
M A N N I N G

IN DEPTH
Jon Skeet

FOREWORD BY ERIC LIPPERT

FOURTH EDITION

Praise for the Third Edition

“A must-have book that every .NET developer should read at least once.”

—Dror Helper, Software Architect, Better Place

“C# in Depth is the best source for learning C# language features.”

—Andy Kirsch, Software Architect, Venga

“Took my C# knowledge to the next level.”

 —Dustin Laine, Owner, Code Harvest

“This book was quite an eye-opener to an interesting programming language that I have been
unjustly ignoring until now.”

—Ivan Todorović, Senior Software Developer
AudatexGmbH, Switzerland

“Easily the best C# reference I’ve found.”

 —Jon Parish, Software Engineer, Datasift

“Highly recommend this book to C# developers who want to take their knowledge to pro
status.”

—D. Jay, Amazon reviewer

Praise for the Second Edition

“If you are looking to master C# then this book is a must-read.”

—Tyson S. Maxwell, Sr. Software Engineer, Raytheon

“We’re betting that this will be the best C# 4.0 book out there.”

—Nikander Bruggeman and Margriet Bruggeman
.NET consultants, Lois & Clark IT Services

“A useful and engaging insight into the evolution of C# 4.”

—Joe Albahari, Author of LINQPad and C# 4.0 in a Nutshell

“This book should be required reading for all professional C# developers.”

—Stuart Caborn, Senior Developer, BNP Paribas
Licensed to André Santos <andrerfcsantos@gmail.com>

ii
“A highly focused, master-level resource on language updates across all major C# releases. This
book is a must-have for the expert developer wanting to stay current with new features of the C#
language.”

—Sean Reilly, Programmer/Analyst Point2 Technologies

“Why read the basics over and over again? Jon focuses on the chewy, new stuff!”

—Keith Hill, Software Architect, Agilent Technologies

“Everything you didn’t realize you needed to know about C#.”

—Jared Parsons, Senior Software Development Engineer, Microsoft

Praise for the First Edition

“Simply put, C# in Depth is perhaps the best computer book I’ve read.”

 —Craig Pelkie, Author, System iNetwork

“I have been developing in C# from the very beginning and this book had some nice surprises
even for me. I was especially impressed with the excellent coverage of delegates, anonymous
methods, covariance and contravariance. Even if you are a seasoned developer, C# in Depth
will teach you something new about the C# language.... This book truly has depth that no
other C# language book can touch.”

 —Adam J. Wolf, Southeast Valley .NET User Group

“This book wraps up the author’s great knowledge of the inner workings of C# and hands it
over to readers in a well-written, concise, usable book.”

 —Jim Holmes, Author of Windows Developer Power Tools

“Every term is used appropriately and in the right context, every example is spot-on and con-
tains the least amount of code that shows the full extent of the feature...this is a rare treat.”

 —Franck Jeannin, Amazon UK reviewer

“If you have developed using C# for several years now, and would like to know the internals,
this book is absolutely right for you.”

 —Golo Roden
Author, Speaker, and Trainer for .NET and related technologies

“The best C# book I’ve ever read.”

 —Chris Mullins, C# MVP
Licensed to André Santos <andrerfcsantos@gmail.com>

C# in Depth
FOURTH EDITION

JON SKEET
FOREWORD BY ERIC LIPPERT

M A N N I N G
SHELTER ISLAND
Licensed to André Santos <andrerfcsantos@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Richard Wattenberger
20 Baldwin Road Technical development editor: Dennis Sellinger
PO Box 761 Review editor: Ivan Martinović
Shelter Island, NY 11964 Production editor: Lori Weidert

Copy editor: Sharon Wilkey
Technical proofreader: Eric Lippert

Typesetter and cover designer: Marija Tudor

ISBN 9781617294532
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19
Licensed to André Santos <andrerfcsantos@gmail.com>

http://www.manning.com

 This book is dedicated to equality, which is significantly harder to achieve in the real
world than overriding Equals() and GetHashCode().

Licensed to André Santos <andrerfcsantos@gmail.com>

vi

Licensed to André Santos <andrerfcsantos@gmail.com>

contents
foreword xvii
preface xix
acknowledgments xx
about this book xxii
about the author xxvi
about the cover illustration xxvii

PART 1 C# IN CONTEXT ... 1

1 Survival of the sharpest 3
1.1 An evolving language 3

A helpful type system at large and small scales 4 ■ Ever more
concise code 6 ■ Simple data access with LINQ 9
Asynchrony 10 ■ Balancing efficiency and complexity 11
Evolution at speed: Using minor versions 12

1.2 An evolving platform 13
1.3 An evolving community 14
1.4 An evolving book 15

Mixed-level coverage 16 ■ Examples using Noda Time 16
Terminology choices 17
vii

Licensed to André Santos <andrerfcsantos@gmail.com>

CONTENTSviii
PART 2 C# 2–5 .. 19

2 C# 2 21
2.1 Generics 22

Introduction by example: Collections before generics 22
Generics save the day 25 ■ What can be generic? 29
Type inference for type arguments to methods 30 ■ Type
constraints 32 ■ The default and typeof operators 34
Generic type initialization and state 37

2.2 Nullable value types 38
Aim: Expressing an absence of information 39 ■ CLR and
framework support: The Nullable<T> struct 40 ■ Language
support 43

2.3 Simplified delegate creation 49
Method group conversions 50 ■ Anonymous methods 50
Delegate compatibility 52

2.4 Iterators 53
Introduction to iterators 54 ■ Lazy execution 55 ■ Evaluation
of yield statements 56 ■ The importance of being lazy 57
Evaluation of finally blocks 58 ■ The importance of finally
handling 61 ■ Implementation sketch 62

2.5 Minor features 66
Partial types 67 ■ Static classes 69 ■ Separate getter/setter
access for properties 69 ■ Namespace aliases 70
Pragma directives 72 ■ Fixed-size buffers 73
InternalsVisibleTo 73

3 C# 3: LINQ and everything that comes with it 75
3.1 Automatically implemented properties 76
3.2 Implicit typing 77

Typing terminology 77 ■ Implicitly typed local variables
(var) 78 ■ Implicitly typed arrays 79

3.3 Object and collection initializers 81
Introduction to object and collection initializers 81
Object initializers 83 ■ Collection initializers 84
The benefits of single expressions for initialization 86

3.4 Anonymous types 86
Syntax and basic behavior 86 ■ The compiler-generated
type 89 ■ Limitations 90
Licensed to André Santos <andrerfcsantos@gmail.com>

CONTENTS ix
3.5 Lambda expressions 91
Lambda expression syntax 92 ■ Capturing variables 94
Expression trees 101

3.6 Extension methods 103
Declaring an extension method 103 ■ Invoking an extension
method 104 ■ Chaining method calls 106

3.7 Query expressions 107
Query expressions translate from C# to C# 108 ■ Range
variables and transparent identifiers 108 ■ Deciding when
to use which syntax for LINQ 110

3.8 The end result: LINQ 111

4 C# 4: Improving interoperability 113
4.1 Dynamic typing 114

Introduction to dynamic typing 114 ■ Dynamic behavior
beyond reflection 119 ■ A brief look behind the scenes 124
Limitations and surprises in dynamic typing 127 ■ Usage
suggestions 131

4.2 Optional parameters and named arguments 133
Parameters with default values and arguments with names 134
Determining the meaning of a method call 135 ■ Impact on
versioning 137

4.3 COM interoperability improvements 138
Linking primary interop assemblies 139 ■ Optional parameters
in COM 140 ■ Named indexers 142

4.4 Generic variance 143
Simple examples of variance in action 143 ■ Syntax for
variance in interface and delegate declarations 144
Restrictions on using variance 145 ■ Generic variance in
practice 147

5 Writing asynchronous code 150
5.1 Introducing asynchronous functions 152

First encounters of the asynchronous kind 152 ■ Breaking
down the first example 154

5.2 Thinking about asynchrony 155
Fundamentals of asynchronous execution 155 ■ Synchronization
contexts 157 ■ Modeling asynchronous methods 158
Licensed to André Santos <andrerfcsantos@gmail.com>

CONTENTSx
5.3 Async method declarations 160
Return types from async methods 161 ■ Parameters in async
methods 162

5.4 Await expressions 162
The awaitable pattern 163 ■ Restrictions on await
expressions 165

5.5 Wrapping of return values 166
5.6 Asynchronous method flow 168

What is awaited and when? 168 ■ Evaluation of await
expressions 169 ■ The use of awaitable pattern members 173
Exception unwrapping 174 ■ Method completion 176

5.7 Asynchronous anonymous functions 180
5.8 Custom task types in C# 7 182

The 99.9% case: ValueTask<TResult> 182 ■ The 0.1% case:
Building your own custom task type 184

5.9 Async main methods in C# 7.1 186
5.10 Usage tips 187

Avoid context capture by using ConfigureAwait (where
appropriate) 187 ■ Enable parallelism by starting multiple
independent tasks 189 ■ Avoid mixing synchronous and
asynchronous code 190 ■ Allow cancellation wherever
possible 190 ■ Testing asynchrony 191

6 Async implementation 193
6.1 Structure of the generated code 195

The stub method: Preparation and taking the first step 198
Structure of the state machine 199 ■ The MoveNext() method
(high level) 202 ■ The SetStateMachine method and the state
machine boxing dance 204

6.2 A simple MoveNext() implementation 205
A full concrete example 205 ■ MoveNext() method general
structure 207 ■ Zooming into an await expression 209

6.3 How control flow affects MoveNext() 210
Control flow between await expressions is simple 211
Awaiting within a loop 212 ■ Awaiting within a try/finally
block 213

6.4 Execution contexts and flow 216
6.5 Custom task types revisited 218
Licensed to André Santos <andrerfcsantos@gmail.com>

CONTENTS xi
7 C# 5 bonus features 220
7.1 Capturing variables in foreach loops 220
7.2 Caller information attributes 222

Basic behavior 222 ■ Logging 224 ■ Simplifying
INotifyPropertyChanged implementations 224 ■ Corner cases of
caller information attributes 226 ■ Using caller information
attributes with old versions of .NET 232

PART 3 C# 6 .. 233

8 Super-sleek properties and expression-bodied members 235
8.1 A brief history of properties 236
8.2 Upgrades to automatically implemented properties 238

Read-only automatically implemented properties 238
Initializing automatically implemented properties 239
Automatically implemented properties in structs 240

8.3 Expression-bodied members 242
Even simpler read-only computed properties 242 ■ Expression-
bodied methods, indexers, and operators 245 ■ Restrictions on
expression-bodied members in C# 6 247 ■ Guidelines for using
expression-bodied members 249

9 Stringy features 252
9.1 A recap on string formatting in .NET 253

Simple string formatting 253 ■ Custom formatting with format
strings 253 ■ Localization 255

9.2 Introducing interpolated string literals 258
Simple interpolation 258 ■ Format strings in interpolated string
literals 259 ■ Interpolated verbatim string literals 259
Compiler handling of interpolated string literals (part 1) 261

9.3 Localization using FormattableString 261
Compiler handling of interpolated string literals (part 2) 262
Formatting a FormattableString in a specific culture 263
Other uses for FormattableString 265 ■ Using FormattableString
with older versions of .NET 268

9.4 Uses, guidelines, and limitations 270
Developers and machines, but maybe not end users 270
Hard limitations of interpolated string literals 272 ■ When you
can but really shouldn’t 273
Licensed to André Santos <andrerfcsantos@gmail.com>

CONTENTSxii
9.5 Accessing identifiers with nameof 275
First examples of nameof 275 ■ Common uses of nameof 277
Tricks and traps when using nameof 280

10 A smörgåsbord of features for concise code 284
10.1 Using static directives 284

Importing static members 285 ■ Extension methods and using
static 288

10.2 Object and collection initializer enhancements 290
Indexers in object initializers 291 ■ Using extension methods in
collection initializers 294 ■ Test code vs. production code 298

10.3 The null conditional operator 299
Simple and safe property dereferencing 299 ■ The null conditional
operator in more detail 300 ■ Handling Boolean
comparisons 301 ■ Indexers and the null conditional
operator 302 ■ Working effectively with the null conditional
operator 303 ■ Limitations of the null conditional operator 305

10.4 Exception filters 305
Syntax and semantics of exception filters 306 ■ Retrying
operations 311 ■ Logging as a side effect 312 ■ Individual,
case-specific exception filters 313 ■ Why not just throw? 314

PART 4 C# 7 AND BEYOND 317

11 Composition using tuples 319
11.1 Introduction to tuples 320
11.2 Tuple literals and tuple types 321

Syntax 321 ■ Inferred element names for tuple literals
(C# 7.1) 323 ■ Tuples as bags of variables 324

11.3 Tuple types and conversions 329
Types of tuple literals 329 ■ Conversions from tuple literals to tuple
types 330 ■ Conversions between tuple types 334 ■ Uses of
conversions 336 ■ Element name checking in inheritance 336
Equality and inequality operators (C# 7.3) 337

11.4 Tuples in the CLR 338
Introducing System.ValueTuple<...> 338 ■ Element name
handling 339 ■ Tuple conversion implementations 341
String representations of tuples 341 ■ Regular equality and
ordering comparisons 342 ■ Structural equality and ordering
Licensed to André Santos <andrerfcsantos@gmail.com>

CONTENTS xiii
comparisons 343 ■ Womples and large tuples 345 ■ The
nongeneric ValueTuple struct 346 ■ Extension methods 346

11.5 Alternatives to tuples 346
System.Tuple<...> 347 ■ Anonymous types 347
Named types 348

11.6 Uses and recommendations 348
Nonpublic APIs and easily changed code 348 ■ Local
variables 349 ■ Fields 350 ■ Tuples and dynamic don’t play
together nicely 351

12 Deconstruction and pattern matching 353
12.1 Deconstruction of tuples 354

Deconstruction to new variables 355 ■ Deconstruction
assignments to existing variables and properties 357
Details of tuple literal deconstruction 361

12.2 Deconstruction of nontuple types 361
Instance deconstruction methods 362 ■ Extension deconstruction
methods and overloading 363 ■ Compiler handling of Deconstruct
calls 364

12.3 Introduction to pattern matching 365
12.4 Patterns available in C# 7.0 367

Constant patterns 367 ■ Type patterns 368 ■ The var
pattern 371

12.5 Using patterns with the is operator 372
12.6 Using patterns with switch statements 374

Guard clauses 375 ■ Pattern variable scope for case
labels 376 ■ Evaluation order of pattern-based switch
statements 377

12.7 Thoughts on usage 379
Spotting deconstruction opportunities 379 ■ Spotting pattern
matching opportunities 380

13 Improving efficiency with more pass by reference 381
13.1 Recap: What do you know about ref? 382
13.2 Ref locals and ref returns 385

Ref locals 385 ■ Ref returns 390 ■ The conditional ?: operator
and ref values (C# 7.2) 392 ■ Ref readonly (C# 7.2) 393

13.3 in parameters (C# 7.2) 395
Licensed to André Santos <andrerfcsantos@gmail.com>

CONTENTSxiv
Compatibility considerations 396 ■ The surprising mutability of
in parameters: External changes 397 ■ Overloading with in
parameters 398 ■ Guidance for in parameters 399

13.4 Declaring structs as readonly (C# 7.2) 401
Background: Implicit copying with read-only variables 401
The readonly modifier for structs 403 ■ XML serialization is
implicitly read-write 404

13.5 Extension methods with ref or in parameters
(C# 7.2) 405

Using ref/in parameters in extension methods to avoid copying 405
Restrictions on ref and in extension methods 407

13.6 Ref-like structs (C# 7.2) 408
Rules for ref-like structs 409 ■ Span<T> and stackalloc 410
IL representation of ref-like structs 414

14 Concise code in C# 7 415
14.1 Local methods 415

Variable access within local methods 417 ■ Local method
implementations 420 ■ Usage guidelines 425

14.2 Out variables 427
Inline variable declarations for out parameters 427 ■ Restrictions
lifted in C# 7.3 for out variables and pattern variables 428

14.3 Improvements to numeric literals 429
Binary integer literals 429 ■ Underscore separators 430

14.4 Throw expressions 431
14.5 Default literals (C# 7.1) 432
14.6 Nontrailing named arguments (C# 7.2) 433
14.7 Private protected access (C# 7.2) 435
14.8 Minor improvements in C# 7.3 435

Generic type constraints 435 ■ Overload resolution
improvements 436 ■ Attributes for fields backing automatically
implemented properties 437

15 C# 8 and beyond 439
15.1 Nullable reference types 440

What problem do nullable reference types solve? 440 ■ Changing
the meaning when using reference types 441 ■ Enter nullable
reference types 442 ■ Nullable reference types at compile time and
Licensed to André Santos <andrerfcsantos@gmail.com>

CONTENTS xv
execution time 443 ■ The damn it or bang operator 445
Experiences of nullable reference type migration 447
Future improvements 449

15.2 Switch expressions 453
15.3 Recursive pattern matching 455

Matching properties in patterns 455 ■ Deconstruction
patterns 456 ■ Omitting types from patterns 457

15.4 Indexes and ranges 458
Index and Range types and literals 458 ■ Applying indexes and
ranges 459

15.5 More async integration 461
Asynchronous resource disposal with using await 461
Asynchronous iteration with foreach await 462 ■ Asynchronous
iterators 465

15.6 Features not yet in preview 466
Default interface methods 466 ■ Record types 468
Even more features in brief 469

15.7 Getting involved 470

appendix Language features by version 473

index 479
Licensed to André Santos <andrerfcsantos@gmail.com>

CONTENTSxvi
Licensed to André Santos <andrerfcsantos@gmail.com>

foreword
Ten years is a long stretch of time for a human, and it’s an absolute eternity for a tech-
nical book aimed at professional programmers. It was with some astonishment, then,
that I realized 10 years have passed since Microsoft shipped C# 3.0 with Visual Studio
2008 and since I read the drafts of the first edition of this book. It has also been 10
years since Jon joined Stack Overflow and quickly became the user with the highest
reputation.

 C# was already a large, complex language in 2008, and the design and implemen-
tation teams haven’t been idle for the last decade. I’m thrilled with how C# has been
innovative in meeting the needs of many different developer constituencies, from
video games to websites to low-level, highly robust system components. C# takes the
best from academic research and marries it to practical techniques for solving real
problems. It’s not dogmatic; the C# designers don’t ask “What’s the most object-
oriented way to design this feature?” or “What’s the most functional way to design this
feature?” but rather “What’s the most pragmatic, safe, and effective way to design this
feature?” Jon gets all of that. He doesn’t just explain how the language works; he
explains how the whole thing holds together as a unified design and also points out
when it doesn’t.

 I said in my foreword to the first edition that Jon is enthusiastic, knowledgeable,
talented, curious, analytical, and a great teacher, and all of that is still true. Let me add
to that list by noting his perseverance and dedication. Writing a book is a huge job,
particularly when you do it in your spare time. Going back and revising that book to
keep it fresh and current is just as much work, and this is the third time Jon has done
that with this book. A lesser author would be content to tweak it here and there or add
xvii

Licensed to André Santos <andrerfcsantos@gmail.com>

FOREWORDxviii
a chapter about new materials; this is more like a large-scale refactoring. The results
speak for themselves.

 More than ever, I can’t wait to find out what great things the next generation of
programmers will do with C# as it continues to evolve and grow. I hope you enjoy this
book as much as I have over the years, and thanks for choosing to compose your pro-
grams in C#.

 ERIC LIPPERT

 SOFTWARE ENGINEER

 FACEBOOK
Licensed to André Santos <andrerfcsantos@gmail.com>

preface
Welcome to the fourth edition of C# in Depth. When I wrote the first edition, I had lit-
tle idea I’d be writing a fourth edition of the same title 10 years later. Now, it wouldn’t
surprise me to find myself writing another edition in 10 years. Since the first edition,
the designers of the C# language have repeatedly proved that they’re dedicated to
evolving the language for as long as the industry is interested in it.

 This is important, because the industry has changed a lot in the last 10 years. As a
reminder, both the mobile ecosystem (as we know it today) and cloud computing
were still in their infancy in 2008. Amazon EC2 was launched in 2006, and Google
AppEngine was launched in 2008. Xamarin was launched by the Mono team in 2011.
Docker didn’t show up until 2013.

 For many .NET developers, the really big change in our part of the computing
world over the last few years has been .NET Core. It’s a cross-platform, open source
version of the framework that is explicitly designed for compatibility with other frame-
works (via .NET Standard). Its existence is enough to raise eyebrows; that it is Micro-
soft’s primary area of investment in .NET is even more surprising.

 Through all of this, C# is still the primary language when targeting anything like
.NET, whether that’s .NET, .NET Core, Xamarin, or Unity. F# is a healthy and friendly
competitor, but it doesn’t have the industry mindshare of C#.

 I’ve personally been developing in C# since around 2002, either professionally or
as an enthusiastic amateur. As the years have gone by, I’ve been sucked ever deeper
into the details of the language. I enjoy those details for their own sake but, more
importantly, for the sake of ever-increasing productivity when writing code in C#. I
hope that some of that enjoyment has seeped into this book and will encourage you
further in your travels with C#.
xix

Licensed to André Santos <andrerfcsantos@gmail.com>

acknowledgments
It takes a lot of work and energy to create a book. Some of that is obvious; after all,
pages don’t just write themselves. That’s just the tip of the iceberg, though. If you
received the first version of the content I wrote with no editing, no review, no profes-
sional typesetting, and so on, I suspect you’d be pretty disappointed.

 As with previous editions, it’s been a pleasure working with the team at Manning.
Richard Wattenberger has provided guidance and suggestions with just the right com-
bination of insistence and understanding, thereby shaping the content through multi-
ple iterations. (In particular, working out the best approach to use for C# 2–4 proved
surprisingly challenging.) I would also like to thank Mike Stephens and Marjan Bace
for supporting this edition from the start.

 Beyond the structure of the book, the review process is crucial to keeping the con-
tent accurate and clear. Ivan Martinovic organized the peer reviewing process and
obtained great feedback from Ajay Bhosale, Andrei Rînea, Andy Kirsch, Brian Ras-
mussen, Chris Heneghan, Christos Paisios, Dmytro Lypai, Ernesto Cardenas, Gary
Hubbard, Jassel Holguin Calderon, Jeremy Lange, John Meyer, Jose Luis Perez Vila,
Karl Metivier, Meredith Godar, Michal Paszkiewicz, Mikkel Arentoft, Nelson Ferrari,
Prajwal Khanal, Rami Abdelwahed, and Willem van Ketwicha. I’m indebted to Dennis
Sellinger for his technical editing and to Eric Lippert for technical proofreading. I
want to highlight Eric’s contributions to every edition of this book, which have always
gone well beyond technical corrections. His insight, experience, and humor have
been significant and unexpected bonuses throughout the whole process.

 Content is one thing; good-looking content is another. Lori Weidert managed the
complex production process with dedication and understanding. Sharon Wilkey per-
formed copyediting with skill and the utmost patience. The typesetting and cover
xx

Licensed to André Santos <andrerfcsantos@gmail.com>

ACKNOWLEDGMENTS xxi
design were done by Marija Tudor, and I can’t express what a joy it is to see the first
typeset pages; it’s much like the first (successful) dress rehearsal of a play you’ve been
working on for months.

 Beyond the people who’ve contributed directly to the book, I naturally need to
thank my family for continuing to put up with me over the last few years. I love my
family. They rock, and I’m grateful.

 Finally, none of this would matter if no one wanted to read the book. Thank you
for your interest, and I hope your investment of time into this book pays off.
Licensed to André Santos <andrerfcsantos@gmail.com>

about this book
Who should read this book

This book is about the language of C#. That often means going into some details of the
runtime responsible for executing your code and the libraries that support your appli-
cation, but the focus is firmly on the language itself.

 The goal of the book is to make you as comfortable as possible with C# so you
never need to feel you’re fighting against it. I want to help you feel you are fluent in
C#, with the associated connotations of working in a fluid and flowing way. Think of
C# as a river in which you’re paddling a kayak. The better you know the river, the
faster you’ll be able to travel with its flow. Occasionally, you’ll want to paddle upstream
for some reason; even then, knowing how the river moves will make it easier to reach
your target without capsizing.

 If you’re an existing C# programmer who wants to know more about the language,
this book is for you! You don’t need to be an expert to read this book, but I assume
you know the basics of C# 1. I explain all the terminology I use that was introduced
after C# 1 and some older terms that are often misunderstood (such as parameters
and arguments), but I assume you know what a class is, what an object is, and so on.

 If you are an expert already, you may still find the book useful because it provides
different ways of thinking about concepts that are already familiar to you. You may
also discover areas of the language you were unaware of; I know that’s been my experi-
ence in writing the book.

 If you’re completely new to C#, this book may not be useful to you yet. There are a
lot of introductory books and online tutorials on C#. Once you have a grip on the
basics, I hope you’ll return here and dive deeper.
xxii

Licensed to André Santos <andrerfcsantos@gmail.com>

ABOUT THIS BOOK xxiii
How this book is organized: A roadmap

This book comprises 15 chapters divided into 4 parts. Part 1 provides a brief history of
the language.

 Chapter 1 gives an overview of how C# has changed over the years and how it is
still changing. It puts C# into a broader context of platforms and communities
and gives a little more detail about how I present material in the rest of the
book.

Part 2 describes C# versions 2 through 5. This is effectively a rewritten and condensed
form of the third edition of this book.

 Chapter 2 demonstrates the wide variety of features introduced in C# 2, includ-
ing generics, nullable value types, anonymous methods, and iterators.

 Chapter 3 explains how the features of C# 3 come together to form LINQ. The
most prominent features in this chapter are lambda expressions, anonymous
types, object initializers, and query expressions.

 Chapter 4 describes the features of C# 4. The largest change within C# 4 was the
introduction of dynamic typing, but there are other changes around optional
parameters, named arguments, generic variance, and reducing friction when
working with COM.

 Chapter 5 begins the coverage of C# 5’s primary feature: async/await. This
chapter describes how you’ll use async/await but has relatively little detail about
how it works behind the scenes. Enhancements to asynchrony introduced in
later versions of C# are described here as well, including custom task types and
async main methods.

 Chapter 6 completes the async/await coverage by going deep into the details of
how the compiler handles asynchronous methods by creating state machines.

 Chapter 7 is a short discussion of the few features introduced in C# 5 besides
async/await. After the all the details provided in chapter 6, you can consider it a
palette cleanser before moving on to the next part of the book.

Part 3 describes C# 6 in detail.

 Chapter 8 shows expression-bodied members, which allow you to remove some
of the tedious syntax when declaring very simple properties and methods.
Improvements to automatically implemented properties are described here,
too. It’s all about streamlining your source code.

 Chapter 9 describes the string-related features of C# 6: interpolated string liter-
als and the nameof operator. Although both features are just new ways of pro-
ducing strings, they are among the most handy aspects of C# 6.

 Chapter 10 introduces the remaining features of C# 6. These have no particu-
larly common theme other than helping you write concise source code. Of the
Licensed to André Santos <andrerfcsantos@gmail.com>

ABOUT THIS BOOKxxiv
features introduced here, the null conditional operator is probably the most
useful; it’s a clean way of short-circuiting expressions that might involve null val-
ues, thereby avoiding the dreaded NullReferenceException.

Part 4 addresses C# 7 (all the way up to C# 7.3) and completes the book by peering a
short distance into the future.

 Chapter 11 demonstrates the integration of tuples into the language and
describes the ValueTuple family of types that is used for the implementation.

 Chapter 12 introduces deconstruction and pattern matching. These are both
concise ways of looking at an existing value in a different way. In particular, pat-
tern matching in switch statements can simplify how you handle different types
of values in situations where inheritance doesn’t quite fit.

 Chapter 13 focuses on pass by reference and related features. Although ref
parameters have been present in C# since the very first version, C# 7 introduces
a raft of new features such as ref returns and ref locals. These are primarily
aimed at improving efficiency by reducing copying.

 Chapter 14 completes the C# 7 coverage with another set of small features that
all contribute to streamlining your code. Of these, my personal favorites are
local methods, out variables, and the default literal, but there are other little
gems to discover, too.

 Chapter 15 looks at the future of C#. Working with the C# 8 preview available at
the time of this writing, I delve into nullable reference types, switch expressions,
and pattern matching enhancements as well as ranges and further integration
of asynchrony into core language features. This entire chapter is speculative,
but I hope it will spark your curiosity.

Finally, the appendix provides a handy reference for which features were introduced
in which version of C# and whether they have runtime or framework requirements
that restrict the contexts in which you can use them.

 My expectation is that this book will be read in a linear fashion (at least the first
time). Later chapters build on earlier ones, and you may have a hard time if you try to
read them out of order. After you’ve read the book once, however, it makes perfect
sense to use it as a reference. You might go back to a topic when you need a reminder
of some syntax or if you find yourself caring more about a specific detail than you did
on your first reading.

About the code

This book contains many examples of source code in numbered listings and in line
with normal text. In both cases, source code is formatted in a fixed-width font like
this to separate it from ordinary text. Sometimes it appears in bold to highlight code
that has changed from previous steps in the chapter, such as when a new feature adds
to an existing line of code.
Licensed to André Santos <andrerfcsantos@gmail.com>

ABOUT THIS BOOK xxv
 In many cases, the original source code has been reformatted; I’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, listings include line-continuation markers (➥). In addition, com-
ments in the source code have often been removed from the listings when the code is
described in the text. Code annotations accompany many of the listings and highlight
important concepts.

 Source code for the examples in this book is available for download from the pub-
lisher’s website at www.manning.com/books/c-sharp-in-depth-fourth-edition. You’ll
need the .NET Core SDK (version 2.1.300 or higher) installed to build the examples.
A few examples require the Windows desktop .NET framework (where Windows
Forms or COM is involved), but most are portable via .NET Core. Although I used
Visual Studio 2017 (Community Edition) to develop the examples, they should be
fine under Visual Studio Code as well.

Book forum

Purchase of C# in Depth, Fourth Edition, includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask tech-
nical questions, and receive help from the author and from other users. To access the
forum, go to https://forums.manning.com/forums/c-sharp-in-depth-fourth-edition.
You can also learn more about Manning’s forums and the rules of conduct at
https://forums.manning.com/forums /about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources

There are many, many resources for C# online. The ones I find most useful are listed
below, but you’ll find a lot more by searching, too.

 Microsoft .NET documentation: https://docs.microsoft.com/dotnet
 The .NET API documentation: https://docs.microsoft.com/dotnet/api
 The C# language design repository: https://github.com/dotnet/csharplang
 The Roslyn repository: https://github.com/dotnet/roslyn
 The C# ECMA standard:

www.ecma-international.org/publications/standards/Ecma-334.htm
 Stack Overflow: https://stackoverflow.com
Licensed to André Santos <andrerfcsantos@gmail.com>

https://forums.manning.com/forums/c-sharp-in-depth-fourth-edition
http://www.manning.com/books/c-sharp-in-depth-fourth-edition
https://forums.manning.com/forums/about
https://stackoverflow.com
https://www.ecma-international.org/publications/standards/Ecma-334.htm
https://github.com/dotnet/roslyn
https://github.com/dotnet/csharplang
https://docs.microsoft.com/dotnet/api
https://docs.microsoft.com/dotnet

about the author
My name is Jon Skeet. I’m a staff software engineer at Google, and I work from the
London office. Currently, my role is to provide .NET client libraries for Google Cloud
Platform, which neatly combines my enthusiasm for working at Google with my love of
C#. I’m the convener of the ECMA technical group responsible for standardizing C#,
and I represent Google within the .NET Foundation.

 I’m probably best known for my contributions on Stack Overflow, which is a ques-
tion-and-answer site for developers. I also enjoy speaking at conferences and user
groups and blogging. The common factor here is interacting with other developers;
it’s the way I learn best.

 Slightly more unusually, I’m a date and time hobbyist. This is mostly expressed
through my work on Noda Time, which is the date and time library for .NET that
you’ll see used in several examples in this book. Even without the hands-on coding
aspect, time is a fascinating topic with an abundance of trivia. Find me at a conference
and I’ll bore you for as long as you like about time zones and calendar systems.

 My editors would like you to know most of these things to prove that I’m qualified
to write this book, but please don’t mistake them for a claim of infallibility. Humility is
a vital part of being an effective software engineer, and I screw up just like everyone
else does. Compilers don’t tend to view appeals to authority in a favorable light.

 In the book, I’ve tried to make it clear where I’m expressing what I believe to be
objective facts about the C# language and where I’m expressing my opinion. Due to
diligent technical reviewers, I hope there are relatively few mistakes on the objective
side, but experience from previous editions suggests that some errors will have crept
through. When it comes to opinions, mine may be wildly different from yours, and
that’s fine. Take what you find useful, and feel free to ignore the rest.
xxvi

Licensed to André Santos <andrerfcsantos@gmail.com>

about the cover illustration
The caption for the illustration on the cover of C# in Depth, Fourth Edition, is “Musi-
cian.” The illustration is taken from a collection of costumes of the Ottoman Empire
published on January 1, 1802, by William Miller of Old Bond Street, London. The title
page is missing from the collection, and we have been unable to track it down to date.
The book’s table of contents identifies the figures in both English and French, and
each illustration bears the names of two artists who worked on it, both of whom would
no doubt be surprised to find their art gracing the front cover of a computer program-
ming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market
in the “Garage” on West 26th Street in Manhattan. The seller was an American based
in Ankara, Turkey, and the transaction took place just as he was packing up his stand
for the day. The Manning editor didn’t have on his person the substantial amount of
cash that was required for the purchase, and a credit card and check were both
politely turned down. With the seller flying back to Ankara that evening, the situation
was getting hopeless. What was the solution? It turned out to be nothing more than an
old-fashioned verbal agreement sealed with a handshake. The seller simply proposed
that the money be transferred to him by wire, and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, he transferred the funds the next day, and he remains grateful and impressed
by this unknown person’s trust. It recalls something that might have happened a long
time ago.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago brought back to life by the pictures from this collection.
xxvii

Licensed to André Santos <andrerfcsantos@gmail.com>

ABOUT THE COVER ILLUSTRATIONxxviii

Licensed to André Santos <andrerfcsantos@gmail.com>

Part 1

C# in context

When I was studying computer science at university, a fellow student cor-
rected the lecturer about a detail he’d written on the blackboard. The lecturer
looked mildly exasperated and answered, “Yes, I know. I was simplifying. I’m
obscuring the truth here to demonstrate a bigger truth.” Although I hope I’m
not obscuring much in part 1, it’s definitely about the bigger truth.

 Most of this book looks at C# close up, occasionally putting it under a micro-
scope to see the finest details. Before we start doing that, chapter 1 pulls back
the lens to see the broader sweep of the history of C# and how C# fits into the
wider context of computing.

 You’ll see some code as an appetizer before I serve the main course of the
rest of the book, but the details don’t matter at this stage. This part is more
about the ideas and themes of C#’s development to get you in the best frame of
mind to appreciate how those ideas are implemented.

 Let’s go!

Licensed to André Santos <andrerfcsantos@gmail.com>

2 CHAPTER

Licensed to André Santos <andrerfcsantos@gmail.com>

Survival of the sharpest
Choosing the most interesting aspects of C# to introduce here was difficult. Some
are fascinating but are rarely used. Others are incredibly important but are now
commonplace to C# developers. Features such as async/await are great in many
ways but are hard to describe briefly. Without further ado, let’s look at how far C#
has come over time.

1.1 An evolving language
In previous editions of this book, I provided a single example that showed the evo-
lution of the language over the versions covered by that edition. That’s no longer
feasible in a way that would be interesting to read. Although a large application

This chapter covers
 How C#’s rapid evolution has made developers more

productive

 Selecting minor versions of C# to use the latest features

 Being able to run C# in more environments

 Benefitting from an open and engaged community

 The book’s focus on old and new C# versions
3

Licensed to André Santos <andrerfcsantos@gmail.com>

4 CHAPTER 1 Survival of the sharpest
may use almost all of the new features, any single piece of code that’s suitable for the
printed page would use only a subset of them.

 Instead, in this section I choose what I consider to be the most important themes
of C# evolution and give brief examples of improvements. This is far from an exhaus-
tive list of features. It’s also not intended to teach you the features; instead, it’s a
reminder of how far features you already know about have improved the language
and a tease for features you may not have seen yet.

 If you think some of these features imitate other languages you’re familiar with,
you’re almost certainly right. The C# team does not hesitate to take great ideas from
other languages and reshape them to feel at home within C#. This is a great thing! F#
is particularly worth mentioning as a source of inspiration for many C# features.

NOTE It’s possible that F#’s greatest impact isn’t what it enables for F# devel-
opers but its influence on C#. This isn’t to underplay the value of F# as a lan-
guage in its own right or to suggest that it shouldn’t be used directly. But
currently, the C# community is significantly larger than the F# community,
and the C# community owes a debt of gratitude to F# for inspiring the
C# team.

Let’s start with one of the most important aspects of C#: its type system.

1.1.1 A helpful type system at large and small scales

C# has been a statically typed language from the start: your code specifies the types of
variables, parameters, values returned from methods, and so on. The more precisely
you can specify the shape of the data your code accepts and returns, the more the
compiler can help you avoid mistakes.

 That’s particularly true as the application you’re building grows. If you can see all
the code for your whole program on one screen (or at least hold it all in your head at
one time), a statically typed language doesn’t have much benefit. As the scale
increases, it becomes increasingly important that your code concisely and effectively
communicates what it does. You can do that through documentation, but static typing
lets you communicate in a machine-readable way.

 As C# has evolved, its type system has allowed more fine-grained descriptions. The
most obvious example of this is generics. In C# 1, you might have had code like this:

public class Bookshelf
{
 public IEnumerable Books { get { ... } }
}

What type is each item in the Books sequence? The type system doesn’t tell you. With
generics in C# 2, you can communicate more effectively:

public class Bookshelf
{
 public IEnumerable<Book> Books { get { ... } }
}

Licensed to André Santos <andrerfcsantos@gmail.com>

5An evolving language
C# 2 also brought nullable value types, thereby allowing the absence of information to
be expressed effectively without resorting to magic values such as –1 for a collection
index or DateTime.MinValue for a date.

 C# 7 gave us the ability to tell the compiler that a user-defined struct should be
immutable using readonly struct declarations. The primary goal for this feature
may have been to improve the efficiency of the code generated by the compiler, but it
has additional benefits for communicating intent.

 The plans for C# 8 include nullable reference types, which will allow even more com-
munication. Up to this point, nothing in the language lets you express whether a ref-
erence (either as a return value, a parameter, or just a local variable) might be null. This
leads to error-prone code if you’re not careful and boilerplate validation code if you are
careful, neither of which is ideal. C# 8 will expect that anything not explicitly nullable
is intended not to be nullable. For example, consider a method declaration like this:

string Method(string x, string? y)

The parameter types indicate that the argument corresponding to x shouldn’t be null
but that the argument corresponding to y may be null. The return type indicates that
the method won’t return null.

 Other changes to the type system in C# are aimed at a smaller scale and focus on
how one method might be implemented rather than how different components in a
large system relate to each other. C# 3 introduced anonymous types and implicitly typed
local variables (var). These help address the downside of some statically typed lan-
guages: verbosity. If you need a particular data shape within a single method but
nowhere else, creating a whole extra type just for the sake of that method is overkill.
Anonymous types allow that data shape to be expressed concisely without losing the
benefits of static typing:

var book = new { Title = "Lost in the Snow", Author = "Holly Webb" };
string title = book.Title;
string author = book.Author;

Anonymous types are primarily used within LINQ queries, but the principle of creat-
ing a type just for a single method doesn’t depend on LINQ.

 Similarly, it seems redundant to explicitly specify the type of a variable that is ini-
tialized in the same statement by calling the constructor of that type. I know which of
the following declarations I find cleaner:

Dictionary<string, string> map1 = new Dictionary<string, string>();

var map2 = new Dictionary<string, string>();

Although implicit typing is necessary when working with anonymous types, I’ve found
it increasingly useful when working with regular types, too. It’s important to distinguish

Name and type are still
checked by the compiler

Explicit typing

Implicit typing
Licensed to André Santos <andrerfcsantos@gmail.com>

6 CHAPTER 1 Survival of the sharpest
between implicit typing and dynamic typing. The preceding map2 variable is still stati-
cally typed, but you didn’t have to write the type explicitly.

 Anonymous types help only within a single block of code; for example, you can’t
use them as method parameters or return types. C# 7 introduced tuples: value types
that effectively act to collect variables together. The framework support for these
tuples is relatively simple, but additional language support allows the elements of
tuples to be named. For example, instead of the preceding anonymous type, you
could use the following:

var book = (title: "Lost in the Snow", author: "Holly Webb");
Console.WriteLine(book.title);

Tuples can replace anonymous types in some cases but certainly not all. One of their
benefits is that they can be used as method parameters and return types. At the
moment, I advise that these be kept within the internal API of a program rather than
exposed publicly, because tuples represent a simple composition of values rather than
encapsulating them. That’s why I still regard them as contributing to simpler code at
the implementation level rather than improving overall program design.

 I should mention a feature that might come in C# 8: record types. I think of these as
named anonymous types to some extent, at least in their simplest form. They’d pro-
vide the benefits of anonymous types in terms of removing boilerplate code but then
allow those types to gain extra behavior just as regular classes do. Watch this space!

1.1.2 Ever more concise code

One of the recurring themes within new features of C# has been the ability to let you
express your ideas in ways that are increasingly concise. The type system is part of this,
as you’ve seen with anonymous types, but many other features also contribute to this.
There are lots of words you might hear for this, especially in terms of what can be
removed with the new features in place. C#’s features allow you to reduce ceremony,
remove boilerplate code, and avoid cruft. These are just different ways of talking about
the same effect. It’s not that any of the now-redundant code was wrong; it was just dis-
tracting and unnecessary. Let’s look at a few ways that C# has evolved in this respect.

CONSTRUCTION AND INITIALIZATION

First, we’ll consider how you create and initialize objects. Delegates have probably
evolved the most and in multiple stages. In C# 1, you had to write a separate method
for the delegate to refer to and then create the delegate itself in a long-winded way.
For example, here’s what you’d write to subscribe a new event handler to a button’s
Click event in C# 1:

button.Click += new EventHandler(HandleButtonClick);

C# 2 introduced method group conversions and anonymous methods. If you wanted to keep
the HandleButtonClick method, method group conversions would allow you to
change the preceding code to the following:

button.Click += HandleButtonClick;

C# 1

C# 2
Licensed to André Santos <andrerfcsantos@gmail.com>

7An evolving language
If your click handler is simple, you might not want to bother with a separate method
at all and instead use an anonymous method:

button.Click += delegate { MessageBox.Show("Clicked!"); };

Anonymous methods have the additional benefit of acting as closures: they can use
local variables in the context within which they’re created. They’re not used often in
modern C# code, however, because C# 3 provided us with lambda expressions, which
have almost all the benefits of anonymous methods but shorter syntax:

button.Click += (sender, args) => MessageBox.Show("Clicked!");

NOTE In this case, the lambda expression is longer than the anonymous
method because the anonymous method uses the one feature that lambda
expressions don’t have: the ability to ignore parameters by not providing a
parameter list.

I used event handlers as an example for delegates because that was their main use in
C# 1. In later versions of C#, delegates are used in more varied situations, particularly
in LINQ.

 LINQ also brought other benefits for initialization in the form of object initializers
and collection initializers. These allow you to specify a set of properties to set on a new
object or items to add to a new collection within a single expression. It’s simpler to
show than describe, and I’ll borrow an example from chapter 3. Consider code that
you might previously have written like this:

var customer = new Customer();
customer.Name = "Jon";
customer.Address = "UK";
var item1 = new OrderItem();
item1.ItemId = "abcd123";
item1.Quantity = 1;
var item2 = new OrderItem();
item2.ItemId = "fghi456";
item2.Quantity = 2;
var order = new Order();
order.OrderId = "xyz";
order.Customer = customer;
order.Items.Add(item1);
order.Items.Add(item2);

The object and collection initializers introduced in C# 3 make this so much clearer:

var order = new Order
{
 OrderId = "xyz",
 Customer = new Customer { Name = "Jon", Address = "UK" },
 Items =
 {
 new OrderItem { ItemId = "abcd123", Quantity = 1 },
 new OrderItem { ItemId = "fghi456", Quantity = 2 }
 }
};

C# 2

C# 3
Licensed to André Santos <andrerfcsantos@gmail.com>

8 CHAPTER 1 Survival of the sharpest
I don’t suggest reading either of these examples in detail; what’s important is the sim-
plicity of the second form over the first.

METHOD AND PROPERTY DECLARATIONS

One of the most obvious examples of simplification is through automatically implemented
properties. These were first introduced in C# 3 but have been further improved in later
versions. Consider a property that would’ve been implemented in C# 1 like this:

private string name;
public string Name
{
 get { return name; }
 set { name = value; }
}

Automatically implemented properties allow this to be written as a single line:

public string Name { get; set; }

Additionally, C# 6 introduced expression-bodied members that remove more ceremony.
Suppose you’re writing a class that wraps an existing collection of strings, and you
want to effectively delegate the Count and GetEnumerator() members of your class
to that collection. Prior to C# 6, you would’ve had to write something like this:

public int Count { get { return list.Count; } }

public IEnumerator<string> GetEnumerator()
{
 return list.GetEnumerator();
}

This is a strong example of ceremony: a lot of syntax that the language used to require
with little benefit. In C# 6, this is significantly cleaner. The => syntax (already used by
lambda expressions) is used to indicate an expression-bodied member:

public int Count => list.Count;

public IEnumerator<string> GetEnumerator() => list.GetEnumerator();

Although the value of using expression-bodied members is a personal and subjective
matter, I’ve been surprised by just how much difference they’ve made to the readabil-
ity of my code. I love them! Another feature I hadn’t expected to use as much as I now
do is string interpolation, which is one of the string-related improvements in C#.

STRING HANDLING

String handling in C# has had three significant improvements:

 C# 5 introduced caller information attributes, including the ability for the com-
piler to automatically populate method and filenames as parameter values. This
is great for diagnostic purposes, whether in permanent logging or more tempo-
rary testing.
Licensed to André Santos <andrerfcsantos@gmail.com>

9An evolving language
 C# 6 introduced the nameof operator, which allows names of variables, types,
methods, and other members to be represented in a refactoring-friendly form.

 C# 6 also introduced interpolated string literals. This isn’t a new concept, but it
makes constructing a string with dynamic values much simpler.

For the sake of brevity, I’ll demonstrate just the last point. It’s reasonably common to
want to construct a string with variables, properties, the result of method calls, and so
forth. This might be for logging purposes, user-oriented error messages (if localiza-
tion isn’t required), exception messages, and so forth.

 Here’s an example from my Noda Time project. Users can try to find a calendar
system by its ID, and the code throws a KeyNotFoundException if that ID doesn’t
exist. Prior to C# 6, the code might have looked like this:

throw new KeyNotFoundException(
 "No calendar system for ID " + id + " exists");

Using explicit string formatting, it looks like this:

throw new KeyNotFoundException(
 string.Format("No calendar system for ID {0} exists", id);

NOTE See section 1.4.2 for information about Noda Time. You don’t need to
know about it to understand this example.

In C# 6, the code becomes just a little simpler with an interpolated string literal to
include the value of id in the string directly:

throw new KeyNotFoundException($"No calendar system for ID {id} exists");

This doesn’t look like a big deal, but I’d hate to have to work without string interpola-
tion now.

 These are just the most prominent features that help improve the signal-to-noise
ratio of your code. I could’ve shown using static directives and the null condi-
tional operator in C# 6 as well as pattern matching, deconstruction, and out variables
in C# 7. Rather than expand this chapter to mention every feature in every version,
let’s move on to a feature that’s more revolutionary than evolutionary: LINQ.

1.1.3 Simple data access with LINQ

If you ask C# developers what they love about C#, they’ll likely mention LINQ. You’ve
already seen some of the features that build up to LINQ, but the most radical is query
expressions. Consider this code:

var offers =
 from product in db.Products
 where product.SalePrice <= product.Price / 2
 orderby product.SalePrice
 select new {
 product.Id, product.Description,
 product.SalePrice, product.Price
 };
Licensed to André Santos <andrerfcsantos@gmail.com>

10 CHAPTER 1 Survival of the sharpest
That doesn’t look anything like old-school C#. Imagine traveling back to 2007 to show
that code to a developer using C# 2 and then explaining that this has compile-time
checking and IntelliSense support and that it results in an efficient database query.
Oh, and that you can use the same syntax for regular collections as well.

 Support for querying out-of-process data is provided via expression trees. These rep-
resent code as data, and a LINQ provider can analyze the code to convert it into SQL
or other query languages. Although this is extremely cool, I rarely use it myself,
because I don’t work with SQL databases often. I do work with in-memory collections,
though, and I use LINQ all the time, whether through query expressions or method
calls with lambda expressions.

 LINQ didn’t just give C# developers new tools; it encouraged us to think about
data transformations in a new way based on functional programming. This affects
more than data access. LINQ provided the initial impetus to take on more functional
ideas, but many C# developers have embraced those ideas and taken them further.

 C# 4 made a radical change in terms of dynamic typing, but I don’t think that
affected as many developers as LINQ. Then C# 5 came along and changed the game
again, this time with respect to asynchrony.

1.1.4 Asynchrony

Asynchrony has been difficult in mainstream languages for a long time. More niche
languages have been created with asynchrony in mind from the start, and some func-
tional languages have made it relatively easy as just one of the things they handle
neatly. But C# 5 brought a new level of clarity to programming asynchrony in a main-
stream language with a feature usually referred to as async/await. The feature consists
of two complementary parts around async methods:

 Async methods produce a result representing an asynchronous operation with no
effort on the part of the developer. This result type is usually Task or Task<T>.

 Async methods use await expressions to consume asynchronous operations. If
the method tries to await an operation that hasn’t completed yet, the method
pauses asynchronously until the operation completes and then continues.

NOTE More properly, I could call these asynchronous functions, because
anonymous methods and lambda expressions can be asynchronous, too.

Exactly what’s meant by asynchronous operation and pausing asynchronously is where
things become tricky, and I won’t attempt to explain this now. But the upshot is that
you can write code that’s asynchronous but looks mostly like the synchronous code
you’re more familiar with. It even allows for concurrency in a natural way. As an exam-
ple, consider this asynchronous method that might be called from a Windows Forms
event handler:

private async Task UpdateStatus()
{
 Task<Weather> weatherTask = GetWeatherAsync();
 Task<EmailStatus> emailTask = GetEmailStatusAsync();

Starts two operations
concurrently
Licensed to André Santos <andrerfcsantos@gmail.com>

https://nodatime.org
https://github.com/nodatime/nodatime

11An evolving language
 Weather weather = await weatherTask;
 EmailStatus email = await emailTask;

 weatherLabel.Text = weather.Description;
 inboxLabel.Text = email.InboxCount.ToString();
}

In addition to starting two operations concurrently and then awaiting their results,
this demonstrates how async/await is aware of synchronization contexts. You’re updat-
ing the user interface, which can be done only in a UI thread, despite also starting
and waiting for long-running operations. Before async/await, this would’ve been com-
plex and error prone.

 I don’t claim that async/await is a silver bullet for asynchrony. It doesn’t magically
remove all the complexity that naturally comes with the territory. Instead, it lets you
focus on the inherently difficult aspects of asynchrony by taking away a lot of the boil-
erplate code that was previously required.

 All of the features you’ve seen so far aim to make code simpler. The final aspect I
want to mention is slightly different.

1.1.5 Balancing efficiency and complexity

I remember my first experiences with Java; it was entirely interpreted and painfully slow.
After a while, optional just-in-time (JIT) compilers became available, and eventually it
was taken almost for granted that any Java implementation would be JIT-compiled.

 Making Java perform well took a lot of effort. This effort wouldn’t have happened
if the language had been a flop. But developers saw the potential and already felt
more productive than they had before. Speed of development and delivery can often
be more important than application speed.

 C# was in a slightly different situation. The Common Language Runtime (CLR)
was pretty efficient right from the start. The language support for easy interop with
native code and for performance-sensitive unsafe code with pointers helps, too. C#
performance continues to improve over time. (I note with a wry smile that Microsoft is
now introducing tiered JIT compilation broadly like the Java HotSpot JIT compiler.)

 But different workloads have different performance demands. As you’ll see in sec-
tion 1.2, C# is now in use across a surprising variety of platforms, including gaming
and microservices, both of which can have difficult performance requirements.

 Asynchrony helps address performance in some situations, but C# 7 is the most
overtly performance-sensitive release. Read-only structs and a much larger surface
area for ref features help to avoid redundant copying. The Span<T> feature present
in modern frameworks and supported by ref-like struct types reduces unnecessary
allocation and garbage collection. The hope is clearly that when used carefully, these
techniques will cater to the requirements of specific developers.

 I have a slight sense of unease around these features, as they still feel complex to
me. I can’t reason about a method using an in parameter as clearly as I can about

Asynchronously waits
for them to complete

Updates the
userinterface
Licensed to André Santos <andrerfcsantos@gmail.com>

12 CHAPTER 1 Survival of the sharpest
regular value parameters, and I’m sure it will take a while before I’m comfortable with
what I can and can’t do with ref locals and ref returns.

 My hope is that these features will be used in moderation. They’ll simplify code in
situations that benefit from them, and they will no doubt be welcomed by the develop-
ers who maintain that code. I look forward to experimenting with these features in
personal projects and becoming more comfortable with the balance between
improved performance and increased code complexity.

 I don’t want to sound this note of caution too loudly. I suspect the C# team made
the right choice to include the new features regardless of how much or little I’ll use
them in my work. I just want to point out that you don’t have to use a feature just
because it’s there. Make your decision to opt into complexity a conscious one. Speak-
ing of opting in, C# 7 brought a new meta-feature to the table: the use of minor ver-
sion numbers for the first time since C# 1.

1.1.6 Evolution at speed: Using minor versions

The set of version numbers for C# is an odd one, and it is complicated by the fact that
many developers get understandably confused between the framework and the lan-
guage. (There’s no C# 3.5, for example. The .NET Framework version 3.0 shipped
with C# 2, and .NET 3.5 shipped with C# 3.) C# 1 had two releases: C# 1.0 and C# 1.2.
Between C# 2 and C# 6 inclusive, there were only major versions that were usually
backed by a new version of Visual Studio.

 C# 7 bucked that trend: there were releases of C# 7.0, C# 7.1, C# 7.2, and C# 7.3,
which were all available in Visual Studio 2017. I consider it highly likely that this pat-
tern will continue in C# 8. The aim is to allow new features to evolve quickly with user
feedback. The majority of C# 7.1–7.3 features have been tweaks or extensions to the
features introduced in C# 7.0.

 Volatility in language features can be disconcerting, particularly in large organiza-
tions. A lot of infrastructure may need to be changed or upgraded to make sure the
new language version is fully supported. A lot of developers may learn and adopt new
features at different paces. If nothing else, it can be a little uncomfortable for the lan-
guage to change more often than you’re used to.

 For this reason, the C# compiler defaults to using the earliest minor version of the
latest major version it supports. If you use a C# 7 compiler and don’t specify any lan-
guage version, it will restrict you to C# 7.0 by default. If you want to use a later minor
version, you need to specify that in your project file and opt into the new features. You
can do this in two ways, although they have the same effect. You can edit your project
file directly to add a <LangVersion> element in a <PropertyGroup>, like this:

<PropertyGroup>
 ...
 <LangVersion>latest</LangVersion>
</PropertyGroup>

Other properties

Specifies the language
version of the project
Licensed to André Santos <andrerfcsantos@gmail.com>

13An evolving platform
Figure 1.1 Language version settings in Visual Studio

If you don’t like editing project files directly, you can go to the project properties in
Visual Studio, select the Build tab, and then click the Advanced button at the bottom
right. The Advanced Build Settings dialog box, shown in figure 1.1, will open to allow
you to select the language version you wish to use and other options.

 This option in the dialog box isn’t new, but you’re more likely to want to use it now
than in previous versions. The values you can select are as follows:

 default—The first release of the latest major version
 latest—The latest version
 A specific version number—For example, 7.0 or 7.3

This doesn’t change the version of the compiler you run; it changes the set of lan-
guage features available to you. If you try to use something that isn’t available in the
version you’re targeting, the compiler error message will usually explain which ver-
sion is required for that feature. If you try to use a language feature that’s entirely
unknown to the compiler (using C# 7 features with a C# 6 compiler, for example), the
error message is usually less clear.

 C# as a language has come a long way since its first release. What about the plat-
form it runs on?

1.2 An evolving platform
The last few years have been exhilarating for .NET developers. A certain amount of
frustration exists as well, as both Microsoft and the .NET community come to terms
with the implications of a more open development model. But the overall result of the
hard work by so many people is remarkable.

 For many years, running C# code would almost always mean running on Windows.
It would usually mean either a client-side app written in Windows Forms or Windows
Presentation Foundation (WPF) or a server-side app written with ASP.NET and proba-
bly running behind Internet Information Server (IIS). Other options have been
Licensed to André Santos <andrerfcsantos@gmail.com>

14 CHAPTER 1 Survival of the sharpest
available for a long time, and the Mono project in particular has a rich history, but the
mainstream of .NET development was still on Windows.

 As I write this in June 2018, the .NET world is very different. The most prominent
development is .NET Core, a runtime and framework that is portable and open
source, is fully supported by Microsoft on multiple operating systems, and has stream-
lined development tooling. Only a few years ago, that would’ve been unthinkable.
Add to that a portable and open source IDE in the form of Visual Studio Code, and
you get a flourishing .NET ecosystem with developers working on all kinds of local
platforms and then deploying to all kinds of server platforms.

 It would be a mistake to focus too heavily on .NET Core and ignore the many other
ways C# runs these days. Xamarin provides a rich multiplatform mobile experience.
Its GUI framework (Xamarin Forms) allows developers to create user interfaces that
are fairly uniform across different devices where that’s appropriate but that can take
advantage of the underlying platform, too.

 Unity is one of the most popular game-development platforms in the world. With a
customized Mono runtime and ahead-of-time compilation, it can provide challenges
to C# developers who are used to more-traditional runtime environments. But for
many developers, this is their first or perhaps their only experience with the language.

 These widely adopted platforms are far from the only ones making C#. I’ve
recently been working with Try .NET and Blazor for very different forms of browser/
C# interaction.

 Try .NET allows users to write code in a browser, with autocompletion, and then
build and run that code. It’s great for experimenting with C# with a barrier to entry
that’s about as low as it can be.

 Blazor is a platform for running Razor pages directly in a browser. These aren’t
pages rendered by a server and then displayed in the browser; the user-interface code
runs within the browser using a version of the Mono runtime converted into Web-
Assembly. The idea of a whole runtime executing Intermediate Language (IL) via the
JavaScript engine in a browser, not only on full computers but also on mobile phones,
would’ve struck me as absurd just a few years ago. I’m glad other developers have
more imagination. A lot of the innovation in this space has been made possible only
by a more collaborative and open community than ever before.

1.3 An evolving community
I’ve been involved in the C# community since the C# 1.0 days, and I’ve never seen it as
vibrant as it is today. When I started using C#, it was very much seen as an “enterprise”
programming language, and there was relatively little sense of fun and exploration.1

With that background, the open source C# ecosystem grew fairly slowly compared
with other languages, including Java, which was also considered an enterprise

1 Don’t get me wrong; it was a pleasant community to be part of, and there have always been people experi-
menting with C# for fun.
Licensed to André Santos <andrerfcsantos@gmail.com>

15An evolving book
language. Around the time of C# 3, the alt.NET community was looking beyond the
mainstream of .NET development, and this was seen as being against Microsoft in
some senses.

 In 2010, the NuGet (initially NuPack) package manager was launched, which
made it much easier to produce and consume class libraries, whether commercial or
open source. Even though the barrier of downloading a zip file, copying a DLL into
somewhere appropriate, and then adding a reference to it doesn’t sound hugely sig-
nificant, every point of friction can put developers off.

NOTE Package managers other than NuGet were developed even earlier,
and the OpenWrap project developed by Sebastien Lambla was particularly
influential.

Fast-forward to 2014, and Microsoft announced that its Roslyn compiler platform was
going to become open source under the umbrella of the new .NET Foundation. Then
.NET Core was announced under the initial codename Project K; DNX came later, fol-
lowed by the .NET Core tooling that’s now released and stable. Then came ASP.NET
Core. And Entity Framework Core. And Visual Studio Code. The list of products that
truly live and breathe on GitHub goes on.

 The technology has been important, but the new embrace of open source by
Microsoft has been equally vital for a healthy community. Third-party open source
packages have blossomed, including innovative uses for Roslyn and integrations
within .NET Core tooling that just feel right.

 None of this has happened in a vacuum. The rise of cloud computing makes .NET
Core even more important to the .NET ecosystem than it would’ve been otherwise;
support for Linux isn’t optional. But because .NET Core is available, there’s now noth-
ing special about packaging up an ASP.NET Core service in a Docker image, deploy-
ing it with Kubernetes, and using it as just one part of a larger application that could
involve many languages. The cross-pollination of good ideas between many communi-
ties has always been present, but it is stronger than ever right now.

 You can learn C# in a browser. You can run C# anywhere. You can ask questions
about C# on Stack Overflow and myriad other sites. You can join in the discussion
about the future of the language on the C# team’s GitHub repository. It’s not perfect;
we still have collective work to do in order to make the C# community as welcoming as
it possibly can be for everyone, but we’re in a great place already.

 I’d like to think that C# in Depth has its own small place in the C# community, too.
How has this book evolved?

1.4 An evolving book
You’re reading the fourth edition of C# in Depth. Although the book hasn’t evolved at
the same pace as the language, platform, or community, it also has changed. This sec-
tion will help you understand what is covered in this book.
Licensed to André Santos <andrerfcsantos@gmail.com>

16 CHAPTER 1 Survival of the sharpest
1.4.1 Mixed-level coverage

The first edition of C# in Depth came out in April 2008, which was coincidentally the
same time that I joined Google. Back then, I was aware that a lot of developers knew
C# 1 fairly well, but they were picking up C# 2 and C# 3 as they went along without a
firm grasp of how all the pieces fit together. I aimed to address that gap by diving into
the language at a depth that would help readers understand not only what each fea-
ture did but why it was designed that way.

 Over time, the needs of developers change. It seems to me that the community has
absorbed a deeper understanding of the language almost by osmosis, at least for ear-
lier versions. Attaining deeper understanding of the language won’t be a universal
experience, but for the fourth edition, I wanted the emphasis to be on the newer ver-
sions. I still think it’s useful to understand the evolution of the language version by
version, but there’s less need to look at every detail of the features in C# 2–4.

NOTE Looking at the language one version at a time isn’t the best way to
learn the language from scratch, but it’s useful if you want to understand it
deeply. I wouldn’t use the same structure to write a book for C# beginners.

I’m also not keen on thick books. I don’t want C# in Depth to be intimidating, hard to
hold, or hard to write in. Keeping 400 pages of coverage for C# 2–4 just didn’t feel
right. For that reason, I’ve compressed my coverage of those versions. Every feature is
mentioned, and I go into detail where I feel it’s appropriate, but there’s less depth
than in the third edition. Use the coverage in the fourth edition as a review of topics
you already know and to help you determine topics you want to read more about in
the third edition. You can find a link to access an electronic copy of the third edition
at www.manning.com/books/c-sharp-in-depth-fourth-edition. Versions 5–7 of the lan-
guage are covered in more detail in this edition. Asynchrony is still a tough topic to
understand, and the third edition obviously doesn’t cover C# 6 or 7 at all.

 Writing, like software engineering, is often a balancing act. I hope the balance I’ve
struck between detail and brevity works for you.

TIP If you have a physical copy of this book, I strongly encourage you to write
in it. Make note of places where you disagree or parts that are particularly use-
ful. The act of doing this will reinforce the content in your memory, and the
notes will serve as reminders later.

1.4.2 Examples using Noda Time

Most of the examples I provide in the book are standalone. But to make a more com-
pelling case for some features, it’s useful to be able to point to where I use them in
production code. Most of the time, I use Noda Time for this.

 Noda Time is an open source project I started in 2009 to provide a better date and
time library for .NET. It serves a secondary purpose, though: it’s a great sandbox
Licensed to André Santos <andrerfcsantos@gmail.com>

www.manning.com/books/c-sharp-in-depth-fourth-edition

17An evolving book
project for me. It helps me hone my API design skills, learn more about performance
and benchmarking, and test new C# features. All of this without breaking users, of
course.

 Every new version of C# has introduced features that I’ve been able to use in Noda
Time, so I think it makes sense to use those as concrete examples in this book. All of
the code is available on GitHub, which means you can clone it and experiment for
yourself. The purpose of using Noda Time in examples isn’t to persuade you to use
the library, but I’m not going to complain if that happens to be a side effect.

 In the rest of the book, I’ll assume that you know what I’m talking about when I
refer to Noda Time. In terms of making it suitable for examples, the important aspects
of it are as follows:

 The code needs to be as readable as possible. If a language feature lets me
refactor for readability, I’ll jump at the chance.

 Noda Time follows semantic versioning, and new major versions are rare. I pay
attention to the backward-compatibility aspects of applying new language fea-
tures.

 I don’t have concrete performance goals, because Noda Time can be used in
many contexts with different requirements. I do pay attention to performance
and will embrace features that improve efficiency, so long as they don’t make
the code much more complex.

To find out more about the project and check out its source code, visit https://
nodatime.org or https://github.com/nodatime/nodatime.

1.4.3 Terminology choices

I’ve tried to follow the official C# terminology as closely as I can within the book, but
occasionally I’ve allowed clarity to take precedence over precision. For example, when
writing about asynchrony, I often refer to async methods when the same information
also applies to asynchronous anonymous functions. Likewise, object initializers apply
to accessible fields as well as properties, but it’s simpler to mention that once and then
refer only to properties within the rest of the explanation.

 Sometimes the terms within the specification are rarely used in the wider commu-
nity. For example, the specification has the notion of a function member. That’s a
method, property, event, indexer, user-defined operator, instance constructor, static
constructor, or finalizer. It’s a term for any type member that can contain executable
code, and it’s useful when describing language features. It’s not nearly as useful when
you’re looking at your own code, which is why you may never have heard of it before.
I’ve tried to use terms like this sparingly, but my view is that it’s worth becoming some-
what familiar with them in the spirit of getting closer to the language.

 Finally, some concepts don’t have any official terminology but are still useful to
refer to in a shorthand form. The one I’ll use most often is probably unspeakable names.
Licensed to André Santos <andrerfcsantos@gmail.com>

https://nodatime.org
https://nodatime.org
https://github.com/nodatime/nodatime

18 CHAPTER 1 Survival of the sharpest
This term, coined by Eric Lippert, refers to an identifier generated by the compiler to
implement features such as iterator blocks or lambda expressions.2 The identifier is
valid for the CLR but not valid in C#; it’s a name that can’t be “spoken” within the lan-
guage, so it’s guaranteed not to clash with your code.

Summary
I love C#. It’s both comfortable and exciting, and I love seeing where it’s going next. I
hope this chapter has passed on some of that excitement to you. But this has been
only a taste. Let’s get onto the real business of the book without further delay.

2 We think it was Eric, anyway. Eric can’t remember for sure and thinks Anders Hejlsberg may have come up
with the term first. I’ll always associate it with Eric, though, along with his classification for exceptions: fatal,
boneheaded, vexing, or exogenous.
Licensed to André Santos <andrerfcsantos@gmail.com>

Part 2

C# 2–5

This part of the book covers all the features introduced between C# 2
(shipped with Visual Studio 2005) and C# 5 (shipped with Visual Studio 2012).
This is the same set of features that took up the entire third edition of this book.
Much of it feels like ancient history now; for example, we simply take it for
granted that C# includes generics.

 This was a tremendously productive period for C#. Some of the features I’ll
cover in this part are generics, nullable value types, anonymous methods, method
group conversions, iterators, partial types, static classes, automatically imple-
mented properties, implicitly typed local variables, implicitly typed arrays, object
initializers, collection initializers, anonymous types, lambda expressions, exten-
sion methods, query expressions, dynamic typing, optional parameters, named
arguments, COM improvements, generic covariance and contravariance, async/
await, and caller information attributes. Phew!

 I expect most of you to be at least somewhat familiar with most of the fea-
tures, so I ramp up pretty fast in this part. Likewise, for the sake of reasonable
brevity, I haven’t gone into as much detail as I did in the third edition. The
intention is to cover a variety of reader needs:

 An introduction to features you may have missed along the way
 A reminder of the features you once knew about but have forgotten
 An explanation of the reasons behind the features: why they were intro-

duced and why they were designed in the way they were
 A quick reference in case you know what you want to do but have forgot-

ten some syntax
Licensed to André Santos <andrerfcsantos@gmail.com>

20 CHAPTER C# 2–5
If you want more detail, please refer to the third edition. As a reminder, purchase of
the fourth edition entitles you to an e-book copy of the third edition.

 There’s one exception to this brief coverage rule: I’ve completely rewritten the
coverage of async/await, which is the largest feature in C# 5. Chapter 5 covers what
you need to know to use async/await, and chapter 6 addresses how it’s implemented
behind the scenes. If you’re new to async/await, you’ll almost certainly want to wait
until you’ve used it a bit before you read chapter 6, and even then, you shouldn’t
expect it to be a simple read. I’ve tried to explain things as accessibly as I can, but the
topic is fundamentally complex. I do encourage you to try, though; understanding
async/await at a deep level can help boost your confidence when using the feature,
even if you never need to dive into the IL the compiler generates for your own code.
The good news is that after chapter 6, you’ll find a little relief in the form of chapter 7.
It’s the shortest chapter in the book and a chance to recover before exploring C# 6.

 With all introductions out of the way, brace yourself for an onslaught of features.

Licensed to André Santos <andrerfcsantos@gmail.com>

C# 2
If your experience with C# goes far enough back, this chapter will be a reminder of
just how far we’ve come and a prompt to be grateful for a dedicated and smart lan-
guage design team. If you’ve never programmed C# without generics, you may end
up wondering how C# ever took off without these features.1 Either way, you may still
find features you weren’t aware of or details you’ve never considered listed here.

 It’s been more than 10 years since C# 2 was released (with Visual Studio 2005), so
it can be hard to get excited about features in the rearview mirror. You shouldn’t

This chapter covers
 Using generic types and methods for flexible, safe

code

 Expressing the absence of information with nullable
value types

 Constructing delegates relatively easily

 Implementing iterators without writing boilerplate code

1 For me, the answer to this one is simple: C# 1 was a more productive language for many developers than
Java was at the time.
21

Licensed to André Santos <andrerfcsantos@gmail.com>

22 CHAPTER 2 C# 2
underestimate how important its release was at the time. It was also painful: the upgrade
from C# 1 and .NET 1.x to C# 2 and .NET 2.0 took a long time to roll through the indus-
try. Subsequent evolutions have been much quicker. The first feature from C# 2 is the
one almost all developers consider to be the most important: generics.

2.1 Generics
Generics allow you to write general-purpose code that’s type safe at compile time
using the same type in multiple places without knowing what that type is beforehand.
When generics were first introduced, their primary use was for collections, but in
modern C# code, they crop up everywhere. They’re probably most heavily used for
the following:

 Collections (they’re just as useful in collections as they ever were)
 Delegates, particularly in LINQ
 Asynchronous code, where a Task<T> is a promise of a future value of type T
 Nullable value types, which I’ll talk about more in section 2.2

This isn’t the limit of their usefulness by any means, but even those four bullets mean
that C# programmers use generics on a daily basis. Collections provide the simplest
way of explaining the benefits of generics, because you can look at collections in .NET
1 and compare them with the generic collections in .NET 2.

2.1.1 Introduction by example: Collections before generics

.NET 1 had three broad kinds of collections:

 Arrays—These have direct language and runtime support. The size is fixed at
initialization.

 Object-based collections—Values (and keys where relevant) are described in the
API by using System.Object. These have no collection-specific language or
runtime support, although language features such as indexers and foreach
statements can be used with them. ArrayList and Hashtable are the most
commonly used examples.

 Specialized collections—Values are described in the API with a specific type, and
the collection can be used for only that type. StringCollection is a collec-
tion of strings, for example; its API looks like ArrayList but using String
instead of Object for anything referring to a value.

Arrays and specialized collections are statically typed, by which I mean that the API pre-
vents you from putting the wrong kind of value in a collection, and when you fetch a
value from the collection, you don’t need to cast the result back to the type you expect
it to be.

NOTE Reference type arrays are only mostly safe when storing values because of
array covariance. I view array covariance as an early design mistake that’s
beyond the scope of this book. Eric Lippert wrote about this at http://mng.bz/
gYPv as part of his series of blog posts on covariance and contravariance.
Licensed to André Santos <andrerfcsantos@gmail.com>

http://mng.bz/gYPv
http://mng.bz/gYPv

23Generics
Let’s make this concrete: suppose you want to create a collection of strings in
one method (GenerateNames) and print those strings out in another method
(PrintNames). You’ll look at three options to keep the collection of names—arrays,
ArrayList, and StringCollection—and weigh the pros and cons of each. The
code looks similar in each case (particularly for PrintNames), but bear with me.
We’ll start with arrays.

static string[] GenerateNames()
{
 string[] names = new string[4];
 names[0] = "Gamma";
 names[1] = "Vlissides";
 names[2] = "Johnson";
 names[3] = "Helm";
 return names;
}

static void PrintNames(string[] names)
{
 foreach (string name in names)
 {
 Console.WriteLine(name);
 }
}

I haven’t used an array initializer here, because I want to mimic the situation where the
names are discovered only one at a time, such as when reading them from a file. Notice
that you need to allocate the array to be the right size to start with, though. If you really
were reading from a file, you’d either need to find out how many names there were
before you started, or you’d need to write more-complicated code. For example, you
could allocate one array to start with, copy the contents to a larger array if the first one
filled up, and so on. You’d then need to consider creating a final array of just the right
size if you ended up with an array larger than the exact number of names.

 The code used to keep track of the size of our collection so far, reallocate an array,
and so on is repetitive and can be encapsulated in a type. As it happens, that’s just
what ArrayList does.

static ArrayList GenerateNames()
{
 ArrayList names = new ArrayList();
 names.Add("Gamma");
 names.Add("Vlissides");
 names.Add("Johnson");
 names.Add("Helm");
 return names;
}

Listing 2.1 Generating and printing names by using arrays

Listing 2.2 Generating and printing names by using ArrayList

Size of array needs to be
known at creation time
Licensed to André Santos <andrerfcsantos@gmail.com>

24 CHAPTER 2 C# 2
static void PrintNames(ArrayList names)
{
 foreach (string name in names)
 {
 Console.WriteLine(name);
 }
}

That’s cleaner in terms of our GenerateNames method: you don’t need to know how
many names you have before you start adding to the collection. But equally, there’s
nothing to stop you from adding a nonstring to the collection; the type of the Array-
List.Add parameter is just Object.

 Furthermore, although the PrintNames method looks safe in terms of types, it’s
not. The collection can contain any kind of object reference. What would you expect
to happen if you added a completely different type (a WebRequest, as an odd exam-
ple) to the collection, and then tried to print it? The foreach loop hides an implicit
cast, from object to string, because of the type of the name variable. That cast can
fail in the normal way with an InvalidCastException. Therefore, you’ve fixed one
problem but caused another. Is there anything that solves both of these?

static StringCollection GenerateNames()
{
 StringCollection names = new StringCollection();
 names.Add("Gamma");
 names.Add("Vlissides");
 names.Add("Johnson");
 names.Add("Helm");
 return names;
}

static void PrintNames(StringCollection names)
{
 foreach (string name in names)
 {
 Console.WriteLine(name);
 }
}

Listing 2.3 is identical to listing 2.2 except for replacing ArrayList with String-
Collection everywhere. That’s the whole point of StringCollection: it should
feel like a pleasant general-purpose collection but specialized to only handle strings.
The parameter type of StringCollection.Add is String, so you can’t add a
WebRequest to it through some odd bug in our code. The resulting effect is that
when you print the names, you can be confident that the foreach loop won’t
encounter any nonstring references. (You could still see a null reference, admittedly.)

 That’s great if you always need only strings. But if you need a collection of some
other type, you have to either hope that there’s already a suitable collection type in

Listing 2.3 Generating and printing names by using StringCollection

What happens if the ArrayList
contains a nonstring?
Licensed to André Santos <andrerfcsantos@gmail.com>

25Generics
the framework or write one yourself. This was such a common task that there’s a
System.Collections.CollectionBase abstract class to make the work somewhat
less repetitive. There are also code generators to avoid having to write it all by hand.

 That solves both problems from the previous solution, but the cost of having all
these extra types around is way too high. There’s a maintenance cost in keeping them
up-to-date as the code generator changes. There are efficiency costs in terms of com-
pilation time, assembly size, JITting time, and keeping the code in memory. Most
important, there’s a human cost in keeping track of all the collection classes available.

 Even if those costs weren’t too high, you’d be missing the ability to write a method
that can work on any collection type in a statically typed way, potentially using the col-
lection’s element type in another parameter or in the return type. For example, say
you want to write a method to create a copy of the first N elements of a collection into
a new one, which was then returned. You could write a method that returns an
ArrayList, but that loses the goodness of static typing. If you pass in a String-
Collection, you’d want a StringCollection back. The string aspect is part of the
input to the method, which then needs to be propagated to the output as well. You
had no way of expressing that in the language when using C# 1. Enter generics.

2.1.2 Generics save the day

Let’s get straight to the solution for our GenerateNames/PrintNames code and use
the List<T> generic type. List<T> is a collection in which T is the element type of
the collection—string, in our case. You can replace StringCollection with
List<string> everywhere.2

static List<string> GenerateNames()
{
 List<string> names = new List<string>();
 names.Add("Gamma");
 names.Add("Vlissides");
 names.Add("Johnson");
 names.Add("Helm");
 return names;
}

static void PrintNames(List<string> names)
{
 foreach (string name in names)
 {
 Console.WriteLine(name);
 }
}

Listing 2.4 Generating and printing names with List<T>

2 I’m deliberately not going into the possibility of using interfaces for return types and parameters. That’s an
interesting topic, but I don’t want to distract you from generics.
Licensed to André Santos <andrerfcsantos@gmail.com>

26 CHAPTER 2 C# 2
List<T> solves all the problems we talked about before:

 You don’t need to know the size of the collection beforehand, unlike with arrays.
 The exposed API uses T everywhere it needs to refer to the element type, so you

know that a List<string> will contain only string references. You’ll get a
compile-time error if you try to add anything else, unlike with ArrayList.

 You can use it with any element type without worrying about generating code
and managing the result, unlike with StringCollection and similar types.

Generics also solve the problem of expressing an element type as an input to a
method. To delve into that aspect more deeply, you’ll need more terminology.

TYPE PARAMETERS AND TYPE ARGUMENTS

The terms parameter and argument predate generics in C# and have been used in other
languages for decades. A method declares its inputs as parameters, and they’re pro-
vided by calling code in the form of arguments. Figure 2.1 shows how the two relate to
each other.

Figure 2.1 Relationship between method parameters and arguments

The values of the arguments are used as the initial values for the parameters within the
method. In generics, you have type parameters and type arguments, which are the same

idea but applied to types. The declara-
tion of a generic type or method
includes type parameters in angle
brackets after the name. Within the
body of the declaration, the code can
use the type parameter as a normal
type (just one it doesn’t know much
about).
 The code using the generic type or
method then specifies the type argu-
ments in angle brackets after the name
as well. Figure 2.2 shows this relation-
ship in the context of List<T>.

Argument for
“name” parameter

Argument for
“value” parameter

Parameters

public static void Method(string name, int value) { ... }
...
string customerName = "Jon";
Method(customerName, 5);

public class List<T>
{
 ...
}
...
List<string> list = new List<string>();

Type parameter

Type arguments

Figure 2.2 Relationship between type parameters
and type arguments
Licensed to André Santos <andrerfcsantos@gmail.com>

27Generics
Now imagine the complete API of List<T>: all the method signatures, properties,
and so on. If you’re using the list variable shown in the figure, any T that appears in
the API becomes string. For example, the Add method in List<T> has the follow-
ing signature:

public void Add(T item)

But if you type list.Add(into Visual Studio, IntelliSense will prompt you as if the
item parameter had been declared with a type of string. If you try to pass in an
argument of another type, it will result in a compile-time error.

 Although figure 2.2 refers to a generic class, methods can be generic as well. The
method declares type parameters, and those type parameters can be used within other
parts of the method signature. Method type parameters are often used as type argu-
ments to other types within the signature. The following listing shows a solution to the
method you couldn’t implement earlier: something to create a new collection con-
taining the first N elements of an existing one but in a statically typed way.

public static List<T> CopyAtMost<T>(
 List<T> input, int maxElements)
{
 int actualCount = Math.Min(input.Count, maxElements);
 List<T> ret = new List<T>(actualCount);
 for (int i = 0; i < actualCount; i++)
 {
 ret.Add(input[i]);
 }
 return ret;
}

static void Main()
{
 List<int> numbers = new List<int>();
 numbers.Add(5);
 numbers.Add(10);
 numbers.Add(20);

 List<int> firstTwo = CopyAtMost<int>(numbers, 2);
 Console.WriteLine(firstTwo.Count);
}

Plenty of generic methods use the type parameter only once in the signature3 and
without it being a type argument to any generic types. But the ability to use a type
parameter to express a relationship between the types of regular parameters and the
return type is a huge part of the power of generics.

Listing 2.5 Copying elements from one collection to another

3 Although it’s valid to write a generic method that doesn’t use the type parameter anywhere else in the signa-
ture, that’s rarely useful.

Method declares a type parameter T and
uses it in parameters and return type.

Type parameter used
in method body

Call to method using int
as the type parameter
Licensed to André Santos <andrerfcsantos@gmail.com>

28 CHAPTER 2 C# 2
 Likewise, generic types can use their type parameters as type arguments when
declaring a base class or an implemented interface. For example, the List<T> type
implements the IEnumerable<T> interface, so the class declaration could be written
like this:

public class List<T> : IEnumerable<T>

NOTE In reality, List<T> implements multiple interfaces; this is a simplified
form.

ARITY OF GENERIC TYPES AND METHODS

Generic types or methods can declare multiple type parameters by separating them
with commas within the angle brackets. For example, the generic equivalent of the
.NET 1 Hashtable class is declared like this:

public class Dictionary<TKey, TValue>

The generic arity of a declaration is the number of type parameters it has. To be hon-
est, this is a term that’s more useful to authors than in everyday usage when writing
code, but I’d argue it’s still worth knowing. You can think of a nongeneric declaration
as one with generic arity 0.

 The generic arity of a declaration is effectively part of what makes it unique. As an
example, I've already referred to the IEnumerable<T> interface introduced in .NET
2.0, but that’s a distinct type from the nongeneric IEnumerable interface that was
already part of .NET 1.0. Likewise, you can write methods with the same name but a
different generic arity, even if their signatures are otherwise the same:

public void Method() {}
public void Method<T>() {}
public void Method<T1, T2>() {}

When declaring types with different generic arity, the types don’t have to be of the
same kind, although they usually are. As an extreme example, consider these type dec-
larations that can all coexist in one highly confusing assembly:

public enum IAmConfusing {}
public class IAmConfusing<T> {}
public struct IAmConfusing<T1, T2> {}
public delegate void IAmConfusing<T1, T2, T3> {}
public interface IAmConfusing<T1, T2, T3, T4> {}

Although I’d strongly discourage code like the above, one reasonably common pat-
tern is to have a nongeneric static class providing helper methods that refer to other
generic types with the same name (see section 2.5.2 for more about static classes). For
example, you’ll see the Tuple class in section 2.1.4, which is used to create instances
of the various generic Tuple classes.

Nongeneric method
(generic arity 0) Method with

generic arity 1

Method with
generic arity 2
Licensed to André Santos <andrerfcsantos@gmail.com>

29Generics
 Just as multiple types can have the same name but different generic arity, so can
generic methods. It’s like creating overloads based on the parameters, except this is
overloading based on the number of type parameters. Note that although the generic
arity keeps declarations separate, type parameter names don’t. For example, you can’t
declare two methods like this:

public void Method<TFirst>() {}
public void Method<TSecond>() {}

These are deemed to have equivalent signatures, so they aren’t permitted under the
normal rules of method overloading. You can write method overloads that use differ-
ent type parameter names so long as the methods differ in other ways (such as the
number of regular parameters), although I can’t remember ever wanting to do so.

 While we’re on the subject of multiple type parameters, you can’t give two type
parameters in the same declaration the same name just like you can’t declare two reg-
ular parameters the same name. For example, you can’t declare a method like this:

public void Method<T, T>() {}

It’s fine for two type arguments to be the same, though, and that’s often what you
want. For example, to create a string-to-string mapping, you might use a
Dictionary<string, string>.

 The earlier example of IAmConfusing used an enum as the nongeneric type.
That was no coincidence, because I wanted to use it to demonstrate my next point.

2.1.3 What can be generic?

Not all types or type members can be generic. For types, it’s reasonably simple, partly
because relatively few kinds of types can be declared. Enums can’t be generic, but
classes, structs, interfaces, and delegates all can be.

 For type members, it’s slightly more confusing; some members may look like
they’re generic because they use other generic types. Remember that a declaration is
generic only if it introduces new type parameters.

