
Jim Van Meggelen,
Russell Bryant
& Leif Madsen

Asterisk
 The Defi nitive Guide
Open Source Telephony for the Enterprise

Jim Van Meggelen,
Russell Bryant
& Leif Madsen

Open Source Telephony for the Enterprise

Asterisk
 The Defi nitive Guide

Fifth Edition

Covers Asterisk 16

Jim Van Meggelen, Russell Bryant, and Leif Madsen

Asterisk: The Definitive Guide
FIFTH EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-03160-4

[LSI]

Asterisk: The Definitive Guide
by Jim Van Meggelen, Russell Bryant, and Leif Madsen

Copyright © 2019 James Van Meggelen. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Rachel Roumeliotis
Development Editor: Jeff Bleiel
Production Editor: Kristen Brown
Copyeditor: Dwight Ramsey
Proofreader: Rachel Monaghan

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

July 2019: Fifth Edition

Revision History for the Fifth Edition
2019-06-21: First Release

See https://www.oreilly.com/catalog/errata.csp?isbn=0636920140610 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Asterisk: The Definitive Guide, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Asterisk: The Definitive Guide is available under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

http://oreilly.com
https://www.oreilly.com/catalog/errata.csp?isbn=0636920140610

Table of Contents

Foreword. xiii

Preface. xvii

1. A Telephony Revolution. 1
Asterisk and VoIP: Bridging the Gap Between Traditional and Network

Telephony 2
The Zapata Telephony Project 3

Massive Change Requires Flexible Technology 4
Asterisk: The Hacker’s PBX 4
Asterisk: The Professional’s PBX 5
The Asterisk Community 5

Asterisk’s Discourse-Based Community Site 5
The Asterisk Mailing Lists 6
Asterisk Wiki Sites 6
The IRC Channels 7

Conclusion 7

2. Asterisk Architecture. 9
Modules 10

Applications 11
Bridging Modules 12
Call Detail Recording Modules 13
Channel Event Logging Modules 13
Channel Drivers 13
Codec Translators 14
Format Interpreters 15
Dialplan Functions 16

iii

PBX Modules 17
Resource Modules 17
Add-on Modules 19
Test Modules 19

File Structure 20
Configuration Files 20
Modules 20
The Resource Library 20
The Spool 20
Logging 21

The Dialplan 21
Hardware 21
Asterisk Versioning 22
Conclusion 22

3. Installing Asterisk. 23
Linux Installation 26

Choosing Your Platform 27
VirtualBox Steps 27
Linux (OpenStack) Host 29

Dependencies 29
Asterisk Installation 35

Download and Prerequisites 35
Compiling and Installing 36
Initial Configuration 38
SELinux Tweaks 41
Firewall Tweaks 42
Final Tweaks 42

Validating Your New Asterisk System 44
Common Installation Errors 45
Some Final Configuration Notes 45

Sample Configuration Files for Future Reference 45
The Asterisk Shell Command 46
safe_asterisk 47

Conclusion 48

4. Certificates for Endpoint Security. 49
The Inconvenience of Security 49
Securing SIP 50

Subscriber Names 50
Secure SIP Signaling 51

Securing Media 54

iv | Table of Contents

Encrypted RTP 54
Conclusion 54

5. User Device Configuration. 57
Telephone Naming Concepts 60
Hardphones, Softphones, and ATAs 62
Configuring Asterisk 64

How Channel Configuration Works with the Dialplan 66
chan_pjsip 67

Testing to Ensure Your Devices Have Registered 72
A Basic Dialplan to Test Your Devices 73
Under the Hood: Your First Call 74
Conclusion 75

6. Dialplan Basics. 77
Dialplan Syntax 77

Contexts 78
Extensions 81
Priorities 82
Applications 84
The Answer(), Playback(), and Hangup() Applications 85
A Basic Dialplan Prototype 87

A Simple Dialplan 87
Hello World 87

Building an Interactive Dialplan 89
The Goto(), Background(), and WaitExten() Applications 89
Handling Invalid Entries and Timeouts 92
Using the Dial() Application 93
Using Variables 96
Pattern Matching 101
Includes 106

Conclusion 106

7. Outside Connectivity. 107
The Basics of Trunking 107
Fundamental Dialplan for Outside Connectivity 108
The PSTN 110

Traditional PSTN Trunks 111
VoIP 114

Network Address Translation 114
PSTN Termination and Origination 118
Configuring SIP Trunks 122

Table of Contents | v

Emergency Dialing 125
Conclusion 127

8. Voicemail. 129
The voicemail.conf File 130

An Initial voicemail.conf File 131
The [general] Section 132
The [zonemessages] Section 135
Mailboxes 136

Voicemail Dialplan Integration 139
The VoiceMail() Dialplan Application 139
The VoiceMailMain() Dialplan Application 141
Standard Voicemail Keymap 142
Creating a Dial-by-Name Directory 143

Voicemail to Email 144
Voicemail Storage Backends 145

Linux Filesystem 146
IMAP 146
Message Storage in a Database 147

Conclusion 147

9. Internationalization. 149
Devices External to the Asterisk Server 151
PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones 153

DAHDI Drivers 155
Internationalization Within Asterisk 157

Caller ID 157
Language and/or Accent of Prompts 158
Time/Date Stamps and Pronunciation 159

Conclusion—Easy Reference Cheat Sheet 162

10. Deeper into the Dialplan. 163
Expressions and Variable Manipulation 163

Basic Expressions 163
Operators 165

Dialplan Functions 166
Syntax 166
Examples of Dialplan Functions 167

Conditional Branching 168
The GotoIf() Application 168
Time-Based Conditional Branching with GotoIfTime() 172

GoSub 175

vi | Table of Contents

Defining Subroutines 175
Returning from a Subroutine 177

Local Channels 177
Using the Asterisk Database 181

Storing Data in the AstDB 181
Retrieving Data from the AstDB 182
Deleting Data from the AstDB 182
Using the AstDB in the Dialplan 182

Handy Asterisk Features 183
Conferencing with ConfBridge() 183

Handy Dialplan Functions 184
CALLERID() 184
CHANNEL() 185
CURL() 185
CUT() 185
IF() and STRFTIME() 186
LEN() 187
REGEX() 187
STRFTIME() 187

Conclusion 188

11. PBX Features, Including Parking, Paging, and Conferencing. 189
features.conf 189

The [general] Section 190
The [featuremap] Section 190
The [applicationmap] Section 191
Application Map Grouping 194

Parking and Paging 194
Call Parking 195
Paging (aka Public Address) 197
Places to Send Your Pages 199
Zone Paging 204

Advanced Conferencing 204
Video Conferencing 206

Conclusion 206

12. Automatic Call Distribution Queues. 209
Creating a Simple ACD Queue 210
Queue Members 215

Controlling Queue Members via the CLI 216
Defining Queue Members in the queue_members Table 217
Controlling Queue Members with Dialplan Logic 218

Table of Contents | vii

Automatically Logging Into and Out of Multiple Queues 220
Advanced Queues 223

Priority Queue (Queue Weighting) 223
Queue Member Priority 224
Changing Penalties Dynamically (queuerules) 225
Announcement Control 226
Overflow 229
Using Local Channels 232

Queue Statistics: The queue_log File 235
Conclusion 237

13. Device States. 239
Device States 239

Checking Device States 240
Extension States Using the hint Directive 241

Hints 241
Checking Extension States 242

SIP Presence 243
Using Custom Device States 244
Conclusion 245

14. The Automated Attendant. 247
An AA Is Not an IVR 248
Designing Your AA 248

The Greeting 250
The Main Menu 250
Timeout 252
Invalid 252
Dial by Extension 252

Building Your AA 252
Recording Prompts 253
The Dialplan 255
Delivering Incoming Calls to the AA 256
IVR 257

Conclusion 257

15. Relational Database Integration. 259
Your Choice of Database 259
Managing Databases 260

Troubleshooting Database Issues 261
SQL Injection 261

Powering Your Dialplan with func_odbc 261

viii | Table of Contents

A Gentle Introduction to func_odbc 263
Getting Funky with func_odbc: Hot-Desking 264
Using Realtime 278

Static Realtime 279
Dynamic Realtime 281

Storing Call Detail Records 281
Database Integration of ACD Queues 286

Storing Dialplan Parameters for a Queue in a Database 286
Writing queue_log to Database 287

Conclusion 288

16. Introduction to Interactive Voice Response. 289
Components of an IVR 289
IVR Design Considerations 292
Asterisk Modules for Building IVRs 293

CURL() 293
func_odbc 293
AGI 293
AMI 293
ARI 293

A Simple IVR Using CURL() 294
The Dialplan 294

A Prompt-Recording IVR Function 294
Speech Recognition and Text-to-Speech 296

Text-to-Speech 297
Speech Recognition 297

Conclusion 297

17. Asterisk Manager Interface and Call Files. 299
Call Files 299

Your First Call File 300
Notes About Call Files 301

AMI Quick Start 301
AMI over TCP 302
AMI over HTTP 303

Configuration 303
manager.conf 304
http.conf 304

Protocol Overview 305
Message Encoding 306
AMI over HTTP 308

Example Usage 310

Table of Contents | ix

Originating a Call 310
Redirecting a Call 312

Development Frameworks 313
Conclusion 314

18. Asterisk Gateway Interface. 315
Quick Start 315
AGI Variants 316

Process-Based AGI 316
FastAGI—AGI over TCP 317
Async AGI—AMI-Controlled AGI 318

AGI Communication Overview 319
Setting Up an AGI Session 319
Commands and Responses 321
Ending an AGI Session 325

Example: Account Database Access 327
Development Frameworks 328
Conclusion 329

19. Asterisk REST Interface. 331
ARI Quick Start 332

Basic Asterisk Configuration 332
Testing Your Basic ARI Environment 333
Working with Your ARI Environment Using Swagger 334

The Building Blocks of ARI 337
REST 337
WebSocket 337
Stasis 338

Frameworks 338
ari-py (and aioari) for Python 339
node-ari-client 339
AsterNET.ARI 339
ari4java 340
phpari 340
aricpp 340
asterisk-ari-client 340

Conclusion 340

20. WebRTC. 343
The Browser as a Telephone 343
Preliminary Knowledge 344
Configuring Asterisk for WebRTC 345

x | Table of Contents

Cyber Mega Phone 347
More About WebRTC 349
Conclusion 350

21. System Monitoring and Logging. 351
logger.conf 351

Reviewing Asterisk Logs 353
Logging to the Linux syslog Daemon 354
Verifying Logging 355
Log Rotation 355

Call Detail Records 356
CDR Contents 356
Dialplan Applications 357
cdr.conf 358
Backends 359
Example Call Detail Records 364
Caveats 364

Channel Event Logging 365
Conclusion 365

22. Security. 367
Scanning for Valid Accounts 367
Authentication Weaknesses 368
Fail2ban 368

Installation 369
Configuration 369

Encrypted Media 371
Dialplan Vulnerabilities 371
Securing Asterisk Network APIs 373
Other Risk Mitigation 373
Resources 375
Conclusion—A Better Idiot 375

23. Asterisk: A Future for Telephony. 377
The Telephone Is Dead (Except When It’s Not) 378
Communications Overload 378
The Problems with Open Source Development 379
The Future of Asterisk 380

WebRTC 380
The Future of Telephony 380

Index. 381

Table of Contents | xi

Foreword

When contemplating the foreword for every edition of this book, we always had more
people we’d like contributions from than pages we could spare. In this fifth edition,
we’ve again asked a select group of people from the Asterisk community to write a
few words about Asterisk from their perspective.

Joshua Colp (Senior Software Developer,
Sangoma/Digium)
Over 15 years ago, I downloaded Asterisk onto my laptop and placed my first VoIP
call using IAX2 to the Digium PBX. I held my breath in anticipation, waiting to hear a
voice, until finally the sound of Allison came out of my laptop. At that point I knew
there was something special to Asterisk. It lit this spark of interest and imagination in
me: my laptop had actually placed a call! The realization that with only a little effort I
could take calls and do with them what I wanted was addictive and exciting—a senti‐
ment shared by many to this day.

Asterisk today is vastly different from how it was during that time. In the past, it was
primarily focused on being a PBX. It had all of the features and continued to gain new
ones to propel it further into that area. Over time, however, the project has evolved to
one where Asterisk is a toolkit that can be used alone or in combination with other
projects to build things. It’s there to spark the question of “Can I do this?” in your
mind and allow you to see it through.

This simple question is what drives many of the decisions made about Asterisk and
its direction. “Is this right for the users?”, “Is this what people truly need?,” “Does this
break things?,” and “Can they build what they want with this?” Together, these ques‐
tions help ensure that people can realize their ideas. This is what excites me about
Asterisk today—seeing people use the tools to create something new without
hindrance.

xiii

I think that, going forward, this will continue for Asterisk. It will continue to add new
tools and functionality to provide greater flexibility and options for those building
things, while respecting its legacy and how users already use it. It will continue to be
part of bigger and better solutions, some of which may not even come to mind now.
We’ve only taken a few steps forward and have many to go.

I challenge new and old users of Asterisk alike to revisit what Asterisk can do, to learn
new features that have been added, and to build something new and exciting out of
your normal skill set. If you hit a roadblock where Asterisk can’t do what you need,
then participate in the project and contribute. Help others who may be trying to do
the same thing. Become not just someone who uses Asterisk, but also someone who
helps others realize their dream.

Dan Jenkins (Founder, Nimble Ape Ltd)
Asterisk was my first foray into the open source telephony world, and as a web devel‐
oper, I found it very different from what I was used to, coming from the web industry.
The Asterisk project has moved on since then, and now the project incorporates
many APIs and technologies that a typical web developer has come to expect. The
inclusion of WebRTC and Asterisk’s REST interface is vital for integration from
developers used to building for the web platform. Asterisk is what I eventually ended
building a business around—it is truly a remarkable piece of software and has a bril‐
liant community of people who both use and improve it. It’s been my pleasure being a
part of this community and proofreading this book for the future community.

Joyce Wilmot (Senior Web Developer)
I was introduced to Asterisk in 2012 when I was working for Voicenation, a company
that provides live answering service 24/7/365 for thousands of customers. At the
time, the call center was quickly outgrowing the third-party software they were using.
Unable to find a flexible and cost-effective solution for their quickly expanding call
center, Voicenation decided that they needed to create their own call center software.
I was tasked with creating this software, which started my journey with Asterisk.
What started as a monumental task (since I did not have prior IP telephony experi‐
ence) quickly became a fascination with Asterisk as I discovered how it simplified our
setup without sacrificing power and flexibility.

Fast-forward nine years and tens of millions of calls later, and Asterisk still faithfully
and reliably runs our call center. This was my first exposure to open source software.
Asterisk is obviously an open source success story that illustrates how open source
software fuels entrepreneurism—and how entrepreneurism, in return, fuels develop‐
ment and enhancement of the open source software. I’m thrilled to be part of that

xiv | Foreword

cycle, and look forward to being part of the community as Asterisk continually
evolves to keep up with the ever-changing world of telecommunications.

Matt Florell (Founder, VICIdial)
My first exposure to open source telephony back in 2001 was actually not with Aster‐
isk. It was with a different software package, one that took me a couple of months to
get working, using a simple IVR to log contact requests for my employer at the time.
It was not an easy system to work with or modify, so I didn’t do much else with it
beyond that first IVR project. Two years later, I had a request from a client to build a
much more complex telephony system, one that would require user interactions
through a computer. I knew the platform I had been using wasn’t going to work for a
project like this, so I looked around at both commercial and open source options.
That’s when I learned about Asterisk, which looked like it could be an ideal platform
for this project. I bought a T1 card with which to do some testing, and within two
hours of its arrival, I had configured it and I was able to replicate the old project that
had taken me two months to build. After that, I was hooked. The VICIdial Open-
Source Contact Center project grew out of that project; to date, over 100,000 Asterisk
systems have been installed as a part of VICIdial clusters, and those are just the ones
we know about.

Asterisk was very different from the mostly web-based open source packages that I
had worked with in the past, and it had quite a few quirks and bugs in the earlier days
that you had to work around (sometimes in pretty creative ways). But our more
recent experiences with the Asterisk 13 branch have shown significant improvements
in both capacity and stability, compared to earlier branches. There have also been
many new features added that have allowed us to add new functionality to our VICI‐
dial package. Two of those are the ability to pause call recordings and the addition of
several layers of new SIP carrier logging.

Back in 2003 when I started using Asterisk, there were no real “releases.” You had to
find a stable build from one of the recent CVS revisions and test it out. As time went
on, the development and maintenance of the different branches became much more
stable, and the use of Asterisk in production systems all over the world skyrocketed.
Today, Asterisk is the telephony core of thousands of different service offerings, with
billions of phone calls a day being placed through them. It is being installed on wide
varieties of hardware, from tiny embedded systems to server farms with hundreds of
high-powered machines. There are now millions of people who use Asterisk every
day who have no idea that they are interacting with a piece of open source software.

Among our client base alone, we have several Fortune 500 companies, as well as
school districts, social clubs, political organizations, municipal emergency services
organizations, and of course, thousands of different types of commercial operations.
While the low acquisition cost is a common reason given for going with an Asterisk-

Foreword | xv

based solution, we often hear that the fact that it is open source is a big plus, as well as
there being no possibility of vendor lock-in. One of our larger clients even cited their
use of open source telephony software as a “distinct strategic advantage” over their
competitors because of the flexibility of the systems and their ability to self-manage
them without having to rely on outside vendors. From what I’ve seen so far, the
future of Asterisk is an ever-growing installed base and continued enhancements. I
look forward to working with it for another 16 years, at least.

Matt Fredrickson (Director of Asterisk Engineering,
Sangoma/Digium)
I have had the opportunity to work with Asterisk for the last 18 years, and have seen
it grow from a small project with one or two people into something that has a life of
its own with hundreds of contributors. It’s amazing to see the number of different
places it has disrupted traditional telecom—at home, in the office, and in the enter‐
prise. As traditional communication patterns shift, the Asterisk project continues to
be in the place where it does best—bridging old forms of communication with the
new, and pushing the boundaries of what can be done with the new. This book will
help you see the most modern face of Asterisk and how to better utilize it in your
telecommunications infrastructure. Huge thanks goes to Jim Van Meggelen for all the
hard work on putting this most current edition together.

xvi | Foreword

Preface

This is a book for anyone who uses Asterisk.

Asterisk is an open source, converged telephony platform, which is designed primar‐
ily to run on Linux. Asterisk combines more than 100 years of telephony knowledge
into a robust suite of tightly integrated telecommunications applications. The power
of Asterisk lies in its customizable nature, complemented by unmatched standards
compliance. No other private branch exchange (PBX) can be deployed in so many
creative ways.

Applications such as voicemail, hosted conferencing, call queuing and agents, music
on hold, and call parking are all standard features built right into the software. More‐
over, Asterisk can integrate with other business technologies in ways that closed, pro‐
prietary PBXs can scarcely dream of.

Asterisk can appear quite daunting and complex to a new user, which is why docu‐
mentation is so important to its growth. Documentation lowers the barrier to entry
and helps people contemplate the possibilities.

Produced with the generous support of O’Reilly Media, Asterisk: The Definitive Guide
is the fifth edition of what was formerly called Asterisk: The Future of Telephony.

This book was written for, and by, members of the Asterisk community.

Audience
This book is intended to be gentle toward those new to Asterisk, but we assume that
you’re familiar with basic Linux administration, networking, and other IT disciplines.
If not, we encourage you to explore the vast and wonderful library of books that
O’Reilly publishes on these subjects. We also assume you’re fairly new to telecommu‐
nications (both traditional switched telephony and the new world of Voice over IP).

xvii

http://shop.oreilly.com/product/0636920025894.do
http://shop.oreilly.com/product/9780596510480.do

However, this book will also be useful for the more experienced Asterisk administra‐
tor. We ourselves use the book as a reference for features that we haven’t used for a
while.

Software
This book is focused on documenting Asterisk version 16; however, many of the con‐
ventions and much of the information in this book is version-agnostic. Linux is the
operating system we have run and tested Asterisk on, and we have documented
installation instructions for CentOS (Red Hat Enterprise Linux, or RHEL).

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path‐
names, directories, and package names, as well as Unix utilities, commands,
modules, parameters, and arguments.

Constant width

Used to display code samples, file contents, command-line interactions, database
commands, library names, and options.

Constant width bold

Indicates commands or other text that should be typed literally by the user. Also
used for emphasis in code.

Constant width italic

Shows text that should be replaced with user-supplied values.

[Keywords and other stuff]

Indicates optional keywords and arguments.

{ choice-1 | choice-2 }

Signifies either choice-1 or choice-2.

This element signifies a tip or suggestion.

xviii | Preface

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/asterisk_tdg_5E.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Preface | xix

http://oreilly.com
http://www.oreilly.com
https://oreil.ly/asterisk_tdg_5E
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments from Jim Van Meggelen
To David Duffett, thanks for the chapter on internationalization, which properly
looks at this technology from a more global perspective.

Thanks to Leif Madsen, Jared Smith, and Russell Bryant, for your contributions to the
previous editions of this book. It was fun flying solo, but I can’t deny I missed you
guys!

Specific thanks to Matt Fredrickson and Matt Jordan of Digium, who generously
shared their time and knowledge with me, and without whom I would have been lost.
Thanks guys!

Thanks to my editor, Jeff Bleiel, for keeping me on track and helping me make impor‐
tant decisions about the content and pacing of the book.

Also thanks to the rest of the unsung heroes in O’Reilly’s production department.
These are the folks that take a book and make it an O’Reilly book.

Thanks especially to Joyce Wilmot and Dan Jenkins, my technical review team, for
taking the time to work through the book and provide essential feedback.

Thomas Cameron of RedHat generously shared his knowledge of Selinux with me,
and helped to demystify a Linux component that is too often left disabled.

Everyone in the Asterisk community also needs to thank the late Jim Dixon for creat‐
ing the first open source telephony hardware interfaces, starting the revolution, and
giving his creations to the community at large.

Finally, and most importantly, thanks go to Mark Spencer, the original author of
Asterisk and founder of Digium, for Asterisk, for Pidgin, and for contributing his
creations to the open source community. Asterisk is your legacy!

xx | Preface

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.pidgin.im

1 And more, perhaps, given that WebRTC is revolutionizing native apps too!

CHAPTER 1

A Telephony Revolution

We are what they grow beyond. That is the true burden of all masters.
—Jedi Master Yoda

When we first set out in 2004 to write a book about Asterisk (15 years ago as of this
edition!), we confidently predicted that Asterisk would fundamentally change the
telecommunications industry. Today, the revolution we predicted is a part of history.
Asterisk has been the most successful private branch exchange (PBX) in the world for
several years now, and is an accepted technology within the telecommunications
industry.

The revolution—as necessary as it was to the telecommunications industry of that
time—has tailed off significantly simply because the methods by which people like to
communicate have changed. Whereas 25 years ago phone calls were the preferred
way to converse across distances, the current trend is to send messages or conduct
video-chat conference calls. The phone call is seen as a bit of a dead thing, especially
by up-and-coming generations. We’re not quite ready for a funeral just yet.

Asterisk remains a powerful technology, and we believe it is still one of the best hopes
for any sort of sensible integration between telecom and all the other technologies
businesses might want to interconnect with. It will need to find its place within a
communications ecosystem that no longer places telephone calls in a place of impor‐
tance. Our expectation is that WebRTC, which promises to commoditize web-based
communications,1 will emerge as a replacement for all the copycat, closed, and pro‐
prietary “collaboration” products currently flooding (and confusing) the market.
Asterisk can play a role in this new future, and the Asterisk community has willingly
and enthusiastically taken on this new concept. So, maybe you’re being told that voice

1

is dead, but anyone who’s paid attention to any science fiction of any kind knows that
being able to talk to each other across long distances is not going to be the sole
domain of those who type on keyboards. Humans like to talk, and we’ll continue to
find ways to do so.

There also exists, it must be noted, a massive generation of people whose memories
predate the internet, and for these folks the telephone is still a very useful technology.
If one wishes to do business with them, one had better do a good job of handling tele‐
phone calls. These folks are retiring from the workforce, but their wallets still carry a
lot of clout. Perhaps the PBX is a dying thing, but its tail is very long.

In this book, we’re going to explore the nuts and bolts of Asterisk. It is a flexible,
open, standards-compliant toolkit, which we believe is still very relevant to businesses
today, and will remain useful for many years to come. The power of Asterisk lies in its
flexibility. It has proven to be very useful at tying various types of communications
technologies together, and if it is to have any sort of future, it will need to continue to
do so. Newer technologies such as WebRTC offer all sorts of possibilities for the
future of communication, and the Asterisk community is very focused on this para‐
digm shift.

The remarkable flexibility of Asterisk comes with a price: it is not a simple system to
learn or configure. This is not because it’s illogical, confusing, or cryptic; on the con‐
trary, it is very sensible and practical. People’s eyes light up when they first see an
Asterisk dialplan and begin to contemplate the possibilities. But when there are liter‐
ally thousands of ways to achieve a result, the process naturally requires extra effort.
Perhaps it can be compared to building a house: the components are relatively easy to
understand, but a person contemplating such a task must either a) enlist competent
help or b) develop the required skills through instruction, practice, and a good book
on the subject.

Asterisk and VoIP: Bridging the Gap Between Traditional
and Network Telephony
It sometimes seems that we’ve forgotten that the purpose of the telephone is to allow
people to communicate. It is a simple goal, really, and it should be possible for us to
make it happen in far more flexible and creative ways than are currently available to
us. New technologies always seek to dominate the market with a proprietary offering.
Few succeed. Communications technologies need to interoperate, and technologies
such as Asterisk lower the barriers to entry for those wishing to innovate.

It is for this reason—communication—that we believe a future still exists for open
source telephony projects such as Asterisk. Yes, people might not want to make
“phone calls” anymore, but we believe there will still be value found in conversations.

2 | Chapter 1: A Telephony Revolution

2 The term DSP also means digital signal processor, which is a device (usually a chip) that is capable of inter‐
preting and modifying signals of various sorts. In a voice network, DSPs are primarily responsible for encod‐
ing, decoding, and transcoding audio information. This can require a lot of computational effort.

The technologies that can facilitate those conversations may evolve in seemingly radi‐
cal ways, yet the underlying desire to communicate remains the same.

Asterisk is plugged into the future, and it has a long track record of successfully inte‐
grating communications technologies.

The Zapata Telephony Project
When the Asterisk project was started (in 1999), there were other open source
telephony projects in existence. However, Asterisk, in combination with the Zapata
Telephony Project, was able to provide public switched telephone network (PSTN)
interfaces, which represented an important milestone in transitioning the software
from something purely network-based to something more practical in the world of
telecom at that time, which was PSTN-centric.

The Zapata Telephony Project was conceived of by Jim Dixon, a telecommunications
consulting engineer who was inspired by the incredible advances in CPU speeds that
the computer industry has now come to take for granted. Dixon’s belief was that far
more economical telephony systems could be created if a card existed that had noth‐
ing more on it than the basic electronic components required to interface with a tele‐
phone circuit. Rather than having expensive components on the card, digital signal
processing (DSP)2 would be handled in the CPU by software. While this would
impose a tremendous load on the CPU, Dixon was certain that the low cost of CPUs
relative to their performance made them far more attractive than expensive DSPs,
and, more importantly, that this price/performance ratio would continue to improve
as CPUs continued to increase in power.

Like so many visionaries, Dixon believed that many others would see this opportu‐
nity, and that he merely had to wait for someone else to create what to him was an
obvious improvement. After a few years, he noticed that not only had no one created
these cards, but also it seemed unlikely that anyone was ever going to. At that point it
was clear that if he wanted a revolution, he was going to have to start it himself. And
so the Zapata Telephony Project was born:

Since this concept was so revolutionary, and was certain to make a lot of waves in the
industry, I decided on the Mexican revolutionary motif, and named the technology
and organization after the famous Mexican revolutionary Emiliano Zapata. I decided
to call the card the “tormenta” which, in Spanish, means “storm,” but contextually is
usually used to imply a big storm, like a hurricane or such.

Asterisk and VoIP: Bridging the Gap Between Traditional and Network Telephony | 3

3 We realize that the technology of the internet formed out of government and academic institutions, but what
we’re talking about here is not the technology of the internet so much as the cultural phenomenon of it, which
exploded in the early ’90s.

Perhaps we should be calling ourselves Asteristas. Regardless, we owe Jim Dixon a
debt of thanks, partly for thinking this up and partly for seeing it through, but mostly
for giving the results of his efforts to the open source community. As a result of Jim’s
contribution, Asterisk’s PSTN engine came to be. And thanks to this marrying of
VoIP and PSTN, the open source telecom revolution was born!

Over the years, the Zapata Telephony interface in Asterisk has been modified and
improved. The Digium Asterisk Hardware Device Interface (DAHDI) telephony
interface in use today is the offspring of Jim Dixon’s contribution.

Massive Change Requires Flexible Technology
Every PBX in existence suffers from shortcomings. No matter how fully featured it is,
something will always be left out, because even the most feature-rich PBX will always
fail to anticipate the creativity of the customer. A small group of users will desire an
odd little feature that the design team either did not think of or could not justify the
cost of building, and, since the system is closed, the users will not be able to build it
themselves.

If the internet had been thusly hampered by regulation and commercial interests, it is
doubtful that it would have gained the wide acceptance it currently enjoys. The open‐
ness of the internet meant that anyone could afford to get involved. So, everyone did.
The tens of thousands of minds that collaborated on the creation of the internet
delivered something that no corporation alone ever could have.3

As with many other open source projects (such as Linux and so much of the critical
software running the internet), the development of Asterisk was fueled by the dreams
of folks who knew that there had to be something more than what traditional indus‐
tries were producing. These people knew that if one could take the best parts of vari‐
ous PBXs and separate them into interconnecting components—akin to a boxful of
LEGO bricks—one could begin to conceive of things that would not survive a tradi‐
tional corporate risk-analysis process.

Asterisk itself has become the basis of many massively productized creations. And
yet, under the hood, the soul of that open source project still remains.

Asterisk: The Hacker’s PBX
Asterisk is the ultimate hacker’s PBX. The term hacker has, of course, been twisted by
the mass media into meaning “malicious cracker” to the uneducated. This is unfortu‐

4 | Chapter 1: A Telephony Revolution

nate, because the term actually existed long before the media corrupted its meaning.
Hackers built the networking engine that is the internet. Hackers built the Apple
Macintosh and the Unix operating system. Hackers are also building your next tele‐
com system. Yes, some of these folks are malicious, but the minds that steer the devel‐
opment of Asterisk are well aware of this, and you’ll find that Asterisk allows you to
build a system that’s far more capable of rapidly responding to security threats. Open
source software doesn’t hide its faults behind corporate spin departments. The dirt
gets dragged out into the open where it can be dealt with. Rather than being constric‐
ted by the dubious and often poor security of closed systems, the Asterisk community
quickly responds to changing trends in security, and you’ll be able to fine-tune your
telephone system in response to both corporate policy and industry best practices.

Like other open source systems, Asterisk will be able to evolve into a far more secure
platform than any proprietary system, not in spite of its hacker roots, but rather
because of them.

Asterisk: The Professional’s PBX
Asterisk is an enabling technology, and as with Linux, it will become increasingly rare
to find an enterprise that is not running some version of Asterisk, in some capacity,
somewhere in the network, solving a problem as only Asterisk can. You’re already
using Asterisk, even if you don’t know it.

The Asterisk Community
There’s no sense beating around the bush: the Asterisk community is a shadow of its
former self. A dozen years ago, Asterisk was just about the coolest thing in open
source. Today, most enthusiasts have moved on. What remains, however, is an experi‐
enced and battle-tested community of professionals, who have been there and done
that.

Do not expect a team of people willing to work for free on your projects. The price of
entry to this community is a personal commitment to skills development. If you
bring a sense of entitlement to this community, you will not enjoy the responses. If,
however, you bring curiosity and enthusiasm and a willingness to dive in, get your
hands dirty, and do the work, you will find a community more than willing to share
their hard-won knowledge with you.

The following are some of the places the Asterisk community hangs out.

Asterisk’s Discourse-Based Community Site
Asterisk moved its official forums to https://community.asterisk.org/ in 2015. This
appears to be the most active community right now, and the signal-to-noise ratio is

Asterisk: The Professional’s PBX | 5

https://community.asterisk.org/

excellent. The Digium folks do a good job of moderating this, and several of their
senior and experienced people are actively involved.

Bear in mind that this is not like paid support. You are expected to do the work your‐
self, but you can expect to get some good quality advice here, which can help to steer
you in the right direction.

The Asterisk Mailing Lists
The activity on these lists has been reduced to a trickle (down from hundreds of mes‐
sages per day to maybe a dozen threads per month). They are probably most useful as
an historical archive, but may be worth searching through when you’re working on
an intractable problem. Of the mailing lists you will find at lists.digium.com, these
two are likely to be the most useful:

Asterisk-Users
This list is a shadow of its former self. Whereas it used to generate several hun‐
dred messages per day, most of this traffic has moved to Digium’s Asterisk Com‐
munity site (above).

Asterisk-Dev
The Asterisk developers hang out here. The purpose and focus of this list is the
discussion of developing the software that is Asterisk, and participants vigorously
defend that purpose. Expect a lot of heat if you post anything to this list not
specifically relating to the programming or development of the Asterisk code
base. General coding questions (such as queries on interfacing with AGI or AMI)
should be directed to the Asterisk-Users list.

The Asterisk-Dev list is not second-level support! If you scroll
through the mailing list archives, you’ll see this is a strict rule.
The Asterisk-Dev mailing list is about discussion of core
Asterisk development, and questions about interfacing your
external programs via AGI or AMI should be posted on the
Asterisk-Users list.

Asterisk Wiki Sites
This isn’t really a community hangout, but it deserves a mention. Digium maintains a
wiki for Asterisk at wiki.asterisk.org. This site is constantly kept up to date by the Dig‐
ium team, and automated scripts export the XML-based documentation from the
Asterisk source into the wiki itself, all of which helps to ensure that the data you’re
reading is an accurate representation of the world.

An older wiki exists at www.voip-info.org, which is these days somewhat of an histori‐
cal curiosity, and a source of much enlightenment and confusion. While there is a

6 | Chapter 1: A Telephony Revolution

http://lists.digium.com
http://wiki.asterisk.org
http://www.voip-info.org

4 The #asterisk-dev channel is for the discussion of changes to the underlying code base of Asterisk and is also
not second-tier support. Discussions related to programming external applications that interface with Aster‐
isk via AGI or AMI are meant to be in #asterisk.

massive amount of information contained here, much of it is out of date. We include
reference to it here simply because you’re likely to land on it one day and think you’ve
hit the mother lode, but what you’ve actually found is more akin to a museum of his‐
torical oddities: fascinating, but not necessarily relevant.

The IRC Channels
The Asterisk community maintains Internet Relay Chat (IRC) channels on
irc.freenode.net. The two most active channels are #asterisk and #asterisk-dev.4 To cut
down on spambot intrusions, both of these channels require registration to join. To
register, run /msg nickserv help when you connect to the service via your favorite
IRC client.

Conclusion
So where to begin? Well, when it comes to Asterisk, there is far more to talk about
than we can fit into one book. This book can only lay down the basics, but from this
foundation you will be able to come to an understanding of the concept of Asterisk—
and from that, who knows what you will build?

Conclusion | 7

1 A good indicator that you’ve worked with traditional PBXs is the presence of a large callus on your forehead,
obtained from smashing your head against a brick wall too many times to count.

CHAPTER 2

Asterisk Architecture

First things first, but not necessarily in that order.
—Doctor Who

Asterisk is very different from other, more traditional, PBXs in that the dialplan in
Asterisk treats all incoming channels in essentially the same manner, rather than sep‐
arating them into stations, trunks, peripheral modules, and so forth.

In a traditional PBX, there is a logical difference between stations (telephone sets)
and trunks (resources that connect to the outside world). This limitation makes crea‐
tive routing in traditional PBXs very difficult or impossible.

Asterisk, on the other hand, does not have an internal concept of trunks or stations.
In Asterisk, everything that comes into or goes out of the system passes through a
channel of some sort. There are many different kinds of channels; however, the Aster‐
isk dialplan handles all channels in a similar manner, which means that, for example,
an internal user can exist on the end of an external trunk (e.g., a cell phone) and be
treated by the dialplan in exactly the same manner as that user would be if they were
on an internal extension. Unless you have worked with a traditional PBX,1 it may not
be immediately obvious how powerful and liberating this is. Figure 2-1 illustrates the
differences between the two architectures.

9

Figure 2-1. Asterisk versus PBX architecture

Modules
Asterisk is built on modules. A module is a loadable component that provides a spe‐
cific functionality, such as a channel driver (for example, chan_pjsip.so), or a resource
that allows connection to an external technology (such as func_odbc.so). Asterisk
modules are loaded based on the parameters defined in the /etc/asterisk/modules.conf
file. We will discuss the use of many modules in this book, but at this point we just
want to introduce the concept of modules, and give you a feel for the types of mod‐
ules that are available.

It is actually possible to start Asterisk without any modules at all, although in this
state it will not be capable of doing anything. It is useful to understand the modular
nature of Asterisk in order to appreciate the architecture.

You can start Asterisk with no modules loaded by default and load
each desired module manually from the console, but this is not
something that you’d want to put into production; it would only be
useful if you were performance-tuning a system where you wanted
to eliminate everything not required by your specific application of
Asterisk.

The types of modules in Asterisk include the following:

• Applications—The workhorses of the dialplan, such as Dial(), Voicemail(),
Playback(), Queue(), and so forth

• Bridging modules—Mechanisms that connect channels (calls) to each other

10 | Chapter 2: Asterisk Architecture

2 This is a command that is available as part of the installation process. We will discuss the use of menuselect in
the installation chapter.

• Call detail recording (CDR) modules
• Channel event logging (CEL) modules
• Channel drivers—Various connections into and out of the system; SIP (Session

Initiation Protocol)messaging uses the PJSIP channel drivers
• Codec translators—Convert various codecs such as G729, G711, G722, Speex,

and so forth
• Format interpreters—As above, but relating to files stored in the filesystem
• Dialplan functions—Enhance the capabilities of the dialplan
• PBX modules
• Resource modules
• Add-on modules
• Test modules

In the following sections we have curated a list of modules we feel are important
enough to be discussed in this book. You’ll find many other modules in the Asterisk
download, but many older modules are either deprecated or have little or no support,
and are therefore not recommended for production unless you have access to devel‐
opers who can maintain them for you.

There is an official list of support status types included within menuselect.2

Applications
Dialplan applications are used in extensions.conf to define the various actions that can
be applied to a call. The Dial() application, for example, is responsible for making
outgoing connections to external resources and is arguably the most important
dialplan application. The available applications are listed in Table 2-1.

Table 2-1. Popular dialplan applications

Name Purpose
app_authenticate Compares dual-tone multifrequency (DTMF) input against a provided string (password)
app_cdr Writes ad hoc record to CDR
app_chanspy Allows a channel to listen to audio on another channel
app_confbridge Provides conferencing
app_dial Used to connect channels together (i.e., make phone calls)
app_directed_pickup Answers a call that’s ringing at another extension

Modules | 11

Name Purpose
app_directory Presents the list of names from voicemail.conf
app_dumpchan Dumps channel variables to Asterisk command-line interface (CLI)
app_echo Echos received audio back to source channel (can be helpful in demonstrating latency)
app_exec Contains Exec(), TryExec(), and ExecIf(): executes a dialplan application

conditionally
app_mixmonitor Records both sides of a call (transmit and receive) and mixes them together into a single file
app_originate Allows dialplan logic to originate a call (as opposed to a call coming in on a channel)
app_page Creates multiple audio connections to specified devices for public address (paging)
app_parkandannounce Enables automated announcing of parked calls
app_playback Plays a file to the channel (does not accept input)
app_playtones Plays pairs of tones of specified frequencies (DTMF mostly)
app_queue Provides Automatic Call Distribution (ACD)
app_read Requests input of digits from callers and assigns input to a variable
app_readexten Requests input of digits from callers and passes call to a designated extension and context
app_record Records received audio to a file
app_senddtmf Transmits DTMF to calling party
app_stack Provides GoSub(), GoSubIf(), Return(), StackPop(), LOCAL(), and

LOCAL_PEEK()

app_stasis Passes call control to an ARI application—many Asterisk developers use this one application,
and from there handle all the rest of their development outside of the Asterisk dialplan

app_system Executes commands in a Linux shell
app_transfer Performs a transfer on the current channel
app_voicemail Provides voicemail
app_while Includes While(), EndWhile(), ExitWhile(), and ContinueWhile(); provides

while loop functionality in the dialplan

Bridging Modules
Bridging modules perform the actual bridging of channels. These modules, listed in
Table 2-2, are currently only used for (and are essential to) app_confbridge.

Table 2-2. Bridging modules

Name Purpose

bridge_builtin_features Performs bridging when utilizing built-in user features (such as those found in
features.conf).

bridge_multiplexed Performs complex multiplexing, as would be required in a large conference room
(multiple participants). Currently only used by app_confbridge.

bridge_simple Performs simple channel-to-channel bridging.
bridge_softmix Performs simple multiplexing, as would be required in a large conference room

(multiple participants). Currently only used by app_confbridge.

12 | Chapter 2: Asterisk Architecture

Call Detail Recording Modules
The CDR modules, listed in Table 2-3, are designed to facilitate as many methods of
storing call detail records as possible. You can store CDRs to a file (the default), a
database, Remote Authentication Dial In User Service (RADIUS), or syslog.

Call detail records are not intended to be used in complex billing
applications. If you require more control over billing and call
reporting, you will want to look at channel event logging, discussed
next. The advantage of CDR is that it just works.

Table 2-3. Common call detail recording modules

Name Purpose
cdr_adaptive_odbc Allows writing of CDRs through ODBC framework with ability to add custom fields
cdr_csv Writes CDRs to disk as a comma-separated values (CSV) file
cdr_custom Writes CDRs to a CSV file, but allows addition of custom fields
cdr_odbc Writes CDRs through ODBC framework
cdr_syslog Writes CDRs to syslog

Channel Event Logging Modules
Channel event logging (CEL) provides much more powerful control over reporting of
call activity. By the same token, it requires more careful planning of your dialplan,
and by no means will it work automatically. Asterisk’s CEL modules are listed in
Table 2-4.

Table 2-4. Channel event logging modules

Name Purpose
cel_custom CEL to disk/file
cel_manager CEL to AMI
cel_odbc CEL to ODBC

Channel Drivers
Without channel drivers, Asterisk would have no way to make or receive calls. Each
channel driver is specific to the protocol or channel type it supports (SIP, ISDN, etc.).
The channel module acts as a gateway to the Asterisk core. Some of Asterisk’s more
popular channel drivers are listed in Table 2-5.

Modules | 13

3 The term codec is short for “coder decoder.”

Table 2-5. Popular channel drivers

Name Purpose
chan_bridge Used internally by the ConfBridge() application; should not be used directly
chan_dahdi Provides connection to PSTN cards that use DAHDI channel drivers
chan_local Provides a mechanism to treat a portion of the dialplan as a channel
chan_motif Implements the Jingle protocol, including the ability to connect to Google Talk and Google Voice;

introduced in Asterisk 11
chan_multi

cast_rtp

Provides connection to multicast Realtime Transport Protocol (RTP) streams

chan_pjsip Session Initiation Protocol (SIP) channel driver

Codec Translators
The codec3 translators (often called transcoders) allow Asterisk to convert audio
stream formats between calls. So if a call comes in on a PRI circuit (using G.711) and
needs to be passed out a compressed SIP channel (e.g., using G.729, one of many
codecs that SIP can handle), the relevant codec translator would perform the
conversion.

Codecs are complex algorithms that handle conversion of analog information (sound,
in this case, but could be video as well) into a digital format. Many codecs provide
compression and error correction as well, but this is not a requirement.

If a codec (such as G.729) uses a complex encoding algorithm,
heavy use of transcoding can place a massive burden on the CPU.
Specialized hardware for the decoding/encoding of G.729 is avail‐
able from hardware manufacturers such as Sangoma and Digium
(and likely others).

Asterisk does a fairly good job of supporting codecs, but is mostly focused on the
codecs typically used by telephone applications (as opposed to codes used for, say,
music or video such as MP3 or MP4). These are listed in Table 2-6.

14 | Chapter 2: Asterisk Architecture

4 It is partly for this reason that we do not recommend the default GSM format for system recordings. WAV
recordings will sound better and use fewer CPU cycles.

5 Some codecs will impose a significant load on the CPU, so much so that a system that might support several
hundred channels without transcoding will only handle a few dozen when transcoding is in use.

Table 2-6. Common codec translators

Name Purpose
codec_alaw A-law PCM codec used all over the world on the PSTN (except Canada/USA). This codec (along with

ulaw) should be enabled on all your channels.
codec_g729 Was until recently a patented codec, but is now royalty-free. As of this writing it is still sold by Digium

as an add-on, but it can also be found as a free package. It’s a very popular codec if compression is
desired (and CPU use is not an issue), but it imposes load on the CPU, adds latency to calls, reduces
quality slightly, and will not reduce overhead in any way.

codec_a_mu A-law to mu-law direct converter.
codec_g722 Wideband audio codec.
codec_gsm Global System for Mobile Communications (GSM) codec. Very poor sound quality.
codec_ilbc Internet Low Bitrate Codec.
codec_lpc10 Linear Predictive Coding vocoder (extremely low bandwidth).
codec_opus Intended to replace speex (and vorbis).
codec_resample Resamples between 8-bit and 16-bit signed linear.
codec_speex Speex codec.
codec_ulaw Mu-law PCM codec used on PSTN in Canada/USA. It’s more formally written as μ-law, but not many

people have a Greek letter μ on their keyboard, so it’s popularly written as ulaw.a This is often the
default codec, and should be enabled on all your channels.

a Spoken, you should say “mew-law,” but again, you’ll hear this pronounced “you-law” very often.

Digium distributes some additional useful codec modules:
codec_g729, codec_silk, codec_siren7, and codec_siren14.
These codec modules are not open source for various reasons. You
must purchase a license to use codec_g729, but the others are free.
You can find them on the Digium site.

Format Interpreters
Format interpreters (Table 2-7) perform a similar function as codec translators, but
they do their work on files rather than channels, and handle more than just audio. If
you have a recording on a menu that has been stored as GSM, you would need to use
a format interpreter to play that recording to any channels not using the GSM codec.4

If you store a recording in several formats simultaneously (such as WAV, GSM, etc.),
Asterisk will determine the least costly format5 to use when a channel needs to play
that recording.

Modules | 15

http://bit.ly/ZKRPYR

Table 2-7. Format interpreters

Name Plays files stored in
format_g729 G.729: .g729
format_gsm RPE-LTP (original GSM codec): .gsm
format_h264 H.264 video: .h264
format_ilbc Internet Low Bitrate Codec: .ilbc
format_jpeg Graphic file: .jpeg, .jpg

format _ogg_ vorbis Ogg container: .ogg

format_pcm Various Pulse-Coded Modulation formats: .alaw, .al, .alw, .pcm, .ulaw, .ul, .mu, .ulw, .g722, .au
format_siren14 G.722.1 Annex C (14 kHz): .siren14
format_siren7 G.722.1 (7 kHz): .siren7
format_sln 8-bit signed linear: .sln, .raw
format_vox .vox
format_wav .wav
format_wav_gsm GSM audio in a WAV container: .wav, .wav49

Dialplan Functions
Dialplan functions, listed in Table 2-8, complement the dialplan applications (see
“Applications” on page 11). They provide many useful enhancements to things like
string handling, time and date wrangling, and ODBC connectivity.

Table 2-8. A curated list of useful dialplan functions

Name Purpose
func_audiohook

inherit

Allows calls to be recorded after transfer

func_blacklist Writes/reads blacklist in astdb
func_callcomple

tion

Gets/sets call-completion configuration parameters for the channel

func_callerid Gets/sets caller ID
func_cdr Gets/sets CDR variable
func_channel Gets/sets channel information
func_config Includes AST_CONFIG(); reads variables from config file
func_curl Uses cURL to obtain data from a URI
func_cut Slices and dices strings
func_db Provides astdb functions
func_devstate Gets state of device
func_dialgroup Creates a group for simultaneous dialing
func_dialplan Validates that designated target exists in dialplan
func_env Includes FILE(), STAT(), and ENV(); performs operating system actions
func_global Gets/sets global variables

16 | Chapter 2: Asterisk Architecture

Name Purpose
func_groupcount Gets/sets channel count for members of a group
func_hangupcause Gets/sets hangupcause information from the channel
func_logic Includes ISNULL(), SET(), EXISTS(), IF(), IFTIME(), and IMPORT(); performs

various logical functions
func_math Includes MATH(), INC(), and DEC(); performs mathematical functions
func_odbc Allows dialplan integration with ODBC resources
func_rand Returns a random number within a given range
func_realtime Performs lookups within the Asterisk Realtime Architecture (ARA)
func_redirecting Provides access to information about where this call was redirected from
func_shell Performs Linux shell operations and returns results
func_sprintf Performs string format functions similar to C function of same name
func_srv Performs SRV lookups in the dialplan
func_strings Includes over a dozen string manipulation functions
func_timeout Gets/sets timeouts on channel
func_uri Converts strings to URI-safe encoding
func_vmcount Returns count of messages in a voicemail folder for a particular user

PBX Modules
The PBX modules are peripheral modules that provide enhanced control and config‐
uration mechanisms. For example, pbx_config is the module that loads the tradi‐
tional Asterisk dialplan. The currently available PBX modules are listed in Table 2-9.

Table 2-9. PBX modules

Name Purpose
pbx_config This module provides the traditional, and most popular, dialplan language for Asterisk. Without this

module, Asterisk cannot read extensions.conf.
pbx_dundi Performs data lookups on remote Asterisk systems.
pbx_realtime Provides functionality related to the Asterisk Realtime Architecture.
pbx_spool Provides outgoing spool support relating to Asterisk call files.

Resource Modules
Resource modules integrate Asterisk with external resources. This group of modules
has effectively turned into a catch-all for things that do not fit in other categories. We
will break them into some subgroups of modules that are related.

Configuration backends
Asterisk is configured using text files in /etc/asterisk by default. These modules, listed
in Table 2-10, offer alternative configuration methods. See Chapter 15 for detailed
documentation on setting up database-backed configuration.

Modules | 17

Table 2-10. Configuration backend modules

Name Purpose
res_config_curl Pulls configuration information using cURL
res_config_ldap Pulls configuration information using LDAP
res_config_odbc Pulls configuration information using ODBC

Calendar integration
Asterisk includes some integration with calendar systems. You can read and write cal‐
endar information from the dialplan. You can also have calls originated based on cal‐
endar entries. The core calendar integration is provided by the res_calendar
module. The rest of the modules provide the ability to connect to specific types of
calendar servers. Table 2-11 lists the calendar integration modules.

Table 2-11. Calendar integration modules

Name Purpose
res_calendar Enables base integration to calendaring systems
res_calendar_caldav Allows features provided by res_calendar to connect to calendars via CalDAV
res_calendar_exchange Allows features provided by res_calendar to connect to MS Exchange

res_calendar_icalendar Allows features provided by res_calendar to connect to Apple/Google iCalendar

Other resource modules
Table 2-12 includes the rest of the resource modules that did not fit into one of the
subgroups we defined earlier in this section.

Table 2-12. Resource modules

Name Purpose
res_adsi Provides ADSIa

res_agi Provides the Asterisk Gateway Interface (see Chapter 18)
res_corosync Provides distributed message waiting indication (MWI) and device state notifications via the

Corosync Cluster Engine
res_crypto Provides cryptographic capabilities
res_curl Provides common subroutines for other cURL modules
res_fax Provides common subroutines for other fax modules
res_fax_spandsp Plug-in for fax using the spandsp package
res_http_post Provides POST upload support for the Asterisk HTTP server
res_http_websocket Provides WebSocket support for the Asterisk internal HTTP server (required by WebRTC)
res_monitor Provides call-recording resources
res_musiconhold Provides music on hold (MOH) resources
res_mutestream Allows muting/unmuting of audio streams
res_odbc Provides common subroutines for other ODBC modules

18 | Chapter 2: Asterisk Architecture

Name Purpose
res_phoneprov Provisions phones from Asterisk HTTP server
res_pktccops Provides PacketCable COPS resources
res_security_log Enables logging of security events generated by other parts of Asterisk
res_snmp Provides system status information to an SNMP-managed network
res_speech Generic speech recognition APIb

res_stasis Ties together the various components of the Stasis application infrastructure
res_xmpp Provides XMPP resources (FKA Jabber)
a While most of the ADSI functionality in Asterisk is never used, the voicemail application uses this resource.
b Requires a separately licensed product in order to be used.

Add-on Modules
Add-on modules are community-developed modules with different usage or distribu‐
tion rights from those of the main code (Table 2-13). They are kept in a separate
directory and are not compiled and installed by default. To enable these modules, use
the menuselect build configuration utility.

Table 2-13. Add-on modules

Name Purpose Popularity/status
chan_ooh323 Enables making and receiving VoIP calls using the H.323 protocol Usable
format_mp3 Allows Asterisk to play MP3 files Usable
res_config_mysql Uses a MySQL database as a real-time configuration backend Useful

Test Modules
Test modules are used by the Asterisk development team to validate new code. They
are constantly changing and being added to, and are not useful unless you are devel‐
oping Asterisk software.

If you are an Asterisk developer, however, the Asterisk Test Suite may be of interest to
you, as you can build automated tests for Asterisk and submit those back to the
project, which runs on several different operating systems and types of machines. By
expanding the number of tests constantly, the Asterisk project avoids the creation of
regressions in code. By submitting your own tests to the project, you can feel more
confident in future upgrades.

More information about building tests is available in the “Asterisk Test Suite” docu‐
ment, or you can join the #asterisk-testing channel on the Freenode IRC network.

Modules | 19

http://bit.ly/14SLEqs
http://bit.ly/14SLEqs

File Structure
Asterisk is a complex system, composed of many resources. These resources make use
of the filesystem in several ways. Since Linux is so flexible in this regard, it is helpful
to understand what data is being stored, so that you can understand where you are
likely to find a particular bit of stored data (such as voicemail messages or logfiles).

Configuration Files
The Asterisk configuration files include extensions.conf, pjsip.conf, modules.conf, and
dozens of other files that define parameters for the various channels, resources, mod‐
ules, and functions that may be in use.

These files will normally be found in /etc/asterisk. You will be working in this folder a
lot as you configure and administer your Asterisk system.

Modules
Asterisk modules are usually installed to the /usr/lib/asterisk/modules folder. You will
not normally have to interact with this folder; however, it will be occasionally useful
to know where the modules are located. For example, if you upgrade Asterisk and
select different modules during the menuselect phase of the install, the old (incom‐
patible) modules from the previous Asterisk version will not be deleted, and you will
get a warning from the install script. Those old files will need to be deleted from the
modules folder. This can be done either manually or with the “uninstall” make (make
uninstall) target.

The Resource Library
There are several resources that require external data sources. For example, music on
hold (MOH) can’t happen unless you have some music to play. System prompts also
need to be stored somewhere on the hard drive. The /var/lib/asterisk folder is where
system prompts, AGI scripts, music on hold, and other resource files are stored.

The Spool
The spool is where applications store files on a Linux system that are going to change
frequently, or that will be processed by other processes at a later time. For example,
Linux print jobs and pending emails are normally written to the spool until they are
processed.

20 | Chapter 2: Asterisk Architecture

6 Not call detail records (CDRs), but rather audio recordings of calls generated by the MixMonitor() and related
applications.

In Asterisk, the spool is used to store transient items such as voice messages, call
recordings,6 call files, and so forth.

The Asterisk spool will be found under the /var/spool/asterisk directory.

Logging
Asterisk is capable of generating several different kinds of logfiles. The /var/log/aster‐
isk folder is where call detail records (CDRs), channel events from CEL, debug logs,
queue logs, messages, errors, and other output are written.

This folder will be extremely important for any troubleshooting efforts you under‐
take. We will talk more about how to make use of Asterisk logs in Chapter 21.

The Dialplan
The dialplan is the heart of Asterisk. All channels that arrive in the system will be
passed through the dialplan, which contains the call-flow scripts that determine how
incoming calls are handled.

Dialplan is typically written using Asterisk’s own dialplan syntax, which is stored in a
file named /etc/asterisk/extensions.conf. There are other ways to control call flow, and
we will explore them later, but no matter which method you eventually employ, you
will find that a basic understanding of the traditional dialplan will be immensely
helpful. That is what we will focus on for most of the first two-thirds of this book.

Later, we will explore handling call flow outside of the dialplan, using technologies
such as AMI, AGI, and ARI.

Hardware
Asterisk is capable of communicating with a vast number of different technologies. In
general, these connections are made across a TCP/IP network connection (usually
using SIP). However, connections to more traditional telecom circuits, such as PRI
(T1, E1, etc.), BRI (EuroISDN) SS7 (mostly T1 and E1), and analog (everything from
a few FXO and FXS ports up to large channel banks fed through T1/E1 CAS/RBS
connections), can also be achieved using physical cards installed in a server.

Many companies produce this hardware, such as Digium (the sponsor, owner, and
primary developer of Asterisk), Sangoma (who recently purchased Digium), Dialogic
(also a Sangoma company), OpenVox, Pika, Voicetronix, beroNet, and many others.
All of these companies have been involved with Asterisk for many years.

The Dialplan | 21

The most popular hardware for Asterisk is generally designed to work through the
Digium Asterisk Hardware Device Interface (known as DAHDI). This is a complex
architecture, and is out of the scope of this book. Server-based telephony cards will all
have installation requirements unique to the manufacturer, and will require you to
have strong skills in both Linux hardware installation as well as traditional PSTN cir‐
cuit troubleshooting and provisioning.

If you need to interface with traditional PSTN circuits using Asterisk, we recommend
that you keep Asterisk as a SIP-only platform, and interface using a third-party gate‐
way of some sort. Be warned: this is not entry-level stuff, and if you are just starting
out with Asterisk, you are strongly advised to keep your initial solutions to SIP-only.

Asterisk Versioning
The Asterisk release methodology has gone through several styles over time. This has
led to some confusion in the past, but these days the versioning is fairly straightfor‐
ward, and relatively easy to understand. Digium has maintained an excellent refer‐
ence at the Asterisk wiki, and we encourage you to go there for the latest details on
Asterisk versions.

This book was written and tested using version 16, but you will find that the funda‐
mental concepts we explore will be relevant to most Asterisk versions. The concep‐
tual structure of Asterisk has not changed for quite some time, and as of this writing
there are no known plans to change that going forward. Future versions will deliver
more powerful multimedia and conferencing capabilities, to be sure, but they are
likely to be implemented within the existing structure.

Conclusion
Asterisk is composed of many different technologies, most of which are complicated
in their own right. As a result, understanding Asterisk architecture can be over‐
whelming. Still, the reality is that Asterisk is well designed for what it does and, in our
opinion, has achieved a remarkable balance between flexibility and complexity.

22 | Chapter 2: Asterisk Architecture

http://bit.ly/2XTb5Wl

1 It’s been released under a Creative Commons license, so if you have purchased a hard copy (and we thank
you!), you can also download a soft copy for searching and copying/pasting.

CHAPTER 3

Installing Asterisk

I long to accomplish great and noble tasks, but it is my chief duty to accomplish humble tasks
as though they were great and noble. The world is moved along, not only by the mighty
shoves of its heroes, but also by the aggregate of the tiny pushes of each honest worker.

—Helen Keller

In this chapter we’re going to walk through the installation of Asterisk from the
source code. Many people shy away from this method, claiming that it is too difficult
and time-consuming. Our goal here is to demonstrate that installing Asterisk from
source is not actually that difficult to do. More importantly, we want to provide you
with the best Asterisk platform on which to learn.

In this book we will be helping you build a functioning Asterisk system from scratch.
Toward that goal, in this chapter we will build a base platform for your Asterisk sys‐
tem. Since we are installing from source, there is potentially a lot of variation in how
you can do this. Our goal here is to deliver a standard sort of platform, suitable for
explorations in many areas. It is possible to strip Asterisk down to the very basics and
run a very lean machine; however, that exercise is left up to the reader. The process
we discuss here is designed to get you up and running quickly and simply, without
short-changing you on access to interesting features.

Most of the commands you see are going to be best handled with a series of copy-
paste operations (in fact, we strongly recommend you have an electronic version of
this book handy for that very purpose).1 While it looks like a lot of typing, the com‐
mands we take you through can get you from start to finish in less than 30 minutes,

23

2 Asterisk should run on pretty much any Linux platform, and if you are familiar with the basic process of
installing software on a Linux machine, you should find Asterisk a fairly straightforward installation.

3 By which we mostly mean that you are comfortable administering a system exclusively from the shell.

so it’s really not as complex as it might appear. We run some prerequisites, some com‐
pilation, and some post-install config, and Asterisk is ready to go.

For the sake of brevity, these steps will be performed on a CentOS 7 system. This is
functionally equivalent to RHEL, and similar enough to Fedora that the steps should
be quite similar. For other platforms such as Debian/Ubuntu and so forth, the
instructions will also be similar, but you will need to adjust as needed for your
platform.2

The first part of the installation instructions will not deal with Asterisk as such, but
rather some of the dependencies that either Asterisk requires or are necessary for
some of the more useful features (such as database integration). We’ll try to keep the
instructions general enough that they should be useful on any distribution of your
choice.

These instructions assume that you are an experienced Linux administrator.3 A fully
working Asterisk system will consist of enough discrete parts that you will find it
challenging to deal with all of it if you have little or no Linux background. We’d still
encourage you to dive right in, but please allow for the fact that there will be a steep
learning curve if you don’t already have solid Linux command-line experience.

If you want to learn the Linux command line, one of the best books
we’ve found is The Linux Command Line by William Shotts, which
has been released under a Creative Commons license, and dives
straight into all the knowledge you need to use the Linux shell
effectively. It can be found at linuxcommand.org. You could memo‐
rize the book from front to back, and pretty much everything you’d
learned would be something any seasoned Linux administrator
would agree was worth knowing.
Another fantastic book is of course the legendary UNIX and Linux
System Administration Handbook by Dan Mackin, Ben Whaley,
Trent R. Hein, Garth Snyder, and Evi Nemeth (Prentice Hall).
Highly recommended.

24 | Chapter 3: Installing Asterisk

http://linuxcommand.org

Asterisk Packages
There are Asterisk packages that can be installed using package management systems
such as yum or apt-get. You are encouraged to use them once you are familiar with
Asterisk.

If you are using RHEL, Asterisk is available from the EPEL repository from the
Fedora project. Asterisk packages are available in the Universe repository for Ubuntu.

You should also note that because of Asterisk’s history, it is able to integrate with a
multitude of telephony technologies; however, these days, someone new to Asterisk is
going to want to learn SIP integration before worrying about more complex, obsolete
or peripheral channel types. Once you are comfortable with Asterisk in a pure SIP
environment, it’ll be much easier to look at integrating other channel types.

Asterisk-Based Projects
Many projects use Asterisk as their underlying platform. Some of these, such as the
FreePBX GUI, have become so popular that many people mistake them for the Aster‐
isk product itself. In fact, the FreePBX GUI is so ubiquitous it is found in most of the
well-known Asterisk-based projects. These projects take the base Asterisk product
and add a web-based administration interface, a complex database, and external func‐
tions that are useful in a typical PBX (such as set provisioning, a time server, and so
forth).

We have chosen not to cover these projects in this book, for several reasons:

• This book tries, as much as possible, to focus on Asterisk and only Asterisk.
• Books have already been written about many of these Asterisk-based projects.
• We believe that if you learn Asterisk in the way that we will teach you, the knowl‐

edge will serve you well regardless of whether or not you eventually choose to use
one of these prepackaged versions of Asterisk.

• If you want to be able to make sense of what’s going on under the hood of a
FreePBX-based system, this book will introduce you to some of the skills you will
need.

• For us, the power of Asterisk is that it does not attempt to solve your problems
for you. These projects are truly amazing examples of what can be built with
Asterisk. However, if you are looking to build your own Asterisk application
(which is really what Asterisk is all about), these projects might create needless
obstacles, simply because they are focused on simplifying the process of building
a business PBX, not on making it possible to access the full potential of the Aster‐
isk platform.

Installing Asterisk | 25

http://fedoraproject.org/wiki/EPEL

4 Elastix is no longer an Asterisk-based or open source product.
5 After you read our book, of course.

Some of the most popular Asterisk-based projects include (in no particular order):

AsteriskNOW
Managed by Digium. Uses FreePBX GUI.

Issabel
A fork of the original open source releases of the Elastix product.4 Uses FreePBX
GUI.

The Official FreePBX Distro
The official distro of the FreePBX project. Managed by Sangoma.

Asterisk for Raspberry Pi
A complete install of Asterisk and FreePBX for the Raspberry Pi.

AstLinux
The AstLinux project caters to a community that want to run Asterisk on small,
low-power, solid-state devices. The install size of the entire solution is measured
in megabytes (AstLinux was originally designed to fit on CompactFlash cards). If
you are fascinated by small computers, and want to play with a PBX-in-a-box
that fits in your pocket, AstLinux may be for you.

We recommend that you check them out.5

Linux Installation
Asterisk is developed using Linux, and unless you’re very comfortable with porting
software between various platforms, that is what you’re going to want to use.

In this book, we’re going to use CentOS as the platform. If you would prefer a differ‐
ent Linux distro, it is expected that you have sufficient Linux skills to understand
what some of the differences may be. These days, it’s so easy and cheap to fire up an
instance of any common distribution that there’s no real harm in using CentOS to
learn, and then migrate to whatever you prefer when you’re ready.

We recommend installing the Minimal version of CentOS, since the installation pro‐
cess we will be going through handles all the prerequisites. This also ensures you’re
not installing anything you don’t need.

26 | Chapter 3: Installing Asterisk

http://www.asterisk.org/asterisknow
https://www.issabel.org
http://www.freepbx.org/freepbx-distro
http://www.raspberry-asterisk.org/
https://www.astlinux-project.org/

Choosing Your Platform
OK, so strictly speaking we’ve already chosen your platform for you, but there are
several different ways to get a CentOS server up and running (see Table 3-1).

Table 3-1. Comparing Linux platforms that are suitable for Asterisk

Platform Pros Cons
OpenStack (DigitalOcean,
Linode, VULTR, etc.)

Up and running in minutes. Inexpensive to
operate. Doesn’t require any resources on your
local system. Accessible from anywhere. Can be
used in a production environment. Fantastic for
quick prototyping projects.

You pay as long as it’s running. The IP address
is only yours for as long as the system is
running. Requires some DevOps skills if you
want to deploy in production. No firewall in
place by default.

VirtualBox (or other PC-
based platform)

Free to use. No external exposure. Excellent for
small lab projects.

Requires more horsepower on your system.
Requires storage space on your local system.
Not easy to deploy into a production
environment.

AWS and/or Lightsail Inexpensive to operate. Doesn’t require any
resources on your local system. Accessible from
anywhere. Can be used in a production
environment. Scales to enormous sizes.

You pay as long as it’s running. Somewhat
more skills required to gather all the resources
you need.

Physical hardware Dedicated platform. Can be shipped and
installed anywhere. Complete control over all
aspects of environment, hardware, network,
and so forth.

Risk of component failure. Power consumption.
Noise. Potential costs for hosting. No inherent
redundancy.

Other (really anything
that’ll run CentOS 7
should be fine)

You can use an environment that you’re
familiar with.

You’re on your own.

Other Linux (you don’t
actually have to run
CentOS)

You can run the exact environment you want. You need to have strong Linux admin skills.

For the purposes of learning, we recommend one of two simple ways to get going:

• If you are running Windows as your desktop: Download VirtualBox, then down‐
load the CentOS 7 Minimal ISO, and install on your local machine.

• If you are comfortable working with SSH-based, keyed connections to remote sys‐
tems: Create a hosted system (for example, a DigitalOcean CentOS droplet).

This book was developed and tested using both VirtualBox and DigitalOcean.

VirtualBox Steps
Grab a copy of VirtualBox from the platform’s website and install it.

Download the Minimal ISO from the Centos website.

Linux Installation | 27

https://www.virtualbox.org/wiki/Downloads
https://www.centos.org/download/

Get yourself a copy of PuTTY if you’re using Windows.

Create a new virtual machine with the following characteristics:

• Type: Linux
• Version: Red Hat (64-bit)
• Memory size: 2048 MB
• Hard disk: Create a virtual hard disk now
• File location: Pick a good spot for storing your virtual machine images
• File size: 16 GB is fine for what we’re doing here, but something larger would be

needed for production

Once the basic machine has been defined, you’ll need to tweak it as follows:

• Storage: Under Storage, Controller: IDE ...

1. You should see the CD/DVD has a tiny disc icon labeled Empty.
2. Click on it and to the right under Attributes, there’ll be another tiny disc icon.
3. Click on that, and it’ll ask you to Choose Optical Virtual Disk File.
4. Locate on your hard drive the Minimal ISO you downloaded from CentOS,

and choose it.
5. The Storage Tree should now show the CentOS ISO.

• Network: Adaptor 1
Attached to: Bridged Adapter

Start up the machine you’ve just created, and it should take you through a basic
installation of CentOS. Here are a few items you’ll want to specify (for anything else,
the defaults should do):

• Date and time: Adjust to your time zone if you wish.
• Network and host name: Ethernet—toggle from off to on (it should immediately

grab an IP address from your network; if not, set one manually). Press the Done
button.

• Installation destination: It may require you to confirm the target, but you
shouldn’t need to change anything. Press the Done button.

• That’s it. Begin Installation.

While the installation is taking place, set the root password, and also create a user
named astmin. Make the astmin user an administrator.

28 | Chapter 3: Installing Asterisk

http://bit.ly/2J0ftwK

6 Amazon’s new Lightsail service also promises to simplify the creation of hosted Linux machines.

The installation will take a few minutes. Grab a coffee!

Once the install is done, the installer will ask you to Reboot. The reboot should only
take 15 seconds or so.

Congratulations, your system is ready. Log in as root.

Linux (OpenStack) Host
You’ll obviously need an account with a hosted Linux provider if you’re going to use
this method (we’ve found OpenStack-based offerings to be the cheapest, relative to
the quality/performance/simplicity offered). We’ve been using DigitalOcean for many
years, but have also found Linode and VULTR to be strong providers in this space.6

Once you’ve got that sorted, you can log in and create a new system something like
the following:

• CentOS 7 (lastest version, 64-bit)
• 4 GB 2vCPUs (we don’t really need the 4 GB RAM, but it is good to have the

2xCPUs; you can probably get away with 2 GB 1vCPU, if you’re really cost-
conscious)

• Data center closest to you

Once that’s up and running, log in as the default user (as of this writing, it’s centos).

Note that DigitalOcean instances do not have a firewall by default.
Instead, they provide a firewall as a part of their environment. The
system you build will therefore not have any native firewall in
place, and will be subject to external attacks shortly after you com‐
plete configuration (you’ll see this on the Asterisk console). Differ‐
ent providers will have different firewall policies. You are
responsible for making sure your firewalling is working correctly.
We’ll be discussing security and anti-fraud in more detail later on
in this book.

Dependencies
The system you’ve just built isn’t really much more than a basic bootstrapped system.
In order to prepare it for an Asterisk installation, there are a few things we’ll need to
install first.

Dependencies | 29

The following commands can be typed from the command line, or added to a simple
shell script and run that way.

sudo yum -y update &&
sudo yum -y install epel-release &&
sudo yum -y install python-pip &&
sudo yum -y install vim wget dnf&&
sudo pip install alembic ansible &&
sudo pip install --upgrade pip &&
sudo mkdir /etc/ansible &&
sudo chown astmin:astmin /etc/ansible &&
sudo echo "[starfish]" >> /etc/ansible/hosts &&
sudo echo "localhost ansible_connection=local" >> /etc/ansible/hosts &&
mkdir -p ~/ansible/playbooks

We’ve installed Ansible simply because it’s a quick and easy way to get all the depen‐
dencies met. We’ve written a playbook to perform the following operations:

1. Install dnf, vim, wget, and MySQL-python.
2. Install the MySQL community-edition repository.
3. Install mysql-server.
4. Tweak some variables in the mysql-server installation.
5. Start the mysql-server daemon.
6. Modify some MySQL credentials (create users, set passwords).
7. Create a MySQL database/schema for Asterisk to use.
8. Apply some security best practices (remove anonymous user, test database, etc.).
9. Create asterisk user.

10. Create astmin user.
11. Install dependencies for ODBC.
12. Install some diagnostic tools.
13. Tweak the firewall to allow SIP and RTP traffic.
14. Edit some ODBC config files.

This can all be done manually, but it’s just a lot of typing, and Ansible is really good at
streamlining this process.

Create an Ansible playbook in the file ~/ansible/playbooks/starfish.yml.

30 | Chapter 3: Installing Asterisk

The libmyodbc8a.so file is versioned, so, if you don’t have version 8
of UnixODBC:

1. Run the playbook the first time (to install the UnixODBC
library).

2. Find out what file was installed at /usr/lib64/
libmyodbc<version>a.so.

3. Edit the playbook as appropriate (provide the correct file‐
name).

4. Save and rerun the playbook (which will then update the con‐
figuration files to point to the correct library).

Here’s the playbook:

- hosts: starfish
 become: yes
 vars:
Use these on the first run of this playbook
 current_mysql_root_password: ""
 updated_mysql_root_password: "YouNeedAReallyGoodPassword"
 current_mysql_asterisk_password: ""
 updated_mysql_asterisk_password: "YouNeedAReallyGoodPasswordHereToo"
Comment the above out after the first run

Uncomment these for subsequent runs
current_mysql_root_password: "YouNeedAReallyGoodPassword"
updated_mysql_root_password: "{{ current_mysql_root_password }}"
current_mysql_asterisk_password: "YouNeedAReallyGoodPasswordHereToo"
updated_mysql_asterisk_password: "{{ current_mysql_asterisk_password }}"

 tasks:

 - name: Install epel-release
 dnf:
 name: epel-release
 state: present

 - name: Install dependencies
 dnf:
 name: ['vim', 'wget', 'MySQL-python']
 state: present

 - name: Install the MySQL repo.
 dnf:
 name: http://repo.mysql.com/mysql-community-release-el7-5.noarch.rpm
 state: present

 - name: Install mysql-server
 dnf:
 name: mysql-server
 state: present

 - name: Override variables for MySQL (RedHat).

Dependencies | 31

 set_fact:
 mysql_daemon: mysqld
 mysql_packages: ['mysql-server']
 mysql_log_error: /var/log/mysqld.err
 mysql_syslog_tag: mysqld
 mysql_pid_file: /var/run/mysqld/mysqld.pid
 mysql_socket: /var/lib/mysql/mysql.sock
 when: ansible_os_family == "RedHat"

 - name: Ensure MySQL server is running
 service:
 name: mysqld
 state: started
 enabled: yes

 - name: update mysql root pass for localhost root account from local servers
 mysql_user:
 login_user: root
 login_password: "{{ current_mysql_root_password }}"
 name: root
 host: "{{ item }}"
 password: "{{ updated_mysql_root_password }}"
 with_items:
 - localhost

 - name: update mysql root password for all other local root accounts
 mysql_user:
 login_user: root
 login_password: "{{ updated_mysql_root_password }}"
 name: root
 host: "{{ item }}"
 password: "{{ updated_mysql_root_password }}"
 with_items:
 - "{{ inventory_hostname }}"
 - 127.0.0.1
 - ::1
 - localhost.localdomain

 - name: create asterisk database
 mysql_db:
 login_user: root
 login_password: "{{ updated_mysql_root_password }}"
 name: asterisk
 state: present

 - name: asterisk mysql user
 mysql_user:
 login_user: root
 login_password: "{{ updated_mysql_root_password }}"
 name: asterisk
 host: "{{ item }}"
 password: "{{ updated_mysql_asterisk_password }}"
 priv: "asterisk.*:ALL"
 with_items:
 - "{{ inventory_hostname }}"
 - 127.0.0.1
 - ::1
 - localhost
 - localhost.localdomain

32 | Chapter 3: Installing Asterisk

 - name: remove anonymous user
 mysql_user:
 login_user: root
 login_password: "{{ updated_mysql_root_password }}"
 name: ""
 state: absent
 host: "{{ item }}"
 with_items:
 - localhost
 - "{{ inventory_hostname }}"
 - 127.0.0.1
 - ::1
 - localhost.localdomain

 - name: remove test database
 mysql_db:
 login_user: root
 login_password: "{{ updated_mysql_root_password }}"
 name: test
 state: absent

 - user:
 name: asterisk
 state: present
 createhome: yes

 - group:
 name: asterisk
 state: present

 - user:
 name: astmin
 groups: asterisk,wheel
 state: present

 - name: Install other dependencies
 dnf:
 name:
 - unixODBC
 - unixODBC-devel
 - mysql-connector-odbc
 - MySQL-python
 - tcpdump
 - ntp
 - ntpdate
 - jansson
 - bind-utils
 state: present

Tweak the firewall for UDP/SIP
 - firewalld:
 port: 5060/udp
 permanent: true
 state: enabled

Tweak firewall for UDP/RTP
 - firewalld:
 port: 10000-20000/udp

Dependencies | 33

 permanent: true
 state: enabled

 - name: Ensure NTP is running
 service:
 name: ntpd
 state: started
 enabled: yes

The libmyodbc8a.so file is versioned, so if you don't have version 8, see what the
/usr/lib64/libmyodbc<version>a.so file is, and refer to that instead
on your 'Driver64' line, and then run the playbook again
 - name: update odbcinst.ini
 lineinfile:
 dest: /etc/odbcinst.ini
 regexp: "{{ item.regexp }}"
 line: "{{ item.line }}"
 state: present
 with_items:
 - regexp: "^Driver64"
 line: "Driver64 = /usr/lib64/libmyodbc8a.so"
 - regexp: "^Setup64"
 line: "Setup64 = /usr/lib64/libodbcmyS.so"

 - name: create odbc.ini
 blockinfile:
 path: /etc/odbc.ini
 create: yes
 block: |
 [asterisk]
 Driver = MySQL
 Description = MySQL connection to 'asterisk' database
 Server = localhost
 Port = 3306
 Database = asterisk
 UserName = asterisk
 Password = {{ updated_mysql_asterisk_password }}
 #Socket = /var/run/mysqld/mysqld.sock
 Socket = /var/lib/mysql/mysql.sock
...

Run the playbook with the following command:
$ ansible-playbook ~/ansible/playbooks/starfish.yml

Sit back and watch the magic happen.

Once Ansible has completed the assigned tasks, verify that ODBC can connect to the
database using the asterisk user credentials.

$ echo "select 1" | isql -v asterisk asterisk password

You should see a result something like this:
+---------------------------------------+
| Connected! |
| sql-statement |
| help [tablename] |
| quit |
+---------------------------------------+

34 | Chapter 3: Installing Asterisk

7 Note that members of the community will also produce packaged versions of Asterisk. The EPEL repository,
for example, maintains a version that can be installed using dnf (yum). As of this writing, only the tarball ver‐
sion is officially maintained, and we recommend this method at this time, mostly due to the many different
modules that come with Asterisk, and the usefulness in being able to build what you need from source.

8 On a DigitalOcean instance, you’ll need to ensure your SSH key is in the file /home/astmin/.ssh/author‐
ized_keys.

SQL> select 1
+---------------------+
| 1 |
+---------------------+
| 1 |
+---------------------+
SQLRowCount returns 1
1 rows fetched

If you do not see the Connected! message, you need to troubleshoot your database
and ODBC installation. The first thing you should do is make sure you can log into
the database from the command line using the asterisk user (mysql -u asterisk
-p). Most ODBC problems tend to end up being credentials problems (i.e., wrong
password or username), so work backward to ensure all the credentials work as they
should, and double-check that you didn’t get any problem messages from Ansible.

As of this writing, the version of jansson installed from the EPEL repo is an older ver‐
sion than the one Asterisk requires, so we’ll have to install that manually.

The system is now prepared, and we’re ready to download and install Asterisk.

Asterisk Installation
Asterisk is officially delivered in a tarball (as source code), and it must be downloa‐
ded, extracted, and compiled.7 This is not difficult to do, so long as you have all the
dependencies correct. Between the writing of this book and your reading of it, there
may have been some changes to the various dependencies, so your install process may
have to be run slightly differently. It’s often difficult to know the difference between
an error message that can safely be ignored, and one that is indicating a critical prob‐
lem; however, in general, you should have identified and resolved any errors in the
previous processes before arriving at this step. If your dependencies are sorted, the
Asterisk install will tend to go smoothly.

Download and Prerequisites
Log out of the system, and log back in as user astmin.8

Type the following commands from the shell in order to download the Asterisk
source code:

Asterisk Installation | 35

When you see us write <TAB> in a filename, what we mean is that
you should press the Tab key on your keyboard and allow auto‐
complete to fill in what it can. The rest of the typing then follows.

$ mkdir ~/src
$ cd ~/src
$ wget https://downloads.asterisk.org/pub/telephony/asterisk/asterisk-16-current.tar.gz
$ tar zxvf asterisk-16-current.tar.gz
$ cd asterisk-16.<TAB> # tab should auto-complete (unless it has more than one match)

We can now run a few prerequisites that the Asterisk team has defined, and also have
the environment checked:

$ cd contrib/scripts (or cd ~/src/asterisk-16.<TAB>/contrib/scripts
$ sudo ./install_prereq install # asterisk has a few prerequisites that this simplifies
$ cd ../..
$./configure --with-jansson-bundled

Asterisk is now ready to compile and install, but there are a few tweaks worth making
to the configuration before compilation.

Compiling and Installing
$ make menuselect

You will see a menu that presents various options you can select for the compiler. Use
the arrow and Tab keys to move around, and the Enter key to select/deselect. For the
most part, the defaults should be fine, but we want to make a few tweaks to the sound
files in order to ensure we have all the sounds we want, in the best format.

At this point you can also select other languages you wish to have
on your system. We recommend you select the WAV and G722 for‐
mats (and G729 as well, if you need to support it).

Under Codec Translators (--- External ---):

• Select [*] codec_opus
• Select [*] codec_silk
• Select [*] codec_siren7
• Select [*] codec_siren14
• Select [*] codec_g729a

36 | Chapter 3: Installing Asterisk

Under Core Sound Packages:

• Deselect [*] CORE-SOUNDS-EN-GSM
• Select [*] CORE-SOUNDS-EN-WAV
• Select [*] CORE-SOUNDS-EN-G722

Under Extras Sound Packages:

• Select [*] EXTRA-SOUNDS-EN-WAV
• Select [*] EXTRA-SOUNDS-EN-G722

Save and Exit.

Three more commands and Asterisk is installed:
$ make # this will take several minutes to complete
 # (depending on the speed of your system)
$ sudo make install # you must run this with escalated privileges
$ sudo make config # this too

When the make config command has completed, it will suggest
some commands to install the sample configuration files. For the
purposes of this book, you do not want to do this. We will be build‐
ing the necessary files by hand, so the sample files will only serve to
disrupt and confuse that process. Having said that, the sample files
are useful, and we will mention them throughout this book, since
they are excellent reference material.

Reboot the system.

Once the boot is complete, log back in as the astmin user, and temporarily set SELi‐
nux to Permissive (it will revert to Enforcing after each boot, so until we’ve sorted
out the SELinux portion of the install, this has to happen on every boot):

$ sudo setenforce Permissive

$ sudo sestatus

This should show Current mode: permissive

Verify that Asterisk is running with the following command:
$ ps -ef | grep asterisk

You want to see the /user/sbin/asterisk daemon running (currently as user root,
but we’ll fix that shortly).

Asterisk is now installed and is running; however, there are a few configuration set‐
tings we’ll need to make before the system is in any way useful.

Asterisk Installation | 37

Initial Configuration
Asterisk stores its configuration files in the /etc/asterisk folder by default. The Aster‐
isk process itself doesn’t need any configuration files in order to run; however, it will
not be usable yet, since none of the features it provides have been specified. We’re
going to handle a few of the initial configuration tasks now.

Asterisk configuration files use the semicolon (;) character for
comments, primarily because the hash character (#) is a valid char‐
acter on a telephone number pad.

The modules.conf file gives you fine-grained control over what modules Asterisk will
(and will not) load. It’s usually not necessary to explicitly define each module in this
file, but you could if you wanted to. We’re going to create a very simple file like this:

$ sudo chown asterisk:asterisk /etc/asterisk ; sudo chmod 664 /etc/asterisk

$ sudo -u asterisk vim /etc/asterisk/modules.conf

[modules]
autoload=yes
preload=res_odbc.so
preload=res_config_odbc.so

We’re using ODBC to load many of the configurations of other modules, and we need
this connector available before Asterisk attempts to load anything else, so we’ll pre-
load it.

Next up, we’re going to tweak the logger.conf file just a bit from the defaults.
$ sudo -u asterisk vim /etc/asterisk/logger.conf

[general]
exec_after_rotate=gzip -9 ${filename}.2;
[logfiles]
;debug => debug
;security => security
console => notice,warning,error,verbose
;console => notice,warning,error,debug
messages => notice,warning,error
full => notice,warning,error,debug,verbose,dtmf,fax
;full-json => [json]debug,verbose,notice,warning,error,dtmf,fax
;syslog keyword : This special keyword logs to syslog facility
;syslog.local0 => notice,warning,error

You will notice that many lines are commented out. They’re there as a reference,
because you’ll find when debugging your system you may want to frequently tweak
this file. We’ve found it’s easier to have a few handy lines prepared and commented
out, rather than having to look up the syntax each time.

38 | Chapter 3: Installing Asterisk

The next file, asterisk.conf, defines various folders needed for normal operation, as
well as parameters needed to run as the asterisk user:

$ sudo -u asterisk vim /etc/asterisk/asterisk.conf

[directories](!)
astetcdir => /etc/asterisk
astmoddir => /usr/lib/asterisk/modules
astvarlibdir => /var/lib/asterisk
astdbdir => /var/lib/asterisk
astkeydir => /var/lib/asterisk
astdatadir => /var/lib/asterisk
astagidir => /var/lib/asterisk/agi-bin
astspooldir => /var/spool/asterisk
[options]
astrundir => /var/run/asterisk
astlogdir => /var/log/asterisk
astsbindir => /usr/sbin
runuser = asterisk ; The user to run as. The default is root.
rungroup = asterisk ; The group to run as. The default is root

We’ll configure more files later on, but these are all we need for the time being.

Let’s update the ownership of the files so the asterisk user has proper access to
them.

$ sudo chown -R asterisk:asterisk {/etc,/var/lib,/var/spool,/var/log,/var/run}/asterisk

We also may need to add a rule to the /etc/tmpfiles.d folder, to allow Asterisk to create
a socket at runtime.

$ sudo vim /etc/tmpfiles.d/asterisk.conf

d /var/run/asterisk 0775 asterisk asterisk

(See man tmpfiles.d for more information.)

Next up, we’re going to initialize the database with the tables Asterisk needs for
ODBC-based configuration.

The Asterisk source files include a contribution that the Digium folks maintain as
part of Asterisk, in order to version-control the database tables needed. This greatly
simplifies keeping the database correct through the upgrade process.

Navigate to the relevant directory and make a copy of the configuration file.
$ cd ~/src/asterisk-16.<TAB>/contrib/ast-db-manage

$ cp config.ini.sample config.ini

Now, we’re going to open the file and give it the credentials for our database (which
are defined in the Ansible playbook named starfish.yml, under the variable cur
rent_mysql_asterisk_password, which we used at the beginning of this chapter):

$ vim config.ini

Find the lines that look similar to this:

Asterisk Installation | 39

#sqlalchemy.url = postgresql://user:pass@localhost/asterisk
sqlalchemy.url = mysql://user:pass@localhost/asterisk

Logging configuration
[loggers]
keys = root,sqlalchemy,alembic

Make a copy of it, comment it out, and edit it with the correct credentials:
#sqlalchemy.url = postgresql://user:pass@localhost/asterisk
#sqlalchemy.url = mysql://user:pass@localhost/asterisk
sqlalchemy.url = mysql://asterisk:YouNeedAReallyGoodPasswordHereToo@localhost/asterisk

Logging configuration
[loggers]
keys = root,sqlalchemy,alembic

Now, with that very simple bit of configuration, we can use Alembic to automagically
configure the database perfectly for Asterisk (this used to be somewhat painful to do
in past versions of Asterisk):

$ alembic -c ./config.ini upgrade head

Alembic is not used by Asterisk, so the configuration you’ve just
performed does not allow Asterisk to use the database. All it does is
run a script that creates the schema and tables Asterisk will use
(you could do this manually as well, but trust us, you want Alembic
to handle this). It’s part of the install/upgrade process. It’s especially
useful if you have live tables, with real data in them, and want to be
able to upgrade and retain the relevant configuration.

