mavenbook.plugins

import org.codehaus.mojo.groovy.GroovyMojo

/**
 * Example goal which echos a message
 *
 * @goal echo
 */
class EchoMojo extends GroovyMojo {

 /**
 * Message to print
 *
 * @parameter expression="${echo.message}"
 * default-value="Hello Maven World"
 */
 String message

 void execute() {
 log.info(message)
 }
}

Part IV. Appendixes

This section contains two appendixes for Maven reference: Appendix A,
 Settings Details, and Appendix B,
 Sun Specification Alternatives.

Appendix A. Settings Details

Quick Overview

The settings element in the settings.xml file
 contains elements used to define values that configure Maven
 execution. Settings in this file are settings that apply to many
 projects and should not be bundled to any specific project or
 distributed to an audience. These include values such as the local
 repository location, alternate remote repository servers, and
 authentication information. There are two locations where a settings.xml file may live:
	Maven installation directory
	$M2_HOME/conf/settings.xml

	User-specific settings file
	~/.m2/settings.xml

Example A-1 shows an overview of
 the top elements under settings.
Example A-1. Overview of top-level elements in settings.xml
<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <localRepository/>
 <interactiveMode/>
 <usePluginRegistry/>
 <offline/>
 <pluginGroups/>
 <servers/>
 <mirrors/>
 <proxies/>
 <profiles/>
 <activeProfiles/>
</settings>

Settings Details

Simple Values

Half of the top-level settings elements are simple values,
 representing a range of values that configure core behavior of
 Maven. These are shown in Example A-2.
Example A-2. Simple top-level elements in settings.xml
<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <localRepository>${user.dir}/.m2/repository</localRepository>
 <interactiveMode>true</interactiveMode>
 <usePluginRegistry>false</usePluginRegistry>
 <offline>false</offline>
 <pluginGroups>
 <pluginGroup>org.codehaus.mojo</pluginGroup>
 </pluginGroups>
 ...
</settings>

The simple top-level elements are:
	localRepository
	This value is the path of this build system’s local
 repository. The default value is ${user.dir}/.m2/repository.

	interactiveMode
	true if Maven should attempt to
 interact with the user for input;
 false if not. Defaults to
 true.

	usePluginRegistry
	true if Maven should use
 the ${user.dir}/.m2/plugin-registry.xml
 file to manage plugin versions. Defaults to
 false.

	offline
	true if this build system should
 operate in offline mode. Defaults to
 false. This element is useful for build
 servers that cannot connect to a remote repository, either
 because of network setup or for security reasons.

	pluginGroups
	This element contains a list of pluginGroup elements. Each
 contains a groupId. The list is searched
 when a plugin is used and the groupId is
 not provided in the command line. This list contains
 org.apache.maven.plugins by default.

Servers

The distributionManagement element of
 the POM defines the repositories for
 deployment. However, certain settings such as security credentials
 should not be distributed along with the pom.xml. This type of information should
 exist on the build server in the settings.xml. See Example A-3.
Example A-3. Server configuration in settings.xml
<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <servers>
 <server>
 <id>server001</id>
 <username>my_login</username>
 <password>my_password</password>
 <privateKey>${usr.home}/.ssh/id_dsa</privateKey>
 <passphrase>some_passphrase</passphrase>
 <filePermissions>664</filePermissions>
 <directoryPermissions>775</directoryPermissions>
 <configuration></configuration>
 </server>
 </servers>
 ...
</settings>

The elements under the server are:
	id
	This is the id of the server (not of
 the user to log in as) that matches the distributionManagement
 repository element’s id.

	username, password
	These elements appear as a pair denoting the login and
 password required to authenticate to this
 server.

	privateKey, passphrase
	Like the previous two elements, this pair specifies a
 path to a private key (the default is ${user.home}/.ssh/id_dsa) and a
 passphrase, if required. The passphrase and password elements may be
 externalized in the future, but for now they must be set in
 plain text in the settings.xml file.

	filePermissions,
 directoryPermissions
	When a repository file or directory is created on
 deployment, these are the permissions to use.
 The legal values of each is a three-digit number corresponding
 to *nix file permissions, i.e., 664 or 775.

Mirrors

See Example A-4.
Example A-4. Mirror configuration in settings.xml
<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <mirrors>
 <mirror>
 <id>planetmirror.com</id>
 <name>PlanetMirror Australia</name>
 <url>http://downloads.planetmirror.com/pub/maven2</url>
 <mirrorOf>central</mirrorOf>
 </mirror>
 </mirrors>
 ...
</settings>

The elements are:
	id, name
	The unique identifier of this mirror. The id is used to differentiate between mirror elements.

	url
	The base URL of this mirror. The
 build system will use this URL to
 connect to a repository rather than the default server
 URL.

	mirrorOf
	The ID of the server that this is a mirror of. For
 example, to point to a mirror of the Maven central server
 (http://repo1.maven.org/maven2), set
 this element to central. This must not match
 the mirror id.

Proxies

See Example A-5.
Example A-5. Proxy configuration in settings.xml
<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <proxies>
 <proxy>
 <id>myproxy</id>
 <active>true</active>
 <protocol>http</protocol>
 <host>proxy.somewhere.com</host>
 <port>8080</port>
 <username>proxyuser</username>
 <password>somepassword</password>
 <nonProxyHosts>*.google.com|ibiblio.org</nonProxyHosts>
 </proxy>
 </proxies>
 ...
</settings>

The elements are:
	id
	The unique identifier for this proxy. This is used to
 differentiate between proxy elements.

	active
	true if this proxy is active. This is
 useful for declaring a set of proxies, but only
 one may be active at a time.

	protocol, host, port
	The protocol://host:port of the
 proxy, separated into discrete elements.

	username, password
	These elements appear as a pair denoting the login and
 password required to authenticate to this proxy
 server.

	nonProxyHosts
	This is a list of hosts that should not be proxied. The
 delimiter of the list is the expected type of
 the proxy server; Example A-5 is
 pipe-delimited, and comma-delimited is also common.

Profiles

The profile element in the settings.xml is a truncated version of
 the pom.xml profile element. It consists of the
 activation, repositories,
 pluginRepositories, and properties elements. The profile elements include only these four
 elements because they concern themselves with the build system as a
 whole (which is the role of the settings.xml file), not with individual
 Project Object Model settings.
If a profile is active from settings, its values will override
 any equivalent profiles with matching identifiers in a
 POM or profiles.xml file.

Activation

Activations are the key of a profile. Like the
 POM’s profiles, the power of a profile comes from
 its ability to modify some values only under certain
 circumstances; those circumstances are specified via an activation
 element. See Example A-6.
Example A-6. Defining activation parameters in settings.xml
<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <profiles>
 <profile>
 <id>test</id>
 <activation>
 <activeByDefault>false</activeByDefault>
 <jdk>1.5</jdk>
 <os>
 <name>Windows XP</name>
 <family>Windows</family>
 <arch>x86</arch>
 <version>5.1.2600</version>
 </os>
 <property>
 <name>mavenVersion</name>
 <value>2.0.3</value>
 </property>
 <file>
 <exists>${basedir}/file2.properties</exists>
 <missing>${basedir}/file1.properties</missing>
 </file>
 </activation>
 ...
 </profile>
 </profiles>
 ...
</settings>

Activation occurs when all specified criteria have been met,
 though not all are required at once. These are the elements:
	jdk
	Activation has a built in, Java-centric check in
 the jdk element.
 This will activate if the test is run under a jdk version number that matches the
 prefix given. In Example A-6,
 1.5.0_06 will match.

	os
	The os element can define some
 operating system-specific properties, shown previously.

	property
	The profile will activate if Maven detects a property (a
 value that can be dereferenced within the POM by ${name}) of the corresponding
 name-value pair.

	file
	Finally, a given filename may activate the profile by
 the existence of a file, or if it is
 missing.

The activation element is not the only way
 that a profile may be activated. The settings.xml file’s
 activeProfile element may contain the profile’s
 id. They may also be activated
 explicitly through the command line via a comma-separated list after
 the -P flag (e.g., -P test).
To see which profile will activate in a certain build, use the
 maven-help-plugin:
mvn help:active-profiles

Properties

Maven properties are value placeholders, like properties in
 Ant. Their values are accessible anywhere within a
 POM by using the notation
 ${X},
 where X is the property. They come in
 five different styles, all accessible from the settings.xml file:
	env.X
	Prefixing a variable with env. will return the shell’s environment variable. For
 example, ${env.PATH} contains the
 $path environment variable.
 (%PATH% in Windows.)

	project.x
	A dot-notated (.) path in the POM
 will contain the corresponding elements value.

	settings.x
	A dot-notated (.) path in the settings.xml will contain the
 corresponding elements value.

	Java system properties
	All properties accessible via
 java.lang.System.getProperties() are
 available as POM properties, such as
 ${java.home}.

	x
	Set within a properties element or an external
 file, the value may be used as ${someVar}.

See Example A-7.
Example A-7. Setting the ${user.install} property in
 settings.xml
<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <profiles>
 <profile>
 ...
 <properties>
 <user.install>${user.dir}/our-project</user.install>
 </properties>
 ...
 </profile>
 </profiles>
 ...
</settings>

The property ${user.install} is accessible
 from a POM if this profile is active.

Repositories

Repositories are remote collections of projects that Maven
 uses to populate the local repository of the build system. It
 is from this local repository that Maven calls its plugins and
 dependencies. Different remote repositories may contain different
 projects, and under the active profile they may be searched for a
 matching release or snapshot artifact. See Example A-8.
Example A-8. Repository configuration in settings.xml
<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <profiles>
 <profile>
 ...
 <repositories>
 <repository>
 <id>codehausSnapshots</id>
 <name>Codehaus Snapshots</name>
 <releases>
 <enabled>false</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://snapshots.maven.codehaus.org/maven2</url>
 <layout>default</layout>
 </repository>
 </repositories>
 <pluginRepositories>
 ...
 </pluginRepositories>
 ...
 </profile>
 </profiles>
 ...
</settings>

These are the elements:
	releases, snapshots
	These are the policies for each type of artifact,
 release or snapshot.
 With these two sets, a POM has the power to
 alter the policies for each type independent of the other
 within a single repository. For example, one may decide to
 enable only snapshot downloads, possibly for development
 purposes.

	enabled
	true or false for
 whether this repository is enabled for the
 respective type (releases or snapshots).

	updatePolicy
	This element specifies how often updates should attempt
 to occur. Maven will compare the local
 POMs timestamp to the remote. The choices
 are: always, daily
 (default), interval:X (where
 X is an integer in minutes), or
 never.

	checksumPolicy
	When Maven deploys files to the repository, it also
 deploys corresponding checksum files. Your options are
 to ignore, fail, or
 warn on missing or incorrect checksums.

	layout
	In the earlier description of repositories, we mentioned
 that they all follow a common layout. This is
 mostly correct. Maven 2 has a default layout for its
 repositories; however, Maven 1.x had a different layout. Use
 this element to specify whether it is default or
 legacy.

Plugin Repositories

Repositories are home to two major types of artifacts. The
 first are artifacts that are used as dependencies of other
 artifacts. These are the majority of plugins that reside within
 central. The other type of artifact is plugins. Maven plugins are
 themselves a special type of artifact. Because of this, plugin
 repositories are separated from other repositories. The structure of the
 pluginRepositories element block is similar to
 the repositories element. The
 pluginRepository elements each specify a remote
 location where Maven can find new plugins.

Active Profiles

See Example A-9.
Example A-9. Setting active profiles in settings.xml
<settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <activeProfiles>
 <activeProfile>env-test</activeProfile>
 </activeProfiles>
</settings>

The final piece of the settings.xml puzzle is the activeProfiles element. This
 contains a set of activeProfile elements, which
 each have a value of a profile id. Any profile id defined as an
 activeProfile will be active, regardless of any
 environment settings. If no matching profile is found, nothing will
 happen. For example, if env-test is an
 activeProfile, a profile in a
 pom.xml (or profile.xml with a corresponding id), it will be active. If no such profile
 is found, execution will continue as normal.

Appendix B. Sun Specification Alternatives

The Apache Geronimo project maintains implementations of various
 enterprise Java specifications. Table B-1 lists the artifactId and artifact version for all of the
 specifications implemented by the Geronimo project. To use one of these
 dependencies, use a groupId of
 org.apache.geronimo.specs, locate the version of the
 specification you want to use, and reference the dependency with the
 artifactId and artifact version
 listed in Table B-1.
Note
All artifacts in Table B-1 have
 a groupId of
 org.apache.geronimo.specs.