 Methods and nested types can be generic, but all of the following have to be non-
generic:

 Fields
 Properties
 Indexers
 Constructors
 Events
 Finalizers

Compile-time error; can’t overload
solely by type parameter name

Compile-time error;
duplicate type
parameter T
Licensed to André Santos <andrerfcsantos@gmail.com>

30 CHAPTER 2 C# 2
As an example of how you might be tempted to think of a field as being generic even
though it’s not, consider this generic class:

public class ValidatingList<TItem>
{
 private readonly List<TItem> items = new List<TItem>();
}

I’ve named the type parameter TItem simply to differentiate it from the T type param-
eter of List<T>. Here, the items field is of type List<TItem>. It uses the type
parameter TItem as a type argument for List<T>, but that’s a type parameter intro-
duced by the class declaration, not by the field declaration.

 For most of these, it’s hard to conceive how the member could be generic. Occa-
sionally, I’ve wanted to write a generic constructor or indexer, though, and the answer
is almost always to write a generic method instead.

 Speaking of generic methods, I gave only a simplified description of type argu-
ments earlier when I was describing the way generic methods are called. In some
cases, the compiler can determine the type arguments for a call without you having to
provide them in the source code.

2.1.4 Type inference for type arguments to methods

Let’s look back at the crucial parts of listing 2.5. You have a generic method declared
like this:

public static List<T> CopyAtMost<T>(List<T> input, int maxElements)

Then, in the Main method, you declare a variable of type List<int> and later use
that as an argument to the method:

List<int> numbers = new List<int>();
...
List<int> firstTwo = CopyAtMost<int>(numbers, 2);

I’ve highlighted the method call here. You need a type argument to the CopyAtMost
call, because it has a type parameter. But you don’t have to specify that type argument
in the source code. You can rewrite that code as follows:

List<int> numbers = new List<int>();
...
List<int> firstTwo = CopyAtMost(numbers, 2);

This is exactly the same method call in terms of the IL the compiler will generate. But
you haven’t had to specify the type argument of int; the compiler inferred that for
you. It did that based on your argument for the first parameter in the method. You’re
using an argument of type List<int> as the value for a parameter of type List<T>,
so T has to be int.

Lots of other
members
Licensed to André Santos <andrerfcsantos@gmail.com>

31Generics
 Type inference can use only the arguments you pass to a method, not what you do
with the result. It also has to be complete; you either explicitly specify all the type
arguments or none of them.

 Although type inference applies only to methods, it can be used to more easily
construct instances of generic types. For example, consider the Tuple family of types
introduced in .NET 4.0. This consists of a nongeneric static Tuple class and multiple
generic classes: Tuple<T1>, Tuple<T1, T2>, Tuple<T1, T2, T3>, and so forth. The
static class has a set of overloaded Create factory methods like this:

public static Tuple<T1> Create<T1>(T1 item1)
{
 return new Tuple<T1>(item1);
}

public static Tuple<T1, T2> Create<T1, T2>(T1 item1, T2 item2)
{
 return new Tuple<T1, T2>(item1, item2);
}

These look pointlessly trivial, but they allow type inference to be used where otherwise
the type arguments would have to be explicitly specified when creating tuples. Instead
of this

new Tuple<int, string, int>(10, "x", 20)

you can write this:

Tuple.Create(10, "x", 20)

This is a powerful technique to be aware of; it’s generally simple to implement and
can make working with generic code a lot more pleasant.

 I’m not going to go into the details of how generic type inference works. It’s
changed a lot over time as the language designers figure out ways of making it work in
more cases. Overload resolution and type inference are closely tied together, and they
intersect with all kinds of other features (such as inheritance, conversions, and
optional parameters in C# 4). This is the area of the specification I find the most com-
plex,4 and I couldn’t do it justice here.

 Fortunately, this is one area where understanding the details wouldn’t help very
much in day-to-day coding. In any particular situation, three possibilities exist:

 Type inference succeeds and gives you the result you want. Hooray.
 Type inference succeeds but gives you a result you didn’t want. Just explicitly

specify type arguments or cast some of the arguments. For example, if you
wanted a Tuple<int, object, int> from the preceding Tuple.Create call,

4 I’m not alone in this. At the time of this writing, the spec for overload resolution is broken. Efforts to fix it for
the C# 5 ECMA standard failed; we’re going to try again for the next edition.
Licensed to André Santos <andrerfcsantos@gmail.com>

32 CHAPTER 2 C# 2
you could specify the type arguments to Tuple.Create explicitly or just call
new Tuple<int, object, int>(...) or call Tuple.Create(10, (object)
"x", 20).

 Type inference fails at compile time. Sometimes this can be fixed by casting
some of your arguments. For example, the null literal doesn’t have a type, so
type inference will fail for Tuple.Create(null, 50) but succeed for
Tuple.Create((string) null, 50). Other times you just need to explicitly
specify the type arguments.

For the last two cases, the option you pick rarely makes much difference to readability
in my experience. Understanding the details of type inference can make it easier to
predict what will work and what won’t, but it’s unlikely to repay the time invested in
studying the specification. If you’re curious, I’d never actively discourage anyone from
reading the specification. Just don’t be surprised when you find it alternates between
feeling like a maze of twisty little passages, all alike, and a maze of twisty little passages,
all different.

 This alarmist talk of complicated language details shouldn’t detract from the con-
venience of type inference, though. C# is considerably easier to use because of its
presence.

 So far, all the type parameters we’ve talked about have been unconstrained. They
could stand in for any type. That’s not always what you want, though; sometimes, you
want only certain types to be used as type arguments for a particular type parameter.
That’s where type constraints come in.

2.1.5 Type constraints

When a type parameter is declared by a generic type or method, it can also specify type
constraints that restrict which types can be provided as type arguments. Suppose you want
to write a method that formats a list of items and ensures that you format them in a par-
ticular culture instead of the default culture of the thread. The IFormattable inter-
face provides a suitable ToString(string, IFormatProvider) method, but how
can you make sure you have an appropriate list? You might expect a signature like this:

static void PrintItems(List<IFormattable> items)

But that would hardly ever be useful. You couldn’t pass a List<decimal> to it, for
example, even though decimal implements IFormattable; a List<decimal> isn’t
convertible to List<IFormattable>.

NOTE We’ll go into the reasons for this more deeply in chapter 4, when we
consider generic variance. For the moment, just treat this as a simple example
for constraints.

What you need to express is that the parameter is a list of some element type, where
the element type implements the IFormattable interface. The “some element type”
part suggests that you might want to make the method generic, and “where the
Licensed to André Santos <andrerfcsantos@gmail.com>

33Generics
element type implements the IFormattable interface” is precisely the ability that
type constraints give us. You add a where clause at the end of the method declaration,
like this:

static void PrintItems<T>(List<T> items) where T : IFormattable

The way you’ve constrained T here doesn’t just change which values can be passed
to the method; it also changes what you can do with a value of type T within the
method. The compiler knows that T implements IFormattable, so it allows the
IFormattable.ToString(string, IFormatProvider) method to be called on
any T value.

static void PrintItems<T>(List<T> items) where T : IFormattable
{
 CultureInfo culture = CultureInfo.InvariantCulture;
 foreach (T item in items)
 {
 Console.WriteLine(item.ToString(null, culture));
 }
}

Without the type constraints, that ToString call wouldn’t compile; the only
ToString method the compiler would know about for T is the one declared in
System.Object.

 Type constraints aren’t limited to interfaces. The following type constraints are
available:

 Reference type constraint—where T : class. The type argument must be a refer-
ence type. (Don’t be fooled by the use of the class keyword; it can be any ref-
erence type, including interfaces and delegates.)

 Value type constraint—where T : struct. The type argument must be a non-
nullable value type (either a struct or an enum). Nullable value types
(described in section 2.2) don’t meet this constraint.

 Constructor constraint—where T : new(). The type argument must have a public
parameterless constructor. This enables the use of new T() within the body of
the code to construct a new instance of T.

 Conversion constraint—where T : SomeType. Here, SomeType can be a class, an
interface, or another type parameter as shown here:
– where T : Control
– where T : IFormattable
– where T1 : T2

Moderately complex rules indicate how constraints can be combined. In general, the
compiler error message makes it obvious what’s wrong when you break these rules.

Listing 2.6 Printing items in the invariant culture by using type constraints
Licensed to André Santos <andrerfcsantos@gmail.com>

34 CHAPTER 2 C# 2
 One interesting and reasonably common form of constraint uses the type parame-
ter in the constraint itself:

public void Sort(List<T> items) where T : IComparable<T>

The constraint uses T as the type argument to the generic IComparable<T> inter-
face. This allows our sorting method to compare elements from the items parameter
pairwise using the CompareTo method from IComparable<T>:

T first = ...;
T second = ...;
int comparison = first.CompareTo(second);

I’ve used interface-based type constraints more than any other kind, although I sus-
pect what you use depends greatly on the kind of code you’re writing.

 When multiple type parameters exist in a generic declaration, each type parameter
can have an entirely different set of constraints as in the following example:

TResult Method<TArg, TResult>(TArg input)
 where TArg : IComparable<TArg>
 where TResult : class, new()

We’ve nearly finished our whirlwind tour of generics, but I have a couple of topics left
to describe. I’ll start with the two type-related operators available in C# 2.

2.1.6 The default and typeof operators

C# 1 already had the typeof() operator accepting a type name as its only operand.
C# 2 added the default() operator and expanded the use of typeof slightly.

 The default operator is easily described. The operand is the name of a type or
type parameter, and the result is the default value for that type—the same value you’d
get if you declared a field and didn’t immediately assign a value to it. For reference
types, that’s a null reference; for non-nullable value types, it’s the “all zeroes” value (0,
0.0, 0.0m, false, the UTF-16 code unit with a numerical value of 0, and so on); and for
nullable value types, it’s the null value for the type.

 The default operator can be used with type parameters and with generic types
with appropriate type arguments supplied (where those arguments can be type
parameters, too). For example, in a generic method declaring a type parameter T, all
of these are valid:

 default(T)

 default(int)

 default(string)

 default(List<T>)

 default(List<List<string>>)

Generic method with two type
parameters, TArg and TResult

TArg must implement
IComparable<TArg>.

TResult must be a reference type
with a parameterless constructor.
Licensed to André Santos <andrerfcsantos@gmail.com>

35Generics
The type of the default operator is the type that’s named inside it. It’s most fre-
quently used with generic type parameters, because otherwise you can usually specify
the default value in a different way. For example, you might want to use the default
value as the initial value for a local variable that may or may not be assigned a different
value later. To make this concrete, here’s a simplistic implementation of a method
that may be familiar to you:

public T LastOrDefault(IEnumerable<T> source)
{
 T ret = default(T);
 foreach (T item in source)
 {
 ret = item;
 }
 return ret;
}

The typeof operator is slightly more complex. There are four broad cases to consider:

 No generics involved at all; for example, typeof(string)
 Generics involved but no type parameters; for example, typeof(List<int>)
 Just a type parameter; for example, typeof(T)
 Generics involved using a type parameter in the operand; for example,

typeof(List<TItem>) within a generic method declaring a type parameter
called TItem

 Generics involved but no type arguments specified in the operand; for exam-
ple, typeof(List<>)

The first of these is simple and hasn’t changed at all. All the others need a little more
care, and the last introduces a new kind of syntax. The typeof operator is still
defined to return a Type value, so what should it return in each of these cases? The
Type class was augmented to know about generics. There are multiple situations to be
considered; the following are a few examples:

 If you list the types within the assembly containing List<T>, for example,
you’d expect to get List<T> without any specific type argument for T. It’s a
generic type definition.

 If you call GetType() on a List<int> object, you’d want to get a type that has
the information about the type argument.

 If you ask for the base type of the generic type definition of a class declared as

class StringDictionary<T> : Dictionary<string, T>

you’d end up with a type with one “concrete” type argument (string, for the
TKey type parameter of Dictionary<TKey, TValue>) and one type argu-
ment that’s still a type parameter (T, for the TValue type parameter).

Frankly, it’s all very confusing, but that’s inherent in the problem domain. Lots of
methods and properties in Type let you go from a generic type definition to a type
with all the type arguments provided, or vice versa, for example.

Declare a local variable and
assign the default value of T to it.

Replace the local variable value with
the current one in the sequence.

Return the
last-assigned value.
Licensed to André Santos <andrerfcsantos@gmail.com>

36 CHAPTER 2 C# 2
 Let’s come back to the typeof operator. The simplest example to understand is
typeof(List<int>). That returns the Type representing List<T> with a type argu-
ment of int just as if you’d called new List<int>().GetType().

 The next case, typeof(T), returns whatever the type argument for T is at that
point in the code. This will always be a closed, constructed type, which is the specifica-
tion’s way of saying it’s a real type with no type parameters involved anywhere.
Although in most places I try to explain terminology thoroughly, the terminology
around generics (open, closed, constructed, bound, unbound) is confusing and
almost never useful in real life. We’ll need to talk about closed, constructed types later,
but I won’t touch on the rest.

 It’s easiest to demonstrate what I mean about typeof(T), and you can look at
typeof(List<T>) in the same example. The following listing declares a generic
method that prints the result of both typeof(T) and typeof(List<T>) to the con-
sole and then calls that method with two different type arguments.

static void PrintType<T>()
{
 Console.WriteLine("typeof(T) = {0}", typeof(T));
 Console.WriteLine("typeof(List<T>) = {0}", typeof(List<T>));
}

static void Main()
{
 PrintType<string>();
 PrintType<int>();
}

The result of listing 2.7 is shown here:

typeof(T) = System.String
typeof(List<T>) = System.Collections.Generic.List`1[System.String]
typeof(T) = System.Int32
typeof(List<T>) = System.Collections.Generic.List`1[System.Int32]

The important point is that when you’re running in a context where the type argu-
ment for T is string (during the first call), the result of typeof(T) is the same as
typeof(string). Likewise, the result of typeof(List<T>) is the same as the result
of typeof(List<string>). When you call the method again with int as the type
argument, you get the same results as for typeof(int) and typeof(List<int>).
Whenever code is executing within a generic type or method, the type parameter
always refers to a closed, constructed type.

 Another takeaway from this output is the format of the name of a generic type
when you’re using reflection. The List`1 indicates that this is a generic type called
List with generic arity 1 (one type parameter), and the type arguments are shown in
square brackets afterward.

Listing 2.7 Printing the result of the typeof operator

Prints both typeof(T)
and typeof(List<T>)

Calls the method with a
type argument of string

Calls the method with
a type argument of int
Licensed to André Santos <andrerfcsantos@gmail.com>

37Generics
 The final bullet in our earlier list was typeof(List<>). That appears to be miss-
ing a type argument altogether. This syntax is valid only in the typeof operator and
refers to the generic type definition. The syntax for types with generic arity 1 is just
TypeName<>; for each additional type parameter, you add a comma within the angle
brackets. To get the generic type definition for Dictionary<TKey, TValue>, you’d
use typeof(Dictionary<,>). To get the definition for Tuple<T1, T2, T3>,
you’d use typeof(Tuple<,,>).

 Understanding the difference between a generic type definition and a closed, con-
structed type is crucial for our final topic: how types are initialized and how type-wide
(static) state is handled.

2.1.7 Generic type initialization and state

As you saw when using the typeof operator, List<int> and List<string> are
effectively different types that are constructed from the same generic type definition.
That’s not only true for how you use the types but also true for how types are initial-
ized and how static fields are handled. Each closed, constructed type is initialized sep-
arately and has its own independent set of static fields. The following listing
demonstrates this with a simple (and not thread-safe) generic counter.

class GenericCounter<T>
{
 private static int value;

 static GenericCounter()
 {
 Console.WriteLine("Initializing counter for {0}", typeof(T));
 }

 public static void Increment()
 {
 value++;
 }

 public static void Display()
 {
 Console.WriteLine("Counter for {0}: {1}", typeof(T), value);
 }
}

class GenericCounterDemo
{
 static void Main()
 {
 GenericCounter<string>.Increment();
 GenericCounter<string>.Increment();
 GenericCounter<string>.Display();
 GenericCounter<int>.Display();
 GenericCounter<int>.Increment();
 GenericCounter<int>.Display();
 }
}

Listing 2.8 Exploring static fields in generic types

One field per closed,
constructed type

Triggers initialization for
GenericCounter<string>

Triggers initialization for
GenericCounter<int>
Licensed to André Santos <andrerfcsantos@gmail.com>

38 CHAPTER 2 C# 2
The output of listing 2.8 is as follows:

Initializing counter for System.String
Counter for System.String: 2
Initializing counter for System.Int32
Counter for System.Int32: 0
Counter for System.Int32: 1

There are two results to focus on in that output. First, the Generic-

Counter<string> value is independent of GenericCounter<int>. Second, the
static constructor is run twice: once for each closed, constructed type. If you didn’t
have a static constructor, there would be fewer timing guarantees for exactly when
each type would be initialized, but essentially you can regard Generic-

Counter<string> and GenericCounter<int> as independent types.
 To complicate things further, generic types can be nested within other generic

types. When that occurs, there’s a separate type for each combination of type argu-
ments. For example, consider classes like this:

class Outer<TOuter>
{
 class Inner<TInner>
 {
 static int value;
 }
}

Using int and string as type arguments, the following types are independent and
each has its own value field:

 Outer<string>.Inner<string>

 Outer<string>.Inner<int>

 Outer<int>.Inner<string>

 Outer<int>.Inner<int>

In most code this occurs relatively rarely, and it’s simple enough to handle when
you’re aware that what’s important is the fully specified type, including any type argu-
ments for both the leaf type and any enclosing types.

 That’s it for generics, which is by far the biggest single feature in C# 2 and a huge
improvement over C# 1. Our next topic is nullable value types, which are firmly based
on generics.

2.2 Nullable value types
Tony Hoare introduced null references into Algol in 1965 and has subsequently called
it his “billion-dollar mistake.” Countless developers have become frustrated when
their code throws NullReferenceException (.NET), NullPointerException
(Java), or other equivalents. There are canonical Stack Overflow questions with hun-
dreds of other questions pointing at them because it’s such a common problem. If
nullity is so bad, why was more of it introduced in C# 2 and .NET 2.0 in the form of
Licensed to André Santos <andrerfcsantos@gmail.com>

39Nullable value types
nullable value types? Before we look at the implementation of the feature, let’s con-
sider the problem it’s trying to solve and the previous workarounds.

2.2.1 Aim: Expressing an absence of information

Sometimes it’s useful to have a variable to represent some information, but that infor-
mation won’t be present in every situation. Here are a few simple examples:

 You’re modeling a customer order, including the company’s details, but the
customer may not be ordering on behalf of a company.

 You’re modeling a person, including their date of birth and date of death, but
the person may still be alive.

 You’re modeling a filter for products, including a price range, but the customer
may not have specified a maximum price.

These are all one specific form of wanting to represent the absence of a value; you can
have complete information but still need to model the absence. In other situations,
you may have incomplete information. In the second example, you may not know the
person’s date of birth not because they weren’t born, but because your system doesn’t
have that information. Sometimes you need to represent the difference between
“known to be absent” and “unknown” within your data, but often just the absence of
information is enough.

 For reference types, you already have a way of representing an absence of informa-
tion: a null reference. If you have a Company class and your Order class has a refer-
ence to the company associated with the order, you can set it to null if the customer
doesn’t specify a company.

 For value types in C# 1, there was no equivalent. There were two common ways of
representing this:

 Use a reserved value to represent missing data. For example, you might use
decimal.MaxValue in a price filter to represent “no maximum price specified.”

 Keep a separate Boolean flag to indicate whether another field has a real value
or the value should be ignored. So long as you check the flag before using the
other field, its value is irrelevant in the absent case.

Neither of these is ideal. The first approach reduces the set of valid values (not so bad
for decimal but more of a problem for byte, where it’s more likely that you need the
full range). The second approach leads to a lot of tedious and repetitive logic.

 More important, both are error prone. Both require you to perform a check
before using the value that might or might not be valid. If you don’t perform that
check, your code will proceed using inappropriate data. It’ll silently do the wrong
thing and quite possibly propagate the mistake to other parts of the system. Silent fail-
ure is the worst kind, because it can be hard to track down and hard to undo. I prefer
nice loud exceptions that stop the broken code in its tracks.

 Nullable value types encapsulate the second approach shown previously: they keep
an extra flag along with the value to say whether it should be used. The encapsulation
Licensed to André Santos <andrerfcsantos@gmail.com>

40 CHAPTER 2 C# 2

er
is key here; the simplest way of using the value is also a safe one because it throws an
exception if you try to use it inappropriately. The consistent use of a single type to rep-
resent a possibly missing value enables the language to make our lives easier, and
library authors have an idiomatic way of representing it in their API surface, too.

 With that conceptual introduction out of the way, let’s look at what the framework
and the CLR provide in terms of nullable value types. After you’ve built that founda-
tion, I’ll show you the extra features C# has adopted to make it easy to work with them.

2.2.2 CLR and framework support: The Nullable<T> struct

The core of nullable value type support is the Nullable<T> struct. A primitive ver-
sion of Nullable<T> would look like this:

public struct Nullable<T> where T : struct
{
 private readonly T value;
 private readonly bool hasValue;

 public Nullable(T value)
 {
 this.value = value;
 this.hasValue = true;
 }

 public bool HasValue { get { return hasValue; } }

 public T Value
 {
 get
 {
 if (!hasValue)
 {
 throw new InvalidOperationException();
 }
 return value;
 }
 }
}

As you can see, the only declared constructor sets hasValue to true, but like all
structs, there’s an implicit parameterless constructor that will leave hasValue as
false and value as the default value of T:

Nullable<int> nullable = new Nullable<int>();
Console.WriteLine(nullable.HasValue);

The where T : struct constraint on Nullable<T> allows T to be any value type
except another Nullable<T>. It works with primitive types, enums, system-provided
structs, and user-defined structs. All of the following are valid:

 Nullable<int>

 Nullable<FileMode>

Generic struct with T constrained
to be a non-nullable value type

Constructor to
provide a value

Property to check wheth
there’s a real value

Access to the value,
throwing an exception
if it’s missing

Prints
False
Licensed to André Santos <andrerfcsantos@gmail.com>

41Nullable value types
 Nullable<Guid>

 Nullable<LocalDate> (from Noda Time)

But the following are invalid:

 Nullable<string> (string is a reference type)
 Nullable<int[]> (arrays are reference types, even if the element type is a

value type)
 Nullable<ValueType> (ValueType itself isn’t a value type)
 Nullable<Enum> (Enum itself isn’t a value type)
 Nullable<Nullable<int>> (Nullable<int> is nullable)
 Nullable<Nullable<Nullable<int>>> (trying to nest the nullabilty fur-

ther doesn’t help)

The type T is also known as the underlying type of Nullable<T>. For example, the
underlying type of Nullable<int> is int.

 With just this part in place and no extra CLR, framework, or language support, you
can safely use type to display the maximum price filter:

public void DisplayMaxPrice(Nullable<decimal> maxPriceFilter)
{
 if (maxPriceFilter.HasValue)
 {
 Console.WriteLine("Maximum price: {0}", maxPriceFilter.Value);
 }
 else
 {
 Console.WriteLine("No maximum price set.");
 }
}

That’s well-behaved code that checks before using the value, but what about poorly
written code that forgets to check first or checks the wrong thing? You can’t acciden-
tally use an inappropriate value; if you try to access maxPriceFilter.Value when its
HasValue property is false, an exception will be thrown.

NOTE I know I made this point earlier, but I think it’s important enough to
restate: progress doesn’t come just from making it easier to write correct
code; it also comes from making it harder to write broken code or making the
consequences less severe.

The Nullable<T> struct has methods and operators available, too:

 The parameterless GetValueOrDefault() method will return the value in the
struct or the default value for the type if HasValue is false.

 The parameterized GetValueOrDefault(T defaultValue) method will
return the value in the struct or the specified default value if HasValue is false.

 The Equals(object) and GetHashCode() methods declared in object
are overridden in a reasonably obvious way, first comparing the HasValue
Licensed to André Santos <andrerfcsantos@gmail.com>

42 CHAPTER 2 C# 2
properties and then comparing the Value properties for equality if HasValue
is true for both values.

 There’s an implicit conversion from T to Nullable<T>, which always succeeds
and returns a value where HasValue is true. This is equivalent to calling the
parameterized constructor.

 There’s an explicit conversion from Nullable<T> to T, which either returns the
encapsulated value (if HasValue is true) or throws an InvalidOperation-
Exception (if HasValue is false). This is equivalent to using the Value
property.

I’ll return to the topic of conversions when I talk about language support. So far, the
only place you’ve seen where the CLR needs to understand Nullable<T> is to
enforce the struct type constraint. Another aspect of CLR behavior is nullable-
specific, though: boxing.

BOXING BEHAVIOR

Nullable value types behave differently than non-nullable value types when it comes to
boxing. When a value of a non-nullable value type is boxed, the result is a reference to
an object of a type that’s the boxed form of the original type. Say, for example, you
write this:

int x = 5;
object o = x;

The value of o is a reference to an object of type “boxed int.” The difference between
boxed int and int isn’t normally visible via C#. If you call o.GetType(), the Type
returned will be equal to typeof(int), for example. Some other languages (such as
C++/CLI) allow developers to differentiate between the original value type and its
boxed equivalent.

 Nullable value types have no boxed equivalent, however. The result of boxing a
value of type Nullable<T> depends on the HasValue property:

 If HasValue is false, the result is a null reference.
 If HasValue is true, the result is a reference to an object of type “boxed T.”

The following listing demonstrates both of these points.

Nullable<int> noValue = new Nullable<int>();
object noValueBoxed = noValue;
Console.WriteLine(noValueBoxed == null);

Nullable<int> someValue = new Nullable<int>(5);
object someValueBoxed = someValue;
Console.WriteLine(someValueBoxed.GetType());

Listing 2.9 The effects of boxing nullable value type values

Boxes a value where
HasValue is false

Prints True: the result of
boxing is a null reference.

Boxes a value where
HasValue is true

Prints System.Int32: the
result is a boxed int.
Licensed to André Santos <andrerfcsantos@gmail.com>

43Nullable value types
When you’re aware of this behavior, it’s almost always what you want. This has one
bizarre side effect, however. The GetType() method declared on System.Object is
nonvirtual, and the somewhat complex rules around when boxing occurs mean that if
you call GetType() on a value type value, it always needs to be boxed first. Normally,
that’s a little inefficient but doesn’t cause any confusion. With nullable value types,
it’ll either cause a NullReferenceException or return the underlying non-nullable
value type. The following listing shows examples of these.

Nullable<int> noValue = new Nullable<int>();
// Console.WriteLine(noValue.GetType());

Nullable<int> someValue = new Nullable<int>(5);
Console.WriteLine(someValue.GetType());

You’ve seen framework support and CLR support, but the C# language goes even fur-
ther to make nullable value types easier to work with.

2.2.3 Language support

It would’ve been possible for C# 2 to have shipped with the compiler knowing only
about nullable value types when enforcing the struct type constraint. It would’ve
been awful, but it’s useful to consider the absolute minimum support required in
order to appreciate all the features that have been added to make nullable value types
fit into the language more idiomatically. Let’s start with the simplest part: simplifying
nullable value type names.

THE ? TYPE SUFFIX

If you add a ? to the end of the name of a non-nullable value type, that’s precisely
equivalent to using Nullable<T> for the same type. It works for the keyword short-
cuts for the simple types (int, double, and so forth) as well as full type names. For
example, these four declarations are precisely equivalent:

 Nullable<int> x;

 Nullable<Int32> x;

 int? x;

 Int32? x;

You can mix and match them however you like. The generated IL won’t change at all.
In practice, I end up using the ? suffix everywhere, but other teams may have different
conventions. For clarity, I’ve used Nullable<T> within the remainder of the text
here, because the ? can become confusing when used in prose, but in code that’s
rarely an issue.

 That’s the simplest language enhancement, but the theme of allowing you to write
concise code continues through the rest of this section. The ? suffix is about express-
ing a type easily; the next feature focuses on expressing a value easily.

Listing 2.10 Calling GetType on nullable values leads to surprising results

Would throw
NullReferenceException

Prints System.Int32, the same
as if you’d used typeof(int)
Licensed to André Santos <andrerfcsantos@gmail.com>

44 CHAPTER 2 C# 2
THE NULL LITERAL

In C# 1, the expression null always referred to a null reference. In C# 2, that mean-
ing is expanded to a null value: either a null reference or a value of a nullable value
type where HasValue is false. This can be used for assignments, method arguments,
comparisons—any manner of places. It’s important to understand that when it’s used
for a nullable value type, it really does represent the value of that type where Has-
Value is false rather than being a null reference; if you try to work null references
into your mental model of nullable value types, it’ll get confusing quickly. The follow-
ing two lines are equivalent:

int? x = new int?();

int? x = null;

I typically prefer to use the null literal over explicitly calling the parameterless con-
structor (I’d write the second of the preceding lines rather than the first), but when it
comes to comparisons, I’m ambivalent about the two options. For example, these two
lines are equivalent:

if (x != null)

if (x.HasValue)

I suspect I’m not even consistent about which I use. I’m not advocating for inconsis-
tency, but this is an area where it doesn’t hurt very much. You can always change your
mind later with no compatibility concerns.

CONVERSIONS

You’ve already seen that Nullable<T> provides an implicit conversion from T to
Nullable<T> and an explicit conversion from Nullable<T> to T. The language
takes that set of conversions further by allowing certain conversions to chain together.
Where there are two non-nullable value types S and T and there’s a conversion from S
to T (for example, the conversion from int to decimal), the following conversions
are also available:

 Nullable<S> to Nullable<T> (implicit or explicit, depending on the origi-
nal conversion)

 S to Nullable<T> (implicit or explicit, depending on the original conversion)
 Nullable<S> to T (always explicit)

These work in a reasonably obvious way by propagating null values and using the S to
T conversion as required. This process of extending an operation to propagate nulls
appropriately is called lifting.

 One point to note: it’s possible to explicitly provide conversions to both nullable
and non-nullable types. LINQ to XML uses this to great effect. For example, there are
explicit conversions from XElement to both int and Nullable<int>. Many opera-
tions in LINQ to XML will return a null reference if you ask them to find an element
Licensed to André Santos <andrerfcsantos@gmail.com>

45Nullable value types
that doesn’t exist, and the conversion to Nullable<int> converts a null reference to
a null value and propagates the nullity without throwing an exception. If you try to
convert a null XElement reference to the non-nullable int type, however, an excep-
tion will be thrown. The existence of both conversions makes it easy to handle
optional and required elements safely.

 Conversions are one form of operator that can be built into C# or user-defined.
Other operators defined on non-nullable types receive a similar sort of treatment in
their nullable counterparts.

LIFTED OPERATORS

C# allows the following operators to be overloaded:

 Unary: + ++ - -- ! ~ true false
 Binary:5 + - * / % & | ^ << >>
 Equality: == !=
 Relational: < > <= >=

When these operators are overloaded for a non-nullable value type T, the
Nullable<T> type has the same operators with slightly different operand and result
types. These are called lifted operators whether they’re predefined operators, such as
addition on numeric types, or user-defined operators, such as adding a TimeSpan to a
DateTime. A few restrictions apply:

 The true and false operators are never lifted. They’re incredibly rare in the
first place, though, so this is no great loss.

 Only operators with non-nullable value types for the operands are lifted.
 For the unary and binary operators (other than equality and relational opera-

tors), the return type of the original operator has to be a non-nullable value
type.

 For the equality and relational operators, the return type of the original opera-
tor has to be bool.

 The & and | operators on Nullable<bool> have separately defined behaviors,
which we’ll consider presently.

For all the operators, the operand types become their nullable equivalents. For the
unary and binary operators, the return type also becomes nullable, and a null value is
returned if any of the operands is a null value. The equality and relational operators
keep their non-nullable Boolean return types. For equality, two null values are consid-
ered equal, and a null value and any non-null value are considered different. The rela-
tional operators always return false if either operand is a null value. When neither
of the operands is a null value, the operator of the non-nullable type is invoked in the
obvious way.

5 The equality and relational operators are also binary operators, but they behave slightly differently from the
others, hence their separation in this list.
Licensed to André Santos <andrerfcsantos@gmail.com>

46 CHAPTER 2 C# 2
 All these rules sound more complicated than they are; for the most part, every-
thing works as you probably expect it to. It’s easiest to see what happens with a few
examples, and because int has so many predefined operators (and integers can be so
easily expressed), it’s the natural demonstration type. Table 2.1 shows a number of
expressions, the lifted operator signature, and the result. It’s assumed that there are
variables four, five, and nullInt, each with type Nullable<int> and with the
obvious values.

Possibly the most surprising line of the table is the last one: that a null value isn’t
deemed less than or equal to another null value even though they are deemed to be
equal to each other (as per the seventh row)! This is very odd, but it’s unlikely to cause
problems in real life, in my experience. In the list of restrictions regarding operator lift-
ing, I mentioned that Nullable<bool> works slightly differently from the other types.

NULLABLE LOGIC

Truth tables are often used to demonstrate Boolean logic with all possible input
combinations and the result. Although the same approach can be used for
Nullable<Boolean> logic, we have three values to consider (true, false, and null)
for each input instead of just true and false. There are no conditional logical oper-
ators (the short-circuiting && and || operators) defined for Nullable<bool>, which
makes life simpler.

 Only the logical AND and inclusive OR operators (& and |, respectively) have spe-
cial behavior. The other operators—unary logical negation (!) and exclusive OR

Table 2.1 Examples of lifted operators applied to nullable integers

Expression Lifted operator Result

-nullInt

-five

five + nullInt

five + five

four & nullInt

four & five

nullInt == nullInt

five == five

five == nullInt

five == four

four < five

nullInt < five

five < nullInt

nullInt < nullInt

nullInt <= nullInt

int? –(int? x)

int? –(int? x)

int? +(int? x, int? y)

int? +(int? x, int? y)

int? &(int? x, int? y)

int? &(int? x, int? y)

bool ==(int? x, int? y)

bool ==(int? x, int? y)

bool ==(int? x, int? y)

bool ==(int? x, int? y)

bool <(int? x, int? y)

bool <(int? x, int? y)

bool <(int? x, int? y)

bool <(int? x, int? y)

bool <=(int? x, int? y)

null

-5

null

10

null

4

true

true

false

false

true

false

false

false

false
Licensed to André Santos <andrerfcsantos@gmail.com>

47Nullable value types
(^)—follow the same rules as other lifted operators. For the sake of completeness,
table 2.2 gives the truth table for all four valid Nullable<bool> logical operators.
I’ve highlighted the results that would be different if the extra rules didn’t exist for
Nullable<bool>.

If you find reasoning about rules easier to understand than looking up values in
tables, the idea is that a null bool? value is in some senses a maybe. If you imagine
that each null entry in the input side of the table is a variable instead, you’ll always get
a null value on the output side of the table if the result depends on the value of that
variable. For instance, looking at the third line of the table, the expression true & y
will be true only if y is true, but the expression true | y will always be true whatever
the value of y is, so the nullable results are null and true, respectively.

 When considering the lifted operators and particularly how nullable logic works,
the language designers had two slightly contradictory sets of existing behavior: C# 1
null references and SQL NULL values. In many cases, these don’t conflict at all; C# 1
had no concept of applying logical operators to null references, so there was no prob-
lem in using the SQL-like results given earlier. The definitions you’ve seen may sur-
prise some SQL developers, though, when it comes to comparisons. In standard SQL,
the result of comparing two values (in terms of equality or greater than/less than) is
always unknown if either value is NULL. The result in C# 2 is never null, and two null
values are considered to be equal to each other.

Table 2.2 Truth table for Nullable<bool> operators

x y x & y x | y x ^ y !x

true

true

true

false

false

false

null

null

null

true

false

null

true

false

null

true

false

null

true

false

null

false

false

false

null

false

null

true

true

true

true

false

null

true

null

null

false

true

null

true

false

null

null

null

null

false

false

false

true

true

true

null

null

null

Results of lifted operators are specific to C#
The lifted operators and conversions, along with the Nullable<bool> logic
described in this section, are all provided by the C# compiler and not by the CLR or
the framework itself. If you use ildasm on code that evaluates any of these nullable
operators, you’ll find that the compiler has created all the appropriate IL to test for
null values and dealt with them accordingly.
Licensed to André Santos <andrerfcsantos@gmail.com>

48 CHAPTER 2 C# 2
Another familiar operator is now available with nullable value types, and it behaves as
you’d probably expect it to if you consider your existing knowledge of null references
and just tweak it to be in terms of null values.

THE AS OPERATOR AND NULLABLE VALUE TYPES

Prior to C# 2, the as operator was available only for reference types. As of C# 2, it can
now be applied to nullable value types as well. The result is a value of that nullable
type: the null value if the original reference was the wrong type or null or a meaning-
ful value otherwise. Here’s a short example:

static void PrintValueAsInt32(object o)
{
 int? nullable = o as int?;
 Console.WriteLine(nullable.HasValue ?
 nullable.Value.ToString() : "null");
}
...
PrintValueAsInt32(5);
PrintValueAsInt32("some string");

This allows you to safely convert from an arbitrary reference to a value in a single step,
although you’d normally check whether the result is null afterward. In C# 1, you’d
have had to use the is operator followed by a cast, which is inelegant; it’s essentially
asking the CLR to perform the same type check twice.

NOTE Using the as operator with nullable types is surprisingly slow. In most
code, this is unlikely to matter (it’s not going to be slow compared with any
I/O, for example), but it’s slower than is and then a cast in all the frame-
work and compiler combinations I’ve tried.

C# 7 has an even better solution for most cases where I’ve used the as operator with
nullable value types using pattern matching (described in chapter 12). If your intended
result type really is a Nullable<T>, though, the as operator is handy. Finally, C# 2
introduced an entirely new operator specifically for handling null values elegantly.

THE NULL-COALESCING ?? OPERATOR

It’s reasonably common to want to use nullable value types—or indeed, reference
types—and provide a sort of default value if a particular expression evaluates to null.
C# 2 introduced the ?? operator, also known as the null-coalescing operator, for precisely
this purpose.

(continued)

Different languages can behave differently on these matters, and this is definitely
something to look out for if you need to port code between different .NET-based lan-
guages. For example, VB treats lifted operators far more like SQL, so the result of x
< y is Nothing if x or y is Nothing.

Prints 5
Prints
null
Licensed to André Santos <andrerfcsantos@gmail.com>

49Simplified delegate creation
 ?? is a binary operator that evaluates an expression of first ?? second by going
through the following steps (roughly speaking):

1 Evaluate first.
2 If the result is non-null, that’s the result of the whole expression.
3 Otherwise, evaluate second, and use that as the result of the whole expression.

I say roughly speaking because the formal rules in the specification have to deal with
situations involving conversions between the types of first and second. These
aren’t important in most uses of the operator, and I don’t intend to go through them.
They’re easy to find in the specification if you need them.

 One aspect of those rules is worth highlighting. If the type of the first operand is a
nullable value type and the type of the second operand is the underlying type of the
first operand, the type of the whole expression is that (non-nullable) underlying type.
For example, this code is perfectly valid:

int? a = 5;
int b = 10;
int c = a ?? b;

Note that you’re assigning directly to c even though its type is the non-nullable int
type. You can do this only because b is non-nullable, so you know that the overall
result can’t be null. The ?? operator composes well with itself; an expression such as
x ?? y ?? z will evaluate y only if x evaluates to null and will evaluate z only if both
x and y evaluate to null.

 Null values become even easier to work with—and more likely as expression
results—in C# 6 with the ?. null conditional operator, as you’ll see in section 10.3.
Combining ?. and ?? can be a powerful way of handling possible nulls at various
points of execution. Like all techniques, this is best used in moderation. If you find
your code’s readability going downhill, you might want to consider using multiple
statements to avoid trying to do too much in one go.

 That’s it for nullable value types in C# 2. We’ve now covered the two most impor-
tant features of C# 2, but we have a couple of fairly large features still to talk about,
along with a raft of smaller ones. Next up is delegates.

2.3 Simplified delegate creation
The basic purpose of delegates hasn’t changed since they were first introduced: to
encapsulate a piece of code so that it can be passed around and executed as necessary
in a type-safe fashion in terms of the return type and parameters. Back in the days of
C# 1, that was almost always used for event handling or starting threads. This was
mostly still the case when C# 2 was introduced in 2005. It was only in 2008 that LINQ
helped C# developers feel comfortable with the idea of passing a function around for
all kinds of reasons.

 C# 2 brought three new ways of creating delegate instances as well as the ability to
declare generic delegates, such as EventHandler<TEventArgs> and Action<T>.
We’ll start with method group conversions.
Licensed to André Santos <andrerfcsantos@gmail.com>

50 CHAPTER 2 C# 2
2.3.1 Method group conversions

A method group refers to one or more methods with the same name. Every C# devel-
oper has been using them forever without necessarily thinking about it, because every
method invocation uses one. For example, consider this trivial code:

Console.WriteLine("hello");

The expression Console.WriteLine is a method group. The compiler then looks at
the arguments to work out which of the overloads within that method group should
be invoked. Other than method invocations, C# 1 used method groups in delegate cre-
ation expressions as the only way the language provided to create a delegate instance.
For example, say you have a method like this:

private void HandleButtonClick(object sender, EventArgs e)

Then you could create an EventHandler6 instance like this:

EventHandler handler = new EventHandler(HandleButtonClick);

C# 2 introduced method group conversions as a sort of shorthand: a method group is
implicitly convertible to any delegate type with a signature that’s compatible with one
of the overloads. You’ll explore the notion of compatibility further in section 2.3.3,
but for the moment you’ll look at methods that exactly match the signature of the del-
egate you’re trying to convert to.

 In the case of our preceding EventHandler code, C# 2 allows you to simplify the
creation of the delegate to this:

EventHandler handler = HandleButtonClick;

This works for event subscription and removal, too:

button.Click += HandleButtonClick;

The same code is generated as for the delegate creation expression, but it’s much
more concise. These days, I rarely see delegate creation expressions in idiomatic code.
Method group conversions save a few characters when creating a delegate instance,
but anonymous methods achieve a lot more.

2.3.2 Anonymous methods

You might reasonably expect a lot of detail on anonymous methods here. I’m going to
save most of that information for the successor of anonymous methods: lambda
expressions. They were introduced in C# 3, and I expect that if they’d existed before
anonymous methods, the latter would never have been introduced at all.

6 For reference, EventHandler has a signature of public delegate void EventHandler(object sender,
EventArgs e).
Licensed to André Santos <andrerfcsantos@gmail.com>

51Simplified delegate creation
 Even so, their introduction in C# 2 made me think about delegates in a whole dif-
ferent way. Anonymous methods allow you to create a delegate instance without having
a real method to refer to7 just by writing some code inline wherever you want to create
the instance. You just use the delegate keyword, optionally include some parameters,
and then write some code in braces. For example, if you wanted an event handler that
just logged to the console when it was fired, you could do that very simply:

EventHandler handler = delegate
{
 Console.WriteLine("Event raised");
};

That doesn’t call Console.WriteLine immediately; instead it creates a delegate
that’ll call Console.WriteLine when it’s invoked. To see the type of the sender and
event arguments, you need appropriate parameters:

EventHandler handler = delegate(object sender, EventArgs args)
{
 Console.WriteLine("Event raised. sender={0}; args={1}",
 sender.GetType(), args.GetType());
};

The real power comes when you use an anonymous method as a closure. A closure is
able to access all the variables that are in scope at the point of its declaration, even if
those variables normally wouldn’t be available anymore when the delegate is exe-
cuted. You’ll look at closures in a lot more detail (including how the compiler treats
them) when you look at lambda expressions. For now, here’s a single brief example;
it’s an AddClickLogger method that adds a Click handler to any control with a cus-
tom message that’s passed into AddClickLogger:

void AddClickLogger(Control control, string message)
{
 control.Click += delegate
 {
 Console.WriteLine("Control clicked: {0}", message);
 }
}

Here the message variable is a parameter to the method, but it’s captured by the anon-
ymous method. The AddClickLogger method doesn’t execute the event handler
itself; it just adds it as a handler for the Click event. By the time the code in the anon-
ymous method executes, AddClickLogger will have returned. How does the parame-
ter still exist? In short, the compiler handles it all for you to avoid you having to write
boring code. Section 3.5.2 provides more details when you look at capturing variables
in lambda expressions. There’s nothing special about EventHandler here; it’s just a
well-known delegate type that’s been part of the framework forever. For the final part

7 In your source code, anyway. The method still exists in the IL.
Licensed to André Santos <andrerfcsantos@gmail.com>

52 CHAPTER 2 C# 2
of our whirlwind tour of C# 2 delegate improvements, let’s come back to the idea of
compatibility, which I mentioned when talking about method group conversions.

2.3.3 Delegate compatibility

In C# 1, you needed a method with a signature with exactly the same return type and
parameter types (and ref/out modifiers) to create a delegate instance. For example,
suppose you had this delegate declaration and method:

public delegate void Printer(string message);

public void PrintAnything(object obj)
{
 Console.WriteLine(obj);
}

Now imagine you wanted to create an instance of Printer to effectively wrap the
PrintAnything method. It feels like it should be okay; a Printer will always be given
a string reference, and that’s convertible to an object reference via an identity con-
version. C# 1 wouldn’t allow that, though, because the parameter types don’t match.
C# 2 allows this for delegate creation expressions and for method group conversions:

Printer p1 = new Printer(PrintAnything);
Printer p2 = PrintAnything;

Additionally, you can create one delegate to wrap another one with a compatible sig-
nature. Suppose you had a second delegate type that coincidentally did match the
PrintAnything method:

public delegate void GeneralPrinter(object obj);

If you already have a GeneralPrinter, you can create a Printer from it:

GeneralPrinter generalPrinter = ...;
Printer printer = new Printer(generalPrinter);

The compiler lets you do that because it’s safe; any argument that can be passed to a
Printer can safely be passed to a GeneralPrinter. The compiler is happy to do the
same in the other direction for return types, as shown in the following example:

public delegate object ObjectProvider();
public delegate string StringProvider();

StringProvider stringProvider = ...;
ObjectProvider objectProvider =
 new ObjectProvider(stringProvider);

Any way you might create a
GeneralPrinter delegate

Constructs a Printer to
wrap the GeneralPrinter

Parameterless delegates
returning values

Any way you might
create a StringProvider

Creates an ObjectProvider
to wrap the StringProvider
Licensed to André Santos <andrerfcsantos@gmail.com>

53Iterators
Again, this is safe because any value that StringProvider can return would defi-
nitely be fine to return from an ObjectProvider.

 It doesn’t always work the way you might want it to, though. The compatibility
between different parameter or return types has to be in terms of an identity conversion
that doesn’t change the representation of the value at execution time. For example,
this code doesn’t compile:

public delegate void Int32Printer(int x);
public delegate void Int64Printer(long x);

Int64Printer int64Printer = ...;
Int32Printer int32Printer =
 new Int32Printer(int64Printer);

The two delegate signatures here aren’t compatible; although there’s an implicit con-
version from int to long, it’s not an identity conversion. You might argue that the
compiler could’ve silently created a method that performed the conversion for you,
but it doesn’t do so. In a way, that’s helpful, because this behavior fits in with the
generic variance feature you’ll see in chapter 4.

 It’s important to understand that although this feature looks a bit like generic vari-
ance, they are different features. Aside from anything else, this wrapping really does
create a new instance of the delegate instead of just treating the existing delegate as
an instance of a different type. I’ll go into more detail when you look at the feature
fully, but I wanted to highlight as early as possible that they’re not the same.

 That’s it for delegates in C# 2. Method group conversions are still widely used, and
often the compatibility aspect will be used without anyone even thinking about it.
Anonymous methods aren’t seen much these days, because lambda expressions can
do almost anything anonymous methods can, but I still look on them fondly as my first
taste of the power of closures. Speaking of one feature that led to another, let’s look at
the forerunner of C# 5’s asynchrony: iterator blocks.

2.4 Iterators
Relatively few interfaces have specific language support in C# 2. IDisposable has
support via the using statement, and the language makes guarantees about the inter-
faces that arrays implement, but apart from that, only the enumerable interfaces have
direct support. IEnumerable has always had support for consumption in the form of
the foreach statement, and C# 2 extended that to its new-to-.NET-2 generic counter-
part IEnumerable<T> in a reasonably obvious way.

 The enumerable interfaces represent sequences of items, and although consum-
ing them is extremely common, it’s also entirely reasonable to want to produce a
sequence. Implementing either the generic or nongeneric interfaces manually can be
tedious and error prone, so C# 2 introduced a new feature called iterators to make it
simpler.

Delegates accepting 32-
and 64-bit integers

Any way you might
create an Int64Printer

Error! Can’t wrap the
Int64Printer in an Int32Printer
Licensed to André Santos <andrerfcsantos@gmail.com>

54 CHAPTER 2 C# 2
2.4.1 Introduction to iterators

An iterator is a method or property implemented with an iterator block, which is in turn
just a block of code using the yield return or yield break statements. Iterator
blocks can be used only to implement methods or properties with one of the following
return types:

 IEnumerable

 IEnumerable<T> (where T can be a type parameter or a regular type)
 IEnumerator

 IEnumerator<T> (where T can be a type parameter or a regular type)

Each iterator has a yield type based on its return type. If the return type is one of the non-
generic interfaces, the yield type is object. Otherwise, it’s the type argument provided
to the interface. For example, the yield type of a method returning IEnumerator-
<string> is string.

 The yield return statements provide values for the returned sequence, and a
yield break statement will terminate a sequence. Similar constructs, sometimes
called generators, exist in some other languages, such as Python.

 The following listing shows a simple iterator method that you can analyze further.
I’ve highlighted the yield return statements in the method.

static IEnumerable<int> CreateSimpleIterator()
{
 yield return 10;
 for (int i = 0; i < 3; i++)
 {
 yield return i;
 }
 yield return 20;
}

With that method in place, you can call the method and iterate over the results with a
regular foreach loop:

foreach (int value in CreateSimpleIterator())
{
 Console.WriteLine(value);
}

That loop will print the following output:

10
0
1
2
20

Listing 2.11 A simple iterator yielding integers
Licensed to André Santos <andrerfcsantos@gmail.com>

55Iterators
So far, this isn’t terribly exciting. You could change the method to create a
List<int>, replace each yield return statement with a call to Add(), and then
return the list at the end of the method. The loop output would be exactly the same,
but it wouldn’t execute in the same way at all. The huge difference is that iterators are
executed lazily.

2.4.2 Lazy execution

Lazy execution, or lazy evaluation, was invented as part of lambda calculus in the
1930s. The basic idea of it is simple: execute code only when you need the value that
it’ll compute. There are uses of it well beyond iterators, but they’re all we need it for
right now.

 To explain how the code executes, the following listing expands the foreach loop
into mostly equivalent code that uses a while loop instead. I’ve still used the syntactic
sugar of a using statement that will call Dispose automatically, just for simplicity.

IEnumerable<int> enumerable = CreateSimpleIterator();
using (IEnumerator<int> enumerator =
 enumerable.GetEnumerator())
{
 while (enumerator.MoveNext())
 {
 int value = enumerator.Current;
 Console.WriteLine(value);
 }
}

If you’ve never looked at the IEnumerable/IEnumerator pair of interfaces (and
their generic equivalents) before, now is a good time to make sure you understand the
difference between them. An IEnumerable is a sequence that can be iterated over,
whereas an IEnumerator is like a cursor within a sequence. Multiple IEnumerator
instances can probably iterate over the same IEnumerable without changing its state
at all. Compare that with an IEnumerator, which naturally does have mutable state:
each time you call MoveNext(), you’re asking it to move the cursor to the next ele-
ment of the sequence it’s iterating over.

 If that didn’t make much sense, you might want to think about an IEnumerable
as a book and an IEnumerator as a bookmark. There can be multiple bookmarks
within a book at any one time. Moving a bookmark to the next page doesn’t change
the book or any of the other bookmarks, but it does change that bookmark’s state: its
position within the book. The IEnumerable.GetEnumerator() method is a sort of
bootstrapping: it asks the sequence to create an IEnumerator that’s set up to iterate
over that sequence, just like putting a new bookmark at the start of a book.

Listing 2.12 The expansion of a foreach loop

Calls the iterator
method

Gets an IEnumerator<T>
from an IEnumerable<T>

Moves to the next
value, if there is one

Fetches the
current value
Licensed to André Santos <andrerfcsantos@gmail.com>

56 CHAPTER 2 C# 2
 After you have an IEnumerator, you repeatedly call MoveNext(); if it returns
true, that means you’ve moved to another value that you can access with the Current
property. If MoveNext() returns false, you’ve reached the end of the sequence.

 What does this have to do with lazy evaluation? Well, now that you know exactly
what the code using the iterator will call, you can look at when the method body starts
executing. Just as a reminder, here’s the method from listing 2.11:

static IEnumerable<int> CreateSimpleIterator()
{
 yield return 10;
 for (int i = 0; i < 3; i++)
 {
 yield return i;
 }
 yield return 20;
}

When CreateSimpleIterator() is called, none of the method body is executed.
 If you put a breakpoint on the first line (yield return 10) and step through the

code, you won’t hit the breakpoint when you call the method. You won’t hit the break-
point when you call GetEnumerator(), either. The method body starts executing
only when MoveNext() is called. But what happens then?

2.4.3 Evaluation of yield statements

Even when the method starts executing, it goes only as far as it needs to. It stops exe-
cuting when any of the following occurs:

 An exception is thrown.
 It reaches the end of the method.
 It reaches a yield break statement.
 It has evaluated the operand to a yield return statement, so it is ready to

yield the value.

If an exception is thrown, that exception is propagated as normal. If the end of the
method is reached or it hits a yield break statement, the MoveNext() method
returns false to indicate that you’ve reached the end of the sequence. If you reach a
yield return statement, the Current property is set to the value you’re yielding, and
MoveNext() returns true.

NOTE To clarify the preceding paragraph, the exception is propagated as
normal, assuming you’re already executing the iterator code. Don’t forget
that until the calling code iterates over the returned sequence, you won’t start
executing the iterator code. It’s the MoveNext() call that will throw the excep-
tion, not the initial call to the iterator method.

In our simple example, as soon as MoveNext() starts iterating, it reaches the yield
return 10; statement, sets Current to 10, and then returns true.
Licensed to André Santos <andrerfcsantos@gmail.com>

57Iterators
 That all sounds simple for the first call to MoveNext(), but what about subsequent
ones? You can’t start again from scratch; otherwise, the sequence would be 10
repeated an infinite number of times. Instead, when MoveNext() returns, it’s as if the
method is paused. The generated code keeps track of the point you’ve reached in the
method along with any other state, such as the local variable i in your loop. When
MoveNext() is called again, execution picks up from the point you’ve reached and
keeps going. That’s what makes it lazy, and that’s the part that’s difficult to get right
when you’re writing the code yourself.

2.4.4 The importance of being lazy

To give you an idea of why this is important, let’s write some code to print out the
Fibonacci sequence until you hit the first value over 1,000. The following listing shows
a Fibonacci() method that returns an infinite sequence and then a method that
iterates over that sequence until it hits a limit.

static IEnumerable<int> Fibonacci()
{
 int current = 0;
 int next = 1;
 while (true)
 {
 yield return current;
 int oldCurrent = current;
 current = next;
 next = next + oldCurrent;
 }
}

static void Main()
{
 foreach (var value in Fibonacci())
 {
 Console.WriteLine(value);
 if (value > 1000)
 {
 break;
 }
 }
}

How would you do something like this without iterators? You could change the
method to create a List<int> and populate it until you hit the limit. But that list
could be big if the limit is large, and why should the method that knows the details of
the Fibonacci sequence also know how you want to stop? Suppose you sometimes want
to stop based on how long you’ve been printing out values, sometimes based on how
many values you’ve printed, and sometimes based on the current value. You don’t
want to implement the method three times.

Listing 2.13 Iterating over the Fibonacci sequence

Infinite loop? Only if you
keep asking for more

Yields the current
Fibonacci value

Calls the method to
obtain the sequence

Prints the
current valueBreak

condition
Licensed to André Santos <andrerfcsantos@gmail.com>

58 CHAPTER 2 C# 2
 You could avoid creating the list by printing the value in the loop, but that makes
your Fibonacci() method even more tightly coupled to the one thing you happen
to want to do with the values right now. What if you wanted to add the values together
instead of printing them? Would you write a second method? It’s all a ghastly violation
of the separation of concerns.

 The iterator solution is exactly what you want: a representation of an infinite
sequence, and that’s all. The calling code can iterate over it as far as it wants8 and use
the values however it wants.

 Implementing the Fibonacci sequence manually wouldn’t be terribly hard. There’s
little state to maintain between calls, and the flow control is simple. (The fact that
there’s only one yield return statement helps there.) But as soon as the code gets
more complicated, you don’t want to be writing this code yourself. The compiler not
only generates code that keeps track of where the code has reached, but it’s also smart
about how to handle finally blocks, which aren’t quite as simple as you might think.

2.4.5 Evaluation of finally blocks

It may seem odd that I’d focus on finally blocks out of all the syntax that C# has for
managing execution flow, but the way that they’re handled in iterators is both interest-
ing and important for the usefulness of the feature. In reality, it’s far more likely that
you’ll use using statements than the raw finally blocks, but you can view using
statements as effectively built with finally blocks, so the same behavior holds.

 To demonstrate how the execution flow works, the following listing shows a trivial
iterator block that yields two items within a try block and writes its progress to the
console. You’ll then use the method in a couple of ways.

static IEnumerable<string> Iterator()
{
 try
 {
 Console.WriteLine("Before first yield");
 yield return "first";
 Console.WriteLine("Between yields");
 yield return "second";
 Console.WriteLine("After second yield");
 }
 finally
 {
 Console.WriteLine("In finally block");
 }
}

8 At least until it overflows the range of int. At that point, it might throw an exception or underflow to a large
negative number depending on whether the code is in a checked context.

Listing 2.14 An iterator that logs its progress
Licensed to André Santos <andrerfcsantos@gmail.com>

59Iterators
Before you run it, think about what you’d expect this to print if you just iterate over
the sequence returned by the method. In particular, would you expect to see In
finally block in the console when first is returned? There are two ways of think-
ing about it:

 If you consider execution to be paused by the yield return statement, then
logically it’s still inside the try block, and there’s no need to execute the
finally block.

 If you think about the code having to actually return to the MoveNext() caller
when it hits the yield return statement, then it feels like you’re exiting the
try block and should execute the finally block as normal.

Without wanting to spoil the surprise, the pause model wins. It’s much more useful
and avoids other aspects that seem counterintuitive. It would be odd to execute each
statement in a try block just once but execute its finally block three times, for
example—once for each time you yield a value and then when you execute the rest of
the method.

 Let’s prove that it works that way. The following listing calls the method and iter-
ates over the values in the sequence and prints them as it goes.

static void Main()
{
 foreach (string value in Iterator())
 {
 Console.WriteLine("Received value: {0}", value);
 }
}

The output of listing 2.15 shows that the finally block is executed only once at
the end:

Before first yield
Received value: first
Between yields
Received value: second
After second yield
In finally block

This also proves that lazy evaluation is working: the output from the Main() method
is interleaved with the output from the Iterator() method, because the iterator is
repeatedly paused and resumed.

 So far, so simple, but that relied on you iterating through the whole of the
sequence. What if you want to stop halfway through? If the code that’s fetching items
from an iterator calls MoveNext() only once (if it needs only the first value from the
sequence, for example), does that leave the iterator paused in the try block forever
without ever executing the finally block?

Listing 2.15 A simple foreach loop to iterate and log
Licensed to André Santos <andrerfcsantos@gmail.com>

60 CHAPTER 2 C# 2
 The answer is yes and no. If you write all the calls to the IEnumerator<T> manually
and call MoveNext() just once, the finally block will indeed never get executed. But if
you write a foreach loop and happen to exit it without looping over the whole
sequence, the finally block will get executed. The following listing demonstrates that
by breaking out of the loop as soon as it sees a non-null value (which it will do imme-
diately, of course). It’s the same as listing 2.15 but with the addition of the part in bold.

static void Main()
{
 foreach (string value in Iterator())
 {
 Console.WriteLine("Received value: {0}", value);
 if (value != null)
 {
 break;
 }
 }
}

The output of listing 2.16 is as follows:

Before first yield
Received value: first
In finally block

The last line is the important one: you’re still executing the finally block. That hap-
pens automatically when you exit the foreach loop, because that has a hidden using
statement. Listing 2.17 shows what listing 2.16 would look like if you couldn’t use a
foreach loop and had to write the equivalent code by hand. If this looks familiar, it’s
because you did the same thing in listing 2.12, but this time you’re paying more atten-
tion to the using statement.

static void Main()
{
 IEnumerable<string> enumerable = Iterator();
 using (IEnumerator<string> enumerator = enumerable.GetEnumerator())
 {
 while (enumerator.MoveNext())
 {
 string value = enumerator.Current;
 Console.WriteLine("Received value: {0}", value);
 if (value != null)
 {
 break;
 }
 }
 }
}

Listing 2.16 Breaking out of a foreach loop by using an iterator

Listing 2.17 Expansion of listing 2.16 to not use a foreach loop
Licensed to André Santos <andrerfcsantos@gmail.com>

61Iterators
The important part is the using statement. That makes sure that however you leave it,
you’ll call Dispose on the IEnumerator<string>. If the iterator method is
“paused” within the try block at that point, the Dispose method ends up executing
the finally block. Isn’t it clever?

2.4.6 The importance of finally handling

This may sound like a minor detail, but it makes a huge difference in how applicable
iterators are. It means they can be used for methods that acquire resources that need
disposing of, such as file handles. It also means that they can be used to chain to other
iterators with the same requirement. You’ll see in chapter 3 that LINQ to Objects uses
sequences a lot, and reliable disposal is crucial to being able to work with files and
other resources.

As an example of how useful it can be to acquire resources in iterator blocks, consider
the following listing of a method that returns a sequence of lines read from a file.

static IEnumerable<string> ReadLines(string path)
{
 using (TextReader reader = File.OpenText(path))
 {
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 yield return line;
 }
 }
}

A method like this was introduced in .NET 4.0 (File.ReadLines), but the frame-
work method doesn’t work well if you call the method once but iterate over the result

All of this requires the caller to dispose of the iterator
If you don’t call Dispose on an iterator (and you haven’t iterated to the end of the
sequence), you can leak resources or at least delay cleanup. This should be avoided.

The nongeneric IEnumerator interface doesn’t extend IDisposable, but the
foreach loop checks whether the runtime implementation also implements
IDisposable, and calls Dispose if necessary. The generic IEnumerator<T>
interface does extend IDisposable, making things simpler.

If you’re iterating by calling MoveNext() manually (which can definitely have its
place), you should do the same thing. If you’re iterating over a generic IEnumerable
<T>, you can just use a using statement as I have in my expanded foreach loop
listings. If you’re in the unfortunate position of iterating over a nongeneric sequence,
you should perform the same interface check that the compiler does in foreach.

Listing 2.18 Reading lines from a file
Licensed to André Santos <andrerfcsantos@gmail.com>

62 CHAPTER 2 C# 2
multiple times; it opens the file only once. The method in listing 2.18 opens the file
each time you iterate, making it simpler to reason about. This has the downside, how-
ever, of delaying any exception due to the file not existing or not being readable.
Tricky trade-offs always exist in API design.

 The point of showing you this method is to demonstrate how important it is that
iterator disposal is handled properly. If a foreach loop that threw an exception or
returned early resulted in a dangling open file handle, the method would be close to
useless. Before we leave iterators, let’s peek behind the curtain briefly and see how
they’re implemented.

2.4.7 Implementation sketch

I always find it useful to see roughly what the compiler does with code, particularly for
complicated situations such as iterators, async/await, and anonymous functions. This
section provides only a taste; an article at http://csharpindepth.com provides far
more detail. Please be aware that the exact details are implementation specific; you
may find different compilers take slightly different approaches. I’d expect most to
have the same basic strategy, though.

 The first thing to understand is that even though you’ve written a method,9 the
compiler generates a whole new type for you to implement the relevant interfaces.
Your method body is moved into a MoveNext() method in this generated type and
adjusted for the execution semantics of iterators. To demonstrate the generated code,
we’ll look at the code that the compiler generates for the following listing.

public static IEnumerable<int> GenerateIntegers(int count)
{
 try
 {
 for (int i = 0; i < count; i++)
 {
 Console.WriteLine("Yielding {0}", i);
 yield return i;
 int doubled = i * 2;
 Console.WriteLine("Yielding {0}", doubled);
 yield return doubled;
 }
 }
 finally
 {
 Console.WriteLine("In finally block");
 }
}

9 You can use iterators to write property accessors as well, but I’ll just talk about iterator methods for the rest of
this section, just to be concise. The implementation is the same for property accessors.

Listing 2.19 Sample iterator method to decompile
Licensed to André Santos <andrerfcsantos@gmail.com>

http://csharpindepth.com

63Iterators
Listing 2.19 shows a relatively simple method in its original form, but I’ve deliberately
included five aspects that may not seem obvious:

 A parameter
 A local variable that needs to be preserved across yield return statements
 A local variable that doesn’t need to be preserved across yield return

statements
 Two yield return statements
 A finally block

The method iterates over its loop count times and yields two integers on each itera-
tion: the iteration number and double the same value. For example, if you pass in 5, it
will yield 0, 0, 1, 2, 2, 4, 3, 6, 4, 8.

 The downloadable source code contains a full, manually tweaked, decompiled form
of the generated code. It’s pretty long, so I haven’t included it in its entirety here.
Instead, I want to give you a flavor of what’s generated. The following listing shows most
of the infrastructure but none of the implementation details. I’ll explain that, and then
you’ll look at the MoveNext() method, which does most of the real work.

public static IEnumerable<int> GenerateIntegers(
 int count)
{
 GeneratedClass ret = new GeneratedClass(-2);
 ret.count = count;
 return ret;
}

private class GeneratedClass
 : IEnumerable<int>, IEnumerator<int>
{
 public int count;
 private int state;
 private int current;
 private int initialThreadId;
 private int i;

 public GeneratedClass(int state)
 {
 this.state = state;
 initialThreadId = Environment.CurrentManagedThreadId;
 }

 public bool MoveNext() { ... }

 public IEnumerator<int> GetEnumerator() { ... }

 public void Reset()
 {
 throw new NotSupportedException();
 }

Listing 2.20 Infrastructure of the generated code for an iterator

Stub method with the
original declared signature

Generated class to represent
the state machine

All the fields in the
state machine with
varying purposes

Constructor called by both the stub
method and GetEnumerator

Main body of state
machine code

Creates a new state
machine if necessary

Generated iterators
never support Reset
Licensed to André Santos <andrerfcsantos@gmail.com>

64 CHAPTER 2 C# 2
 public void Dispose() { ... }

 public int Current { get { return current; } }

 private void Finally1() { ... }

 IEnumerator Enumerable().GetEnumerator()
 {
 return GetEnumerator();
 }

 object IEnumerator.Current { get { return current; } }
}

Yes, that’s the simplified version. The important point to understand is that the com-
piler generates a state machine for you, as a private nested class. A lot of the names gen-
erated by the compiler aren’t valid C# identifiers, but I’ve provided valid ones for
simplicity. The compiler still emits a method with the signature declared in the origi-
nal source code, and that’s what any callers will use. All that does is create an instance
of the state machine, copy any parameter to it, and return the state machine to the
caller. None of the original source code is called, which corresponds to the lazy behav-
ior you’ve already seen.

 The state machine contains everything it needs to implement the iterator:

 An indicator of where you are within the method. This is similar to an instruc-
tion counter in a CPU but simpler because you need to distinguish between
only a few states

 A copy of all the parameters, so you can obtain their values when you need them
 Local variables within the method
 The last-yielded value, so the caller can obtain it with the Current property

You’d expect the caller to perform the following sequence of operations:

1 Call GetEnumerator() to obtain an IEnumerator<int>.
2 Repeatedly call MoveNext() and then Current on the IEnumerator<int>,

until MoveNext() returns false.
3 Call Dispose for any cleanup that’s required, whether an exception was

thrown or not.

In almost all cases, the state machine is used only once and only on the same thread it
was created on. The compiler generates code to optimize for this case; the Get-
Enumerator() method checks for it and returns this if the state machine is still in
its original state and is on the same thread. That’s why the state machine implements
both IEnumerable<int> and IEnumerator<int>, which would be unusual to see
in normal code.10 If GetEnumerator() is called from a different thread or multiple

10 If the original method returns only IEnumerator<T>, the state machine implements only that.

Executes any finally
blocks, if required

Current property to
return last-yielded value

Body of a finally block for use
in MoveNext and Dispose

Explicit implementation
of nongeneric
interface members
Licensed to André Santos <andrerfcsantos@gmail.com>

65Iterators
times, those calls create a new instance of the state machine with the initial parameter
values copied in.

 The MoveNext() method is the complicated bit. The first time it’s called, it just
needs to start executing the code written in the method as normal; but on subsequent
calls, however, it needs to effectively jump to the right point in the method. The local
variables need to be preserved between calls as well, so they’re stored in fields in the
state machine.

 In an optimized build, some local variables don’t have to be copied into fields. The
point of using a field is so you can keep track of the value you set in one MoveNext()
call when you come back in the next MoveNext() call. If you look at the doubled
local variable from listing 2.19, it’s never used like that:

for (int i = 0; i < count; i++)
{
 Console.WriteLine("Yielding {0}", i);
 yield return i;
 int doubled = i * 2;
 Console.WriteLine("Yielding {0}", doubled);
 yield return doubled;
}

All you do is initialize the variable, print it out, and then yield it. When you return to
the method, that value is irrelevant so the compiler can optimize it into a real local
variable in a release build. In a debug build, it may still be present to improve the
debugging experience. Notice that if you swapped the last two bold lines in the pre-
ceding code—yielded the value and then printed it—the optimization wouldn’t be
possible.

 What does a MoveNext() method look like? It’s difficult to give real code with-
out getting stuck in too much detail, so the following listing gives a sketch of the
structure.

public bool MoveNext()
{
 try
 {
 switch (state)
 {

 }

 }
 fault
 {
 Dispose();
 }
}

Listing 2.21 Simplified MoveNext() method

Jump table to get to
the right part of the
rest of the method

Method code returning
at each yield return

Fault block executed
only on exceptions

Clean up on
exceptions
Licensed to André Santos <andrerfcsantos@gmail.com>

66 CHAPTER 2 C# 2
The state machine contains a variable (in our case, called state) that remembers
where it reached. The precise values used depend on the implementation, but in the
version of Roslyn I happened to use, the states were effectively as follows:

 –3—MoveNext()currently executing
 –2—GetEnumerator() not yet called
 –1—Completed (whether successfully or not)
 0—GetEnumerator() called but MoveNext() not yet called (start of method)
 1—At the first yield return statement
 2—At the second yield return statement

When MoveNext() is called, it uses this state to jump to the right place in the method
to either start executing for the first time or resume from the previous yield return
statement. Notice that there aren’t any states for positions in the code such as “just
assigned a value to the doubled variable,” because you never need to resume from
there; you need to resume only from where you previously paused.

 The fault block near the end of listing 2.21 is an IL construct with no direct equiv-
alent in C#. It’s like a finally block that executes when an exception is thrown but
without catching the exception. This is used to perform any cleanup operations
required; in our case, that’s the finally block. The code in that finally block is
moved into a separate method that’s called from Dispose() (if an exception has been
thrown) and MoveNext() (if you reach it without an exception). The Dispose()
method checks the state to see what cleanup is required. That becomes more compli-
cated the more finally blocks there are.

 Looking at the implementation isn’t enlightening in terms of teaching you more C#
coding techniques, but it’s great for building an appreciation of how much the com-
piler is capable of doing on your behalf. The same ideas come into play again in C# 5
with async/await, where instead of pausing until the MoveNext() is called again, asyn-
chronous methods effectively pause until an asynchronous operation has completed.

 We’ve now covered the biggest features of C# 2, but several smaller features were
introduced at the same time. These features are reasonably simple to describe, which
is why I’ve lumped them all together here. They’re not otherwise related, but some-
times that’s just the way language design happens.

2.5 Minor features
Some of the features described in this section are rarely used in my experience, but oth-
ers are common in any modern C# codebase. The time it takes to describe a feature
doesn’t always correlate with how useful it is. In this section, you’ll look at the following:

 Partial types that allow code for a single type to be split across multiple source files
 Static classes for utility types
 Separate accessibility (public, private, and so on) for get and set accessors in

properties
Licensed to André Santos <andrerfcsantos@gmail.com>

67Minor features
 Improvements to namespace aliases to make it easier to work with code that
uses the same names in multiple namespaces or assemblies

 Pragma directives that allow additional compiler-specific features such as tem-
porarily disabling warnings

 Fixed-size buffers for inline data in unsafe code
 The [InternalsVisibleTo] attribute, which makes testing simpler

Each feature is independent of the others, and the order in which I’ve described them
is unimportant. If you know just enough about one of these sections to know it’s irrel-
evant to you, you can safely skip it without that becoming a problem later.

2.5.1 Partial types

Partial types allow a single class, struct, or interface to be declared in multiple parts
and usually across multiple source files. This is typically used with code generators.
Multiple code generators can contribute different parts to the same type, and these
can be further augmented by manually written code. The various parts are combined
by the compiler and act as if they were all declared together.

 Partial types are declared by adding the partial modifier to the type declara-
tion. This must be present in every part. The following listing shows an example with
two parts and demonstrates how a method declared in one part can be used in a dif-
ferent part.

partial class PartialDemo
{
 public static void MethodInPart1()
 {
 MethodInPart2();
 }
}

partial class PartialDemo
{
 private static void MethodInPart2()
 {
 Console.WriteLine("In MethodInPart2");
 }
}

If the type is generic, every part has to declare the same set of type parameters with
the same names, although if multiple declarations constrain the same type parameter,
those constraints must be the same. Different parts can contribute different interfaces
that a type implements, and the implementation doesn’t need to be in the part that
specifies the interface.

Listing 2.22 A simple partial class

Uses method declared
in second part

Method used
by first part
Licensed to André Santos <andrerfcsantos@gmail.com>

68 CHAPTER 2 C# 2
PARTIAL METHODS (C# 3)
C# 3 introduced an extra feature to partial types called partial methods. These are
methods declared without a body in one part and then optionally implemented in
another part. Partial methods are implicitly private and must be void with no out
parameters. (It’s fine to use ref parameters.) At compile time, only partial methods
that have implementations are retained; if a partial method hasn’t been implemented,
all calls to it are removed. This sounds odd, but it allows generated code to provide
optional hooks for manually written code to add extra behavior. It turns out to be use-
ful indeed. The following listing provides an example with two partial methods, one of
which is implemented and one of which isn’t.

partial class PartialMethodsDemo
{
 public PartialMethodsDemo()
 {
 OnConstruction();
 }

 public override string ToString()
 {
 string ret = "Original return value";
 CustomizeToString(ref ret);
 return ret;
 }

 partial void OnConstruction();
 partial void CustomizeToString(ref string text);
}

partial class PartialMethodsDemo
{
 partial void CustomizeToString(ref string text)
 {
 text += " - customized!";
 }
}

In listing 2.23, the first part would most likely be generated code, thereby allowing for
additional behavior on construction and when obtaining a string representation of
the object. The second part corresponds to manually written code that doesn’t need
to customize construction but does want to change the string representation returned
by ToString(). Even though the CustomizeToString method can’t return a value
directly, it can effectively pass information back to its caller with a ref parameter.

 Because OnConstruction is never implemented, it’s completely removed by the
compiler. If a partial method with parameters is called, the arguments are never even
evaluated when there’s no implementation.

Listing 2.23 Two partial methods—one implemented, one not

Call to unimplemented
partial method

Call to implemented
partial method

Partial method declarations

Partial method
implementation
Licensed to André Santos <andrerfcsantos@gmail.com>

69Minor features
 If you ever find yourself writing a code generator, I strongly encourage you to
make it generate partial classes. You may also find it useful to create partial classes in
purely handwritten code; I’ve used this to split tests for large classes into multiple
source files for easy organization, for example.

2.5.2 Static classes

Static classes are classes declared with the static modifier. If you’ve ever found your-
self writing utility classes composed entirely of static methods, those are prime candi-
dates to be static classes. Static classes can’t declare instance methods, properties,
events, or constructors, but they can contain regular nested types.

 Although it’s perfectly valid to declare a regular class with only static members,
adding the static modifier signals your intent in terms of how you expect the class
to be used. The compiler knows that static classes can never be instantiated, so it pre-
vents them from being used as either variable types or type arguments. The following
listing gives a brief example of what’s allowed and what’s not.

static class StaticClassDemo
{
 public static void StaticMethod() { }

 public void InstanceMethod() { }

 public class RegularNestedClass
 {
 public void InstanceMethod() { }
 }
}
...
StaticClassDemo.StaticMethod();

StaticClassDemo localVariable = null;
List<StaticClassDemo> list =
 new List<StaticClassDemo>();

Static classes have additional special behavior in that extension methods (introduced
in C# 3) can be declared only in non-nested, nongeneric, static classes.

2.5.3 Separate getter/setter access for properties

It’s hard to believe, but in C# 1, a property had only a single access modifier that was
used for both the getter and the setter, assuming both were present. C# 2 introduced
the ability to make one accessor more private than the other by adding a modifier to
that more-private accessor. This is almost always used to make the setter more private

Listing 2.24 Demonstration of static classes

Fine: static classes can
declare static methods.

Invalid: static classes can’t
declare instance methods.

Fine: static classes can declare
regular nested types.

Fine: a regular type nested in a static
class can declare an instance method.

Fine: calling a static method
from a static class

Invalid: can’t declare a
variable of a static class

Invalid: can’t use a static
class as a type argument
Licensed to André Santos <andrerfcsantos@gmail.com>

70 CHAPTER 2 C# 2
than the getter, and by far the most common combination is to have a public getter
and a private setter, like this:

private string text;

public string Text
{
 get { return text; }
 private set { text = value; }
}

In this example, any code that has access to the property setter could just set the field
value directly, but in more complex situations, you may want to add validation or
change notification. Using a property allows behavior like this to be encapsulated
nicely. Although this could be put in a method instead, using a property feels more
idiomatic in C#.

2.5.4 Namespace aliases

Namespaces are used to allow multiple types with the same name to be declared but in
different namespaces. This avoids long and convoluted type names just for the sake of
uniqueness. C# 1 already supported namespaces and even namespace aliases so you
could make it clear which type you meant if you had a single piece of code that
needed to use types with the same name from different namespaces. The following
listing shows how one method can refer to the Button classes from both Windows
Forms and ASP.NET Web Forms.

using System;
using WinForms = System.Windows.Forms;
using WebForms = System.Web.UI.WebControls;

class Test
{
 static void Main()
 {
 Console.WriteLine(typeof(WinForms.Button));
 Console.WriteLine(typeof(WebForms.Button));
 }
}

C# 2 extends the support for namespace aliases in three important ways.

NAMESPACE ALIAS QUALIFIER SYNTAX

The WinForms.Button syntax in listing 2.25 works fine so long as there isn’t a type
called WinForms as well. At that point, the compiler would treat WinForms.Button
as an attempt to use a member called Button within the type WinForms instead of
using the namespace alias. C# 2 solves this by introducing a new piece of syntax called
a namespace alias qualifier, which is just a pair of colons. This is used only for namespace

Listing 2.25 Namespace aliases in C# 1

Introduces namespace aliases

Uses the aliases to qualify a name
Licensed to André Santos <andrerfcsantos@gmail.com>

71Minor features
aliases, thereby removing any ambiguity. Using namespace alias qualifiers, the Main
method in listing 2.25 would become the following:

static void Main()
{
 Console.WriteLine(typeof(WinForms::Button));
 Console.WriteLine(typeof(WebForms::Button));
}

Resolving ambiguity is useful for more than just helping the compiler. More impor-
tant, it helps anyone reading your code understand that the identifier before the :: is
expected to be a namespace alias, not a type name. I suggest using :: anywhere you
use a namespace alias.

THE GLOBAL NAMESPACE ALIAS

Although it’s unusual to declare types in the global namespace in production code, it
can happen. Prior to C# 2, there was no way of fully qualifying a reference to a type in
the namespace. C# 2 introduces global as a namespace alias that always refers to the
global namespace. In addition to referring to types in the global namespace, the
global namespace alias can be used as a sort of “root” for fully qualified names, and
this is how I’ve used it most often.

 As an example, recently I was dealing with some code with a lot of methods using
DateTime parameters. When another type called DateTime was introduced into the
same namespace, that caused problems for these method declarations. Although I
could’ve introduced a namespace alias for the System namespace, it was simpler to
replace each method parameter type with global::System.DateTime. I find that
namespace aliases in general, and particularly the global namespace alias, are espe-
cially useful when writing code generators or working with generated code where col-
lisions are more likely to occur.

EXTERN ALIASES

So far I’ve been talking about naming collisions between multiple types with the same
name but in different namespaces. What about a more worrying collision: two types
with the same name in the same namespace but provided by different assemblies?

 This is definitely a corner case, but it can come up, and C# 2 introduced extern
aliases to handle it. Extern aliases are declared in source code without any specified
association, like this:

extern alias FirstAlias;
extern alias SecondAlias;

In the same source code, you can then use the alias in using directives or writing fully
qualified type names. For example, if you were using Json.NET but had an additional
assembly that declared Newtonsoft.Json.Linq.JObject, you could write code
like this:

extern alias JsonNet;
extern alias JsonNetAlternative;
Licensed to André Santos <andrerfcsantos@gmail.com>

72 CHAPTER 2 C# 2
using JsonNet::Newtonsoft.Json.Linq;
using AltJObject = JsonNetAlternative::Newtonsoft.Json.Linq.JObject;
...
JObject obj = new JObject();
AltJObject alt = new AltJObject();

That leaves one problem: associating each extern alias with an assembly. The mecha-
nism for doing this is implementation specific. For example, it could be specified in
project options or on the compiler command line.

 I can’t remember ever having to use extern aliases myself, and I’d normally expect
them to be used as a stopgap solution while alternative approaches were being found
to avoid the naming collision to start with. But I’m glad they exist to allow those tem-
porary solutions.

2.5.5 Pragma directives

Pragma directives are implementation-specific directives that give extra information to
the compiler. A pragma directive can’t change the behavior of the program to contra-
vene anything within the C# language specification, but it can do anything outside the
scope of the specification. If the compiler doesn’t understand a particular pragma
directive, it can issue a warning but not an error. The syntax for pragma directives is
simple: it’s just #pragma as the first nonwhitespace part of a line followed by the text
of the pragma directive.

 The Microsoft C# compiler supports pragma directives for warnings and check-
sums. I’ve always seen checksum pragmas only in generated code, but warning prag-
mas are useful for disabling and reenabling specific warnings. For example, to disable
warning CS0219 (“variable is assigned but its value is never used”) for a specific piece
of code, you might write this:

#pragma warning disable CS0219
int variable = CallSomeMethod();
#pragma warning restore CS0219

Until C# 6, warnings could be specified only using numbers. Roslyn makes the com-
piler pipeline more extensible, thereby allowing other packages to contribute warn-
ings as part of the build. To accommodate this, the language was changed to allow a
prefix (for example, CS for the C# compiler) to be specified as part of the warning
identifier as well. I recommend always including the prefix (CS0219 rather than just
0219 in the preceding example) for clarity.

 If you omit a specific warning identifier, all warnings will be disabled or restored.
I’ve never used this facility, and I recommend against it in general. Usually, you want
to fix warnings instead of disabling them, and disabling them on a blanket basis hides
information about problems that might be lurking in your code.

Uses the regular
Json.NET JObject type

Uses the JObject type in
the alternative assembly
Licensed to André Santos <andrerfcsantos@gmail.com>

73Minor features
2.5.6 Fixed-size buffers

Fixed-size buffers are another feature I’ve never used in production code. That doesn’t
mean you won’t find them useful, particularly if you use interop with native code a lot.

 Fixed-size buffers can be used only in unsafe code and only within structs. They
effectively allocate a chunk of memory inline within the struct using the fixed modi-
fier. The following listing shows a trivial example of a struct that represents 16 bytes of
arbitrary data and two 32-bit integers to represent the major and minor versions of
that data.

unsafe struct VersionedData
{
 public int Major;
 public int Minor;
 public fixed byte Data[16];
}

unsafe static void Main()
{
 VersionedData versioned = new VersionedData();
 versioned.Major = 2;
 versioned.Minor = 1;
 versioned.Data[10] = 20;
}

I’d expect the size of a value of this struct type to be 24 bytes or possibly 32 bytes if the
runtime aligned the fields to 8-byte boundaries. The important point is that all of the
data is directly within the value; there’s no reference to a separate byte array. This
struct could be used for interoperability with native code or just used within regular
managed code.

WARNING Although I provide a general warning about using sample code in
this book, I feel compelled to give a more specific one for this example. To keep
the code short, I haven’t attempted to provide any encapsulation in this struct.
It should be used only to get an impression of the syntax for fixed-size buffers.

IMPROVED ACCESS TO FIXED-SIZED BUFFERS IN FIELDS IN C# 7.3
Listing 2.26 demonstrated accessing a fixed-sized buffer via a local variable. If the
versioned variable had been a field instead, accessing elements of versioned
.Data would’ve required a fixed statement to create a pointer prior to C# 7.3. As of
C# 7.3, you can access fixed-sized buffers in fields directly, although the code still
needs to be in an unsafe context.