Log into the database now, and review all the tables that have been created:
$ mysql -u asterisk -p

mysql> use asterisk;

mysql> show tables;

You should see a list similar to this:
| alembic_version_config |
| extensions |
| iaxfriends |
| meetme |
| musiconhold |
| ps_aors |
| ps_asterisk_publications |
| ps_auths |
| ps_contacts |
| ps_domain_aliases |
| ps_endpoint_id_ips |
| ps_endpoints |
| ps_globals |
| ps_inbound_publications |
| ps_outbound_publishes |

40 | Chapter 3: Installing Asterisk

| ps_registrations |
| ps_resource_list |
| ps_subscription_persistence |
| ps_systems |
| ps_transports |
| queue_members |
| queue_rules |
| queues |
| sippeers |
| voicemail |

We’re not going to configure anything in the database as of yet. We’ve got some more
base configuration to do first.

Exit the database CLI.

Now that we’ve got the database structure to handle Asterisk config, we’re going to
tell Asterisk how to connect to the database.

$ sudo -u asterisk vim /etc/asterisk/res_odbc.conf

Once again, you’ll need the credentials you defined in your Ansible playbook.
[asterisk]
enabled => yes
dsn => asterisk
username => asterisk
password => YouNeedAReallyGoodPasswordHereToo
pre-connect => yes

SELinux Tweaks
We’re going to install some SELinux tools, and make a few changes to the SELinux
configuration so that the system will boot properly.

A common approach is to simply edit /etc/selinux/config, and set
enforcing=disabled. We do not recommend this, but doing so
completely disables SELinux and renders the following steps
unnecessary.

$ sudo dnf -y install setools setroubleshoot setroubleshoot-server

$ sudo vim /etc/selinux/config

You’re going to change the line SELINUX=enforcing to SELINUX=permissive. This
will ensure the logfiles show potential SELinux errors, without actually blocking the
relevant processes.

Next, we’re going to give Asterisk ownership of the /etc/odbc.ini file.
$ sudo chown asterisk:asterisk /etc/odbc.ini

$ sudo semanage fcontext -a -t asterisk_etc_t /etc/odbc.ini

Asterisk Installation | 41

$ sudo restorecon -v /etc/odbc.ini

$ sudo ls -Z /etc/odbc.ini

If all is well, you should see now that the file context for this file has been set to aster
isk_etc_t:

-rw-r--r--. asterisk asterisk system_u:object_r:asterisk_etc_t:s0 /etc/odbc.ini

There are a few more SELinux errors we’ve seen here during the writing of the book.
They may have been corrected by the time you read this, but there should be no harm
in running them:

$ sudo /sbin/restorecon -vr /var/lib/asterisk/*

$ sudo /sbin/restorecon -vr /etc/asterisk*

Reboot the system, and we’re going to check the log for any nasty SELinux errors
before we set it to enforcing.

$ sudo grep -i sealert /var/log/messages

There may be a few messages in there complaining about things Asterisk doesn’t need
(for example, a hidden file named .odbc.ini), but so long as it’s not full of errors about
all sorts of important Asterisk components, you should be good to go. One last thing
you have to change is an SELinux Boolean to allow Asterisk to create a TTY.

$ sudo setsebool -P daemons_use_tty 1

Edit the /etc/selinux/config file again, this time setting SELINUX=enforcing. Save and
reboot once more.

Verify that Asterisk is running (as user asterisk).
$ ps -ef | grep asterisk

asterisk 3992 3985 0 16:38 ? 00:00:01 /usr/sbin/asterisk -f -vvvg -c

OK, we’re nearly done with the installation now.

Firewall Tweaks
We’ll make a couple of firewall tweaks to prepare our system for SIP (and SIP Secure).

$ sudo firewall-cmd --zone=public --add-service=sip --permanent

$ sudo firewall-cmd --zone=public --add-service=sips --permanent

Final Tweaks
Your Asterisk system is ready to roll.

Let’s put some initial data into the configuration files, so that in the next chapter we
can begin to work with our new Asterisk system.

42 | Chapter 3: Installing Asterisk

Since we’re going to use the PJSIP channel for all of our calling, we’re going to tell
Asterisk to look for PJSIP configuration in the database:

$ sudo -u asterisk vim /etc/asterisk/sorcery.conf

[res_pjsip] ; Realtime PJSIP configuration wizard
; eventually more modules will use sorcery to connect to the
; database, but currently only PJSIP uses this
endpoint=realtime,ps_endpoints
auth=realtime,ps_auths
aor=realtime,ps_aors
domain_alias=realtime,ps_domain_aliases
contact=realtime,ps_contacts

[res_pjsip_endpoint_identifier_ip]
identify=realtime,ps_endpoint_id_ips

$ sudo -u asterisk vim /etc/asterisk/extconfig.conf

[settings] ; older mechanism for connecting all other modules to the database
ps_endpoints => odbc,asterisk
ps_auths => odbc,asterisk
ps_aors => odbc,asterisk
ps_domain_aliases => odbc,asterisk
ps_endpoint_id_ips => odbc,asterisk
ps_contacts => odbc,asterisk

$ sudo -u asterisk vim /etc/asterisk/modules.conf

[modules]
autoload=yes
preload=res_odbc.so
preload=res_config_odbc.so
noload=chan_sip.so ; deprecated SIP module from days gone by

We now have to place one bit of config into the pjsip.conf file, which defines the trans‐
port mechanism.

$ sudo -u asterisk vim /etc/asterisk/pjsip.conf

[transport-udp]
type=transport
protocol=udp
bind=0.0.0.0

Finally, let’s log into the database, and define some sample configurations for PJSIP:
$ mysql -D asterisk -u asterisk -p

mysql>

insert into asterisk.ps_aors (id, max_contacts) values ('0000f30A0A01', 1);
insert into asterisk.ps_aors (id, max_contacts) values ('0000f30B0B02', 1);
insert
 into asterisk.ps_auths
 (id, auth_type, password, username)
 values
 ('0000f30A0A01', 'userpass', 'not very secure', '0000f30A0A01');
insert

Asterisk Installation | 43

 into asterisk.ps_auths
 (id, auth_type, password, username)
 values
 ('0000f30B0B02', 'userpass', 'hardly to be trusted', '0000f30B0B02');
insert
 into asterisk.ps_endpoints
 (id, transport, aors, auth, context, disallow, allow, direct_media)
 values
 ('0000f30A0A01', 'transport-udp', '0000f30A0A01', '0000f30A0A01',
 'sets', 'all', 'ulaw', 'no');
insert
 into asterisk.ps_endpoints
 (id, transport, aors, auth, context, disallow, allow, direct_media)
 values
 ('0000f30B0B02', 'transport-udp', '0000f30B0B02', '0000f30B0B02',
 'sets', 'all', 'ulaw', 'no');
exit

Let’s reboot, and then we’ll log into our new Asterisk system and have a look at what
we’ve created.

Validating Your New Asterisk System
We don’t need to dive too deeply into the system at this point, since all the chapters
that follow will be doing exactly that.

So all we need to do is verify that we can log into the system and that the PJSIP end‐
points we’ve created are there.

$ sudo asterisk -rvvvv

*CLI> pjsip show endpoints

You should see the two endpoints we created listed as follows:
 Endpoint: <Endpoint/CID.....................................> <State.....> <Channels.>
 I/OAuth: <AuthId/UserName...>
 Aor: <Aor..> <MaxContact>
 Contact: <Aor/ContactUri..........................> <Hash....> <Status> <RTT(ms)..>
 Transport: <TransportId........> <Type> <cos> <tos> <BindAddress..................>
 Identify: <Identify/Endpoint...>
 Match: <criteria.........................>
 Channel: <ChannelId......................................> <State.....> <Time.....>
 Exten: <DialedExten...........> CLCID: <ConnectedLineCID.......>
==
 Endpoint: 0000f30A0A01 Not in use 0 of inf
 InAuth: 1/0000f30A0A01
 Transport: transport-udp udp 0 0 0.0.0.0:5060

 Endpoint: 0000f30B0B02 Unavailable 0 of inf
 InAuth: 2/0000f30B0B02
 Transport: transport-udp udp 0 0 0.0.0.0:5060
Objects found: 2

44 | Chapter 3: Installing Asterisk

If you don’t see the two endpoints listed, you’ve got a configuration issue. You’re
going to have to work backward to ensure you don’t have any errors that prevent
Asterisk from connecting to the database and instantiating these two endpoints.

Common Installation Errors
The following conditions (in no particular order) cause the majority of installation
errors:

Syntax errors
In some cases, substituting a tab for a space can be enough to break something.
UnixODBC, for example, has proven to be sensitive to missing spaces between
key = value definitions. The best advice we can give here is to use copy/paste
whenever possible, as opposed to manual input.

Permissions problems
These can be annoying to resolve, but error messages will generally provide the
clues you need. The /var/log/messages file is often a gold mine for useful clues.

Missing steps
A missed step might not have any noticeable effects until many steps later.
Double-check everything, and verify functionality before moving on.

Credentials problems
Always verify that the users and passwords you create work manually, before
using them in a configuration file.

It’s not possible nor necessary to dig into every warning and error message you might
see, but if we’ve provided a test to run, and it doesn’t produce anything like we said it
should, you should probably work through that step again until you’ve figured out
what’s going on.

Some Final Configuration Notes
Once installed, Asterisk will have created an environment for itself in your Linux
machine. The following sections have some useful tidbits of information about how
you can interact with your new Asterisk installation.

Sample Configuration Files for Future Reference
Even though we warned you not to run the sudo make samples command during the
installation (because that will fill your /etc/asterisk directory with a bunch of stuff you
don’t want), the sample files are nevertheless a fantastic reference. In your Asterisk
source directory, you will find the following two directories:

Common Installation Errors | 45

~/src/asterisk-16.<TAB>/configs/basic-pbx
~/src/asterisk-16.<TAB>/configs/samples

The files in those folders are worth reading through (especially for any module you’re
working with and want to research how to do something).

Give them a read when you have a chance.

Running make samples on a system that already has configuration
files will overwrite the existing files.

The Asterisk Shell Command
Asterisk can be run either as a daemon or as an application. In general, you will want
to run it as an application when you are building, testing, and troubleshooting, and as
a daemon when you put it into production.

The command to start Asterisk is the same regardless of whether you’re running it as
a daemon or an application:

asterisk

However, without any arguments, this command will assume certain defaults and
start Asterisk as a background application. In other words, you never want to run the
command asterisk on its own, but rather will want to pass some options to it to bet‐
ter define the behavior you are looking for. The following list provides some examples
of common usages:

-h

This command displays a helpful list of the options you can use. For a complete
list of all the options and their descriptions, run the command man asterisk.

-c

This option starts Asterisk as an application (in the foreground). This means that
Asterisk is tied to your user session. In other words, if you close your user session
by logging out or losing the connection, Asterisk dies. This is the option you will
typically use when building, testing, and debugging, but you would not want to
use it in production. If you started Asterisk in this manner, type core stop now
at the CLI prompt to stop Asterisk and exit.

-v, -vv, -vvv, -vvvv, etc.
This option can be used with other options (e.g., -cvvv) in order to increase the
verbosity of the console output. It does exactly the same thing as the CLI com‐
mand core set verbose n where n is any integer between 0 and 5 (any integer
greater than 5 will work, but will not provide any more verbosity). Sometimes it’s

46 | Chapter 3: Installing Asterisk

useful to not set the verbosity at all. For example, if you are looking to see only
startup errors, notices, and warnings, leaving verbosity off will prevent all the
other startup messages from being displayed.

-d, -dd, -ddd, -dddd, etc.
This option can be used in the same way as -v, but instead of normal output, this
will specify the level of debug output (which is primarily useful for developers
who wish to troubleshoot problems with the code). You will also need to enable
output of debugging information in the logger.conf file (which we will cover in
more detail in Chapter 21).

-r

This command is essential if you want to connect to the CLI of an Asterisk pro‐
cess running as a daemon. You will probably use this option more than any other
for Asterisk systems that are in production. This option will only work if you
have a daemonized instance of Asterisk already running. To exit the CLI when
this option has been used, type exit.

-T

This option will add a timestamp to CLI output.

-x

This command allows you to pass a string to Asterisk that will be executed as if it
had been typed at the CLI. As an example, to get a quick listing of all the chan‐
nels in use without having to start the Asterisk console, simply type asterisk
-rx 'core show channels' from the shell, and you’ll get the output you are
looking for.

-g

This option instructs Asterisk to dump a core file if it crashes.

We recommend you try out a few combinations of these commands to see what they
do.

safe_asterisk
When you install Asterisk using the make config directive, it will create a script
called safe_asterisk, which is run during the init process of Linux each time you
boot.

The safe_asterisk script provides the following benefits:

• Restarts Asterisk automatically after a crash
• Can be configured to email the administrator if a crash has occurred
• Defines where crash files are stored (/tmp by default)

Some Final Configuration Notes | 47

• Executes a script if a crash has occurred

You don’t need to know too much about this script, other than to understand that it
should normally be running. In most environments this script works fine in its
default format.

Conclusion
In this chapter we’ve provided a curated example of how an Asterisk installation
should go. We’ve chosen the Linux distribution and MySQL server for you for the
sake of brevity, but noted that Asterisk is in fact quite flexible in such matters. We
now have a solid foundation on which to build our Asterisk system. In the following
chapters we will explore how to connect devices to our Asterisk system in order to
start placing calls internally, and work toward increasingly complex concepts in later
chapters (such as video conferencing and WebRTC).

48 | Chapter 3: Installing Asterisk

CHAPTER 4

Certificates for Endpoint Security

We only need to be lucky once. You need to be lucky every time.
—The IRA to Margaret Thatcher, after a failed assassination attempt

If you really want to do something, you’ll find a way. If you don’t, you’ll find an excuse.
—Jim Rohn

The Inconvenience of Security
VoIP security can be regarded as two separate (but interconnected) challenges:

• Securing a system against toll fraud (which is generally the goal of SIP-based
intrusion attempts)

• Securing a system against call interception (which relates to privacy, as well as
improving toll fraud defenses)

There are of course many other aspects to the security of your system, but most of
those are general security concepts, not specific to VoIP.

In this chapter we will focus on an area of security that is too often overlooked,
namely the generation and application of certificates and keys in order to secure com‐
munication between endpoints and your system. In SIP communications, encryption
is optional (and, unfortunately, not used most of the time). In WebRTC, it is required.

This chapter should by no means be considered the final word on securing your
Asterisk system; there will be more covered in Chapter 22. We do hope, however, that
it will provide you with a solid foundation on which to build a secure solution.

49

Securing SIP
If you build any sort of server that is exposed to the internet, and wait for a few short
hours after powering it up, you will notice that the system will have already attracted
probes attempting to determine if it has any vulnerable SIP services. You will then
notice, a short while later, an increasing amount of attacks on the server attempting to
compromise account security. Congratulations, your server has automatically been
added to lists of SIP servers shared by criminals for the purpose of fraud. If one of
these intrusions succeeds, the compromised platform will likely become part of an
organized crime network, with you paying the bill for untraceable calls to various
expensive destinations.

We’re not playing around here; do not take your SIP security lightly
or you are likely to find yourself the victim of a very expensive
fraud attack.

Subscriber Names
The subscriber portion of the SIP credentials (the userinfo part of the URI) is far too
often set to an extension number. This practice is fine for the purposes of addressing
calls, but is not at all recommended for the purposes of authenticating an endpoint.
The subscriber name of your endpoints should have no meaning outside of your
organization. A MAC address is perfect for this. Without an actual address to probe,
an attacker’s job just got a lot more difficult.

You will see many SIP-type PBXs (including many based on Asterisk, unfortunately)
that assign the extension number to the credentials of the phone. In this book, you
will see that the extension number is not part of the phone credentials. There are sev‐
eral benefits to this, but from the perspective of security, the benefit is that if an
attacker knows an extension, it does not provide any knowledge about how to
authenticate a call through the system.

So, you might have a user with the SIP address 100@shifteight.org, which your
Asterisk system will associate with the device at 0000f3101010@yourpbx.com. When a
call is directed to 100, it will ring 0000f3101010, but the caller never knows anything
about that endpoint.

You will see throughout this book that we will establish a relationship between an
extension (which we believe is something that should be associated with a user or ser‐
vice) with a device identifier (which could be a SIP device or a phone number), and
that a simple table can be used to tie them together (and subsequently increase both
security and flexibility).

50 | Chapter 4: Certificates for Endpoint Security

Secure SIP Signaling
By default, SIP messaging is passed in the clear, with no effective security. A man-in-
the-middle attack is capable of obtaining all sorts of information about your calls.
Transport layer security (TLS) is used to minimize this risk.

We’ll talk more about how to configure devices to use TLS in the next chapter. All we
need to do here is create the certificates.

There are three common ways to generate certificates. We’ll provide examples for two
of them (self-signed and LetsEncrypt), but will leave the exercise of obtaining for‐
mally issued certificates to the reader.

Self-signed certificates
The primary advantage of a self-signed certificate is that you don’t have to validate it
with any external entity. The disadvantage is that because of this, external entities will
not trust it.

If you are securing SIP devices only for use within your controlled network environ‐
ment, a self-signed certificate may be all you need. This is not considered the best
approach, but in some cases it may be good enough, and it’s generally better than
nothing.

In this world full of automated crime, there is much to learn about privacy and secu‐
rity, and the cryptography necessary to both. However, this is a book about Asterisk,
so what we are going to do is provide a template for generating the required compo‐
nents, and it’ll be up to you to research further.

The openssl toolkit provides a tool that’ll get the job done for us. We’ll run it as fol‐
lows:

$ sudo su asterisk -

$ mkdir /home/asterisk/certs

$ openssl req -x509 -nodes -newkey rsa:2048 -days 3650 \
-keyout /home/asterisk/certs/self-signed.key \
-out /home/asterisk/certs/self-signed.crt

You will be asked to provide some information, and then your key and cert will be
written to the /home/asterisk/certs folder.

You can add the following to the command to bypass the questions (change the infor‐
mation as appropriate to your situation):

-subj "/C=CA/ST=Ontario/L=Toronto/O=ShiftEight/CN=shifteight.org"

The full command should then look something like this:
$ openssl req -x509 -nodes -newkey rsa:2048 -days 3650 \
> -keyout /home/asterisk/certs/self-signed.key \

Securing SIP | 51

> -out /home/asterisk/certs/self-signed.crt \
> -subj "/C=CA/ST=Ontario/L=Toronto/O=ShiftEight/CN=shifteight.org"

This will generate a self-signed certificate and a private key, and save them both to /
home/asterisk/certs/. We can use them later when we are configuring our SIP end‐
points.

It’s probably a good idea to chmod your certs so only the relevant user/group can
access them:

$ chmod 640 /home/asterisk/certs/*

Exit the asterisk user account.
$ exit

$ who am i # You should be astmin again.

There is an alternative to using self-signed certificates: if you have a domain name
assigned to your server that can be reached from the public internet, you can generate
a validated certificate using LetsEncrypt. Read on.

LetsEncrypt certificates
If you are interested in secure communications across the public internet (which you
are, trust us), then having domain certificates provided by a certificate authority (CA)
is useful.

The LetsEncrypt project provides free domain validation (DV) digital certificates.
The free tool provided by the Let’s Encrypt Foundation called certbot allows you to
automate the obtaining and maintenance of trusted certificates.

At a minimum, your server will need a fully qualified domain name (FQDN) that
maps to an external IP address that arrives at the machine. Any firewall in between
will need to pass traffic for that hostname to the system you are obtaining the certifi‐
cate for. If you cannot do this for whatever reason, the obtaining of a trusted certifi‐
cate becomes more complex (and beyond the scope of this book).

certbot can be installed with yum as follows:
$ sudo yum -y install certbot

Once it’s installed, you simply need to run the following:
$ sudo certbot certonly

How would you like to authenticate with the ACME CA?

1: Spin up a temporary webserver (standalone)
2: Place files in webroot directory (webroot)

Select the appropriate number [1-2] then [enter] (press 'c' to cancel): 1

52 | Chapter 4: Certificates for Endpoint Security

If you’ve got a web server running, or are confident with option 2, that is OK, but
these steps assume you don’t have a web server running, and thus will need/want to
use the built-in temporary web server that certbot will use to authenticate. This
server is used to prove that you control the domain you’re requesting a certificate for.

Answer the next questions as appropriate, and then at this point you will insert the
hostname that you assigned to the IP address of your server:

Please enter in your domain name(s) (comma and/or space separated) (Enter 'c'
to cancel): asteriskbook.shifteight.org

(replace asteriskbook.shifteight.org with the domain name you assigned).

certbot will perform its magic, and if all went well you should get some sort of mes‐
sage similar to the following:

IMPORTANT NOTES:
 - Congratulations! Your certificate and chain have been saved at:
 /etc/letsencrypt/live/asteriskbook.shifteight.org/fullchain.pem
 Your key file has been saved at:
 /etc/letsencrypt/live/asteriskbook.shifteight.org/privkey.pem
 Your cert will expire on 2018-07-23. To obtain a new or tweaked
 version of this certificate in the future, simply run certbot
 again. To non-interactively renew *all* of your certificates, run
 "certbot renew"
 - Your account credentials have been saved in your Certbot
 configuration directory at /etc/letsencrypt. You should make a
 secure backup of this folder now. This configuration directory will
 also contain certificates and private keys obtained by Certbot so
 making regular backups of this folder is ideal.
 - If you like Certbot, please consider supporting our work by:
 Donating to ISRG / Let's Encrypt: https://letsencrypt.org/donate
 Donating to EFF: https://eff.org/donate-le

Don’t forget to donate to the Internet Security Research Group (ISRG) or the Elec‐
tronic Frontier Foundation (EFF); they do important work and deserve our support.

You now have the certificates you’ll need for enabling various TLS services on your
system. We’ll put them to use in the next chapter.

Not too difficult, eh?

Bear in mind that most certificates you get from an outside source
will have an expiration date. In the case of LetsEncrypt, the current
validity is three months. If you are going to put certificates into
production, it is up to you to understand how to manage them (for
example, automating renewal, which the LetsEncrypt folks have
done a good job of simplifying).

Securing SIP | 53

Purchasing certificates from a formal certificate authority
If LetsEncrypt certificates do not provide the level of validation you require—for
example, if you need organization validation (OV) or extended validation (EV)—you
will need to obtain the services of a certificate authority that provides such things.
These matters are beyond the scope of this book.

If you have worked through the examples for the self-signed and LetsEncrypt sec‐
tions, you’ll have at least a basic understanding of some of the process of obtaining
certificates from a certificate authority, as many of the steps will be similar.

Securing Media
The certificates we’ve obtained can be used to secure both our signaling, and the pay‐
load itself (i.e., what’s being spoken, or the video being transmitted). Note that the
mechanisms to secure signaling are an SIP protocol thing, and the mechanisms to
secure the media are an RTP protocol thing. Keep in mind that encrypting your SIP
signaling does not mean you’re automatically also encrypting your media (RTP)
traffic.

Encrypted RTP
Encrypting the Real Time Protocol will achieve the effect of securing our media
streams.

There are two mechanisms commonly used to provide media encryption: SDES and
DTLS-SRTP. SDES is a media encryption mechanism that trusts that the signaling is
secure. In other words, if you are using TLS to secure your SIP signaling, then SDES
is likely how your media encryption is being handled.

DTLS-SRTP, on the other hand, does not trust the signaling. It is important because
the WebRTC standard requires that media be encrypted this way.

The certificates we’ve generated here should work in both scenarios. In upcoming
chapters, when we are configuring SIP or WebRTC endpoints, we will cover in more
detail how to use the certificates. For now, it’s enough that we’ve generated the certifi‐
cates and have them available for use.

Conclusion
Make no mistake: security makes everything more complicated. In the good old days,
you could fire up a SIP connection with a half-dozen lines of config and call it a day.
That doesn’t fly anymore, and while that type of configuration will still work (simply
use UDP instead of TLS, and all you need is a password), we decided that starting
with this edition, all configuration examples will choose more secure options

54 | Chapter 4: Certificates for Endpoint Security

wherever possible. We’re not claiming to present the final word on VoIP security, but
we are going to deliver examples that pay more than lip service to the concept.

Next up, we’ll discuss how to configure endpoints on your Asterisk system (using the
keys and certificates we’ve just generated).

Conclusion | 55

CHAPTER 5

User Device Configuration

I don’t always know what I’m talking about, but I know I’m right.
—Muhammad Ali

It’s time to connect some SIP user devices to Asterisk. While we are going to focus on
the Asterisk end of things, keep in mind that defining a channel in Asterisk for the
device to connect through is only half of the configuration; you also need to config‐
ure the other end—the device itself (usually a phone)—so it knows where to send its
calls.

An Important Note About SIP Endpoints
Configuring the other end of the SIP relationship is of course necessary, but is not
part of Asterisk configuration, and ultimately is out of the scope of this book. There
must be thousands of different types of SIP endpoints in the market, including desk
phones, softphones, PBXs, proxy servers, conferencing servers, and all manner of
other products. Each manufacturer has its own tools to allow you to configure its
products (and some of them require extensive knowledge). SIP is a complex protocol.
Having said that, most SIP desk telephones have some sort of web interface, and most
softphones have a configuration menu built into their GUI.

At its simplest, configuring a SIP device involves providing three parameters:

• Address of the server it’s going to connect through (your Asterisk server)
• Username (which could also be called the subscriber name, extension, or some‐

thing similar)
• Password

57

While each type of endpoint is going to be different, they’ll all follow a similar con‐
vention, and while there are potentially hundreds of configuration options, it’s quite
common to only configure those three things.

In other words, there are two separate tasks needed to configure a device to work
with Asterisk:

• Telling Asterisk about the device (configuring the channel credentials in
Asterisk)

• Telling the device about Asterisk (accessing the configuration tools for the device,
and telling it where its server is and how to connect)

Some Thoughts About SIP
SIP is a peer-to-peer protocol, and while it is common to have a setup where end‐
points (telephones) behave as clients, and some sort of gateway (such as Asterisk)
provides routing and features, the protocol itself works in terms of peer-to-peer rela‐
tionships (Figure 5-1). Two SIP endpoints can talk directly to each other (i.e., a pair of
SIP telephones should in theory be able to create a sort of “intercom” directly between
each other without a PBX in the middle).

That being said, by far most SIP transactions happen through a server of some sort,
which typically remains in the call path and bridges all connections (also not required
by the protocol). When a SIP call is made from a telephone to another telephone
through Asterisk, there are actually two calls happening: a call from the originating
set to Asterisk, and another separate call from Asterisk to the destination set (this sec‐
ond leg of the call might not even use SIP). Asterisk bridges the two together inter‐
nally. Similarly, if you are making an “external” call, Asterisk will accept the call from
your set, and then send a call out another channel that would be considered a trunk,
and again would bridge those channels together. At the protocol level, a set-to-set and
set-to-trunk call look very similar.

Using a SIP phone with Asterisk means that you will want to configure the SIP tele‐
phone to send all its calls to Asterisk, even though the device is quite capable of
directly connecting to another SIP endpoint without the Asterisk server. The phone
will treat Asterisk as its registrar and proxy server (even though Asterisk is in fact a
Back to Back User Agent, or B2BUA) and will look to Asterisk for routing decisions
for all calls.

58 | Chapter 5: User Device Configuration

Figure 5-1. Asterisk is a gateway

Some Thoughts About Set Provisioning
While most devices will have a web-based interface for defining parameters, if you’re
putting more than one or two phones into production you should look into using a
server-based provisioning process of some sort. In this way, sets will connect to the
server, identify and authenticate, and download customized files that contain their
parameters (it is very common to use the MAC address of the telephone as an identi‐
fier for naming each unique config file). Configuration files for various products are
commonly served up by an HTTPS or SFTP server, and will be formatted as XML or
some form of key/value pairs.

Unfortunately, the exact download process, protocol, and syntax of these files will dif‐
fer from manufacturer to manufacturer. It’s not difficult to learn if you’re familiar
with such concepts, but to attempt to cover all of them (and keep ever-changing pro‐
cesses up to date) would be impossible. Manufacturers usually offer freely download‐
able and detailed configuration guides for their telephones, so with a bit of research
and familiarity with configuring file services on Linux, you will find a wealth of infor‐
mation is available online. In our experience the documentation provided by the
manufacturers is generally excellent. It will represent the most up-to-date information
on provisioning their devices.

User Device Configuration | 59

When you are troubleshooting set provisioning, always test the download using a
computer first. If you can’t download the files on your computer, your sets probably
won’t be able to download them either.

We will say one final word about this: make sure whatever process you use includes
encryption of the config files, so that if the files are stolen, only the intended recipient
is capable of decrypting them. Most manufacturers have done a good job of making
this a fairly simple thing to achieve. Don’t send unencrypted configuration files across
the public internet.

In this chapter we focus on the configuration of sets from the perspective of Asterisk,
so we’re not going to say too much about bootstrapping phones; you are going to
need to do your own research in that regard. We’ll be using a couple of softphones in
our lab, and you can too. Our examples will attempt to provide enough information
that you’ll be able to configure whatever SIP devices you are using. If we can get you
through registering a couple of softphones on your lab system, we’ll have set you on
the path toward more complex scenarios (which will typically require some research
and prototyping on your part).

Telephone Naming Concepts
Before we get started with configuring Asterisk for our telephones, we are going to
recommend some best practices regarding telephone naming.

First up, you should not assign your telephones an extension number; instead, design
the system so that the extension number is assigned to the user, and then assign tele‐
phones or other resources to that user. The telephones themselves should be named
in reference to something unique to them, such as a MAC address or computer name.
In a flexible, next-generation PBX, you want to abstract the concepts of users, exten‐
sion numbers, and telephones, so as to have the most flexibility and ease of
management.

In Asterisk, there is really no concept of a user at all. Extensions are triggers that ini‐
tiate a sequence of instructions. Yes, you might write a bit of dialplan specifying that
when extension number 100 is dialed, Asterisk will ring the phone on your desk.
However, extension 100 could just as easily access a company voicemail box, or per‐
haps play back a prompt, join a conference room, or do any number of other things.
We can even write dialplan that specifies that extension 100 should ring the device on
your desk from Monday to Friday between 9 A.M. and 5 P.M., but ring a device on
someone else’s desk the rest of the time. Inversely, when a call is made from a device
during business hours, the caller ID could show a daytime number, and the rest of the
time could show an after-hours number (many reception desks become security
desks at night).

60 | Chapter 5: User Device Configuration

In Asterisk, extensions are not phones. Therefore, don’t give your telephones identifi‐
ers that are extensions.

Asterisk Extensions
The concept of an extension in Asterisk is crucial. In most PBXs, an extension is a
number that you dial to cause a phone or service to ring. In Asterisk, an extension is
the name of a grouping of instructions in the dialplan. Think of an Asterisk extension
as a script name, and you’re on the right track. Yes, an Asterisk extension could be a
number that rings a phone, but it could just as easily be a word (such as voicemail)
that provides a simple service of some sort, without ever sending the call out any
channel.

We’ll be going into Asterisk extensions in far more detail throughout this book, but
before we do that we want to get some phones set up.

The abstraction between the name of an extension and the telephone that extension
might ring is a powerful concept. An excellent example of this is a PBX feature com‐
monly known as hot-desking, which allows users to share a desk and/or move around
to different desks. Let’s say we have three sales agents who typically work outside of
the office, but spend a couple of days each month in the office to do paperwork. Since
they are unlikely to be on-site at the same time, instead of each agent having a sepa‐
rate telephone, they could share a single office phone (or on a larger scale, a dozen
folks could share a pool of, say, three phones). This scenario illustrates the conve‐
nience (and necessity) of allowing the system to separate the concept of a user and
extension from the physical phone.

The best way to name a physical desk phone (or any physical SIP endpoint) is using
the MAC address of the device, which is unique to the phone, follows it where it goes,
and doesn’t require configuration changes to the phone if the user changes. Some cor‐
porations have stickers they place on their equipment with a bar code and other
information that allows them to keep stock of provisioned equipment; these unique
codes would also be an acceptable choice to use for phone names, as they don’t pro‐
vide any logical relation to a particular person, but do provide specific information
about the devices themselves.

Softphones on laptops can also use a MAC address or serial number, but make sure
the set name includes a reference to the fact that it’s a softphone. [JIM_VANM_SOFT] is
a decent name, but [JIMS_PHONE] is not. If the softphone is running on a desk com‐
puter (i.e., it’s not going to move around with a user), then name it using the conven‐
tion you use for your computers ([DESK-5F23-SOFT] or [CUST_SRVC_001_SOFT] are
potentially good names).

Telephone Naming Concepts | 61

The choice is yours as to how you want to name your phones. Our goal is simply to
help you understand why the best practice is to abstract any concept of the telephone
being owned by a person. A phone is just a way to get audio to and from a human,
and signal back and forth, so it’s far better to make it possible to mix and match them
as users move around, and people come and go.

Throughout this book, you’ll see us using phone names that look like MAC addresses
(such as [0000F3000001] and [0000F3000002]), or generic desk names ([DESK-001-
SOFT], [DESK-002-SOFT]) to differentiate between devices. You will generally want to
use phone names that match the hardware you are using (or some other string that is
unique to the device you are registering).

As a final consideration, we should make it clear that what we are suggesting regard‐
ing device names is not a technical requirement. You are free to name your devices
anything you want, as long as they meet the requirements of Asterisk’s naming con‐
ventions for devices (stay with alphanumeric characters with no spaces and you’ll be
fine).

You’ll see plenty of Asterisk systems that tie the device name to the extension of the
user, but we’re not fans of this method.

Hardphones, Softphones, and ATAs
There are three types of endpoints you would typically provide your users to serve as
a telephone set. They are popularly referred to as hardphones (or desk phones), soft‐
phones, and Analog Terminal Adaptors (ATAs).

A hardphone is a physical device—an office telephone. It has a handset, numbered
buttons, a screen of some sort, and so on. It connects directly to the network and is
probably what people are referring to when they talk about a VoIP telephone (or a
SIP telephone). It’s normally going to sit on your desk, but it could be mounted on a
wall, in an elevator, at a side-table, or in a box by the side of the road.

A softphone is a software application that runs on a laptop, desktop, smartphone, or
other computing device. The audio must pass through the device’s sound system, so
you normally need a headset that will work well with telephony applications. Soft‐
phone applications have become popular with smartphones because they allow you to
connect to telephone networks other than just the cellular network (for example, you
can register as an extension on your corporate PBX). The interface of the softphone is
often styled to look like a physical telephone, but this is not necessary. WebRTC will
allow all sorts of additional capabilities in this area, as it essentially allows a softphone
to simply be part of a session within a browser. To the PBX, the softphone looks and
behaves exactly the same as a hardphone.

62 | Chapter 5: User Device Configuration

1 Or any other network, for that matter. ATAs could more formally be said to be analog-to-digital gateways,
where the nature of the digital protocol may vary (e.g., proprietary ATAs on traditional PBXs). Point being, an
ATA is not necessarily a SIP device.

An ATA is designed to allow traditional analog telephones (and other analog devices,
such as fax machines, cordless phones, paging amplifiers, and such) to connect to a
SIP network,1 and will typically be a sandwich-sized box that contains an RJ-11 con‐
nector for the phone (commonly referred to as an FXS port), an RJ-45 connector for
the network, and a power connector. Some ATAs may support more than one phone.
Other ATAs may have advanced features in them such as a firewall or an FXO port
(an analog port that can connect to a PSTN circuit). From the perspective of the PBX,
the ATA looks exactly like a SIP telephone.

Hardphones have the advantage that the handsets have good acoustic properties for
voice communications. Any decent-quality telephone is engineered to pick up the
frequencies of the human voice, filter out unwanted background noise, and normalize
the resulting waveform. People have been using telephones for as long as the tele‐
phone network has existed, and we tend to like what is familiar, so having a device
that communicates with Asterisk using a familiar interface will be attractive to many
users. Also, a hardphone does not require your computer to be running all the time.

Disadvantages to hardphones include the fact that they are not easily portable, and
they are expensive relative to the many quality softphones on the market today that
are available for free. Also, the extra clutter on your desk may not be desirable if you
have limited work space. If you move around a lot and are not generally at the same
location, a hardphone is not likely to suit your needs (although, one at each location
you regularly visit might be a valid solution).

Softphones solve the portability issue by being installed on a device that is likely
already moving with you, such as your laptop or smartphone. Also, their minimal
cost (typically free, or around $30 for a fully featured one) is attractive. Since many
softphones are free, it is likely that the first telephone set you connect to Asterisk will
be a softphone. Also, because softphones are just software, they are easy to install and
upgrade, and they commonly have other features that utilize other peripherals, like a
webcam for video calling, or perhaps an ability to load files from your desktop for
faxing. Another potentially huge advantage of a softphone is that it is often possible
to integrate them with other applications running on the device.

Some of the disadvantages of softphones are the not-always-on nature of the devices,
the necessity to put on a headset each time you take a call, and the fact that many PCs
will at random times during the day choose to do something other than what the user
wants them to do, which might cause the softphone to stop working while some back‐
ground task hogs the CPU. In a mobile device, the softphone can consume resources,
affecting battery life, performance, and operating expense.

Hardphones, Softphones, and ATAs | 63

2 An ATA is not the only way to connect analog phones. Hardware vendors such as Digium and Sangoma sell
cards that go in the Asterisk server and provide analog telephony ports. Larger installations can also use chan‐
nel banks or MSANs; however, this method of connecting legacy telecom circuits is a more advanced subject,
and not the focus of this book.

3 For a really awesome cordless analog phone, you want to check out the EnGenius DuraFon devices, which are
expensive, but impressive.

4 Our friend Brian Capouch has mashed together many entertaining demonstrations of how antique telephone
hardware can be made to work with Asterisk.

ATAs have the advantage of allowing you to connect analog devices to your SIP net‐
work,2 such as cordless phones (which are still superior in many cases to more
advanced types of wireless phones, and far less expensive3), paging amplifiers, ringers,
and antique telephones.4 ATAs can also sometimes be used to connect to old wiring,
where a network connection might not function correctly, or to outbuildings (such as
a gatehouse), where a standard ethernet connection would never reach.

The main disadvantage of an ATA is that you will not get the same features through
an analog line as you would from a SIP telephone. This is technology that is over a
century old.

With Asterisk, we don’t necessarily need to make the choice between having a soft‐
phone, a hardphone, or an ATA; it’s entirely possible and quite common to have a
single extension number that rings multiple devices at the same time, such as a desk
phone, the softphone on a laptop, a cell phone, and perhaps a strobe light in the back
of the factory (where there is too much noise for a ringer to be heard).

More than any other endpoint, the softphone is set to evolve into something far more
encompassing than a simple telephone application. The emergence of WebRTC may
finally deliver that which has been predicted for many long years: the integration of
real-time voice into computing (specifically web-based) applications. There are of
course many ways to achieve this already, but WebRTC’s advantage is that it is an
open standard, built right into all browsers with no plug-ins required. The softphone
is dead; long live the softphone.

We still like a desk phone for regular telephone calls, though.

Configuring Asterisk
In this section we’ll cover how to configure PJSIP to handle various SIP endpoints.
This was traditionally done by editing files in the /etc/asterisk/ directory; however, we
have elected to demonstrate how this is done through a database, as it is a generally
superior method, especially as a system grows. If you are more comfortable with

64 | Chapter 5: User Device Configuration

5 Put simply, you would need to find the pjsip.conf.sample file, and use it as a template to create a pjsip.conf file
in your /etc/asterisk folder, and then edit that file in a manner similar to how we’re going to do things in the
database.

6 Or in the .conf file, if you choose to go that route.

using .conf files, you should find that fairly easy to do once you have the basics fig‐
ured out.5

Asterisk allows devices using many different protocols to speak to
it (and therefore to each other), but chan_pjsip is the only VoIP
module that is still actively maintained; the rest are legacy code.
You aren’t likely to have any use for other VoIP protocols (such as
IAX2, Skinny/SCCP, Unistim, H.323, and MGCP). Those protocols
have an historical significance, since it was in large part due to the
fact that Asterisk would talk to anything and everything that it had
such an impact on the telecom industry. Nowadays, however, SIP
has pretty nearly replaced everything, so those channel drivers are
now historical curiosities, and nothing more. If you are still interes‐
ted in one of those other protocols, focus on getting comfortable
working with SIP first, and recognize that you’re going to be pretty
much on your own.

The channel configuration tables in the database6 contain the configuration details
relevant to that channel driver, as well as the parameters and credentials specific to
the SIP devices and providers you wish to connect to Asterisk (incoming and outgo‐
ing). To put that more simply: all calls in and out of Asterisk must pass through a
channel.

Most parameters have defaults, which you will find documented in the sample files.
Start with reading the pjsip.conf.sample file found in your ~/src/asterisk.<TAB>/
configs/samples/ folder. It will provide plenty of information about defaults, as well as
information about other resources worth reading. We will not use the file for the
actual configuration (we are using the database instead); however, the file is an excel‐
lent reference, and you should keep it near at hand, as it will have the answers to
many questions you may have about parameters.

We are going to focus on getting a basic device going for you as simply as possible.
We have found that setting up channels is one of the more frustrating things new
Asterisk users experience, and we want to demonstrate that at its most basic level, it
does not need to be painful at all. Once you have succeeded here, you’ll always have a
known-good configuration to fall back on, as you move forward into more complex
scenarios.

Configuring Asterisk | 65

How Channel Configuration Works with the Dialplan
Channels are how Asterisk connects calls to everything outside of it, but it is the
dialplan that defines what happens to calls as they pass through the system. There‐
fore, channels and dialplan are inextricably linked. The dialplan is the heart of an
Asterisk system: it controls how call logic is applied to any connection, from any
channel, such as what happens when a device dials extension 101, or an incoming call
from an external provider is routed to a DID. The PJSIP channel configuration tables
in the database, plus the /etc/asterisk/extensions.conf file, will play a critical role in
most—if not all—calls routed through the system. Once you have your channels con‐
figured, you will find that most of your work will be in the dialplan. We will dive
deeply into this in upcoming chapters.

When a call comes into Asterisk, the identity of the incoming call is matched in the
channel configuration for the protocol in use (SIP connections are handled by the
PJSIP channel driver). The channel driver will handle authenticating the incoming
connection. The channel configuration also defines where that channel will enter the
dialplan.

Once Asterisk has determined how it will handle the channel (i.e., it’s authenticated
and the various parameters for the call have been established), it can pass call control
to the correct context in the dialplan. It is the context parameter in the ps_end
points table that tells the channel where the call will enter the dialplan (which con‐
tains all the information about how to handle and route the call).

In Figure 5-2, we see that the call flow through the configuration, for an internal call
(set-to-set), will look something like this:

1. User of set 0000f30A0A0101 dials 102.
2. Asterisk matches the incoming SIP request against an endpoint (and authenti‐

cates it).
3. The number dialed is matched to the [sets] context in the dialplan.
4. The Dial() application is used to send a call out a PJSIP channel, to the contact

associated with 0000f30B0B02.
5. The contact address is determined (typically based on registration if it’s a set, but

could be hardcoded as well if it is a trunk).
6. A SIP INVITE message is sent to the destination.

A key point to remember is that the channel configuration files control not only how
calls enter the system, but also how they leave the system. So, for example, if one set
calls another set, the channel configuration file is used not only to pass the call into
the dialplan, but also to direct the call out from the dialplan to the destination.

66 | Chapter 5: User Device Configuration

Figure 5-2. Relationship of pjsip.conf to extensions.conf

chan_pjsip
The PJSIP channel module is one of the newer modules in Asterisk. It replaced the
original chan_sip module.

The old SIP module, chan_sip, has been deprecated, so we will not
be documenting it in this book. If you are new to Asterisk, you
should stick to PJSIP, but it may be helpful to understand that
chan_sip was around for many years, and is still widely used on
old systems.

The PJSIP framework, as implemented in Asterisk, is composed of many compo‐
nents. If you check your database, you will find that there are over a dozen tables
relating to PJSIP (prefixed with ps_). Not all of them relate to set configuration,
though.

PJSIP is an open source, all-purpose multimedia communication library that provides
not only SIP signaling, but also the media features and NAT traversal functions that
are essential components of a SIP-based application. It is provided and supported by
Teluu Ltd., and the library is used in far more than just Asterisk. Softphones, propri‐
etary products, and other open source projects also make use of the framework. The
Asterisk community needed/wanted a new SIP channel driver, and rather than build‐
ing one from scratch, the developers decided to use the PJSIP library.

Configuring Asterisk | 67

The components listed in Table 5-1 will be used in your endpoint configurations.

Table 5-1. PJSIP components of Asterisk

Component Purpose
ps_aors The Address Of Record (AOR) table is used to define how Asterisk can contact an endpoint. When the set

attempts to register, Asterisk will consult the AOR in order to identify it.
ps_auths The Authentication section contains the credentials that endpoints will need to provide in order to authorize

communication with Asterisk.
ps_con

tacts

Typically created automatically as part of the registration process, it is here that Asterisk will store the
details of the endpoint determined during registration.

ps_end

points

The heart of the SIP configuration, it is here that each endpoint is defined. This is also where the
associations to the other PJSIP records are defined.

Adding an endpoint
During the installation, several example endpoints were created for you, in order to
simplify the process of providing you with a working system. If you want to add addi‐
tional endpoints, you simply need to define additional records in each of the ps_aors,
ps_auths, and ps_endpoints tables.

Let’s say we want to add a couple of softphones to our system, named SOFTPHONE_A
and SOFTPHONE_B.

First, into the ps_endpoints table, we’ll want to add the following:
$ mysql -D asterisk -u asterisk -p

Let’s review what we have there already (from the previous chapters):
mysql> select id,transport,aors,auth,context,disallow,allow from asterisk.ps_endpoints;
+--------------+---------------+--------------+--------------+----------+----------+-------+
| id | transport | aors | auth | context | disallow | allow |
+--------------+---------------+--------------+--------------+----------+----------+-------+
| 0000f30A0A01 | transport-udp | 0000f30A0A01 | 0000f30A0A01 | starfish | all | ulaw |
| 0000f30B0B02 | transport-udp | 0000f30B0B02 | 0000f30B0B02 | starfish | all | ulaw |
+--------------+---------------+--------------+--------------+----------+----------+-------+
2 rows in set (0.00 sec)

We’re going to insert a couple of extra records.
mysql> insert into asterisk.ps_endpoints
(id,transport,aors,auth,context,disallow,allow)
values
('SOFTPHONE_A','transport-tls','SOFTPHONE_A','SOFTPHONE_A','sets','all','ulaw'),
('SOFTPHONE_B','transport-tls','SOFTPHONE_B','SOFTPHONE_B','sets','all','ulaw');
Query OK, 2 rows affected (0.02 sec)

The ps_endpoints table should then look something like this:

68 | Chapter 5: User Device Configuration

7 Except, of course, that your passwords will be far better than the ones we’ve used here.

mysql> select id,transport,aors,auth,context,disallow,allow from ps_endpoints;
+--------------+---------------+--------------+--------------+---------+----------+-------+
| id | transport | aors | auth | context | disallow | allow |
+--------------+---------------+--------------+--------------+---------+----------+-------+
0000f30A0A01	transport-udp	0000f30A0A01	0000f30A0A01	sets	all	ulaw
0000f30B0B02	transport-udp	0000f30B0B02	0000f30B0B02	sets	all	ulaw
SOFTPHONE_A	transport-tls	SOFTPHONE_A	SOFTPHONE_A	sets	all	ulaw
SOFTPHONE_B	transport-tls	SOFTPHONE_B	SOFTPHONE_B	sets	all	ulaw
+--------------+---------------+--------------+--------------+---------+----------+-------+
4 rows in set (0.00 sec)

Then, we’ll need two related records in the ps_aors table:
mysql> insert into asterisk.ps_aors (id,max_contacts)
values ('SOFTPHONE_A',2),('SOFTPHONE_B',2);
Query OK, 2 rows affected (0.01 sec)

The ps_aors table should then return the following:
mysql> select id from asterisk.ps_aors;
+--------------+
| id |
+--------------+
| 0000f30A0A01 |
| 0000f30B0B02 |
| SOFTPHONE_A |
| SOFTPHONE_B |
+--------------+
4 rows in set (0.00 sec)

Finally, the ps_auths table will need records for each new device.
insert into asterisk.ps_auths (id,auth_type,password,username)
values ('SOFTPHONE_A','userpass','iwouldnotifiwereyou','SOFTPHONE_A'),
('SOFTPHONE_B','userpass','areyoueventrying','SOFTPHONE_B');

Query OK, 2 rows affected (0.00 sec)

And, if all went well, you will have the following authorization records:7

mysql> select id,auth_type,password,username
 -> from asterisk.ps_auths;
+--------------+-----------+----------------------+--------------+
| id | auth_type | password | username |
+--------------+-----------+----------------------+--------------+
0000f30A0A01	userpass	not very secure	0000f30A0A01
0000f30B0B02	userpass	hardly to be trusted	0000f30B0B02
SOFTPHONE_A	userpass	iwouldnotifiwereyou	SOFTPHONE_A
SOFTPHONE_B	userpass	areyoueventrying	SOFTPHONE_B
+--------------+-----------+----------------------+--------------+
4 rows in set (0.00 sec)

The new endpoints are now ready to have devices register to them. You can verify
that they exist with the following Asterisk CLI command:

Configuring Asterisk | 69

mysql> exit
$ sudo asterisk -rvvvvv
*CLI> pjsip show endpoints

The output should list your new endpoints:
 Endpoint: 0000f30A0A01 Unavailable 0 of inf
 InAuth: 0000f30A0A01/0000f30A0A01
 Aor: 0000f30A0A01 2
 Transport: transport-udp tls 0 0 0.0.0.0:5061

 Endpoint: 0000f30B0B02 Not in use 0 of inf
 InAuth: 0000f30B0B02/0000f30B0B02
 Aor: 0000f30B0B02 2
 Contact: 0000f30B0B02/sip:0000f30B0B02@172.29.1.110 7542ca7ce1 Unknown nan
 Transport: transport-udp udp 0 0 0.0.0.0:5060

 Endpoint: SOFTPHONE_A Unavailable 0 of inf
 InAuth: SOFTPHONE_A/SOFTPHONE_A
 Aor: SOFTPHONE_A 2

 Endpoint: SOFTPHONE_B Unavailable 0 of inf
 InAuth: SOFTPHONE_B/SOFTPHONE_B
 Aor: SOFTPHONE_B 2

Hang on a minute…

Do you notice that there’s no transport defined for your new endpoints? That’s
because we haven’t defined anything yet for TLS; we’ve just configured for bog-
standard UDP-style SIP.

Since we have those fancy keys we generated in the previous chapter, let’s implement
them now and see if we can fix this.

$ sudo vim /etc/asterisk/pjsip.conf

[transport-udp]
type=transport
protocol=udp
bind=0.0.0.0

[transport-tls]
type=transport
protocol=tls
bind=0.0.0.0
cert_file=/home/asterisk/certs/self-signed.crt #if you used certbot, the location
priv_key_file=/home/asterisk/certs/self-signed.key #of those keys goes here

Now, because we’re putting some files in a folder that wasn’t part of our SELinux con‐
fig, we have to fix that. What we want is to get SELinux to generate an error, so we’re
going to reload the res_pjsip.so module, even though it will fail to load the trans
port correctly:

*CLI> module reload res_pjsip.so

Now we should have the errors we want, so we’re going to search for them in the sys‐
tem log.

70 | Chapter 5: User Device Configuration

$ sudo grep -i sealert /var/log/messages |egrep "cert|crt"

You’ll see some messages that look similar to this (we’ve trimmed them for brevity):
SELinux is preventing ... on the file /home/asterisk/certs/self-signed.crt.
 For complete SELinux messages run: sealert -l 1dbe51e2-7321-41d3-a5bb-f8f1b4a6f787

SELinux is preventing ... on the directory certs.
 For complete SELinux messages run: sealert -l 879db542-e0a9-43e8-8763-62fcf068bfee

SELinux is preventing ... on the file self-signed.crt.
 For complete SELinux messages run: sealert -l 8fb85940-ee82-44bd-adcb-e30d31ee516a

What’s useful is that SELinux is telling you exactly what you need to do to solve the
problem!

For each of the three messages relating to access to the certs we just configured, run
the associated command. We’ll just do one to show you what we mean, but you may
need to run more than one until it loads clean.

$ sealert -l 8fb85940-ee82-44bd-adcb-e30d31ee516a

You’re going to get something like this:
SELinux is preventing asterisk from read access on the file self-signed.crt.
***** Plugin catchall (100. confidence) suggests **************************
You can generate a local policy module to allow this access.
allow this access for now by executing:
ausearch -c 'asterisk' --raw | audit2allow -M my-asterisk
semodule -i my-asterisk.pp

You’re not root, but you’ll run both the commands it specifies:
$ sudo ausearch -c 'asterisk' --raw | audit2allow -M my-asterisk

$ sudo semodule -i my-asterisk.pp

Remember how everybody is telling you to just disable SELinux? Well, you don’t have
to do that anymore.

OK, restart Asterisk ($ sudo service asterisk restart) and make sure your log‐
file isn’t generating SELinux errors (ignore the .odbc.ini errors as they don’t relate
to /etc/odbc.ini, and shouldn’t affect anything).

You should see that transport-tls is now ready to use:
*CLI> pjsip show transports
Transport: <TransportId........> <Type> <cos> <tos> <BindAddress....................>
==
Transport: transport-tls tls 0 0 0.0.0.0:5061
Transport: transport-udp udp 0 0 0.0.0.0:5060

If you find it’s still not loading, go back and work the SELinux errors in the /var/log/
messages file. Sometimes more than one has to be dealt with.

Configuring Asterisk | 71

8 Or any other SIP registrar server, for that matter.

Testing to Ensure Your Devices Have Registered
Once your devices have registered to Asterisk, you will be able to query the location
and state of them from the Asterisk CLI.

It is a common misconception that registration is how a device
authenticates itself for the purpose of obtaining permission to
make calls. This is incorrect. The only purpose of registration is to
allow a device to identify its location on the network, so that Aster‐
isk8 knows where to send calls intended for that device.
Authentication for outgoing calls is an entirely separate process
and always happens on a per-call basis, regardless of whether a set
has registered. This means that your set may be able to make calls,
but not receive them. The most common cause of this is a firewall
that has closed the incoming port (and the solution is to set a regis‐
tration timer that’s low enough that it will re-register every few
minutes, so that the firewall will keep the relevant SIP port open).
It is possible to have a set register successfully, and yet still not be
allowed to make calls. Point being, just because it’s registered
doesn’t mean it can make calls (although this will almost always be
the case).

Verifying the registration of a set is the simplest way to verify that you have config‐
ured it correctly.

Remember that configuration of the set does not happen in Aster‐
isk. You have to configure the device using whatever tools the man‐
ufacturer has provided.

To check the registration status of a device, simply call up the Asterisk CLI:
$ sudo asterisk -rvvvv

Typing the following command returns a listing of all the peers that Asterisk knows
about (devices that have registered will have a corresponding Contact):

*CLI> pjsip show aors
 Aor: <Aor..> <MaxContact>
 Contact: <Aor/ContactUri............................> <Hash....> <Status> <RTT(ms)..>
==
 Aor: 0000f30A0A01 2

72 | Chapter 5: User Device Configuration

 Aor: 0000f30B0B02 2
 Contact: 0000f30B0B02/sip:0000f30B0B02@172.29.1.110:5 7542ca7ce1 Unknown nan

 Aor: SOFTPHONE_A 2

 Aor: SOFTPHONE_B 2

A Basic Dialplan to Test Your Devices
In the next chapter we’re going to dive into the Asterisk dialplan. Here, we’re going to
lay down a very simple dialplan so that if you register devices to the various SIP end‐
points already in the PJSIP configuration, you should be able to make test calls
between them.

$ sudo -u asterisk vim /etc/asterisk/extensions.conf

[general]
[globals]

[sets]
exten => 100,1,Dial(PJSIP/0000f30A0A01)

exten => 101,1,Dial(PJSIP/0000f30B0B02)

exten => 102,1,Dial(PJSIP/SOFTPHONE_A)

exten => 103,1,Dial(PJSIP/SOFTPHONE_B)

exten => 200,1,Answer()
 same => n,Playback(hello-world)
 same => n,Hangup()

From your Asterisk console type the following command:
*CLI> dialplan reload

*CLI> dialplan show

You will see that in the context sets there are some extension numbers you can call.

This basic dialplan will allow you to dial your SIP devices using extensions 100, 101,
102, and 103. You can also listen to the hello-world prompt that was created for this
book by dialing extension 200.

Register a couple of SIP phones (you can download a softphone to your PC and
another one to a tablet or smartphone). You should be able to dial between your
extensions. Open up the CLI in order to see the call progression. You should see
something like this (and the set you are calling should ring):

 -- Executing [102@sets:1] Dial("PJSIP/SOFTPHONE_A-00000001", "PJSIP/0000f30B0B02")
 -- Called PJSIP/0000f30B0B02
 -- PJSIP/0000f30B0B02-00000002 is ringing

A Basic Dialplan to Test Your Devices | 73

If this does not happen, review your configuration and registration and ensure you
have not made any typos.

Registering a Device to Asterisk
There are so many different sorts of SIP devices you can register to Asterisk, it’s
impossible to provide an example that’ll be useful to everyone. You could have a PC,
or a Mac, or a Linux workstation, or an iPhone, or an Android, or a SIP desk phone,
or some other SIP device entirely; each type of device has many different sorts of SIP
clients available, and they’re all mostly the same, but just different enough to be
annoying to a novice.

We can’t tell you the specific method to register, but we have found that of the dozens,
or perhaps hundreds, of options in each device, the basic process is similar for all of
them. You will need to provide:

• The address of your Asterisk server (hostname, domain, proxy, and server are all
fields we’ve seen for this)

• The identity of the device (id, user, subscriber, username, extension, name,
etc.)

• A password

If it’s getting complicated, you’ve probably gone too deep. Keep it simple. If the prod‐
uct doesn’t have good documentation, then it might not be the right product for you.
For most SIP phones you can find instructions on the web for how to register them to
Asterisk.

If you register a second device (you have four of them now!), you can make test calls
between them.

Spend a bit of time on this and make sure you understand it all. It’s all critical to
everything that follows.

Under the Hood: Your First Call
In order to get you thinking about what is happening under the hood, we’re going to
briefly cover some of what is actually happening with the SIP protocol when two sets
on the same Asterisk system call each other.

74 | Chapter 5: User Device Configuration

Asterisk as a B2BUA

Bear in mind that there are actually two calls going on here: one
from the originating set to Asterisk, and another from Asterisk to
the destination set. SIP is a peer-to-peer protocol, and from the
perspective of the protocol there are two calls happening. The SIP
protocol is not aware that Asterisk is bridging the calls; each set
understands its connection to Asterisk, with no real knowledge of
the set on the other side. It is for this reason that Asterisk is often
referred to as a B2BUA (Back to Back User Agent). This is also why
it is so easy to bridge different protocols together using Asterisk.

For the call you just made, the dialogs shown in Figure 5-3 will have taken place.

For more details on how SIP messaging works, please refer to the SIP RFC.

Figure 5-3. SIP dialogs

Conclusion
In this chapter you learned best practices for device naming by abstracting the con‐
cepts of users, extension numbers, and devices, and how to define the device configu‐
ration and authentication parameters in the channel configuration files. Next, we’ll
delve into the magic of Asterisk that is the dialplan, and see how simple things can
create great results.

Conclusion | 75

http://www.ietf.org/rfc/rfc3261.txt

CHAPTER 6

Dialplan Basics

Everything should be made as simple as possible, but not simpler.
—Albert Einstein

The dialplan is the heart of your Asterisk system. It defines how calls flow into and
out of the system. The dialplan is written in a scripting language, which specifies
instructions that Asterisk follows in response to calls arriving from channels. In con‐
trast to traditional phone systems, Asterisk’s dialplan is fully customizable.

Experienced software developers find Asterisk dialplan code archaic, and often prefer
to control call flow using Asterisk APIs such as AMI and ARI (which we will discuss
in later chapters). Regardless of your plans in this regard, learning how Asterisk
behaves is far easier if you understand dialplan first. It is perhaps also worth noting
that Asterisk dialplan is performance-tuned, and is therefore the fastest way to exe‐
cute call flow in terms of responsiveness and minimal load on the system. Dialplan is
fast.

This chapter introduces the essential concepts of the dialplan, which will form the
basis of any dialplan you write. Do not skip too much of this chapter, since the exam‐
ples build on each other, and it is so fundamentally important to Asterisk. Please also
note that this chapter is by no means an exhaustive survey of all the possible things
dialplans can do; our aim is to cover just the essentials. We’ll cover more advanced
dialplan topics in later chapters. You are encouraged to experiment.

Dialplan Syntax
The Asterisk dialplan is specified in the configuration file named extensions.conf,
located in the /etc/asterisk directory.

77

The dialplan structure is built on four hierarchical components: Contexts, Exten‐
sions, Priorities, and Applications (see Figure 6-1).

Figure 6-1. Dialplan hierarchy

Let’s dive right in.

Sample Configuration Files
A basic extensions.conf file was created as part of the install process earlier in this
book. We are going to build on that file in this chapter.

Asterisk also comes with a detailed extensions.conf file that can be installed with the
sample configuration files (the installation command make samples will do this), and
if you ran that command (which we don’t recommend during the install, but is sug‐
gested by the installer), you will most likely have an /etc/asterisk/extensions.conf file
that is chock-full of information. Instead of starting with the sample file, we suggest
that you build your extensions.conf file from scratch with a blank file (you can rename
it or move it somewhere if you wish to keep it as a reference).

That being said, the extensions.conf.sample file is a fantastic resource, full of examples
and ideas that you can use after you’ve learned the basic concepts. If you followed our
installation instructions, you will find the file extensions.conf.sample in the folder
~/src/asterisk-15.<TAB>/configs/samples (along with many other sample config files).

Contexts
Dialplans are divided into sections called contexts, which serve to separate different
parts of the dialplan. An extension that is defined in one context is completely iso‐
lated from extensions in any other context, unless interaction is specifically allowed.

As a simple example, let’s imagine we have two companies sharing an Asterisk server.
If we place each company’s automated attendant (IVR) in its own context, the two
companies will be completely separated from each other. This allows us to independ‐
ently define what happens when, say, extension 0 is dialed:

78 | Chapter 6: Dialplan Basics

1 Please note that the space is conspicuously absent from the list of allowed characters. Don’t use spaces in your
context names—you won’t like the result!

• Callers dialing 0 from Company A’s voice menu need to be transferred to Com‐
pany A’s receptionist.

• Callers dialing 0 at Company B’s voice menu will be sent to Company B’s cus‐
tomer service department.

Both callers are on the same system, interacting with the same dialplan, but because
they arrived in different contexts, they experience totally separate call flow. What
happens to each incoming call is determined by the dialplan code in each context.

This is a very important consideration. With traditional PBXs,
there is generally a set of defaults for things like reception, which
means that if you forget to define them, they will probably work
anyway. In Asterisk, the opposite is true. If you do not tell Asterisk
how to handle every situation, and it comes across something it
cannot handle, the call will typically be disconnected.

Contexts are defined in the extensions.conf file by placing the name of the context
inside square brackets ([]). The name can be made up of the letters A through Z
(upper- and lowercase), the numbers 0 through 9, and the hyphen and underscore.1 A
context for incoming calls from a carrier might simply be named this:

[incoming]

Context names have a maximum length of 79 characters (80 char‐
acters minus 1 terminating null).

Or perhaps:
[incoming_company_A]

Which then of course might require something like:
[incoming_company_B]

All of the instructions placed after a context definition are part of that context, until
the next context is defined.

At the beginning of the dialplan, there are two special sections named [general] and
[globals]. The [general] section contains a list of general dialplan settings (which
you’ll probably never have to worry about), and we will discuss the [globals]

Dialplan Syntax | 79

2 The default context used to be a popular way to whip up simple configurations, but this proved to be some‐
what problematic for security. Best practice these days is to avoid all use of it.

context shortly. For now, it’s only important to know that these two labels are not
contexts, despite using context syntax. Do not use [general], [globals], and
[default]2 as context names, but otherwise name your contexts anything you wish.

The contexts in a typical extensions.conf file might be structured something like this:
[general] ; This always has to be here
[globals] ; Global variables (we'll discuss these later)

[incoming] ; Calls from the carriers could arrive here

[sets] ; on a simple system, we can use this

[sets1] ; Multi-tenanted perhaps needs this (sets from one company enter dialplan here)

[sets2] ; ... and this (another group of sets might enter the dialplan here)

[services] ; Special services such as conferencing could be defined here

When you define a channel (which is not done in the extensions.conf file), one of the
required parameters in each channel definition is context. The context is the point in
the dialplan where connections coming from that channel will arrive. So the way you
plug a channel into the dialplan is through the context (see Figure 6-2).

Figure 6-2. Relation between channel configuration (on the left) and contexts in the
dialplan (on the right)

This is one of the most important concepts to understand when
dealing with channels and dialplans. Troubleshooting call flow is
much easier once you understand the relationship between the
channel context (which tells the channel where to plug into the
dialplan) and the dialplan context (which is where we create the
call flow that happens when the call arrives).

An important (perhaps the most important) use of contexts is to provide privacy and
security. By using contexts correctly, you can give some channels access to features

80 | Chapter 6: Dialplan Basics

(such as long-distance calling) that aren’t made available to others. If you do not
design your dialplan carefully, you may inadvertently allow others to fraudulently use
your system. Please keep this in mind as you build your Asterisk system; there are
many bots on the internet that were specifically written to identify and exploit poorly
secured Asterisk systems.

The Asterisk wiki outlines several steps you should take to keep
your Asterisk system secure. It is vitally important that you read
and understand this page. If you ignore the security precautions
outlined there, you may end up allowing anyone and everyone to
make long-distance or toll calls at your expense!
If you don’t take the security of your Asterisk system seriously, you
may end up paying—literally. Please take the time and effort to
secure your system from toll fraud.

Extensions
In the telecommunications industry the word extension typically has referred to a
numeric identifier that, when dialed, will ring a phone (or system resource such as
voicemail or a queue). In Asterisk, an extension is far more powerful, as it defines the
unique series of steps (each step containing an application) through which Asterisk
will take that call.

Within each context, we can define as many (or few) extensions as required. When a
particular extension is triggered (by an incoming channel), Asterisk will follow the
steps defined for that extension. It is the extensions, therefore, that specify what hap‐
pens to calls as they make their way through the dialplan. Although extensions can, of
course, be used to specify phone extensions in the traditional sense (i.e., extension
153 will cause the SIP telephone set on John’s desk to ring), in an Asterisk dialplan,
they can be used for much more.

The syntax for an extension is the word exten, followed by an arrow formed by the
equals sign and the greater-than sign, like this:

exten =>

This is followed by the name (or number) of the extension.

When dealing with traditional telephone systems, we tend to think of extensions as
the numbers you would dial to make another phone ring. In Asterisk, extension
names can be any combination of numbers and letters. Over the course of this chap‐
ter and the next, we’ll use both numeric and alphanumeric extensions.

Dialplan Syntax | 81

https://wiki.asterisk.org/wiki/display/AST/Important+Security+Considerations

Assigning names to extensions may seem like an unusual concept,
but when you realize that SIP supports dialing by all sorts of char‐
acter combinations (anything that is a valid URI, strictly speaking),
it makes perfect sense. This is one of the features that makes Aster‐
isk so flexible and powerful.

Each step in an extension has three components:

• The name (or number) of the extension
• The priority (each extension can include multiple steps; the step number is called

the “priority”)
• The application (or command) that will take place at that step

These three components are separated by commas, like this:
exten => name,priority,application()

Here’s a simple example:
exten => 123,1,Answer()

The extension name is 123, the priority is 1, and the application is Answer().

Priorities
Each extension can have multiple steps, called priorities. The priorities are numbered
sequentially, starting with 1, and each executes one specific application. As an exam‐
ple, the following extension would answer the phone in priority number 1, and then
hang it up in priority number 2. The steps in an extension take place one after the
other.

exten => 123,1,Answer()
exten => 123,2,Hangup()

It’s pretty obvious that this code doesn’t really do anything useful. We’ll get there. The
key point to note here is that for a particular extension, Asterisk follows the priorities
in order.

exten => 123,1,Answer()
exten => 123,2,do something
exten => 123,3,do something else
exten => 123,4,do one last thing
exten => 123,5,Hangup()

This style of dialplan syntax is still seen from time to time, although (as you’ll see
momentarily) it is not generally used anymore for new code. Newer syntax is similar,
but simplified.

82 | Chapter 6: Dialplan Basics

3 Asterisk permits simple arithmetic within the priority, such as n+200, and the priority s (for same), but their
usage is somewhat deprecated due to the existence of priority labels. Please note that extension s and priority s
are two distinct concepts.

Unnumbered priorities
In older releases of Asterisk, the numbering of priorities caused a lot of problems.
Imagine having an extension that had 15 priorities, and then needing to add some‐
thing at step 2: all of the subsequent priorities would have to be manually renum‐
bered. Asterisk does not handle missing steps or misnumbered priorities, and
debugging these types of errors was frustrating.

Beginning with version 1.2, Asterisk addressed this problem: it introduced the use of
the n priority, which stands for “next.” Each time Asterisk encounters a priority
named n, it takes the number of the previous priority and adds 1. This makes it easier
to make changes to your dialplan, as you don’t have to keep renumbering all your
steps. For example, your dialplan might look something like this:

exten => 123,1,Answer()
exten => 123,n,do something
exten => 123,n,do something else
exten => 123,n,do one last thing
exten => 123,n,Hangup()

Internally, Asterisk will calculate the next priority number every time it encounters an
n.3 Now, if we want to add a new item at priority 3, we just input the new line where
we need it, and no renumbering is required.

exten => 123,1,Answer()
exten => 123,n,do something
exten => 123,n,SOME NEW THING
exten => 123,n,do something else
exten => 123,n,do one last thing
exten => 123,n,Hangup()

Bear in mind that you must always specify priority number 1. If you accidentally put
an n instead of 1 for the first priority (a common mistake even among experienced
dialplan coders), you’ll find after reloading the dialplan that the extension will not
exist.

The same => operator
In order to further simplify dialplan writing, a new syntax was created. As long as the
extension remains the same, you can simply type same => followed by the priority
and application rather than having to type the full extension on each line:

Dialplan Syntax | 83

exten => 123,1,Answer()
 same => n,do something
 same => n,do something
 same => n,do one last thing
 same => n,Hangup()

This style of dialplan will also make it easier to copy code from one extension to
another. This is the preferred and recommended style. The only reason for the dis‐
cussion of previous styles is to help understand how we got here.

Make no mistake, the Asterisk dialplan is peculiar. Many folks avoid it altogether, and
use AGI and ARI to write their dialplan.

While there’s certainly something to be said for writing dialplan in an external lan‐
guage (and we’ll cover it in later chapters), the Asterisk dialplan is native to it, and
you will not get better performance than this. Dialplan code executes fast.

Also, if you want to understand how Asterisk thinks, you need to understand its
dialplan.

Priority labels
Priority labels allow you to assign a name to a priority within an extension. This is to
ensure that you can refer to a priority by something other than its number (which
probably isn’t known, given that dialplans now generally use unnumbered priorities).
Later you will learn that it’s often necessary to send calls from other parts of the dia‐
lplan to a particular priority in a particular extension. To assign a text label to a prior‐
ity, simply add the label inside parentheses after the priority, like this:

exten => 123,n(label),application()

Later, we’ll cover how to jump between different priorities based on dialplan logic.
You’ll see a lot more of priority labels, and you’ll use them often in your dialplans.

A very common mistake when writing labels is to insert a comma
between the n and the (, like this:

exten => 555,n,(label),application() ;<-- THIS WON'T WORK
exten => 556,n(label),application() :<-- This is what we want

This mistake will break that part of your dialplan, and you will get
an error stating that the application cannot be found.

Applications
Applications are the workhorses of the dialplan. Each application performs a specific
action on the current channel, such as playing a sound, accepting touch-tone input,

84 | Chapter 6: Dialplan Basics

4 OK, so feeding the cat isn’t a common use for a telephone system, but through Asterisk, such things are not
impossible. Doc Brown would’ve loved this thing.

5 There is another application called Background() that is very similar to Playback(), except that it does allow
input from the caller. You can read more about this application in Chapters 14 and 16.

looking something up in a database, dialing a channel, hanging up the call, feeding
the cat, and so forth.4 In the previous example, you were introduced to two simple
applications: Answer() and Hangup(). It’s obvious what they do, but it’s also obvious
that on their own they aren’t terribly useful.

Some applications, including Answer() and Hangup(), need no other instructions to
do their jobs. Most applications, however, require more information. These addi‐
tional elements, or arguments, are passed on to the applications to affect how they
perform their actions. To pass arguments to an application, place them between the
parentheses that follow the application name, separated by commas.

The Answer(), Playback(), and Hangup() Applications
The Answer() application is used to answer a channel that is ringing. It seems a sim‐
ple thing, but a lot of things happen on the channel with this one command.
Answer() tells the channel to send a message back to the far end that the call has been
answered, and also to enable the media paths (the network streams that will carry the
sound between the caller and the system). As we mentioned earlier, Answer() takes
no arguments. Answer() is not always required (in fact, in some cases it may not be
desirable at all), but it is an effective way to ensure a channel is connected before per‐
forming further actions.

The Progress() Application
Sometimes it is useful to be able to pass information back to the network before
answering a call. The Progress() application attempts to provide call progress infor‐
mation to the originating channel. Some carriers expect this, and thus you may be
able to resolve strange signaling problems by inserting Progress() into the dialplan
where your incoming calls arrive. In terms of billing, the use of Progress() lets the
carrier know you’re handling the call, without starting the billing meter.

The Playback() application is used for playing a previously recorded sound file over
a channel. Input from the user is ignored, which means that you would not use Play
back() in an auto attendant, for example, unless you did not want to accept input at
that point.5

Dialplan Syntax | 85

6 Asterisk selects the best file based on translation cost—that is, it selects the file that is the least CPU-intensive
to convert to its native audio format. When you start Asterisk, it calculates the translation costs between the
different audio formats (they often vary from system to system). You can see these translation costs by typing
core show translation at the Asterisk CLI. The numbers shown represent how many microseconds it takes
Asterisk to transcode one second of audio.

Asterisk comes with many professionally recorded sound files,
which should be found in the default sounds directory (usu‐
ally /var/lib/asterisk/sounds). When you compile Asterisk, you can
choose to install various sets of sample sounds that have been
recorded in a variety of languages and file formats. We’ll be using
these files in many of our examples. Several of the files in our
examples come from the Extra Sound Package, which we installed
in Chapter 3. You can also have your own sound prompts recorded
in the same voices as the stock prompts by visiting www.theivr‐
voice.com. Later in the book, we’ll talk more about how you can
use a telephone and the dialplan to create and manage your own
system recordings (or import .wav files).

To use Playback(), specify a filename as the argument. For example, Playback(file
name) would play a sound file called filename.wav, assuming it was located in the
default sounds directory. Note that you can include the full path to a file if you want,
like this:

Playback(/home/john/sounds/filename)

The previous example would play filename.wav from the /home/john/sounds direc‐
tory. This can be problematic, however, due to potential file permissions problems. If
you’re planning on having a lot of custom sounds on your system, you’ll likely want a
dedicated directory for them, and you’ll need to test to ensure Asterisk can find and
play the files.

You can also use relative paths from the Asterisk sounds directory, as follows:
Playback(custom/filename)

This example would play filename.wav from the custom subdirectory of the default
sounds directory (probably /var/lib/asterisk/sounds/en/custom/filename.wav). If the
specified directory contains more than one file with that filename but with different
file extensions, Asterisk automatically plays the best file.6

The Hangup() application does exactly as its name implies: it hangs up the active
channel. You should use this application at the end of a context when you want to end
the current call, to ensure that callers don’t continue on in the dialplan in a way you
might not have anticipated. The Hangup() application does not require any

86 | Chapter 6: Dialplan Basics

http://www.theivrvoice.com
http://www.theivrvoice.com

arguments, but you can pass an ISDN cause code if you want, such as Hangup(16),
and it will be translated into a comparable SIP message and sent to the far end.

As we work through the book, we will be introducing you to many more Asterisk
applications, but that’s enough theory for now; let’s write some dialplan!

A Basic Dialplan Prototype
To reiterate, then, the form of all dialplans is built from those four concepts: Context,
Extension, Priority, and Application (Figure 6-3).

Figure 6-3. Dialplan prototype

A Simple Dialplan
OK, enough theory. Open up the file /etc/asterisk/extensions.conf in your favorite edi‐
tor, and let’s take a look at your first dialplan (which was created in Chapter 5). We’re
going to add to that.

Hello World
As is typical in many technology books (especially computer programming books),
our first example is called “Hello World.”

In the first priority of our extension, we answer the call. In the second, we play a
sound file named hello-world, and in the third we hang up the call. The code we are
interested in for this example looks like this:

exten => 200,1,Answer()
 same => n,Playback(hello-world)
 same => n,Hangup()

If you followed along in Chapter 5, you’ll already have a channel or two configured,
as well as the sample dialplan that contains this code. If not, what you need is an
extensions.conf file in your /etc/asterisk directory that contains the following code:

[general]
[globals]

[sets]

A Simple Dialplan | 87

7 If you haven’t configured two phones yet, please consider heading back to Chapter 5 and getting a couple of
phones set up so you can play with them. You can get away with only one phone for testing, but really two is
ideal. There are lots of free softphones available, and some of them are rather good.

exten => 100,1,Dial(PJSIP/0000f30A0A01) ; Replace 0000f30A0A01 with your device name

exten => 101,1,Dial(PJSIP/SOFTPHONE_A)

exten => 102,1,Dial(PJSIP/0000f30B0B02)

exten => 103,1,Dial(PJSIP/SOFTPHONE_B)

exten => 200,1,Answer()
 same => n,Playback(hello-world)
 same => n,Hangup()

If you don’t have any channels configured, now is the time to do so.
There is real satisfaction that comes from passing your first call
into an Asterisk dialplan on a system that you’ve built from scratch.
People get this funny grin on their faces as they realize that they
have just created a telephone system. This pleasure can be yours as
well, so please, don’t go any further until you have made this little
bit of dialplan work. If you have any problems, get back to Chap‐
ter 5 and work through the examples there.

If you don’t have this dialplan code built yet, you’ll need to add it and reload the
dialplan with this CLI command:

$ sudo asterisk -rvvvvv # ('r' attaches to a daemonized Asterisk; 'v's are for verbosity)
*CLI> dialplan reload

or you can issue the command directly from the shell with:
$ sudo asterisk -rx "dialplan reload" # ('rx' execute an Asterisk command and return)

Calling extension 200 from either of your configured phones7 should reward you
with the friendly voice of Allison Smith saying “Hello, World.”

If it doesn’t work, check the Asterisk console for error messages, and make sure your
channels are assigned to the sets context.

We do not recommend that you move forward in this book until
you have verified the following:

1. Calls between extension 100 and 101 are working.
2. Calling extension 200 plays “Hello World.”

88 | Chapter 6: Dialplan Basics

Even though this example is very short and simple, it emphasizes the core dialplan
concepts of contexts, extensions, priorities, and applications. You now have the fun‐
damental knowledge on which all dialplans are built.

As you build out a dialplan, it will be helpful to have the Asterisk CLI open in a new
window. You will be reloading the dialplan often, and while testing your call flow, you
will want to see what is happening, as it happens. The Asterisk CLI is useful for both
of those things.

$ sudo asterisk -rvvvvv

*CLI> dialplan reload # this Asterisk CLI command reloads the dialplan

Best practice, then, would be to edit in one window, and to reload and debug in
another.

Building an Interactive Dialplan
The dialplan we just built was static; it will always perform the same actions on every
call. Many dialplans will also need logic to perform different actions based on input
from the user, so let’s take a look at that now.

The Goto(), Background(), and WaitExten() Applications
As its name implies, the Goto() application is used to send a call to another part of
the dialplan. Goto() requires us to pass the destination context, extension, and prior‐
ity as arguments, like this:

 same => n,Goto(context,extension,priority)

We’re going to create a new context called TestMenu, and create an extension in our
sets context that will pass calls to that context using Goto():

exten => 200,1,Answer()
 same => n,Playback(hello-world)
 same => n,Hangup()

exten => 201,1,Goto(TestMenu,start,1) ; add this to the end of the
 ; [sets] context

[TestMenu]
exten => start,1,Answer()

Now, whenever a device enters the [sets] context and dials 201, the call will be
passed to the start extension in the TestMenu context (which currently won’t do any‐
thing interesting because we still have more code to write).

Building an Interactive Dialplan | 89

8 It should be noted that some people expect that Background(), due to its name, will continue onward through
the next steps in the dialplan while the sound is being played. In reality, its name refers to the fact that it is
playing a sound in the background, while waiting for DTMF in the foreground.

9 More information about auto attendants and IVR can be found in Chapter 14.

We used the extension start in this example, but we could have
used anything we wanted as an extension name, either numeric or
alpha. We prefer to use alpha characters for extensions that are not
directly dialable, as this makes the dialplan easier to read. Point
being, we could have named our target extension 123 or xyz321, or
99luftballons, or whatever we wanted instead of start. The word
start doesn’t mean anything special to the dialplan; it’s simply the
name of an extension.

One of the more useful applications in an interactive Asterisk dialplan is the Back
ground()8 application. Like Playback(), it plays a recorded sound file. Unlike
Playback(), however, when the caller presses a key (or series of keys) on their tele‐
phone keypad, it interrupts the playback and passes the call to the extension that cor‐
responds with the pressed digit(s). If a caller presses 5, for example, Asterisk will stop
playing the sound prompt and send control of the call to the first priority of extension
5 (assuming there is an extension 5 to send the call to).

The most common use of the Background() application is to create basic voice
menus (often called auto attendants, IVRs,9 or phone trees). Many companies use
voice menus to direct callers to the proper extensions, thus relieving their reception‐
ists from having to answer every single call.

Background() has the same syntax as Playback():
[TestMenu]
exten => start,1,Answer()
 same => n,Background(enter-ext-of-person)

If you want Asterisk to wait for input from the caller after the sound prompt has fin‐
ished playing, you can use WaitExten(). The WaitExten() application waits for the
caller to enter DTMF digits and is used directly following the Background() applica‐
tion, like this:

[TestMenu]
exten => start,1,Answer()
 same => n,Background(enter-ext-of-person)
 same => n,WaitExten()

90 | Chapter 6: Dialplan Basics

10 See the dialplan function TIMEOUT() for information on how to change the default timeouts. See Chapter 10
for information on what dialplan functions are.

If you’d like the WaitExten() application to wait a specific number of seconds for a
response (instead of using the default timeout),10 simply pass the number of seconds
as the first argument to WaitExten(), like this:

 same => n,WaitExten(5) ; We always pass a time argument to WaitExten()

Both Background() and WaitExten() allow the caller to enter DTMF digits. Asterisk
then attempts to find an extension in the current context that matches the digits that
the caller entered. If Asterisk finds a match, it will send the call to that extension. Let’s
demonstrate by adding a few lines to our dialplan example:

[TestMenu]
exten => start,1,Answer()
 same => n,Background(enter-ext-of-person)
 same => n,WaitExten(5)

exten => 1,1,Playback(digits/1)

exten => 2,1,Playback(digits/2)

After making these changes, save and reload your dialplan:
*CLI> dialplan reload

If you call into extension 201, you should hear a sound prompt that says, “Enter the
extension of the person you are trying to reach.” The system will then wait 5 seconds
for you to enter a digit. If the digit you press is either 1 or 2, Asterisk will match the
relevant extension, and read that digit back to you. Since we didn’t provide any fur‐
ther instructions, your call will then end. You’ll also find that if you enter a different
digit (such as 3), the dialplan will be unable to proceed.

Let’s embellish things a little. We’re going to use the Goto() application to have the
dialplan repeat the greeting after playing back the number:

[TestMenu]
exten => start,1,Answer()
 same => n,Background(enter-ext-of-person)
 same => n,WaitExten(5)

exten => 1,1,Playback(digits/1)
 same => n,Goto(TestMenu,start,1)

exten => 2,1,Playback(digits/2)
 same => n,Goto(TestMenu,start,1)

These new lines will send control of the call back to the start extension after playing
back the selected number.

Building an Interactive Dialplan | 91

11 The i extension is for catching invalid entries supplied to a dialplan application such as Background(). It is
not used for matching on invalidly dialed extensions or nonmatching pattern matches.

If you look up the details of the Goto() application, you’ll find that
you can actually pass either one, two, or three arguments to the
application. If you pass a single argument, Asterisk will assume it’s
the destination priority in the current extension. If you pass two
arguments, Asterisk will treat them as the extension and the prior‐
ity to go to in the current context.
In this example, we’ve passed all three arguments for the sake of
clarity, but passing just the extension and priority would have had
the same effect, since the destination context is the same as the
source context.

Handling Invalid Entries and Timeouts
We need an extension for invalid entries. In Asterisk, when a context receives a
request for an extension that is not valid within that context (e.g., pressing 9 in the
preceding example), the call is sent to the i extension. We also need an extension to
handle situations when the caller doesn’t give input in time (the default timeout is 10
seconds). Calls will be sent to the t extension if the caller takes too long to press a
digit after WaitExten() has been called. Here is what our dialplan will look like after
we’ve added these two extensions:

[TestMenu]
exten => start,1,Answer()
 same => n,Background(enter-ext-of-person)
 same => n,WaitExten(5)

exten => 1,1,Playback(digits/1)
 same => n,Goto(TestMenu,start,1)

exten => 2,1,Playback(digits/2)
 same => n,Goto(TestMenu,start,1)

exten => i,1,Playback(pbx-invalid)
 same => n,Goto(TestMenu,start,1)

exten => t,1,Playback(please-try-again)
 same => n,Goto(TestMenu,start,1)

Using the i11 and t extensions makes our menu a little more robust and user-friendly.
That being said, it is still quite limited, because outside callers still have no way of
connecting to a live person. To do that, we’ll need to learn about the Dial()
application.

92 | Chapter 6: Dialplan Basics

12 Or channels, if you want to ring more than one at a time.
13 IAX2 (pronounced “EEKS”), is the Inter Asterisk Exchange protocol (v2). In the early days of Asterisk it was

popular for trunking, as it greatly reduced signaling overhead on busy circuits. Bandwidth has become far less
expensive, and SIP protocol has become nearly ubiquitous. The IAX2 protocol is no longer actively main‐
tained, but it still retains some popularity for its ability to traverse firewalls, and a few carriers might still sup‐
port it. However, its use is deprecated, and in fact discouraged.

Using the Dial() Application
One of Asterisk’s most valuable features is its ability to connect different callers to
each other. While Asterisk currently is used mostly for SIP connections, it supports a
wide variety of channel types (from Analog to SS7, and various old VoIP protocols
such as MGCP and SCCP). Asterisk takes much of the hard work out of connecting
and translating between disparate networks. All you have to do is learn how to use
the Dial() application.

The syntax of the Dial() application is more complex than that of the other applica‐
tions we’ve used so far, but it’s also where much of the magic of Asterisk happens.
Dial() takes up to four arguments, which we’ll look at next.

The syntax of Dial() looks like this:
Dial(Technology/Resource[&Technology2/Resource2[&...]][,timeout[,options[,URL]]])

Put simply, you tell Dial() what channel12 you want to send the call out to, and set a
few options to tweak the behavior. The use of Dial() can get complex, but at its most
basic, it’s that simple.

Argument 1: destination
The first argument is the destination you’re attempting to call, which (in its simplest
form) is made up of a technology (or transport) across which to make the call, a for‐
ward slash, and the address of the remote endpoint or resource.

These days, you’re most likely to be using PJSIP as your channel
type, but in the not-too-distant past, common technology types
also included DAHDI (for analog and T1/E1/J1 channels), the old
SIP channel (prior to PJSIP), and IAX2.13 If you’re looking at an
older dialplan, you may see some of these other protocols repre‐
sented. Going forward, only PJSIP and DAHDI are recommended
and maintained.

Let’s assume that we want to call one of our PJSIP channels named SOFTPHONE_B. The
technology is PJSIP, and the resource (or channel) identifier is SOFTPHONE_B. Simi‐
larly, a call to a DAHDI device (defined in chan_dahdi.conf) might have a destination

Building an Interactive Dialplan | 93

14 We’ll cover variables in the section “Using Variables” on page 96. In future chapters we’ll discuss how to have
your dialplan make decisions based on the value of DIALSTATUS.