Table B-1. Alternate spec implementations artifacts
	Specification	Spec
 version	Artifact ID	Artifact
 version
	Activation	1.0.2	geronimo-activation_1.0.2_spec	1.2
	Activation	1.1	geronimo-activation_1.1_spec	1.0.1
	Activation	1.0	geronimo-activation_1.0_spec	1.1
	CommonJ	1.1	geronimo-commonj_1.1_spec	1.0
	Corba	2.3	geronimo-corba_2.3_spec	1.1
	Corba	3.0	geronimo-corba_3.0_spec	1.2
	EJB	2.1	geronimo-ejb_2.1_spec	1.1
	EJB	3.0	geronimo-ejb_3.0_spec	1.0
	EL	1.0	geronimo-el_1.0_spec	1.0
	Interceptor	3.0	geronimo-interceptor_3.0_spec	1.0
	J2EE Connector	1.5	geronimo-j2ee-connector_1.5_spec	1.1.1
	J2EE Deployment	1.1	geronimo-j2ee-deployment_1.1_spec	1.1
	J2EE JACC	1.0	geronimo-j2ee-jacc_1.0_spec	1.1.1
	J2EE
 Management	1.0	geronimo-j2ee-management_1.0_spec	1.1
	J2EE
 Management	1.1	geronimo-j2ee-management_1.1_spec	1.0
	J2EE	1.4	geronimo-j2ee_1.4_spec	1.1
	JACC	1.1	geronimo-jacc_1.1_spec	1.0
	JEE Deployment	1.1MR3	geronimo-javaee-deployment_1.1MR3_spec	1.0
	JavaMail	1.3.1	geronimo-javamail_1.3.1_spec	1.3
	JavaMail	1.4	geronimo-javamail_1.4_spec	1.2
	JAXR	1.0	geronimo-jaxr_1.0_spec	1.1
	JAXRPC	1.1	geronimo-jaxrpc_1.1_spec	1.1
	JMS	1.1	geronimo-jms_1.1_spec	1.1
	JPA	3.0	geronimo-jpa_3.0_spec	1.1
	JSP	2.0	geronimo-jsp_2.0_spec	1.1
	JSP	2.1	geronimo-jsp_2.1_spec	1.0
	JTA	1.0.1B	geronimo-jta_1.0.1B_spec	1.1.1
	JTA	1.1	geronimo-jta_1.1_spec	1.1
	QName	1.1	geronimo-qname_1.1_spec	1.1
	SAAJ	1.1	geronimo-saaj_1.1_spec	1.1
	Servlet	2.4	geronimo-servlet_2.4_spec	1.1.1
	Servlet	2.5	geronimo-servlet_2.5_spec	1.1.1
	STaX API	1.0	geronimo-stax-api_1.0_spec	1.0.1
	WS Metadata	2.0	geronimo-ws-metadata_2.0_spec	1.1.1

Note
The version numbers in the artifact version column may be out of
 date by the time you read this book. To check on the version number,
 visit http://repo1.maven.org/maven2/org/apache/geronimo/specs/
 in a web browser and click on the artifactId you want to add. Choose the
 highest version of the spec you want to depend on.

To illustrate how to use this table, if we wanted to write some
 code in our project that interacted with the JTA
 1.0.1B specification, we would need to add the dependency shown in Example B-1 to our project.
Example B-1. Adding JTA 1.0.1B to a Maven project
<dependency>
 <groupId>org.apache.geronimo.specs</groupId>
 <artifactId>geronimo-jta_1.0.1B_spec</artifactId>
 <version>1.1.1</version>
</dependency>

Notice how the version of the artifact isn’t going to line up with
 the version of the specification—the previous dependency configuration
 adds version 1.0.1B of the JTA specification using the artifact version
 of 1.1.1. Be aware of this when depending on the alternate Geronimo
 implementations, and always double-check that you are using the latest
 artifact version number for your specifications.
Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

A
	absence of property, activating profiles upon, Activation by the Absence of a Property
	
	AbstractMojo class, A Simple Java Mojo
	
	activating build profiles, Profile Activation–Activation by the Absence of a Property
		according to environment, Common Environments
	
	according to platform, Platform Classifiers
	

	<activation>
 element (settings.xml), Activation
	
	<active>
 element (<proxy> element), Proxies
	
	active-profiles goal (Help plugin), Listing Active Profiles
	
	<activeByDefault>
 element (profile activation), Activation Configuration
	
	<activeProfile>
 element, Settings Profiles
	
	<activeProfiles>
 element (settings.xml), Active Profiles
	
	aggregating assemblies, Distribution (Aggregating) Assemblies–Distribution (Aggregating) Assemblies
	
	@aggregator
 annotation (Mojo), Mojo Class Annotations
	
	aggregator element (Mojo declarations), Mojo Configuration
	
	AJDT (AspectJ Development Tools),
 installing, Installing AspectJ Development Tools (AJDT)
	
	annotations (Hibernate), The Simple Model Module
	
	annotations for Mojo classes, Mojo Class Annotations
	
	Apache Geronimo project, Adding J2EE Dependencies, The Simple Persist Module, Sun Specification Alternatives
	
	Apache License, about, About the Apache Software License
	
	ApplicationContext (Spring Framework), The Simple Weather Module
	
	applications, building and packaging, Building a Simple Project
		command-line applications, Building a Packaged Command-Line Application–Building a Packaged Command-Line Application
	

	APT (Almost Plain Text) format, Writing Project Documentation
	
	arbitrary properties, referencing, Property References
	
	Archetype plugin, Creating a Simple Project
		creating plugin project, Creating a Plugin Project
	
	creating simple weather application with, Creating the Simple Weather Project
	
	m2eclipse plugin and, Creating a Maven Project from a Maven Archetype–Creating a Maven Project from a Maven Archetype
	

	archetypes, defined, Creating a Simple Project
	
	archives (see assemblies)
	
	artifactId attribute (pom.xml), Simple Project Object Model, Maven Coordinates, More on Coordinates
		determining for dependencies, Add New Dependencies
		Apache Geronimo implementation of Servlet API, Adding J2EE Dependencies
	

	referencing, Maven Project Properties
	

	artifactId element (plugins), Top-Level Plugin Descriptor Elements, Configuring a Plugin Prefix–Configuring a Plugin Prefix
	
	AspectJ Development Tools (AJDT),
 installing, Installing AspectJ Development Tools (AJDT)
	
	assemblies, Introduction–Summary
		assembling via assembly dependencies, Assembling Assemblies via Assembly Dependencies–Assembling Assemblies via Assembly Dependencies
	
	best practices, Best Practices–Distribution (Aggregating) Assemblies
		distribution assemblies, Distribution (Aggregating) Assemblies–Distribution (Aggregating) Assemblies
	
	standard and reusable descriptors, Standard, Reusable Assembly Descriptors–Standard, Reusable Assembly Descriptors
	

	building, Building an Assembly–Building an Assembly
	
	controlling contents of, Controlling the Contents of an Assembly–componentDescriptors and containerDescriptorHandlers
		<dependencySets>
 section, dependencySets Section–Summarizing dependency sets
	
	<files>
 section, Files Section–Default Exclusion Patterns for fileSets
	
	<fileSets>
 section, fileSets Section–Default Exclusion Patterns for fileSets
	
	managing root directory, Managing the Assembly’s Root Directory
	
	<moduleSets>
 section, moduleSets Sections–moduleSets, parent POMs, and the
 binaries section
	
	<repositories>
 section, Repositories Section–Repositories Section
	

	as dependencies, Assemblies as Dependencies–Assemblies as Dependencies
	
	descriptors for, The Assembly Descriptor–Required Assembly Information
		basics of, Overview of the Assembly Descriptor–Overview of the Assembly Descriptor
	

	predefined descriptors, Predefined Assembly Descriptors
	

	Assembly plugin, Building a Packaged Command-Line Application, Introduction
		default exclusion patterns, Default Exclusion Patterns for fileSets
	
	direct invocation of, Building an Assembly
	
	distribution (aggregating) assemblies, Distribution (Aggregating) Assemblies–Distribution (Aggregating) Assemblies
	
	supported formats, Required Assembly Information
	

	<attachmentClassifier>
 flag (module sets), Binaries section
	
	authentication, project web site, Configuring Server Authentication
	

B
	base configuration section (assembly
 descriptors), Overview of the Assembly Descriptor
	
	base directory, Creating a Simple Project
	
	best practices with POMs, POM Best Practices–Prototype parent projects
	
	bin assembly descriptor, Predefined Assembly Descriptors
	
	<binaries>
 section (module sets), Binaries section
		module handling and, moduleSets, parent POMs, and the
 binaries section
	

	binaries, module, Binaries section
		module handling and, moduleSets, parent POMs, and the
 binaries section
	

	boundaries for version ranges, specifying, Dependency Version Ranges
	
	breadcrumbs, in project web site, Add Breadcrumbs to Your Site
	
	build (pom.xml)
		referencing, Maven Project Properties
	

	<build>
 element (pom.xml), The Super POM
	
	build environment, The POM
	
	build information (in pom.xml), The POM
	
	build lifecycle, Maven Lifecycle–Maven Lifecycle, Introduction–Deploy
		clean lifecycle, Clean Lifecycle (clean)–Clean Lifecycle (clean)
	
	common lifecycle goals, Common Lifecycle Goals–Deploy
	
	default lifecycle, Default Lifecycle (default)–Default Lifecycle (default)
	
	default Maven lifecycle, Maven Lifecycle
	
	package-specific lifecycle, Package-Specific Lifecycles–Other Packaging Types
	
	plugins and, Plugins and the Maven Lifecycle–Overriding the Default Lifecycle
		custom plugin lifecycles, Creating a Custom Lifecycle
	
	default lifecycle, overriding, Overriding the Default Lifecycle
	
	parallel lifecycles, Executing a Parallel Lifecycle
	

	site lifecycle, Site Lifecycle (site)–Site Lifecycle (site)
	

	build Maven
		user-defined properties in, User-Defined Properties
	

	build portability, What Is Build Portability?–Selecting an Appropriate Level of Portability
		building using profiles (see build profiles)
	
	selecting appropriate level of, Selecting an Appropriate Level of Portability
	

	build profiles, What Are They For?–Summary
		activating, Profile Activation–Activation by the Absence of a Property
		according to environment, Common Environments
	
	according to platform, Platform Classifiers
	

	configuration in settings.xml, Profiles
	
	external, External Profiles–External Profiles
	
	listing active, Listing Active Profiles–Listing Active Profiles
	
	overriding a POM, Overriding a Project Object Model–Overriding a Project Object Model
	
	overriding Compile plugin (example), Portability Through Maven Profiles–Portability Through Maven Profiles
	
	portability, What Is Build Portability?–Selecting an Appropriate Level of Portability
		selecting appropriate level of, Selecting an Appropriate Level of Portability
	

	settings profiles, Settings Profiles–Global Settings Profiles
	
	tips and tricks with, Tips and Tricks–Platform Classifiers
	

	building applications, Building a Simple Project
	
	building assemblies, Building an Assembly–Building an Assembly
	
	bundling assemblies into projects, Assembling Assemblies via Assembly Dependencies
	
	bytecode analysis (Dependency plugin), Optimizing with the Maven Dependency Plugin
	

C
	central repository, The Super POM
	
	checking out projects from Subversion, Checking Out a Maven Project from SCM
	
	<checksumPolicy>
 element (<repository> element), Repositories
	
	classes
		creating new, Simple Weather Source Code
	
	where stored, Creating a Simple Project
	

	classifier attribute (pom.xml), More on Coordinates
	
	classifiers for environment, Platform Classifiers
	
	classpath resources, where stored, Creating a Simple Project
	
	classwords-1.1.jar file, Maven Installation Details
	
	clean lifecycle, Clean Lifecycle (clean)–Clean Lifecycle (clean)
	
	Clean plugin, Clean Lifecycle (clean)
	
	cleaning up POMs, POM Cleanup
		(see also optimizing POMs)
	

	command-line applications, packaging, Building a Packaged Command-Line Application–Building a Packaged Command-Line Application
	
	compile dependencies, Dependency Scope
	
	compile goal, Maven Lifecycle
	
	compile phase (default lifecycle), Default Lifecycle (default)
	
	Compiler plugin, Compile
		compile goal, Maven Lifecycle
	
	overriding with a profile (example), Portability Through Maven Profiles
	
	testCompile goal, Maven Lifecycle
	

	compiling projects, Building the Multimodule Project
		(see also WAR files)
	