2.5.7 InternalsVisibleTo

The final feature for C# 2 is as much a framework and runtime feature as anything
else. It isn’t even mentioned in the language specification, although I’d expect any
modern C# compiler to be aware of it. The framework exposes an attribute called

Listing 2.26 Using fixed-size buffers for a versioned chunk of binary data
Licensed to André Santos <andrerfcsantos@gmail.com>

74 CHAPTER 2 C# 2
[InternalsVisibleToAttribute], which is an assembly-level attribute with a sin-
gle parameter specifying another assembly. This allows internal members of the
assembly containing the attribute to be used by the assembly specified in the attribute,
as shown in the following example:

[assembly:InternalsVisibleTo("MyProduct.Test")]

When the assembly is signed, you need to include the public key in the assembly
name. For example, in Noda Time I have this:

[assembly: InternalsVisibleTo("NodaTime.Test,PublicKey=0024...4669"]

The real public key is much longer than that, of course. Using this attribute with
signed assemblies is never pretty, but you don’t need to look at the code often. I’ve
used the attribute in three kinds of situations, one of which I later regretted:

 Allowing a test assembly access to internal members to make testing easier
 Allowing tools (which are never published) access to internal members to avoid

code duplication
 Allowing one library access to internal members in another closely related library

The last of these was a mistake. We’re used to expecting that we can change internal
code without worrying about versioning, but when internal code is exposed to
another library that’s versioned independently, it takes on the same versioning charac-
teristics as public code. I don’t intend to do that again.

 For testing and tools, however, I’m a big fan of making the internals visible. I know
there’s testing dogma around testing only the public API surface, but often if you’re try-
ing to keep the public surface small, allowing your tests access to the internal code allows
you to write much simpler tests, which means you’re likely to write more of them.

Summary
 The changes in C# 2 made an enormous difference to the look and feel of idi-

omatic C#. Working without generics or nullable types is frankly horrible.
 Generics allow both types and methods to say more about the types in their API

signatures. This promotes compile-time type safety without a lot of code
duplication.

 Reference types have always had the ability to use a null value to express an
absence of information. Nullable value types apply that idea to value types with
support in the language, runtime, and framework to make them easy to work with.

 Delegates became easier to work with in C# 2, and method group conversions for
regular methods and anonymous methods provide even more power and brevity.

 Iterators allow code to produce sequences that are lazily evaluated, which effec-
tively pauses a method until the next value is requested.

 Not all features are huge. Small features such as partial types and static classes
can still have a significant impact. Some of these won’t affect every developer
but will be vital for niche use cases.
Licensed to André Santos <andrerfcsantos@gmail.com>

C# 3:
LINQ and everything

that comes with it
The new features of C# 2 were mostly independent of each other. Nullable value
types depended on generics, but they were still separate features that didn’t build
toward a common goal.

 C# 3 was different. It consisted of many new features, each of which was useful
in its own right, but almost all of which built toward the larger goal of LINQ. This
chapter shows each feature individually and then demonstrates how they fit
together. The first feature we’ll look at is the only one that has no direct relation-
ship with LINQ.

This chapter covers
 Implementing trivial properties simply

 Initializing objects and collections more concisely

 Creating anonymous types for local data

 Using lambda expressions to build delegates and
expression trees

 Expressing complex queries simply with query
expressions
75

Licensed to André Santos <andrerfcsantos@gmail.com>

76 CHAPTER 3 C# 3: LINQ and everything that comes with it
3.1 Automatically implemented properties
Prior to C# 3, every property had to be implemented manually with bodies for the get
and/or set accessors. The compiler was happy to provide an implementation for
field-like events but not properties. That meant there were a lot of properties like this:

private string name;
public string Name
{
 get { return name; }
 set { name = value; }
}

Formatting would vary by code style, but whether the property was one long line, 11
short ones, or five lines in between (as in the preceding example), it was always just
noise. It was a very long-winded way of expressing the intention to have a field and
expose its value to callers via a property.

 C# 3 made this much simpler by using automatically implemented properties (often
referred to as automatic properties or even autoprops). These are properties with no
accessor bodies; the compiler provides the implementation. The whole of the preced-
ing code can be replaced with a single line:

public string Name { get; set; }

Note that there’s no field declaration in the source code now. There’s still a field, but
it’s created for you automatically by the compiler and given a name that can’t be
referred to anywhere in the C# code.

 In C# 3, you can’t declare read-only automatically implemented properties, and
you can’t provide an initial value at the point of declaration. Both of those features
were introduced (finally!) in C# 6 and are described in section 8.2. Before C# 6, it was
a reasonably common practice to fake read-only properties by giving them a private
set accessor like this:

public string Name { get; private set; }

The introduction of automatically implemented properties in C# 3 had a huge effect
in reducing boilerplate code. They’re useful only when the property simply fetches
and sets the field value, but that accounts for a large proportion of properties in my
experience.

 As I mentioned, automatically implemented properties don’t directly contribute to
LINQ. Let’s move on to the first feature that does: implicit typing for arrays and local
variables.

Licensed to André Santos <andrerfcsantos@gmail.com>

77Implicit typing
3.2 Implicit typing
In order to be as clear as possible about the features introduced in C# 3, I need to
define a few terms first.

3.2.1 Typing terminology

Many terms are used to describe the way programming languages interact with their
type system. Some people use the terms weakly typed and strongly typed, but I try to avoid
those because they’re not clearly defined and mean different things to different devel-
opers. Two other aspects have more consensus: static/dynamic typing and explicit/
implicit typing. Let’s look at each of those in turn.

STATIC AND DYNAMIC TYPING

Languages that are statically typed are typically compiled languages; the compiler is
able to determine the type of each expression and check that it’s used correctly. For
example, if you make a method call on an object, the compiler can use the type infor-
mation to check that there’s a suitable method to call based on the type of the expres-
sion the method is called on, the name of the method, and the number and types of
the arguments. Determining the meaning of something like a method call or field
access is called binding. Languages that are dynamically typed leave all or most of the
binding to execution time.

NOTE As you’ll see in various places, some expressions in C# don’t have a type
when considered in source code, such as the null literal. But the compiler
always works out a type based on the context in which the expression is used,
at which point that type can be used for checking how the expression is used.

Aside from the dynamic binding introduced in C# 4 (and described in chapter 4), C#
is a statically typed language. Even though the choice of which implementation of a
virtual method should be executed depends on the execution-time type of the object
it’s called on, the binding process of determining the method signature all happens at
compile time.

EXPLICIT AND IMPLICIT TYPING

In a language that’s explicitly typed, the source code specifies all the types involved. This
could be for local variables, fields, method parameters, or method return types, for
example. A language that’s implicitly typed allows the developer to omit the types from
the source code so some other mechanism (whether it’s a compiler or something at
execution time) can infer which type is meant based on other context.

 C# is mostly explicitly typed. Even before C# 3, there was some implicit typing,
such as type inference for generic type arguments as you saw in section 2.1.4. Argu-
ably, the presence of implicit conversions (such as int to long) make the language
less explicitly typed, too.

 With those different aspects of typing separated, you can look at the C# 3 features
around implicit typing. We’ll start with implicitly typed local variables.
Licensed to André Santos <andrerfcsantos@gmail.com>

78 CHAPTER 3 C# 3: LINQ and everything that comes with it
3.2.2 Implicitly typed local variables (var)

Implicitly typed local variables are variables declared with the contextual keyword var
instead of the name of a type, such as the following:

var language = "C#";

The result of declaring a local variable with var instead of with the name of a type is
still a local variable with a known type; the only difference is that the type is inferred
by the compiler from the compile-time type of the value assigned to it. The preceding
code will generate the exact same result as this:

string language = "C#";

TIP When C# 3 first came out, a lot of developers avoided var because they
thought it would remove a lot of compile-time checks or lead to execution-
time performance problems. It doesn’t do that at all; it only infers the type of
the local variable. After the declaration, the variable acts exactly as if it had
been declared with an explicit type name.

The way the type is inferred leads to two important rules for implicitly typed local
variables:

 The variable must be initialized at the point of declaration.
 The expression used to initialize the variable must have a type.

Here’s some invalid code to demonstrate these rules:

var x;
x = 10;

var y = null;

It would’ve been possible to avoid these rules in some cases by analyzing all the assign-
ments performed to the variable and inferring the type from those. Some languages do
that, but the C# language designers preferred to keep the rules as simple as possible.

 Another restriction is that var can be used for only local variables. Many times I’ve
longed for implicitly typed fields, but they’re still not available (as of C# 7.3, anyway).

 In the preceding example, there was little benefit, if any, in using var. The explicit
declaration is feasible and just as readable. There are generally three reasons for using
var:

 When the type of the variable can’t be named because it’s anonymous. You’ll
look at anonymous types in section 3.4. This is the LINQ-related part of the fea-
ture.

 When the type of the variable has a long name and can easily be inferred by a
human reader based on the expression used to initialize it.

 When the precise type of the variable isn’t particularly important, and the expres-
sion used to initialize it gives enough information to anyone reading the code.

No initial value provided
Initial value
has no type.
Licensed to André Santos <andrerfcsantos@gmail.com>

79Implicit typing
I’ll save examples of the first bullet point for section 3.4, but it’s easy to show the sec-
ond. Suppose you want to create a dictionary that maps a name to a list of decimal val-
ues. You can do that with an explicitly typed variable:

Dictionary<string, List<decimal>> mapping =
 new Dictionary<string, List<decimal>>();

That’s really ugly. I had to wrap it on two lines just to make it fit on the page, and
there’s a lot of duplication. That duplication can be entirely avoided by using var:

var mapping = new Dictionary<string, List<decimal>>();

This expresses the same amount of information in less text, so there’s less to distract
you from other code. Of course, this works only when you want the type of the vari-
able to be exactly the type of the initialization expression. If you wanted the type of
the mapping variable to be IDictionary<string, List<decimal>>—the inter-
face instead of the class—then var wouldn’t help. But for local variables, that sort of
separation between interface and implementation is usually less important.

 When I wrote the first edition of C# in Depth, I was wary of implicitly typed local
variables. I rarely used them outside LINQ, apart from when I was calling a construc-
tor directly, as in the preceding example. I was worried that I wouldn’t be able to easily
work out the type of the variable when just reading the code.

 Ten years later, that caution has mostly gone. I use var for almost all my local vari-
ables in test code and extensively in production code, too. My fears weren’t realized;
in almost every case, I’m easily able to infer what the type should be just by inspection.
Where that isn’t the case, I’ll happily use an explicit declaration instead.

 I don’t claim to be entirely consistent about this, and I’m certainly not dogmatic.
Because explicitly typed variables generate the exact same code as implicitly typed
variables, it’s fine to change your mind later in either direction. I suggest you discuss
this with the other people who’ll work with your code the most (whether those are col-
leagues or open source collaborators), get a sense of everyone’s comfort level, and try
to abide by that. The other aspect of implicit typing in C# 3 is somewhat different. It’s
not directly related to var, but it has the same aspect of removing a type name to let
the compiler infer it.

3.2.3 Implicitly typed arrays

Sometimes you need to create an array without populating it and keep all the ele-
ments with their default values. The syntax for that hasn’t changed since C# 1; it’s
always something like this:

int[] array = new int[10];

But you often want to create an array with specific initial content. Before C# 3, there
were two ways of doing this:

int[] array1 = { 1, 2, 3, 4, 5};
int[] array2 = new int[] { 1, 2, 3, 4, 5};
Licensed to André Santos <andrerfcsantos@gmail.com>

80 CHAPTER 3 C# 3: LINQ and everything that comes with it
The first form of this is valid only when it’s part of a variable declaration that specifies
the array type. This is invalid, for example:

int[] array;
array = { 1, 2, 3, 4, 5 };

The second form is always valid, so the second line in the preceding example could’ve
been as follows:

array = new int[] { 1, 2, 3, 4, 5 };

C# 3 introduced a third form in which the type of the array is implicit based on the
content:

array = new[] { 1, 2, 3, 4, 5 };

This can be used anywhere, so long as the compiler is able to infer the array element
type from the array elements specified. It also works with multidimensional arrays, as
in the following example:

var array = new[,] { { 1, 2, 3 }, { 4, 5, 6 } };

The next obvious question is how the compiler infers that type. As is so often the case,
the precise details are complex in order to handle all kinds of corner cases, but the sim-
plified sequence of steps is as follows:

1 Find a set of candidate types by considering the type of each array element that
has a type.

2 For each candidate type, check whether every array element has an implicit con-
version to that type. Remove any candidate type that doesn’t meet this condition.

3 If there’s exactly one type left, that’s the inferred element type, and the com-
piler creates an appropriate array. Otherwise (if there are no types or more
than one type left), a compile-time error occurs.

The array element type must be the type of one of the expressions in the array initial-
izer. There’s no attempt to find a common base class or a commonly implemented
interface. Table 3.1 gives some examples that illustrate the rules.

Table 3.1 Examples of type inference for implicitly typed arrays

Expression Result Notes

new[] { 10, 20 } int[] All elements are of type int.

new[] { null, null } Error No elements have types.

new[] { "xyz", null } string[] Only candidate type is string, and the null
literal can be converted to string.

new[] { "abc", new object() } object[] Candidate types of string and object;
implicit conversion from string to object
but not vice versa.

Invalid
Licensed to André Santos <andrerfcsantos@gmail.com>

81Object and collection initializers
Implicitly typed arrays are mostly a convenience to reduce the source code required
except for anonymous types, where the array type can’t be stated explicitly even if you
want to. Even so, they’re a convenience I’d definitely miss now if I had to work with-
out them.

 The next feature continues the theme of making it simpler to create and initialize
objects, but in a different way.

3.3 Object and collection initializers
Object initializers and collection initializers make it easy to create new objects or collec-
tions with initial values, just as you can create and populate an array in a single expres-
sion. This functionality is important for LINQ because of the way queries are
translated, but it turns out to be extremely useful elsewhere, too. It does require types
to be mutable, which can be annoying if you’re trying to write code in a functional
style, but where you can apply it, it’s great. Let’s look at a simple example before div-
ing into the details.

3.3.1 Introduction to object and collection initializers

As a massively oversimplified example, let’s consider what an order in an e-commerce
system might look like. The following listing shows three classes to model an order, a
customer, and a single item within an order.

public class Order
{
 private readonly List<OrderItem> items = new List<OrderItem>();

 public string OrderId { get; set; }
 public Customer Customer { get; set; }
 public List<OrderItem> Items { get { return items; } }
}

public class Customer
{
 public string Name { get; set; }
 public string Address { get; set; }
}

public class OrderItem

new[] { 10, new DateTime() } Error Candidate types of int and DateTime but no
conversion from either to the other.

new[] { 10, null } Error Only candidate type is int, but there’s no
conversion from null to int.

Listing 3.1 Modeling an order in an e-commerce system

Table 3.1 Examples of type inference for implicitly typed arrays (continued)

Expression Result Notes
Licensed to André Santos <andrerfcsantos@gmail.com>

82 CHAPTER 3 C# 3: LINQ and everything that comes with it
{
 public string ItemId { get; set; }
 public int Quantity { get; set; }
}

How do you create an order? Well, you need to create an instance of Order and assign
to its OrderId and Customer properties. You can’t assign to the Items property,
because it’s read-only. Instead, you can add items to the list it returns. The following
listing shows how you might do this if you didn’t have object and collection initializers
and couldn’t change the classes to make things simpler.

var customer = new Customer();
customer.Name = "Jon";
customer.Address = "UK";

var item1 = new OrderItem();
item1.ItemId = "abcd123";
item1.Quantity = 1;

var item2 = new OrderItem();
item2.ItemId = "fghi456";
item2.Quantity = 2;

var order = new Order();
order.OrderId = "xyz";
order.Customer = customer;
order.Items.Add(item1);
order.Items.Add(item2);

This code could be simplified by adding constructors to the various classes to initialize
properties based on the parameters. Even with object and collection initializers avail-
able, that’s what I’d do. But for the sake of brevity, I’m going to ask you to trust me
that it’s not always feasible, for all kinds of reasons. Aside from anything else, you
don’t always control the code for the classes you’re using. Object and collection ini-
tializers make it much simpler to create and populate our order, as shown in the
following listing.

var order = new Order
{
 OrderId = "xyz",
 Customer = new Customer { Name = "Jon", Address = "UK" },
 Items =
 {
 new OrderItem { ItemId = "abcd123", Quantity = 1 },
 new OrderItem { ItemId = "fghi456", Quantity = 2 }
 }
};

Listing 3.2 Creating and populating an order without object and collection initializers

Listing 3.3 Creating and populating an order with object and collection initializers

Creates the Customer

Creates the first OrderItem

Creates the second OrderItem

Creates the order
Licensed to André Santos <andrerfcsantos@gmail.com>

83Object and collection initializers
I can’t speak for everyone, but I find listing 3.3 much more readable than listing 3.2.
The structure of the object becomes apparent in the indentation, and less repetition
occurs. Let’s look more closely at each part of the code.

3.3.2 Object initializers

Syntactically, an object initializer is a sequence of member initializers within braces. Each
member initializer is of the form property = initializer-value, where prop-
erty is the name of the field or property being initialized and initializer-value
is an expression, a collection initializer, or another object initializer.

NOTE Object initializers are most commonly used with properties, and that’s
how I’ve described them in this chapter. Fields don’t have accessors, but the
obvious equivalents apply: reading the field instead of calling a get accessor
and writing the field instead of calling a set accessor.

Object initializers can be used only as part of a constructor call or another object ini-
tializer. The constructor call can specify arguments as usual, but if you don’t want to
specify any arguments, you don’t need an argument list at all, so you can omit the ().
A constructor call without an argument list is equivalent to supplying an empty argu-
ment list. For example, these two lines are equivalent:

Order order = new Order() { OrderId = "xyz" };
Order order = new Order { OrderId = "xyz" };

You can omit the constructor argument list only if you provide an object or collection
initializer. This is invalid:

Order order = new Order;

An object initializer simply says how to initialize each of the properties it mentions in
its member initializers. If the initializer-value part (the part to the right of the =
sign) is a normal expression, that expression is evaluated, and the value is passed to
the property set accessor. That’s how most of the object initializers in listing 3.3 work.
The Items property uses a collection initializer, which you’ll see shortly.

 If initializer-value is another object initializer, the set accessor is never
called. Instead, the get accessor is called, and then the nested object initializer is
applied to the value returned by the property. As an example, listing 3.4 creates an
HttpClient and modifies the set of default headers that are sent with each request.
The code sets the From and Date headers, which I chose only because they’re the
simplest ones to set.

HttpClient client = new HttpClient
{
 DefaultRequestHeaders =
 {

Listing 3.4 Modifying default headers on a new HttpClient with a nested object initializer

Invalid

Property get accessor called
for DefaultRequestHeaders
Licensed to André Santos <andrerfcsantos@gmail.com>

84 CHAPTER 3 C# 3: LINQ and everything that comes with it
 From = "user@example.com",
 Date = DateTimeOffset.UtcNow
 }
};

The code in listing 3.4 is equivalent to the following code:

HttpClient client = new HttpClient();
var headers = client.DefaultRequestHeaders;
headers.From = "user@example.com";
headers.Date = DateTimeOffset.UtcNow;

A single object initializer can include a mixture of nested object initializers, collection
initializers, and normal expressions in the sequence of member initializers. Speaking
of collection initializers, let’s look at those now.

3.3.3 Collection initializers

Syntactically, a collection initializer is a comma-separated list of element initializers in
curly braces. Each element initializer is either a single expression or a comma-
separated list of expressions also in curly braces. Collection initializers can be used
only as part of a constructor call or part of an object initializer. Further restrictions
exist on the types they can be used with, which we’ll come to shortly. In listing 3.3, you
saw a collection initializer being used as part of an object initializer. Here’s the listing
again with the collection initializer highlighted in bold:

var order = new Order
{
 OrderId = "xyz",
 Customer = new Customer { Name = "Jon", Address = "UK" },
 Items =
 {
 new OrderItem { ItemId = "abcd123", Quantity = 1 },
 new OrderItem { ItemId = "fghi456", Quantity = 2 }
 }
};

Collection initializers might be more commonly used when creating new collections,
though. For example, this line declares a new variable for a list of strings and popu-
lates the list:

var beatles = new List<string> { "John", "Paul", "Ringo", "George" };

The compiler compiles that into a constructor call followed by a sequence of calls to
an Add method:

var beatles = new List<string>();
beatles.Add("John");
beatles.Add("Paul");
beatles.Add("Ringo");
beatles.Add("George");

Property set accessor
called for From

Property set accessor
called for Date
Licensed to André Santos <andrerfcsantos@gmail.com>

85Object and collection initializers
But what if the collection type you’re using doesn’t have an Add method with a single
parameter? That’s where element initializers with braces come in. After List<T>, the
second most common generic collection is probably Dictionary<TKey, TValue>
with an Add(key, value) method. A dictionary can be populated with a collection
initializer like this:

var releaseYears = new Dictionary<string, int>
{
 { "Please please me", 1963 },
 { "Revolver", 1966 },
 { "Sgt. Pepper’s Lonely Hearts Club Band", 1967 },
 { "Abbey Road", 1970 }
};

The compiler treats each element initializer as a separate Add call. If the element ini-
tializer is a simple one without braces, the value is passed as a single argument to Add.
That’s what happened for the elements in our List<string> collection initializer.

 If the element initializer uses braces, it’s still treated as a single call to Add, but with
one argument for each expression within the braces. The preceding dictionary exam-
ple is effectively equivalent to this:

var releaseYears = new Dictionary<string, int>();
releaseYears.Add("Please please me", 1963);
releaseYears.Add("Revolver", 1966);
releaseYears.Add("Sgt. Pepper’s Lonely Hearts Club Band", 1967);
releaseYears.Add("Abbey Road", 1970);

Overload resolution then proceeds as normal to find the most appropriate Add
method, including performing type inference if there are any generic Add methods.

 Collection initializers are valid only for types that implement IEnumerable,
although they don’t have to implement IEnumerable<T>. The language designers
looked at the types in the framework that had Add methods and determined that the
best way of separating them into collections and noncollections was to look at whether
they implemented IEnumerable. As an example of why that’s important, consider
the DateTime.Add(TimeSpan) method. The DateTime type clearly isn’t a collec-
tion, so it’d be odd to be able to write this:

DateTime invalid = new DateTime(2020, 1, 1) { TimeSpan.FromDays(10) };

The compiler never uses the implementation of IEnumerable when compiling a col-
lection initializer. I’ve sometimes found it convenient to create types in test projects
with Add methods and an implementation of IEnumerable that just throws a Not-
ImplementedException. This can be useful for constructing test data, but I don’t
advise doing it in production code. I’d appreciate an attribute that let me express the
idea that this type should be usable for collection initializers without implementing
IEnumerable, but I doubt that’ll ever happen.

Invalid
Licensed to André Santos <andrerfcsantos@gmail.com>

86 CHAPTER 3 C# 3: LINQ and everything that comes with it
3.3.4 The benefits of single expressions for initialization

You may be wondering what all of this has to do with LINQ. I said that almost all the
features in C# 3 built up to LINQ, so how do object and collection initializers fit into
the picture? The answer is that other LINQ features require code to be expressible as
a single expression. (For example, in a query expression, you can’t write a select
clause that requires multiple statements to produce the output for a given input.)

 The ability to initialize new objects in a single expression isn’t useful only for LINQ,
however. It can also be important to simplify field initializers, method arguments, or
even the operands in a conditional ?: operator. I find it particularly useful for static field
initializers to build up useful lookup tables, for example. Of course, the larger the ini-
tialization expression becomes, the more you may want to consider separating it out.

 It’s even recursively important to the feature itself. For example, if we couldn’t use
an object initializer to create our OrderItem objects, the collection initializer
wouldn’t be nearly as convenient to populate the Order.Items property.

 In the rest of this book, whenever I refer to a new or improved feature as having a
special case for a single expression (such as lambda expressions in section 3.5 or
expression-bodied members in section 8.3), it’s worth remembering that object and col-
lection initializers immediately make that feature more useful than it’d be otherwise.

 Object and collection initializers allow for more concise code to create an instance
of a type and populate it, but they do require that you already have an appropriate type
to construct. Our next feature, anonymous types, allows you to create objects without
even declaring the type of the object beforehand. It’s not quite as strange as it sounds.

3.4 Anonymous types
Anonymous types allow you to build objects that you can refer to in a statically typed
way without having to declare a type beforehand. This sounds like types might be cre-
ated dynamically at execution time, but the reality is a little more subtle than that.
We’ll look at what anonymous types look like in source code, how the compiler han-
dles them, and a few of their limitations.

3.4.1 Syntax and basic behavior

The simplest way to explain anonymous types is to start with an example. The following
listing shows a simple piece of code to create an object with Name and Score properties.

var player = new
{
 Name = "Rajesh",
 Score = 3500
};

Console.WriteLine("Player name: {0}", player.Name);
Console.WriteLine("Player score: {0}", player.Score);

Listing 3.5 Anonymous type with Name and Score properties

Creates an object of an
anonymous type with Name
and Score properties

Displays the
property values
Licensed to André Santos <andrerfcsantos@gmail.com>

87Anonymous types
This brief example demonstrates important points about anonymous types:

 The syntax is a little like object initializers but without specifying a type name;
it’s just new, open brace, properties, close brace. This is called an anonymous
object creation expression. The property values can be nested anonymous object
creation expressions.

 You’re using var for the declaration of the player variable, because the type
has no name for you to use instead of var. (The declaration would work if you
used object instead, but it wouldn’t be nearly as useful.)

 This code is still statically typed. Visual Studio can autocomplete the Name and
Score properties of the player variable. If you ignore that and try to access a
property that doesn’t exist (if you try to use player.Points, for example), the
compiler will raise an error. The property types are inferred from the values
assigned to them; player.Name is a string property, and player.Score is
an int property.

That’s what anonymous types look like, but what are they used for? This is where LINQ
comes in. When performing a query, whether that’s using an SQL database as the under-
lying data store or using a collection of objects, it’s common to want a specific shape of
data that isn’t the original type and may not have much meaning outside the query.

 For example, suppose you’re building a query using a set of people, each of which
has expressed a favorite color. You might want the result to be a histogram: each entry
in the resulting collection is the color and the number of people who chose that as
their favorite. That type representing a favorite color and type isn’t likely to be useful
anywhere else, but it is useful in this specific context. Anonymous types allow us to
express those one-off cases concisely without losing the benefits of static typing.

C# provides one extra piece of shorthand in anonymous object creation expressions
where you’re effectively copying a property or field from somewhere else and you’re
happy to use the same name. This syntax is called a projection initializer. To give an exam-
ple, let’s go back to our simplified e-commerce data model. You have three classes:

 Order—OrderId, Customer, Items
 Customer—Name, Address
 OrderItem—ItemId, Quantity

Comparison with Java anonymous classes
If you’re familiar with Java, you may be wondering about the relationship between
C#’s anonymous types and Java’s anonymous classes. They sound like they’d be
similar, but they differ greatly both in syntax and purpose.

Historically, the principal use for anonymous classes in Java was to implement inter-
faces or extend abstract classes to override just one or two methods. C#’s anonymous
types don’t allow you to implement an interface or derive from any class other than
System.Object; their purpose is much more about data than executable code.
Licensed to André Santos <andrerfcsantos@gmail.com>

88 CHAPTER 3 C# 3: LINQ and everything that comes with it
At some point in your code, you may want an object with all this information for a spe-
cific order item. If you have variables of the relevant types called order, customer, and
item, you can easily use an anonymous type to represent the flattened information:

var flattenedItem = new
{
 order.OrderId,
 CustomerName = customer.Name,
 customer.Address,
 item.ItemId,
 item.Quantity
};

In this example, every property except CustomerName uses a projection initializer.
The result is identical to this code, which specifies the property names in the anony-
mous type explicitly:

var flattenedItem = new
{
 OrderId = order.OrderId,
 CustomerName = customer.Name,
 Address = customer.Address,
 ItemId = item.ItemId,
 Quantity = item.Quantity
};

Projection initializers are most useful when you’re either performing a query and
want to select only a subset of properties or to combine properties from multiple
objects into one. If the name you want to give the property in the anonymous type is
the same as the name of the field or property you’re copying from, the compiler can
infer that name for you. So instead of writing this

SomeProperty = variable.SomeProperty

you can just write this:

variable.SomeProperty

Projection initializers can significantly reduce the amount of duplication in your
source code if you’re copying multiple properties. It can easily make the difference
between an expression being short enough to keep on one line or long enough to
merit a separate line per property.

Refactoring and projection initializers
Although it’s accurate to say that the results of the two preceding listings are the
same, that doesn’t mean they behave identically in other ways. Consider a rename
of the Address property to CustomerAddress.
Licensed to André Santos <andrerfcsantos@gmail.com>

89Anonymous types
I’ve described the syntax of anonymous types, and you know the resulting objects have
properties you can use as if they were normal types. But what’s going on behind the
scenes?

3.4.2 The compiler-generated type

Although the type never appears in source code, the compiler does generate a type.
There’s no magic for the runtime to contend with; it just sees a type that happens to
have a name that would be invalid in C#. That type has a few interesting aspects to it.
Some are guaranteed by the specification; others aren’t. When using the Microsoft C#
compiler, an anonymous type has the following characteristics:

 It’s a class (guaranteed).
 Its base class is object (guaranteed).
 It’s sealed (not guaranteed, although it would be hard to see how it would be

useful to make it unsealed).
 The properties are all read-only (guaranteed).
 The constructor parameters have the same names as the properties (not guar-

anteed; can be useful for reflection occasionally).
 It’s internal to the assembly (not guaranteed; can be irritating when working

with dynamic typing).
 It overrides GetHashCode() and Equals() so that two instances are equal

only if all their properties are equal. (It handles properties being null.) The fact
that these methods are overridden is guaranteed, but the precise way of com-
puting the hash code isn’t.

 It overrides ToString() in a helpful way and lists the property names and their
values. This isn’t guaranteed, but it is super helpful when diagnosing issues.

 The type is generic with one type parameter for each property. Multiple anony-
mous types with the same property names but different property types will use
different type arguments for the same generic type. This isn’t guaranteed and
could easily vary by compiler.

 If two anonymous object creation expressions use the same property names in
the same order with the same property types in the same assembly, the result is
guaranteed to be two objects of the same type.

The last point is important for variable reassignment and for implicitly typed arrays
using anonymous types. In my experience, it’s relatively rare that you want to reassign

In the version with projection initializers, the property name in the anonymous type
would change too. In the version with the explicit property name, it wouldn’t. That’s
rarely an issue in my experience, but it’s worth being aware of as a difference.
Licensed to André Santos <andrerfcsantos@gmail.com>

90 CHAPTER 3 C# 3: LINQ and everything that comes with it
a variable initialized with an anonymous type, but it’s nice that it’s feasible. For exam-
ple, this is entirely valid:

var player = new { Name = "Pam", Score = 4000 };
player = new { Name = "James", Score = 5000 };

Likewise, it’s fine to create an array by using anonymous types using the implicitly
typed array syntax described in section 3.2.3:

var players = new[]
{
 new { Name = "Priti", Score = 6000 },
 new { Name = "Chris", Score = 7000 },
 new { Name = "Amanda", Score = 8000 },
};

Note that the properties must have the same names and types and be in the same
order for two anonymous object creation expressions to use the same type. For exam-
ple, this would be invalid because the order of properties in the second array element
is different from the others:

var players = new[]
{
 new { Name = "Priti", Score = 6000 },
 new { Score = 7000, Name = "Chris" },
 new { Name = "Amanda", Score = 8000 },
};

Although each array element is valid individually, the type of the second element stops
the compiler from inferring the array type. The same would be true if you added an
extra property or changed the type of one of the properties.

 Although anonymous types are useful within LINQ, that doesn’t make this feature
the right tool for every problem. Let’s look briefly at places you may not want to use
them.

3.4.3 Limitations

Anonymous types are great when you want a localized representation of just data. By
localized, I mean that the data shape you’re interested in is relevant only within that
specific method. As soon as you want to represent the same shape in multiple places,
you need to look for a different solution. Although it’s possible to return instances of
anonymous types from methods or accept them as parameters, you can do so only by
using either generics or the object type. The fact that the types are anonymous pre-
vents you from expressing them in method signatures.

 Until C# 7, if you wanted to use a common data structure in more than one
method, you’d normally declare your own class or struct for it. C# 7 has introduced
tuples, as you’ll see in chapter 11, which can work as an alternative solution, depend-
ing on how much encapsulation you desire.
Licensed to André Santos <andrerfcsantos@gmail.com>

91Lambda expressions
 Speaking of encapsulation, anonymous types basically don’t provide any. You can’t
place any validation in the type or add extra behavior to it. If you find yourself wanting
to do so, that’s a good indication that you should probably be creating your own type
instead.

 Finally, I mentioned earlier that using anonymous types across assemblies via C# 4’s
dynamic typing is made more difficult because the types are internal. I’ve usually seen
this attempted in MVC web applications where the model for a page may be built using
anonymous types and then accessed in the view using the dynamic type (which you’ll
look at in chapter 4). This works if either the two pieces of code are in the same assem-
bly or the assembly containing the model code has made its internal members visible
to the assembly containing the view code using [InternalsVisibleTo]. Depending
on the framework you’re using, it may be awkward to arrange for either of these to be
true. Given the benefits of static typing anyway, I generally recommend declaring the
model as a regular type instead. It’s more up-front work than using an anonymous type
but is likely to save you time in the long term.

NOTE Visual Basic has anonymous types too, but they don’t behave in quite
the same way. In C#, all properties are used in determining equality and hash
codes, and they’re all read-only. In VB, only properties declared with the Key
modifier behave like that. Nonkey properties are read/write and don’t affect
equality or hash codes.

We’re about halfway through the C# 3 features, and so far they’ve all had to do with
data. The next features focus more on executable code, first with lambda expressions
and then extension methods.

3.5 Lambda expressions
In chapter 2, you saw how anonymous methods made it much easier to create dele-
gate instances by including their code inline like this:

Action<string> action = delegate(string message)
{
 Console.WriteLine("In delegate: {0}", message);
};
action("Message");

Lambda expressions were introduced in C# 3 to make this even more concise. The term
anonymous function is used to refer to both anonymous methods and lambda expres-
sions. I’ll use it at various points in the rest of this book, and it’s widely used in the C#
specification.

NOTE The name lambda expressions comes from lambda calculus, a field of
mathematics and computer science started by Alonzo Church in the 1930s.
Church used the Greek lambda character () in his notation for functions,
and the name stuck.

Creates delegate using an
anonymous method

Invokes the
delegate
Licensed to André Santos <andrerfcsantos@gmail.com>

92 CHAPTER 3 C# 3: LINQ and everything that comes with it
There are various reasons that it was useful for the language designers to put so much
effort into streamlining delegate instance creation, but LINQ is the most important
one. When you look at query expressions in section 3.7, you’ll see that they’re effec-
tively translated into code that uses lambda expressions. You can use LINQ without
using query expressions, though, and that almost always involves using lambda expres-
sions directly in your source code.

 First, we’ll look at the syntax for lambda expressions and then some of the details
of how they behave. Finally, we’ll talk about expression trees that represent code as data.

3.5.1 Lambda expression syntax

The basic syntax for lambda expressions is always of this form:

parameter-list => body

Both the parameter list and the body, however, have multiple representations. In its
most explicit form, the parameter list for a lambda expression looks like a normal
method or anonymous method parameter list. Likewise, the body of a lambda expres-
sion can be a block: a sequence of statements all within a pair of curly braces. In this
form, the lambda expression looks similar to an anonymous method:

Action<string> action = (string message) =>
{
 Console.WriteLine("In delegate: {0}", message);
};
action("Message");

So far, this doesn’t look much better; you’ve traded the delegate keyword for =>, but
that’s all. But special cases allow the lambda expression to become shorter.

 Let’s start by making the body more concise. A body that consists of just a return
statement or a single expression can be reduced to that single expression. The return
keyword is removed if there was one. In the preceding example, the body of our
lambda expression was just a method invocation, so you can simplify it:

Action<string> action =
 (string message) => Console.WriteLine("In delegate: {0}", message);

You’ll look at an example returning a value shortly. Lambda expressions shortened
like this are said to have expression bodies, whereas lambda expressions using braces are
said to have statement bodies.

 Next, you can make the parameter list shorter if the compiler can infer the param-
eter types based on the type you’re attempting to convert the lambda expression to.
Lambda expressions don’t have a type but are convertible to compatible delegate
types, and the compiler can often infer the parameter type as part of that conversion.

 For example, in the preceding code, the compiler knows that an
Action<string> has a single parameter of type string, so it’s capable of inferring
Licensed to André Santos <andrerfcsantos@gmail.com>

93Lambda expressions
that parameter type. When the compiler can infer the parameter type, you can omit it.
Therefore, our example can be shortened:

Action<string> action =
 (message) => Console.WriteLine("In delegate: {0}", message);

Finally, if the lambda expression has exactly one parameter, and that parameter’s type
is inferred, the parentheses can be dropped from the parameter list:

Action<string> action =
 message => Console.WriteLine("In delegate: {0}", message);

Now let’s look at a couple of examples that return values. In each case, you’ll apply
every step you can to make it shorter. First, you’ll construct a delegate to multiply two
integers together and return the result:

Func<int, int, int> multiply =
 (int x, int y) => { return x * y; };

Func<int, int, int> multiply = (int x, int y) => x * y;

Func<int, int, int> multiply = (x, y) => x * y;

(Two parameters, so you can’t remove parentheses)

Next, you’ll use a delegate to take the length of a string, multiply that length by itself,
and return the result:

Func<string, int> squareLength = (string text) =>
{
 int length = text.Length;
 return length * length;
};

Func<string, int> squareLength = (text) =>
{
 int length = text.Length;
 return length * length;
};

Func<string, int> squareLength = text =>
{
 int length = text.Length;
 return length * length;
};

(Can’t do anything else immediately; body has two statements)

If you were happy to evaluate the Length property twice, you could reduce this sec-
ond example:

Func<string, int> squareLength = text => text.Length * text.Length;

That’s not the same kind of change as the others, though; that’s changing the behavior
(however slightly) rather than just the syntax. It may seem odd to have all of these

Longest form
Uses an
expression body

Infers parameter types

Longest
form

Infers
parameter type

Removes parentheses
for single parameter
Licensed to André Santos <andrerfcsantos@gmail.com>

94 CHAPTER 3 C# 3: LINQ and everything that comes with it
special cases, but in practice all of them apply in a large number of cases, particularly
within LINQ. Now that you understand the syntax, you can start looking at the behav-
ior of the delegate instance, particularly in terms of any variables it has captured.

3.5.2 Capturing variables

In section 2.3.2, when I described captured variables in anonymous methods, I prom-
ised that we’d return to the topic in the context of lambda expressions. This is proba-
bly the most confusing part of lambda expressions. It’s certainly been the cause of lots
of Stack Overflow questions.

 To create a delegate instance from a lambda expression, the compiler converts the
code in the lambda expression to a method somewhere. The delegate can then be cre-
ated at execution time exactly as if you had a method group. This section shows the
kind of transformation the compiler performs. I’ve written this as if the compiler
translates the source code into more source code that doesn’t contain lambda expres-
sions, but of course the compiler never needs that translated source code. It can just
emit the appropriate IL.

 Let’s start with a recap of what counts as a captured variable. Within a lambda
expression, you can use any variable that you’d be able to use in regular code at that
point. That could be a static field, an instance field (if you’re writing the lambda expres-
sion within an instance method1), the this variable, method parameters, or local vari-
ables. All of these are captured variables, because they’re variables declared outside the
immediate context of the lambda expression. Compare that with parameters to the
lambda expression or local variables declared within the lambda expression; those
aren’t captured variables. The following listing shows a lambda expression that captures
various variables. You’ll then look at how the compiler handles that code.

class CapturedVariablesDemo
{
 private string instanceField = "instance field";

 public Action<string> CreateAction(string methodParameter)
 {
 string methodLocal = "method local";
 string uncaptured = "uncaptured local";

 Action<string> action = lambdaParameter =>
 {
 string lambdaLocal = "lambda local";
 Console.WriteLine("Instance field: {0}", instanceField);
 Console.WriteLine("Method parameter: {0}", methodParameter);
 Console.WriteLine("Method local: {0}", methodLocal);

1 You can write lambda expressions in constructors, property accessors, and so on as well, but for the sake of
simplicity, I’ll assume you’re writing them in methods.

Listing 3.6 Capturing variables in a lambda expression
Licensed to André Santos <andrerfcsantos@gmail.com>

95Lambda expressions
 Console.WriteLine("Lambda parameter: {0}", lambdaParameter);
 Console.WriteLine("Lambda local: {0}", lambdaLocal);
 };
 methodLocal = "modified method local";
 return action;
 }
}

In other code
var demo = new CapturedVariablesDemo();
Action<string> action = demo.CreateAction("method argument");
action("lambda argument");

Lots of variables are involved here:

 instanceField is an instance field in the CapturedVariablesDemo class
and is captured by the lambda expression.

 methodParameter is a parameter in the CreateAction method and is cap-
tured by the lambda expression.

 methodLocal is a local variable in the CreateAction method and is captured
by the lambda expression.

 uncaptured is a local variable in the CreateAction method, but it’s never
used by the lambda expression, so it’s not captured by it.

 lambdaParameter is a parameter in the lambda expression itself, so it isn’t a
captured variable.

 lambdaLocal is a local variable in the lambda expression, so it isn’t a captured
variable.

It’s important to understand that the lambda expression captures the variables them-
selves, not the values of the variables at the point when the delegate is created.2 If you
modified any of the captured variables between the time at which the delegate is cre-
ated and when it’s invoked, the output would reflect those changes. Likewise, the
lambda expression can change the value of the captured variables. How does the com-
piler make all of that work? How does it make sure all those variables are still available
to the delegate when it’s invoked?

IMPLEMENTING CAPTURED VARIABLES WITH A GENERATED CLASS

There are three broad cases to consider:

 If no variables are captured at all, the compiler can create a static method. No
extra context is required.

 If the only variables captured are instance fields, the compiler can create an
instance method. Capturing one instance field is equivalent to capturing 100 of
them, because you need access only to this.

2 I will repeat this multiple times, for which I make no apology. If you’re new to captured variables, this can take
a while to get used to.
Licensed to André Santos <andrerfcsantos@gmail.com>

96 CHAPTER 3 C# 3: LINQ and everything that comes with it
 If local variables or parameters are captured, the compiler creates a private
nested class to contain that context and then an instance method in that class
containing the lambda expression code. The method containing the lambda
expression is changed to use that nested class for every access to the captured
variables.

The last case is obviously the most complex one, so we’ll focus on that. Let’s start with
listing 3.6. As a reminder, here’s the method that creates the lambda expression; I’ve
omitted the class declaration for brevity:

public Action<string> CreateAction(string methodParameter)
{
 string methodLocal = "method local";
 string uncaptured = "uncaptured local";

 Action<string> action = lambdaParameter =>
 {
 string lambdaLocal = "lambda local";
 Console.WriteLine("Instance field: {0}", instanceField);
 Console.WriteLine("Method parameter: {0}", methodParameter);
 Console.WriteLine("Method local: {0}", methodLocal);
 Console.WriteLine("Lambda parameter: {0}", lambdaParameter);
 Console.WriteLine("Lambda local: {0}", lambdaLocal);
 };
 methodLocal = "modified method local";
 return action;
}

As I described before, the compiler creates a private nested class for the extra context
it’ll need and then an instance method in that class for the code in the lambda expres-
sion. The context is stored in instance variables of the nested class. In our case, that
means the following:

 A reference to the original instance of CapturedVariablesDemo so that you
can access instanceField later

 A string variable for the captured method parameter
 A string variable for the captured local variable

The following listing shows the nested class and how it’s used by the CreateAction
method.

Implementation details may vary
You may see some variation in what I’ve described. For example, with a lambda
expression with no captured variables, the compiler may create a nested class with
a single instance instead of a static method. There can be subtle differences in the
efficiency of executing delegates based on exactly how they’re created. In this sec-
tion, I’ve described the minimum work that the compiler must do in order to make
captured variables available. It can introduce more complexity if it wants to.
Licensed to André Santos <andrerfcsantos@gmail.com>

97Lambda expressions

private class LambdaContext
{
 public CapturedVariablesDemoImpl originalThis;
 public string methodParameter;
 public string methodLocal;

 public void Method(string lambdaParameter)
 {
 string lambdaLocal = "lambda local";
 Console.WriteLine("Instance field: {0}",
 originalThis.instanceField);
 Console.WriteLine("Method parameter: {0}", methodParameter);
 Console.WriteLine("Method local: {0}", methodLocal);
 Console.WriteLine("Lambda parameter: {0}", lambdaParameter);
 Console.WriteLine("Lambda local: {0}", lambdaLocal);
 }
}

public Action<string> CreateAction(string methodParameter)
{
 LambdaContext context = new LambdaContext();
 context.originalThis = this;
 context.methodParameter = methodParameter;
 context.methodLocal = "method local";
 string uncaptured = "uncaptured local";

 Action<string> action = context.Method;
 context.methodLocal = "modified method local";
 return action;
}

Note how the context.methodLocal is modified near the end of the Create-
Action method. When the delegate is finally invoked, it’ll “see” that modification.
Likewise, if the delegate modified any of the captured variables, each invocation
would see the results of the previous invocations. This is just reinforcing that the com-
piler ensures that the variable is captured rather than a snapshot of its value.

 In listings 3.6 and 3.7, you had to create only a single context for the captured vari-
ables. In the terminology of the specification, each of the local variables was instanti-
ated only once. Let’s make things a little more complicated.

MULTIPLE INSTANTIATIONS OF LOCAL VARIABLES

To make things a little simpler, you’ll capture one local variable this time and no
parameters or instance fields. The following listing shows a method to create a list of
actions and then execute them one at a time. Each action captures a text variable.

static List<Action> CreateActions()
{
 List<Action> actions = new List<Action>();
 for (int i = 0; i < 5; i++)

Listing 3.7 Translation of a lambda expression with captured variables

Listing 3.8 Instantiating a local variable multiple times

Generated class to hold
the captured variables

Captured variables

Body of lambda expression
becomes an instance method.

Generated class is used
for all captured variables.
Licensed to André Santos <andrerfcsantos@gmail.com>

98 CHAPTER 3 C# 3: LINQ and everything that comes with it
 {
 string text = string.Format("message {0}", i);
 actions.Add(() => Console.WriteLine(text));
 }
 return actions;
}

In other code
List<Action> actions = CreateActions();
foreach (Action action in actions)
{
 action();
}

The fact that text is declared inside the loop is very important indeed. Each time you
reach that declaration, the variable is instantiated. Each lambda expression captures a
different instantiation of the variable. There are effectively five different text vari-
ables, each of which has been captured separately. They’re completely independent
variables. Although this code happens not to modify them after the initial assignment,
it certainly could do so either inside the lambda expression or elsewhere within the
loop. Modifying one variable would have no effect on the others.

 The compiler models this behavior by creating a different instance of the gener-
ated type for each instantiation. Therefore, the CreateAction method of listing 3.8
could be translated into the following listing.

private class LambdaContext
{
 public string text;

 public void Method()
 {
 Console.WriteLine(text);
 }
}

static List<Action> CreateActions()
{
 List<Action> actions = new List<Action>();
 for (int i = 0; i < 5; i++)
 {
 LambdaContext context = new LambdaContext();
 context.text = string.Format("message {0}", i);
 actions.Add(context.Method);
 }
 return actions;
}

Hopefully, that still makes sense. You’ve gone from having a single context for the
lambda expression to one for each iteration of the loop. I’m going to finish this

Listing 3.9 Creating multiple context instances, one for each instantiation

Declares a local
variable within
the loopCaptures the variable in

a lambda expression

Creates a new context
for each loop iteration

Uses the context to
create an action
Licensed to André Santos <andrerfcsantos@gmail.com>

99Lambda expressions
discussion of captured variables with an even more complicated example, which is a
mixture of the two.

CAPTURING VARIABLES FROM MULTIPLE SCOPES

It was the scope of the text variable that meant it was instantiated once for each itera-
tion of the loop. But multiple scopes can exist within a single method, and each scope
can contain local variable declarations, and a single lambda expression can capture
variables from multiple scopes. Listing 3.10 gives an example. You create two delegate
instances, each of which captures two variables. They both capture the same outer-
Counter variable, but each captures a separate innerCounter variable. The dele-
gates simply print out the current values of the counters and increment them. You
execute each delegate twice, which makes the difference between the captured vari-
ables clear.

static List<Action> CreateCountingActions()
{
 List<Action> actions = new List<Action>();
 int outerCounter = 0;
 for (int i = 0; i < 2; i++)
 {
 int innerCounter = 0;
 Action action = () =>
 {
 Console.WriteLine(
 "Outer: {0}; Inner: {1}",
 outerCounter, innerCounter);
 outerCounter++;
 innerCounter++;
 };
 actions.Add(action);
 }
 return actions;
}

In other code
List<Action> actions = CreateCountingActions();
actions[0]();
actions[0]();
actions[1]();
actions[1]();

The output of listing 3.10 is as follows:

Outer: 0; Inner: 0
Outer: 1; Inner: 1
Outer: 2; Inner: 0
Outer: 3; Inner: 1

Listing 3.10 Capturing variables from multiple scopes

One variable captured
by both delegates

New variable for
each loop iteration

Displays and
increments
counters

Calls each
delegate twice
Licensed to André Santos <andrerfcsantos@gmail.com>

100 CHAPTER 3 C# 3: LINQ and everything that comes with it
The first two lines are printed by the first delegate. The last two lines are printed by
the second delegate. As I described before the listing, the same outer counter is used
by both delegates, but they have independent inner counters.

 What does the compiler do with this? Each delegate needs its own context, but that
context needs to also refer to a shared context. The compiler creates two private
nested classes instead of one. The following listing shows an example of how the com-
piler could treat listing 3.10.

private class OuterContext
{
 public int outerCounter;
}

private class InnerContext
{
 public OuterContext outerContext;
 public int innerCounter;

 public void Method()
 {
 Console.WriteLine(
 "Outer: {0}; Inner: {1}",
 outerContext.outerCounter, innerCounter);
 outerContext.outerCounter++;
 innerCounter++;
 }
}

static List<Action> CreateCountingActions()
{
 List<Action> actions = new List<Action>();
 OuterContext outerContext = new OuterContext();
 outerContext.outerCounter = 0;
 for (int i = 0; i < 2; i++)
 {
 InnerContext innerContext = new InnerContext();
 innerContext.outerContext = outerContext;
 innerContext.innerCounter = 0;
 Action action = innerContext.Method;
 actions.Add(action);
 }
 return actions;
}

You’ll rarely need to look at the generated code like this, but it can make a difference
in terms of performance. If you use a lambda expression in a performance-critical
piece of code, you should be aware of how many objects will be created to support the
variables it captures.

Listing 3.11 Capturing variables from multiple scopes leads to multiple classes

Context for the
outer scope

Context for the inner scope
with reference to outer context

Method used to
create delegate

Creates a single
outer context

Creates an inner context
per loop iteration
Licensed to André Santos <andrerfcsantos@gmail.com>

101Lambda expressions
 I could give even more examples with multiple lambda expressions in the same
scope capturing different sets of variables or lambda expressions in methods of value
types. I find it fascinating to explore compiler-generated code, but you probably
wouldn’t want a whole book of it. If you ever find yourself wondering how the com-
piler treats a particular lambda expression, it’s easy enough to run a decompiler or
ildasm over the result.

 So far, you’ve looked only at converting lambda expressions to delegates, which
you could already do with anonymous methods. Lambda expressions have another
superpower, however: they can be converted to expression trees.

3.5.3 Expression trees

Expression trees are representations of code as data. This is the heart of how LINQ is
able to work efficiently with data providers such as SQL databases. The code you write
in C# can be analyzed at execution time and converted into SQL.

 Whereas delegates provide code you can run, expression trees provide code you
can inspect, a little like reflection. Although you can build up expression trees directly
in code, it’s more common to ask the compiler to do this for you by converting a
lambda expression into an expression tree. The following listing gives a trivial exam-
ple of this by creating an expression tree just to add two numbers together.

Expression<Func<int, int, int>> adder = (x, y) => x + y;
Console.WriteLine(adder);

Considering it’s only two lines of code, there is a lot going on. Let’s start with the out-
put. If you try to print out a regular delegate, the result will be just the type with no
indication of the behavior. The output of listing 3.12 shows exactly what the expres-
sion tree does, though:

(x, y) => x + y

The compiler isn’t cheating by hardcoding a string somewhere. That string represen-
tation is constructed from the expression tree. This demonstrates that the code is avail-
able for examination at execution time, which is the whole point of expression trees.

 Let’s look at the type of adder: Expression<Func<int, int, int>>. It’s sim-
plest to split it into two parts: Expression<TDelegate> and Func<int, int,
int>. The second part is used as a type argument to the first. The second part is a del-
egate type with two integer parameters and an integer return type. (The return type is
expressed by the last type parameter, so a Func<string, double, int> would
accept a string and a double as inputs and return an int.)

 Expression<TDelegate> is the expression tree type associated with TDelegate,
which must be a delegate type. (That’s not expressed as a type constraint, but it’s
enforced at execution time.) This is only one of the many types involved in expression

Listing 3.12 A simple expression tree to add two integers
Licensed to André Santos <andrerfcsantos@gmail.com>

102 CHAPTER 3 C# 3: LINQ and everything that comes with it
trees. They’re all in the System.Linq.Expressions namespace. The nongeneric
Expression class is the abstract base class for all the other expression types, and it’s
also used as a convenient container for factory methods to create instances of the con-
crete subclasses.

 Our adder variable type is an expression tree representation of a function accept-
ing two integers and returning an integer. You then use a lambda expression to assign
a value to that variable. The compiler generates code to build the appropriate expres-
sion tree at execution time. In this case, it’s reasonably simple. You can write the same
code yourself, as shown in the following listing.

ParameterExpression xParameter = Expression.Parameter(typeof(int), "x");
ParameterExpression yParameter = Expression.Parameter(typeof(int), "y");
Expression body = Expression.Add(xParameter, yParameter);
ParameterExpression[] parameters = new[] { xParameter, yParameter };

Expression<Func<int, int, int>> adder =
 Expression.Lambda<Func<int, int, int>>(body, parameters);
Console.WriteLine(adder);

This is a small example, and it’s still significantly more long-winded than the lambda
expression. By the time you add method calls, property accesses, object initializers,
and so on, it gets complex and error prone. That’s why it’s so important that the com-
piler can do the work for you by converting lambda expressions into expression trees.
There are a few rules around this, though.

LIMITATIONS OF CONVERSIONS TO EXPRESSION TREES

The most important restriction is that only expression-bodied lambda expressions can
be converted to expression trees. Although our earlier lambda expression of
(x, y) => x + y was fine, the following code would cause a compilation error:

Expression<Func<int, int, int>> adder = (x, y) => { return x + y; };

The expression tree API has expanded since .NET 3.5 to include blocks and other
constructs, but the C# compiler still has this restriction, and it’s consistent with the use
of expression trees for LINQ. This is one reason that object and collection initializers
are so important: they allow initialization to be captured in a single expression, which
means it can be used in an expression tree.

 Additionally, the lambda expression can’t use the assignment operator, or use C#
4’s dynamic typing, or use C# 5’s asynchrony. (Although object and collection initializ-
ers do use the = symbol, that’s not the assignment operator in that context.)

COMPILING EXPRESSION TREES TO DELEGATES

The ability to execute queries against remote data sources, as I referred to earlier, isn’t
the only use for expression trees. They can be a powerful way of constructing efficient
delegates dynamically at execution time, although this is typically an area where at

Listing 3.13 Handwritten code to create an expression tree to add two integers
Licensed to André Santos <andrerfcsantos@gmail.com>

103Extension methods
least part of the expression tree is built with handwritten code rather than converted
from a lambda expression.

 Expression<TDelegate> has a Compile() method that returns the delegate
type. You can then handle this delegate as you do any other. As a trivial example, the
following listing takes our earlier adder expression tree, compiles that to a delegate,
and then invokes it, producing an output of 5.

Expression<Func<int, int, int>> adder = (x, y) => x + y;
Func<int, int, int> executableAdder = adder.Compile();
Console.WriteLine(executableAdder(2, 3));

This approach can be used in conjunction with reflection for property access and
method invocation to produce delegates and then cache them. The result is as effi-
cient as if you’d written the equivalent code by hand. For a single method call or prop-
erty access, there are already methods to create delegates directly, but sometimes you
need additional conversion or manipulation steps, which are easily represented in
expression trees.

 We’ll come back to why expression trees are so important in LINQ when we tie
everything together. You have only two more language features to look at. Extension
methods come next.

3.6 Extension methods
Extension methods sound pointless when they’re first described. They’re static meth-
ods that can be called as if they’re instance methods, based on their first parameter.
Suppose you have a static method call like this:

ExampleClass.Method(x, y);

If you turn ExampleClass.Method into an extension method, you can call it like this
instead:

x.Method(y);

That’s all extension methods do. It’s one of the simplest transformations the C# com-
piler does. It makes all the difference in terms of code readability when it comes to
chaining method calls together, however. You’ll look at that later, finally using real
examples from LINQ, but first let’s look at the syntax.

3.6.1 Declaring an extension method

Extension methods are declared by adding the keyword this before the first parame-
ter. The method must be declared in a non-nested, nongeneric static class, and until
C# 7.2, the first parameter can’t be a ref parameter. (You’ll see more about that in

Listing 3.14 Compiling an expression tree to a delegate and invoking the result

Compiles the
expression tree
to a delegateInvokes the delegate

as normal
Licensed to André Santos <andrerfcsantos@gmail.com>

104 CHAPTER 3 C# 3: LINQ and everything that comes with it
section 13.5.) Although the class containing the method can’t be generic, the exten-
sion method itself can be.

 The type of the first parameter is sometimes called the target of the extension
method and sometimes called the extended type. (The specification doesn’t give this
concept a name, unfortunately.)

 As an example from Noda Time, we have an extension method to convert from
DateTimeOffset to Instant. There’s already a static method within the Instant
struct to do this, but it’s useful to have as an extension method, too. Listing 3.15 shows
the code for the method. For once, I’ve included the namespace declaration, as that’s
going to be important when you see how the C# compiler finds extension methods.

using System;

namespace NodaTime.Extensions
{
 public static class DateTimeOffsetExtensions
 {
 public static Instant ToInstant(this DateTimeOffset dateTimeOffset)
 {
 return Instant.FromDateTimeOffset(dateTimeOffset);
 }
 }
}

The compiler adds the [Extension] attribute to both the method and the class declar-
ing it, and that’s all. This attribute is in the System.Runtime.CompilerServices
namespace. It’s a marker indicating the intent that a developer should be able to call
ToInstant() as if it were declared as an instance method in DateTimeOffset.

3.6.2 Invoking an extension method

You’ve already seen the syntax to invoke an extension method: you call it as if it were
an instance method on the type of the first parameter. But you need to make sure that
the compiler can find the method as well.

 First, there’s a matter of priority: if there’s a regular instance method that’s valid
for the method invocation, the compiler will always prefer that over an extension
method. It doesn’t matter whether the extension method has “better” parameters; if
the compiler can use an instance method, it won’t even look for extension methods.

 After it has exhausted its search for instance methods, the compiler will look for
extension methods based on the namespace the calling code is in and any using
directives present. Suppose you’re making a call from the ExtensionMethod-
Invocation class in the CSharpInDepth.Chapter03 namespace.3 The following

Listing 3.15 ToInstant extension method targeting DateTimeOffset from
 Noda Time

3 If you’re following along with the downloaded code, you may have noticed that the samples are in namespaces
of Chapter01, Chapter02, and so on, for simplicity. I’ve made an exception here for the sake of showing the
hierarchical nature of the namespace checks.
Licensed to André Santos <andrerfcsantos@gmail.com>

105Extension methods
listing shows how to do that, giving the compiler all the information it needs to find
the extension method.

using NodaTime.Extensions;
using System;

namespace CSharpInDepth.Chapter03
{
 class ExtensionMethodInvocation
 {
 static void Main()
 {
 var currentInstant =
 DateTimeOffset.UtcNow.ToInstant();
 Console.WriteLine(currentInstant);
 }
 }
}

The compiler will check for extension methods in the following:

 Static classes in the CSharpInDepth.Chapter03 namespace.
 Static classes in the CSharpInDepth namespace.
 Static classes in the global namespace.
 Static classes in namespaces specified with using namespace directives. (Those

are the using directives that just specify a namespace, like using System.)
 In C# 6 only, static classes specified with using static directives. We’ll come back

to that in section 10.1.

The compiler effectively works its way outward from the deepest namespace out
toward the global namespace and looks at each step for static classes either in that
namespace or provided by classes made available by using directives in the namespace
declaration. The details of the ordering are almost never important. If you find your-
self in a situation where moving a using directive changes which extension method is
used, it’s probably best to rename one of them. But it’s important to understand that
within each step, multiple extension methods can be found that would be valid for the
call. In that situation, the compiler performs normal overload resolution between all
the extension methods it found in that step. After the compiler has located the right
method to invoke, the IL it generates for the call is exactly the same as if you’d written
a regular static method call instead of using its capabilities as an extension method.

Listing 3.16 Invoking the ToInstant() extension method outside Noda Time

Extension methods can be called on null values
Extension methods differ from instance methods in terms of their null handling. Let’s
look back at our initial example:

x.Method(y);

Imports the
NodaTime.Extensions
namespace

Calls the
extension
method
Licensed to André Santos <andrerfcsantos@gmail.com>

106 CHAPTER 3 C# 3: LINQ and everything that comes with it
Let’s get back to why extension methods are important to LINQ. It’s time for our first
query.

3.6.3 Chaining method calls

Listing 3.17 shows a simple query. It takes a sequence of words, filters them by length,
orders them in the natural way, and then converts them to uppercase. It uses lambda
expressions and extension methods but no other C# 3 features. We’ll put everything
else together at the end of the chapter. For the moment, I want to focus on the read-
ability of this simple code.

string[] words = { "keys", "coat", "laptop", "bottle" };
IEnumerable<string> query = words
 .Where(word => word.Length > 4)
 .OrderBy(word => word)
 .Select(word => word.ToUpper());

foreach (string word in query)
{
 Console.WriteLine(word);
}

Notice the ordering of the Where, OrderBy, and Select calls in our code. That’s the
order in which the operations happen. The lazy and streaming-where-possible nature
of LINQ makes it complicated to talk about exactly what happens when, but the query
reads in the same order as it executes. The following listing is the same query but with-
out taking advantage of the fact that these methods are extension methods.

string[] words = { "keys", "coat", "laptop", "bottle" };
IEnumerable<string> query =
 Enumerable.Select(
 Enumerable.OrderBy(
 Enumerable.Where(words, word => word.Length > 4),
 word => word),
 word => word.ToUpper());

(continued)
If Method were an instance method and x were a null reference, that would throw a
NullReferenceException. Instead, if Method is an extension method, it’ll be
called with x as the first argument even if x is null. Sometimes the method will spec-
ify that the first argument must not be null, in which case it should validate it and
throw an ArgumentNullException. In other cases, the extension method may
have been explicitly designed to handle a null first argument gracefully.

Listing 3.17 A simple query on strings

Listing 3.18 A simple query without using extension methods

A simple
data source

Filters, orders,
transforms

Displays the results
Licensed to André Santos <andrerfcsantos@gmail.com>

107Query expressions
I’ve formatted listing 3.18 as readably as I can, but it’s still awful. The calls are laid out
in the opposite order in the source code to how they’ll execute: Where is the first
thing to execute but the last method call in the listing. Next, it’s not obvious which
lambda expression goes with which call: word => word.ToUpper() is part of the
Select call, but a huge amount of code is between those two pieces of text.

 You can tackle this in another way by assigning the result of each method call to a
local variable and then making the method call via that. Listing 3.19 shows one option
for doing this. (In this case, you could’ve just declared the query to start with and reas-
signed it on each line, but that wouldn’t always be the case.) This time, I’ve also used
var, just for brevity.

string[] words = { "keys", "coat", "laptop", "bottle" };
var tmp1 = Enumerable.Where(words, word => word.Length > 4);
var tmp2 = Enumerable.OrderBy(tmp1, word => word);
var query = Enumerable.Select(tmp2, word => word.ToUpper());

This is better than listing 3.18; the operations are back in the right order, and it’s obvi-
ous which lambda expression is used for which operation. But the extra local variable
declarations are a distraction, and it’s easy to end up using the wrong one.

 The benefits of method chaining aren’t limited to LINQ, of course. Using the
result of one call as the starting point of another call is common. But extension meth-
ods allow you to do this in a readable way for any type, rather than the type itself
declaring the methods that support chaining. IEnumerable<T> doesn’t know any-
thing about LINQ; its sole responsibility is to represent a general sequence. It’s the
System.Linq.Enumerable class that adds all the operations for filtering, grouping,
joining, and so on.

 C# 3 could’ve stopped here. The features described so far would already have
added a lot of power to the language and enabled many LINQ queries to be written in
a perfectly readable form. But when queries get more complex, particularly when they
include joins and groupings, using the extension methods directly can get compli-
cated. Enter query expressions.

3.7 Query expressions
Although almost all features in C# 3 contribute to LINQ, only query expressions are spe-
cific to LINQ. Query expressions allow you to write concise code by using query-
specific clauses (select, where, let, group by, and so on). The query is then trans-
lated into a nonquery form by the compiler and compiled as normal.4 Let’s start with
a brief example to make this clearer. As a reminder, in listing 3.17 you had this query:

IEnumerable<string> query = words
 .Where(word => word.Length > 4)
 .OrderBy(word => word)
 .Select(word => word.ToUpper());

Listing 3.19 A simple query in multiple statements

4 This sounds like macros in C, but it’s a little more involved than that. C# still doesn’t have macros.
Licensed to André Santos <andrerfcsantos@gmail.com>

108 CHAPTER 3 C# 3: LINQ and everything that comes with it
The following listing shows the same query written as a query expression.

IEnumerable<string> query = from word in words
 where word.Length > 4
 orderby word
 select word.ToUpper();

The section of listing 3.20 in bold is the query expression, and it’s very concise indeed.
The repetitive use of word as a parameter to lambda expressions has been replaced by
specifying the name of a range variable once in the from clause, and then using it in
each of the other clauses. What happens to the query expression in listing 3.20?

3.7.1 Query expressions translate from C# to C#

In this book, I’ve expressed many language features in terms of more C# source code.
For example, when looking at captured variables in section 3.5.2, I showed C# code
that you could’ve written to achieve the same result as using a lambda expression.
That’s just for the purpose of explaining the code generated by the compiler. I
wouldn’t expect the compiler to generate any C#. The specification describes the
effects of capturing variables rather than a source code translation.

 Query expressions work differently. The specification describes them as a syntactic
translation that occurs before any overload resolution or binding. The code in listing
3.20 doesn’t just have the same eventual effect as listing 3.17; it’s really translated into
the code in listing 3.17 before further processing. The language has no specific expec-
tation about what the result of that further processing will be. In many cases, the result
of the translation will be calls to extension methods, but that’s not required by the lan-
guage specification. They could be instance method calls or invocations of delegates
returned by properties named Select, Where, and so on.

 The specification of query expressions puts in place an expectation of certain
methods being available, but there’s no specific requirement for them all to be pres-
ent. For example, if you write an API with suitable Select, OrderBy, and Where
methods, you could use the kind of query shown in listing 3.20 even though you
couldn’t use a query expression that includes a join clause.

 Although we’re not going to look at every clause available in query expressions in
detail, I need to draw your attention to two related concepts. In part, these provide
greater justification for the language designers introducing query expressions into the
language.

3.7.2 Range variables and transparent identifiers

Query expressions introduce range variables, which aren’t like any other regular vari-
ables. They act as the per item input within each clause of the query. You’ve already
seen how the from clause at the start of a query expression introduces a range

Listing 3.20 Introductory query expression with filtering, ordering, and projection
Licensed to André Santos <andrerfcsantos@gmail.com>

109Query expressions
variable. Here’s the query expression from listing 3.20 again with the range variable
highlighted:

from word in words
where word.Length > 4
orderby word
select word.ToUpper()

That’s simple to understand when there’s only one range variable, but that initial from
clause isn’t the only way a range variable can be introduced. The simplest example of
a clause that introduces a new range variable is probably let. Suppose you want to refer
to the length of the word multiple times in your query without having to call the
Length property every time. For example, you could orderby it and include it in the
output. The let clause allows you to write the query as shown in the following listing.

from word in words
let length = word.Length
where length > 4
orderby length
select string.Format("{0}: {1}", length, word.ToUpper());

You now have two range variables in scope at the same time, as you can see from the
use of both length and word in the select clause. That raises the question of how
this can be represented in the query translation. You need a way of taking our original
sequence of words and creating a sequence of word/length pairs, effectively. Then
within the clauses that can use those range variables, you need to access the relevant
item within the pair. The following listing shows how listing 3.21 is translated by the
compiler using an anonymous type to represent the pair of values.

words.Select(word => new { word, length = word.Length })
 .Where(tmp => tmp.length > 4)
 .OrderBy(tmp => tmp.length)
 .Select(tmp =>
 string.Format("{0}: {1}", tmp.length, tmp.word.ToUpper()));

The name tmp here isn’t part of the query translation. The specification uses * instead,
and there’s no indication of what name should be given to the parameter when build-
ing an expression tree representation of the query. The name doesn’t matter because
you don’t see it when you write the query. This is called a transparent identifier.

 I’m not going into all the details of query translation. That could be a whole chap-
ter on its own. But I wanted to bring up transparent identifiers for two reasons. First, if
you’re aware of how extra range variables are introduced, you won’t be surprised
when you see them if you ever decompile a query expression. Second, they provide
the biggest motivation for using query expressions, in my experience.

Listing 3.21 A let clause introducing a new range variable

Listing 3.22 Query translation using a transparent identifier

Introduces range variable
in a from clauseUses the range variable

in the following clauses
Licensed to André Santos <andrerfcsantos@gmail.com>

110 CHAPTER 3 C# 3: LINQ and everything that comes with it
3.7.3 Deciding when to use which syntax for LINQ

Query expressions can be appealing, but they’re not always the simplest way of repre-
senting a query. They always require a from clause to start with and either a select
or group by clause to end with. That sounds reasonable, but it means that if you want
a query that performs a single filtering operation, for example, you end up with quite
a lot of baggage. For example, if you take just the filtering part of our word-based
query, you’d have the following query expression:

from word in words
where word.Length > 4
select word

Compare that with the method syntax version of the query:

words.Where(word => word.Length > 4)

They both compile to the same code,5 but I’d use the second syntax for such a simple
query.

NOTE There’s no single ubiquitous term for not using query expression syn-
tax. I’ve seen it called method syntax, dot syntax, fluent syntax, and lambda syntax,
to name just four. I’ll call it method syntax consistently, but if you hear other
terms for it, don’t try to look for a subtle difference in meaning.

Even when the query gets a little more complicated, method syntax can be more flexi-
ble. Many methods are available within LINQ that have no corresponding query
expression syntax, including overloads of Select and Where that present the index
of the item within the sequence as well as the item itself. Additionally, if you want a
method call at the end of the query (for example, ToList() to materialize the result
as a List<T>), you have to put the whole query expression in parentheses, whereas
with method syntax you add the call on the end.

 I’m not as down on query expressions as that may sound. In many cases, there’s no
clear winner between the two syntax options, and I’d probably include our earlier fil-
ter, order, project example in that set. Query expressions really shine when the com-
piler is doing more work for you by handling all those transparent identifiers. You can
do it all by hand, of course, but I’ve found that building up anonymous types as results
and deconstructing them in each subsequent step gets annoying quickly. Query
expressions make all of that much easier.

 The upshot of all of this is that I strongly recommend that you become comfort-
able in both styles of query. If you tie yourself to always using query expressions or
never using query expressions, you’ll be missing out on opportunities to make your
code more readable. We’ve covered all the features in C# 3, but I’m going to take a
moment to step back and show how they fit together to form LINQ.

5 The compiler has special handling for select clauses that select just the current query item.
Licensed to André Santos <andrerfcsantos@gmail.com>

111Summary
3.8 The end result: LINQ
I’m not going to attempt to cover the various LINQ providers available these days.
The LINQ technology I use most (by far) is LINQ to Objects, using the Enumerable
static class and delegates. But in order to show how all the pieces come into play, let’s
imagine that you have a query from something like Entity Framework. This isn’t real
code that you can test, but it would be fine if you had a suitable database structure:

var products = from product in dbContext.Products
 where product.StockCount > 0
 orderby product.Price descending
 select new { product.Name, product.Price };

In this single example of a mere four lines, all of these features are used:

 Anonymous types, including projection initializers (to select just the name and
price of the product)

 Implicit typing using var, because otherwise you couldn’t declare the type of
the products variable in a useful way

 Query expressions, which you could do without in this case, but which make life
a lot simpler for more-complicated queries

 Lambda expressions, which are the result of the query expression translation
 Extension methods, which allow the translated query to be expressed via the

Queryable class because of dbContext.Products implementing IQuery-
able<Product>

 Expression trees, which allow the logic in the query to be passed to the LINQ
provider as data, so it can be converted into SQL and executed efficiently at the
database

Take away any one of these features, and LINQ would be significantly less useful. Sure,
you could have in-memory collection processing without expression trees. You could
write readable simple queries without query expressions. You could have dedicated
classes with all the relevant methods without using extension methods. But it all fits
together beautifully.

Summary
 All the features in C# 3 are related to working with data in some form or other,

and most are critical parts of LINQ.
 Automatically implemented properties provide a concise way of exposing state

that doesn’t need any extra behavior.
 Implicit typing with the var keyword (and for arrays) is necessary for working

with anonymous types but also convenient to avoid long-winded repetition.
 Object and collection initializers make initialization simpler and more read-

able. They also allow initialization to occur as a single expression, which is cru-
cial for working with other aspects of LINQ.
Licensed to André Santos <andrerfcsantos@gmail.com>

112 CHAPTER 3 C# 3: LINQ and everything that comes with it
 Anonymous types allow you to effectively create a type just for a single local pur-
pose in a lightweight way.

 Lambda expressions provide an even simpler way of constructing delegates
than anonymous methods. They also allow code to be expressed as data via
expression trees, which can be used by LINQ providers to convert C# queries
into other forms such as SQL.

 Extension methods are static methods that can be called as if they were instance
methods elsewhere. This allows for fluent interfaces to be written even for types
that weren’t originally designed that way.

 Query expressions are translated into more C# that uses lambda expressions to
express the query. Although these are great for complex queries, simpler ones
are often easier to write using method syntax.
Licensed to André Santos <andrerfcsantos@gmail.com>

C# 4: Improving
interoperability
C# 4 was an interesting release. The most dramatic change was the introduction of
dynamic typing with the dynamic type. This feature makes C# statically typed (for
most code) and dynamically typed (when using dynamic) in the same language.
That’s rare within programming languages.

 Dynamic typing was introduced for interoperability, but that’s turned out not to
be relevant in many developers’ day-to-day work. The major features in other

This chapter covers
 Using dynamic typing for interoperability and

simpler reflection

 Providing default values for parameters so the
caller doesn’t need to specify them

 Specifying names for arguments to make calls
clearer

 Coding against COM libraries in a more
streamlined fashion

 Converting between generic types with generic
variance
113

Licensed to André Santos <andrerfcsantos@gmail.com>

114 CHAPTER 4 C# 4: Improving interoperability
releases (generics, LINQ, async/await) have become a natural part of most C# devel-
opers’ toolkits, but dynamic typing is still used relatively rarely. I’m sure it’s useful to
those who need it, and at the very least it’s an interesting feature.

 The other features in C# 4 also improve interoperability, particularly with COM.
Some improvements are specific to COM, such as named indexers, implicit ref argu-
ments, and embedded interop types. Optional parameters and named arguments are
useful with COM, but they can also be used in purely managed code. These two are
the features from C# 4 that I use on a daily basis.

 Finally, C# 4 exposes a feature of generics that was present in the CLR from v2 (the
first runtime version that included generics). Generic variance is simultaneously sim-
ple and complex. At first glance, it sounds obvious: a sequence of strings is obviously a
sequence of objects, for example. But then we discover that a list of strings isn’t a list
of objects, dashing the expectations of some developers. It’s a useful feature, but one
that’s prone to inducing headaches when you examine it closely. Most of the time, you
can take advantage of it without even being aware that you’re doing so. Hopefully, the
coverage in this chapter will mean that if you do need to look closer because your
code isn’t working as you expect, you’ll be in a good position to fix the problem with-
out getting confused. We’ll start off by looking at dynamic typing.

4.1 Dynamic typing
Some features come with a lot of new syntax, but after you’ve explained the syntax,
there’s not much left to say. Dynamic typing is the exact opposite: the syntax is
extremely simple, but I could go into almost endless detail about the impact and imple-
mentation. This section shows you the basics and then goes into some of the details
before closing with a few suggestions about how and when to use dynamic typing.

4.1.1 Introduction to dynamic typing

Let’s start with an example. The following listing shows two attempts to take a sub-
string from some text. At the moment, I’m not trying to explain why you’d want to use
dynamic typing, just what it does.

dynamic text = "hello world";
string world = text.Substring(6);
Console.WriteLine(world);

string broken = text.SUBSTR(6);
Console.WriteLine(broken);

A lot is going on here for such a small amount of code. The most important aspect is
that it compiles at all. If you changed the first line to declare text by using the
string type, the call to SUBSTR would fail at compile time. Instead, the compiler is
happy to compile it without even looking for a method called SUBSTR. It doesn’t look
for Substring either. Instead, both lookups are performed at execution time.

Listing 4.1 Taking a substring by using dynamic typing

Declares a variable
with the dynamic typeCalls the Substring

method; this works.

Tries to call SUBSTR; this
throws an exception.
Licensed to André Santos <andrerfcsantos@gmail.com>

115Dynamic typing
 At execution time, the second line will look for a method called Substring that
can be called with an argument of 6. That method is found and returns a string, which
you then assign to the world variable and print in a regular way. When the code looks
for a method called SUBSTR that can be called with an argument of 6, it doesn’t find
any such method, and the code fails with a RuntimeBinderException.

 As mentioned in chapter 3, this process of looking up the meaning of a name in a
certain context is called binding. Dynamic typing is all about changing when binding
happens from compile time to execution time. Instead of just generating IL that calls
a method with a precise signature determined at execution time, the compiler gener-
ates IL that performs the binding and then acts on the result. All of this is triggered by
using the dynamic type.

WHAT IS THE DYNAMIC TYPE?
Listing 4.1 declared the text variable as being of type dynamic:

dynamic text = "hello world";

What is the dynamic type? It’s different from other types you see in C#, because it
exists only as far as the C# language is concerned. There’s no System.Type associ-
ated with it, and the CLR doesn’t know about it at all. Anytime you use dynamic in
C#, the IL uses object decorated with [Dynamic] if necessary.

NOTE If the dynamic type is used in a method signature, the compiler needs
to make that information available for code compiling against it. There’s no
need to do this for local variables.

The basic rules of the dynamic type are simple:

1 There’s an implicit conversion from any nonpointer type to dynamic.
2 There’s an implicit conversion from an expression of type dynamic to any non-

pointer type.
3 Expressions that involve a value of type dynamic are usually bound at execu-

tion time.
4 Most expressions that involve a value of type dynamic have a compile-time type

of dynamic as well.

You’ll look at the exceptions to the last two points shortly. Using this list of rules, you
can look at listing 4.1 again with fresh eyes. Let’s consider the first two lines:

dynamic text = "hello world";
string world = text.Substring(6);

In the first line, you’re converting from string to dynamic, which is fine because of
rule 1. The second line demonstrates all three of the other rules:

 text.Substring(6) is bound at execution time (rule 3).
 The compile-time type of that expression is dynamic (rule 4).
 There’s an implicit conversion from that expression to string (rule 2).
Licensed to André Santos <andrerfcsantos@gmail.com>

116 CHAPTER 4 C# 4: Improving interoperability
The conversion from an expression of type dynamic to a nondynamic type is dynami-
cally bound, too. If you declared the world variable to be of type int, that would
compile but fail at execution time with a RuntimeBinderException. If you declared
it to be of type XNamespace, that would compile and then at execution time the
binder would use the user-defined implicit conversion from string to XNamespace.
With this in mind, let’s look at more examples of dynamic binding.

APPLYING DYNAMIC BINDING IN A VARIETY OF CONTEXTS

So far, you’ve seen dynamic binding based on the dynamic target of a method call and
then a conversion, but almost any aspect of execution can be dynamic. The following
listing demonstrates this in the context of the addition operator and performs three
kinds of addition based on the type of the dynamic value at execution time.

static void Add(dynamic d)
{
 Console.WriteLine(d + d);
}

Add("text");
Add(10);
Add(TimeSpan.FromMinutes(45));

The results of listing 4.2 are as follows:

texttext
20
01:30:00

Each kind of addition makes sense for the type involved, but in a statically typed con-
text, they’d look different. As one final example, the following listing shows how
method overloading behaves with dynamic method arguments.

static void SampleMethod(int value)
{
 Console.WriteLine("Method with int parameter");
}

static void SampleMethod(decimal value)
{
 Console.WriteLine("Method with decimal parameter");
}

static void SampleMethod(object value)
{
 Console.WriteLine("Method with object parameter");
}

Listing 4.2 Addition of dynamic values

Listing 4.3 Dynamic method overload resolution

Performs addition based on
the type at execution time

Calls the method
with different values
Licensed to André Santos <andrerfcsantos@gmail.com>

117Dynamic typing
static void CallMethod(dynamic d)
{
 SampleMethod(d);
}

CallMethod(10);
CallMethod(10.5m);
CallMethod(10L);
CallMethod("text");

The output of listing 4.3 is as follows:

Method with int parameter
Method with decimal parameter
Method with decimal parameter
Method with object parameter

The third and fourth lines of the output are particularly interesting. They show that
the overload resolution at execution time is still aware of conversions. In the third
line, a long value is converted to decimal rather than int, despite being an integer
in the range of int. In the fourth line, a string value is converted to object. The
aim is that, as far as possible, the binding at execution time should behave the same
way it would’ve at compile time, just using the types of the dynamic values as they’re
discovered at execution time.

The result of any dynamically bound method call has a compile-time type of dynamic.
When binding occurs, if the chosen method has a void return type and the result of
the method was used (for example, being assigned to a variable), then binding fails.
That’s the case for most dynamically bound operations: the compiler has little infor-
mation about what the dynamic operation will entail. That rule has a few exceptions.

WHAT CAN THE COMPILER CHECK IN DYNAMICALLY BOUND CONTEXTS?
If the context of a method call is known at compile time, the compiler is able to check
what methods exist with the specified name. If no methods could possibly match at
execution time, a compile-time error is still reported. This applies to the following:

 Instance methods and indexers where the target isn’t a dynamic value
 Static methods
 Constructors

Only dynamic values are considered dynamically
The compiler works hard to make sure the right information is available at execution
time. When binding involves multiple values, the compile-time type is used for any
values that are statically typed, but the execution-time type is used for any values of
type dynamic. Most of the time, this nuance is irrelevant, but I’ve provided an exam-
ple with comments in the downloadable source code.

Calls SampleMethod
dynamically

Indirectly calls SampleMethod
with different types
Licensed to André Santos <andrerfcsantos@gmail.com>

118 CHAPTER 4 C# 4: Improving interoperability
The following listing shows various examples of calls using dynamic values that fail at
compile time.

dynamic d = new object();
int invalid1 = "text".Substring(0, 1, 2, d);
bool invalid2 = string.Equals<int>("foo", d);
string invalid3 = new string(d, "broken");
char invalid4 = "text"[d, d];

Just because the compiler is able to tell that these particular examples are definitely
broken doesn’t mean it’ll always be able to do so. Dynamic binding is always a bit of a
leap into the unknown unless you’re very careful about the values involved.

 The examples I’ve given would still use dynamic binding if they compiled. There
are only a few cases where that’s not the case.

WHAT OPERATIONS INVOLVING DYNAMIC VALUES AREN’T DYNAMICALLY BOUND?
Almost everything you do with a dynamic value involves binding of some kind and
finding the right method call, property, conversion, operator, and so on. There are
just a few things that the compiler doesn’t need to generate any binding code for:

 Assignments to a variable of type object or dynamic. No conversion is
required, so the compiler can just copy the existing reference.

 Passing an argument to a method with a corresponding parameter of type
object or dynamic. That’s like assigning a variable, but the variable is the
parameter.

 Testing a value’s type with the is operator.
 Attempting to convert a value with the as operator.

Although the execution-time binding infrastructure is happy to find user-defined con-
versions if you convert a dynamic value to a specific type with a cast or just do so
implicitly, the is and as operators never use user-defined conversions, so no binding
is required. In a similar way, almost all operations with dynamic values have a result
that is also dynamic.

WHAT OPERATIONS INVOLVING DYNAMIC VALUES STILL HAVE A STATIC TYPE?
Again, the compiler wants to help as much as it can. If an expression can always be of
only one specific type, the compiler is happy to make that the compile-time type of the
expression. For example, if d is a variable of type dynamic, the following are true:

 The expression new SomeType(d) has a compile-time type of SomeType, even
though the constructor is bound dynamically at execution time.

Listing 4.4 Examples of compile-time failures involving dynamic values

No String.Substring method
with four parameters

No generic
String.Equals
method

No String constructors with
two parameters accepting a
string as a second argumentNo String indexer

with two parameters
Licensed to André Santos <andrerfcsantos@gmail.com>

119Dynamic typing
 The expression d is SomeType has a compile-time type of bool.
 The expression d as SomeType has a compile-time type of SomeType.

That’s all the detail you need for this introduction. In section 4.1.4, you’ll look at
unexpected twists, both at compile time and execution time. But now that you have
the flavor of dynamic typing, you can look at some of its power beyond performing
regular binding at execution time.