15 Bear in mind that this assumes that this channel connects to something that knows how to reach external
numbers.

of DAHDI/14169671111. If we wanted Asterisk to ring the PJSIP/SOFTPHONE_B chan‐
nel when extension 103 is reached in the dialplan, we’d add the following extension:

exten => 101,1,Dial(PJSIP/SOFTPHONE_A)

exten => 103,1,Dial(PJSIP/SOFTPHONE_B)

exten => 200,1,Answer()

We can also dial multiple channels at the same time, by concatenating the destina‐
tions with an ampersand (&), like this:

exten => 101,1,Dial(PJSIP/SOFTPHONE_A)

exten => 103,1,Dial(PJSIP/SOFTPHONE_B)

exten => 110,1,Dial(PJSIP/0000f30A0A01&PJSIP/SOFTPHONE_A&PJSIP/SOFTPHONE_B)

exten => 200,1,Answer()

The Dial() application will ring all of the specified destinations simultaneously, and
bridge the inbound call with whichever destination channel answers first (the other
channels will immediately stop ringing). If the Dial() application can’t contact any of
the destinations, Asterisk will set a variable called DIALSTATUS with the reason that it
couldn’t dial the destinations, and continue with the next priority in the extension.14

The Dial() application also allows you to connect to a remote VoIP endpoint not
previously defined in one of the channel configuration files. The full syntax is:

Dial(technology/user[:password]@remote_host[:port][/remote_extension])

The full syntax for the Dial() application is slightly different for DAHDI channels:
Dial(DAHDI/[gGrR]channel_or_group[/remote_extension])

For example, here is how you would dial 1-800-555-1212 on DAHDI channel num‐
ber 4:15

exten => 501,1,Dial(DAHDI/4/18005551212)

Argument 2: timeout

The second argument to the Dial() application is a timeout, specified in seconds. If a
timeout is given, Dial() will attempt to call the specified destination(s) for that num‐
ber of seconds before giving up and moving on to the next priority in the extension.
If no timeout is specified, Dial() will continue to dial the called channel(s) until

94 | Chapter 6: Dialplan Basics

someone answers or the caller hangs up. Let’s add a timeout of 10 seconds to our
extension:

exten => 101,1,Dial(PJSIP/SOFTPHONE_A)

exten => 102,1,Dial(PJSIP/0000f30B0B02,10)

exten => 103,1,Dial(PJSIP/SOFTPHONE_B)

If the call is answered before the timeout, the channels are bridged and the dialplan is
done. If the destination simply does not answer, is busy, or is otherwise unavailable,
Asterisk will set a variable called DIALSTATUS and then continue on with the next pri‐
ority in the extension.

Let’s put what we’ve learned so far into another example:
exten => 102,1,Dial(PJSIP/0000f30B0B02,10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

As you can see, this example will play the vm-nobodyavail.gsm sound file if the call
goes unanswered (and then hang up). Note that this doesn’t actually provide voice‐
mail; we’re just playing a prompt, which could have been any valid prompt. We’ll
cover sending calls to voicemail later.

Argument 3: option

The third argument to Dial() is an option string. It may contain one or more charac‐
ters that modify the behavior of the Dial() application. While the list of possible
options is too long to cover here, one of the most popular is the m option. If you place
the letter m as the third argument, the calling party will hear hold music instead of
ringing while the destination channel is being called (assuming, of course, that music
on hold has been configured correctly). To add the m option to our last example, we
simply change the first line:

exten => 102,1,Dial(PJSIP/0000f30B0B02,10,m)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

Argument 4: URI

The fourth and final argument to the Dial() application is a URI. If the destination
channel supports receiving a URI at the time of the call, the specified URI will be sent
(for example, if you have an IP telephone that supports receiving a URI, it will appear
on the phone’s display; likewise, if you’re using a softphone, the URI might pop up on
your computer screen). This argument is very rarely used.

Building an Interactive Dialplan | 95

Updating the dialplan

Let’s modify extensions 1 and 2 in our menu to use the Dial() application, and add
extensions 3 and 4 just for good measure:

[TestMenu]
exten => start,1,Answer()
 same => n,Background(enter-ext-of-person)
 same => n,WaitExten(5)

exten => 1,1,Dial(PJSIP/0000f30A0A01,10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => 2,1,Dial(PJSIP/0000f30B0B02,10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => 3,1,Dial(PJSIP/SOFTPHONE_A,10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => 4,1,Dial(PJSIP/SOFTPHONE_B,10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => i,1,Playback(pbx-invalid)
 same => n,Goto(TestMenu,start,1)

exten => t,1,Playback(vm-goodbye)
 same => n,Hangup()

Blank arguments
Note that the second, third, and fourth arguments may be left blank; only the first
argument is required. For example, if you want to specify an option but not a time‐
out, simply leave the timeout argument blank, like this:

exten => 4,1,Dial(SIP/SOFTPHONE_B,,m)

Using Variables
If you have programming experience, you already understand what a variable is. If
not, we’ll briefly explain what variables are and how they are used. Any dialplan work
beyond the very simple examples just given will greatly benefit from the use of vari‐
ables. They are one of the useful features of a customizable dialplan that you will not
find in a typical proprietary PBX.

A variable is a named container that can hold a value. Think of it like a post office
box. The advantage of a variable is that its contents may change, but its name does
not, which means you can write code that references the variable name and not worry
about what the value will be. It is almost impossible to do any sort of useful program‐
ming without variables.

96 | Chapter 6: Dialplan Basics

16 Specifically, what we are setting here is a channel variable.

There are two ways to reference a variable. To reference the variable’s name, simply
type the name of the variable. If, on the other hand, you want to reference the value
of the variable, you must type a dollar sign, an opening curly brace, the name of the
variable, and a closing curly brace. So, to use the post office box analogy, you refer to
the box itself by simply using its name, and you refer to the contents with the use of
the ${} wrapper. A variable named MyVar is referred to as MyVar, and its contents are
accessed with ${MyVar}. Here’s how we might use a variable inside the Dial()
application:16

exten => 203,1,Noop(say some digits)
 same => n,Answer()
 same => n,Set(SomeDigits=123)
 same => n,SayDigits(${SomeDigits})
 same => n,Wait(.25)
 same => n,Set(SomeDigits=543)
 same => n,SayDigits(${SomeDigits})

In our dialplan, whenever we refer to ${SomeDigits}, Asterisk will automatically
replace it with whatever value has been assigned to the variable named SomeDigits.

Note that variable names are case-sensitive. A variable named SOME
DIGITS is different from a variable named SomeDigits. You should
also be aware that any variables set by Asterisk will be uppercase.
Some variables, such as CHANNEL and EXTEN, are reserved by Aster‐
isk. You should not attempt to set these variables. It is popular to
write global variables in uppercase and channel variables in Pascal/
Camel case, but it is not strictly required.

There are three types of variables we can use in our dialplan: global variables, channel
variables, and environment variables. Let’s take a moment to look at each type.

Global variables
As their name implies, global variables are visible to all channels at all times. Global
variables are useful in that they can be used anywhere within a dialplan to increase
readability and manageability. Suppose for a moment that you had a large dialplan
and several hundred references to the PJSIP/0000f30A0A01 channel. Now imagine
you replaced the phone with a different unit (perhaps a different MAC address), and
had to go through your dialplan and change all of those references to PJSIP/
0000f30A0A01. Not pretty.

On the other hand, if you had defined a global variable that contained the value
PJSIP/0000f30A0A01 at the beginning of your dialplan and then referenced that

Building an Interactive Dialplan | 97

17 We’ll get into dialplan functions later. Don’t worry too much about environment variables right now. They are
not important to understanding the dialplan.

instead, you would have to change only one line of code to affect all places in the
dialplan where that channel was used.

Global variables should be declared in the [globals] context at the beginning of the
extensions.conf file. As an example, we will create a few global variables that store the
channel identifiers of our devices. These variables are set at the time Asterisk parses
the dialplan:

[globals]
UserA_DeskPhone=PJSIP/0000f30A0A01
UserA_SoftPhone=PJSIP/SOFTPHONE_A
UserB_DeskPhone=PJSIP/0000f30B0B02
UserB_SoftPhone=PJSIP/SOFTPHONE_B

We’ll come back to these later.

Channel variables
A channel variable is a variable that is associated only with a particular call. Unlike
global variables, channel variables are defined only for the duration of the current call
and are available only to the channels participating in that call.

There are many predefined channel variables available for use within the dialplan,
which are explained in the Asterisk wiki. You define a channel variable with exten‐
sion 203 and the Set() application:

exten => 203,1,Noop(say some digits)
 same => n,Set(SomeDigits=123)
 same => n,SayDigits(${SomeDigits})
 same => n,Wait(.25)
 same => n,Set(SomeDigits=543)
 same => n,SayDigits(${SomeDigits})

You’re going to be seeing a lot more channel variables. Read on.

Environment variables
Environment variables are a way of accessing Unix environment variables from within
Asterisk. These are referenced using the ENV() dialplan function.17 The syntax looks
like ${ENV(var)}, where var is the Unix environment variable you wish to reference.
Environment variables aren’t commonly used in Asterisk dialplans, but they are avail‐
able should you need them.

98 | Chapter 6: Dialplan Basics

https://wiki.asterisk.org/wiki/display/AST/Channel+Variables

Adding variables to our dialplan
Now that we’ve learned about variables, let’s put them to work in our dialplan. We’re
going to add three global variables that will associate a variable name to a channel
name:

[general]
[globals]
UserA_DeskPhone=PJSIP/0000f30A0A01
UserA_SoftPhone=PJSIP/SOFTPHONE_A
UserB_DeskPhone=PJSIP/0000f30B0B02
UserB_SoftPhone=PJSIP/SOFTPHONE_B

[sets]
exten => 100,1,Dial(${UserA_DeskPhone})

exten => 101,1,Dial(${UserA_SoftPhone})

exten => 102,1,Dial(${UserB_DeskPhone},10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => 103,1,Dial(${UserB_SoftPhone})

exten => 110,1,Dial(${UserA_DeskPhone}&${UserA_SoftPhone}&${UserB_SoftPhone})

exten => 200,1,Answer()

Let’s update the test menu as well:
[TestMenu]
exten => start,1,Answer()
 same => n,Background(enter-ext-of-person)
 same => n,WaitExten(5)

exten => 1,1,Dial(${UserA_DeskPhone},10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => 2,1,Dial(${UserA_SoftPhone},10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => 3,1,Dial(${UserB_DeskPhone},10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => 4,1,Dial(${UserB_SoftPhone},10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => i,1,Playback(pbx-invalid)

It rarely makes sense to hardcode data in a dialplan. It’s almost always better to use a
variable.

Make sure you test this out to ensure you don’t have any typos, and also to see what it
looks like when executed on the Asterisk CLI:

Building an Interactive Dialplan | 99

asterisk -rvvvvvv
*CLI> dialplan reload
 -- Executing [201@sets:1] Goto("PJSIP/0000f30A0A01", "TestMenu,start,1")
 -- Goto (TestMenu,start,1)
 -- Exec [start@TestMenu:1] Answer("PJSIP/0000f30A0A01", "")
 -- Exec [start@TestMenu:2] BackGround("PJSIP/0000f30A0A01", "enter-ext-of-person")
 -- <PJSIP/0000f30A0A01> Playing 'enter-ext-of-person.slin' (language 'en')
 -- Exec [1@TestMenu:1] Dial("PJSIP/0000f30A0A01", "PJSIP/0000f30A0A01,10")
 -- Called PJSIP/0000f30A0A01
 -- PJSIP/0000f30A0A01-00000011 is ringing
 == Spawn extension (TestMenu, 1, 1) exited non-zero on 'PJSIP/0000f30A0A01'

Variable concatenation
To concatenate variables, simply place them together, like this:

exten => 204,1,Answer()
 same => n,Answer()
 same => n,Set(ONETWO=12)
 same => n,Set(THREEFOUR=34)
 same => n,SayDigits(${ONETWO}${THREEFOUR}) ; easy peasy
 same => n,Wait(0.2)
 same => n,Set(NOTFIVE=${THREEFOUR}${ONETWO}) ; peasy easy
 same => n,SayNumber(${NOTFIVE}) ; see what we did here?
 same => n,Wait(0.2)
 same => n,SayDigits(2${ONETWO}3) ; you can concatenate literals and variables

Inheriting channel variables
Channel variables are always associated with the original channel that set them, and
are no longer available once the channel is transferred.

In order to allow channel variables to follow the channel as it is transferred around
the system, you must employ channel variable inheritance. There are two modifiers
that can allow the channel variable to follow the channel: single underscore and dou‐
ble underscore.

The single underscore (_) causes the channel variable to be inherited by the channel
for a single transfer, after which it is no longer available for additional transfers. If
you use a double underscore (__), the channel variable will be inherited throughout
the life of that channel.

Setting channel variables for inheritance simply requires you to prefix the channel
name with a single or double underscore. The channel variables are then referenced
exactly the same as they would be normally.

Here’s an example of setting a channel variable for single transfer inheritance:
exten => example,1,Set(_MyVariable=thisValue)

Here’s an example of setting a channel variable for infinite transfer inheritance:
exten => example,1,Set(__MyVariable=thisValue)

100 | Chapter 6: Dialplan Basics

When you wish to read the value of the channel variable, you do not use the
underscore(s):

exten => example,1,Verbose(1,Value of MyVariable is: ${MyVariable})

Pattern Matching
If we want to be able to allow people to dial through Asterisk and have Asterisk con‐
nect them to outside resources, we need a way to match on any possible phone num‐
ber that the caller might dial. For situations like this, Asterisk offers pattern matching.
Pattern matching allows you to create one extension in your dialplan that matches
many different numbers. This is enormously useful.

Pattern-matching syntax
When we are using pattern matching, certain letters and symbols represent what we
are trying to match. Patterns always start with an underscore (_). This tells Asterisk
that we’re matching on a pattern, and not on an explicit extension name.

If you forget the underscore at the beginning of your pattern,
Asterisk will think it’s just a named extension and won’t do any pat‐
tern matching. This is one of the most common mistakes people
make when starting to learn Asterisk.

After the underscore, you can use one or more of the following characters:

X

Matches any single digit from 0 to 9.

Z

Matches any single digit from 1 to 9.

N

Matches any single digit from 2 to 9.

Another common mistake is to try to use the letters X, Z, and N
literally in a pattern match; to do that, wrap them in square
brackets (case-insensitive), such as _ale[X][Z]a[N]der.

[15-7]

Matches a single character from the range of digits specified. In this case, the pat‐
tern matches a single 1, as well as any number in the range 5, 6, 7.

Building an Interactive Dialplan | 101

18 We’ve used the EXTEN channel variable without introducing it. Read on, as it will be covered later in this chap‐
ter.

. (period)
Wildcard match; matches one or more characters, no matter what they are.

If you’re not careful, wildcard matches can make your
dialplans do things you’re not expecting (like matching built-
in extensions such as i or h). You should use the wildcard
match in a pattern only after you’ve matched as many other
digits as possible. For example, the following pattern match
should probably never be used:

_.

In fact, Asterisk will warn you if you try to use it. Instead, if
you really need a catchall pattern match, use this one to match
all strings that start with a digit followed by one or more char‐
acters (see ! if you want to be able to match on zero or more
characters):

_X.

Or this one, to match any alphanumeric string:
_[0-9a-zA-Z].

! (bang)
Wildcard match; matches zero or more characters, no matter what they are.

To use pattern matching in your dialplan, simply put the pattern in the place of the
extension name (or number):

exten => _4XX,1,Noop(User Dialed ${EXTEN})
 same => n,Answer()
 same => n,SayDigits(${EXTEN})
 same => n,Hangup()

In this example, the pattern matches any three-digit extension from 400 through
499.18

One other important thing to know about pattern matching is that if Asterisk finds
more than one pattern that matches the dialed extension, it will use the most specific
one (going from left to right). Say you had defined the following two patterns, and a
caller dialed 555-1212:

exten => _555XXXX,1,Answer()
 same => n,SayDigits(${EXTEN})
exten => _55512XX,1,Answer()
 same => n,Playback(tt-monkeys)

102 | Chapter 6: Dialplan Basics

In this case the second extension would be selected, because it is more specific. Load
this in and make calls to 5550000, 5550123, 5551212, 5551200, 5551300, 5551299,
and so forth to get a feel for how this works. Play around with different pattern
matches. For example, what would pattern _555NNNN match? What would pattern
_[0-9]. match?

North American Numbering Plan—pattern-matching examples
This pattern matches any seven-digit number, as long as the first digit is 2 or higher:

_NXXXXXX

The preceding pattern would be compatible with any North American Numbering
Plan local seven-digit number.

In areas with 10-digit dialing, that pattern would look like this:
_NXXNXXXXXX

Note that neither of these two patterns would handle long-distance calls. We’ll cover
those shortly.

The NANP and Toll Fraud
The North American Numbering Plan (NANP) is a shared telephone numbering
scheme used by 19 countries in North America and the Caribbean. All of these coun‐
tries share country code 1.

In the United States and Canada, there is sufficient competition that you can place a
long-distance call to most numbers in country code 1 and expect to pay a reasonable
toll. However, many people don’t realize that 17 other countries, many of which have
very different telecom regulations, share the NANP. Some of these places are quite
expensive to call.

One popular scam using the NANP tries to trick naïve North Americans into calling
expensive per-minute toll numbers in a Caribbean country; the callers believe that
since they dialed 1-NPA-NXX-XXXX to reach the number, they’ll be paying their
standard national long-distance rate for the call. Since the country in question may
have regulations that allow for this form of extortion, the caller is ultimately held
responsible for the call charges.

It may be prudent to block calls to area codes to NANP countries outside the US and
Canada until you’ve had a chance to review your toll rates to those countries. Wikipe‐
dia has a good reference for the basics of what you need to know about NANP,
including what NPAs (area codes) belong to what country.

Let’s try another:

Building an Interactive Dialplan | 103

http://www.nanpa.com
http://bit.ly/2Ztku7l

19 If you grew up in North America, you may believe that the 1 you dial before a long-distance call is “the long-
distance code.” This is not completely correct. The number 1 is also the international country code for NANP.
Keep this in mind if you send your phone number to someone in another country. The recipient may not
know your country code, and thus be unable to call you with just your area code and phone number. Your full
phone number with country code is +1 NPA NXX XXXX (where NPA is your area code)—for example,
+1 416 555 1212. This is also known as E.164 format (Wikipedia can tell you all about E.164).

_1NXXNXXXXXX

This one will match the number 1, followed by an area code between 200 and 999,
then any seven-digit number that does not start with 0 or 1. In the NANP calling area,
you would use this pattern to match any long-distance number.19

And finally this one:
_011.

Note the period on the end. This pattern matches any number that starts with 011
and has at least one more digit. In the NANP, this indicates an international phone
number. (We’ll be using these patterns in the next section to add outbound dialing
capabilities to our dialplan.)

Common global pattern matches
Outside of North America, there is wide variance in how numbering is handled; how‐
ever, some patterns are common. Here are a few simple examples:

; UK, Germany, Italy, China, etc.
exten => _00X.,1,noop() ; international dialing code
exten => _0X.,1,noop() ; national dialing prefix
exten => 112,1,Noop(--==[Emergency call]==--)

; Australia
exten => _0011X.,1,noop() ; international dialing code
exten => _0X.,1,noop() ; national dialing prefix

; Dutch Caribbean (Saba)
exten => _00X.,1,noop() ; international
exten => _416XXXX,1,noop() ; local (on-island)
exten => _0[37]XXXXXX,1,noop() ; call to country code 599 off-island (not Curacao)
exten => _09XXXXXXX,1,Noop() ; call to country code 599 off-island (Curacao)

You will need to understand the dialing plan of your region in order to produce a
useful pattern match.

Using the ${EXTEN} channel variable
So what happens if you want to use pattern matching but need to know which digits
were actually dialed? Enter the ${EXTEN} channel variable. Whenever you dial an
extension, Asterisk sets the ${EXTEN} channel variable to the digits that were received.
We used the application SayDigits() to demonstrate this.

104 | Chapter 6: Dialplan Basics

http://bit.ly/2ImniNO

exten => _4XX,1,Noop(User Dialed ${EXTEN})
 same => n,Answer()
 same => n,SayDigits(${EXTEN})
 same => n,Hangup()

exten => _555XXXX,1,Answer()
 same => n,SayDigits(${EXTEN})

In these examples, the SayDigits() application read back to you the extension you
dialed.

Often, it’s useful to manipulate the ${EXTEN} by stripping a certain number of digits
off the front of the extension. This is accomplished by using the syntax ${EXTEN:x},
where x is where you want the returned string to start, from left to right. For example,
if the value of ${EXTEN} is 95551212, ${EXTEN:1} equals 5551212. Let’s try another
example:

exten => _XXX,1,Answer()
 same => n,SayDigits(${EXTEN:1})

In this example, the SayDigits() application would start at the second digit, and thus
read back only the last two digits of the dialed extension.

More Advanced Digit Manipulation
The ${EXTEN} variable properly has the syntax ${EXTEN:x:y}, where x is the starting
position and y is the number of digits to return. Given the following dial string:

94169671111

we can extract the following digit strings using the ${EXTEN:x:y} construct:

• ${EXTEN:1:3} would contain 416
• ${EXTEN:4:7} would contain 9671111
• ${EXTEN:-4:4} would start four digits from the end and return four digits, giv‐

ing us 1111
• ${EXTEN:2:-4} would start two digits in and exclude the last four digits, giving

us 16967
• ${EXTEN:-6:-4} would start six digits from the end and exclude the last four dig‐

its, giving us 67
• ${EXTEN:1} would give us everything after the first digit, or 4169671111 (if the

number of digits to return is left blank, it will return the entire remaining string)

This is a very powerful construct, but most of these variations are not very common
in normal use. For the most part, you will be using ${EXTEN} (or perhaps ${EXTEN:1}
if you need to strip off an external access code, such as a prepended 9).

Building an Interactive Dialplan | 105

Includes
Asterisk has an important feature that allows extensions from one context to be avail‐
able from within another context. This is accomplished through use of the include
directive, which allows us to control access to different sections of the dialplan.

The include statement takes the following form, where context is the name of the
remote context we want to include in the current context:

include => context

Including one context within another context allows extensions within the included
context to be dialable.

When we include other contexts within our current context, we have to be mindful of
the order in which we are including them. Asterisk will first try to match the dialed
extension in the current context. If unsuccessful, it will then try the first included
context (including any contexts included in that context), and then continue to the
other included contexts in the order in which they were included.

We will discuss the include directive more in Chapter 7.

Conclusion
And there you have it—a basic but functional dialplan. There is still much we have
not covered, but you’ve got all of the fundamentals. In the following chapters, we’ll
continue to build on this foundation.

If parts of this dialplan don’t make sense, you may want to go back and reread a sec‐
tion or two before continuing on to the next chapter. It’s imperative that you under‐
stand these principles and how to apply them, as the next chapters build on this
information.

106 | Chapter 6: Dialplan Basics

CHAPTER 7

Outside Connectivity

You cannot always control what goes on outside. But you can always control what goes on
inside.

—Wayne Dyer

In the previous chapters, we have covered a lot of important information that is
essential to a working Asterisk system. However, we have yet to discuss something
that is vital to any useful PBX: namely, connecting it to the outside world. In this
chapter we will discuss outside connectivity.

The groundbreaking architecture of Asterisk was significant due in large part to the
fact that it treats all channel types as equal. This is in contrast to a traditional PBX,
where trunks (which connect to the outside world) and extensions (which connect to
users and resources) are logically separated. The fact that the Asterisk dialplan treats
all channels in a similar manner means that in an Asterisk system you can accom‐
plish very easily things that are much more difficult (or impossible) to achieve on a
traditional PBX.

This flexibility does come with a price, however. Since the system does not inherently
know the difference between an internal resource (such as a telephone set) and an
external resource (such as a telco circuit), it is up to you to ensure that your dialplan
handles each type of resource appropriately.

The Basics of Trunking
The purpose of trunking is to provide a shared connection between two entities. Trees
have trunks, and everything that passes between the roots and the leaves happens
through the trunk. Railroads use the term “trunk” to refer to a major line that con‐
nects feeder lines together.

107

1 In a key system, each line has a corresponding button on each telephone, and lines are accessed by pressing
the desired line key.

In telecommunications, trunking connects two systems together. Carriers use trunks
to connect their networks to each other. In a PBX, the circuits that connect the PBX
to the outside world are (from the perspective of the PBX) usually referred to as
trunks (although the carriers themselves do not generally consider these to be
trunks). From a technical perspective, the definition of a trunk is not as clear as it
used to be (PBX trunks used totally different technology from station circuits, but
now both are usually SIP), but as a concept, trunks are still important. With SIP,
everything is technically peer-to-peer, so from a technology perspective there isn’t
really such a thing as a trunk anymore (or perhaps it’s more accurate to say that
everything is a trunk). From a functional perspective it is still useful to be able to dif‐
ferentiate between VoIP resources that connect to the outside world (trunks, lines,
circuits, etc.) and VoIP resources that connect to user endpoints (stations, sets, exten‐
sions, handsets, telephones, etc.).

In an Asterisk PBX, you might have trunks that go to your VoIP provider for in-
country long-distance calls, trunks for your overseas calls, and trunks that connect
your various offices together. These trunks might actually run across the same net‐
work connection, but in your dialplan you could treat them quite differently. You can
even have a trunk in Asterisk that simply loops back in on itself (which is usually
some kludgy hack that solves some namespace or CDR problem that wasn’t getting
solved any other way).

Fundamental Dialplan for Outside Connectivity
In a traditional PBX, external lines are generally accessed by way of an access code
that must be dialed before the number.1 It is common to use the digit 9 for this
purpose.

In Asterisk, it is similarly possible to assign 9 for routing of external calls, but since
the Asterisk dialplan is so much more intelligent, it is not really necessary to force
your users to dial 9 before placing a call. Typically, you will have an extension range
for your system (say, 100–199), and a feature code range (*00 to *99). Anything out‐
side those ranges that matches the dialing pattern for your country or region can be
treated as an external call.

If you have one carrier providing all of your external routing, you can handle your
external dialing through a few simple pattern matches. The example in this section is
valid for the North American Numbering Plan (NANP). If your country is not within
the NANP (which serves Canada, the US, and many Caribbean countries), you will
need a different pattern match.

108 | Chapter 7: Outside Connectivity

2 You can name these anything you wish.
3 For more information on pattern matches, see Chapter 6.

The [globals] section contains two variables, named LOCAL and TOLL.2 The purpose
of these variables is to simplify management of your dialplan should you ever need to
change carriers. They allow you to make one change to the dialplan that will affect all
places where the specified channel is referenced:

[globals]
; These channels are the same to asterisk as
; any PJSIP enpoint, so they'll be configured
; similar to telephone sets.
; Each carrier will have their own configuration
; requirements (although they'll all be similar)
LOCAL=PJSIP/my-itsp
TOLL=PJSIP/my-other-itsp

The [external] section contains the actual dialplan code that will recognize the
numbers dialed and pass them to the Dial() application:3

[external]
exten => _NXXNXXXXXX,1,Dial(${LOCAL}/${EXTEN}) ; 10-digit pattern match for NANP
exten => _NXXXXXX,1,Dial(${LOCAL}/${EXTEN}) ; 7-digit pattern match for NANP
exten => _1NXXNXXXXXX,1,Dial(${TOLL}/${EXTEN}) ; Long-distance pattern match
 ; for NANP
exten => _011.,1,Dial(${TOLL}/${EXTEN}) ; International pattern match for
 ; calls made from NANP

; This section is functionally the same as the above section.
; It is for people who like to dial '9' before their calls
exten => _9NXXNXXXXXX,1,Dial(${LOCAL}/${EXTEN:1})
exten => _9NXXXXXX,1,Dial(${LOCAL}/${EXTEN:1})
exten => _91NXXNXXXXXX,1,Dial(${TOLL}/${EXTEN:1})
exten => _9011.,1,Dial(${TOLL}/${EXTEN:1})

In any context that would be used by sets or user devices, you would use an include
=> directive to allow access to the external context:

[sets]
include => external

It is critically important that you do not include access to the exter‐
nal lines in any context that might process an incoming call. The
risk here is that a phishing bot could eventually gain access to your
outgoing trunks (you’d be surprised at how common these phish‐
ing bots are).
We cannot stress enough how important it is that you ensure that
no external resource can access your toll lines.

Fundamental Dialplan for Outside Connectivity | 109

The PSTN
The public switched telephone network (PSTN) has existed for over a century. It is
the precursor to many of the technologies that shape our world today, from the inter‐
net to MP3 players.

The use of old-school PSTN circuits in Asterisk systems is no longer common. The
technical complexities, costs, and limitations of obsolete technology are only justified
in situations where a reliable internet connection is not available (and even then, tra‐
ditional circuits will often be a problematic choice). Even the carriers themselves have
largely switched to VoIP for their internal backbones.

The PSTN Has Retired
More than any technical factor, perhaps the most significant nail in the PSTNs coffin
is the fact that most of the technical experts in the field of traditional telephony are
near or past retirement age, and the new kids have no interest in this sort of thing.
Point being: you will increasingly find that carriers no longer have the skilled staff
required to deploy traditional PSTN services. All the cool kids are learning VoIP
(which is ultimately just a networking technology), and all the carriers put their best
and brightest on the VoIP/SIP side of the business.

So, while it used to be true that you couldn’t beat a PRI circuit for reliability, that is no
longer the case. In fact, many companies deliver PRI circuits across a SIP connection,
which is a kludge Asterisk has no use for.

Where the PSTN might still hold sway for a few years more is in telephone numbers.
If VoIP had been invented without the PSTN preceding it, it’s unlikely that something
like a phone number would have ever been invented. Still, we’ve got them, and we use
them, and the reason we do so is perhaps not so much due to any usefulness they pro‐
vide, but rather due to the fact that they are managed by a complex, multinational
consortium of standards bodies and curators who ensure the integrity of the global
call routing plan.

To put the value of this in perspective, it might be worth considering that if the inter‐
net had designed the telephone network (and phone calls were as free as email), all
our SIP phones would likely be ringing all day long with one spammy call after
another. That still happens, but it’s greatly reduced by the fact that a phone call costs
money, and even if it costs just pennies, that’s enough to keep much of the exceed‐
ingly mindless spam out of the game.

Another feature the PSTN offers is standards compliance and interoperability. If you
look at any internet-based voice product, they are either proprietary walled gardens,
or they are community-driven and have failed to gain any useful traction. It is our

110 | Chapter 7: Outside Connectivity

belief that this will not change until some sort of trust mechanism exists that ensures
the identities of incoming callers have been verified by some widely recognized
authority.

Traditional PSTN Trunks

This section has been written as a nod to the telecommunications
industry, and to the history of Asterisk itself. It is in part because
Asterisk could talk to so many different sorts of old-school circuits
that it achieved the early success it did. These days, the use of these
old circuits has for the most part faded into history.

There are two types of fundamental technology that PSTN carriers have used to
deliver telephone circuits: analog and digital.

Analog telephony
The first telephone networks were all analog. The audio signal that you generated
with your voice was used to generate an electrical signal, which was carried to the
other end. The electrical signal had the same characteristics as the sound being pro‐
duced.

Analog circuits have several characteristics that differentiate them from other circuits
you might wish to connect to Asterisk:

• No signaling channel exists—line state signaling is electromechanical, and
addressing is done using in-band audio tones.

• Disconnect supervision is usually delayed by several seconds, and is not com‐
pletely reliable.

• Far-end supervision is minimal (for example, answer supervision is lacking).
• Differences in circuits mean that audio characteristics will vary from circuit to

circuit and will require tuning.

Incoming analog circuits that you wish to connect to your Asterisk system will need
to connect to a Foreign eXchange Office (FXO) port. Since there is no such thing as
an FXO port in any standard computer, an FXO port of some sort must be provided
to the system before you can connect traditional analog lines. Companies such as
Digium and Sangoma offer such cards, but you can also purchase a SIP device that
provides such ports.

The PSTN | 111

4 We should note, however, that we’ve written extensively on the subject in the past, and that body of work has
been released under Creative Commons licensing, and is freely available.

FXO and FXS
For any analog circuit, there are two ends: the office (typically the central office of the
PSTN) and the station (typically a phone, but could also be a card such as a modem
or line card in a PBX).

The central office is responsible for:

• Power on the line (nominally 48 volts DC)
• Ringing voltage (nominally 90 volts AC)
• Providing dialtone
• Detecting hook state (off-hook and on-hook)
• Sending supplementary signaling such as caller ID

The station is responsible for:

• Providing a ringer (or at least being able to handle ringing voltage in some
manner)

• Providing a dialpad (or some way of sending DTMF)
• Providing a hook switch to indicate the status of the line

A Foreign eXchange (FX) port is named by what it connects to, not by what it does. So,
for example, a Foreign eXchange Office (FXO) port is actually a station: it connects to
the central office. A Foreign eXchange Station (FXS) port is actually a port that pro‐
vides the services of a central office (in other words, you would plug an analog set
into an FXS port).

Note that changing from FXO to FXS is not something you can simply do with a set‐
tings change. FXO and FXS ports require completely different electronics.

This stuff is old-school, folks. You can run old phones from 100 years ago off an FXS
port!

We do not recommend the use of analog trunks in an Asterisk system. Their configu‐
ration and use is outside of the scope of this book.4

112 | Chapter 7: Outside Connectivity

5 There’s also a circuit used in Japan called a J-1, which is most simply described as a 24-channel E1.

Digital telephony
Digital telephony was developed in order to overcome many of the limitations of
analog. Some of the benefits of digital circuits include:

• No loss of amplitude over long distances
• Reduced noise on circuits (especially long-distance circuits)
• Ability to carry more than one call per physical circuit
• Faster call setup and teardown
• Richer signaling information (especially if using ISDN)
• Lower cost for carriers
• Lower cost for customers (at higher densities)

There were several fundamental digital circuits that gained wide acceptance in the
telecommunications industry:

T1 (24 channels)
Used in Canada and the United States (mostly for ISDN-PRI)5

E1 (32 channels)
Used in the rest of the world (ISDN-PRI or MFC/R2)

BRI (2 channels)
Used for ISDN-BRI circuits (Euro-ISDN)

Note that the physical circuit can be further defined by the protocol running on the
circuit. For example, a T1 could be used for either ISDN-PRI or CAS, and an E1
could be used for ISDN-PRI, CAS, or MFC/R2.

It is difficult to justify these circuit types anymore. Relative to VoIP protocols, they
have become expensive, complex, and somewhat inflexible. If you need to connect
such circuits to an Asterisk system, we recommend some sort of gateway device to
convert the circuit into SIP, and then connect via SIP to your Asterisk system. If you
want a single-chassis system, companies such as Digium and Sangoma offer digital
PSTN cards that can be installed directly into your Asterisk server; they are

The PSTN | 113

6 We would again like to note that we’ve written extensively about digital circuits and DAHDI in previous edi‐
tions, and that body of work has been released under Creative Commons licensing, and is freely available.
Also, Sangoma/Digium provide detailed instructions on how to install and configure their PSTN cards. If you
are looking to deploy this technology, please enlist the services of a professional technical resource. This stuff
is complex and nuanced, and is not something you’re going to enjoy playing with if you haven’t had some sort
of previous experience. It is not necessary to learning or understanding Asterisk.

7 When we say “lengthy” we mean that in relation to other electronic technologies.
8 Just try to imagine if your telephone number could be spammed the way your email address is. The fact that

the PSTN is regulated, costs money to use, and controls the telephone numbers has served to limit the plague
of spam that email has suffered.

9 The Wikipedia page on network address translation is comprehensive and useful. For more information
about different types of NAT, and how NAT operates in general, start there.

10 SIP is not the only protocol to use RTP to carry media streams.

connected to Asterisk by way of the DAHDI channel driver. The use of this technol‐
ogy is outside of the scope of this book.6

VoIP
Compared to the lengthy history of the telecommunications industry,7 VoIP is still a
relatively new concept. For the century or so prior to VoIP, the only way to connect
your site to the PSTN was through the use of circuits provided for that purpose by
your local telephone company. VoIP now allows for connections between endpoints
without the PSTN having to be involved at all (although in most VoIP scenarios,
there will still be a PSTN component at some point, especially if there is a traditional
E.164 phone number involved). The PSTN still controls the phone numbers, and we’ll
be using those until somebody comes up with an internet-based addressing mecha‐
nism that is not subject to abuse the way email has been.8

Network Address Translation
If you are going to be using VoIP across any sort of wide-area network (such as the
internet), you will be dealing with firewalls, and quite frequently network address
translation (NAT) as well.9 A basic understanding of how the SIP and RTP protocols
work together to create a VoIP call can be helpful in understanding and debugging
functional problems (such as the “one-way audio” issue NAT configuration errors can
often create). NAT allows a single external IP address to be shared by multiple devices
behind a router. Since NAT is typically handled in the firewall, it also forms part of
the security layer between a private network and the internet.

A VoIP call using SIP doesn’t consist just of the signaling messages to set up the call
(the SIP part of the connection). It also requires the RTP streams (the media), which
carry the actual audio connection,10 as shown in Figure 7-1.

114 | Chapter 7: Outside Connectivity

http://bit.ly/2InpK6S

Figure 7-1. SIP and RTP

The use of separate protocols to carry the audio is what can make NAT traversal trou‐
blesome for VoIP connections, especially if the remote phones are behind one NAT,
and the PBX is behind a different NAT. The problem is caused by the fact that while
the SIP signaling will typically be allowed to pass through the firewalls at both ends,
the RTP streams may not be recognized as part of the SIP session taking place, and
thus will be ignored or blocked, as shown in Figure 7-2. The effect of one or both of
the RTP streams being blocked is that users will complain that they are seeing their
calls happen, and can answer them, but cannot hear (or cannot be heard).

Figure 7-2. RTP blocked by firewall

In this section we will discuss some of the methods you may employ to alleviate issues
caused by NAT. There are two different scenarios that need to be considered, each
requiring you to define parameters within the pjsip.conf file. NAT issues can be
annoying to troubleshoot, as there are many different types of firewalls in production,
and many different ways to configure them.

In general, you’re going to want to add the following to the transport sections of
your /etc/asterisk/pjsip.conf file:

[transport-udp]
type=transport
protocol=udp
bind=0.0.0.0
local_net=x.x.x.x/xx ; IP/CIDR of your internal network
external_media_address=x.x.x.x ; External IP address to use in RTP handling
external_signaling_address=x.x.x.x ; External address for SIP signalling

VoIP | 115

11 Whether it is the best solution is still up for debate.

If you want to find the external address of your PBX, run the fol‐
lowing from the shell:

$ dig +short myip.opendns.com @resolver1.opendns.com

It is probably safe to set these parameters for all scenarios, but be prepared to experi‐
ment by commenting out settings and reloading PJSIP to test different scenarios.

Endpoints behind NAT

If your telephone sets are behind a remote NAT, there may be options in the ps_end
points table of your database that should be adjusted from the default settings. You
will need to experiment with changing the following values between 'yes' and 'no'.
There may be many different combinations possible.

MySQL> update ps_endpoints set rtp_symmetric='yes',force_rport='yes',rewrite_contact='yes'

Other parameters you may wish to look at include media_address and
direct_media.

Keep in mind the defaults when you are making changes. If in doubt, set the value of
a field you’ve changed to NULL, as that will effectively set it back to the default.

Keeping a Remote Firewall Open
Sometimes a problem with a SIP telephone will surface wherein the phone will regis‐
ter and function when it is first booted, but then it will suddenly become unreachable.
What is often happening here is that the remote firewall, seeing no activity coming
from the set, will close the external connection to the telephone, and thus the PBX
will lose the ability to signal to the set. The effect is that if the PBX tries to send a call
to the phone, it will fail to connect (the remote firewall will reject the connection). If,
on the other hand, the user makes a call out, for a few minutes the set will again be
able to accept incoming calls. Naturally this can cause a lot of confusion for the users.

A relatively simple solution to this problem11 involves setting the registration timer
on the remote phone to a low enough value that it will stimulate the connection every
minute or so, and thus convince the firewall that this connection can be allowed to
exist for a little while longer. It’s a bit of a hack, but it has proven successful. The chal‐
lenge with proposing a universal solution is that there are many different models of
firewalls, from inexpensive consumer-grade units to complex session border control‐
lers, and this is one of the few solutions that seems to address the problem reliably in
almost all cases.

116 | Chapter 7: Outside Connectivity

This approach is best on smaller systems (fewer than 100 telephones). A larger system
with hundreds or thousands of phones will not be well served by this solution, as
there will be an increased load on the system due to a near-constant flood of registra‐
tions from remote phones. In such a case, some more careful thought will need to be
given to the overall design (for example, a dedicated registrar server could be used in
place of Asterisk to handle the registration traffic).

In a perfect world, you would be able to specify a particular model of firewall, and
devise a configuration for those firewalls that would ensure your SIP traffic was prop‐
erly handled. In reality, you will come up against not just different models of firewall,
but even different firmware versions for the same model firewall.

Asterisk behind NAT
First up, we need to tell you that putting your PBX behind a NAT is not recom‐
mended. It’s far better to ensure it is firewalled without a NAT layer (especially if you
have endpoints that are not on the same network as the PBX).

If you are stuck working with a PBX behind a NAT, you will need to work with your
network team to ensure that the NAT components of the network are being correctly
handled by your NAT device (typically your firewall). If they do not have sufficient
skill in this regard, you may require the services of an outside consultant who is skil‐
led in NAT traversal for SIP/RTP traffic. As we said, having your PBX behind NAT is
not recommended.

Typically, the endpoints will also be behind NAT, and thus you will have a double-
NAT scenario, which is likely to require a few hours of wrangling with various set‐
tings, not only in Asterisk but also in the firewall, in order to achieve success.
Remember that it is vital that you test audio in both directions; it’s not enough to sim‐
ply verify that calls can be dialed and answered.

In a scenario where there is no choice but to use a double-NAT, we would recom‐
mend finding out whether a VPN can be used between the PBX and the remote end‐
points. In many cases this will end up being easier to configure.

We wish we could say there’s a simple, reliable way to ensure NAT works in all cases,
but unfortunately there is not.

You could also look into using NAT assisting technologies such as STUN, TURN, and
ICE. The details of these are beyond the scope of this book, since they require exter‐
nal servers, but many folks have had success with those protocols where other meth‐
ods failed.

VoIP | 117

12 And perhaps even use them that way in conversation, since many people are confused by these terms, and few
will admit it when you’re talking to them.

PSTN Termination and Origination
Passing calls between a VoIP environment and the PSTN requires some sort of gate‐
way to convert the VoIP (typically SIP) signaling into something compatible with
PSTN protocols. These processes are referred to as origination and termination
(Figure 7-3).

Figure 7-3. PSTN origination and termination

People often confuse the terms origination and termination as to which is which. For
us, it’s useful to remember that since the PSTN was already there when VoIP came
along, the terms evolved in relation to it. Ideally, the processes should probably be
called PSTN origination, and PSTN termination, and we encourage you to remember
them that way.12

PSTN termination
Until VoIP totally replaces the PSTN, there will be a need to connect calls from VoIP
networks to the public telephone network. This process is referred to as termination
(Figure 7-4).

118 | Chapter 7: Outside Connectivity

13 Trust us, Jim Van Meggelen worked with this stuff for many years before getting into VoIP.

Figure 7-4. PSTN termination

Although you can engineer an Asterisk system to act as a termination gateway (using
some sort of PSTN interfaces), in practice you’re more likely to use an Internet
Telephony Service Provider (ITSP, also sometimes called a VoIP carrier) to terminate
your phone calls. ITSPs typically have a massive investment in infrastructure, and
you’d be hard-pressed to do better without spending a ton of money. ITSPs have
made termination inexpensive, so it’s tough to make a business case for doing it
yourself.

If you really need to connect your Asterisk system directly to the PSTN, you’ll need
the following:

• Appropriate circuit(s) from a PSTN telco (analog, BRI, PRI, SS7, MFC/R2, etc.)
• Suitable hardware to connect to that circuit (FXO, BRI, T1, E1, etc.)
• Echo cancellation (hardware or software)
• The skills necessary to properly configure your equipment for the carrier you’re

dealing with (there are many flavors of each of these circuit types, and this can be
difficult to get right even for those who know the technology well)13

Beyond that, you will often have to handle a far more complex routing logic, which
takes into consideration things like geography, corporate policy, cost, available resour‐
ces, and so forth.

VoIP | 119

In order to send your calls to an ITSP, your dialplan needs to look something like this:
; NANP-based systems
[to-pstn] ; Yes, we're going through an ITSP, but the PSTN is our destination
exten => _1NXXNXXXXXX.,1,Dial(${TOLL}/${EXTEN}) ; Country code plus phone number

; Add a '1' and send
exten => _NXXNXXXXXX.,1,Dial(${LOCAL}/1${EXTEN}) ; Country code plus phone number

; Strip off the '011' and send
exten => _011X.,1,Dial(${TOLL}/${EXTEN:3}) ; Country code plus phone number

; Emergency dialing
exten => 911,1,Dial(${LOCAL}/911) ; Defining this will require info from your carrier

; Most of the rest of the world
[to-pstn]
; Strip off NDD prefix, add country code, and send
exten => _0X.,1,Dial(${TOLL}/<add your country code here>${EXTEN:1})

; Strip off IDD prefix and send
exten => _00X,1,Dial(${LOCAL}/${EXTEN:2}) ; Country code plus phone number

; Emergency dialing (and other services)
exten => 11X,1,Dial(${LOCAL}/${EXTEN}) ; Defining this will require info from your carrier

Given that most PSTN circuits will allow you to dial any number,
anywhere in the world, and given that you will be expected to pay
for all incurred charges, we cannot stress enough the importance of
security on any gateway machine that is providing PSTN termina‐
tion. Criminals put a lot of effort into cracking phone systems
(especially poorly secured Asterisk systems), and if you do not pay
careful attention to all aspects of security, you will be the victim of
toll fraud. It’s only a matter of time.
Do not allow any unsecured VoIP connections into any context that
contains PSTN termination.

Termination will tend to be more complex than we’ve outlined here—even if you’re
using an ITSP as your carrier—but the basic concept is fairly straightforward: match a
pattern that your users might dial, prepare it for the carrier by removing or adding
necessary digits, and send the call out the appropriate PJSIP endpoint (trunk). We’ve
only discussed the dialplan here; in a later section we’ll discuss how to configure the
SIP trunks to carry this traffic.

PSTN origination
You might also want to be able to accept calls from the PSTN into your VoIP network.
The process of doing this is commonly referred to as origination. This simply means
that the call originated in the PSTN (Figure 7-5).

120 | Chapter 7: Outside Connectivity

14 In traditional PBXs, the purpose of DIDs was to allow connection directly to an extension in the office. Many
PBXs could not support concepts such as number translation or flexible digit lengths, and thus the carrier had
to pass the extension number, rather than the number that was dialed (which was also referred to as the DNIS
number, from Directory Number Information Service). For example, the phone number 416-555-1234 might
have been mapped to extension 100, and thus the carrier would have sent the digits 100 to the PBX instead of
the DNIS of 4165551234. If you ever replace an old PBX with an Asterisk system, you may find this transla‐
tion in place, and you’ll need to obtain a list of mappings between the numbers that the caller dials and the
numbers that are sent to the PBX. It was also common to see the carrier only pass the last four digits of the
DNIS number, which the PBX then translates into an internal number. With VoIP trunks this will seldom be
the case, but be aware that it is possible.

Figure 7-5. PSTN origination

In order to provide origination, a phone number is required.

In the good old days, when VoIP and Asterisk were new, it was quite common for
people to handle the circuit connection to the PSTN themselves, using analog or digi‐
tal trunks provided by the local phone company. For the most part this type of con‐
nection is now handled by ITSPs, and you simply need to connect your system to
your VoIP carrier across a SIP trunk.

Phone numbers—when used for the purpose of origination—are commonly called
DIDs (Direct Inward Dialing numbers). Your carrier will send a call down the circuit
to your system, and pass the DID (or special received digits in some cases14), which
the Asterisk dialplan will interpret. In other words, you will need a dialplan context
that accepts incoming calls from your carrier, with extensions or patterns that will
correlate to your DIDs.

In order to accept a call from a VoIP circuit, you will need to handle the digits the
carrier will send you (the DID or phone number). The DNIS number and the DID do
not have to match, but typically they will. In days gone by, the carrier would usually
ask you in what format you wish to receive the digits. Nowadays, a VoIP carrier will

VoIP | 121

typically tell you what format they will send, and you are expected to accommodate.
Two common formats are: DNIS (which is essentially the digits of the DID that was
called) or E.164, which means that they’ll be including the country code with the
number.

In the dialplan, you associate the incoming circuit with a context that will know how
to handle the incoming digits. As an example, it could look something like this:

[from-pstn]

exten => 4165550100,1,Goto(sets,100,1)
exten => 4165550101,1,Goto(sets,101,1)
exten => 4165550102,1,Goto(sets,102,1)
exten => 4165550103,1,Goto(sets,103,1)
exten => 4165554321,1,Goto(main-menu,${EXTEN},1)
exten => 4165559876,1,VoiceMailMain() ; a handy back door for listening
 ; to voice messages

exten => i,1,Verbose(2,Incoming call to invalid number)

In the number-mapping context, you explicitly list all of the DIDs that you expect to
handle, plus an invalid handler for any DIDs that are not listed (you could send inva‐
lid numbers to reception, or to an automated attendant, or to some context that plays
an invalid prompt).

Now we’re ready to discuss how to configure trunks to carry your external traffic.

Configuring SIP Trunks
SIP is far and away the most popular of the VoIP protocols—so much so that the
terms VoIP and SIP have almost come to mean the same thing. In previous editions
of this book, we’ve looked at some of the other protocols that were popular at the time
(primarily IAX2 and H.323), but for this edition there’s no real reason anymore to
discuss anything but SIP. The channel drivers for those older protocols are still avail‐
able in Asterisk, but they’re no longer supported.

The SIP protocol is peer-to-peer and does not really have a formal trunk specifica‐
tion. This means that whether you are connecting a single phone to your server or
connecting two servers together, the SIP connections will be similar. Having said that,
there are some differences in the style of how these resources can be configured, and
there will definitely be a difference in how your dialplan handles routing across
trunks.

Connecting an Asterisk system to a SIP provider
It is quite common to use the same ITSP carrier for termination and origination, but
be aware that the two processes are unrelated to each other. If calls going in one
direction pass your testing, that doesn’t mean calls in the other direction are OK. If
you change configuration, test routing both in and out, every time.

122 | Chapter 7: Outside Connectivity

15 Remember that registration is simply a mechanism whereby a SIP endpoint tells a registrar server where it is
located. This is useful if your IP address changes, as might be the case on a consumer or small-business type
of internet connection (such as DSL or cable).

Many carriers will provide sample configurations for Asterisk. Unfortunately, these
documents generally refer to the older chan_sip driver, which has been deprecated.
Digium has designed a PJSIP wizard that is intended to greatly simplify carrier con‐
figuration. You can still configure ITSP trunks using the exact same methods we’ve
shown before for configuring other endpoints (creating records in ps_endpoint,
ps_aors, ps_auths, and so forth), but rather than hash over all that again, we are
going to take a look at the wizard, since it consolidates several components into a sin‐
gle configuration file. We have found that since user endpoints change often, and car‐
rier endpoints seldom do, it’s often useful to configure carriers in a configuration file
rather than in the database.

Before any config can be created, however, it’s important to determine how the carrier
will interact with your system. There are two fundamental models we have seen:

Password-based authentication, including registration15

This is common in smaller carriers focused on the small-business market. This is
also the type of service you would get if you were simply registering a SIP phone
directly to a service.

IP-based authentication
No password; no registration. This is more common with carriers that provide
bulk trunking services to larger enterprises and resellers. (Typically these will also
come with some sort of minimum commitment in terms of volume.) You will be
expected to have solid SIP and networking skills.

These are not hard-and-fast rules, but they are the most common in our experience.

So there are two ways we might configure an ITSP in the /etc/asterisk/
pjsip_wizard.conf file.

First, if the carrier uses an IP address–based authentication, they will expect you to
send your traffic from a static IP address (and should your address change, you will
need to inform them so they can reconfigure their equipment). Your pjsip_wiz‐
ard.conf file could then look something like this:

; ITSP uses IP address-based authentication
[itsp-no-auth]
type=wizard
remote_hosts=itsp.example.com
endpoint/context=pstn-in
endpoint/allow = !all,ulaw,g722
sends_registrations=no
accepts_registrations=no

VoIP | 123

sends_auth=no
accepts_auth=no

Alternatively, if your IP address changes frequently (or your carrier requires this
method), you can have your system register to the carrier (which will require you to
send authentication credentials to prove it’s really you). Your calls will typically also
be required to authenticate:

[itsp-with-auth]
type=wizard
remote_hosts=itsp.example.com
endpoint/context=pstn-in
endpoint/allow = !all,ulaw,g722
sends_registration=yes
accepts_registrations=no
sends_auth=yes
accepts_auth=no
outbound_auth/username=itsp_provided_username
outbound_auth/password= itsp_provided_password

Note that the names [itsp-no-auth] and [itsp-with-auth] have no built-in mean‐
ing to Asterisk. They become the PJSIP channel names to which you send your calls.

Configure trunks for termination. The PJSIP wizard has created the channel definitions
we require for our carrier. To send a call, we only need to make a minor change to the
[globals] section of our extensions.conf file, as follows:

[globals]
UserA_DeskPhone=PJSIP/0000f30A0A01
UserA_SoftPhone=PJSIP/SOFTPHONE_A
UserB_DeskPhone=PJSIP/0000f30B0B02
UserB_SoftPhone=PJSIP/SOFTPHONE_B

TOLL=PJSIP/itsp-no-auth
LOCAL=${TOLL}
;OR
;TOLL=PJSIP/itsp-with-auth
;LOCAL=${TOLL}

Configuring trunks for origination. For your incoming calls, you’ll need a context in
your /etc/asterisk/extensions.conf file that matches the context specified for the ITSP
channel. Let’s assume we have two NANP DIDs, 4169671111 and 4167363636, and
place the required code above the [sets] context:

TOLL=PJSIP/itsp-no-auth
LOCAL=${TOLL}
;OR
;TOLL=PJSIP/itsp-with-auth
;LOCAL=${TOLL}

[pstn-in]
exten => 4169671111,1,Dial(sets,100,1)
exten => 4167363636,1,Dial(sets,101,1)

124 | Chapter 7: Outside Connectivity

16 A table to handle this would simply need a field for the DID, and three more for the target context, extension,
and priority.

17 Don’t assume this can’t happen. When somebody calls 911, it’s because they have an emergency, and it’s not
safe to assume that they’re going to be in a rational state of mind. A recording that tells your softphone users
what address the system is going to be sending to the PSAP may clue them in to the fact that the fire trucks
aren’t going to be sent to where they’re needed. (“This telephone is registered to our Toronto system. Emer‐
gency services will be sent to our office at 301 Front St W. Press 1 to proceed with this call.”).

[sets]
exten => 100,1,Dial(${UserA_DeskPhone})

In a small system, this is fairly easy to administer. In a larger system, you’d want to
put the DIDs into a table in your database, and have the dialplan look up the required
target. We’ll be diving into databases a bit more later in the book.16

That’s the gist of it as far as carrier interconnection is concerned. It can seem very
complicated to set this up because there are a lot of options, but at a high level it’s
fairly straightforward. Problems are usually found to be minor configuration mis‐
matches. Be methodical, and please, please, please be paranoid about security!

Emergency Dialing
In North America, people are used to being able to dial 911 in order to reach emer‐
gency services. Outside of North America, well-known emergency numbers are 112
and 999. If you make your Asterisk system available to people, you are obligated (in
many cases regulated) to ensure that calls can be made to emergency services from
any telephone connected to the system (even from phones that otherwise are restric‐
ted from making calls).

One of the essential pieces of information the emergency response organization
needs to know is where the emergency is (e.g., where to send the fire trucks). In a
traditional PSTN trunk, this information is already known by the carrier and is sub‐
sequently passed along to whatever local authority handles these tasks (in Canada and
the US, these are called Public Safety Answering Points, or PSAP). With VoIP circuits
things can get a bit more complicated, by virtue of the fact that they are not physically
tied to any geographical location.

You need to ensure that your system will properly handle emergency calls from any
phone connected to it, and you need to communicate what is available to your users.
As an example, if you allow users to register to the system from softphones on their
laptops, what happens if they are in a hotel room in another country, and somebody
dials 911?17

The dialplan for handling emergency calls does not need to be complicated. In fact,
it’s far better to keep it simple. People are often tempted to implement all sorts of
fancy functionality in the emergency services portions of their dialplans, but if a bug

Emergency Dialing | 125

18 It’s not actually the carrier that’s offering this; rather it’s a capability of the PSAP. E911 is also used on PSTN
trunks, but since that happens without any involvement on your part (the PSTN carriers handle the paper‐
work for you), you are generally not aware that you have E911 on your local lines.

in one of your fancy features causes an emergency call to fail, lives could be at risk.
This is no place for playing around. The [emergency-services] section of your
dialplan might look something like this:

[emergency-services]
exten => 911,1,Goto(dialpsap,1)
exten => 9911,1,Goto(dialpsap,1) ; some people will dial '9' because
 ; they're used to doing that from the PBX
exten => 999,1,Goto(dialpsap,1)
exten => 112,1,Goto(dialpsap,1)

exten => dialpsap,1,Verbose(1,Call initiated to PSAP!)
 same => n,Dial(${LOCAL}/911) ; REPLACE 911 HERE WITH WHATEVER
 ; IS APPROPRIATE TO YOUR AREA

[internal]
include => emergency-services ; you have to have this in any context
 ; that has users in it

In contexts where you know the users are not on-site (for example, remote users with
their laptops), something like this might be best instead:

[no-emergency-services]
exten => 911,1,Goto(nopsap,1)
exten => 9911,1,Goto(nopsap,1) ; for people who dial '9' before external calls
exten => 999,1,Goto(nopsap,1)
exten => 112,1,Goto(nopsap,1)

exten => nopsap,1,Verbose(1,Call initiated to PSAP!)
 same => n,Playback(no-emerg-service) ; you'll need to record this prompt

[remote-users]
include => no-emergency-services

In North America, regulations have obligated many VoIP carriers to offer what is
popularly known as E911.18 When you sign up for their services, they will require
address information for each DID that you wish to associate with outgoing calls. This
address information will then be sent to the PSAP appropriate to that address, and
your emergency calls should be handled the same way they would be if they were
dialed on a traditional PSTN circuit.

The bottom line is that you need to make sure that the phone system you create han‐
dles emergency calls in accordance with local regulations and user expectations.

126 | Chapter 7: Outside Connectivity

Conclusion
It is generally predicted that the PSTN will eventually disappear entirely. Before that
happens, however, a distributed mechanism that is widely used and trusted will be
needed to allow organizations and individuals to publish addressing information so
they can be found. Any voice technology that does not use the PSTN is currently
either a walled-garden proprietary product, or is the playground of spammers and
criminals. We suspect the PSTN may be around for a while yet, and if so, then origi‐
nation and termination will need to be part of your Asterisk system.

Conclusion | 127

1 This name was a play on words, inspired in part by Nortel’s voicemail system Meridian Mail. Nortel (and
Meridian Mail) are gone, but Comedian Mail soldiers on.

CHAPTER 8

Voicemail

Just leave a message, maybe I’ll call.
—Joe Walsh

Before email and instant messaging became ubiquitous, voicemail was a popular
method of electronic messaging. Even though most people now prefer text-based
messaging systems, voicemail remains an essential component of any PBX.

Asterisk has a reasonably flexible voicemail system named Comedian Mail.1 Voice‐
mail in Asterisk is provided in the dialplan by the app_voicemail.so module.

A Caveat About Voicemail in Asterisk
The app_voicemail module is one of the oldest in Asterisk, and it suffers from many
limitations, especially when compared to other modules that have enjoyed a steady
evolution. The code itself is something few have the nerve to mess with, and thus new
features for this module are unlikely to ever appear. You need to understand that
app_voicemail doesn’t just provide a dialplan application; there are all sorts of things
that have to happen to ensure this all works, such as storage and file management,
interaction with the email system of the operating system, time zone awareness, file
formatting, security, plus a whole basket of various parameters that might need to be
set. The app_voicemail module does all of that, and as a result it ends up being a sort
of kludgy subsystem (on traditional PBXs, the voicemail was in fact a completely sep‐
arate machine).

129

Numerous attempts have been made to re-engineer voicemail, but they’ve all come up
short. The reasons are simple: the level of work (and therefore cost) required to re-
engineer it (in such a way as to satisfy the needs of a diverse community), coupled
with a lack of cultural interest in voicemail technology in general, have (thus far)
quickly killed any such initiative.

It’s important to state that Asterisk voicemail works, and works well. You’ll probably
find it suitable to your needs. If you don’t, the community will suggest that you are
more than welcome to take a crack at re-engineering it.

Some of the features of Asterisk’s voicemail system include:

• Unlimited password-protected voicemail boxes, each containing mailbox sub-
folders for organizing voicemail

• Different greetings for busy and unavailable states
• Default and custom greetings
• The ability to associate phones with more than one mailbox, and mailboxes with

more than one phone
• Email notification of voicemail, with the voicemail optionally attached as an

audio file
• Voicemail forwarding and broadcasts
• Message-waiting indicator (flashing light or stuttered dialtone) on many types of

phones
• Company directory of employees, based on voicemail boxes

We’re now going to take you on a tour of the essential parts of the voicemail configu‐
ration file, covering the settings in the general section, the various regional settings
that are possible, integration of voicemail into your dialplan, and a brief under-the-
hood look at how Asterisk stores voicemail in the Linux filesystem.

The voicemail.conf File
Since we’ve installed the table required for voicemail in the MySQL database, it is pos‐
sible to create mailboxes there without any other configuration. It is, however, also
possible to create mailboxes in an /etc/asterisk/voicemail.conf file (this file also allows
you to change various other default settings). We’ll continue to use the database to
create and manage users, since it is far more suited to the task, but we’ll also explore
the configuration file so that you can get a sense of the flexibility possible with Aster‐
isk’s voicemail.

130 | Chapter 8: Voicemail

2 Also sometimes called a Message Transfer Agent.

The voicemail.conf file contains several sections where various default parameters can
be adjusted. For the most part, you won’t need to change any of these; however, you
should take a look at the ~/src/asterisk-1.15.<your version>/configs/samples/voice‐
mail.conf.sample file. It contains useful information about various options that can be
adjusted.

We have provided a simple voicemail.conf file next. If you wish to tweak the basic
configuration beyond this, simply add or edit the relevant option.

An Initial voicemail.conf File
We recommend the following sample as a starting point. You can refer to ~/asterisk-
complete/asterisk/11/configs/voicemail.conf.sample for details on the various settings.

Place the following in a file named /etc/asterisk/voicemail.conf:
; Voicemail Configuration

[general]
format=wav49|wav
serveremail=voicemail@shifteight.org
attach=yes
skipms=3000
maxsilence=10
silencethreshold=128
maxlogins=3
emaildateformat=%A, %B %d, %Y at %r
pagerdateformat=%A, %B %d, %Y at %r
sendvoicemail=yes ; Allow the user to compose and send a voicemail while inside

[zonemessages]
eastern=America/New_York|'vm-received' Q 'digits/at' IMp
central=America/Chicago|'vm-received' Q 'digits/at' IMp
central24=America/Chicago|'vm-received' q 'digits/at' H N 'hours'
military=Zulu|'vm-received' q 'digits/at' H N 'hours' 'phonetic/z_p'
european=Europe/Copenhagen|'vm-received' a d b 'digits/at' HM

Setting up a Linux server to handle the sending of email is a Linux
administration task that is beyond the scope of this book. You will
need to test your voicemail-to-email service to ensure that the
email is being handled appropriately by the Mail Transfer Agent
(MTA),2 and that downstream spam filters are not rejecting the
messages (one reason this might happen is if your Asterisk server is
using a hostname in the email body that does not in fact resolve to
it).

The voicemail.conf File | 131

You can create a massive and complex voicemail.conf file (and can even store user
mailboxes in it), but we’re going to focus on a few curated examples to keep things
simple. You’ll likely find that what we present will serve your needs quite well (and
that the documentation samples will provide more detail, should you require it).

The [general] Section
The first section of the voicemail.conf file, [general], allows you to define global set‐
tings. Many of these settings can be assigned on a per-mailbox setting. We’ve listed in
Table 8-1 a few settings that we feel are the most important to consider.

Table 8-1. [general] section options for voicemail.conf

Option Value/example Notes
format wav49|gsm|wav For each format listed, Asterisk creates a separate recording in that format

whenever a message is left. The benefit is that some transcoding steps may be
saved if the stored format is the same as the codec used on the channel. We like
WAV because it is the highest quality, and WAV49 because it is nicely compressed
and easy to email. We don’t like GSM due to its scratchy sound, but it enjoys some
popularity.a

serveremail user@domain When an email is sent from Asterisk, this is the email address that it will appear to
come from.b

attach yes,no If an email address is specified for a mailbox, this determines whether the message
is attached to the email (if not, a simple message notification is sent, and the user
will need to call into voicemail to retrieve their messages).

maxmsg 9999 By default, Asterisk only allows a maximum of 100 messages to be stored per user.
For users who delete messages, this is no problem. For people who like to save
their messages, this space can get eaten up quickly. With the size of hard drives
these days, you could easily store thousands of messages for each user, so our
current thinking is to set this to the maximum and let the users manage things
from there. Be aware that old voicemail messages on a large system can waste a
lot of hard drive space, after a few years of storing every message.

maxsecs 600 This type of setting was useful back when a large voicemail system might have
only 40 MBc of storage: it was necessary to limit the system because it was easy to
fill up the hard drive. This setting can be annoying to callers (although it does force
them to get to the point, so some people like it). Nowadays, with terabyte drives
common, there is no technical reason to limit the length of a message. Two
considerations are: 1) if a channel gets hung in a mailbox, it’s good to set some
sort of value so it doesn’t mindlessly record an endless, empty voice message, but
2) if a user wants to use her mailbox to record notes to herself, she won’t
appreciate it if you cut her off after 3 minutes. A setting somewhere between 600
seconds (10 minutes) and 3600 seconds (1 hour) will probably be about right.

emailsub

ject

[PBX]: New

message $
{VM_MSGNUM}

in mailbox $

{VM_MAILBOX}

When Asterisk sends an email, you can use this setting to define what the Sub
ject: line of the email will look like. See the voicemail.conf.sample file for more
details.

132 | Chapter 8: Voicemail

Option Value/example Notes
emailbody Dear $

{VM_NAME}:\n

\n\tyou

have a $

{VM_DUR}

long mes

sage (num

ber $

{VM_MSGNUM})

\nin mail

box ${VM_MAIL

BOX} \n\n\t\t

\t\t--

Asterisk\n

When Asterisk sends an email, you can use this setting to define what the body of
the email will look like. See the voicemail.conf.sample file for more details.

emaildate

format

%A, %d %B

%Y at %H:%M:

%S

This option allows you to specify the date format in emails. Uses the same rules as
the C function STRFTIME.

pollmail

boxes

no, yes If the contents of mailboxes are changed by anything other than app_voice
mail (such as external applications or another Asterisk system), setting this to
yes will cause app_voicemail to poll all the mailboxes for changes, which
will trigger proper message waiting indication (MWI) updates.

pollfreq 30 Used in concert with pollmailboxes, this option specifies the number of
seconds to wait between mailbox polls.

a The separator that is used for each format option must be the pipe (|) character.
b Sending email from Asterisk can require some careful configuration, because many spam filters will find Asterisk messages
suspicious and will simply ignore them. We talk more about how to set email for Asterisk in “Voicemail to Email” on page 144.
c Yes, you read that correctly: megabytes.

External Validation of Voicemail Passwords
By default, Asterisk does not validate user passwords to ensure they are at least some‐
what secure. Anyone who maintains voicemail systems will tell you that a large per‐
centage of mailbox users set their passwords to something like 1234 or 1111, or some
other string that’s easy to guess. Although fraud bots aren’t typically interested in
making mischief, having lousy passwords does represent a security hole in the voice‐
mail system.

Since the app_voicemail.so module does not have the built-in ability to validate
passwords, the settings externpass, externpassnotify, and externpasscheck allow
you to validate them using an external program. Asterisk will call the program based
on the path you specify, and pass it the following arguments:

mailbox context oldpass newpass

The voicemail.conf File | 133

The script will then evaluate the arguments based on rules that you defined in the
external script, and, accordingly, it should return to Asterisk a value of VALID for suc‐
cess or INVALID for failure (actually, the return value for a failed password can be any‐
thing except the words VALID or FAILURE). This value is typically printed to stdout. If
the script returns INVALID, Asterisk will play an invalid-password prompt and the
user will need to attempt something different.

Ideally, you would want to implement rules such as the following:

• Passwords must be a minimum of six digits in length
• Passwords must not be strings of repeated digits (e.g., 111111)
• Passwords must not be strings of contiguous digits (e.g., 123456 or 987654)

Asterisk comes with a simple script that will greatly improve the security of your
voicemail system. It is located in the source code under the folder: /contrib/scripts/
voicemailpwcheck.py.

We strongly recommend that you copy it to your /usr/local/bin folder (or wherever
you prefer to put such things), and then uncomment the externpasscheck= option in
your voicemail.conf file. Your voicemail system will then enforce the password secu‐
rity rules you have established.

Part of the [general] section is an area of supplementary options (referred to in the
config file as advanced options, though there’s not really anything advanced about
them). These options (listed in Table 8-2) are defined in the same way as the other
options in the [general] section, but what is significant about them is that they can
also be defined on a per-mailbox basis, which would override whatever is defined
under [general] for that particular setting. In other words, the following options can
be set in the database when you create a new mailbox.

Table 8-2. A curated list of supplementary options for voicemail.conf

Option Value/example Notes
tz eastern, euro

pean, etc.
Specifies the zonemessages name, as defined under [zonemessages]
(discussed in the next section).

locale de_DE.utf8,
es_US.utf8, etc.

Used to define how Asterisk generates date/time strings in different locales. To
determine the locales that are valid on your Linux system, type locale -a at the
shell.

attach yes, no If an email address is specified for a mailbox, this determines whether the messages
are attached to the email notifications (otherwise, a simple message notification is
sent).

134 | Chapter 8: Voicemail

Option Value/example Notes
attachfmt wav49, wav, etc. If attach is enabled and messages are stored in different formats, this defines

which format is sent with the email notifications. Often wav49 is a good choice, as
it uses a better compression algorithm and thus will use less bandwidth, but
doesn’t sound crappy, as gsm does.

exitcontext context There are options that allow the callers to exit the voicemail system when they are
in the process of leaving a message (for example, pressing 0 to get an operator). By
default, the context the caller came from will be used as the exit context. If desired,
this setting will define a different context for callers exiting the voicemail system.

review yes, no This should almost always be set to yes (even though it defaults to no). People
get upset if your voicemail system does not allow them to review their messages
prior to delivering them.

operator yes, no Best practice dictates that you should allow your callers to “zero out” from a
mailbox, should they not wish to leave a message. Note that an o extension (not
“zero,” but “oh”) is required in the exitcontext in order to handle these calls.

delete no, yes After an email message notification is sent (which could include the message itself),
the message will be deleted. This option is risky, because the fact that a message
was emailed is not a guarantee that it was received (spam filters seem to love to
delete Asterisk voicemail messages). On a new system, leave this at no until you
are certain that no messages are being lost due to spam filters.

nextaf

tercmd

yes, no This handy little setting will save you some time, as it takes you directly to the next
message once you’ve finished dealing with the current message.

passwordlo

cation

spooldir If you want, you can have mailbox passwords stored in the spool folder for each
mailbox.a One of the advantages of using the spooldir option is that it will
allow you to define file #include statements in voicemail.conf (meaning you can
store mailbox references in multiple files, as you can with, for example, dialplan
code). This is not possible otherwise, because app_voicemail normally writes
password changes to the filesystem, and cannot update a mailbox password stored
outside of either voicemail.conf or the spool. If you do not use passwordloca
tion, you will not be able to define mailboxes outside of voicemail.conf, since
password updates will not happen. Storing passwords in a file in the specific
mailbox folder in the spool solves this problem.

a Typically the spool folder is /var/spool/asterisk, and it can be defined in /etc/asterisk/asterisk.conf.

The [zonemessages] Section
The next section of the voicemail.conf file is the [zonemessages] section. The purpose
of this section is to allow time zone–specific handling of messages, so you can play
back to the user messages with the correct timestamps. You can set the name of the
zone to whatever you need. Following the zone name, you can define which time
zone you want the name to refer to, as well as some options that define how time‐
stamps are played back. You can look at the ~//src/asterisk-16.<TAB>/configs/
samples/voicemail.conf.sample file for syntax details. Asterisk includes the examples
shown in Table 8-3. Any valid time zone known to the Linux system should be

The voicemail.conf File | 135

configurable. Just use the Linux name for the zone, and then provide the details of
how you want it handled.

Table 8-3. [zonemessages] section options for voicemail.conf

Zone name Value/example Notes
eastern America/New_York|'vm-received'

 Q 'digits/at' IMp
This value would be suitable for the Eastern time
zone (EST/EDT).

central America/Chicago|'vm-received' Q

 'digits/at' IMp

This value would be suitable for the Central time
zone (CST/CDT).

cen

tral24

America/Chicago|'vm-received' q

 'digits/at' H N 'hours'

This value would also be suitable for CST/CDT, but
would play back the time in 24-hour format.

military Zulu|'vm-received' q 'digits/at'

 H N 'hours'

 'phonetic/z_p'

This value would be suitable for Universal Time
Coordinated (Zulu time, formerly GMT).

european Europe/Copenhagen|'vm-received'

 a d b 'digits/at' HM

This value would be suitable for Central European
time (CEST).

Mailboxes
You can configure mailboxes in the voicemail.conf file, but it’s not the recommended
way. We’re going to use the database to define your mailboxes.

The first thing we need to do is tell Asterisk that voicemail users are available in the
database. We do that by editing the /etc/asterisk/extconfig.conf file:

$ sudo vim /etc/asterisk/extconfig.conf

[settings] ; older mechanism for connecting all other modules to the database
ps_endpoints => odbc,asterisk
ps_auths => odbc,asterisk
ps_aors => odbc,asterisk
ps_domain_aliases => odbc,asterisk
ps_endpoint_id_ips => odbc,asterisk
ps_contacts => odbc,asterisk
voicemail => odbc,asterisk,voicemail

You should restart Asterisk to ensure this change has been applied ($ sudo service
asterisk restart).

In the voicemail system, a mailbox must be defined with a context. This does not
relate to any dialplan context; it’s a label specific to voicemail that will determine what
mailboxes will be grouped together, and is also used to name the folder in the spool
that contains the various files associated with this mailbox (greeting, messages, enve‐
lopes, and so forth). Normally, you don’t need to worry about this, as all mailboxes
will end up in the default context. You really only need to define various contexts if
you have a complex, multi-tenanted system, where there’s a potential for extension
overlap, or where you don’t want certain groups of users exposed to other groups of
users.

136 | Chapter 8: Voicemail

The `asterisk`.`voicemail` table offers many options; however, to create a mail‐
box there are only three fields that are required, plus two more that are recom‐
mended. The context, mailbox, and password fields are required, and fullname and
email are strongly recommended. Here’s a simple MySQL INSERT that’ll create some
mailboxes for you.

INSERT INTO `asterisk`.`voicemail` (context,mailbox,password,fullname,email)
VALUES
('default','100','486541','Russell Bryant', 'russell@shifteight.org'),
('default','101','957642','Leif Madsen', 'leif@shifteight.org'),
('default','102','656844','Jared Smith', 'jared@shifteight.org'),
('default','103','375416','Jim VanMeggelen', 'jim@shifteight.org')
;

The parts of the mailbox definition are:

mailbox

This is the mailbox number. It is normal to ensure it corresponds with the exten‐
sion number of the associated set.

password

This is the numeric password that the mailbox owner will use to access her voice‐
mail. If the user changes her password, the system will update this field in the
database.

If the password is preceded by the hyphen (-) character, the user cannot change
their mailbox password.

fullname (FirstName LastName)

This is the name of the mailbox owner. The company directory uses the text in
this field to allow callers to spell usernames. You only get one space, which is
meant to delimit the first name from the last name, so if your last name is some‐
thing like Van Meggelen, you’ll put that in as VanMeggelen. Other punctuation
characters might also cause problems. (We’re looking at you, O’Reilly.)

email address

This is the email address of the mailbox owner. Asterisk can send the voicemail
to the specified email box.

The Asterisk directory cannot handle the concept of a surname
that is anything other than a simple word. This means that family
names such as O’Reilly, Bryant-Madsen-Smith, and yes, even Van
Meggelen must have any punctuation characters and spaces
removed before being added to voicemail.conf.

The voicemail.conf File | 137

There are quite a few other options you can define for each user. It’s unlikely you’ll
use many of them, but Table 8-4 contains a curated list of some that may be of use to
you.

Table 8-4. Mailbox options

Option Description
delete After Asterisk sends the voicemail via email, the voicemail is deleted from the server. This option is

useful for users who only want to receive voicemail via email. Valid options are yes or no. Option
can only be set per mailbox.

envelope Turns on or off envelope playback prior to playback of the voicemail message. Valid options are yes
or no. Default is yes.

exitcontext The dialplan context to exit to when pressing * or 0 from the Voicemail() application. Works in
conjunction with the operator option as well. Must have an extension a in the context for exiting
with *. Must have an extension o in the context for exiting with 0. You’ll need to do a bit of design
work before your dialplan will be able to handle this well, so it’s best to leave it blank until you’ve
had a chance to prototype everything you’ll need to handle.

forcegreeting Forces the recording of a greeting for new mailboxes. A new mailbox is determined by the mailbox
number and password matching. Valid values are yes or no. Default is no.

forcename Forces the recording of the person’s name for new mailboxes. A new mailbox is determined by the
mailbox number and password matching. Valid values are yes or no. Default is no.

hidefromdir If set to yes, this mailbox will be hidden from the Directory() application. Default is no.
locale Allows you to set the locale for the mailbox in order to control formatting of the date/time strings.

See voicemail.sample.conf for more information.
messagewrap Allows the first and last messages to wrap around (e.g., allow last message to wrap back to the first

on the next message, or first message to wrap to the last message when going to the previous
message). Valid options are yes or no. Default is no.

minpassword Sets the minimum password length. Argument should be a whole number.
nextaftercmd Skips to the next message after the user presses the 7 key (delete) or 9 key (save). Valid values are

yes or no. Default is yes.
operator Will allow the sender of a voicemail to hit 0 before, during, or after recording of a voicemail. Will exit

to the o extension in the same context, or the context defined by the exitcontext option. Valid
options are yes or no. Default is no. There are security risks associated with this, so it’s best not to
use it until you’re certain the exitcontext does not allow calls to leave the system (i.e., end up
making an expensive overseas call).

passwordloca

tion

By default, the password for voicemail is stored in the voicemail.conf file, and modified by Asterisk
whenever the password changes. This may not be desirable, especially if you want to parse the
password from an external location (or script). The alternate option for passwordlocation is
spooldir, which will place the password for the voicemail user in a file called secret.conf in the
user’s voicemail spool directory. Valid options are voicemail.conf and spooldir. The default
option is voicemail.conf.

review When enabled, will allow the user recording a voicemail message to re-record their message. After
pressing the # key to save their voicemail, they’ll be prompted whether they wish to re-record or
save the message. Valid options are yes or no. Default is no.

138 | Chapter 8: Voicemail

Option Description
saycid If enabled, and a prompt exists in /var/spool/asterisk/voicemail/recordings/callerids, then that file will

be played prior to the message, playing the file instead of saying the digits of the caller ID number.
Valid options are yes or no. Default is no.

sayduration Determines whether to play the duration of the message prior to message playback. Valid options are
yes or no. Default is yes.

saydurationm Allows you to set the minimum duration to play (in minutes). For example, if you set the value to 2,
you will not be informed of the message length for messages less than 2 minutes long. Valid values
are whole numbers. Default is 2.

searchcontexts For applications such as Voicemail(), VoicemailMain(), and Directory(), the
voicemail context is an optional argument. If the voicemail context is not specified, then the default
is to only search the default context. With this option enabled, all contexts will be searched. This
comes with a caveat that, if enabled, the mailbox number must be unique across all contexts—
otherwise there will be a collision, and the system will not understand which mailbox to use. Valid
options are yes and no. Default is no.

sendvoicemail Allows the user to compose and send a voicemail message from within the VoicemailMain()
application. Available as option 5 under the advanced menu. If this option is disabled, then option 5
in the advanced menu will not be prompted. Valid options are yes or no. Default is no.

tempgreetwarn Enables a notice to the user when their temporary greeting is enabled. Valid options are yes or no.
Default is no.

tz Sets the time zone for a voicemail user (or globally). See /usr/share/timezone for different available
time zones. Not applicable if envelope=no.

volgain The volgain option allows you to set volume gain for voicemail messages. The value is in decibels
(dB). The sox application must be installed for this to work.

Voicemail Dialplan Integration
There are two primary dialplan applications provided by the app_voicemail.so
module in Asterisk. The first, simply named VoiceMail(), does exactly what you
would expect it to, which is to record a message in a mailbox. The second one, Voice
MailMain(), allows a user to log into a mailbox to retrieve messages.

The VoiceMail() Dialplan Application
When you want to pass a call to voicemail, you need to provide two arguments: the
mailbox (or mailboxes) in which the message should be left, and any options relating
to this, such as which greeting to play or whether to mark the message as urgent. The
structure of the VoiceMail() command is this:

VoiceMail(mailbox[@context][&mailbox[@context][&...]][,options])

The options you can pass to VoiceMail() that provide a higher level of control are
detailed in Table 8-5.

Voicemail Dialplan Integration | 139

Table 8-5. VoiceMail() optional arguments

Argument Purpose
b Instructs Asterisk to play the busy greeting for the mailbox (if no busy greeting is found, the unavailable greeting

will be played).
d([c]) Accepts digits to be processed by context c. If the context is not specified, it will default to the current context.
g(#) Applies the specified amount of gain (in decibels) to the recording. Only works on DAHDI channels.
s Suppresses playback of instructions to the callers after playing the greeting.
u Instructs Asterisk to play the unavailable greeting for the mailbox (this is the default behavior).
U Indicates that this message is to be marked as urgent. The most notable effect this has is when voicemail is

stored on an IMAP server. In that case, the email will be marked as urgent. When the mailbox owner calls in to
the Asterisk voicemail system, he should also be informed that the message is urgent.

P Indicates that this message is to be marked as priority.

The VoiceMail() application sends the caller to the specified mailbox, so that they
can leave a message. The mailbox should be specified as mailbox@context, where con
text is the name of the voicemail context (not the dialplan context). The option let‐
ters b or u can be added to request the type of greeting. If the letter b is used, the caller
will hear the mailbox owner’s busy message (if one exists). If the letter u is used, the
caller will hear the mailbox owner’s unavailable message (also assuming one exists). If
no greeting exists, the system will generate a generic message: The person at extension
<mailbox> is unavailable. Please leave a message at the tone.

In the dialplan we built in Chapter 6, we created several extensions. Consider this
simple example extension 102, which allows people to call UserB_DeskPhone:

exten => 102,1,Dial(${UserB_DeskPhone},10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

We faked a voicemail by playing a prompt that didn’t actually do anything. Let’s
change that so the call goes to an actual mailbox instead. For now we’ll just let voice‐
mail play a generic greeting that the caller will hear. Remember, the second argument
to the Dial() application is a timeout. If the call is not answered before the timeout
expires, the call is sent to the next priority. We’ve got a 10-second timeout, and a new
priority to send the caller to voicemail after the dial timeout:

exten => 102,1,Dial(${UserB_DeskPhone},10)
 same => n,Voicemail(${EXTEN}@default,u))
 same => n,Hangup()

We can do more if we wish, and change it so that if the user is busy (on another call),
the caller will hear a busy message. To do this, we will make use of the ${DIALSTATUS}
variable, which contains one of several status values (type core show application
Dial at the Asterisk console for a listing of all the possible values):

140 | Chapter 8: Voicemail

3 We’ll dive into functions like IF() in Chapter 10.

exten => 102,1,Dial(${UserA_SoftPhone})
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)

 same => n(unavail),VoiceMail(101@default,u)
 same => n,Hangup()

 same => n(busy),VoiceMail(101@default,b)
 same => n,Hangup()

Now callers will get voicemail (with the appropriate greeting) if the user is either busy
or unavailable. An alternative syntax is to use the IF() function to define which of the
unavailable or busy messages to use:3

exten => 103,1,Dial(${UserB_SoftPhone})
 same => n,Voicemail(${EXTEN}@default,${IF($["${DIALSTATUS}" = "BUSY"]?b:u)})
 same => n,Hangup()

A slight problem remains, however, in that our users have no way of retrieving their
messages, nor setting their greetings or any other voicemail options. We will remedy
that in the next section.

The VoiceMailMain() Dialplan Application
Users can retrieve their voicemail messages, change their voicemail options, and
record their voicemail greetings using the VoiceMailMain() application. VoiceMail
Main() accepts two arguments: the mailbox number (and context if necessary), plus a
few options. Both arguments are optional.

The structure of the VoiceMailMain() application looks like this:
VoiceMailMain([mailbox][@context][,options])

If you do not pass any arguments to VoiceMailMain(), it will play a prompt asking
the caller to provide their mailbox number. The options that can be supplied are lis‐
ted in Table 8-6.

Table 8-6. VoiceMailMain() optional arguments

Argument Purpose
p Allows you to treat the mailbox parameter as a prefix to the mailbox number.
g(#) Increases the gain by # decibels when playing back messages.
s Skips the password check.

Voicemail Dialplan Integration | 141

Argument Purpose
a(folder) Starts the session in one of the following voicemail folders (defaults to 0):

• 0 - INBOX

• 1 - Old

• 2 - Work

• 3 - Family

• 4 - Friends

• 5 - Cust1

• 6 - Cust2

• 7 - Cust3

• 8 - Cust4

• 9 - Cust5

To allow users to dial an extension to check their voicemail, you could add an exten‐
sion to the dialplan like this:

exten => *98,1,NoOp(Access voicemail retrieval.)
 same => n,VoiceMailMain()

Any user whose device is assigned to the [sets] context can now dial *98, and they’ll
be able to log into their mailbox to listen to messages, record their name, set their
greeting, and so forth.

Standard Voicemail Keymap
Figure 8-1 shows the standard keymap configuration for Asterisk Mail. Some options
may be enabled or disabled based on the configuration of voicemail.conf (e.g.,
envelope=no). This can be given to users as a reference.

142 | Chapter 8: Voicemail

Figure 8-1. Keymap configuration for Comedian Mail

Creating a Dial-by-Name Directory
One last feature of the Asterisk voicemail system that we should cover is the dial-by-
name directory. This is created with the Directory() application. This application
uses the names defined in the mailboxes in voicemail.conf to present the caller with a
dial-by-name directory of users.

Directory() takes up to three arguments: the voicemail context from which to read
the names, the optional dialplan context in which to dial the user, and an option

Voicemail Dialplan Integration | 143

string (which is also optional). By default, Directory() searches for the user by last
name, but passing the f option forces it to search by first name instead. Let’s add two
dial-by-name directories to the TestMenu context of our sample dialplan, so that call‐
ers can search by either first or last name:

exten => 4,1,Dial(${UserB_SoftPhone},10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => 8,1,Directory(default,sets,f)
exten => 9,1,Directory(default,sets)

exten => i,1,Playback(pbx-invalid)
 same => n,Goto(TestMenu,start,1)

If you call 201, and then press 8, you’ll get a directory by first name. If you dial 9,
you’ll get the directory by last name.

Voicemail to Email
When Asterisk first came out, it did something very simple that was nevertheless rev‐
olutionary within the PBX market of the time. None of the major PBX brands could
figure out how to effectively send voice messages to email (which, put simply, is just
sending an email with the message itself as a WAV file attachment). Sure, some man‐
ufacturers offered the functionality, but it was needlessly complex, unreliable, and
expensive. Asterisk cut through all that nonsense and just allowed a mailbox to have
an assigned email address, and messages would simply be sent through the normal
email mechanisms of Linux. This proved both simple and effective, and really showed
how out-of-date and out-of-touch the traditional PBX manufacturers were.

Unfortunately, in every great story there’s always a bad guy, and in this case a whole
epidemic of them: spammers nearly brought the internet to its knees. The simple
SMTP relay could no longer be trusted, as any machine open to relaying email would
quickly become a vector for spam.

So, email became far more complex. If you want to send email from your Asterisk
system, you have three fundamental ways to do that, as shown in Table 8-7.