	@component
 annotation (Mojo parameters), Mojo Parameter Annotations
	
	<componentDescriptors>
 section (assembly descriptors), componentDescriptors and containerDescriptorHandlers
	
	configuration element (Mojo
 declarations), Mojo Configuration
	
	configure phase (default lifecycle), Compile–Compile
	
	conflict, dependency, Conflict Resolution
	
	Console View, Enabling the Maven Console
	
	consolidating dependencies (best practice), Grouping Dependencies
	
	constructor injection, Introduction to Plexus
	
	<containerDescriptorHandlers>
 section (assembly descriptors), componentDescriptors and containerDescriptorHandlers
	
	convention over configuration, Maven Plugins and Goals
	
	coordinates, Simple Project Object Model, Maven Coordinates–Maven Coordinates, More on Coordinates
		for plugins, Top-Level Plugin Descriptor Elements, Configuring a Plugin Prefix–Configuring a Plugin Prefix
	

	creating projects, Creating a Simple Project
	
	CSS for project web site, Customizing the Site CSS
		custom themes, Creating a Custom Theme CSS
	

	custom archives (see assemblies)
	
	custom packaging types, Other Packaging Types
	
	customizing projects, Introduction–Building a Packaged Command-Line Application
		adding new dependencies, Add New Dependencies–Add New Dependencies
	
	adding project information to pom.xml, Customize Project Information–Customize Project Information
	
	adding resources, Add Resources–Add Resources
	
	adding test-scoped dependencies, Adding Test-Scoped Dependencies–Adding Test-Scoped Dependencies
	
	building packaged command-line applications, Building a Packaged Command-Line Application–Building a Packaged Command-Line Application
	
	creating the project, Creating the Simple Weather Project–Creating the Simple Weather Project
	
	defining the project, Defining the Simple Weather Project–Yahoo! Weather RSS
	
	running (executing), Running the Simple Weather Program–Exploring Your Project Dependencies
	
	testing resources, adding, Adding Unit Test Resources–Adding Unit Test Resources
	
	unit tests, executing, Executing Unit Tests–Skipping Unit Tests
	
	web applications (see web applications)
	
	writing unit tests, Writing Unit Tests–Writing Unit Tests
	

D
	DAO (Data Access Objects), The Simple Persist Module
	
	Databinder archetypes, list of, Creating a Maven Project from a Maven Archetype
	
	date format, project web site, Modify the Publication Date Format and Location
	
	debug() method (Log class), Logging from a Plugin
	
	default Maven lifecycle, Maven Lifecycle, Default Lifecycle (default)–Default Lifecycle (default)
		common lifecycle goals, Common Lifecycle Goals–Deploy
	
	overriding for plugins, Overriding the Default Lifecycle
	

	default.properties file, Process Resources
	
	dependencies, Project Dependencies
		adding or updating with m2eclipse, Adding and Updating Dependencies and Plugins–Adding and Updating Dependencies and Plugins
	
	adding to projects, Add New Dependencies–Add New Dependencies
	
	assemblies as, Assemblies as Dependencies–Assemblies as Dependencies
		assembling assemblies using, Assembling Assemblies via Assembly Dependencies–Assembling Assemblies via Assembly Dependencies
	

	conflicts with, resolving, Conflict Resolution
	
	declared in plugin descriptors, Plugin Dependencies
	
	exploring with Dependency plugin, Exploring Your Project Dependencies
	
	grouping (best practice), Grouping Dependencies
	
	how to manage, Dependency Management
	
	including/excluding in assembly
 archives, Overview of the Assembly Descriptor, dependencySets Section–Summarizing dependency sets
		advanced unpacking options, Advanced unpacking options–Advanced unpacking options
	
	by scope, Including and excluding dependencies by scope–Including and excluding dependencies by scope
	
	custom dependency output location, Customizing dependency output location–Customizing dependency output location
	
	fine-tuning, Fine-tuning: dependency includes and excludes–Fine-tuning: dependency includes and excludes
	
	interpolation of properties in dependency
 output, Interpolation of properties in dependency output
 location–Interpolation of properties in dependency output
 location
	
	transitive dependencies and project
 artifacts, Transitive dependencies, project attachments, and project
 artifacts–Transitive dependencies, project attachments, and project
 artifacts
	

	inheritance and (see project inheritance)
	
	J2EE dependencies, adding, Adding J2EE Dependencies–Adding J2EE Dependencies
	
	javax.transaction:javax (unavailable), The Simple Persist Module
	
	on JSP 2.0
 specification, Adding J2EE Dependencies
	
	optimizing, Optimizing Dependencies–Optimizing Dependencies
		Maven Dependency plugin for, Optimizing with the Maven Dependency Plugin–Optimizing with the Maven Dependency Plugin
	

	optional, Optional Dependencies
	
	plugin (see plugins)
	
	resolving with m2eclipse, Resolving Dependencies
	
	scope of, Dependency Scope
		excluding dependencies from assemblies by, Including and excluding dependencies by scope–Including and excluding dependencies by scope
	

	test-scoped, Adding Test-Scoped Dependencies–Adding Test-Scoped Dependencies, Dependency Scope
	
	transitive (see transitive dependencies)
	

	<dependencies>
 element (pom.xml), Add New Dependencies
	
	dependency information section (assembly
 descriptors), Overview of the Assembly Descriptor, dependencySets Section–Summarizing dependency sets
		custom dependency output location, Customizing dependency output location–Customizing dependency output location
	
	including/excluding dependencies
		advanced unpacking options, Advanced unpacking options–Advanced unpacking options
	
	by scope, Including and excluding dependencies by scope–Including and excluding dependencies by scope
	
	fine-tuning, Fine-tuning: dependency includes and excludes–Fine-tuning: dependency includes and excludes
	
	transitive dependencies and project
 artifacts, Transitive dependencies, project attachments, and project
 artifacts–Transitive dependencies, project attachments, and project
 artifacts
	

	interpolation of properties in dependency
 output, Interpolation of properties in dependency output
 location–Interpolation of properties in dependency output
 location
	

	Dependency Injection (DI), Introduction to Plexus
	
	dependency management, Maven’s Dependency Management–Maven’s Dependency Management
	
	Dependency plugin, Exploring Your Project Dependencies
		analyze goal, Optimizing with the Maven Dependency Plugin
	

	dependency trails, Transitive dependencies, project attachments, and project
 artifacts
	
	<dependencyManagement>
 element (pom.xml), Dependency Management
	
	<dependencySets>
 section (assembly definitions), dependencySets Section–Summarizing dependency sets
		custom dependency output location, Customizing dependency output location–Customizing dependency output location
	
	including/excluding dependencies
		advanced unpacking options, Advanced unpacking options–Advanced unpacking options
	
	by scope, Including and excluding dependencies by scope–Including and excluding dependencies by scope
	
	fine-tuning, Fine-tuning: dependency includes and excludes–Fine-tuning: dependency includes and excludes
	
	transitive dependencies and project
 artifacts, Transitive dependencies, project attachments, and project
 artifacts–Transitive dependencies, project attachments, and project
 artifacts
	

	interpolation of properties in dependency
 output, Interpolation of properties in dependency output
 location–Interpolation of properties in dependency output
 location
	

	deploy phase (default lifecycle), Default Lifecycle (default), Deploy
	
	Deploy plugin, Deploy
	
	deploying project web site, Deploying Your Project Web Site–Configuring File and Directory Modes
	
	@depreciated
 annotation (Mojo parameters), Mojo Parameter Annotations
	
	depth of dependencies, Grouping Dependencies
	
	describing Maven plugins, Describing a Maven Plugin
	
	description attribute (pom.xml)
		referencing, Maven Project Properties
	

	description element (Mojo declarations), Mojo Configuration
	
	description element (Mojo
 parameters), Mojo Configuration
	
	description element, plugins, Top-Level Plugin Descriptor Elements
	
	descriptors, assembly, The Assembly Descriptor–Required Assembly Information
		basics of, Overview of the Assembly Descriptor–Overview of the Assembly Descriptor
	

	<dev> element (profile
 activation), Activation Configuration
	
	developer information (project information), The POM
		adding to project, Customize Project Information
	

	directory modes, project web site, Configuring File and Directory Modes
	
	directory structures for projects, Creating a Simple Project, Site Directory Structure
	
	<directory
 Permissions> element, Servers
	
	distribution assemblies, Distribution (Aggregating) Assemblies–Distribution (Aggregating) Assemblies
	
	<distributionManagement>
 section (pom.xml), Deploying Your Project Web Site, Servers
	
	documentation, project, Writing Project Documentation–FML Example
	
	documentation generation, Site Generation and Reporting
	
	downloading examples for this book, Downloading This Chapter’s Example
	
	downloading Maven, Downloading Maven
	
	downloading source with m2eclipse, Downloading Source
	
	Doxia engine, Writing Project Documentation
		macros, Using Doxia Macros
	

	duplicated dependency declarations, Optimizing Dependencies
	

E
	EAR packaging, EAR
	
	Eclipse IDE, Introduction (see m2eclipse plugin)
	
	editable element (Mojo
 parameters), Mojo Configuration
	
	effective POMs, The Effective POM
	
	EJBs (Enterprise JavaBeans), EJB
	
	Embedder, Maven Preferences
	
	<enabled>
 element (<repository> element), Repositories
	
	Enterprise JavaBeans (EJBs), EJB
	
	enterprise project, multimodule (example), Introduction–Programming to Interface Projects
		multimodule versus inheritance, Multimodule enterprise project
	
	object model, The Simple Model Module–The Simple Model Module
	
	running web applications, Running the Web Application–Running the Web Application
	
	simple-parent project, The Simple Parent Project–The Simple Parent Project
	
	simple-persist module of, The Simple Persist Module–The Simple Persist Module
	
	simple-weather module of, The Simple Weather Module–The Simple Weather Module
	
	simple-webapp, The Simple Web Application Module–The Simple Web Application Module
	

	@Entity annotation
 (Hibernate), The Simple Model Module
	
	env variable, Property References
	
	env.* properties, Maven Properties, Environment Variable Properties, Properties
	
	environment portability, Environment portability
	
	environment variables, referencing, Maven Properties, Environment Variable Properties, Properties
	
	environment-specific configurations, Common Environments–Common Environments
	
	example programs in this book, downloading, Downloading This Chapter’s Example
	
	<excludes>
 section (<fileSets> element), fileSets Section
	
	excluding files from dependency unpacking, Advanced unpacking options
	
	excluding transitive dependencies, Conflict Resolution
	
	exclusive boundaries (version ranges), Dependency Version Ranges
	
	Exec plugin, The Maven Exec Plugin
	
	@execute
 annotation (Mojo), Mojo Class Annotations
	
	execute() method (Mojo interface), A Simple Java Mojo
	
	executing goals, Maven Plugins and Goals, Maven Plugins and Goals
		(see also goals)
	

	executing lifecycle phases, Maven Lifecycle
	
	executionStrategy element (Mojo
 declarations), Mojo Configuration
	
	external build profiles, External Profiles–External Profiles
	
	external dependencies, Project Dependencies
	

F
	field injection, Introduction to Plexus
	
	<file>
 element (<activation> element), Activation
	
	<file> element (profile
 activation), Activation Configuration
	
	file information section (assembly
 descriptors), Overview of the Assembly Descriptor, Files Section–Default Exclusion Patterns for fileSets
	
	file modes, project web site, Configuring File and Directory Modes
	
	<filePermissions>
 element, Servers
	
	<files>
 section (assembly descriptors), Files Section
	
	<fileSets>
 section (assembly descriptors), fileSets Section–Default Exclusion Patterns for fileSets
		default exclusion patterns, Default Exclusion Patterns for fileSets
	

	<filtering>
 flag (dependency set unpacking), Advanced unpacking options
	
	filtering resources, Process Resources
	
	<filtering>
 section (<fileSets> element), fileSets Section
	
	FML documents, FML Example
	
	<formats>
 element (assembly descriptions), Required Assembly Information
	
	FreeBSD, installing Maven on, Installing Maven on FreeBSD or OpenBSD
	

G
	generate-resources phase (default
 lifecycle), Default Lifecycle (default)
	
	generate-sources phase (default
 lifecycle), Default Lifecycle (default)
	
	generate-test-resources phase (default
 lifecycle), Default Lifecycle (default)
	
	generate-test-sources phase (default
 lifecycle), Default Lifecycle (default)
	