4.1.2 Dynamic behavior beyond reflection

One use for dynamic typing is to effectively ask the compiler and framework to per-
form reflection operations for you based on the members declared in types in the
usual way. Although that’s a perfectly reasonable use, dynamic typing is more extensi-
ble. Part of the reason for its introduction was to allow better interoperability with
dynamic languages that allow on-the-fly changes in binding. Many dynamic languages
allow interception of calls at execution time. This has usages such as transparent cach-
ing and logging or making it look like there are functions and fields that are never
declared by name in the source code.

IMAGINARY EXAMPLE OF DATABASE ACCESS

As an (unimplemented) example of the kind of thing you might want to do, imagine
you have a database containing a table of books, including their authors. Dynamic typ-
ing would make this sort of code possible:

dynamic database = new Database(connectionString);
var books = database.Books.SearchByAuthor("Holly Webb");
foreach (var book in books)
{
 Console.WriteLine(book.Title);
}

This would involve the following dynamic operations:

 The Database class would respond to a request for the Books property by que-
rying the database schema for a table called Books and returning some sort of
table object.

 That table object would respond to the SearchByAuthor method call by spot-
ting that it started with SearchBy and looking for a column called Author
within the schema. It would then generate SQL to query by that column using
the provided argument and return a list of row objects.

 Each row object would respond to the Title property by returning the value of
the Title column.

If you’re used to Entity Framework or a similar object-relational mapping (ORM), this
may not sound like anything new. You can write classes fairly easily that enable the same
kind of querying code or generate those classes from the schema. The difference here
is that it’s all dynamic: there’s no Book or BooksTable class. It all just happens at
Licensed to André Santos <andrerfcsantos@gmail.com>

120 CHAPTER 4 C# 4: Improving interoperability
execution time. In section 4.1.5, I’ll talk about whether that’s a good or a bad thing in
general, but I hope you can at least see how it could be useful in some situations.

 Before I introduce you to the types that allow all of this to happen, let’s look at two
examples that are implemented. First, you’ll look at a type in the framework, and then
at Json.NET.

EXPANDOOBJECT: A DYNAMIC BAG OF DATA AND METHODS
The .NET Framework provides a type called ExpandoObject in the namespace
System.Dynamic. It operates in two modes depending on whether you’re using it as
a dynamic value. The following listing gives a brief example to help you make sense of
the description that follows it.

dynamic expando = new ExpandoObject();
expando.SomeData = "Some data";
Action<string> action =
 input => Console.WriteLine("The input was '{0}'", input);
expando.FakeMethod = action;

Console.WriteLine(expando.SomeData);
expando.FakeMethod("hello");

IDictionary<string, object> dictionary = expando;
Console.WriteLine("Keys: {0}",
 string.Join(", ", dictionary.Keys));

dictionary["OtherData"] = "other";
Console.WriteLine(expando.OtherData);

When ExpandoObject is used in a statically typed context, it’s a dictionary of name/
value pairs, and it implements IDictionary<string, object> as you’d expect
from a normal dictionary. You can use it that way, looking up keys that are provided at
execution time and so on.

 More important, it also implements IDynamicMetaObjectProvider. This is the
entry point for dynamic behavior. You’ll look at the interface itself later, but
ExpandoObject implements it so you can access the dictionary keys by name within
code. When you invoke a method on an ExpandoObject in a dynamic context, it’ll
look up the method name as a key in the dictionary. If the value associated with that
key is a delegate with appropriate parameters, the delegate is executed, and the result
of the delegate is used as the result of the method call.

 Listing 4.5 stored only one data value and one delegate, but you can store many
with whatever names you want. It’s just a dictionary that can be accessed dynamically.

 You could implement much of the earlier database example by using Expando-
Object. You’d create one to represent the Books table and then represent each
book with a separate ExpandoObject, too. The table would have a key of SearchBy-
Author with a suitable delegate value to execute the query. Each book would have

Listing 4.5 Storing and retrieving items in an ExpandoObject

Assigns data
to a property

Assigns a delegate
to a property

Accesses the data and
delegate dynamically

Treats the ExpandoObject as a
dictionary to print the keys

Populates data with the static context
and fetches it from the dynamic value
Licensed to André Santos <andrerfcsantos@gmail.com>

121Dynamic typing
a key of Title storing the title and so on. In practice, though, you’d want to imple-
ment IDynamicMetaObjectProvider directly or use DynamicObject. Before div-
ing into those types, let’s take a look at another implementation: accessing JSON data
dynamically.

THE DYNAMIC VIEW OF JSON.NET
JSON is everywhere these days, and one of the most popular libraries for consuming
and creating JSON is Json.NET.1 It provides multiple ways of handling JSON, including
parsing straight to user-provided classes and parsing to an object model that’s closer to
LINQ to XML. The latter is called LINQ to JSON with types such as JObject, JArray,
and JProperty. It can be used like LINQ to XML, with access via strings, or it can be
used dynamically. The following listing shows both approaches for the same JSON.

string json = @"
 {
 'name': 'Jon Skeet',
 'address': {
 'town': 'Reading',
 'country': 'UK'
 }
 }".Replace('\'', '"');

JObject obj1 = JObject.Parse(json);

Console.WriteLine(obj1["address"]["town"]);

dynamic obj2 = obj1;
Console.WriteLine(obj2.address.town);

This JSON is simple but includes a nested object. The second half of the code shows
how that can be accessed by either using the indexers within LINQ to JSON or using
the dynamic view it provides.

 Which of these do you prefer? Arguments exist for and against each approach.
Both are prone to typos, whether within a string literal or the dynamic property
access. The statically typed view lends itself to extracting the property names into con-
stants for reuse, but the dynamically typed view is simpler to read when prototyping.
I’ll make some suggestions for when and where dynamic typing is appropriate in sec-
tion 4.1.5, but it’s worth reflecting on your initial reactions before you get there. Next
we’ll take a quick look at how to do all of this yourself.

IMPLEMENTING DYNAMIC BEHAVIOR IN YOUR OWN CODE

Dynamic behavior is complicated. Let’s get that out of the way to start with. Please don’t
expect to come away from this section ready to write a production-ready optimized
implementation of whatever amazing idea you have. This is only a starting point. That

1 Other JSON libraries are available, of course. I just happen to be most familiar with Json.NET.

Listing 4.6 Using JSON data dynamically

Hardcoded
sample JSON

Parses the JSON
to a JObject

Uses the statically
typed view

Uses the dynamically
typed view
Licensed to André Santos <andrerfcsantos@gmail.com>

122 CHAPTER 4 C# 4: Improving interoperability
said, it should be enough to let you explore and experiment so you can decide how
much effort you wish to invest in learning all the details.

 When I presented ExpandoObject, I mentioned that it implements the interface
IDynamicMetaObjectProvider. This is the interface signifying that an object imple-
ments its own dynamic behavior instead of just being happy to let the reflection-based
infrastructure work in the normal way. As an interface, it looks deceptively simple:

public interface IDynamicMetaObjectProvider
{
 DynamicMetaObject GetMetaObject(Expression parameter);
}

The complexity lies in DynamicMetaObject, which is the class that drives everything
else. Its official documentation gives a clue as to the level you need to think at when
working with it:

Represents the dynamic binding and a binding logic of an object participating in the
dynamic binding.

Even having used the class, I wouldn’t like to claim I fully understand that sentence, nor
could I write a better description. Typically, you’d create a class deriving from
DynamicMetaObject and override some of the virtual methods it provides. For exam-
ple, if you want to handle method invocations dynamically, you’d override this method:

public virtual DynamicMetaObject BindInvokeMember
 (InvokeMemberBinder binder, DynamicMetaObject[] args);

The binder parameter gives information such as the name of the method being
called and whether the caller expects binding to be performed case sensitively. The
args parameter provides the arguments provided by the caller in the form of more
DynamicMetaObject values. The result is yet another DynamicMetaObject repre-
senting how the method call should be handled. It doesn’t perform the call immedi-
ately but creates an expression tree representing what the call would do.

 All of this is extremely complicated but allows for complex situations to be han-
dled efficiently. Fortunately, you don’t have to implement IDynamicMetaObject-
Provider yourself, and I’m not going to try to do so. Instead, I’ll give an example
using a much friendlier type: DynamicObject.

 The DynamicObject class acts as a base class for types that want to implement
dynamic behavior as simply as possible. The result may not be as efficient as directly
implementing IDynamicMetaObjectProvider yourself, but it’s much easier to
understand.

 As a simple example, you’re going to create a class (SimpleDynamicExample)
with the following dynamic behavior:

 Invoking any method on it prints a message to the console, including the
method name and arguments.

 Fetching a property usually returns that property name with a prefix to show
you really called into the dynamic behavior.
Licensed to André Santos <andrerfcsantos@gmail.com>

123Dynamic typing
The following listing shows how you would use the class.

dynamic example = new SimpleDynamicExample();
example.CallSomeMethod("x", 10);
Console.WriteLine(example.SomeProperty);

The output should be as follows:

Invoked: CallSomeMethod(x, 10)
Fetched: SomeProperty

There’s nothing special about the names CallSomeMethod and SomeProperty, but
you could’ve reacted to specific names in different ways if you’d wanted to. Even the
simple behavior described so far would be tricky to get right using the low-level inter-
face, but the following listing shows how easy it is with DynamicObject.

class SimpleDynamicExample : DynamicObject
{
 public override bool TryInvokeMember(
 InvokeMemberBinder binder,
 object[] args,
 out object result)
 {
 Console.WriteLine("Invoked: {0}({1})",
 binder.Name, string.Join(", ", args));
 result = null;
 return true;
 }

 public override bool TryGetMember(
 GetMemberBinder binder,
 out object result)
 {
 result = "Fetched: " + binder.Name;
 return true;
 }
}

As with the methods on DynamicMetaObject, you still receive binders when overrid-
ing the methods in DynamicObject, but you don’t need to worry about expression
trees or other DynamicMetaObject values anymore. The return value from each
method indicates whether the dynamic object successfully handled the operation. If
you return false, a RuntimeBinderException will be thrown.

 That’s all I’m going to show you in terms of implementing dynamic behavior, but I
hope the simplicity of listing 4.8 will encourage you to experiment with Dynamic-
Object. Even if you never use it in production, playing with it can be a lot of fun. If

Listing 4.7 Example of intended use of dynamic behavior

Listing 4.8 Implementing SimpleDynamicExample

Handles
method
calls

Handles
property
access
Licensed to André Santos <andrerfcsantos@gmail.com>

124 CHAPTER 4 C# 4: Improving interoperability
you want to give it a try but don’t have concrete ideas, you could always try implement-
ing the Database example I gave at the start of this section. As a reminder, here’s the
code you’d be trying to enable:

dynamic database = new Database(connectionString);
var books = database.Books.SearchByAuthor("Holly Webb");
foreach (var book in books)
{
 Console.WriteLine(book.Title);
}

Next, you’ll take a look at the code the C# compiler generates when it encounters
dynamic values.

4.1.3 A brief look behind the scenes

You’re probably aware by now that I enjoy looking at the IL that the C# compiler uses
to implement its various features. You’ve already looked at how captured variables in
lambda expressions can result in extra classes being generated and how lambda expres-
sions converted to expression trees result in calls to methods in the Expression class.
Dynamic typing works a little bit like expression trees in terms of creating a data repre-
sentation of the source code, but on a larger scale.

 This section goes into even less detail than the previous one. Although the details
are interesting, you almost certainly won’t need to know them.2 The good news is that
it’s all open source, so you can go as low-level as you want to if you find yourself tanta-
lized by this brief introduction to the topic. We’ll start off by considering which subsys-
tem is responsible for what aspect of dynamic typing.

WHO DOES WHAT?
Normally when you consider a C# feature, it’s natural to divide responsibility into
three areas:

 The C# compiler
 The CLR
 The framework libraries

Some features are purely in the domain of the C# compiler. Implicit typing is an
example of this. The framework doesn’t need to provide any types to support var, and
the runtime is blissfully unaware of whether you used implicit or explicit typing.

 At the other end of the spectrum is generics, which require significant compiler
support, runtime support, and framework support in terms of the reflection APIs.
LINQ is somewhere in between: the compiler provides the various features you saw in
chapter 3, and the framework provides not only the implementation of LINQ to
Objects but also the API for expression trees. On the other hand, the runtime didn’t

2 And to be honest, I don’t know enough details to do the whole topic justice.
Licensed to André Santos <andrerfcsantos@gmail.com>

125Dynamic typing
need to change. For dynamic typing, the picture is a little more complicated. Figure
4.1 gives a graphical representation of the elements involved.

 The CLR didn’t require changes, although I believe there were optimizations from
v2 to v4 that were somewhat driven by this work. The compiler is obviously involved in
generating different IL, and we’ll look at an example of this in a moment. For frame-
work/library support, there are two aspects. The first is the Dynamic Language Runtime
(DLR), which provides language-agnostic infrastructure such as DynamicMeta-
Object. That’s responsible for executing all the dynamic behavior. But a second
library isn’t part of the core framework itself: Microsoft.CSharp.dll.

NOTE This library ships with the framework but isn’t part of the system
framework libraries as such. I find it helpful to think of it as if it were a third-
party dependency, where the third party happens to be Microsoft. On the
other hand, the Microsoft C# compiler is fairly tightly coupled to it. It doesn’t
fit into any box particularly neatly.

This library is responsible for anything C# specific. For example, if you make a
method call in which one argument is a dynamic value, it’s this library that performs
the overload resolution at execution time. It’s a copy of the part of the C# compiler
responsible for binding, but it does so in the context of all the dynamic APIs.

 If you’ve ever seen a reference to Microsoft.CSharp.dll in your project and won-
dered what it was for, that’s the reason. If you don’t use dynamic typing anywhere, you
can safely remove the reference. If you do use dynamic typing but remove the refer-
ence, you’ll get a compile-time error as the C# compiler generates calls into that assem-
bly. Speaking of code generated by the C# compiler, let’s have a look at some now.

THE IL GENERATED FOR DYNAMIC TYPING

We’re going to go right back to our initial example of dynamic typing but make it
even shorter. Here are the first two lines of dynamic code I showed you:

dynamic text = "hello world";
string world = text.Substring(6);

System libraries

Common language runtime (CLR)

User code

Other libraries

Microsoft.CSharp

System.Reflection etcSystem.Dynamic

Dynamic language runtime (DLR)

Figure 4.1 Graphical representation of components involved in dynamic typing
Licensed to André Santos <andrerfcsantos@gmail.com>

126 CHAPTER 4 C# 4: Improving interoperability
Pretty simple, right? There are two dynamic operations here:

 The call to the Substring method
 The conversion from the result to a string

The following listing is a decompiled version of the code generated from those two
lines. I’ve included the surrounding context of a class declaration and Main method
just for clarity.

using Microsoft.CSharp.RuntimeBinder;
using System;
using System.Runtime.CompilerServices;

class DynamicTypingDecompiled
{
 private static class CallSites
 {
 public static CallSite<Func<CallSite, object, int, object>>
 method;
 public static CallSite<Func<CallSite, object, string>>
 conversion;
 }

 static void Main()
 {
 object text = "hello world";
 if (CallSites.method == null)
 {
 CSharpArgumentInfo[] argumentInfo = new[]
 {
 CSharpArgumentInfo.Create(
 CSharpArgumentInfoFlags.None, null),
 CSharpArgumentInfo.Create(
 CSharpArgumentInfoFlags.Constant |
 CSharpArgumentInfoFlags.UseCompileTimeType,
 null)
 };
 CallSiteBinder binder =
 Binder.InvokeMember(CSharpBinderFlags.None, "Substring",
 null, typeof(DynamicTypingDecompiled), argumentInfo);
 CallSites.method =
 CallSite<Func<CallSite, object, int, object>>.Create(binder);
 }

 if (CallSites.conversion == null)
 {
 CallSiteBinder binder =
 Binder.Convert(CSharpBinderFlags.None, typeof(string),
 typeof(DynamicTypingDecompiled));
 CallSites.conversion =
 CallSite<Func<CallSite, object, string>>.Create(binder);
 }

Listing 4.9 The result of decompiling two simple dynamic operations

Cache of
call sites

Creates a call site for the
method call if necessary

Creates a call site for the
conversion if necessary
Licensed to André Santos <andrerfcsantos@gmail.com>

127Dynamic typing
 object result = CallSites.method.Target(
 CallSites.method, text, 6);

 string str =
 CallSites.conversion.Target(CallSites.conversion, result);
 }
}

I apologize for this formatting. I’ve done what I can to make it readable, but it’s a lot
of code that involves a lot of long names. The good news is, you’re almost certain to
never need to look at code like this except for the sake of interest. One point to note
is that CallSite is in the System.Runtime.CompilerServices namespace as it’s
language neutral, whereas the Binder class being used is from Microsoft.CSharp
.RuntimeBinder.

 As you can tell, a lot of call sites are involved. Each call site is cached by the gener-
ated code, and multiple levels of caching are within the DLR as well. Binding is a rea-
sonably involved process. The cache within the call site improves performance by
storing the result of each binding operation to avoid redundant work while being
aware that the same call could end up with different binding results if some of the
context changes between calls.

 The result of all this effort is a system that’s remarkably efficient. It doesn’t per-
form quite as well as statically typed code, but it’s surprisingly close. I expect that in
most cases where dynamic typing is an appropriate choice for other reasons, its per-
formance won’t be a limiting factor. To wrap up the coverage of dynamic typing, I’ll
explain a few limitations you may encounter and then give a little guidance around
when and how dynamic typing is an effective choice.

4.1.4 Limitations and surprises in dynamic typing

Integrating dynamic typing into a language that was designed from the start to be stat-
ically typed is difficult. It’s no surprise that in a few places, the two don’t play nicely
together. I’ve put together a list of some of the aspects of dynamic typing that include
limitations or potential surprises to encounter at execution time. The list isn’t exhaus-
tive, but it covers the most commonly seen problems.

THE DYNAMIC TYPE AND GENERICS

Using the dynamic type with generics can be interesting. Rules are applied at compile
time about where you can use dynamic:

 A type can’t specify that it implements an interface using dynamic anywhere in
a type argument.

 You can’t use dynamic anywhere in type constraints.
 A class can specify a base class that uses dynamic in a type argument, even as

part of an interface type argument.
 You can use dynamic as an interface type argument for variables.

Invokes the method
call site

Invokes the
conversion call site
Licensed to André Santos <andrerfcsantos@gmail.com>

128 CHAPTER 4 C# 4: Improving interoperability
Here are some examples of invalid code:

class DynamicSequence : IEnumerable<dynamic>
class DynamicListSequence : IEnumerable<List<dynamic>>
class DynamicConstraint1<T> : IEnumerable<T> where T : dynamic
class DynamicConstraint2<T> : IEnumerable<T> where T : List<dynamic>

But all of these are valid:

class DynamicList : List<dynamic>
class ListOfDynamicSequences : List<IEnumerable<dynamic>>
IEnumerable<dynamic> x = new List<dynamic> { 1, 0.5 }.Select(x => x * 2);

EXTENSION METHODS

The execution-time binder doesn’t resolve extension methods. It could conceivably
do so, but it’d need to keep additional information about every relevant using direc-
tive at every method call site. It’s important to note that this doesn’t affect statically
bound calls that happen to use a dynamic type somewhere within a type argument. So,
for example, the following listing compiles and runs with no problems.

List<dynamic> source = new List<dynamic>
{
 5,
 2.75,
 TimeSpan.FromSeconds(45)
};
IEnumerable<dynamic> query = source.Select(x => x * 2);
foreach (dynamic value in query)
{
 Console.WriteLine(value);
}

The only dynamic operations here are the multiplication (x * 2) and the overload
resolution in Console.WriteLine. The call to Select is bound as normal at com-
pile time. As an example of what will fail, let’s try making the source itself dynamic
and simplify the LINQ operation you’re using to Any(). (If you kept using Select as
before, you’d run into another problem that you’ll look at in a moment.) The follow-
ing listing shows the changes.

dynamic source = new List<dynamic>
{
 5,
 2.75,
 TimeSpan.FromSeconds(45)
};
bool result = source.Any();

Listing 4.10 A LINQ query over a list of dynamic values

Listing 4.11 Attempting to call an extension method on a dynamic target
Licensed to André Santos <andrerfcsantos@gmail.com>

129Dynamic typing
I haven’t included the output part, because execution doesn’t reach there. Instead, it
fails with a RuntimeBinderException because List<T> doesn’t include a method
called Any.

 If you want to call an extension method as if its target were a dynamic value, you
need to do so as a regular static method call. For example, you could rewrite the last
line of listing 4.11 to the following:

bool result = Enumerable.Any(source);

The call will still be bound at execution time, but only in terms of overload resolution.

ANONYMOUS FUNCTIONS

Anonymous functions have three limitations. For the sake of simplicity, I’ll show them
all with lambda expressions.

 First, anonymous methods can’t be assigned to a variable of type dynamic, because
the compiler doesn’t know what kind of delegate to create. It’s fine if you either cast
or use an intermediate statically typed variable (and then copy the value), and you can
invoke the delegate dynamically, too. For example, this is invalid:

dynamic function = x => x * 2;
Console.WriteLine(function(0.75));

But this is fine and prints 1.5:

dynamic function = (Func<dynamic, dynamic>) (x => x * 2);
Console.WriteLine(function(0.75));

Second, and for the same underlying reason, lambda expressions can’t appear within
dynamically bound operations. This is the reason I didn’t use Select in listing 4.11 to
demonstrate the problem with extension methods. Here’s what listing 4.11 would’ve
looked like otherwise:

dynamic source = new List<dynamic>
{
 5,
 2.75,
 TimeSpan.FromSeconds(45)
};
dynamic result = source.Select(x => x * 2);

You know that wouldn’t work at execution time because it wouldn’t be able to find the
Select extension method, but it doesn’t even compile because of the use of the lambda
expression. The workaround for the compile-time issue is the same as before: just cast
the lambda expression to a delegate type or assign it to a statically typed variable first.
That would still fail at execution time for extension methods such as Select, but it
would be fine if you were calling a regular method such as List<T>.Find, for example.

 Finally, lambda expressions that are converted to expression trees must not con-
tain any dynamic operations. This may sound slightly odd, given the way the DLR uses
expression trees internally, but it’s rarely an issue in practice. In most cases where
Licensed to André Santos <andrerfcsantos@gmail.com>

130 CHAPTER 4 C# 4: Improving interoperability
expression trees are useful, it’s unclear what dynamic typing means or how it could
possibly be implemented.

 As an example, you can attempt to tweak listing 4.10 (with the statically typed
source variable) to use IQueryable<T>, as shown in the following listing.

List<dynamic> source = new List<dynamic>
{
 5,
 2.75,
 TimeSpan.FromSeconds(45)
};
IEnumerable<dynamic> query = source
 .AsQueryable()
 .Select(x => x * 2);

The result of the AsQueryable() call is an IQueryable<dynamic>. This is statically
typed, but its Select method accepts an expression tree rather than a delegate. That
means the lambda expression (x => x * 2) would have to be converted to an expres-
sion tree, but it’s performing a dynamic operation, so it fails to compile.

ANONYMOUS TYPES

I mentioned this issue when I first covered anonymous types, but it bears repeating:
anonymous types are generated as regular classes in IL by the C# compiler. They have
internal access, so nothing can use them outside the assembly they’re declared in.
Normally that’s not an issue, as each anonymous type is typically used only within a
single method. With dynamic typing, you can read properties of instances of anony-
mous types, but only if that code has access to the generated class. The following list-
ing shows an example of this where it is valid.

static void PrintName(dynamic obj)
{
 Console.WriteLine(obj.Name);
}

static void Main()
{
 var x = new { Name = "Abc" };
 var y = new { Name = "Def", Score = 10 };
 PrintName(x);
 PrintName(y);
}

This listing has two anonymous types, but the binding process doesn’t care whether
it’s binding against an anonymous type. It does check that it has access to the proper-
ties it finds, though. If you split this code across two assemblies, that would cause a

Listing 4.12 Attempting to use a dynamic element type in an IQueryable<T>

Listing 4.13 Dynamic access to a property of an anonymous type

This line now
fails to compile.
Licensed to André Santos <andrerfcsantos@gmail.com>

131Dynamic typing
problem; the binder would spot that the anonymous type is internal to the assembly
where it’s created and throw a RuntimeBinderException. If you run into this prob-
lem and can use [InternalsVisibleTo] to allow the assembly performing the
dynamic binding to have access to the assembly where the anonymous type is created,
that’s a reasonable workaround.

EXPLICIT INTERFACE IMPLEMENTATION

The execution-time binder uses the execution-time type of any dynamic value and
then binds in the same way as if you’d written that as the compile-time type of a vari-
able. Unfortunately, that doesn’t play nicely with the existing C# feature of explicit
interface implementation. When you use explicit interface implementation, that
effectively says that the member being implemented is available only when you’re
using the interface view over the object instead of the type itself.

 It’s easier to show this than to explain it. The following listing uses List<T> as an
example.

List<int> list1 = new List<int>();
Console.WriteLine(list1.IsFixedSize);

IList list2 = list1;
Console.WriteLine(list2.IsFixedSize);

dynamic list3 = list1;
Console.WriteLine(list3.IsFixedSize);

List<T> implements the IList interface. The interface has a property called
IsFixedSize, but the List<T> class implements that explicitly. Any attempt to
access it via an expression with a static type of List<T> will fail at compile time. You
can access it via an expression with a static type of IList, and it’ll always return
false. But what about accessing it dynamically? The binder will always use the con-
crete type of the dynamic value, so it fails to find the property, and a RuntimeBinder-
Exception is thrown. The workaround here is to convert the dynamic value back to
the interface (via casting or a separate variable) if you know that you want to use an
interface member.

 I’m sure that anyone who works with dynamic typing on a regular basis would be
able to regale you with a long list of increasingly obscure corner cases, but the preced-
ing items should keep you from being surprised too often. We’ll complete our cover-
age of dynamic typing with a little guidance about when and how to use it.

4.1.5 Usage suggestions

I’ll be up front about this: I’m generally not a fan of dynamic typing. I can’t remember
the last time I used it in production code, and I’d do so only warily and after a lot of
testing for correctness and performance.

Listing 4.14 Example of explicit interface implementation

Compile-time
error

Succeeds;
prints False

Execution-time
error
Licensed to André Santos <andrerfcsantos@gmail.com>

132 CHAPTER 4 C# 4: Improving interoperability
 I’m a sucker for static typing. In my experience, it gives four significant benefits:

 When I make mistakes, I’m likely to discover them earlier—at compile time
rather than execution time. That’s particularly important with code paths that
may be hard to test exhaustively.

 Editors can provide code completion. This isn’t particularly important in terms
of speed of typing, but it’s great as a way of exploring what I might want to do
next, particularly if I’m using a type I’m unfamiliar with. Editors for dynamic
languages can provide remarkable code-completion facilities these days, but
they’ll never be quite as precise as those for statically typed languages, because
there just isn’t as much information available.

 It makes me think about the API I’m providing, in terms of parameters, return
types, and so on. After I’ve made decisions about which types to accept and
return, that acts as ready-made documentation: I need to add comments only
for anything that isn’t otherwise obvious, such as the range of acceptable values.

 By doing work at compile time instead of execution time, statically typed code
usually has performance benefits over dynamically typed code. I don’t want to
emphasize this too much, as modern runtimes can do amazing things, but it’s
certainly worth considering.

I’m sure a dynamic typing aficionado would be able to give you a similar list of awe-
some benefits of dynamic typing, but I’m not the right person to do so. I suspect those
benefits are more readily available in a language designed with dynamic typing right
from the start. C# is mostly a statically typed language, and its heritage is clear, which is
why the corner cases I listed earlier exist. That said, here are a few suggestions about
when you might want to use dynamic typing.

SIMPLER REFLECTION

Suppose you find yourself using reflection to access a property or method; you know the
name at compile time, but you can’t refer to the static type for whatever reason. It’s much
simpler to use dynamic typing to ask the runtime binder to perform that access than to
do it directly with the reflection API. The benefit increases if you’d otherwise need to
perform multiple steps of reflection. For example, consider a code snippet like this:

dynamic value = ...;
value.SomeProperty.SomeMethod();

The reflection steps involved would be as follows:

1 Fetch the PropertyInfo based on the type of the initial value.
2 Fetch the value of that property and remember it.
3 Fetch the MethodInfo based on the type of the property result.
4 Execute the method on the property result.

By the time you’ve added validation to check that the property and method both exist,
you’re looking at several lines of code. The result would be no safer than the dynamic
approach shown previously, but it would be a lot harder to read.
Licensed to André Santos <andrerfcsantos@gmail.com>

133Optional parameters and named arguments
COMMON MEMBERS WITHOUT A COMMON INTERFACE

Sometimes you do know all the possible types of a value in advance, and you want to
use a member with the same name on all of them. If the types implement a common
interface or share a common base class that declares the member, that’s great, but
that doesn’t always happen. If each of them declares that member independently
(and if you can’t change that), you’re left with unpleasant choices.

 This time, you don’t need to use reflection, but you might need to perform several
repetitive steps of check the type, cast, access the member. C# 7 patterns make this sig-
nificantly simpler, but it can still be repetitive. Instead, you can use dynamic typing to
effectively say “Trust me, I know this member will be present, even though I can’t
express it in a statically typed way.” I’d be comfortable doing this within tests (where the
cost of being wrong is a test failure), but in production code I’d be much more cautious.

USING A LIBRARY BUILT FOR DYNAMIC TYPING

The .NET ecosystem is pretty rich and is getting better all the time. Developers are
creating all kinds of interesting libraries, and I suspect some may embrace dynamic
typing. For example, I can imagine a library designed to allow for easy prototyping
with REST- or RPC-based APIs with no code generation involved. That could be useful
in the initial phase of development while everything is quite fluid before generating a
statically typed library for later development.

 This is similar to the Json.NET example you looked at earlier. You may well want to
write classes to represent your data model after that model is well-defined, but when
prototyping, it may be simpler to change the JSON and then the code that’s accessing
it dynamically. Likewise, you’ll see later how COM improvements mean that often you
can end up working with dynamic typing instead of performing a lot of casting.

 In a nutshell, I think it still makes sense to use static typing where it’s simple to do
so, but you should accept dynamic typing as a potentially useful tool for some situations.
I encourage you to weigh the pros and cons in each context. Code that’s acceptable for
a prototype or even in test code may not be suitable for production code, for example.

 Beyond code that you might write for professional purposes, the ability to respond
with dynamic behavior by using DynamicObject or IDynamicMetaObject-
Provider certainly gives a lot of scope for fun development. However much I may shy
away from dynamic typing myself, it’s been well designed and implemented in C# and
provides a rich avenue for exploration.

 Our next feature is somewhat different, although both will come together when
you look at COM interoperability. We’re back to static typing and one specific aspect
of it: providing arguments for parameters.

4.2 Optional parameters and named arguments
Optional parameters and named arguments have a limited scope: given a method,
constructor, indexer, or delegate that you want to call, how do you provide the argu-
ments for the call? Optional parameters allow the caller to omit an argument entirely,
and named arguments allow the caller to make it clear to both the compiler and any
human reader which parameter an argument is intended to relate to.
Licensed to André Santos <andrerfcsantos@gmail.com>

134 CHAPTER 4 C# 4: Improving interoperability
 Let’s start with a simple example and then dive into the details. In this whole sec-
tion, I’m going to consider only methods. The same rules apply to all the other kinds
of members that can have parameters.

4.2.1 Parameters with default values and arguments with names

The following listing shows a simple method with three parameters, two of which are
optional. Multiple calls to the method then demonstrate different features.

static void Method(int x, int y = 5, int z = 10)
{
 Console.WriteLine("x={0}; y={1}; z={2}", x, y, z);
}

...

Method(1, 2, 3);
Method(x: 1, y: 2, z: 3);
Method(z: 3, y: 2, x: 1);
Method(1, 2);
Method(1, y: 2);
Method(1, z: 3);
Method(1);
Method(x: 1);

Figure 4.2 shows the same method declaration and one method call, just to make the
terminology clear.

 The syntax is simple:

 A parameter can specify a default value after its name with an equal sign between
the name and the value. Any parameter with a default value is optional; any
parameter without a default value is required. Parameters with ref or out modi-
fiers aren’t permitted to have default values.

 An argument can specify a name before the value with a colon between the
name and the value. An argument without a name is called a positional argument.

Listing 4.15 Calling a method with optional parameters

One required
parameter,
two optional

Just print the
parameter values.

x=1; y=2; z=3

x=1; y=2; z=3

x=1; y=2; z=3
x=1; y=2; z=10

x=1; y=2; z=10
x=1; y=5; z=3

x=1; y=5; z=10
x=1; y=5; z=10

Positional
argument

Named
argument

Required
parameter

static void Method(int x, int y = 5, int z = 10)
...
Method(1, z: 3)

Optional parameter,
default value 5

Optional parameter,
default value 10

Figure 4.2 Syntax of optional/
required parameters and named/
positional arguments
Licensed to André Santos <andrerfcsantos@gmail.com>

135Optional parameters and named arguments
The default value for a parameter must be one of the following expressions:

 A compile-time constant, such as a numeric or string literal, or the null literal.
 A default expression, such as default(CancellationToken). As you’ll see in

section 14.5, C# 7.1 introduces the default literal, so you can write default
instead of default(CancellationToken).

 A new expression, such as new Guid() or new CancellationToken(). This
is valid only for value types.

All optional parameters must come after all required parameters, with an exception
for parameter arrays. (Parameter arrays are parameters with the params modifier.)

WARNING Even though you can declare a method with an optional parame-
ter followed by a parameter array, it ends up being confusing to call. I urge
you to avoid this, and I won’t go into how calls to such methods are resolved.

The purpose of making a parameter optional is to allow the caller to omit it if the value
it would supply is the same as the default value. Let’s look at what how the compiler han-
dles a method call that can involve default parameters and/or named arguments.

4.2.2 Determining the meaning of a method call

If you read the specification, you’ll see that the process of working out which argu-
ment corresponds to which parameter is part of overload resolution and is inter-
twined with type inference. This is more complicated than you might otherwise
expect, so I’m going to simplify things here. We’ll focus on a single method signature,
assume it’s the one that has already been chosen by overload resolution, and take it
from there.

 The rules are reasonably simple to list:

 All positional arguments must come before all named arguments. This rule is
relaxed slightly in C# 7.2, as you’ll see in section 14.6.

 Positional arguments always correspond to a parameter in the same position in
the method signature. The first positional argument corresponds to the first
parameter, the second positional argument corresponds to the second parame-
ter, and so on.

 Named arguments match by name instead of position: an argument named x
corresponds to a parameter named x. Named arguments can be specified in
any order.

 Any parameter can have only one corresponding argument. You can’t specify
the same name in two named arguments, and you can’t use a named argument
for a parameter that already has a corresponding positional argument.

 Every required parameter must have a corresponding argument to provide a
value.

 Optional parameters are permitted not to have a corresponding argument, in
which case the compiler will supply the default value as an argument.
Licensed to André Santos <andrerfcsantos@gmail.com>

136 CHAPTER 4 C# 4: Improving interoperability
To see these rules in action, let’s consider our original simple method signature:

static void Method(int x, int y = 5, int z = 10)

You can see that x is a required parameter because it doesn’t have a default value, but
y and z are optional parameters. Table 4.1 shows several valid calls and their results.

There are two more important aspects to note when it comes to evaluating method
calls. First, arguments are evaluated in the order they appear in the source code for
the method call, left to right. In most cases, this wouldn’t matter, but if argument eval-
uation has side effects, it can. As an example, consider these two calls to our sample
method:

int tmp1 = 0;
Method(x: tmp1++, y: tmp1++, z: tmp1++);

int tmp2 = 0;
Method(z: tmp2++, y: tmp2++, x: tmp2++);

The two calls differ only in terms of the order of their named arguments, but that
affects the values that are passed into the method. In both cases, the code is harder to
read than it might be. When side effects of argument evaluation are important, I
encourage you to evaluate them as separate statements and assign to new local vari-
ables that are then passed directly to the method as arguments, like this:

int tmp3 = 0;
int argX = tmp3++;
int argY = tmp3++;
int argZ = tmp3++;
Method(x: argX, y: argY, z: argZ);

Table 4.1 Examples of valid method calls for named arguments and optional parameters

Call Resulting arguments Notes

Method(1, 2, 3) x=1; y=2; z=3 All positional arguments. Regular call from
before C# 4.

Method(1) x=1; y=5; z=10 Compiler supplies values for y and z, as
there are no corresponding arguments.

Method() n/a Invalid: no argument corresponds to x.

Method(y: 2) n/a Invalid: no argument corresponds to x.

Method(1, z: 3) x=1; y=5; z=3 Compiler supplies value for y as there’s no
corresponding argument. It was skipped by
using a named argument for z.

Method(1, x: 2, z: 3) n/a Invalid: two arguments correspond to x.

Method(1, y: 2, y: 2) n/a Invalid: two arguments correspond to y.

Method(z: 3, y: 2, x: 1) x=1; y=2; z=3 Named arguments can be in any order,

x=0; y=1; z=2

x=2; y=1; z=0
Licensed to André Santos <andrerfcsantos@gmail.com>

137Optional parameters and named arguments
At this point, whether you name the arguments doesn’t change the behavior; you can
choose whichever form you find most readable. The separation of argument evalua-
tion from method invocation makes the order of argument evaluation simpler to
understand, in my opinion.

 The second point to note is that if the compiler has to specify any default values for
parameters, those values are embedded in the IL for the calling code. There’s no way
for the compiler to say “I don’t have a value for this parameter; please use whatever
default you have.” That’s why the default values have to be compile-time constants,
and it’s one of the ways in which optional parameters affect versioning.

4.2.3 Impact on versioning

Versioning of public APIs in libraries is a hard problem. It’s really hard and signifi-
cantly less clear-cut than we like to pretend. Although semantic versioning says that
any breaking change means you need to move to a new major version, pretty much
any change can break some code that depends on the library, if you’re willing to
include obscure cases. That said, optional parameters and named arguments are par-
ticularly tricky for versioning. Let’s have a look at the various factors.

PARAMETER NAME CHANGES ARE BREAKING

Suppose you have a library containing the method that you previously looked at, but
it’s public:

public static Method(int x, int y = 5, int z = 10)

Now suppose you want to change that to the following in a new version:

public static Method(int a, int b = 5, int c = 10)

That’s a breaking change; any code that uses named arguments when calling the
method will be broken, as the names they specified before no longer exist. Check your
parameter names as carefully as you check your type and member names!

DEFAULT VALUE CHANGES ARE AT LEAST SURPRISING

As I’ve noted, default values are compiled into the IL of the calling code. When that’s
within the same assembly, changing the default value doesn’t cause a problem. When
it’s in a different assembly, a change to the default value will be visible only when the
calling code is recompiled.

 That’s not always a problem, and if you anticipate that you might want to change
the default value, it’s not entirely unreasonable to state that explicitly in the method
documentation. But it could definitely surprise some developers using your code, par-
ticularly if complicated dependency chains are involved. One way of avoiding this is to
use a dedicated default value that always means “Let the method choose at execution
time.” For example, if you have a method that would normally have an int parameter,
you could use Nullable<int> instead, with a default value of null meaning “the
method will choose.” You can change the implementation of the method later to
Licensed to André Santos <andrerfcsantos@gmail.com>

138 CHAPTER 4 C# 4: Improving interoperability
make a different choice, and every caller using the new version will get the new behav-
ior, whether they’ve recompiled or not.

ADDING OVERLOADS IS FIDDLY

If you thought overload resolution was tricky in a single-version scenario, it becomes a
lot worse when you’re trying to add an overload without breaking anyone. All original
method signatures must be present in the new version to avoid breaking binary com-
patibility, and all calls against the original methods should either resolve to the same
calls, or at least equivalent calls, in the new version. Whether a parameter is required or
optional isn’t part of the method signature itself; you don’t break binary compatibility
by changing an optional parameter to be required, or vice versa. But you might break
source compatibility. If you’re not careful, you can easily introduce ambiguity in over-
load resolution by adding a new method with more optional parameters.

 If two methods are both applicable within overload resolution (both make sense
with respect to the call) and neither is better than the other in terms of the argument-
to-parameter conversions involved, then default parameters can be used as a tiebreak.
A method that has no optional parameters without corresponding arguments is “bet-
ter” than a method with at least one optional parameter without a corresponding
argument. But a method with one unfilled parameter is no better than a method with
two such parameters.

 If you can possibly get away without adding overloads to methods when optional
parameters are involved, I strongly advise that you do so—and, ideally, bear that in
mind from the start. One pattern to consider for methods that might have a lot of
options is to create a class representing all those options and then take that as an
optional parameter in method calls. You can then add new options by adding proper-
ties to the options class without changing the method signature at all.

 Despite all these caveats, I’m still in favor of optional parameters when they make
sense to simplify calling code for common cases, and I’m a big fan of the ability to
name arguments to clarify calling code. This is particularly relevant when multiple
parameters of the same type could be confused with each other. As one example, I
always use them when I need to call the Windows Forms MessageBox.Show method.
I can never remember whether the title of the message box or the text comes first.
IntelliSense can help me when I’m writing the code, but it’s not as obvious when I’m
reading it, unless I use named arguments:

MessageBox.Show(text: "This is text", caption: "This is the title");

Our next topic is one that many readers may have no need for and other readers will
use every day. Although COM is a legacy technology in many contexts, a huge amount
of code still uses it.

4.3 COM interoperability improvements
Before C# 4, VB was simply a better language to use if you wanted to interoperate with
COM components. It’s always been a somewhat more relaxed language, at least if you
ask it to be, and it has had named arguments and optional parameters from the start.
Licensed to André Santos <andrerfcsantos@gmail.com>

139COM interoperability improvements
C# 4 makes life much simpler for those working with COM. That said, if you’re not
using COM, you won’t miss out on anything important by skipping this section. None
of the features I go into here is relevant outside COM.

NOTE COM is the Component Object Model introduced by Microsoft in
1993 as a cross-language form of interoperability on Windows. A full descrip-
tion is beyond the scope of this book, but you’re likely to know about it if you
need to know about it. The most commonly used COM libraries are probably
those for Microsoft Office.

Let’s start with a feature that goes beyond the language. It’s mostly about deployment,
although it also impacts how the operations are exposed.

4.3.1 Linking primary interop assemblies

When you code against a COM type, you use an assembly generated for the compo-
nent library. Usually, you use a primary interop assembly (PIA) generated by the compo-
nent publisher. You can use the Type Library Importer tool (tlbimp) to generate this
for your own COM libraries.

 Before C# 4, the complete PIA had to be present on the machine where the code
finally ran, and it had to be the same version as the one that you compiled against.
This either meant shipping the PIA along with your application or trusting that the
right version would already be
installed.

 From C# 4 and Visual Studio
2010 onward, you can choose to
link the PIA instead of referencing it.
In Visual Studio, in the property
page for the reference, this is the
Embed Interop Types option.

 When this option is set to True,
the relevant parts of the PIA are
embedded directly into your assem-
bly. Only the bits you use within
your application are included.
When the code runs, it doesn’t mat-
ter whether the exact same version
of the component you used to com-
pile against is present on the client
machine, so long as it has every-
thing that your application needs.
Figure 4.3 shows the difference
between referencing (the old way)
and linking (the new way) in terms
of how the code runs.

PIA.dll

01101101
00110011
00011110
11011001

01101101
00110011
00011110
11011001

App.cs

Compile
time

Referencing Linking

Execution
time

App.exe

01101101
00110011
00011110
11011001

PIA.dll

00110101
01101000
10010111
11001101

COM.dll

App.exe

00110101
01101000
10010111
11001101

COM.dll

01101101
00110011
00011 01
11011 10

Figure 4.3 Comparing referencing and linking
Licensed to André Santos <andrerfcsantos@gmail.com>

140 CHAPTER 4 C# 4: Improving interoperability
In addition to deployment changes, linking the PIA affects how the VARIANT type is
treated within the COM type. When the PIA is referenced, any operations returning a
VARIANT value would be exposed using the object type in C#. You’d then have to
cast that to the appropriate type to use its methods and properties.

 When the PIA is linked instead, dynamic is returned instead of object. As you
saw earlier, there’s an implicit conversion from an expression of type dynamic to any
nonpointer type, which is then checked at execution time. The following listing shows
an example of opening Excel and populating 20 cells in a range.

var app = new Application { Visible = true };
app.Workbooks.Add();
Worksheet sheet = app.ActiveSheet;
Range start = sheet.Cells[1, 1];
Range end = sheet.Cells[1, 20];
sheet.Range[start, end].Value = Enumerable.Range(1, 20).ToArray();

Listing 4.16 silently uses some of the features coming up later, but for the moment
focus on the assignments to sheet, start, and end. Each would need a cast nor-
mally, as the value being assigned would be of type object. You don’t have to specify
the static types for the variables; if you used var or dynamic for the variable types,
you’d be using dynamic typing for more operations. I prefer to specify the static type
where I know what I expect it to be, partly for the implicit validation this performs and
partly to enable IntelliSense in the code that follows.

 For COM libraries that use VARIANT extensively, this is one of the most important
benefits of dynamic typing. The next COM feature also builds on a new feature in C#
4 and takes optional parameters to a new level.

4.3.2 Optional parameters in COM

Some COM methods have a lot of parameters, and often they’re all ref parameters.
This meant that prior to C# 4, a simple act like saving a file in Word could be
extremely painful.

object missing = Type.Missing;

Application app = new Application { Visible = true };
Document doc = app.Documents.Add
 ref missing, ref missing,
 ref missing, ref missing);
Paragraph para = doc.Paragraphs.Add(ref missing);
para.Range.Text = "Awkward old code";

Listing 4.16 Setting a range of values in Excel with implicit dynamic conversion

Listing 4.17 Creating a Word document and saving it before C# 4

Placeholder variable
for ref parameters

Starts Word

Creates and populates
a document
Licensed to André Santos <andrerfcsantos@gmail.com>

141COM interoperability improvements
object fileName = "demo1.docx";
doc.SaveAs2(ref fileName, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing);

doc.Close(ref missing, ref missing, ref missing);
app.Application.Quit(
 ref missing, ref missing, ref missing);

A lot of code is required just to create and save a document, including 20 occurrences
of ref missing. It’s hard to see the useful part of the code within the forest of argu-
ments you don’t care about.

 C# 4 provides features that all work together to make this much simpler:

 Named arguments can be used to make it clear which argument should corre-
spond to which parameter, as you’ve already seen.

 Just for COM libraries, values can be specified directly as arguments for ref
parameters. The compiler will create a local variable behind the scenes and
pass that by reference.

 Just for COM libraries, ref parameters can be optional and then omitted in the
calling code. Type.Missing is used as the default value.

With all of these features in play, you can transform listing 4.17 into much shorter and
cleaner code.

Application app = new Application { Visible = true };
Document doc = app.Documents.Add();
Paragraph para = doc.Paragraphs.Add();
para.Range.Text = "Simple new code";

doc.SaveAs2(FileName: "demo2.docx");

doc.Close();
app.Application.Quit();

This is a dramatic transformation in readability. All 20 occurrences of ref missing
are gone, as is the variable itself. As it happens, the argument you pass to SaveAs2
corresponds to the first parameter of the method. You could use a positional argu-
ment instead of a named argument, but specifying the name adds clarity. If you also
wanted to specify a value for a later parameter, you could do so by name without pro-
viding values for all the other parameters in between.

 That argument to SaveAs2 also demonstrates the implicit ref feature. Instead of
having to declare a variable within an initial value of demo2.docx and then pass that
by reference, you can pass the value directly, as far as our source code is concerned.

Listing 4.18 Creating a Word document and saving it using C# 4

Saves the document

Closes Word

Optional parameters
omitted everywhere

Named argument
used for clarity
Licensed to André Santos <andrerfcsantos@gmail.com>

142 CHAPTER 4 C# 4: Improving interoperability

The compiler handles turning it into a ref parameter for you. The final COM-related
feature exposes another aspect where VB is slightly richer than C#.

4.3.3 Named indexers

Indexers have been present in C# since the beginning. They’re primarily used for col-
lections: retrieving an element from a list by index or retrieving a value from a diction-
ary by key, for example. But C# indexers are never named in source code. You can
write only the default indexer for the type. You can specify a name by using an attribute,
and that name will be consumed by other languages, but C# doesn’t let you differenti-
ate between indexers by name. At least, it didn’t until C#4.

 Other languages allow you to write and consume indexers with names, so you can
access different aspects of an object via indexes using the name to make it clear what
you want. C# still doesn’t do this for regular .NET code, but it makes an exception just
for COM types. An example will make this clearer.

 The Application type in Word exposes a named indexer called SynonymInfo.
It’s declared like this:

SynonymInfo SynonymInfo[string Word, ref object LanguageId = Type.Missing]

Prior to C# 4, you could call the indexer as if it were a method called get_Synonym-
Info, but that’s somewhat awkward. In C# 4, you can access it by name, as shown in
the following listing.

Application app = new Application { Visible = false };

object missing = Type.Missing;
SynonymInfo info = app.get_SynonymInfo("method", ref missing);
Console.WriteLine("'method' has {0} meanings", info.MeaningCount);

info = app.SynonymInfo["index"];
Console.WriteLine("'index' has {0} meanings", info.MeaningCount);

Listing 4.19 shows how optional parameters can be used in named indexers as well as
regular method calls. The code for before C# 4 has to declare a variable and pass it by
reference to the awkwardly named method. With C# 4, you can use the indexer by
name, and you can omit the argument for the second parameter.

 That was a brief run through the COM-related features in C# 4, but I hope the ben-
efits are obvious. Even though I don’t work with COM regularly, the changes shown
here would make me a lot less despondent if I ever need to in the future. The extent of
the benefit will depend on how the COM library you’re working with is structured. For
example, if it uses a lot of ref parameters and VARIANT return types, the difference will

Listing 4.19 Accessing a named indexer

Accessing synonyms
prior to C# 4

Simpler code using
a named indexer
Licensed to André Santos <andrerfcsantos@gmail.com>

143Generic variance
be more significant than a library with few parameters and concrete return types. But
even just the option of linking the PIA could make deployment significantly simpler.

 We’re coming toward the end of C# 4 now. The final feature can be a bit tricky to
get your head around, but it’s also one you may use without even thinking about it.

4.4 Generic variance
Generic variance is easier to show than to describe. It’s about safely converting
between generic types based on their type arguments and paying particular attention
to the direction in which data travels.

4.4.1 Simple examples of variance in action

We’ll start with an example using a familiar interface, IEnumerable<T>, which repre-
sents a sequence of elements of type T. It makes sense that any sequence of strings is
also a sequence of objects, and variance allows that:

IEnumerable<string> strings = new List<string> { "a", "b", "c" };
IEnumerable<object> objects = strings;

That may seem so natural that you’d be surprised if it failed to compile, but that’s
exactly what would’ve happened before C# 4.

NOTE I’m using string and object consistently in these examples because
they’re classes that all C# developers know about and aren’t tied to any partic-
ular context. Other classes with the same base class/derived class relationship
would work just as well.

There are potentially more surprises to come; not everything that sounds like it
should work does work, even with C# 4. For example, you might try to extend the rea-
soning about sequences to lists. Is any list of strings a list of objects? You might think
so, but it’s not:

IList<string> strings = new List<string> { "a", "b", "c" };
IList<object> objects = strings;

What’s the difference between IEnumerable<T> and IList<T>? Why isn’t this
allowed? The answer is that it wouldn’t be safe, because the methods within IList<T>
allow values of type T as inputs as well as outputs. Every way you can use an
IEnumerable<T> ends up with T values being returned as output, but IList<T> has
methods like Add that accept a T value as input. That would make it dangerous to
allow variance. You can see this if you try to extend our invalid example a little:

IList<string> strings = new List<string> { "a", "b", "c" };
IList<object> objects = strings;
objects.Add(new object());
string element = strings[3];

Invalid: no conversion from
IList<string> to IList<object>

Adds an object
to the list

Retrieves it
as a string
Licensed to André Santos <andrerfcsantos@gmail.com>

144 CHAPTER 4 C# 4: Improving interoperability
Every line other than the second one makes sense on its own. It’s fine to add an
object reference to an IList<object>, and it’s fine to take a string reference from
an IList<string>. But if you can treat a list of strings as a list of objects, those two
abilities come into conflict. The language rules that make the second line invalid are
effectively protecting the rest of the code.

 So far, you’ve seen values being returned as output (IEnumerable<T>) and values
being used as both input and output (IList<T>). In some APIs, values are always
used only as input. The simplest example of this is the Action<T> delegate, where
you pass in a value of type T when you invoke the delegate. Variance still applies here,
but in the opposite direction. This can be confusing to start with.

 If you have an Action<object> delegate, that can accept any object reference. It
can definitely accept a string reference, and the language rules allow you to convert
from Action<object> to Action<string>:

Action<object> objectAction = obj => Console.WriteLine(obj);
Action<string> stringAction = objectAction;
stringAction("Print me");

With those examples in hand, I can define some terminology:

 Covariance occurs when values are returned only as output.
 Contravariance occurs when values are accepted only as input.
 Invariance occurs when values are used as input and output.

Those definitions are deliberately slightly vague for now. They’re more about the gen-
eral concepts than they are about C#. We can tighten them up after you’ve looked at
the syntax C# uses to specify variance.

4.4.2 Syntax for variance in interface and delegate declarations

The first thing to know about variance in C# is that it can be specified only for inter-
faces and delegates. You can’t make a class or struct covariant, for example. Next, vari-
ance is defined separately for each type parameter. Although you might loosely say
“IEnumerable<T> is covariant,” it would be more precise to say “IEnumerable<T> is
covariant in T.” That then leads to syntax for interface and delegate declarations in
which each type parameter has a separate modifier. Here are the declarations for the
IEnumerable<T> and IList<T> interfaces and Action<T> delegate:

public interface IEnumerable<out T>
public delegate void Action<in T>
public interface IList<T>

As you can see, the modifiers in and out are used to specify the variance of a type
parameter:

 A type parameter with the out modifier is covariant.
 A type parameter with the in modifier is contravariant.
 A type parameter with no modifiers is invariant.
Licensed to André Santos <andrerfcsantos@gmail.com>

145Generic variance
The compiler checks that the modifier you’ve used is suitable given the rest of the dec-
laration. For example, this delegate declaration is invalid because a covariant type
parameter is used as input:

public delegate void InvalidCovariant<out T>(T input)

And this interface declaration is invalid because a contravariant type parameter is
used as output:

public interface IInvalidContravariant<in T>
{
 T GetValue();
}

Any single type parameter can have only one of these modifiers, but two type parame-
ters in the same declaration can have different modifiers. For example, consider the
Func<T, TResult> delegate. That accepts a value of type T and returns a value of
type TResult. It’s natural for T to be contravariant and TResult to be covariant. The
delegate declaration is as follows:

public TResult Func<in T, out TResult>(T arg)

In everyday development, you’re likely to use existing variant interfaces and delegates
more often than you declare them. A few restrictions exist in terms of the type argu-
ments you can use. Let’s look at them now.

4.4.3 Restrictions on using variance

To reiterate a point made earlier, variance can be declared only in interfaces and del-
egates. That variance isn’t inherited by classes or structs implementing interfaces;
classes and structs are always invariant. As an example, suppose you were to create a
class like this:

public class SimpleEnumerable<T> : IEnumerable<T>
{

}

You still couldn’t convert from SimpleEnumerable<string> to a Simple-
Enumerable<object>. You could convert from SimpleEnumerable<string> to
IEnumerable<object> using the covariance of IEnumerable<T>.

 Let’s assume you’re dealing with a delegate or interface with some covariant or
contravariant type parameters. What conversions are available? You need definitions
to explain the rules:

 A conversion involving variance is called a variance conversion.
 Variance conversion is one example of a reference conversion. A reference conver-

sion is one that doesn’t change the value involved (which is always a reference);
it only changes the compile-time type.

The out modifier isn’t
permitted here.

Implementation
Licensed to André Santos <andrerfcsantos@gmail.com>

146 CHAPTER 4 C# 4: Improving interoperability
 An identity conversion is a conversion from one type to the same type as far as the
CLR is concerned. This might be the same type from a C# perspective, too (from
string to string, for example), or it might be between types that are different
only as far as the C# language is concerned, such as from object to dynamic.

Suppose you want to convert from IEnumerable<A> to IEnumerable for some
type arguments A and B. That’s valid if there’s an identity or implicit reference conver-
sion from A to B. For example, these conversions are valid:

 IEnumerable<string> to IEnumerable<object>: there’s an implicit refer-
ence conversion from a class to its base class (or its base class’s base class, and so
forth).

 IEnumerable<string> to IEnumerable<IConvertible>: there’s an impli-
cit reference conversion from a class to any interface it implements.

 IEnumerable<IDisposable> to IEnumerable<object>: there’s an implicit
reference conversion from any reference type to object or dynamic.

These conversions are invalid:

 IEnumerable<object> to IEnumerable<string>: there’s an explicit refer-
ence conversion from object to string, but not an implicit one.

 IEnumerable<string> to IEnumerable<Stream>: the string and Stream
classes are unrelated.

 IEnumerable<int> to IEnumerable<IConvertible>: there’s an implicit
conversion from int to IConvertible, but it’s a boxing conversion rather
than a reference conversion.

 IEnumerable<int> to IEnumerable<long>: there’s an implicit conversion
from int to long, but it’s a numeric conversion rather than a reference
conversion.

As you can see, the requirement that the conversion between type arguments is a ref-
erence or identity conversion affects value types in a way that you might find surprising.

 That example using IEnumerable<T> has only a single type argument to con-
sider. What about when you have multiple type arguments? Effectively, they’re
checked pairwise from the source of the conversion to the target, making sure that
each conversion is appropriate for the type parameter involved.

 To put this more formally, consider a generic type declaration with n type parame-
ters: T<X1, ..., Xn>. A conversion from T<A1, ..., An> to T<B1, ..., Bn> is con-
sidered in terms of each type parameter and pair of type arguments in turn. For each
i between 1 and n:

 If Xi is covariant, there must be an identity or implicit reference conversion
from Ai to Bi.

 If Xi is contravariant, there must be an identity or implicit reference conversion
from Bi to Ai.

 If Xi is invariant, there must be an identity conversion from Ai to Bi.
Licensed to André Santos <andrerfcsantos@gmail.com>

147Generic variance
To put this into a concrete example, let’s consider Func<in T, out TResult>. The
rules mean the following:

 There’s a valid conversion from Func<object, int> to Func<string, int>
because
– The first type parameter is contravariant, and there’s an implicit reference

conversion from string to object.
– The second type parameter is covariant, and there’s an identity conversion

from int to int.

 There’s a valid conversion from Func<dynamic, string> to Func<object,
IConvertible> because
– The first type parameter is contravariant, and there’s an identity conversion

from dynamic to object.
– The second type parameter is covariant, and there’s an implicit reference

conversion from string to IConvertible.

 There’s no conversion from Func<string, int> to Func<object, int>
because
– The first type parameter is contravariant, and there’s no implicit reference

conversion from object to string.
– The second type parameter doesn’t matter; the conversion is already invalid

because of the first type parameter.

Don’t worry if all of this is a bit overwhelming; 99% of the time you won’t even notice
you’re using generic variance. I’ve provided this detail to help you just in case you
receive a compile-time error and don’t understand why.3 Let’s wrap up by looking at a
couple of examples of when generic variance is useful.

4.4.4 Generic variance in practice

A lot of the time, you may end up using generic variance without even being con-
scious of doing so, because things just work as you’d probably want them to. There’s
no particular need to be aware that you’re using generic variance, but I’ll point out a
couple of examples of where it’s useful.

 First, let’s consider LINQ and IEnumerable<T>. Suppose you have strings that
you want to perform a query on, but you want to end up with a List<object>
instead of a List<string>. For example, you may need to add other items to the list
afterward. The following listing shows how before covariance, the simplest way to do
this would be to use an extra Cast call.

3 If this proves insufficient for a particular error, I suggest turning to the third edition, which has even more
detail.
Licensed to André Santos <andrerfcsantos@gmail.com>

148 CHAPTER 4 C# 4: Improving interoperability

IEnumerable<string> strings = new[] { "a", "b", "cdefg", "hij" };
List<object> list = strings
 .Where(x => x.Length > 1)
 .Cast<object>()
 .ToList();

That feels annoying to me. Why create a whole extra step in the pipeline just to
change the type in a way that’ll always work? With variance, you can specify a type
argument to the ToList() call instead, to specify the type of list you want, as in the
following listing.

IEnumerable<string> strings = new[] { "a", "b", "cdefg", "hij" };
List<object> list = strings
 .Where(x => x.Length > 1)
 .ToList<object>();

This works because the output of the Where call is an IEnumerable<string>,
and you’re asking the compiler to treat the input of the ToList() call as an
IEnumerable<object>. That’s fine because of variance.

 I’ve found contravariance to be useful in conjunction with IComparer<T>, the
interface for ordering comparisons of another type. As an example, suppose you have
a Shape base class with an Area property and then Circle and Rectangle derived
classes. You can write an AreaComparer that implements IComparer<Shape>, and
that’s fine for sorting a List<Shape> in place using List<T>.Sort(). But if you have
a List<Circle> or a List<Rectangle>, how do you sort that? Various workarounds
existed before generic variance, but the following listing shows how it’s trivial now.

List<Circle> circles = new List<Circle>
{
 new Circle(5.3),
 new Circle(2),
 new Circle(10.5)
};
circles.Sort(new AreaComparer());
foreach (Circle circle in circles)
{
 Console.WriteLine(circle.Radius);
}

The full source for the types used by listing 4.22 is in the downloadable code, but
they’re as simple as you’d expect them to be. The key point is that you can convert
AreaComparer to IComparer<Circle> for the Sort method call. That wasn’t the
case before C# 4.

Listing 4.20 Creating a List<object> from a string query without variance

Listing 4.21 Creating a List<object> from a string query by using variance

Listing 4.22 Sorting a List<Circle> with an IComparer<Shape>
Licensed to André Santos <andrerfcsantos@gmail.com>

149Summary
 If you declare your own generic interfaces or delegates, it’s always worth consider-
ing whether the type parameters can be covariant or contravariant. I wouldn’t nor-
mally try to force the issue if it doesn’t fall out that way naturally, but it’s worth taking
a moment to think about it. It can be annoying to use an interface that could have vari-
ant type parameters but where the developer just hadn’t considered whether it might
be useful to someone.

Summary
 C# 4 supports dynamic typing, which defers binding from compile time to execu-

tion time.
 Dynamic typing supports custom behavior via IDynamicMetaObject-

Provider and the DynamicObject class.
 Dynamic typing is implemented with both compiler and framework features.

The framework optimizes and caches heavily to make it reasonably efficient.
 C# 4 allows parameters to specify default values. Any parameter with a default

value is an optional parameter and doesn’t have to be provided by the caller.
 C# 4 allows arguments to specify the name of the parameter for which it’s

intended to provide the value. This works with optional parameters to allow you
to specify arguments for some parameters but not others.

 C# 4 allows COM primary interop assemblies (PIAs) to be linked rather than ref-
erenced, which leads to a simpler deployment model.

 Linked PIAs expose variant values via dynamic typing, which avoids a lot of
casting.

 Optional parameters are extended for COM libraries to allow ref parameters
to be optional.

 Ref parameters in COM libraries can be specified by value.
 Generic variance allows safe conversions for generic interfaces and delegates

based on whether values act as input or output.
Licensed to André Santos <andrerfcsantos@gmail.com>

Writing asynchronous code
Asynchrony has been a thorn in the side of developers for years. It’s been known to
be useful as a way of avoiding tying up a thread while waiting for some arbitrary task
to complete, but it’s also been a pain in the neck to implement correctly.

 Even within the .NET Framework (which is still relatively young in the grand
scheme of things), we’ve had three models to try to make things simpler:

 The BeginFoo/EndFoo approach from .NET 1.x, using IAsyncResult and
AsyncCallback to propagate results

 The event-based asynchronous pattern from .NET 2.0, as implemented by
BackgroundWorker and WebClient

This chapter covers
 What it means to write asynchronous code

 Declaring asynchronous methods with the async
modifier

 Waiting asynchronously with the await operator

 Language changes in async/await since C# 5

 Following usage guidelines for asynchronous code
150

Licensed to André Santos <andrerfcsantos@gmail.com>

151CHAPTER 5 Writing asynchronous code
 The Task Parallel Library (TPL) introduced in .NET 4.0 and expanded in .NET
4.5

Despite the TPL’s generally excellent design, writing robust and readable asynchro-
nous code with it was hard. Although the support for parallelism was great, some
aspects of general asynchrony are much better fixed in a language instead of purely in
libraries.

 The main feature of C# 5 is typically called async/await, and it builds on the TPL. It
allows you to write synchronous-looking code that uses asynchrony where appropriate.
Gone is the spaghetti of callbacks, event subscriptions, and fragmented error han-
dling; instead, asynchronous code expresses its intentions clearly and in a form that
builds on the structures that developers are already familiar with. The language con-
struct introduced in C# 5 allows you to await an asynchronous operation. This await-
ing looks very much like a normal blocking call in that the rest of your code won’t
continue until the operation has completed, but it manages to do this without block-
ing the currently executing thread. Don’t worry if that statement sounds completely
contradictory; all will become clear over the course of the chapter.

 Async/await has evolved a little over time, and for simplicity I’ve included the new
features from C# 6 and C# 7 alongside the original C# 5 descriptions. I’ve called out
those changes so you know when you need a C# 6 or C# 7 compiler.

 The .NET Framework embraced asynchrony wholeheartedly in version 4.5, expos-
ing asynchronous versions of a great many operations following a task-based asynchro-
nous pattern to give a consistent experience across multiple APIs. Similarly, the
Windows Runtime platform, which is the basis of Universal Windows Applications
(UWA/UWP), enforces asynchrony for all long-running (or potentially long-running)
operations. Many other modern APIs rely heavily on asynchrony, such as Roslyn and
HttpClient. In short, most C# developers will have to use asynchrony in at least some
part of their work.

NOTE The Windows Runtime platform is commonly known as WinRT; it's
not to be confused with Windows RT, which was an edition of Windows 8.x
for ARM processors. Universal Windows Applications are an evolution of Win-
dows Store applications. UWP is a further evolution of UWA from Windows 10
onward.

To be clear, C# hasn’t become omniscient, guessing where you might want to perform
operations concurrently or asynchronously. The compiler is smart, but it doesn’t
attempt to remove the inherent complexity of asynchronous execution. You still need
to think carefully, but the beauty of async/await is that all the tedious and confusing
boilerplate code that used to be required has gone. Without the distraction of all the
fluff required to make your code asynchronous to start with, you can concentrate on
the hard bits.
Licensed to André Santos <andrerfcsantos@gmail.com>

152 CHAPTER 5 Writing asynchronous code
 A word of warning: this topic is reasonably advanced. It has the unfortunate prop-
erties of being incredibly important (realistically, even entry-level developers need to
have a reasonable understanding of it) but also quite tricky to get your head around
to start with.

 This chapter focuses on asynchrony from a “regular developer” perspective, so you
can use async/await without needing to understand too much of the detail. Chapter 6
goes into a lot more of the complexity of the implementation. I feel you’ll be a better
developer if you understand what’s going on behind the scenes, but you can certainly
take what you’ll learn from this chapter and be productive with async/await before
diving deeper. Even within this chapter, you’ll be looking at the feature in an iterative
process, with more detail the further you go.

5.1 Introducing asynchronous functions
So far, I’ve claimed that C# 5 makes async easier, but I’ve given only a tiny description
of the features involved. Let’s fix that and then look at an example.

 C# 5 introduces the concept of an asynchronous function. This is always either a
method or an anonymous function that’s declared with the async modifier, and it
can use the await operator for await expressions.

NOTE As a reminder, an anonymous function is either a lambda expression
or an anonymous method.

The await expressions are the points where things get interesting from a language per-
spective: if the operation the expression is awaiting hasn’t completed yet, the asyn-
chronous function will return immediately, and it’ll then continue where it left off (in
an appropriate thread) when the value becomes available. The natural flow of not
executing the next statement until this one has completed is still maintained but with-
out blocking. I’ll break down that woolly description into more-concrete terms and
behavior later, but you need to see an example before it’s likely to make any sense.

5.1.1 First encounters of the asynchronous kind

Let’s start with something simple that demonstrates asynchrony in a practical way. We
often curse network latency for causing delays in our real applications, but latency
does make it easy to show why asynchrony is so important—particularly when using a
GUI framework such as Windows Forms. Our first example is a tiny Windows Forms
app that fetches the text of this book’s homepage and displays the length of the
HTML in a label.

public class AsyncIntro : Form
{
 private static readonly HttpClient client = new HttpClient();
 private readonly Label label;
 private readonly Button button;

Listing 5.1 Displaying a page length asynchronously
Licensed to André Santos <andrerfcsantos@gmail.com>

153Introducing asynchronous functions
 public AsyncIntro()
 {
 label = new Label
 {
 Location = new Point(10, 20),
 Text = "Length"
 };
 button = new Button
 {
 Location = new Point(10, 50),
 Text = "Click"
 };
 button.Click += DisplayWebSiteLength;
 AutoSize = true;
 Controls.Add(label);
 Controls.Add(button);
 }

 async void DisplayWebSiteLength(object sender, EventArgs e)
 {
 label.Text = "Fetching...";
 string text = await client.GetStringAsync(
 "http://csharpindepth.com");
 label.Text = text.Length.ToString();
 }

 static void Main()
 {
 Application.Run(new AsyncIntro());
 }
}

The first part of this code creates the UI and hooks up an event handler for the but-
ton in a straightforward way. It’s the DisplayWebSiteLength method that’s of inter-
est here. When you click the button, the text of the homepage is fetched, and the
label is updated to display the HTML length in characters.

NOTE I’m not disposing of the task returned by GetStringAsync, even
though Task implements IDisposable. Fortunately, you don’t need to dis-
pose of tasks in general. The background of this is somewhat complicated,
but Stephen Toub explains it in a blog post dedicated to the topic: http://
mng.bz/E6L3.

I could’ve written a smaller example program as a console app, but hopefully listing
5.1 makes a more convincing demo. In particular, if you remove the async and await
contextual keywords, change HttpClient to WebClient, and change GetString-
Async to DownloadString, the code will still compile and work, but the UI will
freeze while it fetches the contents of the page. If you run the async version (ideally,
over a slow network connection), you’ll see that the UI is responsive; you can still
move the window around while the web page is fetching.

Wires up
event handler

Starts fetching
the page

Updates
the UI

Entry point; just
runs the form
Licensed to André Santos <andrerfcsantos@gmail.com>

http://mng.bz/E6L3
http://mng.bz/E6L3

154 CHAPTER 5 Writing asynchronous code
NOTE HttpClient is in some senses the new and improved WebClient; it’s
the preferred HTTP API for .NET 4.5 onward, and it contains only asynchro-
nous operations.

Most developers are familiar with the two golden rules of threading in Windows
Forms development:

 Don’t perform any time-consuming action on the UI thread.
 Don’t access any UI controls other than on the UI thread.

You may regard Windows Forms as a legacy technology these days, but most GUI
frameworks have the same rules, and they’re easier to state than to obey. As an exer-
cise, you might want to try a few ways of creating code similar to listing 5.1 without
using async/await. For this extremely simple example, it’s not too bad to use the
event-based WebClient.DownloadStringAsync method, but as soon as more com-
plex flow control (error handling, waiting for multiple pages to complete, and so on)
comes into the equation, the legacy code quickly becomes hard to maintain, whereas
the C# 5 code can be modified in a natural way.

 At this point, the DisplayWebSiteLength method feels somewhat magical: you
know it does what you need it to, but you have no idea how. Let’s take it apart a little
bit and save the gory details for later.

5.1.2 Breaking down the first example

You’ll start by slightly expanding the method. In listing 5.1, I used await directly on
the return value of HttpClient.GetStringAsync, but you can separate the call
from the awaiting part:

async void DisplayWebSiteLength(object sender, EventArgs e)
{
 label.Text = "Fetching...";
 Task<string> task = client.GetStringAsync("http://csharpindepth.com");
 string text = await task;
 label.Text = text.Length.ToString();
}

Notice that the type of task is Task<string>, but the type of the await task expres-
sion is simply string. In this sense, the await operator performs an unwrapping oper-
ation—at least when the value being awaited is a Task<TResult>. (As you’ll see, you
can await other types, too, but Task<TResult> is a good starting point.) That’s one
aspect of await that doesn’t seem directly related to asynchrony but makes life easier.

 The main purpose of await is to avoid blocking while you wait for time-consuming
operations to complete. You may be wondering how this all works in the concrete terms
of threading. You’re setting label.Text at the start and end of the method, so it’s rea-
sonable to assume that both of those statements are executed on the UI thread, and yet
you’re clearly not blocking the UI thread while you wait for the web page to download.

 The trick is that the method returns as soon as it hits the await expression. Until
that point, it executes synchronously on the UI thread, like any other event handler
Licensed to André Santos <andrerfcsantos@gmail.com>

155Thinking about asynchrony
would. If you put a breakpoint on the first line and hit it in the debugger, you’ll see
that the stack trace shows that the button is busy raising its Click event, including the
Button.OnClick method. When you reach the await, the code checks whether the
result is already available, and if it’s not (which will almost certainly be the case), it
schedules a continuation to be executed when the web operation has completed. In
this example, the continuation executes the rest of the method, effectively jumping to
the end of the await expression. The continuation is executed in the UI thread, which
is what you need so that you can manipulate the UI.

DEFINITION A continuation is effectively a callback to be executed when an
asynchronous operation (or any Task) has completed. In an async method,
the continuation maintains the state of the method. Just as a closure main-
tains its environment in terms of variables, a continuation remembers the
point where it reached, so it can continue from there when it’s executed. The
Task class has a method specifically for attaching continuations: Task
.ContinueWith.

If you then put a breakpoint in the code after the await expression and run the code
again, then assuming that the await expression needed to schedule the continuation,
you’ll see that the stack trace no longer has the Button.OnClick method in it. That
method finished executing long ago. The call stack will now effectively be the bare
Windows Forms event loop with a few layers of async infrastructure on top. The call
stack will be similar to what you’d see if you called Control.Invoke from a back-
ground thread in order to update the UI appropriately, but it’s all been done for you.
At first it can be unnerving to notice the call stack change dramatically under your
feet, but it’s absolutely necessary for asynchrony to be effective.

 The compiler achieves all of this by creating a complicated state machine. That’s
an implementation detail you’ll look at in chapter 6, but for now you’re going to con-
centrate on the functionality that async/await provides. First, you need a more con-
crete description of what you’re trying to achieve and what the language specifies.

5.2 Thinking about asynchrony
If you ask a developer to describe asynchronous execution, chances are they’ll start
talking about multithreading. Although that’s an important part of typical uses of asyn-
chrony, it’s not required for asynchronous execution. To fully appreciate how the
async feature of C# 5 works, it’s best to strip away any thoughts of threading and go
back to basics.

5.2.1 Fundamentals of asynchronous execution

Asynchrony strikes at the very heart of the execution model that C# developers are
familiar with. Consider simple code like this:

Console.WriteLine("First");
Console.WriteLine("Second");
Licensed to André Santos <andrerfcsantos@gmail.com>

156 CHAPTER 5 Writing asynchronous code
You expect the first call to complete and then the second call to start. Execution flows
from one statement to the next, in order. But an asynchronous execution model
doesn’t work that way. Instead, it’s all about continuations. When you start doing some-
thing, you tell that operation what you want to happen when that operation has com-
pleted. You may have heard (or used) the term callback for the same idea, but that has
a broader meaning than the one we’re after here. In the context of asynchrony, I’m
using the term to refer to callbacks that preserve the state of the program rather than
arbitrary callbacks for other purposes, such as GUI event handlers.

 Continuations are naturally represented as delegates in .NET, and they’re typically
actions that receive the results of the asynchronous operation. That’s why, to use the
asynchronous methods in WebClient prior to C# 5, you’d wire up various events to
say what code should be executed in the case of success, failure, and so on. The trou-
ble is, creating all those delegates for a complicated sequence of steps ends up being
very complicated, even with the benefit of lambda expressions. It’s even worse when
you try to make sure that your error handling is correct. (On a good day, I can be rea-
sonably confident that the success paths of handwritten asynchronous code are cor-
rect. I’m typically less certain that it reacts the right way on failure.)

 Essentially, all that await in C# does is ask the compiler to build a continuation for
you. For an idea that can be expressed so simply, however, the consequences for read-
ability and developer serenity are remarkable.

 My earlier description of asynchrony was an idealized one. The reality in the task-
based asynchronous pattern is slightly different. Instead of the continuation being
passed to the asynchronous operation, the asynchronous operation starts and returns
a token you can use to provide the continuation later. It represents the ongoing oper-
ation, which may have completed before it has returned to the calling code or may
still be in progress. That token is then used whenever you want to express this idea: I
can’t proceed any further until this operation has completed. Typically, the token is in
the form of a Task or Task<TResult>, but it doesn’t have to be.

NOTE The token described here isn’t the same as a cancellation token,
although both have the same emphasis on the fact that you don’t need to
know what’s going on behind the scenes; you only need to know what the
token allows you to do.

The execution flow in an asynchronous method in C# 5 typically follows these lines:

1 Do some work.
2 Start an asynchronous operation and remember the token it returns.
3 Possibly do some more work. (Often, you can’t make any further progress until

the asynchronous operation has completed, in which case this step is empty.)
4 Wait for the asynchronous operation to complete (via the token).
5 Do some more work.
6 Finish.
Licensed to André Santos <andrerfcsantos@gmail.com>

157Thinking about asynchrony
If you didn’t care about exactly what the wait part meant, you could do all of this in C#
4. If you’re happy to block until the asynchronous operation completes, the token will
normally provide you some way of doing so. For a Task, you could simply call Wait().
At that point, though, you’re taking up a valuable resource (a thread) and not doing
any useful work. It’s a little like phoning for a delivery pizza and then standing at your
front door until it arrives. What you really want to do is get on with something else and
ignore the pizza until it arrives. That’s where await comes in.

 When you wait for an asynchronous operation, you’re saying “I’ve gone as far as I
can go for now. Keep going when the operation has completed.” But if you’re not
going to block the thread, what can you do? Very simply, you can return right then
and there. You’ll continue asynchronously yourself. And if you want your caller to
know when your asynchronous method has completed, you’ll pass a token back to the
caller, which they can block on if they want or (more likely) use with another continu-
ation. Often, you’ll end up with a whole stack of asynchronous methods calling each
other; it’s almost as if you go into an “async mode” for a section of code. Nothing in
the language states that it has to be done that way, but the fact that the same code that
consumes asynchronous operations also behaves as an asynchronous operation cer-
tainly encourages it.

5.2.2 Synchronization contexts

Earlier I mentioned that one of the golden rules of UI code is that you mustn’t update
the user interface unless you’re on the right thread. In listing 5.1, which checked the
length of a web page asynchronously, you needed to ensure that the code after the
await expression executed on the UI thread. Asynchronous functions get back to the
right thread by using SynchronizationContext, a class that’s existed since .NET 2.0
and is used by other components such as BackgroundWorker. A Synchronization-
Context generalizes the idea of executing a delegate on an appropriate thread; its
Post (asynchronous) and Send (synchronous) messages are similar to Control
.BeginInvoke and Control.Invoke in Windows Forms.

 Different execution environments use different contexts; for example, one context
may let any thread from the thread pool execute the action it’s given. More contextual
information exists than in the synchronization context, but if you start wondering how
asynchronous methods manage to execute exactly where you want them to, it’s the
synchronization context that you need to focus on.

 For more information on SynchronizationContext, read Stephen Cleary’s
MSDN magazine article on the topic (http://mng.bz/5cDw). In particular, pay careful
attention if you’re an ASP.NET developer; the ASP.NET context can easily trap unwary
developers into creating deadlocks within code that looks fine. The story changes
slightly for ASP.NET Core, but Stephen has another blog post covering that: http://
mng.bz/5YrO.
Licensed to André Santos <andrerfcsantos@gmail.com>

http://mng.bz/5cDw
http://mng.bz/5YrO
http://mng.bz/5YrO

158 CHAPTER 5 Writing asynchronous code
With the theory out of the way, let’s take a closer look at the concrete details of asyn-
chronous methods. Asynchronous anonymous functions fit into the same mental
model, but it’s much easier to talk about asynchronous methods.

5.2.3 Modeling asynchronous methods

I find it useful to think about asynchronous methods as shown in figure 5.1.

Figure 5.1 Modeling asynchronous boundaries

Here you have three blocks of code (the methods) and two boundary types (the
method return types). As a simple example, in a console-based version of our page-
length fetching application, you might have code like the following.

static readonly HttpClient client = new HttpClient();

static async Task<int> GetPageLengthAsync(string url)
{
 Task<string> fetchTextTask = client.GetStringAsync(url);
 int length = (await fetchTextTask).Length;
 return length;
}

Use of Task.Wait() and Task.Result in examples
I’ve used Task.Wait() and Task.Result in some of the sample code because
it leads to simple examples. It’s usually safe to do so in a console application
because in that case there’s no synchronization context; continuations for async
methods will always execute in the thread pool.

In real-world applications, you should take great care using these methods. They both
block until they complete, which means if you call them from a thread that a contin-
uation needs to execute on, you can easily deadlock your application.

Listing 5.2 Retrieving a page length in an asynchronous method

Calling method

Task, Task<TResult>
or void (C# 5)

or custom task type (C# 7)

Async method

Any awaitable pattern
implementation

Asynchronous
operation
Licensed to André Santos <andrerfcsantos@gmail.com>

159Thinking about asynchrony
static void PrintPageLength()
{
 Task<int> lengthTask =
 GetPageLengthAsync("http://csharpindepth.com");
 Console.WriteLine(lengthTask.Result);
}

Figure 5.2 shows how the concrete details in listing 5.2 map to the concepts in
figure 5.1.

Figure 5.2 Applying the details of listing 5.2 to the general pattern shown in figure 5.1

You’re mainly interested in the GetPageLengthAsync method, but I’ve included
PrintPageLength so you can see how the methods interact. In particular, you defi-
nitely need to know about the valid types at the method boundaries. I’ll repeat this
diagram in various forms through the chapter.

 You’re finally ready to look at writing async methods and the way they’ll behave.
There’s a lot to cover here, as what you can do and what happens when you do it
blend together to a large extent.

 There are only two new pieces of syntax: async is a modifier used when declaring
an asynchronous method, and the await operator is used to consume asynchronous
operations. But following the way information is transferred between parts of your
program gets complicated quickly, especially when you have to consider what hap-
pens when things go wrong. I’ve tried to separate out the different aspects, but your
code will be dealing with everything at once. If you find yourself asking “But what
about…?” while reading this section, keep reading; chances are your question will be
answered soon.

 The next three sections look at an asynchronous method in three stages:

 Declaring the async method
 Using the await operator to asynchronously wait for operations to complete
 Returning a value when your method is complete

Async method
result: Task<int>

Async operation
result: Task<string>

Asynchronous operation:
HttpClient.GetStringAsync

Async method:
GetPageLengthAsync

Calling method:
Print PageLength
Licensed to André Santos <andrerfcsantos@gmail.com>

160 CHAPTER 5 Writing asynchronous code
Figure 5.3 shows how these sections fit into our conceptual model.

Figure 5.3 Demonstrating how sections 5.3, 5.4, and 5.5 fit into the
conceptual model of asynchrony

Let’s start with the method declaration itself; that’s the easiest bit.

5.3 Async method declarations
The syntax for an async method declaration is exactly the same as for any other
method, except it has to include the async contextual keyword. This can appear any-
where before the return type. All of these are valid:

public static async Task<int> FooAsync() { ... }
public async static Task<int> FooAsync() { ... }
async public Task<int> FooAsync() { ... }
public async virtual Task<int> FooAsync() { ... }

My preference is to keep the async modifier immediately before the return type, but
there’s no reason you shouldn’t come up with your own convention. As always, discuss
it with your team and try to be consistent within one codebase.

 Now, the async contextual keyword has a little secret: the language designers
didn’t need to include it at all. In the same way the compiler goes into a sort of itera-
tor block mode when you try to use yield return or yield break in a method with
a suitable return type, the compiler could have spotted the use of await inside a
method and used that to go into async mode. But I’m pleased that async is required,
because it makes it much easier to read code written using asynchronous methods. It
sets your expectations immediately, so you’re actively looking for await expressions,
and you can actively look for any blocking calls that should be turned into an async
call and an await expression.

 The fact that the async modifier has no representation in the generated code is
important, though. As far as the calling method is concerned, it’s a normal method
that happens to return a task. You can change an existing method (with an appropriate

Calling method

Async method
result type

Async method

Awaitable
pattern

Section 5.3: Declaration
Section 5.5: Implementation

Section 5.4: Awaiting

Asynchronous
operation
Licensed to André Santos <andrerfcsantos@gmail.com>

161Async method declarations
signature) to use async, or you could go in the other direction; it’s a compatible
change in terms of both source and binary. The fact that it’s a detail of the implemen-
tation of the method means that you can’t declare an abstract method or a method in
an interface using async. It’s perfectly possible for there to be an interface specifying
a method with a return type of Task<int>; one implementation of that interface can
use async/await while another implementation uses a regular method.

5.3.1 Return types from async methods

Communication between the caller and the async method is effectively in terms of
the value returned. In C# 5, asynchronous functions are limited to the following
return types:

 void
 Task
 Task<TResult> (for some type TResult, which could itself be a type

parameter)

In C# 7, this list is expanded to include task types. You’ll come back to those in section
5.8 and then again in chapter 6.