144 | Chapter 8: Voicemail

4 Popular MTAs these days are Postfix and Exim. The ubiquitous sendmail still exists as well, although its pop‐
ularity has waned in the past few years. You’ll find Postfix on your RHEL/CentOS machines by default, and
likely Exim on your Debian/Ubuntu platforms (although Postfix is often recommended as the MTA there
too).

5 Nortel used to store its messages in a sort of special partition, in a proprietary format, which made it pretty
much impossible to extract messages from the system, or email them, or archive them, or really do anything
with them. Ah, the good old days of closed, proprietary systems. We miss ... no ... wait ... we do not miss them!

Table 8-7. Overview of methods for transmitting voicemail to email

Method Cons Pros
1. Send email in the clear, directly to the SMTP port
of the MX record the target domain returns. Almost
guaranteed to fail.

Downstream spam filters will
tend to discard suspicious
traffic, and this traffic will look
very suspicious.

No configuration required on the
Asterisk server.

2. Relay your email through a host that knows and
trusts your system. Solid DNS and mail server
skills are required by the team handling the
relay server.

The downstream relay server
will need to be configured to
work correctly with this
arrangement (it will need to
trust email relayed from your
Asterisk server).

Relatively simple to configure on
the Asterisk server.

3. Create a normal user account on an email server
(complete with a valid email address), and send
emails as an authenticated user through that
platform. We recommend this method since it
tends to work very well, and the requirements can be
easily communicated to the team that maintains
your email.

Slightly more complicated to set
up on the Asterisk server.

Easy to set up an email account for
Asterisk: you just have to create a
user on your email system named
“Company PBX” or some name
that identifies it, and then use the
credentials for this user to send all
email through.

Essentially, what you need to do is make sure the Mail Transport Agent (MTA)4 of
your Asterisk server can send email from the asterisk shell/user account. The Aster‐
isk voicemail engine will use the same mechanisms to send your voicemail to email.

For further information on the subject of MTAs, you’ll want to consult a Linux
administration book such as UNIX and Linux System Administration Handbook, 5th
Edition, or an MTA-specific title such as O’Reilly’s Postfix: The Definitive Guide.

Voicemail Storage Backends
The storage of messages on traditional voicemail systems has always tended to be
overly complicated.5 Asterisk not only provides you with a simple, logical filesystem-
based storage mechanism, but also offers a few extra message storage options.

Voicemail Storage Backends | 145

Linux Filesystem
By default, Asterisk stores voice messages in the spool, at /var/spool/asterisk/voice‐
mail/<voicemailcontext>/<mailbox>. The messages can be stored in multiple formats
(such as wav and wav49), depending on what you specified as the format in the [gen
eral] section of your voicemail.conf file. Your greetings are also stored in this folder.

Asterisk does not create a folder for any mailboxes that do not have
any recordings yet (as would be the case with a new mailbox), so
this folder cannot be used as a reliable method of determining
which mailboxes exist on the system.

Figure 8-2 shows an example of what might be in a mailbox folder. This mailbox has
no new messages in the INBOX, has two saved messages in the Old folder, and has
busy, unavailable and name (greet) greetings recorded.

Figure 8-2. Sample mailbox folder

For each message, there is a matching msg####.txt file, which con‐
tains the envelope information for the message. The msg####.txt
file is also critically important for message waiting indication
(MWI), as this is the file that Asterisk looks for in the INBOX to
determine whether the message light for a user should be on or off.

IMAP
Some organizations prefer to manage voicemail as part of their email system. This
has been called unified messaging by the telecom industry, and its implementation has
traditionally been expensive and complex. Asterisk allows for a fairly simple integra‐
tion between voicemail and email, either through its built-in voicemail-to-email han‐
dler, or through a relationship with an IMAP server. We don’t recommend IMAP
integration simply because it’s a lot of work for very little gain, and it is out of scope
for this book.

146 | Chapter 8: Voicemail

Message Storage in a Database
It is possible to configure Asterisk voicemail to store messages as blobs within a data‐
base. This was originally seen as a simple way to allow synchronization of messages
between systems. We’ve never been fans of the idea, since databases are not designed
for bulk storage of binary data, and there are many other ways to synchronize files
across systems.

Conclusion
Asterisk’s voicemail system is a mature and capable module, and an essential part of
any PBX. It’s not likely to be enhanced beyond what it does, but that’s not likely to be
a problem, either.

Conclusion | 147

CHAPTER 9

Internationalization

David Duffett

English? Who needs to spend time learning that? I’m never going to England!
—Dan Castellaneta

Telephony is one of those areas of life where, whether at home or at work, people do
not like surprises. When people use phones, anything outside of the norm is an
expectation not met, and as someone who is probably in the business of supplying
telephone systems, you will know that expectations going unmet can lead to untold
misery in terms of the extra work, lost money, and other problems that are associated
with customer dissatisfaction.

In addition to ensuring that the user experience is in keeping with what users expect,
there is also the need to make your Asterisk feel “at home.” For example, if an out‐
bound call is placed over an analog line (FXO), Asterisk will need to interpret the
tones that it “hears” on the line (busy, ringing, etc.).

By default (and maybe as one might expect, since it was “born in the USA”), Asterisk
is configured to work within North America. However, since Asterisk gets deployed
in many places and (thankfully) people from all over the world make contributions to
it, it is quite possible to tune Asterisk for correct operation just about anywhere you
choose to deploy it.

If you have been reading this book from the beginning, chapter by chapter, you will
have already made some choices during installation and in the initial configuration
that will have set up your Asterisk to work in your local area (and live up to your
customers’ expectations).

149

1 i18n is a term used to abbreviate the word internationalization, due to its length. The format is <first_let‐
ter><number><last_letter>, where <number> is the number of letters between the first and last letters. Other
words, such as localization (L10n) and modularization (m12n), have also found a home with this scheme,
which Leif finds a little bit ridiculous. More information can be found in the W3C glossary online.

Quite a few of the chapters in this book contain information that will help you inter‐
nationalize1 or (perhaps more properly) localize your Asterisk implementation. The
purpose of this chapter is to provide a single place where all aspects of the changes
that need to be made to your Asterisk-based telephone system in this context can be
referenced, discussed, and explained. The reason for using the phrase “Asterisk-based
telephone system” rather than just “Asterisk” is that some of the changes will need to
be made in other parts of the system (IP phones, ATAs, etc.), while other changes will
be implemented within Asterisk and DAHDI configuration files.

Let’s start by getting a list together (in no particular order) of the things that may
need to be changed in order to optimize your Asterisk-based telephone system for a
given location outside of North America. You can shout some out if you like…

• Language/accent of the prompts
• Physical connectorization for PSTN interfaces (FXO, BRI, PRI)
• Tones heard by users of IP phones and/or ATAs
• Caller ID format sent and/or received by analog interfaces
• Tones for analog interfaces to be supplied or detected by Asterisk
• Format of time/date stamps for voicemail
• The way the above time/date stamps are announced by Asterisk
• Patterns within the dialplan (of IP phones, ATAs, and Asterisk itself if you are

using the sample dialplan)
• The way to indicate to an analog device that voicemail is waiting (MWI)
• Tones supplied to callers by Asterisk (these come into play once a user is “inside”

the system; e.g., the tones heard during a call transfer)

We’ll cover everything in this list, adopting a strategy of working from the outer edge
of the system toward the very core (Asterisk itself). We will conclude with a handy
checklist of what you may need to change and where to change it.

Although the principles discussed in this chapter will allow you to adapt your Aster‐
isk installation specifically for your region (or that of your customer), for the sake of
consistency, all of our examples will focus on how to adapt Asterisk for one region:
the United Kingdom.

150 | Chapter 9: Internationalization

http://www.w3.org/2001/12/Glossary#I18N

Devices External to the Asterisk Server
There are massive differences between a good old-fashioned analog telephone and
any one of the large number of IP phones out there, and we need to pick up on one of
the really fundamental differences in order to throw light on the next explanation,
which covers the settings we might need to change on devices external to Asterisk,
such as IP phones.

Have you ever considered the fact that an analog phone is a totally dumb device (we
know that a basic model is very, very cheap) that needs to connect to an intelligent
network (the PSTN), whereas an IP phone (e.g., SIP or IAX2) is a very intelligent
device that connects to a dumb network (the internet or any regular IP network)?
Figures 9-1 and 9-2 illustrate the difference.

Figure 9-1. The old days: dumb devices connect to a smart network

Figure 9-2. The situation today: smart devices connect through a dumb network

Could we take two analog phones, connect them directly to each other, and have the
functionality we would normally associate with a regular phone? No, of course not,
because the network supplies everything: the actual power to the phone, the dialtone
(from the local exchange or CO), the caller ID information, the ringing tone (from
the remote [closest to the destination phone] exchange or CO), all the signaling
required, and so on.

Conversely, could we take two IP phones, connect them directly to each other, and
get some sensible functionality? Sure we could, because all the intelligence is inside
the IP phones themselves—they provide the tones we hear (dialtone, ringing, busy)
and run the protocol that does all the required signaling (usually SIP). In fact, you
can try this for yourself—most midpriced IP phones have a built-in Ethernet switch,

Devices External to the Asterisk Server | 151

so you can actually connect the two IP phones directly to each other with a regular
(straight-through) Ethernet patch cable, or just connect them through a regular
switch. They will need to have fixed IP addresses in the absence of a DHCP server,
and you can usually dial the IP address of the other phone just by using the * key for
the dots in the address.

Figure 9-2 points to the fact that on an IP phone, we are responsible for setting all of
the tones that the network would have provided in the old days. This can be done in
one of (at least) two ways. The first is to configure the tones provided by the IP phone
on the device’s own web GUI. You do this by browsing to the IP address of the phone
(the IP address can usually be obtained by a menu option on the phone) and then
selecting the appropriate options. For example, on a Yealink IP phone, the tones are
set on the Phone page of the web GUI, under the Tones tab (where you’ll find a list of
the different types of tones that can be changed—in the case of the Yealink, these are
Dial, Ring Back, Busy, Congestion, Call Waiting, Dial Recall, Record, Info, Stutter,
Message, and Auto Answer).

The other way that this configuration can be applied is to autoprovision the phone
with these settings. A full explanation of the mechanism for autoprovisioning is
beyond the scope of this book, but you can usually set up the tones in the appropriate
attributes of the relevant elements in the XML file.

While we are changing settings on the IP phones, there are two other things that may
need to be changed in order for the phones to look right and to function correctly as
part of the system.

Most phones display the time when idle and, since many people find it particularly
annoying when their phones show the wrong time, we need to ensure that the correct
local time is displayed. It should be fairly easy to find the appropriate page of the web
GUI (or XML attributes) to specify the time server. You will also find that there are
settings for daylight saving time and other relevant stuff nearby.

The last thing to change is a potential showstopper as far as the making of a phone
call is concerned—the dialplan. We’re not talking about the dialplan we find in /etc/
asterisk/extensions.conf, but the dialplan of the phone. Not everyone realizes that IP
phones have dialplans, too—although these dialplans are more concerned with which
dial strings are permitted than with what to do on a given dial.

The general rule seems to be that if you dial on-hook the built-in dialplan is bypassed,
but if you pick up the handset the phone’s dialplan comes into play, and it just might
happen that the dialplan will not allow the dial string you need to be dialed. Although
this problem can manifest itself with a refusal by the phone to pass certain types of
numbers through to Asterisk, it can also affect any feature codes you plan to use. This
can easily be remedied by Googling the model number of the phone along with “UK
dialplan” (or the particular region you need), or you can go to the appropriate page

152 | Chapter 9: Internationalization

on the web GUI and either manually adjust the dialplan or pick the country you need
from a drop-down box (depending on the type of phone you are working with).

The prior discussion of IP phone configuration also applies to any analog telephone
adapters (ATAs) you plan to use—specifically, to those supporting an FXS interface.
In addition, you may need to specify some of the electrical characteristics of the tel‐
ephony interface, like line voltage and impedance, together with the caller ID format
that will work with local phones. All that differs is the way you obtain the IP address
for the web GUI—you usually do this by dialing a specific code on the attached ana‐
log phone, which results in the IP address being read back to the caller.

Of course, an ATA may also feature an FXO interface, which will also need to be con‐
figured to properly interact with the analog line provided in your region. The types of
things that need to be changed are similar to the FXS interface.

What if you are connecting your analog phone or line to a Digium card? We’ll cover
this next.

PSTN Connectivity, DAHDI, Digium Cards, and Analog
Phones
Before we get to DAHDI and Asterisk configuration, we need to physically connect to
the PSTN. Unfortunately, there are no worldwide standards for these connections; in
fact, there are often variations from one part of a given country to another.

Primary Rate Interfaces (PRIs) are generally terminated in an RJ45 connection these
days, although the impedance of the connections can vary. In some countries (nota‐
bly in South America), it is still possible to find PRIs terminated in two BNC connec‐
tors, one for transmit and one for receive.

Generally speaking, a PRI terminated in an RJ45 will be an ISDN connection, and if
you find the connection is made by a pair of BNC connectors (push-and-twist coaxial
connectors), the likelihood is that you are dealing with an older CAS-based protocol
(like MFCR2).

Figure 9-3 shows the adapter required if your telco has supplied BNC connectors
(Sangoma/Digium cards require an RJ45 connection). It is called a balun, as it con‐
verts from a balanced connection (RJ45) to an unbalanced connection (the BNCs), in
addition to changing the connection impedance.

Basic Rate Interfaces (BRIs) are common in continental Europe
and are almost always supplied via an RJ45 connection.

PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones | 153

Figure 9-3. A balun

Analog connections vary massively from place to place—you will know what kind of
connector is used in your locality. The important thing to remember is that the ana‐
log line is only two wires, and these need to connect to the middle two pins of the
RJ11 plug that goes into the Digium card—the other end is the local one. Figure 9-4
shows the plug used in the UK, where the two wires are connected to pins 2 and 5.

Figure 9-4. The BT plug used for analog PSTN connections in the UK (note only pins 2–
5 are present)

The Digium Asterisk Hardware Device Interface, or DAHDI, actually covers a num‐
ber of things. It contains the kernel drivers for telephony adapter cards that work
within the DAHDI framework, as well as automatic configuration utilities and test
tools. These parts are contained in two separate packages (dahdi-linux and dahdi-
tools), but we can also use one complete package, called dahdi-linux-complete. All
three packages are available at the Digium site.

Once you have established the type of PRI connection the telco has given you, there
are some further details that you will require in order to properly configure DAHDI
and Asterisk (e.g., whether the connection is ISDN or a CAS-based protocol). Again,
you will find these in Chapter 7.

154 | Chapter 9: Internationalization

http://downloads.digium.com/pub/telephony/

DAHDI Drivers
The connections where some real localization will need to take place are those of ana‐
log interfaces. For the purposes of configuring your Asterisk-based telephone system
to work best in a given locality, you will first need to specifically configure some low-
level aspects of the way the Digium card interacts with the connected device or line.
This is done through the DAHDI kernel driver(s), in a file called /etc/dahdi/
system.conf.

In the following lines (taken from the sample configuration that you get with a fresh
install of DAHDI), you will find both the loadzone and defaultzone settings. The
loadzone setting allows you to choose which tone set(s) the card will both generate
(to feed to analog telephones) and recognize (on the connected analog telephone
lines):

Tone Zone Data
^^^^^^^^^^^^^^
Finally, you can preload some tone zones, to prevent them from getting
overwritten by other users (if you allow non-root users to open /dev/dahdi/*
interfaces anyway). Also this means they won't have to be loaded at runtime.
The format is "loadzone=<zone>" where the zone is a two-letter country code.
#
You may also specify a default zone with "defaultzone=<zone>" where zone
is a two-letter country code.
#
An up-to-date list of the zones can be found in the file zonedata.c
#
loadzone = us
#loadzone = us-old
#loadzone=gr
#loadzone=it
#loadzone=fr
#loadzone=de
#loadzone=uk
#loadzone=fi
#loadzone=jp
#loadzone=sp
#loadzone=no
#loadzone=hu
#loadzone=lt
#loadzone=pl
defaultzone=us
#

The /etc/dahdi/system.conf file uses the hash symbol (#) to indicate
a comment instead of a semicolon (;) like the files in /etc/asterisk.

PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones | 155

Although it is possible to load a number of different tone sets (you can see all the sets
of tones in detail in zonedata.c) and to switch between them, in most practical situa‐
tions you will only need:

loadzone=uk # to load the tone set
defaultzone=uk # to default DAHDI to using that set

…or whichever tones you need for your region.

If you perform a dahdi_genconf to automatically (or should that be auto-magically?)
configure your DAHDI adapters, you will notice that the newly generated /etc/dahdi/
system.conf will have defaulted both loadzone and defaultzone to being us. Despite
the warnings not to hand-edit the file, it is fine to change these settings to what you
need.

In case you were wondering how we tell whether there are any voicemails in the mail‐
box associated with the channel an analog phone is plugged into, it is done with a
stuttered dialtone. The format of this stuttered dialtone is decided by the loadzone/
defaultzone combination you have used.

As a quick aside, analog phones that have a message-waiting indicator (e.g., an LED
or lamp that flashes to indicate new voicemail) achieve this by automatically going
off-hook periodically and listening for the stuttered dialtone. You can witness this by
watching the Asterisk command line to see the DAHDI channel go active (if you have
nothing better to do!).

That’s it at the DAHDI level. We chose the protocol(s) for PRI or BRI connections,
the type of signaling for the analog channels (all covered in Chapter 7), and the tones
for the analog connections that have just been discussed.

The relationship between Linux, DAHDI, and Asterisk (and therefore /etc/dahdi/
system.conf and /etc/asterisk/chan_dahdi.conf) is shown in Figure 9-5.

Once you have completed your configuration at the DAHDI level
(in /etc/dahdi/system.conf), you need to perform a dahdi_cfg -vvv to
have DAHDI reread the configuration. This is also a good time to
use dahdi_tool to check that everything appears to be in order at
the Linux level.
This way, if things do not work properly after you have configured
Asterisk to work with the DAHDI adapters, you can be sure that
the problem is confined to chan_dahdi.conf (or an #included dahdi-
channels.conf if you are using this part of the dahdi_genconf
output).

156 | Chapter 9: Internationalization

Figure 9-5. The relationship between Linux, DAHDI, and Asterisk

Internationalization Within Asterisk
With everything set at the Linux level, we now only need to configure Asterisk to
make use of the channels we just enabled at the Linux level and to customize the way
that Asterisk interprets and generates information that comes in from, or goes out
over, these channels. This work is done in /etc/asterisk/chan_dahdi.conf.

In this file we will not only tell Asterisk what sort of channels we have (these settings
will fit with what we already did in DAHDI), but also configure a number of things
that will ensure Asterisk is well suited to its new home.

Caller ID
A key component of this change is caller ID. While caller ID delivery methods are
pretty much standard within the BRI and PRI world, they vary widely in the analog
world; thus, if you plugged an American analog phone into the UK telephone net‐
work, it would actually work as a phone, but caller ID information would not be dis‐
played. This is because that information is transmitted in different ways in different
places around the world, and an American phone would be looking for caller ID sig‐
naling in the US format, while the UK telephone network would be supplying it in
the UK format (if it is enabled—caller ID is not standard in the UK; you have to ask
for and sometimes even pay for, it!).

Not only is the format different, but the method of telling a telephone (or Asterisk) to
look out for the caller ID may vary from place to place, too. This is important, as we

Internationalization Within Asterisk | 157

2 Who is, in fact, the same Allison who does the English prompts; June Wallack does the French prompts. The
male Australian-accented prompts are done by Cameron Twomey. All voiceover talent are available to record
additional prompts as well. See the Digium IVR page for more information.

do not want Asterisk to waste time looking for caller ID information if it is not being
presented on the line.

Again, Asterisk defaults to the North American caller ID format (no entries in /etc/
asterisk/chan_dahdi.conf describe this, it’s just the default), and in order to change it
we will need to make some entries that describe the technical details of the caller ID
system. In the case of the UK, the delivery of caller ID information is signaled by a
polarity reversal on the telephone line (in other words, the A and B legs of the pair of
telephone wires are temporarily switched over), and the actual caller ID information
is delivered in a format known as V.23 (frequency shift keying, or FSK). So the entries
in chan_dahdi.conf to receive UK-style caller ID on any FXO interfaces will look like
this:

cidstart=polarity ; the delivery of caller ID will be
 ; signaled by a polarity reversal
cidsignalling=v23 ; the delivery of the called ID information
 ; will be in V23 format

Of course, you may also need to send caller ID using the same local signaling infor‐
mation to any analog phones that are connected to FXS interfaces, and one more
entry may be needed, as in some locations the caller ID information is sent after a
specified number of rings. If this is the case, you can use this entry:

sendcalleridafter=2

Before you can make these entries, you will need to establish the details of your local
caller ID system (someone from your local telco or Google could be your friend here,
but there is also some good information in the sample /etc/asterisk/chan_dahdi.conf
file).

Language and/or Accent of Prompts
As you may know, the prompts (or recordings) that Asterisk will use are stored
in /var/lib/asterisk/sounds. In older versions of Asterisk all the sounds were in this
actual directory, but these days you will find a number of subdirectories that allow the
use of different languages or accents. The names of these subdirectories are arbitrary;
you can call them whatever you want.

Note that the filenames in these directories must be what Asterisk is expecting—
for example, in /var/lib/asterisk/sound/en, the file hello.gsm would contain the
word “Hello” (spoken by the lovely Allison), whereas hello.gsm in /var/lib/asterisk/
sounds/es (for Spanish in this case) would contain the word “Hola” (spoken by the
Spanish equivalent of the lovely Allison2).

158 | Chapter 9: Internationalization

http://www.digium.com/en/products/ivr/

The default directory used is /var/lib/asterisk/sounds/en, so how do you change that?

There are two ways. One is to set the language in the channel configuration file that
calls are arriving through using the language directive. For example, the line:

language=en_UK

placed in chan_dahdi.conf, sip.conf, and so on (to apply generally, or for just a given
channel or profile) will tell Asterisk to use sound files found in /var/lib/asterisk/
sounds/en_UK (which could contain British-accented prompts) for all calls that come
in through those channels.

The other way is to change the language during a phone call through the dialplan.
This (along with many attributes of an individual call) can be set using the CHANNEL()
dialplan function. See Chapter 10 for a full treatment of dialplan functions.

The following example would allow the caller to choose one of three languages in
which to continue the call:

; gives the choice of (1) French, (2) Spanish, or (3) German
exten => s,1,Background(choose-language)
 same => n,WaitExten(5)

exten => 1,1,Set(CHANNEL(language)=fr)

exten => 2,1,Set(CHANNEL(language)=es)

exten => 3,1,Set(CHANNEL(language)=de)

; the next priority for extensions 1, 2, or 3 would be handled here
exten => _[123],n,Goto(menu,s,1)

If the caller pressed 1, sounds would be played from /var/lib/asterisk/sounds/fr; if he
pressed 2, the sounds would come from /var/lib/asterisk/sounds/es; and so on.

As already mentioned, the names of these directories are arbitrary and do not need to
be only two characters long—the main thing is that you match the name of the sub‐
directory you have created in the language directive in the channel configuration, or
when you set the CHANNEL(language) argument in the dialplan.

Time/Date Stamps and Pronunciation
Asterisk uses the Linux system time from the host server, as you would expect, but we
may have users of the system who are in different time zones, or even in different
countries. Voicemail is where the rubber hits the road, as this is where users come
into contact with time/date stamp information.

Consider a scenario where some users of the system are based in the US, while others
are in the UK.

Internationalization Within Asterisk | 159

As well as the time difference, another thing to consider is the way people in the two
locations are used to hearing date and time information—in the US, dates are usually
ordered month, day, year, and times are specified in 12-hour clock format (e.g.,
2:54 P.M.).

In contrast, in the UK dates are ordered day, month, year, and times are often speci‐
fied in 24-hour clock format (14:54 hrs)—although some people in the UK prefer 12-
hour clock format, so we will cover that, too.

Since all these things are connected to voicemail, you would be right to guess that we
configure it in /etc/asterisk/voicemail.conf—specifically, in the [zonemessages] sec‐
tion of the file.

Here is the [zonemessages] part of the sample voicemail.conf file that comes with
Asterisk, with UK24 (for UK people that like 24-hour clock format times) and UK12
(for UK people that prefer 12-hour clock format) zones added:

[zonemessages]
; Users may be located in different time zones, or may have different
; message announcements for their introductory message when they enter
; the voicemail system. Set the message and the time zone each user
; hears here. Set the user into one of these zones with the tz=attribute
; in the options field of the mailbox. Of course, language substitution
; still applies here so you may have several directory trees that have
; alternate language choices.
;
; Look in /usr/share/zoneinfo/ for names of timezones.
; Look at the manual page for strftime for a quick tutorial on how the
; variable substitution is done on the values below.
;
; Supported values:
; 'filename' filename of a soundfile (single ticks around the filename
; required)
; ${VAR} variable substitution
; A or a Day of week (Saturday, Sunday, ...)
; B or b or h Month name (January, February, ...)
; d or e numeric day of month (first, second, ... thirty-first)
; Y Year
; I or l Hour, 12 hour clock
; H Hour, 24 hour clock (single digit hours preceded by "oh")
; k Hour, 24 hour clock (single digit hours NOT preceded by "oh")
; M Minute, with 00 pronounced as "o'clock"
; N Minute, with 00 pronounced as "hundred" (US military time)
; P or p AM or PM
; Q "today", "yesterday" or ABdY
; (*note: not standard strftime value)
; q " (for today), "yesterday", weekday, or ABdY
; (*note: not standard strftime value)
; R 24 hour time, including minute
;
eastern=America/New_York|'vm-received' Q 'digits/at' IMp
central=America/Chicago|'vm-received' Q 'digits/at' IMp
central24=America/Chicago|'vm-received' q 'digits/at' H N 'hours'
military=Zulu|'vm-received' q 'digits/at' H N 'hours' 'phonetic/z_p'
european=Europe/Copenhagen|'vm-received' a d b 'digits/at' HM

160 | Chapter 9: Internationalization

UK24=Europe/London|'vm-received' q 'digits/at' H N 'hours'
UK12=Europe/London|'vm-received' Q 'digits/at' IMp

These zones not only specify a time, but also dictate the way times and dates are
ordered and read out.

Having created these zones, we can go to the voicemail context part of voicemail.conf
to associate the appropriate mailboxes with the correct zones:

[default]
4001 => 1234,Russell Bryant,rb@shifteight.org,,|tz=central
4002 => 4444,David Duffett,dd@shifteight.org,,|tz=UK24
4003 => 4450,Mary Poppins,mp@shifteight.org,,|tz=UK12|attach=yes

As you can see, when we declare a mailbox, we also (optionally) associate it with a
particular zone. Full details on voicemail can be found in Chapter 8.

The last thing to localize in our Asterisk configuration is the tones played to callers by
Asterisk once they are inside the system (e.g., the tones a caller hears during a
transfer).

As identified earlier in this chapter, the initial tones that people hear when they are
calling into the system will come from the IP phone, or from DAHDI for analog
channels.

These tones are set in /etc/asterisk/indications.conf. Here is a part of the sample file,
where you can see a given region specified by the country directive. We just need to
change the country code as appropriate:

;
; indications.conf
;
; Configuration file for location specific tone indications
;
; NOTE:
; When adding countries to this file, please keep them in alphabetical
; order according to the 2-character country codes!
;
; The [general] category is for certain global variables.
; All other categories are interpreted as location specific indications
;
[general]
country=uk ; default is US, so we have changed it to UK

Your dialplan will need to reflect the numbering scheme for your region. If you do
not already know the scheme for your area, your local telecoms regulator will usually
be able to supply details of the plan. Also, the example dialplan in /etc/asterisk/exten‐
sions.conf is, of course, packed with North American numbers and patterns.

Internationalization Within Asterisk | 161

Conclusion—Easy Reference Cheat Sheet
As you can now see, there are quite a few things to change in order to fully localize
your Asterisk-based telephone system, and not all of them are in the Asterisk, or even
DAHDI, configuration—some things need to be changed on the connected IP phones
or ATAs themselves.

Before we leave the chapter, have a look at Table 9-1: a cheat sheet for what to change
and where to change it, for your future reference.

Table 9-1. Internationalization cheat sheet

What to change Where to change it
Call progress tones • IP phones—on the phone itself

• ATAs—on the ATA itself

• Analog phones—DAHDI (/etc/dahdi/system.conf)

Type of PRI/BRI and protocol DAHDI—/etc/dahdi/system.conf and /etc/asterisk/chan_dahdi.conf
Physical PSTN connections • Balun if required for PRI

• Get the analog pair to middle two pins of the RJ11 connecting to the Digium
card

Caller ID on analog circuits Asterisk—/etc/asterisk/chan_dahdi.conf
Prompt language and/or accent • Channel—/etc/asterisk/sip.conf, /etc/asterisk/iax.conf, /etc/asterisk/

chan_dahdi.conf, etc.

• Dialplan—CHANNEL(language) function

Voicemail time/date stamps and
pronunciation

Asterisk—/etc/asterisk/voicemail.conf

Tones delivered by Asterisk Asterisk—/etc/asterisk/indications.conf

May all your Asterisk deployments feel at home…

162 | Chapter 9: Internationalization

CHAPTER 10

Deeper into the Dialplan

For a list of all the ways technology has failed to improve the quality of life, please press three.
—Alice Kahn

Alrighty. You’ve got the basics of dialplans down, but you know there’s more to come.
If you don’t have Chapter 6 sorted out yet, please go back and give it another read.
We’re about to get into more advanced topics.

Expressions and Variable Manipulation
As we begin our dive into the deeper aspects of dialplans, it is time to introduce you
to a few tools that will greatly add to the power you can exercise in your dialplan.
These constructs add incredible intelligence to your dialplan by enabling it to make
decisions based on different criteria you define. Put on your thinking cap, and let’s get
started.

Throughout this chapter we use best practices that have been
developed over the years in dialplan creation. The primary one
you’ll notice is that all the first priorities start with the NoOp()
application (which simply means No Operation; nothing functional
will happen). The other one is that all following lines will start with
same => n, which is a shortcut that says, “Use the same extension
as was just previously defined.” Additionally, the indentation is two
spaces.

Basic Expressions
Expressions are combinations of variables, operators, and values that you string
together to produce a result. An expression can test values, alter strings, or perform

163

1 Remember that when you reference a variable you can call it by its name, but when you refer to a variable’s
value, you have to use the dollar sign and brackets around its name.

mathematical calculations. Let’s say we have a variable called COUNT. In plain English,
two expressions using that variable might be [COUNT plus 1], or [COUNT divided by 2].
Each of these expressions has a particular result or value, depending on the value of
the given variable.

In Asterisk, expressions always begin with a dollar sign and an opening square
bracket and end with a closing square bracket, as shown here:

$[expression]

Thus, we would write our two examples like this:
$[${COUNT} + 1]
$[${COUNT} / 2]

When Asterisk encounters an expression in a dialplan, it replaces the entire expres‐
sion with the resulting value. It is important to note that this takes place after variable
substitution. To demonstrate, let’s look at the following code:1

exten => 321,1,NoOp()
 same => n,Answer()
 same => n,Set(COUNT=3)
 same => n,Set(NEWCOUNT=$[${COUNT} + 1])
 same => n,SayNumber(${NEWCOUNT})

In the second priority, we assign the value of 3 to the variable named COUNT.

In the third priority, only one application—Set()—is involved, but three things
actually happen:

1. Asterisk substitutes ${COUNT} with the number 3 in the expression. The expres‐
sion effectively becomes this:

 same => n,Set(NEWCOUNT=$[3 + 1])

2. Asterisk evaluates the expression, adding 1 to 3, and replaces it with its computed
value of 4:

 same => n,Set(NEWCOUNT=4)

3. The Set() application assigns the value 4 to the NEWCOUNT variable.

The third priority simply invokes the SayNumber() application, which speaks the cur‐
rent value of the variable ${NEWCOUNT} (set to the value 4 in priority two).

Try it out in your own dialplan.

164 | Chapter 10: Deeper into the Dialplan

Operators
When you create an Asterisk dialplan, you’re really writing code in a specialized
scripting language. This means that the Asterisk dialplan—like any programming
language—recognizes symbols called operators that allow you to manipulate vari‐
ables. Let’s look at the types of operators that are available in Asterisk:

Boolean operators
These operators evaluate the “truth” of a statement. In computing terms, that
essentially refers to whether the statement is something or nothing (nonzero or
zero, true or false, on or off, and so on). The Boolean operators are:

expr1 | expr2
This operator (called the “or” operator, or “pipe”) returns the evaluation of
expr1 if it is true (neither an empty string nor zero). Otherwise, it returns
the evaluation of expr2.

expr1 & expr2
This operator (called “and”) returns the evaluation of expr1 if both expres‐
sions are true (i.e., neither expression evaluates to an empty string or zero).
Otherwise, it returns zero.

expr1 {=, >, >=, <, <=, !=} expr2
These operators return the results of an integer comparison if both argu‐
ments are integers; otherwise, they return the results of a string comparison.
The result of each comparison is 1 if the specified relation is true, or 0 if the
relation is false. (If you are doing string comparisons, they will be done in a
manner that’s consistent with the current local settings of your operating
system.)

Mathematical operators
Want to perform a calculation? You’ll want one of these:

expr1 {+, -} expr2
These operators return the results of the addition or subtraction of integer-
valued arguments.

expr1 {*, /, %} expr2
These return, respectively, the results of the multiplication, integer division,
or remainder of integer-valued arguments.

Regular expression operator
You can also use the regular expression operator in Asterisk:

Expressions and Variable Manipulation | 165

2 For more on regular expressions, grab a copy of the ultimate reference, Jeffrey E. F. Friedl’s Mastering Regular
Expressions (O’Reilly, 2006), or visit http://www.regular-expressions.info.

3 If you don’t know what a ^ has to do with regular expressions, you simply must read Mastering Regular
Expressions. It will change your life!

Some additional information about the peculiarities of the reg‐
ular expression operator in Asterisk can be found at Walter
Doekes’s website.

expr1 : expr2
This operator matches expr1 against expr2, where expr2 must be a regular
expression.2 The regular expression is anchored to the beginning of the
string with an implicit ^.3

If the pattern contains no subexpression, the number of matched characters
is returned. This will be 0 if the match failed. If the pattern contains a subex‐
pression -- \(...\) -- the string corresponding to \1 is returned. If the
match fails, the empty string is returned.

expr1 =~ expr2
This operator works the same as the : operator, except that it is not anchored
to the beginning.

Dialplan Functions
Dialplan functions allow you to add more power to your expressions; you can think
of them as intelligent variables. Dialplan functions allow you to calculate string
lengths, dates and times, MD5 checksums, and so on, all from within a dialplan
expression.

You’ll see usage of Playback(silence/1) throughout the examples
in this chapter. We are doing this as it will answer the line if it
hasn’t already been answered for us, and plays back some silence on
the line. This allows other applications such as SayNumber() to play
back audio without gaps.

Syntax
Dialplan functions have the following basic syntax:

FUNCTION_NAME(argument)

166 | Chapter 10: Deeper into the Dialplan

http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/9780596528126.do
http://www.regular-expressions.info
http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/9780596528126.do
http://wjd.nu/notes/2011#asterisk-dialplan-peculiarities-regex
http://wjd.nu/notes/2011#asterisk-dialplan-peculiarities-regex

You reference a function’s name the same way as a variable’s name, but you reference
a function’s value with the addition of a dollar sign, an opening curly brace, and a
closing curly brace:

${FUNCTION_NAME(argument)}

Functions can also encapsulate other functions, like so:
${FUNCTION_NAME(${FUNCTION_NAME(argument)})}
 ^ ^ ^ ^ ^^^^
 1 2 3 4 4321

As you’ve probably already figured out, you must be very careful about making sure
you have matching parentheses and braces. In the preceding example, we have
labeled the opening parentheses and curly braces with numbers and their corre‐
sponding closing counterparts with the same numbers.

Examples of Dialplan Functions
Functions are often used in conjunction with the Set() application to either get or set
the value of a variable. As a simple example, let’s look at the LEN() function. This
function calculates the string length of its argument:

exten => 205,1,Answer()
 same => n,SayDigits(123)
 same => n,SayNumber(123)
 same => n,SayNumber(${LEN(123)})

Let’s look at another simple example. If we wanted to set one of the various channel
timeouts, we could use the TIMEOUT() function. The TIMEOUT() function accepts one
of three arguments: absolute, digit, and response. To set the digit timeout with the
TIMEOUT() function, we could use the Set() application, like so:

exten => 206,1,Answer()
 same => n,Set(TIMEOUT(response)=1)
 same => n,Background(enter-ext-of-person)
 same => n,WaitExten() ; TIMEOUT() has set this to 1
 same => n,Playback(like_to_tell_valid_ext)
 same => n,Set(TIMEOUT(response)=5)
 same => n,Background(enter-ext-of-person)
 same => n,WaitExten() ; Should be 5 seconds now
 same => n,Playback(like_to_tell_valid_ext)
 same => n,Hangup()

Notice the lack of ${ } surrounding the assignment using the function. Just as if we
were assigning a value to a variable, we assign a value to a function without the use of
the ${ } encapsulation; however, if we want to use the value returned by the function,
then we need the encapsulation.

exten => 207,1,Answer()
 same => n,Set(TIMEOUT(response)=1)
 same => n,SayNumber(${TIMEOUT(response)})
 same => n,Set(TIMEOUT(response)=5)

Dialplan Functions | 167

 same => n,SayNumber(${TIMEOUT(response)})
 same => n,Hangup()

You can get a list of all active functions with the following CLI command:
*CLI> core show functions

Or, to see a specific function such as CALLERID(), the command is:
*CLI> core show function CALLERID

Near the end of this chapter, we explore a handful of functions you will want to
experiment with. Later in the book we’ll show you how to create database-based func‐
tions using func_odbc.

Conditional Branching
The advanced logic provided through expressions and functions will allow your
dialplan to make more powerful decisions, which will often result in conditional
branching.

The GotoIf() Application
The key to conditional branching is the GotoIf() application. GotoIf() evaluates an
expression and sends the caller to a specific destination based on whether the expres‐
sion evaluates to true or false.

GotoIf() uses a special syntax, often called the conditional syntax:
GotoIf(expression?destination1:destination2)

If the expression evaluates to true, the caller is sent to destination1. If the expression
evaluates to false, the caller is sent to the second destination. So, what is true and what
is false? An empty string and the number 0 evaluate as false. Anything else evaluates
as true.

The destinations can each be one of the following:

• A priority label within the same extension, such as weasels
• An extension and a priority label within the same context, such as 123,weasels
• A context, extension, and priority label, such as incoming,123,weasels

Let’s use GotoIf() in an example. Here’s a little coin toss application. Call it several
times to properly test.

exten => 209,1,Noop(Test use of conditional branching to labels)
 same => n,GotoIf($[${RAND(0,1)} = 1]?weasels:iguanas)
; same => n,GotoIf(${RAND(0,1)}?weasels:iguanas) ; works too, but won't in every situation

 same => n(weasels),Playback(weasels-eaten-phonesys) ; NOTE THIS IS SAME EXTENSION

168 | Chapter 10: Deeper into the Dialplan

 same => n,Hangup()

 same => n(iguanas),Playback(office-iguanas) ; STILL THE SAME EXTENSION
 same => n,Hangup()

You will notice that we have used the Hangup() application follow‐
ing each use of the Playback() application. This is done so that
when we jump to the weasels label, the call stops before execution
gets to the office-iguanas sound file. It is becoming increasingly
common to see extensions broken up into multiple components
(protected from each other by the Hangup() command), each one a
distinct sequence of steps executed following a GotoIf().

Providing Only a False Conditional Path
Either of the destinations may be omitted (but not both). If an expression evaluates to
a blank destination, Asterisk simply goes on to the next priority in the current
extension.

We could have crafted the preceding example like this:
exten => 209,1,Noop(Test use of conditional branching)
 same => n,GotoIf($[${RAND(0,1)} = 1]?:iguanas)
 same => n,Playback(weasels-eaten-phonesys) ; No weasels label anymore
 same => n,Hangup()
 same => n(iguanas),Playback(office-iguanas) ; NOTE THIS IS THE SAME EXTEN
 same => n,Hangup()

There’s nothing between the ? and the : so if the statement evaluates to true, execu‐
tion will continue at the next step. Since that’s what we want, a label isn’t needed.

We don’t really recommend doing this, because it’s hard to read. Nevertheless, you
will see dialplans like this, so it’s good to be aware that this syntax is technically
correct.

Rather than using labels, we could also send the call to different extensions. Since
they’re not dialable, we can use alphabet characters rather than digits for the exten‐
sion “numbers.” In this example, the conditional branch sends the call to completely
different extensions within the same context. The result is otherwise the same.

exten => 210,1,Noop(Test use of conditional branching to extensions)
 same => n,GotoIf($[${RAND(0,1)} = 1]?weasels,1:iguanas,1)

exten => weasels,1,Playback(weasels-eaten-phonesys) ; DIFFERENT EXTENSION
 same => n,Hangup()

exten => iguanas,1,Playback(office-iguanas) ; ALSO A DIFFERENT EXTEN
 same => n,Hangup()

Conditional Branching | 169

Let’s look at another example of conditional branching. This time, we’ll use both
Goto() and GotoIf() to count down from 5 and then hang up:

exten => 211,1,NoOp()
 same => n,Answer()
 same => n,Set(COUNT=5)

 same => n(start),GotoIf($[${COUNT} > 0]?:goodbye)
 same => n,SayNumber(${COUNT})
 same => n,Set(COUNT=$[${COUNT} - 1])
 same => n,Goto(start)

 same => n(goodbye),Playback(vm-goodbye)
 same => n,Hangup()

Let’s analyze this example. In the second priority, we set the variable COUNT to 5. Next,
we check to see if COUNT is greater than 0. If it is, we move on to the next priority.
(Don’t forget that if we omit a destination in the GotoIf() application, control goes to
the next priority.) From there, we speak the number, subtract 1 from COUNT, and go
back to priority label start. Again, if COUNT is less than or equal to 0, control goes to
priority label goodbye; otherwise, we run through the loop one more time.

Quoting and Prefixing Variables in Conditional Branches
Now is a good time to take a moment to look at some nitpicky stuff with conditional
branches. In Asterisk, it is invalid to have a null value on either side of the compari‐
son operator. Let’s look at examples that would produce an error:

$[= 0]

$[foo =]

$[> 0]

$[1 +]

Any of our examples would produce a warning like this:
WARNING[28400][C-000000eb]: ast_expr2.fl:470 ast_yyerror: ast_yyerror():
syntax error: syntax error, unexpected '=', expecting $end; Input:
 = 0
 ^

It’s fairly unlikely (unless you have a typo) that you’d purposefully implement some‐
thing like our examples. However, when you perform math or a comparison with an
unset channel variable, this is effectively what you’re doing.

The examples we’ve used to show you how conditional branching works are not inva‐
lid. We’ve first initialized the variable and can clearly see that the channel variable
we’re using in our comparison has been set, so we’re safe. But what if you’re not
always so sure?

170 | Chapter 10: Deeper into the Dialplan

In Asterisk, strings do not need to be double- or single-quoted like in many program‐
ming languages. In fact, if you use a double or single quote, it is a literal construct in
the string. If we look at the following snippets of an extension...

 same => n,Set(TEST_1=foo)
 same => n,Set(TEST_2='foo')
 same => n,NoOp(Are TEST_1 and TEST_2 equiv? $[${TEST_1} = ${TEST_2}])

...we need to note that the value returned by our comparison in the NoOp() will not be
a value of 1 (values match; or true) the return value will be 0 (values do not match; or
false).

We can use this to our advantage when performing comparisons by wrapping our
channel variables in single or double quotes. By doing this we make sure even when
the channel variable might not be set, our comparison will be valid syntax.

In the following example, we would get an error:
exten => 212,1,NoOp()
 same => n,GotoIf($[${TEST} != valid]?error_handling)
 same => n,Hangup() ; We're getting an error and ending up here

 same => n(error_handling),Playback(goodbye)
 same => n,Hangup()

However, we can circumvent this by wrapping what we’re comparing in extra charac‐
ters (in this case quotes). The same example, but made valid:

exten => 213,1,NoOp()
 same => n,GotoIf($["${TEST}" != "valid"]?error_handling)
 same => n,Hangup()

 same => n(error_handling),Playback(goodbye)
 same => n,Hangup()

Even if ${TEST} hasn’t been set (in other words it does not exist and therefore has no
value), we’re still doing a comparison of something:

$["" != "valid"]

If you get into the habit of recognizing these situations and using the wrapping and
prefixing techniques we’ve outlined, you’ll write much safer dialplans.

Note again that the quote character doesn’t have any special meaning here. We used it
because it’s a logical character for this purpose. The following works too:

 same => n,GotoIf($[_${TEST}_ != _valid_]?error_handling)
;OR
 same => n,GotoIf($[AAAAA${TEST}AAAAA != AAAAAvalidAAAAA]?error_handling)

Not all characters will work, as some may have other meanings to Asterisk and cause
problems. Stay with the quote character and you should be fine.

The classic example of conditional branching is affectionately known as the “psycho-
ex” logic. If the caller ID number of the incoming call matches the phone number of

Conditional Branching | 171

4 If you want to test this (which you do), you can pick one of your working lab devices, and in the asterisk
database, under the ps_endpoints table, set the callerid field to '8885551212'. Then you can make a call
from it to 214 to see the block in action.

UPDATE asterisk.ps_endpoints SET callerid='8885551212' WHERE id='<endpoint you chose as the

victim>'

5 But we do it this way because it’s easier to read.

somebody you never want to talk to again, Asterisk gives a different message than it
ordinarily would to any other caller. While somewhat simple and primitive, it’s a good
example for learning about conditional branching within the Asterisk dialplan.

This example uses the CALLERID() function, which allows us to retrieve the caller ID
information on the inbound call. Let’s assume for the sake of this example that the
victim’s phone number is 888-555-1212:4

exten => 214,1,NoOp(CALLERID(num): ${CALLERID(num)} CALLERID(name): ${CALLERID(name)})
 same => n,GotoIf($[${CALLERID(num)} = 8885551212]?reject:allow)

 same => n(allow),Dial(${UserA_DeskPhone})
 same => n,Hangup()

 same => n(reject),Playback(abandon-all-hope)
 same => n,Hangup()

In priority 1, we call the GotoIf() application. It tells Asterisk to go to priority label
reject if the caller ID number matches 8885551212, and otherwise to go to priority
label allow (we could have simply omitted the label name, causing the GotoIf() to
fall through).5 If the caller ID number matches, control of the call goes to priority
label reject, which plays back a subtle hint to the undesired caller. Otherwise, the
call attempts to dial the recipient on the channel referenced by the UserA_DeskPhone
global variable.

Time-Based Conditional Branching with GotoIfTime()
Another way to use conditional branching in your dialplan is with the GotoIfTime()
application. Whereas GotoIf() evaluates an expression to decide what to do, GotoIf
Time() looks at the current system time and uses that to decide whether or not to fol‐
low a different branch in the dialplan.

The most obvious use of this application is to give your callers a different greeting
before and after normal business hours.

The syntax for the GotoIfTime() application looks like this:
GotoIfTime(times,days_of_week,days_of_month,months?label)

172 | Chapter 10: Deeper into the Dialplan

6 We have no idea how to implement Easter, but are open to suggestions.

In short, GotoIfTime() sends the call to the specified label if the current date and
time match the criteria specified by times, days_of_week, days_of_month, and
months. Let’s look at each argument in more detail:

times

This is a list of one or more time ranges, in a 24-hour format. As an example,
9:00 A.M. through 5:00 P.M. would be specified as 09:00-17:00. The day starts at
0:00 and ends at 23:59.

It is worth noting that times will properly wrap around. So, if
you wish to specify the times your office is closed, you might
write 18:00-9:00 in the times parameter, and it will perform
as expected. Note that this technique works as well for the
other components of GotoIfTime(). For example, you can
write sat-sun to specify the weekend days.

days_of_week

This is a list of one or more days of the week. The days should be specified as mon,
tue, wed, thu, fri, sat, and/or sun. Monday through Friday would be expressed
as mon-fri. Tuesday and Thursday would be expressed as tue&thu.

Note that you can specify a combination of ranges and single
days, as in: sun-mon&wed&fri-sat, or, more simply: wed&fri-
mon.

days_of_month

This is a list of the numerical days of the month. Days are specified by the num‐
bers 1 through 31. The 7th through the 12th would be expressed as 7-12, and the
15th and 30th of the month would be written as 15&30. This can be useful for
holidays, which often fall on the same day of the month, but not typically on the
same day of the week.6

months

This is a list of one or more months of the year. The months should be written as
jan-apr for a range, and separated with ampersands when wanting to include
nonsequential months, such as jan&mar&jun. You can also combine them like so:
jan-apr&jun&oct-dec.

Conditional Branching | 173

If you wish to match on all possible values for any of these arguments, simply put an
* in for that argument.

The label argument can be any of the following:

• A priority label within the same extension, such as time_has_passed
• An extension and a priority within the same context, such as
123,time_has_passed

• A context, extension, and priority, such as incoming,123,time_has_passed

Now that we’ve covered the syntax, let’s look at a couple of examples. The following
example would match from 9:00 A.M. to 5:59 P.M., on Monday through Friday, on any
day of the month, in any month of the year:

exten => s,1,NoOp()
 same => n,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)

If the caller calls during these hours, the call will be sent to the first priority of the
start extension in the context named open. If the call is made outside of the specified
times, it will simply carry on with the next priority of the current extension. We’re
going to add a new context named [closed] right after the pattern match example
55512XX, and modify the [TestMenu] context we built in Chapter 6 to handle our
new time condition.

exten => _55512XX,1,Answer()
 same => n,Playback(tt-monkeys)
 same => n,Hangup()

exten => *98,1,NoOp(Access voicemail retrieval.)
 same => n,VoiceMailMain()

[closed]
exten => start,1,Noop(after hours handler)
 same => n,Playback(go-away2)
 same => n,Hangup()

[TestMenu]
exten => start,1,Noop(main autoattendant)
 same => n,GotoIfTime(16:59-08:00,mon-fri,*,*?closed,start,1)
 same => n,GotoIfTime(11:59-09:00,sat,*,*?closed,start,1)
 same => n,GotoIfTime(00:00-23:59,sun,*,*?closed,start,1)
 same => n,Background(enter-ext-of-person)
 same => n,WaitExten(5)

exten => 1,1,Dial(${UserA_DeskPhone},10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

174 | Chapter 10: Deeper into the Dialplan

GoSub
The GoSub() dialplan application allows you to send a call off to a separate section of
the dialplan, make something useful happen, and then return the call to the point in
the dialplan where it came from. You can pass arguments to GoSub(), and also receive
a return code back from it. This cranks up the functionality of your dialplan quite a
bit.

Subroutines are a critical skill in any programming language, and
no less so in an Asterisk dialplan. For those new to programming, a
subroutine allows you to create a block of generic code that can be
reused by different parts of the dialplan to avoid repetition. Think
of it like a template in a word processing document, or a blank
form, and you’ve got the general idea. Once you see them in opera‐
tion, it should become clear how useful they can be.

Defining Subroutines
There are no special naming requirements when using GoSub() in the dialplan. In
fact, you can use GoSub() within the same context and extension if you want to. In
most cases, however, your subroutines should be written in separate contexts: one
context for each subroutine. When creating the context, we like to prepend the name
with sub so we know the context is called from the GoSub() application.

Let’s explore an obvious example of where a subroutine would be useful.

As you might have noticed when we were building our sample dialplan for the users
we have created, the dialplan logic for each user can require several lines of code.

[sets]
exten => 100,1,Dial(${UserA_DeskPhone},12)
 same => n,Voicemail(100@default)
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)

 same => n(unavail),VoiceMail(100@default,u)
 same => n,Hangup()

 same => n(busy),VoiceMail(100@default,b)
 same => n,Hangup()

exten => 101,1,Dial(${UserA_SoftPhone})
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)

 same => n(unavail),VoiceMail(101@default,u)
 same => n,Hangup()

 same => n(busy),VoiceMail(101@default,b)
 same => n,Hangup()

exten => 102,1,Dial(${UserB_DeskPhone},10)

GoSub | 175

 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => 103,1,Dial(${UserB_SoftPhone})
 same => n,Hangup()

We’ve only provided two users with actual, working voicemail, and we’ve only defined
four phones as extensions, and yet we’ve already got a mess of repetitive code, which
is only going to get more and more difficult to maintain and expand. This will
quickly become unmanageable if we don’t find a better way.

Let’s write a subroutine to handle dialing our users. Add the following to the very
bottom of your dialplan:

; SUBROUTINES
[subDialUser]
exten => _[0-9].,1,Noop(Dial extension ${EXTEN},channel: ${ARG1}, mailbox: ${ARG2})
 same => n,Noop(mboxcontext: ${ARG3}, timeout ${ARG4})
 same => n,Dial(${ARG1},${ARG4})
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)

 same => n(unavail),VoiceMail(${ARG2}@${ARG3},u)
 same => n,Hangup()

 same => n(busy),VoiceMail(${ARG2}@${ARG3},b)
 same => n,Hangup()

Now, modify the top of your dialplan as follows:
[OLD_sets] ; what was [sets] is now [OLD_sets] (call it whatever, so long as name changes)
exten => 100,1,Dial(${UserA_DeskPhone},12)
 same => n,Voicemail(100@default)
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
;(etc)

We’ve renamed our [sets] context, which of course breaks our dialplan since our
phones enter the dialplan there. So, we’re going to reinsert it a little farther down:

exten => 103,1,Dial(${UserB_SoftPhone})
 same => n,Hangup()

[sets]

exten => 110,1,Dial(${UserA_DeskPhone}&${UserA_SoftPhone}&${UserB_SoftPhone})
 same => n,Hangup()
;(etc)

OK, so now we’ve got our [sets] context working again, and also this [OLD_sets]
context that’s got our old, orphaned code. How do we dial our telephones? How does
this subroutine we just wrote help us?

exten => 103,1,Dial(${UserB_SoftPhone})
 same => n,Hangup()

[sets]

;subDialUser args:

176 | Chapter 10: Deeper into the Dialplan

; - ARG1 Channel(s) to dial
; - ARG2 Mailbox
; - ARG3 Mailbox Context
; - ARG4 Timeout
exten => 100,1,Gosub(subDialUser,${EXTEN},1(${UserA_DeskPhone},${EXTEN},default,12))
exten => 101,1,Gosub(subDialUser,${EXTEN},1(${UserA_SoftPhone},${EXTEN},default,3))
exten => 102,1,Gosub(subDialUser,${EXTEN},1(${UserB_DeskPhone},${EXTEN},default,6))
exten => 103,1,Gosub(subDialUser,${EXTEN},1(${UserB_SoftPhone},${EXTEN},default,24))

exten => 110,1,Dial(${UserA_DeskPhone}&${UserA_SoftPhone}&${UserB_SoftPhone})
 same => n,Hangup()

Plug that in, reload your dialplan, and make some test calls. Play with the parameters
and see what changes. Add some mailboxes to your database and see what that does.
If you’re inspired, write a new subDialUserNEW subroutine and see what you can
come up with. At this point you can also delete all the code in the [OLD_sets] con‐
text, since it’s now abandoned, but you can also leave it there as it does no harm.

Now, you can add hundreds of extensions, and each one will only use one line of the
dialplan.

Whenever you find yourself writing duplicate dialplan code somewhere, stop. It’s very
likely that it’s time to write a subroutine.

Returning from a Subroutine
The GoSub() dialplan application does not return automatically once it is done exe‐
cuting. If you’re done with the call, you can of course use Hangup(); however, if you
don’t want to disconnect, but rather need to return the call from where it came, you
can use the Return() application.

Since you can nest subroutines within subroutines and also execute them one after
another, as you get into more complex subroutines you will find this an essential
capability.

Local Channels
Local channels are a method of executing other areas of the dialplan from the Dial()
application (as opposed to sending the call out a channel). Think of them as subrou‐
tines you can call from within Dial().

They may seem like a bit of a strange concept when you first start using them, but
believe us when we tell you they can be the answer to a problem you can’t figure out
any other way. You will almost certainly want to make use of them when you start
writing advanced dialplans. The best way to illustrate the use of local channels is
through an example. Let’s suppose we have a situation where we need to ring multiple
people, but we need to provide delays of different lengths before dialing each of the
members. The use of local channels is the solution to the problem.

Local Channels | 177

7 Obsolete Android phones and tablets can be great for this.

With the Dial() application, you can certainly ring multiple endpoints (see extension
110 in your dialplan for an example of this), but all three channels will ring at the
same time, and for the same length of time.

exten => 110,1,Dial(${UserA_DeskPhone}&${UserA_SoftPhone}&${UserB_SoftPhone})
 same => n,Hangup()

However, let’s say we want to introduce some delays prior to ringing a user, and also
stop ringing locations at different times. Using local channels gives us independent
control over each of the channels we want to dial, so we can introduce delays and
control the period of time for which each channel rings independently.

Let’s say we have a small company, where the receptionist is primarily responsible for
the incoming calls, but there are also two team members who are tasked with backing
up reception, and finally the owner wants to help out if need be too.

These are the requirements:

• The reception phone should ring right away, and keep ringing and not stop until
answered.

• The team member phones shouldn’t ring for the first 9 seconds, at which point
they can ring until answered.

• The owner’s phone should only ring if the call has gone on for 12 seconds with
no answer. Also, we’re pretending it’s a cell phone, and thus should stop ringing
18 seconds later so that the call is not answered by the cell phone voicemail.

We’ll use our existing configured channels to play the various roles. If you have any
way to do so, please try to have them all registered somewhere so they can all ring
when called. It’ll give you a much better idea of what’s going on when testing.7

This is a great time for a subroutine:
[subDialDelay]
exten => _[a-zA-Z0-9].,1,Noop(channel ${ARG1}, pre-delay ${ARG2}, timeout ${ARG3})
; same => n,Progress() ; Optional; Signals back that the call is proceeding
 same => n,Wait(${ARG2}) ; how long to wait before dialing
 same => n,Dial(${ARG1},${ARG3}) ; timeout can be blank (infinite)
 same => n,Hangup()

You already have a subroutine at the bottom of the file. Add this
one down there too so all your subroutines end up grouped
together.

178 | Chapter 10: Deeper into the Dialplan

Now we want a context in which we’ll build out the extensions to be used by the local
channel:

;LOCAL CHANNELS
[localDialDelay]
exten => receptionist,1,Gosub(subDialDelay,${EXTEN},1(${UserA_DeskPhone},0,600))
exten => team_one,1,Gosub(subDialDelay,${EXTEN},1(${UserA_SoftPhone},9,600))
exten => team_two,1,Gosub(subDialDelay,${EXTEN},1(${UserB_DeskPhone},9,600))
exten => owner,1,Gosub(subDialDelay,${EXTEN},1(${UserB_SoftPhone},12,18))

Even though the destination for a local channel is really just
dialplan—the same as you might jump to with a Goto()—these
constructs tend to be very special-purpose, and fit into the dialplan
better in their own area, down with the subroutines. That’s why we
named the context with the prefix local. It’s not required, but
makes things easier to make sense of.

Now we stitch it all together in our [sets] context.

First, let’s provide a way to dial each local channel individually, so we can sanity check
each one to be sure it’s doing what it should.

exten => 103,1,Gosub(subDialUser,${EXTEN},1(${UserB_SoftPhone},${EXTEN},default,24))

; These are for testing individually before we put them together
exten => 104,1,Dial(Local/receptionist@localDialDelay)
exten => 105,1,Dial(Local/team_one@localDialDelay)
exten => 106,1,Dial(Local/team_two@localDialDelay)
exten => 107,1,Dial(Local/owner@localDialDelay)

Finally, let’s deliver the finished product.
exten => 107,1,Dial(Local/owner@localDialDelay)

;We're going to assign some variables in order to
;keep the dial string easier to read
exten => 108,1,Noop(DialDelay)
 same => n,Set(Recpn=Local/receptionist@localDialDelay)
 same => n,Set(Team1=Local/team_one@localDialDelay)
 same => n,Set(Team2=Local/team_two@localDialDelay)
 same => n,Set(Boss=Local/owner@localDialDelay)
 same => n,Dial(${Recpn}&${Team1}&${Team2}&${Boss},600)

You really need to register a few phones and try this out, to see it all come together.

Local Channels | 179

The solution we have created here is perfect for learning about local channels, but it
has a few problems that need to be understood if you ever want to put it into
production:

• Even though we have set a dial timeout, you will find that SIP endpoints have
minds of their own. It’s not uncommon for a SIP endpoint to have its own ideas
about timeout. So, you might set it to ring for 600 seconds, and wonder why it
drops the call after a minute or so. You could spend hours troubleshooting your
dialplan, only to discover the problem was a setting at the other end. Test each
piece of the solution before you glue them all together.

• Cell phones have their own voicemail, and if that answers the call, Asterisk will
connect the call to that “answered” channel. One way around this is to hang up
before that happens, and then call immediately back. It’s ugly though, and not
recommended.

• Cell phones will often go immediately to a voicemail if they’re out of range or
turned off. That counts as an answer as far as Asterisk is concerned. This solution
does not handle that.

• Call setup to a cell phone (i.e., the time between when you dial and when it starts
ringing) typically takes a dozen seconds or so.

• Remember that a softphone on a cell phone is not at all the same as a phone call
to that cell phone. One is a SIP connection, the other is a PSTN call. (You can
actually ring both at the same time if you want, but that’s not necessarily a good
idea.)

• Some types of smartphones will give priority to incoming GSM calls. If you are
on a call on the softphone, and somebody calls your cell number, the softphone
may get put on hold. Different phones handle this differently.

• We haven’t really handled overflow here. What happens if nobody answers? It
doesn’t matter in the lab, but you can be sure it’ll matter in a production environ‐
ment.

• Dial() expects ringing back from the destination. If all of your local channels
have a Wait() delay, the caller will hear silence until something indicates ringing.
You can fix this by having Dial() fake the ringing with the 'r' option, or by
adding a dummy local channel that just returns ringing.

If you check the sample dialplan, we’ve added a solution to the
silence problem on delayed local channels

180 | Chapter 10: Deeper into the Dialplan

That’s it. Local channels: build them piece-by-piece and you’ll be delivering a power‐
ful dialplan in no time.

They’re incredibly useful when building complex queueing applications as well.

Using the Asterisk Database
Asterisk provides a simple mechanism for storing data called the Asterisk database
(AstDB). This is not an external relational database, but simply an SQLite-based
backend for storing simple key/value pairs.

The Asterisk database stores its data in groupings called families, with values identi‐
fied by keys. Within a family, a key may be used only once. For example, if we had a
family called test, we could store only one value with a key called count. Each stored
value must be associated with a family.

Storing Data in the AstDB
To store a new value in the Asterisk database, we use the Set() application with the
DB() function. For example, to assign the count key in the test family with the value
of 1, we would write the following:

exten => 216,1,NoOp()
 same => n,Set(DB(testkey/count)=1)

Make a test call to 216 to set the value. Note that if a key named count already exists
in the test family, its value will be overwritten with the new value (in this case, the
value is hardcoded so obviously will get overwritten with the same value, but later
we’ll see how we can change the value, and have that stored).

You can also store values from the Asterisk command line, by running the command
database put family key value. For our example, you would type database put
test count 1.

So, while we’re at it, let’s also plug a value into the database from the console:
*CLI> database put somekey somevalue 42

Let’s query the database from the console to see what values are in there:
*CLI> database show

If all is well, you should see output similar to the following:
/pbx/UUID : d562019a-d2c4-4b88-bcd9-602b3b46fe07
/somekey/count : 1
/somekey/somevalue : 42
/testkey/count : 1
4 results found.
localhost*CLI>

Using the Asterisk Database | 181

Retrieving Data from the AstDB
To retrieve a value from the Asterisk database and assign it to a variable, we will again
use the Set() application and the DB() function. Let’s retrieve the value of somevalue
(from the somekey family), assign it to a variable called THE_ANSWER, and then speak
the value to the caller:

exten => 217,1,NoOp()
 same => n,Set(THE_ANSWER=${DB(somekey/somevalue)})
 same => n,Answer()
 same => n,SayNumber(${THE_ANSWER})

You may also check the value of a given key from the Asterisk command line by run‐
ning the command database get family key. To view the entire contents of the
AstDB, use the database show command.

Deleting Data from the AstDB
There are two ways to delete data from the Asterisk database. To delete a key, you can
use the DB_DELETE() application. It takes the path to the key as its arguments, like
this:

; deletes the key and returns its value in one step
exten => 218,1,Verbose(0, We just blew away ${DB_DELETE(somekey/somevalue)})

You can also delete an entire key family by using the DBdeltree() application. The
DBdeltree() application takes a single argument: the name of the key family to
delete. To delete the entire test family, do the following:

exten => 219,1,DBdeltree(somekey)

To delete keys and key families from the AstDB via the command-line interface, use
the database del key and database deltree family commands, respectively.

If you call extension 217 now, you will see that there is nothing said, because nothing
is returned by the database. You can also run database show from the CLI, and note
that that family and key have been removed.

Using the AstDB in the Dialplan
There are an infinite number of ways to use the Asterisk database in a dialplan. To
introduce the AstDB, we’ll look at two simple examples. The first is a simple counting
example to show that the Asterisk database is persistent (it even survives system
reboots). In the second example, we’ll use the BLACKLIST() function to evaluate
whether or not a number is on the blacklist and should be blocked.

To begin the counting example, let’s first retrieve a number (the value of the count
key) from the database and assign it to a variable named COUNT. If the key doesn’t
exist, DB() will return NULL (no value). Therefore, we can use the ISNULL() function

182 | Chapter 10: Deeper into the Dialplan

to verify whether or not a value was returned. If not, we will initialize the AstDB with
the Set() application, where we will set the value in the database to 1. This will only
happen if the database entry does not exist:

exten => 220,1,NoOp()
 same => n,Set(COUNT=${DB(test/count)}) ; retrieve current value in database
 same => n,GotoIf($[${ISNULL(${COUNT})}]?firstcount:saycount) ; is there a value?

 same => n(firstcount),Set(DB(test/count)=1) ; set the value to 1
 same => n,Goto(saycount)

 same => n(saycount),NoOp()
 same => n,Answer
 same => n,SayNumber(${COUNT})
 same => n,Goto(increment) ; not reqd but a good habit

 same => n(increment),Set(COUNT=$[${COUNT} + 1]) ; increment by one
 same => n,Set(DB(test/count)=${COUNT}) ; and assign new value to database
 same => n,Goto(saycount) ; loop back and say it again

Test this out. Listen to it count for a while, and then hang up. When you dial this
extension again, it will continue counting from where it left off. The value stored in
the database will be persistent, even across a restart of Asterisk.

In the early days of Asterisk, the built-in database was essential. Today, however, it’s
not as commonly used. It’s probably good for setting a few semaphores here and
there, but for the most part, if you want to store data, use one of the relational data‐
base backends (we discuss relational database integration in later chapters).

Handy Asterisk Features
Now that we’ve gone over some more of the basics, let’s look at a few popular func‐
tions that have been incorporated into Asterisk.

Conferencing with ConfBridge()
The ConfBridge() application allows multiple callers to converse together, as if they
were all in the same physical location. Some of the main features include:

• The ability to create password-protected conferences
• Conference administration (mute conference, lock conference, or kick off

participants)
• The option of muting all but one participant (useful for company announce‐

ments, broadcasts, etc.)
• Static or dynamic conference creation
• High-definition audio that can be mixed at sample rates ranging from 8 kHz to

96 kHz

Handy Asterisk Features | 183

• Video capabilities, including the addition of dynamically switching video feeds
based on loudest talker

• Dynamically controlled menu system for both conference administrators and
users

• Additional options available in the confbridge.conf configuration file

In this chapter we are focused on the dialplan, so we’re only going to demonstrate a
basic audio conference bridge:

$ sudo -u asterisk vim /etc/asterisk/confbridge.conf
[general]

[default_user]
type=user

[default_bridge]
type=bridge

After building the confbridge.conf file, we need to load the app_confbridge.so mod‐
ule. This can be done at the Asterisk console:

*CLI> module load app_confbridge.so

With the module loaded, we can build a simple dialplan to access our conference
bridge:

exten => 221,1,NoOp()
 same => n,ConfBridge(${EXTEN})

This is just the tip of the iceberg for conferencing. We’ve got the base configuration
done, but there is much more functionality to be configured. We’ll cover it in a little
more detail in Chapter 11.

Handy Dialplan Functions
We discussed functions earlier in this chapter, but there’s more to say. There are cur‐
rently around 150 dialplan functions provided by the Asterisk dialplan. Here is a
small, curated list of a few worth experimenting with.

CALLERID()
CALLERID() supports many different datatypes, but you’ll find that you’ll typically use
one of name or num.

exten => 222,1,Noop(CALLERID function)
 same => n,Noop(CALLERID currently ${CALLERID(all)})
 same => n,Set(CALLERID(num)=4169671111)
 same => n,Noop(CALLERID now ${CALLERID(all)})
 same => n,Set(CALLERID(name)="Somename")

184 | Chapter 10: Deeper into the Dialplan

 same => n,Noop(CALLERID now ${CALLERID(all)})
 same => n,Hangup()

Don’t worry about the rest of them. If you need ’em, you’ll know what they are or why
you want to use them.

CHANNEL()
CHANNEL() allows you to interact with an absolute boatload of data relating to the
channel. Some items allow you to modify them, while others will only be useful for
reference (for example, peerip will allow you to read, but not change, the IP address
of the peer). There are also channel variables that only work with certain channel
types (for example, pjsip items can of course only be used on PJSIP channels).

exten => 223,1,Noop(CHANNEL function)
 same => n,Answer()
 same => n,Noop(CHANNEL(name) is ${CHANNEL(name)})
 same => n,Noop(CHANNEL(musicclass) is ${CHANNEL(musicclass)})
 same => n,Noop(CHANNEL(rtcp,all_jitter) is ${CHANNEL(rtcp,all_jitter)})
 same => n,Noop(CHANNEL(rtcp,all_loss) is ${CHANNEL(rtcp,all_loss)})
 same => n,Noop(CHANNEL(rtcp,all_rtt) is ${CHANNEL(rtcp,all_rtt)})
 same => n,Noop(CHANNEL(rtcp,txcount) is ${CHANNEL(rtcp,txcount)})
 same => n,Noop(CHANNEL(rtcp,rxcount) is ${CHANNEL(rtcp,rxcount)})
 same => n,Noop(CHANNEL(pjsip,local_uri) is ${CHANNEL(pjsip,local_uri)})
 same => n,Noop(CHANNEL(pjsip,remote_uri) is ${CHANNEL(pjsip,remote_uri)})
 same => n,Noop(CHANNEL(pjsip,request_uri) is ${CHANNEL(pjsip,request_uri)})
 same => n,Noop(CHANNEL(pjsip,local_tag) is ${CHANNEL(pjsip,local_tag)})

CURL()
CURL() is a simple yet powerful function that provides a one-liner method for resolv‐
ing URLs, which in many cases is all you need for a basic interaction with an external
web service.

exten => 224,1,Noop(CURL function)
 same => n,Set(ExternalIP=${CURL(http://whatismyip.akamai.com)})
 same => n,Noop(The external IP address is ${ExternalIP})

If you need a more complex interaction with an external service, it could be that you
are going to want an AGI program of some sort. Still, you can embed a ton of data in
a URL, and for simplicity, CURL() is hard to beat.

CUT()
If you need to slice-and-dice your variables, you’ll find the CUT() function essential.
The form is simple:

CUT(varname,char-delim,range-spec)

It can be visually tricky, as the delimiter character can be difficult to see nested in
between two commas (for example, if the delimiter was a dot/decimal/period). Let’s

Handy Dialplan Functions | 185

8 There is a C language function named STRFTIME() that returns the current time as a formatted string. This
works similarly to that. In fact, the format portion of the function takes the exact same syntax as the C func‐
tion.

expand on the previous example to see what it’s good for (and give you a visual exam‐
ple of how the delimiter can get lost in the syntax).

exten => 225,1,Noop(CUT function)
 same => n,Set(ExternalIP=${CURL(http://whatismyip.akamai.com)})
 same => n,Noop(The external IP address is ${ExternalIP})
 same => n,Answer()
 same => n,SayDigits(=${CUT(ExternalIP,.,1)})
 same => n,Playback(letters/dot)
 same => n,SayDigits(=${CUT(ExternalIP,.,2)})
 same => n,Playback(letters/dot)
 same => n,SayDigits(=${CUT(ExternalIP,.,3)})
 same => n,Playback(letters/dot)
 same => n,SayDigits(=${CUT(ExternalIP,.,4)})

Note that you call the CUT() function with the braces ${CUT()}, but
the variable being referenced inside CUT() is defined without the
braces. This is because we are naming the variable, not asking for
its contents (CUT() will deal with the contents, so we just need to
name the variable it will be slicing and dicing, and it will dive into
what is stored there).

IF() and STRFTIME()
The combination of IF() and STRFTIME() is a powerful construct, and you will find it
an essential part of your dialplan logic:

exten => 226,1,Noop(IF)
 same => n,Answer()
 same => n,Playback(${IF($[$[${STRFTIME(,,%S)} % 2] = 1]?hear-odd-noise:good-evening)})

Wait...what?8

Let’s break this down (we’re going to indent the code in an odd manner in order to
show the progression of the nested functions and operators):

exten => 227,1,Noop(IF)
 same => n,Answer()
 same => n,Wait(.5)
 same => n,Wait(.5)
 same => n,Noop(${STRFTIME(,,%S)}) ; current time - just seconds
 same => n,Noop($[${STRFTIME(,,%S)} % 2]) ; divide by 2 - return remainder
 same => n,Noop(${IF($[$[${STRFTIME(,,%S)} % 2] = 1]?odd:even)})
same => n,Playback(${IF($[$[${STRFTIME(,,%S)} % 2] = 1]?hear-odd-noise:good-evening)})

186 | Chapter 10: Deeper into the Dialplan

The IF() function allows us to pass logic to the Playback() application. We’re effec‐
tively saying, “If it’s true that the time, in seconds, is odd, play the hear-odd-noise
prompt, otherwise, play the good-evening prompt.”

If we line up the code in a more typical fashion, it looks like this (note that some of
the optional spaces have also been removed):

exten => 228,1,Noop(IF)
 same => n,Answer()
 same => n,Wait(.5)
 same => n,Noop(${STRFTIME(,,%S)})
 same => n,Noop($[${STRFTIME(,,%S)} % 2])
 same => n,Noop(${IF($[$[${STRFTIME(,,%S)} % 2] = 1]?odd:even)})
 same => n,Playback(${IF($[$[${STRFTIME(,,%S)} % 2] = 1]?hear-odd-noise:good-evening)})

The final line is very difficult to read unless you know how we got there, but it dem‐
onstrates the power of nesting.

At first these constructs may seem difficult to write, so break them down and perform
them line by line, and eventually they’ll get easier (and your dialplan will subse‐
quently become more powerful). Play with them.

LEN()
Being able to return the length of something with the LEN() function can be very
handy.

exten => 229,1,Noop(LEN)
 same => n,Set(LengthyString=${RAND(1,2000)})
 same => n,Noop(${LEN(${LengthyString})})
 same => n,Noop(${IF($[${LEN(${LengthyString})} <= 3]?tooshort:youcanride)})

REGEX()
Yes, you can use regular expressions within Asterisk. This is a somewhat advanced
topic, not because REGEX() is a complicated function in itself, but because regular
expressions are a study in themselves.

Check out http://www.regular-expressions.info/ for more info, or grab a copy of
O’Reilly’s Mastering Regular Expressions by Jeffrey E. F. Friedl.

Get used to using other functions in Asterisk, get some experience with regular
expressions, and then give REGEX() a try.

STRFTIME()
We just saw the STRFTIME() function in our IF() example. It allows you to return a
time in various formats. In general, you want the input to be empty (which defaults to
the current time). You can also give this function a specific Unix epoch string and it’ll
work from that.

Handy Dialplan Functions | 187

http://www.regular-expressions.info/

exten => 230,1,Noop(STRFTIME)
 same => n,Noop(${STRFTIME(,,%S)}) ; we've seen this before
 same => n,Noop(${STRFTIME(,,%B)}) ; month
 same => n,Noop(${STRFTIME(,,%H)}) ; hour in 24hr format
 same => n,Noop(${STRFTIME(,,%m)}) ; month as a decimal
 same => n,Noop(${STRFTIME(,,%M)}) ; minute
 same => n,Noop(${STRFTIME(,,%Y)}) ; year - 4 digits
 same => n,Noop(${STRFTIME(,,%Y-%m-%d %H:%m:%S)}) ; string some together

Conclusion
In this chapter, we’ve covered a few more of the many applications in the Asterisk
dialplan, and hopefully we’ve given you some more tools that you can use to further
experiment with creating your own dialplans. As with other chapters, we invite you to
go back and reread any sections that require clarification.

188 | Chapter 10: Deeper into the Dialplan

CHAPTER 11

PBX Features, Including Parking, Paging,
and Conferencing

I don’t believe in angels, no. But I do have a wee parking angel. It’s on my dashboard and you
wind it up. The wings flap and it’s supposed to give you a parking space. It’s worked so far.

—Billy Connolly

This chapter discusses several peripheral features common to business telephone
environments. We’ll briefly cover the features.conf file, and then spend a few sections
on paging and parking, and finally do a bit of work with Asterisk’s conferencing
engine, confbridge.

First up, let’s copy the features.conf file over from the installation directory, and have a
look at it:

$ sudo cp ~/src/asterisk-16.<TAB>/configs/samples/features.conf.sample \
/etc/asterisk/features.conf

$ sudo chown asterisk:asterisk /etc/asterisk/features.conf

features.conf
Asterisk provides several features common to most PBXs, many of which have
optional parameters. The features.conf file is where you can adjust or define the vari‐
ous feature parameters in Asterisk.

189

1 Yes, we realize that a SIP INFO message is in fact a SIP message and not technically part of the audio channel,
but the point is that you can’t use the “transfer” or “park” button on your SIP phone to access these features
while on a call. You’ll have to send DTMF.

DTMF-Based Features
Many of the parameters in features.conf only apply when invoked on calls that have
been bridged by the dialplan applications Dial() or Queue() using one or more of the
options K, k, H, h, T, t, W, w, X, or x. Features accessed in this way are DTMF-based
(meaning they can’t be accessed via SIP messaging, but only through touch-tone
signals in the audio channel triggered by users dialing the required digits on their
dialpads).1

Transfers on SIP channels (for example, from a SIP telephone) can be handled using
the capabilities of the phone itself and won’t be affected by anything in the
features.conf file.

The [general] Section
In the [general] section of features.conf, you can define options that fine-tune the
behavior of the transfers feature in Asterisk. These have nothing to do with how SIP
telephones handle call transfers. You instead access these features by using DTMF
digits while on a call (the call must be bridged, so calls ringing or in progress will not
have access to these features).

The features.conf.sample file in your ~/asterisk/ folder contains details of the various
options, and examples of how they can be set.

These features are not as commonly used as they were in the past, mostly because
many of these things can be handled in more advanced ways than firing DTMF from
the telephone set (for example, through an external integration of some sort, or for
that matter from the telephone itself using its own internal transfer features).

The [featuremap] Section
The [featuremap] section, summarized in Table 11-1, allows you to define specific
DTMF sequences that will trigger features on channels that have been bridged via
options in the Dial() or Queue() application. The two options you are most likely to
use are parkcall and automixmon.

190 | Chapter 11: PBX Features, Including Parking, Paging, and Conferencing

2 There is some flexibility in the syntax (you can look at the sample file for details), but our example uses the
style we recommend, since it’s the most consistent with typical dialplan syntax.

Table 11-1. features.conf [featuremap] section

Option Value/example Notes Dial()/Queue()
flags

blindxfer #1 Invokes a blind (unsupervised) transfer T, t

disconnect *0 Hangs up the call H, h

automon *1 Starts recording of the current call using the Monitor()
application (pressing this key sequence a second time stops the
recording)

W, w

atxfer *2 Performs an automated transfer T, t

parkcall #72 Parks a call K, k

automixmon *3 Starts recording of the current call using the MixMonitor()
application (pressing this key sequence again stops the recording)

X, x

The [applicationmap] Section
The [applicationmap] section of features.conf is arguably the most nifty, as it allows
you to map DTMF codes to dialplan applications. The caller will be placed on hold
until the application has completed execution.

The syntax for defining an application map is as follows (it must appear on a single
line; line breaks are not allowed):2

Name => DTMF_sequence,ActivateOn[/ActivatedBy],App([Args])[,MOH_Class]

What you are doing is the following:

1. Giving your map a name so that it can be enabled in the dialplan through the use
of the DYNAMIC_FEATURES channel variable (more on this in a moment).

2. Defining the DTMF sequence that activates this feature (we recommend using at
least two digits for this).

3. Defining which channel the feature will be activated on, and (optionally) which
participant is allowed to activate the feature (the default is to allow both channels
to use/activate this feature).

4. Giving the name of the application that this map will trigger, and its arguments.
5. Providing an optional music on hold (MOH) class to assign to this feature

(which the opposite channel will hear when the application is executing). If you
do not define any MOH class, the caller will hear only silence.

features.conf | 191

3 We’ll cover AGI in Chapter 18, but briefly, AGI scripts are external programs you can trigger from the dia‐
lplan. Handy? Very!

Here is an example of an application map that will trigger an AGI script:3

agi_test => *6,self/callee,AGI(agi-test.agi),default

You may add this to your /etc/asterisk/features.conf file if you wish.

Since applications spawned from the application map are run out‐
side the PBX core, you cannot execute any applications that trigger
the dialplan (such as Goto(), Macro(), Background(), etc.). If you
wish to use the application map to spawn external processes
(including executing dialplan code), you will need to trigger an
external application through an AGI() call or the System() applica‐
tion. The point is, if you want anything complex to happen through
the use of an application map, you will need to test very carefully,
as not all things will work as you might expect.

To use an application map, you must declare it in the dialplan by setting the
DYNAMIC_FEATURES variable somewhere before the Dial() command that connects
the channels. Use the double underscore modifier on the variable name to ensure that
the application map is available to both channels throughout the life of the call. Let’s
toss this one in our subDialUser subroutine, so that it’ll be available whenever any of
our extensions call each other:

[subDialUser]
exten => _[0-9].,1,Noop(Dial extension ${EXTEN},channel: ${ARG1}, mailbox: ${ARG2})
 same => n,Noop(mboxcontext: ${ARG3}, timeout ${ARG4})
 same => n,Set(__DYNAMIC_FEATURES=agi_test)
 same => n,Dial(${ARG1},${ARG4})
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)

If you want to allow more than one application map to be available
on a call, you will need to use the # symbol as a delimiter between
multiple map names:

Set(__DYNAMIC_FEATURES=agi_test#my_other_map)

The reason why the # character was chosen instead of a simple
comma is that older versions of the Set() application interpreted
the comma differently than more recent versions, and the syntax
for application maps has never been updated.

Don’t forget to reload the features module after making changes to the features.conf
file:

192 | Chapter 11: PBX Features, Including Parking, Paging, and Conferencing

*CLI> module reload features

You can verify that your changes have taken place through the CLI command fea
tures show.

Also, since we are introducing an AGI script here, there are some commands that
must be run to make the referenced AGI script available to Asterisk.

$ sudo cp ~/src/asterisk-16.<TAB>/agi/agi-test.agi /var/lib/asterisk/agi-bin/

$ sudo chown asterisk:asterisk /var/lib/asterisk/agi-bin/*

$ sudo chmod 755 /var/lib/asterisk/agi-bin/*

Make sure you test out your application map before you turn it over to your users!

Dynamic Feature-Map Creation from the Dialplan
You can create feature maps from the dialplan directly, making the definition of a fea‐
ture (and its DTMF mapping) dynamic, on a per-channel basis. This is done with the
FEATURE() and FEATUREMAP() dialplan functions. Valid values for FEATUREMAP()
include the following, which set or retrieve the DTMF sequence used to trigger the
functionality:

atxfer

Attended transfer

blindxfer

Blind transfer

automon

Auto Monitor() (call recording)

disconnect

Call disconnect

parkcall

Call parking

automixmon

Auto MixMonitor() (call recording)

With FEATUREMAP(), the function can be used to retrieve the current DTMF sequence
for that functionality:

exten => 232,1,Noop(Current DTMF for parkcall: ${FEATUREMAP(parkcall)})

Or you can use the DTMF sequence for a feature function on the current channel:
exten => 233,1,NoOp()
 same => n,Set(FEATUREMAP(parkcall)=*9)
 same => n,Noop(DTMF for parkcall now: ${FEATUREMAP(parkcall)})

features.conf | 193

If you want to set the parking timeout for a channel, you can do so with the FEA
TURE() function. It contains a single argument, parkingtime, which is a value in sec‐
onds before the parked call is returned to the caller (or destination, depending on
how you’ve configured parking):

exten => 234,1,NoOp()
 same => n,Set(FEATURE(parkingtime)=60)

Application Map Grouping
If you have a lot of features that you need to activate for a particular context or exten‐
sion, you can group several features together in an application map grouping, so that
one assignment of the DYNAMIC_FEATURES variable will assign all of the designated
features of that map.

The application map groupings are added at the end of the features.conf file. Each
grouping is given a name, and then the relevant features are listed:

[shifteight]
unpauseMonitor => *1 ; custom key mapping
pauseMonitor => *2 ; custom key mapping
agi_test => ; no custom key mapping

If you want to specify a custom key mapping to a feature in an
application map grouping, simply follow the => with the key map‐
ping you want. If you do not specify a key mapping, the default key
map for that feature will be used (as found in the [featuremap]
section). Regardless of whether you want to assign a custom key
mapping or not, the => operator is required.

In the dialplan, you would assign this application map grouping with the Set()
application:

 same => Set(__DYNAMIC_FEATURES=shifteight) ; use the double underscore if you want
 ; to ensure both call legs have the
 ; variable assigned.

Parking and Paging
Although these two features are completely separate from each other, they are so
commonly used together we might as well treat them as one single feature.

Call parking allows calls to be placed on hold and then retrieved from a location dif‐
ferent from where they were originally answered. Paging uses a public address system
to allow announcements to be sent from the telephone system (for example, to
announce who the parked call is for and how it can be retrieved).

194 | Chapter 11: PBX Features, Including Parking, Paging, and Conferencing

Some businesses, perhaps with large warehouses, outdoor areas, or employees who
move around the office a lot, utilize the paging and parking functionality of their sys‐
tems to direct calls around the office. In this chapter we’ll show you how to use both
parking and paging in the traditional setting (park ’n’ page), along with a couple of
more modern takes on these commonly used functions.

Call Parking
A parking lot allows a call to be held in the system without being associated with a
particular extension. The call can then be retrieved by anyone who knows the park
code for that call. This feature is often used in conjunction with a public address (PA),
or “paging” system. For this reason, it is often referred to as “park-and-page.” It
should be noted that parking and paging are in fact separate. We’ll cover paging
momentarily, but first, let’s talk about call parking.

Let’s grab a copy of the sample file that we’ll use to configure call parking:
$ sudo cp ~/src/asterisk-16.<TAB>/configs/samples/res_parking.conf.sample \
/etc/asterisk/res_parking.conf

$ sudo chown asterisk:asterisk /etc/asterisk/res_parking.conf

$ sudo asterisk -rx 'module load res_parking.so'

To park a call in Asterisk, you need to transfer the caller to the feature code assigned
to parking, which is assigned in the res_parking.conf file with the parkext directive.
By default, this is 700:

parkext => 700 ; What extension to dial to park (all parking lots)

You have to wait to complete the transfer until you get the number of the parking
retrieval slot from the system, or you will have no way of retrieving the call. By
default the retrieval slots, assigned with the parkpos directive in res_parking.conf, are
numbered from 701 to 720:

parkpos => 701-720 ; What extensions to park calls on (defafult parking lot)

Once the call is parked, anyone on the system can retrieve it by dialing the number of
the retrieval slot (parkpos) assigned to that call. The call will then be bridged to the
channel that dialed the retrieval code.

There are two common ways to define how retrieval slots are assigned. This is done
with the findslot directive in the res_parking.conf file. The default method (find
slot => first) always uses the lowest-numbered slot if it is available, and only
assigns higher-numbered codes if required. The second method (findslot => next)
will rotate through the retrieval codes with each successive park, returning to the first
retrieval code after the last one has been used. Which method you choose will depend
on how busy your parking lots are. If you use parking rarely, the default findslot of
first will be best (people will be used to their parked calls always being in the same

Parking and Paging | 195

slot). If you constantly use the parking feature (for example, in an automobile dealer‐
ship), it is far better for each successive page to assign the next slot, since you will
often have more than one call parked at a time. Your users will get used to listening
carefully to the actual parking lot number (instead of just always dialing 701), and
this will minimize the chance of people accidentally retrieving the wrong call on a
busy system.