	Geronimo project (see Apache Geronimo project)
	
	getLog() method (Mojo interface), A Simple Java Mojo
	
	global settings profiles, Settings Profiles, Global Settings Profiles
	
	@goal annotation
 (Mojo), Mojo Class Annotations
	
	goal element (Mojo declarations), Mojo Configuration
	
	goalPrefix element, plugins, Top-Level Plugin Descriptor Elements
	
	goals, Maven Plugins and Goals
		(see also plugins)
	
	about, Creating a Simple Project
	
	attaching to lifecycle phases, Maven Lifecycle
	
	defined, Maven Plugins and Goals
	
	triggering on pre-clean phase, Clean Lifecycle (clean)
	

	graphical POM editor, Using the Form-Based POM Editor
	
	graphics for project web site, Customizing the Header Graphics
	
	group identifiers, about, More on Coordinates, More on Coordinates
		(see also groupId attribute)
	

	group permissions, project web site, Configuring File and Directory Modes
	
	groupId attribute (pom.xml), Simple Project Object Model, Maven Coordinates, More on Coordinates
		built-in, to avoid dependency duplication, Optimizing Dependencies
	
	determining for dependencies, Add New Dependencies
		Apache Geronimo implementation of Servlet API, Adding J2EE Dependencies
	

	referencing, Maven Project Properties
	

	groupId element (plugins), Top-Level Plugin Descriptor Elements, Configuring a Plugin Prefix–Configuring a Plugin Prefix
	
	grouping dependencies (best practice), Grouping Dependencies
	
	<groupVersionAlignments>
 flag (assembly repositories), Repositories Section
	

H
	HEAD element, XHTML in (project web sites), Inject XHTML into HEAD
	
	header graphics, project web site, Customizing the Header Graphics
	
	Help plugin, Using the Maven Help Plugin
		help:describe goal, Describing a Maven Plugin–Describing a Maven Plugin
	

	help with Maven, getting, Getting Help with Maven
	
	Help:active-profiles goal, Listing Active Profiles
	
	Hibernate, Technology Used in This Example
	
	Hibernate annotations, The Simple Model Module
	
	Hibernate plugin, The Simple Web Application Module
	
	hibernate.cfg.xml file, The Simple Persist Module
	
	Hibernate3 plugin, The Simple Persist Module, The Simple Web Application Module
		building database using, Running the Web Application
	

	HOME environment variable, Environment Variable Properties
	
	<host>
 element (<proxy> element), Proxies
	
	HQL (Hibernate Query Language), The Simple Model Module
	
	hyperlinks at project web site, Add Links Under Your Site Logo
	

I
	<id> element, Servers
		assembly
 descriptions, Required Assembly Information
	
	<mirror>
 element, Mirrors
	
	<profiles>
 element, Portability Through Maven Profiles
	

	implementation element (Mojo
 declarations), Mojo Configuration
	
	implicit variables, list of, Property References
	
	importing projects into Eclipse, Importing Maven Projects–Materializing a Maven Project
		materializing projects, Materializing a Maven Project–Materializing a Maven Project
	

	in-house portability, Organizational (in-house) portability
	
	<includeDependencies>
 flag (module sets), Binaries section
	
	<includeMetadata>
 flag (assembly repositories), Repositories Section
	
	<includes>
 section (<fileSets> element), fileSets Section
	
	<includeSubModules>
 flag (module sets), Module selection, Binaries section
	
	inclusive boundaries (version ranges), Dependency Version Ranges
	
	incremental versions (projects), Project Versions
	
	indexing repositories with m2eclipse, Indexing Maven Repositories–Indexing Maven Repositories
	
	inheritance between projects or modules, Project Inheritance
		choosing multimodule projects instead of, Multimodule Versus Inheritance
	

	inheritedByDefault element (Mojo
 declarations), Mojo Configuration
	
	inheritedByDefault element, plugins, Top-Level Plugin Descriptor Elements
	
	install phase (default lifecycle), Default Lifecycle (default), Install
	
	Install plugin, Install
	
	installation directory
		contents of, Maven Installation Details
	
	identifying, Environment Variable Properties
	

	installing Maven, Installing and Running Maven–Upgrading a Maven Installation
		details about, Maven Installation Details
	
	on FreeBSD or OpenBSD, Installing Maven on FreeBSD or OpenBSD
	
	on Linux, Installing Maven on Linux
	
	on Mac OS X, Installing Maven on Mac OS X
	
	on Microsoft
 Windows, Installing Maven on Microsoft Windows
	
	testing the installation, Testing a Maven Installation
	
	upgrade an installation, Upgrading a Maven Installation
	

	instantiationStrategy element (Mojo
 declarations), Mojo Configuration
	
	integration-test phase (default
 lifecycle), Default Lifecycle (default)
	
	<interactiveMode>
 element (settings.xml), Simple Values
	
	internal dependencies, Project Dependencies, Project Dependencies
		(see also dependencies)
	

	Inversion of Control (IoC), What Is Inversion of Control?
	
	isolatedRealm element, plugins, Top-Level Plugin Descriptor Elements
	

J
	J2EE dependencies, adding, Adding J2EE Dependencies–Adding J2EE Dependencies
	
	JAR files, JAR
		executable, producing from project, Building an Assembly–Building an Assembly
	

	jar-with-dependencies assembly
 descriptor, Predefined Assembly Descriptors
	
	jar-with-dependencies format, Building a Packaged Command-Line Application
	
	jar:jar goal, Maven Lifecycle
	
	Java classes, where stored, Creating a Simple Project
	
	Java installation, verifying, Verify Your Java Installation
	
	Java system properties, referencing, Property References, Maven Properties, Java System Properties, Properties
	
	javax.transaction:javax dependency
 (unavailable), The Simple Persist Module
	
	JAVA_HOME environment variable, Environment Variable Properties
	
	<jdk>
 element (<activation> element), Activation
	
	Jetty plugin, The Simple Web Application Module
		configuring in pom.xml, Configuring the Jetty Plugin–Configuring the Jetty Plugin
	

	JSP 2.0 specification, dependency on, Adding J2EE Dependencies
	

L
	language element (Mojo declarations), Mojo Configuration
	
	<layout>
 element (<repository> element), Repositories
	
	license (Apache), about, About the Apache Software License
	
	LICENSE.txt file, Maven Installation Details
	
	licensing information (project information), The POM
		adding to project, Customize Project Information
	

	lifecycle, Maven (see build lifecycle)
	
	<lineEnding>
 section (<fileSets> element), fileSets Section
	
	links at project web site, Add Links Under Your Site Logo
	
	Linux, installing Maven on, Installing Maven on Linux
	
	listing active profiles, Listing Active Profiles–Listing Active Profiles
	
	local repository, Maven Repositories
	
	<localRepository>
 element (settings.xml), Simple Values
	
	logging from plugins, Logging from a Plugin
	
	lower boundaries (version ranges), Dependency Version Ranges
	

M
	m2 directory, contents of, Maven Installation Details
	
	m2eclipse plugin, m2eclipse–Summary
		adjusting Maven preferences, Maven Preferences–Maven Preferences
	
	creating Maven projects, Creating a Maven Project–Creating a Maven Module
		checking out projects from Subversion, Checking Out a Maven Project from SCM
	
	creating modules, Creating a Maven Module–Creating a Maven Module, Creating a Maven Module–Creating a Maven Module
	
	from Maven
 archetype, Creating a Maven Project from a Maven Archetype
	

	creating POMs, Create a Maven POM File–Create a Maven POM File
	
	importing Maven projects into Eclipse, Importing Maven Projects–Materializing a Maven Project
		materializing projects, Materializing a Maven Project–Materializing a Maven Project
	

	installing, Installing the m2eclipse Plugin–Installing m2eclipse
		prerequisites for, Installing Prerequisites–Installing the Web Tools Platform (WTP)
	

	running Maven builds, Running Maven Builds–Running Maven Builds
	
	working with projects, Working with Maven Projects–Resolving Dependencies
		adding and updating dependencies and
 plugins, Adding and Updating Dependencies and Plugins–Adding and Updating Dependencies and Plugins
	
	creating modules, Creating a Maven Module–Creating a Maven Module
	
	downloading source, Downloading Source
	
	opening project pages, Opening Project Pages
	
	resolving dependencies, Resolving Dependencies
	

	working with repositories, Working with Maven Repositories–Indexing Maven Repositories
		indexing repositories, Indexing Maven Repositories–Indexing Maven Repositories
	
	searching for artifacts and Java classes, Searching For Maven Artifacts and Java classes–Searching For Maven Artifacts and Java classes
	

	M2_HOME environment variable, Environment Variable Properties
		Maven installation and, Installing Maven on Mac OS X, Installing Maven on Microsoft Windows
	

	Mac OS X, installing Maven on, Installing Maven on Mac OS X
	
	major versions (projects), Project Versions
	
	managing dependencies, Dependency Management, Dependency Management
		(see also dependencies)
	

	materializing projects, Materializing a Maven Project–Materializing a Maven Project
	
	Maven
		downloading, Downloading Maven
	
	getting help on, Getting Help with Maven
	
	upgrading, Upgrading a Maven Installation
	

	Maven, installing, Installing and Running Maven–Upgrading a Maven Installation
		details about, Maven Installation Details
	
	on Mac OS X, Installing Maven on Mac OS X
	
	on Microsoft
 Windows, Installing Maven on Microsoft Windows
	
	testing the installation, Testing a Maven Installation
	

	Maven Archetype plugin, Creating a Simple Project
		creating plugin project, Creating a Plugin Project
	
	creating simple weather application with, Creating the Simple Weather Project
	
	m2eclipse plugin and, Creating a Maven Project from a Maven Archetype–Creating a Maven Project from a Maven Archetype
	

	Maven Assemblies, Introduction–Summary
		assembling via assembly dependencies, Assembling Assemblies via Assembly Dependencies–Assembling Assemblies via Assembly Dependencies
	
	best practices, Best Practices–Distribution (Aggregating) Assemblies
		distribution assemblies, Distribution (Aggregating) Assemblies–Distribution (Aggregating) Assemblies
	
	standard and reusable descriptors, Standard, Reusable Assembly Descriptors–Standard, Reusable Assembly Descriptors
	

	building, Building an Assembly–Building an Assembly
	
	controlling contents of, Controlling the Contents of an Assembly–componentDescriptors and containerDescriptorHandlers
		componentDescriptors and
 containerDescriptorHandlers, componentDescriptors and containerDescriptorHandlers
	
	<dependencySets>
 section, dependencySets Section–Summarizing dependency sets
	
	<files>
 section, Files Section–Default Exclusion Patterns for fileSets
	
	<fileSets>
 section, fileSets Section–Default Exclusion Patterns for fileSets
	
	managing root directory, Managing the Assembly’s Root Directory
	
	<moduleSets>
 section, moduleSets Sections–moduleSets, parent POMs, and the
 binaries section
	
	<repositories>
 section, Repositories Section–Repositories Section
	

	as dependencies, Assemblies as Dependencies–Assemblies as Dependencies
	
	descriptors for, The Assembly Descriptor–Required Assembly Information
		basics of, Overview of the Assembly Descriptor–Overview of the Assembly Descriptor
	

	predefined descriptors, Predefined Assembly Descriptors
	

	Maven Assembly plugin, Building a Packaged Command-Line Application
	
	Maven Clean plugin, Clean Lifecycle (clean)
	
	Maven Compiler plugin, Compile
		overriding with a profile (example), Portability Through Maven Profiles
	

	Maven Console, enabling, Enabling the Maven Console–Enabling the Maven Console
	
	Maven coordinates, Simple Project Object Model, Maven Coordinates–Maven Coordinates, More on Coordinates
	
	Maven core concepts, Core Concepts–Site Generation and Reporting
	
	Maven Dependency plugin, Exploring Your Project Dependencies
		analyze goal, Optimizing with the Maven Dependency Plugin
	
	optimizing POMs with, Optimizing with the Maven Dependency Plugin–Optimizing with the Maven Dependency Plugin
	

	Maven Deploy plugin, Deploy
	
	Maven Embedder, Maven Preferences
	
	Maven Exec plugin, The Maven Exec Plugin
	
	Maven goals, about, Creating a Simple Project
	
	Maven Hibernate plugin, The Simple Web Application Module
	
	Maven Hibernate3 plugin, The Simple Persist Module, The Simple Web Application Module
		building database using, Running the Web Application
	

	Maven Install plugin, Install
	
	Maven installation directory,
 identifying, Environment Variable Properties
	
	Maven installing
		on FreeBSD or OpenBSD, Installing Maven on FreeBSD or OpenBSD
	
	on Linux, Installing Maven on Linux
	

	Maven Jetty plugin, The Simple Web Application Module
		configuring in pom.xml, Configuring the Jetty Plugin–Configuring the Jetty Plugin
	