 The .NET 4 Task and Task<TResult> types both represent an operation that may
not have completed yet; Task<TResult> derives from Task. The difference between
the two is that Task<TResult> represents an operation that returns a value of type
TResult, whereas Task need not produce a result at all. It’s still useful to return a
Task, though, because it allows the calling code to attach its own continuations to the
returned task, detect when the task has failed or completed, and so on. In some cases,
you can think of Task as being like a Task<void> type, if such a thing were valid.

NOTE F# developers can be justifiably smug about the Unit type at this
point, which is similar to void but is a real type. The disparity between Task
and Task<TResult> can be frustrating. If you could use void as a type argu-
ment, you wouldn’t need the Action family of delegates either;
Action<string> is equivalent to Func<string, void>, for example.

The ability to return void from an async method is designed for compatibility with
event handlers. For example, you might have a UI button click handler like this:

private async void LoadStockPrice(object sender, EventArgs e)
{
 string ticker = tickerInput.Text;
 decimal price = await stockPriceService.FetchPriceAsync(ticker);
 priceDisplay.Text = price.ToString("c");
}

This is an asynchronous method, but the calling code (the button OnClick method or
whatever piece of framework code is raising the event) doesn’t care. It doesn’t need to
know when you’ve finished handling the event—when you’ve loaded the stock price
and updated the UI. It simply calls the event handler that it’s been given. The fact that
Licensed to André Santos <andrerfcsantos@gmail.com>

162 CHAPTER 5 Writing asynchronous code
the code generated by the compiler will end up with a state machine attaching a con-
tinuation to whatever is returned by FetchPriceAsync is an implementation detail.

 You can subscribe to an event with the preceding method as if it were any other
event handler:

loadStockPriceButton.Click += LoadStockPrice;

After all (and yes, I’m laboring this deliberately), it’s just a normal method as far as call-
ing code is concerned. It has a void return type and parameters of type object and
EventArgs, which makes it suitable as the action for an EventHandler delegate
instance.

WARNING Event subscription is pretty much the only time I’d recommend
returning void from an asynchronous method. Any other time you don’t
need to return a specific value, it’s best to declare the method to return Task.
That way, the caller is able to await the operation completing, detect failures,
and so on.

Although the return type of async methods is fairly tightly restricted, most other aspects
are as normal: async methods can be generic, static or nonstatic, and specify any of the
regular access modifiers. Restrictions exist on the parameters you can use, however.

5.3.2 Parameters in async methods

None of the parameters in an async method can use the out or ref modifiers. This
makes sense because those modifiers are for communicating information back to the
calling code; some of the async method may not have run by the time control returns
to the caller, so the value of the by-reference parameter might not have been set.
Indeed, it could get stranger than that: imagine passing a local variable as an argu-
ment for a ref parameter; the async method could end up trying to set that variable
after the calling method had already completed. It doesn’t make a lot of sense to try to
do this, so the compiler prohibits it. Additionally, pointer types can’t be used as async
method parameter types.

 After you’ve declared the method, you can start writing the body and awaiting other
asynchronous operations. Let’s look at how and where you can use await expressions.

5.4 Await expressions
The whole point of declaring a method with the async modifier is to use await expres-
sions in that method. Everything else about the method looks pretty normal: you can
use all kinds of control flow—loops, exceptions, using statements, anything. So
where can you use an await expression, and what does it do?

 The syntax for an await expression is simple: it’s the await operator followed by
another expression that produces a value. You can await the result of a method call, a
variable, a property. It doesn’t have to be a simple expression either. You can chain
method calls together and await the result:

int result = await foo.Bar().Baz();
Licensed to André Santos <andrerfcsantos@gmail.com>

163Await expressions
The precedence of the await operator is lower than that of the dot operator, so this
code is equivalent to the following:

int result = await (foo.Bar().Baz());

Restrictions limit which expressions you can await, though. They have to be awaitable,
and that’s where the awaitable pattern comes in.

5.4.1 The awaitable pattern

The awaitable pattern is used to determine types that can be used with the await oper-
ator. Figure 5.4 is a reminder that I’m talking about the second boundary from figure
5.1: how the async method interacts with another asynchronous operation. The await-
able pattern is a way of codifying what we mean by an asynchronous operation.

Figure 5.4 The awaitable pattern enables async methods to asynchronously
wait for operations to complete

You might expect this to be expressed in terms of interfaces in the same way the com-
piler requires a type to implement IDisposable in order to support the using state-
ment. Instead, it’s based on a pattern. Imagine that you have an expression of type T
that you want to await. The compiler performs the following checks:

 T must have a parameterless GetAwaiter() instance method, or there must be
an extension method accepting a single parameter of type T. The GetAwaiter
method has to be nonvoid. The return type of the method is called the awaiter type.

 The awaiter type must implement the System.Runtime.INotifyCompletion
interface. That interface has a single method: void OnCompleted (Action).

 The awaiter type must have a readable instance property called IsCompleted
of type bool.

 The awaiter type must have a nongeneric parameterless instance method called
GetResult.

 The members listed previously don’t have to be public, but they need to be
accessible from the async method you’re trying to await the value from. (There-
fore, it’s possible that you can await a value of a particular type from some code
but not in all code. That’s highly unusual, though.)

Calling method

Task, Task<TResult>
or void (C# 5)

or custom task type (C# 7)

Async method

Any awaitable pattern
implementation

Asynchronous
operation
Licensed to André Santos <andrerfcsantos@gmail.com>

164 CHAPTER 5 Writing asynchronous code
If T passes all of those checks, congratulations—you can await a value of type T! The
compiler needs one more piece of information, though, to determine what the type
of the await expression should be. That’s determined by the return type of the Get-
Result method of the awaiter type. It’s fine for it to be a void method, in which case
the await expression is classified as an expression with no result, like an expression
that calls a void method directly. Otherwise, the await expression is classified as pro-
ducing a value of the same type as the return type of GetResult.

 As an example, let’s consider the static Task.Yield() method. Unlike most other
methods on Task, the Yield() method doesn’t return a task itself; it returns a
YieldAwaitable. Here’s a simplified version of the types involved:

public class Task
{
 public static YieldAwaitable Yield();
}

public struct YieldAwaitable
{
 public YieldAwaiter GetAwaiter();

 public struct YieldAwaiter : INotifyCompletion
 {
 public bool IsCompleted { get; }
 public void OnCompleted(Action continuation);
 public void GetResult();
 }
}

As you can see, YieldAwaitable follows the awaitable pattern described previously.
Therefore, this is valid:

public async Task ValidPrintYieldPrint()
{
 Console.WriteLine("Before yielding");
 await Task.Yield();
 Console.WriteLine("After yielding");
}

But the following is invalid, because it tries to use the result of awaiting a Yield-
Awaitable:

public async Task InvalidPrintYieldPrint()
{
 Console.WriteLine("Before yielding");
 var result = await Task.Yield();
 Console.WriteLine("After yielding");
}

The middle line of InvalidPrintYieldPrint is invalid for exactly the same reason
that it would be invalid to write this:

var result = Console.WriteLine("WriteLine is a void method");

Valid

Invalid; this await expression
doesn’t produce a value.
Licensed to André Santos <andrerfcsantos@gmail.com>

165Await expressions
No result is produced, so you can’t assign it to a variable.
 Unsurprisingly, the awaiter type for Task has a GetResult method with a void

return type, whereas the awaiter type for Task<TResult> has a GetResult method
returning TResult.

You’ll see more details about exactly how the members in the awaitable pattern are
used in section 5.6, when you consider the execution flow of asynchronous methods.
You’re not quite done with await expressions, though; a few restrictions exist.

5.4.2 Restrictions on await expressions

Like yield return, restrictions limit where you can use await expressions. The most
obvious restriction is that you can use them only in async methods and async anony-
mous functions (which you’ll look at in section 5.7). Even within async methods, you
can’t use the await operator within an anonymous function unless that’s async, too.

 The await operator also isn’t allowed within an unsafe context. That doesn’t
mean you can’t use unsafe code within an async method; you just can’t use the await
operator within that part. The following listing shows a contrived example in which a
pointer is used to iterate over the characters in a string to find the total of the UTF-16
code units in that string. It doesn’t do anything truly useful, but it demonstrates the
use of an unsafe context within an async method.

static async Task DelayWithResultOfUnsafeCode(string text)
{
 int total = 0;
 unsafe
 {
 fixed (char* textPointer = text)
 {
 char* p = textPointer;

Historical importance of extension methods
The fact that GetAwaiter can be an extension method is of more historical than
contemporary importance. C# 5 was released in the same time frame as .NET 4.5,
which introduced the GetAwaiter methods into Task and Task<TResult>. If
GetAwaiter had to be a genuine instance method, that would’ve stranded develop-
ers who were tied to .NET 4.0. But with support for extension methods, Task and
Task<TResult> could be async/await-enabled by using a NuGet package to pro-
vide those extension methods separately. This also meant that the community could
test prereleases of the C# 5 compiler without testing prereleases of .NET 4.5.

In code targeting modern frameworks in which all the relevant GetAwaiter methods
are already present, you’ll rarely need to use the ability to make an existing type
awaitable via extension methods.

Listing 5.3 Using unsafe code in an async method

It’s fine to have an unsafe
context in an async method.
Licensed to André Santos <andrerfcsantos@gmail.com>

166 CHAPTER 5 Writing asynchronous code
 while (*p != 0)
 {
 total += *p;
 p++;
 }
 }
 }
 Console.WriteLine("Delaying for " + total + "ms");
 await Task.Delay(total);
 Console.WriteLine("Delay complete");
}

You also can’t use the await operator within a lock. If you ever find yourself wanting
to hold a lock while an asynchronous operation completes, you should redesign your
code. Don’t work around the compiler restriction by calling Monitor.TryEnter and
Monitor.Exit manually with a try/finally block; change your code so you don’t
need the lock during the operation. If this is really, really awkward in your situation,
consider using SemaphoreSlim instead, with its WaitAsync method.

 The monitor used by a lock statement can be released only by the same thread that
originally acquired it, which goes against the distinct possibility that the thread execut-
ing the code before an await expression will be different from the one executing the
code after it. Even if the same thread is used (for example, because you’re in a GUI syn-
chronization context), some other code may well have executed on the same thread
between the start and end of the asynchronous operation, and that other code would’ve
been able to enter a lock statement for the same monitor, which almost certainly isn’t
what you intended. Basically, lock statements and asynchrony don’t go well together.

 There’s one final set of contexts in which the await operator was invalid in C# 5
but is valid from C# 6 onward:

 Any try block with a catch block
 Any catch block
 Any finally block

It’s always been okay to use the await operator in a try block that has only a finally
block, which means it’s always been okay to use await in a using statement. The C#
design team didn’t figure out how to safely and reliably include await expressions in the
contexts listed previously before C# 5 shipped. This was occasionally inconvenient, and
the team worked out how to build the appropriate state machine while implementing
C# 6, so the restriction is lifted there.

 You now know how to declare an async method and how the await operator can
be used within it. What about when you’ve completed your work? Let’s look at how val-
ues are returned back to the calling code.

5.5 Wrapping of return values
We’ve looked at how to declare the boundary between the calling code and the async
method and how to wait for any asynchronous operations within the async method.

But, the await expression
can’t be inside it.
Licensed to André Santos <andrerfcsantos@gmail.com>

167Wrapping of return values
Now let’s look at how return statements are used to implement that first boundary in
terms of returning a value to the calling code; see figure 5.5.

 You’ve already seen an example that returned data, but let’s look at it again, this
time focusing on the return aspect alone. Here’s the relevant part of listing 5.2:

static async Task<int> GetPageLengthAsync(string url)
{
 Task<string> fetchTextTask = client.GetStringAsync(url);
 int length = (await fetchTextTask).Length;
 return length;
}

You can see that the type of length is int, but the return type of the method is
Task<int>. The generated code takes care of the wrapping for you, so the caller gets
a Task<int>, which will eventually have the value returned from the method when it
completes. A method returning a nongeneric Task is like a normal void method: it
doesn’t need a return statement at all, and any return statements it does have must be
simply return rather than trying to specify a value. In either case, the task will also
propagate any exception thrown within the async method. (You’ll look at exceptions
in more detail in section 5.6.5.)

 Hopefully, by now you should have a good intuition about why this wrapping is
necessary; the method will almost certainly return to the caller before it hits the
return statement, and it has to propagate the information to that caller somehow. A
Task<TResult> (often known as a future in computer science) is the promise of a
value—or an exception—at a later time.

 As with normal execution flow, if the return statement occurs within the scope of
a try block that has an associated finally block (including when all of this happens
because of a using statement), the expression used to compute the return value is
evaluated immediately, but it doesn’t become the result of the task until everything
has been cleaned up. If the finally block throws an exception, you don’t get a task
that both succeeds and fails; the whole thing will fail.

 To reiterate a point I made earlier, it’s the combination of automatic wrapping and
unwrapping that makes the async feature work so well with composition; async methods

Calling method

Async method code
returns a simple value;
caller receives a task

Async method

Any awaitable pattern
implementation

Asynchronous
operation

Figure 5.5 Returning a result from an async method to its caller
Licensed to André Santos <andrerfcsantos@gmail.com>

168 CHAPTER 5 Writing asynchronous code
can consume the results of async methods easily, so you can build up complex systems
from lots of small blocks. You can think of this as being a bit like LINQ: you write oper-
ations on each element of a sequence in LINQ, and the wrapping and unwrapping
means you can apply those operations to sequences and get sequences back. In an async
world, you rarely need to explicitly handle a task; instead, you await the task to con-
sume it, and produce a result task automatically as part of the mechanism of the async
method. Now that you know what an asynchronous method looks like, it’s easier to give
examples to demonstrate the execution flow.

5.6 Asynchronous method flow
You can think about async/await at multiple levels:

 You can simply expect that awaiting will do what you want without defining
exactly what that means.

 You can reason about how the code will execute, in terms of what happens
when and in which thread, but without understanding how that’s achieved.

 You can dig deeply into the infrastructure that makes all of this happen.

So far, we’ve mostly been thinking at the first level, dipping down to the second occa-
sionally. This section focuses on the second level, effectively looking at what the lan-
guage promises. We’ll leave the third bullet to the next chapter, where you’ll see what
the compiler is doing under the covers. (Even then, you could always go further; this
book doesn’t talk about anything below the IL level. We don’t get into the operating
system or hardware support for asynchrony and threading.)

 For the vast majority of the time when you’re developing, it’s fine to switch
between the first two levels, depending on your context. Unless I’m writing code that’s
coordinating multiple operations, I rarely need to even think at the second level of
detail. Most of the time, I’m happy to just let things work. What’s important is that you
can think about the details when you need to.

5.6.1 What is awaited and when?

Let’s start by simplifying things a bit. Sometimes await is used with the result of a
chained method call or occasionally a property, like this:

string pageText = await new HttpClient().GetStringAsync(url);

This makes it look as if await can modify the meaning of the whole expression. In real-
ity, await always operates on only a single value. The preceding line is equivalent to this:

Task<string> task = new HttpClient().GetStringAsync(url);
string pageText = await task;

Similarly, the result of an await expression can be used as a method argument or
within another expression. Again, it helps if you can mentally separate out the await-
specific part from everything else.
Licensed to André Santos <andrerfcsantos@gmail.com>

169Asynchronous method flow
 Imagine you have two methods, GetHourlyRateAsync() and GetHoursWorked-
Async(), returning a Task<decimal> and a Task<int>, respectively. You might have
this complicated statement:

AddPayment(await employee.GetHourlyRateAsync() *
 await timeSheet.GetHoursWorkedAsync(employee.Id));

The normal rules of C# expression evaluation apply, and the left operand of the *
operator has to be completely evaluated before the right operand is evaluated, so the
preceding statement can be expanded as follows:

Task<decimal> hourlyRateTask = employee.GetHourlyRateAsync();
decimal hourlyRate = await hourlyRateTask;
Task<int> hoursWorkedTask = timeSheet.GetHoursWorkedAsync(employee.Id);
int hoursWorked = await hoursWorkedTask;
AddPayment(hourlyRate * hoursWorked);

How you write the code is a different matter. If you find the single statement version
easier to read, that’s fine; if you want to expand it all out, you’ll end up with more
code, but it may be simpler to understand and debug. You could decide to use a third
form that looks similar but isn’t quite the same:

Task<decimal> hourlyRateTask = employee.GetHourlyRateAsync();
Task<int> hoursWorkedTask = timeSheet.GetHoursWorkedAsync(employee.Id);
AddPayment(await hourlyRateTask * await hoursWorkedTask);

I find that this is the most readable form, and it has potential performance benefits,
too. You’ll come back to this example in section 5.10.2.

 The key takeaway from this section is that you need to be able to work out what’s
being awaited and when. In this case, the tasks returned from GetHourlyRateAsync
and GetHoursWorkedAsync are being awaited. In every case, they’re being awaited
before the call to AddPayment is executed, which makes sense, because you need the
intermediate results so you can multiply them together and pass the result of that mul-
tiplication as an argument. If this were using synchronous calls, all of this would be
obvious; my aim is to demystify the awaiting part. Now that you know how to simplify
complex code into the value you’re awaiting and when you’re awaiting it, you can
move on to what happens when you’re in the awaiting part itself.

5.6.2 Evaluation of await expressions

When execution reaches the await expression, you have two possibilities: either the
asynchronous operation you’re awaiting has already completed or it hasn’t. If the
operation has already completed, the execution flow is simple: it keeps going. If the
operation failed and it captured an exception to represent that failure, the exception
is thrown. Otherwise, any result from the operation is obtained (for example, extract-
ing the string from a Task<string>) and you move on to the next part of the
program. All of this is done without any thread context switching or attaching contin-
uations to anything.
Licensed to André Santos <andrerfcsantos@gmail.com>

170 CHAPTER 5 Writing asynchronous code
 In the more interesting scenario, the asynchronous operation is still ongoing. In
this case, the method waits asynchronously for the operation to complete and then
continues in an appropriate context. This asynchronous waiting really means the
method isn’t executing at all. A continuation is attached to the asynchronous opera-
tion, and the method returns. The async infrastructure makes sure that the continua-
tion executes on the right thread: typically, either a thread-pool thread (where it
doesn’t matter which thread is used) or the UI thread where that makes sense. This
depends on the synchronization context (discussed in section 5.2.2) and can also be
controlled using Task.ConfigureAwait, which we’ll talk about in section 5.10.1.

From the developer’s point of view, this feels like the method is paused while the asyn-
chronous operation completes. The compiler makes sure that all the local variables
used within the method have the same values as they did before the continuation, as it
does with iterator blocks.

 Let’s look at an example of the two cases with a small console application that uses
a single asynchronous method awaiting two tasks. Task.FromResult always returns a
completed task, whereas Task.Delay returns a task that completes after the specified
delay.

static void Main()
{
 Task task = DemoCompletedAsync();
 Console.WriteLine("Method returned");
 task.Wait();
 Console.WriteLine("Task completed");
}

static async Task DemoCompletedAsync()
{
 Console.WriteLine("Before first await");
 await Task.FromResult(10);

Returning vs. completing
Possibly the hardest part of describing asynchronous behavior is talking about when
the method returns (either to the original caller or to whatever called a continuation)
and when the method completes. Unlike most methods, an asynchronous method
can return multiple times—effectively, when it has no more work it can do for the
moment.

To return to our earlier pizza delivery analogy, if you have an EatPizzaAsync
method that involves calling the pizza company to place an order, meeting the deliv-
ery person, waiting for the pizza to cool down a bit, and then finally eating it, the
method might return after each of the first three parts, but it won’t complete until the
pizza is eaten.

Listing 5.4 Awaiting completed and noncompleted tasks

Calls the async
method

Blocks until the
task completes

Awaits a
completed task
Licensed to André Santos <andrerfcsantos@gmail.com>

171Asynchronous method flow
 Console.WriteLine("Between awaits");
 await Task.Delay(1000);
 Console.WriteLine("After second await");
}

The output from listing 5.4 is as follows:

Before first await
Between awaits
Method returned
After second await
Task completed

The important aspects of the ordering are as follows:

 The async method doesn’t return when awaiting the completed task; the
method keeps executing synchronously. That’s why you see the first two lines
with nothing between.

 The async method does return when awaiting the delay task. That’s why the
third line is Method returned, printed in the Main method. The async
method can tell that the operation it’s waiting for (the delay task) hasn’t com-
pleted yet, so it returns to avoid blocking.

 The task returned from the async method completes only when the method
completes. That’s why Task completed is printed after After second await.

I’ve attempted to capture the await expression flow in figure 5.6, although classic flow-
charts weren’t really designed with asynchronous behavior in mind.

 You could think of the dotted line as
being another line coming into the top
of the flowchart as an alternative. Note
that I’m assuming the target of the await
expression has a result. If you’re awaiting
a plain Task or something similar, fetch
result really means check that the opera-
tion completed successfully.

 It’s worth stopping to think briefly
about what it means to return from an
asynchronous method. Again, two possi-
bilities exist:

 This is the first await expression
you’ve had to wait for, so you still
have the original caller somewhere
in your stack. (Remember that
until you really need to wait, the
method executes synchronously.)

 You’ve already awaited something
else that hadn’t already completed,

Awaits a
noncompleted task

Evaluate expression

Fetch result

Execution continues

(On encountering an
await expression)

Yes

NoOperation
completed
already?

Attach continuation

Return

Resume via
continuation

Figure 5.6 User-visible model of await handling
Licensed to André Santos <andrerfcsantos@gmail.com>

172 CHAPTER 5 Writing asynchronous code
so you’re in a continuation that has been called by something. Your call stack will
almost certainly have changed significantly from the one you’d have seen when
you first entered the method.

In the first case, you’ll usually end up returning a Task or Task<TResult> to the
caller. Obviously, you don’t have the result of the method yet; even if there’s no value
to return as such, you don’t know whether the method will complete without excep-
tions. Because of this, the task you’ll be returning has to be a noncompleted one.

 In the latter case, the something calling you back depends on your context. For
example, in a Windows Forms UI, if you started your async method on the UI thread
and didn’t deliberately switch away from it, the whole method would execute on the
UI thread. For the first part of the method, you’ll be in some event handler or other—
whatever kicked off the async method. Later, however, you’d be called back by the
Windows Forms internal machinery (usually known as the message pump) pretty
directly, as if you were using Control.BeginInvoke(continuation). Here, the
calling code—whether it’s the Windows Forms message pump, part of the thread-pool
machinery, or something else—doesn’t care about your task.

 As a reminder, until you hit the first truly asynchronous await expression, the
method executes entirely synchronously. Calling an asynchronous method isn’t like
firing up a new task in a separate thread, and it’s up to you to make sure that you
always write async methods so they return quickly. Admittedly, it depends on the con-
text in which you’re writing code, but you should generally avoid performing long-
running blocking work in an async method. Separate it out into another method that
you can create a Task for.

 I’d like to briefly revisit the case where the value you’re awaiting is already com-
plete. You might be wondering why an operation that completes immediately would
be represented with asynchrony in the first place. It’s a little bit like calling the
Count() method on a sequence in LINQ: in the general case, you may need to iterate
over every item in the sequence, but in some situations (such as when the sequence
turns out to be a List<T>), an easy optimization is available. It’s useful to have a sin-
gle abstraction that covers both scenarios, but without paying an execution-time price.

 As a real-world example in the asynchronous API case, consider reading asynchro-
nously from a stream associated with a file on disk. All the data you want to read may
already have been fetched from disk into memory, perhaps as part of previous
ReadAsync call request, so it makes sense to use it immediately without going
through all the other async machinery. As another example, you may have a cache
within your architecture; that can be transparent if you have an asynchronous opera-
tion that fetches a value either from the in-memory cache (returning a completed
task) or hits storage (returning a noncompleted task that’ll complete when the stor-
age call completes). Now that you know the basics of the flow, you can see where the
awaitable pattern fits into the jigsaw.
Licensed to André Santos <andrerfcsantos@gmail.com>

173Asynchronous method flow
5.6.3 The use of awaitable pattern members

In section 5.4.1, I described the awaitable pattern that a type has to implement in order
for you to be able to await an expression of that type. You can now map the different
bits of the pattern onto the behavior you’re trying to achieve. Figure 5.7 is the same as
figure 5.6 but expanded a little and reworded to use the awaitable pattern instead of
general descriptions.

 When it’s written like this, you might be wondering what all the fuss is about; why is
it worth having language support at all? Attaching a continuation is more complex than
you might imagine, though. In simple cases, when the control flow is entirely linear (do
some work, await something, do some more work, await something else), it’s pretty easy
to imagine what the continuation might look like as a lambda expression, even if it
wouldn’t be pleasant. As soon as the code contains loops or conditions, however, and

Fetch awaiter
awaitable.GetAwaiter()

Attach continuation
awaiter.OnCompleted(...)

Fetch result
awaiter.GetResult()

Execution continues

Evaluate expression
(awaitable)

Remember awaiter
(we’ll need it later)

(On encountering an
await expression)

True

FalseReturn value of
awaiter.IsCompleted

Return

Resume via
continuation

Figure 5.7 Await handling via the awaitable pattern
Licensed to André Santos <andrerfcsantos@gmail.com>

174 CHAPTER 5 Writing asynchronous code
you want to keep the code within one method, life becomes much more complicated.
It’s here that the benefits of async/await really kick in. Although you could argue that
the compiler is merely applying syntactic sugar, there’s an enormous difference in read-
ability between manually creating the continuations and getting the compiler to do so
for you.

 So far, I’ve described the happy path where all the values we await complete suc-
cessfully. What happens on failure?

5.6.4 Exception unwrapping

The idiomatic way of representing failures in .NET is via exceptions. Like returning a
value to the caller, exception handling requires extra support from the language.
When you await an asynchronous operation that’s failed, it may have failed a long time
ago on a completely different thread. The regular synchronous way of propagating
exceptions up the stack doesn’t occur naturally. Instead, the async/await infrastruc-
ture takes steps to make the experience of handling asynchronous failures as similar
as possible to synchronous failures. If you think of failure as another kind of result, it
makes sense that exceptions and return values are handled similarly. You’ll look at
how exceptions are propagated out of an asynchronous method in section 5.6.5, but
before that, you’ll see what happens when you await a failed operation.

 In the same way that the GetResult() method of an awaiter is meant to fetch the
return value if there is one, it’s also responsible for propagating any exceptions from
the asynchronous operation back to the method. This isn’t quite as simple as it sounds,
because in an asynchronous world, a single Task can represent multiple operations,
leading to multiple failures. Although other awaitable pattern implementations are
available, it’s worth considering Task and Task<TResult> specifically, as they’re the
types you’re likely to be awaiting for the vast majority of the time.

 Task and Task<TResult> indicate failures in multiple ways:

 The Status of a task becomes Faulted when the asynchronous operation has
failed (and IsFaulted returns true).

 The Exception property returns an AggregateException that contains all
the (potentially multiple) exceptions that caused the task to fail or null if the
task isn’t faulted.

 The Wait() method throws an AggregateException if the task ends up in a
faulted state.

 The Result property of Task<TResult> (which also waits for completion)
likewise throws an AggregateException.

Additionally, tasks support the idea of cancellation via CancellationTokenSource
and CancellationToken. If a task is canceled, the Wait() method and Result prop-
erties will throw an AggregateException containing an OperationCanceled-
Exception (in practice, a TaskCanceledException that derives from Operation-
CanceledException), but the status becomes Canceled instead of Faulted.
Licensed to André Santos <andrerfcsantos@gmail.com>

175Asynchronous method flow
 When you await a task, if it’s either faulted or canceled, an exception will be
thrown but not the AggregateException. Instead, for convenience (in most cases),
the first exception within the AggregateException is thrown. In most cases, this is
what you want. It’s in the spirit of the async feature to allow you to write asynchronous
code that looks much like the synchronous code you’d otherwise write. For example,
consider the following listing, which tries to fetch one URL at a time until either one
of them succeeds or you run out of URLs to try.

async Task<string> FetchFirstSuccessfulAsync(IEnumerable<string> urls)
{
 var client = new HttpClient();
 foreach (string url in urls)
 {
 try
 {
 return await client.GetStringAsync(url);
 }
 catch (HttpRequestException exception)
 {
 Console.WriteLine("Failed to fetch {0}: {1}",
 url, exception.Message);
 }
 }
 throw new HttpRequestException("No URLs succeeded");
}

For the moment, ignore the fact that you’re losing all the original exceptions and that
you’re fetching all the pages sequentially. The point I’m trying to make is that catch-
ing HttpRequestException is what you’d expect here; you’re trying an asynchro-
nous operation with an HttpClient, and if something fails, it’ll throw an
HttpRequestException. You want to catch and handle that, right? That certainly
feels like what you’d want to do—but the GetStringAsync() call can’t throw an
HttpRequestException for an error such as the server timing out because the
method only starts the operation. By the time it spots that error, the method has
returned. All it can do is return a task that ends up being faulted and containing an
HttpRequestException. If you simply called Wait() on the task, an Aggregate-
Exception would be thrown that contains the HttpRequestException within it.
The task awaiter’s GetResult method throws the HttpRequestException instead,
and it’s caught by the catch block as normal.

 Of course, this can lose information. If there are multiple exceptions in a faulted
task, GetResult can throw only one of them, and it arbitrarily uses the first. You
might want to rewrite the preceding code so that on failure, the caller can catch an
AggregateException and examine all the causes of the failure. Importantly, some
framework methods do this. For example, Task.WhenAll() is a method that’ll asyn-
chronously wait for multiple tasks (specified in the method call) to complete. If any of

Listing 5.5 Catching exceptions when fetching web pages

Returns the string
if successful

Catches and displays
the failure otherwise
Licensed to André Santos <andrerfcsantos@gmail.com>

176 CHAPTER 5 Writing asynchronous code
them fails, the result is a failure that’ll contain the exceptions from all the faulted
tasks. But if you await only the task returned by WhenAll(), you’ll see only the first
exception. Typically, if you want to check the exceptions in detail, the simplest
approach is to use Task.Exception for each of the original tasks.

 To conclude, you know that the awaiter type’s GetResult() method is used to
propagate both successful results and exceptions when awaiting. In the case of Task
and Task<TResult>, GetResult() unwraps a failed task’s AggregateException
to throw the first of its inner exceptions. That explains how an async method con-
sumes another asynchronous operation—but how does it propagate its own result to
calling code?

5.6.5 Method completion

Let’s recap a few points:

 An async method usually returns before it completes.
 It returns as soon as it hits an await expression where the operation that’s being

awaited hasn’t already finished.
 Assuming it’s not a void method (in which case the caller has no easy way of

telling what’s going on), the value the method returns will be a task of some
kind: Task or Task<TResult> before C# 7, with the option of a custom task
type (which is explained in section 5.8) in C# 7 and onward. For the moment,
let’s assume it’s a Task<TResult> for simplicity.

 That task is responsible for indicating when and how the async method com-
pletes. If the method completes normally, the task status changes to RanTo-
Completion and the Result property holds the return value. If the method
body throws an exception, the task status changes to Faulted (or Canceled
depending on the exception) and the exception is wrapped into an Aggregate-
Exception for the task’s Exception property.

 When the task status changes to any of these terminal states, any continuations
associated with it (such as code in any asynchronous method awaiting the task)
can be scheduled to run.

Yes, this sounds like it’s repetition
You may be wondering whether you’ve accidentally skipped back a couple of pages
and read them twice. Didn’t you just look at the same ideas when you awaited
something?

Absolutely. All I’m doing is showing what the async method does to indicate how it
completes rather than how an await expression examines how something else has
completed. If these didn’t feel the same, that would be odd, because usually async
methods are chained together: the value you’re awaiting in one async method is prob-
ably the value returned by another async method. In fancier terms, async operations
compose easily.
Licensed to André Santos <andrerfcsantos@gmail.com>

177Asynchronous method flow
All of this is done for you by the compiler with the help of a fair amount of infrastruc-
ture. You’ll look at some of those details in the next chapter (although not every sin-
gle nook and cranny; even I have limits). This chapter is more about the behavior you
can rely on in your code.

RETURNING SUCCESSFULLY

The success case is the simplest one: if the method is declared to return a Task
<TResult>, the return statement has to provide a value of type T (or something that
can be converted to TResult), and the async infrastructure propagates that to the task.

 If the return type is Task or void, any return statements have to be of the form
return without a value, or it’s fine to let execution reach the end of the method, like
a nonasync void method. In both cases, there’s no value to propagate, but the status
of the task changes appropriately.

LAZY EXCEPTIONS AND ARGUMENT VALIDATION

The most important point to note about exceptions is that an async method never
directly throws an exception. Even if the first thing the method body does is throw an
exception, it’ll return a faulted task. (The task will be immediately faulted in this
case.) This is a bit of a pain in terms of argument validation. Suppose you want to do
some work in an async method after validating that the parameters don’t have null val-
ues. If you validate the parameters as you would in a normal synchronous code, the
caller won’t have any indication of the problem until the task is awaited. The following
listing gives an example.

static async Task MainAsync()
{
 Task<int> task = ComputeLengthAsync(null);
 Console.WriteLine("Fetched the task");
 int length = await task;
 Console.WriteLine("Length: {0}", length);
}

static async Task<int> ComputeLengthAsync(string text)
{
 if (text == null)
 {
 throw new ArgumentNullException("text");
 }
 await Task.Delay(500);
 return text.Length;
}

The output shows Fetched the task before it fails. The exception has been thrown
synchronously before that output is written, because there are no await expressions
before the validation, but the calling code won’t see it until it awaits the returned task.
Some argument validation can sensibly be done up front without taking a long time

Listing 5.6 Broken argument validation in an async method

Deliberately passes
a bad argument

Awaits
the result

Throws an exception
as early as possible

Simulates real
asynchronous work
Licensed to André Santos <andrerfcsantos@gmail.com>

178 CHAPTER 5 Writing asynchronous code
(or incurring other asynchronous operations). In these cases, it’d be better if the fail-
ure were reported immediately, before the system can get itself into further trouble.
As an example, HttpClient.GetStringAsync will throw an exception immediately
if you pass it a null reference.

NOTE If you’ve ever written an iterator method that needs to validate its
arguments, this may sound familiar. It’s not quite the same, but it has a simi-
lar effect. In iterator blocks, any code in the method, including argument val-
idation, doesn’t execute at all until the first call to MoveNext() on the
sequence returned by the method. In the asynchronous case, the argument
validation occurs immediately, but the exception won’t be obvious until you
await the result.

You may not be too worried about this. Eager argument validation may be regarded as
a nice-to-have feature in many cases. I’ve certainly become a lot less pedantic about
this in my own code, as a matter of pragmatism; in most cases, the difference in timing
isn’t terribly important. But if you do want to throw an exception synchronously from
a method returning a task, you have three options, all of which are variations on the
same theme.

 The idea is to write a nonasync method that returns a task and is implemented by
validating the arguments and then calling a separate async function that assumes the
argument has already been validated. The three variations are in terms of how the
async function is represented:

 You can use a separate async method.
 You can use an async anonymous function (which you’ll see in the next sec-

tion).
 In C# 7 and above, you can use a local async method.

My preference is the last of these; it has the benefit of not introducing another method
into the class without the downside of having to create a delegate. Listing 5.7 shows the
first option, as that doesn’t rely on anything we haven’t already covered, but the code
for the other options is similar (and is in the downloadable code for book). This is only
the ComputeLengthAsync method; the calling code doesn’t need to change.

static Task<int> ComputeLengthAsync(string text)
{
 if (text == null)
 {
 throw new ArgumentNullException("text");
 }
 return ComputeLengthAsyncImpl(text);
}

static async Task<int> ComputeLengthAsyncImpl(string text)
{

Listing 5.7 Eager argument validation with a separate method

Nonasync method so
exceptions aren’t
wrapped in a task

After validation, delegate to
implementation method.
Licensed to André Santos <andrerfcsantos@gmail.com>

179Asynchronous method flow
 await Task.Delay(500);
 return text.Length;
}

Now when ComputeLengthAsync is called with a null argument, the exception is
thrown synchronously rather than returning a faulted task.

 Before moving on to asynchronous anonymous functions, let’s briefly revisit can-
cellation. I’ve mentioned this a couple of times in passing, but it’s worth considering
in a bit more detail.

HANDLING CANCELLATION

The Task Parallel Library (TPL) introduced a uniform cancellation model into .NET
4 using two types: CancellationTokenSource and CancellationToken. The
idea is that you can create a CancellationTokenSource and then ask it for a
CancellationToken, which is passed to an asynchronous operation. You can per-
form the cancellation on only the source, but that’s reflected to the token. (There-
fore, you can pass out the same token to multiple operations and not worry about
them interfering with each other.) There are various ways of using the cancellation
token, but the most idiomatic approach is to call ThrowIfCancellation-
Requested, which will throw OperationCanceledException if the token has been
canceled and will do nothing otherwise.1 The same exception is thrown by synchro-
nous calls (such as Task.Wait) if they’re canceled.

 How this interacts with asynchronous methods is undocumented in the C# specifi-
cation. According to the specification, if an asynchronous method body throws any
exception, the task returned by the method will be in a faulted state. The exact mean-
ing of faulted is implementation specific, but in reality, if an asynchronous method
throws an OperationCanceledException (or a derived exception type, such as
TaskCanceledException), the returned task will end up with a status of Canceled.
You can demonstrate that it’s only the type of exception that determines the status by
throwing an OperationCanceledException directly without the use of any cancel-
lation tokens.

static async Task ThrowCancellationException()
{
 throw new OperationCanceledException();
}
...
Task task = ThrowCancellationException();
Console.WriteLine(task.Status);

This outputs Canceled rather than the Faulted you might expect from the specifica-
tion. If you Wait() on the task or ask for its result (in the case of a Task<TResult>),

1 An example of this is available in the downloadable source code.

Listing 5.8 Creating a canceled task by throwing OperationCanceledException

Implementation async method
assumes validated input
Licensed to André Santos <andrerfcsantos@gmail.com>

180 CHAPTER 5 Writing asynchronous code
the exception is still thrown within an AggregateException, so it’s not like you
need to explicitly start checking for cancellation on every task you use.

Importantly, if you await an operation that’s canceled, the original Operation-
CanceledException is thrown. Consequently, unless you take any direct action, the
task returned from the asynchronous method will also be canceled; cancellation is
propagated in a natural fashion.

 Congratulations on making it this far. You’ve now covered most of the hard parts
for this chapter. You still have a couple of features to learn about, but they’re much
easier to understand than the preceding sections. It’ll get tough again in the next
chapter when we dissect what the compiler’s doing behind the scenes, but for now you
can enjoy relative simplicity.

5.7 Asynchronous anonymous functions
I won’t spend much time on asynchronous anonymous functions. As you’d probably
expect, they’re a combination of two features: anonymous functions (lambda expres-
sions and anonymous methods) and asynchronous functions (code that can include
await expressions). They allow you to create delegates that represent asynchronous
operations. Everything you’ve learned so far about asynchronous methods applies to
asynchronous anonymous functions, too.

NOTE In case you were wondering, you can't use asynchronous anonymous
functions to create expression trees.

You create an asynchronous anonymous function like any other anonymous method
or lambda expression by simply adding the async modifier at the start. Here’s an
example:

Func<Task> lambda = async () => await Task.Delay(1000);
Func<Task<int>> anonMethod = async delegate()
{
 Console.WriteLine("Started");

Off to the races?
You might be wondering if there’s a race condition in listing 5.8. After all, you’re call-
ing an asynchronous method and then immediately expecting the status to be fixed.
If this code were starting a new thread, that would be dangerous—but it’s not.

Remember that before the first await expression, an asynchronous method runs syn-
chronously. It still performs result and exception wrapping, but the fact that it’s in an
asynchronous method doesn’t necessarily mean there are any more threads involved.
The ThrowCancellationException method doesn’t contain any await expres-
sions, so the whole method runs synchronously; you know that we’ll have a result by
the time it returns. Visual Studio issues a warning for any asynchronous function that
doesn’t contain any await expressions, but in this case it’s exactly what you want.
Licensed to André Santos <andrerfcsantos@gmail.com>

181Asynchronous anonymous functions
 await Task.Delay(1000);
 Console.WriteLine("Finished");
 return 10;
};

The delegate you create has to have a signature with a return type that would be suit-
able for an asynchronous method (void, Task, or Task<TResult> for C# 5 and 6,
with the option of a custom task type in C# 7). You can capture variables, as with other
anonymous functions, and add parameters. Also, the asynchronous operation doesn’t
start until the delegate is invoked, and multiple invocations create multiple opera-
tions. Delegate invocation does start the operation, though; as with a call to an async
method, it’s not awaiting the task that starts an operation, and you don’t have to use
await with the result of an asynchronous anonymous function at all. The following
listing shows a slightly fuller (although still pointless) example.

Func<int, Task<int>> function = async x =>
{
 Console.WriteLine("Starting... x={0}", x);
 await Task.Delay(x * 1000);
 Console.WriteLine("Finished... x={0}", x);
 return x * 2;
};
Task<int> first = function(5);
Task<int> second = function(3);
Console.WriteLine("First result: {0}", first.Result);
Console.WriteLine("Second result: {0}", second.Result);

I’ve deliberately chosen the values here so that the second operation completes
quicker than the first. But because you’re waiting for the first to finish before printing
the results (using the Result property, which blocks until the task has completed—
again, be careful where you run this), the output looks like this:

Starting... x=5
Starting... x=3
Finished... x=3
Finished... x=5
First result: 10
Second result: 6

All of this behaves exactly the same as if you’d put the asynchronous code into an
asynchronous method.

 I’ve written far more async methods than async anonymous functions, but they can
be useful, particularly with LINQ. You can’t use them in LINQ query expressions, but
calling the equivalent methods directly works. It has limitations, though: because an
async function can never return bool, you can’t call Where with an async function, for
example. I’ve most commonly used Select to transform a sequence of tasks of one
type to a sequence of tasks of a different type. Now I’ll address a feature I’ve referred
to a few times already: an extra level of generalization introduced by C# 7.

Listing 5.9 Creating and calling an asynchronous function using a lambda expression
Licensed to André Santos <andrerfcsantos@gmail.com>

182 CHAPTER 5 Writing asynchronous code
5.8 Custom task types in C# 7
In C# 5 and C# 6, asynchronous functions (that is, async methods and async anony-
mous functions) could return only void, Task, or Task<TResult>. C# 7 loosens this
restriction slightly and allows any type that’s decorated in a particular way to be used
as a return type for asynchronous functions.

 As a reminder, the async/await feature has always allowed us to await custom types
that follow the awaitable pattern. The new feature here permits writing an async
method that returns a custom type.

 This is simultaneously complex and simple. It’s complex in that if you want to cre-
ate your own task type, you have some fiddly work ahead of you. It’s not for the faint-
hearted. It’s simple in that you’re almost certainly not going to want to do this other
than for experimentation; you’re going to want to use ValueTask<TResult>. Let’s
look at that now.

5.8.1 The 99.9% case: ValueTask<TResult>

At the time of this writing, the System.Threading.ValueTask<TResult> type is
present out of the box only in the netcoreapp2.0 framework, but it’s also available in
the System.Threading.Tasks.Extensions package from NuGet, which makes it
far more widely applicable. (Most important, that package includes a target for
netstandard1.0.)

 ValueTask<TResult> is simple to describe: it’s like Task<TResult>, but it’s a
value type. It has an AsTask method that allows you to obtain a regular task from it
when you want (for example, to include as one element in a Task.WhenAll or
Task.WhenAny call), but most of the time, you’ll want to await it as you would a task.

 What’s the benefit of ValueTask<TResult> over Task<TResult>? It all comes
down to heap allocation and garbage collection. Task<TResult> is a class, and
although the async infrastructure reuses completed Task<TResult> objects in some
cases, most async methods will need to create a new Task<TResult>. Allocating
objects in .NET is cheap enough that in many cases you don’t need to worry about it,
but if you’re doing it a lot or if you’re working under tight performance constraints,
you want to avoid that allocation if possible.

 If an async method uses an await expression on something that’s incomplete,
object allocation is unavoidable. It’ll return immediately, but it has to schedule a con-
tinuation to execute the rest of the method when the awaited operation has com-
pleted. In most async methods, this is the common case; you don’t expect the
operation you’re awaiting to have completed before you await it. In those cases,
ValueTask<TResult> provides no benefit and can even be a little more expensive.

 In a few cases, though, the already completed case is the most common one, and
that’s where ValueTask<TResult> is useful. To demonstrate this, let’s consider a sim-
plified version of a real-world example. Suppose you want to read a byte at a time from
a System.IO.Stream and do so asynchronously. You can easily add a buffering
abstraction layer to avoid calling ReadAsync on the underlying Stream too often, but
Licensed to André Santos <andrerfcsantos@gmail.com>

183Custom task types in C# 7
you’d then want to add an async method to encapsulate the operation of populate the
buffer from the stream where necessary, then return the next byte. You can use byte?
with a null value to indicate that you’ve reached the end of the data. That method is easy
to write, but if every call to it allocates a new Task<byte?>, you’ll be hammering the
garbage collector pretty hard. With ValueTask<TResult>, heap allocation is
required only in the rare cases when you need to refill the buffer from the stream. The
following listing shows the wrapper type (ByteStream) and an example of using it.

public sealed class ByteStream : IDisposable
{
 private readonly Stream stream;
 private readonly byte[] buffer;
 private int position;
 private int bufferedBytes;

 public ByteStream(Stream stream)
 {
 this.stream = stream;
 buffer = new byte[1024 * 8];
 }

 public async ValueTask<byte?> ReadByteAsync()
 {
 if (position == bufferedBytes)
 {
 position = 0;
 bufferedBytes = await
 stream.ReadAsync(buffer, 0, buffer.Length)
 .ConfigureAwait(false);
 if (bufferedBytes == 0)
 {
 return null;
 }
 }
 return buffer[position++];
 }

 public void Dispose()
 {
 stream.Dispose();
 }
}

Sample usage
using (var stream = new ByteStream(File.OpenRead("file.dat")))
{
 while ((nextByte = await stream.ReadByteAsync()).HasValue)
 {
 ConsumeByte(nextByte.Value);
 }
}

Listing 5.10 Wrapping a stream for efficient asynchronous byte-wise access

Next buffer index
to return

Number of read
bytes in the buffer

An 8 KB buffer will mean
you rarely need to await.

Refills the buffer
if necessary

Asynchronously
reads from
underlying stream

Configures await operation
to ignore context

Indicates end of stream
where appropriate

Returns the next byte
from the buffer

Uses the byte
in some way
Licensed to André Santos <andrerfcsantos@gmail.com>

184 CHAPTER 5 Writing asynchronous code
For the moment, you can ignore the ConfigureAwait call within ReadByteAsync.
You’ll come back to that in section 5.10, when you look at how to use async/await
effectively. The rest of the code is straightforward, and all of it could be written with-
out ValueTask<TResult>; it’d just be much less efficient.

 In this case, most invocations of our ReadByteAsync method wouldn’t even use
the await operator because you’d still have buffered data to return, but it’d be
equally useful if you were awaiting another value that’s usually complete immediately.
As I explained in section 5.6.2, when you await an operation that’s already complete,
the execution continues synchronously, which means you don’t need to schedule a
continuation and can avoid object allocations.

 This is a simplified version of a prototype of the CodedInputStream class from
the Google.Protobuf package, the .NET implementation of Google’s Protocol Buf-
fers serialization protocol. In reality, there are multiple methods, each reading a small
amount of data either synchronously or asynchronously. Deserializing a message with
lots of integer fields can involve a lot of method calls, and making the asynchronous
methods return a Task<TResult> each time would’ve been prohibitively inefficient.

NOTE You may be wondering what to do if you have an async method that
doesn’t return a value (so would normally have a return type of Task), but
that still falls into the category of completing without having to schedule any
continuations. In this case, you can stick to returning Task: the async/await
infrastructure caches a task that it can return from any async method
declared to return Task that completes synchronously and without an excep-
tion. If the method completes synchronously but with an exception, the cost
of allocating a Task object likely will be dwarfed by the exception overhead
anyway.

For most of us, the ability to use ValueTask<TResult> as a return type for async
methods is the real benefit of C# 7 in terms of asynchrony. But this has been imple-
mented in a general-purpose way, allowing you to create your own return types for
async methods.

5.8.2 The 0.1% case: Building your own custom task type

I’d like to emphasize again that you’re almost certainly never going to need this infor-
mation. I’m not going to even try to provide a use case beyond ValueTask
<TResult>, because anything I could think of would be obscure. That said, this book
would be incomplete if I didn’t show the pattern the compiler uses to determine that
a type is a task type. I’ll show the details of how the compiler uses the pattern in the
next chapter, when you look at the code that gets generated for an async method.

 Obviously, a custom task type has to implement the awaitable pattern, but there’s
much more to it than that. To create a custom task type, you have to write a correspond-
ing builder type and use the System.Runtime.CompilerServices.AsyncMethod-
BuilderAttribute to let the compiler know the relationship between the two types.
This is a new attribute available in the same NuGet package as ValueTask<TResult>,
Licensed to André Santos <andrerfcsantos@gmail.com>

185Custom task types in C# 7
but if you don’t want the extra dependency, you can include your own declaration of
the attribute (in the right namespace and with the appropriate BuilderType prop-
erty). The compiler will then accept that as a way of decorating task types.

 The task type can be generic in a single type parameter or nongeneric. If it’s
generic, that type parameter must be the type of GetResult in the awaiter type; if it’s
nongeneric, GetResult must have a void return type.2 The builder must be generic
or nongeneric in the same way as the task type.

 The builder type is the part where the compiler interacts with your code when it’s
compiling a method returning your custom type. It needs to know how to create your
custom task, propagate completion or exceptions, resume after a continuation, and so
on. The set of methods and properties you need to provide is significantly more com-
plex than the awaitable pattern. It’s easiest to show a complete example, in terms of
the members you need to provide, without any implementation.

[AsyncMethodBuilder(typeof(CustomTaskBuilder<>))]
public class CustomTask<T>
{
 public CustomTaskAwaiter<T> GetAwaiter();
}

public class CustomTaskAwaiter<T> : INotifyCompletion
{
 public bool IsCompleted { get; }
 public T GetResult();
 public void OnCompleted(Action continuation);
}

public class CustomTaskBuilder<T>
{
 public static CustomTaskBuilder<T> Create();

 public void Start<TStateMachine>(ref TStateMachine stateMachine)
 where TStateMachine : IAsyncStateMachine;

 public void SetStateMachine(IAsyncStateMachine stateMachine);
 public void SetException(Exception exception);
 public void SetResult(T result);

 public void AwaitOnCompleted<TAwaiter, TStateMachine>
 (ref TAwaiter awaiter, ref TStateMachine stateMachine)
 where TAwaiter : INotifyCompletion
 where TStateMachine : IAsyncStateMachine;

 public void AwaitUnsafeOnCompleted<TAwaiter, TStateMachine>
 (ref TAwaiter awaiter, ref TStateMachine stateMachine)

2 This surprised me somewhat. It means you can’t write a custom task type that always represents an operation
returning a string, for example. Given how niche the whole feature is, the likelihood of anyone really wanting
a niche use case within the feature is pretty small.

Listing 5.11 Skeleton of the members required for a generic task type
Licensed to André Santos <andrerfcsantos@gmail.com>

186 CHAPTER 5 Writing asynchronous code
 where TAwaiter : INotifyCompletion
 where TStateMachine : IAsyncStateMachine;

 public CustomTask<T> Task { get; }
}

This code shows a generic custom task type. For a nongeneric type, the only differ-
ence in the builder would be that SetResult would be a parameterless method.

 One interesting requirement is the AwaitUnsafeOnCompleted method. As you’ll
see in the next chapter, the compiler has the notion of safe awaiting and unsafe await-
ing, where the latter relies on the awaitable type to handle context propagation. A cus-
tom task builder type has to handle resuming from both kind of awaiting.

NOTE The term unsafe here isn’t directly related to the unsafe keyword,
although similarities exist in terms of “here be dragons, take care!”

To reiterate one final time, you almost certainly don’t want to be doing this except as a
matter of interest. I don’t expect to ever implement my own task type for production
code, but I’ll certainly use ValueTask<TResult>, so I’m still grateful that the feature
exists.

 Speaking of useful new features, C# 7.1 has one additional feature to mention. For-
tunately, it’s considerably simpler than custom task types.

5.9 Async main methods in C# 7.1
The requirements for the entry point have remained the same in C# for a long time:

 It must be a method called Main.
 It must be static.
 It must have a void or int return type.
 It must either be parameterless or have a single (non-ref, non-out) parameter

of type string[].
 It must be nongeneric and declared in a nongeneric type (including any con-

taining types being nongeneric, if it’s declared in a nested type).
 It can’t be a partial method without implementation.
 It can’t have the async modifier.

With C# 7.1, the final requirement has been dropped but with a slightly different
requirement around the return type. In C# 7.1, you can write an async entry point
(still called Main, not MainAsync), but it has to have a return type of either Task or
Task<int> corresponding to a synchronous return type of void or int. Unlike most
async methods, an async entry point can’t have a return type of void or use a custom
task type.

 Beyond that, it’s a regular async method. For example, the following listing shows
an async entry point that prints two lines to the console with a delay between them.
Licensed to André Santos <andrerfcsantos@gmail.com>

187Usage tips

static async Task Main()
{
 Console.WriteLine("Before delay");
 await Task.Delay(1000);
 Console.WriteLine("After delay");
}

The compiler handles async entry points by creating a synchronous wrapper method
that it marks as the real entry point into the assembly. The wrapper method is either
parameterless or has a string[] parameter and either returns void or int, depend-
ing on what the async entry point has in terms of parameters and return type. The
wrapper method calls the real code and then calls GetAwaiter() on the returned
task and GetResult() on the awaiter. For example, the wrapper method generated
for listing 5.11 would look something like this:

static void <Main>()
{
 Main().GetAwaiter().GetResult();
}

Async entry points are handy for writing small tools or exploratory code that uses an
async-oriented API such as Roslyn.

 Those are all the async features from a language perspective. But knowing the capa-
bilities of the language is different from knowing how to use those capabilities effec-
tively. That’s particularly true for asynchrony, which is an inherently complex topic.

5.10 Usage tips
This section could never be a complete guide to using asynchrony effectively; that
could fill an entire book on its own. We’re coming to the end of a chapter that’s
already long, so I’ve restrained myself to offer just the most important tips in my expe-
rience. I strongly encourage you to read the perspectives of other developers. In par-
ticular, Stephen Cleary and Stephen Toub have written reams of blog posts and
articles that go into many aspects in great depth. In no particular order, this section
provides the most useful suggestions I can make reasonably concisely.

5.10.1 Avoid context capture by using ConfigureAwait
(where appropriate)

In sections 5.2.2 and 5.6.2, I described synchronization contexts and their effect on
the await operator. For example, if you’re running on a UI thread in WPF or Win-
Forms and you await an asynchronous operation, the UI synchronization context and
the async infrastructure make sure that the continuation that runs after the await
operator still runs on that same UI thread. That’s exactly what you want in UI code,
because you can then safely access the UI afterward.

Listing 5.12 A simple async entry point

Method has a name that’s
invalid in C# but valid in IL.
Licensed to André Santos <andrerfcsantos@gmail.com>

188 CHAPTER 5 Writing asynchronous code
 But when you’re writing library code—or code in an application that doesn’t touch
the UI—you don’t want to come back to the UI thread, even if you were originally
running in it. In general, the less code that executes in the UI thread, the better. This
allows the UI to update more smoothly and avoids the UI thread being a bottleneck.
Of course, if you’re writing a UI library, you probably do want to return to the UI
thread, but most libraries—for business logic, web services, database access and the
like—don’t need this.

 The ConfigureAwait method is designed precisely for this purpose. It takes a
parameter that determines whether the returned awaitable will capture the context
when it’s awaited. In practice, I think I’ve always seen the value false passed in as an
argument. In library code, you wouldn’t write the page-length-fetching code as you
saw it earlier:

static async Task<int> GetPageLengthAsync(string url)
{
 var fetchTextTask = client.GetStringAsync(url);
 int length = (await fetchTextTask).Length;

 return length;
}

Instead, you’d call ConfigureAwait(false) on the task returned by client.Get-
StringAsync(url) and await the result:

static async Task<int> GetPageLengthAsync(string url)
{
 var fetchTextTask = client.GetStringAsync(url).ConfigureAwait(false);
 int length = (await fetchTextTask).Length;

 return length;
}

I’ve cheated a little here by using implicit typing for the fetchTextTask variable.
In the first example, it’s a Task<int>; in the second, it’s a ConfiguredTask-
Awaitable<int>. Most code I’ve seen awaits the result directly anyway, though, like
this:

string text = await client.GetStringAsync(url).ConfigureAwait(false);

The result of calling ConfigureAwait(false) is that the continuation won’t be
scheduled against the original synchronization context; it’ll execute on a thread-pool
thread. Note that the behavior differs from the original code only if the task hasn’t
already completed by the time it’s awaited. If it has already completed, the method
continues executing synchronously, even in the face of ConfigureAwait(false).
Therefore, every task you await in a library should be configured like this. You can’t
just call ConfigureAwait(false) on the first task in an async method and rely on
the rest of the method executing on a thread-pool thread.

Imagine more
code here

Same additional
code
Licensed to André Santos <andrerfcsantos@gmail.com>

189Usage tips
 All of this means you need to be careful when writing library code. I expect that
eventually a better solution may exist (setting the default for a whole assembly, for
example), but for the moment, you need to be vigilant. I recommend using a Roslyn
analyzer to spot where you’ve forgotten to configure a task before awaiting it. I’ve had
positive experiences with the ConfigureAwaitChecker.Analyzer NuGet package,
but others are available, too.

 In case you’re worried about what this does to the caller, you don’t need to be. Sup-
pose the caller is awaiting the task returned by GetPageLengthAsync and then
updating a user interface to display the result. Even if the continuation within Get-
PageLengthAsync runs on a thread-pool thread, the await expression performed
in the UI code will capture the UI context and schedule its continuation to run on the
UI thread, so the UI can still be updated after that.

5.10.2 Enable parallelism by starting multiple independent tasks

In section 5.6.1, you looked at multiple pieces of code to achieve the same goal: find
out how much to pay an employee based on their hourly rate and how many hours
they’d worked. The last two pieces of code were like this:

Task<decimal> hourlyRateTask = employee.GetHourlyRateAsync();
decimal hourlyRate = await hourlyRateTask;
Task<int> hoursWorkedTask = timeSheet.GetHoursWorkedAsync(employee.Id);
int hoursWorked = await hoursWorkedTask;
AddPayment(hourlyRate * hoursWorked);

and this

Task<decimal> hourlyRateTask = employee.GetHourlyRateAsync();
Task<int> hoursWorkedTask = timeSheet.GetHoursWorkedAsync(employee.Id);
AddPayment(await hourlyRateTask * await hoursWorkedTask);

In addition to being shorter, the second piece of code introduces parallelism. Both
tasks can be started independently, because you don’t need the output of the second
task as input into the first task. This doesn’t mean that the async infrastructure creates
any more threads. For example, if the two asynchronous operations here are web ser-
vices, both requests to the web services can be in flight without any threads being
blocked on the result.

 The shortness aspect is only incidental here. If you want the parallelism but like
having the separate variables, that’s fine:

Task<decimal> hourlyRateTask = employee.GetHourlyRateAsync();
Task<int> hoursWorkedTask = timeSheet.GetHoursWorkedAsync(employee.Id);
decimal hourlyRate = await hourlyRateTask;
int hoursWorked = await hoursWorkedTask;
AddPayment(hourlyRate * hoursWorked);

The only difference between this and the original code is that I swapped the second
and third lines. Instead of awaiting hourlyRateTask and then starting hours-
WorkedTask, you start both tasks and then await both tasks.
Licensed to André Santos <andrerfcsantos@gmail.com>

190 CHAPTER 5 Writing asynchronous code
 In most cases, if you can perform independent work in parallel, it’s a good idea to
do so. Be aware that if hourlyRateTask fails, you won’t observe the result of hours-
WorkedTask, including any failures in that task. If you need to log all task failures, for
example, you might want to use Task.WhenAll instead.

 Of course, this sort of parallelization relies on the tasks being independent to start
with. In some cases, the dependency may not be entirely obvious. If you have one task
that’s authenticating a user and another task performing an action on their behalf,
you’d want to wait until you’d checked the authentication before starting the action,
even if you could write the code to execute in parallel. The async/await feature can’t
make these decisions for you, but it makes it easy to parallelize asynchronous opera-
tions when you’ve decided that it’s appropriate.

5.10.3 Avoid mixing synchronous and asynchronous code

Although asynchrony isn’t entirely all or nothing, it gets much harder to implement
correctly when some of your code is synchronous and other parts are asynchronous.
Switching between the two approaches is fraught with difficulties—some subtle, oth-
ers less so. If you have a network library that exposes only synchronous operations,
writing an asynchronous wrapper for those operations is difficult to do safely, and like-
wise in reverse.

 In particular, be aware of the dangers of using the Task<TResult>.Result prop-
erty and Task.Wait() methods to try to synchronously retrieve the result of an asyn-
chronous operation. This can easily lead to deadlock. In the most common case, the
asynchronous operation requires a continuation to execute in a thread that’s blocked,
waiting for the operation to compete.

 Stephen Toub has a pair of excellent and detailed blog posts on this topic:
“Should I expose synchronous wrappers for asynchronous methods?” and “Should I
expose asynchronous wrappers for synchronous methods?” (Spoiler alert: the answer
is no in both cases, as you’ve probably guessed.) As with all rules, there are excep-
tions, but I strongly advise that you make sure you thoroughly understand the rule
before breaking it.

5.10.4 Allow cancellation wherever possible

Cancellation is one area that doesn’t have a strong equivalent in synchronous code,
where you usually have to wait for a method to return before continuing. The ability
to cancel an asynchronous operation is extremely powerful, but it does rely on coop-
eration throughout the stack. If you want to use a method that doesn’t allow you to
pass in a cancellation token, there’s not an awful lot you can do about it. You can write
somewhat-intricate code so that your async method completes with a canceled status
and ignore the final result of the noncancelable task, but that’s far from ideal. You
really want to be able to stop any work in progress, and you also don’t want to have to
worry about any disposable resources that could be returned by the asynchronous
method when it does eventually complete.
Licensed to André Santos <andrerfcsantos@gmail.com>

191Usage tips
 Fortunately, most low-level asynchronous APIs do expose a cancellation token as a
parameter. All you need to do is follow the same pattern yourself, typically passing the
same cancellation token you receive in the parameter as an argument to all asynchro-
nous methods you call. Even if you don’t currently have any requirements to allow
cancellation, I advise providing the option consistently right from the start, because
it’s painful to add later.

 Again, Stephen Toub has an excellent blog post on the subtle difficulties of trying
to work around noncancelable asynchronous operations. Search for “How do I cancel
non-cancelable async operations?” to find it.

5.10.5 Testing asynchrony

Testing asynchronous code can be extremely tricky, particularly if you want to test the
asynchrony itself. (Tests that answer questions such as “What happens if I cancel the
operation between the second and third asynchronous calls within the method?”
require quite elaborate work.)

 It’s not impossible, but be prepared for an uphill battle if you want to test compre-
hensively. When I wrote the third edition of this book, I hoped that by 2019 there
would be robust frameworks to make all of this relatively simple. Unfortunately, I’m
disappointed.

 Most unit-test frameworks do have support for asynchronous tests, however. That
support is pretty much vital to write tests for asynchronous methods, for all the rea-
sons I mentioned before about the difficulties in mixing synchronous and asynchro-
nous code. Typically, writing an asynchronous test is as simple as writing a test method
with the async modifier and declaring it to return Task instead of void:

[Test]
public async Task FooAsync()
{

}

Test frameworks often provide an Assert.ThrowsAsync method for testing that a
call to an asynchronous method returns a task that eventually becomes faulted.

 When testing asynchronous code, often you’ll want to create a task that’s already
completed, with a particular result or fault. The methods Task.FromResult,
Task.FromException, and Task.FromCanceled are useful here.

 For more flexibility, you can use TaskCompletionSource<TResult>. This type
is used by a lot of the async infrastructure in the framework. It effectively allows you to
create a task representing an ongoing operation and then set the result (including
any exception or cancellation) later, at which point the task will complete. This is
extremely useful when you want to return a task from a mocked dependency but make
that returned task complete later in the test.

 One aspect of TaskCompletionSource<TResult> to know about is that when
you set the result, continuations attached to the associated task can run synchronously

Code to test your FooAsync
production method
Licensed to André Santos <andrerfcsantos@gmail.com>

192 CHAPTER 5 Writing asynchronous code
on the same thread. The exact details of how the continuations are run depend on
various aspects of the threads and synchronization contexts involved, and after you’re
aware of it as a possibility, it’s relatively easy to take account of. Now you’re aware and
can hopefully avoid wasting the time being baffled in the way that I was.

 This is an incomplete summary of what I’ve learned over the last four years or so of
writing asynchronous code, but I don’t want to lose sight of the topic of the book (the
C# language, not asynchrony). You’ve seen what the async/await feature does, from
the developer’s perspective. You haven’t looked at what happens under the hood in
any detail yet, although the awaitable pattern provides some clues.

 If you haven’t played with async/await yet, I strongly advise that you do so now,
before taking on the next chapter, which looks at the implementation details. Those
details are important but are tricky to understand at the best of times and will be hard
to understand if you don’t have some experience of using async/await. If you don’t
have that experience yet and don’t particularly want to put the time in right now, I
advise skipping the next chapter for now. It’s only about the implementation details of
asynchrony; I promise you won’t miss anything else.

Summary
 The core of asynchrony is about starting an operation and then later continu-

ing when the operation has completed without having to block in the middle.
 Async/await allows you to write familiar-looking code that acts asynchronously.
 Async/await handles synchronization contexts so UI code can start an asynchro-

nous operation and then continue on the UI thread when that operation has
finished.

 Successful results and exceptions are propagated through asynchronous
operations.

 Restrictions limit where you can use the await operator, but C# 6 (and later)
versions have fewer restrictions than C# 5.

 The compiler uses the awaitable pattern to determine which types can be
awaited.

 C# 7 allows you to create your own custom task type, but you almost certainly
want to use ValueTask<TResult>.

 C# 7.1 allows you to write async Main methods as program entry points.
Licensed to André Santos <andrerfcsantos@gmail.com>

Async implementation
I vividly remember the evening of October 28, 2010. Anders Hejlsberg was present-
ing async/await at PDC, and shortly before his talk started, an avalanche of down-
loadable material was made available, including a draft of the changes to the C#
specification, a Community Technology Preview (CTP) of the C# 5 compiler, and
the slides Anders was presenting. At one point, I was watching the talk live and
skimming through the slides while the CTP installed. By the time Anders had fin-
ished, I was writing async code and trying things out.

 In the next few weeks, I started taking bits apart and looking at exactly what code
the compiler was generating, trying to write my own simplistic implementation of

This chapter covers
 The structure of asynchronous code

 Interacting with the framework builder types

 Performing a single step in an async method

 Understanding execution context flow across
await expressions

 Interacting with custom task types
193

Licensed to André Santos <andrerfcsantos@gmail.com>

194 CHAPTER 6 Async implementation
the library that came with the CTP, and generally poking at it from every angle. As new
versions came out, I worked out what had changed and became more and more com-
fortable with what was going on behind the scenes. The more I saw, the more I appre-
ciated how much boilerplate code the compiler is happy to write on our behalf. It’s like
looking at a beautiful flower under a microscope: the beauty is still there to be admired,
but there’s so much more to it than can be seen at first glance.

 Not everyone is like me, of course. If you just want to rely on the behavior I’ve
already described and simply trust that the compiler will do the right thing, that’s
absolutely fine. Alternatively, you won’t miss out on anything if you skip this chapter
for now and come back to it at a later date; none of the rest of the book relies on it. It’s
unlikely that you’ll ever have to debug your code down to the level that you’ll look at
here, but I believe this chapter will give you more insight into how async/await hangs
together. Both the awaitable pattern and the requirements for custom task types make
more sense after you’ve looked at the generated code. I don’t want to get too mystical
about this, but there’s a certain connection between the language and the developer
that’s enriched by studying these implementation details.

 As a rough approximation, we’ll pretend that the C# compiler performs a transfor-
mation from C# code using async/await to C# code without using async/await. Of
course, the compiler is able to operate at a lower level than this with intermediate repre-
sentations that can be emitted as IL. Indeed, in some aspects of async/await, the IL gen-
erated can’t be represented in regular C#, but it’s easy enough to explain those places.

The generated code is somewhat like an onion; it has layers of complexity. We’ll start
from the very outside and work our way in toward the tricky bit: await expressions and

Debug and release builds differ, and future implementations may, too
While writing this chapter, I became aware of a difference between debug and release
builds of async code: in debug builds, the generated state machines are classes
rather than structs. (This is to give a better debugger experience; in particular, it gives
more flexibility in Edit and Continue scenarios.) This wasn’t true when I wrote the third
edition; the compiler implementation has changed. It may change again in the future,
too. If you decompile async code compiled by a C# 8 compiler, it could look slightly
different from what’s presented here.

Although this is surprising, it shouldn’t be too alarming. By definition, implementation
details can change over time. None of this invalidates any of the insight to be gained
from studying a particular implementation. Just be aware that this is a different kind
of learning from “these are the rules of C#, and they’ll change only in well-specified
ways.”

In this chapter, I show the code generated by a release build. The differences mostly
affect performance, and I believe most readers will be more interested in the perfor-
mance of release builds than debug builds.
Licensed to André Santos <andrerfcsantos@gmail.com>

195Structure of the generated code
the dance of awaiters and continuations. For the sake of brevity, I’m going to present
only asynchronous methods, not async anonymous functions; the machinery between
the two is the same anyway, so there’s nothing particularly interesting to learn by
repeating the work.

6.1 Structure of the generated code
As I mentioned in chapter 5, the implementation (both in this approximation and in
the code generated by the real compiler) is in the form of a state machine. The com-
piler will generate a private nested struct to represent the asynchronous method, and
it must also include a method with the same signature as the one you’ve declared. I
call this the stub method; there’s not much to it, but it starts all of the rest going.

NOTE Frequently, I’m going to talk about the state machine pausing. This cor-
responds to a point where the async method reaches an await expression and
the operation being awaited hasn’t completed yet. As you may remember
from chapter 5, when that happens, a continuation is scheduled to execute
the rest of the async method when the awaited operation has completed, and
then the async method returns. Similarly, it’s useful to talk about the async
method taking a step: the code it executes between pauses, effectively. These
aren’t official terms, but they’re useful as shorthand.

The state machine keeps track of where you are within the async method. Logically,
there are four kinds of state, in common execution order:

 Not started
 Executing
 Paused
 Complete (either successfully or faulted)

Only the Paused set of states depends on the structure of the async method. Each
await expression within the method is a distinct state to be returned to in order to trig-
ger more execution. While the state
machine is executing, it doesn’t need to
keep track of the exact piece of code
that’s executing; at that point, it’s just
regular code, and the CPU keeps track
of the instruction pointer just as with
synchronous code. The state is recorded
when the state machine needs to pause;
the whole purpose is to allow it to con-
tinue the code execution later from the
point it reached. Figure 6.1 shows the
transitions between the possible states.

Not started

Executing
Paused

(one state per await)

Completed

Figure 6.1 State transition diagram
Licensed to André Santos <andrerfcsantos@gmail.com>

196 CHAPTER 6 Async implementation
Let’s make this concrete with a real piece of code. The following listing shows a simple
async method. It’s not quite as simple as you could make it, but it can demonstrate a
few things at the same time.

static async Task PrintAndWait(TimeSpan delay)
{
 Console.WriteLine("Before first delay");
 await Task.Delay(delay);
 Console.WriteLine("Between delays");
 await Task.Delay(delay);
 Console.WriteLine("After second delay");
}

Three points to note at this stage are as follows:

 You have a parameter that you’ll need to use in the state machine.
 The method includes two await expressions.
 The method returns Task, so you need to return a task that will complete after

the final line is printed, but there’s no specific result.

This is nice and simple because you have no loops or try/catch/finally blocks to
worry about. The control flow is simple, apart from the awaiting, of course. Let’s see
what the compiler generates for this code.

Using the tools available, you can decompile listing 6.1 into something like listing 6.2.
Many of the names that the C# compiler generates aren’t valid C#; I’ve rewritten them
as valid identifiers for the sake of getting runnable code. In other cases, I’ve renamed
the identifiers to make the code more readable. Later, I’ve taken a few liberties with
how the cases and labels for the state machine are ordered; it’s absolutely logically
equivalent to the generated code, but much easier to read. In other places, I’ve used a

Listing 6.1 Simple introductory async method

Do try this at home
I typically use a mixture of ildasm and Redgate Reflector for this sort of work, setting
the Optimization level to C# 1 to prevent the decompiler from reconstructing the
async method for us. Other decompilers are available, but whichever one you pick, I
recommend checking the IL as well. I’ve seen subtle bugs in decompilers when it
comes to await, often in terms of the execution order.

You don’t have to do any of this if you don’t want to, but if you find yourself wondering
what the compiler does with a particular code construct, and this chapter doesn’t pro-
vide the answer, just go for it. Don’t forget the difference between debug and release
builds, though, and don’t be put off by the names generated by the compiler, which
can make the result harder to read.
Licensed to André Santos <andrerfcsantos@gmail.com>

197Structure of the generated code

p

switch statement even with only two cases, where the compiler might effectively use
if/else. In these places, the switch statement represents the more general case
that can work when there are multiple points to jump to, but the compiler can gener-
ate simpler code for simpler situations.

Stub method
[AsyncStateMachine(typeof(PrintAndWaitStateMachine))]
[DebuggerStepThrough]
private static unsafe Task PrintAndWait(TimeSpan delay)
{
 var machine = new PrintAndWaitStateMachine
 {
 delay = delay,
 builder = AsyncTaskMethodBuilder.Create(),
 state = -1
 };
 machine.builder.Start(ref machine);
 return machine.builder.Task;
}

Private struct for the state machine
[CompilerGenerated]
private struct PrintAndWaitStateMachine : IAsyncStateMachine
{
 public int state;
 public AsyncTaskMethodBuilder builder;
 private TaskAwaiter awaiter;
 public TimeSpan delay;

 void IAsyncStateMachine.MoveNext()
 {
 }

 [DebuggerHidden]
 void IAsyncStateMachine.SetStateMachine(
 IAsyncStateMachine stateMachine)
 {
 this.builder.SetStateMachine(stateMachine);
 }
}

This listing looks somewhat complicated already, but I should warn you that the bulk
of the work is done in the MoveNext method, and I’ve completely removed the imple-
mentation of that for now. The point of listing 6.2 is to set the scene and provide the
structure so that when you get to the MoveNext implementation, it makes sense. Let’s
look at the pieces of the listing in turn, starting with the stub method.

Listing 6.2 Generated code for listing 6.1 (except for MoveNext)

Initializes the state machine,
including method parameters

Runs the state
machine until it
needs to wait

Returns the task
representing the
async operation

State of the state
machine (where
to resume)

The builder
hooking into async
infrastructure types

Awaiter to fetch
result from when
resuming

Original
method

arameter Main state machine
work goes here.

Connects the builder and
the boxed state machine
Licensed to André Santos <andrerfcsantos@gmail.com>

198 CHAPTER 6 Async implementation
6.1.1 The stub method: Preparation and taking the first step

The stub method from listing 6.2 is simple apart from the AsyncTaskMethod-
Builder. This is a value type, and it’s part of the common async infrastructure. You’ll
see over the rest of the chapter how the state machine interacts with the builder.

[AsyncStateMachine(typeof(PrintAndWaitStateMachine))]
[DebuggerStepThrough]
private static unsafe Task PrintAndWait(TimeSpan delay)
{
 var machine = new PrintAndWaitStateMachine
 {
 delay = delay,
 builder = AsyncTaskMethodBuilder.Create(),
 state = -1
 };
 machine.builder.Start(ref machine);
 return machine.builder.Task;
}

The attributes applied to the method are essentially for tooling. They have no effect
on regular execution, and you don’t need to know any details about them in order to
understand the generated asynchronous code. The state machine is always created in
the stub method with three pieces of information:

 Any parameters (in this case, just delay), each as separate fields in the state
machine

 The builder, which varies depending on the return type of the async method
 The initial state, which is always –1

NOTE The name AsyncTaskMethodBuilder may make you think of reflec-
tion, but it’s not creating a method in IL or anything like that. The builder
provides functionality that the generated code uses to propagate success and
failure, handle awaiting, and so forth. If the name “helper” works better for
you, feel free to think of it that way.

After creating the state machine, the stub method asks the machine’s builder to start it,
passing the machine itself by reference. You’ll see quite a lot of passing by reference in
the following few pages, and this comes down to a need for efficiency and consistency.
Both the state machine and the AsyncTaskMethodBuilder are mutable value types.
Passing machine by reference to the Start method avoids making a copy of the state,
which is more efficient and ensures that any changes made to the state within Start are
still visible when the Start method returns. In particular, the builder state within the
machine may well change during Start. That’s why it’s important that you use
machine.builder for both the Start call and the Task property afterward. Suppose
you extracted machine.builder to a local variable, like this:

var builder = machine.builder;
builder.Start(ref machine);
return builder.Task;

Invalid attempt
at refactoring
Licensed to André Santos <andrerfcsantos@gmail.com>

199Structure of the generated code
With that code, state changes made directly within builder.Start() wouldn’t be
seen within machine.builder (or vice versa) because it would be a copy of the
builder. This is where it’s important that machine.builder refers to a field, not a
property. You don’t want to operate on a copy of the builder in the state machine;
rather, you want to operate directly on the value that the state machine contains. This
is precisely the sort of detail that you don’t want to have to deal with yourself and is
why mutable value types and public fields are almost always a bad idea. (You’ll see in
chapter 11 how they can be useful when carefully considered.)

 Starting the machine doesn’t create any new threads. It just runs the state
machine’s MoveNext() method until either the state machine needs to pause while it
awaits another asynchronous operation or completes. In other words, it takes one
step. Either way, MoveNext() returns, at which point machine.builder.Start()
returns, and you can return a task representing the overall asynchronous method
back to our caller. The builder is responsible for creating the task and ensuring that it
changes state appropriately over the course of the asynchronous method.

 That’s the stub method. Now let’s look at the state machine itself.

6.1.2 Structure of the state machine

I’m still omitting the majority of the code from the state machine (in the MoveNext()
method), but here’s a reminder of the structure of the type:

[CompilerGenerated]
private struct PrintAndWaitStateMachine : IAsyncStateMachine
{
 public int state;
 public AsyncTaskMethodBuilder builder;
 private TaskAwaiter awaiter;
 public TimeSpan delay;

 void IAsyncStateMachine.MoveNext()
 {

 }

 [DebuggerHidden]
 void IAsyncStateMachine.SetStateMachine(
 IAsyncStateMachine stateMachine)
 {
 this.builder.SetStateMachine(stateMachine);
 }
}

Again, the attributes aren’t important. The important aspects of the type are as follows:

 It implements the IAsyncStateMachine interface, which is used for the async
infrastructure. The interface has only the two methods shown.

 The fields, which store the information the state machine needs to remember
between one step and the next.

Implementation
omitted
Licensed to André Santos <andrerfcsantos@gmail.com>

200 CHAPTER 6 Async implementation
 The MoveNext() method, which is called once when the state machine is
started and once each time it resumes after being paused.

 The SetStateMachine() method, which always has the same implementation
(in release builds).

You’ve seen one use of the type implementing IAsyncStateMachine already,
although it was somewhat hidden: AsyncTaskMethodBuilder.Start() is a generic
method with a constraint that the type parameter has to implement IAsync-
StateMachine. After performing a bit of housekeeping, Start() calls MoveNext()
to make the state machine take the first step of the async method.

 The fields involved can be broadly split into five categories:

 The current state (for example, not started, paused at a particular await expres-
sion, and so forth)

 The method builder used to communicate with the async infrastructure and to
provide the Task to return

 Awaiters
 Parameters and local variables
 Temporary stack variables

The state and builder are fairly simple. The state is just an integer with one of the fol-
lowing values:

 –1—Not started, or currently executing (it doesn’t matter which)
 –2—Finished (either successfully or faulted)
 Anything else—Paused at a particular await expression

As I mentioned before, the type of the builder depends on the return type of the async
method. Before C# 7, the builder type was always AsyncVoidMethodBuilder, Async-
TaskMethodBuilder, or AsyncTaskMethodBuilder<T>. With C# 7 and custom task
types, the builder type specified by the AsyncTaskMethodBuilderAttribute is
applied to the custom task type.

 The other fields are slightly trickier in that all of them depend on the body of the
async method, and the compiler tries to use as few fields as it can. The crucial point to
remember is that you need fields only for values that you need to come back to after
the state machine resumes at some point. Sometimes the compiler can use fields for
multiple purposes, and sometimes it can omit them entirely.

 The first example of how the compiler can reuse fields is with awaiters. Only one
awaiter is relevant at a time, because any particular state machine can await only one
value at a time. The compiler creates a single field for each awaiter type that’s used. If
you await two Task<int> values, one Task<string>, and three nongeneric Task
values in an async method, you’ll end up with three fields: a TaskAwaiter<int>, a
TaskAwaiter<string>, and a nongeneric TaskAwaiter. The compiler uses the
appropriate field for each await expression based on the awaiter type.
Licensed to André Santos <andrerfcsantos@gmail.com>

201Structure of the generated code
NOTE This assumes the awaiter is introduced by the compiler. If you call
GetAwaiter() yourself and assign the result to a local variable, that’s treated
like any other local variable. I’m talking about the awaiters that are produced
as the result of await expressions.

Next, let’s consider local variables. Here, the compiler doesn’t reuse fields but can
omit them entirely. If a local variable is used only between two await expressions
rather than across await expressions, it can stay as a local variable in the MoveNext()
method.

 It’s easier to see what I mean with an example. Consider the following async method:

public async Task LocalVariableDemoAsync()
{
 int x = DateTime.UtcNow.Second;
 int y = DateTime.UtcNow.Second;
 Console.WriteLine(y);
 await Task.Delay();
 Console.WriteLine(x);
}

The compiler would generate a field for x because the value has to be preserved while
the state machine is paused, but y can just be a local variable on the stack while the
code is executing.

NOTE The compiler does a pretty good job of creating only as many fields as
it needs. But at times, you might spot an optimization that the compiler could
perform but doesn’t. For example, if two variables have the same type and are
both used across await expressions (so they need fields), but they’re never
both in scope at the same time, the compiler could use just one field for both
as it does for awaiters. At the time of this writing, it doesn’t, but who knows
what the future could hold?

Finally, there are temporary stack variables. These are introduced when an await
expression is used as part of a bigger expression and some intermediate values need
to be remembered. Our simple example in listing 6.1 doesn’t need any, which is why
listing 6.2 shows only four fields: the state, builder, awaiter, and parameter. As an
example of this, consider the following method:

public async Task TemporaryStackDemoAsync()
{
 Task<int> task = Task.FromResult(10);
 DateTime now = DateTime.UtcNow;
 int result = now.Second + now.Hours * await task;
}

The C# rules for operand evaluation don’t change just because you’re within an async
method. The properties now.Second and now.Hours both have to be evaluated
before the task is awaited, and their results have to be remembered in order to perform

x is assigned
before the await.

y is used only
before the await.

x is used after
the await.
Licensed to André Santos <andrerfcsantos@gmail.com>

202 CHAPTER 6 Async implementation
the arithmetic later, after the state machine resumes when the task completes. That
means it needs to use fields.

NOTE In this case, you know that Task.FromResult always returns a com-
pleted task. But the compiler doesn’t know that, and it has to generate the
state machine in a way that would let it pause and resume if the task weren’t
complete.

You can think of it as if the compiler rewrites the code to introduce extra local variables:

public async Task TemporaryStackDemoAsync()
{
 Task<int> task = Task.FromResult(10);
 DateTime now = DateTime.UtcNow;
 int tmp1 = now.Second;
 int tmp2 = now.Hours;
 int result = tmp1 + tmp2 * await task;
}

Then the local variables are converted into fields. Unlike real local variables, the com-
piler does reuse temporary stack variables of the same type and generates only as
many fields as it needs to.

 That explains all the fields in the state machine. Next, you need to look at the
MoveNext() method—but only conceptually, to start with.

6.1.3 The MoveNext() method (high level)

I’m not going to show you the decompiled code for listing 6.1’s MoveNext() method
yet, because it’s long and scary.1 After you know what the flow looks like, it’s more
manageable, so I’ll describe it in the abstract here.

 Each time MoveNext() is called, the state machine takes another step. Each time
it reaches an await expression, it’ll continue if the value being awaited has already
completed and pause otherwise. MoveNext() returns if any of the following occurs:

 The state machine needs to pause to await an incomplete value.
 Execution reaches the end of the method or a return statement.
 An exception is thrown but not caught in the async method.

Note that in the final case, the MoveNext() method doesn’t end up throwing an
exception. Instead, the task associated with the async call becomes faulted. (If that sur-
prises you, see section 5.6.5 for a reminder of the behavior of async methods with
respect to exceptions.)

 Figure 6.2 shows a general flowchart of an async method that focuses on the
MoveNext() method. I haven’t included exception handling in the figure, as flow-
charts don’t have a way of representing try/catch blocks. You’ll see how that’s

1 If A Few Good Men had been about async, the line would have been, “You want the MoveNext? You can’t handle
the MoveNext!”
Licensed to André Santos <andrerfcsantos@gmail.com>

203Structure of the generated code
managed when you eventually look at the code. Likewise, I haven’t shown where
SetStateMachine is called, as the flowchart is complicated enough as it is.