Handling Timed-Out Parked Calls with the comebacktoorigin Option
This option configures the behavior of call parking when the parked call times out
(see the parkingtime option). comebacktoorigin can have one of two values:

yes (default)
When the parked call timeout is exceeded, Asterisk will attempt to send the call
back to the peer that parked this call. If the channel is no longer available to
Asterisk, the caller will be disconnected.

no

This option would be used when you want to perform custom dialplan function‐
ality on parked calls that have exceeded their timeouts. The caller will be sent
into a specific area of the dialplan where logic can be applied to gracefully handle
the remainder of the call (this may involve simply returning the call to a different
extension, or performing a lookup of some sort).

You also may need to take into account calls where the originating channel cannot
handle a returned parked call. If, for example, the call was parked by a channel that is
also a trunk to another system, there would not be enough information to send the
call back to the correct person on that other system. The actions following a timeout
would be more complex than comebacktoorigin=yes could handle gracefully.

Parked calls that timeout with comebacktoorigin=no will always be sent into the
parkedcallstimeout context.

The dialplan (and contexts) were discussed in detail in Chap‐
ter 6.

The extension they will be sent to will be built from the name of the channel that
parked the call. For example, if a SIP peer named 0004F2040808 parked this call, the
extension will be SIP_0004F2040808.

If this extension does not exist, the call will be sent to the s extension in the parked
callstimeout context instead. Finally, if the s extension of parkedcallstimeout does
not exist, the call will be sent to the s extension of the default context.

196 | Chapter 11: PBX Features, Including Parking, Paging, and Conferencing

4 We hope you realize that the actual extension will be related to the channel name that parked the call, and will
not be SIP_0004F2040808 (unless Leif sells you the Polycom phone from his lab).

Additionally, for any calls where comebacktoorigin=no, there will be an extension of
SIP_0004F2040808 created in the park-dial context. This extension will be set up to
do a Dial() to SIP/0004F2040808.4

If you are using parking, you are also going to need a way to announce the parked
calls so users know how to retrieve them. While you could just run down the hall
yelling “Bob, there’s a call for you on 701!,” the more professional method is to use a
paging system (more formally known as a public address system), which we will dis‐
cuss now.

Paging (aka Public Address)
In many PBX systems, it is useful to connect the telephone system to some sort of
public address system. This involves dialing a feature code or extension that makes a
connection to a public address resource of some kind, and then making an
announcement through the handset of the telephone that is broadcast to all devices
associated with that paging resource (perhaps you’ve heard the clerk at your grocery
store request a price check through the telephone). Often, this will be an external
paging system consisting of an amplifier connected to overhead speakers; however,
paging through the speakers of office telephones is also popular (mainly for cost rea‐
sons). If you have the budget (or an existing overhead paging system), overhead pag‐
ing is generally better, but set-based paging can work well in many environments. It is
also possible to have a mix of set-based and overhead paging, where, for example, set-
based paging might be in use for the administrative offices, but overhead paging
would be used for warehouse, hallway, parking lot, and public areas (cafeteria, recep‐
tion, etc.).

In Asterisk, the Page() application is used for paging. This application simply takes a
list of channels as its argument, calls all of the listed channels simultaneously, and, as
they are answered, puts each one into a conference room. With this in mind, it
becomes obvious that one requirement for paging to work is that each destination
channel must be able to automatically answer the incoming connection and place the
call onto a speaker of some sort (in other words, Page() won’t work if all the phones
just ring).

So, while the Page() application itself is painless and simple to use, getting all the des‐
tination channels to handle the incoming pages correctly is a bit trickier. We’ll get to
that shortly.

Parking and Paging | 197

The Page() application takes three arguments: 1) the group of channels the page is to
be connected to, 2) the options, and 3) the timeout:

exten => *724,1,Noop(Page)
 same => n,Set(ChannelsToPage=${UserA_DeskPhone}&${UserA_SoftPhone}}&${UserB_DeskPhone})
 same => n,Page(${ChannelsToPage},i,120)

The options (outlined in Table 11-2) give you some flexibility with respect to how
Page() works, but the majority of the configuration is going to have to do with how
the target devices handle the incoming connection. We’ll dive into the various ways
you can configure devices to receive pages in the next section.

Table 11-2. Page() options

Option Description Discussion
d Enables full-duplex audio Sometimes referred to as “talkback paging,” the use of this option implies that the

equipment that receives the page has the ability to transmit audio back at the same
time as it is receiving audio. Generally, you don’t want to use this unless you have a
specific need for it.

i Ignores attempts to
forward the call

You would normally want this option enabled, because a call-forwarded set could go
pretty much anywhere, and that’s not where your page needs to go.

q Does not play beep to
caller (quiet mode)

Normally you won’t use this, since it’s good for paging to make a sound to alert
people that a page is about to happen. However, if you have an external amplifier
that provides its own tone, you may want to set this option.

r Records the page into a file If you intended to use the same page multiple times in the future, you could record
the page and then use it again later by triggering it using Originate() or using
the A(x) option to Page().

s Dials a channel only if the
device state is
NOT_INUSE

This option is likely only useful (and reliable) on SIP-bound channels, and even so may
not work if a single line is allowed to host multiple calls simultaneously (quite
common with SIP phones). Therefore, don’t rely on this option in all cases.

A(x) Plays announcement x to
all participants

You could use a previously recorded file to be played over the paging system. If you
combined this with Originate() and Record(), you could implement a
delayed paging system.

n Does not play
announcement
simultaneously to caller
(implies A(x))

By default, the system will play the paged audio to both the caller and the callee. If
this option is enabled, the paged audio will not be played to the caller (the person
paging).

Because of how Page() works, it is very resource-intensive. We
cannot stress this enough. Carefully read on, and we’ll cover how to
ensure that paging does not cause performance problems in a pro‐
duction environment (which it is almost certain to do if not
designed correctly).

198 | Chapter 11: PBX Features, Including Parking, Paging, and Conferencing

5 The Bogen UTI1 is useful because it can handle all manner of incoming and outgoing connections, which
pretty nearly guarantees that you’ll be able to painlessly connect your telephone system to any sort of external
paging equipment, no matter how old or obscure. The cost of the unit can be offset against the hours of time
saved by having a purpose-built, fully featured, Swiss-army-knife-like interface to an existing public address
system (or, for that matter, as part of a new PA system).

6 In this book we’re assuming that the external paging equipment is already installed and was working with the
old phone system, but there’s nothing stopping you from installing a brand-new public address system and
connecting it to your Asterisk system. You might feel that we’re plugging Bogen a bit here, but it’s simply
because they have been doing telephone system paging for a very long time. We’ve been using them for nearly
30 years, and they’ve been doing it for longer, so as long as you’re comfortable putting all the pieces together,
you can get the job done right the first time.

7 If you’re at all curious about this, we want to encourage you to try this out in your lab. It might prove to work
very well for you, and it does potentially save some hardware costs. We’ve just found that hardware is cheaper
than labor, so we’d rather drop a couple of hundred bucks on known-good gear than have some poor techni‐
cian mucking about onsite for eight hours with an upset customer demanding to know when the paging prob‐
lem will be solved.

Places to Send Your Pages
As we stated before, Page() is, in and of itself, very simple. The trick is how to bring
it all together. Pages can be sent to different kinds of channels, and they all require
different configuration.

External paging
If a public address system is installed in the building, it is common to connect the
telephone system to an external amplifier and send pages to it through a call to a
channel. The best way we know of doing this is to use an FXS device of some kind
(such as an ATA), which is connected through a paging interface such as a Bogen
UTI1,5 which then connects to the paging amplifier.6

Another popular way to connect to a paging system is to plug the output of the sound
card of your Asterisk server into the paging amplifier, and send calls to the channel
named Console/DSP. We don’t like this method because while it may seem inexpen‐
sive and simple, in practice it can be time-consuming. It asumes that the sound driv‐
ers on your server are working correctly, the audio levels are normalized correctly on
that channel, your server has a decent on-board audio card, the grounding is good,
and...well, in our opinion, this way is not recommended.7

In your dialplan, paging to an external amplifier would look similar to a simple
Dial() to the device that is connected to the paging equipment. You would need to
configure the ATA the same as any SIP telephone (through ps_endpoints, ps_auth,
etc., in the database), named something like PagingATA. You then plug the ATA into a
Bogen UTI1, and to page you have this dialplan code:

Parking and Paging | 199

exten => *725,1,Verbose(2,Paging to external amplifier) ; The '*' is part of what you dial
 same => n,Set(PageDevice=PJSIP/PagingATA) ; This probably belongs in [globals]
 same => n,Page(${PageDevice},i,120)

You can name this device anything you want (for example, we often use the MAC
address as the name of a SIP device), but for anything that is not a user telephone, it
can be helpful to use a name that makes it stand out from other devices.

There are also many SIP-based paging devices on the market (SIP paging speakers are
popular, but—we think—rather expensive for what you get, especially in a large
deployment).

Set paging
Set-based paging first became popular in key telephone systems, where the speakers
of the office telephones are used as a pauper’s public address system. Most SIP tele‐
phones have the ability to auto-answer a call on handsfree, which accomplishes what
is required on a per-telephone basis. In addition to this, however, it is necessary to
pass the audio to more than one set at the same time. Asterisk uses its built-in confer‐
encing engine to handle the under-the-hood details. You use the Page() application
to make it happen.

Like Dial(), the Page() application can handle several channels. Since you will gen‐
erally want Page() to signal several sets at once (perhaps even all the sets on your sys‐
tem), you may end up with lengthy device strings that look something like this:

Page(PJSIP/SET1&PJSIP/SET2&PJSIP/SET3&PJSIP/SET4&PJSIP/SET5&PJSIP/SET6&PJSIP/SET7&...

Beyond a certain size, your Asterisk system will be unable to page
multiple sets. For example, in an office with 200 telephones, using
SIP to page every set would not be possible; the traffic and CPU
load on your Asterisk server would simply be too much. In cases
like this, you should be looking at either multicast paging or exter‐
nal paging.

Perhaps the trickiest part of SIP-based paging is the fact that you usually have to tell
each set that it must auto-answer, but different manufacturers of SIP telephones use
different SIP messages for this purpose. So, depending on the telephone model you
are using, the commands needed to accomplish SIP-based set paging will be different.
Here are some examples:

• For Mitel (FKA Aastra):
exten => *726,1,Verbose(2,Paging to Aastra sets)
 same => n,SIPAddHeader(Alert-Info: info=alert-autoanswer)
 same => n,Set(PageDevice=SIP/00085D000000)
 same => n,Page(${PageDevice},i)

• For Polycom:

200 | Chapter 11: PBX Features, Including Parking, Paging, and Conferencing

8 Hint: the local channel will be your friend here.
9 It even has its own Class D reserved IP address space, from 224.0.0.0 to 239.255.255.255 (but read up on IP

multicast before you just grab one of these and assign it). Parts of this address space are private, parts are
public, and parts are designated for purposes other than what you might want to use them for. For informa‐
tion about multicast addressing, see its Wikipedia page.

exten => *727,1,Verbose(2,Paging to Polycom sets)
 same => n,SIPAddHeader(Alert-Info: Ring Answer)
 same => n,Set(PageDevice=SIP/0004F2000000)
 same => n,Page(${PageDevice},i)

• For Snom:
exten => *728,1,Verbose(2,Paging to Snom sets)
 same => n,Set(VXML_URL=intercom=true)

; replace 'domain.com' with the domain of your system
 same => n,SIPAddHeader(Call-Info: sip:domain.com\;answer-after=0)
 same => n,Set(PageDevice=SIP/000413000000)
 same => n,Page(${PageDevice},i)

• For Cisco SPA (the former Linksys phones, not the 79XX series):
exten => *729,1,Verbose(2,Paging to Cisco SPA sets, but not Cisco 79XX sets)
 same => n,SIPAddHeader(Call-Info:\;answer-after=0) ; Cisco SPA phones
 same => n,Set(PageDevice=SIP/0004F2000000)
 same => n,Page(${PageDevice},i)

Assuming you’ve figured that out, what happens if you have a mix of phones in your
environment? How do you control which headers to send to which phones?8

Any way you slice it, it’s not pretty.

Fortunately, many of these sets support IP multicast, which is a far better way to send
a page to multiple sets (read on for details). Still, if you only have a few phones on
your system and they are all from the same manufacturer, SIP-based paging could be
the simplest method, so we don’t want to scare you off it completely.

Multicast paging via the MulticastRTP channel
If you are serious about paging through the sets on your system, and you have more
than a handful of phones, you will need to look at using IP multicast. The concept of
IP multicast has been around for a long time,9 but it has not been widely used. Never‐
theless, it is ideal for paging within a single location.

Asterisk has a channel (chan_multicast_rtp) that is designed to create an RTP
multicast. This stream is then subscribed to by the various phones, and the result is
that whenever media appears on the multicast stream, the phones will pass that media
to their speakers.

Parking and Paging | 201

https://en.wikipedia.org/wiki/Multicast_address

10 Very loud, and no way to adjust gain.

Since MulticastRTP is a channel driver, it does not have an application, but instead
will work anywhere in the dialplan that you might otherwise use a channel. In our
case, we’ll be using the Page() application to initiate our multicast.

To use the multicast channel, you simply send a call to it the same as you would to
any other channel. The syntax for the channel is as follows:

MulticastRTP/type/ip address:port[/linksys address:port]

The type can be either basic or linksys. The basic syntax of the MulticastRTP chan‐
nel looks like this:

exten => *730,1,Page(MulticastRTP/basic/239.0.0.1:1234)

Not all sets support IP multicast, but we have tested it out on Snom,10 Linksys/Cisco,
Polycom (firmware 4.x or later), and Aastra, and it works very well.

Multicast Paging on Cisco SPA Telephones
The multicast paging feature on Cisco SPA phones is a bit strange, but once config‐
ured it works fine. The trick of it is that the address you put into the phone is not the
multicast address that the page is sent across, but rather a sort of signaling channel.

What we have found is that you can make this address the same as the multicast
address, but simply use a different port number.

The dialplan looks like this:
exten => *724,1,Page(MulticastRTP/linksys/239.0.0.1:1234/239.0.0.1:6061)

In the SPA phone, you need to log into the Administration interface and navigate to
the SIP tab. At the very bottom of the page you will find the section called Linksys Key
System Parameters. You need to set the following parameters:

• Linksys Key System: Yes
• Multicast Address: 239.0.0.1:6061

Note that the multicast address you assign to the phone is the one that comes second
in the channel definition (in our example, the one using port 6061).

Note that you can write the Page() command in this format in an environment where
there is a mix of SPA (f.k.a. Linksys, now Cisco) phones and other types of phones.
The other phones will use the first address and will work the same as if you had used
basic instead of linksys.

202 | Chapter 11: PBX Features, Including Parking, Paging, and Conferencing

SIP-based paging adapters
There are many SIP-based paging speakers on the market. These devices are
addressed in the dialplan in the exact same way as a SIP ATA connected to a UTI1 (in
other words, to the system they’re just a telephone set), but physically they are similar
to external paging speakers. Since they auto-answer, there is often no need to pass
them any extra information, the way you would need to with a SIP telephone set.

For smaller installations (where no more than perhaps a half-dozen speakers are
required), these devices might be cost-effective because no other hardware is
required. However, for anything larger than that (or for installation in a complex
environment such as a warehouse or parking lot), you will get better performance at
far less cost with a traditional analog paging system connected to the phone system
by an analog (FXS) interface.

We haven’t had any experience with these types of devices, but it is hoped that they
would support multicast as standard. Keep this in mind if you are planning to use a
large number of them. It’s usually best to order one, test it out in a prototypical con‐
figuration, and then only commit to a quantity once you’ve verified that it does what
you need.

Combination paging
In many organizations, there may be a need for both set-based and external paging.
As an example, a manufacturing facility might want to use set-based paging for the
office area but overhead paging for the plant and warehouse. From Asterisk’s perspec‐
tive, this is fairly simple to accomplish. When you call the Page() application, you
simply specify the various resources you want to page, separated by the & character,
and they will all be included in the conference that the Page() application creates.

Bringing it all together
At this point you should have a list of the various channel types that you want to
page. Since Page() will nearly always want to signal more than one channel, we rec‐
ommend setting a global variable in the [globals] section of your extensions.conf file
that defines the list of channels to include, and then calling the Page() application
with that string:

[globals]
MULTICAST=MulticastRTP/linksys/239.0.0.1:1234
;MULTICAST=MulticastRTP/linksys/239.0.0.1:1234/239.0.0.1:6061 ; if you have SPA phones

BOGEN=PJSIP/ATAforPaging ; Assumes an ATA named [ATAforPaging]
PAGELIST=${MULTICAST}&${BOGEN} ; Variable names are arbitrary.
;...

[sets]
; ...
exten => *731,1,Page(${PAGELIST},i,120)

Parking and Paging | 203

This example offers several possible configurations, depending on the hardware.
While it is not strictly required to have a PAGELIST variable defined, we have found
that this will tend to simplify the management of multiple paging resources, espe‐
cially during the configuration and testing process.

Zone Paging
Zone paging is popular in places such as automobile dealerships, where the parts
department, the sales department, and perhaps the used car department all require
paging, but do not want to hear each other’s pages.

In zone paging, the person sending the page needs to select which zone to page into.
A zone paging controller such as a Bogen PCM2000 is generally used to allow signal‐
ing of the different zones: the Page() application signals the zone controller, the zone
controller answers, and then an additional digit is sent to select to which zone the
page is to be sent. Most zone controllers will allow for a page to all zones, in addition
to combining zones (for example, a page to both the new- and used-car sales
departments).

You could also have separate extensions in the dialplan going to separate ATAs (or
groups of telephones), but this may prove more complicated and expensive than sim‐
ply purchasing a paging controller that is designed to handle this. Zone paging
doesn’t require any significantly different technology, but it does require a little more
thought and planning with respect to both the dialplan and the hardware.

And that’s parking and paging. It’s a ton of information to digest, but once you get the
hang of it, it’s quite logical.

Advanced Conferencing
The ConfBridge() application is an enhanced conferencing application in Asterisk
that delivers high-definition audio and basic video conferencing. We previously
introduced a basic working setup for ConfBridge(). If you’ve been building out your
dialplan as you read along, you’ll find a basic conference bridge in your exten‐
sions.conf file that looks something like this:

exten => 221,1,NoOp()
 same => n,ConfBridge(${EXTEN})

In a traditional Asterisk configuration, there would be a confbridge.conf file where we
could configure parameters to apply to various scenarios. That is still possible, but it
no longer makes much sense to do it that way. So, we’re going to skip right over the
whole configuration file, except to say that the sample file (found at ~/src/
asterisk-15.<TAB>/configs/samples/confbridge.conf.sample) now becomes an excellent
reference document, but no more than that. Read on and this should start to make
sense.

204 | Chapter 11: PBX Features, Including Parking, Paging, and Conferencing

First up, we need to explain that there are three types of items that can be configured
for a conference, namely bridge, menu, and user.

The bridge type defines the conference rooms themselves, the menu type defines
menus that can be accessed from the conferences, and the user type allows different
participants in the conference to have specific configuration applied to them. For
example, a large conference call might have a speaker (who will do most of the talk‐
ing), an administrator (to assist the speaker), and dozens of participants (who might
not be allowed to speak).

Let’s lay down a subroutine to get us started:
[subConference]
exten => _[0-9].,1,Noop(Creating conference room for ${EXTEN})
 same => n,Goto(${ARG1})
 same => n,Noop(INVALID ARGUMENT ARG1: ${ARG1})

 same => n(admin),Noop()
 same => n,Authenticate(${ARG2}) ; Could also use ,Set(CONFBRIDGE(user,pin)=${ARG2})
 same => n,Set(ConfNum=$[${EXTEN} - 1]) ; Hack: Subtract 1 to get the conf number
 same => n,Set(CONFBRIDGE(bridge,record_conference)=yes) ; Record when admin arrives
 same => n,Set(RecordingFileName=${ConfNum}-${STRFTIME(,,%Y-%m-%d %H:%m:%S)})
 same => n,Set(CONFBRIDGE(bridge,record_file)=${RecordingFileName}) ; unique name
 same => n,Set(CONFBRIDGE(user,admin)=yes) ; Admin
 same => n,Set(CONFBRIDGE(user,marked)=yes) ; Mark this user
 same => n,Set(CONFBRIDGE(menu,7)=decrease_talking_volume) ; Decrease gain
 same => n,Set(CONFBRIDGE(menu,9)=increase_talking_volume) ; Increase gain
 same => n,Set(CONFBRIDGE(menu,4)=set_as_single_video_src) ; Lock video on me
 same => n,Set(CONFBRIDGE(menu,5)=release_as_single_video_src) ; Return to talker
 same => n,Set(CONFBRIDGE(menu,6)=admin_toggle_mute_participants); Mute all but admins
 same => n,Set(CONFBRIDGE(menu,2)=participant_count) ; How many participants?
 same => n,ConfBridge(${ConfNum})
 same => n,Return()

 same => n(participant),Noop()
 same => n,Set(ConfNum=${EXTEN})
 same => n,Set(CONFBRIDGE(user,wait_marked)=yes) ; Wait for a marked user
 same => n,Set(CONFBRIDGE(user,announce_only_user)=no) ; Wait for a marked user
 same => n,Set(CONFBRIDGE(user,music_on_hold_when_empty)=yes) ; Wait for a marked user
 same => n,Set(CONFBRIDGE(menu,7)=decrease_talking_volume) ; Decrease gain
 same => n,Set(CONFBRIDGE(menu,9)=increase_talking_volume) ; Increase gain
 same => n,ConfBridge(${ConfNum})
 same => n,Return()

We can set bridge, user, and menu parameters as in the preceding example. All of the
parameters you might wish to use are documented in the ~/src/asterisk-15.<TAB>/
configs/samples/confbridge.conf.sample file.

When we call the subroutine, we can pass the user as an argument. Place the follow‐
ing new code in your [sets] context after _55512XX and before *724:

exten => _55512XX,1,Answer()
 same => n,Playback(tt-monkeys)

; ConfBridge

Advanced Conferencing | 205

exten => *600,1,GoSub(subConference,${EXTEN:1},1(participant)) ;
exten => *601,1,GoSub(subConference,${EXTEN:1},1(admin,4242)) ;

exten => *724,1,Noop(Page)
 same => n,Set(ChannelsToPage=${UserA_DeskPhone}&${UserA_SoftPhone}&${UserB_DeskPhone})
 same => n,Page(${ChannelsToPage},i,120)

If you dial *600, you will be joined as a participant. If you dial *601, you will be asked
for the PIN (4242), and will join as an administrator. We used dialplan labels to con‐
trol the call flow into the subroutine. It’s easy to read, and easy to administer.

In Chapter 15 we’ll explore how to use an external database to store and retrieve these
parameters, rather than hardcoding them in the dialplan.

Video Conferencing
The conference engine in Asterisk can handle video, but it is a very simplified offer‐
ing, and you should evaluate it carefully to ensure it meets your needs. Some of the
more serious limitations include:

• All video participants must be using the same video codec; no video transcoding
is available in Asterisk.

• There is no video multiplexing in Asterisk; only one video source can be shown
at a time to a participant.

For a user to be able to use video (whether in a conference, or just for normal calls),
they need to have the video codecs enabled. This can be done by modifying the allow
field in the asterisk.endpoints table, and adding 'h264,vp8' to the allow field.
Make sure you don’t remove the codecs that are already there (for example, the ulaw
audio codec). A functional entry in that field might look like:

ulaw,h264,vp8

Before attempting to use video with your conferences, make sure your sets are able to
use it with direct desk-to-desk calls. If you can use video conferencing between your
sets, it’s likely it’ll also work in your conference rooms.

In Chapter 20, we’ll dive into WebRTC, which is where we’ll explore more powerful
concepts in the delivery of multimedia communication, including conferencing.

Conclusion
In this chapter we explored the features.conf file, which contains the functionality for
enabling DTMF-based transfers, enabling the recording of calls during a call, and
configuring parking lots for one or more companies. We also looked at various ways
of announcing calls and information to people in the office using a multitude of pag‐
ing methods, including traditional overhead paging systems and multicast paging to

206 | Chapter 11: PBX Features, Including Parking, Paging, and Conferencing

the phone sets on employees’ desks. After that we delved into the ConfBridge()
application, which is extremely flexible in configuration and rich in available features.
This exploration of the various methods of implementing the traditional parking,
paging, and conferencing features in a modern way hopefully shows you the flexibil‐
ity Asterisk can offer.

Conclusion | 207

1 It is a common misconception that a queue can allow you to handle more calls. This is not strictly true: your
callers will still want to speak to a live person, and they will only be willing to wait for so long. In other words,
if you are short-staffed, your queue could end up being nothing more than an obstacle to your callers. This is
the same whether you’re on the phone or at the Walmart checkout. Nobody likes to wait in line. The ideal
queue is invisible to the callers, since their calls get answered immediately without them having to wait.

CHAPTER 12

Automatic Call Distribution Queues

An Englishman, even if he is alone, forms an orderly queue of one.
—George Mikes

Automatic call distribution (ACD), or call queuing, provides a way for a PBX to
queue up incoming calls from a group of users. It aggregates multiple calls into a
holding pattern, assigns each call a rank, and determines the order in which that call
should be delivered to an available agent (typically, first in first out). When an agent
becomes available, the highest-ranked caller in the queue is delivered to that agent,
and everyone else moves up a rank.

If you have ever called an organization and heard “all of our representatives are busy,”
you have experienced ACD. The advantage of ACD to the callers is that they don’t
have to keep dialing back in an attempt to reach someone, and the advantages to the
organizations are that they are able to better serve their customers and to temporarily
handle situations where there are more callers than there are agents.1

There are two types of call centers: inbound and outbound. ACD
refers to the technology that handles inbound call centers, whereas
the term Dialer (or Predictive Dialer) refers to the technology that
handles outbound call centers. In this book we will primarily focus
on inbound calling.

209

2 There are several books available that discuss call center metrics and available queuing strategies, such as
James C. Abbott’s The Executive Guide to Call Center Metrics (Robert Houston Smith).

We’ve all been frustrated by poorly designed and managed queues: enduring hold
music from a radio that isn’t in tune, mind-numbing wait times, and pointless mes‐
sages that tell you every 20 seconds how important your call is, despite that fact that
you’ve been waiting for 30 minutes and have heard the message so many times you
can quote it from memory. From a customer service perspective, queue design may
be one of the most important aspects of your telephone system. As with an automated
attendant, what must be kept in mind above all else is that your callers are not interes‐
ted in holding in a queue. They called because they want to talk to you. All your design
decisions must keep this crucial fact front-and-center in your mind: people want to
talk to other people, not to your phone system.2

The purpose of this chapter is to teach you how to create and design queues that get
callers to their intended destinations as quickly and painlessly as possible.

In this chapter, we may flip back and forth between the usage of the
terms queue members and agents. Since we’re not going to spend
much time on the Asterisk module named chan_agent (using
AgentLogin()), we need to make it clear that in this book, when we
use the term agent, we’re referring to an endpoint—a human being,
and not the channel technology in Asterisk named chan_agent.
Read on, and this should make more sense.

Creating a Simple ACD Queue
To start with, we’re going to create a simple ACD queue. It will accept callers and
attempt to deliver them to a member of the queue.

In Asterisk, the term member refers to a channel (typically a SIP
peer) assigned to a queue that can be dialed, such as SIP/
0000FFFF0001. An agent technically refers to the Agent channel
also used for dialing endpoints. Unfortunately, the Agent channel is
a deprecated technology in Asterisk, as it is limited in flexibility
and can cause unexpected issues that can be hard to diagnose and
resolve. We will not be covering the use of chan_agent, so be aware
that we will generally use the term member to refer to the telephone
device and agent to refer to the person who handles the call. Since
one isn’t generally effective without the other, either term may refer
to both.

210 | Chapter 12: Automatic Call Distribution Queues

We’ll create the queue(s) in the queues.conf file, and manually add queue members to
it through the Asterisk console. In the section “Queue Members” on page 215, we’ll
look into how to create a dialplan that allows us to dynamically add and remove
queue members (as well as pause and unpause them).

The first step is to create an empty agents.conf file in your /etc/asterisk configuration
directory. We will not use or edit this file, but the app_queue module expects to find
it, and will not load if it does not exist:

$ cd /etc/asterisk

$ sudo -u asterisk touch agents.conf

Since we haven’t done so yet, we’re also going to configure basic music on hold, using
the sample file:

$ sudo cp ~/src/asterisk-16.<TAB>/configs/samples/musiconhold.conf.sample \
/etc/asterisk/musiconhold.conf

$ sudo chown asterisk:asterisk /etc/asterisk/musiconhold.conf

Next you need to create the queues.conf file, which we’re not going to edit because
we’ll be creating our queues in the database (it just needs to be there):

$ sudo touch -u asterisk queues.conf

Next, we’re going to create some queues in our database:
MySQL> INSERT INTO `asterisk`.`queues`
(name,strategy,joinempty,leavewhenempty,ringinuse,autofill,musiconhold, \
monitor_format,monitor_type)

VALUES
'sales','rrmemory','unavailable,invalid,unknown','unavailable,invalid,unknown','no','yes',\
'default','wav','MixMonitor'),
('support','rrmemory','unavailable,invalid,unknown','unavailable,invalid,unknown','no',\
'yes','default','wav','MixMonitor') ;

This will give us two queues named sales and support. You can name them anything
you want, but we will be using these names later in the book, so if you use different
queue names from what we’ve recommended here, make note of your choices for
future reference.

We have also defined the parameters outlined in Table 12-1.

Table 12-1. Sample queue parameters

Parameter Purpose
strategy=rrmemory Use the round robin with memory strategy
joinempty=unavailable,invalid,unknown Do not join the queue when no members available
leavewhenempty=unavailable,inva

lid,unknown

Leave the queue when no members available

Creating a Simple ACD Queue | 211

Parameter Purpose
ringinuse=no Don’t ring members when already InUse (prevents multiple

calls to an agent)
autofill=yes Distribute all waiting callers to available members
musiconhold=default Play music from the [default] class (see

musiconhold.conf)

The strategy we’ll employ is rrmemory, which stands for round robin with memory.
The rrmemory strategy works by rotating through the agents in the queue in sequen‐
tial order, keeping track of which agent got the last call, and presenting the next call
to the next agent. When it gets to the last agent, it goes back to the top (as agents log
in, they are added to the end of the list).

A Few Notes on Strategies
ringall

Rings all available members (default). This distribution strategy doesn’t really
count as ACD. In traditional telephony terms, this would be known as a ring
group.

leastrecent

Rings the interface that least recently received a call. In a queue where there are
many calls of roughly the same duration, this can work. It doesn’t work as well if
an agent has been on a call for an hour, and their colleagues all got their last call
30 minutes ago, because the agent who just finished the 60-minute call will get
the next one.

fewestcalls

Rings the interface that has completed the fewest calls in this queue. This can be
unfair if calls are not always of the same duration. An agent could handle three
calls of 15 minutes each and her colleague had four 5-second calls; the agent who
handled three calls will get the next one.

random

Rings a random interface. This actually can work very well and end up being
very fair in terms of evenly distributing calls among agents.

rrmemory

Rings members in a round-robin fashion, remembering where it left off last for
the next caller. This can also work out to be very fair, but not as much as random.

linear

Rings members in the order specified, always starting at the beginning of the list.
This works if you have a team where there are some agents who are supposed to

212 | Chapter 12: Automatic Call Distribution Queues

handle most calls, and other agents who should only get calls if the primary
agents are busy.

wrandom

Rings a random member, but uses the members’ penalties as a weight. Worth
considering in a larger queue with complex weighting among the agents.

We’ve set joinempty to no since it is generally bad form to put callers into a queue
where there are no agents available to take their calls.

You could set this to yes for ease of testing, but we would not rec‐
ommend putting it into production unless you are using the queue
for some function that is not about getting your callers to your
agents. Nobody wants to wait in a line that is not going anywhere.

The leavewhenempty option is used to control whether callers should fall out of the
Queue() application and continue on in the dialplan if no members are available to
take their calls. We’ve set this to yes because you won’t normally want callers waiting
in a queue with no logged-in agents.

From a business perspective, you should be telling your agents to
clear all calls out of the queue before logging off for the day. If you
find that there are a lot of calls queued up at the end of the day, you
might want to consider extending someone’s shift to deal with
them. Otherwise, they’ll just add to your stress when they call back
the next day, in a worse mood.
You can use GotoIfTime() near the end of the day to redirect call‐
ers to voicemail, or some other appropriate location in your
dialplan, while your agents clear out any remaining calls in the
queue.

We’ll want ringinuse to be no, which tells Asterisk not to ring members when their
devices are already ringing. The purpose of setting ringinuse to no is to avoid multi‐
ple calls to the same member from one or more queues.

It should be mentioned that joinempty and leavewhenempty are
looking for either no members logged into the queue, or all mem‐
bers unavailable. Agents that are Ringing or InUse are not consid‐
ered unavailable, so will not block callers from joining the queue or
cause them to be kicked out when joinempty=no and/or
leavewhenempty=yes.

Creating a Simple ACD Queue | 213

The autofill option tells the queue to distribute all waiting callers to all available
members immediately. Previous versions of Asterisk would only distribute one caller
at a time, which meant that while Asterisk was signaling an agent, all other calls were
held (even if other agents were available) until the first caller in line had been connec‐
ted to an agent (which obviously led to bottlenecks in older versions of Asterisk
where large, busy queues were being used). Unless you have a particular need for
backward compatibility, this option should always be set to yes.

Verify that your /etc/asterisk/extconfig file contains the following lines:
queues => odbc,asterisk,queues
queue_members => odbc,asterisk,queue_members

Save and reload your queue configuration from the Asterisk CLI:
*CLI> queues reload

Verify that your queues were loaded into memory (don’t forget to ensure an empty
agents.conf file exists):

localhost*CLI> queue show
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
 No Members
 No Callers

sales has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
 No Members
 No Callers

The output of queue show provides various pieces of information, including those
parts detailed in Table 12-2.

Table 12-2. Output of queue show CLI command

Field Description
W: Queue weight
C: Number of calls presented to this queue
A: Number of calls that have been answered by a member
SL: Service level

Now that you’ve created the queues, you need to configure your dialplan to allow calls
to enter the queue.

Add the following dialplan logic to the extensions.conf file (somewhere in the [sets]
context):

exten => 610,1,Noop()
 same => n,Progress()
 same => n,Queue(sales)
 same => n,Hangup()

214 | Chapter 12: Automatic Call Distribution Queues

exten => 611,1,Noop()
 same => n,Progress()
 same => n,Queue(support)
 same => n,Hangup()

Save the changes to your extensions.conf file, and reload the dialplan with the
dialplan reload CLI command.

If you dial extension 610 or 611 at this point, you will end up with output like the
following:

 == Setting global variable 'SIPDOMAIN' to '172.29.1.178'
 -- Executing [610@sets:1] NoOp("PJSIP/SOFTPHONE_A-00000004", "") in new stack
 -- Executing [610@sets:2] Progress("PJSIP/SOFTPHONE_A-00000004", "") in new stack
 -- Executing [610@sets:3] Queue("PJSIP/SOFTPHONE_A-00000004", "test") in new stack
 > 0x7facc801ed60 -- Strict RTP learning after remote set to: 172.29.1.166:4022
 -- Started music on hold, class 'testmoh', on channel 'PJSIP/SOFTPHONE_A-00000004'
 > 0x7facc801ed60 -- Strict RTP switching to RTP target 172.29.1.166:4022 as source
 > 0x7facc801ed60 -- Strict RTP learning complete - Locking on 172.29.1.166:4022
 -- Stopped music on hold on PJSIP/SOFTPHONE_A-00000004
== Spawn extension (sets, 610, 3) exited non-zero on 'PJSIP/SOFTPHONE_A-00000004'

Note that you won’t join the queue at this point because there are no agents in the
queue to answer calls. We have joinempty=no and leavewhenempty=yes configured,
so callers will not be placed into the queue. (This would be a good opportunity to
experiment with the joinempty and leavewhenempty options in queues.conf to better
understand their impact on queues.)

In the next section, we’ll demonstrate how to add members to your queue (as well as
other member interactions with the queue, such as pause/unpause).

Queue Members
Queues aren’t very useful without someone to answer the calls that come into them,
so we need a method for allowing agents to be logged into the queues to answer calls.
There are various ways of going about this, so we’ll show you how to add members to
the queue both manually (as an administrator, via either the CLI or hardcoded in the
queue_members table) and dynamically (as the agent, through an extension defined in
the dialplan). We’ll start with the Asterisk CLI method, which allows you to easily add
members to the queue for testing, with minimal dialplan changes. Next we’ll show
how you can define members in the queue_members table. Finally, we’ll show you how
to add dialplan logic that allows agents to log themselves into and out of the queues
and to pause and unpause themselves in queues they are logged into (this is likely the
best method for production).

Queue Members | 215

Controlling Queue Members via the CLI
We can add queue members to any available queue through the Asterisk CLI com‐
mand queue add. The format of the queue add command is (all on one line):

*CLI> queue add member channel to queue [[[penalty penalty] as
membername] state_interface interface]

The channel is the channel we want to add to the queue, such as SIP/0000FFFF0003,
and the queue name will be something like support or sales—any queue name that
exists in /etc/asterisk/queues.conf. For now we’ll ignore the penalty option, but we’ll
discuss it in “Advanced Queues” on page 223 (penalty is used to control the rank of a
member within a queue, which can be important for agents who are logged into mul‐
tiple queues, or have differing skills). We can define the membername to provide details
to the queue-logging engine.

The state_interface option informs the queue of the device state to be monitored
for this agent. The details of how to work with device states are discussed in Chap‐
ter 13. Go ahead and work through that chapter, and then come back here and con‐
tinue on. Don’t worry, we’ll wait.

Now that you’ve added callcounter=yes to sip.conf (we’ll be using SIP channels
throughout the rest of our examples), let’s see how to add members to our queues
from the Asterisk CLI.

Adding a queue member to the support queue can be done with the queue add
member command:

*CLI> queue add member PJSIP/SOFTPHONE_B to support

Added interface 'PJSIP/SOFTPHONE_B' to queue 'support'

A query of the queue will verify that our new member has been added:
*CLI> queue show support

support has 0 calls (max unlimited) in 'rrmemory' strategy (0s holdtime, 0s talktime),
W:0, C:0, A:0, SL:0.0%, SL2:0.0% within 0s
 Members:
 PJSIP/SOFTPHONE_B (ringinuse disabled) (dynamic) (Not in use) has taken no calls yet
 No Callers

To remove a queue member, you would use the queue remove member command:
*CLI> queue remove member PJSIP/SOFTPHONE_B from support

Removed interface PJSIP/SOFTPHONE_B from queue 'support'

Of course, you can use the queue show command again to verify that your member
has been removed from the queue:

*CLI> queue show support

216 | Chapter 12: Automatic Call Distribution Queues

support has 0 calls (max unlimited) in 'rrmemory' strategy (0s holdtime, 0s talktime),
W:0, C:0, A:0, SL:0.0%, SL2:0.0% within 0s
 Members:
 PJSIP/SOFTPHONE_B (ringinuse disabled) (dynamic) (Not in use) has taken no calls yet
 No Callers

We can also pause and unpause members in a queue from the Asterisk console, with
the queue pause member and queue unpause member commands. They take a similar
format to the previous commands we’ve been using:

*CLI> queue pause member PJSIP/SOFTPHONE_B queue support reason Callbacks

paused interface 'PJSIP/SOFTPHONE_B' in queue 'support' for reason 'Callbacks'

*CLI> queue show support
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
 Members:
 SIP/0000FFFF0001 (dynamic) (paused) (Not in use) has taken no calls yet
 No Callers

*CLI> queue show support

support has 0 calls (max unlimited) in 'rrmemory' strategy (0s holdtime, 0s talktime),
 W:0, C:0, A:0, SL:0.0%, SL2:0.0% within 0s
 Members:
 PJSIP/SOFTPHONE_B (ringinuse disabled) (dynamic) (paused:Callbacks) (Not in use)
has taken no calls yet
 No Callers

By adding a reason for pausing the queue member, such as lunchtime, you ensure
that your queue logs will contain some additional information that may be useful.
Here’s how to unpause the member:

*CLI> queue unpause member PJSIP/SOFTPHONE_B queue support reason FinishedCallBacks

unpaused interface 'PJSIP/SOFTPHONE_B' in queue 'support' for reason 'FinishedCallbacks'

In a production environment, the CLI would not normally be the best way to control
the state of agents in a queue. Instead, there are dialplan applications that allow
agents to inform the queue as to their availability.

Defining Queue Members in the queue_members Table
If you define a queue member in the asterisk.queue_members table of the database,
that member will always be logged into the queue. This usually doesn’t work well if
your members are human beings, since humans tend to get up and move about.

Within each queue definition, you simply define the members thus:
MySQL> insert into `asterisk`.`queue_members`
(queue_name,interface,penalty)

VALUES
'hotline','PJSIP/SOME_NON_HUMAN','0');

Queue Members | 217

In a typical queue (one in which you have a group of people responsible for answer‐
ing calls), you will find that defining the members in the queue_members table might
not serve you well. Human agents usually need to be able to log in and out (and not
be automatically logged in whenever the queue is reloaded). We do not recommend
defining members in the queue_members table unless they have some other purpose
(such as a bank of devices that answer calls, where you want to use the queue to load-
balance calls to the device pool, or a ring group, where all phones ring for all calls all
the time regardless of whether anyone is sitting near the phone).

Controlling Queue Members with Dialplan Logic
In a call center staffed by live agents, it is most common to have the agents themselves
log in and log out at the start and end of their shifts (or whenever they go for lunch,
or to the bathroom, or are otherwise not available to the queue).

To enable this, we will make use of the following dialplan applications:

• AddQueueMember()

• RemoveQueueMember()

While logged into a queue, it may be that an agent needs to put themself into a state
where they are temporarily unavailable to take calls. The following applications will
allow this:

• PauseQueueMember()

• UnpauseQueueMember()

The Add/Remove applications are used to log in and log out, and Pause/Unpause are
used for short periods of agent unavailability. The difference is simply that Pause and
Unpause set the member as unavailable/available without actually removing them
from the queue. This is mostly useful for reporting purposes (if a member is paused,
the queue supervisor can see that they are logged into the queue, but simply not avail‐
able to take calls at that moment). If you’re not sure which one to use, we recommend
that the agents use Add/Remove whenever they are not physically at their phone, and
Pause/Unpause when they are at their desk, but temporarily not available.

If in doubt, it’s usually better to have your agents log out.

Using Pause and Unpause
In some environments, Pause and Unpause are used for all activities during the day
that render an agent unavailable (such as during the lunch hour and when perform‐
ing work that is not queue-related). In most call centers, however, if an agent is not

218 | Chapter 12: Automatic Call Distribution Queues

beside the phone and ready to take a call at that moment, they should not be logged in
at all, even if they are only going to be away from their desk for a few minutes (such as
for a bathroom break).

Some supervisors like to use the Pause/Unpause settings as a sort of punch clock, so
that they can track when their staff arrive for work and leave at the end of the day, and
how long they spend at their desks and on breaks. This may not be a sound practice,
since the purpose of these applications is to inform the queue as to agent availability,
with activity tracking a secondary function.

An important thing to note here relates to the joinempty setting in the aster
isk.queues table, which was discussed earlier. If an agent is paused, they are still log‐
ged into the queue. Let’s say it is near the end of the day, and one agent put themself
into pause a few hours earlier to work on a project. All the other agents have logged
out and gone home. A call comes in. The queue will note that an agent is logged into
the queue, and will therefore queue the call, even though the reality is that there are
no people actually staffing that queue at that time. This caller may end up holding in
an unstaffed queue indefinitely.

In short, agents who are not sitting at their desks and planning to be available to take
calls in the next few minutes should log out. Pause/Unpause should only be used for
brief moments of unavailability (if at all). If you want to use your phone system as a
punch clock, there are lots of great ways to do that using Asterisk, but the queue
member applications are not the way we would recommend.

Let’s build some simple dialplan logic that will allow our agents to indicate their avail‐
ability to the queue. We are going to use the CUT() dialplan function to extract the
name of our channel from our call to the system, so that the queue will know which
channel to log into the queue.

We have built this dialplan to show a simple process for logging into and out of a
queue, and changing the paused status of a member in a queue. We are doing this
only for a single queue that we previously defined in the queues.conf file. The status
channel variables that the AddQueueMember(), RemoveQueueMember(), PauseQueueMem
ber(), and UnpauseQueueMember() applications set might be used to Playback()
announcements to the queue members after they’ve performed certain functions to
let them know whether they have successfully logged in/out or paused/unpaused:

exten => *731,1,Page(${PAGELIST},i,120)

exten => *732,1,Verbose(2,Logging In Queue Member)
 same => n,Set(MemberChannel=${CHANNEL(channeltype)}/${CHANNEL(endpoint)})
 same => n,AddQueueMember(support,${MemberChannel})
 same => n,Verbose(1,${AQMSTATUS}) ; ADDED, MEMBERALREADY, NOSUCHQUEUE
 same => n,Playback(agent-loginok)
 same => n,Hangup()

exten => *733,1,Verbose(2,Logging Out Queue Member)

Queue Members | 219

3 We’re going to use the ^ character as a delimiter. You could probably use another character instead, just so
long as it’s not one the Asterisk parser would see as a normal delimiter (and thus get confused by). So avoid
commas, semicolons, and so forth.

 same => n,Set(MemberChannel=${CHANNEL(channeltype)}/${CHANNEL(endpoint)})
 same => n,RemoveQueueMember(support,${MemberChannel})
 same => n,Verbose(1,${RQMSTATUS}) ; REMOVED, NOTINQUEUE, NOSUCHQUEUE
 same => n,Playback(agent-loggedoff)
 same => n,Hangup()

exten => *734,1,Verbose(2,Pause Queue Member)
 same => n,Set(MemberChannel=${CHANNEL(channeltype)}/${CHANNEL(endpoint)})
 same => n,PauseQueueMember(support,${MemberChannel})
 same => n,Verbose(1,${PQMSTATUS}) ; PAUSED, NOTFOUND
 same => n,Playback(dictate/paused)
 same => n,Hangup()

exten => *735,1,Verbose(2,Unpause Queue Member)
 same => n,Set(MemberChannel=${CHANNEL(channeltype)}/${CHANNEL(endpoint)})
 same => n,UnpauseQueueMember(support,${MemberChannel})
 same => n,Verbose(1,${UPQMSTATUS}) ; UNPAUSED, NOTFOUND
 same => n,Playback(agent-loginok)
 same => n,Hangup()

exten => *98,1,NoOp(Access voicemail retrieval.)

Automatically Logging Into and Out of Multiple Queues
It is quite common for an agent to be a member of more than one queue. Rather than
having a separate extension for logging into each queue (or demanding information
from the agents about which queues they want to log into), this code uses the Asterisk
database (astdb) to store queue membership information for each agent, and then
loops through each queue the agents are a member of, logging them into each one in
turn.

In order for this code to work, an entry similar to the following will need to be added
to the AstDB via the Asterisk CLI. For example, the following would store the mem‐
ber SOFTPHONE_A as being in both the support and sales queues:3

*CLI> database put queue_agent SOFTPHONE_A/available_queues support^sales

You will need to do this once for each agent, regardless of how many queues they are
members of.

If you then query the Asterisk database, you should get a result similar to the
following:

pbx*CLI> database show queue_agent
/queue_agent/SOFTPHONE_A/available_queues : support^sales

The following dialplan code is an example of how to allow this queue member to be
automatically added to both the support and sales queues. We’ve defined a

220 | Chapter 12: Automatic Call Distribution Queues

subroutine that is used to set up three channel variables (MemberChannel, MemberChan
Type, AvailableQueues). These channel variables are then used by the login (*736),
logout (*737), pause (*738), and unpause (*739) extensions. Each of the extensions
uses the subSetupAvailableQueues subroutine to set these channel variables and to
verify that the AstDB contains a list of one or more queues for the device the queue
member is calling from.

Near the end of your extensions.conf file, where you’ve put your subroutines, add the
following:

[subSetupAvailableQueues]
; This subroutine is used by the various login/logout/pausing/unpausing routines
; in our multiple queue login example.
;
exten => start,1,Verbose(2,Checking for available queues)
; Get the current channel's peer name
 same => n,Set(MemberChannel=${CHANNEL(endpoint)})
; Get the current channel's technology type
 same => n,Set(MemberChanType=${CHANNEL(channeltype)})
; Get the list of queues available for this agent
 same => n,Set(AvailableQueues=${DB(queue_agent/${MemberChannel}/available_queues)})
; if there are no queues assigned to this agent we'll handle it in the
; no_queues_available extension
 same => n,GotoIf($[${ISNULL(${AvailableQueues})}]?no_queues_available,1)
 same => n,Return()

exten => no_queues_available,1,Verbose(2,No queues available for agent ${MemberChannel})
; playback a message stating the channel has not yet been assigned
 same => n,Playback(silence/1&channel¬-yet-assigned)
 same => n,Hangup()

Next, in your [sets] context, add the following:
; Logging into multiple queues via the AstDB system
exten => *736,1,Verbose(2,Logging into multiple queues per the database values)
; get the available queues for this channel
 same => n,GoSub(subSetupAvailableQueues,start,1())
 same => n,Set(QueueCounter=1) ; setup a counter variable
; using CUT(), get the first listed queue returned from the AstDB
; Note that we've used '^' as our delimiter
 same => n,Set(WorkingQueue=${CUT(AvailableQueues,^,${QueueCounter})})
; While the WorkingQueue channel variable contains a value, loop
 same => n,While($[${EXISTS(${WorkingQueue})}])
; AddQueueMember(queuename[,interface[,penalty[,options[,membername
; [,stateinterface]]]]])
; Add the channel to a queue, setting the interface for calling
; and the interface for monitoring of device state
; *** This should all be on a single line
 same => n,AddQueueMember(
 ${WorkingQueue},${MemberChanType}/${MemberChannel},,,${MemberChanType}/${MemberChannel})
 same => n,Set(QueueCounter=$[${QueueCounter} + 1]) ; increase our counter
; get the next available queue; if it is null our loop will end
 same => n,Set(WorkingQueue=${CUT(AvailableQueues,^,${QueueCounter})})
 same => n,EndWhile()
; let the agent know they were logged in okay
 same => n,Playback(silence/1&agent-loginok)
 same => n,Hangup()

Queue Members | 221

exten => no_queues_available,1,Verbose(2,No queues available for ${MemberChannel})
 same => n,Playback(silence/1&channel¬-yet-assigned)
 same => n,Hangup()

; Used for logging agents out of all configured queues per the AstDB
exten => *737,1,Verbose(2,Logging out of multiple queues)
; Because we reused some code, we've placed the duplicate code into a subroutine
 same => n,GoSub(subSetupAvailableQueues,start,1())
 same => n,Set(QueueCounter=1)
 same => n,Set(WorkingQueue=${CUT(AvailableQueues,^,${QueueCounter})})
 same => n,While($[${EXISTS(${WorkingQueue})}])
 same => n,RemoveQueueMember(${WorkingQueue},${MemberChanType}/${MemberChannel})
 same => n,Set(QueueCounter=$[${QueueCounter} + 1])
 same => n,Set(WorkingQueue=${CUT(AvailableQueues,^,${QueueCounter})})
 same => n,EndWhile()
 same => n,Playback(silence/1&agent-loggedoff)
 same => n,Hangup()

; Used for pausing agents in all available queues
exten => *738,1,Verbose(2,Pausing member in all queues)
 same => n,GoSub(subSetupAvailableQueues,start,1())
 ; if we don't define a queue, the member is paused in all queues
 same => n,PauseQueueMember(,${MemberChanType}/${MemberChannel})
 same => n,GotoIf($[${PQMSTATUS} = PAUSED]?agent_paused,1:agent_not_found,1)

exten => agent_paused,1,Verbose(2,Agent paused successfully)
 same => n,Playback(dictate/paused)
 same => n,Hangup()

; Used for unpausing agents in all available queues
exten => *739,1,Verbose(2,UnPausing member in all queues)
 same => n,GoSub(subSetupAvailableQueues,start,1())
 ; if we don't define a queue, then the member is unpaused from all queues
 same => n,UnPauseQueueMember(,${MemberChanType}/${MemberChannel})
 same => n,GotoIf($[${UPQMSTATUS} = UNPAUSED]?agent_unpaused,1:agent_not_found,1)

exten => agent_unpaused,1,Verbose(2,Agent paused successfully)
 same => n,Playback(silence/1&available)

; Used by both pausing and unpausing dialplan functionality
exten => agent_not_found,1,Verbose(2,Agent was not found)
 same => n,Playback(silence/1&cannot-complete-as-dialed)

You could further refine these login and logout routines to take into account that the
AQMSTATUS and RQMSTATUS channel variables are set each time AddQueueMember() and
RemoveQueueMember() are used. For example, you could set a flag that lets the queue
member know they have not been added to a queue, or even add recordings or text-
to-speech systems to play back the particular queue that is producing the problem.
Or, if you’re monitoring this via the Asterisk Manager Interface, you could have a
screen pop, or use JabberSend() to inform the queue member via instant messaging,
or…(ain’t Asterisk fun?).

222 | Chapter 12: Automatic Call Distribution Queues

Advanced Queues
In this section we’ll take a look at some of the finer-grained queue controls, such as
options for controlling announcements and when callers should be placed into (or
removed from) the queue. We’ll also look at penalties and priorities, exploring how
we can control the agents in our queue by giving preference to a pool of agents, and
then increasing that pool dynamically based on the wait times in the queue. Finally,
we’ll look at using local channels as queue members, which gives us the ability to per‐
form dialplan tricks prior to connecting the caller to an agent.

Priority Queue (Queue Weighting)
Sometimes you need to add people to a queue at a higher priority than that given to
other callers. Perhaps the caller has already spent time waiting in a queue, and an
agent has taken some information but realized the caller needed to be transferred to
another queue. In this case, to minimize the caller’s overall wait time, it might be
desirable to transfer the call to a priority queue that has a higher weight (and thus a
higher preference), so it will be answered quickly.

Setting a higher priority on a queue is done with the weight option. If you have two
queues with differing weights (e.g., support and support-priority), agents assigned
to both queues will be passed calls from the higher-priority queue in preference to
calls from the lower-priority queue. Those agents will not take any calls from the
lower-priority queue until the higher-priority queue is cleared. (Normally, there will
be some agents who are assigned only to the lower-priority queue, to ensure that
those calls are dealt with in a timely manner.) For example, if we place queue member
James Shaw into both the support and support-priority queues, callers in the
support-priority queue will have a preferred standing with James over callers in the
support queue.

Let’s take a look at how we could make this work. First, we need to create a new queue
that’s similar to the support queue except for the weight option.

MySQL> INSERT INTO `asterisk`.`queues`
(name,strategy,joinempty,leavewhenempty,ringinuse,autofill,musiconhold,monitor_format,
monitor_type,weight)

VALUES
('support-priority','rrmemory','unavailable,invalid,unknown','unavailable,invalid,unknown',
'no','yes','default','wav','MixMonitor','10');

With our new queue configured, we can now create two extensions to transfer callers
to. This can be done wherever you would normally place your dialplan logic to per‐
form transfers. We’re going to use the LocalSets context, which we’ve previously
enabled as the starting context for our devices:

Advanced Queues | 223

4 Similar to adding ballast to a jockey or racing car.

exten => 611,1,Noop()
 same => n,Progress()
 same => n,Queue(support)
 same => n,Hangup()

exten => 612,1,Noop()
 same => n,Progress()
 same => n,Queue(support-priority)
 same => n,Hangup()

exten => *724,1,Noop(Page)

The only other configuration left to do is to make sure some or all of your queue
members are placed in both queues.

Queue Member Priority
Within a queue, we can apply a penalty to members in order to lower their preference
for being called when there are people waiting in a particular queue. For example, we
may penalize queue members when we want them to be a member of a queue, but
only receive calls when the queue gets full enough that all our preferred agents are
unavailable. By defining different penalties for each member of the queue,4 we can
help control the preference for where callers are delivered, but still ensure that other
queue members will be available to answer calls if the preferred member is
unavailable.

Penalties can also be defined using AddQueueMember(). We’ll modify our multiple
queue login to provide the required penalties.

First, let’s update our AstDB to include penalties for a member:
*CLI> database put queue_agent SOFTPHONE_A/penalty 0^2

*CLI> database show queue agent

/queue_agent/SOFTPHONE_A/available_queues : support^sales
/queue_agent/SOFTPHONE_A/penalty : 0^2

Next, a few tweaks to our dialplan.

The subroutine needs a new line (some code has been removed for brevity, replaced
with ;...):

[subSetupAvailableQueues]
; ...
; Get the list of queues available for this agent
 same => n,Set(AvailableQueues=${DB(queue_agent/${MemberChannel}/available_queues)})
 same => n,Set(MemberPenalties=${DB(queue_agent/${MemberChannel}/penalty)})
; if there are no queues assigned ...

224 | Chapter 12: Automatic Call Distribution Queues

The [sets] context requires a couple of new lines as well (some code has been
removed for brevity, replaced with ;...). Only insert/change the code written in
bold.

exten => *736,1,Verbose(2,Logging into multiple queues per the database values)
; ...
 same => n,Set(WorkingQueue=${CUT(AvailableQueues,^,${QueueCounter})})
 same => n,Set(WorkingPenalty=${CUT(MemberPenalties,^,${QueueCounter})})
; While the WorkingQueue ...
; ...
 same => n,Set(WorkingQueue=${CUT(AvailableQueues,^,${QueueCounter})})
 same => n,Set(WorkingPenalty=${CUT(MemberPenalties,^,${QueueCounter})})
 same => n,EndWhile()
; ...

These examples are probably not suitable for a production environment (we’d use
purpose-built MySQL tables for this sort of thing rather than AstDB), but it gives you
an idea of how the dialplan can be used to apply dynamic logic to more complex con‐
figuration scenarios.

Changing Penalties Dynamically (queuerules)
Using the asterisk.queuerules table, it is possible to define rules that change the
values of the QUEUE_MIN_PENALTY and QUEUE_MAX_PENALTY channel variables. The
QUEUE_MIN_PENALTY and QUEUE_MAX_PENALTY channel variables are used to control
which members of a queue are preferred for servicing callers. Let’s say we have a
queue called support, and we have five queue members with various penalties rang‐
ing from 1 through 5. If, prior to a caller entering the queue, the QUEUE_MIN_PENALTY
channel variable is set to a value of 2 and the QUEUE_MAX_PENALTY is set to a value of 4,
only queue members whose penalties are set to values ranging from 2 through 4 will
be considered available to answer that call:

 same => n,Set(QUEUE_MIN_PENALTY=2) ; set minimum member penalty
 same => n,Set(QUEUE_MAX_PENALTY=4) ; set maximum member penalty
 same => n,Queue(support) ; entering the queue with min and max
 ; member penalties to be used

What’s more, during the caller’s stay in the queue, we can dynamically change the val‐
ues of QUEUE_MIN_PENALTY and QUEUE_MAX_PENALTY for that caller. This allows either
more or a different set of queue members to be used, depending on how long the
caller waits in the queue. For instance, in the previous example, we could modify the
minimum penalty to 1 and the maximum penalty to 5 if the caller has to wait more
than 60 seconds in the queue.

The sample file ~/src/asterisk-15.<TAB>/configs/samples/queuerules.conf.sample con‐
tains an excellent reference for how queue rules work.

Advanced Queues | 225

The rules are defined using the asterisk.queuerules table. Multiple rules can be
created in order to facilitate different penalty changes throughout the call. Let’s take a
look at how we might choose to define a rule:

MySQL> insert into `asterisk`.`queue_rules`
(rule_name,time,min_penalty,max_penalty)

VALUES
('more_members',60,5,1);

New rules will affect only new callers entering the queue, not exist‐
ing callers already holding.

We’ve named the rule more_members and defined the following values:

60

The number of seconds to wait before changing the penalty values.

5

The new QUEUE_MAX_PENALTY.

1

The new QUEUE_MIN_PENALTY.

We can now tell our queues to make use of it.
MySQL> update `asterisk`.`queues`

set defaultrule='more_members' where `name` in ('sales','support')

The queuerules.conf.sample file shows that these rules are quite flexible. If you want
fine-grained control over call prioritization, some additional lab work may be worth
your while.

Announcement Control
Asterisk has the ability to play several announcements to callers waiting in the queue.
For example, you might want to announce the caller’s position in the queue,
announce the average wait time, or periodically thank your callers for waiting (or
whatever your audio files say). It’s important to carefully tune the values that control
when these announcements are played to the callers, because announcing their posi‐
tion, thanking them for waiting, and informing them of the average hold time too
frequently is going to tend to annoy them, which is not the goal of these things.

226 | Chapter 12: Automatic Call Distribution Queues

Playing Announcements Between Music on Hold Files
Instead of handling the intricacies of announcements for each of your queues, you
could alternatively (or in conjunction) utilize the announcement functionality
defined in musiconhold.conf. Prior to playing a file for music, the announcement file
will be played, and then played again between audio files. Let’s say you have a 5-
minute loop of audio, but you want to play a “Thank you for waiting” message every
30 seconds. You could split the audio file into 30-second segments, set their filenames
as starting with 00-, 01-, 02-, and so on (to keep them playing in order), and then
define the announcement. The musiconhold.conf class might look something like this:

[moh_jazz_queue]
mode=files
sort=alpha
announcement=queue-thankyou
directory=moh_jazz_queue

There are several options in the queues table that you can use to fine-tune what and
when announcements are played to your callers. The full list of queue options is
available in the ~/src/asterisk-15.<TAB>/configs/samples/queues.conf.sample file.
Table 12-3 reviews a few of the more useful ones.

Table 12-3. Options related to prompt control timing within a queue

Option Available
values

Description

announce-

frequency

Value in seconds Defines how often we should announce the caller’s position and/or estimated hold
time in the queue. Set this value to zero to disable.

min-

announce-

frequency

Value in seconds Indicates the minimum amount of time that must pass before we announce the
caller’s position in the queue again. This is used when the caller’s position may
change frequently, to prevent the caller hearing multiple updates in a short period of
time.

periodic-
announce-

frequency

Value in seconds Specifies how often to make periodic announcements to the caller.

random-

periodic-

announce

yes, no If set to yes, will play the defined periodic announcements in a random order. See
periodic-announce.

relative-

periodic-

announce

yes, no If set to yes, the periodic-announce-frequency timer will start when the
end of the file being played back is reached, instead of from the beginning. Defaults
to no.

announce-

holdtime

yes, no, once Defines whether the estimated hold time should be played along with the periodic
announcements. Can be set to yes, no, or only once.

Advanced Queues | 227

Option Available
values

Description

announce-

position

yes, no,
limit, more

Defines whether the caller’s position in the queue should be announced to them. If
set to no, the position will never be announced. If set to yes, the caller’s position
will always be announced. If the value is set to limit, the caller will hear their
position in the queue only if it is within the limit defined by announce-
position-limit. If the value is set to more, the caller will hear their position
only if it is beyond the number defined by announce-position-limit.

announce-

position-

limit

Number of zero
or greater

Used if you’ve defined announce-position as either limit or more.

announce-

round-

seconds

Value in seconds If this value is nonzero, the number of seconds is announced as well, and rounded to
the value defined.

Table 12-4 defines the files that will be used when announcements are played to the
caller.

Table 12-4. Options for controlling the playback of prompts within a queue

Option Available values Description
musicclass Music class as defined by

musiconhold.conf
Sets the music class to be used by a particular queue. You can also
override this value with the CHANNEL(musicclass) channel
variable.

queue-

thankyou

Filename of prompt to play If not defined, plays the default value (“Thank you for your patience”). If
set to an empty value, prompt will not be played at all.

queue-

youarenext

Filename of prompt to play If not defined, plays the default value (“You are now first in line”). If set
to an empty value, prompt will not be played at all.

queue-

thereare

Filename of prompt to play If not defined, plays the default value (“There are”). If set to an empty
value, prompt will not be played at all.

queue-

callswait

ing

Filename of prompt to play If not defined, plays the default value (“calls waiting”). If set to an empty
value, prompt will not be played at all.

queue-

holdtime

Filename of prompt to play If not defined, plays the default value (“The current estimated hold time
is”). If set to an empty value, prompt will not be played at all.

queue-

minutes

Filename of prompt to play If not defined, plays the default value (“minutes”). If set to an empty
value, prompt will not be played at all.

queue-

seconds

Filename of prompt to play If not defined, plays the default value (“seconds”). If set to an empty
value, prompt will not be played at all.

queue-

reporthold

Filename of prompt to play If not defined, plays the default value (“hold time”). If set to an empty
value, prompt will not be played at all.

periodic-

announce

A set of periodic
announcements to be played,
separated by commas

Prompts are played in the order they are defined. Defaults to queue-
periodic-announce (“All representatives are currently busy
assisting other callers. Please wait for the next available representative”).

228 | Chapter 12: Automatic Call Distribution Queues

5 Just sayin’.

There’s a ton of flexibility possible when designing a caller’s experience while they’re
waiting, but please don’t forget that your callers will never be happy to be waiting in
the queue. Also, if you’ve found some half-decent hold music, and your callers are
enjoying it, an interruption to play yet another message runs the risk of really setting
their blood boiling. When they are finally answered, your poor agents will get the
brunt of their anger, even though it is actually your fault.5

So keep your on-hold tweaking simple. Callers know they’re waiting, and they aren’t
going to be happy about it. Get them to an agent as quickly as possible, with the bare
minimum amount of silliness while they’re holding, and don’t succumb to the temp‐
tation of making the queue more important to your callers than it actually is.

Overflow
Unfortunately, your queue will not always get your callers to an agent in a timely
manner. When various conditions cause the queue to reject incoming callers, we have
an overflow situation. Overflowing out of the queue is done either with a timeout
value or when no queue members are available (as defined by joinempty or leavewhe
nempty). In this section we’ll discuss how to control when overflow happens.

Controlling timeouts

The Queue() application supports two kinds of timeout: one defines the maximum
period of time a caller stays in the queue, and the other specifies how long to ring a
device when attempting to connect a caller to a queue member. The two are unrelated
but can affect each other. In this section we’ll be talking about the maximum period
of time a caller stays in the Queue() application before the call overflows to the next
step in the dialplan, which could be something like VoiceMail(), or even another
queue. Once the call has fallen out of the queue, it can go anywhere that a call could
normally go when controlled by the dialplan.

The timeouts are specified in two locations. The timeout that indicates how long to
ring queue members for is specified in the queues table. The absolute timeout (how
long the caller stays in the queue) is controlled via the Queue() application. To set a
maximum amount of time for callers to stay in a queue, simply specify it after the
queue name in the Queue() application:

; Queue
exten => 610,1,Noop()
 same => n,Progress()
 same => n,Queue(sales,120)
 same => n,Voicemail(${EXTEN}@queues,u)
 same => n,Hangup()

Advanced Queues | 229

exten => 611,1,Noop()
 same => n,Progress()
 same => n,Queue(support,120)
 same => n,Voicemail(${EXTEN}@queues,u)
 same => n,Hangup()

exten => 612,1,Noop()
 same => n,Progress()
 same => n,Queue(support-priority,120)
 same => n,Voicemail(${EXTEN}@queues,u)
 same => n,Hangup()

Since we’re sending the calls to voicemail, we’ll need some mailboxes:
MySQL> INSERT INTO `asterisk`.`voicemail`
(context,mailbox,password,fullname,email)

VALUES
('queues','610','192837','Queue sales','name@shifteight.org'),
('queues','611','192837','Queue support','name@shifteight.org'),
('queues','612','192837','Queue support-priority','name@shifteight.org');

Of course, we could define a different destination, but the VoiceMail() application is
a common overflow destination for a queue. Obviously, sending callers to voicemail
is not ideal (they were hoping to speak to someone live), so make sure someone
checks it regularly and calls your customers back.

Now, let’s say we have set our absolute timeout to 10 seconds, our timeout value for
ringing queue members to 5 seconds, and our retry timeout value to 4 seconds. In
this scenario, we would ring the queue member for 5 seconds, then wait 4 seconds
before attempting another queue member. That brings us up to 9 seconds of our
absolute timeout of 10 seconds. At this point, should we ring the second queue mem‐
ber for 1 second and then exit the queue, or should we ring this member for the full 5
seconds before exiting?

We control which timeout value has priority with the timeoutpriority option in the
queues table. The available values are app (the default) and conf. If we want the appli‐
cation timeout (the absolute timeout) to take priority, which would cause our caller to
be kicked out after exactly 10 seconds (even though it was just starting to ring an
agent), we should set the timeoutpriority value to app. If we want the configuration
file timeout to take priority and finish ringing the queue member, which will cause
the caller to stay in the queue a little longer, we should set timeoutpriority to conf.
The default value is app (which is the default behavior in previous versions of Aster‐
isk). Probably in most cases you’ll want to use conf (especially if you want your caller
experience to be as non-weird as possible).

MySQL> update `asterisk`.`queues` set timeoutpriority='conf'
 where name in ('sales','support','support-priority');

The goal is to get callers to agents, yes?

230 | Chapter 12: Automatic Call Distribution Queues

6 If the priority n+1 (from where the Queue() application was called) is not defined, the call will be hung up. In
other words, don’t use this functionality unless your dialplan does something useful at the step immediately
following Queue().

Controlling when to join and leave a queue
Asterisk provides two options that control when callers can join and are forced to
leave queues, both based on the statuses of the queue members. The first option, join
empty, is used to control whether callers can enter a queue in the first place. The sec‐
ond option, leavewhenempty, is used to control events that will cause callers already
in a queue to be removed from that queue (i.e., if all of the queue members become
unavailable). Both options allow for a comma-separated list of values to control this
behavior, as listed in Table 12-5.

Table 12-5. Options that can be set for joinempty or leavewhenempty

Value Description
paused Members are considered unavailable if they are paused.
penalty Members are considered unavailable if their penalties are less than QUEUE_MAX_PENALTY.
inuse Members are considered unavailable if their device status is InUse.
ringing Members are considered unavailable if their device status is Ringing.
unavailable Applies primarily to agent channels; if the agent is not logged in but is a member of the queue, the

channel is considered unavailable.
invalid Members are considered unavailable if their device status is Invalid. This is typically an error condition.
unknown Members are considered unavailable if device status is unknown.
wrapup Members are considered unavailable if they are currently in the wrapup time after the completion of a call.

For joinempty, prior to placing a caller into the queue, all the members are checked
for availability using the factors you list as criteria. If all members are deemed to be
unavailable, the caller will not be permitted to enter the queue, and dialplan execu‐
tion will continue at the next priority.6 For the leavewhenempty option, the members’
statuses are checked periodically against the listed conditions; if it is determined that
no members are available to take calls, the caller is removed from the queue, with
dialplan execution continuing at the next priority.

An example use of joinempty could be:
joinempty=unavailable,invalid,unknown

With this configuration, prior to a caller entering the queue the statuses of all queue
members will be checked, and the caller will not be permitted to enter the queue
unless at least one queue member is found to have a status that is not unavailable,
invalid, or unknown.

The leavewhenempty example could be something like:

Advanced Queues | 231

leavewhenempty=unavailable,invalid,unknown

In this case, the queue members’ statuses will be checked periodically, and callers will
be removed from the queue if no queue members can be found who do not have a
status of unavailable, invalid, or unknown.

Previous versions of Asterisk used the values yes, no, strict, and loose as the avail‐
able values to be assigned. The mapping of those values is shown in Table 12-6.

Table 12-6. Mapping between old and new values for controlling when callers join and leave
queues

Value Mapping (joinempty) Mapping (leavewhenempty)
yes (empty) penalty,paused,invalid

no penalty,paused,invalid (empty)
strict penalty,paused,invalid,unavailable penalty,paused,invalid,unavailable

loose penalty,invalid penalty,invalid

Using Local Channels
The use of local channels as queue members is a powerful way of executing dialplan
code prior to dialing the actual agent’s device. When Queue() decides to present a call
to an agent, using local channels allows us to define custom channel variables, write
to a logfile, set some limit on call length (e.g., if it is a paid service), send messages of
all sorts all over the place, perform database transactions, and perform many of the
other actions we might wish to do at that exact moment. Normally, we have no con‐
trol over when the Queue() application has decided to present a caller to a specific
member, but with local channels, we get one final kick at the can, and can even return
Congestion(), which will have the effect of returning the caller to the queue, since
the queue will not consider this call to have been successfully delivered to an agent
(this can be very handy, since some external condition can be evaluated before the
call is just fired off to an endpoint).

When using local channels for queues, they are added just like any other channels,
typically dynamically through the AddQueueMember() dialplan application.

We’ll need to define the local channel where all the magic happens, and since local
channels are typically used in a manner similar to subroutines, we like to name and
locate them in the dialplan with the subroutines, with a context name starting with
local (akin to how subroutines start with sub). If you’ve been building out your
dialplan along with the book, you’ll notice you already have a local channel [local
DialDelay]. Add this code somewhere in that part of the dialplan.

[localMemberConnector]
exten => _[A-Za-z0-9].,1,Verbose(2,Connect ${CALLERID(all)} to Agent at ${EXTEN})
 ; filter out any bad characters, allow alphanumeric chars and hyphen
 same => n,Set(QueueMember=${FILTER(A-Za-z0-9\-,${EXTEN})})

232 | Chapter 12: Automatic Call Distribution Queues

7 Perhaps we could have used / instead of - as a delimiter, giving us Local/PJSIP/SOFTPHONE_A@localMember
Connector, but we felt that would be more prone to strange syntax errors, and awkward to filter and parse, so
we went with -.

 ; assign the first field of QueueMember to Technology; hyphen as separator
 same => n,Set(Technology=${CUT(QueueMember,-,1)})
 ; assign the second field of QueueMember to Device using the hyphen separator
 same => n,Set(Device=${CUT(QueueMember,-,2)})
 ; dial the agent
 same => n,Dial(${Technology}/${Device})
 same => n,Hangup()

This code might not make total sense just yet, but what it’s doing is taking the $
{EXTEN} (which is a complex alphanumeric string at this point), and slicing and dic‐
ing it to extract the actual channel to be called (i.e., we pass as part of the local chan‐
nel all the information needed to dial the actual channel).

Let’s look at the AddQueueMember code and see if we can make more sense of this:
exten => *740,1,Noop(Logging in device ${CHANNEL(endpoint)} into the support queue)
 same => n,Set(MemberTech=${CHANNEL(channeltype)})
 same => n,Set(MemberIdent=${CHANNEL(endpoint)})
 same => n,Set(Interface=${MemberTech}/${MemberIdent})
 ;;; THE FOLLOWING SHOULD ALL BE ON ONE LINE
same => n,AddQueueMember(support,Local/${MemberTech}-${MemberIdent}@localMemberConnector
,,,${IF($[${MemberTech} = PJSIP]?${Interface})})
 same => n,Playback(silence/1)
 same => n,Playback(${IF($[${AQMSTATUS} = ADDED]?agent-loginok:agent-incorrect)})
 same => n,Hangup()

Once you’ve input all this and reloaded your dialplan, log into the queue by dialing
*740, and let’s see what we’ve got.

*CLI> queue show support

support has 0 calls (max unlimited) in 'rrmemory' strategy (1s holdtime, 0s talktime),
W:0, C:1, A:1, SL:0.0%, SL2:0.0% within 0s
 Members:
 PJSIP/SOFTPHONE_A (Local/PJSIP-SOFTPHONE_A@localMemberConnector)
(ringinuse disabled) (dynamic) (Not in use)
 No Callers

The member is now identified to the queue as a local channel named PJSIP-
SOFTPHONE_A in the [localMemberConnector] context. (The PJSIP/SOFTPHONE_A
channel will be monitored for actual status of the endpoint.) When Queue() decides
to send a call to the member, the call will end up in the [localMemberConnector]
context, where the EXTEN (PJSIP-SOFTPHONE_A) will be sliced and diced in order to
yield our channel type and endpoint,7 which is what will actually be called.

At this point, the purpose of all this extra complexity is not immediately clear. So far
we don’t get anything useful out of all this extra code.

Advanced Queues | 233

8 Obviously, don’t use any dialplan code in your local channel that will answer, such as Answer(), Playback(),
and so forth.

So now that we can add devices to the queue using local channels, let’s look at how
this might be useful.

Let’s say we have a customer who just can’t stand our best agent. They’re a good cus‐
tomer, so we don’t want to lose them, but it’s our best agent, so we’re not going to fire
them.

To set this up, we’re going to assign a caller ID to SOFTPHONE_B, so we have something
to match against.

MySQL> UPDATE `asterisk`.`ps_endpoints` SET callerid='SOFTPHONE_B <103>' \
WHERE id='SOFTPHONE_B';

We’re going to build a little trick into our dialplan that will reject the call to the agent
if the caller ID matches our sensitive customer.

[localMemberConnector]
exten => _[A-Za-z0-9].,1,Verbose(2,Connect ${CALLERID(all)} to Agent at ${EXTEN})
 same => n,Wait(0.1) ; Prevent loop from completely hogging CPU
 same => n,Set(QueueMember=${FILTER(A-Za-z0-9\-_,${EXTEN})}) ; allow alphanum, - , _
 same => n,Set(Technology=${CUT(QueueMember,-,1)}) ; first field, hyphen is separator
 same => n,Set(Device=${CUT(QueueMember,-,2)}) ; second field, hypen separator
 ; is this our mismatched pair?
 same => n,DumpChan()
 same => n,Noop(${CALLERID(all)} : ${Device})
same=>n,GotoIf($["${CALLERID(num)}"="103"&"${Device}"="SOFTPHONE_A"]?rejectcall:ringagent)
 ; dial the agent
 same => n(ringagent),Dial(${Technology}/${Device})
 same => n,Hangup()
 ; send it back!
 same => n(rejectcall),Congestion()
 same => n,Hangup()

The passing back of Congestion() will cause the caller to be returned to the queue
(while this is happening, the caller gets no indication that anything is amiss and keeps
hearing music until their call is answered by a channel of some sort).8 Ideally, your
queue is programmed to try another agent; however, you need to keep in mind that if
app_queue determines that this member is still its first choice to present the call to,
the call will simply be reconnected to the same agent (and get congestion again, and
thus potentially create a CPU-hogging logic loop). To avoid this, you will need to
ensure your queue is using a distribution strategy such as round_robin, random, or
any strategy that ensures the same member is not tried over and over. This is also why
we toss a tiny little delay into our [localMemberConnector] context, so if a loop like
this does happen, there’s at least a small throttle on it.

Let’s just sanity check our code. Set the caller ID number to something other than
103, and the call should go through.

234 | Chapter 12: Automatic Call Distribution Queues

MySQL> UPDATE `asterisk`.`ps_endpoints` SET callerid='SOFTPHONE_B <123>' \
WHERE id='SOFTPHONE_B';

The use of local channels for your member channels will not make queue design and
debugging easier, but it does give you far more power over your queues than just
using app_queue on its own, so if you have a complex queue requirement, the use of
local channels will give you a level of control you would not have otherwise.

Queue Statistics: The queue_log File
The queue_log file (commonly located in /var/log/asterisk) contains cumulative event
information for the queues defined in your system (such as when a queue is reloaded,
when queue members are added or removed, pause/unpause events, and so forth) as
well as some call details (e.g., their status and which channels the callers were connec‐
ted to). The queue log is enabled by default, but it can be controlled via the /etc/aster‐
isk/logger.conf file. There are three options related to the queue_log file specifically:

queue_log

Controls whether the queue log is enabled or not. Valid values are yes or no
(defaults to yes).

queue_log_to_file

Controls whether the queue log should be written to a file even when a real-time
backend is present. Valid values are yes or no (defaults to no).

queue_log_name

Controls the name of the queue log. The default is queue_log.

The queue log is a pipe-separated list of events. The fields in the queue_log file are as
follows:

• UNIX Epoch timestamp of the event
• Unique ID of the call
• Name of the queue
• Name of bridged channel
• Type of event
• Zero or more event parameters

The information contained in the event parameters depends on the type of event. A
typical queue_log file will look something like the following:

1530389309|NONE|NONE|NONE|QUEUESTART|
1530409313|CLI|support|PJSIP/SOFTPHONE_B|ADDMEMBER|
1530409467|CLI|support|PJSIP/SOFTPHONE_B|REMOVEMEMBER|
1530409666|NONE|support|PJSIP/SOFTPHONE_B|PAUSE|Callbacks
1530411108|NONE|support|PJSIP/SOFTPHONE_B|UNPAUSE|FinishedCallbacks

Queue Statistics: The queue_log File | 235

1530440239|1530440239.10|support|PJSIP/SOFTPHONE_A|ADDMEMBER|
1530440303|1530440303.16|support|PJSIP/SOFTPHONE_A|REMOVEMEMBER|
1530497165|1530497165.54|support|Local/PJSIP-SOFTPHONE_A@MemberConnector|ADDMEMBER|
1530497388|CLI|support|Local/PJSIP-SOFTPHONE_A@MemberConnector|REMOVEMEMBER|
1530497408|1530497408.60|support|Local/PJSIP-SOFTPHONE_A@localMemberConnector|ADDMEMBER|
1530497506|1530497506.71|support|NONE|ENTERQUEUE||SOFTPHONE_B|1
1530497511|1530497506.71|support|PJSIP/SOFTPHONE_A|CONNECT|5|1530497506.72|4
1530497517|1530497506.71|support|PJSIP/SOFTPHONE_A|COMPLETEAGENT|5|6|1
1530509861|1530509861.134|support|NONE|ENTERQUEUE||SOFTPHONE_B|1
1530509864|1530509861.134|support|PJSIP/SOFTPHONE_A|RINGCANCELED|2224
1530509864|1530509861.134|support|NONE|ABANDON|1|1|3
1530510503|1530510503.156|support|NONE|ENTERQUEUE||103|1
1530510503|1530510503.156|support|PJSIP/SOFTPHONE_A|RINGNOANSWER|0
1530510511|1530510503.156|support|NONE|ABANDON|1|1|8
1530510738|1530510738.163|support|NONE|ENTERQUEUE||123|1
1530510742|1530510738.163|support|PJSIP/SOFTPHONE_A|CONNECT|4|1530510738.164|4
1530510752|1530510738.163|support|PJSIP/SOFTPHONE_A|COMPLETECALLER|4|10|1

As you can see from this example, there may not always be a unique ID for the event.
External services, such as the Asterisk CLI, can perform actions on the queue, and in
these cases you’ll see something like CLI in the Unique ID field.

The available events and the information they provide are described in Table 12-7.

Table 12-7. Events in the Asterisk queue log

Event Information provided
ABANDON Written when a caller in a queue hangs up before his call is answered by an agent. Three parameters are

provided for ABANDON: the position of the caller at hangup, the original position of the caller when
entering the queue, and the amount of time the caller waited prior to hanging up.

ADDMEMBER Written when a member is added to the queue. The bridged channel name will be populated with the
name of the channel added to the queue.

AGENTDUMP Indicates that the agent hung up on the caller while the queue announcement was being played, prior to
them being bridged together.

AGENTLOGIN Recorded when an agent logs in. The bridged channel field will contain something like Agent/9994 if
logging in with chan_agent, and the first parameter field will contain the channel logging in (e.g.,
SIP/0000FFFF0001).

AGENTLOGOFF Logged when an agent logs off, along with a parameter indicating how long the agent was logged in for.
Note that since you will often use RemoveQueueMember() for agent log off, this parameter may not
be written. See the REMOVEMEMBER event instead.

COMPLETE

AGENT

Recorded when a call is bridged to an agent and the agent hangs up, along with parameters indicating
the amount of time the caller was held in the queue, the length of the call with the agent, and the
original position at which the caller entered the queue.

COMPLETECAL

LER

Same as COMPLETEAGENT, except the caller hung up and not the agent.

CONFIGURE

LOAD

Indicates that the queue configuration was reloaded (e.g., via module reload app_queue.so).

CONNECT Written when the caller and the agent are bridged together. Three parameters are also written: the
amount of time the caller waited in the queue, the unique ID of the queue member’s channel to which
the caller was bridged, and the amount of time the queue member’s phone rang prior to being
answered.

236 | Chapter 12: Automatic Call Distribution Queues

Event Information provided
ENTERQUEUE Written when a caller enters the queue. Two parameters are also written: the URL (if specified) and the

caller ID of the caller.
EXITEMPTY Written when the caller is removed from the queue due to a lack of agents available to answer the call

(as specified by the leavewhenempty parameter). Three parameters are also written: the position of
the caller in the queue, the original position at which the caller entered the queue, and the amount of
time the caller was held in the queue.

EXITWITHKEY Written when the caller exits the queue by pressing a single DTMF key on his phone to exit the queue
and continue in the dialplan (as enabled by the context parameter in queues.conf). Four parameters
are recorded: the key used to exit the queue, the position of the caller in the queue upon exit, the
original position the caller entered the queue at, and the amount of time the caller was waiting in the
queue.

EXITWITHTIME

OUT

Written when the caller is removed from the queue due to timeout, as specified by the timeout
parameter to Queue(). Three parameters are also recorded: the position the caller was in when exiting
the queue, the original position of the caller when entering the queue, and the amount of time the caller
waited in the queue.

PAUSE Written when a queue member is paused.
PAUSEALL Written when all members of a queue are paused.
UNPAUSE Written when a queue member is unpaused.
UNPAUSEALL Written when all members of a queue are unpaused.
PENALTY Written when a member’s penalty is modified. The penalty can be changed through several means, such

as the QUEUE_MEMBER_PENALTY() function, the Asterisk Manager Interface, or the Asterisk CLI
commands.

REMOVEMEMBER Written when a queue member is removed from the queue. The bridge channel field will contain the
name of the member removed from the queue.

RINGNOANSWER Logged when a queue member is rung for a period of time, and the timeout value for ringing the queue
member is exceeded. A single parameter will also be written indicating the amount of time the
member’s extension rang.

TRANSFER Written when a caller is transferred to another extension. Additional parameters are also written, which
include the extension and context the caller was transferred to, the hold time of the caller in the queue,
the amount of time the caller was speaking to a member of the queue, and the original position of the
caller when he entered the queue.a

SYSCOMPAT Recorded if an agent attempts to answer a call, but the call cannot be set up due to incompatibilities in
the media setup.

a Please note that when the caller is transferred using SIP transfers (rather than the built-in transfers triggered by DTMF and
configured in features.conf), the TRANSFER event may not be written.

Conclusion
We started this chapter with a look at basic call queues, discussing what they are, how
they work, and when you might want to use one. After building a simple queue, we
explored how to control queue members through various means (including the use of
local channels, which provide the ability to perform some dialplan logic just prior to
connecting to a queue member). Of course, we need the ability to monitor what our

Conclusion | 237

queues are doing, so we had a quick look at the queue_log file, and the various fields
written as a result of events happening in our queues.

With the information provided in this chapter, you have most of the foundational
knowledge required to implement queues in Asterisk.

238 | Chapter 12: Automatic Call Distribution Queues

CHAPTER 13

Device States

Out of clutter, find simplicity.
—Albert Einstein

It is often useful to be able to determine the state of the devices that are attached to a
telephone system. For example, a receptionist might require the ability to see the sta‐
tuses of everyone in the office in order to determine whether somebody can take a
phone call. Asterisk itself needs this same information. As another example, if you
were building a call queue, as discussed in Chapter 12, Asterisk needs to know when
an agent is available so that another call can be delivered. This chapter discusses
device state concepts in Asterisk, as well as how devices and applications use and
access this information.

Device States
There are two categories of devices that Asterisk provides state information for: chan‐
nel devices (such as PJSIP endpoints) and virtual devices (which are built-in services
that one might wish to monitor, such as conference rooms).

To reference the state of a channel, you do so in exactly the same way you would with
Dial(), for example DEVICE_STATE(PJSIP/000f300B0B02), whereas to reference the
state of a virtual device, the format is virtual device type:identifier, for example
DEVICE_STATE(ConfBridge:1234).

Virtual devices include things that are inside Asterisk but provide useful state
information (see Table 13-1).

239

Table 13-1. Devices for which Asterisk can provide state information

Device Description
PJSIP/channel name Many channels can have their state monitored, but the PJSIP channel offers by far the

most amount of useful data; thus, monitoring SIP devices is the most common use of
DEVICE_STATE.

ConfBridge:confer

ence bridge

The state of a MeetMe conference bridge. The state will reflect whether or not the
conference bridge currently has participants called in. More information on using
MeetMe() for call conferencing can be found in Chapter 11.