	Maven lifecycle (see build lifecycle)
	
	Maven Plugin plugin, Configuring a Plugin Prefix
	
	Maven plugins (see plugins)
	
	Maven profiles (see build profiles)
	
	Maven projects (see projects)
	
	Maven properties (see properties)
	
	Maven repositories, Maven Coordinates
		central, The Super POM
	
	dependency management, Maven’s Dependency Management–Maven’s Dependency Management
	

	Maven Site plugin, Site Lifecycle (site), Building a Project Site with Maven
	
	Maven Standard Dirctory Layout, Creating a Simple Project
	
	Maven Surefire plugin
		binding goal to test lifecycle phase, Test
	
	skip parameter, Skipping Unit Tests
	
	test goal, Maven Lifecycle, Executing Unit Tests
	
	testFailureIgnore configuration property, Ignoring Test Failures
	

	Maven Version Decorator, Maven Preferences
	
	merging POM changes, Optimizing Dependencies
	
	Microsoft Windows, installing Maven on, Installing Maven on Microsoft Windows
	
	minor versions (projects), Project Versions
	
	<mirror>
 element (settings.xml), Mirrors
	
	<mirrorOf
 > element (<mirror> element), Mirrors
	
	<module> element
 (pom.xml), The Simple Parent Project
	
	module information section (assembly
 descriptors), Overview of the Assembly Descriptor, moduleSets Sections–moduleSets, parent POMs, and the
 binaries section
	
	module inheritance, Project Inheritance
		choosing multimodule projects instead of, Multimodule Versus Inheritance
	

	modules, creating with
 m2eclipse, Creating a Maven Module–Creating a Maven Module, Creating a Maven Module–Creating a Maven Module
	
	<modules>
 element (pom.xml), The Simple Parent Project
	
	<moduleSets>
 section (assembly descriptors), Overview of the Assembly Descriptor, moduleSets Sections–moduleSets, parent POMs, and the
 binaries section
	
	Mojo class annotations, Mojo Class Annotations
	
	Mojo configurations (plugin descriptors), Mojo Configuration
	
	Mojo failure, responding to, When a Mojo Fails
	
	Mojo interface, A Simple Java Mojo
	
	Mojo parameters, Mojo Parameters–Mojo Parameter Annotations
		multivalued, Multivalued Mojo Parameters–Multivalued Mojo Parameters
	

	Mojo, defined, What Is a Plugin?
	
	MojoExecutionException exception, When a Mojo Fails
	
	MojoFailureException exception, When a Mojo Fails
	
	multimodule project (example), Introduction–Running the Web Application
		building, Building the Multimodule Project
	
	multimodule enterprise project, Introduction–Programming to Interface Projects
		multimodule versus inheritance, Multimodule enterprise project
	
	object model, The Simple Model Module–The Simple Model Module
	
	running web applications, Running the Web Application–Running the Web Application
	
	simple-parent project, The Simple Parent Project–The Simple Parent Project
	
	simple-persist module of, The Simple Persist Module–The Simple Persist Module
	
	simple-weather module of, The Simple Weather Module–The Simple Weather Module
	
	simple-webapp, The Simple Web Application Module–The Simple Web Application Module
	

	running, Running the Web Application–Running the Web Application
	
	simple-parent project, The Simple Parent Project
	
	simple-weather submodule, The Simple Weather Module–The Simple Weather Module
	
	simple-webapp submodule, The Simple Web Application Module–The Simple Web Application Module
	

	multimodule projects, in general, Multimodule Projects
		inheritance versus, Multimodule Versus Inheritance
	
	module sets for assemblies, Overview of the Assembly Descriptor, moduleSets Sections–moduleSets, parent POMs, and the
 binaries section
	

	multimodule projects, optimizing POMs for, POM Cleanup
	
	multivalued Mojo parameters, Multivalued Mojo Parameters–Multivalued Mojo Parameters
	
	mvn install command, Building a Simple Project
	
	mvn script, Maven Installation Details
	
	Mylyn
		installing, Installing Mylyn
	

	Mylyn plugin, m2eclipse
	

N
	name attribute (pom.xml), referencing, Maven Project Properties
	
	name element (Mojo parameters), Mojo Configuration
	
	<name>
 element (<mirror> element), Mirrors
	
	<name>
 element (<proxy> element), Proxies
	
	@NamedQueries
 annotation (Hibernate), The Simple Model Module
	
	@NamedQuery
 annotation (Hibernate), The Simple Model Module
	
	navigation menu, project web site, Customizing the Navigation Menu
	
	new project wizard, Eclipse, Creating a Maven Project
	
	nonportable builds, Nonportable builds, Selecting an Appropriate Level of Portability
	
	<nonProxyHosts>
 element (<proxy> element), Proxies
	
	NOTICE.txt file, Maven Installation Details
	

O
	object model (see POM; pom.xml file)
	
	ObjectWeb ASM toolkit, Optimizing with the Maven Dependency Plugin
	
	obtaining example programs for this book, Downloading This Chapter’s Example
	
	obtaining Maven, Downloading Maven
	
	<offline>
 element (settings.xml), Simple Values
	
	open source generation, web site for (see site generation)
	
	OpenBSD, installing Maven on, Installing Maven on FreeBSD or OpenBSD
	
	opening project pages with m2eclipse, Opening Project Pages
	
	optimizing POMs, Introduction–Conclusion
		about cleaning up POMs, POM Cleanup
	
	dependency optimization, Optimizing Dependencies–Optimizing Dependencies
	
	Maven Dependency
 plugin, Optimizing with the Maven Dependency Plugin–Optimizing with the Maven Dependency Plugin
	
	plugin optimization, Optimizing Plugins–Optimizing Plugins
	

	optional dependencies, Optional Dependencies
	
	ordering of version qualifiers, Version build numbers
	
	organizational information (project
 information), The POM
		adding to project, Customize Project Information
	

	organizational portability, Organizational (in-house) portability
	
	<os>
 element (<activation> element), Activation
	
	<outputDirectory>
 element (assembly descriptors), fileSets Section
	
	<outputDirectory
 > flag (module sets), Binaries section
	
	<outputDirectoryMapping>
 element (assembly descriptors), Customizing dependency output location
		interpolation of, in module sets, Interpolation of outputDirectoryMapping in
 moduleSets
	

	<outputFileNameMapping>
 element (assembly descriptors), Customizing dependency output location
	
	overriding with profiles (see build profiles)
	

P
	package phase (default lifecycle), Default Lifecycle (default)
	
	package-specific lifecycle, Package-Specific Lifecycles–Other Packaging Types
	
	packages
		custom packaging types, Other Packaging Types
	
	EARs as, EAR
	
	EJBs (Enterprise JavaBeans) as, EJB
	
	JAR files (see JAR files)
	
	plugins as, Maven Plugin, Maven Plugin
		(see also plugins)
	

	POM files (see POM; pom.xml file)
	
	types of, Package-Specific Lifecycles
	
	WAR files as (see WAR files)
	

	packaging applications, Building a Simple Project
		command-line applications, Building a Packaged Command-Line Application–Building a Packaged Command-Line Application
	

	packaging attribute (pom.xml), Simple Project Object Model, Maven Coordinates
	
	<packaging>
 element (pom.xml), Package-Specific Lifecycles
	
	parallel lifecycles for plugins, Executing a Parallel Lifecycle
	
	@parameter
 annotation (Mojo parameters), Mojo Parameter Annotations
	
	parameters element (Mojo declarations), Mojo Configuration
	
	parent POM, Creating a Simple Project, The Simple Weather Module
		(see also POM)
	
	configuring project assembly in, Assembling Assemblies via Assembly Dependencies
	
	dependency management in, Dependency Management
	
	inheritance from (see project inheritance)
	
	module sets and, moduleSets, parent POMs, and the
 binaries section
	
	prototype parent projects, Prototype parent projects
	
	resolving dependency duplication, Optimizing Dependencies
	

	<passphrase>
 element, Servers
	
	<password>
 element, Servers
	
	<password>
 element (<proxy> element), Proxies
	
	passwords in settings files, Protecting Secrets
	
	PATH environment variable, Environment Variable Properties
	
	PATH variable, Maven installation and, Installing Maven on Mac OS X, Installing Maven on Microsoft Windows
	
	permissions, project web site, Configuring File and Directory Modes
	
	@phase
 annotation (Mojo), Mojo Class Annotations
	
	phase element (Mojo declarations), Mojo Configuration
	
	phases, lifecycle (see build lifecycle)
	
	platform-specific customizations, Platform Classifiers
	
	Plexus, What Is Inversion of Control?
		components of, for specifying Mojo
 parameters, Depending on Plexus Components
	
	introduction to, Introduction to Plexus–Introduction to Plexus
	
	reasons for, Why Plexus?–Why Plexus?
	

	plugin descriptors, Plugin Descriptor–Plugin Dependencies
		dependency declarations, Plugin Dependencies
	
	Mojo configurations, Mojo Configuration
	
	top-level elements of, Top-Level Plugin Descriptor Elements
	

	plugin goals (see goals)
	
	Plugin plugin, Configuring a Plugin Prefix
	
	<pluginGroups>
 element (settings.xml), Simple Values
	
	<pluginManagement>
 element (pom.xml), Optimizing Plugins
		project inheritance and, Project Inheritance
	

	<pluginRepositories>
 element (settings.xml), Plugin Repositories
	
	plugins, Using the Maven Help Plugin, Describing a Maven Plugin, Introduction–Overriding the Default Lifecycle
		(see also specific plugin by name)
	
	adding or updating with m2eclipse, Adding and Updating Dependencies and Plugins–Adding and Updating Dependencies and Plugins
	
	default repository for, The Super POM
	
	defined, Maven Plugins and Goals, What Is a Plugin?–What Is a Plugin?
	
	inheriting lists of (see project inheritance)
	
	Maven lifecycle and, Plugins and the Maven Lifecycle–Overriding the Default Lifecycle
		custom plugin lifecycles, Creating a Custom Lifecycle
	
	default lifecycle, overriding, Overriding the Default Lifecycle
	
	parallel lifecycles, Executing a Parallel Lifecycle
	

	optimizing, Optimizing Plugins–Optimizing Plugins
	
	packaging as, Maven Plugin
	
	writing, Writing a Custom Plugin–When a Mojo Fails
		configuring plugin prefix, Configuring a Plugin Prefix–Configuring a Plugin Prefix
	
	creating plugin projects, Creating a Plugin Project
	
	logging from a plugin, Logging from a Plugin
	
	Mojo class annotations, Mojo Class Annotations
	
	Mojo parameters, Mojo Parameters–Mojo Parameter Annotations
	
	simple Java Mojo (example), A Simple Java Mojo
	
	when Mojos fail, When a Mojo Fails
	

	POM (Project Object Model), Simple Project Object Model, Introduction–Prototype parent projects
		best practices, POM Best Practices
	
	creating with m2eclipse, Create a Maven POM File–Create a Maven POM File
	
	for enterprise
 projects, The Simple Model Module–The Simple Model Module
	
	merging POMs, Optimizing Dependencies
	
	Mojo parameters in, Supplying Values for Mojo Parameters
	
	optimizing and refactoring, Introduction–Conclusion
		about cleaning up POMs, POM Cleanup
	
	dependency optimization, Optimizing Dependencies–Optimizing Dependencies
	
	with Maven Dependency
 plugin, Optimizing with the Maven Dependency Plugin–Optimizing with the Maven Dependency Plugin
	
	plugin optimization, Optimizing Plugins–Optimizing Plugins
	

	overriding with profiles, Overriding a Project Object Model–Overriding a Project Object Model
	
	parent (top-level), The Simple Weather Module
		configuring project assembly in, Assembling Assemblies via Assembly Dependencies
	
	dependency management in, Dependency Management
	
	inheritance from (see project inheritance)
	
	module sets and, moduleSets, parent POMs, and the
 binaries section
	
	prototype parent projects, Prototype parent projects
	
	resolving dependency duplication, Optimizing Dependencies
	

	project dependencies (see dependencies)
	
	project relationships, Project Relationships–Project Inheritance
	
	referencing properties in, Maven Properties, Properties
	
	Super POM
		inheriting from, Project Inheritance
	

	syntax, POM Syntax–Property References
	
	user-defined properties in, User-Defined Properties
	

	pom.xml file, Creating a Simple Project, Simple Project Object Model, The POM, The POM
		(see also POM)
	
	best practices, POM Best Practices–Prototype parent projects
	
	build environment, The POM
	
	build information in, The POM
	
	defining submodules, The Simple Parent Project
	
	dependency management, Maven’s Dependency Management
	
	final POMs (for reference)
		simple-command POM, Final POMs
	
	simple-model POM, Final POMs
	
	simple-parent POM, Final POMs
	
	simple-persist POM, Final POMs
	
	simple-weather POM, Final POMs
	
	simple-webapp POM, Final POMs
	

	for simple-web project (example), Creating the Simple Web Project
	
	Mojo parameters in, Supplying Values for Mojo Parameters
	
	optimizing (see optimizing POMs)
	
	parent (top-level), The Simple Weather Module
		configuring project assembly in, Assembling Assemblies via Assembly Dependencies
	
	dependency management in, Dependency Management
	
	inheritance from (see project inheritance)
	
	module sets and, moduleSets, parent POMs, and the
 binaries section
	
	prototype parent projects, Prototype parent projects
	
	resolving dependency duplication, Optimizing Dependencies
	

	<profiles>
 element (see build profiles)
	
	project information in, The POM
		adding, Customize Project Information
	

	referencing properties in, Maven Properties, Properties
	

	<port>
 element (<proxy> element), Proxies
	
	portability, build, What Is Build Portability?–Selecting an Appropriate Level of Portability
		building using profiles (see build profiles)
	
	selecting appropriate level of, Selecting an Appropriate Level of Portability
	

	post-integration-test phase (default
 lifecycle), Default Lifecycle (default)
	
	pre-clean phase (clean lifecycle), Clean Lifecycle (clean)
	
	pre-integration-test phase (default
 lifecycle), Default Lifecycle (default)
	
	predefined assembly descriptors, Predefined Assembly Descriptors
	
	preferences (Maven) for Eclipse, Maven Preferences–Maven Preferences
	
	prefix, plugin, Configuring a Plugin Prefix–Configuring a Plugin Prefix
	
	prepare-package phase (default
 lifecycle), Default Lifecycle (default)
	