 One final point about the MoveNext() method: its return type is void, not a task
type. Only the stub method needs to return the task, which it gets from the state
machine’s builder after the builder’s Start() method has called MoveNext() to take

Create state
machine

Stub method

Start state
machine via builder

Return task from
builder to caller

Jump to correct place in
method based on state

Returning
from await

Await

State machine
MoveNext()

Execute until
await or return

Fetch awaiter

Attach continuation
to awaiter

Return from
MoveNext()

Get awaiter
result

No

Yes

First time only

Returning from await

Return

Awaiter
completed?

Figure 6.2 Flowchart of an async method
Licensed to André Santos <andrerfcsantos@gmail.com>

204 CHAPTER 6 Async implementation
the first step. All the other calls to MoveNext() are part of the infrastructure for
resuming the state machine from a paused state, and those don’t need the associated
task. You’ll see what all of this looks like in code in section 6.2 (not long to go now),
but first, a brief word on SetStateMachine.

6.1.4 The SetStateMachine method and the state machine boxing dance

I’ve already shown the implementation of SetStateMachine. It’s simple:

void IAsyncStateMachine.SetStateMachine(
 IAsyncStateMachine stateMachine)
{
 this.builder.SetStateMachine(stateMachine);
}

The implementation in release builds always looks like this. (In debug builds, where
the state machine is a class, the implementation is empty.) The purpose of the method
is easy to explain at a high level, but the details are fiddly. When a state machine takes
its first step, it’s on the stack as a local variable of the stub method. If it pauses, it has to
box itself (onto the heap) so that all that information is still in place when it resumes.
After it’s been boxed, SetStateMachine is called on the boxed value using the
boxed value as the argument. In other words, somewhere deep in the heart of the
infrastructure, there’s code that looks a bit like this:

void BoxAndRemember<TStateMachine>(ref TStateMachine stateMachine)
 where TStateMachine : IStateMachine
{
 IStateMachine boxed = stateMachine;
 boxed.SetStateMachine(boxed);
}

It’s not quite as simple as that, but that conveys the essence of what’s going on. The
implementation of SetStateMachine then makes sure that the AsyncTaskMethod-
Builder has a reference to the single boxed version of the state machine that it’s a
part of. The method has to be called on the boxed value; it can be called only after
boxing, because that’s when you have the reference to the boxed value, and if you
called it on the unboxed value after boxing, that wouldn’t affect the boxed value.
(Remember, AsyncTaskMethodBuilder is itself a value type.) This intricate dance
ensures that when a continuation delegate is passed to the awaiter, that continuation
will call MoveNext() on the same boxed instance.

 The result is that the state machine isn’t boxed at all if it doesn’t need to be and is
boxed exactly once if necessary. After it’s boxed, everything happens on the boxed
version. It’s a lot of complicated code in the name of efficiency.

 I find this little dance one of the most intriguing and bizarre bits of the whole
async machinery. It sounds like it’s utterly pointless, but it’s necessary because of the
way boxing works, and boxing is necessary to preserve information while the state
machine is paused.
Licensed to André Santos <andrerfcsantos@gmail.com>

205A simple MoveNext() implementation
 It’s absolutely fine not to fully understand this code. If you ever find yourself
debugging async code at a low level, you can come back to this section. For all other
intents and purposes, this code is more of a novelty than anything else.

 That’s what the state machine consists of. Most of the rest of the chapter is devoted
to the MoveNext()method and how it operates in various situations. We’ll start with
the simple case and work up from there.

6.2 A simple MoveNext() implementation
We’re going to start with the simple async method that you saw in listing 6.1. It’s sim-
ple not because it’s short (although that helps) but because it doesn’t contain any
loops, try statements, or using statements. It has simple control flow, which leads to
a relatively simple state machine. Let’s get cracking.

6.2.1 A full concrete example

I’m going to show you the full method to start with. Don’t expect this to all make
sense yet, but do spend a few minutes looking through it. With this concrete example
in hand, the more general structure is easier to understand, because you can always
look back to see how each part of that structure is present in this example. At the risk
of boring you, here’s listing 6.1 yet again as a reminder of the compiler’s input:

static async Task PrintAndWait(TimeSpan delay)
{
 Console.WriteLine("Before first delay");
 await Task.Delay(delay);
 Console.WriteLine("Between delays");
 await Task.Delay(delay);
 Console.WriteLine("After second delay");
}

The following listing is a version of the decompiled code that has been slightly rewrit-
ten for readability. (Yes, this is the easy-to-read version.)

void IAsyncStateMachine.MoveNext()
{
 int num = this.state;
 try
 {
 TaskAwaiter awaiter1;
 switch (num)
 {
 default:
 goto MethodStart;
 case 0:
 goto FirstAwaitContinuation;
 case 1:
 goto SecondAwaitContinuation;
 }

Listing 6.3 The decompiled MoveNext() method from listing 6.1
Licensed to André Santos <andrerfcsantos@gmail.com>

206 CHAPTER 6 Async implementation
 MethodStart:
 Console.WriteLine("Before first delay");
 awaiter1 = Task.Delay(this.delay).GetAwaiter();
 if (awaiter1.IsCompleted)
 {
 goto GetFirstAwaitResult;
 }
 this.state = num = 0;
 this.awaiter = awaiter1;
 this.builder.AwaitUnsafeOnCompleted(ref awaiter1, ref this);
 return;
 FirstAwaitContinuation:
 awaiter1 = this.awaiter;
 this.awaiter = default(TaskAwaiter);
 this.state = num = -1;
 GetFirstAwaitResult:
 awaiter1.GetResult();
 Console.WriteLine("Between delays");
 TaskAwaiter awaiter2 = Task.Delay(this.delay).GetAwaiter();
 if (awaiter2.IsCompleted)
 {
 goto GetSecondAwaitResult;
 }
 this.state = num = 1;
 this.awaiter = awaiter2;
 this.builder.AwaitUnsafeOnCompleted(ref awaiter2, ref this);
 return;
 SecondAwaitContinuation:
 awaiter2 = this.awaiter;
 this.awaiter = default(TaskAwaiter);
 this.state = num = -1;
 GetSecondAwaitResult:
 awaiter2.GetResult();
 Console.WriteLine("After second delay");
 }
 catch (Exception exception)
 {
 this.state = -2;
 this.builder.SetException(exception);
 return;
 }
 this.state = -2;
 this.builder.SetResult();
}

That’s a lot of code, and you may notice that it has a lot of goto statements and code
labels, which you hardly ever see in handwritten C#. At the moment, I expect it to be
somewhat impenetrable, but I wanted to show you a concrete example to start with, so
you can refer to it anytime it’s useful to you. I’m going to break this down further into
general structure and then the specifics of await expressions. By the end of this sec-
tion, listing 6.3 will probably still look extremely ugly to you, but you’ll be in a better
position to understand what it’s doing and why.
Licensed to André Santos <andrerfcsantos@gmail.com>

207A simple MoveNext() implementation
6.2.2 MoveNext() method general structure

We’re into the next layer of the async onion. The MoveNext() method is at the heart
of the async state machine, and its complexity is a reminder of how hard it is to get
async code right. The more complex the state machine, the more reason you have to
be grateful that it’s the C# compiler that has to write the code rather than you.

NOTE It’s time to introduce more terminology for the sake of brevity. At each
await expression, the value being awaited may already have completed or may
still be incomplete. If it has already completed by the time you await it, the
state machine keeps executing. I call this the fast path. If it hasn’t already com-
pleted, the state machine schedules a continuation and pauses. I call this the
slow path.

As a reminder, the MoveNext() method is invoked once when the async method is
first called and then once each time it needs to resume from being paused at an await
expression. (If every await expression takes the fast path, MoveNext() will be called
only once.) The method is responsible for the following:

 Executing from the right place (whether that’s the start of the original async
code or partway through)

 Preserving state when it needs to pause, both in terms of local variables and
location within the code

 Scheduling a continuation when it needs to pause
 Retrieving return values from awaiters
 Propagating exceptions via the builder (rather than letting MoveNext() itself

fail with an exception)
 Propagating any return value or method completion via the builder

With this in mind, the following listing shows pseudocode for the general structure of
a MoveNext() method. You’ll see in later sections how this can end up being more
complicated because of extra control flow, but it’s a natural extension.

void IAsyncStateMachine.MoveNext()
{
 try
 {
 switch (this.state)
 {
 default: goto MethodStart;
 case 0: goto Label0A;
 case 1: goto Label1A;
 case 2: goto Label2A;

 }
 MethodStart:

Listing 6.4 Pseudocode of a MoveNext() method

As many cases as there
are await expressions

Code before the first
await expression
Licensed to André Santos <andrerfcsantos@gmail.com>

208 CHAPTER 6 Async implementation

 Label0A:

 Label0B:

 }
 catch (Exception e)
 {
 this.state = -2;
 builder.SetException(e);
 return;
 }
 this.state = -2;
 builder.SetResult();
}

The big try/catch block covers all the code from the original async method. If any-
thing in there throws an exception, however it’s thrown (via awaiting a faulted opera-
tion, calling a synchronous method that throws, or simply throwing an exception
directly), that exception is caught and then propagated via the builder. Only special
exceptions (ThreadAbortException and StackOverflowException, for exam-
ple) will ever cause MoveNext() to end with an exception.

 Within the try/catch block, the start of the MoveNext() method is always effec-
tively a switch statement used to jump to the right piece of code within the method
based on the state. If the state is non-negative, that means you’re resuming after an
await expression. Otherwise, it’s assumed that you’re executing MoveNext() for the
first time.

One bit of trickiness to be aware of is the difference between a return statement in the
state machine and a return statement in the original async code. Within the state
machine, return is used when the state machine is paused after scheduling a contin-
uation for an awaiter. Any return statement in the original code ends up dropping to
the bottom part of the state machine outside the try/catch block, where the
method completion is propagated via the builder.

What about other states?
In section 6.1, I listed the possible states as not started, executing, paused, and
complete (where paused is a separate state per await expression). Why doesn’t the
state machine handle not started, executing, and complete differently?

The answer is that MoveNext() should never end up being called in the executing
or complete states. You can force it to by writing a broken awaiter implementation or
by using reflection, but under normal operation, MoveNext() is called only to start
or resume the state machine. There aren’t even distinct state numbers for not
started and executing; both use –1. There’s a state number of –2 for completed, but
the state machine never checks for that value.

Sets up the
first awaiter

Code resuming from
a continuation

Fast and
slow paths

rejoin

Remainder of code, with more
labels, awaiters, and so on

Propagates
all exceptions
via the builder

Propagates method
completion via the builder
Licensed to André Santos <andrerfcsantos@gmail.com>

209A simple MoveNext() implementation
 If you compare listings 6.3 and 6.4, hopefully you can see how our concrete exam-
ple fits into the general pattern. At this point, I’ve explained almost everything about
the code generated by the simple async method you started with. The only bit that’s
missing is exactly what happens around await expressions.

6.2.3 Zooming into an await expression

Let’s think again about what has to happen each time you hit an await expression
when executing an async method, assuming you’ve already evaluated the operand to
get something that’s awaitable:

1 You fetch the awaiter from the awaitable by calling GetAwaiter(), storing it
on the stack.

2 You check whether the awaiter has already completed. If it has, you can skip
straight to fetching the result (step 9). This is the fast path.

3 It looks like you’re on the slow path. Oh well. Remember where you reached via
the state field.

4 Remember the awaiter in a field.
5 Schedule a continuation with the awaiter, making sure that when the continua-

tion is executed, you’ll be back to the right state (doing the boxing dance, if
necessary).

6 Return from the MoveNext() method either to the original caller, if this is the
first time you’ve paused, or to whatever scheduled the continuation otherwise.

7 When the continuation fires, set your state back to running (value of –1).
8 Copy the awaiter out of the field and back onto the stack, clearing the field in

order to potentially help the garbage collector. Now you’re ready to rejoin the
fast path.

9 Fetch the result from the awaiter, which is on the stack at this point regardless
of which path you took. You have to call GetResult() even if there isn’t a
result value to let the awaiter propagate errors if necessary.

10 Continue on your merry way, executing the rest of the original code using the
result value if there was one.

With that list in mind, let’s review a section of listing 6.3 that corresponds to our first
await expression.

 awaiter1 = Task.Delay(this.delay).GetAwaiter();
 if (awaiter1.IsCompleted)
 {
 goto GetFirstAwaitResult;
 }
 this.state = num = 0;
 this.awaiter = awaiter1;
 this.builder.AwaitUnsafeOnCompleted(ref awaiter1, ref this);
 return;

Listing 6.5 A section of listing 6.3 corresponding to a single await
Licensed to André Santos <andrerfcsantos@gmail.com>

210 CHAPTER 6 Async implementation
FirstAwaitContinuation:
 awaiter1 = this.awaiter;
 this.awaiter = default(TaskAwaiter);
 this.state = num = -1;
GetFirstAwaitResult:
 awaiter1.GetResult();

Unsurprisingly, the code follows the set of steps precisely.2 The two labels represent
the two places you have to jump to, depending on the path:

 In the fast path, you jump over the slow-path code.
 In the slow path, you jump back into the middle of the code when the continu-

ation is called. (Remember, that’s what the switch statement at the start of the
method is for.)

The call to builder.AwaitUnsafeOnCompleted(ref awaiter1, ref this) is
the part that does the boxing dance with a call back into SetStateMachine (if neces-
sary; it happens only once per state machine) and schedules the continuation. In
some cases, you’ll see a call to AwaitOnCompleted instead of AwaitUnsafeOn-
Completed. These differ only in terms of how the execution context is handled.
You’ll look at this in more detail in section 6.5.

 One aspect that may seem slightly unclear is the use of the num local variable. It’s
always assigned a value at the same time as the state field but is always read instead
of the field. (Its initial value is copied out of the field, but that’s the only time the field
is read.) I believe this is purely for optimization. Whenever you read num, it’s fine to
think of it as this.state instead.

 Looking at listing 6.5, that’s 16 lines of code for what was originally just the following:

await Task.Delay(delay);

The good news is that you almost never need to see all that code unless you’re going
through this kind of exercise. There’s a small amount of bad news in that the code
inflation means that even small async methods—even those using ValueTask-
<TResult>—can’t be sensibly inlined by the JIT compiler. In most cases, that’s a min-
iscule price to pay for the benefits afforded by async/await, though.

 That’s the simple case with simple control flow. With that background, you can
explore a couple of more-complex cases.

6.3 How control flow affects MoveNext()
The example you’ve been looking at so far has just been a sequence of method calls
with only the await operator introducing complexity. Life gets a little harder when
you want to write real code with all the normal control-flow statements you’re used to.

 In this section, I’ll show you just two elements of control flow: loops and try/
finally statements. This isn’t intended to be comprehensive, but it should give you

2 It’s unsurprising in that it would have been pretty odd of me to write that list of steps and then present code
that didn’t follow the list.
Licensed to André Santos <andrerfcsantos@gmail.com>

211How control flow affects MoveNext()
enough of a glimpse at the control-flow gymnastics the compiler has to perform to
help you understand other situations if you need to.

6.3.1 Control flow between await expressions is simple

Before we get into the tricky part, I’ll give an example of where introducing control
flow doesn’t add to the generated code complexity any more than it would in the syn-
chronous code. In the following listing, a loop is introduced into our example
method, so you print Between delays three times instead of once.

static async Task PrintAndWaitWithSimpleLoop(TimeSpan delay)
{
 Console.WriteLine("Before first delay");
 await Task.Delay(delay);
 for (int i = 0; i < 3; i++)
 {
 Console.WriteLine("Between delays");
 }
 await Task.Delay(delay);
 Console.WriteLine("After second delay");
}

What does this look like when decompiled? Very much like listing 6.2! The only differ-
ence is this

GetFirstAwaitResult:
 awaiter1.GetResult();
 Console.WriteLine("Between delays");
 TaskAwaiter awaiter2 = Task.Delay(this.delay).GetAwaiter();

becomes the following:

GetFirstAwaitResult:
 awaiter1.GetResult();
 for (int i = 0; i < 3; i++)
 {
 Console.WriteLine("Between delays");
 }
 TaskAwaiter awaiter2 = Task.Delay(this.delay).GetAwaiter();

The change in the state machine is exactly the same as the change in the original
code. There are no extra fields and no complexities in terms of how to continue exe-
cution; it’s just a loop.

 The reason I bring this up is to help you think about why extra complexity is
required in our next examples. In listing 6.6, you never need to jump into the loop
from outside, and you never need to pause execution and jump out of the loop,
thereby pausing the state machine. Those are the situations introduced by await
expressions when you await within the loop. Let’s do that now.

Listing 6.6 Introducing a loop between await expressions
Licensed to André Santos <andrerfcsantos@gmail.com>

212 CHAPTER 6 Async implementation
6.3.2 Awaiting within a loop

Our example so far has contained two await expressions. To keep the code somewhat
manageable as I introduce other complexities, I’m going to reduce that to one. The
following listing shows the async method you’re going to decompile in this subsection.

static async Task AwaitInLoop(TimeSpan delay)
{
 Console.WriteLine("Before loop");
 for (int i = 0; i < 3; i++)
 {
 Console.WriteLine("Before await in loop");
 await Task.Delay(delay);
 Console.WriteLine("After await in loop");
 }
 Console.WriteLine("After loop delay");
}

The Console.WriteLine calls are mostly present as signposts within the decompiled
code, which makes it easier to map to the original listing.

 What does the compiler generate for this? I’m not going to show the complete
code, because most of it is similar to what you’ve seen before. (It’s all in the download-
able source, though.) The stub method and state machine are almost exactly as they
were for earlier examples but with one additional field in the state machine corre-
sponding to i, the loop counter. The interesting part is in MoveNext().

 You can represent the code faithfully in C# but not using a loop construct. The
problem is that after the state machine returns from pausing at Task.Delay, you
want to jump into the middle of the original loop. You can’t do that with a goto state-
ment in C#; the language forbids a goto statement specifying a label if the goto state-
ment isn’t in the scope of that label.

 That’s okay; you can implement your for loop with a lot of goto statements with-
out introducing any extra scopes at all. That way, you can jump to the middle of it
without a problem. The following listing shows the bulk of the decompiled code for
the body of the MoveNext() method. I’ve included only the part within the try
block, as that’s what we’re focusing on here. (The rest is simple boilerplate.)

 switch (num)
 {
 default:
 goto MethodStart;
 case 0:
 goto AwaitContinuation;
 }
MethodStart:
 Console.WriteLine("Before loop");

Listing 6.7 Awaiting in a loop

Listing 6.8 Decompiled loop without using any loop constructs
Licensed to André Santos <andrerfcsantos@gmail.com>

213How control flow affects MoveNext()

Skip
to
 this.i = 0;
 goto ForLoopCondition;
ForLoopBody:
 Console.WriteLine("Before await in loop");
 TaskAwaiter awaiter = Task.Delay(this.delay).GetAwaiter();
 if (awaiter.IsCompleted)
 {
 goto GetAwaitResult;
 }
 this.state = num = 0;
 this.awaiter = awaiter;
 this.builder.AwaitUnsafeOnCompleted(ref awaiter, ref this);
 return;
AwaitContinuation:
 awaiter = this.awaiter;
 this.awaiter = default(TaskAwaiter);
 this.state = num = -1;
GetAwaitResult:
 awaiter.GetResult();
 Console.WriteLine("After await in loop");
 this.i++;
ForLoopCondition:
 if (this.i < 3)
 {
 goto ForLoopBody;
 }
 Console.WriteLine("After loop delay");

I could’ve skipped this example entirely, but it brings up a few interesting points. First,
the C# compiler doesn’t convert an async method into equivalent C# that doesn’t use
async/await. It only has to generate appropriate IL. In some places, C# has rules that
are stricter than those in IL. (The set of valid identifiers is another example of this.)

 Second, although decompilers can be useful when looking at async code, some-
times they produce invalid C#. When I first decompiled the output of listing 6.7, the
output included a while loop containing a label and a goto statement outside that
loop trying to jump into it. You can sometimes get valid (but harder-to-read) C# by
telling the decompiler not to work as hard to produce idiomatic C#, at which point
you’ll see an awful lot of goto statements.

 Third, in case you weren’t already convinced, you don’t want to be writing this sort
of code by hand. If you had to write C# 4 code for this sort of task, you’d no doubt do
it in a very different way, but it would still be significantly uglier than the async method
you can use in C# 5.

 You’ve seen how awaiting within a loop might cause humans some stress, but it
doesn’t cause the compiler to break a sweat. For our final control-flow example, you’ll
give it some harder work to do: a try/finally block.

6.3.3 Awaiting within a try/finally block

Just to remind you, it’s always been valid to use await in a try block, but in C# 5, it
was invalid to use it in a catch or finally block. That restriction was lifted in C# 6,
although I’m not going to show any code that takes advantage of it.

For loop initializer
s straight
 checking
the loop

condition

Body of the
for loop

Target for jump when the
state machine resumes

For loop
iterator

Checks for loop
condition and jumps
back to body if it holds
Licensed to André Santos <andrerfcsantos@gmail.com>

214 CHAPTER 6 Async implementation
NOTE There are simply too many possibilities to go through here. The aim of
this chapter is to give you insight into the kind of thing the C# compiler does
with async/await rather than provide an exhaustive list of translations.

In this section, I’m only going to show you an example of awaiting within a try block
that has just a finally block. That’s probably the most common kind of try block,
because it’s the one that using statements are equivalent to. The following listing
shows the async method you’re going to decompile. Again, all the console output is
present only to make it simpler to understand the state machine.

static async Task AwaitInTryFinally(TimeSpan delay)
{
 Console.WriteLine("Before try block");
 await Task.Delay(delay);
 try
 {
 Console.WriteLine("Before await");
 await Task.Delay(delay);
 Console.WriteLine("After await");
 }
 finally
 {
 Console.WriteLine("In finally block");
 }
 Console.WriteLine("After finally block");
}

You might imagine that the decompiled code would look something like this:

 switch (num)
 {
 default:
 goto MethodStart;
 case 0:
 goto AwaitContinuation;
 }
MethodStart:
 ...
 try
 {
 ...
 AwaitContinuation:
 ...
 GetAwaitResult:
 ...
 }
 finally
 {
 ...
 }
 ...

Listing 6.9 Awaiting within a try block
Licensed to André Santos <andrerfcsantos@gmail.com>

215How control flow affects MoveNext()
Here, each ellipsis (...) represents more code. There’s a problem with that
approach, though: even in IL, you’re not allowed to jump from outside a try block to
inside it. It’s a little bit like the problem you saw in the previous section with loops, but
this time instead of a C# rule, it’s an IL rule.

 To achieve this, the C# compiler uses a technique I like to think of as a trampoline.
(This isn’t official terminology, although the term is used elsewhere for similar pur-
poses.) It jumps to just before the try block, and then the first thing inside the try
block is a piece of code that jumps to the right place within the block.

 In addition to the trampoline, the finally block needs to be handled with care,
too. There are three situations in which you’ll execute the finally block of the gen-
erated code:

 You reach the end of the try block.
 The try block throws an exception.
 You need to pause within the try block because of an await expression.

(If the async method contained a return statement, that would be another option.) If
the finally block is executing because you’re pausing the state machine and return-
ing to the caller, the code in the original async method’s finally block shouldn’t
execute. After all, you’re logically paused inside the try block and will be resuming
there when the delay completes. Fortunately, this is easy to detect: the num local vari-
able (which always has the same as the state field) is negative if the state machine is
still executing or finished and non-negative if you’re pausing.

 All of this together leads to the following listing, which again is the code within the
outer try block of MoveNext(). Although there’s still a lot of code, most of it is similar
to what you’ve seen before. I’ve highlighted the try/finally-specific aspects in bold.

 switch (num)
 {
 default:
 goto MethodStart;
 case 0:
 goto AwaitContinuationTrampoline;
 }
MethodStart:
 Console.WriteLine("Before try");
AwaitContinuationTrampoline:
 try
 {
 switch (num)
 {
 default:
 goto TryBlockStart;
 case 0:
 goto AwaitContinuation;
 }
 TryBlockStart:

Listing 6.10 Decompiled await within try/finally

Jumps to just before the
trampoline, so it can bounce
execution to the right place

Trampoline within
the try block
Licensed to André Santos <andrerfcsantos@gmail.com>

216 CHAPTER 6 Async implementation
 Console.WriteLine("Before await");
 TaskAwaiter awaiter = Task.Delay(this.delay).GetAwaiter();
 if (awaiter.IsCompleted)
 {
 goto GetAwaitResult;
 }
 this.state = num = 0;
 this.awaiter = awaiter;
 this.builder.AwaitUnsafeOnCompleted(ref awaiter, ref this);
 return;
 AwaitContinuation:
 awaiter = this.awaiter;
 this.awaiter = default(TaskAwaiter);
 this.state = num = -1;
 GetAwaitResult:
 awaiter.GetResult();
 Console.WriteLine("After await");
 }
 finally
 {
 if (num < 0)
 {
 Console.WriteLine("In finally block");
 }
 }
 Console.WriteLine("After finally block");

That’s the final decompilation in the chapter, I promise. I wanted to get to that level
of complexity to help you navigate the generated code if you ever need to. That’s not
to say you won’t need to keep your wits about you when looking through it, particu-
larly bearing in mind the many transformations the compiler can perform to make
the code simpler than what I’ve shown. As I said earlier, where I’ve always used a
switch statement for “jump to X” pieces of code, the compiler can sometimes use
simpler branching code. Consistency in multiple situations is important when reading
source code, but that doesn’t matter to the compiler.

 One of the aspects I’ve skimmed over so far is why awaiters have to implement
INotifyCompletion but can also implement ICriticalNotifyCompletion, and
the effect that has on the generated code. Let’s take a closer look now.

6.4 Execution contexts and flow
In section 5.2.2, I described synchronization contexts, which are used to govern the
thread that code executes on. This is just one of many contexts in .NET, although it’s
probably the best known. Context provides an ambient way of maintaining informa-
tion transparently. For example, SecurityContext keeps track of the current secu-
rity principal and code access security. You don’t need to pass all that information
around explicitly; it just follows your code, doing the right thing in almost all cases. A
single class is used to manage all the other contexts: ExecutionContext.

Real continuation
target

Effectively ignores finally
block if you’re pausing
Licensed to André Santos <andrerfcsantos@gmail.com>

217Execution contexts and flow
As a reminder, Task and Task<T> manage the synchronization context for any tasks
being awaited. If you’re on a UI thread and you await a task, the continuation of your
async method will be executed on the UI thread, too. You can opt out of that by using
Task.ConfigureAwait. You need that in order to explicitly say “I know I don’t need
the rest of my method to execute in the same synchronization context.” Execution
contexts aren’t like that; you pretty much always want the same execution context
when your async method continues, even if it’s on a different thread.

 This preservation of the execution context is called flow. An execution context is
said to flow across await expressions, meaning that all your code operates in the same
execution context. What makes sure that happens? Well, AsyncTaskMethodBuilder
always does, and TaskAwaiter sometimes does. This is where things get tricky.

 The INotifyCompletion.OnCompleted method is just a normal method; any-
one can call it. By contrast, ICriticalNotifyCompletion.UnsafeOnCompleted is
marked with [SecurityCritical]. It can be called only by trusted code, such as the
framework’s AsyncTaskMethodBuilder class.

 If you ever write your own awaiter class and you care about running code correctly
and safely in partially trusted environments, you should ensure that your INotify-
Completion.OnCompleted code flows the execution context (via Execution-
Context.Capture and ExecutionContext.Run). You can also implement
ICriticalNotifyCompletion and not flow the execution context in that case,
trusting that the async infrastructure will already have done so. Effectively, this is an
optimization for the common case in which awaiters are used only by the async infra-
structure. There’s no point in capturing and restoring the execution context twice in
cases where you can safely do it only once.

 When compiling an async method, the compiler will create a call to either
builder.AwaitOnCompleted or builder.AwaitUnsafeOnCompleted at each
await expression, depending on whether the awaiter implements ICriticalNotify-
Completion. Those builder methods are generic and have constraints to ensure that
the awaiters that are passed into them implement the appropriate interface.

 If you ever implement your own custom task type (and again, that’s extremely
unlikely for anything other than educational purposes), you should follow the same
pattern as AsyncTaskMethodBuilder: capture the execution context in both

Deep and scary stuff
I almost didn’t include this section. It’s at the very limits of my knowledge about
async. If you ever need to know the intimate details, you’ll want to know far more
about the topic than I’ve included here.

I’ve covered this at all only because otherwise there’d be no explanation whatsoever
for having both AwaitOnCompleted and AwaitUnsafeOnCompleted in the
builder or why awaiters usually implement ICriticalNotifyCompletion.
Licensed to André Santos <andrerfcsantos@gmail.com>

218 CHAPTER 6 Async implementation
AwaitOnCompleted and AwaitUnsafeOnCompleted, so it’s safe to call ICritical-
NotifyCompletion.UnsafeOnCompleted when you’re asked to. Speaking of cus-
tom tasks, let’s review the requirements for a custom task builder now that you’ve seen
how the compiler uses AsyncTaskMethodBuilder.

6.5 Custom task types revisited
Listing 6.11 shows a repeat of the builder part of listing 5.10, where you first looked at
custom task types. The set of methods may feel a lot more familiar now after you’ve
looked at so many decompiled state machines. You can use this section as a reminder
of how the methods on AsyncTaskMethodBuilder are called, as the compiler treats
all builders the same way.

public class CustomTaskBuilder<T>
{
 public static CustomTaskBuilder<T> Create();
 public void Start<TStateMachine>(ref TStateMachine stateMachine)
 where TStateMachine : IAsyncStateMachine;
 public CustomTask<T> Task { get; }

 public void AwaitOnCompleted<TAwaiter, TStateMachine>
 (ref TAwaiter awaiter, ref TStateMachine stateMachine)
 where TAwaiter : INotifyCompletion
 where TStateMachine : IAsyncStateMachine;
 public void AwaitUnsafeOnCompleted<TAwaiter, TStateMachine>
 (ref TAwaiter awaiter, ref TStateMachine stateMachine)
 where TAwaiter : INotifyCompletion
 where TStateMachine : IAsyncStateMachine;
 public void SetStateMachine(IAsyncStateMachine stateMachine);

 public void SetException(Exception exception);
 public void SetResult(T result);
}

I’ve grouped the methods in the normal chronological order in which they’re called.
 The stub method calls Create to create a builder instance as part of the newly cre-

ated state machine. It then calls Start to make the state machine take the first step
and returns the result of the Task property.

 Within the state machine, each await expression will generate a call to AwaitOn-
Completed or AwaitUnsafeOnCompleted as discussed in the previous section.
Assuming a task-like design, the first such call will end up calling IAsyncState-
Machine.SetStateMachine, which will in turn call the builder’s SetStateMachine
so that any boxing is resolved in a consistent way. See section 6.1.4 for a reminder of
the details.

 Finally, a state machine indicates that the async operation has completed by calling
either SetException or SetResult on the builder. That final state should be propa-
gated to the custom task that was originally returned by the stub method.

Listing 6.11 A sample custom task builder
Licensed to André Santos <andrerfcsantos@gmail.com>

219Summary
 This chapter is by far the deepest dive in this book. Nowhere else do I look at the
code generated by the C# compiler in such detail. To many developers, everything in
this chapter would be superfluous; you don’t really need it to write correct async code
in C#. But for curious developers, I hope it’s been enlightening. You may never need
to decompile generated code, but having some idea of what’s going on under the
hood can be useful. And if you ever do need to look at what’s going on in detail, I
hope this chapter will help you make sense of what you see.

 I’ve taken two chapters to cover the one major feature of C# 5. In the next short
chapter, I’ll cover the remaining two features. After the details of async, they come as a
bit of light relief.

Summary
 Async methods are converted into stub methods and state machines by using

builders as async infrastructure.
 The state machine keeps track of the builder, method parameters, local vari-

ables, awaiters, and where to resume in a continuation.
 The compiler creates code to get back into the middle of a method when it

resumes.
 The INotifyCompletion and ICriticalNotifyCompletion interfaces

help control execution context flow.
 The methods of custom task builders are called by the C# compiler.
Licensed to André Santos <andrerfcsantos@gmail.com>

C# 5 bonus features
If C# had been designed with book authors in mind, this chapter wouldn’t exist, or
it’d be a more standard length. I could claim that I wanted to include a very short
chapter as a sort of palette cleanser after the dish of asynchrony served by C# 5 and
before the sweetness of C# 6, but the reality is that two more changes in C# 5 that
need to be covered wouldn’t fit into the async chapters. The first of these isn’t so
much a feature as a correction to an earlier mistake in the language design.

7.1 Capturing variables in foreach loops
Before C# 5, foreach loops were described in the language specification as if each
loop declared a single iteration variable, which was read-only within the original code
but received a different value for each iteration of the loop. For example, in C# 3 a
foreach loop over a List<string> like this

foreach (string name in names)
{

This chapter covers
 Changes to variable capture in foreach loops

 Caller information attributes
220

Licensed to André Santos <andrerfcsantos@gmail.com>

221Capturing variables in foreach loops
 Console.WriteLine(name);
}

would be broadly equivalent to this:

string name;
using (var iterator = names.GetEnumerator())
{
 while (iterator.MoveNext())
 {
 name = iterator.Current;
 Console.WriteLine(name);
 }
}

NOTE The specification has a lot of other details around possible conversions
of both the collection and the elements, but they’re not relevant to this
change. Additionally, the scope of the iteration variable is only the scope of
the loop; you can imagine adding an extra pair of curly braces around the
whole code.

In C# 1, this was fine, but it started causing problems way back in C# 2 when anony-
mous methods were introduced. That was the first time that a variable could be cap-
tured, changing its lifetime significantly. A variable is captured when it’s used in an
anonymous function, and the compiler has to do work behind the scenes to make its
use feel natural. Although anonymous methods in C# 2 were useful, my impression is
that it was C# 3, with its lambda expressions and LINQ, that really encouraged devel-
opers to use delegates more widely.

 What’s the problem with our earlier expansion of the foreach loop using just a
single iteration variable? If that iteration variable is captured in an anonymous func-
tion for a delegate, then whenever the delegate is invoked, the delegate will use the
current value of that single variable. The following listing shows a concrete example.

List<string> names = new List<string> { "x", "y", "z" };
var actions = new List<Action>();
foreach (string name in names)
{
 actions.Add(() => Console.WriteLine(name));
}
foreach (Action action in actions)
{
 action();
}

What would you have expected that to print out if I hadn’t been drawing your atten-
tion to the problem? Most developers would expect it to print x, then y, then z. That’s

Listing 7.1 Capturing the iteration variable in a foreach loop

Declaration of single
iteration variable

Invisible iterator
variable

Assigns new value to iteration
variable on each iteration

Original body of
the foreach loop

Iterates over the
list of names

Creates a delegate that
captures name

Executes all
the delegates
Licensed to André Santos <andrerfcsantos@gmail.com>

222 CHAPTER 7 C# 5 bonus features
the useful behavior. In reality, with a C# compiler before version 5, it would’ve printed
z three times, which is really not helpful.

 As of C# 5, the specification for the foreach loop has been changed so that a new
variable is introduced in each iteration of the loop. The exact same code in C# 5 and
later produces the expected result of x, y, z.

 Note that this change affects only foreach loops. If you were to use a regular for
loop instead, you’d still capture only a single variable. The following listing is the same
as listing 7.1, other than the changes shown in bold.

List<string> names = new List<string> { "x", "y", "z" };
var actions = new List<Action>();
for (int i = 0; i < names.Count; i++)
{
 actions.Add(() => Console.WriteLine(names[i]));
}
foreach (Action action in actions)
{
 action();
}

This doesn’t print the last name three times; it fails with an ArgumentOutOfRange-
Exception, because by the time you start executing the delegates, the value of i is 3.

 This isn’t an oversight on the part of the C# design team. It’s just that when a for
loop initializer declares a local variable, it does so once for the whole duration of the
loop. The syntax of the loop makes that model easy to see, whereas the syntax of
foreach encourages a mental model of one variable per iteration. On to our final
feature of C# 5: caller information attributes.

7.2 Caller information attributes
Some features are general, such as lambda expressions, implicitly typed local vari-
ables, generics, and the like. Others are more specific: LINQ is meant to be about que-
rying data of some form or other, even though it’s aimed to generalize over many data
sources. The final C# 5 feature is extremely targeted: there are two significant use
cases (one obvious, one slightly less so), and I don’t expect it to be used much outside
those situations.

7.2.1 Basic behavior

.NET 4.5 introduced three new attributes:

 CallerFilePathAttribute

 CallerLineNumberAttribute

 CallerMemberNameAttribute

Listing 7.2 Capturing the iteration variable in a for loop

Iterates over the
list of names

Creates a delegate that
captures names and i

Executes all
the delegates
Licensed to André Santos <andrerfcsantos@gmail.com>

223Caller information attributes
These are all in the System.Runtime.CompilerServices namespace. Just as with
other attributes, when you apply any of these, you can omit the Attribute suffix.
Because that’s the most common way of using attributes, I’ll abbreviate the names
appropriately for the rest of the book.

 All three attributes can be applied only to parameters, and they’re useful only
when they’re applied to optional parameters with appropriate types. The idea is sim-
ple: if the call site doesn’t provide the argument, the compiler will use the current file,
line number, or member name to fill in the argument instead of taking the normal
default value. If the caller does supply an argument, the compiler will leave it alone.

NOTE The parameter types are almost always int or string in normal
usage. They can be other types where appropriate conversions are available.
See the specification for details if you’re interested, but I’d be surprised if you
ever needed to know.

The following listing is an example of all three attributes and a mixture of compiler-
specified and user-specified values.

static void ShowInfo(
 [CallerFilePath] string file = null,
 [CallerLineNumber] int line = 0,
 [CallerMemberName] string member = null)
{
 Console.WriteLine("{0}:{1} - {2}", file, line, member);
}

static void Main()
{
 ShowInfo();
 ShowInfo("LiesAndDamnedLies.java", -10);
}

The output of listing 7.3 on my machine is as follows:

C:\Users\jon\Projects\CSharpInDepth\Chapter07\CallerInfoDemo.cs:20 - Main
LiesAndDamnedLies.java:-10 – Main

You wouldn’t usually give a fake value for any of these arguments, but it’s useful to be
able to pass the value explicitly, particularly if you want to log the current method’s
caller using the same attributes.

 The member name works for all members normally in the obvious way. The
default values for the attributes are usually irrelevant, but we’ll come back to some
interesting corner cases in section 7.2.4. First, we’ll look at the two common use cases
I mentioned earlier. The most universal of these is logging.

Listing 7.3 Basic demonstration of caller member attributes

Compiler provides all three
arguments from context

Compiler provides only the
member name from context
Licensed to André Santos <andrerfcsantos@gmail.com>

224 CHAPTER 7 C# 5 bonus features
7.2.2 Logging

The most obvious case in which caller information is useful is when writing to a log
file. Previously when logging, you’d usually construct a stack trace (using System
.Diagnostics.StackTrace, for example) to find out where the log call came from.
This is typically hidden from view in logging frameworks, but it’s still there—and ugly.
It’s potentially an issue in terms of performance, and it’s brittle in the face of JIT com-
piler inlining.

 It’s easy to see how a logging framework can use the new feature to allow caller-
only information to be logged cheaply, even preserving line numbers and member
names in the face of a build that had debug information stripped and even after
obfuscation. This doesn’t help when you want to log a full stack trace, of course, but it
doesn’t take away your ability to do that, either.

 Based on a quick sampling performed at the end of 2017, it appears that this func-
tionality hasn’t been used particularly widely yet.1 In particular, I see no sign of it
being used in the ILogger interface commonly used in ASP.NET Core. But it’d be
entirely reasonable to write your own extension methods for ILogger that use these
attributes and create an appropriate state object to be logged.

 It’s not particularly uncommon for projects to include their own primitive logging
frameworks, which could also be amenable to the use of these attributes. A project-
specific logging framework is less likely to need to worry about targeting frameworks
that don’t include the attributes, too.

NOTE The lack of an efficient system-level logging framework is a thorny
issue. This is particularly true for class library developers who wish to provide
logging facilities but don’t want to add third-party dependencies and don’t
know which logging frameworks their users will be targeting.

Whereas the logging use case needs specific thought on the part of frameworks, our
second use case is a lot simpler to integrate.

7.2.3 Simplifying INotifyPropertyChanged implementations

The less obvious use of just one of these attributes, [CallerMemberName], may be
obvious to you if you happen to implement INotifyPropertyChanged frequently. If
you’re not familiar with the INotifyPropertyChanged interface, it’s commonly used
for thick client applications (as opposed to web applications) to allow a user interface
to respond to a change in model or view model. It’s in the System.ComponentModel
namespace, so it’s not tied to any particular UI technology. It’s used in Windows Forms,
WPF, and Xamarin Forms, for example. The interface is simple; it’s a single event of
type PropertyChangedEventHandler. This is a delegate type with the following sig-
nature:

1 NLog was the only logging framework I found with direct support and then only conditionally based on the
target framework.
Licensed to André Santos <andrerfcsantos@gmail.com>

225Caller information attributes
public delegate void PropertyChangedEventHandler(
 Object sender, PropertyChangedEventArgs e)

PropertyChangedEventArgs, in turn, has a single constructor:

public PropertyChangedEventArgs(string propertyName)

A typical implementation of INotifyPropertyChanged before C# 5 might look
something like the following listing.

class OldPropertyNotifier : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 private int firstValue;
 public int FirstValue
 {
 get { return firstValue; }
 set
 {
 if (value != firstValue)
 {
 firstValue = value;
 NotifyPropertyChanged("FirstValue");
 }
 }
 }

 // (Other properties with the same pattern)

 private void NotifyPropertyChanged(string propertyName)
 {
 PropertyChangedEventHandler handler = PropertyChanged;
 if (handler != null)
 {
 handler(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

The purpose of the helper method is to avoid having to put the nullity check in each
property. You could easily make it an extension method to avoid repeating it on each
implementation.

 This isn’t just long-winded (which hasn’t changed); it’s also brittle. The problem
is that the name of the property (FirstValue) is specified as a string literal, and if
you refactor the property name to something else, you could easily forget to change
the string literal. If you’re lucky, your tools and tests will help you spot the mistake,
but it’s still ugly. You’ll see in chapter 9 that the nameof operator introduced in C# 6
would make this code more refactoring friendly, but it’d still be prone to copy-and-
paste errors.

Listing 7.4 Implementing INotifyPropertyChanged the old way
Licensed to André Santos <andrerfcsantos@gmail.com>

226 CHAPTER 7 C# 5 bonus features
 With caller info attributes, the majority of the code stays the same, but you can
make the compiler fill in the property name by using CallerMemberName in the
helper method, as shown in the following listing.

if (value != firstValue)
{
 firstValue = value;
 NotifyPropertyChanged();
}

void NotifyPropertyChanged([CallerMemberName] string propertyName = null)
{

}

I’ve shown only the sections of the code that have changed; it’s that simple. Now when
you change the name of the property, the compiler will use the new name instead. It’s
not an earth-shattering improvement, but it’s nicer nonetheless.

 Unlike logging, this pattern has been embraced by model-view-viewmodel
(MVVM) frameworks that provide base classes for view models and models. For exam-
ple, in Xamarin Forms, the BindableObject class has an OnPropertyChanged
method using CallerMemberName. Similarly, the Caliburn Micro MVVM framework
has a PropertyChangedBase class with a NotifyOfPropertyChange method.
That’s all you’re likely to need to know about caller information attributes, but a few
interesting oddities exist, particularly with the caller member name.

7.2.4 Corner cases of caller information attributes

In almost all cases, it’s obvious which value the compiler should provide for caller
information attributes. It’s interesting to look at places where it’s not obvious, though.
I should emphasize that this is mostly a matter of curiosity and a spotlight on language
design choices rather than on issues that will affect regular development. First, a little
restriction.

DYNAMICALLY INVOKED MEMBERS

In many ways, the infrastructure around dynamic typing tries hard to apply the same
rules at execution time as the regular compiler would at compile time. But caller
information isn’t preserved for this purpose. If the member being invoked includes
an optional parameter with a caller information attribute but the invocation doesn’t
include a corresponding argument, the default value specified in the parameter is
used as if the attribute weren’t present.

 Aside from anything else, the compiler would have to embed all the line-number
information for every dynamically invoked member just in case it was required, thereby
increasing the resulting assembly size for no benefit in 99.9% of cases. Then there’s the

Listing 7.5 Using caller information to implement INotifyPropertyChanged

Changes within
the property setter

Same method
body as before
Licensed to André Santos <andrerfcsantos@gmail.com>

227Caller information attributes
extra analysis required at execution time to check whether the caller information was
required, which would potentially disrupt caching, too. I suspect that if the C# design
team had considered this to be a common and important scenario, they’d have found
a way to make it work, but I also think it’s entirely reasonable that they decided there
were more valuable features to spend their time on. You just need to be aware of the
behavior and accept it, basically. Workarounds exist in some cases, though.

 If you’re passing a method argument that happens to be dynamic but you don’t
need it to be, you can cast to the appropriate type instead. At that point, the method
invocation will be a regular one without any dynamic typing involved.2 If you really
need the dynamic behavior but you know that the member you’re invoking uses caller
information attributes, you can explicitly call a helper method that uses the caller
information attribute to return the value. It’s a little ugly, but this is a corner case any-
way. The following listing shows the problem and both workarounds.

static void ShowLine(string message,
 [CallerLineNumber] int line = 0)
{
 Console.WriteLine("{0}: {1}", line, message);
}

static int GetLineNumber(
 [CallerLineNumber] int line = 0)
{
 return line;
}

static void Main()
{
 dynamic message = "Some message";
 ShowLine(message);
 ShowLine((string) message);
 ShowLine(message, GetLineNumber());
}

Listing 7.6 prints a line number of 0 for the first call but the correct line number for
both workarounds. It’s a trade-off between having simple code and retaining more
information. Neither of these workarounds is appropriate when you need to use
dynamic overload resolution, and some overloads need caller information and some
don’t, of course. As limitations go, that’s pretty reasonable in my view. Next, let’s think
about unusual names.

2 The call will have the additional benefits of compile-time checking that the member exists and improved exe-
cution-time efficiency, too.

Listing 7.6 Caller information attributes and dynamic typing

Method you’re trying to call
that uses the line number

Helper method
for workaround 2

Simple dynamic call;
line will be reported as 0.

Workaround 1: cast the value
to remove dynamic typing.

Workaround 2: explicitly provide the
line number using a helper method.
Licensed to André Santos <andrerfcsantos@gmail.com>

228 CHAPTER 7 C# 5 bonus features
NON-OBVIOUS MEMBER NAMES

When the caller member name is provided by the compiler and that caller is a
method, the name is obvious: it’s the name of the method. Not everything is a
method, though. Here are some cases to consider:

 Calls from an instance constructor
 Calls from a static constructor
 Calls from a finalizer
 Calls from an operator
 Calls as part of a field, event, or property initializer3

 Calls from an indexer

The first four of these are specified to be implementation dependent; it’s up to the
compiler to decide how to treat them. The fifth (initializers) isn’t specified at all, and
the final one (indexers) is specified to use the name Item unless IndexerName-
Attribute has been applied to the indexer.

 The Roslyn compiler uses the names that are present in the IL for the first four:
.ctor, .cctor, Finalize, and operator names such as op_Addition. For initializ-
ers, it uses the name of the field, event, or property being initialized.

 The downloadable code contains a complete example showing all of these; I
haven’t included the code here, as the results are more interesting than the code
itself. All of the names are the most obvious ones to pick, and I’d be surprised to see a
different compiler pick a different option. I have found a difference between compil-
ers for another aspect, however: determining when the compiler should fill in caller
information attributes at all.

IMPLICIT CONSTRUCTOR INVOCATIONS

The C# 5 language specification requires that caller information be used only when a
function is explicitly invoked in source code, with the exception of query expressions
that are deemed to be syntactic expansions. Other C# language constructs that are
pattern based don’t apply to methods with optional parameters anyway, but construc-
tor initializers definitely do. (Deconstruction is a C# 7 feature described in section
12.2.) The language specification calls out constructors as an example in which caller
member information isn’t provided by the compiler unless the call is explicit. The fol-
lowing listing shows a single abstract base class with a constructor using caller member
information and three derived classes.

public abstract class BaseClass
{
 protected BaseClass(
 [CallerFilePath] string file = "Unspecified file",

3 Initializers for automatically implemented properties were introduced in C# 6. See section 8.2.2 for details,
but if you take a guess at what this means, you’re likely to be right.

Listing 7.7 Caller information in a constructor

Base class constructor
uses caller info attributes.
Licensed to André Santos <andrerfcsantos@gmail.com>

229Caller information attributes
 [CallerLineNumber] int line = -1,
 [CallerMemberName] string member = "Unspecified member")
 {
 Console.WriteLine("{0}:{1} - {2}", file, line, member);
 }
}

public class Derived1 : BaseClass { }

public class Derived2 : BaseClass
{
 public Derived2() { }
}

public class Derived3 : BaseClass
{
 public Derived3() : base() {}
}

With Roslyn, only Derived3 will result in real caller information being shown. Both
Derived1 and Derived2, in which the call to the BaseClass constructor is implicit,
use the default values specified in the parameters rather than providing the filename,
line number, and member name.

 This is in line with the C# 5 specification, but I’d argue it’s a design flaw. I believe
most developers would expect the three derived classes to be precisely equivalent. Inter-
estingly, the Mono compiler (mcs) currently prints the same output for each of these
derived classes. We’ll have to wait to see whether the language specification changes,
the Mono compiler changes, or the incompatibility continues into the future.

QUERY EXPRESSION INVOCATIONS

As I mentioned before, the language specification calls out query expressions as one
place where caller information is provided by the compiler even though the call is
implicit. I doubt that this will be used often, but I’ve provided a complete example in
the downloadable source code. It requires more code than would be sensible to
include here, but its use looks like the following listing.

string[] source =
{
 "the", "quick", "brown", "fox",
 "jumped", "over", "the", "lazy", "dog"
};
var query = from word in source
 where word.Length > 3
 select word.ToUpperInvariant();
Console.WriteLine("Data:");
Console.WriteLine(string.Join(", ", query));
Console.WriteLine("CallerInfo:");
Console.WriteLine(string.Join(
 Environment.NewLine, query.CallerInfo));

Listing 7.8 Caller information in query expressions

Parameterless constructor
is added implicitly.

Constructor with
implicit call to base()

Explicit call
to base

Query expression using methods
capturing caller information

Logs
the data

Logs the caller
information of the query
Licensed to André Santos <andrerfcsantos@gmail.com>

230 CHAPTER 7 C# 5 bonus features
Although it contains a regular query expression, I’ve introduced new extension meth-
ods (in the same namespace as the example, so they’re found before the System
.Linq ones) containing caller information attributes. The output shows that the
caller information is captured in the query as well as the data itself:

Data:
QUICK, BROWN, JUMPED, OVER, LAZY
CallerInfo:
CallerInfoLinq.cs:91 - Main
CallerInfoLinq.cs:92 – Main

Is this useful? Probably not, to be honest. But it does highlight that when the language
designers introduced the feature, they had to carefully consider a lot of situations. It
would’ve been annoying if someone had found a good use for caller information from
query expressions, but the specification hadn’t made it clear what should happen. We
have one final kind of member invocation to consider, which feels to me like it’s even
more subtle than constructor initializers and query expressions: attribute instantiation.

ATTRIBUTES WITH CALLER INFORMATION ATTRIBUTES

I tend to think about applying attributes as just specifying extra data. It doesn’t feel
like it’s invoking anything, but attributes are code too, and when an attribute object is
constructed (usually to be returned from a reflection call), that calls constructors and
property setters. What counts as the caller if you create an attribute that uses caller
information attributes in its constructor? Let’s find out.

 First, you need an attribute class. This part is simple and is shown in the following
listing.

[AttributeUsage(AttributeTargets.All)]
public class MemberDescriptionAttribute : Attribute
{
 public MemberDescriptionAttribute(
 [CallerFilePath] string file = "Unspecified file",
 [CallerLineNumber] int line = 0,
 [CallerMemberName] string member = "Unspecified member")
 {
 File = file;
 Line = line;
 Member = member;
 }

 public string File { get; }
 public int Line { get; }
 public string Member { get; }

 public override string ToString() =>
 $"{Path.GetFileName(File)}:{Line} - {Member}";
}

Listing 7.9 Attribute class that captures caller information
Licensed to André Santos <andrerfcsantos@gmail.com>

231Caller information attributes
For brevity, this class uses a few features from C# 6, but the interesting aspect for now
is that the constructor parameters use caller information attributes.

 What happens when you apply our new MemberDescriptionAttribute? In the
next listing, let’s apply it to a class and various aspects of a method and then see what
you get.

using MDA = MemberDescriptionAttribute;

[MemberDescription]
class CallerNameInAttribute
{
 [MemberDescription]
 public void Method<[MemberDescription] T>(
 [MemberDescription] int parameter) { }

 static void Main()
 {
 var typeInfo = typeof(CallerNameInAttribute).GetTypeInfo();
 var methodInfo = typeInfo.GetDeclaredMethod("Method");
 var paramInfo = methodInfo.GetParameters()[0];
 var typeParamInfo =
 methodInfo.GetGenericArguments()[0].GetTypeInfo();
 Console.WriteLine(typeInfo.GetCustomAttribute<MDA>());
 Console.WriteLine(methodInfo.GetCustomAttribute<MDA>());
 Console.WriteLine(paramInfo.GetCustomAttribute<MDA>());
 Console.WriteLine(typeParamInfo.GetCustomAttribute<MDA>());
 }
}

The Main method uses reflection to fetch the attribute from all the places you’ve
applied it. You could apply MemberDescriptionAttribute to other places: fields,
properties, indexers, and the like. Feel free to experiment with the downloadable
code to find out exactly what happens. What I find interesting is that the compiler is
perfectly happy to capture the line number and file path in all cases, but it doesn’t use
the class name as the member name, so the output is as follows:

CallerNameInAttribute.cs:36 - Unspecified member
CallerNameInAttribute.cs:39 - Method
CallerNameInAttribute.cs:40 - Method
CallerNameInAttribute.cs:40 – Method

Again, this is in the C# 5 specification, to the extent that it specifies the behavior when
the attribute is applied to a function member (method, property, event, and so on)
but not to a type. Perhaps it would’ve been more useful to include types here as well.
They’re defined to be members of namespaces, so it’s not unreasonable for a member
name to map to a type name.

 Just to reiterate, the reason I included this section was more than for the sake of
completeness. It highlights some interesting language choices. When is it okay for

Listing 7.10 Applying the attribute to a class and a method

Helps keep the
reflection code short

Applies the attribute to a class

Applies the attribute to
a method in various ways
Licensed to André Santos <andrerfcsantos@gmail.com>

232 CHAPTER 7 C# 5 bonus features
language design to accept limitations to avoid implementation costs? When is it rea-
sonable for a language design choice to conflict with user expectations? When does it
make sense for the specification to explicitly turn a decision into an implementation
choice? At a meta level, how much time should the language design team spend to
specify corner cases for a relatively minor feature? One final piece of practical detail
remains before we close the chapter: enabling this feature on frameworks where the
attributes don’t exist.

7.2.5 Using caller information attributes with old versions of .NET

Hopefully, by now most readers will be targeting .NET 4.5+ or .NET Standard 1.0+,
both of which contain the caller information attributes. But in some cases, you’re still
able to use a modern compiler but need to target old frameworks.

 In these cases, you can still use the caller information attributes, but you need to
make the attributes available to the compiler. The simplest way of doing this is to use
the Microsoft.Bcl NuGet package, which provides the attributes and many other
features provided by later versions of the framework.

 If you can’t use the NuGet package for some reason, you can provide the attributes
yourself. They’re simple attributes with no parameters or properties, so you can copy
the declaration directly from the API documentation. They still need to be in the
System.Runtime.CompilerServices namespace. To avoid type collisions, you’ll
want to make sure these are available only when the system-provided attributes aren’t
available. This can be tricky (as all versioning tends to be), and the details are beyond
the scope of this book.

 When I started writing this chapter, I hadn’t expected to write as much about caller
information attributes as I ended up with. I can’t say I use the feature much in my day-
to-day work, but I find the design aspects fascinating. This isn’t in spite of it being a
minor feature; it’s because it’s a minor feature. You’d expect major features—dynamic
typing, generics, async/await—to require significant language design work, but minor
features can have all kinds of corner cases, too. Features often interact with each
other, so one of the dangers of introducing a new feature is that it might make a
future feature harder to design or implement.

Summary
 Captured foreach iteration variables are more useful in C# 5.
 You can use caller information attributes to ask the compiler to fill in parame-

ters based on the caller’s source file, line number, and member name.
 Caller information attributes demonstrate the level of detail that language

design often requires.
Licensed to André Santos <andrerfcsantos@gmail.com>

Part 3

C# 6

C# 6 is one of my favorite releases. It has lots of features, but they’re mostly
independent of each other, simple to explain, and easy to apply to existing code.
In some ways, they’re underwhelming to read about, but they still make a huge
difference to the readability of your code. If I ever have to write code in an older
version of C#, it’s the C# 6 features that I find myself missing most.

 Whereas each earlier version of C# introduced a whole new way of thinking
about code (generics, LINQ, dynamic typing, and async/await, respectively), C#
6 is more about applying some polish to the code you already have.

 I’ve grouped the features into three chapters: features about properties, fea-
tures about strings, and features that aren’t about properties or strings, but this
is somewhat arbitrary. I recommend reading the chapters in the natural order,
but there’s no big buildup to a grand scheme as there was with LINQ.

 Given the way C# 6 features are easily applicable to existing code, I recom-
mend trying them out as you go along. If you maintain a project that has old
code you haven’t touched in a while, you may find that to be fertile ground for
refactoring with the benefit of C# 6.

Licensed to André Santos <andrerfcsantos@gmail.com>

234 CHAPTER

Licensed to André Santos <andrerfcsantos@gmail.com>

Super-sleek properties and
expression-bodied members
Some versions of C# have one big, unifying feature that almost all other features
contribute to. For example, C# 3 introduced LINQ, and C# 5 introduced asyn-
chrony. C# 6 isn’t like that, but it does have a general theme. Almost all the features
contribute to cleaner, simpler, and more readable code. C# 6 isn’t about doing
more; it’s about doing the same work with less code.

 The features you’ll look at in this chapter are about properties and other sim-
ple pieces of code. When not much logic is involved, removing even the smallest
piece of ceremony—braces and return statements, for example—can make a big

This chapter covers
 Implementing read-only properties automatically

 Initializing automatically implemented properties
at their declaration

 Removing unnecessary ceremony with expression-
bodied members
235

Licensed to André Santos <andrerfcsantos@gmail.com>

236 CHAPTER 8 Super-sleek properties and expression-bodied members
difference. Although the features here may not sound impressive, I’ve been surprised
at their impact in real code. We’ll start off looking at properties and move on to
methods, indexers, and operators.

8.1 A brief history of properties
C# has had properties from the first version. Although their core functionality hasn’t
changed over time, they’ve gradually become simpler to express in source code and
more versatile. Properties allow you to differentiate between how state access and
manipulation are exposed in the API and how that state is implemented.

 For example, suppose you want to represent a point in 2D space. You could repre-
sent that easily using public fields, as shown in the following listing.

public sealed class Point
{
 public double X;
 public double Y;
}

That doesn’t seem too bad at first glance, but the capabilities of the class (“I can access
its X and Y values”) are closely tied to the implementation (“I’ll use two double
fields”). But at this point, the implementation has lost control. As long as the class
state is exposed directly via fields, you can’t do the following:

 Perform validation when setting new values (for example, preventing infinite or
not-a-number values for the X and Y coordinates)

 Perform computation when fetching values (for example, if you wanted to store
the fields in a different format—unlikely for a point, but perfectly feasible in
other cases)

You might argue that you could always change the field to a property later, when you
find you need something like this, but that’s a breaking change, which you probably
want to avoid. (It breaks source compatibility, binary compatibility, and reflection
compatibility. That’s a big risk to take just to avoid using properties from the start.)

 In C# 1, the language provided almost no help with properties. A property-based
version of listing 8.1 would require manual declaration of the backing fields, along
with getters and setters for each of the properties, as shown in the next listing.

public sealed class Point
{
 private double x, y;
 public double X { get { return x; } set { x = value; } }
 public double Y { get { return y; } set { y = value; } }
}

Listing 8.1 Point class with public fields

Listing 8.2 Point class with properties in C# 1
Licensed to André Santos <andrerfcsantos@gmail.com>

237A brief history of properties
You could argue that many properties start off simply reading and writing fields with
no extra validation, computation, or anything else and stay that way for the whole his-
tory of the code. Properties like that could’ve been exposed as fields, but it’s hard to
predict which properties might need extra code later. Even when you can do that
accurately, it feels like you’re operating at two levels of abstraction for no reason. To
me, properties act as part of the contract that a type provides: its advertised functional-
ity. Fields are simply implementation details; they’re the mechanism inside the box,
which users don’t need to know about in the vast majority of cases. I prefer fields to be
private in almost all cases.

NOTE Like all good rules of thumb, there are exceptions. In some situations,
it makes sense to expose fields directly. You’ll see one interesting case in
chapter 11 when you look at the tuples provided by C# 7.

The only improvement to properties in C# 2 was to allow different access modifiers for
the getter and setter—for example, a public getter and a private setter. (That’s not the
only combination available, but it’s by far the most common one.)

 C# 3 then added automatically implemented properties, which allow listing 8.2 to
be rewritten in a simpler way, as follows.

public sealed class Point
{
 public double X { get; set; }
 public double Y { get; set; }
}

This code is almost exactly equivalent to the code in listing 8.2, except there’s no way
of accessing the backing fields directly. They’re given unspeakable names, which aren’t
valid C# identifiers but are fine as far as the runtime is concerned.

 Importantly, C# 3 allowed only read/write properties to be implemented automat-
ically. I’m not going to go into all the benefits (and pitfalls) of immutability here, but
there are many reasons you might want your Point class to be immutable. To make
your properties truly read-only, you need to go back to writing the code manually.

public sealed class Point
{
 private readonly double x, y;
 public double X { get { return x; } }
 public double Y { get { return y; } }

 public Point(double x, double y)
 {
 this.x = x;
 this.y = y;
 }
}

Listing 8.3 Point class with properties in C# 3

Listing 8.4 Point class with read-only properties via manual implementation in C# 3

Declares
read-only fields

Declares read-only properties
returning the field values

Initializes the fields
on construction
Licensed to André Santos <andrerfcsantos@gmail.com>

238 CHAPTER 8 Super-sleek properties and expression-bodied members
This is irritating, to say the least. Many developers—including me—sometimes
cheated. If we wanted read-only properties, we’d use automatically implemented
properties with private setters, as shown in the following listing.

public sealed class Point
{
 public double X { get; private set; }
 public double Y { get; private set; }

 public Point(double x, double y)
 {
 X = x;
 Y = y;
 }
}

That works, but it’s unsatisfying. It doesn’t express what you want. It allows you to
change the values of the properties within the class even though you don’t want to;
you want a property you can set in the constructor but then never change elsewhere,
and you want it to be backed by a field in a trivial way. Up to and including C# 5, the
language forced you to choose between simplicity of implementation and clarity of
intent, with each choice sacrificing the other. Since C# 6, you no longer need to com-
promise; you can write brief code that expresses your intent clearly.

8.2 Upgrades to automatically implemented properties
C# 6 introduced two new features to automatically implemented properties. Both are
simple to explain and use. In the previous section, I focused on the importance of
exposing properties instead of public fields and the difficulties of implementing
immutable types concisely. You can probably guess how our first new feature in C# 6
works, but a couple of other restrictions have been lifted, too.

8.2.1 Read-only automatically implemented properties

C# 6 allows genuinely read-only properties backed by read-only fields to be expressed
in a simple way. All it takes is an empty getter and no setter, as shown in the next listing.

public sealed class Point
{
 public double X { get; }
 public double Y { get; }

 public Point(double x, double y)
 {

Listing 8.5 Point class with publicly read-only properties via automatic
 implementation with private setters in C# 3

Listing 8.6 Point class using read-only automatically implemented properties

Declares read-only automatically
implemented properties
Licensed to André Santos <andrerfcsantos@gmail.com>

239Upgrades to automatically implemented properties
 X = x;
 Y = y;
 }
}

The only parts that have changed from listing 8.5 are the declarations of the X and Y
properties; they no longer have a setter at all. Given that there are no setters, you may
be wondering how you’re initializing the properties in the constructor. It happens
exactly as it did in listing 8.4, where you implemented it manually: the field declared
by the automatically implemented property is read-only, and any assignments to the
property are translated by the compiler into direct field assignments. Any attempt to
set the property in code other than the constructor results in a compile-time error.

 As a fan of immutability, this feels like a real step forward to me. It lets you express
your ideal result in a small amount of code. Laziness is now no obstacle to code
hygiene, at least in this one small way.

 The next limitation removed in C# 6 has to do with initialization. So far, the prop-
erties I’ve shown have either not been initialized explicitly at all or have been initial-
ized in a constructor. But what if you want to initialize a property as if it were a field?

8.2.2 Initializing automatically implemented properties

Before C# 6, any initialization of automatically implemented properties had to be in
constructors; you couldn't initialize the properties at the point of declaration. For
example, suppose you had a Person class in C# 2, as shown in the following listing.

public class Person
{
 private List<Person> friends = new List<Person>();
 public List<Person> Friends
 {
 get { return friends; }
 set { friends = value; }
 }
}

If you wanted to change this code to use automatically implemented properties, you’d
have to move the initialization into a constructor, where previously you hadn’t explic-
itly declared any constructors at all. You’d end up with code like the following listing.

public class Person
{
 public List<Person> Friends { get; set; }

 public Person()
 {

Listing 8.7 Person class with manual property in C# 2

Listing 8.8 Person class with automatically implemented property in C# 3

Initializes the properties
on construction

Declares and
initializes field

Exposes a property to
read/write the field

Declares the property;
no initializer permitted
Licensed to André Santos <andrerfcsantos@gmail.com>

240 CHAPTER 8 Super-sleek properties and expression-bodied members
 Friends = new List<Person>();
 }
}

That’s about as verbose as it was before! In C# 6, this restriction was removed. You can
initialize at the point of property declaration, as the following listing shows.

public class Person
{
 public List<Person> Friends { get; set; } =
 new List<Person>();
}

Naturally, you can use this feature with read-only automatically implemented proper-
ties as well. One common pattern is to have a read-only property exposing a mutable
collection, so a caller can add or remove items from the collection but can never
change the property to refer to a different collection (or set it to be a null reference).
As you might expect, this is just a matter of removing the setter.

public class Person
{
 public List<Person> Friends { get; } =
 new List<Person>();
}

I've rarely found this particular restriction of earlier versions of C# to be a massive
problem, because usually I want to initialize properties based on constructor parame-
ters anyway, but the change is certainly a welcome addition. The next restriction that
has been removed ends up being more important in conjunction with read-only auto-
matically implemented properties.

8.2.3 Automatically implemented properties in structs

Before C# 6, I always found automatically implemented properties to be a little prob-
lematic in structs. There were two reasons for this:

 I always write immutable structs, so the lack of read-only automatically imple-
mented properties was always a pain point.

 I could assign to an automatically implemented property in a constructor only
after chaining to another constructor because of the rules about definite
assignment.

NOTE In general, definite assignment rules are about the compiler keeping
track of which variables will have been assigned at a particular point in your
code, regardless of how you got there. These rules are mostly relevant for

Listing 8.9 Person class with automatically implemented read/write property in C# 6

Listing 8.10 Person class with automatically implemented read-only property in C# 6

Initializes the property
in a constructor

Declares and initializes a read/write
automatically implemented

Declares and initializes a read-only
automatically implemented
Licensed to André Santos <andrerfcsantos@gmail.com>

241Upgrades to automatically implemented properties
local variables, to make sure you don’t try to read from a local variable that
hasn’t been assigned a value yet. Here, we’re looking at a slightly different use
of the same rules.

The following listing demonstrates both of these points in a struct version of our pre-
vious Point class. Just typing it out makes me squirm a little.

public struct Point
{
 public double X { get; private set; }
 public double Y { get; private set; }

 public Point(double x, double y) : this()
 {
 X = x;
 Y = y;
 }
}

This isn’t code I would’ve included in a real codebase. The benefits of automatically
implemented properties are outweighed by the ugliness. You’re already familiar with
the read-only aspect of the properties, but why do you need to call the default con-
structor in our constructor initializer?

 The answer lies in subtleties of the rules around field assignments in structs. Two
rules are at work here:

 You can’t use any properties, methods, indexers, or events in a struct until the
compiler considers that all the fields have been definitely assigned.

 Every struct constructor must assign values to all fields before it returns control
to the caller.

In C# 5, without calling the default constructor, you’re violating both rules. Setting
the X and Y properties still counts as using the value of the struct, so you’re not
allowed to do it. Setting the properties doesn’t count as assigning the fields, so you
can’t return from the constructor anyway. Chaining to the default constructor is a
workaround because that assigns all fields before your constructor body executes. You
can then set the properties and return at the end because the compiler is happy that
all your fields were set anyway.

 In C# 6, the language and the compiler have a closer understanding of the relation-
ship between automatically implemented properties and the fields they’re backed by:

 You’re allowed to set an automatically implemented property before all the
fields are initialized.

 Setting an automatically implemented property counts as initializing the field.
 You’re allowed to read an automatically implemented property before other

fields are initialized, so long as you’ve set it beforehand.

Listing 8.11 Point struct in C# 5 using automatically implemented properties

Properties with public
getters and private setters

Chaining to default
constructor

Property initialization
Licensed to André Santos <andrerfcsantos@gmail.com>

242 CHAPTER 8 Super-sleek properties and expression-bodied members
Another way of thinking of this is that within the constructor, automatically imple-
mented properties are treated as if they’re fields.

 With those new rules in place and genuine read-only automatically implemented
properties, the struct version of Point in C# 6 shown in the next listing is identical to
the class version in listing 8.6, other than declaring a struct instead of a sealed class.

public struct Point
{
 public double X { get; }
 public double Y { get; }

 public Point(double x, double y)
 {
 X = x;
 Y = y;
 }
}

The result is clean and concise, just the way you want it.

NOTE You may be asking whether Point should be a struct at all. In this
case, I’m on the fence. Points do feel like fairly natural value types, but I still
usually default to creating classes. Outside Noda Time (which is struct heavy),
I rarely write my own structs. This example certainly isn’t trying to suggest you
should start using structs more widely, but if you do write your own struct, the
language is more helpful than it used to be.

Everything you’ve seen so far has made automatically implemented properties cleaner
to work with, which often reduces the amount of boilerplate code. Not all properties
are automatically implemented, though. The mission of removing clutter from your
code doesn’t stop there.

8.3 Expression-bodied members
Far be it from me to prescribe one specific style of coding in C#. Aside from anything
else, different problem domains lend themselves to different approaches. But I’ve cer-
tainly come across types that have a lot of simple methods and properties. C# 6 helps
you here with expression-bodied members. We’ll start off with properties, since you were
looking at them in the previous section, and then see how the same idea can be
applied to other function members.

8.3.1 Even simpler read-only computed properties

Some properties are trivial: if the implementation in terms of fields matches the logi-
cal state of the type, the property can return the field value directly. That’s what auto-
matically implemented properties are for. Other properties involve computations
based on other fields or properties. To demonstrate the problem that C# 6 addresses,

Listing 8.12 Point struct in C# 6 using automatically implemented properties
Licensed to André Santos <andrerfcsantos@gmail.com>

243Expression-bodied members
the following listing adds another property to our Point class: DistanceFrom-
Origin, which uses the Pythagorean theorem in a simple way to return how far the
point is from the origin.

NOTE Don’t worry if the math here isn’t familiar. The details aren’t impor-
tant, just the fact that it’s a read-only property that uses X and Y.

public sealed class Point
{
 public double X { get; }
 public double Y { get; }

 public Point(double x, double y)
 {
 X = x;
 Y = y;
 }

 public double DistanceFromOrigin
 {
 get { return Math.Sqrt(X * X + Y * Y); }
 }
}

I’m not going to claim that this
is terribly hard to read, but it
does contain a lot of syntax that
I could describe as ceremony: it’s
there only to make the com-
piler aware of how the mean-
ingful code fits in. Figure 8.1
shows the same property but
annotated to highlight the use-
ful parts; the ceremony (braces,
a return statement, and a semi-
colon) are in a lighter shade.

 C# 6 allows you to express this much more cleanly:

public double DistanceFromOrigin => Math.Sqrt(X * X + Y * Y);

Here, the => is used to indicate an expression-bodied member—in this case, a read-only
property. No more braces, no more keywords. Both the read-only property part and
the fact that the expression is used to return the value are implicit. Compare this with
figure 8.1, and you’ll see that the expression-bodied form has everything that’s useful
(with a different way of indicating that it’s a read-only property) and nothing extrane-
ous. Perfect!

Listing 8.13 Adding a DistanceFromOrigin property to Point

Read-only property to
compute a distance

public double DistanceFromOrigin
{
 get { return Math.Sqrt(X * X + Y * Y); }
}

Expression
to compute

Property
name

Property
type

Access
modifier

Read-only
(no set)

Figure 8.1 Annotated property declaration showing
important aspects
Licensed to André Santos <andrerfcsantos@gmail.com>

244 CHAPTER 8 Super-sleek properties and expression-bodied members
You may be wondering whether this is useful in the real world rather than just in
made-up examples for the book. To show you concrete examples, I'll use Noda Time.

PASS-THROUGH OR DELEGATING PROPERTIES

We'll briefly consider three types from Noda Time:

 LocalDate—Just a date in a particular calendar with no time component
 LocalTime—A time of day with no date component
 LocalDateTime—The combination of a date and a time

Don’t worry about the details of initialization and so on; just think about what you’d
want out of the three types. Obviously, a date will have properties for the year, month,
and day, and a time will have hours, minutes, seconds, and so on. What about the type
combining the two? It’s handy to be able to get the date and time components sepa-
rately, but often you want the subcomponents of the date and time. Each implementa-
tion of LocalDate and LocalTime is carefully optimized, and I wouldn't want to
duplicate that logic in LocalDateTime, so the subcomponent properties are pass-
throughs that delegate to properties of the date or time components. The implemen-
tation shown in the following listing is now extremely clean.

public struct LocalDateTime
{
 public LocalDate Date { get; }
 public int Year => Date.Year;
 public int Month => Date.Month;
 public int Day => Date.Day;

 public LocalTime TimeOfDay { get; }
 public int Hour => TimeOfDay.Hour;
 public int Minute => TimeOfDay.Minute;
 public int Second => TimeOfDay.Second;

}

No, this isn’t a lambda expression
Yes, you've seen this element of syntax before. Lambda expressions were introduced
in C# 3 as a brief way of declaring delegates and expression trees. For example:

Func<string, int> stringLength = text => text.Length;

Expression-bodied members use the => syntax but aren’t lambda expressions. The
preceding declaration of DistanceFromOrigin doesn’t involve any delegates or
expression trees; it only instructs the compiler to create a read-only property that
computes the given expression and returns the result.

When talking about the syntax out loud, I usually describe => as a fat arrow.

Listing 8.14 Delegating properties in Noda Time

Property for the
date component

Properties delegating to
date subcomponents

Property for the
time component

Properties delegating to
time subcomponents

Initialization, other
properties, and members
Licensed to André Santos <andrerfcsantos@gmail.com>

245Expression-bodied members
A lot of properties are like this; removing the { get { return ... } } part from
each of them was a real pleasure and leaves the code much clearer.

PERFORMING SIMPLE LOGIC ON ANOTHER PIECE OF STATE

Within LocalTime, there’s a single piece of state: the nanosecond within the day. All
the other properties compute a value based on that. For example, the code to com-
pute the subsecond value in nanoseconds is a simple remainder operation:

public int NanosecondOfSecond =>
 (int) (NanosecondOfDay % NodaConstants.NanosecondsPerSecond);

That code will get even simpler in chapter 10, but for now, you can just enjoy the brev-
ity of the expression-bodied property.

So far, we’ve concentrated on properties as a natural segue from the other new
property-related features. As you may have guessed from the section title, however,
other kinds of members can have expression bodies.

8.3.2 Expression-bodied methods, indexers, and operators

In addition to expression-bodied properties, you can write expression-bodied meth-
ods, read-only indexers, and operators, including user-defined conversions. The => is
used in the same way, with no braces surrounding the expression and no explicit
return statement.

 For example, a simple Add method and its operator equivalent to add a Vector (with
obvious X and Y properties) to a Point might look like the following listing in C# 5.

public static Point Add(Point left, Vector right)
{
 return left + right;

Important caveat
Expression-bodied properties have one downside: there’s only a single-character dif-
ference between a read-only property and a public read/write field. In most cases, if
you make a mistake, a compile-time error will occur, due to using other properties or
fields within a field initializer, but for static properties or properties returning a con-
stant value, it’s an easy mistake to make. Consider the difference between the fol-
lowing declarations:

// Declares a read-only property
public int Foo => 0;
// Declares a read/write public field
public int Foo = 0;

This has been a problem for me a couple of times, but after you’re aware of it, check-
ing for it is easy enough. Make sure your code reviewers are aware of it, too, and
you’re unlikely to get caught.

Listing 8.15 Simple methods and operators in C# 5

Just delegate to
the operator.
Licensed to André Santos <andrerfcsantos@gmail.com>

246 CHAPTER 8 Super-sleek properties and expression-bodied members
}

public static Point operator+(Point left, Vector right)
{
 return new Point(left.X + right.X,
 left.Y + right.Y);
}

In C# 6, it could look simpler, with both of these being implemented using
expression-bodied members, as in the next listing.

public static Point Add(Point left, Vector right) => left + right;

public static Point operator+(Point left, Vector right) =>
 new Point(left.X + right.X, left.Y + right.Y);

Note the formatting I’ve used in operator+; putting everything on one line would
make it much too long. In general, I put the => at the end of the declaration part and
indent the body as usual. The way you format your code is entirely up to you, but I’ve
found this convention works well for all kinds of expression-bodied members.

 You can also use expression bodies for void-returning methods. In that case,
there’s no return statement to omit; only the braces are removed.

NOTE This is consistent with the way lambda expressions work. As a
reminder, expression-bodied members aren’t lambda expressions, but they
have this aspect in common.

For example, consider a simple log method:

public static void Log(string text)
{
 Console.WriteLine("{0:o}: {1}", DateTime.UtcNow, text)
}

This could be written with an expression-bodied method like this instead:

public static void Log(string text) =>
 Console.WriteLine("{0:o}: {1}", DateTime.UtcNow, text);

Here the benefit is definitely smaller, but for methods where the declaration and body
fit on one line, it can still be worth doing. In chapter 9, you’ll see a way of making this
even cleaner using interpolated string literals.

 For a final example with methods, a property, and an indexer, let’s imagine you want
to create your own IReadOnlyList<T> implementation to provide a read-only view
over any IList<T>. Of course, ReadOnlyCollection<T> already does this, but it also
implements the mutable interfaces (IList<T>, ICollection<T>). At times you may
want to be precise about what a collection allows via the interfaces it implements. With
expression-bodied members, the implementation of such a wrapper is short indeed.

Listing 8.16 Expression-bodied methods and operators in C# 6

Simple constructor
call to implement +
Licensed to André Santos <andrerfcsantos@gmail.com>

247Expression-bodied members

public sealed class ReadOnlyListView<T> : IReadOnlyList<T>
{
 private readonly IList<T> list;

 public ReadOnlyListView(IList<T> list)
 {
 this.list = list;
 }

 public T this[int index] => list[index];
 public int Count => list.Count;
 public IEnumerator<T> GetEnumerator() =>
 list.GetEnumerator();
 IEnumerator IEnumerable.GetEnumerator() =>
 GetEnumerator();
}

The only new feature shown here is the syntax for expression-bodied indexers, and I
hope it’s sufficiently similar to the syntax for the other kinds of members that you
didn’t even notice it was new.

 Does anything stick out to you, though? Anything surprise you at all? That con-
structor looks a little ugly, doesn’t it?

8.3.3 Restrictions on expression-bodied members in C# 6

Normally, at this point, having just remarked on how verbose a piece of code is, I’d
reveal the good news of another feature that C# has implemented to make it better.
Not this time, I’m afraid—at least not in C# 6.

 Even though the constructor has only a single statement, there’s no such thing as
an expression-bodied constructor in C# 6. It’s not alone, either. You can’t have
expression-bodied

 Static constructors
 Finalizers
 Instance constructors
 Read/write or write-only properties
 Read/write or write-only indexers
 Events

None of that keeps me awake at night, but the inconsistency apparently bothered the
C# team enough that C# 7 allows all of these to be expression-bodied. They don’t typi-
cally save any printable characters, but formatting conventions allow them to save ver-
tical space, and there’s still the readability hint that this is just a simple member. They
all use the same syntax you’re already used to, and listing 8.18 gives a complete exam-
ple, purely for the sake of showing the syntax. This code isn’t intended to be useful
other than as an example, and in the case of the event handler, it’s dangerously non-
thread-safe compared with a simple field-like event.

Listing 8.17 IReadOnlyList<T> implementation using expression-bodied members

Indexer delegating
to list indexer

Property delegating
to list property

Method delegating
to list method

Method delegating to the
other GetEnumerator method
Licensed to André Santos <andrerfcsantos@gmail.com>

248 CHAPTER 8 Super-sleek properties and expression-bodied members

public class Demo
{
 static Demo() =>
 Console.WriteLine("Static constructor called");
 ~Demo() => Console.WriteLine("Finalizer called");

 private string name;
 private readonly int[] values = new int[10];

 public Demo(string name) => this.name = name;

 private PropertyChangedEventHandler handler;
 public event PropertyChangedEventHandler PropertyChanged
 {
 add => handler += value;
 remove => handler -= value;
 }

 public int this[int index]
 {
 get => values[index];
 set => values[index] = value;
 }

 public string Name
 {
 get => name;
 set => name = value;
 }
}

One nice aspect of this is that the get accessor can be expression-bodied even if the
set accessor isn’t, or vice versa. For example, suppose you want to make your indexer
setter validate that the new value isn’t negative. You could still keep an expression-
bodied getter:

public int this[int index]
{
 get => values[index];
 set
 {
 if (value < 0)
 {
 throw new ArgumentOutOfRangeException();
 }
 Values[index] = value;
 }
}

I expect this to be reasonably common in the future. Setters tend to have validation,
whereas getters are usually trivial, in my experience.

Listing 8.18 Extra expression-bodied members in C# 7

Static constructor

Finalizer

Constructor

Event with
custom
accessors

Read/write
indexer

Read/write
property
Licensed to André Santos <andrerfcsantos@gmail.com>

249Expression-bodied members
TIP If you find yourself writing a lot of logic in a getter, it’s worth consider-
ing whether it should be a method. Sometimes the boundary can be fuzzy.

With all the benefits of expression-bodied members, do they have any other downsides?
How aggressive should you be in converting everything you possibly can to use them?

8.3.4 Guidelines for using expression-bodied members

My experience is that expression-bodied members are particularly useful for opera-
tors, conversions, comparisons, equality checks, and ToString methods. These usu-
ally consist of simple code, but for some types there can be an awful lot of these
members, and the difference in readability can be significant.

 Unlike some features that are somewhat niche, expression-bodied members can be
used to significant effect in pretty much every codebase I've come across. When I con-
verted Noda Time to use C# 6, I removed roughly 50% of the return statements in the
code. That's a huge difference, and it’ll only increase as I gradually take advantage of
the extra opportunities afforded by C# 7.

 There’s more to expression-bodied members than readability, mind you. I've
found that they provide a psychological effect: it feels like I'm doing functional pro-
gramming to a greater extent than before. That, in turn, makes me feel smarter. Yes,
that’s as silly as it sounds, but it really does feel satisfying. You may be more rational
than me, of course.

 The danger, as always, is overuse. In some cases, you can’t use expression-bodied
members, because your code includes a for statement or something similar. In plenty
of cases, it’s possible to convert a regular method into an expression-bodied member,
but you really shouldn’t. I’ve found that there are two categories of members like this:

 Members performing precondition checks
 Members using explanatory variables

As an example of the first category, I have a class called Preconditions with a
generic CheckNotNull method that accepts a reference and a parameter name. If
the reference is null, it throws an ArgumentNullException using the parameter
name; otherwise, it returns the value. This allows a convenient combination of check
and assign statements in constructors and the like.

 This also allows—but certainly doesn’t force—you to use the result as both the tar-
get of a method call or, indeed, an argument to it. The problem is, understanding
what’s going on becomes difficult if you’re not careful. Here’s a method from the
LocalDateTime struct I described earlier:

public ZonedDateTime InZone(
 DateTimeZone zone,
 ZoneLocalMappingResolver resolver)
{
 Preconditions.CheckNotNull(zone);
 Preconditions.CheckNotNull(resolver);
 return zone.ResolveLocal(this, resolver);
}

Licensed to André Santos <andrerfcsantos@gmail.com>

250 CHAPTER 8 Super-sleek properties and expression-bodied members
This reads nice and simply: check that the arguments are valid and then do the work
by delegating to another method. This could be written as an expression-bodied mem-
ber, like this:

public ZonedDateTime InZone(
 DateTimeZone zone,
 ZoneLocalMappingResolver resolver) =>
 Preconditions.CheckNotNull(zone)
 .ResolveLocal(
 this,
 Preconditions.CheckNotNull(resolver);

That would have exactly the same effect, but it’s much harder to read. In my experi-
ence, one validation check puts a method on the borderline for expression-bodied
members; with two of them, it’s just too painful.