Custom:custom name Custom device states. These states have custom names and are modified using the
DEVICE_STATE() function. Example usage can be found in “Using Custom Device
States” on page 244.

Park:exten@context The state of a spot in a call parking lot. The state information will reflect whether or not a
caller is currently parked at that extension. More information about call parking in Asterisk
can be found in “Call Parking” on page 195.

Calendar:calendar

name

Calendar state. Asterisk will use the contents of the named calendar to set the state to
available or busy.

Checking Device States
The DEVICE_STATE() dialplan function reads the current state of a device.

exten => 7012,1,Answer()
 same => n,Set(DeviceIdent=PJSIP/000f300B0B02)
 same => n,Verbose(3,${DeviceIdent} is ${DEVICE_STATE($DeviceIdent})})
 same => n,Hangup()

If we call extension 7012 from the same device that we are checking the state of, the
following verbose message comes up on the Asterisk console:

 -- PJSIP/000f300B0B02 is INUSE

Chapter 17 discusses the Asterisk Manager Interface (AMI). The
GetVar manager action can be used to retrieve device state values
in an external program. You can use it to get the value of a normal
variable, or to return a value from a dialplan function such as
DEVICE_STATE().

Here is a list of the values that the DEVICE_STATE() function will return (depending,
of course, on what was found):

• UNKNOWN

• NOT_INUSE

• INUSE

• BUSY

• INVALID

240 | Chapter 13: Device States

• UNAVAILABLE

• RINGING

• RINGINUSE

• ONHOLD

This information can then be used in the dialplan for call-flow decisions (for exam‐
ple, a local channel ringing an agent might use this information to determine that an
agent phone is on a call on another line, and thus reject the call so it passes back into
the queue).

Extension States Using the hint Directive
Extension state is a dialplan mechanism Asterisk uses to allow SIP devices to sub‐
scribe to presence information. As an example, a reception phone might have a Busy
Lamp Field (BLF) module, containing buttons to be used to show the state of various
phones in the office. The phone with the BLF will send subscription requests in order
to tell Asterisk which devices it wants to receive presence information from. In the
dialplan, we use the hint directive to define the mapping between an extension and
one or more devices.

Hints
To define a hint in the dialplan, the keyword hint is used in place of a priority.

[hints]
;exten = <extension>,hint,<device state id>[& <more dev state id],<presence state id>

exten => 100,hint,${UserA_DeskPhone}

exten => 221,hint,ConfBridge:221

Often, you might see hints defined in the same section of the dialplan as the normal
extension. This can get a bit visually cluttered, and it also suggests that the hint is
somehow associated with the dialable extension, which is not the case.

[sets]

exten => 100,hint,${UserA_DeskPhone}
exten => 100,1,Gosub(subDialUser,${EXTEN},1(${UserA_DeskPhone},${EXTEN},default,22))
exten => 101,hint,${UserA_SoftPhone}
exten => 101,1,Gosub(subDialUser,${EXTEN},1(${UserA_SoftPhone},${EXTEN},default,23))
exten => 102,hint,${UserB_DeskPhone}
exten => 102,1,Gosub(subDialUser,${EXTEN},1(${UserB_DeskPhone},${EXTEN},default,26))
exten => 103,hint,${UserB_SoftPhone}
exten => 103,1,Gosub(subDialUser,${EXTEN},1(${UserB_SoftPhone},${EXTEN},default,24))

exten => 110,1,Dial(${UserA_DeskPhone}&${UserA_SoftPhone}&${UserB_SoftPhone})

Extension States Using the hint Directive | 241

In our example we’ve made a direct correlation between the hint’s extension number
and the extension number being dialed, although there is no requirement that this be
the case.

Checking Extension States
The easiest way to check the current state of the hint extensions is through the Aster‐
isk CLI. The core show hints command will display all currently configured hints:

*CLI> core show hints
 -= Registered Asterisk Dial Plan Hints =-
100@hints : PJSIP/0000f30A0A01 State:Unavailable Presence:not_set Watchers 0
101@hints : PJSIP/SOFTPHONE_A State:Unavailable Presence:not_set Watchers 0
102@hints : PJSIP/0000f30B0B02 State:Unavailable Presence:not_set Watchers 0
103@hints : PJSIP/SOFTPHONE_B State:Unavailable Presence:not_set Watchers 0
110@hints : PJSIP/0000f30A0A01&P State:Unavailable Presence:not_set Watchers 0
221@hints : ConfBridge:221 State:Unavailable Presence:not_set Watchers 0

- 6 hints registered

In addition to showing you the state of each hint, the output of core show hints also
provides a count of watchers. A watcher is an entity that has subscribed to receive
updates on the state of this extension. If a SIP endpoint subscribes to the state of an
extension, the watcher count will be increased.

Extension state can also be retrieved with a dialplan function, EXTENSION_STATE().
This function operates much like the DEVICE_STATE() function described in the pre‐
ceding section. Add the following example to your /etc/asterisk/extensions.conf file, as
a new extension right after 235:

exten => 234,1,NoOp()
 same => n,Set(FEATURE(parkingtime)=60)

exten => 235,1,Noop(The state of 100@hints is ${EXTENSION_STATE(100@hints)})
 same => n,Hangup()

exten => 321,1,NoOp()

When this extension is called from the endpoint assigned to 100, this is the message
that shows up on the Asterisk console:

 -- The state of 100@hints is INUSE

The following list includes the possible values that may be returned from the EXTEN
SION_STATE() function:

• UNKNOWN

• NOT_INUSE

• INUSE

• BUSY

242 | Chapter 13: Device States

• UNAVAILABLE

• RINGING

• RINGINUSE

• HOLDINUSE

• ONHOLD

SIP Presence
Asterisk gives devices the capability to subscribe to extension state using the SIP pro‐
tocol. This functionality is often referred to as BLF (Busy Lamp Field); see
Figure 13-1.

Figure 13-1. Busy Lamp Field aka sidecar

The configuration of the module will be slightly (or very) different for each manufac‐
turer; however, the subscription information will—one way or another—need to
include the following:

• The address of the Asterisk server (this might be defined on a per-button basis,
or it might apply to the whole phone).

• The context to subscribe to (in our sample dialplan, it’s named [hints]). This
setting is defined in the subscribe_context field of the asterisk.ps_endpoints
table.

SIP Presence | 243

1 Items 2 and 3 may be formed as a single string, looking like 100@hints, or something similar.
2 Which is written using the same PJSIP library that Asterisk uses.

• The relevant extension (100, 101, 102, etc.)1

One of the more simple and inexpensive ways we’ve found for testing presence is
using the open source Windows softphone, MicroSIP.2 You’ll first need to download
MicroSIP and get it registered to your Asterisk system. Then, under the contacts tab
of the softphone, you can right-click in the open area to Add a contact. In the Name
section you can put whatever you wish, but under the Number section, you will input
extension@hints context, which in our case would be one of 100@hints, 101@hints,
102@hints, or 103@hints. If you’ve set everything up in Asterisk per the previous
examples, you should see the state of your subscriptions change in response to what‐
ever the far end set is doing. You can also monitor this from Asterisk’s perspective
using a command such as:

$ watch -n 0.5 "sudo asterisk -rx 'core show hints'"

The configuration of presence on physical desk telephones is essentially the same, but
it can be more difficult to make sense of the specific syntax each manufacturer
requires. Our advice is to get it working with MicroSIP (which you should be able to
run on WINE under Linux or macOS). It’s an easy setup, and from there you’ll have a
known-good configuration you can trust when you’re sorting out a similar config for
one of your desk phones.

Using Custom Device States
In addition to the devices Asterisk knows internally how to monitor (PJSIP, Conf
Bridge, Park, Calendar), Asterisk also provides the ability to create custom device
states, which can be very useful in the development of some interesting applications.

Custom device states are defined using a prefix of Custom:. The text that comes after
the prefix can be anything you want. To set or read the value of a custom device state,
use the DEVICE_STATE() dialplan function. Put this into your extensions.conf right
after extension 235:

exten => 235,1,Noop(The state of 100@hints is ${EXTENSION_STATE(100@hints)})
 same => n,Hangup()

exten => 236,1,Noop(Set a custom status)
 same => n(blink),Set(DEVICE_STATE(Custom:rudolph)=UNAVAILABLE)
 same => n,Set(DEVICE_STATE(Custom:santa)=NOT_INUSE)
 same => n,Wait(0.75)
 same => n,Set(DEVICE_STATE(Custom:rudolph)=NOT_INUSE)
 same => n,Set(DEVICE_STATE(Custom:santa)=UNAVAILABLE)
 same => n,Wait(0.75)
 same => n,Goto(blink)

244 | Chapter 13: Device States

Then add this to your [hints] context:
exten => 221,hint,ConfBridge:221
exten => santa,hint,Custom:santa
exten => rudolph,hint,Custom:rudolph

Festive, yeah?

You will notice that when you hang up, one of the custom device
states will remain “Unavailable.” This is an important point: there is
nothing in the system that will update your custom device states,
unless you yourself have implemented something to do that.

Conclusion
The device states functionality in Asterisk can be used to track the state of various
resources and deliver information about those states to various subscribers. Com‐
monly (and traditionally) used for Busy Lamp Fields, the Custom device state allows
this resource to be far more flexible than it would be in a traditional PBX.

Conclusion | 245

CHAPTER 14

The Automated Attendant

I don’t answer the phone. I get the feeling whenever I do that there will be someone on the
other end.

—Fred Couples

In many PBXs, it is common to have a menu system in place to answer incoming calls
automatically and allow callers to direct themselves to various extensions and resour‐
ces in the system through menu choices. This is known in the telecom industry as an
automated attendant (AA). An AA normally provides the following features:

• Transfer to extension
• Transfer to voicemail
• Transfer to a queue
• Play message (e.g., “our address is…”)
• Connect to a submenu (e.g., “for a listing of our departments...”)
• Connect to reception
• Repeat choices

For anything else—especially if there is external integration required, such as a data‐
base lookup—an Interactive Voice Response (IVR) would normally be needed.

247

1 This is most likely because “IVR” is much easier to say than “automated attendant.”
2 It should be noted that Asterisk is an excellent IVR-creation tool. It’s not bad for building automated attend‐

ants, either.

An AA Is Not an IVR
In the open source telecom community, you will often hear the term IVR used to
describe an automated attendant.1 However, in the telecom industry, for many deca‐
des before there was VoIP or open source PBXs, an IVR was distinct from an AA. For
this reason, when you are talking to somebody with many years of telecom experi‐
ence about any sort of telecom menu, you should ensure that you are talking about
the same thing. To a telecom professional, the term IVR implies a relatively complex
and involved development effort (and subsequent costs), whereas an AA is a simple
and inexpensive thing that is common to most PBXs.

In this chapter, we talk about building an automated attendant. In Chapter 16 we will
discuss IVR.2

Designing Your AA
The most common mistake beginners make when designing an AA is needless com‐
plexity. While there can be much joy and sense of accomplishment in the creation of
a multilevel AA with dozens of nifty options and oodles of really cool prompts, your
callers have a different agenda. The reason people make phone calls is primarily
because they want to talk to someone. While people have become used to the reality
of automated attendants (and in some cases they can speed things up), for the most
part people would prefer to speak to somebody live. This means that there are two
fundamental rules that every AA should adhere to:

• Keep it simple.
• Make sure you always include a handler for the folks who are going to press 0

whenever they hear a menu. If you do not want to have a 0 option, be aware that
many people will be insulted by this, and they will hang up and not call back. In
business, this is generally a bad thing.

Before you start to code your AA, it is wise to design it. You will need to define a call
flow, and you will need to specify the prompts that will play at each step. Software
diagramming tools can be useful for this, but there’s no need to get fancy. Table 14-1
provides a good template for a basic AA that will do what you need.

248 | Chapter 14: The Automated Attendant

Table 14-1. A basic automated attendant

Step or choice Sample prompt Notes Filenamea

Greeting—
business hours

Thank you for calling ABC company. Day greeting. Played immediately
after the system answers the call.

daygreeting.wav

Greeting—
nonbusiness hours

Thank you for calling ABC company.
Our office is now closed.

Night greeting. As above, but plays
outside of business hours.

nightgreeting.wav

Main menu If you know the extension of the
person you wish to reach, please
enter it now. For sales, please press
1; for service, press 2; for our
company directory, press #. For our
address and fax information, please
press 3. To repeat these choices
press 9, or you can remain on the
line or press 0 to be connected to
our operator.

Main menu prompt. Plays
immediately after the greeting. For
the caller, the greeting and the main
menu are heard as a single prompt;
however, in the system it is helpful to
keep these prompts separate.

mainmenu.wav

1 Please hold while we connect your
call.

Transfer to sales queue. holdwhileweconnect.wav

2 Please hold while we connect your
call.

Transfer to support queue. holdwhileweconnect.wav

n/a Run Directory() application n/a
3 Our address is [address]. Our fax

number is [fax number], etc.
Play a recording containing address
and fax information. Return caller to
menu prompt when done.

faxandaddress.wav

0 Transferring to our attendant. Please
hold.

Transfer to reception/operator. transfertoreception.wav

9 n/a Repeat. Replay menu prompt (but not
greeting).

n/a

t n/a Timeout. If the caller does not make a
choice, treat the call as if caller has
dialed 0 (or in some cases, replay the
prompt).

i You have made an invalid selection.
Please try again.

Caller pressed an invalid digit: replay
menu prompt (but not greeting).

invalid.wav

_XXX b n/a Transfer call to dialed extension. holdwhileweconnect.wav
a These files don’t exist anywhere as of yet. We’re using these as examples.
b This pattern match must be relevant to your extension range.

Let’s go over the various components of this template. Then we’ll show you the
dialplan code required to implement it, as well as how to create prompts for it.

Designing Your AA | 249

3 If necessary, you can use an audio editing program such as Audacity to remove silence, and even to speed up
the recording a bit.

4 In fact, we don’t normally recommend this in an AA because it adds to what the caller has to listen to, and
most people will go to a website for this sort of information.

The Greeting
The first thing the caller hears is actually two prompts.

The first prompt is the greeting. The only thing the greeting should do is greet the
caller. Examples of a greeting might be “Thank you for calling Bryant, Van Meggelen,
and Associates,” “Welcome to Leif ’s School of Wisdom and T-Shirt Design,” or “You
have reached the offices of Dewey, Cheetum, and Howe, Attorneys.” That’s it—the
choices for the caller will come later. This allows you to record different greetings
without having to record a whole new menu. For example, for a few weeks each year
you might want your greeting to say “Season’s greetings” or whatever, but your menu
will not need to change. Also, if you want to play a different recording after hours
(“Thank you for calling. Our office is now closed.”), you can use different greetings,
but the heart of the menu can stay the same. Finally, if you want to be able to return
callers to the menu from a different part of the system, you will normally not want
them to hear the greeting again.

The Main Menu
The main menu prompt is where you inform your callers of the choices available
to them. You should speak this as quickly as possible (without sounding rushed or
silly).3 When you record a choice, always tell the users the action that will be taken
before giving them the digit option to take that action. So, don’t say “press 1 for sales,”
but rather say “for sales, press 1.” The reason for this is that most people will not pay
full attention to the prompt until they hear the choice that is of interest to them. Once
they hear their choice, you will have their full attention and can tell them what button
to press to get them to where they want to go.

Another point to consider is what order to put the choices in. A typical business, for
example, will want sales to be the first menu choice, and most callers will expect this
as well. The important thing is to think of your callers. For example, most people will
not be interested in address and fax information, so don’t make that the first choice.4

Think about the goal of getting the callers to their intended destinations as quickly as
possible when you make your design choices. Ruthlessly cut anything that is not
absolutely essential.

250 | Chapter 14: The Automated Attendant

Selection 1
Option 1 in our example will be a simple transfer. Normally this would be to a
resource located in another context, and it would typically have an internal extension
number so that internal users could also transfer calls to it. In this example, we are
going to use this option to send callers to the queue called sales that was created in
Chapter 12.

Selection 2
Option 2 will be technically identical to option 1. Only the destination will be differ‐
ent. This selection will transfer callers to the support queue.

Selection #
It’s good to have the option for the directory as close to the beginning of the record‐
ing as possible. Many people will use a directory if they know it is there, but can’t be
bothered to listen to the whole menu prompt to find out about it. Impatient people
will press 0, so the sooner you tell them about the directory, the better the odds that
they’ll use it, and thus reduce the workload on your receptionist.

Selection 3
When you have an option that does nothing but play a recording back to the caller
(such as address and fax information), you can leave all the code for that in the same
context as the menu, and simply return the caller to the main menu prompt at the
end of the recording. In general, these sorts of options are not as useful as we would
like to think they are, so in most cases you’ll probably want to leave this out.

Selection 9
It is very important to give the caller the option to hear the choices again. Many peo‐
ple will not be paying attention throughout the whole menu, and if you don’t give
them the option to hear the choices again, they will most likely press 0.

Note that you do not have to play the greeting again, only the main menu prompt.

Selection 0
As stated before, and whether you like it or not, this is the choice that many (possibly
the majority) of your callers will select. If you really don’t want to have somebody
handle these calls, you can send this extension to a mailbox, but we don’t recommend
it. If you are a business, many of your callers will be your customers. You want to
make it easy for them to get in touch with you. Trust us.

Designing Your AA | 251

Timeout
Many people will call a number and not pay too much attention to what is happening.
They know that if they just wait on the line, they will eventually be transferred to the
operator. Or perhaps they are in their cars, and really shouldn’t be pressing buttons
on their phones. Either way, oblige them. If they don’t make any selection, don’t har‐
ass them and force them to do so. Connect them to the operator.

Invalid
People make mistakes. That’s OK. The invalid handler will let them know that what‐
ever they have chosen is not a valid option and will return them to the menu prompt
so that they can try again. Note that you should not play the greeting again, only the
main menu prompt.

Dial by Extension
If somebody calls your system and knows the extension she wants to reach, your
automated attendant should have code in place to handle this.

Although Asterisk can handle an overlap between menu choices
and extension numbers (e.g., you can have a menu choice 1 and
extensions from 100 to 199), it is generally best to avoid this over‐
lap. Otherwise, the dialplan will always have to wait for the interdi‐
git timeout whenever somebody presses 1, because it won’t know if
they are planning to dial extension 123. The interdigit timeout is
the delay the system will allow between digits before it assumes the
entire number has been input. This timer ensures callers have
enough time to dial a multidigit extension, but it also causes a delay
in the processing of single-digit inputs.

Building Your AA
After you have designed your AA, there are three things you need to do to make it
work properly:

• Record prompts.
• Build the dialplan for the menu.
• Direct the incoming channels to the AA context.

We will start by talking about recordings.

252 | Chapter 14: The Automated Attendant

5 Unless you are an expert in these areas, in which case go for it!

Recording Prompts
Recording prompts for a telephone system is a critical task. This is what your callers
will hear when they interact with your system, and the quality and professionalism of
these prompts will reflect on your organization.

Asterisk is very flexible in this regard and can work with many different audio for‐
mats. We have found that, in general, the most useful format to use is WAV. Files
saved in this format can be of many different kinds, but only one type of WAV file
will work with Asterisk: files must be encoded in 16-bit, 8,000 Hz, mono format.

Recommended Prompt File Format
The WAV file format we have recommended is useful for system prompts because it
can easily be converted to any other format that your phones might use, without loss
or distortion, and almost any computer can play it without any special software. Thus,
not only can Asterisk handle the file easily, but it is also easy to work with it on a PC
(which can be useful). Asterisk can handle other file formats as well, and in some
cases these may be more suitable for your needs, but in general we find 16-bit 8 kHz
WAV files to be the easiest to work with and, most of the time, the best possible
quality.

There are essentially two ways to get prompts into a system. One is to record sound
files in a studio or on a PC, and then move those files into the system. A second way
is to record the prompts directly onto the system using a telephone set. We prefer the
second method.

Our advice is this: don’t get hung up on the complexities of recording audio through a
PC or in a studio.5 It is generally not necessary. A telephone set will produce
excellent-quality recordings, and the reasons are simple: the microphone and elec‐
tronics in a telephone are carefully designed to capture the human voice in a format
that is ideal for transmission on telephone networks, and therefore a phone set is also
ideal for doing prompts. The set will capture the audio in the correct format, and will
filter out background noise and normalize the decibel level.

Yes, a properly produced studio prompt will be superior to a
prompt recorded over a telephone, but if you don’t have the equip‐
ment or experience, take our advice and use a telephone to do your
recordings, because a poorly produced studio prompt will be much
worse than a prompt recorded through a phone set.

Building Your AA | 253

6 The vm-intro prompt isn’t perfect (it asks you to leave a message), but it’s close enough for our purposes. The
usage instructions at least are correct: press # to end the recording. Once you’ve gotten the hang of recording
prompts, you can go back, record a custom prompt, and change priority 1 to reflect more appropriate instruc‐
tions for recording your own prompts.

Using the dialplan to create recordings

The simplest method of recording prompts is to use the Record() application.

Add this new subroutine at the bottom of your extensions.conf file:
[subRecordPrompt]
exten => 500,1,Playback(vm-intro)
 same => n,Record(daygreeting.wav)
 same => n,Wait(2)
 same => n,Playback(daygreeting)
 same => n,Hangup

exten => 501,1,Playback(vm-intro)
 same => n,Record(mainmenu.wav)
 same => ... etc ... (create dialplan code for each prompt you need to record)

In order to use this context, you will need to include it in the con‐
text where your sets enter the dialplan. So in your [LocalSets]
context, you will want to add the line include=>UserServices. In a
production environment, you’ll probably want a password on this
so that not just anybody can record prompts.

This subroutine plays a prompt, issues a beep, makes a recording, and plays that
recording back.6 It’s notable that the Record() application takes the entire filename as
its argument, while the Playback() application excludes the filetype extension
(.wav, .gsm, etc.). This is because the Record() application needs to know which for‐
mat the recording should be made in, while the Playback() application does not.
Instead, Playback() automatically selects the best audio format available, based upon
the codec your handset is using and the formats available in the sounds folder (for
example, if you have a daygreeting.wav and a daygreeting.gsm file in your sounds
folder, Playback(daygreeting) will select the one that requires the least CPU to play
back to the caller).

You’ll probably want a separate extension for recording each of the prompts, possibly
hidden away from your normal set of extensions, to prevent a mistyped extension
from wiping out any of your current menu prompts. If the number of prompts you
have is large, repeating this extension with slight modifications for each will get tedi‐
ous, but there are ways around that. We’ll show you how to make your prompt
recording more intelligent in Chapter 16, but for now the method just described will
serve our immediate needs.

254 | Chapter 14: The Automated Attendant

Here’s the dialplan (in bold) that’ll create all our prompts. Place it wherever you wish
in the [sets] context:

exten => _4XX,1,Noop(User Dialed ${EXTEN})
 same => n,Answer()
 same => n,SayDigits(${EXTEN})
 same => n,Hangup()

exten => 500,1,GoSub(subRecordPrompt,${EXTEN},1(daygreeting)
exten => 501,1,GoSub(subRecordPrompt,${EXTEN},1(nightgreeting)
exten => 502,1,GoSub(subRecordPrompt,${EXTEN},1(mainmenu)
exten => 503,1,GoSub(subRecordPrompt,${EXTEN},1(holdwhileweconnect)
exten => 504,1,GoSub(subRecordPrompt,${EXTEN},1(faxandaddress)
exten => 505,1,GoSub(subRecordPrompt,${EXTEN},1(transfertoreception)
exten => 506,1,GoSub(subRecordPrompt,${EXTEN},1(invalid)
exten => 507,1,GoSub(subRecordPrompt,${EXTEN},1(holdwhileweconnect)

exten => _555XXXX,1,Answer()
 same => n,SayDigits(${EXTEN})
exten => _55512XX,1,Answer()
 same => n,Playback(tt-monkeys)

The recordings (aka prompts) will be placed in the /var/lib/asterisk/sounds folder. You
can put them elsewhere, so long as you specify the full path when recording and play‐
ing back (and ensure the directory where you put them is readable by the asterisk
user). In a production system, you should put them elsewhere, so as to separate your
custom prompts from the generic prompts. For now, we’ll keep things simple and put
them in the same folder as the system prompts.

The Dialplan
Here is the code required to create the AA that we designed earlier. We will often use
blank lines before labels within an extension to make the dialplan easier to read, but
note that just because there is a blank line does not mean there is a different
extension.

You can place this code at the end of your [TestMenu] context, right before your
subroutines:

[MainMenu]

exten => s,1,Verbose(1, Caller ${CALLERID(all)} has entered the auto attendant)
 same => n,Answer()

; this sets the inter-digit timer
 same => n,Set(TIMEOUT(digit)=2)

; wait one second to establish audio
 same => n,Wait(1)

; If Mon-Fri 9-5 goto label daygreeting
 same => n,GotoIfTime(9:00-17:00,mon-fri,*,*?daygreeting:afterhoursgreeting)

 same => n(afterhoursgreeting),Background(nightgreeting) ; AFTER HOURS GREETING

Building Your AA | 255

 same => n,Goto(menuprompt)

 same => n(daygreeting),Background(daygreeting) ; DAY GREETING
 same => n,Goto(menuprompt)

 same => n(menuprompt),Background(mainmenu) ; MAIN MENU PROMPT
 same => n,WaitExten(4) ; more than 4 seconds is probably
 ; too much
 same => n,Goto(0,1) ; Treat as if caller has pressed '0'

exten => 1,1,Verbose(1, Caller ${CALLERID(all)} has entered the sales queue)
 same => n,Goto(sets,610,1) ; Sales Queue - see Chapter 13 for details

exten => 2,1,Verbose(1, Caller ${CALLERID(all)} has entered the service queue)
 same => n,Goto(sets,611,1) ; Service Queue - see Chapter 13 for details

exten => 3,1,Verbose(1, Caller ${CALLERID(all)} has requested address and fax info)
 same => n,Background(faxandaddress) ; Address and fax info
 same => n,Goto(s,menuprompt) ; Take caller back to main menu prompt

exten => #,1,Verbose(1, Caller ${CALLERID(all)} is entering the directory)
 same => n,Directory(default) ; Send the caller to the directory.
 ; Use InternalSets as the dialing context

exten => 0,1,Verbose(1, Caller ${CALLERID(all)} is calling the operator)
 same => n,Goto(sets,611,1) ; Service Queue - see Chapter 13 for details

exten => i,1,Verbose(1, Caller ${CALLERID(all)} has entered an invalid selection)
 same => n,Playback(invalid)
 same => n,Goto(s,menuprompt)

exten => t,1,Verbose(1, Caller ${CALLERID(all)} has timed out)
 same => n,Goto(0,1)

; You will want to have a pattern match for the various extensions
; that you'll allow external callers to dial
; BUT DON'T JUST INCLUDE THE LocalSets CONTEXT
; OR EXTERNAL CALLERS WILL BE ABLE TO MAKE CALLS OUT OF YOUR SYSTEM

; WHATEVER YOU DO HERE, TEST IT CAREFULLY TO ENSURE EXTERNAL CALLERS
; WILL NOT BE ABLE TO DO ANYTHING BUT DIAL INTERNAL EXTENSIONS

exten => _1XX,1,Verbose(1,Call to an extension starting with '1')
 same => n,Goto(sets,${EXTEN},1)

Delivering Incoming Calls to the AA
Any call coming into the system will enter the dialplan in the context defined for
whatever channel the call arrives on. In many cases this will be a context named
[incoming], or [from-pstn], or something similar. The calls will arrive either with
an extension (as would be the case with a DID) or without one (which would be the
case with a traditional analog line).

Whatever the name of the context, and whatever the name of the extension, you will
want to send each incoming call to the menu.

256 | Chapter 14: The Automated Attendant

7 And if you do in yours, congratulations and please be careful swimming with the sharks.

[incoming] ; a DID coming in on a channel with
 ; context=incoming
exten => 4169671111,1,Goto(MainMenu,s,1)

Depending on how you configure your incoming channels, you will generally want to
use the Goto() application if you want to send the call to an AA. This is far neater
than just coding your whole AA in the incoming context.

Since we don’t have any incoming circuits in our lab,7 we’re going to create a simple
extension that’ll deliver us to our fancy new AA:

exten => 613,1,Noop()
 same => n,Goto(MainMenu,s,1)
 same => n,Hangup()

And that’s it! A simple automated attendant that is easy to manage, and will handle
the expectations of most callers.

IVR
We’ll cover Interactive Voice Response (IVR) in more depth in Chapter 16, but before
we do that, we’re going to talk about something that is essential to any IVR. Database
integration is the subject of the next chapter.

Conclusion
An automated attendant can provide a very useful service to callers. However, if it is
not designed and implemented well, it can also be a barrier to your callers that may
well drive them away. Take the time to carefully plan out your AA, and keep it simple.

Conclusion | 257

CHAPTER 15

Relational Database Integration

Few things are harder to put up with than the annoyance of a good example.
—Mark Twain

In this chapter, we are going to explore integrating some Asterisk features and func‐
tions into a database. There are several databases available for Linux, and Asterisk
supports the most popular of them through its ODBC connector. While this chapter
will demonstrate examples using the ODBC connector with a MySQL database, you
will find that most of the concepts will apply to any database supported by
unixODBC.

Integrating Asterisk with databases is one of the fundamental aspects of building a
large clustered or distributed system. The power of the database will enable you to
use dynamically changing data in your dialplans, for tasks like sharing information
across an array of Asterisk systems or integrating with web-based services. Our favor‐
ite dialplan function, which we will cover later in this chapter, is func_odbc. We’ll also
take a look at the Asterisk Realtime Architecture (ARA), call detail records (CDR),
and logging details from any ACD queues you might have.

While not all Asterisk deployments will require relational databases, understanding
how to harness them opens a treasure chest full of new ways to design your telecom
solution.

Your Choice of Database
In Chapter 3, we installed and configured MySQL, plus the ODBC connector to it,
and we’ve been using the tables that Asterisk provides to allow various configuration
options to be stored in the database.

259

We chose MySQL primarily because it is still the most popular open source database
engine, and rather than bouncing around, duplicating trivial commands on various
different engines, we left implementing other types of databases to the skill set of the
reader. If you want to use a different database such as MariaDB, PostGreSQL, Micro‐
soft SQL, or in fact dozens (perhaps hundreds) of other databases supported by
unixODBC, it’s quite likely that Asterisk will work with it.

Asterisk also offers native connectors to several databases; however, ODBC works so
well we’ve never found any obvious reason to do things any other way. We’re going to
both recommend ODBC, and also focus exclusively on it. If you have a preference for
something else, this chapter should still provide you with the fundamentals, as well as
some working examples, and from there you are of course free to branch out into
other methodologies.

Note that regardless of the database you choose, this book cannot teach you about
databases. We have tried as best as we can to provide examples that do not require too
much expertise in database administration (DBA), but the simple fact is that basic
DBA skills are a prerequisite for being able to fully harness the power of any database,
including any you might wish to integrate with your Asterisk system. Database skills
are essential to nearly all system administrative disciplines these days, so we felt it was
appropriate to assume at least a basic level of familiarity with database concepts.

Managing Databases
While it isn’t within the scope of this book to teach you how to manage databases, it is
at least worth noting briefly some of the applications you could use to help with data‐
base management. There are many options, some of which are local client applica‐
tions running from your computer and connecting to the database, and others being
web-based applications that could be served from the same computer running the
database itself, thereby allowing you to connect remotely.

Some of the ones we’ve used include:

• phpMyAdmin
• MySQL Workbench
• Navicat (commercial)

In our examples we will be using the MySQL command line, not because it is supe‐
rior, but simply because it’s ubiquitous on any system with MySQL, so you’ve already
got it and have been using it in this book.

For more heavy-duty database design, the command line is probably not as powerful
as a well-designed GUI would be. Grab a copy of MySQL Workbench at least and give
it a whirl.

260 | Chapter 15: Relational Database Integration

http://www.phpmyadmin.net
http://wb.mysql.com
http://www.navicat.com

1 This was actually an issue one of the authors had while working on this book, and he found the flag column
by looking at the statement logging during testing.

Troubleshooting Database Issues
When working with ODBC database connections and Asterisk, it is important to
remember that the ODBC connection abstracts some of the information passed
between Asterisk and the database. In cases where things are not working as
expected, you may need to enable logging on your database platform to see what
Asterisk is sending to the database (e.g., which SELECT, INSERT, or UPDATE statements
are being triggered from Asterisk), what the database is seeing, and why the database
may be rejecting the statements.

For example, one of the most common problems found with ODBC database integra‐
tion is an incorrectly defined table or a missing column that Asterisk expects to exist.
While great strides have been made in the form of adaptive modules, not all parts of
Asterisk are adaptive. In the case of ODBC voicemail storage, you may have missed a
column such as flag, which is a new column not found in versions of Asterisk prior
to 11.1 As noted, in order to debug why your data is not being written to the database
as expected, you should enable statement logging on the database side, and then
determine what statement is being executed and why the database is rejecting it.

SQL Injection
Security is always a consideration when you are building networked applications, and
database security is no exception.

In the case of Asterisk, you have to think about what input you are accepting from
users (typically what they are able to submit to the dialplan), and work to sanitize that
input to ensure you are only allowing characters that are valid to your application. As
an example, a typical telephone call would only allow digits as input (and possibly the
* and # characters), so there would be no reason to accept any other characters. Bear
in mind that the SIP protocol allows more than just numbers as part of an address, so
don’t assume that somebody attempting to compromise your system is limited to just
digits.

A little extra time spent sanitizing your allowed input will improve the security of
your application.

Powering Your Dialplan with func_odbc
The func_odbc dialplan function module allows you to define and use relatively sim‐
ple functions in your dialplan that will retrieve information from databases as calls
are being processed. There are all kinds of ways in which this might be used, such as

Powering Your Dialplan with func_odbc | 261

2 And if you don’t know what a Dagwood is, that’s what Wikipedia is for. I am not that old.

managing users or allowing the sharing of dynamic information within a clustered set
of Asterisk machines. We won’t claim that this will make designing and writing dia‐
lplan code easier, but we will promise that it will allow you to add a whole new level
of power to your dialplans, especially if you are comfortable working with databases.
We don’t know anybody in the Asterisk community who does not love func_odbc.

The way func_odbc works is by allowing you to define SQL queries, to which you
assign function names. The func_odbc.conf file is where you specify the relationships
between the functions you create and the SQL statements you wish them to perform.
You use the named functions you have created in your dialplan to retrieve and update
values in the database.

In order to get you into the right frame of mind for what follows, we want you to
picture a Dagwood sandwich.2

Can you relay the total experience of such a thing by showing someone a picture of a
tomato, or by waving a slice of cheese about? Hardly. That is the conundrum we faced
when trying to give useful examples of why func_odbc is so powerful. So, we decided
to build the whole sandwich for you. It’s quite a mouthful, but after a few bites of this,
peanut butter and jelly is never going to be the same.

ODBC Configuration File Relationships

Several files must all line up in order for Asterisk to be able to use
ODBC from the dialplan. Figure 15-1 attempts to convey this visu‐
ally. You will probably find this diagram more helpful once you
have worked through the examples in the following sections.

262 | Chapter 15: Relational Database Integration

Figure 15-1. Relationships between func_odbc.conf, res_odbc.conf, /etc/odbc.ini (uni‐
xODBC), and the database connection

A Gentle Introduction to func_odbc
Before we dive into func_odbc, we feel a wee bit of history is in order.

The very first use of func_odbc, which occurred while its author was still writing it, is
also a good introduction to its use. A customer of one of the module’s authors noted
that some people calling into his switch had figured out a way to make free calls with
his system. While his eventual intent was to change his dialplan to avoid those prob‐
lems, he needed to blacklist certain caller IDs in the meantime, and the database he
wanted to use for this was a Microsoft SQL Server database.

With a few exceptions, this is the actual dialplan:
[span3pri]
exten => _50054XX,1,NoOp()
 same => n,Set(CDR(accountcode)=pricall)
 ; Does this callerID appear in the database?
 same => n,GotoIf($[${ODBC_ANIBLOCK(${CALLERID(number)})}]?busy)
 same => n(dial),Dial(DAHDI/G1/${EXTEN})
 same => n(busy),Busy(10) ; Yes, you are on the blacklist.
 same => n,Hangup

A Gentle Introduction to func_odbc | 263

3 We’re using the IF() SQL function to make sure we return a value of 0 or 1. This works on MySQL 5.1 or
later. If it does not work on your SQL installation, you could also check the returned result in the dialplan
using the IF() function there.

This dialplan, in a nutshell, passes all calls to another system for routing purposes,
except those calls whose caller IDs are in a blacklist. The calls coming into this system
used a block of 100 seven-digit DIDs. You will note a dialplan function is being used
that you won’t find listed in any of the functions that ship with Asterisk: ODBC_ANI
BLOCK(). This function was instead defined in another configuration file,
func_odbc.conf:

[ANIBLOCK]
dsn=telesys
readsql=SELECT IF(COUNT(1)>0, 1, 0) FROM Aniblock WHERE NUMBER='${ARG1}'

So, your ODBC_ANIBLOCK()3 function connects to a data source in res_odbc.conf
named telesys and selects a count of records that have the NUMBER specified by the
argument, which is (referring to the preceding dialplan) the caller ID. Nominally, this
function should return either a 1 (indicating the caller ID exists in the Aniblock
table) or a 0 (if it does not). This value also evaluates directly to true or false, which
means we don’t need to use an expression in our dialplan to complicate the logic.

And that, in a nutshell, is what func_odbc is all about: writing custom dialplan func‐
tions that return a result from a database. Next up, a more detailed example of how
one might use func_odbc.

Getting Funky with func_odbc: Hot-Desking
OK, back to the Dagwood sandwich we promised.

We believe the value of func_odbc will become very clear to you if you work through
the following example, which will produce a new feature on your Asterisk system that
depends heavily on func_odbc.

Picture a small company with a sales force of five people who have to share two desks.
This is not as cruel as it seems, because these folks spend most of their time on the
road, and they are each only in the office for at most one day each week.

Still, when they do get into the office, they’d like the system to know which desk they
are sitting at, so that their calls can be directed there. Also, the boss wants to be able
to track when they are in the office and control calling privileges from those phones
when no one is there.

This need is typically solved by what is called a hot-desking feature. We have built one
for you in order to show you the power of func_odbc.

264 | Chapter 15: Relational Database Integration

Let’s start with the easy stuff, and create two new phone credentials in our database.

First, the endpoints table:
MySQL> INSERT INTO asterisk.ps_endpoints (id,transport,aors,auth,context,disallow,allow, \
direct_media,callerid)

VALUES
('HOTDESK_1','transport-tls','HOTDESK_1','HOTDESK_1','hotdesk','all','ulaw','no', \
'HOTDESK_1'),
('HOTDESK_2','transport-tls','HOTDESK_2','HOTDESK_2','hotdesk','all','ulaw','no', \
'HOTDESK_2');

Then, the auths:
MySQL> INSERT INTO asterisk.ps_auths (id,auth_type,password,username)

VALUES
('HOTDESK_1','userpass','notsohot1','HOTDESK_1'),
('HOTDESK_2','userpass','notsohot2','HOTDESK_2');

Finally, the aors:
MySQL> INSERT INTO asterisk.ps_aors
(id,max_contacts)

VALUES
('HOTDESK_1',1),
('HOTDESK_2',1);

Notice that we’ve told these two endpoints to enter the dialplan at a context named
[hotdesk]. We’ll define that shortly.

That’s all for our endpoint configuration. We’ve got a few slices of bread, which is
hardly a sandwich yet.

Now let’s get the custom database built that we’re going to use for this.

Connect to your MySQL console as root:
$ mysql -u root -p

First we want a new schema to put all this in. It’s technically possible to put this in the
asterisk schema, but we prefer to leave that schema alone, reserved only for what‐
ever Asterisk’s Alembic scripts do with it during upgrades.

MySQL> CREATE SCHEMA pbx;

MySQL> GRANT SELECT,INSERT,UPDATE,DELETE,EXECUTE,SHOW VIEW ON pbx.* TO 'asterisk'@'::1';

MySQL> GRANT SELECT,INSERT,UPDATE,DELETE,EXECUTE,SHOW VIEW ON pbx.* TO \
'asterisk'@'127.0.0.1';

MySQL> GRANT SELECT,INSERT,UPDATE,DELETE,EXECUTE,SHOW VIEW ON pbx.* TO \
'asterisk'@'localhost';

MySQL> GRANT SELECT,INSERT,UPDATE,DELETE,EXECUTE,SHOW VIEW ON pbx.* TO \
'asterisk'@'localhost.localdomain';

Getting Funky with func_odbc: Hot-Desking | 265

4 Note that in the first example user, we are assigning a status of 1 and a location, whereas for the second exam‐
ple user, we are not defining a value for these fields.

MySQL> FLUSH PRIVILEGES;

Then create the table with the following bit of SQL:
CREATE TABLE pbx.ast_hotdesk
(
 id serial NOT NULL,
 extension text,
 first_name text,
 last_name text,
 cid_name text,
 cid_number varchar(10),
 pin int,
 status bool DEFAULT false,
 endpoint text,
 CONSTRAINT ast_hotdesk_id_pk PRIMARY KEY (id)
);

After that, populate the database with the following information (some of the values
that you see actually will change only after the dialplan work is done, but we include
it here by way of example).

At the MySQL console, run the following command:
MySQL> INSERT INTO pbx.ast_hotdesk
(extension, first_name, last_name, cid_name, cid_number, pin, status)

VALUES
('1101','Herb','Tarlek','WKRP','1101','110111',0)
('1102','Al','Bundy','Garys','1102','110222',0),
('1103','Willy','Loman','','1103','110333',0),
('1104','Jerry','Lundegaard','Gustafson','1104','110444',0),
('1105','Moira','Brown','Craterside','1105','110555',0);

Repeat these commands, changing the VALUES as needed, for all entries you wish to
have in the database.4 After you’ve input your sample data, you can view the data in
the ast_hotdesk table by running a simple SELECT statement from the database
console:

MySQL> SELECT * FROM pbx.ast_hotdesk;

Which might give you something like the following output:
+--+---------+----------+----------+----------+----------+------+------+--------+
|id|extension|first_name|last_name |cid_name |cid_number|pin |status|endpoint|
+--+---------+----------+----------+----------+----------+------+------+--------+
1	1101	Herb	Tarlek	WKRP	1101	110111	0	NULL
2	1102	Al	Bundy	Garys	1102	110222	0	NULL
3	1103	Willy	Loman		1103	110333	0	NULL
4	1104	Jerry	Lundegaard	Gustafson	1104	110444	0	NULL
5	1105	Moira	Brown	Craterside	1105	110555	0	NULL
+--+---------+----------+----------+----------+----------+------+------+--------+

266 | Chapter 15: Relational Database Integration

We’ve got the condiments now, so let’s get to our dialplan. This is where the magic is
going to happen.

Somewhere in extensions.conf we are going to create the [hotdesk] context. To start,
let’s define a pattern-match extension that will allow the users to log in:

[hotdesk]
include => sets

exten => _*99110[1-5],1,Noop(Hotdesk login)
 same => n,Set(HotExten=${EXTEN:3}) ; strip off the leading *99
 same => n,Noop(Hotdesk Extension ${HotExten} is changing status) ; for the log
 same => n,Set(${HotExten}_STATUS=${HOTDESK_INFO(status,${HotExten})})
 same => n,Set(${HotExten}_PIN=${HOTDESK_INFO(pin,${HotExten})})
 same => n,Noop(${HotExten}_PIN is now ${${HotExten}_PIN})
 same => n,Noop(${HotExten}_STATUS is ${${HotExten}_STATUS})})

We’re not done writing this extension yet, but we need to digress for a few pages to
discuss where we’re at so far.

When a sales agent sits down at a desk, they log in by dialing *99 plus their extension
number. In this case we have allowed the 1101 through 1105 extensions to log in with
our pattern match of _99110[1-5]. You could just as easily make this less restrictive
by using _9911XX (allowing 1100 through 1199). This extension uses func_odbc to
perform a lookup with the HOTDESK_INFO() dialplan function. This custom function
(which we will define in the func_odbc.conf file) performs an SQL statement and
returns whatever is retrieved from the database.

So, let’s create the /etc/asterisk/func_odbc.conf file, and within that define the new
function HOTDESK_INFO():

$ sudo -u asterisk vim /etc/asterisk/func_odbc.conf

[INFO]
prefix=HOTDESK
dsn=asterisk
synopsis=Select value of field in ARG1, where 'extension' matches ARG2
description=Allow dialplan to extract data from any field in pbx.ast_hotdesk table.
readsql=SELECT ${ARG1} FROM pbx.ast_hotdesk WHERE extension = '${ARG2}'

That’s a lot of stuff in just a few lines. Let’s quickly cover them before we move on.

Getting Funky with func_odbc: Hot-Desking | 267

You should be able to reload your dialplan (dialplan reload) and
func_odbc (module reload func_odbc.so), and test the dialplan
out thus far (dial 991101 from one of the sets you’ve assigned to
this context). Make sure your console verbosity is set to at least 3
(*CLI> core set verbose 3), as you will only be able to see this
dialplan working by the console (a call to this dialplan will return a
fast busy even if it runs successfully). For the rest of this section, we
strongly recommend you test everything after each change. If you
don’t, you’ll have a whale of a time trying to find the bugs. It’s criti‐
cal that you code with a phone registered and the Asterisk console
open, so you can reload and test changes within seconds of writing
them.

First of all, the prefix is optional (default prefix is 'ODBC'). This means that if you
don’t define a prefix, Asterisk adds 'ODBC' to the function name (in this case, INFO),
which means this function would become ODBC_INFO(). This is not very descriptive
of what the function is doing, so it can be helpful to assign a prefix that helps to relate
your ODBC functions to the tasks they are performing. We chose 'HOTDESK', which
means that this custom function will be named HOTDESK_INFO() in the dialplan.

The reason why prefix is separate is that the author of the module
wanted to reduce possible collisions with existing dialplan func‐
tions. The intent of prefix was to allow multiple copies of the same
function, connected to different databases, for multitenant Asterisk
systems. We as authors have been a bit more liberal in our use of
prefix than the developer originally intended.

The dsn attribute tells Asterisk which connection to use from res_odbc.conf. Since
several database connections could be configured in res_odbc.conf, we specify which
one to use here. In Figure 15-1, we show the relationship between the various file
configurations and how they reference down the chain to connect to the database.

The func_odbc.conf.sample file in the Asterisk source contains addi‐
tional information about how to handle multiple databases and
control the reading and writing of information to different DSN
connections. Specifically, the readhandle, writehandle, readsql,
and writesql arguments will provide you with great flexibility for
database integration and control.

Finally, we define our SQL statement with the readsql attribute. Dialplan functions
can be called with two different formats: one for retrieving information, and one for
setting information. The readsql attribute is used when we call the HOTDESK_INFO()
function with the retrieve format (we could execute a separate SQL statement with

268 | Chapter 15: Relational Database Integration

the writesql attribute; we’ll discuss the format for that attribute a little bit later in
this chapter).

Reading values from this function would take this format in the dialplan:
exten => s,n,Set(RETURNED_VALUE=${HOTDESK_INFO(status,1101)})

This would return the value located in the database within the status column where
the extension column equals 1101. The status and 1101 we pass to the
HOTDESK_INFO() function are then placed into the SQL statement we assigned to the
readsql attribute, available as ${ARG1} and ${ARG2}, respectively. If we had passed a
third option, this would have been available as ${ARG3}.

After the SQL statement is executed, the value returned (if any) is assigned to the
RETURNED_VALUE channel variable.

Using the ARRAY() Function
In our example, we are utilizing two separate database calls and assigning those values
to a pair of channel variables: ${HotdeskExtension}_STATUS and ${HotdeskExten
sion}_PIN. This was done to simplify the example. We’re going to shorten the names
of the variables here because the printed format can’t handle such long lines, so in the
following examples, you’ll see “HE” in place of “HotdeskExtension.” If you’re going to
code this example, please replace HE with HotdeskExtension:

 same => n,Set(${HE}_STATUS=${HOTDESK_INFO(status,${HE})})
 same => n,Set(${HE}_PIN=${HOTDESK_INFO(pin,${HE})})

As an alternative, we could have returned multiple columns and saved them to sepa‐
rate variables utilizing the ARRAY() dialplan function. If we had defined our SQL
statement in an func_odbc.conf function like so:

readsql=SELECT pin,status FROM ast_hotdesk WHERE extension = '${HE}'

we could have used the ARRAY() function to save each column of information for the
row to its own variable with a single call to the database (note that we’re using an
example function called HOTDESK_INFO(), which we haven’t created):

 same => n,Set(ARRAY(${HE}_PIN,${HE}_STATUS)=${HOTDESK_INFO(${HE})})

Using ARRAY() is handy any time you might get comma-separated values back and
want to assign the values to separate variables, such as with CURL(). However, it can
also make your code more complicated to read, debug, and maintain.

So, in the first two lines of the following block of code, we are passing the value
status and the value contained in the ${HotdeskExtension} variable (e.g., 1101) to
the HOTDESK_INFO() function. The two values are then replaced in the SQL statement

Getting Funky with func_odbc: Hot-Desking | 269

with ${ARG1} and ${ARG2}, respectively, and the SQL statement is executed. Finally,
the value returned is assigned to the ${HotdeskExtension}_STATUS channel variable.

Let’s finish writing the pattern-match extension now:
exten => _*99110[1-5],1,Noop(Hotdesk login)
 same => n,Set(HotdeskExtension=${EXTEN:3}) ; strip off the leading *99
 same => n,Noop(Hotdesk Extension ${HotdeskExtension} is changing status) ; for the log
 same => n,Set(${HotdeskExtension}_STATUS=${HOTDESK_INFO(status,${HotdeskExtension})})
 same => n,Set(${HotdeskExtension}_PIN=${HOTDESK_INFO(pin,${HotdeskExtension})})
 same => n,Noop(${HotdeskExtension}_PIN is now ${${HotdeskExtension}_PIN})
 same => n,Noop(${HotdeskExtension}_STATUS is ${${HotdeskExtension}_STATUS})})
 same => n,GotoIf($["${${HotdeskExtension}_PIN}" = ""]?invalid_user)
 same => n,GotoIf($[${ODBCROWS} < 0]?invalid_user)
 same => n,GotoIf($[${${HotdeskExtension}_STATUS} = 1]?logout:login,1)

We’ll be writing some labels to handle invalid_user and logout a bit later, so don’t
worry if it seems something is missing.

You may have noticed that in some of the Goto/GotoIf examples,
there might be a ,1 in the directive. This might seem confusing
unless you recall that the target only needs the difference between
the current context,extension,priority/label. So, if you send
something to a label, such as logout, that is in the same extension,
you don’t need to specify the context and extension, whereas if you
are sending the call to the extension named login (still in the same
context), you need to specify that you wish the call to go to label/
priority 1. In the previous example, we could write our directive as
follows:

... = 1] ? hotdesk,${EXTEN},logout : hotdesk,login,1
 ^same ^same ^diff ^same ^diff ^diff

In other words, true goes to context [hotdesk], extension
99110[1-5], label logout; and false goes to context [hotdesk],
extension login, and label/priority 1.
We only wrote what’s different.
If you want, for clarity, you can always write context,exten
sion,priority for all your directives. It’s your call.

After assigning the value of the status column to the ${HotdeskExtension}_STATUS
variable (if the user identifies themself as extension 1101, the variable name will be
1101_STATUS), we check if we’ve received a value back from the database using the
${ODBCROWS} channel variable.

The last row in the block checks the status of the phone and, if the agent is currently
logged in, logs them off. If the agent is not already logged in, it will go to the login
extension.

270 | Chapter 15: Relational Database Integration

5 Yes, you can nest functions within functions, and so do this all on one line. We didn’t do so as it’s more diffi‐
cult to debug, and doesn’t affect performance.

At the login extension the dialplan runs some initial checks to verify the PIN code
entered by the agent. (Additionally, we’ve used the FILTER() function to make sure
only numbers were entered to help avoid some SQL injection issues.) We allow them
three tries to enter the correct PIN, and if all tries are invalid we’ll hang up:

exten => login,1,NoOp() ; set initial counter values
 same => n,Set(PIN_TRIES=1) ; pin tries counter
 same => n,Set(MAX_PIN_TRIES=3) ; set max number of login attempts
 same => n,Playback(silence/1) ; play back some silence so first prompt is
 ; not cut off
 same => n(get_pin),NoOp()
 same => n,Set(PIN_TRIES=$[${PIN_TRIES} + 1]) ; increase pin try counter
 same => n,Read(PIN_ENTERED,enter-password,${LEN(${${HotdeskExtension}_PIN})})
 same => n,Set(PIN_ENTERED=${FILTER(0-9,${PIN_ENTERED})})
 same => n,GotoIf($["${PIN_ENTERED}" = "${${HotdeskExtension}_PIN}"]?valid:invalid)
 same => n,Hangup()

 same => n(invalid),Playback(vm-invalidpassword)
 same => n,GotoIf($[${PIN_TRIES} <= ${MAX_PIN_TRIES}]?get_pin)
 same => n,Playback(goodbye)
 same => n,Hangup()

 same => n(valid),Noop(Valid PIN)

If the PIN entered matches, we continue with the login process through the (valid)
label. First we utilize the CHANNEL variable to figure out which phone device the agent
is calling from. The CHANNEL variable is usually populated with something similar to
PJSIP/HOTDESK_1-ab4034c, so we make use of the CUT() function to first strip off the
PJSIP/ component of the string. We then strip off the -ab4034c part of the string,
and what remains is what we want (HOTDESK_1):5

 same => n(valid),Noop(Valid PIN)
; CUT off the channel technology and assign it to the LOCATION variable
 same => n,Set(LOCATION=${CUT(CHANNEL,/,2)})
; CUT off the unique identifier and save the remainder to the LOCATION variable
 same => n,Set(LOCATION=${CUT(LOCATION,-,1)})
; we'll come back to this shortly

We’re going to create and use some more functions in the func_odbc.conf file: HOT
DESK_CHECK_SET(), which will determine if other users are already assigned to this
phone; HOTDESK_STATUS(), which will assign the phone to this agent; and HOT
DESK_CLEAR_SET(), which will clear any other users currently assigned to this phone
(who perhaps forgot to log out).

In our func_odbc.conf file we’ll need to create the following functions:
; func_odbc.conf
[CHECK_SET]
prefix=HOTDESK

Getting Funky with func_odbc: Hot-Desking | 271

dsn=asterisk
synopsis=Check if this set is already assigned to somebody.
readsql=SELECT COUNT(status) FROM pbx.ast_hotdesk WHERE status = '1'
readsql+= AND endpoint = '${ARG1}'

[STATUS]
prefix=HOTDESK
dsn=asterisk
synopsis=Assign hotdesk extension to this endpoint/set.
writesql=UPDATE pbx.ast_hotdesk SET status = '${SQL_ESC(${VAL1})}',
writesql+= endpoint = '${SQL_ESC(${VAL2})}'
writesql+= WHERE extension = '${SQL_ESC(${ARG1})}'

[CLEAR_SET]
prefix=HOTDESK
dsn=asterisk
synopsis=Clear all instances of this endpoint
writesql= UPDATE pbx.ast_hotdesk SET status=0,endpoint=NULL
writesql+= WHERE endpoint='${SQL_ESC(${VAL1})}'

Due to line-length limitations in the book, we’ve broken the
readsql and writesql commands into multiple lines using the +=
syntax, which tells Asterisk to append the contents after readsql+=
to the most recently defined readsql= value (or writesql and
writesql+). The usage of += is applicable not only to the readsql
option, but can be used in other places in other .conf files within
Asterisk.

In our dialplan, we’ll need to call the function we just created, and pass call flow to
the forcelogout label if somebody is already logged into this set:

 same => n(valid),Noop(Valid PIN)
 same => n,Set(LOCATION=${CUT(CHANNEL,/,2)})
 same => n,Set(LOCATION=${CUT(LOCATION,-,1)})
; We'll come back to this shortly ; you can remove this comment/line
 same => n(checkset),Set(SET_USED=${HOTDESK_CHECK_SET(${LOCATION})})
 same => n,GotoIf($[${SET_USED} > 0]?forcelogout)

; Set status for agent to '1' and update the location/endpoint
 same => n(set_login_status),Set(HOTDESK_STATUS(${HotdeskExtension})=1,${LOCATION})
 same => n,Noop(ODBCROWS is ${ODBCROWS})
 same => n,GotoIf($[${ODBCROWS} < 1]?error,1)
 same => n,Playback(agent-loginok)
 same => n,Hangup()

 same => n(forcelogout),NoOp()
; set all currently logged-in users on this device to logged-out status
 same => n,Set(HOTDESK_CLEAR_SET()=${LOCATION})
 same => n,Goto(checkset) ; return to logging in

There are some potentially new concepts we’ve just introduced in the examples.
Specifically, the syntax in the HOTDESK_STATUS() function has a few new tricks you
might have noticed. We now have both ${VALx} and ${ARGx} variables in our SQL
statement.

272 | Chapter 15: Relational Database Integration

6 It could also pose a needless security risk.

We’ve wrapped the ${VALx} and ${ARGx} values in the SQL_ESC()
function as well, which will escape characters such as backticks that
could be used in an SQL injection attack.

These contain the information we pass to the function from the dialplan. In this case,
we have two VAL variables and a single ARG variable that were set from the dialplan via
this statement:

same => n(set_login_status),Set(HOTDESK_STATUS(${HotdeskExtension})=1,${LOCATION})

Notice the syntax is slightly different from that of the read-style function. This signals
to Asterisk that you want to perform a write (this is the same structural syntax as that
used for other dialplan functions).

We are including the value of the ${HotdeskExtension} variable in our call to the
HOTDESK_STATUS() function (which then becomes the ${ARG1} variable for that func‐
tion in func_odbc.conf). However, we are also passing two values, '1' and ${LOCA
TION}. These will be associated in the function by the ${VAL1} and ${VAL2} variables,
respectively.

Using SQL Directly in Your Dialplan
Some people would prefer to write their SQL statements in the dialplan directly, as
opposed to crafting a custom function for each type of database transaction they
might want to perform.

In theory, you could create just one function in func_odbc.conf like this:
[SQL]
prefix=GENERIC
dsn=asterisk
readsql=${SQL_ESC(${ARG1})}
writesql=${SQL_ESC(${VALUE})} ; Whole value, un-parsed

Then, in your dialplan you could write pretty much any sort of SQL you wanted (pro‐
vided the ODBC connector could handle it, which has nothing to do with Asterisk).
That one function above would then submit whatever string you specified directly to
the ODBC connection to your database.6

Some would argue this makes for more confusion in your dialplan; others will insist
that the benefit of having a much simpler func_odbc.conf file is worth it:

 same => n,Set(result=${GENERIC_SQL(SELECT col FROM table WHERE ...)})
 same => n,Verbose(1,${result})

Getting Funky with func_odbc: Hot-Desking | 273

 same => n,Set(GENERIC_SQL()=UPDATE table SET field="VAL" WHERE ...)
 same => n,Verbose(1,ODBC_RESULT is ${OBDBC_RESULT})

We believe it’s generally better to build specific functions in func_odbc.conf to handle
queries from your dialplan; however, there’s no denying the temptation to use one
function to handle all SQL queries.

Multirow Functionality with func_odbc
Asterisk has a multirow mode that allows it to handle multiple rows of data returned
from the database. For example, if we were to create a dialplan function in
func_odbc.conf that returned all available extensions, we would need to enable multi‐
row mode for the function. This would cause the function to work a little differently,
returning an ID number that could then be passed to the ODBC_FETCH() function to
return each row in turn.

A simple example follows. Suppose we have the following func_odbc.conf:
[AVAILABLE_EXTENS]
prefix=HOTDESK
dsn=asterisk
mode=multirow
readsql=SELECT extension FROM ast_hotdesk WHERE status = '${ARG1}'

and a dialplan in extensions.conf that looks something like this:
exten => *9997,1,Noop(multirow)
 same => n,Set(ODBC_ID=${HOTDESK_AVAILABLE_EXTENS()})
 same => n,GotoIf($[${ODBCROWS} < 1]?no_rows)
 same => n,Answer()
 same => n,Set(COUNTER=1)
 same => n,While($[${COUNTER} <= ${ODBCROWS}])
 same => n,Set(AVAIL_EXTEN_${COUNTER}=${ODBC_FETCH(${ODBC_ID})})
 same => n,SayDigits(${AVAIL_EXTEN_${COUNTER}})
 same => n,Wait(0.2) ; Pause between speaking
 same => n,Set(COUNTER=$[${COUNTER} + 1])
 same => n,EndWhile()
 same => n(norows),ODBCFinish()
 same => n,Hangup()

Note that unless you have multiple endpoints to log in, this will never return more
than one extension in your lab because only one device will be logged in at any time.
You can add some dummy data to the table just to see how this works:

MySQL> UPDATE pbx.ast_hotdesk
 SET status='1',endpoint='HOTDESK_2'
 WHERE id='3'
 ;
MySQL> UPDATE pbx.ast_hotdesk
 SET status='1',endpoint='HOTDESK_3'
 WHERE id='5'
 ;

274 | Chapter 15: Relational Database Integration

The ODBC_FETCH() function will essentially treat the information as a stack, and each
call to it with the passed ODBC_ID will pop the next row of information off the stack.
We also have the option of using the ODBC_FETCH_STATUS channel variable, which is
set once the ODBC_FETCH() function (which returns SUCCESS if additional rows are
available or FAILURE if no additional rows are available) is called. This permits us to
write a dialplan like the following, which does not use a counter, but still loops
through the data. This may be useful if we’re looking for something specific and don’t
need to look at all the data. Once we’re done, the ODBCFinish() dialplan application
should be called to clean up any remaining data.

Here’s another extensions.conf example:
[multirow_example_2]
exten => start,1,Verbose(1,Looping example with break)
 same => n,Set(ODBC_ID=${GET_ALL_AVAIL_EXTENS(1)})
 same => n(loop_start),NoOp()
 same => n,Set(ROW_RESULT=${ODBC_FETCH(${ODBC_ID})})
 same => n,GotoIf($["${ODBC_FETCH_STATUS}" = "FAILURE"]?cleanup,1)
 same => n,GotoIf($["${ROW_RESULT}" = "1104"]?good_exten,1)
 same => n,Goto(loop_start)

exten => cleanup,1,Verbose(1,Cleaning up after all iterations)
 same => n,Verbose(1,We did not find the extension we wanted)
 same => n,ODBCFinish(${ODBC_ID})
 same => n,Hangup()

exten => good_exten,1,Verbose(1,Extension we want is available)
 same => n,ODBCFinish(${ODBC_ID})
 same => n,Verbose(1,Perform some action we wanted)
 same => n,Hangup()

OK, we’ve digressed a bit. Let’s wrap up a few parts of the agent components that we
haven’t handled yet.

In the _*99110[1-5] extension, we need the following labels:
 same => n,GotoIf($[${${HotdeskExtension}_STATUS} = 1]?logout:login,1)

 same => n(invalid_user),Noop(Hot Desk extension ${HotdeskExtension} does not exist)
 same => n,Playback(silence/2&login-fail)
 same => n,Hangup()

 same => n(logout),Noop()
 same => n,Set(HOTDESK_STATUS(${HotdeskExtension})=0,) ; Note VAL2 is empty
 same => n,GotoIf($[${ODBCROWS} < 1]?error,1)
 same => n,Playback(silence/1&agent-loggedoff)
 same => n,Hangup()

We also include the hotdesk_outbound context, which will handle our outgoing calls
after we have logged the agent into the system:

include => hotdesk_outbound ; this line can go anywhere in the [hotdesk] context

Getting Funky with func_odbc: Hot-Desking | 275

The [hotdesk_outbound] context utilizes many of the same principles already dis‐
cussed. This context uses a pattern match to catch any numbers dialed from the hot-
desk phones. We first set our LOCATION variable using the CHANNEL variable, then
determine which extension (agent) is logged into the system and assign that value to
the WHO variable. If this variable is NULL, we reject the outgoing call. If it is not NULL,
then we get the agent information using the HOTDESK_INFO() function and assign it to
several CHANNEL variables.

include => hotdesk_outbound

; put this code right below your [hotdesk] context
[hotdesk_outbound]
exten => _NXXXXXX.,1,NoOp()
 same => n,Set(LOCATION=${CUT(CHANNEL,/,2)})
 same => n,Set(LOCATION=${CUT(LOCATION,-,1)})
 same => n(checkset),Set(VALID_AGENT=${HOTDESK_CHECK_SET(${LOCATION})})
 same => n,Noop(VALID_AGENT is ${VALID_AGENT})
 same => n,Set(${CALLERID(name)}=${HOTDESK_INFO(cid_name,${VALID_AGENT})})
 same => n,Set(${CALLERID(num)}=${HOTDESK_INFO(cid_number,${VALID_AGENT})})
 same => n,GotoIf($[${VALID_AGENT} = 0]?notallowed) ; Nobody logged in--calls not allowed
 same => n,Dial(${LOCAL}/${EXTEN}) ; See the Outside Connectivity chapter
 same => n,Hangup()

 same => n(notallowed),Playback(sorry-cant-let-you-do-that2)
 same => n,Hangup()

If you are not logged in, the call will fail with a message. If you are logged in, the call
will be passed to the Dial() application (which might also fail if you don’t have a car‐
rier configured, but that’s something covered in earlier chapters, so we’re going to
leave it as this for this section).

There’s one last bit of dialplan required. We have built this complex environment that
lets our agents log in and out, but there isn’t actually any way of calling them!

We’re going to fix that now, by doing four things:

1. We’re going to include the [sets] context in the [hotdesk] context, so that our
agents can use the other parts of our dialplan.

2. We’re going to give our agents mailboxes.
3. We’re going to create a new subroutine that will check the hotdesk for an agent,

and a) ring them if they’re there, or b) fire the call off to voicemail if they’re not.
4. We’re going to build dialplan in the [sets] context so that everyone can call our

agents.

Let’s get the mailboxes out of the way first:
MySQL> insert into `asterisk`.`voicemail`
(mailbox,fullname,context,password)
VALUES

276 | Chapter 15: Relational Database Integration

('1101','Herb Tarlek','default','110111'),
('1102','Al Bundy','default','110222'),
('1103','Willy Loman','default','110333'),
('1104','Jerry Lundegaard','default','110444'),
('1105','Moira Brown','default','110555');

All the rest of the work is in extensions.conf:

Way down at the bottom, let’s craft a subroutine that’ll handle things for us:
[subDialHotdeskUser]
exten => _[a-zA-Z0-9].,1,Noop(Call Hotdesk)
 same => n,Set(HOTDESK_ENDPOINT=${HOTDESK_INFO(endpoint,${EXTEN})}) ; Get assigned device
 same => n,GotoIf($["${HOTDESK_ENDPOINT}" = ""]?voicemail) ; if blank, send to voicemail
 same => n(ringhotdesk),Dial(PJSIP/${HOTDESK_ENDPOINT},${ARG1})
 same => n(voicemail),Voicemail(${EXTEN})
 same => n,Hangup()

And somewhere far closer to the top, we’ll add our hotdesk users to the section of
dialplan where our other users live:

exten => 110,1,Dial(${UserA_DeskPhone}&${UserA_SoftPhone}&${UserB_SoftPhone})

exten => 1101,1,GoSub(subDialHotdeskUser,${EXTEN},1(12))
exten => 1102,1,GoSub(subDialHotdeskUser,${EXTEN},1(12))
exten => 1103,1,GoSub(subDialHotdeskUser,${EXTEN},1(12))
exten => 1104,1,GoSub(subDialHotdeskUser,${EXTEN},1(12))
exten => 1105,1,GoSub(subDialHotdeskUser,${EXTEN},1(12))

exten => 200,1,Answer()
 same => n,Playback(hello-world)
 same => n,Hangup()

And finally, back in our [hotdesk] context, we’re going to allow our agents to use the
rest of the phone system:

[hotdesk]

include => sets

exten => _*99110[1-5],1,Noop(Hotdesk login)

Try a few scenarios:

1. Call from an agent internally.
2. Call from a normal user to a logged-in agent.
3. Call from a normal user to an unavailable agent.

Marvel at this technological terror you’ve constructed.

Now that we’ve implemented a fairly complex feature in the dialplan, using
func_odbc to retrieve and store data in a remote relational database, you can see that
with a handful of fairly simple functions in the func_odbc.conf file and a couple of
tables in a database, you can create some powerful telephony applications.

Getting Funky with func_odbc: Hot-Desking | 277

7 Yes, calling this “realtime” is somewhat misleading, as updates to the data will not affect anything happening
in real time (until a reload of the relevant module is performed).

OK, let’s move on to the Asterisk Realtime Architecture, which has in many cases
been made obsolete by ODBC, but can still be useful.

Using Realtime
The Asterisk Realtime Architecture (ARA) allows you to store all the parameters nor‐
mally stored in your Asterisk configuration files (commonly located in /etc/asterisk)
in a database. There are two types of realtime: static and dynamic.

The static version is similar to the traditional method of reading a configuration file
(information is only loaded when triggered from the CLI), except that the data is read
from the database instead.7

The Dynamic Realtime method, which loads and updates the information as it is used
by the live system, is commonly used for things such as SIP (or IAX2, etc.) user and
peer objects, as well as voicemail boxes.

Making changes to static information requires a reload, just as if you had changed a
text file on the system, but dynamic information is polled by Asterisk as needed, so
no reload is required when changes are made to this data. Realtime is configured in
the extconfig.conf file located in the /etc/asterisk directory. This file tells Asterisk what
to load from the database and where to load it from, allowing certain files to be
loaded from the database and other files to be loaded from the standard configuration
files.

278 | Chapter 15: Relational Database Integration

8 pgcluster appears to be a dead project, and Postgres-R appears to be in its infancy, so there may currently be
no good solution for master-master replication using PostgreSQL.

9 There are several tutorials on the web describing how to set up replication with MySQL.

Another (arguably older) way to store Asterisk configuration was
through an external script, which would interact with a database
and generate the appropriate flat files (or .conf files), and then
reload the appropriate module once the new file was written. There
is an advantage to this (if the database goes down, your system will
continue to function; the script will simply not update any files
until connectivity to the database is restored), but it also has disad‐
vantages. One major disadvantage is that any changes you make to
a user will not be available until you run the update script. This is
probably not a big issue on small systems, but on large systems,
waiting for changes to take effect can cause issues, such as pausing
a live call while a large file is loaded and parsed.
You can relieve some of this by utilizing a replicated database sys‐
tem. Asterisk provides the ability to fail over to another database
system. This way, you can cluster the database backend utilizing a
master-master relationship (for PostgreSQL, pgcluster, or Postgre-
R;8 for MySQL it’s native9), or a master-slave (for PostgreSQL or
Slony-I; for MySQL it’s native) replication system.
Our informal survey of such things suggests that using scripts to
write flat files from databases is not as popular as querying a data‐
base in real time (and ensuring the database has a proper amount
of fault tolerance to handle the fact that a live telecom system is
dependent on it).

Static Realtime
Static Realtime was one of the earliest ways that Asterisk configuration could be
stored in a database. It is still somewhat useful for storing simple configuration files
in a database (which you might normally place in /etc/asterisk). We don’t tend to use
it much anymore because Dynamic Realtime is far better for larger sets of data, and
the file-based configuration files are more than adequate for smaller configuration
settings.

The same rules that apply to flat files on your system still apply when you’re using
Static Realtime. For example, after making changes to the configuration you still have
to run the module reload command for the relevant technology (e.g., *CLI> module
reload res_musiconhold.so).

Using Realtime | 279

http://pgfoundry.org/projects/pgcluster/
http://www.slony.info/

When using Static Realtime, we tell Asterisk which files we want to load from the
database using the following syntax in the extconfig.conf file:

; /etc/asterisk/extconfig.conf
[settings]
filename.conf => driver,database[,table]

There is no configuration file called filename.conf. Instead, use the
actual name of the configuration file you are storing in the data‐
base. If the table name is not specified, Asterisk will use the name
of the file as the table name instead (less the .conf part). Also, all
settings inside the extconfig.conf file should fall under the [set
tings] header. Be aware that you can’t load certain files from real‐
time at all, including asterisk.conf, extconfig.conf, and logger.conf.

The Static Realtime module uses a very specifically formatted table to allow Asterisk
to read the various static files from the database. Table 15-1 illustrates the columns as
they must be defined in your database.

Table 15-1. Table layout and description of ast_config

Column name Column type Description
id Serial,

autoincrementing
An autoincrementing unique value for each row in the table.

cat_met

ric

Integer The weight of the category within the file. A lower metric means it appears higher in
the file (see the sidebar on page 281).

var_met

ric

Integer The weight of an item within a category. A lower metric means it appears higher in
the list (see the sidebar on page 281). This is useful for things like codec order in
sip.conf, or iax.conf where you want disallow=all to appear first (metric of 0),
followed by allow=ulaw (metric of 1), then allow=gsm (metric of 2).

filename Varchar 128 The filename the module would normally read from the hard drive of your system
(e.g., musiconhold.conf, sip.conf, iax.conf).

category Varchar 128 The section name within the file, such as [general]. Do not include the square
brackets around the name when saving to the database.

var_name Varchar 128 The option on the left side of the equals sign (e.g., disallow is the var_name in
disallow=all).

var_val Varchar 128 The value of an option on the right side of the equals sign (e.g., all is the
var_val in disallow=all).

commented Integer Any value other than 0 will evaluate as if it were prefixed with a semicolon in the
flat file (commented out).

280 | Chapter 15: Relational Database Integration

A Word About Metrics
The metrics in Static Realtime are used to control the order in which objects are read
into memory. Think of the cat_metric and var_metric as the original line numbers
in the flat file. A higher cat_metric is processed first, because Asterisk matches cate‐
gories from bottom to top. Within a category, though, a lower var_metric is pro‐
cessed first, because Asterisk processes the options top-down (e.g., disallow=all
should be set to a value lower than the allow’s value within a category to make sure it
is processed first).

There’s not much more to say about Static Realtime. It was very useful in the past, but
has now been mostly superseded by Dynamic Realtime. If you want to read more
about it, older versions of this book discuss it in more detail.

Dynamic Realtime
The Dynamic Realtime system is used to load objects that may change often, such as
PJSIP entities, queues and their members, and voicemail. Likewise, when new records
are likely to be added on a regular basis, we can utilize the power of the database to let
us load this information on an as-needed basis.

You have already worked extensively with Dynamic Realtime, since that is how we’ve
been working for this entire book, both during installation, and in most of the exam‐
ples we have worked through.

All of realtime is configured in the /etc/asterisk/extconfig.conf file; however, Dynamic
Realtime has explicitly defined configuration names. All the predefined names should
be configured under the [settings] header. For example, defining SIP peers is done
using the following format:

; extconfig.conf
[settings]
sippeers => driver,database[,table]

The table name is optional. If it is omitted, Asterisk will use the predefined name (i.e.,
sippeers) to identify the table in which to look up the data.

The sample file ~/src/asterisk-15.<TAB>/configs/samples/extconfig.conf.sample con‐
tains excellent information about Dynamic Realtime.

Storing Call Detail Records
Call detail records (CDR) contain information about calls that have passed through
your Asterisk system. They are discussed further in Chapter 21. Storing CDR is a
popular use of databases in Asterisk, because it makes them easier to work with. Also,

Storing Call Detail Records | 281

by placing records into a database you open up many possibilities, including building
your own web interface for tracking statistics such as call usage and most-called loca‐
tions, billing, or phone company invoice verification.

You should always implement CDR storage to a database on any production system
(you can always store CDR to a file as well, so there’s nothing lost).

Setting the systemname for Globally Unique IDs
A CDR consists of a unique identifier and several fields of information about the call
(including the source and destination channel, length of call, last application exe‐
cuted, and so forth). In a clustered set of Asterisk boxes, it is theoretically possible to
have duplication among unique identifiers, since each Asterisk system considers only
itself. To address this, we can automatically append a system identifier to the front of
the unique IDs by adding an option to /etc/asterisk/asterisk.conf. For each of your
boxes, set an identifier by adding something like:

[options]
systemname=toronto

The best way to store your call detail records is via the cdr_adaptive_odbc module.
This module allows you to choose which columns of data built into Asterisk are
stored in your table, and it permits you to add additional columns that can be popu‐
lated with the CDR() dialplan function. You can even store different parts of CDR data
to different tables and databases, if that is required.

To create the table, we have Alembic. The process is almost identical to the one you
performed during the system installation, except of course the .ini file is different.

$ cd ~/src/asterisk-15.<TAB>/contrib/ast-db-manage

$ cp cdr.ini.sample cdr.ini

$ egrep ^sqlalchemy config.ini

sqlalchemy.url = mysql://asterisk:YouNeedAReallyGoodPasswordHereToo@localhost/asterisk

The same credentials we used before will also work for CDR.
$ sudo vim cdr.ini

Add the line you just got back from grep to this file, and save.
$ alembic -c ./cdr.ini upgrade head

INFO [alembic.runtime.setup] Creating new alembic_version_cdr table.
INFO [alembic.runtime.migration] Running upgrade -> 210693f3123d, Create CDR table.
INFO [alembic.runtime.migration] Running upgrade 210693f3123d -> 54cde9847798

Alembic doesn’t do too much bragging, so the output is terse, but it appears to have
completed successfully. Let’s check.

282 | Chapter 15: Relational Database Integration

10 You may see different backends registered, depending on what configuration you have done with other com‐
ponents of the various CDR modules.

$ mysql -u asterisk -p

MySQL> describe asterisk.cdr

You should get a list of all the fields in the table (which means Alembic was success‐
ful). If you get a message like Table 'asterisk.cdr' doesn't exist, that indicates
Alembic didn’t complete the configuration, and you need to review the messages
from the Alembic output to see what went wrong (credentials is usually what causes
grief here).

Well, that wasn’t too hard, eh? The next step is to tell Asterisk to use this new table for
CDR going forward.

$ sudo -u asterisk touch /etc/asterisk/cdr_adaptive_odbc.conf

$ sudo -u asterisk vim /etc/asterisk/cdr_adaptive_odbc.conf

Into this new file, paste the following:
[adaptive_connection]
connection=asterisk
table=cdr

This is almost too easy, wouldn’t you say? Alrighty, now we just have to reload the
ccdr_adaptive_odbc.so module in Asterisk:

$ sudo asterisk -rvvvvvvv

*CLI> module reload cdr_adaptive_odbc.so

You can verify that the Adaptive ODBC backend has been loaded by running the
following:10

*CLI> cdr show status

Call Detail Record (CDR) settings

 Logging: Enabled
 Mode: Simple
 Log unanswered calls: No
 Log congestion: No

* Registered Backends

 cdr-syslog
 Adaptive ODBC
 cdr-custom
 csv
 cdr_manager

Storing Call Detail Records | 283

Now place a call that gets answered (e.g., using Playback(), or Dial()ing another
channel and answering it). You should get some CDRs stored into your database. You
can check by running SELECT * FROM CDR; from your database console.

With the basic CDR information stored in the database, you might want to add some
additional information to the cdr table, such as the route rate. You can use the ALTER
TABLE directive to add a column called route_rate to the table:

sql> ALTER TABLE cdr ADD COLUMN route_rate varchar(10);

Now reload the cdr_adaptive_odbc.so module from the Asterisk console:
*CLI> module reload cdr_adaptive_odbc.so

and populate the new column from the Asterisk dialplan using the CDR() function,
like so:

exten => _NXXNXXXXXX,1,Verbose(1,Example of adaptive ODBC usage)
 same => n,Set(CDR(route_rate)=0.01)
 same => n,Dial(SIP/my_itsp/${EXTEN})
 same => n,Hangup()

After the alteration to your database and dialplan, you can place a call and then look
at your CDRs. You should see something like the following:

+--------------+----------+---------+------------+
| src | duration | billsec | route_rate |
+--------------+----------+---------+------------+
| 0000FFFF0008 | 37 | 30 | 0.01 |
+--------------+----------+---------+------------+

In reality, storing rating in the call record might not be ideal (CDR is typically used as
a raw resource, and things such as rates are added downstream by billing software).
The ability to add custom fields to CDR is very useful, but be careful not to use your
call records to replace a proper billing platform. Best to keep your CDR clean and do
further processing downstream.

Additional Configuration Options for cdr_adaptive_odbc.conf
Some extra configuration options exist in the cdr_adaptive_odbc.conf file that may be
useful. The first is that you can define multiple databases or tables to store informa‐
tion into, so if you have multiple databases that need the same information, you can
simply define them in res_odbc.conf, create tables in the databases, and then refer to
them in separate sections of the configuration:

[mysql_connection]
connection=asterisk_mysql
table=cdr

[mssql_connection]
connection=production_mssql
table=call_records

284 | Chapter 15: Relational Database Integration

If you specify multiple sections using the same connection and
table, you will get duplicate records.

Beyond just configuring multiple connections and tables (which of course may or
may not contain the same information; the CDR module we’re using is adaptive to
situations like that), we can define aliases for the built-in variables, such as account
code, src, dst, and billsec.

If we were to add aliases for column names for our MS SQL connection, we might
alter our connection definition like so:

[mssql_connection]
connection=production_mssql
table=call_records
alias src => Source
alias dst => Destination
alias accountcode => AccountCode
alias billsec => BillableTime

In some situations you may specify a connection where you only want to log calls
from a specific source, or to a specific destination. We can do this with filters:

[logging_for_device_0000FFFF0008]
connection=asterisk_mysql
table=cdr_for_0000FFFF0008
filter src => 0000FFFF0008

If you need to populate a certain column with information based on a section name,
you can set it statically with the static option, which you may utilize with the filter
option:

[mysql_connection]
connection=asterisk_mysql
table=cdr

[filtered_mysql_connection]
connection=asterisk_mysql
table=cdr
filter src => 0000FFFF0008
static "DoNotCharge" => accountcode

In the preceding example, you will get duplicate records in the
same table, but all the information will be the same except for
the populated accountcode column, so you should be able to
filter it out using SQL.

Storing Call Detail Records | 285

11 Note that we’re creating this table in our pbx schema, rather than the asterisk schema, and that is because
this is not a table that comes with Asterisk, but instead one we’re creating ourselves. We recommend letting
Asterisk and Alembic have exclusive control over the asterisk schema, and using a custom schema (such as
pbx) for anything custom we might create.

Database Integration of ACD Queues
With a Call Center (often referred to as ACD queues), it can be very useful to be able
to allow adjustment of queue parameters without having to edit and reload configu‐
ration files. Management of a call center can be a complex task, and allowing for sim‐
pler adjustment of parameters can make everyone’s life a whole lot easier.

The queues themselves we’ve already placed in the database in Chapter 12. If, how‐
ever, you also want to store dialplan parameters relating to your queues, the database
can do that too.

Storing Dialplan Parameters for a Queue in a Database
The dialplan application Queue() allows for several parameters to be passed to it. The
CLI command core show application Queue defines the following syntax:

[Syntax]
Queue(queuename[,options[,URL[,announceoverride[,timeout[,AGI[,macro[,gosub[,
 rule[,position]]]]]]]]])

Since we’re storing our queue in a database, why not also store the parameters you
wish to pass to the queue in a similar manner?11

MySQL> CREATE TABLE `pbx`.`QueueDialplanParameters` (
 `QueueDialplanParametersID` mediumint(8) NOT NULL auto_increment,
 `Description` varchar(128) NOT NULL,
 `QueueID` mediumint(8) unsigned NOT NULL COMMENT 'Pointer to asterisk.queues table',
 `options` varchar(45) default 'n',
 `URL` varchar(256) default NULL,
 `announceoverride` bit(1) default NULL,
 `timeout` varchar(8) default NULL,
 `AGI` varchar(128) default NULL,
 `macro` varchar(128) default NULL,
 `gosub` varchar(128) default NULL,
 `rule` varchar(128) default NULL,
 `position` tinyint(4) default NULL,
 `queue_tableName` varchar(128) NOT NULL,
 PRIMARY KEY (`QueueDialplanParametersID`)
);

Using func_odbc, you can write a function that will return the dialplan parameters
relevant to that queue:

286 | Chapter 15: Relational Database Integration

[QUEUE_DETAILS]
prefix=GET
dsn=asterisk
readsql=SELECT * FROM pbx.QueueDialplanParameters
readsql+= WHERE QueueDialplanParametersID='${ARG1}'

Then pass those parameters to the Queue() application as calls arrive:
exten => s,1,Verbose(1,Call entering queue named ${SomeValidID)
 same => n,Set(QueueParameters=${GET_QUEUE_DETAILS(SomeValidID)})
 same => n,Queue(${QueueParameters})

While somewhat more complicated to develop than just writing an appropriate
dialplan, the advantage is that you will be able to manage a larger number of queues,
with a wider variety of parameters, using dialplan that is flexible enough to handle
any sort of parameters the queueing application in Asterisk accepts. For anything
more than a very simple queue, we think you will find the use of a database for all this
is well worth the effort.

Writing queue_log to Database
Finally, we can store our queue_log to a database, which can make it easier for exter‐
nal applications to extract queue performance details from the system:

CREATE TABLE queue_log (
 id int(10) UNSIGNED NOT NULL AUTO_INCREMENT,
 time char(26) default NULL,
 callid varchar(32) NOT NULL default '',
 queuename varchar(32) NOT NULL default '',
 agent varchar(32) NOT NULL default '',
 event varchar(32) NOT NULL default '',
 data1 varchar(100) NOT NULL default '',
 data2 varchar(100) NOT NULL default '',
 data3 varchar(100) NOT NULL default '',
 data4 varchar(100) NOT NULL default '',
 data5 varchar(100) NOT NULL default '',
 PRIMARY KEY (`id`)
);

Edit your extconfig.conf file to refer to the queue_log table:
[settings]
queue_log => odbc,asterisk,queue_log

A restart of Asterisk, and your queue will now log information to the database. As an
example, logging an agent into the sales queue should produce something like this:

mysql> select * from queue_log;
+----+----------------------------+----------------------+-----------+
| id | time | callid | queuename |
+----+----------------------------+----------------------+-----------+
| 1 | 2013-01-22 15:07:49.772263 | NONE | NONE |
| 2 | 2013-01-22 15:07:49.809028 | toronto-1358885269.1 | support |
+----+----------------------------+----------------------+-----------+

Database Integration of ACD Queues | 287

+------------------+------------+-------+-------+-------+-------+-------+
| agent | event | data1 | data2 | data3 | data4 | data5 |
+------------------+------------+-------+-------+-------+-------+-------+
| NONE | QUEUESTART | | | | | |
| SIP/0000FFFF0001 | ADDMEMBER | | | | | |
+------------------+------------+-------+-------+-------+-------+-------+

If you’re developing any sort of external application that needs access to queue statis‐
tics, having the data stored in this manner will prove far superior to using
the /var/log/asterisk/queue_log file.

Conclusion
In this chapter, you learned about several areas where Asterisk can integrate with a
relational database. This is useful for systems where you need to start scaling by clus‐
tering multiple Asterisk boxes working with the same centralized information, or
when you want to start building external applications to modify information without
requiring a reload of the system (i.e., not requiring the modification of flat files).

288 | Chapter 15: Relational Database Integration

CHAPTER 16

Introduction to Interactive Voice Response

One day Alice came to a fork in the road and saw a Cheshire cat in a tree. “Which road do I
take?” she asked.
“Where do you want to go?” was his response.
“I don’t know,” Alice answered.
“Then,” said the cat, “it doesn’t matter.”

—Lewis Carroll

The term Interactive Voice Response (IVR) is often misused to refer to an automated
voice attendant, but the two are very different things. The purpose of an IVR system
is to take input from a caller, perform an action based on that input (commonly, look‐
ing up data in an external system such as a database), and speak a result to the caller.
The purpose of an automated attendant (which we covered in Chapter 14) is to route
calls. Originally, an IVR didn’t even need to be a telephone system. Anything that
took input from a human and spoke back a result fell with the realm of an IVR. Tra‐
ditionally, IVR systems have been complex, expensive, and annoying to implement.
Asterisk changes all that.

Components of an IVR
The most basic elements of an IVR are quite similar to those of an automated attend‐
ant, though the goal is different. We need at least one prompt to tell the caller what
the IVR expects, a method of receiving input from the caller, logic to verify that the
caller’s response is valid input, logic to determine what the next step of the IVR
should be, and finally, a storage mechanism for the responses, if applicable. We might
think of an IVR as a decision tree, although it need not have any branches. For exam‐
ple, a survey may present exactly the same set of prompts to each caller, regardless of

289

what choices the callers make, and the only routing logic involved is whether the
responses given are valid for the questions.

From the caller’s perspective, every IVR needs to start with a prompt. This initial
prompt will tell the caller what the IVR is for and ask the caller to provide the first
input. We discussed prompts in the automated attendant in Chapter 14. Later, we’ll
create a dialplan that will allow you to better manage multiple voice prompts.