	<privateKey>
 element, Servers
	
	process-classes phase (default
 lifecycle), Default Lifecycle (default)
	
	process-resources phase (default
 lifecycle), Default Lifecycle (default), Process Resources–Process Resources
	
	process-sources phase (default
 lifecycle), Default Lifecycle (default)
	
	process-test-resources phase
		build lifecycle, Process Test Resources
	
	default lifecycle, Default Lifecycle (default)
	

	process-test-sources phase (default
 lifecycle), Default Lifecycle (default)
	
	<profile>
 element (settings.xml), Profiles
	
	profiles (see build profiles)
	
	<profiles>
 element (pom.xml), Portability Through Maven Profiles
	
	profiles.xml file, External Profiles
	
	programs in this book, downloading, Downloading This Chapter’s Example
	
	project assembly descriptor, Predefined Assembly Descriptors
	
	project dependencies (see dependencies)
	
	project documentation, writing, Writing Project Documentation–FML Example
	
	project information (in pom.xml), The POM
		adding to project, Customize Project Information
	

	project inheritance, Project Inheritance
		choosing multimodule projects instead of, Multimodule Versus Inheritance
	

	Project Object Model (see POM; pom.xml file)
	
	project pages, opening with m2eclipse, Opening Project Pages
	
	project relationships, Project Relationships–Project Inheritance
	
	project variable, Property References
	
	project versions, about, Project Versions, Project Versions
		(see also version attribute)
	
	dependency version ranges, Dependency Version Ranges
	

	project web site, Introduction–Using Doxia Macros
		creating, Building a Project Site with Maven–Building a Project Site with Maven
	
	customizing site appearance, Customizing Site Appearance–Customizing Site Templates in a Skin
		CSS for, Customizing the Site CSS
	
	CSS themes, Creating a Custom Theme CSS
	
	reusable skins, Reusable Web Site Skins, Customizing Site Templates in a Skin
	
	using site templates, Create a Custom Site Template–Create a Custom Site Template, Customizing Site Templates in a Skin
	

	customizing site descriptor, Customizing the Site Descriptor–Customizing the Navigation Menu
		header graphics, Customizing the Header Graphics
	
	navigation menu, Customizing the Navigation Menu
	

	deploying, Deploying Your Project Web Site–Configuring File and Directory Modes
	
	site directory structure, Site Directory Structure
	
	tips and tricks for, Tips and Tricks–Using Doxia Macros
	
	writing project documentation, Writing Project Documentation–FML Example
	

	project.* properties, Maven Properties, Properties
	
	projects
		build portability, What Is Build Portability?–Selecting an Appropriate Level of Portability
		building using profiles (see build profiles)
	
	selecting appropriate level of, Selecting an Appropriate Level of Portability
	

	bundling assemblies into, Assembling Assemblies via Assembly Dependencies
	
	creating, Creating a Simple Project
	
	customizing, Introduction–Building a Packaged Command-Line Application
		adding new dependencies, Add New Dependencies–Add New Dependencies
	
	adding project information to pom.xml, Customize Project Information–Customize Project Information
	
	adding resources, Add Resources–Add Resources
	
	adding test-scoped dependencies, Adding Test-Scoped Dependencies–Adding Test-Scoped Dependencies
	
	building packaged command-line applications, Building a Packaged Command-Line Application–Building a Packaged Command-Line Application
	
	creating the project, Creating the Simple Weather Project–Creating the Simple Weather Project
	
	defining the project, Defining the Simple Weather Project–Yahoo! Weather RSS
	
	running (executing), Running the Simple Weather Program–Exploring Your Project Dependencies
	
	test resources, adding, Adding Unit Test Resources–Adding Unit Test Resources
	
	unit tests, executing, Executing Unit Tests–Skipping Unit Tests
	
	writing unit tests, Writing Unit Tests–Writing Unit Tests
	

	m2eclipse plugin and, Working with Maven Projects–Resolving Dependencies
		adding and updating dependencies and
 plugins, Adding and Updating Dependencies and Plugins–Adding and Updating Dependencies and Plugins
	
	creating modules, Creating a Maven Module–Creating a Maven Module
	
	creating projects, Creating a Maven Project–Creating a Maven Module
	
	downloading source, Downloading Source
	
	importing projects into Eclipse, Importing Maven Projects–Materializing a Maven Project
	
	materializing projects, Materializing a Maven Project–Materializing a Maven Project
	
	opening project pages, Opening Project Pages
	
	resolving dependencies, Resolving Dependencies
	

	properties of, Maven Project Properties–Maven Project Properties
	
	web applications (see web applications)
	
	for writing
 plugins, Creating a Plugin Project
	

	properties, Maven Properties–User-Defined Properties
		activating profiles upon absence of, Activation by the Absence of a Property
	
	configuration in settings.xml, Properties
	
	project properties, Maven Project Properties–Maven Project Properties
	
	referencing in assembly descriptors, Property References in Assembly Descriptors
	
	referencing in pom.xml, Property References
	
	resource filtering, Resource Filtering–Resource Filtering
	
	settings properties, Maven Settings Properties
	
	user-defined, User-Defined Properties
	

	properties file, Process Resources
	
	<property>
 element (<activation> element), Activation
	
	<protocol>
 element (<proxy> element), Proxies
	
	prototype parent projects, Prototype parent projects
	
	provided dependencies, Dependency Scope
	
	<proxies>
 element (settings.xml), Proxies
	
	publication date format, project web site, Modify the Publication Date Format and Location
	

Q
	qualifiers for project versions, Project Versions
		ordering of, Version build numbers
	

R
	ranges for dependency versions, Dependency Version Ranges
	
	README.txt file, Maven Installation Details
	
	@readonly
 annotation (Mojo parameters), Mojo Parameter Annotations
	
	real POMs, Real POMs
	
	refactoring POMs (see optimizing POMs)
	
	references to properties, in pom.xml, Property References
	
	relationships, project, Project Relationships–Project Inheritance
	
	<releases>
 element (<repository> element), Repositories
	
	replacing transitive dependencies, Conflict Resolution
	
	replicated dependencies, Optimizing Dependencies
	
	report generation, Site Generation and Reporting
	
	repositories, Maven Coordinates
		central, The Super POM
	
	configuration in settings.xml, Repositories
	
	dependency management, Maven’s Dependency Management–Maven’s Dependency Management
	
	m2eclipse tools for, Working with Maven Repositories–Indexing Maven Repositories
		indexing repositories, Indexing Maven Repositories–Indexing Maven Repositories
	
	searching for artifacts and Java classes, Searching For Maven Artifacts and Java classes–Searching For Maven Artifacts and Java classes
	

	repository directory, User-Specific Configuration and Repository
	
	<repository>
 element (settings.xml), Repositories
	
	repository information section (assembly
 descriptors), Overview of the Assembly Descriptor, Repositories Section–Repositories Section
	
	@required
 annotation (Mojo parameters), Mojo Parameter Annotations
	
	required element (Mojo
 parameters), Mojo Configuration
	
	requirements element (Mojo
 declarations), Mojo Configuration
	
	@requiresDependencyResolution
 annotation (Mojo), Mojo Class Annotations
	
	@requiresDirectInvocation
 annotation (Mojo), Mojo Class Annotations
	
	requiresDirectInvocation element (Mojo
 declarations), Mojo Configuration
	
	@requiresOnline
 annotation (Mojo), Mojo Class Annotations
	
	requiresOnline element (Mojo
 declarations), Mojo Configuration
	
	requiresProject element (Mojo
 declarations), Mojo Configuration
	
	@requiresProjet
 annotation (Mojo), Mojo Class Annotations
	
	@requiresReports
 annotation (Mojo), Mojo Class Annotations
	
	requiresReports element (Mojo
 declarations), Mojo Configuration
	
	resolving dependencies with m2eclipse, Resolving Dependencies
	
	resolving dependency conflicts, Conflict Resolution
	
	resource filtering, Process Resources, Resource Filtering–Resource Filtering
	
	resources
		adding to packages, Add Resources–Add Resources
	
	adding to unit tests, Adding Unit Test Resources–Adding Unit Test Resources
	

	resources directory, Adding Unit Test Resources, Process Resources
		creating, Add Resources
	

	resources for programs, where stored, Creating a Simple Project
	
	Resources plugin
		resources goal, Maven Lifecycle
	
	testResources goal, Maven Lifecycle
	

	reusable assembly descriptors, Standard, Reusable Assembly Descriptors–Standard, Reusable Assembly Descriptors
	
	root directory, assemblies, Managing the Assembly’s Root Directory
		componentDescriptors and
 containerDescriptorHandlers, componentDescriptors and containerDescriptorHandlers
	

	runtime dependencies, Dependency Scope
	

S
	<scope> element
 (<dependency> element), Adding Test-Scoped Dependencies
	
	scope, dependency, Maven’s Dependency Management, Dependency Scope
		excluding dependencies from assemblies
 by, Including and excluding dependencies by scope–Including and excluding dependencies by scope
	
	transitive dependencies and, Transitive dependencies and scope
	

	searching for dependency attributes, Add New Dependencies
	
	security of project web site, Deploying Your Project Web Site–Configuring File and Directory Modes
	
	server authentication, project web site, Configuring Server Authentication
	
	<server>
 element (settings.xml), Servers
	
	<servers>
 section, Configuring Server Authentication
	
	Servlet API, adding as dependency, Adding J2EE Dependencies
	
	servlet attribute (web.xml), Adding a Simple Servlet
	
	servlet-mapping attribute (web.xml), Adding a Simple Servlet
	
	servlets, adding to project, Adding a Simple Servlet–Adding a Simple Servlet
	
	setLog() method (Mojo interface), A Simple Java Mojo, Logging from a Plugin
	
	setter injection, Introduction to Plexus
	
	<settings> element
 (pom.xml), Settings Profiles, Quick Overview–Active Profiles
	
	settings profiles, Settings Profiles–Global Settings Profiles
	
	settings variable, Property References
	
	settings.* properties, Maven Properties, Properties
	
	settings.xml file, Maven Installation Details, User-Specific Configuration and Repository, The POM, Settings Profiles, Quick Overview
		Mojo parameters in, Supplying Values for Mojo Parameters
	
	not storing passwords in, Protecting Secrets
	
	properties in, Maven Settings Properties
		referencing, Maven Properties, Properties
	

	sibling module dependency duplication, Optimizing Dependencies, Optimizing Dependencies, Optimizing Dependencies
	
	simple parent project (example)
		final POM for (for reference), Final POMs
	

	simple weather application (see weather project (example))
	
	simple web application (see web applications)
	
	simple-command POM (for reference), Final POMs
	
	simple-model POM (for reference), Final POMs
	
	simple-parent POM (for reference), Final POMs
	
	simple-parent project (example)
		multimodule, The Simple Parent Project
	
	multimodule enterprise, The Simple Parent Project–The Simple Parent Project
	

	simple-persist POM (for reference), Final POMs
	
	simple-weather POM (for reference), Final POMs
	
	simple-webapp POM (for reference), Final POMs
	
	simplest POM, The Simplest POM
	
	single mojo (assemblies), Assembly Basics
	
	site descriptor, customizing, Customizing the Site Descriptor–Customizing the Navigation Menu
		header graphics, Customizing the Header Graphics
	
	navigation menu, Customizing the Navigation Menu
	

	site directory, Site Directory Structure
	
	site generation, Site Generation and Reporting, Introduction–Using Doxia Macros
		creating, Building a Project Site with Maven–Building a Project Site with Maven
	
	customizing site appearance, Customizing Site Appearance–Customizing Site Templates in a Skin
		CSS for, Customizing the Site CSS
	