 For explanatory variables, the NanosecondOfSecond example I provided earlier
is just one of many properties on LocalTime. About half of them use expression bod-
ies, but quite a few of them have two statements, like this:

public int Minute
{
 get
 {
 int minuteOfDay = (int) NanosecondOfDay / NanosecondsPerMinute;
 return minuteOfDay % MinutesPerHour;
 }
}

That can easily be written as an expression-bodied property by effectively inlining the
minuteOfDay variable:

public int Minute =>
 ((int) NanosecondOfDay / NodaConstants.NanosecondsPerMinute) %
 NodaConstants.MinutesPerHour;

Again, the code achieves exactly the same goal, but in the original version, the
minuteOfDay variable adds information about the meaning of the subexpression,
making the code easier to read.

 On any given day, I might come to a different conclusion. But in more complex
cases, following a sequence of steps and naming the results can make all the differ-
ence when you come back to the code six months later. It also helps you if you ever
need to step through the code in a debugger, as you can easily execute one statement
at a time and check that the results are the ones you expect.

 The good news is that you can experiment and change your mind as often as you
like. Expression-bodied members are purely syntactic sugar, so if your taste changes
over time, you can always convert more code to use them or revert code that used
expression bodies a little too eagerly.
Licensed to André Santos <andrerfcsantos@gmail.com>

251Summary
Summary
 Automatically implemented properties can now be read-only and backed by a

read-only field.
 Automatically implemented properties can now have initializers rather than

nondefault values having to be initialized in a constructor.
 Structs can use automatically implemented properties without having to chain

constructors together.
 Expression-bodied members allow simple (single-expression) code to be writ-

ten with less ceremony.
 Although restrictions limit the kinds of members that can be written with

expression bodies in C# 6, those restrictions are lifted in C# 7.
Licensed to André Santos <andrerfcsantos@gmail.com>

Stringy features
Everyone knows how to use strings. If string isn’t the first .NET data type you
learned about, it’s probably the second. The string class itself hasn’t changed
much over the course of .NET’s history, and not many string-oriented features have
been introduced in C# as a language since C# 1. C# 6, however, changed that with
another kind of string literal and a new operator. You’ll look at both of these in
detail in this chapter, but it’s worth remembering that the strings themselves
haven’t changed at all. Both features provide new ways of obtaining strings, but
that’s all.

 Just like the features you saw in chapter 8, string interpolation doesn’t allow you
to do anything you couldn’t do before; it just allows you to do it more readably and
concisely. That’s not to diminish the importance of the feature. Anything that

This chapter covers
 Using interpolated string literals for more-

readable formatting

 Working with FormattableString for
localization and custom formatting

 Using nameof for refactoring-friendly references
252

Licensed to André Santos <andrerfcsantos@gmail.com>

253A recap on string formatting in .NET
allows you to write clearer code more quickly—and then read it more quickly later—
will make you more productive.

 The nameof operator was genuinely new functionality in C# 6, but it’s a reasonably
minor feature. All it does is allow you to get an identifier that already appears in your
code but as a string at execution time. It’s not going to change your world like LINQ
or async/await, but it helps avoid typos and allows refactoring tools to do more work
for you. Before I show you anything new, let’s revisit what you already know.

9.1 A recap on string formatting in .NET
You almost certainly know everything in this section. You may well have been using
strings for many years and almost certainly for as long as you’ve been using C#. Still,
in order to understand how the interpolated string literal feature in C# 6 works, it’s
best to have all that knowledge uppermost in your mind. Please bear with me as we
go over the basics of how .NET handles string formatting. I promise we’ll get to the
new stuff soon.

9.1.1 Simple string formatting

If you’re like me, you like experimenting with new languages by writing trivial console
applications that do nothing useful but give the confidence and firm foundation to
move on to more-impressive feats. As such, I can’t remember how many languages I’ve
used to implement the functionality shown next—asking the user’s name and then
saying hello to that user:

Console.Write("What's your name? ");
string name = Console.ReadLine();
Console.WriteLine("Hello, {0}!", name);

The last line is the most relevant one for this chapter. It uses an overload of
Console.WriteLine, which accepts a composite format string including format items
and then arguments to replace those format items. The preceding example has one
format item, {0}, which is replaced by the value of the name variable. The number in
the format item specifies the index of the argument you want to fill the hole (where 0
represents the first of the values, 1 represents the second, and so on).

 This pattern is used in various APIs. The most obvious example is the static
Format method in the string class, which does nothing but format the string appro-
priately. So far, so good. Let’s do something a little more complicated.

9.1.2 Custom formatting with format strings

Just to be clear, my motivation for including this subsection is as much for my future
self as for you, dear reader. If MSDN displayed the number of times I’ve visited any
given page, the number for the page on composite format strings would be frighten-
ing. I keep forgetting exactly what goes where and what terms to use, and I figured
Licensed to André Santos <andrerfcsantos@gmail.com>

254 CHAPTER 9 Stringy features
that if I included that information here, I might start remembering it better. I hope
you find it helpful in the same way.

 Each format item in a composite format string specifies the index of the argument
to be formatted, but it can also specify the following options for formatting the value:

 An alignment, which specifies a minimum width and whether the value should
be left- or right-aligned. Right-alignment is indicated by a positive value; left-
alignment is indicated by a negative value.

 A format string for the value. This is probably used most often for date and time
values or numbers. For example, to format a date according to ISO-8601, you
could use a format string of yyyy-MM-dd. To format a number as a currency
value, you could use a format string of C. The meaning of the format string
depends on the type of value being formatted, so you need to look up the rele-
vant documentation to choose the right format string.

Figure 9.1 shows all the parts of a composite format string you could use to display a
price.

The alignment and the format string are independently optional; you can specify
either, both, or neither. A comma in the format item indicates an alignment, and a
colon indicates a format string. If you need a comma in the format string, that’s fine;
there’s no concept of a second alignment value.

 As a concrete example to expand on later, let’s use the code from figure 9.1 in a
broader context, showing different lengths of results to demonstrate the point of
alignment. Listing 9.1 displays a price ($95.25), tip ($19.05), and total ($114.30), lin-
ing up the labels on the left and the values on the right.

 The output on a machine using the US English culture settings by default, would
look like this:

Price: $95.25
Tip: $19.05
Total: $114.30

To make the values right-aligned (or left-padded with spaces, to look at it the other
way around), the code uses an alignment value of 9. If you had a huge bill (a million
dollars, for example), the alignment would have no effect; it specifies only a minimum
width. If you wanted to write code that right-aligned every possible set of values, you’d

"Price: {0,9:C}"

Format
string

Format item

Index Alignment Figure 9.1 A composite format string
with a format item to display a price
Licensed to André Santos <andrerfcsantos@gmail.com>

255A recap on string formatting in .NET
have to work out how wide the biggest one would be first. That’s pretty unpleasant
code, and I’m afraid nothing in C# 6 makes it easier.

decimal price = 95.25m;
decimal tip = price * 0.2m;
Console.WriteLine("Price: {0,9:C}", price);
Console.WriteLine("Tip: {0,9:C}", tip);
Console.WriteLine("Total: {0,9:C}", price + tip);

When I showed the output of listing 9.1 on a machine in the US English culture, the
part about the culture was important. On a machine using a UK English culture, the
code would use £ signs instead. On a machine in the French culture, the decimal sep-
arator would become a comma, the currency sign would become a Euro symbol, and
that symbol would be at the end of the string instead of the start! Such are the joys of
localization, which you’ll look at next.

9.1.3 Localization

In broad terms, localization is the task of making sure your code does the right thing for
all your users, no matter where they are in the world. Anyone who claims that localiza-
tion is simple is either much more experienced at it than I am or hasn’t done enough
of it to see how painful it can be. Considering the world is basically round, it certainly
seems to have a lot of nasty corner cases to handle. Localization is a pain in all program-
ming languages, but each has a slightly different way of addressing the problems.

NOTE Although I use the term localization in this section, other people may
prefer the term globalization. Microsoft uses the two terms in a slightly differ-
ent way than other industry bodies, and the difference is somewhat subtle.
Experts, please forgive the hand-waving here; the big picture is more impor-
tant than the fine details of terminology, just this once.

In .NET, the most important type to know about for localization purposes is Culture-
Info. This is responsible for the cultural preferences of a language (such as English),
or a language in a particular location (such as French in Canada), or a particular vari-
ant of a language in a location (such as simplified Chinese as used in Taiwan). These
cultural preferences include various translations (the words used for the days of the
week, for example) and indicate how text is sorted and how numbers are formatted
(whether to use a period or comma as the decimal separator) and much more.

 Often, you won’t see CultureInfo in a method signature, but instead the
IFormatProvider interface, which CultureInfo implements. Most formatting
methods have overloads with an IFormatProvider as the first parameter before the
format string itself. For example, consider these two signatures from string.Format:

static string Format(IFormatProvider provider,
 string format, params object[] args)
static string Format(string format, params object[] args)

Listing 9.1 Displaying a price, tip, and total with values aligned

20% tip
Licensed to André Santos <andrerfcsantos@gmail.com>

256 CHAPTER 9 Stringy features
Usually, if you provide overloads that differ only by a single parameter, that parameter
is the last one, so you might have expected the provider parameter to come after
args. That wouldn’t work, though, because args is a parameter array (it uses the
params modifier). If a method has a parameter array, that has to be the final parameter.

 Even though the parameter is of type IFormatProvider, the value you pass in as
an argument is almost always CultureInfo. For example, if you want to format my
date of birth for US English—June 19, 1976—you could use this code:

var usEnglish = CultureInfo.GetCultureInfo("en-US");
var birthDate = new DateTime(1976, 6, 19);
string formatted = string.Format(usEnglish, "Jon was born on {0:d}", birthDate);

Here, d is the standard date/time format specifier for short date, which in US English
corresponds to month/day/year. My date of birth would be formatted as 6/19/1976,
for example. In British English, the short date format is day/month/year, so the same
date would be formatted as 19/06/1976. Notice that not just the ordering is different:
the month is 0-padded to two digits in the British formatting, too.

 Other cultures can use entirely different formatting. It can be instructive to see just
how different the results of formatting the same value can be between cultures. For
example, you could format the same date in every culture .NET knows about as shown
in the next listing.

var cultures = CultureInfo.GetCultures(CultureTypes.AllCultures);
var birthDate = new DateTime(1976, 6, 19);
foreach (var culture in cultures)
{
 string text = string.Format(
 culture, "{0,-15} {1,12:d}", culture.Name, birthDate);
 Console.WriteLine(text);
}

The output for Thailand shows that I was born in 2519 in the Thai Buddhist calendar,
and the output for Afghanistan shows that I was born in 1355 in the Islamic calendar:

...
tg-Cyrl 19.06.1976
tg-Cyrl-TJ 19.06.1976
th 19/6/2519
th-TH 19/6/2519
ti 19/06/1976
ti-ER 19/06/1976
...
ur-PK 19/06/1976
uz 19/06/1976
uz-Arab 29/03 1355
uz-Arab-AF 29/03 1355
uz-Cyrl 19/06/1976
uz-Cyrl-UZ 19/06/1976
...

Listing 9.2 Formatting a single date in every culture
Licensed to André Santos <andrerfcsantos@gmail.com>

257A recap on string formatting in .NET
This example also shows a negative alignment value to left-align the culture name
using the {0,-15} format item while keeping the date right-aligned with the
{1,12:d} format item.

FORMATTING WITH THE DEFAULT CULTURE

If you don’t specify a format provider, or if you pass null as the argument corre-
sponding to an IFormatProvider parameter, CultureInfo.CurrentCulture will
be used as a default. Exactly what that means will depend on your context; it can be set
on a per thread basis, and some web frameworks will set it before processing a request
on a particular thread.

 All I can advise about using the default is to be careful: make sure you know that
the value in your specific thread will be appropriate. (Checking the exact behavior is
particularly worthwhile if you start parallelizing operations across multiple threads,
for example.) If you don’t want to rely on the default culture, you’ll need to know the
culture of the end user you need to format the text for and do so explicitly.

FORMATTING FOR MACHINES

So far, we’ve assumed that you’re trying to format the text for an end user. But that’s
often not the case. For machine-to-machine communication (such as in URL query
parameters to be parsed by a web service), you should use the invariant culture, which
is obtained via the static CultureInfo.InvariantCulture property.

 For example, suppose you were using a web service to fetch the list of best sellers
from a publisher. The web service might use a URL of https://manning.com/web
services/bestsellers but allow a query parameter called date to allow you to find
out the best-selling books on a particular date.1 I’d expect that query parameter to use
an ISO-8601 format (year first, using dashes between the year, month, and day) for the
date. For example, if you wanted to retrieve the best-selling books as of the start of
March 20, 2017, you’d want to use a URL of https://manning.com/webservices/
bestsellers?date=2017-03-20. To construct that URL in code in an application
that allows the user to pick a specific date, you might write something like this:

string url = string.Format(
 CultureInfo.InvariantCulture,
 "{0}?date={1:yyyy-MM-dd}",
 webServiceBaseUrl,
 searchDate);

Most of the time, you shouldn’t be directly formatting data for machine-to-machine
communication yourself, mind you. I advise you to avoid string conversions wherever
you can; they’re often a code smell showing that either you’re not using a library or
framework properly or that you have data design issues (such as storing dates in a
database as text instead of as a native date/time type). Having said that, you may well
find yourself building strings manually like this more often than you’d like; just pay
attention to which culture you should be using.

1 This is a fictional web service, as far as I’m aware.
Licensed to André Santos <andrerfcsantos@gmail.com>

https://manning.com/webservices/bestsellers
https://manning.com/webservices/bestsellers

258 CHAPTER 9 Stringy features
 Okay, that was a long introduction. But with all this formatting information buzz-
ing around your brain and somewhat ugly examples niggling at you, you’re in the
right frame of mind to welcome interpolated string literals in C# 6. All those calls to
string.Format look unnecessarily long-winded, and it’s annoying having to look
between the format string and the argument list to see what will go where. Surely, we
can make our code clearer than that.

9.2 Introducing interpolated string literals
Interpolated string literals in C# 6 allow you to perform all this formatting in a much
simpler way. The concepts of a format string and arguments still apply, but with inter-
polated string literals, you specify the values and their formatting information inline,
which leads to code that’s much easier to read. If you look through your code and find
a lot of calls to string.Format using hardcoded format strings, you’ll love interpo-
lated string literals.

 String interpolation isn’t a new idea. It’s been in many programming languages for
a long time, but I’ve never felt it to be as neatly integrated as it is in C#. That’s particu-
larly remarkable when you consider that adding a feature into a language when it’s
already mature is harder than building it into the first version.

 In this section, you’ll look at some simple examples before exploring interpolated
verbatim string literals. You’ll learn how localization can be applied using
FormattableString and then take a closer look at how the compiler handles inter-
polated string literals. We’ll round off the section with discussion about where this fea-
ture is most useful as well as its limitations.

9.2.1 Simple interpolation

The simplest way to demonstrate interpolated string literals in C# 6 is to show you the
equivalent to the earlier example in which we asked for the user’s name. The code
doesn’t look hugely different; in particular, only the last line has changed at all.

The interpolated string literal is shown in bold. It starts with a $ before the opening
double quote; that’s what makes it an interpolated string literal rather than a regular
one, as far as the compiler is concerned. It contains {name} instead of {0} for the for-
mat item. The text in the braces is an expression that’s evaluated and then formatted
within the string. Because you’ve provided all the information you need, the second
argument to WriteLine isn’t required anymore.

C# 5—old-style style formatting C# 6—interpolated string literal

Console.Write("What's your name? ");
string name = Console.ReadLine();
Console.WriteLine("Hello, {0}!",
 name);

Console.Write("What's your name? ");
string name = Console.ReadLine();
Console.WriteLine($"Hello, {name}!");
Licensed to André Santos <andrerfcsantos@gmail.com>

259Introducing interpolated string literals
NOTE I’ve lied a little here, for the sake of simplicity. This code doesn’t work
quite the same way as the original code. The original code passed all the argu-
ments to the appropriate Console.WriteLine overload, which performed
the formatting for you. Now, all the formatting is performed with a
string.Format call, and then the Console.WriteLine call uses the over-
load, which has just a string parameter. The result will be the same, though.

Just as with expression-bodied members, this doesn’t look like a huge improvement.
For a single format item, the original code doesn’t have a lot to be confused by. The
first couple of times you see this, it might even take you a little longer to read an inter-
polated string literal than a string formatting call. I was skeptical about just how much
I’d ever like them, but now I often find myself converting pieces of old code to use
them almost automatically, and I find the readability improvement is often significant.

 Now that you’ve seen the simplest example, let’s do something a bit more com-
plex. You’ll follow the same sequence as before, first looking at controlling the format-
ting of values more carefully and then considering localization.

9.2.2 Format strings in interpolated string literals

Good news! There’s nothing new to learn here. If you want to provide an alignment
or a format string with an interpolated string literal, you do it the same way you would
in a normal composite format string: you add a comma before the alignment and a
colon before the format string. Our earlier composite formatting example changes in
the obvious way, as shown in the following listing.

decimal price = 95.25m;
decimal tip = price * 0.2m;
Console.WriteLine($"Price: {price,9:C}");
Console.WriteLine($"Tip: {tip,9:C}");
Console.WriteLine($"Total: {price + tip,9:C}");

Note that in the last line, the interpolated string doesn’t just contain a simple variable
for the argument; it performs the addition of the tip to the price. The expression can
be any expression that computes a value. (You can’t just call a method with a void
return type, for example.) If the value implements the IFormattable interface, its
ToString(string, IFormatProvider) method will be called; otherwise, System
.Object.ToString() is used.

9.2.3 Interpolated verbatim string literals

You’ve no doubt seen verbatim string literals before; they start with @ before the double
quote. Within a verbatim string literal, backslashes and line breaks are included in the
string. For example, in the verbatim string literal @"c:\Windows", the backslash really
is a backslash; it isn’t the start of an escape sequence. The only kind of escape sequence
within a verbatim string literal is when you have two double quote characters together,

Listing 9.3 Aligned values using interpolated string literals

20% tip

Right-justify prices using
nine-digit alignment
Licensed to André Santos <andrerfcsantos@gmail.com>

260 CHAPTER 9 Stringy features
which results in one double quote character in the resulting string. Verbatim string lit-
erals are typically used for the following:

 Strings breaking over multiple lines
 Regular expressions (which use backslashes for escaping, quite separate from

the escaping the C# compiler uses in regular string literals)
 Hardcoded Windows filenames

NOTE With multiline strings, you should be careful about exactly which char-
acters end up in your string. Although the difference between “carriage-
return” and “carriage-return line-feed separators” is irrelevant in most code,
it’s significant in verbatim string literals.

The following shows a quick example of each of these:

string sql = @"
 SELECT City, ZipCode
 FROM Address
 WHERE Country = 'US'";
Regex lettersDotDigits = new Regex(@"[a-z]+\.\d+");
string file = @"c:\users\skeet\Test\Test.cs"

Verbatim string literals can be interpolated as well; you put a $ in front of the @, just
as you would to interpolate a regular string literal. Our earlier multiline output could
be written using a single interpolated verbatim string literal, as shown in the follow-
ing listing.

decimal price = 95.25m;
decimal tip = price * 0.2m;
Console.WriteLine($@"Price: {price,9:C}
Tip: {tip,9:C}
Total: {price + tip,9:C}");

I probably wouldn’t do this; it’s just not as clean as using three separate statements. I’m
using the preceding code only as a simple example of what’s possible. Consider it for
places where you’re already using verbatim string literals sensibly.

TIP The order of the symbols matters. $@"Text" is a valid interpolated ver-
batim string literal, but @$"Text" isn’t. I admit I haven’t found a good mne-
monic device to remember this. Just try whichever way you think is right, and
change it if the compiler complains!

This is all very convenient, but I’ve shown only the surface level of what’s going on.
I’ll assume you bought this book because you want to know about the features inside
and out.

Listing 9.4 Aligned values using a single interpolated verbatim string literal

SQL is easier to read when
split over multiple lines.

Backslashes are common
in regular expressions.

Windows
filename

20% tip
Licensed to André Santos <andrerfcsantos@gmail.com>

261Localization using FormattableString
9.2.4 Compiler handling of interpolated string literals (part 1)

The compiler transformation here is simple. It converts the interpolated string literal
into a call to string.Format, and it extracts the expressions from the format items
and passes them as arguments after the composite format string. The expression is
replaced with the appropriate index, so the first format item becomes {0}, the second
becomes {1}, and so on.

 To make this clearer, let’s consider a trivial example, this time separating the for-
matting from the output for clarity:

int x = 10;
int y = 20;
string text = $"x={x}, y={y}";
Console.WriteLine(text);

This is handled by the compiler as if you’d written the following code instead:

int x = 10;
int y = 20;
string text = string.Format("x={0}, y={1}", x, y);
Console.WriteLine(text);

The transformation is that simple. If you want to go deeper and verify it for yourself,
you could use a tool such as ildasm to look at the IL that the compiler has generated.

 One side effect of this transformation is that unlike regular or verbatim string liter-
als, interpolated string literals don’t count as constant expressions. Although in some
cases the compiler could reasonably consider them to be constant (if they don’t have
any format items or if all the format items are just string constants without any align-
ment or format strings), these would be corner cases that would complicate the lan-
guage for little benefit.

 So far, all our interpolated strings have resulted in a call to string.Format. That
doesn’t always happen, though, and for good reasons, as you’ll see in the next section.

9.3 Localization using FormattableString
In section 9.1.3, I demonstrated how string formatting can take advantage of different
format providers—typically using CultureInfo—to perform localization. All the
interpolated string literals you’ve seen so far would’ve been evaluated using the
default culture for the executing thread, so our price examples in 9.1.2 and 9.2.2
could easily have different output on your machine than the result I showed.

 To perform formatting in a specific culture, you need three pieces of information:

 The composite format string, which includes the hardcoded text and the for-
mat items as placeholders for the real values

 The values themselves
 The culture you want to format the string in

You can slightly rewrite our first example of formatting in a culture to store each of
these in a separate variable, and then call string.Format at the end:
Licensed to André Santos <andrerfcsantos@gmail.com>

262 CHAPTER 9 Stringy features
var compositeFormatString = "Jon was born on {0:d}";
var value = new DateTime(1976, 6, 19);
var culture = CultureInfo.GetCultureInfo("en-US");
var result = string.Format(culture, compositeFormatString, value);

How can you do this with interpolated string literals? An interpolated string literal
contains the first two pieces of information (the composite format string and the val-
ues to format), but there’s nowhere to put the culture. That would be fine if you could
get at the individual pieces of information afterward, but every use of interpolated
string literals that you’ve seen so far has performed the string formatting as well, leav-
ing you with just a single string as the result.

 That’s where FormattableString comes in. This is a class in the System
namespace introduced in .NET 4.6 (and .NET Standard 1.3 in the .NET Core world).
It holds the composite format string and the values so they can be formatted in what-
ever culture you want later. The compiler is aware of FormattableString and can
convert an interpolated string literal into a FormattableString instead of a string
where necessary. That allows you to rewrite our simple date-of-birth example as follows:

var dateOfBirth = new DateTime(1976, 6, 19);
FormattableString formattableString =
 $"Jon was born on {dateofBirth:d}";
var culture = CultureInfo.GetCultureInfo("en-US");
var result = formattableString.ToString(culture);

Now that you know the basic reason for the existence of FormattableString, you can
look at how the compiler uses it and then examine localization in more detail.
Although localization is certainly the primary motivation for FormattableString, it
can be used in other situations as well, which you’ll look at in section 9.3.3. The section
then concludes with your options if your code is targeting an earlier version of .NET.

9.3.1 Compiler handling of interpolated string literals (part 2)

In a reversal of my earlier approach, this time it makes sense to talk about how the
compiler considers FormattableString before moving on to examining its uses in
detail. The compile-time type of an interpolated string literal is string. There’s no
conversion from string to FormattableString or to IFormattable (which
FormattableString implements), but there are conversions from interpolated
string literal expressions to both FormattableString and IFormattable.

 The differences between conversions from an expression to a type and conversions
from a type to another type are somewhat subtle, but this is nothing new. For exam-
ple, consider the integer literal 5. Its type is int, so if you declare var x = 5, the type
of x will be int, but you can also use it to initialize a variable of type byte. For exam-
ple, byte y = 5; is perfectly valid. That’s because the language specifies that for
constant integer expressions (including integer literals) within the range of byte,
there’s an implicit conversion from the expression to byte. If you can get your head
around that, you can apply the exact same idea to verbatim string literals.

Keeps the composite format string
and value in a FormattableString

Formats in the
specified culture
Licensed to André Santos <andrerfcsantos@gmail.com>

263Localization using FormattableString
 When the compiler needs to convert an interpolated string literal into a
FormattableString, it performs most of the same steps as for a conversion to
string. But instead of string.Format, it calls the static Create method on the
System.Runtime.CompilerServices.FormattableStringFactory class. This
is another type introduced at the same time as FormattableString. To go back to
an earlier example, say you have this source code:

int x = 10;
int y = 20;
FormattableString formattable = $"x={x}, y={y}";

That’s handled by the compiler as if you’d written the following code instead (with the
appropriate namespaces, of course):

int x = 10;
int y = 20;
FormattableString formattable = FormattableStringFactory.Create(
 "x={0}, y={1}", x, y);

FormattableString is an abstract class with members as shown in the following listing.

public abstract class FormattableString : IFormattable
{
 protected FormattableString();
 public abstract object GetArgument(int index);
 public abstract object[] GetArguments();
 public static string Invariant(FormattableString formattable);
 string IFormattable.ToString
 (string ignored, IFormatProvider formatProvider);
 public override string ToString();
 public abstract string ToString(IFormatProvider formatProvider);
 public abstract int ArgumentCount { get; }
 public abstract string Format { get; }
}

Now that you know when and how FormattableString instances are built, let’s see
what you can do with them.

9.3.2 Formatting a FormattableString in a specific culture

By far, the most common use for FormattableString will be to perform the for-
matting in an explicitly specified culture instead of in the default culture for the
thread. I expect that most uses will be for a single culture: the invariant culture. This
is so common that it has its own static method: Invariant. Calling this is equivalent
to passing CultureInfo.InvariantCulture into the ToString(IFormat-

Provider) method, which behaves exactly as you’d expect. But making Invariant
a static method means it’s simpler to call as a subtle corollary of the language details
you just looked at in section 9.3.1. The fact that it takes FormattableString as a

Listing 9.5 Members declared by FormattableString
Licensed to André Santos <andrerfcsantos@gmail.com>

264 CHAPTER 9 Stringy features

nt
parameter means you can just use an interpolated string literal as an argument, and
the compiler knows that it has to apply the relevant conversion; there’s no need for a
cast or a separate variable.

 Let’s consider a concrete example to make it clear. Suppose you have a DateTime
value and you want to format just the date part of it in ISO-8601 format as part of a
URL query parameter for machine-to-machine communication. You want to use the
invariant culture to avoid any unexpected results from using the default culture.

NOTE Even when you specify a custom format string for a date and time, and
even when that custom format uses only digits, the culture still has an impact.
The biggest one is that the value is represented in the default calendar system
for the culture. If you format October 21, 2016 (Gregorian) in the culture
ar-SA (Arabic in Saudi Arabia), you’ll get a result with a year of 1438.

You can do this formatting in four ways, all of which are shown together in the follow-
ing listing. All four approaches give exactly the same result, but I’ve shown all of
them to demonstrate how the multiple language features work together to give a
clean final option.

DateTime date = DateTime.UtcNow;

string parameter1 = string.Format(
 CultureInfo.InvariantCulture,
 "x={0:yyyy-MM-dd}",
 date);

string parameter2 =
 ((FormattableString)$"x={date:yyyy-MM-dd}")
 .ToString(CultureInfo.InvariantCulture);

string parameter3 = FormattableString.Invariant(
 $"x={date:yyyy-MM-dd}");

string parameter4 = Invariant($"x={date:yyyy-MM-dd}");

The main interesting difference is between the initializers for parameter2 and
parameter3. To make sure you have a FormattableString for parameter2 rather
than just a string, you have to cast the interpolated string literal to that type. An
alternative would’ve been to declare a separate local variable of type Formattable-
String, but that would’ve been about as long-winded. Compare that with the way
parameter3 is initialized, which uses the Invariant method that accepts a parame-
ter of type FormattableString. That allows the compiler to infer that you want to
use the implicit conversion from an interpolated string literal to Formattable-
String, because that’s the only way that the call will be valid.

 I’ve cheated for parameter4. I’ve used a feature you haven’t seen yet, making
static methods from a type available with a using static directive. You can flick

Listing 9.6 Formatting a date in the invariant culture

Old-school formatting
with string.Format

Casting to FormattableString and
calling ToString(IFormatProvider)

Regular call to
FormattableString.Invariant

Shortened call to
FormattableString.Invaria
Licensed to André Santos <andrerfcsantos@gmail.com>

265Localization using FormattableString
forward to the details later (section 10.1.1) or trust me for now that it works. You just
need using static System.FormattableString in your list of using directives.

FORMATTING IN A NONINVARIANT CULTURE

If you want to format a FormattableString in any culture other than the invariant
one, you need to use one of the ToString methods. In most cases, you’ll want to call
the ToString(IFormatProvider) overload directly. As a slightly shorter example
than you saw earlier, here’s code to format the current date and time in US English
using the “general date/time with short time” standard format string ("g"):

FormattableString fs = $"The current date and time is: {DateTime.Now:g}";
string formatted = fs.ToString(CultureInfo.GetCultureInfo("en-US"));

Occasionally, you may want to pass the FormattableString to another piece of code
to perform the final formatting step. In that case, it’s worth remembering that
FormattableString implements the IFormattable interface, so any method
accepting an IFormattable will accept a FormattableString. The Formattable-
String implementation of IFormattable.ToString(string, IFormatProvider)
ignores the string parameter because it already has everything it needs: it uses the
IFormatProvider parameter to call the ToString(IFormatProvider) method.

 Now that you know how to use cultures with interpolated string literals, you may be
wondering why the other members of FormattableString exist. In the next section,
you’ll look at one example.

9.3.3 Other uses for FormattableString

I’m not expecting FormattableString to be widely used outside the culture sce-
nario I showed in section 9.3.2, but it’s worth considering what can be done. I’ve cho-
sen this example as one that’s immediately recognizable and elegant in its own way,
but I wouldn’t go so far as to recommend its use. Aside from the code presented here
lacking validation and some features, it may give the wrong impression to a casual
reader (and to static code analysis tools). By all means, pursue it as an idea, but use
appropriate caution.

 Most developers are aware of SQL injection attacks as a security vulnerability, and
many know the common solution in the format of parameterized SQL. Listing 9.7
shows what you don’t want to do. If a user enters a value containing an apostrophe, they
have huge amounts of power over your database. Imagine that you have a database with
entries of some kind that a user can add a tag to partitioned by user identifier. You’re
trying to list all the descriptions for a user-specified tag restricted to that user.

var tag = Console.ReadLine();
using (var conn = new SqlConnection(connectionString))
{
 conn.Open();

Listing 9.7 Awooga! Awooga! Do not use this code!

Reads arbitrary data
from the user
Licensed to André Santos <andrerfcsantos@gmail.com>

266 CHAPTER 9 Stringy features
 string sql =
 $@"SELECT Description FROM Entries
 WHERE Tag='{tag}' AND UserId={userId}";
 using (var command = new SqlCommand(sql, conn))
 {
 using (var reader = command.ExecuteReader())
 {
 ...
 }
 }
}

Most SQL injection vulnerabilities I’ve seen in C# use string concatenation rather
than string formatting, but it’s the same deal. It mixes code (SQL) and data (the value
the user entered) in an alarming way.

 I’m going to assume that you know how you’d have fixed this problem in the past
using parameterized SQL and calling command.Parameters.Add(...) appropri-
ately. Code and data are suitably separated, and life is good again. Unfortunately, that
safe code doesn’t look as appealing as the code in listing 9.7. What if you could have it
both ways? What if you could write SQL that made it obvious what you were trying to do
but was still safely parameterized? With FormattableString, you can do exactly that.

 You’ll work backward, from our desired user code, through the implementation
that enables it. The following listing shows the soon-to-be-safe equivalent of listing 9.7.

var tag = Console.ReadLine();
using (var conn = new SqlConnection(connectionString))
{
 conn.Open();
 using (var command = conn.NewSqlCommand(
 $@"SELECT Description FROM Entries
 WHERE Tag={tag:NVarChar}
 AND UserId={userId:Int}"))
 {
 using (var reader = command.ExecuteReader())
 {
 // Use the data
 }
 }
}

Most of this listing is identical to listing 9.7. The only difference is in how you con-
struct the SqlCommand. Instead of using an interpolated string literal to format the
values into SQL and then passing that string into the SqlCommand constructor, you’re
using a new method called NewSqlCommand, which is an extension method you’ll
write soon. Predictably, the second parameter of that method isn’t string but
FormattableString. The interpolated string literal no longer has apostrophes
around {tag}, and you’ve specified each parameter’s database type as a format string.
That’s certainly unusual. What is it doing?

Listing 9.8 Safe SQL parameterization using FormattableString

Builds SQL dynamically
including user input

Executes the
untrustworthy SQL

Uses the
results

Reads arbitrary data
from the user

Builds a SQL command from
the interpolated string literal

Executes the
QL safely

Uses the
results
Licensed to André Santos <andrerfcsantos@gmail.com>

267Localization using FormattableString
 First, let’s think about what the compiler is doing for you. It’s splitting the interpo-
lated string literal into two parts: a composite format string and the arguments for the
format items. The composite format string the compiler creates will look like this:

SELECT Description FROM Entries
WHERE Tag={0:NVarChar} AND UserId={1:Int}

You want SQL that ends up looking like this instead:

SELECT Description FROM Entries
WHERE Tag=@p0 AND UserId=@p1

That’s easy enough to do; you just need to format the composite format string, passing
in arguments that will evaluate to "@p0" and "@p1". If the type of those arguments
implements IFormattable, calling string.Format will pass the NVarChar and
Int format strings as well, so you can set the types of the SqlParameter objects
appropriately. You can autogenerate the names, and the values come directly from the
FormattableString.

 It’s highly unusual to make an IFormattable.ToString implementation have
side effects, but you’re using only this format-capturing type for this single call, and
you can keep it safely hidden from any other code. The following listing is a complete
implementation.

public static class SqlFormattableString
{
 public static SqlCommand NewSqlCommand(
 this SqlConnection conn,FormattableString formattableString)
 {
 SqlParameter[] sqlParameters = formattableString.GetArguments()
 .Select((value, position) =>
 new SqlParameter(Invariant($"@p{position}"), value))
 .ToArray();
 object[] formatArguments = sqlParameters
 .Select(p => new FormatCapturingParameter(p))
 .ToArray();
 string sql = string.Format(formattableString.Format,
 formatArguments);
 var command = new SqlCommand(sql, conn);
 command.Parameters.AddRange(sqlParameters);
 return command;
 }

 private class FormatCapturingParameter : IFormattable
 {
 private readonly SqlParameter parameter;

 internal FormatCapturingParameter(SqlParameter parameter)
 {
 this.parameter = parameter;
 }

Listing 9.9 Implementing safe SQL formatting
Licensed to André Santos <andrerfcsantos@gmail.com>

268 CHAPTER 9 Stringy features
 public string ToString(string format, IFormatProvider formatProvider)
 {
 if (!string.IsNullOrEmpty(format))
 {
 parameter.SqlDbType = (SqlDbType) Enum.Parse(
 typeof(SqlDbType), format, true);
 }
 return parameter.ParameterName;
 }
 }
}

The only public part of this is the SqlFormattableString static class with its New-
SqlCommand method. Everything else is a hidden implementation detail. For each
placeholder in the format string, you create a SqlParameter and a corresponding
FormatCapturingParameter. The latter is used to format the parameter name in
the SQL as @p0, @p1, and so on, and the value provided to the ToString method is set
into the SqlParameter. The type of the parameter is also set if the user specifies it in
the format string.

 At this point, you need to make up your own mind as to whether this is something
you’d like to see in your production codebase. I’d want to implement extra features
(such as including the size in the format string; you can’t use the alignment part of a
format item, because string.Format handles that itself), but it can certainly be pro-
ductionized appropriately. But is it just too clever? Are you going to have to walk every
new developer on the project through this, saying, “Yes, I know it looks like we have a
massive SQL injection vulnerability, but it’s okay, really”?

 Regardless of this specific example, you may well be able to find similar situations for
which you can use the compiler’s extraction of the data and separation from the text of
an interpolated string literal. Always think carefully about whether a solution like this
is really providing a benefit or whether it’s just giving you a chance to feel smart.

 All of this is useful if you’re targeting .NET 4.6, but what if you’re stuck on an older
framework version? Just because you’re using a C# 6 compiler doesn’t mean you’re
necessarily targeting a modern version of the framework. Fortunately, the C# compiler
doesn’t tie this to a specific framework version; it just needs the right types to be avail-
able somehow.

9.3.4 Using FormattableString with older versions of .NET

Just like the attribute for extension methods and caller information attributes, the C#
compiler doesn’t have a fixed idea of which assembly should contain the
FormattableString and FormattableStringFactory types it relies on. The
compiler cares about the namespaces and expects an appropriate static Create
method to be present on FormattableStringFactory, but that’s about it. If you
want to take advantage of the benefits of FormattableString but you’re stuck tar-
geting an earlier version of the framework, you can implement both types yourself.
Licensed to André Santos <andrerfcsantos@gmail.com>

269Localization using FormattableString
 Before I show you the code, I should point out that this should be viewed as a last
resort. When you eventually upgrade your environment to target .NET 4.6, you should
remove these types immediately to avoid compiler warnings. Although you can get
away with having your own implementation even if you end up executing in .NET 4.6,
I’d try to avoid getting into that situation; in my experience, having the same type in
different assemblies can lead to issues that are hard to diagnose.

 With all the caveats out of the way, the implementation is simple. Listing 9.10
shows both types. I haven’t included any validation, I’ve made FormattableString a
concrete type for brevity, and I’ve made both classes internal, but the compiler
doesn’t mind those changes. The reason for making the types internal is to avoid
other assemblies taking a dependency on your implementation; whether that’s suit-
able for your precise situation is hard to predict, but please consider it carefully before
making the types public.

using System.Globalization;

namespace System.Runtime.CompilerServices
{
 internal static class FormattableStringFactory
 {
 internal static FormattableString Create(
 string format, params object[] arguments) =>
 new FormattableString(format, arguments);
 }
}

namespace System
{
 internal class FormattableString : IFormattable
 {
 public string Format { get; }
 private readonly object[] arguments;

 internal FormattableString(string format, object[] arguments)
 {
 Format = format;
 this.arguments = arguments;
 }

 public object GetArgument(int index) => arguments[index];
 public object[] GetArguments() => arguments;
 public int ArgumentCount => arguments.Length;
 public static string Invariant(FormattableString formattable) =>
 formattable?.ToString(CultureInfo.InvariantCulture);
 public string ToString(IFormatProvider formatProvider) =>
 string.Format(formatProvider, Format, arguments);
 public string ToString(
 string ignored, IFormatProvider formatProvider) =>
 ToString(formatProvider);
 }
}

Listing 9.10 Implementing FormattableString from scratch
Licensed to André Santos <andrerfcsantos@gmail.com>

270 CHAPTER 9 Stringy features
I won’t explain the details of the code, because each individual member is quite sim-
ple. The only part that may need a little explanation is in the Invariant method call-
ing formattable?.ToString(CultureInfo.InvariantCulture). The ?. part
of this expression is the null conditional operator, which you’ll look at in more detail in
section 10.3. Now you know everything you can do with interpolated string literals, but
what about what you should do with them?

9.4 Uses, guidelines, and limitations
Like expression-bodied members, interpolated string literals are a safe feature to
experiment with. You can adjust your code to meet your own (or team-wide) thresh-
olds. If you change your mind later and want to go back to the old code, doing so is
trivial. Unless you start using FormattableString in your APIs, the use of interpo-
lated string literals is a hidden implementation detail. That doesn’t mean it should be
used absolutely everywhere, of course. In this section, we’ll discuss where it makes
sense to use interpolated string literals, where it doesn’t, and where you might find
you can’t even if you want to.

9.4.1 Developers and machines, but maybe not end users

First, the good news: almost anywhere you’re already using string formatting with
hardcoded composite format strings or anywhere you’re using plain string concatena-
tion you can use interpolated strings. Most of the time, the code will be more readable
afterward.

 The hardcoded part is important here. Interpolated string literals aren’t dynamic.
The composite format string is there inside your source code; the compiler just man-
gles it a little to use regular format items. That’s fine when you know the text and for-
mat of the desired string beforehand, but it’s not flexible.

 One way of categorizing strings is to think about who or what is going to consume
them. For the purposes of this section, I’ll consider three consumers:

 Strings designed for other code to parse
 Messages for other developers
 Messages for end users

Let’s look at each kind of string in turn and think about whether interpolated string
literals are useful.

MACHINE-READABLE STRINGS

Lots of code is built to read other strings. There are machine-readable log formats, URL
query parameters, and text-based data formats such as XML, JSON, or YAML. All of
these have a set format, and any values should be formatted using the invariant culture.
This is a great place to use FormattableString, as you’ve already seen, if you need to
perform the formatting yourself. As a reminder, you should typically be taking advan-
tage of an appropriate API for the formatting of machine-readable strings anyway.

 Bear in mind that each of these strings might also contain nested strings aimed at
humans; each line of a log file may be formatted in a specific way to make it easy to
Licensed to André Santos <andrerfcsantos@gmail.com>

271Uses, guidelines, and limitations
treat as a single record, but the message part of it may be aimed at other developers.
You need to keep track of what level of nesting each part of your code is working at.

MESSAGES FOR OTHER DEVELOPERS

If you look at a large codebase, you’re likely to find that many of your string literals
are aimed at other developers, whether they’re colleagues within the same company
or developers using an API you’ve released. These are primarily as follows:

 Tooling strings such as help messages in console applications
 Diagnostic or progress messages written to logs or the console
 Exception messages

In my experience, these are typically in English. Although some companies—includ-
ing Microsoft—go to the trouble of localizing their error messages, most don’t. Local-
ization has a significant cost both in terms of the data translation and the code to use
it properly. If you know your audience is at least reasonably comfortable reading Eng-
lish, and particularly if they may want to share the messages on English-oriented sites
such as Stack Overflow, it’s usually not worth the effort of localizing these strings.

 Whether you go so far as making sure that the values within the text are all format-
ted in a fixed culture is a different matter. It can definitely help to improve consis-
tency, but I suspect I’m not the only developer who doesn’t pay as much attention to
that as I might. I encourage you to use a nonambiguous format for dates, however.
The ISO format of yyyy-MM-dd is easy to understand and doesn’t have the “month first
or day first?” problem of dd/MM/yyyy or MM/dd/yyyy. As I noted earlier, the culture
can affect which numbers are produced because of different calendar systems being
in use in different parts of the world. Consider carefully whether you want to use the
invariant culture to force the use of the Gregorian calendar. For example, code to
throw an exception for an invalid argument might look like this:

throw new ArgumentException(Invariant(
 $"Start date {start:yyyy-MM-dd} should not be earlier than year 2000."))

If you know that all the developers reading these strings are going to be in the same
non-English culture, it’s entirely reasonable to write all those messages in that culture
instead.

MESSAGES FOR END USERS

Finally, almost all applications have at least some text that’s displayed to an end user.
As with developers, you need to be aware of the expectations of each user in order to
make the right decision for how to present text to them. In some cases, you can be
confident that all your end users are happy to use a single culture. This is typically the
case if you’re building an application to be used internally within a business or other
organization that’s based in one location. Here it’s much more likely that you’ll use
whatever that local culture is rather than English, but you don’t need to worry about
two users wanting to see the same information presented in different ways.

 So far, all these situations have been amenable to interpolated string literals. I’m
particularly fond of using them for exception messages. They let me write concise
Licensed to André Santos <andrerfcsantos@gmail.com>

272 CHAPTER 9 Stringy features
code that still provides useful context to the unfortunate developer poring over logs
and trying to work out what’s gone wrong this time.

 But interpolated string literals are rarely helpful when you have end users in multi-
ple cultures, and they can hurt your product if you don’t localize. Here, the format
strings are likely to be in resource files rather than in your code anyway, so you’re
unlikely to even see the possibility of using interpolated string literals. There are occa-
sional exceptions to this, such as when you’re formatting just one snippet of informa-
tion to put within a specific HTML tag or something similar. In those exceptional
cases, an interpolated string literal should be fine, but don’t expect to use them much.

 You’ve seen that you can’t use interpolated string literals for resource files. Next,
you’ll look at other cases for which the feature simply isn’t designed to help you.

9.4.2 Hard limitations of interpolated string literals

Every feature has its limits, and interpolated string literals are no exception. These
limitations sometimes have workarounds, which I’ll show you before generally advis-
ing you not to try them in the first place.

NO DYNAMIC FORMATTING

You’ve already seen that you can’t change most of the composite format string that
makes up the interpolated string literal. Yet one piece feels like it should be express-
ible dynamically but isn’t: individual format strings. Let’s take one piece of an exam-
ple from earlier:

Console.WriteLine($"Price: {price,9:C}");

Here, I’ve chosen 9 as the alignment, knowing that the values I’d be formatting would
fit nicely into nine characters. But what if you know that sometimes all the values you
need to format will be small and other times they may be huge? It’d be nice to make
that 9 part dynamic, but there’s no simple way of doing it. The closest you can easily
come is to use an interpolated string literal as the input to string.Format or the
equivalent Console.WriteLine overload, as in the following example:

int alignment = GetAlignmentFromValues(allTheValues);
Console.WriteLine($"Price: {{0,{alignment}:C}}", price);

The first and last braces are doubled as the escape mechanism in string formats,
because you want the result of the interpolated string literal to be a string such as
"Price: {0,9}" that’s ready to be formatted using the price variable to fill in the
format item. This isn’t code I’d want to either write or read.

NO EXPRESSION REEVALUATION

The compiler always converts an interpolated string literal into code that immediately
evaluates the expressions in the format items and uses them to build either a string
or a FormattableString. The evaluation can’t be deferred or repeated. Consider
Licensed to André Santos <andrerfcsantos@gmail.com>

273Uses, guidelines, and limitations
the short example in the following listing. It prints the same value twice, even though
the developer may expect it to use deferred execution.

string value = "Before";
FormattableString formattable = $"Current value: {value}";
Console.WriteLine(formattable);

value = "After";
Console.WriteLine(formattable);

If you’re desperate, you can work around this. If you change the expression to include
a lambda expression that captures value, you can abuse this to evaluate it each time
it’s formatted. Although the lambda expression itself is converted into a delegate
immediately, the resulting delegate would capture the value variable, not its current
value, and you can force the delegate to be evaluated each time you format the
FormattableString. This is a sufficiently bad idea that, although I’ve included an
example of it in the downloadable samples for the book, I’m not going to sully these
pages with it. (It’s still a fun abuse, admittedly.)

NO BARE COLONS

Although you can use pretty much any expression computing a value in interpolated
string literals, there’s one problem with the conditional ?: operator: it confuses the
compiler and indeed the grammar of the C# language. Unless you’re careful, the
colon ends up being handled as the separator between the expression and the format
string, which leads to a compile-time error. For example, this is invalid:

Console.WriteLine($"Adult? {age >= 18 ? "Yes" : "No"}");

It’s simple to fix by using parentheses around the conditional expression:

Console.WriteLine($"Adult? {(age >= 18 ? "Yes" : "No")}");

I rarely find this to be a problem, partly because I usually try to keep the expressions
shorter than this anyway. I’d probably extract the yes/no value into a separate string
variable first. This leads us nicely into a discussion about when the choice of whether
to use an interpolated string literal really comes down to a matter of taste.

9.4.3 When you can but really shouldn’t

The compiler isn’t going to mind if you abuse interpolated string literals, but your
coworkers might. There are two primary reasons not to use them even where you can.

DEFER FORMATTING FOR STRINGS THAT MAY NOT BE USED

Sometimes you want to pass a format string and the arguments that would be formatted
to a method that might use them or might not. For example, if you have a precondition

Listing 9.11 Even FormattableString evaluates expressions eagerly

Prints "Current
value: Before"

Still prints "Current
value: Before"
Licensed to André Santos <andrerfcsantos@gmail.com>

274 CHAPTER 9 Stringy features
validation method, you might want to pass in the condition to check along with the for-
mat and arguments of an exception message to create if (and only if) the condition
fails. It’s easy to write code like this:

Preconditions.CheckArgument(
 start.Year < 2000,
 Invariant($"Start date {start:yyyy-MM-dd} should not be earlier than year
 ➥ 2000."));

Alternatively, you could have a logging framework that’ll log only if the level has been
configured appropriately at execution time. For example, you might want to log the
size of a request that your server has received:

Logger.Debug("Received request with {0} bytes", request.Length);

You might be tempted to use an interpolated string literal for this by changing the
code to the following:

Logger.Debug($"Received request with {request.Length} bytes");

That would be a bad idea; it forces the string to be formatted even if it’s just going to
be thrown away, because the formatting will unconditionally be performed before the
method is called rather than within the method only if it’s needed. Although string
formatting isn’t hugely expensive in terms of performance, you don’t want to be
doing it unnecessarily.

 You may be wondering whether FormattableString would help here. If the vali-
dation or logging library accepted a FormattableString as an input parameter, you
could defer the formatting and control the culture used for formatting in a single
place. Although that’s true, it’d still involve creating the object each time, which is still
an unnecessary cost.

FORMAT FOR READABILITY

The second reason for not using interpolated string literals is that they can make the
code harder to read. Short expressions are absolutely fine and help readability. But
when the expression becomes longer, working out which parts of the literal are code
and which are text starts to take more time. I find that parentheses are the killer; if
you have more than a couple of method or constructor calls in the expression, they
end up being confusing. This goes double when the text also includes parentheses.

 Here’s a real example from Noda Time. It’s in a test rather than in production
code, but I still want the tests to be readable:

private static string FormatMemberDebugName(MemberInfo m) =>
 string.Format("{0}.{1}({2})",
 m.DeclaringType.Name,
 m.Name,
 string.Join(", ", GetParameters(m).Select(p => p.ParameterType)));

That’s not too bad, but imagine putting the three arguments within the string. I’ve
done it, and it’s not pretty; you end up with a literal that’s more than 100 characters
Licensed to André Santos <andrerfcsantos@gmail.com>

https://shortener.manning.com/6GVe

275Accessing identifiers with nameof
long. You can’t break it up to use vertical formatting to make each argument stand
alone as I have with the preceding layout, so it ends up being noise.

 To give one final tongue-in-cheek example of just how bad an idea it can be,
remember the code used to start the chapter:

Console.Write("What's your name? ");
string name = Console.ReadLine();
Console.WriteLine("Hello, {0}!", name);

You can put all of this inside a single statement using an interpolated string literal. You
may be skeptical; after all, that code consists of three separate statements, and the
interpolated string literal can include only expressions. That’s true, but statement-
bodied lambda expressions are still expressions. You need to cast the lambda expres-
sion to a specific delegate type, and then you need to invoke it to get the result, but it’s
all doable. It’s just not pleasant. Here’s one option, which does at least use separate
lines for each statement by virtue of a verbatim interpolated string literal, but that’s
about all that can be said in its favor:

Console.WriteLine($@"Hello {((Func<string>)(() =>
{
 Console.Write("What's your name? ");
 return Console.ReadLine();
}))()}!");

I thoroughly recommend running: run the code to prove that it works, and then run
away from it as fast as you can. While you’re recovering from that, let’s look at the
other string-oriented feature of C# 6.

9.5 Accessing identifiers with nameof
The nameof operator is trivial to describe: it takes an expression referring to a mem-
ber or local variable, and the result is a compile-time constant string with the simple
name for that member or variable. It’s that simple. Anytime you hardcode the name
of a class, property, or method, you’ll be better off with the nameof operator. Your
code will be more robust both now and in the face of changes.

9.5.1 First examples of nameof

In terms of syntax, the nameof operator is like the typeof operator, except that the
identifier in the parentheses doesn’t have to be a type. The following listing shows a
short example with a few kinds of members.

using System;

class SimpleNameof
{
 private string field;

Listing 9.12 Printing out the names of a class, method, field, and parameter
Licensed to André Santos <andrerfcsantos@gmail.com>

276 CHAPTER 9 Stringy features
 static void Main(string[] args)
 {
 Console.WriteLine(nameof(SimpleNameof));
 Console.WriteLine(nameof(Main));
 Console.WriteLine(nameof(args));
 Console.WriteLine(nameof(field));
 }
}

The result is exactly what you’d probably expect:

SimpleNameof
Main
args
field

So far, so good. But, obviously, you could’ve achieved the same result by using string
literals. The code would’ve been shorter, too. So why is it better to use nameof? In one
word, robustness. If you make a typo in a string literal, there’s nothing to tell you,
whereas if you make a typo in a nameof operand, you’ll get a compile-time error.

NOTE The compiler still won’t be able to spot the problem if you refer to a
different member with a similar name. If you have two members that differ
only in case, such as filename and fileName, you can easily refer to the
wrong one without the compiler noticing. This is a good reason to avoid such
similar names, but it’s always been a bad idea to name things so similarly; even
if you don’t confuse the compiler, you can easily confuse a human reader.

Not only will the compiler tell you if you get things wrong, but it knows that your
nameof code is associated with the member or variable you’re naming. If you rename
it in a refactoring-aware way, your nameof operand will change, too.

 For example, consider the following listing. Its purpose is irrelevant, but note that
oldName occurs three times: for the parameter declaration, obtaining its name with
nameof, and obtaining the value as a simple expression.

static void RenameDemo(string oldName)
{
 Console.WriteLine($"{nameof(oldName)} = {oldName}");
}

In Visual Studio, if you place your cursor within any of the three occurrences of old-
Name and press F2 for the Rename operation, all three will be renamed together, as
shown in figure 9.2.

 The same approach works for other names (methods, types, and so forth). Basi-
cally, nameof is refactoring friendly in a way that hardcoded string literals aren’t. But
when should you use it?

Listing 9.13 A simple method using its parameter twice in the body
Licensed to André Santos <andrerfcsantos@gmail.com>

277Accessing identifiers with nameof
9.5.2 Common uses of nameof

I’m not going to claim that the examples here are the only sensible uses of nameof.
They’re just the ones I’ve come across most often. They’re mostly places where prior
to C# 6, you’d have seen either hardcoded names or, possibly, expression trees being
used as a workaround that’s refactoring friendly but complex.

ARGUMENT VALIDATION

In chapter 8, when I showed the uses of Preconditions.CheckNotNull in Noda
Time, that wasn’t the code that’s actually in the library. The real code includes the
name of the parameter with the null value, which makes it a lot more useful. The
InZone method I showed there looks like this:

public ZonedDateTime InZone(
 DateTimeZone zone,
 ZoneLocalMappingResolver resolver)
{
 Preconditions.CheckNotNull(zone, nameof(zone));
 Preconditions.CheckNotNull(resolver, nameof(resolver));
 return zone.ResolveLocal(this, resolver);
}

Other precondition methods are used in a similar way. This is by far the most com-
mon use I find for nameof. If you’re not already validating arguments to your public
methods, I strongly advise you to start doing so; nameof makes it easier than ever to
perform robust validation with informational messages.

PROPERTY CHANGE NOTIFICATION FOR COMPUTED PROPERTIES

As you saw in section 7.2, CallerMemberNameAttribute makes it easy to raise
events in INotifyPropertyChanged implementations when the property itself

Figure 9.2 Renaming an identifier in Visual Studio
Licensed to André Santos <andrerfcsantos@gmail.com>

278 CHAPTER 9 Stringy features
changes. But what if changing the value of one property has an effect on another
property? For example, suppose you have a Rectangle class with read/write Height
and Width properties and a read-only Area property. It’s useful to be able to raise the
event for the Area property and specify the name of the property in a safe way, as
shown in the following listing.

public class Rectangle : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 private double width;
 private double height;

 public double Width
 {
 get { return width; }
 set
 {
 if (width == value)
 {
 return;
 }
 width = value;
 RaisePropertyChanged();
 RaisePropertyChanged(nameof(Area));
 }
 }

 public double Height { ... }

 public double Area => Width * Height;

 private void RaisePropertyChanged(
 [CallerMemberName] string propertyName = null) { ... }

}

Most of this listing is exactly as you’d have written it in C# 5, but the line in bold
would’ve had to be RaisePropertyChanged("Area") or RaiseProperty-

Changed(() => Area). The latter approach would’ve been complex, in terms of the
RaisePropertyChanged code, and inefficient, because it builds up an expression
tree solely to be inspected for the name. The nameof solution is much cleaner.

ATTRIBUTES

Sometimes attributes refer to other members to indicate how the members relate to
each other. When you want to refer to a type, you can already use typeof to make
that relationship, but that doesn’t work for any other kind of member. As a concrete

Listing 9.14 Using nameof to raise a property change notification

Avoid raising events when
the value isn’t changing.

Raises the event
for the Width
property

Raises the event
for the Area
property

Implemented just
like Width

Computed
property

Change notification
as per section 7.2
Licensed to André Santos <andrerfcsantos@gmail.com>

279Accessing identifiers with nameof
example, NUnit allows tests to be parameterized with values that are extracted from a
field, property, or method using the TestCaseSource attribute. The nameof opera-
tor allows you to refer to that member in a safe way. The following listing shows yet
another example from Noda Time, testing that all the time zones loaded from the
Time Zone Database (TZDB, now hosted by IANA) behave appropriately at the start
and end of time.

static readonly IEnumerable<DateTimeZone> AllZones =
 DateTimeZoneProviders.Tzdb.GetAllZones();

[Test]
[TestCaseSource(nameof(AllZones))]
public void AllZonesStartAndEnd(DateTimeZone zone)
{
 ...
}

The utility here isn’t restricted to testing. It’s applicable wherever attributes indicate a
relationship. You could imagine a more sophisticated RaisePropertyChanged
method from the preceding section, where the relationship between properties could
be specified with attributes instead of within code:

[DerivedProperty(nameof(Area))
public double Width { ... }

The event-raising method could keep a cached data structure indicating that when-
ever it was notified that the Width property had changed, it should raise a change
notification for Area as well.

 Similarly, in object-relational mapping technologies such as Entity Framework, it’s
reasonably common to have two properties in a class: one for a foreign key and the
other to be the entity that key represents. This is shown in the following example:

public class Employee
{
 [ForeignKey(nameof(Employer))]
 public Guid EmployerId { get; set; }
 public Company Employer { get; set; }
}

There are no doubt many other attributes that can take advantage of this approach.
Now that you’re aware of it, you may find places in your existing codebase that’ll ben-
efit from nameof. In particular, you should look for code where you need to use
reflection with names that you do know at compile time but haven’t previously been
able to specify in a clean way. There are still a few little subtleties to cover for the sake
of completeness, however.

Listing 9.15 Specifying a test case source with nameof

Field to retrieve all
TZDB time zones

Refers to the field
using nameof

Test method called with
each time zone in turn

Body of test
method omitted
Licensed to André Santos <andrerfcsantos@gmail.com>

280 CHAPTER 9 Stringy features
9.5.3 Tricks and traps when using nameof

You may never need to know any of the details in this section. This content is primarily
here just in case you find yourself surprised by the behavior of nameof. In general, it’s
a pretty simple feature, but a few aspects might surprise you.

REFERRING TO MEMBERS OF OTHER TYPES

Often, it’s useful to be able to refer to members in one type from within code in
another type. Going back to the TestCaseSource attribute, for example, in addition
to a name, you can specify a type where NUnit will look for that name. If you have a
source of information that’ll be used from multiple tests, it makes sense to put it in a
common place. To do this with nameof, you qualify it with the type as well. The result
will be the simple name:

[TestCaseSource(typeof(Cultures), nameof(Cultures.AllCultures))]

That is equivalent to the following, except for all the normal benefits of nameof:

[TestCaseSource(typeof(Cultures), "AllCultures")]

You can also use a variable of the relevant type to access a member name, although
only for instance members. In reverse, you can use the name of the type for both static
and instance members. The following listing shows all the valid permutations.

class OtherClass
{
 public static int StaticMember => 3;
 public int InstanceMember => 3;
}

class QualifiedNameof
{
 static void Main()
 {
 OtherClass instance = null;
 Console.WriteLine(nameof(instance.InstanceMember));
 Console.WriteLine(nameof(OtherClass.StaticMember));
 Console.WriteLine(nameof(OtherClass.InstanceMember));
 }
}

I prefer to always use the type name where possible; if you use a variable instead, it
looks like the value of the variable may matter, but really it’s used only at compile time
to determine the type. If you’re using an anonymous type, there’s no type name you
could use, so you have to use the variable.

 A member still has to be accessible for you to refer to it using nameof; if Static-
Member or InstanceMember in listing 9.16 had been private, the code trying to
access their names would’ve failed to compile.

Listing 9.16 All the valid ways of accessing names of members in other types
Licensed to André Santos <andrerfcsantos@gmail.com>

281Accessing identifiers with nameof
GENERICS

You may be wondering what happens if you try to take the name of a generic type or
method and how it has to be specified. In particular, typeof allows both bound and
unbound type names to be used; typeof(List<string>) and typeof(List<>)
are both valid and give different results.

 With nameof, the type argument must be specified but isn’t included in the
result. Additionally, there’s no indication of the number of type parameters in the
result: nameof(Action<string>) and nameof(Action<string, string>) both
have a value of just "Action". This can be irritating, but it removes any question of
how the resulting name should represent arrays, anonymous types, further generic
types, and so on.

 It seems likely to me that the requirement for a type argument to be specified may
be removed in the future both to be consistent with typeof and to avoid having to
specify a type that makes no difference to the result. But changing the result to
include the number of type arguments or the type arguments themselves would be a
breaking change, and I don’t envision that happening. In most cases where that mat-
ters, using typeof to obtain a Type would be preferable anyway.

 You can use a type parameter with a nameof operator, but unlike typeof(T), it’ll
always return the name of the type parameter rather than the name of the type argu-
ment used for that type parameter at execution time. Here’s a minimal example of that:

static string Method<T>() => nameof(T);

It doesn’t matter how you call the method: Method<Guid>() or Method<Button>()
will both return "T".

USING ALIASES

Usually, using directives providing type or namespace aliases have no effect at execu-
tion time. They’re just different ways of referring to the same type or namespace. The
nameof operator is one exception to this rule. The output of the following listing is
GuidAlias, not Guid.

using System;

using GuidAlias = System.Guid;

class Test
{
 static void Main()
 {
 Console.WriteLine(nameof(GuidAlias));
 }
}

Listing 9.17 Using an alias in the nameof operator

Always
returns "T"
Licensed to André Santos <andrerfcsantos@gmail.com>

282 CHAPTER 9 Stringy features
PREDEFINED ALIASES, ARRAYS AND NULLABLE VALUE TYPES

The nameof operator can’t be used with any of the predefined aliases (int, char,
long, and so on) or the ? suffix to indicate a nullable value type or array types. There-
fore, all the following are invalid:

nameof(float)
nameof(Guid?)
nameof(String[])

These are a little annoying, but you have to use the CLR type name for the predefined
aliases and the Nullable<T> syntax for nullable value types:

nameof(Single)
nameof(Nullable<Guid>)

As noted in the previous section on generics, the name of Nullable<T> will always be
Nullable anyway.

THE NAME, THE SIMPLE NAME, AND ONLY THE NAME

The nameof operator is in some ways a cousin of the mythical infoof operator,
which has never been seen outside the room used for C# language design meetings.
(See http://mng.bz/6GVe for more information on infoof.) If the team ever man-
ages to catch and tame infoof, it could return references to MethodInfo,
EventInfo, PropertyInfo objects, and their friends. Alas, infoof has proved elu-
sive so far, but many of the tricks it uses to evade capture aren’t available to the sim-
pler nameof operator. Trying to take the name of an overloaded method? That’s fine;
they all have the same name anyway. Can’t easily resolve whether you’re referring to a
property or a type? Again, if they both have the same name, it doesn’t matter which
you use. Although infoof would certainly provide benefits above and beyond
nameof if it could ever be sensibly designed, the nameof operator is considerably sim-
pler and still addresses many of the same use cases.

 One point to note about what’s returned—the simple name or “bit at the end” in
less specification-like terminology: it doesn’t matter if you use nameof(Guid) or use
nameof(System.Guid) from within a class importing the System namespace. The
result will still be only "Guid".

NAMESPACES

I haven’t given details about all the members that nameof can be used with, because
it’s the set you’d expect: basically, all members except finalizers and constructors. But
because we normally think about members in terms of types and members within
types, you may be surprised that you can take the name of a namespace. Yes,
namespaces are also members—of other namespaces.

 But given the preceding rule about only the simple name being returned, that isn’t
terribly useful. If you use nameof(System.Collections.Generic), I suspect you
want the result to be System.Collections.Generic, but in reality, it’s just

Predefined alias
for System.Single Shorthand for

Nullable<Guid>
Array
Licensed to André Santos <andrerfcsantos@gmail.com>

http://mng.bz/6GVe

283Summary
Generic. I’ve never come across a type where this is useful behavior, but then it’s
rarely important to know a namespace as a compile-time constant anyway.

Summary
 Interpolated string literals allow you to write simpler string-formatting code.
 You can still use format strings in interpolated string literals to provide more

formatting details, but the format string has to be known at compile time.
 Interpolated verbatim string literals provide a mixture of the features of inter-

polated string literals and verbatim string literals.
 The FormattableString type provides access to all the information required

to format a string before the formatting takes place.
 FormattableString is usable out of the box in .NET 4.6 and .NET Standard

1.3, but the compiler will use it if you provide your own implementation in ear-
lier versions.

 The nameof operator provides refactoring-friendly and typo-safe access to
names within your C# code.
Licensed to André Santos <andrerfcsantos@gmail.com>

A smörgåsbord of
features for concise code
This chapter is a grab bag of features. No particular theme runs through it besides
expressing your code’s intention in ever leaner ways. The features in this chapter
are the ones left over when all the obvious ways of grouping features have been
used. That doesn’t in any way undermine their usefulness, however.

10.1 Using static directives
The first feature we’ll look at provides a simpler way of referring to static members
of a type, including extension methods.

This chapter covers
 Avoiding code clutter when referring to static

members

 Being more selective in importing extension methods

 Using extension methods in collection initializers

 Using indexers in object initializers

 Writing far fewer explicit null checks

 Catching only exceptions you’re really interested in
284

Licensed to André Santos <andrerfcsantos@gmail.com>

285Using static directives
10.1.1 Importing static members

The canonical example for this feature is System.Math, which is a static class and so
has only static members. You’re going to write a method that converts from polar coor-
dinates (an angle and a distance) to Cartesian coordinates (the familiar (x, y) model)
using the more human-friendly degrees instead of radians to express the angle. Figure
10.1 gives a concrete example of how a single point is represented in both coordinate
systems. Don’t worry if you’re not totally comfortable with the math part of this; it’s just
an example that uses a lot of static members in a short piece of code.

Assume that you already have a Point type representing Cartesian coordinates in a
simple way. The conversion itself is fairly simple trigonometry:

 Convert the angle from degrees into radians by multiplying it by /180. The
constant is available via Math.PI.

 Use the Math.Cos and Math.Sin methods to work out the x and y compo-
nents of a point with magnitude 1, and multiply up.

The following listing shows the complete method with the uses of System.Math in bold.
I’ve omitted the class declaration for convenience. It could be in a Coordinate-
Converter class, or it could be a factory method in the Point type itself.

using System;
...
static Point PolarToCartesian(double degrees, double magnitude)
{
 double radians = degrees * Math.PI / 180;
 return new Point(
 Math.Cos(radians) * magnitude,
 Math.Sin(radians) * magnitude);
}

Although this code isn’t terribly hard to read, you can imagine that as you write more
math-related code, the repetition of Math. clutters the code considerably.

Listing 10.1 Polar-to-Cartesian conversion in C# 5

30°

100

Polar(100, 30°)
Cartesian: (86.6, 50)

Figure 10.1 An example of polar and
Cartesian coordinates

Converts degrees
into radians

Trigonometry to
complete conversion
Licensed to André Santos <andrerfcsantos@gmail.com>

286 CHAPTER 10 A smörgåsbord of features for concise code
 C# 6 introduced the using static directive to make this sort of code simpler. The fol-
lowing listing is equivalent to listing 10.1 but imports all the static members of System
.Math.

using static System.Math;
...
static Point PolarToCartesian(double degrees, double magnitude)
{
 double radians = degrees * PI / 180;
 return new Point(
 Cos(radians) * magnitude,
 Sin(radians) * magnitude);
}

As you can see, the syntax for a using static directive is simple:

using static type-name-or-alias;

With that in place, all the following members are available directly by using their sim-
ple names rather than having to qualify them with the type:

 Static fields and properties
 Static methods
 Enum values
 Nested types

The ability to use enum values directly is particularly useful in switch statements and
anywhere you combine enum values. The following side-by-side example shows how to
retrieve all the fields of a type with reflection. The text in bold highlights the code
that can be removed with an appropriate using static directive.

Similarly, a switch statement responding to specific HTTP status codes can be made
simpler by avoiding the repetition of the enum type name in every case label:

Listing 10.2 Polar-to-Cartesian conversion in C# 6

C# 5 code With using static in C# 6

using System.Reflection;
...
var fields = type.GetFields(
 BindingFlags.Instance |
 BindingFlags.Static |
 BindingFlags.Public |
 BindingFlags.NonPublic)

using static System.Reflection.BindingFlags;
...
var fields = type.GetFields(
 Instance | Static | Public | NonPublic);

Converts degrees
into radians

Trigonometry to
complete conversion
Licensed to André Santos <andrerfcsantos@gmail.com>

287Using static directives

Nested types are relatively rare in handwritten code, but they’re more common in
generated code. If you use them even occasionally, the ability to import them directly
in C# 6 can significantly declutter your code. As an example, my implementation of
the Google Protocol Buffers serialization framework to C# generates nested types to
represent nested messages declared in the original .proto file. One quirk is that the
nested C# types are doubly nested to avoid naming collisions. Say you have an original
.proto file with a message like this:

message Outer {
 message Inner {
 string text = 1;
 }

 Inner inner = 1;
}

The code that’s generated has the following structure with a lot more other members,
of course:

public class Outer
{
 public static class Types
 {
 public class Inner
 {
 public string Text { get; set; }
 }
 }

 public Types.Inner Inner { get; set; }
}

C# 5 code With using static in C# 6

using System.Net;

...
switch (response.StatusCode)
{
 case HttpStatusCode.OK:
 ...
 case HttpStatusCode.TemporaryRedirect:
 case HttpStatusCode.Redirect:
 case HttpStatusCode.RedirectMethod:
 ...
 case HttpStatusCode.NotFound:
 ...
 default:
 ...
}

using static
 System.Net.HttpStatusCode;
...
switch (response.StatusCode)
{
 case OK:
 ...
 case TemporaryRedirect:
 case Redirect:
 case RedirectMethod:
 ...
 case NotFound:
 ...
 default:
 ...
}

Licensed to André Santos <andrerfcsantos@gmail.com>

288 CHAPTER 10 A smörgåsbord of features for concise code
To refer to Inner from your code in C# 5, you had to use Outer.Types.Inner,
which is painful. The double nesting became considerably less inconvenient with C#
6, where it becomes relegated to a single using static directive:

using static Outer.Types;
...
Outer outer = new Outer { Inner = new Inner { Text = "Some text here" } };

In all these cases, the members that are available via the static imports are considered
during member lookup only after other members have been considered. For exam-
ple, if you have a static import of System.Math but you also have a Sin method
declared in your class, a call to Sin() will find your Sin method rather than the one
in Math.

10.1.2 Extension methods and using static

One aspect of C# 3 that I was never keen on was the way extension methods were dis-
covered. Importing a namespace and importing extension methods were both per-
formed with a single using directive; there was no way of doing one without the other
and no way of importing extension methods from a single type. C# 6 improves the sit-
uation, although some of the aspects I dislike couldn’t be fixed without breaking back-
ward compatibility.

 The two important ways in which extension methods and using static direc-
tives interact in C# 6 are easy to state but have subtle implications:

 Extension methods from a single type can be imported with a using static
directive for that type without importing any extension methods from the rest
of the namespace.

 Extension methods imported from a type aren’t available as if you were calling a
regular static method like Math.Sin. Instead, you have to call them as if they
were instance methods on the extended type.

The imported type doesn’t have to be static
The static part of using static doesn’t mean that the type you import must be
static. The examples shown so far have been, but you can import regular types, too.
That lets you access the static members of those types without qualification:

using static System.String;
...
string[] elements = { "a", "b" };
Console.WriteLine(Join(" ", elements));

I haven’t found this to be as useful as the earlier examples, but it’s available if you
want it. Any nested types are made available by their simple names, too. There’s one
exception to the set of static members that’s imported with a using static direc-
tive that isn’t quite so straightforward, and that’s extension methods.

Access String.Join by
its simple name
Licensed to André Santos <andrerfcsantos@gmail.com>

289Using static directives
I’ll demonstrate the first point by using the most commonly used set of extension
methods in all of .NET: the ones for LINQ. The System.Linq.Queryable class con-
tains extension methods for IQueryable<T> accepting expression trees, and the
System.Linq.Enumerable class contains extension methods for IEnumerable<T>
accepting delegates. Because IQueryable<T> inherits from IEnumerable<T> with a
regular using directive for System.Linq, you can use the extension methods accept-
ing delegates on IQueryable<T>, although you usually don’t want to. The following
listing shows how a using static directive for just System.Linq.Queryable
means the extension methods in System.Linq.Enumerable aren’t picked up.

using static System.Linq.Queryable;
...
var query = new[] { "a", "bc", "d" }.AsQueryable();

Expression<Func<string, bool>> expr =
 x => x.Length > 1;
Func<string, bool> del = x => x.Length > 1;

var valid = query.Where(expr);
var invalid = query.Where(del);

One point that’s worth noting is that if you accidentally imported System.Linq with
a regular using directive, such as to allow query to be explicitly typed, that would
silently make the last line valid.

 The impact of this change should be considered carefully by library authors. If you
wish to include some extension methods but allow users to explicitly opt into them, I
encourage the use of a separate namespace for that purpose. The good news is that
you can now be confident that any users—at least those with C# 6—can be selective in
which extension methods to import without you having to create many namespaces.
For example, in Noda Time 2.0, I introduced a NodaTime.Extensions namespace
with extension methods targeting many types. I expect that some users will want to
import only a subset of those extension methods, so I split the method declarations
into several classes, with each class containing methods extending a single type. In
other cases, you may wish to split your extension methods along different lines. The
important point is that you should consider your options carefully.

 The fact that extension methods can’t be called as if they were regular static meth-
ods is also easily demonstrated using LINQ. Listing 10.4 shows this by calling the
Enumerable.Count method on a sequence of strings: once in a valid way as an exten-
sion method, as if it were an instance method declared in IEnumerable<T>, and
once attempting to use it as a regular static method.

Listing 10.3 Selective importing of extension methods

Creates an
IQueryable<string>

Creates a delegate
and expression tree

Valid: uses
Queryable.WhereInvalid: no in-scope

Where method
accepts a delegate
Licensed to André Santos <andrerfcsantos@gmail.com>

290 CHAPTER 10 A smörgåsbord of features for concise code

using System.Collections.Generic;
using static System.Linq.Enumerable;
...
IEnumerable<string> strings = new[] { "a", "b", "c" };

int valid = strings.Count();
int invalid = Count(strings);

Effectively, the language is encouraging you to think of extension methods as differ-
ent from other static methods in a way that it didn’t before. Again, this has an impact
on library developers: converting a method that already existed in a static class into an
extension method (by adding the this modifier to the first parameter) used to be a
nonbreaking change. As of C# 6, that becomes a breaking change: callers who were
importing the method with a using static directive would find that their code no
longer compiled after the method became an extension method.

NOTE Extension methods discovered via static imports aren’t preferred over
extension methods discovered through namespace imports. If you make a
method call that isn’t handled by regular method invocation, but multiple
extension methods are applicable via imported namespaces or classes, over-
load resolution is applied as normal.

Just like extension methods, object and collection initializers were largely added to
the language as part of the bigger feature of LINQ. And just like extension methods,
they’ve been tweaked in C# 6 to make them slightly more powerful.

10.2 Object and collection initializer enhancements
As a reminder, object and collection initializers were introduced in C# 3. Object ini-
tializers are used to set properties (or, more rarely, fields) in newly created objects;
collection initializers are used to add elements to newly created collections via the Add
methods that the collection type supports. The following simple example shows ini-
tializing a Windows Forms Button with text and a background color as well as initial-
izing a List<int> with three values:

Button button = new Button { Text = "Go", BackColor = Color.Red };
List<int> numbers = new List<int> { 5, 10, 20 };

C# 6 enhances both of these features and makes them slightly more flexible. These
enhancements aren’t as globally useful as some of the other features in C# 6, but
they’re still welcome additions. In both cases, the initializers have been expanded to
include members that previously couldn’t be used there: object initializers can now
use indexers, and collection initializers can now use extension methods.

Listing 10.4 Attempting to call Enumerable.Count in two ways

Valid: calling Count as if it
were an instance method

Invalid: extension methods aren’t
imported as regular static methods
Licensed to André Santos <andrerfcsantos@gmail.com>

291Object and collection initializer enhancements
10.2.1 Indexers in object initializers

Until C# 6, object initializers could invoke only property setters or set fields directly.
C# 6 allows indexer setters to be invoked as well using the [index] = value syntax
used to invoke them in regular code.

 To demonstrate this in a simple way, I’ll use StringBuilder. This would be a
fairly unusual usage, but we’ll talk about best practices shortly. The example initializes
a StringBuilder from an existing string ("This text needs truncating"),
truncates the builder to a set length, and modifies the last character to a Unicode
ellipsis (…). When printed to the console, the result is "This text...". Before C#
6, you couldn’t have modified the last character within the initializer, so you would’ve
ended up with something like this:

string text = "This text needs truncating";
StringBuilder builder = new StringBuilder(text)
{
 Length = 10
};
builder[9] = '\u2026';
Console.OutputEncoding = Encoding.UTF8;
Console.WriteLine(builder);

Given how little the initializer is giving you (a single property), I’d at least consider
setting the length in a separate statement instead. C# 6 allows you to perform all the
initialization you need in a single expression, because you can use the indexer within
the object initializer. The following listing demonstrates this in a slightly contrived
way.

string text = "This text needs truncating";
StringBuilder builder = new StringBuilder(text)
{
 Length = 10,
 [9] = '\u2026'
};
Console.OutputEncoding = Encoding.UTF8;
Console.WriteLine(builder);

I deliberately chose to use StringBuilder here not because it’s the most obvious
type containing an indexer but to make it clear that this is an object initializer rather
than a collection initializer.

 You might have expected me to use a Dictionary<,> of some kind instead, but
there’s a hidden danger here. If your code is correct, it’ll work as you’d expect, but I

Listing 10.5 Using an indexer in a StringBuilder object initializer

Sets the Length property
to truncate the builder

Modifies the final
character to “…”

Makes sure the console
will support UnicodePrints out the

builder content

Sets the Length property
to truncate the builder

Modifies the final
character to “…”

Makes sure the console
will support Unicode

Prints out the
builder content
Licensed to André Santos <andrerfcsantos@gmail.com>

292 CHAPTER 10 A smörgåsbord of features for concise code
recommend sticking to using a collection initializer in most cases. To see why, let’s
look at an example initializing two dictionaries: one using indexers in an object initial-
izer and one using a collection initializer.

var collectionInitializer = new Dictionary<string, int>
{
 { "A", 20 },
 { "B", 30 },
 { "B", 40 }
};

var objectInitializer = new Dictionary<string, int>
{
 ["A"] = 20,
 ["B"] = 30,
 ["B"] = 40
};

Superficially, these might look equivalent. When you have no duplicate keys, they’re
equivalent, and I even prefer the appearance of the object initializer. But the diction-
ary indexer setter overwrites any existing entry with the same key, whereas the Add
method throws an exception if the key already exists.

 Listing 10.6 deliberately includes the "B" key twice. This is an easy mistake to
make, usually as the result of copying and pasting a line and then forgetting to modify
the key part. The error won’t be caught at compile time in either case, but at least with
the collection initializer, it doesn’t do the wrong thing silently. If you have any unit
tests that execute this piece of code—even if they don’t explicitly check the contents
of the dictionary—you’re likely to find the bug quickly.

So when should you use an indexer in an object initializer rather than a collection ini-
tializer? You should do so in a few reasonably obvious cases, such as the following:

 If you can’t use a collection initializer because the type doesn’t implement
IEnumerable or doesn’t have suitable Add methods. (You can potentially
introduce your own Add methods as extension methods, however, as you’ll see

Listing 10.6 Two ways of initializing a dictionary

Roslyn to the rescue?
Being able to spot this bug at compile time would be better, of course. It should be
possible to write an analyzer to spot this problem for both collection and object ini-
tializers. For object initializers using an indexer, it’s hard to imagine many cases
where you’d legitimately want to specify the same constant indexer key multiple
times, so popping up a warning seems entirely reasonable.

I don’t know of any such analyzer yet, but I hope it’ll exist at some point. With that
danger cleared, there’d be no reason not to use indexers with dictionaries.

Regular collection
initializer from C# 3

Object initializer with
indexer in C# 6
Licensed to André Santos <andrerfcsantos@gmail.com>

293Object and collection initializer enhancements
in the next section.) For example, ConcurrentDictionary<,> doesn’t have
Add methods but does have an indexer. It has TryAdd and AddOrUpdate meth-
ods, but those aren’t used by the collection initializer. You don’t need to worry
about concurrent updates to the dictionary while you’re in an object initializer,
because only the initializing thread has any knowledge of the new dictionary.

 If the indexer and the Add method would handle duplicate keys in the same
way. Just because dictionaries follow the “throw on add, overwrite in the
indexer” pattern doesn’t mean that all types do.

 If you’re genuinely trying to replace elements rather than adding them. For
example, you might be creating one dictionary based on another and then
replacing the value corresponding to a particular key.

Less clear-cut cases exist as well in which you need to balance readability against the
possibility of the kind of error described previously. Listing 10.7 shows an example of
a schemaless entity type with two regular properties, but that otherwise allows arbi-
trary key/value pairs for its data. You’ll then look at the options for how you might ini-
tialize an instance.

public sealed class SchemalessEntity
 : IEnumerable<KeyValuePair<string, object>>
{
 private readonly IDictionary<string, object> properties =
 new Dictionary<string, object>();

 public string Key { get; set; }
 public string ParentKey { get; set; }

 public object this[string propertyKey]
 {
 get { return properties[propertyKey]; }
 set { properties[propertyKey] = value; }
 }

 public void Add(string propertyKey, object value)
 {
 properties.Add(propertyKey, value);
 }

 public IEnumerator<KeyValuePair<string, object>> GetEnumerator() =>
 properties.GetEnumerator();

 IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
}

Let’s consider two ways of initializing an entity for which you want to specify a parent
key, the new entity’s key, and two properties (a name and location, just as simple
strings). You can use a collection initializer but then set the other properties afterward

Listing 10.7 A schemaless entity type with key properties
Licensed to André Santos <andrerfcsantos@gmail.com>

294 CHAPTER 10 A smörgåsbord of features for concise code
or do the whole thing with an object initializer but risk typos in the keys. The follow-
ing listing demonstrates both options.

SchemalessEntity parent = new SchemalessEntity { Key = "parent-key" };
SchemalessEntity child1 = new SchemalessEntity
{
 { "name", "Jon Skeet" },
 { "location", "Reading, UK" }
};
child1.Key = "child-key";
child1.ParentKey = parent.Key;

SchemalessEntity child2 = new SchemalessEntity
{
 Key = "child-key",
 ParentKey = parent.Key,
 ["name"] = "Jon Skeet",
 ["location"] = "Reading, UK"
};

Which of these approaches is better? The second looks a lot cleaner to me. I’d typi-
cally extract the name and location keys into string constants anyway, at which point
the risk of accidentally using duplicate keys is at least reduced.

 If you’re in control of a type like this, you can add extra members to allow you to
use a collection initializer. You could add a Properties property that either exposes
the dictionary directly or exposes a view over it. At that point, you could use a collec-
tion initializer to initialize Properties within an object initializer that also sets Key
and ParentKey. Alternatively, you could provide a constructor that accepts the key
and parent key, at which point you can make an explicit constructor call with those
values and then specify the name and location properties with a collection initializer.

 This may feel like a huge amount of detail for a choice between using indexers in
an object initializer or using a collection initializer as in previous versions. The point is
that the choice is yours to make: no book will be able to give you simple rules to follow
that give you a best answer in every case. Be aware of the pros and cons, and apply
your own judgment.

10.2.2 Using extension methods in collection initializers

A second change in C# 6 related to object and collection initializers concerns which
methods are available in collection initializers. As a reminder, two conditions must be
met in order to use a collection initializer with a type:

 The type must implement IEnumerable. I’ve found this to be an annoying
restriction; sometimes I implement IEnumerable solely so I can use the type in
collection initializers. But it is what it is. This restriction hasn’t changed in C# 6.