The second component of an IVR is a method for receiving input from the caller.
Recall that in Chapter 14 we discussed the Background() and WaitExten() applica‐
tions for receiving a new extension. While you could create an IVR using Back
ground() and WaitExten(), it is generally easier and more practical to use the Read()
application, which handles both the prompt and the capture of the response. The
Read() application was designed specifically for use with IVR systems. Its syntax is as
follows:

Read(variable[,filename[&filename2...]][,maxdigits][,option][,attempts][,timeout])

The arguments are described in Table 16-1.

Table 16-1. The Read() application

Argument Purpose
variable The variable into which the caller’s response is stored. It is best practice to give each variable in your IVR a

name that is similar to the prompt associated with that variable. This will help later if, for business reasons or
ease of use, you need to reorder the steps of the IVR. Naming your variables var1, var2, etc., may seem
easy in the short term, but later in your life cycle it will make fixing bugs more difficult.

prompt A file (or list of files, joined together with the & character) to play for the caller, requesting input. Remember
to omit the format extension on the end of each filename.

maxdigits The maximum number of characters to allow as input. In the case of yes/no and multiple-choice questions,
it’s best practice to limit this value to 1. In the case of longer lengths, the caller may always terminate input
by pressing the # key.

290 | Chapter 16: Introduction to Interactive Voice Response

Argument Purpose
options

s (skip)
Exit immediately if the channel has not been answered.

i (indication)
Rather than playing a prompt, play an indication tone of some sort (such as the dialtone).

n (no answer)
Read digits from the caller, even if the line is not yet answered.

attempts

The number of times to play the prompt. If the caller fails to enter anything, the Read() application
can automatically reprompt the user. The default is one attempt.

timeout

The number of seconds the caller has to enter his input. The default value in Asterisk is 10 seconds,
although it can be altered for a single prompt using this option, or for the entire session by assigning a
value using the dialplan function TIMEOUT(response).

Once the input is received, it must be validated. If you do not validate the input, you
are more likely to find your callers complaining of an unstable application. It is not
enough to handle the inputs you are expecting; you also need to handle inputs you do
not expect. For example, callers may get frustrated and dial 0 when in your IVR; if
you’ve done a good job, you will handle this gracefully and connect them to some‐
body who can help them, or provide a useful alternative. A well-designed IVR (just
like any program) will try to anticipate every possible input and provide mechanisms
to gracefully handle that input.

Once the input is validated, you can submit it to an external resource for processing.
This could be done via a database query, a submission to a URI, an AGI program, or
many other things. This external application should produce a result, which you will
want to relay back to the caller. This could be a detailed result, such as “Your account
balance is…” or a simple confirmation, such as “Your account has been updated.” We
can’t think of any real-world case where some sort of result returned to the caller is
not required.

Sometimes the IVR may have multiple steps, and therefore a result might include a
request for more information from the caller in order to move to the next step of the
IVR application.

It is possible to design very complex IVR systems, with dozens or even hundreds of
possible paths. We’ve said it before and we’ll say it again: people don’t like talking to
your phone system, regardless of how clever it is. Keep your IVR simple for your call‐
ers, and they are much more likely to get some benefit from it.

Components of an IVR | 291

1 Especially if it’s something like Van Meggelen.

A Perfectly Tasty IVR
An excellent example of an IVR that people love to use is one that many pizza deliv‐
ery outfits use: when you call to place your order, an IVR looks up your caller ID and
says “If you would like the exact same order as last time, press 1.”

That’s all it does, and it’s perfect.

Obviously, these companies could design massively complex IVRs that would allow
you to select each and every detail of your pie (“for seven-grain crust, press 7”), but
how many inebriated, starving customers could successfully navigate something like
that at 3 A.M.?

The best IVRs are the ones that require the least input from the caller. Mash that 1
button and your ’za is on its way! Woo hoo!

IVR Design Considerations
When designing your own IVR, there are some important things to keep in mind.
We’ve put together this list of things to do and things not to do in your IVR.

Do
• Keep it simple.
• Have an option to dial 0 to reach a live person.
• Handle errors gracefully.

Don’t
• Think that an IVR can completely replace people.
• Use your IVR to show people how clever you are.
• Try to replicate your website with an IVR.
• Bother building an IVR if you can’t take numeric or spoken input. Nobody wants

to have to spell their name on the dialpad of a phone.1

• Force your callers to listen to advertising. Remember that they can hang up at
any moment they wish.

292 | Chapter 16: Introduction to Interactive Voice Response

Asterisk Modules for Building IVRs
The “frontend” of the IVR (the parts that interact with the callers) can be handled in
the dialplan. It is possible to build an IVR system using the dialplan alone (perhaps
with the astdb to store and retrieve data); however, you will typically need to commu‐
nicate with something external to Asterisk (the “backend” of the IVR).

CURL()
The CURL() dialplan function in Asterisk allows you to span entire web applications
with a single line of dialplan code. We’ll use it in our sample IVR later in this chapter.

While you’ll find CURL() itself to be quite simple to use, the creation of the web appli‐
cation will require experience with web development.

func_odbc
Using func_odbc, it is possible to develop extremely complex applications in Asterisk
using nothing more than dialplan code and database lookups. If you are not a strong
programmer but are very adept with Asterisk dialplans and databases, you’ll love
func_odbc just as much as we do. Check it out in Chapter 15.

AGI
The Asterisk Gateway Interface is such an important part of integrating external
applications with Asterisk that we gave it its own chapter. You can find more infor‐
mation in Chapter 18.

AMI
The Asterisk Manager Interface is a socket interface that you can use to get configura‐
tion and status information, request actions to be performed, and be notified about
things happening to calls. We’ve written an entire chapter on AMI as well. You can
find more information in Chapter 17.

ARI
Asterisk’s REST interface builds on knowledge gained over the years about how to
integrate Asterisk with current-generation web-centric applications. It is so impor‐
tant, that yes, once again, there is a complete chapter dedicated to it. If you’re looking
to build complex IVRs using Asterisk, take a closer look at ARI in Chapter 19.

Asterisk Modules for Building IVRs | 293

2 These free IP lookup websites seem to get bought out all the time, and turned into advertising gateways, so
what might have worked at this writing may no longer work. What you need is a website that will return your
IP address, and nothing else. Today, that seems to be https://ipinfo.io/ip. By the time you read this, it may be
something else.

A Simple IVR Using CURL()
Before we go running off writing an external program to handle something, we
always give some careful thought about whether there’s a way to do the work in the
dialplan. One powerful way that Asterisk can interact with external data is through a
URL, which the GNU/Linux program cURL does very well. In Asterisk, CURL() is a
dialplan function.

We’re going to use CURL() as an example of what an extremely simple IVR can look
like. We’re going to request our external IP address from https://ipinfo.io/ip.2

In reality, most IVR applications are going to be far more complex.
Even most uses of CURL() will tend to be complex, since a URI can
return a massive and highly variable amount of data, the vast
majority of which will be incomprehensible to Asterisk. The point
being that an IVR is not just about the dialplan; it is also very much
about the external applications that are triggered by the dialplan,
which are doing the real work of the IVR.

The CURL() module was installed during our installation process several chapters ago.

The Dialplan
The dialplan for our example IVR is very simple. The CURL() function will retrieve
our IP address from https://ipinfo.io/ip, and then SayAlpha() will speak the results to
the caller:

exten => *764,1,Verbose(2, Run CURL to get IP address from whatismyip.org)
 same => n,Answer()
 same => n,Set(MyIPAddressIs=${CURL(https://ipinfo.io/ip)})
 same => n,SayAlpha(${MyIPAddressIs})
 same => n,Hangup()

The simplicity of this is impossibly cool. In a traditional IVR system, this sort of thing
could take days to program, assuming it would be possible at all.

A Prompt-Recording IVR Function
In Chapter 14, we created a simple bit of dialplan to record prompts. It was fairly
limited in that it only recorded one filename, and thus for each prompt a separate

294 | Chapter 16: Introduction to Interactive Voice Response

https://ipinfo.io/ip
https://ipinfo.io/ip
https://ipinfo.io/ip

extension was needed. Here, we expand upon that to create a complete menu for
recording prompts. Since this is a complex bit of dialplan, but it’s not a subroutine or
a local channel, we’re going to create a new section of dialplan for various features,
and put things like this there:

;FEATURES
[prompts]
exten => s,1,Answer
exten => s,n,Set(step1count=0) ; Initialize counters

; If we get no response after 3 times, we stop asking
 same => n(beginning),GotoIf($[${step1count} > 2]?end)
 same => n,Read(which,prompt-instructions,3)
 same => n,Set(step1count=$[${step1count} + 1])

; All prompts must be 3 digits in length
 same => n,GotoIf($[${LEN(${which})} != 3]?beginning)
 same => n,Set(step1count=0) ; Successful response; reset counters
 same => n,Set(step2count=0)

 same => n(step2),Set(step2count=$[${step2count} + 1])
 same => n,GotoIf($[${step2count} > 2]?beginning) ; No response after 3 tries

; If the file doesn't exist, then don't ask whether to play it
 same => n,GotoIf($[${STAT(f,/var/lib/asterisk/sounds/${which}.wav)} = 0]?recordonly)
 same => n,Background(prompt-tolisten)

 same => n(recordonly),Background(prompt-torecord)
 same => n,WaitExten(10) ; Wait 10 seconds for a response
 same => n,Goto(step2)

 same => n(end),Playback(goodbye)
 same => n,Hangup()

exten => 1,1,Set(step2count=0)
 same => n,Background(/var/lib/asterisk/sounds/${which})
 same => n,Goto(s,step2)

exten => 2,1,Set(step2count=0)
 same => n,Playback(prompt-waitforbeep)
 same => n,Record(${CHANNEL(uniqueid)}.wav)

 same => n(listen),Playback(${CHANNEL(uniqueid)})
 same => n,Set(step3count=0)
 same => n,Read(saveornot,prompt-1tolisten-2tosave-3todiscard,1,,2,3)
 same => n,GotoIf($["${saveornot}" = "1"]?listen)
 same => n,GotoIf($["${saveornot}" = "2"]?saveit)
 same => n,GotoIf($["${saveornot}" = "3"]?tossit)
 same => n,Goto(listen)

 same => n(tossit),System(rm -f /var/lib/asterisk/sounds/${CHANNEL(uniqueid)}.wav)
 same => n,Goto(s,beginning)

 same => n(saveit),Noop('Set' app used to shorten example)
 same => n,Set(PromptToSave=/var/lib/asterisk/sounds/${CHANNEL(uniqueid)}.wav
 same => n,Set(WhereToSave=/var/lib/asterisk/sounds/${which}.wav
 same => n,System(mv -f ${PromptToSave} ${WhereToSave})

A Prompt-Recording IVR Function | 295

 same => n,Playback(prompt-saved)
 same => n,Goto(s,beginning)

In this system, the name of the prompt is no longer descriptive; instead, it is a num‐
ber. This means that you can record a far greater variety of prompts using the same
mechanism, but the trade-off is that your prompts will no longer have descriptive
names.

If you want to test this, you’ll need to record the prompts this IVR function uses (it’s
kinda meta, but yup, our prompt creator needs prompts).

Drop this into your dialplan:
exten => 510,1,GoSub(subRecordPrompt,${EXTEN},1(prompt-tolisten)) ; press 1
exten => 511,1,GoSub(subRecordPrompt,${EXTEN},1(prompt-torecord)) ; press 2
exten => 512,1,GoSub(subRecordPrompt,${EXTEN},1(prompt-instructions)) ;3-digit (000 to 999)
exten => 513,1,GoSub(subRecordPrompt,${EXTEN},1(prompt-waitforbeep)) ; wait for beep
exten => 514,1,GoSub(subRecordPrompt,${EXTEN},1(prompt-1tolisten-2tosave-3todiscard))
exten => 515,1,GoSub(subRecordPrompt,${EXTEN},1(prompt-saved))

Then phone them one by one and record as required.

Once you’ve recorded the prompts your prompt recorder needs, you should be able
to test it out.

exten => *742,1,Noop(Prompts)
 same => n,Goto(prompts,s,1)
 same => n,Hangup()

From this point forward, you can record prompts using just a numeric identifier.
You’ll need a way to keep track of what prompt says what, but from a recording per‐
spective you shouldn’t need to write more dialplan every time you need a prompt.

Speech Recognition and Text-to-Speech
Although traditionally and still in most cases today, an IVR system presents prerecor‐
ded prompts to the caller and accepts input by way of the dialpad, it is also possible
to: a) generate prompts artificially, popularly known as text-to-speech; and b) accept
verbal inputs through a speech recognition engine.

While the concept of being able to have an intelligent conversation with a machine is
something sci-fi authors have been promising us for many long years, the actual sci‐
ence of this remains complex and error-prone. Despite their amazing capabilities,
computers are ill-suited to the task of appreciating the subtle nuances of human
speech.

Having said that, it should be noted that companies such as Google have achieved
amazing advances in both text-to-speech and speech recognition. There are now
APIs available that can do a remarkable job of making sense out of what is being said
to them. Google of course benefits from having a massive backend that can perform

296 | Chapter 16: Introduction to Interactive Voice Response

3 Actually, most of us talk to our computers, but this is seldom polite.

near-miraculous feats of processing; something your IVR might not be able to fully
harness.

Text-to-Speech
Text-to-speech (also known as speech synthesis) requires that a system be able to arti‐
ficially construct speech from stored data. While it would be nice if we could simply
assign a sound to a letter and have the computer produce each sound as it reads the
letters, written language is often not phonetic, and seldom reflects the nuances of
speech (English is arguably one of the worst languages in this regard).

There are now excellent APIs available from Google (and others), that will do a very
good job of reading back what has been written. As of this writing, it’s still very obvi‐
ous that it’s a computer speaking, but it is nevertheless possible to generate system
prompts on the fly from text, rather than having to record all prompts in advance.
The usefulness of this is difficult to evaluate, since humans are still not interested in
talking to your machines; they phoned because they want to talk to you.

Speech Recognition
Since we’ve managed to convince our computers to talk to us, we naturally want to be
able to talk to them as well.3

Speech recognition was previously complex and expensive, but Google has recently
released an API that allows the enormous power of their speech recognition capabili‐
ties to be available to external applications.

Conclusion
Asterisk is an excellent IVR platform. This entire book, in many ways, is teaching you
skills that can be applied to IVR development. While the mainstream media only
really pays attention to Asterisk as a “free PBX,” the reality is that Asterisk is at its
most potent when used as an IVR. Within any respectable-sized organization, it is
very likely that the Linux system administrators are using Asterisk to solve telecom
problems that previously were either unsolvable or impossibly expensive to solve.
This is a stealthy revolution, but no less significant for its relative obscurity.

If you are in the IVR business, you need to get to know Asterisk.

Conclusion | 297

CHAPTER 17

Asterisk Manager Interface and Call Files

John Malkovich: I have seen a world that NO man should see!
Craig Schwartz: Really? Because for most people it’s a rather enjoyable experience.

—Being John Malkovich

The Asterisk Manager Interface (AMI) is a system monitoring and management
interface provided by Asterisk. It allows live monitoring of events that occur in the
system, as well as enabling requests for Asterisk to perform some action. The avail‐
able actions are wide-ranging and include things such as returning status information
or originating new calls. Many interesting applications have been developed on top of
Asterisk that use the AMI as their primary interface to Asterisk.

This chapter also includes documentation on the use of call files. Asterisk’s call files
are an easy way to originate a few calls. Once call origination volume increases or
your needs become otherwise more complex, you can move on to using the AMI. In
fact, we find call files to be useful enough that we’re going to talk about them first.

Call Files
It is common to use AMI for originating calls, but in many situations it’s easier to use
call files. A call file is a simple text file that describes the call that you would like
Asterisk to originate. When a call file is placed into the /var/spool/asterisk/outgoing
directory, Asterisk will immediately detect that a file has been placed there and pro‐
cess the call.

Asterisk comes with a sample call file, which you will find at ~/src/asterisk-15.<TAB>/
sample.call (or wherever the root directory of your Asterisk source is located).

299

Your First Call File
For your first call file, let’s create a call between two of your telephones. Make sure
you have at least two of your phones registered and working. For this example we’ll
be using SOFTPHONE_A and SOFTPHONE_B.

Create the following file in your home directory:
$ vim ~/call-file

Channel: PJSIP/SOFTPHONE_A
Extension: 103
Context: sets

Make a copy of this file (so that you don’t have to re-create it every time you want to
run it):

$ cp ~/call-file docall

Change the ownership of the docall file to asterisk:
$ chown asterisk:asterisk docall

Move the docall file into Asterisk’s outgoing folder.
$ sudo mv docall /var/spool/asterisk/outgoing

Sometimes, the easiest way is the best way.

You’ll probably find yourself doing multiple edits on your source call file. You could
just move that file you created, rather than making a copy of it first, but then you’d
have to re-create it each time you make an edit, and this gets annoying. All that typing
can be saved as a one-liner, and run like this:

$ cp ~/call-file docall \
 sudo chown asterisk:asterisk docall \
 sudo mv docall /var/spool/asterisk/outgoing/

Try it and you’ll see how much easier this is than creating and moving a new call file
every time.

The use of mv instead of cp here is important. Asterisk is watching
for contents to show up in the spool directory. If you use copy,
Asterisk may try to read the new file before the contents have been
copied into it. Creating a file and then moving it avoids this
problem.

Get comfortable with using call files, and you may find them solving problems you’d
otherwise have to perform far more work to achieve.

300 | Chapter 17: Asterisk Manager Interface and Call Files

Notes About Call Files
The Channel component of the call file is required. Normally, a call coming into
Asterisk is initiated by the endpoint (for example, you make a call from your phone).
In a call file, that connection has to happen the other way around—Asterisk reaches
out to the endpoint, and only when it answers can the call start. Plan accordingly.

You also must specify the Context where the call will begin once the initial channel
has answered. This can be useful, since it means you can connect the call through a
context that wouldn’t normally be accessible to that channel, but in practice we’d sug‐
gest you simply provide the same context that channel would have entered the
dialplan through if it had initiated the call normally.

The Extension must of course also be specified. This would typically be the phone
number that is to be called, but of course it could be any valid extension within the
Context.

The rest of the parameters of the call file are optional, and are detailed both in the
~/src/asterisk-15.<TAB>/sample.call file, and on the Asterisk wiki website.

AMI Quick Start
This section is for getting your hands dirty with the AMI as quickly as possible. First,
put the following configuration in /etc/asterisk/manager.conf:

; Turn on the AMI and ask it to only accept connections from localhost.
[general]
enabled = yes
webenabled = yes
bindaddr = 127.0.0.1

; Create an account called "hello", with a password of "world"
[hello]
secret=world
read=all ; Receive all types of events
write=all ; Allow this user to execute all actions

This sample configuration is set up to allow only local connections
to the AMI. If you intend to make this interface available over a
network, it is strongly recommended that you only do so using
TLS. The use of TLS is discussed in more detail later in this chapter.

Once the AMI configuration is ready, enable the built-in HTTP server by putting the
following contents in /etc/asterisk/http.conf:

; Enable the built-in HTTP server, and only listen for connections on localhost.
[general]
enabled = yes
bindaddr = 127.0.0.1

AMI Quick Start | 301

Reload the manager and http servers from the Asterisk CLI:
*CLI> manager reload

*CLI> module reload http

AMI over TCP
There are multiple ways to connect to the AMI, but a TCP socket is the most com‐
mon. We will use telnet to demonstrate AMI connectivity. We’ll need to install tel
net for this:

$ sudo yum -y install telnet

This example shows these steps:

1. Connect to the AMI over a TCP socket on port 5038.
2. Log in using the Login action.
3. Execute the Ping action.
4. Log off using the Logoff action.

Here’s how to do that using telnet:
$ telnet localhost 5038

Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Asterisk Call Manager/4.0.3

You’ve connected, but it’s going to hang up on you unless you authenticate yourself.
Paste the following into the telnet window:

Action: Login
Username: hello
Secret: world

Note there needs to be a blank line after the commands (press Enter after you paste
everything if nothing happens).

Response: Success
Message: Authentication accepted

OK, it likes us. Let’s run a simple command just to verify it’s really talking to us:
Action: Ping

Response: Success
Ping: Pong

So far, so good. We’ll just tidy up and log off now.

302 | Chapter 17: Asterisk Manager Interface and Call Files

Action: Logoff

Response: Goodbye
Message: Thanks for all the fish.
Connection closed by foreign host.

You have verified that AMI is accepting connections via a TCP connection.

AMI over HTTP
It is also possible to use the AMI over HTTP. We will perform the same actions as
before, but over HTTP instead of the native TCP interface to the AMI. AMI over
HTTP is covered in more detail in “AMI over HTTP” on page 308.

Accounts used for connecting to the AMI over HTTP are the same
accounts configured in /etc/asterisk/manager.conf.

This example demonstrates how to access the AMI over HTTP, log in, execute the
Ping action, and log off:

$ curl "http://localhost:8088/rawman?action=login&username=hello&secret=world" \
-c /tmp/tempcookie

Response: Success
Message: Authentication accepted

$ curl "http://localhost:8088/rawman?action=ping" -b /tmp/tempcookie

Response: Success
Ping: Pong
Timestamp: 1538871944.474131

$ curl "http://localhost:8088/rawman?action=logoff" -b /tmp/tempcookie

Response: Goodbye
Message: Thanks for all the fish.

The HTTP interface to AMI lets you integrate Asterisk call control into a web service.

Configuration
The section “AMI Quick Start” on page 301 showed a very basic set of configuration
files to get you started. There are many ways you can fine-tune the configuration of
the AMI.

Configuration | 303

manager.conf
The main configuration file for the AMI is /etc/asterisk/manager.conf. The [general]
section contains options that control the overall operation of the AMI. Any other sec‐
tions in the manager.conf file will define accounts for logging in and using the AMI.
The sample file contains detailed explanations of the various parameters, and can be
found in ~/src/asterisk-15<TAB>/configs/samples/manager.conf.sample.

If you are going to expose your AMI outside the machine it is run‐
ning on, you will want to configure TLS connectivity.

The manager.conf configuration file also contains the configuration of AMI user
accounts. You create an account by adding a section with the username inside square
brackets. Within each [username] section there are options that can be set that will
apply only to that account. The ~/src/asterisk-15<TAB>/configs/samples/
manager.conf.sample file also contains detailed explanations of each of these parame‐
ters. Our user named [hello], has the simplest configuration, which is to allow all
read and write actions. You should normally create AMI users that are restricted to
only the actions necessary to their functioning.

Within the [username] section, the read and write options set which manager
actions and manager events a particular user has access to. At this writing there are 20
of them: all, system, call, log, verbose, agent, user, config, command, dtmf, report
ing, cdr, dialplan, originate, agi, cc, aoc, test, security, and message. You will
find the manager.conf.sample file contains a reference for each of these that is relevant
to your release (and, if any are added that have not been listed here, they will be in the
sample file).

Take special notice of the system, command, and originate permis‐
sions. These permissions grant significant power to any applica‐
tions that are authorized to use them. Only grant these permissions
to applications that you have full control over (and ideally are run‐
ning on the same box).

http.conf
As we’ve seen, the Asterisk Manager Interface can be accessed over HTTP as well as
TCP. To make that work, a very simple HTTP server is embedded in Asterisk. All of
the options relevant to the AMI go in the [general] section of /etc/asterisk/http.conf.

304 | Chapter 17: Asterisk Manager Interface and Call Files

Enabling access to the AMI over HTTP requires both /etc/asterisk/
manager.conf and /etc/asterisk/http.conf. The AMI must be enabled
in manager.conf with the enabled option set to yes, and the man‐
ager.conf option webenabled must be set to yes to allow access over
HTTP. Finally, the enabled option in http.conf must be set to yes to
turn on the HTTP server itself.

The available options will be found in your ~/src/asterisk-15<TAB>/configs/samples/
http.conf.sample file.

Protocol Overview
There are two main types of messages on the Asterisk Manager Interface: manager
events and manager actions.

Manager events are one-way messages sent from Asterisk to AMI clients to report
something that has occurred on the system (Figure 17-1).

Figure 17-1. Manager events

Manager actions are requests from a client to Asterisk to perform some action and
return the result (Figure 17-2). For example, the AMI action Originate requests that
Asterisk create a new call, and naturally the client application will need responses
from Asterisk to indicate the progress of that activity.

Protocol Overview | 305

Figure 17-2. Manager actions

Other manager actions are requests for data. For example, there is a manager action
to get a list of all active channels on the system: the details about each channel are
delivered as a manager event. When the list of results is complete, a final message will
be sent to indicate that the end has been reached. See Figure 17-3 for a graphical rep‐
resentation of a client sending this type of manager action and receiving a list of
responses.

Figure 17-3. Manager actions that return a list of data

Message Encoding
All AMI messages, including manager events, manager actions, and manager action
responses, are encoded the same way. The messages are text-based, with lines termi‐
nated by a carriage return and a line-feed character. A message is terminated by a
blank line:

306 | Chapter 17: Asterisk Manager Interface and Call Files

Header1: This is the first header<CR><LF>
Header2: This is the second header<CR><LF>
Header3: This is the last header of this message<CR><LF>
<CR><LF>

If you are running tests from a telnet client, what this means is that after the last line
of instructions, you’ll need to press the Enter key twice.

Events

Manager events always have an Event header and a Privilege header. The Event
header gives the name of the event, while the Privilege header lists the permission
levels associated with the event. Any other headers included with the event are spe‐
cific to the event type. Here’s an example:

Event: Hangup
Privilege: call,all
Channel: SIP/0004F2060EB4-00000000
Uniqueid: 1283174108.0
CallerIDNum: 2565551212
CallerIDName: Russell Bryant
Cause: 16
Cause-txt: Normal Clearing

The Asterisk CLI includes the commands manager show events and manager show
event <event>. Run these commands at the Asterisk CLI to get a list of events or to
find out the details of a specific event.

Don’t forget that an excellent reference for all things Asterisk, including the AMI, is
the official Asterisk wiki.

Actions

When executing a manager action, you must include the Action header. The Action
header identifies which manager action is being executed. The rest of the headers are
arguments to the manager action, and may or may not be required depending on the
action.

To get a list of the headers associated with a particular manager action, type manager
show command <Action> at the Asterisk CLI. To get a full list of manager actions sup‐
ported by the version of Asterisk you are running, enter manager show commands at
the Asterisk CLI.

The final response to a manager action is typically a message that includes the
Response header. The value of the Response header will be Success if the manager
action was successfully executed. If the manager action was not successfully executed,
the value of the Response header will be Error. For example:

Action: Login
Username: hello
Secret: world

Protocol Overview | 307

https://wiki.asterisk.org

Response: Success
Message: Authentication accepted

AMI over HTTP
In addition to the native TCP interface, it is also possible to access the Asterisk Man‐
ager Interface over HTTP. Programmers with previous experience writing applica‐
tions that use web APIs will likely prefer this over the native TCP connectivity. While
the TCP interface only offers a single type of message structure, AMI over HTTP
offers a few encoding options. You can receive responses in the same format as the
TCP interface, in XML, or as a basic HTML page. The encoding type is chosen based
on a field in the request URL. The encoding options are discussed in more detail later
in this section.

Authentication and session handling
There are two methods of performing authentication against the AMI over HTTP.
The first is to use the Login action, similar to authentication with the native TCP
interface. This is the method that was used in the quick-start example, as seen in
“AMI over HTTP” on page 303.

Once successfully authenticated, Asterisk will provide a cookie that identifies the
authenticated session. Here is an example response to the Login action that includes a
session cookie from Asterisk:

$ curl -v "http://localhost:8088/rawman?action=login&username=hello&secret=world"

The second authentication option is HTTP digest authentication. In this example, the
requested encoding type based on the request URL is rawman. To indicate that HTTP
digest authentication should be used, prefix the encoding type in the request URL
with an a:

$ curl -v --digest -u hello:world http://127.0.0.1:8088/arawman?action=ping

/rawman (/arawman) encoding

The rawman encoding type is what has been used in all the AMI over HTTP examples
in this chapter so far. The responses received from requests using rawman are format‐
ted in the exact same way that they would be if the requests were sent over a direct
TCP connection to the AMI.

curl -v "http://localhost:8088/rawman?action=login&username=hello&secret=world"

curl -v --digest -u hello:world http://127.0.0.1:8088/arawman?action=ping

308 | Chapter 17: Asterisk Manager Interface and Call Files

/manager (/amanager) encoding

The manager encoding type provides a response in simple HTML form. This interface
is primarily useful for experimenting with the AMI:

$ curl -v "http://localhost:8088/manager?action=login&username=hello&secret=world"

$ curl -v --digest -u hello:world http://localhost:8088/amanager?action=ping

/mxml (/amxml) encoding

The mxml encoding type provides responses to manager actions encoded in XML:
$ curl -v "http://localhost:8088/mxml?action=login&username=hello&secret=world"

$ curl -v --digest -u hello:world http://localhost:8088/amxml?action=ping

Manager events
When connected to the native TCP interface for the AMI, manager events are deliv‐
ered asynchronously. When using the AMI over HTTP, you must retrieve events by
polling for them. You retrieve events over HTTP by executing the WaitEvent man‐
ager action. The following example shows how events can be retrieved using the
WaitEvent manager action. The steps are:

1. Start an HTTP AMI session using the Login action.
2. Register a SIP phone to Asterisk to generate a manager event.
3. Retrieve the manager event using the WaitEvent action.

The interaction looks like this:
$ wget --save-cookies cookies.txt \
> "http://localhost:8088/mxml?action=login&username=hello&secret=world" -O -

<ajax-response>
<response type='object' id='unknown'>
 <generic response='Success' message='Authentication accepted' />
</response>
</ajax-response>

$ wget --load-cookies cookies.txt \
< "http://localhost:8088/mxml?action=waitevent" -O -

<ajax-response>
<response type='object' id='unknown'>
 <generic response='Success' message='Waiting for Event completed.' />
</response>
<response type='object' id='unknown'>
 <generic event='PeerStatus' privilege='system,all'
 channeltype='SIP' peer='SIP/0000FFFF0004'
 peerstatus='Registered' address='172.16.0.160:5060' />
</response>
<response type='object' id='unknown'>

Protocol Overview | 309

 <generic event='WaitEventComplete' />
</response>
</ajax-response>

You’ll need to develop mechanisms in your application to ensure that buffered events
are frequently polled.

Example Usage
Most of this chapter so far discussed the concepts and configuration related to the
AMI. This section will provide some example usage.

Originating a Call
The AMI has the Originate manager action that can be used to originate a call. Many
of the accepted headers are the same as the options placed in call files. Table 17-1 lists
the headers accepted by the Originate action.

Table 17-1. Headers for the Originate action

Option Example value Description
ActionID a3a58876-

f7c9-4c28-

aa97-50d8166f658d

This header is accepted by most AMI actions. It is used to provide a unique
identifier that will also be included in all responses to the action. It gives
you a way to identify which request a response is associated with. This is
important since all actions, their responses, and events are all transmitted
over the same connection (unless using AMI over HTTP).

Channel SIP/myphone This header is critical and must be specified. This describes the outbound
call that will be originated. The value is the same syntax that would be
used for the channel argument to the Dial() application in the dialplan.

Context default This header is used to specify a location in the dialplan to start executing
once the outbound call has answered. The Context, Exten, and Prior
ity headers must be used together. When using these headers, the
Application and Data headers should not be used.

Exten s See the documentation for the Context header.
Priority 1 See the documentation for the Context header.
Application ConfBridge The Application and Data headers can be used instead of the Con

text, Exten, and Priority headers. In this case, the outbound call is
directly connected to a single application once the call has been answered.

Data 500 See the documentation for the Application header.
Timeout 30000 This header specifies how long to wait in milliseconds for an answer before

giving up on an outbound call. The default is 30000 milliseconds (30
seconds).

CallerID Matthew Jordan

<(555) 867-5309>

This header can be used to specify the caller ID used for the outbound call.

Account someaccount This header sets the CDR account code for the outbound call.

310 | Chapter 17: Asterisk Manager Interface and Call Files

Option Example value Description
Variable VARIABLE=VALUE or

FUNCTION(argu

ments)=VALUE

The Variable header can be used to set both channel variables or
channel functions on the outbound channel. It can be specified multiple
times.

Codecs ulaw,alaw This option can be used to limit which codecs are allowed for the outbound
call. If not specified, the set of codecs configured in the channel driver
configuration file will still be honored.

EarlyMedia true If this header is specified and set to true, the outbound call will get
connected to the specified extension or application as soon as there is any
early media.

Async true If this header is specified and set to true, this call will be originated
asynchronously. This will allow you to continue executing other actions on
the AMI connection while the call is being processed.

The simplest example of using the Originate action is via telnet:
$ telnet localhost 5038

Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Asterisk Call Manager/4.0.3

Once the connection is established, you need to log in.
Action: Login
Username: hello
Secret: world

Response: Success
Message: Authentication accepted

Now you’re ready to originate your call. We’re doing essentially the same thing we did
with the call file, only this time using the AMI:

Action: Originate
Channel: PJSIP/SOFTPHONE_A
Context: sets
Exten: 103
Priority: 1

You should hear SOFTPHONE_A ringing. As soon as you answer it, a call will be placed
to SOFTPHONE_B.

AMI is no longer involved in what’s going on. You can disconnect and the call will
continue (leave the call up for now, as we’re going to work with the in-progress call
next).

Action: Logoff

Response: Goodbye
Message: Thanks for all the fish.
Connection closed by foreign host.

Example Usage | 311

If you’ve already hung up the call, that’s no problem. You’ll just need to re-establish
the call, which of course you can do simply by calling one extension from the other
(101 to 103, or whatever you want).

Redirecting a Call
Redirecting (or transferring) a call from the AMI is another feature worth mention‐
ing. The Redirect AMI action can be used to send one or two channels to any other
extension in the Asterisk dialplan. If you need to redirect two channels that are
bridged together, do them both at the same time. Otherwise, once one channel has
been redirected, the other will be hung up.

An important thing to understand about Asterisk channels is that they don’t exist
until a call is in progress. The name we all think of as the channel name (e.g., SOFT
PHONE_A) is not in fact the channel name, but merely a reference to data that is used to
create a channel. The naming of a channel takes place when a call is originated (which
is when the channel is actually created). What all this means is that you have to deter‐
mine the full name of the channel before you can act on it.

Originate a call, and then review the Event: Newchannel and you will see the channel
name under the Channel: header.

Action: Originate
Channel: PJSIP/SOFTPHONE_A
Context: sets
Exten: 103
Priority: 1

Response: Success
Message: Originate successfully queued

Event: Newchannel
Privilege: call,all
Channel: PJSIP/SOFTPHONE_A-00000013
ChannelState: 0
ChannelStateDesc: Down
CallerIDNum: <unknown>
CallerIDName: <unknown>
ConnectedLineNum: <unknown>
ConnectedLineName: <unknown>
Language: en
AccountCode:
Context: sets
Exten: s
Priority: 1
Uniqueid: 1538939479.29
Linkedid: 1538939479.29

The Newchannel event will provide the name of the created channel, which in this
example is PJSIP/SOFTPHONE_A-00000013.

312 | Chapter 17: Asterisk Manager Interface and Call Files

You will need to keep track of these channel names if you wish to properly perform
actions on calls in progress. Once the call ends, the channel is destroyed. A new call
using the same endpoint will be assigned a different channel name. One channel defi‐
nition can support multiple calls (for example, multiple calls to a phone are possible),
and this is why the channel name is different from the channel definition.

You can redirect a single channel (the other channel will be disconnected):
Action: Redirect
Channel: PJSIP/SOFTPHONE_A-00000013
Exten: 209
Context: sets
Priority: 1

Or you can redirect two channels:
Action: Redirect
Channel: PJSIP/SOFTPHONE_A-00000015
Context: sets
Exten: 209
Priority: 1
ExtraChannel: PJSIP/SOFTPHONE_B-00000016
ExtraContext: sets
ExtraExten: 209
ExtraPriority: 1

The redirect function allows you to create powerful external applications that can
control calls in progress.

Development Frameworks
Many application developers write code that directly interfaces with the AMI. How‐
ever, there are a number of frameworks that have been created with the purpose of
making AMI application development easier. If you search for Asterisk frameworks
in the popular programming language of your choice, you are likely to find one. The
onus is on you to determine the suitability of the framework you are interested in.
Some things you should look for in a framework include:

Maturity
Has this project been around for a few years? A mature project is far less likely to
have serious bugs in it.

Maintenance
Check the age of the latest update. If the project hasn’t been updated in five years,
there’s a strong possibility it has been abandoned. It might still be usable, but
you’ll be on your own. Similarly, what does the bug tracker look like? Are there a
lot of important bugs being ignored? (Be discerning here, since often the realities
of maintaining a free project require disciplined triage—not everybody’s features
are going to get added.)

Development Frameworks | 313

Quality of the code
Is this a well-written framework? If it was not engineered well, you should be
aware of that when deciding whether to trust your project to it.

Community
Is there an active community of developers using this project? It’s likely you’ll
need help; will it be available when you need it?

Documentation
The code should be well commented, but ideally, a wiki or other official docu‐
mentation to support the library is essential.

Table 17-2 lists some frameworks we have found that, as of this writing, met the pre‐
ceding criteria. There may be others out there.

Table 17-2. AMI development frameworks

Framework Language
Adhearsion Ruby
StarPy Python
Asterisk-Java Java
AsterNET .NET
ami-io Node.js
panoramisk Python

Conclusion
The Asterisk Manager Interface provides an API for monitoring events from an
Asterisk system, as well as requesting that Asterisk perform a wide range of actions.
An HTTP interface has been provided, and a number of frameworks have been devel‐
oped, that make it easier to develop applications.

314 | Chapter 17: Asterisk Manager Interface and Call Files

CHAPTER 18

Asterisk Gateway Interface

Caffeine. The gateway drug.
—Eddie Vedder

The Asterisk dialplan has evolved into a simple yet powerful programming interface
for call handling. Many people, however, especially those with a programming back‐
ground, prefer to implement call handling in a traditional programming language.
The Asterisk Gateway Interface (AGI) allows for the development of first-party call
control in the programming language of your choice.

Quick Start
This section gives a quick example of using the AGI.

First, let’s create the script that we’re going to run. AGI scripts are usually placed
in /var/lib/asterisk/agi-bin.

$ cd /var/lib/asterisk/agi-bin

$ vim hello-world.sh

#!/bin/bash

Consume all variables sent by Asterisk
while read VAR && [-n ${VAR}] ; do : ; done

Answer the call.
echo "ANSWER"
read RESPONSE

Say the letters of "Hello World"
echo 'SAY ALPHA "Hello World" ""'
read RESPONSE

exit 0

315

$ chown asterisk:asterisk hello-world.sh

$ chmod 700 hello-world.sh

Now, add the following line to /etc/asterisk/extensions.conf, in your [sets] context:
exten => 237,1,AGI(hello-world.sh)

Save and reload your dialplan, and when you call extension 237 you should hear Alli‐
son spell out “Hello World.”

AGI Variants
There are a few variants of AGI that differ primarily in the method used to communi‐
cate with Asterisk. It is good to be aware of all the options so you can make the best
choice based on the needs of your application.

Process-Based AGI
Process-based AGI is the simplest variant of AGI. The quick-start example at the
beginning of this chapter is an example of a process-based AGI script. The script is
invoked using the AGI() application from the Asterisk dialplan. The application to
run is specified as the first argument to AGI(). Unless a full path is specified, the
application is expected to be in the /var/lib/asterisk/agi-bin directory. Arguments to
be passed to your AGI application can be specified as additional arguments to the
AGI() application in the Asterisk dialplan. The syntax is:

AGI(command[,arg1[,arg2[,...]]])

Ensure that your application has the proper permissions set so that
the Asterisk process user has permissions to execute it. Otherwise,
AGI() will fail.

Once Asterisk executes your AGI application, communication between Asterisk and
your application will take place over stdin and stdout. More details about this com‐
munication will be covered in “AGI Communication Overview” on page 319. For
more details about invoking AGI() from the dialplan, check the documentation built
into Asterisk:

*CLI> core show application AGI

Pros of process-based AGI
It is the simplest form of AGI to implement.

316 | Chapter 18: Asterisk Gateway Interface

Cons of process-based AGI
It is the least efficient form of AGI with regard to resource consumption. Systems
with high load should consider FastAGI, discussed in “FastAGI—AGI over TCP”
on page 317, instead.

EAGI

EAGI (Enhanced AGI) is a slight variant on AGI(). It is invoked in the Asterisk
dialplan as EAGI(). The difference is that in addition to the communication on stdin
and stdout, Asterisk also provides a unidirectional stream of audio coming from the
channel on file descriptor 3. For more details on how to invoke EAGI() from the
Asterisk dialplan, check the documentation built into Asterisk:

*CLI> core show application EAGI

Pros of Enhanced AGI
It has the simplicity of process-based AGI, with the addition of a simple read-
only stream of the channel’s audio. This is the only variant that offers this feature.

Cons of Enhanced AGI
Since a new process must be spawned to run your application for every call, it has
the same efficiency concerns as regular, process-based AGI.

For an alternative way of gaining access to the audio outside
Asterisk, consider using JACK. Asterisk has a module for
JACK integration, called app_jack. It provides the JACK()
dialplan application and the JACK_HOOK() dialplan function.

FastAGI—AGI over TCP
FastAGI is the term used for AGI call control over a TCP connection. With process-
based AGI, an instance of an AGI application is executed on the system for every call,
and communication with that application is done over stdin and stdout. With
FastAGI, a TCP connection is made to a FastAGI server. Call control is done using
the same AGI protocol, but the communication is over the TCP connection and does
not require a new process to be started for every call. The AGI protocol is discussed
in more detail in “AGI Communication Overview” on page 319. Using FastAGI is
much more scalable than process-based AGI, though it is also more complex to
implement.

To use FastAGI you invoke the AGI() application in the Asterisk dialplan, but instead
of providing the name of the application to execute, you provide an agi:// URL. For
example:

exten => 238,1,AGI(agi://127.0.0.1)

AGI Variants | 317

http://jackaudio.org/

The default port number for a FastAGI connection is 4573. A different port number
can be appended to the URL after a colon. For example:

exten => 238,1,AGI(agi://127.0.0.1:4574)

Just as with process-based AGI, arguments can be passed to a FastAGI application. To
do so, add them as additional arguments to the AGI() application, delimited by
commas:

exten => 238,1,AGI(agi://192.168.1.199,arg1,arg2,arg3)

FastAGI also supports the usage of DNS SRV records, if you provide a URL in the
form of hagi://. By using SRV records, your DNS servers can return multiple hosts
that Asterisk can attempt to connect to. This can be used for high availability and
load balancing. In the following example, to find a FastAGI server to connect to,
Asterisk will perform a DNS lookup for _agi._tcp.shifteight.org:

exten => 238,1,AGI(hagi://shifteight.org)

In this example, the DNS servers for the shifteight.org domain would need at least
one SRV record configured for _agi._tcp.shifteight.org.

Pros of FastAGI
It’s more efficient than process-based AGI. Rather than spawning a process per
call, a FastAGI server can be built to handle many calls.

DNS can be used to achieve high availability and load balancing among FastAGI
servers to further enhance scalability.

Cons of FastAGI
It is more complex to implement a FastAGI server than to implement a process-
based AGI application.

Async AGI—AMI-Controlled AGI
Async AGI allows an application that uses the Asterisk Manager Interface (AMI) to
asynchronously queue up AGI commands to be executed on a channel. This can be
especially useful if you are already making extensive use of the AMI and would like to
enhance your application to handle call control, rather than writing a detailed Aster‐
isk dialplan or developing a separate FastAGI server.

More information on the Asterisk Manager Interface can be found
in Chapter 17.

318 | Chapter 18: Asterisk Gateway Interface

Async AGI is invoked by the AGI() application in the Asterisk dialplan. The argu‐
ment to AGI() should be agi:async, as shown in the following example:

exten => 239,AGI(agi:async)

Additional information on how to use async AGI over the AMI can be found in the
next section.

Pros of async AGI
An existing AMI application can be used to control calls using AGI commands.

Cons of async AGI
It is the most complex way to implement AGI.

Setting Up /etc/asterisk/manager.conf for Async AGI
To make use of async AGI, an AMI account must have the agi permission for both
read and write. For example, the following user defined in manager.conf would be
able to both a) execute AGI manager actions, and b) receive AGI manager events:

; Define a user called 'hello', with a password of 'world'.
; Give this user read/write permissions for AGI.
;
[hello]
secret = world
read = agi
write = agi

AGI Communication Overview
The preceding section discussed the variations of AGI that can be used. This section
goes into more detail about how your custom AGI application communicates with
Asterisk once AGI() has been invoked.

Setting Up an AGI Session
Once AGI() or EAGI() has been invoked from the Asterisk dialplan, some informa‐
tion is passed to the AGI application to set up the AGI session. This section discusses
what steps are taken at the beginning of an AGI session for the different variants of
AGI.

Process-based AGI/FastAGI
For a process-based AGI application or a connection to a FastAGI server, the vari‐
ables listed in Table 18-1 will be the first pieces of information sent from Asterisk to
your application. Each variable will be on its own line, in the form:

agi_variable: value

AGI Communication Overview | 319

Table 18-1. AGI environment variables

Variable Value/example Description
agi_request hello-world.sh The first argument that was passed to the AGI() or EAGI()

application. For process-based AGI, this is the name of the AGI
application that has been executed. For FastAGI, this would be
the URL that was used to reach the FastAGI server.

agi_channel SIP/

0004F2060EB4-00000009

The name of the channel that has executed the AGI() or
EAGI() application.

agi_language en The language set on agi_channel.
agi_type SIP The channel type for agi_channel.
agi_uniqueid 1284382003.9 The uniqueid of agi_channel.
agi_version 1.8.0-beta4 The Asterisk version in use.
agi_callerid 12565551212 The full caller ID string that is set on agi_channel.
agi_callerid

name

Russell Bryant The caller ID name that is set on agi_channel.

agi_callingpres 0 The caller presentation associated with the caller ID set on
agi_channel. For more information, see the output of
core show function CALLERPRES at the Asterisk
CLI.

agi_callingani2 0 The caller ANI2 associated with agi_channel.
agi_callington 0 The caller ID TON (Type of Number) associated with

agi_channel.
agi_callingtns 0 The dialed number TNS (Transit Network Select) associated

with agi_channel.
agi_dnid 7010 The dialed number associated with agi_channel.
agi_rdnis unknown The redirecting number associated with agi_channel.
agi_context phones The context of the dialplan that agi_channel was in when

it executed the AGI() or EAGI() application.
agi_extension 500 The extension in the dialplan that agi_channel was

executing when it ran the AGI() or EAGI() application.
agi_priority 1 The priority of agi_extension in agi_context that

executed AGI() or EAGI().
agi_enhanced 0.0 An indication of whether AGI() or EAGI() was used from

the dialplan. 0.0 indicates that AGI() was used. 1.0
indicates that EAGI() was used.

agi_accountcode myaccount The accountcode associated with agi_channel.
agi_threadid 140071216785168 The threadid of the thread in Asterisk that is running the

AGI() or EAGI() application. This may be useful for
associating logs generated by the AGI application with logs
generated by Asterisk, since the Asterisk logs contain thread
IDs.

agi_arg_<argu

ment number>

my argument These variables provide the contents of the additional
arguments provided to the AGI() or EAGI() application.

320 | Chapter 18: Asterisk Gateway Interface

For an example of the variables that might be sent to an AGI application, see the AGI
communication debug output in “Quick Start” on page 315. The end of the list of
variables will be indicated by a blank line. The code handles these variables by read‐
ing lines of input in a loop until a blank line is received. At that point, the application
continues and begins executing AGI commands.

Async AGI

When you use async AGI, Asterisk will send out a manager event called AsyncAGI to
initiate the async AGI session. This event will allow applications listening to manager
events to take over control of the call via the AGI manager action. Here is an example
manager event sent out by Asterisk:

Event: AsyncAGI
Privilege: agi,all
SubEvent: Start
Channel: SIP/0000FFFF0001-00000000
Env: agi_request%3A%20async%0Aagi_channel%3A%20SIP%2F0000FFFF0001-00000000%0A \
 agi_language%3A%20en%0Aagi_type%3A%20SIP%0A \
 agi_uniqueid%3A%201285219743.0%0A \
 agi_version%3A%201.8.0-beta5%0Aagi_callerid%3A%2012565551111%0A \
 agi_calleridname%3A%20Julie%20Bryant%0Aagi_callingpres%3A%200%0A \
 agi_callingani2%3A%200%0Aagi_callington%3A%200%0Aagi_callingtns%3A%200%0A \
 agi_dnid%3A%20111%0Aagi_rdnis%3A%20unknown%0Aagi_context%3A%20LocalSets%0A \
 agi_extension%3A%20111%0Aagi_priority%3A%201%0Aagi_enhanced%3A%200.0%0A \
 agi_accountcode%3A%20%0Aagi_threadid%3A%20-1339524208%0A%0A

The value of the Env header in this AsyncAGI manager event is all
on one line. The long value of the Env header has been URI
encoded.

Commands and Responses
Once an AGI session has been set up, Asterisk begins performing call processing in
response to commands sent from the AGI application. As soon as an AGI command
has been issued to Asterisk, no further commands will be processed on that channel
until the current command has been completed. When it finishes processing a com‐
mand, Asterisk will respond with the result.

AGI Communication Overview | 321

The AGI processes commands in a serial manner. Once a com‐
mand has been executed, no further commands can be executed
until Asterisk has returned a response. Some commands can take a
very long time to execute. For example, the EXEC AGI command
executes an Asterisk application. If the command is EXEC Dial,
AGI communication is blocked until the call is done. If your AGI
application needs to interact further with Asterisk at this point, it
can do so using the AMI, which is covered in Chapter 17.

You can retrieve a full list of available AGI commands from the Asterisk console by
running the command agi show commands. These commands are described in
Table 18-2. To get more detailed information on a specific AGI command, including
syntax information for any arguments that a command expects, use agi show com
mands topic COMMAND. For example, to see the built-in documentation for the ANSWER
AGI command, you would use agi show commands topic ANSWER.

Table 18-2. AGI commands

AGI command Description
ANSWER Answer the incoming call.
ASYNCAGI BREAK End an async AGI session and have the channel return to the Asterisk dialplan.

CHANNEL STATUS Retrieve the status of the channel. This is used to retrieve the current state of the channel,
such as up (answered), down (hung up), or ringing.

DATABASE DEL Delete a key/value pair from the built-in AstDB.
DATABASE DELTREE Delete a tree of key/value pairs from the built-in AstDB.
DATABASE GET Retrieve the value for a key in the AstDB.
DATABASE PUT Set the value for a key in the AstDB.
EXEC Execute an Asterisk dialplan application on the channel. This command is very powerful in

that between EXEC and GET FULL VARIABLE, you can do anything with the call that
you can do from the Asterisk dialplan.

GET DATA Read digits from the caller.

GET FULL VARIABLE Evaluate an Asterisk dialplan expression. You can send a string that contains variables and/or
dialplan functions, and Asterisk will return the result after making the appropriate
substitutions. This command is very powerful in that between EXEC and GET FULL VARI
ABLE, you can do anything with the call that you can do from the Asterisk dialplan.

GET OPTION Stream a sound file while waiting for a digit from the caller. This is similar to the Back
ground() dialplan application.

GET VARIABLE Retrieve the value of a channel variable.
HANGUP Hang up the channel.a

NOOP Do nothing. You will get a result response from this command, just like any other. It can be
used as a simple test of the communication path with Asterisk.

RECEIVE CHAR Receive a single character. This only works for channel types that support it, such as IAX2
using TEXT frames or SIP using the MESSAGE method.

RECEIVE TEXT Receive a text message. This only works in the same cases as RECEIVE CHAR.

322 | Chapter 18: Asterisk Gateway Interface

AGI command Description
RECORD FILE Record the audio from the caller to a file. This is a blocking operation similar to the

Record() dialplan application. To record a call in the background while you perform other
operations, use EXEC Monitor or EXEC MixMonitor.

SAY ALPHA Say a string of characters. You can find an example of this in “Quick Start” on page 315. To get
localized handling of this and the other SAY commands, set the channel language either in
the device configuration file (e.g., sip.conf) or in the dialplan, by setting the CHANNEL(lan
guage) dialplan function.

SAY DIGITS Say a string of digits. For example, 100 would be said as “one zero zero” if the channel’s
language is set to English.

SAY NUMBER Say a number. For example, 100 would be said as “one hundred” if the channel’s language is
set to English.

SAY PHONETIC Say a string of characters, but use a common word for each letter (Alpha, Bravo, Charlie…).
SAY DATE Say a given date.
SAY TIME Say a given time.
SAY DATETIME Say a given date and time using a specified format.
SEND IMAGE Send an image to a channel. IAX2 supports this, but there are no actively developed IAX2

clients that support it that we know of.
SEND TEXT Send text to a channel that supports it. This can be used with SIP and IAX2 channels, at least.
SET AUTOHANGUP Schedule the channel to be hung up at a specified point in time in the future.
SET CALLERID Set the caller ID name and number on the channel.
SET CONTEXT Set the current dialplan context on the channel.
SET EXTENSION Set the current dialplan extension on the channel.
SET MUSIC Start or stop music on hold on the channel.
SET PRIORITY Set the current dialplan priority on the channel.
SET VARIABLE Set a channel variable to a given value.
STREAM FILE Stream the contents of a file to a channel.
CONTROL STREAM FILE Stream the contents of a file to a channel, but also allow the channel to control the stream.

For example, the channel can pause, rewind, or fast-forward the stream.
TDD MODE Toggle the TDD (Telecommunications Device for the Deaf) mode on the channel.
VERBOSE Send a message to the verbose logger channel. Verbose messages show up on the Asterisk

console if the verbose setting is high enough. Verbose messages will also go to any logfile
that has been configured for the verbose logger channel in /etc/asterisk/logger.conf.

WAIT FOR DIGIT Wait for the caller to press a digit.
SPEECH CREATE Initialize speech recognition. This must be done before using other speech AGI commands.b

SPEECH SET Set a speech engine setting. The settings that are available are specific to the speech
recognition engine in use.

SPEECH DESTROY Destroy resources that were allocated for doing speech recognition. This command should be
the last speech command executed.

SPEECH LOAD GRAMMAR Load a grammar.

SPEECH UNLOAD GRAM

MAR

Unload a grammar.

AGI Communication Overview | 323

AGI command Description

SPEECH ACTIVATE
GRAMMAR

Activate a grammar that has been loaded.

SPEECH DEACTIVATE
GRAMMAR

Deactivate a grammar.

SPEECH RECOGNIZE Play a prompt and perform speech recognition, as well as wait for digits to be pressed.

GOSUB Execute a dialplan subroutine. This will perform in the same way as the GoSub() dialplan
application.

a When the HANGUP AGI command is used, the channel is not immediately hung up. Instead, the channel is marked as
needing to be hung up. Your AGI application must exit first before Asterisk will continue and perform the actual hangup
process.
b While Asterisk includes a core API for handling speech recognition, it does not come with a module that provides a speech
recognition engine. Digium currently provides two commercial options for speech recognition: Lumenvox and Vestec.

Process-based AGI/FastAGI
AGI commands are sent to Asterisk on a single line. The line must end with a single
newline character. Once a command has been sent to Asterisk, no further commands
will be processed until the last command has finished and a response has been sent
back to the AGI application. Here is an example response to an AGI command:

200 result=0

The Asterisk console allows debugging the communications with
an AGI application. To enable AGI communication debugging, run
the agi set debug on command. To turn debugging off, use agi
set debug off. While this debugging mode is on, all communica‐
tion to and from an AGI application will be printed out to the
Asterisk console. An example of this output can be found in
“Quick Start” on page 315.

Async AGI
When you’re using async AGI, you issue commands by using the AGI manager
action. To see the built-in documentation for the AGI manager action, run manager
show command AGI at the Asterisk CLI. A demonstration will help clarify how AGI
commands are executed using the async AGI method. First, an extension is created in
the dialplan that runs an async AGI session on a channel:

exten => 240,AGI(agi:async)

When the AGI dialplan application is executed, a manager event called AsyncAGI will
be sent out with all the AGI environment variables. Details about this event are in
“Async AGI” on page 321. After this, AGI manager actions can start to take place via
AMI.

324 | Chapter 18: Asterisk Gateway Interface

https://www.lumenvox.com/
http://www.digium.com/en/products/software/vestec.php

The following shows an example manager-action execution and the manager events
that are emitted during async AGI processing. After the initial execution of the AGI
manager action, there is an immediate response to indicate that the command has
been queued up for execution. Later, there is a manager event that indicates that the
queued command has been executed. The CommandID header can be used to associate
the initial request with the event that indicates that the command has been executed:

Action: AGI
Channel: SIP/0004F2060EB4-00000013
ActionID: my-action-id
CommandID: my-command-id
Command: VERBOSE "Puppies like cotton candy." 1

Response: Success
ActionID: my-action-id
Message: Added AGI command to queue

Event: AsyncAGI
Privilege: agi,all
SubEvent: Exec
Channel: SIP/0004F2060EB4-00000013
CommandID: my-command-id
Result: 200%20result%3D1%0A

The following output is what was seen on the Asterisk console during this async AGI
session:

 -- Executing [7011@phones:1] AGI("SIP/0004F2060EB4-00000013",
 "agi:async") in new stack
 agi:async: Puppies like cotton candy.
 == Spawn extension (phones, 7011, 1)
exited non-zero on 'SIP/0004F2060EB4-00000013'

Ending an AGI Session
An AGI session ends when your AGI application is ready for it to end. The details
about how this happens depend on whether your application is using process-based
AGI, FastAGI, or async AGI.

Process-based AGI/FastAGI
Your AGI application may exit or close its connection at any time. As long as the
channel has not hung up before your application ends, dialplan execution will
continue.

If channel hangup occurs while your AGI session is still active, Asterisk will provide
notification that this has occurred so that your application can adjust its operation as
appropriate.

If a channel hangs up while your AGI application is still executing, a couple of things
will happen. If an AGI command is in the middle of executing, you may receive a
result code of -1. You should not depend on this, though, since not all AGI

AGI Communication Overview | 325

commands require channel interaction. If the command being executed does not
require channel interaction, the result will not reflect the hangup.

The next thing that happens after a channel hangs up is that an explicit notification of
the hangup is sent to your application. For process-based AGI, the signal SIGHUP will
be sent to the process to notify it of the hangup. For a FastAGI connection, Asterisk
will send a line containing the word HANGUP.

If you would like to disable having Asterisk send the SIGHUP signal to your process-
based AGI application or the HANGUP string to your FastAGI server, you can do so by
setting the AGISIGHUP channel variable, as demonstrated in this short example:

; no SIGHUP (AGI) or HANGUP (FastAGI)
exten => 237,1,Set(AGISIGHUP=no)
 same => n,AGI(hello-world.sh)

Once the hangup has happened, the only AGI commands that may be used are those
that do not require channel interaction. The documentation for the AGI commands
built into Asterisk includes an indication of whether or not each command can be
used once the channel has been hung up.

Async AGI
When you’re using async AGI, the manager interface provides mechanisms to notify
you about channel hangups. When you would like to end an async AGI session for a
channel, you must execute the ASYNCAGI BREAK command. When the async AGI ses‐
sion ends, Asterisk will send an AsyncAGI manager event with a SubEvent of End. The
following is an example of ending an async AGI session:

Action: AGI
Channel: SIP/0004F2060EB4-0000001b
ActionID: my-action-id
CommandID: my-command-id
Command: ASYNCAGI BREAK

Response: Success
ActionID: my-action-id
Message: Added AGI command to queue

Event: AsyncAGI
Privilege: agi,all
SubEvent: End
Channel: SIP/0004F2060EB4-0000001b

At this point, the channel returns to the next step in the Asterisk dialplan (assuming
it has not yet been hung up).

326 | Chapter 18: Asterisk Gateway Interface

Example: Account Database Access
Example 18-1 is an example of an AGI script. To run this script you would first place
it in the /var/lib/asterisk/agi-bin directory. Then you would execute it from the Aster‐
isk dialplan like this:

exten => 241,1,AGI(account-lookup.py)
 same => n,Hangup()

This example is written in Python and is very sparsely documented for brevity. It
demonstrates how an AGI script interfaces with Asterisk using stdin and stdout.

The script prompts a user to enter an account number, and then plays back a value
associated with that number. In the interest of brevity, we have hardcoded a few fake
accounts into the script—this would obviously be something normally handled by a
database connection.

The script is intentionally terse, since we are interested in briefly showing some AGI
functions without filling this book with pages of code.

Example 18-1. account-lookup.py

#!/usr/bin/env python
An example for AGI (Asterisk Gateway Interface).

import sys

def agi_command(cmd):
 '''Write out the command and return the response'''
 print cmd
 sys.stdout.flush() #clear the buffer
 return sys.stdin.readline().strip() # strip whitespace

asterisk_env = {} # read AGI env vars from Asterisk
while True:
 line = sys.stdin.readline().strip()
 if not len(line):
 break
 var_name, var_value = line.split(':', 1)
 asterisk_env[var_name] = var_value

Fake "database" of accounts.
ACCOUNTS = {
 '12345678': {'balance': '50'},
 '11223344': {'balance': '10'},
 '87654321': {'balance': '100'},
}

response = agi_command('ANSWER')

three arguments: prompt, timeout, maxlength
response = agi_command('GET DATA enter_account 3000 8')

if 'timeout' in response:

Example: Account Database Access | 327

 response = agi_command('STREAM FILE goodbye ""')
 sys.exit(0)

The response will look like: 200 result=<digits>
Split on '=', we want index 1
account = response.split('=', 1)[1]

if account == '-1': # digits if error
 response = agi_command('STREAM FILE astcc-account-number-invalid ""')
 response = agi_command('HANGUP')
 sys.exit(0)

if account not in ACCOUNTS: # invalid
 response = agi_command('STREAM FILE astcc-account-number-invalid ""')
 sys.exit(0)

balance = ACCOUNTS[account]['balance']

response = agi_command('STREAM FILE account-balance-is ""')
response = agi_command('SAY NUMBER %s ""' % (balance))
sys.exit(0)

Development Frameworks
There have been a number of efforts to create frameworks or libraries that make AGI
programming easier. You will notice that several of these frameworks also appeared in
Chapter 17. Just as with AMI, when evaluating a framework, we recommend you find
one that meets the following criteria:

Maturity
Has this project been around for a few years? A mature project is far less likely to
have serious bugs in it.

Maintenance
Check the age of the latest update. If the project hasn’t been updated in a few
years, there’s a strong possibility it has been abandoned. It might still be usable,
but you’ll be on your own. Similarly, what does the bug tracker look like? Are
there a lot of important bugs being ignored? (Be discerning here, since often the
realities of maintaining a free project require disciplined triage—not everybody’s
features are going to get added.)

Quality of the code
Is this a well-written framework? If it was not engineered well, you should be
aware of that when deciding whether to trust your project to it.

Community
Is there an active community of developers using this project? It’s likely you’ll
need help; will it be available when you need it?

328 | Chapter 18: Asterisk Gateway Interface

Documentation
The code should be well commented, but ideally, a wiki or other official docu‐
mentation to support the library is essential.

The frameworks listed in Table 18-3 met all or most of the preceding criteria at this
writing. If you do not see a library listed here for your preferred programming lan‐
guage, it might be out there somewhere, but simply didn’t make our list.

Table 18-3. AGI development frameworks

Framework Language
Adhearsion Ruby
Asterisk-Java Java
AsterNET .NET
ding-dong Node.js
PAGI PHP
Panoramisk Python
StarPy Python + Twisted

Conclusion
AGI provides a powerful interface to Asterisk that allows you to implement first-
party call control in the programming language of your choice. You can take multiple
approaches to implementing an AGI application. Some approaches can provide better
performance, but at the cost of more complexity. AGI provides a programming envi‐
ronment that may make it easier to integrate Asterisk with other systems, or just pro‐
vide a more comfortable call-control programming environment for the experienced
programmer. In many cases, the use of a prebuilt framework will be the best
approach, especially when evaluating or prototyping a complex project. For the ulti‐
mate performance, we still recommend you consider writing as much of your appli‐
cation as you can using the Asterisk dialplan.

Conclusion | 329

CHAPTER 19

Asterisk REST Interface

People who think they know everything are a great annoyance to those of us who do.
—Isaac Asimov

The Asterisk REST Interface (ARI) was created to address the limitations inherent in
developing external or enhanced functionality outside Asterisk. While AGI allows
you to trigger external applications, and AMI allows you to externally supervise and
control calls in progress, any attempt to integrate both into a complete external appli‐
cation quickly becomes complex and kludgy. ARI allows developers to build a stand-
alone and complete application, using Asterisk as the underlying engine.

As of this writing, ARI requires a very basic dialplan in order to trigger the Stasis()
dialplan application, which then hands the channel over to ARI. By the time you read
this, it’s very likely that this requirement has changed, as the Asterisk developer com‐
munity has actively been working on allowing ARI to spawn without any dialplan in
the middle.

Using an external interface such as ARI to control Asterisk is not necessarily going to
make your life easier. The skills required to implement and troubleshoot applications
of this type require a comprehensive skill set, in not only your language of choice, but
also in Linux system administration, Asterisk administration, network troubleshoot‐
ing, and fundamental telephony concepts. For the skilled developer, ARI can give you
the power you want in your applications, but for someone learning, we recommend
you consider mastering the dialplan before you dive into external development envi‐
ronments. The dialplan is peculiar, but it is also completely integrated, high-
performance, and relatively easy to learn.

Having said that, let’s get you up and running with ARI.

331

1 Although, to be honest, there’s really nothing more to the configuration unless you’re implementing one of
the frameworks, which is strongly recommended if you’re going to put this into a production environment,
and which we will explore later.

2 We named the app “zarniwoop” because “hello-world” was used in the Digium wiki on ARI, and it seemed
best to avoid overlap. You can of course name it anything you wish.

ARI Quick Start
This section gives you a simple working example of ARI. Later in the chapter we’ll
cover things in more detail.1

In this quick-start section we will be using a very simple HTTP
access layer. You must be very careful about putting this sort of
configuration into production. If, for example, you are going to run
your application on a separate machine and connect it to Asterisk
across a socket, you will want a more secure connection. What
we’re doing in this section is akin to a sailing club using dinghies to
teach; useful as an introduction, but foolish and dangerous to set
out to sea in such a craft.

Basic Asterisk Configuration
You should already have the Asterisk web server running, so you simply need to ver‐
ify that your /etc/asterisk/http.conf file looks similar to the following:

[general]
enabled = yes
bindaddr = 127.0.0.1

Next, a simple /etc/asterisk/ari.conf file is needed:
[general]
enabled = yes
pretty = yes
[asterisk]
type = user
read_only = no
password = whateveryoudodontusethispassword

OK, let’s load the ari module now:
$ sudo asterisk -rx 'module load res_ari.so'
Loaded res_ari.so => (Asterisk RESTful Interface)

Then, into our /etc/asterisk/extensions.conf file we need an extension to trigger the
Stasis() dialplan app:2

exten => 242,1,Noop()
 same => n,Stasis(zarniwoop)
 same => n,Hangup()

332 | Chapter 19: Asterisk REST Interface

Reload your dialplan with
$ sudo asterisk -rx 'dialplan reload'
Dialplan reloaded.

At this point it might be worthwhile to simply reload Asterisk:
$ sudo service asterisk restart

There are just a few steps left, and you’re ready to test your ARI environment.

Testing Your Basic ARI Environment
Since ARI depends on WebSockets, we’ll need a tool to allow us to test from the com‐
mand line. The Node.js package manager (npm) will allow us to find and install the
wscat tool we’ll use for our tests.

$ sudo yum -y install npm

$ sudo npm install -g wscat

/usr/bin/wscat -> /usr/lib/node_modules/wscat/bin/wscat
/usr/lib
+-- wscat@2.2.1
 +-- commander@2.15.1
 +-- read@1.0.7
 ¦ +-- mute-stream@0.0.8
 +-- ws@5.2.2
 +-- async-limiter@1.0.0

Now let’s light it up and see what we get!
$ wscat -c "ws://localhost:8088/ari/events?api_key= \
 asterisk:whateveryoudodontusethispassword&app=zarniwoop"

connected (press CTRL+C to quit)
>

So far, so good. Let’s place a call to our Stasis() app and see what happens.

Open up a new SSH window (leave the other one as is so you can see what happens in
the wscat session). Connect to the Asterisk CLI in that new shell session:

$ sudo asterisk -rvvvv

Using one of your lab telephones, place a call to 242.

On the Asterisk CLI, you should see this:
*CLI>
 == Setting global variable 'SIPDOMAIN' to '172.29.1.57'
 -- Executing [242@sets:1] NoOp("PJSIP/SOFTPHONE_A-00000001", "") in new stack
 -- Executing [242@sets:2] Stasis("PJSIP/SOFTPHONE_A-00000001", "zarniwoop") in new stack

ARI Quick Start | 333

3 If your computer has only one screen, now is probably the point where you’re thinking what a good idea it
would be to have more of them.

And on the wscat session, you should see this:
>
< {
 "type": "StasisStart",
 "timestamp": "2019-01-27T21:43:43.720-0500",
 "args": [],
 "channel": {
 "id": "1548643423.2",
 "name": "PJSIP/SOFTPHONE_A-00000002",
 "state": "Ring",
 "caller": {
 "name": "101",
 "number": "SOFTPHONE_A"
 },
 "connected": {
 "name": "",
 "number": ""
 },
 "accountcode": "",
 "dialplan": {
 "context": "sets",
 "exten": "242",
 "priority": 2
 },
 "creationtime": "2019-01-27T21:43:43.709-0500",
 "language": "en"
 },
 "asterisk_id": "08:00:27:27:bf:0e",
 "application": "zarniwoop"
}
>

OK, now we’re going to open yet another shell session3 so we can interact with this
connection we’ve created. From this new shell, issue the following command:

$ curl -v -u asterisk:whateveryoudodontusethispassword -X POST \
 "http://localhost:8088/ari/channels/1548643423.2/play?media=sound:believe-its-free" sd

Note the "id" from the JSON returned on the wscat session must be used following
the 'channels/' portion of the curl command. In other words, you must match the
channel identifier in your command to the channel identifier associated with your
call. In this manner, you can of course wrangle many calls simultaneously.

Working with Your ARI Environment Using Swagger
Asterisk’s ARI has been developed to be compatible with the OpenAPI Specification
(aka Swagger), which means that many tools compatible with this spec will work with
ARI. As an example, you can interact with your ARI installation using Swagger-UI,
which will be useful both for debugging and as a documentation source.

334 | Chapter 19: Asterisk REST Interface

First up, we’ll need to expose our Asterisk HTTP server to the local network (cur‐
rently it’s only allowing connections from 127.0.0.1). In your /etc/asterisk/http.conf file
you’ll bind the HTTP server to the local IP address of your Asterisk machine:

$ sudo vim /etc/asterisk/http.conf

; Enable the built-in HTTP server, and only listen for connections on localhost.
[general]
enabled = yes
;bindaddr = 127.0.0.1 ; comment this out
bindaddr = 172.29.1.57 ; LAN IP OF YOUR ASTERISK SERVER

Next, we’ll need to add a line to your /etc/asterisk/ari.conf file:
$ sudo vim /etc/asterisk/ari.conf

[general]
enabled = yes
pretty = yes
allowed_origins=http://ari.asterisk.org
...

Save and reload the http and ari modules in Asterisk:
$ sudo asterisk -rx 'module reload http' ; sudo asterisk -rx 'module reload ari'

Now, from your development desktop, open up your browser and navigate to http://
ari.asterisk.org.

You’ll see a web page similar to Figure 19-1.

Figure 19-1. Swagger UI for ARI

Replace localhost with the LAN IP address of your Asterisk server, and in the
api_key field, put your ARI user:password from /etc/asterisk/ari.conf (for example,
asterisk:whateveryoudodontusethispassword). If you’ve got all the configuration
correct, you will be rewarded with the results in Figure 19-2.

ARI Quick Start | 335

http://ari.asterisk.org
http://ari.asterisk.org

Figure 19-2. ARI Swagger

You are looking at comprehensive documentation for your ARI module, and you can
actually pass queries to it as well. This is a massively useful debugging aid, and kudos
to the Digium folks for it.

As an example of what this is good for, select the endpoints:Endpoint resources
item, press the GET button beside /endpoints, and you will see the screen shown in
Figure 19-3.

Figure 19-3. Get endpoints

Well, go ahead—press the “Try it out!” button.

Note the "id" of the channel in the wscat session, which you’ll want to copy for use
in the Swagger UI (you’ll see several lines of JSON output relating to the call).

Perform the following actions on the channel using the Swagger UI interface: POST:
Answer (answer the channel), POST: hold (place the call on hold), DELETE: hold
(take the call off hold). Note what happens to the channel in each case.

Use of this Swagger UI is also documented over at the Asterisk wiki.

336 | Chapter 19: Asterisk REST Interface

https://wiki.asterisk.org/wiki/display/AST/Using+Swagger+to+Drive+ARI

4 Strictly speaking, REST is far more than that, but as a practical matter, these days it seems not uncommon to
assume that a REST API will be URL and JSON-based, simply because so many such services are presented in
those formats.

This will greatly simplify your development and testing process.

OK, that’s the quick start. Let’s dive in deeper to ARI.

The Building Blocks of ARI
There are three components that work together to deliver ARI:

• The RESTful interface, through which the external application communicates
with Asterisk.

• A WebSocket that passes information back to the external application from
Asterisk (in JSON format).

• The Stasis() dialplan application, which connects control of a channel to the
external application.

REST
The term RESTful stems from Representational State Transfer (REST), which is an
architectural model for web services (as opposed to, say, a protocol). The term REST‐
ful has commonly come to refer to any API that provides interaction through URLs,
with data represented in JSON format.4 So, anything that is “RESTful” is supposed to
adhere to the constraints of REST, but in practice may be implemented as a looser
interpretation (which, if it gets the job done, may indeed be good enough).

WebSocket
The WebSocket connection is the mechanism that performs the communication
between the internals of Asterisk and the RESTful interface. In Asterisk, events may
happen that the client did not initiate, and the WebSocket allows Asterisk to signal
those changes to the client.

Asterisk’s built-in HTTP server potentially provides other services across a web inter‐
face. For example, WebRTC also connects through the web server. If you are making
changes or adding new services, make sure you not only test the item you’re working
on, but also other services running through the same server, to ensure you haven’t
inadvertently misconfigured something else.

The Building Blocks of ARI | 337

Stasis
The Stasis Message Bus allows the core of Asterisk to communicate events with other
modules and components. It is mostly internal to Asterisk; however, in the case of
ARI, a dialplan application named Stasis() allows the dialplan to pass call control to
your external ARI application.

The Stasis() application itself is required in order to signal to the dialplan that call
control is to be passed to the external program via ARI.

As of Asterisk 16, it is no longer necessary to write dialplan code to define a connec‐
tion from an incoming channel to your ARI client application. Many developers in
the Asterisk community write all their call control logic in external applications, and
having to code up a few lines of dialplan just to pass channels to their app was seen as
kludgy and confusing. They requested (and developed) a mechanism whereby Aster‐
isk will create automatic dialplan to handle this function.

When the API is instantiated, the application reference in the URL—for example, our
app zarniwoop—will trigger the automatic creation of a dialplan context named
according to the app name (in this case, [stasis-zarniwoop]), including an exten‐
sion that pattern matches everything. This extension will then pass all calls arriving in
that context to Stasis(zarniwoop). You will need to associate your channels with the
correct context (context=stasis-zarniwoop) in your PJSIP (or other channel) con‐
figuration tables, at which point calls to those channels will automatically be connec‐
ted through Stasis() to the client application.

If all this seems confusing, there’s no reason you need to stop using actual dialplan to
handle this, as we did earlier in our quick-start example.

Understanding the workings of Stasis() is generally not necessary unless you are
going to be developing the Asterisk product itself (i.e., joining the Asterisk develop‐
ment team and coding new capabilities into Asterisk).

Typically, after your initial experimentation with ARI, you will want to implement a
framework to help ease the work of developing your external application.

Frameworks
A production-grade application using ARI will benefit from the implementation of a
framework to simplify development effort, add a layer of security, and provide a con‐
trol environment.

There are several such libraries available. Which one you choose will in part be dicta‐
ted by which language you prefer to use, and should also take into account whether

338 | Chapter 19: Asterisk REST Interface

the framework you’re interested in has an active community and is still being actively
maintained.

The ones described next are listed in the Asterisk wiki. We examined the code reposi‐
tory for each, and while some projects are still actively maintained, others have not
been updated in quite some time. If you are planning to implement one of these
frameworks, you will need to do your own due diligence to ensure you can get sup‐
port for it. In many cases, it may be worthwhile to reach out to the developers, and
determine their consulting rates so you can ensure priority access to their time
should you need it.

ari-py (and aioari) for Python
The ari-py framework was written by Digium in 2013–2014, and as of this writing
had not been updated since then. This framework builds on Asterisk’s Swagger.py cli‐
ent.

Shortly after the relase of ari-py, it was forked into the aioari project, which delivers
an asynchronous version of ari-py. This code has been more steadily updated since
then (although as of this writing had not been updated since early 2018). This frame‐
work should be included in your evaluation of a Python framework for ARI.

If you are looking to develop ARI applications in Python, one of these two frame‐
works may be what you are looking for. If you are looking to build a large ARI appli‐
cation, you will need to ensure that you have carefully tested the performance
implications of using Python for what you are doing.

Digium has provided samples for this framework (and others) at https://github.com/
asterisk/ari-examples.

node-ari-client
For the JavaScript folks, there is a Node.js-based ARI framework that was first
released in early 2014, and as of this writing is still being updated. It is based on the
automatically generated API that comes from swagger-js.

For JavaScript/Node developers, this is where you’ll want to start: https://github.com/
asterisk/node-ari-client.

Digium has provided samples for this framework (and others) at https://github.com/
asterisk/ari-examples.

AsterNET.ARI
The Windows folks are not left out. The AsterNET.ARI project delivers a framework
for .NET that augments the AsterNET project (which also includes integration with
Asterisk’s FastAGI and AMI interfaces).

Frameworks | 339

https://github.com/asterisk/ari-py
https://pypi.org/project/aioari/
https://github.com/asterisk/ari-examples
https://github.com/asterisk/ari-examples
https://github.com/asterisk/node-ari-client
https://github.com/asterisk/node-ari-client
https://github.com/asterisk/ari-examples
https://github.com/asterisk/ari-examples

You can find the repository for AsterNET.ARI here: https://github.com/skrusty/Aster
NET.ARI.

Digium has provided samples for this framework (and others) at https://github.com/
asterisk/ari-examples.

ari4java
The ari4java project is one of the most actively developed ARI frameworks we have
found. It has been developed since 2013, and the repository was receiving commits at
the same time as this writing.

If Java is your language, you will want to check out the ari4java repository at https://
github.com/l3nz/ari4java.

phpari
The phpari project delivers an ARI framework for the PHP community. It has been
developed since 2014, and the repository was still being updated as of this writing.

For the PHP fans, you’ll find the repository at https://github.com/greenfieldtech-nirs/
phpari.

aricpp
If you’re used to writing in C++, there’s even an ARI project for you. The aricpp
framework consists of header files only, so you can build its functions right into what‐
ever you’re developing. This library has also been performance tested with SIPp, and
while we don’t have any numbers on that, it seems to us that a compiled framework
that has been performance tested is very much worth taking for a spin if you have the
right skills.

One of the newer of the ARI frameworks, this project benefits from regular updates.
Check it out at https://github.com/daniele77/aricpp.

asterisk-ari-client
Yes, Ruby also has an ARI framework.

You can find it at https://github.com/svoboda-jan/asterisk-ari.

Conclusion
ARI provides a current-generation RESTful API that can be used to develop commu‐
nications applications using popular development languages. Through it, an experi‐
enced developer can harness the power of the most successful PBX platform in
history. This allows next-generation communications applications to interact with

340 | Chapter 19: Asterisk REST Interface

https://github.com/skrusty/AsterNET.ARI
https://github.com/skrusty/AsterNET.ARI
https://github.com/asterisk/ari-examples
https://github.com/asterisk/ari-examples
https://github.com/l3nz/ari4java
https://github.com/l3nz/ari4java
https://github.com/greenfieldtech-nirs/phpari
https://github.com/greenfieldtech-nirs/phpari
https://github.com/daniele77/aricpp
https://github.com/svoboda-jan/asterisk-ari

legacy telecommunications protocols and applications, which could prove very useful
as we are increasingly called to bridge the gap between past, present, and future com‐
munications technologies.

Conclusion | 341

CHAPTER 20

WebRTC

The Web as I envisaged it, we have not seen it yet. The future is still so much bigger than
the past.

—Tim Berners-Lee

The Browser as a Telephone
There is a new revolution brewing in internet communication, and while it isn’t likely
to make the news the way the open source telecom revolution did, it very definitely
has the potential to quietly replace the heart of every current communication applica‐
tion.

Today, the internet offers a profusion of closed source conferencing applications.
They all do roughly the same thing, and yet most require proprietary software to be
installed before you can use them (which of course will helpfully attempt to remain
loaded in the memory of your computer). Each delivers nothing much different than
the last conferencing application you were forced to install (for some other meeting
you’ve attended). Each of these companies is hoping that it will rise above the others
to dominate the space. Meanwhile, WebRTC is quietly creating a standard that com‐
pellingly eliminates all concepts of proprietary multimedia communications, which
hopefully will eliminate some of this narrow-minded, walled-garden thinking, and
open up communications to some actual innovation.

For as long as there have been web browsers, attempts have been made to integrate
multimedia into the internet experience. This has proven more difficult than
expected, so that today, it is still common for the telephone to be a separate applica‐
tion (or, of course, a separate device altogether).

WebRTC promises to change all that.

343

In this chapter, we’re going to get you up and running with Asterisk’s interpretation of
WebRTC. By no means should this be considered a comprehensive introduction; all
we’re going to have time to do is take you through the creation of a bog-standard
video conferencing application, which is essentially the “Hello World” application
that everyone uses to get started with WebRTC. It’s a great way to kick the tires, but
it’s important to understand that WebRTC is going to be so much more.

Preliminary Knowledge
Before diving into WebRTC, there are some underlying technologies that have to
come together.

First and foremost: if you’re serious about getting into WebRTC, you will need access
to a web developer, and ideally somebody who has a deep knowledge of the various
languages, protocols, and technologies that make the internet work. WebRTC is web
development, and it is bleeding-edge technology, and you are going to run into
incompatibilities, browser-specific issues, undiscovered bugs, incomplete documenta‐
tion, and other sorts of challenges inherent in new technology. If you are not a full-
stack developer with solid networking and Linux skills, you’re going to have a very
steep learning curve with WebRTC!

Probably Tsahi Levent-Levi said it best:

WebRTC is a technology that is part VoIP and part Web. ... In order to really be a profes‐
sional WebRTC developer, you need to be able to grasp two very different technical
domains:

1. You need to know how VoIP works. How media runs over the network in real time
(things like RTP, RTCP, Jitter Buffer, and lots of other acronyms).

2. You need to know and understand how to develop for the web—frontend and back‐
end (full stack developer anyone?). JavaScript is a given. Bonus points for Node.js.

So, yeah, you’ll want to be a full-stack developer, plus a VoIP guru, if you want to
comfortably dive into WebRTC. We say this not to scare you off, but rather to assure
you that if you find it challenging, it’s not due to any shortcoming on your part, but
simply because this is complex, multilayered stuff.

Having said all that, it is possible to get a taste of WebRTC without all of that, and in
this chapter we’re going to configure Asterisk to support WebRTC, and run a pre-
built web application that will demonstrate the basic audio/video capabilities of
Asterisk’s WebRTC implementation. You’re still going to have that steep learning
curve, but hopefully we’ve delivered a foundation on which to build.

344 | Chapter 20: WebRTC

1 Note that you can configure the PJSIP channel driver completely using the config file, but in this book we’re
only doing so where necessary, and otherwise are using the database for PJSIP channel configuration.

Configuring Asterisk for WebRTC
To pass calls through Asterisk using WebRTC, the PJSIP channel driver must be used.
The configuration will be similar to that of standard SIP telephones, but not identical.

For this we’ll need a transport type, which we’ll add to the /etc/asterisk/pjsip.conf file:
[transport-udp]
type=transport
protocol=udp
bind=0.0.0.0

[transport-tls]
type=transport
protocol=tls
bind=0.0.0.0
cert_file=/home/asterisk/certs/self-signed.crt
priv_key_file=/home/asterisk/certs/self-signed.key

That’s all for editing the config file. For the rest of the PJSIP changes, we’ll be using
the database.1

We’re going to create two new subscribers named WS_PHONE_A and WS_PHONE_B. The
WebRTC client will use the credentials for these endpoints to communicate with the
PJSIP channel driver in Asterisk (i.e., to make phone calls).

Two records need to be added to the ps_aors table:
INSERT into asterisk.ps_aors
(id, max_contacts)
values ('WS_PHONE_A', 5),
 ('WS_PHONE_B', 5)
;

Corresponding ps_auth records are needed:
INSERT into asterisk.ps_auths
(id, auth_type, password, username)
values ('WS_PHONE_A','userpass','spiderwrench','WS_PHONE_A'),
 ('WS_PHONE_B','userpass','arachnoratchet','WS_PHONE_B')
;

We then create the endpoints themselves:
INSERT INTO asterisk.ps_endpoints
 (id,aors,auth,context,
 transport,dtls_auto_generate_cert,webrtc,disallow,allow)
VALUES
 ('WS_PHONE_A','WS_PHONE_A','WS_PHONE_A','sets',
 'transport-tls','yes','yes','all','vp8,opus,ulaw'),
 ('WS_PHONE_B','WS_PHONE_B','WS_PHONE_B','sets',
 'transport-tls','yes','yes','all','vp8,opus,ulaw');

Configuring Asterisk for WebRTC | 345

In Chapter 4 we already generated our certificates, so we should be able to use them
here as well.

$ ls -l /home/asterisk/certs/

That should take care of the channel configuration for our WebRTC example.

We’ll now need to configure Asterisk’s web server to handle HTTPS.
$ sudo vim /etc/asterisk/http.conf

[general]
enabled=yes
bindaddr=0.0.0.0
bindport=8088
tlsenable=yes
tlsbindaddr=0.0.0.0:8089
tlscertfile=/home/asterisk/certs/self-signed.crt
tlsprivatekey=/home/asterisk/certs/self-signed.key

Save and restart Asterisk.
$ sudo service asterisk restart

Verify that Asterisk is now running not just an HTTP server, but also HTTPS:
*CLI> http show status

HTTP Server Status:
Server Enabled and Bound to 0.0.0.0:8088
HTTPS Server Enabled and Bound to 0.0.0.0:8089

Enabled URI's:
/ws => Asterisk HTTP WebSocket

You’re looking in the output for HTTPS to verify that the certificates are working, and
you also want to see /ws as that indicates the WebSockets components have loaded.

Hint: if it’s not working, always check /var/log/messages for any
SELinux messages.

$ sudo grep sealert /var/log/messages

The firewall isn’t currently configured for those ports, so we’ll need to add a few rules
to handle that:

$ sudo firewall-cmd --zone=public --add-port=8088/tcp
$ sudo firewall-cmd --zone=public --add-port=8088/tcp --permanent
$ sudo firewall-cmd --zone=public --add-port=8089/tcp
$ sudo firewall-cmd --zone=public --add-port=8089/tcp --permanent
$ sudo firewall-cmd --zone=public --add-port=5061/udp
$ sudo firewall-cmd --zone=public --add-port=5061/udp --permanent

At this point you need to fire up your web browser and make a connection. Your
browser will complain about the connection if you are using a self-signed certificate,

346 | Chapter 20: WebRTC

but it will allow you to make the connection. This is a critical step, as you need to tell
your browser to store the certificate permanently, so that WebRTC can use the Web‐
Socket connection. The following URL will connect you:

https://ip-of-asterisk-server:8089/ws

If you get to an Upgrade Required message, that’s a good thing. It means that the con‐
nection is good, and that’s just the protocol telling you there’s not enough technology
being served up for this to be an actual WebSocket connection. We’re where we need
to be.

Of course the next thing is to actually experience a WebRTC session through this
environment we’ve configured, and in order to test all this out, we’re going to need to
fire up our browser and load some sort of WebRTC client into it. The next section
will do just that.

Cyber Mega Phone
In order to see WebRTC in action on your Asterisk system, you’ll need something
running on your browser. The easiest way to see this in action is to take Digium’s
Cyber Mega Phone for a spin. This will allow you to quickly set up a working
WebRTC session using Asterisk.