	CSS themes, Creating a Custom Theme CSS
	
	reusable skins, Reusable Web Site Skins, Customizing Site Templates in a Skin
	
	using site templates, Create a Custom Site Template–Create a Custom Site Template, Customizing Site Templates in a Skin
	

	customizing site descriptor, Customizing the Site Descriptor–Customizing the Navigation Menu
		header graphics, Customizing the Header Graphics
	
	navigation menu, Customizing the Navigation Menu
	

	deployment, Deploying Your Project Web Site–Configuring File and Directory Modes
	
	site directory structure, Site Directory Structure
	
	tips and tricks for, Tips and Tricks–Using Doxia Macros
	
	writing project documentation, Writing Project Documentation–FML Example
	

	site lifecycle, Site Lifecycle (site)–Site Lifecycle (site)
	
	site lifecycle phase, Site Generation and Reporting
	
	Site plugin, Site Lifecycle (site), Building a Project Site with Maven
	
	skins for project web site, Reusable Web Site Skins, Customizing Site Templates in a Skin
	
	<skip> element
 (<plugin> element), Skipping Unit Tests
	
	skipping unit tests, Skipping Unit Tests
	
	snapshot versions, SNAPSHOT versions, More on Coordinates
	
	<snapshots>
 element (<repository> element), Repositories
	
	software license, about, About the Apache Software License
	
	source, downloading with
 m2eclipse, Downloading Source
	
	source code, where stored, Creating a Simple Project
	
	<sourceDirectory>
 element (pom.xml), Compile
	
	<sources> section
 (module sets), Sources section
	
	Spring Framework, Technology Used in This Example, The Simple Persist Module
	
	Spring IoC container, Why Plexus?
	
	src assembly descriptor, Predefined Assembly Descriptors
	
	Standard Dirctory Layout, Creating a Simple Project
	
	style sheets, project web site, Customizing the Site CSS
		custom themes, Creating a Custom Theme CSS
	

	Subclipse plugin, m2eclipse
		installing, Installing Subclipse
	

	submodules, defining in pom.xml, The Simple Parent Project
	
	Subversion, checking out projects from, Checking Out a Maven Project from SCM
	
	Sun specification alternatives, Sun Specification Alternatives
	
	Super POM
		inheriting from, Project Inheritance
	

	Surefire plugin
		binding goal to test lifecycle phase, Test
	
	skip parameter, Skipping Unit Tests
	
	test goal, Maven Lifecycle, Executing Unit Tests
	
	testFailureIgnore configuration property, Ignoring Test Failures
	

	system properties, referencing, Property References, Maven Properties, Java System Properties, Properties
	
	system-scope dependencies, Dependency Scope
	

T
	@Table annotation
 (Hibernate), The Simple Model Module
	
	templates for project web site, Create a Custom Site Template–Create a Custom Site Template, Customizing Site Templates in a Skin
	
	test cases, where stored, Creating a Simple Project
	
	test phase (default lifecycle), Default Lifecycle (default), Test
	
	test-compile phase (default
 lifecycle), Default Lifecycle (default), Test Compile
	
	test-scoped dependencies, Adding Test-Scoped Dependencies–Adding Test-Scoped Dependencies, Dependency Scope
	
	testFailureIgnore configuration property (Surefire
 plugin), Ignoring Test Failures
	
	testing, Writing Unit Tests
		(see also debugging)
	
	Maven installations, Testing a Maven Installation
	
	Surefire:test goal, Maven Lifecycle, Executing Unit Tests
	
	unit tests (see unit tests)
	
	using test-scoped dependencies, Adding Test-Scoped Dependencies–Adding Test-Scoped Dependencies, Dependency Scope
	

	<testOutputDirectory>
 element (pom.xml), Test Compile
	
	<testSourceDirectory>
 element (pom.xml), Test Compile
	
	themes for project web site appearance, Creating a Custom Theme CSS
	
	top-level POM, Creating a Simple Project, The Simple Weather Module
		(see also POM)
	
	configuring project assembly in, Assembling Assemblies via Assembly Dependencies
	
	dependency management in, Dependency Management
	
	inheritance from (see project inheritance)
	
	module sets and, moduleSets, parent POMs, and the
 binaries section
	
	prototype parent projects, Prototype parent projects
	
	resolving dependency duplication, Optimizing Dependencies
	

	tracking profiles, Listing Active Profiles
	
	transitive dependencies, Transitive Dependencies
		resolving conflicts with, Conflict Resolution
	
	support for, Maven’s Dependency Management
	

	triggering goals on pre-clean phase (clean
 lifecycle), Clean Lifecycle (clean)
	
	type element (Mojo parameters), Mojo Configuration
	

U
	unit tests
		adding resources to, Adding Unit Test Resources–Adding Unit Test Resources
	
	dependency duplication and, Optimizing Dependencies
	
	executing, Executing Unit Tests–Skipping Unit Tests
	
	ignoring test failures, Ignoring Test Failures
	
	skipping, Skipping Unit Tests
	
	test-scoped dependencies, Adding Test-Scoped Dependencies–Adding Test-Scoped Dependencies, Dependency Scope
	
	writing, Writing Unit Tests–Writing Unit Tests
	

	universal portability, Wide (universal) portability
	
	unpacking project dependencies, options for, Advanced unpacking options–Advanced unpacking options
	
	unused, undeclared dependencies (Dependency
 plugin), Optimizing with the Maven Dependency Plugin
	
	<updatePolicy>
 element (<repository> element), Repositories
	
	upgrading Maven installations, Upgrading a Maven Installation
	
	upper boundaries (version ranges), Dependency Version Ranges
	
	<url
 > element (<mirror> element), Mirrors
	
	used, undeclared dependencies (Dependency
 plugin), Optimizing with the Maven Dependency Plugin
	
	<usePluginRegistry>
 element (settings.xml), Simple Values
	
	useProjectArtifact flag, dependencySets Section, Transitive dependencies, project attachments, and project
 artifacts
	
	user permissions, project web site, Configuring File and Directory Modes
	
	user-defined properties, User-Defined Properties
	
	user-specific settings profiles, Settings Profiles–Global Settings Profiles
		not storing passwords in, Protecting Secrets
	

	<username>
 element, Servers
	
	<username>
 element (<proxy> element), Proxies
	
	<useStrictFiltering>
 section (<fileSets> element), fileSets Section
	
	useTransitiveDependencies flag, Transitive dependencies, project attachments, and project
 artifacts
	
	useTransitiveFiltering flag, Transitive dependencies, project attachments, and project
 artifacts
	

V
	validate phase (default lifecycle), Default Lifecycle (default)
	
	variable replacement on project resources (see resource filtering)
	
	Velocity
		scripting language, Create a Custom Site Template
	
	template, The Simple Web Application Module, The Simple Web Application Module
	

	verify phase (default lifecycle), Default Lifecycle (default)
	
	verifying Java installation, Verify Your Java Installation
	
	version, Java
 installation, Verify Your Java Installation
	
	version attribute (pom.xml), Simple Project Object Model, Maven Coordinates, Project Versions, More on Coordinates
		built-in, to avoid dependency duplication, Optimizing Dependencies
	
	dependency version ranges, Dependency Version Ranges
	
	determining for dependencies
		Apache Geronimo implementation of Servlet API, Adding J2EE Dependencies
	

	referencing, Maven Project Properties
	

	Version Decorator, Maven Preferences
	
	version element (plugins), Top-Level Plugin Descriptor Elements, Configuring a Plugin Prefix–Configuring a Plugin Prefix
	
	version information on project web site, Add the Project Version
	

W
	WAR files, Creating the Simple Web Project, WAR
		compiling multimodule projects into, Building the Multimodule Project
	

	warn logging level (Mojo), Logging from a Plugin
	
	weather project (example), Introduction
		(see also multimodule project)
	
	adding new dependencies, Add New Dependencies–Add New Dependencies
	
	adding project information to pom.xml, Customize Project Information–Customize Project Information
	
	adding resources, Add Resources–Add Resources
	
	adding test-scoped dependencies, Adding Test-Scoped Dependencies–Adding Test-Scoped Dependencies
	
	building packaged command-line applications, Building a Packaged Command-Line Application–Building a Packaged Command-Line Application
	
	creating, Creating the Simple Weather Project–Creating the Simple Weather Project
	
	defining, Defining the Simple Weather Project–Yahoo! Weather RSS
	
	final simple-weather POM, Final POMs
	
	running (executing), Running the Simple Weather Program–Exploring Your Project Dependencies
	
	source code, Simple Weather Source Code–Simple Weather Source Code
	
	unit test resources, adding, Adding Unit Test Resources–Adding Unit Test Resources
	
	unit tests, executing, Executing Unit Tests–Skipping Unit Tests
	
	writing unit tests, Writing Unit Tests–Writing Unit Tests
	

	web applications
		final simple-weather POM, Final POMs
	
	multimodule enterprise project (example)
		object model, The Simple Model Module–The Simple Model Module
	

	multimodule enterprise project example, Introduction–Programming to Interface Projects
		multimodule versus inheritance, Multimodule enterprise project
	
	running web applications, Running the Web Application–Running the Web Application
	
	simple-parent project, The Simple Parent Project–The Simple Parent Project
	
	simple-persist module of, The Simple Persist Module–The Simple Persist Module
	
	simple-weather module of, The Simple Weather Module–The Simple Weather Module
	
	simple-webapp, The Simple Web Application Module–The Simple Web Application Module
	

	multimodule project example, Introduction–Running the Web Application
		building, Building the Multimodule Project
	
	multimodule projects, in general, Multimodule Projects
	
	running, Running the Web Application–Running the Web Application
	
	simple-parent project, The Simple Parent Project
	
	simple-weather submodule, The Simple Weather Module–The Simple Weather Module
	
	simple-webapp submodule, The Simple Web Application Module–The Simple Web Application Module
	

	simple-web project (example), Introduction–Conclusion
		adding J2EE dependences, Adding J2EE Dependencies–Adding J2EE Dependencies
	
	adding simple servlet, Adding a Simple Servlet–Adding a Simple Servlet
	
	configuring Jetty plugin, Configuring the Jetty Plugin–Configuring the Jetty Plugin
	
	creating, Creating the Simple Web Project–Creating the Simple Web Project
	

	web site for open source generation (see site generation)
	
	Web Tools Platform (WTP), installing, Installing the Web Tools Platform (WTP)
	
	web.xml file, The Simple Web Application Module
		servlet and servlet-mapping attributes, Adding a Simple Servlet
	

	wide portability, Wide (universal) portability, Selecting an Appropriate Level of Portability
	
	Windows operating systems, installing Maven
 on, Installing Maven on Microsoft Windows
	
	writing project documentation, Writing Project Documentation–FML Example
	
	WTP (Web Tools Platform), installing, Installing the Web Tools Platform (WTP)
	

X
	XHTML in site head, Inject XHTML into HEAD
	

Y
	Yahoo! Weather RSS feed, about, Yahoo! Weather RSS
	

About the Author
Sonatype Company is Jason Van Zyl's company and pretty much the center of the Maven universe. Jason Van Zyl is the inventor and lead developer of Maven.

Colophon
The animal on the cover of Maven: The Definitive
 Guide is a giant anteater (Myrmecophaga
 tridactyla), the largest species of anteater. It grows to an
 average length of seven feet and weighs about 85 pounds—the size of a
 German shepherd dog. Its head tapers to a long, narrow snout, and its tail
 is nearly as large as the rest of its body and covered with bristly hair.
 Despite its species name, tridactyla (Greek for
 “three fingers”), the anteater has five digits on each foot, but the
 middle three have extra-long claws. The anteater uses these claws to break
 open insect mounds and defend itself against predators. It walks on its
 knuckles to protect the claws, causing it to walk with a shuffle.
Giant anteaters live in grasslands and tropical forests in Central
 and South America, where ants and termites are plentiful. They prefer to
 eat soft-bodied insects because anteaters are edentate animals, meaning
 they have no teeth; instead of chewing, they crush their food against hard
 growths on the inside of their mouths.The anteater first tears an opening
 in a tree trunk or an anthill with its claws, and then it uses its snout
 and tongue to collect the insects inside. It has the longest tongue in
 proportion to body size of any mammal—more than two feet long—and can
 scoop up thousands of insects in minutes. A single anteater can eat up to
 30,000 ants and termites each day.
Being solitary creatures, giant anteaters tend not to stay in one
 spot for long. They are not aggressive, but they can be fierce and will
 use their claws to fight off pumas or jaguars (their main natural
 predators). When threatened, the giant anteater stands on its hind legs,
 using its tail for balance, and either strikes or hugs its attackers like
 a bear—hence it is sometimes called
 the “ant bear.” Anteaters are frequently killed by humans, whether hunted
 or hit by cars, and habitat destruction is the primary threat to their
 survival. They are listed as “vulnerable” by the International Union for
 Conservation of Nature and Natural Resources.
The cover image is from the Dover Pictorial
 Archive. The cover font is Adobe ITC Garamond. The text font is
 Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
 font is LucasFont’s TheSansMonoCondensed.

Maven: The Definitive Guide

Sonatype Company

Editor
Mike Loukides

Copyright © 2009 Sonatype, Inc.

O’Reilly books may be purchased for educational, business, or
 sales promotional use. Online editions are also available for most
 titles (http://safari.oreilly.com). For more
 information, contact our corporate/institutional sales department:
 800-998-9938 or corporate@oreilly.com.

O’Reilly and the O’Reilly logo are registered trademarks of
 O’Reilly Media, Inc. Maven: The Definitive Guide,
 the image of a giant anteater, and related trade dress are trademarks of
 O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of
 a trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-03-31T13:40:00-07:00

Maven: The Definitive Guide

Table of Contents
		A Note Regarding Supplemental Files

		Preface		Maven... What Is It?

		Font Conventions

		Maven Writing Conventions

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		Acknowledgments

		I. Introduction		1. Introducing Apache Maven		Convention over Configuration

		A Common Interface

		Universal Reuse Through Maven Plugins

		Conceptual Model of a “Project”

		Is Maven an Alternative to XYZ?

		Comparing Maven and Ant

		Summary

		2. Installing and Running Maven		Verify Your Java Installation

		Downloading Maven

		Installing Maven		Installing Maven on Mac OS X

		Installing Maven on Microsoft Windows

		Installing Maven on Linux

		Installing Maven on FreeBSD or OpenBSD

		Testing a Maven Installation

		Maven Installation Details		User-Specific Configuration and Repository

		Upgrading a Maven Installation

		Getting Help with Maven

		Using the Maven Help Plugin		Describing a Maven Plugin

		About the Apache Software License

		II. Maven by Example		3. A Simple Maven Project		Introduction		Downloading This Chapter’s Example

		Creating a Simple Project

		Building a Simple Project

		Simple Project Object Model

		Core Concepts		Maven Plugins and Goals

		Maven Lifecycle

		Maven Coordinates

		Maven Repositories

		Maven’s Dependency Management

		Site Generation and Reporting

		Summary

		4. Customizing a Maven Project		Introduction		Downloading This Chapter’s Example

		Defining the Simple Weather Project		Yahoo! Weather RSS

		Creating the Simple Weather Project

		Customize Project Information

		Add New Dependencies

		Simple Weather Source Code

		Add Resources

		Running the Simple Weather Program		The Maven Exec Plugin

		Exploring Your Project Dependencies

		Writing Unit Tests

		Adding Test-Scoped Dependencies

		Adding Unit Test Resources

		Executing Unit Tests		Ignoring Test Failures

		Skipping Unit Tests

		Building a Packaged Command-Line Application

		5. A Simple Web Application		Introduction		Downloading This Chapter’s Example

		Defining the Simple Web Application

		Creating the Simple Web Project

		Configuring the Jetty Plugin

		Adding a Simple Servlet

		Adding J2EE Dependencies

		Conclusion

		6. A Multimodule Project		Introduction		Downloading This Chapter’s Example

		The Simple Parent Project

		The Simple Weather Module

		The Simple Web Application Module

		Building the Multimodule Project

		Running the Web Application

		7. Multimodule Enterprise Project		Introduction		Downloading This Chapter’s Example

		Multimodule Enterprise Project

		Technology Used in This Example

		The Simple Parent Project

		The Simple Model Module

		The Simple Weather Module

		The Simple Persist Module

		The Simple Web Application Module

		Running the Web Application

		The simple-command Module

		Running simple-command

		Conclusion		Programming to Interface Projects

		III. Maven Reference		8. Optimizing and Refactoring POMs		Introduction

		POM Cleanup

		Optimizing Dependencies

		Optimizing Plugins

		Optimizing with the Maven Dependency Plugin

		Final POMs

		Conclusion

		9. The Project Object Model		Introduction

		The POM		The Super POM

		The Simplest POM

		The Effective POM

		Real POMs

		POM Syntax		Project Versions		Version build numbers

		SNAPSHOT versions

		Property References

		Project Dependencies		Dependency Scope

		Optional Dependencies

		Dependency Version Ranges

		Transitive Dependencies		Transitive dependencies and scope

		Conflict Resolution

		Dependency Management

		Project Relationships		More on Coordinates

		Multimodule Projects

		Project Inheritance

		POM Best Practices		Grouping Dependencies

		Multimodule Versus Inheritance		Simple project

		Multimodule enterprise project

		Prototype parent projects

		10. The Build Lifecycle		Introduction		Clean Lifecycle (clean)

		Default Lifecycle (default)

		Site Lifecycle (site)

		Package-Specific Lifecycles		JAR

		POM

		Maven Plugin

		EJB

		WAR

		EAR

		Other Packaging Types

		Common Lifecycle Goals		Process Resources

		Compile

		Process Test Resources

		Test Compile

		Test

		Install

		Deploy

		11. Build Profiles		What Are They For?		What Is Build Portability?		Nonportable builds

		Environment portability

		Organizational (in-house) portability

		Wide (universal) portability

		Selecting an Appropriate Level of Portability

		Portability Through Maven Profiles		Overriding a Project Object Model

		Profile Activation		Activation Configuration

		Activation by the Absence of a Property

		External Profiles

		Settings Profiles		Global Settings Profiles

		Listing Active Profiles

		Tips and Tricks		Common Environments

		Protecting Secrets

		Platform Classifiers

		Summary

		12. Maven Assemblies		Introduction

		Assembly Basics		Predefined Assembly Descriptors

		Building an Assembly

		Assemblies as Dependencies

		Assembling Assemblies via Assembly Dependencies

		Overview of the Assembly Descriptor

		The Assembly Descriptor		Property References in Assembly Descriptors

		Required Assembly Information

		Controlling the Contents of an Assembly		Files Section

		fileSets Section

		Default Exclusion Patterns for fileSets

		dependencySets Section		Customizing dependency output location

		Interpolation of properties in dependency output
 location

		Including and excluding dependencies by scope

		Fine-tuning: dependency includes and excludes

		Transitive dependencies, project attachments, and project
 artifacts

		Advanced unpacking options

		Summarizing dependency sets

		moduleSets Sections		Module selection

		Sources section

		Interpolation of outputDirectoryMapping in
 moduleSets

		Binaries section

		moduleSets, parent POMs, and the
 binaries section

		Repositories Section

		Managing the Assembly’s Root Directory

		componentDescriptors and containerDescriptorHandlers

		Best Practices		Standard, Reusable Assembly Descriptors

		Distribution (Aggregating) Assemblies

		Summary

		13. Properties and Resource Filtering		Introduction

		Maven Properties		Maven Project Properties

		Maven Settings Properties

		Environment Variable Properties

		Java System Properties

		User-Defined Properties

		Resource Filtering

		14. Maven and Eclipse: m2eclipse		Introduction

		m2eclipse

		Installing the m2eclipse Plugin		Installing Prerequisites		Installing Subclipse

		Installing Mylyn

		Installing AspectJ Development Tools (AJDT)

		Installing the Web Tools Platform (WTP)

		Installing m2eclipse

		Enabling the Maven Console

		Creating a Maven Project		Checking Out a Maven Project from SCM

		Creating a Maven Project from a Maven Archetype

		Creating a Maven Module

		Create a Maven POM File

		Importing Maven Projects		Importing a Maven Project

		Materializing a Maven Project

		Running Maven Builds

		Working with Maven Projects		Adding and Updating Dependencies and Plugins

		Creating a Maven Module

		Downloading Source

		Opening Project Pages

		Resolving Dependencies

		Working with Maven Repositories		Searching For Maven Artifacts and Java classes

		Indexing Maven Repositories

		Using the Form-Based POM Editor

		Analyzing Project Dependencies in m2eclipse

		Maven Preferences

		Summary

		15. Site Generation		Introduction

		Building a Project Site with Maven

		Customizing the Site Descriptor		Customizing the Header Graphics

		Customizing the Navigation Menu

		Site Directory Structure

		Writing Project Documentation		APT Example

		FML Example

		Deploying Your Project Web Site		Configuring Server Authentication

		Configuring File and Directory Modes

		Customizing Site Appearance		Customizing the Site CSS

		Create a Custom Site Template

		Reusable Web Site Skins

		Creating a Custom Theme CSS

		Customizing Site Templates in a Skin

		Tips and Tricks		Inject XHTML into HEAD

		Add Links Under Your Site Logo

		Add Breadcrumbs to Your Site

		Add the Project Version

		Modify the Publication Date Format and Location

		Using Doxia Macros

		16. Repository Manager		Introduction		History of Nexus

		Installing Nexus		Downloading Nexus from Sonatype

		Installing Nexus

		Running Nexus

		Post-Install Checklist

		Startup Scripts for Linux		Add Nexus as a service on Red Hat, Fedora, and
 CentOS

		Add Nexus as a service on Ubuntu

		Running Nexus Behind a Proxy

		Using Nexus		Browsing Repositories

		Browsing Groups

		Searching for Artifacts

		Browsing System Feeds

		Browsing Log Files and Configuration

		Changing Your Password

		Configuring Maven to Use Nexus Repositories		Using the Nexus Central Proxy Repository

		Using Nexus for Snapshot Repositories

		Adding Custom Repositories for Missing Dependencies

		Adding a New Repository

		Adding a Repository to a Group

		Configuring Nexus		Customizing Server Configuration

		Managing Repositories

		Managing Groups

		Managing Routes

		Managing Scheduled Services

		Managing Security		Managing privileges

		Managing repository targets

		Managing security roles

		Managing users

		Network Configuration

		Maintaining Repositories		Uploading Artifacts to Hosted Repositories

		Deploying Artifacts to Nexus		Configuring Deployment Security

		Deploying Releases

		Deploying Snapshots

		Deploying Third-Party Artifacts

		17. Writing Plugins		Introduction

		Programming Maven		What Is Inversion of Control?

		Introduction to Plexus

		Why Plexus?

		What Is a Plugin?

		Plugin Descriptor		Top-Level Plugin Descriptor Elements

		Mojo Configuration

		Plugin Dependencies

		Writing a Custom Plugin		Creating a Plugin Project

		A Simple Java Mojo

		Configuring a Plugin Prefix

		Logging from a Plugin

		Mojo Class Annotations

		When a Mojo Fails

		Mojo Parameters		Supplying Values for Mojo Parameters

		Multivalued Mojo Parameters

		Depending on Plexus Components

		Mojo Parameter Annotations

		Plugins and the Maven Lifecycle		Executing a Parallel Lifecycle

		Creating a Custom Lifecycle

		Overriding the Default Lifecycle

		18. Writing Plugins in Alternative Languages		Writing Plugins in Ant

		Creating an Ant Plugin

		Writing Plugins in JRuby		Creating a JRuby Plugin

		Ruby Mojo Implementations

		Logging from a Ruby Mojo

		Raising a MojoError

		Referencing Plexus Components from JRuby

		Writing Plugins in Groovy		Creating a Groovy Plugin

		IV. Appendixes		A. Settings Details		Quick Overview

		Settings Details		Simple Values

		Servers

		Mirrors

		Proxies

		Profiles

		Activation

		Properties

		Repositories

		Plugin Repositories

		Active Profiles

		B. Sun Specification Alternatives

		Index

		About the Author

		Colophon

		Copyright