First up, since WebRTC requires the use of TLS (it’s not optional, as it is with SIP),
we’re going to nag you one more time to verify that your certificates are installed. If
you haven’t yet done so, now is the time to work through Chapter 4, or there is also a
script provided as part of the Asterisk source code that will generate the keys and cer‐
tificates (you’ll find it in the Asterisk source code under the /home/astmin/src/
asterisk-16.<TAB>/contrib/scripts/ folder. The script is named ast_tls_cert, and it is
documented on the Asterisk wiki.

OK, now we need a tiny bit of dialplan for our WebRTC calls to arrive at:
$ vim /etc/asterisk/extensions.conf

exten => 246,1,Noop()
 same => n,Answer()
 same => n,Wait(0.5)
 same => n,StreamEcho(4)
 same => n,Hangup()

The Cyber Mega Phone itself is found at GitHub, under the Asterisk account.

You can download the code and run it from your local PC, or you can load it into a
web server and serve it from there.

Let’s serve it up from our Asterisk server:
$ cd /var/lib/asterisk/static-http

$ sudo git clone https://github.com/asterisk/cyber_mega_phone_2k.git

Cyber Mega Phone | 347

https://github.com/asterisk/cyber_mega_phone_2k

$ sudo chown -R asterisk:asterisk cyber_mega_phone_2k ; sudo chmod 755 cyber_mega_phone_2k

We’ll need a small change to the configuration of Asterisk’s HTTP server to allow it to
serve static content.

$ sudo vim /etc/asterisk/http.conf

[general]
enabled=yes
bindaddr=0.0.0.0
bindport=8088
tlsenable=yes
tlsbindaddr=0.0.0.0:8089
tlscertfile=/home/asterisk/certs/asterisk.crt
tlsprivatekey=/home/asterisk/certs/asterisk.key
enablestatic=yes
redirect=/cmp2k /static/cyber_mega_phone_2k/index.html

Save and reload the http module from your Asterisk console:
*CLI> module reload http

Now, using your browser, you can navigate over to your new WebRTC client app:
https://your asterisk server:8089/cmp2k

If all went as planned, you should see something like Figure 20-1.

Figure 20-1. Cyber Mega Phone 2K

Press the Account button, and input the credentials for your WebRTC user (see
Figure 20-2).

Figure 20-2. WebRTC account credentials

Once you’ve input the details relevant to your system, press X to save and close.

Now, you can press the Connect button, and if all went well your WebRTC client
should register to Asterisk (this would be a good time to monitor the Asterisk console
to see what’s happening and whether there are any errors).

348 | Chapter 20: WebRTC

If you press the Call button now, you should end up connected via WebRTC, and
you’ll see two windows (Figure 20-3). One of them is your local video, and the other
is reflected back from the far end (i.e., it is simulating another user by echoing back
what you sent). If all your audio is working too, you might even get some feedback
noise!

Figure 20-3. Echo application with video

You see that there is a Remote Video window alongside the Local Video window. We
haven’t achieved much to brag about, perhaps, but your Asterisk system is handling
WebRTC, so smile and take a break. You’ve earned it.

More About WebRTC
The WebRTC ecosystem is rapidly evolving, and what is true as of this writing may
not be true in the near future. We have found the following resources to be very
helpful:

• Tsahi Levant-Levi is involved in many different WebRTC initiatives, and he gen‐
erously shares knowledge relating to how to learn WebRTC. Check out his blog‐
geek.me website. Follow him.

• A group of folks under the Kranky Geek handle produced some WebRTC confer‐
ences, and shared many useful videos on YouTube. The YouTube channel Kranky
Geek is where you’ll find them.

• Get familiar with the various signaling protocols that are popular with WebRTC:
SIP, VIRTO (from the FreeSwitch project), XMPP, and even JSON.

• Look up various WebRTC signaling libraries. Currently, the popular ones
include: sipML5 (arguably the very first WebRTC library) and JsSIP (plus a fork
of JsSIP named SIP.js).

More About WebRTC | 349

http://bit.ly/31DAGVx
http://bit.ly/31DAGVx

• webrtc.org is the official home of WebRTC, and certainly deserves some of your
time. Check out the Getting Started page.

• O’Reilly’s online learning platform has a few videos that are worth a watch. For
any books and videos, keep an eye on the publish date, since anything older than
a year or two is likely to be out of date—WebRTC is still under rapid develop‐
ment.

There is so much more to learn, but we’re out of pages here.

Conclusion
WebRTC is exciting and important, and it’s very likely that VoIP developers and inte‐
grators are going to need to be familiar with this technology if they are to keep their
skill sets relevant. As of this writing, WebRTC is still very much a work in progress.
As with any exploration of new frontiers, those who blaze a trail must be creative,
persistent, optimistic, and tough.

Asterisk could be a useful component in a future-ready VoIP environment, serving at
least as a bridge between next-generation WebRTC products and old-school
telecommunications.

350 | Chapter 20: WebRTC

https://webrtc.org/start/

CHAPTER 21

System Monitoring and Logging

Chaos is inherent in all compounded things. Strive on with diligence.
—The Buddha

Asterisk comes with several subsystems that allow you to obtain detailed information
about the workings of your system. Whether for troubleshooting or for tracking
usage for billing or staffing purposes, Asterisk’s various monitoring modules can help
you keep tabs on the inner workings of your system.

logger.conf
When troubleshooting issues in your Asterisk system, you will find it very helpful to
refer to some sort of historical record of what was going on in the system at the time
the reported issue occurred. The parameters for the storing of this information are
defined in /etc/asterisk/logger.conf.

Ideally, you might want the system to store a record of each and every thing it does.
However, there is a cost to doing this. On a busy system, with full debug logging
enabled, a large amount of data will be generated. Although storage is far cheaper
today than it was when Asterisk was young, it may still be necessary to achieve a bal‐
ance between detail and storage requirements.

The /etc/asterisk/logger.conf file allows you to define all sorts of different levels of log‐
ging, to multiple files if desired. This flexibility is excellent, but it can also be
confusing.

The format of an entry in the logger.conf file is as follows:
filename => type[,type[,type[,...]]]

351

We have already been working with the logger.conf file, so you will already have
entries in it similar to the following:

[general]
exec_after_rotate=gzip -9 ${filename}.2;

[logfiles]
;debug => debug
;console => notice,warning,error,verbose
console => notice,warning,error,debug
messages => notice,warning,error
full => notice,warning,error,debug,verbose,dtmf,fax
;full-json => [json]debug,verbose,notice,warning,error,dtmf,fax
;syslog keyword : This special keyword logs to syslog facility
;syslog.local0 => notice,warning,error

If you make any changes to this file, you will need to reload the logger by issuing the
following command from the shell:

$ sudo touch full messages
$ chown asterisk:asterisk /var/log/asterisk/*
$ asterisk -rx 'logger reload'

or from the Asterisk CLI:
*CLI> logger reload

Verbose Logging: Useful but Dangerous
We struggled with whether to recommend adding the following line to your log‐
ger.conf file:

verbose => notice,warning,error,verbose

This is quite possibly one of the most useful debugging tools you have when building
and troubleshooting a dialplan, and therefore it is highly recommended. The danger
comes from the fact that if you forget to disable this when you are done with your
debugging, you will have left a ticking time bomb in your Asterisk system, which will
slowly fill up the hard drive and kill your system one day, several months or years
from now, when you are least expecting it.

Use it. It’s fantastic. Just remember that you will need to manage your storage to
ensure your logfiles don’t fill up your drive!

You can specify any filename you want, but the special filename console will in fact
print the output to the Asterisk CLI, and not to any file on the hard drive. All other
filenames will be stored in the filesystem in the directory /var/log/asterisk. The log‐
ger.conf types are outlined in Table 21-1.

352 | Chapter 21: System Monitoring and Logging

Table 21-1. logger.conf types

Type Description
notice You will see a lot of these during a reload, but they will also happen during normal call flow. A notice is simply

any event that Asterisk wishes to inform you of.
warning A warning represents a problem that could be severe enough to affect a call (including disconnecting a call

because call flow cannot continue). Warnings need to be addressed.
error Errors represent significant problems in the system that must be addressed immediately.
debug Debugging is only useful if you are troubleshooting a problem with the Asterisk code itself. You would not use

debug to troubleshoot your dialplan, but you would use it if the Asterisk developers asked you to provide logs
for a problem you were reporting. Do not use debug in production, as the amount of detail stored can fill up a
hard drive in a matter of days.a

verbose This is one of the most useful of the logging types, but it is also one of the more risky to leave unattended, due
to the possibility of the output filling your hard drive.b

dtmf Logging DTMF can be helpful if you are getting complaints that calls are not routing from the automated
attendant correctly.

fax This type of logging causes fax-related messages from the fax technology backend (res_fax_spandsp or
res_fax_digium) to be logged to the fax logger.

* This will log everything (and we mean everything). Do not use this unless you understand the implications of
storing this amount of data. It will not end well.

a This is not theory. It has happened to us. It was not fun.
b It’s not as risky as debug, since it’ll take months to fill the hard drive, but the danger is that it will happen, say, a year later
when you’re on summer vacation, and it will not immediately be obvious what the problem is. Not fun.

There is a peculiarity in Asterisk’s logging system that will cause
you some consternation if you are unaware of it. The level of log‐
ging for the verbose and debug logging types is tied to the verbo‐
sity as set in the console. This means that if you are logging to a file
with the verbose or debug type, and somebody logs into the CLI
and issues the command core set verbose 0, or core set debug
0, the logging of those details to your logfile will stop.

Reviewing Asterisk Logs
Searching through logfiles can be a challenge. The trick is to be able to filter what you
are seeing so that you are only presented with information that is relevant to what
you are searching for.

To start with, you will need to have an approximate idea of when the trouble you are
looking for occurred. Once you are oriented to the approximate time, you will need
to find clues that will help you to identify the call in question. Obviously, the more
information you have about the call, the faster you will be able to pin it down.

Asterisk 11 introduced a logging feature that helps with debugging a specific call. Log
entries associated with a call now include a call ID. This call ID can be used with grep

logger.conf | 353

to find all log entries associated with that call. In the following example log entry, the
call ID is C-00000004:

[Dec 4 08:22:32] WARNING[14199][C-00000004]: app_voicemail.c:6286
leave_voicemail: No entry in voicemail config file for '234123452'

In earlier versions of Asterisk, there is another trick you can use. If, for example, you
are doing verbose logging, you should note that each distinct call has a thread identi‐
fier, which, when used with grep, can often help you to filter out everything that does
not relate to the call you are trying to debug. For example, in the following verbose
log, we have more than one call in the log, and since the calls are happening at the
same time, it can be very confusing to trace one call:

$ tail -1000 verbose
[Mar 11 …] VERBOSE[31362] logger.c: -- IAX2/shifteight-4 answered Zap/1-1
[Mar 11 …] VERBOSE[2973] logger.c: -- Starting simple switch on 'Zap/1-1'
[Mar 11 …] VERBOSE[31362] logger.c: == Spawn extension (shifteight, s, 1)
exited non-zero on 'Zap/1-1'
[Mar 11 …] VERBOSE[2973] logger.c: -- Hungup 'Zap/1-1'
[Mar 11 …] VERBOSE[3680] logger.c: -- Starting simple switch on 'Zap/1-1'
[Mar 11 …] VERBOSE[31362] logger.c: -- Hungup 'Zap/1-1'

To filter on one call specifically, we could grep on the thread ID. For example:
$ grep 31362 verbose

would give us:
[Mar 11 …] VERBOSE[31362] logger.c: -- IAX2/shifteight-4 answered Zap/1-1
[Mar 11 …] VERBOSE[31362] logger.c: == Spawn extension (shifteight, s, 1)
exited non-zero on 'Zap/1-1'
[Mar 11 …] VERBOSE[31362] logger.c: -- Hungup 'Zap/1-1'

This method does not guarantee that you will see everything relating to one call, since
a call could in theory spawn additional threads, but for basic dialplan debugging we
find this approach to be very useful when the call IDs from Asterisk 11 are not
available.

Logging to the Linux syslog Daemon
Linux contains a very powerful logging engine, which Asterisk can take advantage of.
While a discussion of all the various flavors of syslog and all the possible ways to
handle Asterisk logging would be beyond the scope of this book, suffice it to say that
if you want to have Asterisk send logs to the syslog daemon, you simply need to
specify the following in your /etc/asterisk/logger.conf file:

syslog.local0 => notice,warning,error ; or whatever type(s) you want to log

354 | Chapter 21: System Monitoring and Logging

1 Which will normally be found at /etc/syslog.conf.

2 And rsyslog, syslog-ng, and what-all-else.

You will need a designation in your syslog configuration file1 named local0, which
should look something like:

local0.* /var/log/asterisk/syslog

You can use local0 through local7 for this, but check your
syslog.conf file to ensure that nothing else is using one of those
syslog channels.

The use of syslog2 allows for much more powerful logging, but it also requires more
knowledge than simply allowing Asterisk to log to files. It’s mostly going to be useful
if you’re already collecting other logs on the system into some centralized syslog
server.

Verifying Logging
You can view the status of all your logger.conf settings through the Asterisk CLI by
issuing the command:

*CLI> logger show channels

You should see output similar to:
Channel Type Status Configuration
------- ---- ------ -------------
syslog.local0 Syslog Enabled - NOTICE WARNING ERROR VERBOSE
/var/log/asterisk/verbose File Enabled - NOTICE WARNING ERROR VERBOSE
/var/log/asterisk/messages File Enabled - NOTICE WARNING ERROR
 Console Enabled - NOTICE WARNING ERROR DTMF=

Log Rotation
There is some log rotation support built into Asterisk. Log rotation will be done in
the following cases:

• If you run the logger rotate Asterisk CLI command:
*CLI> logger rotate

• During a configuration reload if any existing logfiles are greater than 1 GB in size
• If Asterisk receives the SIGXFSZ signal, indicating that a file it was writing to is

too large

logger.conf | 355

Call Detail Records
The CDR system in Asterisk is used to log the history of calls in the system. In some
deployments, these records are used for billing purposes. In others, call records are
used for analyzing call volumes over time. They can also be used as a debugging tool
by Asterisk administrators.

CDR Contents
A CDR has a number of fields that are included by default. Table 21-2 lists them.

Table 21-2. Default CDR fields

Option Value/example Notes
accountcode 12345 An account ID. This field is user-defined and is empty by default.
src 12565551212 The calling party’s caller ID number. It is set automatically and is read-

only.
dst 102 The destination extension for the call. This field is set automatically

and is read-only.
dcontext PublicExtensions The destination context for the call. This field is set automatically and is

read-only.
clid "Big Bird"

<12565551212>

The full caller ID, including the name, of the calling party. This field is
set automatically and is read-only.

channel SIP/0004F2040808-

a1bc23ef

The calling party’s channel. This field is set automatically and is read-
only.

dstchannel SIP/

0004F2046969-9786b0b0

The called party’s channel. This field is set automatically and is read-
only.

lastapp Dial The last dialplan application that was executed. This field is set
automatically and is read-only.

lastdata SIP/

0004F2046969,30,tT

The arguments passed to the lastapp. This field is set automatically
and is read-only.

start 2010-10-26

12:00:00

The start time of the call. This field is set automatically and is read-
only.

answer 2010-10-26

12:00:15

The answered time of the call. This field is set automatically and is
read-only.

end 2010-10-26

12:03:15

The end time of the call. This field is set automatically and is read-only.

duration 195 The number of seconds between the start and end times for the
call. This field is set automatically and is read-only.

billsec 180 The number of seconds between the answer and end times for the
call. This field is set automatically and is read-only.

356 | Chapter 21: System Monitoring and Logging

Option Value/example Notes

disposition ANSWERED An indication of what happened to the call. This may be NO ANSWER,
FAILED, BUSY, ANSWERED, or UNKNOWN.

amaflags DOCUMENTATION The Automatic Message Accounting (AMA) flag associated with this
call. This may be one of the following: OMIT, BILLING,
DOCUMENTATION, or Unknown.

userfield PerMinuteCharge:0.02 A general-purpose user field. This field is empty by default and can be
set to a user-defined string.a

uniqueid 1288112400.1 The unique ID for the src channel. This field is set automatically and is
read-only.

a The userfield is not as relevant now as it used to be. Custom CDR variables are a more flexible way to get custom data
into CDRs.

You can access all fields of the CDR record in the Asterisk dialplan by using the CDR()
function. The CDR() function is also used to set the fields of the CDR that are user-
defined:

exten => 115,1,Verbose(Call start time: ${CDR(start)})
 same => n,Set(CDR(userfield)=zombie pancakes)

In addition to the fields that are always included in a CDR, it is possible to add cus‐
tom fields. You do this in the dialplan by using the Set() application with the CDR()
function:

exten => 115,1,NoOp()
 same => n,Set(CDR(mycustomfield)=coffee)
 same => n,Verbose(I need some more ${CDR(mycustomfield)})

If you choose to use custom CDR variables, make sure that the
CDR backend that you choose is capable of logging them.

To view the built-in documentation for the CDR() function, run the following com‐
mand at the Asterisk console:

*CLI> core show function CDR

In addition to the CDR() function, some dialplan applications may be used to influ‐
ence CDR records. We’ll look at these next.

Dialplan Applications
A few dialplan applications can be used to influence CDRs for the current call. To get
a list of the CDR applications that are loaded into the current version of Asterisk, we
can use the following CLI command:

Call Detail Records | 357

*CLI> core show applications like CDR
 -= Matching Asterisk Applications =-
 ForkCDR: Forks the Call Data Record.
 NoCDR: Tell Asterisk to not maintain a CDR for the current call
 ResetCDR: Resets the Call Data Record.
 -= 3 Applications Matching =-

Each application has documentation built into the Asterisk application, which can be
viewed using the following command:

*CLI> core show application <application name>

cdr.conf
The cdr.conf file has a [general] section that contains options that apply to the entire
CDR system. Additional optional sections may exist in this file that apply to specific
CDR logging backend modules. Table 21-3 lists the options available in the
[general] section.

Table 21-3. cdr.conf [general] section

Option Value/example Notes
enable yes Enable CDR logging. The default is yes.
unanswered no Log unanswered calls. Normally, only answered calls result in a CDR. Logging all call

attempts can result in a large number of extra call records that most people do not
care about. The default value is no.

end before

hexten

no Close out CDRs before running the h extension in the Asterisk dialplan. Normally,
CDRs are not closed until the dialplan is completely finished running. The default
value is no.

initiated

seconds

no When calculating the billsec field, always round up. For example, if the
difference between when the call was answered and when the call ended is 1 second
and 1 microsecond, billsec will be set to 2 seconds. This helps ensure that
Asterisk’s CDRs match the behavior used by telcos. The default value is no.

batch no Queue up CDRs to be logged in batches instead of logging synchronously at the end
of every call. This prevents CDR logging from blocking the completion of the call
teardown process within Asterisk. Using batch mode can be incredibly useful when
working with a database that may be slow to process requests. The default value is
no, but we recommend turning it on.a

size 100 Set the number of CDRs to queue up before they are logged during batch mode. The
default value is 100.

time 300 Set the maximum number of seconds that CDRs will wait in the batch queue before
being logged. The CDR batch-logging process will run at the end of this time period,
even if size has not been reached. The default value is 300 seconds.

scheduler

only

no Set whether CDR batch processing should be done by spawning a new thread, or
within the context of the CDR batch scheduler. The default value is no, and we
recommend not changing it.

358 | Chapter 21: System Monitoring and Logging

Option Value/example Notes
safe shutdown yes Block Asterisk shutdown to ensure that all queued CDR records are logged. The

default is yes, and we recommend leaving it that way, as this option prevents
important data loss.

a The disadvantage of enabling this option is that if Asterisk were to crash or die for some reason, the CDR records would be
lost, as they are only stored in memory while the Asterisk process exists. See safeshutdown for more information.

Backends
Asterisk CDR backend modules provide a way to log CDRs. Most CDR backends
require specific configuration to get them going.

cdr_adaptive_odbc

As the name suggests, the cdr_adaptive_odbc module allows CDRs to be stored in a
database through ODBC. The “adaptive” part of the name refers to the fact that it
works to adapt to the table structure: there is no static table structure that must be
used with this module. When the module is loaded (or reloaded), it reads the table
structure. When logging CDRs, it looks for a CDR variable that matches each column
name. This applies to both the built-in CDR variables and custom variables. If you
want to log the built-in channel CDR variable, just create a column called channel.

Adding custom CDR content is as simple as setting it in the dialplan. For example, if
we wanted to log the User-Agent that is provided by a SIP device, we could add that
as a custom CDR variable:

exten => 105,n,Set(CDR(useragent)=${CHANNEL(useragent)})

To have this custom CDR variable inserted into the database by cdr_adaptive_odbc,
all we have to do is create a column called useragent.

Multiple tables may be configured in the cdr_adaptive_odbc configuration file. Each
goes into its own configuration section. The name of the section can be anything; the
module does not use it. Here is an example of a simple table configuration:

[mytable]

connection = asterisk
table = asterisk_cdr

A more detailed example of setting up a database for logging CDRs can be found in
“Storing Call Detail Records” on page 281.

Table 21-4 lists the options that can be specified in a table configuration section in the
cdr_adaptive_odbc.conf file.

Call Detail Records | 359

Table 21-4. cdr_adaptive_odbc.conf table configuration options

Option Value/example Notes
connection pgsql1 The database connection to be used. This is a reference to the configured connection in

res_odbc.conf. This field is required.
table asterisk_cdr The table name. This field is required.

usegmtime no Indicates whether to log timestamps using GMT instead of local time. The default value
for this option is no.

In addition to the key/value pair fields that are shown in the previous table, cdr_adap‐
tive_odbc.conf allows for a few other configuration items. The first is a column alias.
Normally, CDR variables are logged to columns of the same name. An alias allows
the variable name to be mapped to a column with a different name. The syntax is:

alias CDR variable => column name

Here is an example column mapping using the alias option:
alias src => source

It is also possible to specify a content filter. This allows you to specify criteria that
must match for records to be inserted into the table. The syntax is:

filter CDR variable => content

Here is an example content filter:
filter accountcode => 123

Finally, cdr_adaptive_odbc.conf allows static content for a column to be defined. This
can be useful when combined with a set of filters. This static content can help dif‐
ferentiate records that were inserted into the same table by different configuration
sections. The syntax for static content is:

static "Static Content Goes Here" => column name

Here is an example of specifying static content to be inserted with CDRs:
static "My Content" => my_identifier

cdr_csv

The cdr_csv module is a very simple CDR backend that logs CDRs into a CSV
(comma-separated values) file. The file is /var/log/asterisk/cdr-csv/Master.csv. As long
as CDR logging is enabled in cdr.conf and this module has been loaded, CDRs will be
logged to the Master.csv file. We recommend that regardless of any other CDR back‐
end you choose to configure, you leave this configured as well, as it will serve as an
excellent backup should you lose other CDR data due to network or related issues.

360 | Chapter 21: System Monitoring and Logging

While no options are required to get this module working, there are some options
that customize its behavior. These options, listed in Table 21-5, are placed in the
[csv] section of cdr.conf.

Table 21-5. cdr.conf [csv] section options

Option Value/example Notes
usegmtime no Log timestamps using GMT instead of local time. The default is no.
loguniqueid no Log the uniqueid CDR variable. The default is no.
loguserfield no Log the userfield CDR variable. The default is no.
accountlogs yes Create a separate CSV file for each different value of the accountcode CDR variable.

The default is yes.

The order of CDR variables in CSV files created by the cdr_csv module is:
<accountcode>,<src>,<dst>,<dcontext>,<clid>,<channel>,<dstchannel>,<lastapp>, \
 <lastadata>,<start>,<answer>,<end>,<duration>,<billsec>,<disposition>, \
 <amaflags>[,<uniqueid>][,<userfield>]

Place the following lines into /etc/asterisk/cdr.conf:
[general]
enable=yes

[csv]
usegmtime=yes ; log date/time in GMT. Default is "no"
loguniqueid=yes ; log uniqueid. Default is "no"
loguserfield=yes ; log user field. Default is "no"
accountlogs=yes ; create separate log file for each account code. Default is "yes"
;newcdrcolumns=yes ; Enable logging of post-1.8 CDR columns (peeraccount,linkedid,sequence)
 ; Default is "no".

Save it, chown it, and reload the CDR module.
$ chown asterisk:asterisk /etc/asterisk/cdr.conf

$ sudo asterisk -rx 'module reload cdr'

cdr_custom
This CDR backend allows for custom formatting of CDR records in a logfile. This
module is most commonly used for customized CSV output. The configuration file
used for this module is /etc/asterisk/cdr_custom.conf. A single section called
[mappings] should exist in this file. The [mappings] section contains mappings
between a filename and the custom template for a CDR. The template is specified
using Asterisk dialplan functions.

The following example shows a sample configuration for cdr_custom that enables a
single CDR logfile, Master.csv. This file will be created as /var/log/asterisk/cdr-custom/
Master.csv. The template that has been defined uses both the CDR() and CSV_QUOTE()
dialplan functions. The CDR() function retrieves values from the CDR being logged.

Call Detail Records | 361

The CSV_QUOTE() function ensures that the values are properly escaped for the CSV
file format:

[mappings]

Master.csv => ${CSV_QUOTE(${CDR(clid)})},${CSV_QUOTE(${CDR(src)})},
 ${CSV_QUOTE(${CDR(dst)})},${CSV_QUOTE(${CDR(dcontext)})},
 ${CSV_QUOTE(${CDR(channel)})},${CSV_QUOTE(${CDR(dstchannel)})},
 ${CSV_QUOTE(${CDR(lastapp)})},${CSV_QUOTE(${CDR(lastdata)})},
 ${CSV_QUOTE(${CDR(start)})},${CSV_QUOTE(${CDR(answer)})},
 ${CSV_QUOTE(${CDR(end)})},${CSV_QUOTE(${CDR(duration)})},
 ${CSV_QUOTE(${CDR(billsec)})},${CSV_QUOTE(${CDR(disposition)})},
 ${CSV_QUOTE(${CDR(amaflags)})},${CSV_QUOTE(${CDR(accountcode)})},
 ${CSV_QUOTE(${CDR(uniqueid)})},${CSV_QUOTE(${CDR(userfield)})}

In the actual configuration file, the value in the Master.csv mapping
should be on a single line.

cdr_manager

The cdr_manager backend emits CDRs as events on the Asterisk Manager Interface
(AMI), which we discussed in detail in Chapter 17. This module is configured in
the /etc/asterisk/cdr_manager.conf file. The first section in this file is the [general]
section, which contains a single option to enable this module (the default value is no):

[general]

enabled = yes

The other section in cdr_manager.conf is the [mappings] section. This allows for
adding custom CDR variables to the manager event. The syntax is:

CDR variable => Header name

Here is an example of adding two custom CDR variables:
[mappings]

rate => Rate
carrier => Carrier

With this configuration in place, CDR records will appear as events on the manager
interface. To generate an example manager event, we will use the following dialplan
example:

exten => 110,1,Answer()
 same => n,Set(CDR(rate)=0.02)
 same => n,Set(CDR(carrier)=BS&S)
 same => n,Hangup()

362 | Chapter 21: System Monitoring and Logging

This is the command used to execute this extension and generate a sample manager
event:

*CLI> console dial 110@testing

Finally, this is an example manager event produced as a result of this test call:
Event: Cdr
Privilege: cdr,all
AccountCode:
Source:
Destination: 110
DestinationContext: testing
CallerID:
Channel: Console/dsp
DestinationChannel:
LastApplication: Hangup
LastData:
StartTime: 2010-08-23 08:27:21
AnswerTime: 2010-08-23 08:27:21
EndTime: 2010-08-23 08:27:21
Duration: 0
BillableSeconds: 0
Disposition: ANSWERED
AMAFlags: DOCUMENTATION
UniqueID: 1282570041.3
UserField:
Rate: 0.02
Carrier: BS&S

cdr_odbc
This module enables the legacy ODBC interface for CDR logging. New installations
should use cdr_adaptive_odbc instead.

cdr_sqlite
This module allows posting of CDRs to an SQLite database using SQLite version 2.
Unless you have a specific need for SQLite version 2 as opposed to version 3, we rec‐
ommend that all new installations use cdr_sqlite3_custom.

This module requires no configuration to work. If the module has been compiled and
loaded into Asterisk, it will insert CDRs into a table called cdr in a database located
at /var/log/asterisk/cdr.db.

cdr_sqlite3_custom
This CDR backend inserts CDRs into an SQLite database using SQLite version 3. The
database created by this module lives at /var/log/asterisk/master.db. This module
requires a configuration file, /etc/asterisk/cdr_sqlite3_custom.conf. The configuration
file identifies the table name, as well as customizes which CDR variables will be inser‐
ted into the database.

Call Detail Records | 363

cdr_syslog

This module allows logging of CDRs using syslog. To enable this, first add an entry
to the system’s syslog configuration file, /etc/syslog.conf. For example:

local4.* /var/log/asterisk/asterisk-cdr.log

The Asterisk module has a configuration file as well. Add the following section
to /etc/asterisk/cdr_syslog.conf:

[cdr]

facility = local4
priority = info
template = "We received a call from ${CDR(src)}"

Here is an example syslog entry using this configuration:
$ cat /var/log/asterisk/asterisk-cdr.log

Aug 12 19:17:36 pbx cdr: "We received a call from 2565551212"

Example Call Detail Records
We will use the cdr_custom module to illustrate some example CDR records for dif‐
ferent call scenarios. The configuration used for /etc/asterisk/cdr_custom.conf is
shown in “cdr_custom” on page 361.

Single-party call
In this example, we’ll show what a CDR looks like for a simple one-party call:

exten => 227,1,VoiceMailMain(@${GLOBAL(VOICEMAIL_CONTEXT)})

This is the CDR from /var/log/asterisk/cdr-custom/Master.csv that was created as a
result of calling this extension:

"","SOFTPHONE_A","227","sets","""101"" <SOFTPHONE_A>","PJSIP/SOFTPHONE_A-00000002",
"","Playback","hear-odd-noise",
"2019-03-04 02:31:39","2019-03-04 02:31:39","2019-03-04 02:31:42",
3,3,"ANSWERED","DOCUMENTATION","1551666699.4",""

Open it up in a spreadsheet and it’ll be lined up neatly.

Caveats
The CDR system in Asterisk works very well for fairly simple call scenarios. However,
as call scenarios get more complicated—involving calls to multiple parties, transfers,
parking, and other such features—the CDR system starts to fall short. Many users
report that the records do not show all the information that they expect. Many bug
fixes have been made to address some of the issues, but the cost of regressions or
changes in behavior when making changes in this area is very high, since these
records are used for billing.

364 | Chapter 21: System Monitoring and Logging

As a result, the Asterisk development team has become increasingly resistant to mak‐
ing additional changes to the CDR system. Instead, a new system, channel event log‐
ging (CEL), has been developed that is intended to help address logging of more
complex call scenarios. Bear in mind that call detail records are simpler and easier to
consume, though, so we still recommend using CDRs if they suit your needs.

Channel Event Logging
Channel event logging (CEL) provides a more flexible means of logging the details of
complex call scenarios. Instead of collapsing a call down to a single log entry, a series
of events are logged for the call. This provides a more accurate picture of what has
happened to the call, at the expense of a more complex log.

For more details on CEL, check out the Asterisk wiki.

Conclusion
Asterisk is very good at allowing you to keep track of many different facets of its
operation, from simple call detail records to full debugging of the running code. Take
a look in the source code directories, and you’ll find many more components than
we’ve had space to cover here. These various mechanisms will help you in your efforts
to manage your Asterisk PBX, and they represent one of the ways that Asterisk is
vastly superior to most (if not all) traditional PBXs.

Channel Event Logging | 365

https://wiki.asterisk.org

1 The real IP address has been replaced with 127.0.0.1 in the log entries.

CHAPTER 22

Security

We spend our time searching for security and hate it when we get it.
—John Steinbeck

Security for your Asterisk system is critical, especially if the system is exposed to the
internet. There is a lot of money to be made by attackers in exploiting systems to
make free phone calls. This chapter provides advice on how to provide stronger secu‐
rity for your VoIP deployment.

Scanning for Valid Accounts
If you expose your Asterisk system to the public internet, one of the things you will
almost certainly see is a scan for valid accounts. Example 22-1 contains log entries
from one of the authors’ production Asterisk systems.1 This scan began with checking
various common usernames, then later went on to scan for numbered accounts. It is
common for people to name SIP accounts the same as extensions on the PBX. This
scan takes advantage of that fact.

Use non-numeric usernames for your VoIP accounts to make them
harder to guess. For example, in this book we use the MAC address
of a SIP phone as its account name in Asterisk.

367

Example 22-1. Log excerpts from account scanning

[Aug 22 15:17:15] NOTICE[25690] chan_sip.c: Registration from
'"123"<sip:123@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found
[Aug 22 15:17:15] NOTICE[25690] chan_sip.c: Registration from
'"1234"<sip:1234@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found
[Aug 22 15:17:15] NOTICE[25690] chan_sip.c: Registration from
'"12345"<sip:12345@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found

...

[Aug 22 15:17:17] NOTICE[25690] chan_sip.c: Registration from
'"100"<sip:100@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer found
[Aug 22 15:17:17] NOTICE[25690] chan_sip.c: Registration from
'"101"<sip:101@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer found

The logs on any system will be full of intrusion attempts. This is simply the nature of
connecting systems to the internet. In this chapter, we will discuss some of the ways
to configure your system so that it will have robust mechanisms to deal with these
things.

Authentication Weaknesses
The first section of this chapter discussed scanning for usernames. Even if you have
usernames that are difficult to guess, it is critical that you have strong passwords as
well. If an attacker is able to obtain a valid username, they will likely attempt to brute-
force the password. Strong passwords make this much more difficult.

The default authentication scheme of the SIP protocol is weak. Authentication is done
using an MD5 challenge-and-response mechanism. If an attacker is able to capture
any call traffic, such as a SIP call made from a laptop on an open wireless network, it
will be much easier to work on brute-forcing the password, since it will not require
authentication requests to the server.

Use strong passwords. There are countless resources available on
the internet that help define what constitutes a strong password.
There are also many strong password generators available. Use
them!

Fail2ban
The previous two sections discussed attacks involving scanning for valid usernames
and brute-forcing passwords. Fail2ban is an application that can watch your Asterisk
logs and update firewall rules to block the source of an attack in response to too many
failed authentication attempts.

368 | Chapter 22: Security

http://www.fail2ban.org/wiki/index.php/Main_Page

Use Fail2ban when exposing Voice over IP services on untrusted
networks. It will automatically update the firewall rules to block the
sources of attacks.

Installation
Fail2ban is available as a package in many distributions. Alternatively, you can install
it from source by downloading it from the Fail2ban website. To install Fail2ban on
RHEL, you must have the EPEL repository enabled (which was handled during
Chapter 3). You can install Fail2ban by running the following command:

$ sudo yum install fail2ban

The installation of Fail2ban from a package will include a startup
script to ensure that it runs when the machine boots up. If you
install from source, make sure that you take the necessary steps to
ensure that Fail2ban is always running.

Configuration
First up, we’ll want to configure the security log in Asterisk, which Fail2ban is able to
make use of.

$ sudo vim /etc/asterisk/logger.conf

Uncomment the (or add a) line that reads security => security, and edit the date
format so Fail2ban understands the logfile.

[general]
exec_after_rotate=gzip -9 ${filename}.2;
dateformat = %F %T
[logfiles]
;debug => debug
security => security
;console => notice,warning,error,verbose
console => notice,warning,error,debug
messages => notice,warning,error
full => notice,warning,error,debug,verbose,dtmf,fax

Then reload the Asterisk logger:
$ sudo asterisk -rx 'logger reload'

Since current versions of Fail2ban already come with an Asterisk jail definition, all we
need to do is enable it:

The current best practice is to create a file /etc/fail2ban/jail.local for this purpose
(technically you can put it in /etc/fail2ban/jail.conf, but this is more likely to be
overwritten):

Fail2ban | 369

$ sudo vim /etc/fail2ban/jail.local

[asterisk]
enabled = true
filter = asterisk
action = iptables-allports[name=ASTERISK, protocol=all]
 sendmail[name=ASTERISK, dest=me@shifteight.org, sender=fail2ban@shifteight.org]
logpath = /var/log/asterisk/messages
 /var/log/asterisk/security
maxretry = 5
findtime = 21600
bantime = 86400

We’ve set up the ban for 24 hours, but you can do longer or shorter times as well if
you prefer (the bantime is defined in seconds, so calculate accordingly). Since most
attacking hosts move on after a few hours, there’s no harm in unblocking an IP after
24 hours. If the host attacks again, they’ll be blocked again.

Oh, you might also want to tell it to ignore your IP (or any other IP addresses that are
OK to receive connection attempts from). If you haven’t yet accidentally gotten your‐
self blocked because you were doing some lab work and misregistering, don’t worry,
you will eventually do this to yourself (unless, of course, you create an ignore list for
appropriate IPs).

[DEFAULT]
ignoreip = <ip address(es), separated by commas>

[asterisk]
enabled = true
filter = asterisk
action = iptables-allports[name=ASTERISK, protocol=all]
 sendmail[name=ASTERISK, dest=me@shifteight.org, sender=fail2ban@shifteight.org]
logpath = /var/log/asterisk/messages
 /var/log/asterisk/security
maxretry = 5
findtime = 21600
bantime = 86400

Restart Fail2ban and you’re good to go.
$ sudo systemctl reload fail2ban

Test it out if you can, from an IP address you don’t mind being blocked (for example,
an extra computer in your lab that can be the test subject for this). Attempt to register
using bad credentials, and after five attempts (or whatever you set maxretry to), that
IP should be blocked.

You can see what addresses the Asterisk jail is blocking with the command:
$ sudo fail2ban-client status asterisk

370 | Chapter 22: Security

2 For example, yourself, because you forgot to define ignoreip...

And if you want to unblock an IP,2 the following command should do so.
$ sudo fail2ban-client set asterisk unbanip ip to unban

More information about Fail2ban can be found at the Fail2ban wiki.

Encrypted Media
While we gave examples in this book that used encryption, be aware that you can
configure SIP so that media will be sent unencrypted. In that case, anyone intercept‐
ing the RTP traffic between two SIP peers will be able to use fairly simple tools to
extract the audio from those calls.

Dialplan Vulnerabilities
The Asterisk dialplan is another area where taking security into consideration is criti‐
cal. The dialplan can be broken down into multiple contexts to provide access control
to extensions. For example, you may want to allow your office phones to make calls
out through your service provider. However, you do not want to allow anonymous
callers that come into your main company menu to be able to then dial out through
your service provider. Use contexts to ensure that only the callers you intend have
access to services that cost you money.

Build dialplan contexts with great care. Also, avoid putting any
extensions that could cost you money in the [default] context.

One of the more recent Asterisk dialplan vulnerabilities to have been discovered and
published is the idea of dialplan injection. A dialplan injection vulnerability begins
with an extension that has a pattern that ends with the match-all character, a period.
Take this extension as an example:

exten => _X.,1,Dial(PJSIP/otherserver/${EXTEN},30)

The pattern for this extension matches all extensions (of any length) that begin with a
digit. Patterns like this are pretty common and convenient. The extension then sends
this call over to another server using the IAX2 protocol, with a dial timeout of 30 sec‐
onds. Note the usage of the ${EXTEN} variable here. That’s where the vulnerability
exists.

Encrypted Media | 371

http://www.fail2ban.org/wiki/index.php/Main_Page

In the world of Voice over IP, there is no reason that a dialed extension must be
numeric. In fact, it is quite common using SIP to be able to dial someone by name.
Since it is possible for non-numeric characters to be a part of a dialed extension, what
would happen if someone sent a call to this extension?

1234&DAHDI/g1/12565551212

A call like this is an attempt at exploiting a dialplan injection vulnerability. In the pre‐
vious extension definition, once ${EXTEN} has been evaluated, the actual Dial()
statement that will be executed is:

exten => _X.,1,Dial(PJSIP/otherserver/1234&DAHDI/g1/12565551212,30)

If the system has a PRI configured, this call will cause a call to go out on the PRI to a
number chosen by the attacker, even though you did not explicitly grant access to the
PRI to that caller. This problem can quickly cost you a whole lot of money.

There are several approaches to avoiding this problem. The first and easiest approach
is to always use strict pattern matching. If you know the length of extensions you are
expecting and expect only numeric extensions, use a strict numeric pattern match.
For example, this would work if you are expecting four-digit numeric extensions
only:

exten => _XXXX,1,Dial(PJSIP/otherserver/${EXTEN},30)

Another approach to mitigating dialplan injection vulnerabilities is by using the FIL
TER() dialplan function. Perhaps you would like to allow numeric extensions of any
length. FILTER() makes that easy to achieve safely:

exten => _X.,1,Set(SAFE_EXTEN=${FILTER(0-9A-F,${EXTEN})})
 same => n,Dial(PJSIP/otherserver/${SAFE_EXTEN},30)

For more information about the syntax for the FILTER() dialplan function, see the
output of the core show function FILTER command at the Asterisk CLI.

A more comprehensive (but also complex) approach might be to have all dialed digits
validated by functions outside of your dialplan (for example, database queries that
validate the dialed string against user permissions, routing patterns, restriction tables,
and so forth). This is a powerful concept, but beyond the scope of this book.

Be wary of dialplan injection vulnerabilities. Use strict pattern
matching or use the FILTER() dialplan function to avoid these
problems.

372 | Chapter 22: Security

Securing Asterisk Network APIs
To secure AGI, AMI, and ARI, you will need to carefully consider the following rec‐
ommended practices:

• Only allow connections directly to the API from localhost/127.0.0.1.
• Use an appropriate framework in between the Asterisk API and your client appli‐

cation, and handle connection security through the framework.
• Control access to the framework and the system through strict firewall rules.

Beyond that, the same sort of security rules and best practices apply that you would
follow in any mission-critical web application.

Other Risk Mitigation
There are other useful features in Asterisk that can be used to mitigate the risk of
attacks. The first is to use the permit and deny options to build access control lists
(ACLs) for privileged accounts. Consider a PBX that has SIP phones on a local net‐
work, but also accepts SIP calls from the public internet. Calls coming in over the
internet are only granted access to the main company menu, while local SIP phones
have the ability to make outbound calls that cost you money. In this case, it is a very
good idea to set ACLs to ensure that only devices on your local network can use the
accounts for the phones.

In your ps_endpoints table, the permit and deny options allow you to specify IP
addresses, but you can also point to a label in the /etc/asterisk/acl.conf file. In fact,
ACLs are accepted almost everywhere that connections to IP services are configured.
For example, another useful place for ACLs is in /etc/asterisk/manager.conf, to restrict
AMI accounts to the single host that is supposed to be using the manager interface.

ACLs can be defined in /etc/asterisk/acl.conf.
[named_acl_1]
deny=0.0.0.0/0.0.0.0
permit=10.1.1.50
permit=10.1.1.55

[named_acl_2] ; Named ACLs support IPv6, as well.
deny=::
permit=::1/128

[local_phones]
deny=0.0.0.0/0.0.0.0
permit=192.168.0.0/255.255.0.0

Once named ACLs have been defined in acl.conf, have Asterisk load them using the
reload acl command. Once loaded, they should be available via the Asterisk CLI:

Securing Asterisk Network APIs | 373

*CLI> module reload acl

*CLI> acl show

acl

named_acl_1
named_acl_2
local_phones

*CLI> acl show named_acl_1

ACL: named_acl_1

 0: deny - 0.0.0.0/0.0.0.0
 1: allow - 10.1.1.50/255.255.255.255
 2: allow - 10.1.1.55/255.255.255.255

Now, instead of having to potentially repeat the same permit and deny entries in mul‐
tiple places, you can apply an ACL by its name. You will find an acl field in the
ps_endpoints table, which you can use to point to a named ACL in the acl.conf file.

mysql> select id,transport,aors,context,disallow,allow,acl from ps_endpoints;

id	transport	aors	context	disallow	allow	acl
0000f30A0A01	transport-udp	0000f30A0A01	sets	all	ulaw	NULL
0000f30B0B02	transport-udp	0000f30B0B02	sets	all	ulaw	NULL
SOFTPHONE_A	transport-udp	SOFTPHONE_A	sets	all	ulaw,h264,vp8	NULL
SOFTPHONE_B	transport-udp	SOFTPHONE_B	sets	all	ulaw,h264,vp8	NULL

mysql> update ps_endpoints
 set acl='local_phones'
 where id in ('0000f30A0A01','0000f30B0B02','SOFTPHONE_A','SOFTPHONE_B')
 ;

mysql> select id,transport,aors,context,disallow,allow,acl from ps_endpoints;

id	transport	aors	context	disallow	allow	acl
0000f30A0A01	transport-udp	0000f30A0A01	sets	all	ulaw	local_phones
0000f30B0B02	transport-udp	0000f30B0B02	sets	all	ulaw	local_phones
SOFTPHONE_A	transport-udp	SOFTPHONE_A	sets	all	ulaw,h264,vp8	local_phones
SOFTPHONE_B	transport-udp	SOFTPHONE_B	sets	all	ulaw,h264,vp8	local_phones

Use ACLs when possible on all privileged accounts for network
services.

Another way you can mitigate security risk is by configuring call limits. The recom‐
mended method for implementing call limits is to use the GROUP() and
GROUP_COUNT() dialplan functions. Here is an example that limits the number of calls
from each SIP peer to no more than two at a time:

374 | Chapter 22: Security

exten => _X.,1,Set(GROUP(users)=${CHANNEL(endpoint)})
 same => n,NoOp(${CHANNEL(endpoint)} : ${GROUP_COUNT(${CHANNEL(endpoint)})} calls)
 same => n,GotoIf($[${GROUP_COUNT(${CHANNEL(endpoint)})} > 2]?denied:continue)

 same => n(denied),NoOp(There are too many calls up already. Hang up.)
 same => n,HangUp()

 same => n(continue),NoOp(continue processing call as normal here ...)

Use call limits to ensure that if an account is compromised, it can‐
not be used to make hundreds of phone calls at a time.

Resources
Some security vulnerabilities require modifications to the Asterisk source code to
resolve. When those issues are discovered, the Asterisk development team puts out
new releases that contain only fixes for the security issues, to allow for quick and easy
upgrades. When this occurs, the Asterisk development team also publishes a security
advisory document that discusses the details of the vulnerability. We recommend that
you subscribe to the asterisk-announce mailing list to make sure that you know about
these issues when they come up.

Subscribe to the asterisk-announce list to stay up to date on Aster‐
isk security vulnerabilities.

One of the most popular tools for SIP account scanning and password cracking is
SIPVicious. We strongly encourage that you take a look at it and use it to audit your
own systems. If your system is exposed to the internet, others will likely run SIPVi‐
cious against it, so make sure that you do that first.

Conclusion—A Better Idiot
There is a maxim in the technology industry that states, “As soon as something is
made idiot-proof, nature will invent a better idiot.” The point of this statement is that
no development effort can be considered complete. There is always room for
improvement.

When it comes to security, you must always bear in mind that the people who are
looking to take advantage of your system are highly motivated. No matter how secure
your system is, somebody will always be looking to crack it.

Resources | 375

http://lists.digium.com/mailman/listinfo/asterisk-announce
http://sipvicious.org

We’re not advocating paranoia, but we are suggesting that what we have written here
is by no means the final word on VoIP security. While we have tried to be as compre‐
hensive as we can be in this book, you must accept responsibility for the security of
your system.

The criminals are working hard to find weaknesses and exploit them.

376 | Chapter 22: Security

CHAPTER 23

Asterisk: A Future for Telephony

Hey, I just met you,
And this is crazy,
But here’s my number,
So call me, maybe?

—Carly Rae Jepsen

We have arrived at the final chapter of this book. We’ve covered a lot (and this book
has been massively modified over the years), but we hope that we have made it clear
that we’ve merely scratched the surface of Asterisk. To wrap things up, we want to
spend some time exploring what we might see from Asterisk and open source teleph‐
ony in the near future.

When we wrote the first edition of Asterisk: The Future of Telephony, we confidently
asserted that open source communications engines such as Asterisk would cause a
shift in thinking that would transform the telecommunications industry. In many
ways, our belief has been proven correct; however, some might argue it was a hollow
victory, because what has also happened during that time is a shift away from tele‐
communications as a primary real-time communications medium. Younger genera‐
tions have little or no use for telephone calls, and consider them disruptive, annoying,
and in some cases even rude.

So, even as Asterisk ushered in a transformed age for the telecommunications indus‐
try, it has now become the standard-bearer for technologies that many say are as good
as dead.

While there can be no doubt that the telephone is no longer the primary communica‐
tions technology in the world (not by a long shot!), when we distill communications
down to their essence, we find there may be a future for this stuff yet.

377

The Telephone Is Dead (Except When It’s Not)
While it is obvious that younger generations do not use the telephone much any‐
more, it is also true that older generations are very frustrated and disillusioned by
modern communications technologies. For them, the telephone represents a reliable,
predictable, and easy-to-understand communications method, and they are likely to
continue using it for the remainder of their lives. Since there are an awful lot of old
people in this world, and many of them are senior executives, decision makers, and
shareholders—not to mention well-heeled customers—it seems to be a good strategy
for businesses today to continue to ensure that their customers can reach them
through the telephone.

When one has tried all other methods of communication, such as email, webforms,
and perhaps even text messaging, one will finally pick up the phone and call. It seems
that in many cases, a problem that could not get sorted out any other way is finally
resolved over the phone.

It would also be correct to say that the increasingly poor job companies are doing in
handling communications with their customers is a source of much frustration and
confusion. However, as always, where there is a problem, there exists opportunity.
Companies that retain a commitment to an excellent telecom infrastructure may find
themselves with a distinct competitive advantage, using nothing more complicated
than good old-fashioned customer service. If you wish to service customers over age
50, you would do well to keep your telephone system running well.

Another interesting component of traditional telecommunications networks is that
while we can never be sure that we are using the same conferencing software as each
other (never in history have so many near-identical apps had to be installed just to
allow people to talk to each other), we can be reasonably sure that if one of us picks
up the phone and dials the other’s phone number, a successful conversation will be
possible, without any troubleshooting or software installation. In an age where it
seems no conference call can start without someone having to troubleshoot their app,
this kind of universal consistency and reliability likely still has some value. Today’s
hot new office collaboration software is tomorrow’s forgotten toy (whither thou,
Skype?). The brave old telephone soldiers on.

We’re not sure the telephone is dead just yet.

Communications Overload
In many ways, the ability to communicate defines our species. Yes, other critters are
able to signal each other in basic ways, but our fascination with creating ever-
changing and innovative ways to connect to each other is not something we’ve
encountered in any other being.

378 | Chapter 23: Asterisk: A Future for Telephony

1 Ever heard of Elisha Gray or Antonio Meucci?

From the carrier pigeon to the postal service to the telegraph, telephone, and televi‐
sion, each new technology served the same goal: improving our ability to communi‐
cate. Today, we have achieved a most remarkable thing: it is now reasonable to expect
instant communication with almost anyone on the planet.

The challenge we never predicted is that too much of a good thing has begun to over‐
whelm us. It will be interesting to see how this plays out culturally.

The Problems with Open Source Development
Although Alexander Graham Bell is most famously remembered as the father of the
telephone,1 the reality is that during the latter half of the 1800s, dozens of minds were
working toward the goal of carrying voice over telegraph lines. These people were
mostly business-minded folks, looking to create a product through which they might
make their fortunes.

We have come to think of traditional telephone companies as monopolies, but this
was not true in their early days. The early history of telephone service took place in a
very competitive environment, with new companies springing up all over the world,
often with little or no respect for the patents they might be violating. Many famous
monopolies got their start through the waging (and winning) of patent wars.

It’s interesting to contrast the history of the telephone with the history of GNU Linux
and the internet. While the telephone was created as a commercial exercise, and the
telecom industry was forged through lawsuits and corporate takeovers, Linux and the
internet arose out of the academic community, which has tended to value the sharing
of knowledge over profit.

Unfortunately, once again too much of a good thing has begun to overwhelm. What
we have seen recently is a loss of vision for open source development. Too few devel‐
opers have gotten tired of the demands of too many users unwilling to contribute.
Most open source projects have—out of necessity—had to shield the development
team from the selfish demands of those who intend to only take, and never give. This
abuse of the developers has, sadly, even extended to companies that have built highly
profitable businesses on open source projects that they have never contributed a dime
to. Multibillion-dollar businesses, profiting from the efforts of a team barely able to
pay their bills, is not a sustainable development model. It remains to be seen how this
story will play out, but open source software is not what it was 10 years ago.

Asterisk is fortunate in that it is funded by the efforts of Sangoma/Digium, the
parents of the project. Their challenge has and always will be to figure out how to
nurture the product in such a way that the requirements of the business are compati‐

The Problems with Open Source Development | 379

ble with the needs of the project. Not an easy task. We’ll be cheering for them. They
have done a remarkable job thus far.

The Future of Asterisk
So, does Asterisk have a future? We don’t see why it shouldn’t. It continues to do what
it has always done, and it also works hard to be compatible with suitable technologies
coming down the pipe. If nothing else, Asterisk will continue to be very good at inte‐
grating with telephone technologies, and we’re not prepared to call that story fully
told yet.

WebRTC
Keep an eye on WebRTC. We suspect that if open source and open-standards com‐
munications has any sort of future, WebRTC stands as the most promising candidate
to achieve that.

Asterisk is not likely to be at the center of that revolution, but it will have a role to
play.

The Future of Telephony
Telephony may look dead, but we still see movement in the tail, and it’s a long tail
indeed.

380 | Chapter 23: Asterisk: A Future for Telephony

Index

Symbols
#asterisk and #asterisk-dev (Asterisk IRC chan‐

nels), 7
${EXTEN} channel variable, 104
911 emergency number, 125

A
access control lists (ACLs), 373
account scanning, 367
ACD queues, 286
Alembic, 40
analog telephony, 111, 151
Analog Terminal Adaptors (ATAs)

advantages and disadvantages of, 64
defined, 63
IP phone configuration, 153

Ansible playbooks, 30
application map groupings, 194
applications

AddQueueMember(), 218, 232
AGI(), 316
Answer(), 82, 85
Background(), 90
ConfBridge(), 183, 204
Congestion(), 234
Dial(), 93, 190
GoSub(), 175
Goto(), 89
GotoIf(), 168-172
GotoIfTime(), 172
Hangup(), 82, 86
Page(), 197
PauseQueueMember(), 218
Playback(), 85

Progress(), 85
Queue(), 190, 213, 229, 286
Read(), 290
Record(), 254
RemoveQueueMember(), 218
SayDigits(), 105
Set(), 194
Stasis(), 338
UnpauseQueueMember(), 218
VoiceMail(), 139
VoiceMailMain(), 141
WaitExten(), 90
working with

list of available, 11
passing arguments to, 85
purpose of, 84

architecture
Asterisk versus traditional PBXs, 9, 107
dialplan, 21
file structure

configuration files, 20
logging, 21
modules, 20
resource library, 20
the spool, 20

hardware, 21
modules

add-on modules, 19
applications, 11
bridging modules, 12
CDR modules, 13
channel drivers, 13
channel event logging (CEL), 13
codec translators, 14

381

dialplan functions, 16
format interpreters, 15
official list of support status for, 11
PBX modules, 17
purpose of, 10
resource modules, 17
test modules, 19
types of, 10

release methodology/versioning, 22
Asterisk

Asterisk versus traditional PBXs, 9, 107
benefits of, xvii, 2
community support, 5, 375
development of, 4
drawbacks of, 2
future of, 1, 377
installation

compiling and installing, 36
download and prerequisites, 35
final tweaks, 42
firewall tweaks, 42
initial configuration, 38
overview of, 35
SELinux tweaks, 41

open-source roots of, 4
release methodology/versioning, 22
versions covered, xviii
wide-spread use of, 5

Asterisk database (AstDB)
deleting data, 182
overview of, 181
retrieving data, 182
storing data, 181
using the AstDB in the dialplan, 182

Asterisk extensions
components, 82
concept of, 61, 81
syntax, 81

Asterisk Gateway Interface (AGI)
account database access example, 327
AGI communication overview

AGI environment variables, 320
commands and responses, 321-325
ending AGI sessions, 325
setting up AGI sessions, 319

AGI variants
Async AGI (AMI-Controlled AGI), 318
EAGI (Enhanced AGI), 317
FastAGI (AGI over TCP), 317

process-based AGI, 316
building IVRs using, 293
development frameworks, 328
purpose of, 315
quick start example, 315
securing, 373

Asterisk Manager Interface (AMI)
building IVRs using, 293
call files, 299
configuration

http.conf, 304
manager.conf, 304

development framework selection, 313
example usage

originating calls, 310
redirecting calls, 312

protocol overview
AMI over HTTP, 308
manager events and actions, 305
message encoding, 306

purpose of, 299
quick start guide

AMI over HTTP, 303
AMI over TCP, 302
configuration, 301

securing, 373
Asterisk packages, 25
Asterisk Realtime Architecture (ARA)

Dynamic Realtime, 281
external scripts, 279
Static Realtime, 279
types of, 278

Asterisk REST Interface (ARI)
benefits and drawbacks of, 331
building blocks of

overview, 337
RESTful interface, 337
Stasis Message Bus, 338

building IVRs using, 293
frameworks

ari-py (and aioari) for Python, 339
ari4java, 340
aricpp, 340
asterisk-ari-client, 340
AsterNET.ARI, 339
benefits of, 338
node-ari-client, 339
phpari, 340

quick start example

382 | Index

basic Asterisk configuration, 332
security warning, 332
testing ARI environment, 333
working with ARI environment, 334

securing, 373
asterisk shell command, 46
Asterisk Test Suite, 19
Asterisk-based projects

benefits and drawbacks of, 25
list of popular projects, 26

Async AGI (AMI-Controlled AGI)
commands and responses, 324
ending AGI sessions, 326
pros and cons of, 318
setting up AGI sessions, 321

authentication, 72, 308, 368
autocomplete, 36
automated attendant (AA)

AAs versus IVRs, 248, 289
building

delivering incoming calls, 256
dialplan, 255
overview of, 252
prompt file format, 253
recording prompts, 253

designing
basic automated attendant, 248
dial by extension, 252
greeting prompt, 250
invalid selections, 252
main menu prompt, 250
timeouts, 252

features, 247
automatic call distribution (ACD)

advanced queues
announcement control, 226
changing penalties dynamically (queuer‐

ules), 225
overflow handling, 229
playing announcements between music,

227
priority queues (queue weighting), 223
queue member priority, 224
queue statistics, 235
using local channels, 232

creating simple ACD queues
autofill option, 214
dialplan configuration, 214
leavewhenempty option, 213

members and agents in, 210
parameters, 211
queue placement, 213
queues.conf file, 211
ringinuse option, 213
saving/reloading queue configuration,

214
strategies, 212

importance of well-managed queues, 210
purpose of, 209
queue members

adding agents to answer calls, 215
controlling queue members with dia‐

lplan logic, 218
controlling via CLI, 216
defining queue members, 217
using multiple queues, 220
using pause and unpause, 218

B
B2BUA (Back to Back User Agents), 75
baluns, 153
BLF (Busy Lamp Field), 241, 243
BNC connectors, 153
Boolean operators, 165
bridging modules, 12
BT plug, 154

C
calendar systems, 18
Call Centers, 286
call detail records (CDRs)

alternatives to, 365
backends, 359-364

cdr_adaptive_odbc, 359, 363
cdr_csv, 360
cdr_custom, 361
cdr_manager, 362
cdr_odbc, 363
cdr_sqlite, 363
cdr_sqlite3_custom, 363
cdr_syslog, 364

CDR contents, 356
cdr.conf file, 358
dialplan applications, 357
drawbacks of, 364
example CDR records, 364
purpose of, 13

Index | 383

setting systemname for Globally Unique
IDs, 282

storing, 281-285
additional configuration options, 284
Globally Unique IDs and, 282

uses for, 356
call files, 299
call limits, 374
call parking, 195
call queuing (see automatic call distribution

(ACD))
caller ID, 157
CentOS installation

choosing your platform, 27
Linux (OpenStack) host (DigitalOcean), 29
recommended version, 26
VirtualBox steps, 27

Certbot, 52
certificate authorities, 54
certificates for endpoint security

challenges of VoIP security, 49
securing media, 54
securing SIP, 50

channel configuration
purpose of, 66
relationship of channel configuration and

contexts, 80
relationship of pjsip.conf to extensions.conf,

66
channel drivers, 13
channel event logging (CEL) modules

benefits of, 365
purpose of, 13

channel variables, 98
chan_sip module, 67
code examples, obtaining and using, 23
codec translators, 14
comebacktoorigin option, 196
Comedian Mail, 129
comments and questions, xix
community.asterisk.org (Asterisk forum), 5
conditional branching

GotoIf() application, 168-172
providing false conditional paths, 169
quoting/prefixing variables in, 170
time-based conditional branching, 172

conditional syntax, 168
conference calls

ConfBridge() application, 183, 204

video conferencing, 206
WebRTC, 343

configuration (see user device configuration)
configuration backends, 17
configuration files

adding data to, 42
extensions included, 20
initial configuration, 38
sample configuration files, 37, 78

contexts
defining and naming, 79
privacy and security provided by, 80
purpose of, 78
relationship of channel configuration and

contexts, 80
structure of, 80
[general] and [globals] sections, 79

copy-paste operations, 23
core show application Queue command, 286
Cyber Mega Phone, 347

D
DAHDI drivers, 155
database integration

ACD queues, 286
Asterisk Realtime Architecture (ARA)

Dynamic Realtime, 281
external scripts, 279
Static Realtime, 279
types of, 278

call detail records (CDRs)
additional configuration options, 284
Globally Unique IDs and, 282
storing, 281-285

database selection, 259
databases available, 259
func_odbc dialplan function

ARRAY() function, 269
benefits of, 261
history of, 263
hot-desking feature, 264-278
multirow functionality with, 274
using SQL directly in your dialplan, 273

managing databases, 260
overview of, 259
SQL injection attacks, 261
troubleshooting, 261

device configuration (see user device configura‐
tion)

384 | Index

device states
checking device states, 240
devices included, 239
extension states using hint directive, 241
purpose of, 239
SIP presence, 243
using custom device state, 244

dial by extension, 252
dialing 911, 125
dialplan advanced features

Asterisk database (AstDB)
deleting data, 182
overview of, 181
retrieving data, 182
storing data, 181
using the AstDB in the dialplan, 182

conditional branching
GotoIf() application, 168-172
providing false conditional paths, 169
quoting/prefixing variables in, 170
time-based conditional branching, 172

conferencing with ConfBridge(), 183, 204
dialplan best practices, 163
dialplan functions

ARRAY(), 269
CALLERID, 184
CDR(), 357
CHANNEL, 185
CURL (), 185
CURL(), 294
CUT, 185
examples of, 167
FILTER(), 372
func_odbc, 261
GROUP(), 374
GROUP_COUNT(), 374
IF (and STRFTIME), 186
LEN, 187
ODBC_ANIBLOCK(), 264
ODBC_FETCH, 274
purpose of, 166
REGEX, 187
STRFTIME, 187
syntax, 166

dynamic feature-map creation, 193
expressions and variable manipulation

basic expressions, 163
operators, 165

GoSub() dialplan application

defining subroutines, 175
purpose of, 175
returning from subroutines, 177

local channels
independent control example, 178
problems to address, 180
purpose of, 177

dialplan basics
basic dialplan for device testing, 73
building interactive dialplans

advanced digit manipulation, 105
Goto(), Background(), and WaitExten()

applications, 89
handling invalid entries and timeouts, 92
include statement, 106
NANP and toll fraud, 103
pattern matching, 101-105
using Dial() Application, 93
using variables, 96

channel configuration, 66
dialplan functions, 16
dialplan purpose, 21, 77
dialplan syntax

Answer(), Playback(), and Hangup()
applications, 85

applications, 84
basic dialplan prototype, 87
contexts, 78
extensions, 81
extensions.conf file, 78
hierarchical components, 78
priorities, 82

Hello World example, 87
popular dialplan applications, 11
security vulnerabilities, 371

digital signal processing (DSP), 3
DigitalOcean, 29
Digium Asterisk Hardware Device Interface

(DAHDI), 22, 154
Dixon, Jim, 3
domain validation (DV) digital certificates, 52
DTMF-based features, 190

E
EAGI (Enhanced AGI), 317
Electronic Frontier Foundation (EFF), 53
email, 144
emergency calls, 125
endpoint security

Index | 385

challenges of VoIP security, 49
securing media, 54
securing SIP, 50

environment variables, 98
extended validation (EV), 54
extension numbers, 60
extension states, 241
extensions (see Asterisk extensions)
Extra Sound Package, 86

F
Fail2ban

benefits of, 368
configuration, 369
installation, 369

FastAGI (AGI over TCP)
commands and responses, 324
ending AGI sessions, 325
pros and cons of, 317
setting up AGI sessions, 319

features.conf
application map groupings, 194
copying from installation directory, 189
DTMF-based features, 190
dynamic feature-map creation, 193
purpose of, 189
[applicationmap] section, 191
[featuremap] section, 190
[general] section, 190

file structure
configuration files, 20
logging, 21
modules, 20
resource library, 20
the spool, 20

firewalls, 42, 115, 368
Foreign eXchange Office (FXO), 111, 149, 153
Foreign eXchange Station (FXS), 112
format interpreters, 15
functions

ARRAY(), 269
CALLERID, 184
CDR(), 357
CHANNEL, 185
CURL (), 185
CURL(), 294
CUT, 185
DEVICE_STATE(), 240
EXTENSION_STATE(), 242

FILTER(), 372
func_odbc, 261
GROUP(), 374
GROUP_COUNT(), 374
IF (and STRFTIME), 186
LEN, 187
ODBC_ANIBLOCK(), 264
ODBC_FETCH(), 274
REGEX, 187
STRFTIME, 187
working with

examples of, 167
list of available, 16
purpose of, 166
syntax, 166

func_odbc dialplan function
ARRAY() function, 269
benefits of, 261
building IVRs using, 293
history of, 263
hot-desking feature, 264-278
multirow functionality with, 274
using SQL directly in your dialplan, 273

G
getting help

Asterisk community support, 5
IRC channels, 7
mailing lists, 6, 375
wiki sites, 6

global variables, 97
Globally Unique IDs, 282

H
hardphones

advantages and disadvantages of, 63
defined, 62

hardware
connecting with, 21
Digium Asterisk Hardware Device Interface

(DAHDI), 22
interfacing with traditional PSTN circuits,

22
manufacturers, 21

Hello World, 87
hint directive, 241
hot-desking feature

building, 264-278
purpose of, 61, 264

386 | Index

I
include statement, 106
injection vulnerabilities, 371
installation

Asterisk
compiling and installing, 36
download and prerequisites, 35
final tweaks, 42
firewall tweaks, 42
initial configuration, 38-41
overview of, 35
SELinux tweaks, 41

Asterisk and the shell, 46
common installation errors, 45
dependencies, 29
Linux

CentOS platform, 26
choosing your platform, 27
Linux (OpenStack) host, 29
VirtualBox steps, 27

overview of, 23
safe_asterisk script, 47
sample configuration files for future refer‐

ence, 45
validating your system, 44

Interactive Voice Response (IVR)
components of, 289
design considerations, 292
example of, 292
IVR versus automated voice attendant, 289
modules for building IVRs, 293
prompt-recording IVR function, 294
purpose of, 289
Read() application, 290
simple IVR using CURL, 294
speech recognition and text-to-speech, 296

internationalization
cheat sheet for, 162
connecting to the PSTN, 153
DAHDI drivers, 155
devices external to Asterisk servers

analog versus IP phones, 151
ATAs, 153
dialplans, 152
setting tones, 152
time display, 152

overview of, 149
within Asterisk

caller ID, 157

language and/or accent of prompts, 158
time/date stamps and pronunciation,

159
Internet Security Research Group (ISRG), 53
invalid entries, 92
IRC channels, 7

J
JACK, 317

L
LetsEncrypt certificates, 52
Linux

installation
CentOS platform, 26
choosing your platform, 27
Linux (OpenStack) host, 29
VirtualBox steps, 27

local channels
independent control example, 178
problems to address, 180
purpose of, 177

logger.conf
balancing detail with storage requirements,

351
log rotation, 355
logger.conf types, 352
logging to the Linux syslog daemon, 354
reloading configuration file following

updates, 352
reviewing Asterisk logs, 353
verbose logging pros and cons, 352
verifying logging, 355

M
MAC addresses, 61
mailing lists, 6
make samples command, 46
manager encoding, 309
mathematical operators, 165
MD5 challenge-and-response mechanism, 368
media streams

encrypting RTP traffic, 54
unencrypted configuration, 371

modules
add-on modules, 19
applications, 11
app_voicemail.so, 129

Index | 387

bridging modules, 12
CDR backends, 359
CDR modules, 13
channel drivers, 13
channel event logging (CEL), 13
codec translators, 14
dialplan functions, 16
file structure for, 20
format interpreters, 15
IVR building, 293
official list of support status for, 11
PBX modules, 17
purpose of, 10
resource modules, 17
test modules, 19
types of, 10

monitoring and logging
call detail records (CDRs)

alternatives to, 365
backends, 359-364
CDR contents, 356
CDR example records, 364
cdr.conf file, 358
dialplan applications, 357
drawbacks of, 364
uses for, 356

Fail2ban configuration, 369
file structure for, 21
logger.conf

balancing detail with storage require‐
ments, 351

log rotation, 355
logger.conf types, 352
logging to the Linux syslog daemon, 354
reloading configuration file following

updates to, 352
reviewing Asterisk logs, 353
verbose logging pros and cons, 352
verifying logging, 355

queue statistics, 235
writing queue_log to database, 287

MulticastRTP channel, 201
mxml encoding, 309
MySQL database

benefits of, 260
MySQL command line, 260

MySQL Workbench, 260

N
Navicat, 260
network address translation (NAT)

Asterisk behind NAT, 117
challenges of, 115
endpoints behind NAT, 116
keeping remote firewalls open, 116
SIP and RTP protocols, 114

North American Numbering Plan (NANP)
avoiding toll fraud, 103
pattern matching examples, 103

O
ODBC connector

benefits of, 260
configuration file relationships, 262
troubleshooting, 261

open source development, 379
OpenAPI Specification (Swagger), 334
operators, 165
organization validation (OV), 54
outside connectivity

Asterisk versus traditional PBXs, 107
fundamental dialplan for, 108
public switched telephone network

analog telephony, 111
benefits of, 110
digital telephony, 113
FXO and FXS, 112
history of, 110
retirement of, 110
traditional PSTN trunks, 111

trunking basics, 107
VoIP

configuring SIP trunks, 122-125
emergency dialing, 125
network address translation (NAT),

114-117
PSTN termination and origination, 118
PTSN components in, 114
remote firewall handling, 116

P
package-management systems, 25
parking and paging

call parking, 195
overhead versus set-based, 197
Page() application, 197

388 | Index

places to send pages
combination paging, 203
external paging, 199
multicast paging on Cisco SPA tele‐

phones, 202
multicast paging via the MulticastRTP

channel, 201
SIP-based paging adapters, 203

purpose of, 194
set-based, 200
timed-out parked calls, 196
zone paging, 204

passwords
strong passwords, 368
voicemail passwords, 133

pattern matching
${EXTEN} channel variable, 104
advanced digit manipulation, 105
common global pattern matches, 104
NANP examples, 103
pattern-matching syntax, 101
purpose of, 101

peer-to-peer protocol, 58
permit and deny options, 373
phpMyAdmin, 260
PJSIP channel module, 43, 67-71
Primary Rate Interfaces (PRIs), 153
priorities

numbering of, 82
priority labels, 84
same operator, 83
unnumbered priorities, 83

private branch exchanges (PBXs)
advanced conferencing

ConfBridge() application, 204
video conferencing, 206

Asterisk versus traditional PBXs, 9, 61
ensuring flexibility in, 60
features.conf

application map groupings, 194
copying from installation directory, 189
DTMF-based features, 190
dynamic feature-map creation, 193
purpose of, 189
[applicationmap] section, 191
[featuremap] section, 190
[general] section, 190

most successful, 1
parking and paging

call parking, 195
multicast paging, 202
paging, 197
places to send pages, 199-204
purpose of, 194
timed-out parked calls, 196
zone paging, 204

PBX modules, 17
shortcomings of, 4

prompts
recording methods, 253
recording through dialplan, 254
WAV file format, 253

public address system, 194
Public Safety Answering Points (PSAP), 125
Public Switched Telephone Network (PSTN)

connecting to internationally, 153
Zapata Telephony Project, 3

public switched telephone network (PSTN)
analog telephony, 111
benefits of, 110
digital telephony, 113
FXO and FXS, 112
history of, 110
retirement of, 110
traditional PSTN trunks, 111

Q
questions and comments, xix
queues (see automatic call distribution (ACD))
queue_log file, 235

R
rawman encoding, 308
redirecting calls, 312
registration

authentication versus registration, 72
registering devices to asterisk, 74
verifying, 72

regular expression operator, 165
resource library, 20
resource modules, 17
RJ45 connections, 153
RTP (Real Time Protocol), 54

S
safe_asterisk script, 47
sample configuration files, 37, 45, 78

Index | 389

security
account scanning intrusion attempts, 367
authentication weaknesses, 368
certificates for endpoint security

securing media, 54
securing SIP, 50

challenges of VoIP security, 49
configuring call limits, 374
dialplan vulnerabilities, 371
encrypted media, 371
Fail2ban

benefits of, 368
configuration, 369
installation, 369

need for diligence regarding, 375
non-numeric VoIP account names, 367
permit and deny options, 373
provided by contexts, 80
securing Asterisk network APIs, 373
security advisory documents, 375
SIPVicious audit tool, 375
SQL injection attacks, 261
strong passwords, 368
validation of voicemail passwords, 133

self-signed certificates, 51
SELinux, 41
server-based provisioning, 59
session handling, 308
set provisioning, 59
SIP (Session Initiation Protocol)

certificates for endpoint security
formal certificate authorities, 54
importance of SIP security, 50
LetsEncrypt certificates, 52
secure SIP signalling, 51
self-signed certificates, 51
subscriber names, 50

firewall tweaks during installation, 42
user device configuration

SIP and, 58
SIP dialogs occurring, 74
SIP endpoints and, 57

SIPVicious audit tool, 375
softphones

advantages and disadvantages of, 63
defined, 62

sound files, 86
speech recognition, 296
speech synthesis, 296

spool, 20
subroutines

defining, 175
returning from, 177

sudo make samples command, 45
Swagger (OpenAPI Specification), 334

T
telephone naming beset practices, 60
telephony

bridging gap between traditional and net‐
work, 2

future of, 377
Zapata Telephony Project, 3

testing
basic dialplan for, 73
device registration, 72
test modules, 19

text-to-speech, 296
time/date stamps, 159
timeouts, 92, 229
toll fraud

avoiding in NANP countries, 103
avoiding with contexts, 81

transferring calls, 312

U
unified messaging, 146
user device configuration

Asterisk extensions, 61
basic dialplan for device testing, 73
configuring Asterisk

channel configuration, 66
overview of, 64
PJSIP channel module, 67-71

hardphones, softphones, and ATAs, 62
overview of, 57
registering devices to Asterisk, 74
set provisioning and, 59
SIP and, 58
SIP dialogs occurring, 74
SIP endpoints, 57
telephone naming concepts, 60
testing device registration, 72

V
validation

new Asterisk system, 44

390 | Index

voicemail passwords, 133
variables

adding variables to dialplans, 99
channel variables, 98
concatenation of, 100
environment variables, 98
global variables, 97
inheriting channel variables, 100
purpose of, 96
referencing, 97

video conferencing, 206
voicemail

app_voicemail.so, 129
Comedian Mail, 129
drawbacks of, 129
features of, 130
storage backends

databases, 147
IMAP, 146
Linux filesystem, 146

validation of passwords, 133
voicemail dialplan integration

creating dial-by-name directories, 143
dialplans available, 139
standard keymap configuration, 142
VoiceMail() application, 139
VoiceMailMain() application, 141

voicemail to email, 144
voicemail.conf file

mailbox definition parts, 137
mailbox options, 138
mailboxes, 136
overview of, 130
sample file, 131
supplementary options, 134
[general] section], 132

[zonemessages] section, 135
VoIP (Voice over Internet Protocol)

chan_pjsip module for, 65
history of, 114
IP phones

dialplans, 152
IP versus analog phones, 151
setting tones on, 152
time displays, 152

non-numeric account names, 367
outside connectivity

configuring SIP trunks, 122-125
emergency dialing, 125
network address translation (NAT),

114-117
PSTN termination and origination, 118
remote firewall handling, 116

W
WAV file format, 253
WebRTC

additional resources, 349
configuring Asterisk for, 345
Cyber Mega Phone example, 347
future uses for, 1, 64, 380
purpose of, 343
recommendations for using, 344

wiki sites, 6
wiki.asterisk.org (Asterisk wiki site), 6
www.voip-info.org (Asterisk wiki site), 6

Z
Zapata Telephony Project, 3
zone–specific message handling, 135

Index | 391

About the Authors
Jim Van Meggelen is a founding partner and CTO of Clearly Core Inc., a Canada-
based provider of open source telephony solutions. He has nearly 30 years of enter‐
prise telecom experience, with extensive knowledge of both legacy telecom and VoIP.

Russell Bryant is a Distinguished Engineer at Red Hat, where he works on cloud
infrastructure projects. Prior to working for Red Hat, Russell spent seven years work‐
ing for Digium on the Asterisk project. Russell’s role at Digium began as a software
developer and concluded with being the leader of the Asterisk project and engineer‐
ing manager for the team focused on Asterisk development.

Leif Madsen is the Cloud Service Assurance Architect within the CloudOps team at
Red Hat, where he leads the engineering effort to provide Service Assurance to both
telecommunications and enterprise companies. He first got involved with the Aster‐
isk community when he was looking for a voice-conferencing solution. Once he
learned that there was no official Asterisk documentation, he cofounded the Asterisk
Documentation Project.

Colophon
The animals on the cover of Asterisk: The Definitive Guide are starfish (Asteroidea), a
group of echinoderms (spiny-skinned invertebrates found only in the sea). Most star‐
fish have fivefold radial symmetry (arms or rays branching from a central body disc
in multiples of five), though some species have four or nine arms. There are over
1,500 species of starfish.

Starfish live on the sea floor and in tidal pools, clinging to rocks and moving (slowly)
using a water-based vascular system to manipulate hundreds of tiny, tube-like legs,
called podia. A small bulb or ampulla at the top of the tube contracts, expelling water
and expanding the starfish’s leg. The ampulla relaxes, and the leg retracts. At the tip of
each leg is a suction cup that allows the starfish to pry open clam, oyster, or mussel
shells. Starfish are carnivores; they eat coral, fish, bivalves, and snails.

Starfish can flex and manipulate their arms to fit into small places. At the end of each
arm is an eyespot, a primitive sensor that detects light and helps the starfish deter‐
mine direction. Starfish also have the ability to regenerate a missing limb. Some spe‐
cies can even regrow a complete, new starfish from a severed arm.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. The cover illustration is by Karen Montgomery, based on a black and
white engraving from the Dover Pictorial Archive. The cover fonts are Gilroy Semi‐
bold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Copyright
	Table of Contents
	Foreword
	Joshua Colp (Senior Software Developer, Sangoma/Digium)
	Dan Jenkins (Founder, Nimble Ape Ltd)
	Joyce Wilmot (Senior Web Developer)
	Matt Florell (Founder, VICIdial)
	Matt Fredrickson (Director of Asterisk Engineering,
 Sangoma/Digium)

	Preface
	Audience
	Software
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments from Jim Van Meggelen

	Chapter 1. A Telephony Revolution
	Asterisk and VoIP: Bridging the Gap Between Traditional and Network
 Telephony
	The Zapata Telephony Project

	Massive Change Requires Flexible Technology
	Asterisk: The Hacker’s PBX
	Asterisk: The Professional’s PBX
	The Asterisk Community
	Asterisk’s Discourse-Based Community Site
	The Asterisk Mailing Lists
	Asterisk Wiki Sites
	The IRC Channels

	Conclusion

	Chapter 2. Asterisk Architecture
	Modules
	Applications
	Bridging Modules
	Call Detail Recording Modules
	Channel Event Logging Modules
	Channel Drivers
	Codec Translators
	Format Interpreters
	Dialplan Functions
	PBX Modules
	Resource Modules
	Add-on Modules
	Test Modules

	File Structure
	Configuration Files
	Modules
	The Resource Library
	The Spool
	Logging

	The Dialplan
	Hardware
	Asterisk Versioning
	Conclusion

	Chapter 3. Installing Asterisk
	Linux Installation
	Choosing Your Platform
	VirtualBox Steps
	Linux (OpenStack) Host

	Dependencies
	Asterisk Installation
	Download and Prerequisites
	Compiling and Installing
	Initial Configuration
	SELinux Tweaks
	Firewall Tweaks
	Final Tweaks

	Validating Your New Asterisk System
	Common Installation Errors
	Some Final Configuration Notes
	Sample Configuration Files for Future Reference
	The Asterisk Shell Command
	safe_asterisk

	Conclusion

	Chapter 4. Certificates for Endpoint Security
	The Inconvenience of Security
	Securing SIP
	Subscriber Names
	Secure SIP Signaling

	Securing Media
	Encrypted RTP

	Conclusion

	Chapter 5. User Device Configuration
	Telephone Naming Concepts
	Hardphones, Softphones, and ATAs
	Configuring Asterisk
	How Channel Configuration Works with the Dialplan
	chan_pjsip

	Testing to
 Ensure Your Devices Have Registered
	A Basic Dialplan to Test Your Devices
	Under the Hood: Your First Call
	Conclusion

	Chapter 6. Dialplan Basics
	Dialplan Syntax
	Contexts
	Extensions
	Priorities
	Applications
	The Answer(), Playback(), and Hangup() Applications
	A Basic Dialplan Prototype

	A Simple Dialplan
	Hello World

	Building an Interactive Dialplan
	The Goto(), Background(), and WaitExten() Applications
	Handling Invalid Entries and Timeouts
	Using the Dial() Application
	Using Variables
	Pattern Matching
	Includes

	Conclusion

	Chapter 7. Outside Connectivity
	The Basics of Trunking
	Fundamental Dialplan for Outside Connectivity
	The PSTN
	Traditional PSTN Trunks

	VoIP
	Network Address Translation
	PSTN Termination and Origination
	Configuring SIP Trunks

	Emergency Dialing
	Conclusion

	Chapter 8. Voicemail
	The voicemail.conf File
	An Initial voicemail.conf File
	The [general] Section
	The [zonemessages] Section
	Mailboxes

	Voicemail Dialplan Integration
	The VoiceMail() Dialplan Application
	The VoiceMailMain() Dialplan Application
	Standard Voicemail Keymap
	Creating a Dial-by-Name Directory

	Voicemail to Email
	Voicemail Storage Backends
	Linux Filesystem
	IMAP
	Message Storage in a Database

	Conclusion

	Chapter 9. Internationalization
	Devices External to the Asterisk Server
	PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones
	DAHDI Drivers

	Internationalization Within Asterisk
	Caller ID
	Language and/or Accent of Prompts
	Time/Date Stamps and Pronunciation

	Conclusion—Easy Reference Cheat Sheet

	Chapter 10. Deeper into the Dialplan
	Expressions and Variable Manipulation
	Basic Expressions
	Operators

	Dialplan Functions
	Syntax
	Examples of Dialplan Functions

	Conditional Branching
	The GotoIf() Application
	Time-Based Conditional Branching with GotoIfTime()

	GoSub
	Defining Subroutines
	Returning from a Subroutine

	Local Channels
	Using the Asterisk Database
	Storing Data in the AstDB
	Retrieving Data from the AstDB
	Deleting Data from the AstDB
	Using the AstDB in the Dialplan

	Handy Asterisk Features
	Conferencing with ConfBridge()

	Handy Dialplan Functions
	CALLERID()
	CHANNEL()
	CURL()
	CUT()
	IF() and STRFTIME()
	LEN()
	REGEX()
	STRFTIME()

	Conclusion

	Chapter 11. PBX Features, Including Parking, Paging, and Conferencing
	features.conf
	The [general] Section
	The [featuremap] Section
	The [applicationmap] Section
	Application Map Grouping

	Parking and Paging
	Call Parking
	Paging (aka Public Address)
	Places to Send Your Pages
	Zone Paging

	Advanced Conferencing
	Video Conferencing

	Conclusion

	Chapter 12. Automatic Call Distribution Queues
	Creating a Simple ACD Queue
	Queue Members
	Controlling Queue Members via the CLI
	Defining Queue Members in the queue_members Table
	Controlling Queue Members with Dialplan Logic
	Automatically Logging Into and Out of Multiple Queues

	Advanced Queues
	Priority Queue (Queue Weighting)
	Queue Member Priority
	Changing Penalties Dynamically (queuerules)
	Announcement Control
	Overflow
	Using Local Channels

	Queue Statistics: The queue_log File
	Conclusion

	Chapter 13. Device States
	Device States
	Checking Device States

	Extension States Using the hint Directive
	Hints
	Checking Extension States

	SIP Presence
	Using Custom Device States
	Conclusion

	Chapter 14. The Automated Attendant
	An AA Is Not an IVR
	Designing Your AA
	The Greeting
	The Main Menu
	Timeout
	Invalid
	Dial by Extension

	Building Your AA
	Recording Prompts
	The Dialplan
	Delivering Incoming Calls to the AA
	IVR

	Conclusion

	Chapter 15. Relational Database Integration
	Your Choice of Database
	Managing Databases
	Troubleshooting Database Issues
	SQL Injection

	Powering Your Dialplan with func_odbc
	A Gentle Introduction to func_odbc
	Getting Funky with func_odbc: Hot-Desking
	Using Realtime
	Static Realtime
	Dynamic Realtime

	Storing Call Detail Records
	Database Integration of ACD Queues
	Storing Dialplan Parameters for a Queue in a Database
	Writing queue_log to Database

	Conclusion

	Chapter 16. Introduction to Interactive Voice Response
	Components of an IVR
	IVR Design Considerations
	Asterisk Modules for Building IVRs
	CURL()
	func_odbc
	AGI
	AMI
	ARI

	A Simple IVR Using CURL()
	The Dialplan

	A Prompt-Recording IVR Function
	Speech Recognition and Text-to-Speech
	Text-to-Speech
	Speech Recognition

	Conclusion

	Chapter 17. Asterisk Manager Interface and Call Files
	Call Files
	Your First Call File
	Notes About Call Files

	AMI Quick Start
	AMI over TCP
	AMI over HTTP

	Configuration
	manager.conf
	http.conf

	Protocol Overview
	Message Encoding
	AMI over HTTP

	Example Usage
	Originating a Call
	Redirecting a Call

	Development Frameworks
	Conclusion

	Chapter 18. Asterisk Gateway Interface
	Quick Start
	AGI Variants
	Process-Based AGI
	FastAGI—AGI over TCP
	Async AGI—AMI-Controlled AGI

	AGI Communication Overview
	Setting Up an AGI Session
	Commands and Responses
	Ending an AGI Session

	Example: Account Database Access
	Development Frameworks
	Conclusion

	Chapter 19. Asterisk REST Interface
	ARI Quick Start
	Basic Asterisk Configuration
	Testing Your Basic ARI Environment
	Working with Your ARI Environment Using Swagger

	The Building Blocks of ARI
	REST
	WebSocket
	Stasis

	Frameworks
	ari-py (and aioari) for Python
	node-ari-client
	AsterNET.ARI
	ari4java
	phpari
	aricpp
	asterisk-ari-client

	Conclusion

	Chapter 20. WebRTC
	The Browser as a Telephone
	Preliminary Knowledge
	Configuring Asterisk for WebRTC
	Cyber Mega Phone
	More About WebRTC
	Conclusion

	Chapter 21. System Monitoring and Logging
	logger.conf
	Reviewing Asterisk Logs
	Logging to the Linux syslog Daemon
	Verifying Logging
	Log Rotation

	Call Detail Records
	CDR Contents
	Dialplan Applications
	cdr.conf
	Backends
	Example Call Detail Records
	Caveats

	Channel Event Logging
	Conclusion

	Chapter 22. Security
	Scanning for Valid Accounts
	Authentication Weaknesses
	Fail2ban
	Installation
	Configuration

	Encrypted Media
	Dialplan Vulnerabilities
	Securing Asterisk Network APIs
	Other Risk Mitigation
	Resources
	Conclusion—A Better Idiot

	Chapter 23. Asterisk: A Future for Telephony
	The Telephone Is Dead (Except When It’s Not)
	Communications Overload
	The Problems with Open Source Development
	The Future of Asterisk
	WebRTC

	The Future of Telephony

	Index
	About the Authors
	Colophon