 There must be a suitable Add method for every element in the collection initial-
izer. Any elements that aren’t in curly braces are assumed to correspond to

Listing 10.8 Two ways of initializing a SchemalessEntity

Specifies data properties
with a collection initializer

Specifies key
properties separately

Specifies key properties
in an object initializer

Specifies data properties
using indexers
Licensed to André Santos <andrerfcsantos@gmail.com>

295Object and collection initializer enhancements
single-argument calls to Add methods. When multiple arguments are required,
they must be in curly braces.

Occasionally, this can be a little restrictive. Sometimes you want to easily create a col-
lection in a way that the Add methods supplied by the collection itself don’t support.
The preceding conditions are still true in C# 6, but the definition of “suitable” in the
second condition now includes extension methods. In some ways, this has simplified
the transformation. Here’s a declaration using a collection initializer:

List<string> strings = new List<string>
{
 10,
 "hello",
 { 20, 3 }
};

That declaration is essentially equivalent to this:

List<string> strings = new List<string>();
strings.Add(10);
strings.Add("hello");
strings.Add(20, 3);

The normal overload resolution is applied to work out what each of those method
calls means. If that fails, the collection initializer won’t compile. With just the regular
List<T>, the preceding code won’t compile, but if you add a single extension
method it will:

public static class StringListExtensions
{
 public static void Add(
 this List<string> list, int value, int count = 1)
 {
 list.AddRange(Enumerable.Repeat(value.ToString(), count));
 }
}

With this in place, the first and last calls to Add in our earlier code end up calling the
extension method. The list ends up with five elements ("10", "hello", "20",
"20", "20"), because the last Add call adds three elements. This is an unusual exten-
sion method, but it helps demonstrate three points:

 Extension methods can be used in collection initializers, which is the whole
point of this section of the book.

 This isn’t a generic extension method; it works for only List<string>. This is
a kind of specialization that couldn’t be performed in List<T> itself. (Generic
extension methods are fine, too, so long as the type arguments can be inferred.)

 Optional parameters can be used in the extension methods; our first call to Add
will effectively be compiled to Add(10, 1) because of the default value of the
second parameter.
Licensed to André Santos <andrerfcsantos@gmail.com>

296 CHAPTER 10 A smörgåsbord of features for concise code
Now that you know what you can do, let’s take a closer look at where it makes sense to
use this feature.

CREATING OTHER GENERAL-PURPOSE ADD SIGNATURES

One technique I’ve found useful in my work with Protocol Buffers is to create Add
methods accepting collections. This process is like using AddRange but it can be used
in collection initializers. This is particularly useful within object initializers in which the
property you’re initializing is read-only but you want to add the results of a LINQ query.

 For example, consider a Person class with a read-only Contacts property that you
want to populate with all the contacts from another list who live in Reading. In Protocol
Buffers, the Contacts property would be of type RepeatedField<Person>, and
RepeatedField<T> has the appropriate Add method, allowing you to use a collection
initializer:

Person jon = new Person
{
 Name = "Jon",
 Contacts = { allContacts.Where(c => c.Town == "Reading") }
};

It can take a little getting used to, but then it’s extremely useful and certainly beats
having to call jon.Contacts.AddRange(...) separately. But what if you weren’t
using Protocol Buffers, and Contacts was exposed only as List<Person> instead?
With C# 6, that’s not a problem: you can create an extension method for List<T>
that adds an overload of Add accepting an IEnumerable<T> and calling AddRange
with it, as shown in the following listing.

static class ListExtensions
{
 public static void Add<T>(this List<T> list, IEnumerable<T> collection)
 {
 list.AddRange(collection);
 }
}

With that extension method in place, the earlier code works fine even with List<T>.
If you wanted to be broader still, you could write an extension method targeting
IList<T> instead, although if you went down that route, you’d need to write the loop
within the method body because IList<T> doesn’t have an AddRange method.

CREATING SPECIALIZED ADD SIGNATURES

Suppose you have a Person class, as shown earlier, with a Name property, and within
one area of code you do a lot of work with Dictionary<string, Person> objects,
always indexing the Person objects by name. Adding entries to the dictionary with a
simple call to dictionary.Add(person) can be convenient, but Dictionary

Listing 10.9 Exposing explicit interface implementations via extension methods
Licensed to André Santos <andrerfcsantos@gmail.com>

297Object and collection initializer enhancements
<string, Person> doesn’t, as a type, know that you’re indexing by name. What are
your choices?

 You could create a class derived from Dictionary<string, Person> and add
an Add(Person) method to it. That doesn’t appeal to me, because you’re not special-
izing the behavior of the dictionary in any meaningful way; you’re just making it more
convenient to use.

 You could create a more general class implementing IDictionary<TKey,
TValue> that accepts a delegate explaining the mapping from TValue to TKey and
implement that via composition. That could be useful but may be overkill for this one
task. Finally, you could create an extension method for this one specific case, as shown
in the following listing.

static class PersonDictionaryExtensions
{
 public static void Add(
 this Dictionary<string, Person> dictionary, Person person)
 {
 dictionary.Add(person.Name, person);
 }
}

That already would’ve been a good option before C# 6, but the combination of using
the using static feature to limit the way extension methods are imported along
with the use of extension methods in collection initializers makes it more compelling.
You can then initialize a dictionary without any repetition of the name:

var dictionary = new Dictionary<string, Person>
{
 { new Person { Name = "Jon" } },
 { new Person { Name = "Holly" } }
};

An important point here is how you’ve specialized the API for one particular combi-
nation of type arguments to Dictionary<,> but without changing the type of object
you’re creating. No other code needs to be aware of the specialization here, because
it’s only superficial; it exists only for our convenience rather than being part of an
object’s inherent behavior.

NOTE This approach has downsides as well, one of which is that nothing pre-
vents an entry from being added by using something other than a person’s
name. As ever, I encourage you to think through the pros and cons for your-
self; don’t blindly trust my advice or anyone else’s.

REEXPOSING EXISTING METHODS “HIDDEN” BY EXPLICIT INTERFACE IMPLEMENTATION

In section 10.2.1, I used ConcurrentDictionary<,> as an example of where you
might want to use an indexer instead of a collection initializer. Without any extra

Listing 10.10 Adding a type-argument-specific Add method for dictionaries
Licensed to André Santos <andrerfcsantos@gmail.com>

298 CHAPTER 10 A smörgåsbord of features for concise code
help, you can’t use a collection initializer because no Add method is exposed. But
ConcurrentDictionary<,> does have an Add method; it’s just that it uses explicit
interface implementation to implement IDictionary<,>.Add. Usually, if you want
to access a member that uses explicit interface implementation, you have to cast to the
interface—but you can’t do that in a collection initializer. Instead, you can expose an
extension method, as shown in the following listing.

public static class DictionaryExtensions
{
 public static void Add<TKey, TValue>(
 this IDictionary<TKey, TValue> dictionary,
 TKey key, TValue value)
 {
 dictionary.Add(key, value);
 }
}

At first glance, this looks completely pointless. It’s an extension method to call a
method with exactly the same signature. But this effectively works around explicit
interface implementation, making the Add method always available, including in
collection initializers. You can now use a collection initializer for Concurrent-
Dictionary<,>:

var dictionary = new ConcurrentDictionary<string, int>
{
 { "x", 10 },
 { "y", 20 }
};

This should be used cautiously, of course. When a method is obscured by explicit inter-
face implementation, that’s often meant to discourage you from calling it without a cer-
tain amount of care. This is where the ability to selectively import extension methods
with using static is useful: you could have a namespace of static classes with exten-
sion methods that are meant to be used only selectively and import just the relevant
class in each case. Unfortunately, it still exposes the Add method to the rest of the code
in the same class, but again you need to weigh whether that’s worse than the alternatives.

 The extension method in listing 10.11 is broad, extending all dictionaries. You
could decide to target only ConcurrentDictionary<,> instead to avoid inadver-
tently using an explicitly implemented Add method from another dictionary type.

10.2.3 Test code vs. production code

You’ve probably noticed a lot of caveats in this section. Few clear-cut cases exist that
enable you to “definitely use it here” with respect to these features. But most of the
downsides I’ve noted are in terms of areas where the feature is convenient in one
piece of code but you don’t want it infecting other places.

Listing 10.11 Exposing explicit interface implementations via extension methods
Licensed to André Santos <andrerfcsantos@gmail.com>

299The null conditional operator
 My experience is that object and collection initializers are usually used in two
places:

 Static initializers for collections that’ll never be modified after type initialization
 Test code

The concerns around exposure and correctness still apply for static initializers but
much less so for test code. If you decide that in your test assemblies it’s handy to have
Add extension methods to make collection initializers simpler, that’s fine. It won’t
impact your production code at all. Likewise, if you use indexers in your collection ini-
tializers for tests and accidentally set the same key twice, chances are high that your
tests will fail. Again, the downside is minimized.

 This isn’t a distinction that affects only this pair of features. Test code should still
be of high quality, but how you measure that quality and the impact of making any
particular trade-off is different for test code as compared to production code, particu-
larly for public APIs.

 The addition of extension methods as part of LINQ encouraged a more fluent
approach to composing multiple operations. Instead of using multiple statements, in
many cases it’s now idiomatic to chain multiple method calls together in a single state-
ment. That’s what LINQ queries end up doing all the time, but it became a more idi-
omatic pattern with APIs such as LINQ to XML. This can lead to the same problem
we’ve had for a long time when chaining property accesses together: everything
breaks as soon as you encounter a null value. C# 6 allows you terminate one of these
chains safely at that point instead of the code blowing up with an exception.

10.3 The null conditional operator
I’m not going to go into the merits of nullity, but it’s something we often have to live
with, along with complex object models with properties several levels deep. The C#
language team has been thinking for a long time about making nullity easier to work
with. Some of that work is still in progress, but C# 6 has taken one step along the way.
Again, it can make your code much shorter and simpler, expressing how you want to
handle nullity without having to repeat expressions everywhere.

10.3.1 Simple and safe property dereferencing

As a working example, let’s suppose you have a Customer type with a Profile prop-
erty that has a DefaultShippingAddress property, which has a Town property. Now
let’s suppose you want to find all customers within a collection whose default shipping
address has Reading as a town name. Without worrying about nullity, you could use this:

var readingCustomers = allCustomers
 .Where(c => c.Profile.DefaultShippingAddress.Town == "Reading");

That works fine if you know that every customer has a profile, every profile has a
default shipping address, and every address has a town. But what if any of those is
null? You’ll end up with a NullReferenceException when you probably just want
Licensed to André Santos <andrerfcsantos@gmail.com>

300 CHAPTER 10 A smörgåsbord of features for concise code
to exclude that customer from the results. Previously, you’d have to rewrite this as
something horrible, checking each property for nullity one at a time by using the
short-circuiting && operator:

var readingCustomers = allCustomers
 .Where(c => c.Profile != null &&
 c.Profile.DefaultShippingAddress != null &&
 c.Profile.DefaultShippingAddress.Town == "Reading");

Yeesh. So much repetition. It gets even worse if you need to make a method call at the
end rather than using == (which already handles null correctly, at least for references;
see section 10.3.3 for possible surprises). So how does C# 6 improve this? It introduces
the null conditional ?. operator, which is a short-circuiting operator that stops if the
expression evaluates to null. A null-safe version of the query is as follows:

var readingCustomers = allCustomers
 .Where(c => c.Profile?.DefaultShippingAddress?.Town == "Reading");

This is exactly the same as our first version but with two uses of the null-conditional
operator. If either c.Profile or c.Profile.DefaultShippingAddress is null,
the whole expression on the left side of == evaluates to null. You may be asking your-
self why you have only two uses, when four things are potentially null:

 c
 c.Profile
 c.Profile.DefaultShippingAddress
 c.Profile.DefaultShippingAddress.Town

I’ve assumed that all the elements of allCustomers are non-null references. If you
needed to handle the possibility of null elements there, you could use c?.Profile at
the start instead. That covers the first bullet; the == operator already handles null
operands, so you don’t need to worry about the last bullet.

10.3.2 The null conditional operator in more detail

This brief example shows only properties, but the null conditional operator can also
be used to access methods, fields, and indexers. The basic rule is that when a null con-
ditional operator is encountered, the compiler injects a nullity check on the value to
the left of the ?. If the value is null, evaluation stops and the result of the overall
expression is null. Otherwise, evaluation continues with the property, method, field,
or index access to the right of the ? without reevaluating the first part of the expres-
sion. If the type of the overall expression would be a non-nullable value type without
the null conditional operator, it becomes the nullable equivalent if a null conditional
operator is involved anywhere in the sequence.

 The overall expression here—the part where evaluation stops abruptly if a null
value is encountered—is basically the sequence of property, field, indexer, and
method access involved. Other operators, such as comparisons, break the sequence
Licensed to André Santos <andrerfcsantos@gmail.com>

301The null conditional operator
because of precedence rules. To demonstrate this, let’s have a closer look at the condi-
tion for the Where method in section 10.3.1. Our lambda expression was as follows:

c => c.Profile?.DefaultShippingAddress?.Town == "Reading"

The compiler treats this roughly as if you’d written this:

string result;
var tmp1 = c.Profile;
if (tmp1 == null)

{
 result = null;

}
else
{
 var tmp2 = tmp1.DefaultShippingAddress;
 if (tmp2 == null)
 {
 result = null;
 }
 else
 {
 result = tmp2.Town;
 }
}
return result == "Reading";

Notice how each property access (which I’ve highlighted in bold) occurs only once. In
our pre-C# 6 version checking for null, you’d potentially evaluate c.Profile three
times and c.Profile.DefaultShippingAddress twice. If those evaluations
depended on data being mutated by other threads, you could be in trouble: you could
pass the first two nullity tests and still fail with a NullReferenceException. The C#
code is safer and more efficient because you’re evaluating everything only once.

10.3.3 Handling Boolean comparisons

Currently, you’re still performing the comparison at the end with the == operator;
that isn’t short-circuited away if anything is null. Suppose you want to use the Equals
method instead and write this:

c => c.Profile?.DefaultShippingAddress?.Town?.Equals("Reading")

Unfortunately, this doesn’t compile. You’ve added a third null conditional operator,
so you don’t call Equals if you have a shipping address with a Town property of null.
But now the overall result is Nullable<bool> instead of bool, which means our
lambda expression isn’t suitable for the Where method yet.

 This is a pretty common occurrence with the null conditional operator. Anytime
you use the null conditional operator in any kind of condition, you need to consider
three possibilities:
Licensed to André Santos <andrerfcsantos@gmail.com>

302 CHAPTER 10 A smörgåsbord of features for concise code
 Every part of the expression is evaluated, and the result is true.
 Every part of the expression is evaluated, and the result is false.
 The expression short-circuited because of a null value, and the result is null.

Usually, you want to collapse those three possibilities down to two by making the third
option map to a true or false result. There are two common ways of doing this: com-
paring against a bool constant or using the null coalescing ?? operator.

To simplify our example, let’s suppose you already have a variable called name contain-
ing the relevant string value, but it can be null. You want to write an if statement and
execute the body of the statement if the town is X based on the Equals method. This
is the simplest way of demonstrating a condition: in real life, you could be conditionally
accessing a Boolean property, for example. Table 10.1 shows the options you can use
depending on whether you also want to enter the body of the statement if name is null.

I prefer the null coalescing operator approach; I read it as “try to perform the com-
parison, but default to the value after the ?? if you have to stop early.” After you
understand that the type of the expression (name?.Equals("X") in this case) is
Nullable<bool>, nothing else is new here. It just so happens that you’re much more
likely to come up against this case than you were before the null conditional operator
became available.

10.3.4 Indexers and the null conditional operator

As I mentioned earlier, the null conditional operator works for indexers as well as for
fields, properties, and methods. The syntax is again just adding a question mark, but
this time before the opening square bracket. This works for array access as well as

Language design choices for nullable Boolean comparisons
The behavior of bool? in comparisons with non-nullable values caused concern for
the language designers in the C# 2 time frame. The fact that x == true and x !=
false are both valid but with different meanings if x is a bool? variable can be
pretty surprising. (If x is null, x == true evaluates to false, and x != false eval-
uates to true.)

Was it the right design choice? Maybe. Often all the choices available are unpleasant
in one respect or other. It won’t change now, though, so it’s best to be aware of it
and write code as clearly as possible for readers who may be less aware.

Table 10.1 Options for performing Boolean comparisons using the null conditional operator

You don’t want to enter the body if name is null You do want to enter the body if name is null

if (name?.Equals("X") ?? false)
if (name?.Equals("X") == true)

if (name?.Equals("X") ?? true)
if (name?.Equals("X") != false)
Licensed to André Santos <andrerfcsantos@gmail.com>

303The null conditional operator
user-defined indexers, and again the result type becomes nullable if it would other-
wise be a non-nullable value type. Here’s a simple example:

int[] array = null;
int? firstElement = array?[0];

There’s not a lot more to say about how the null-conditional operator works with
indexers; it’s as simple as that. I haven’t found this to be nearly as useful as working
with properties and methods, but it’s still good to know that it’s there, as much for
consistency as anything else.

10.3.5 Working effectively with the null conditional operator

You’ve already seen that the null conditional operator is useful when working with
object models with properties that may or may not be null, but other compelling use
cases exist. We’ll look at two of them here, but this isn’t an exhaustive list, and you may
come up with additional novel uses yourself.

SAFE AND CONVENIENT EVENT RAISING

The pattern for raising an event safely even in the face of multiple threads has been
well known for many years. For example, to raise a field-like Click event of type
EventHandler, you’d write code like this:

EventHandler handler = Click;
if (handler != null)
{
 handler(this, EventArgs.Empty);
}

Two aspects are important here:

 You’re not just calling Click(this, EventArgs.Empty), because Click
might be null. (That would be the case if no handler was subscribed to the event.)

 You’re copying the value of the Click field to a local variable first so that even
if it changes in another thread after you’ve checked for nullity, you still have a
non-null reference. You may invoke a “slightly old” (just unsubscribed) event
handler, but that’s a reasonable race condition.

So far, so good—but so long-winded. The null conditional operator comes to the res-
cue, however. It can’t be used for the shorthand style of delegate invocation of
handler(...), but you can use it to conditionally call the Invoke method and all in
a single line:

Click?.Invoke(this, EventArgs.Empty);

If this is the only line in your method (OnClick or similar), this has the compound
benefit that now it’s a single-expression body, so it can be written as an expression-
bodied method. It’s just as safe as the earlier pattern but a good deal more concise.
Licensed to André Santos <andrerfcsantos@gmail.com>

304 CHAPTER 10 A smörgåsbord of features for concise code
MAKING THE MOST OF NULL-RETURNING APIS
In chapter 9, I talked about logging and how interpolated string literals don’t help in
terms of performance. But they can be cleanly combined with the null conditional
operator if you have a logging API designed with that pattern in mind. For example,
suppose you have a logger API along the lines of that shown in the next listing.

public interface ILogger
{
 IActiveLogger Debug { get; }
 IActiveLogger Info { get; }
 IActiveLogger Warning { get; }
 IActiveLogger Error { get; }
}

public interface IActiveLogger
{
 void Log(string message);
}

This is only a sketch; a full logging API would have much more to it. But by separating
the step of getting an active logger at a particular log level from the step of perform-
ing the logging, you can write efficient and informative logging:

logger.Debug?.Log($"Received request for URL {request.Url}");

If debug logging is disabled, you never get as far as formatting the interpolated string
literal, and you can determine that without creating a single object. If debug logging
is enabled, the interpolated string literal will be evaluated and passed on to the Log
method as usual. Without getting too misty eyed, this is the sort of thing that makes
me love the way C# has evolved.

 Of course, you need the logging API to handle this in an appropriate way first. If
whichever logging API you’re using doesn’t have anything like this, extension meth-
ods might help you out.

 A lot of the reflection APIs return null at appropriate times, and LINQ’s First-
OrDefault (and similar) methods can work well with the null-conditional operator.
Likewise, LINQ to XML has many methods that return null if they can’t find what
you’re asking for. For example, suppose you have an XML element with an optional
<author> element that may or may not have a name attribute. You can easily retrieve
the author name with either of these two statements:

string authorName = book.Element("author")?.Attribute("name")?.Value;
string authorName = (string) book.Element("author")?.Attribute("name");

The first of these uses the null conditional operator twice: once to access the attribute
of the element and once to access the value of the attribute. The second approach uses
the way that LINQ to XML already embraces nullity in its explicit conversion operators.

Listing 10.12 Sketch of a null-conditional-friendly logging API

Interface returned by
GetLog methods and so on

Properties returning null
when the log is disabled

Interface representing
an enabled log sink
Licensed to André Santos <andrerfcsantos@gmail.com>

305Exception filters
10.3.6 Limitations of the null conditional operator

Beyond occasionally having to deal with nullable value types when previously you were
using only non-nullable values, there are few unpleasant surprises with the null condi-
tional operator. The only thing that might surprise you is that the result of the expres-
sion is always classified as a value rather than a variable. The upshot of this is that you
can’t use the null-conditional operator as the left side of an assignment. For example,
the following are all invalid:

person?.Name = "";
stats?.RequestCount++;
array?[index] = 10;

In those cases, you need to use the old-fashioned if statement. My experience is that
this limitation is rarely an issue.

 The null conditional operator is great for avoiding NullReferenceException,
but sometimes exceptions happen for more reasonable causes, and you need to be
able to handle them. Exception filters represent the first change to the structure of a
catch block since C# was first introduced.

10.4 Exception filters
Our final feature in this chapter is a little embarrassing: it’s C# playing catch-up with
VB. Yes, VB has had exception filters forever, but they were introduced only in C# 6.
This is another feature you may rarely use, but it’s an interesting peek into the guts of
the CLR. The basic premise is that you can now write catch blocks that only sometimes
catch an exception based whether a filter expression returns true or false. If it
returns true, the exception is caught. If it returns false, the catch block is ignored.

 As an example, imagine you’re performing a web operation and know that the
server you’re connecting to is sometimes offline. If you fail to connect to it, you have
another option, but any other kind of failure should result in an exception bubbling
up in the normal way. Prior to C# 6, you’d have to catch the exception and rethrow it
if didn’t have the right status:

try
{
 ...
}
catch (WebException e)
{
 if (e.Status != WebExceptionStatus.ConnectFailure)
 {
 throw;
 }
 ...
}

Attempts the
web operation

Rethrows if it’s not a
connection failure

Handles the
connection failure
Licensed to André Santos <andrerfcsantos@gmail.com>

306 CHAPTER 10 A smörgåsbord of features for concise code
With an exception filter, if you don’t want to handle an exception, you don’t catch it;
you filter it away from your catch block to start with:

try
{
 ...
}
catch (WebException e)
 when (e.Status == WebExceptionStatus.ConnectFailure)
{
 ...
}

Beyond specific cases like this, I can see exception filters being useful in two generic
use cases: retry and logging. In a retry loop, you typically want to catch the exception
only if you’re going to retry the operation (if it meets certain criteria and you haven’t
run out of attempts); in a logging scenario, you may never want to catch the exception
but log it while it’s in-flight, so to speak. Before going into more details of the con-
crete use cases, let’s see what the feature looks like in code and how it behaves.

10.4.1 Syntax and semantics of exception filters

Our first full example, shown in the following listing, is simple: it loops over a set of
messages and throws an exception for each of them. You have an exception filter that
will catch exceptions only when the message contains the word catch. The exception
filter is highlighted in bold.

string[] messages =
{
 "You can catch this",
 "You can catch this too",
 "This won't be caught"
};
foreach (string message in messages)
{
 try
 {
 throw new Exception(message);
 }
 catch (Exception e)
 when (e.Message.Contains("catch"))
 {
 Console.WriteLine($"Caught '{e.Message}'");
 }
}

The output is two lines for the caught exceptions:

Caught 'You can catch this'
Caught 'You can catch this too'

Listing 10.13 Throwing three exceptions and catching two of them

Attempts the
web operation

Catches only
connection failures

Handles the
connection failure

Loops outside the try/catch
statement once per message

Throws an exception with a
different message each time

Catches the exception
only if it contains "catch"

Writes out the message
of the caught exception
Licensed to André Santos <andrerfcsantos@gmail.com>

307Exception filters
Output for the uncaught exception is a message of This won’t be caught. (Exactly
what that looks like depends on how you run the code, but it’s a normal unhandled
exception.)

 Syntactically, that’s all there is to exception filters: the contextual keyword when
followed by an expression in parentheses that can use the exception variable declared
in the catch clause and must evaluate to a Boolean value. The semantics may not be
quite what you expect, though.

THE TWO-PASS EXCEPTION MODEL

You’re probably used to the idea of the CLR unwinding the stack as an exception
“bubbles up” until it’s caught. What’s more surprising is exactly how this happens. The
process is more complicated than you may expect using a two-pass model.1 This model
uses the following steps:

 The exception is thrown, and the first pass starts.
 The CLR walks down the stack, trying to find which catch block will handle the

exception. (We’ll call this the handling catch block as shorthand, but that’s not
official terminology.)

 Only catch blocks with compatible exception types are considered.
 If a catch block has an exception filter, the filter is executed; if the filter

returns false, this catch block won’t handle the exception.
 A catch block without an exception filter is equivalent to one with an excep-

tion filter that returns true.
 Now that the handling catch block has been determined, the second pass starts:
 The CLR unwinds the stack from the point at which the exception was thrown

as far as the catch block that has been determined.
 Any finally blocks encountered while unwinding the stack are executed. (This

doesn’t include any finally block associated with the handling catch block.)
 The handling catch block is executed.
 The finally statement associated with the handling catch block is executed,

if there is one.

Listing 10.14 shows a concrete example of all of this with three important methods:
Bottom, Middle, and Top. Bottom calls Middle and Middle calls Top, so the stack
ends up being self-describing. The Main method calls Bottom to start the ball rolling.
Please don’t be daunted by the length of this code; it’s not doing anything massively
complicated. Again, the exception filters are highlighted in bold. The LogAndReturn
method is just a convenient way to trace the execution. It’s used by exception filters to
log a particular method and then return the specified value to say whether the excep-
tion should be caught.

1 I don’t know the origins of this model for exception processing. I suspect it maps onto the Windows Struc-
tured Exception Handling (often abbreviated to SEH) mechanism in a straightforward way, but this is deeper
into the CLR than I like to venture.
Licensed to André Santos <andrerfcsantos@gmail.com>

308 CHAPTER 10 A smörgåsbord of features for concise code

static bool LogAndReturn(string message, bool result)
{
 Console.WriteLine(message);
 return result;
}

static void Top()
{
 try
 {
 throw new Exception();
 }
 finally
 {
 Console.WriteLine("Top finally");
 }
}

static void Middle()
{
 try
 {
 Top();
 }
 catch (Exception e)
 when (LogAndReturn("Middle filter", false))
 {
 Console.WriteLine("Caught in middle");
 }
 finally
 {
 Console.WriteLine("Middle finally");
 }
}

static void Bottom()
{
 try
 {
 Middle();
 }
 catch (IOException e)
 when (LogAndReturn("Never called", true))
 {
 }
 catch (Exception e)
 when (LogAndReturn("Bottom filter", true))
 {
 Console.WriteLine("Caught in Bottom");
 }
}

Listing 10.14 A three-level demonstration of exception filtering

Convenience method called
by exception filters

Finally block (no catch)
executed on the second pass

Exception filter
that never catches

This never prints, because
the filter returns false.

Finally block executed
on the second pass

Exception filter that’s never
called—wrong exception type

Exception filter that
always catches

This is printed, because you
catch the exception here.
Licensed to André Santos <andrerfcsantos@gmail.com>

309Exception filters
static void Main()
{
 Bottom();
}

Phew! With the description earlier and the annotations in the listing, you have
enough information to work out what the output will be. We’ll walk through it to
make sure it’s really clear. First, let’s look at what’s printed:

Middle filter
Bottom filter
Top finally
Middle finally
Caught in Bottom

Figure 10.2 shows this process. In each step, the left side shows the stack (ignoring
Main), the middle part describes what’s happening, and the right side shows any out-
put from that step.

Top

Middle

Bottom

Top
Bang!

Top throws exception.
First pass starts.

Stack Explanation of progress Output

Middle

Bottom

Top

Middle

Bottom

Top

Middle

Bottom

Middle

Bottom

Walking down the stack:
exception filter in middle

evaluated. It returns false,
so keep going.

Walking down the stack:
exception filter in bottom
evaluated. It returns true,
so first pass is complete!

Second pass starts.

Finally block in top
executes. Stack unwinds.

Finally block in middle
executes. Stack unwinds.

Middle filter

Bottom filter

Top finally

Middle finally

Catch block in bottom
executes. Finished!

Caught in bottomBottom Figure 10.2 Execution flow
of listing 10.14
Licensed to André Santos <andrerfcsantos@gmail.com>

310 CHAPTER 10 A smörgåsbord of features for concise code

CATCHING THE SAME EXCEPTION TYPE MULTIPLE TIMES

In the past, it was always an error to specify the same exception type in multiple catch
blocks for the same try block. It didn’t make any sense, because the second block
would never be reached. With exception filters, it makes a lot more sense.

 To demonstrate this, let’s expand our initial WebException example. Suppose
you’re fetching web content based on a URL provided by a user. You might want to
handle a connection failure in one way, a name resolution failure in a different way,
and let any other kind of exception bubble up to a higher-level catch block. With
exception filters, you can do that simply:

try
{
 ...
}
catch (WebException e)
 when (e.Status == WebExceptionStatus.ConnectFailure)
{
 ...
}
catch (WebException e)
 when (e.Status == WebExceptionStatus.NameResolutionFailure)
{
 ...
}

If you wanted to handle all other WebExceptions at the same level, it’d be valid to
have a general catch (WebException e) { ... } block with no exception filter
after the two status-specific ones.

 Now that you know how exception filters work, let’s return to the two generic
examples I gave earlier. These aren’t the only uses, but they should help you recognize
other, similar situations. Let’s start with retrying.

Security impact of the two-pass model
The execution timing of finally blocks affects using and lock statements, too.
This has an important implication of what you can use try/finally or using for
if you’re writing code that may be executed in an environment that may contain hos-
tile code. If your method may be called by code you don’t trust, and you allow excep-
tions to escape from that method, then the caller can use an exception filter to
execute code before your finally block executes.

All of this means you shouldn’t use finally for anything security sensitive. For
example, if your try block enters a more privileged state and you’re relying on a
finally block to return to a less privileged state, other code could execute while
you’re still in that privileged state. A lot of code doesn’t need to worry about this sort
of thing—it’s always running under friendly conditions—but you should definitely be
aware of it. If you’re concerned, you could use an empty catch block with a filter that
removes the privilege and returns false (so the exception isn’t caught), but that’s
not something I’d want to do regularly.

Attempts the
web operation

Handles a
connection failure

Handles a name-
resolution failure
Licensed to André Santos <andrerfcsantos@gmail.com>

311Exception filters
10.4.2 Retrying operations

As cloud computing becomes more prevalent, we’re generally becoming more aware of
operations that can fail and the need to think about what effect we want that failure to
have on our code. For remote operations—web service calls and database operations,
for example—there are sometimes transient failures that are perfectly safe to retry.

Production retry handling is somewhat complicated. You may need complicated heu-
ristics to determine when and how long to retry for and an element of randomness on
the delays between attempts to avoid retrying clients getting in sync with each other.
Listing 10.15 provides a hugely simplified version2 to avoid distracting you from the
exception filter aspects.

 All your code needs to know is the following:

 What operation you’re trying to execute
 How many times you’re willing to try it

At that point, using an exception filter to catch exceptions only when you’re going to
retry the operation, the code is straightforward.

static T Retry<T>(Func<T> operation, int attempts)
{
 while (true)
 {
 try
 {
 attempts--;
 return operation();
 }
 catch (Exception e) when (attempts > 0)

Keep track of your retry policies
Although being able to retry like this is useful, it’s worth being aware of every layer of
your code that might be attempting to retry a failed operation. If you have multiple
layers of abstraction each trying to be nice and transparently retrying a failure that
might be transient, you can end up delaying logging a real failure for a long time. In
short, it’s a pattern that doesn’t compose well with itself.

If you control the whole stack for an application, you should think about where you
want the retry to occur. If you’re responsible for only one aspect of it, you should con-
sider making the retry configurable so that a developer who does control the whole
stack can determine whether your layer is where they want retries to occur.

2 At a bare minimum, I’d expect any real-world retry mechanism to accept a filter to check which failures are
retriable and a delay between calls.

Listing 10.15 A simple retry loop
Licensed to André Santos <andrerfcsantos@gmail.com>

312 CHAPTER 10 A smörgåsbord of features for concise code
 {
 Console.WriteLine($"Failed: {e}");
 Console.WriteLine($"Attempts left: {attempts}");
 Thread.Sleep(5000);
 }
 }
}

Although while(true) loops are rarely a good idea, this one makes sense. You could
write a loop with a condition based on retryCount, but the exception filter effec-
tively already provides that, so it’d be misleading. Also, the end of the loop would then
be reachable from the compiler’s standpoint, so it wouldn’t compile without a
return or throw statement at the end of the method.

 When this is in place, calling it to achieve a retry is simple:

Func<DateTime> temporamentalCall = () =>
{
 DateTime utcNow = DateTime.UtcNow;
 if (utcNow.Second < 20)
 {
 throw new Exception("I don't like the start of a minute");
 }
 return utcNow;
};

var result = Retry(temporamentalCall, 3);
Console.WriteLine(result);

Usually, this will return a result immediately. Sometimes, if you execute it at about 10
seconds into a minute, it’ll fail a couple of times and then succeed. Sometimes, if you
execute it right at the start of a minute, it’ll fail a couple of times, catching the excep-
tion and logging it, and then fail a third time, at which point the exception won’t be
caught.

10.4.3 Logging as a side effect

Our second example is a way of logging exceptions in-flight. I realize I’ve used logging
to demonstrate many of the C# 6 features, but this is a coincidence. I don’t believe the
C# team decided that they’d target logging specifically for this release; it just works
well as a familiar scenario.

 The subject of exactly how and where it makes sense to log exceptions is a matter
of much debate, and I don’t intend to enter that debate here. Instead, I’ll assert that
at least sometimes, it’s useful to log an exception within one method call even if
it’s going to be caught (and possibly logged a second time) somewhere further down
the stack.

 You can use exception filters to log the exception in a way that doesn’t disturb the
execution flow in any other way. All you need is an exception filter that calls a method
to log the exception and then returns false to indicate that you don’t really want to
catch the exception. The following listing demonstrates this in a Main method that
Licensed to André Santos <andrerfcsantos@gmail.com>

313Exception filters
will still lead to the process completing with an error code, but only after it has logged
the exception with a timestamp.

static void Main()
{
 try
 {
 UnreliableMethod();
 }
 catch (Exception e) when (Log(e))
 {
 }
}

static void UnreliableMethod()
{
 throw new Exception("Bang!");
}

static bool Log(Exception e)
{
 Console.WriteLine($"{DateTime.UtcNow}: {e.GetType()} {e.Message}");
 return false;
}

This listing is in many ways just a variation of listing 10.14, in which we used logging to
investigate the semantics of the two-pass exception system. In this case, you’re never
catching the exception in the filter; the whole try/catch and filter exist only for the
side effect of logging.

10.4.4 Individual, case-specific exception filters

In addition to those generic examples, specific business logic sometimes requires
some exceptions to be caught and others to propagate further. If you doubt that this is
ever useful, consider whether you always catch Exception or whether you tend to
catch specific exception types like IOException or SqlException. Consider the fol-
lowing block:

catch (IOException e)
{
 ...
}

You can think of that block as being broadly equivalent to this:

catch (Exception tmp) when (tmp is IOException)
{
 IOException e = (IOException) tmp;
 ...
}

Listing 10.16 Logging in a filter
Licensed to André Santos <andrerfcsantos@gmail.com>

314 CHAPTER 10 A smörgåsbord of features for concise code
Exception filters in C# 6 are a generalization of that. Often, the relevant information
isn’t in the type but is exposed in some other way. Take SqlException, for example;
it has a Number property corresponding to an underlying cause. It’d be far from
unreasonable to handle some SQL failures in one way and others in a different way.
Getting the underlying HTTP status from a WebException is slightly tricky because
of the API, but again, you may well want to handle a 404 (Not Found) response differ-
ently than a 500 (Internal Error).

 One word of caution: I strongly urge you not to filter based on the exception mes-
sage (other than for experimental purposes, as I did in listing 10.13). Exception mes-
sages aren’t generally seen as having to stay stable between releases, and they may well
be localized, depending on the source. Code that behaves differently based on a par-
ticular exception message is fragile.

10.4.5 Why not just throw?

You may be wondering what all the fuss is about. We’ve always been able to rethrow
exceptions, after all. Code using an exception filter like this

catch (Exception e) when (condition)
{
 ...
}

isn’t very different from this:

catch (Exception e)
{
 if (!condition)
 {
 throw;
 }
 ...
}

Does this really meet the high bar for a new language feature? It’s arguable.
 There are differences between the two pieces of code: you’ve already seen that the

timing of when condition is evaluated changes relative to any finally blocks higher
up the call stack. Additionally, although a simple throw statement does preserve the
original stack trace for the most part, subtle differences can exist, particularly in the
stack frame where the exception is caught and rethrown. That could certainly make the
difference between diagnosing an error being simple and it being painful.

 I doubt that exception filters will massively transform many developers’ lives.
They’re not something I miss when I have to work on a C# 5 codebase, unlike
expression-bodied members and interpolated string literals, for example, but they’re
still nice to have.

 Of the features described in this chapter, using static and the null conditional
operator are certainly the ones I use most. They’re applicable in a broad range of
cases and can sometimes make the code radically more readable. (In particular, if you
Licensed to André Santos <andrerfcsantos@gmail.com>

315Summary
have code that deals with a lot of constants defined elsewhere, using static can
make all the difference in terms of readability.)

 One aspect that’s common to the null conditional operator and the object/collec-
tion initializer improvements is the ability to express a complex operation in a single
expression. This reinforces the benefits that object/collection initializers introduced
back in C# 3: it allows expressions to be used for field initialization or method argu-
ments that might otherwise have had to be computed separately and less conveniently.

Summary
 using static directives allow your code to refer to static type members (usu-

ally constants or methods) without specifying the type name again.
 using static also imports all extension methods from the specified type, so

you don’t need to import all the extension methods from a namespace.
 Changes to extension method importing mean that converting a regular static

method into an extension method is no longer a backward-compatible change
in all cases.

 Collection initializers can now use Add extension methods as well as those
defined on the collection type being initialized.

 Object initializers can now use indexers, but there are trade-offs between using
indexers and collection initializers.

 The null conditional ?. operator makes it much easier to work with chained
operations in which one element of the chain can return null.

 Exception filters allow more control over exactly which exceptions are caught
based on the exception’s data rather than just its type.

Licensed to André Santos <andrerfcsantos@gmail.com>

316 CHAPTER 10 A smörgåsbord of features for concise code

Licensed to André Santos <andrerfcsantos@gmail.com>

Part 4

C# 7 and beyond

C# 7 is the first release since C# 1 to have multiple minor releases.1 There
have been four releases:

 C# 7.0 in March 2017 with Visual Studio 2017 version 15.0
 C# 7.1 in August 2017 with Visual Studio 2017 version 15.3
 C# 7.2 in December 2017 with Visual Studio 2017 version 15.5
 C# 7.3 in May 2018 with Visual Studio 2017 version 15.7

Most of the minor releases have expanded on new features introduced in earlier
C# 7.x releases rather than introducing entirely new areas, although the ref-
related features covered in chapter 13 were greatly expanded in C# 7.2.

 As far as I’m aware, no plans exist for a C# 7.4 release, although I wouldn’t
completely rule it out. Having multiple versions seems to have worked reason-
ably well, and I expect the same sort of release cycle for C# 8.

 There’s more to talk about in C# 7 than in C# 6, because the features are
more complex. Tuples have an interesting separation between the types as the
compiler considers them and the types that the CLR uses. Local methods fasci-
nate me in terms of comparing their implementation with that of lambda
expressions. Pattern matching is reasonably simple to understand but requires a
certain amount of thought in terms of using it to its best advantage. The ref-
related features are inherently complicated even when they sound simple. (I’m
looking at you, in parameters.)

1 Visual Studio 2002 included C# 1.0, and Visual Studio 2003 included C# 1.2. I’ve no idea why the ver-
sion number skipped 1.1, and it’s not clear what the differences were between the two versions.
Licensed to André Santos <andrerfcsantos@gmail.com>

318 CHAPTER C# 7 AND BEYOND
 Although I expect most developers to find most C# 6 features useful every day, you
may find some of the C# 7 features aren’t useful to you at all. I rarely use tuples in my
code, because I usually target platforms where they’re not available. I don’t use the
ref-related features much, as I’m not coding in a context where they’re particularly
useful. This doesn’t stop them from being good features; they’re just not universally
applicable. Other C# 7 features, such as pattern matching, throw expressions, and
numeric literal improvements, are more likely to be useful to all developers but per-
haps with less impact than the more targeted features.

 I mention all of this merely to set expectations. As always, when you read about a
feature, consider how you might apply it in your own code. Don’t feel forced to apply
it; there are no points for using the most language features in the shortest amount of
code. If you find you don’t have a use for that feature right now, that’s fine. Just
remember it’s there so if you’re in a different context later, you know what’s available.

 It’s also important for me to set expectations about chapter 15, which looks at the
future of C#. Most of the chapter demonstrates features already available in C# 8 pre-
view builds, but there’s no guarantee that all of those features will ship in the final
build, and there may well be other features I haven’t mentioned at all. I hope you will
find the features I’ve written about as exciting as I do and will keep watch for new pre-
views and blog posts by the C# team. This is an exciting time to be a C# developer,
both in terms of what we have today and the promise of a bright future.

Licensed to André Santos <andrerfcsantos@gmail.com>

Composition using tuples
Back in C# 3, LINQ revolutionized how we write code to handle collections of data.
One of the ways it did that was to allow us to express many operations in terms of
how we want to handle each individual item: how to transform an item from one
representation to another, or how to filter items out of the result, or how to sort the
collection based on a particular aspect of each item. For all that, LINQ didn’t give
us many new tools for working with noncollections.

 Anonymous types provide one kind of composition but with the huge restric-
tion of being useful only within a block of code. You can’t declare that a method
returns an anonymous type precisely because the return type can’t be named.

 C# 7 introduces support for tuples to make data composition simple along with
deconstruction from a composite type into its individual components. If you’re

This chapter covers
 Using tuples to compose data

 Tuple syntax: literals and types

 Converting tuples

 How tuples are represented in the CLR

 Alternatives to tuples and guidelines for their use
319

Licensed to André Santos <andrerfcsantos@gmail.com>

320 CHAPTER 11 Composition using tuples
now thinking to yourself that C# already has tuples in the form of the System.Tuple
types, you’re right to an extent; those types already exist in the framework but don’t
have any language support. To add to the confusion, C# 7 doesn’t use those tuple
types for its language-supported tuples. It uses a new set of System.ValueTuple
types, which you’ll explore in section 11.4. There’s a comparison with System.Tuple
in section 11.5.1.

11.1 Introduction to tuples
Tuples allow you to create a single composite value from multiple individual values.
They’re shorthand for composition with no extra encapsulation for situations where
values are related to each other but you don’t want the work of creating a new type. C#
7 introduces new syntax to make working with tuples simple.

 As an example, suppose you have a sequence of integers and you want to find both
the minimum and the maximum in one pass. This sounds like you should be able to
put that code into a single method, but what would you make the return type? You
could return the minimum value and use an out parameter for the maximum value
or use two out parameters, but both of those feel fairly clunky. You could create a sep-
arate named type, but that’s a lot of work for just one example. You could return a
Tuple<int, int> using the Tuple<,> class introduced in .NET 4, but then you
couldn’t easily tell which was the minimum value and which was the maximum (and
you’d end up allocating an object just to return the two values). Or you could use C#
7’s tuples. You could declare the method like this:

static (int min, int max) MinMax(IEnumerable<int> source)

Then you could call it like this:

int[] values = { 2, 7, 3, -5, 1, 0, 10 };
var extremes = MinMax(values);
Console.WriteLine(extremes.min);
Console.WriteLine(extremes.max);

You’ll look at a couple of implementations of MinMax shortly, but this example should
give you enough of an idea about the purpose of the feature to make it worth reading
all the fairly detailed descriptions over the course of the chapter. For a feature that
sounds simple, there’s quite a lot to say about tuples, and it’s all interrelated, which
makes it hard to describe in a logical order. If you find yourself asking “But what
about…?” while reading, I urge you to mentally put a pin in the question until the end
of the section. Nothing here is complex, but there’s a lot to get through, especially
because I’m aiming to be comprehensive. Hopefully, by the time you reach the end of
the chapter, all your questions will be answered.1

1 If they’re not, you should ask for more information on the Author Online forum or Stack Overflow, of course.

Calls the method to compute the min
and max and returns them as a tuple

Prints out the
minimum value (-5)Prints out the

maximum value (10)
Licensed to André Santos <andrerfcsantos@gmail.com>

321Tuple literals and tuple types
11.2 Tuple literals and tuple types
You can think of tuples as the introduction of some types into the CLR and some syn-
tactic sugar to make those types easy to use, both in terms of specifying them (for vari-
ables and so on) and constructing values. I’m going to start off explaining everything
from the perspective of the C# language without worrying too much about how it
maps onto the CLR; then I’ll loop back to explain everything the compiler is doing for
you behind the scenes.

11.2.1 Syntax

C# 7 introduces two new pieces of syntax: tuple literals and tuple types. They look sim-
ilar: they’re both comma-separated sequences of two or more elements in parenthe-
ses. In a tuple literal, each element has a value and an optional name. In a tuple type,
each element has a type and an optional name. Figure 11.1 shows an example of a
tuple literal; figure 11.2 shows an example of a tuple type. Each has one named ele-
ment and one unnamed element.

In practice, it’s more common for either all the elements to be named or none of
them to be named. For example, you might have tuple types of (int, int) or (int
x, int y, int z), and you might have tuple literals of (x: 1, y: 2) or (1, 2, 3).
But this is a coincidence; nothing is tying the elements together in terms of whether
they have names. There are two restrictions on names to be aware of, though:

 The names have to be unique within the type or literal. A tuple literal of (x:
1, x: 2) isn’t allowed and wouldn’t make any sense.

 Names of the form ItemN, where N is an integer, are allowed only where the
value of N matches the position in the literal or type, starting at 1. So (Item1:
0, Item2: 0) is fine, but (Item2: 0, Item1: 0) is prohibited. You’ll see why
this is the case in the next section.

Tuple types are used to specify types in the same places other type names are used: vari-
able declarations, method return types, and so on. Tuple literals are used like any other
expression specifying a value; they simply compose those elements into a tuple value.

Unnamed element

(5, title: "text")

Named element

Figure 11.1 A tuple literal with
element values 5 and "text". The
second element is named title.

Unnamed element

(int x, Guid)

Named element

Figure 11.2 A tuple type with
element types int and Guid.
The first element is named x.
Licensed to André Santos <andrerfcsantos@gmail.com>

322 CHAPTER 11 Composition using tuples
 The element values in a tuple literal can be any value other than a pointer. Most of
the examples in this chapter use constants (primarily integers and strings) for conve-
nience, but you’ll often use variables as the element values in a literal. Similarly, the
element types in a tuple can be any nonpointer type: arrays, type parameters, even
other tuple types.

 Now that you know what a tuple type looks like, you can understand the return
type (int min, int max) for our MinMax method:

 It’s a tuple type with two elements.
 The first element is an int named min.
 The second element is an int named max.

You also know how to create a tuple by using a tuple literal, so you can implement our
method completely, as shown in the following listing.

static (int min, int max) MinMax(
 IEnumerable<int> source)
{
 using (var iterator = source.GetEnumerator())
 {
 if (!iterator.MoveNext())
 {
 throw new InvalidOperationException(
 "Cannot find min/max of an empty sequence");
 }
 int min = iterator.Current;
 int max = iterator.Current;
 while (iterator.MoveNext())
 {
 min = Math.Min(min, iterator.Current);
 max = Math.Max(max, iterator.Current);
 }
 return (min, max);
 }
}

The only parts of listing 11.1 that involve new features are the return type that I’ve
already explained and the return statement, which uses a tuple literal:

return (min, max);

So far, I haven’t talked about the type of a tuple literal. I’ve only said that they’re used
to create tuple values, but I’m going to deliberately leave that somewhat vague at the
moment. I’ll note that our tuple literal doesn’t have any element names at the
moment, at least not in C# 7.0. The min and max parts provide the values for the ele-
ments using the local variables in the method.

Listing 11.1 Representing the minimum and maximum values of a sequence as a tuple

Return type is a tuple
with named elements.

Prohibits empty
sequences

Uses regular int variables
to keep track of min/max

Updates the variables
with the new min/max

Constructs a tuple
from min and max
Licensed to André Santos <andrerfcsantos@gmail.com>

323Tuple literals and tuple types
While we’re defining terms, let’s define the arity of a tuple type or literal as the num-
ber of elements it has. For example, (int, long) has an arity of 2, and ("a", "b",
"c") has an arity of 3. The element types themselves are irrelevant to the arity.

NOTE This isn’t new terminology, really. The concept of arity already exists in
generics, where the arity is the number of type parameters. The List<T> type
has an arity of 1, whereas Dictionary<TKey, TValue> has an arity of 2.

The tip around good element names matching good variable names really gives a hint
as to an aspect of tuple literals that was improved in C# 7.1.

11.2.2 Inferred element names for tuple literals (C# 7.1)

In C# 7.0, tuple element names had to be explicitly stated in code. This would often
lead to code that looked redundant: the names specified in the tuple literal would
match the property or local variable names used to provide the values. In the simplest
form, this might be something like the following:

var result = (min: min, max: max);

The inference doesn’t just apply when your code uses simple variables, though; tuples
are often initialized from properties, too. This is particularly prevalent in LINQ with
projections.

 In C# 7.1, tuple element names are inferred when the value comes from a variable
or property in exactly the same way as names are inferred in anonymous types. To see
how useful this is, let’s consider three ways of writing a query in LINQ to Objects that
joins two collections to obtain the names, job titles, and departments of employees.
First, here’s traditional LINQ using anonymous types:

from emp in employees
join dept in departments on emp.DepartmentId equals dept.Id
select new { emp.Name, emp.Title, DepartmentName = dept.Name };

Next, we’ll use tuples with explicit element names:

from emp in employees
join dept in departments on emp.DepartmentId equals dept.Id
select (name: emp.Name, title: emp.Title, departmentName: dept.Name);

Good tuple element names match good variable names
Is it a coincidence that the variable names used in the literal match the names used
in method’s return type? As far as the compiler is concerned, absolutely. The com-
piler wouldn’t care if you declared the method to return (waffle: int, iceCream
: int).

For a human reader, it’s far from a coincidence; the names indicate that the values
have the same meaning in the returned tuple as they do within the method. If you find
yourself providing very different names, you might want to check whether you have a
bug or whether perhaps some of the names could be chosen better.
Licensed to André Santos <andrerfcsantos@gmail.com>

324 CHAPTER 11 Composition using tuples
Finally, we’ll use inferred element names with C# 7.1:

from emp in employees
join dept in departments on emp.DepartmentId equals dept.Id
select (emp.Name, emp.Title, DepartmentName: dept.Name);

This changes the case of the tuple elements compared with the previous example but
still achieves the goal of creating tuples with useful names using concise code.

 Although I’ve demonstrated the feature within a LINQ query, it applies anywhere
you use tuple literals. For example, given a list of elements, you could create a tuple
with the count, min, and max by using element name inference for the count:

List<int> list = new List<int> { 5, 1, -6, 2 };
var tuple = (list.Count, Min: list.Min(), Max: list.Max());
Console.WriteLine(tuple.Count);
Console.WriteLine(tuple.Min);
Console.WriteLine(tuple.Max);

Note that you still need to specify element names for Min and Max, because those val-
ues are obtained using method invocations. Method invocations don’t provide
inferred names for either tuple elements or anonymous type properties.

 As one slight wrinkle, if two names would both be inferred to be the same, neither
is inferred. If there’s a collision between an inferred name and an explicit name, the
explicit name takes priority and the other element remains unnamed. Now that you
know how to specify tuple types and tuple literals, what can you do with them?

11.2.3 Tuples as bags of variables

The next sentence may come as a shock to you, so please prepare yourself: tuple types
are value types with public, read/write fields. Surely not! I usually recommend against
mutable value types in the strongest possible terms, and likewise I always suggest that
fields should be private. In general, I stand by those recommendations, but tuples are
slightly different.

 Most types aren’t just raw data; they attach meaning to that data. Sometimes
there’s validation for the data. Sometimes there’s an enforced relationship between
multiple pieces of data. Usually, there are operations that make sense only because of
the meaning attached to the data.

 Tuples don’t do that at all. They just act as if they were bags of variables. If you have
two variables, you can change them independently; there’s no inherent connection
between them, and there’s no enforced relationship between them. Tuples allow you
to do exactly the same thing, but with the extra feature that you can pass that whole
bag of variables around in one value. This is particularly important when it comes to
methods, which can return only a single value.

 Figure 11.3 shows this graphically. The left side shows code and a mental model for
declaring three independent local variables, and the right side shows similar code, but
two of those variables are in a tuple (the oval). On the right side, the name and score
are grouped together as a tuple in the player variable. When you want to treat them
Licensed to André Santos <andrerfcsantos@gmail.com>

325Tuple literals and tuple types
as separate variables, you can still do so (for example, printing out player.score),
but you can also treat them as a group (for example, assigning a new value to player).

 Once you get into the mentality of thinking of a tuple as a bag of variables, a lot of
things start to make more sense. But what are those variables? You’ve already seen that
when you have named elements in a tuple you can refer to them by name, but what if
an element doesn’t have a name?

ACCESSING ELEMENTS BY NAME AND POSITION

You may recall that there’s a restriction on element names of the form ItemN, where N
is a number. Well, that’s because every variable in a tuple can be referred to by its posi-
tion as well as by any name it was given. There’s still only one variable per element; it’s
just that there may be two ways of referring to that variable. It’s easiest to show this
with an example as in the following listing.

var tuple = (x: 5, 10);
Console.WriteLine(tuple.x);
Console.WriteLine(tuple.Item1);
Console.WriteLine(tuple.Item2);

tuple.x = 100;
Console.WriteLine(tuple.Item1);

At this point, you can probably see why (Item1: 10, 20) is okay but (Item2: 10,
20) isn’t allowed. In the first case, you’re redundantly naming the element, but in the
second case, you’re causing ambiguity as to whether Item2 refers to the first element

Listing 11.2 Reading and writing tuple elements by name and position

string playerName;
int playerScore;
DateTime startTime;

playerName = "Jon"

playerScore = 0

startTime = 2017-03-24T20:54Z

(string name, int score) player;
DateTime startTime;

player =

startTime = 2017-03-24T20:54Z

name = "Jon"
score = 0

Figure 11.3 Three separate variables on the left; two variables, one of which is a tuple, on the right

Displays the first element
by name and position

The second element has no
name; can use only position.

Modifies the first
element by name

Displays the first element
by position (prints 100)
Licensed to André Santos <andrerfcsantos@gmail.com>

326 CHAPTER 11 Composition using tuples

M

(by name) or the second element (by position). You could argue that (Item5: 10,
20) should be allowed because there are only two elements; Item5 doesn’t exist
because the tuple has only two elements. This is one of those cases where even though
something wouldn’t technically cause an ambiguity, it’d certainly be confusing, so it’s
still prohibited.

 Now that you know you can modify a tuple value after creating it, you can rewrite
your MinMax method to use a single tuple local variable for the “result so far” instead
of your separate min and max variables, as shown in the next listing.

static (int min, int max) MinMax(IEnumerable<int> source)
{
 using (var iterator = source.GetEnumerator())
 {
 if (!iterator.MoveNext())
 {
 throw new InvalidOperationException(
 "Cannot find min/max of an empty sequence");
 }
 var result = (min: iterator.Current,
 max: iterator.Current);
 while (iterator.MoveNext())
 {
 result.min = Math.Min(result.min, iterator.Current);
 result.max = Math.Max(result.max, iterator.Current);
 }
 return result;
 }
}

Listing 11.3 is very, very close to listing 11.1 in terms of how it works. You’ve just
grouped two of your four local variables together; instead of source, iterator, min,
and max, you have source, iterator, and result, where result has min and max
elements inside it. The memory usage will be the same and the performance will be
the same; it’s just a different way of writing it. Is it a better way of writing the code?
That’s fairly subjective, but at least it’s a localized decision; it’s purely an implementa-
tion detail.

TREATING A TUPLE AS A SINGLE VALUE

While you’re thinking about alternative implementations for your method, let’s con-
sider another one. You can take this code that first assigns a new value to result.min
and then a new value to result.max:

result.min = Math.Min(result.min, iterator.Current);
result.max = Math.Max(result.max, iterator.Current);

If you assign directly to result instead, you can replace the whole bag in a single
assignment, as shown in the following listing.

Listing 11.3 Using a tuple instead of two local variables in MinMax

Constructs a tuple with the
first value as both min and max

odifies each field of
the tuple separately

Returns the
tuple directly
Licensed to André Santos <andrerfcsantos@gmail.com>

327Tuple literals and tuple types

As

static (int min, int max) MinMax(IEnumerable<int> source)
{
 using (var iterator = source.GetEnumerator())
 {
 if (!iterator.MoveNext())
 {
 throw new InvalidOperationException(
 "Cannot find min/max of an empty sequence");
 }
 var result = (min: iterator.Current, max: iterator.Current);
 while (iterator.MoveNext())
 {
 result = (Math.Min(result.min, iterator.Current),
 Math.Max(result.max, iterator.Current));
 }
 return result;
 }
}

Again, there’s not an awful lot to choose between implementations, and that’s because
in listing 11.3 the two elements of the tuple were being updated individually, referring
only to the previous value of the same element. A more compelling example is to write
a method that returns the Fibonacci sequence2 as an IEnumerable<int>. C# already
helps you do that by providing iterators with yield, but it can be a bit fiddly. The fol-
lowing listing shows a perfectly reasonable C# 6 implementation.

static IEnumerable<int> Fibonacci()
{
 int current = 0;
 int next = 1;
 while (true)
 {
 yield return current;
 int nextNext = current + next;
 current = next;
 next = nextNext;
 }
}

As you iterate, you keep track of the current element and the next element of the
sequence. In each iteration, you shift from the pair representing “current and next” to
“next and next-next.” To do that, you need a temporary variable; you can’t simply
assign new values directly to current and next one after the other, because the first
assignment would lose information you need for the second assignment.

Listing 11.4 Reassigning the result tuple in one statement in MinMax

2 The first two elements are 0 and 1; after that, any element of the sequence is the sum of the previous two
elements.

Listing 11.5 Implementing the Fibonacci sequence without tuples

signs a new value to
the whole of result
Licensed to André Santos <andrerfcsantos@gmail.com>

328 CHAPTER 11 Composition using tuples
 Tuples let you perform a single assignment that changes both elements. The tem-
porary variable is still present in the IL, but the resulting source code shown in the fol-
lowing listing ends up being beautiful, in my view.

static IEnumerable<int> Fibonacci()
{
 var pair = (current: 0, next: 1);
 while (true)
 {
 yield return pair.current;
 pair = (pair.next, pair.current + pair.next);
 }
}

After you’ve gone that far, it’s hard to resist generalizing this further to generate arbi-
trary sequences, extracting all of the Fibonacci code out to just arguments in a
method call. The following listing introduces a generalized GenerateSequence
method suitable for generating all kinds of sequences based on its arguments.

static IEnumerable<TResult>
 GenerateSequence<TState, TResult>(
 TState seed,
 Func<TState, TState> generator,
 Func<TState, TResult> resultSelector)
{
 var state = seed;
 while (true)
 {
 yield return resultSelector(state);
 state = generator(state);
 }
}

Sample usage
var fibonacci = GenerateSequence(
 (current: 0, next: 1),
 pair => (pair.next, pair.current + pair.next),
 pair => pair.current);

This could certainly be achieved using anonymous or even named types, but it
wouldn’t be as elegant. Readers with experience in other programming languages
may not be overly impressed by this—it’s not as if C# 7 has brought a brand-new para-
digm to the world—but it’s exciting to be able to write code as beautiful as this in C#.

 Now that you’ve seen the basics of how tuples work, let’s dive a bit deeper. In the
next section, we’ll mostly be considering conversions, but we’ll also look at where ele-
ment names are important and where they’re not.

Listing 11.6 Implementing the Fibonacci sequence with tuples

Listing 11.7 Separating concerns of sequence generation for Fibonacci

Method to allow the
generation of arbitrary
sequences based on
previous state

Use of sequence generator
specifically for the
Fibonacci sequence
Licensed to André Santos <andrerfcsantos@gmail.com>

329Tuple types and conversions
11.3 Tuple types and conversions
Until now, I’ve carefully avoided going into the details of the type of a tuple literal. By
staying somewhat vague, I’ve been able to show quite a lot of code so you can get a
feeling for how tuples can be used. Now’s the time to justify the In Depth part of the
book’s title. First, think about all the declarations you’ve seen using var and tuple
literals.

11.3.1 Types of tuple literals

Some tuple literals have a type, but some don’t. It’s a simple rule: a tuple literal has a
type when every element expression within it has a type. The idea of an expression
without a type is nothing new in C#; lambda expressions, method groups, and the
null literal are also expressions with no type. Just as in those examples, you can’t use
tuple literals without a type to assign a value to an implicitly typed local variable. For
example, this is valid, because both 10 and 20 are expressions with a type:

var valid = (10, 20);

But this is invalid because the null literal doesn’t have a type:

var invalid = (10, null);

Just like the null literal, a tuple literal without a type can still be convertible to a type.
When a tuple has a type, any element names are also part of the type.

 For example, in each of these cases, the left side is equivalent to the right side:

The first example demonstrates how element names propagate from tuple literals to
tuple types. The last example shows how the type inference still works in complex
ways: the type of input allows the type of x in the lambda expression to be fixed to
string, which then allows the expression x.Length to be bound appropriately. This
leaves a tuple literal with element types string and int, so the return type of the
lambda expression is inferred to be (string, int). You saw a similar kind of infer-
ence in listing 11.7 with our Fibonacci implementation using the sequence generator
method, but you weren’t focusing on the types involved at the time.

 That’s fine for tuple literals that have types. But what can you do with tuple literals
that don’t have types? How can you convert from a tuple literal without names to a
tuple type with names? To answer these questions, you need to look at tuple conver-
sions in general.

var tuple = (x: 10, 20); (int x, int) tuple = (x: 10, 20);

var array = new[] {("a", 10)}; (string, int)[] array = {("a", 10)};

string[] input = {"a", "b" };
var query = input
 .Select(x => (x, x.Length));

string[] input = {"a", "b" };
IEnumerable<(string, int)> query =
 input.Select<string, (string, int)>
 (x => (x, x.Length));
Licensed to André Santos <andrerfcsantos@gmail.com>

330 CHAPTER 11 Composition using tuples
 You need to think about two kinds of conversions: conversions from tuple literals
to tuple types and conversions from one tuple type to another. You’ve already seen
this kind of difference in chapter 8: there’s a conversion from an interpolated string
literal expression to FormattableString but no conversion from the string type
to FormattableString. The same idea is at work here. You’ll look first at the literal
conversions.

11.3.2 Conversions from tuple literals to tuple types

Just as in many other parts of C#, there are implicit conversions from tuple literals and
explicit conversions. I expect the use of explicit conversions to be rare for reasons I’ll
show in a moment. But after you understand how implicit conversions work, the
explicit conversions pretty much fall out anyway.

IMPLICIT CONVERSIONS

A tuple literal can be implicitly converted to a tuple type if both of the following are true:

 The literal and the type have the same arity.
 Each expression in the literal can be implicitly converted to its corresponding

element type.

The first bullet is simple. It’d be odd to be able to convert (5, 5) to (int, int,
int), for example. Where would the last value come from? The second bullet is a lit-
tle more complex, but I’ll clarify it with examples. First, let’s try this conversion:

(byte, object) tuple = (5, "text");

Lambda expression parameters can look like tuples
Lambda expressions with a single parameter aren’t confusing, but if you use two
parameters, they can look like tuples. As an example, let’s look at a useful method
that just uses the LINQ Select overload that provides the projection with the index
of the element as well as the value. It’s often useful to propagate the index through
the other operations, so it makes sense to put the two pieces of data in a tuple. That
means you end up with this method:

static IEnumerable<(T value, int index)> WithIndex<T>
 (this IEnumerable<T> source) =>
 source.Select((value, index) => (value, index));

Concentrate on the lambda expression:

(value, index) => (value, index)

Here the first occurrence of (value, index) isn’t a tuple literal; it’s the sequence
of parameters for the lambda expression. The second occurrence is a tuple literal,
the result of the lambda expression.

There’s nothing wrong here. I just don’t want it to take you by surprise when you see
something similar.
Licensed to André Santos <andrerfcsantos@gmail.com>

331Tuple types and conversions
As per the preceding description, you need to look at each element expression in the
source tuple literal (5, "text") and check whether there’s an implicit conversion to
the corresponding element type in the target tuple type (byte, object). If every
element can be converted, the conversion is valid:

Even though there’s no implicit conversion from int to byte, there’s an implicit con-
version from the integer constant 5 to byte (because 5 is in the range of valid byte
values). There’s also an implicit conversion from a string literal to object. All the
conversions are valid, so the whole conversion is valid. Hooray! Now let’s try a differ-
ent conversion:

(byte, string) tuple = (300, "text");

Again, you try to apply implicit conversions element-wise:

In this case, you’re trying to convert the integer constant 300 to byte. That’s outside
the range of valid values, so there’s no implicit conversion. There’s an explicit conver-
sion, but that doesn’t help when you’re trying to achieve an overall implicit conver-
sion of the tuple literal. There’s an implicit conversion from the string literal to the
string type, but because not all the conversions are valid, the whole conversion is
invalid. If you try to compile this code, you’ll get an error pointing to the 300 within
the tuple literal:

error CS0029: Cannot implicitly convert type 'int' to 'byte'

This error message is a little misleading. It suggests that our previous example
shouldn’t be valid either. The compiler isn’t really trying to convert the type int to
byte; it’s trying to convert the expression 300 to byte.

EXPLICIT CONVERSIONS

Explicit conversions for tuple literals follow the same rules as implicit conversions, but
they require an explicit conversion to be present for each element expression to the
corresponding type. If that condition is met, there’s an explicit conversion from the
tuple literal to the tuple type, so you can cast in the normal way.

(5, "text")

(byte, object)

(300, "text")

(byte, string)
Licensed to André Santos <andrerfcsantos@gmail.com>

332 CHAPTER 11 Composition using tuples
TIP Every implicit conversion in C# also counts as an explicit conversion,
which is somewhat confusing. You can think of the condition as “there has to
be a conversion, either explicit or implicit, available for each element” if you
find that clearer.

To go back to our conversion of (300, "text"), there’s an explicit conversion to the
tuple type (byte, string). But converting that exact expression requires an
unchecked context for the conversion to work, because the compiler knows that the
constant value 300 is outside the normal range of byte. A more realistic example
would use an int variable from elsewhere:

int x = 300;
var tuple = ((byte, string)) (x, "text");

The casting part—((byte, string))—looks like it has
more parentheses than it needs, but they’re all required. The
inner ones are specifying the tuple type, and the outer ones
are signifying the cast. Figure 11.4 shows this graphically.

 It looks ugly to me, but it’s nice that it’s at least available.
A simpler alternative in many cases is to write the appropri-
ate cast in each element expression in the tuple literal, at
which point not only would the tuple conversion be valid,
but the inferred type of the literal becomes what you want
anyway. For example, I’d probably write the preceding
example as follows:

int x = 300;
var tuple = ((byte) x, "text");

The two options are equivalent; when the conversion is applied to the whole tuple lit-
eral, the compiler still emits an explicit conversion for each element expression. But I
find the latter much more readable. Aside from anything else, it shows clearer intent:
you know an explicit conversion is required from int to byte, but you’re happy for
the string to stay as it is. If you were trying to convert several values to a specific tuple
type (rather than using the inferred type), this would help to make it clear which con-
versions are explicit and therefore potentially lossy instead of accidentally losing data
due to a whole-tuple explicit conversion.

THE ROLE OF ELEMENT NAMES IN TUPLE LITERAL CONVERSIONS

You may have noticed that this section hasn’t mentioned names at all. They’re almost
entirely irrelevant within tuple literal conversions. Most important, it’s fine to convert
from an element expression without a name to a type element with a name. You’ve
been doing that a lot in this chapter without me raising it as an issue. You did it right
from the start with our first MinMax method implementation. As a reminder, the
method was declared as follows:

static (int min, int max) MinMax(IEnumerable<int> source)

((byte, string))

Parentheses for casting

Start and end of tuple type

Figure 11.4 Explaining
the parentheses in an
explicit tuple conversion
Licensed to André Santos <andrerfcsantos@gmail.com>

333Tuple types and conversions
And then our return statement was this:

return (min, max);

You’re trying to convert a tuple literal with no element names3 to (int min, int
max). Of course, it’s valid; otherwise, I wouldn’t have shown it to you. It’s also conve-
nient. Element names aren’t completely irrelevant in tuple literal conversions,
though. When an element name is explicitly specified in the tuple literal, the com-
piler will warn you if either there’s no corresponding element name in the type you’re
converting it to or the two names are different. Here’s an example:

(int a, int b, int c, int, int) tuple =
 (a: 10, wrong: 20, 30, pointless: 40, 50);

This shows all the possible combinations for element names in this order:

1 Both the target type and the tuple literal specify the same element name.
2 Both the target type and the tuple literal specify a name for the element, but

the names are different.
3 The target type specifies an element name, but the tuple literal doesn’t.
4 The target type doesn’t specify an element name, but the tuple literal does.
5 Neither the target type nor the tuple literal specifies an element name.

Of these, the second and the fourth result in compile-time warnings. The result of
compiling that code is shown here:

warning CS8123: The tuple element name 'wrong' is ignored because a different
name is specified by the target type '(int a, int b, int c, int, int)'.

warning CS8123: The tuple element name 'pointless' is ignored because a
different name is specified by the target type '(int a, int b, int c,
int, int)'

The second warning message isn’t as helpful as it might be, because the target type
isn’t specifying a name at all for the corresponding element. Hopefully, you could still
work out what’s wrong.

 Is this useful? Absolutely. Not when you’re declaring a variable and constructing a
value in one statement, but when the declaration and the construction are separated.
For example, suppose our MinMax method in listing 11.1 had been really long in a
way that was hard to refactor. Should you return (min, max) or (max, min)? Yes, in
this case just the name of the method makes the order pretty obvious, but in some
cases, it might not be as clear. At that point, adding element names to the return
statement can be used as validation. This compiles warning free:

return (min: min, max: max);

But if you reverse the elements, you get a warning for each element:

return (max: max, min: min);

3 In C# 7.0, at least. As noted in section 11.2.2, in C# 7.1 the names are inferred.

Warning CS8123, twice
Licensed to André Santos <andrerfcsantos@gmail.com>

334 CHAPTER 11 Composition using tuples
Note that this applies only to explicitly specified names. Even in C# 7.1, when element
names are inferred from a tuple literal of (max, min), that doesn’t generate a warn-
ing when you convert it to a tuple type of (int min, int max).

 I always prefer to structure the code to make this so clear that you don’t need this
extra checking. But it’s good to know that it’s available when you need it, perhaps as a
first step before you refactor the method to be shorter, for example.

11.3.3 Conversions between tuple types

After you have the hang of tuple literal conversions, implicit and explicit tuple type
conversions are reasonably simple, because they work in a similar way. Here, you have
no expressions to worry about, just the types. There’s an implicit conversion from a
source tuple type to a target tuple type of the same arity if there’s an implicit conver-
sion from each source element type to the corresponding target element type. Simi-
larly, there’s an explicit conversion from a source tuple type to a target tuple type of
the same arity if there’s an explicit conversion from each source element type to the
corresponding target element type. Here’s an example showing multiple conversions
all from a source type of (int, string):

var t1 = (300, "text");
(long, string) t2 = t1;
(byte, string) t3 = t1;
(byte, string) t4 = ((byte, string)) t1;
(object, object) t5 = t1;
(string, string) t6 = ((string, string)) t1;

In this case, the explicit conversion from (int, string) to (byte, string) in the
fourth line will result in the value of t4.Item1 being 44, because that’s the result of
the explicit conversion of the int value 300 to byte.

 Unlike with tuple literal conversions, there’s no warning if element names don’t
match up. I can show this with an example that’s similar to our arity-5 conversion with
tuple literals. All you need to do is store the tuple value in a variable first so that you
perform a type-to-type conversion instead of a literal-to-type conversion:

var source = (a: 10, wrong: 20, 30, pointless: 40, 50);
(int a, int b, int c, int, int) tuple = source;

This compiles with no warnings at all. One aspect of tuple type conversion is impor-
tant in a way that isn’t applicable for literal conversions, however, and that’s when the
conversion isn’t just an implicit conversion but is an identity conversion.

The type of t1 is inferred
as (int, string).

Valid implicit conversion from
(int, string) to (long, string)

Invalid: no implicit
conversion from
int to byte

Valid explicit conversion from
(int, string) to (byte, string)

Valid implicit conversion from
(int, string) to (object, object)

Invalid: no conversion
at all from int to string
Licensed to André Santos <andrerfcsantos@gmail.com>

335Tuple types and conversions
TUPLE TYPE IDENTITY CONVERSIONS

The concept of identity conversions has been present in C# since the beginning,
although it’s been expanded over time. Before C# 7, the rules worked like this:

 An identity conversion exists from each type to itself.
 An identity conversion exists between object and dynamic.
 An identity conversion exists between two array types if an identity conversion

exists between their element types. For example, an identity conversion exists
between object[] and dynamic[].

 Identity conversions extend to constructed generic types when identity conver-
sions exist between corresponding type arguments. For example, an identity
conversion exists between List<object> and List<dynamic>.

Tuples introduce another kind of identity conversion: between tuple types of the same
arity when an identity conversion exists between each corresponding pair of element
types, regardless of name. In other words, identity conversions exist (in both direc-
tions; identity conversions are always symmetric) between the following types:

 (int x, object y)
 (int a, dynamic d)
 (int, object)

Again, this can be applied to constructed types, and the tuple element types can be
constructed, too, so long as an identity conversion is still available. So, for example,
identity conversions exist between these two types:

 Dictionary<string, (int, List<object>)>
 Dictionary<string, (int index, List<dynamic> values)>

Identity conversions are mostly important for tuples when it comes to constructed
types. It’d be annoying if you could easily convert from (int, int) to (int x, int y)
but not from IEnumerable<(int, int)> to IEnumerable<(int x, int y)>, or
vice versa.

 The identity conversions are important for overloads as well. In the same way two
overloads can’t vary just by return type, they can’t vary only by parameter types with iden-
tity conversions between them. You can’t write two methods in the same class like this:

public void Method((int, int) tuple) {}
public void Method((int x, int y) tuple) {}

If you do so, you’ll receive a compile-time error like this:

error CS0111: Type 'Program' already defines a member called 'Method' with
the same parameter types

From a C# language perspective, the parameter types aren’t exactly the same, but
making the error message absolutely precise in terms of identity conversions would
make it a lot harder to understand.
Licensed to André Santos <andrerfcsantos@gmail.com>

336 CHAPTER 11 Composition using tuples
 If you find the official definitions of identity conversions confusing, one simple
(though rather less official) way of thinking about them is this: two types are identical
if you can’t tell the difference between them at execution time. We’ll go into a lot
more detail about that in section 11.4.

LACK OF GENERIC VARIANCE CONVERSIONS

With the identity conversions in mind, you might be hopeful that you could use tuple
types with generic variance for interface and delegate types. Sadly, this isn’t the case.
Variance applies only to reference types, and tuple types are always value types. As an
example, it feels like this should compile:

IEnumerable<(string, string)> stringPairs = new (string, string)[10];
IEnumerable<(object, object)> objectPairs = stringPairs;

But it doesn’t. Sorry about that. I can’t see it coming up terribly often as a practical
issue, but I wanted to remove the disappointment you might feel if you ever wanted
this and expected it to work.

11.3.4 Uses of conversions

Now that you know what’s available, you may be wondering when you’d want to use
these tuple conversions. This will largely depend on how you use tuples in a broader
sense. Tuples used within a single method or returned from private methods to be used
in the same class are rarely going to require conversions. You’ll just pick the right type
to start with, possibly casting within a tuple literal when constructing an initial value.

 It’s more likely that you’ll need to convert from one tuple type to another when
you’re using internal or public methods accepting or returning tuples, because you’ll
have less control over the element types. The more broadly a tuple type is used, the
less likely it is to be exactly the desired type in every single use.

11.3.5 Element name checking in inheritance

Although element names aren’t important in conversions, the compiler is picky about
their use in inheritance. When a tuple type appears in a member you’re either overrid-
ing from a base class or implementing from an interface, the element names you specify
must match those in the original definition. Not only must any names that are specified
in the original definition be matched, but if there isn’t a name in the original defini-
tion, you can’t put one in the implementation. The element types in the implementa-
tion have to be identity convertible to the element types in the original definition.

 As an example, consider this ISample interface and some methods trying to
implement ISample.Method (each of which would be in a separate implementation
class, of course):

interface ISample
{
 void Method((int x, string) tuple);
}

public void Method((string x, object) tuple) {}

Wrong type
elements
Licensed to André Santos <andrerfcsantos@gmail.com>

337Tuple types and conversions
public void Method((int, string) tuple) {}
public void Method((int x, string extra) tuple) {}
public void Method((int wrong, string) tuple) {}
public void Method((int x, string, int) tuple) {}
public void Method((int x, string) tuple) {}

That example deals only with an interface implementation, but the same restrictions
hold when overriding a base class member. Likewise, that example uses only a param-
eter, but the restrictions apply to return types, too. Note that this means that adding,
removing, or changing a tuple element name in an interface member or a virtual/
abstract class member is a breaking change. Think carefully before doing this in a
public API!

NOTE In some senses, this is a slightly inconsistent step, in that the compiler
has never worried before about the author of a class changing method param-
eter names when overriding a method or implementing an interface. The
ability to specify argument names means that this can cause problems if a
caller changes their code in terms of whether they refer to the interface or
the implementation. My suspicion is that if the C# language designers were
starting again from scratch, this would be prohibited, too.

C# 7.3 has added one more language feature to tuples: the ability to compare them
with == and != operators.

11.3.6 Equality and inequality operators (C# 7.3)

As you’ll see in section 11.4.5, the CLR representation of value tuples has supported
equality via the Equals method from the start. But it doesn’t overload the == or !=
operators. As of C# 7.3, however, the compiler provides == and != implementations
between tuples where there’s an identity conversion between the tuple types of the
two operands. (Aside from other aspects of identity conversions, that means the ele-
ment names aren’t important.)

 The compiler expands the == operator into element-wise comparisons with the ==
operators of each corresponding pair of values and the != operator into element-wise
comparisons with the != operators of each corresponding pair of values. That’s prob-
ably easiest to show with the following example.

var t1 = (x: "x", y: "y", z: 1);
var t2 = ("x", "y", 1);

Console.WriteLine(t1 == t2);

Listing 11.8 Equality and inequality operators

First element is
missing its name.

Second element has a
name; it doesn’t in the
original definition.

First element
has the
wrong name.

Wrong tuple
type arityValid!

Equality
operator
Licensed to André Santos <andrerfcsantos@gmail.com>

338 CHAPTER 11 Composition using tuples
Console.WriteLine(t1.Item1 == t2.Item1 &&
 t1.Item2 == t2.Item2 &&
 t1.Item3 == t2.Item3);

Console.WriteLine(t1 != t2);
Console.WriteLine(t1.Item1 != t2.Item1 &&
 t1.Item2 != t2.Item2 &&
 t1.Item3 != t2.Item3);

Listing 11.8 shows two tuples (one with element names and one without) and com-
pares them for equality and inequality. In each case, I’ve then shown what the com-
piler generates for that operator. The important point to note here is that the
generated code uses any overloaded operators provided by the element types. It’d be
impossible for the CLR type to provide the same functionality without using reflec-
tion. This is a task better handled by the compiler.

 We’ve now gone as far into the language rules of tuples as we need to. The precise
details of how element names are propagated in type inference and the like are best
handled by the language specification. Even this book has limits in terms of how deep
it needs to go. Although you could use all of the preceding information and ignore
what the CLR does with tuples, you’ll be able to do more with tuples and better under-
stand the behavior if you dig a bit deeper and find out how the compiler translates all
of these rules into IL.

 We’ve covered an awful lot of ground already. If you haven’t tried writing code
using tuples yet, now is a good time to do so. Take a break from the book and see if
you can get a feel for tuples before learning how they’re implemented.

11.4 Tuples in the CLR
Although in theory the C# language isn’t tied to .NET, the reality is that every imple-
mentation I’ve seen at least attempts to look like the regular .NET Framework to some
extent, even if it’s compiled ahead of time and runs on a non-PC-desktop device. The
C# language specification makes certain requirements of the final environment,
including that certain types are available. At the time of this writing, there isn’t a C# 7
specification, but I envision that when it’s introduced, it’ll require the types described
in this section in order to use tuples.

 Unlike anonymous types, in which each unique sequence of property names
within an assembly causes the compiler to generate a new type, tuples don’t require
any extra types to be generated by the compiler. Instead, it uses a new set of types from
the framework. Let’s meet them now.

11.4.1 Introducing System.ValueTuple<. . .>

Tuples in C# 7 are implemented using the System.ValueTuple family of types.
These types live in the System.ValueTuple.dll assembly, which is part of .NET
Standard 2.0 but not part of any older .NET Framework releases. You can use it when
targeting older frameworks by adding a dependency to the System.ValueTuple
NuGet package.

Equivalent code
generated by compiler

Inequality operator

Equivalent code
generated by compiler
Licensed to André Santos <andrerfcsantos@gmail.com>

339Tuples in the CLR
 There are nine ValueTuple structs with generic arities of 0 through 8:

 System.ValueTuple (nongeneric)
 System.ValueTuple<T1>
 System.ValueTuple<T1, T2>
 System.ValueTuple<T1, T2, T3>
 System.ValueTuple<T1, T2, T3, T4>
 System.ValueTuple<T1, T2, T3, T4, T5>
 System.ValueTuple<T1, T2, T3, T4, T5, T6>
 System.ValueTuple<T1, T2, T3, T4, T5, T6, T7>
 System.ValueTuple<T1, T2, T3, T4, T5, T6, T7, TRest>

For the moment, we’re going to ignore the first two and the last one, although I talk
about the latter in sections 11.4.7 and 11.4.8. That leaves us with the types with
generic arities between 2 and 7 inclusive. (Realistically, those are the ones you’re most
likely to use anyway.)

 A description of any particular ValueTuple<...> type is very much like the
description of tuple types from earlier: it’s a value type with public fields. The fields
are called Item1, Item2, and so on, as far as Item7. The arity-8 tuple’s final field is
called Rest.

 Anytime you use a C# tuple type, it’s mapped onto a ValueTuple<...> type. That
mapping is pretty obvious when the C# tuple type doesn’t have any element names;
(int, string, byte) is mapped to ValueTuple<int, string, byte>, for exam-
ple. But what about the optional element names in C# tuple types? Generic types are
generic only in their type parameters; you can’t magically give two constructed types
different field names. How does the compiler handle this?

11.4.2 Element name handling

Effectively, the C# compiler ignores the names for the purposes of mapping C# tuple
types to CLR ValueTuple<...> types. Although (int, int) and (int x, int y)
are distinct types from a C# language perspective, they both map onto ValueTuple
<int, int>. The compiler then maps any uses of element names to the relevant
ItemN name. Figure 11.5 shows the effective translation of C# with a tuple literal into
C#, which refers only to the CLR types.

var tuple = (x: 10, y: 20);

Console.WriteLine(tuple.x);

Console.WriteLine(tuple.y);

var tuple = new ValueTuple<int, int>(10, 20);

Console.WriteLine(tuple.Item1);

Console.WriteLine(tuple.Item2);

Compiler translation

Figure 11.5 Compiler translation
of tuple type handling into use of
ValueTuple
Licensed to André Santos <andrerfcsantos@gmail.com>

340 CHAPTER 11 Composition using tuples
Notice that the lower half of figure 11.5 has lost the names. For local variables like
this, they’re used only at compile time. The only trace of them at execution time
would be in the PDB file created to give the debugger more information. What about
element names that are visible outside the relatively small context of a method?

ELEMENT NAMES IN METADATA

Think back to the MinMax method you’ve used several times in this chapter. Suppose
you make that method public as part of a whole package of aggregating methods to
complement LINQ to Objects. It’d be a real shame to lose the readability afforded by
the tuple element names, but you now know that the CLR return type of the method
can’t propagate them. Fortunately, the compiler can use the same technique that’s
already in place for other features that aren’t directly supported by the CLR, such as
out parameters and default parameter values; attributes to the rescue!

 In this case, the compiler uses an attribute called TupleElementNamesAttribute
(in the same namespace as many similar attributes: System.Runtime.Compiler-
Services) to encode the element names in the assembly. For example, a public
MinMax method declaration could be represented in C# 6 as follows:

[return: TupleElementNames(new[] {"min", "max"})]
public static ValueTuple<int, int> MinMax(IEnumerable<int> numbers)

The C# 7 compiler won’t let you compile that code. The compiler gives an error tell-
ing you to use tuple syntax directly. But compiling the same code with the C# 6 com-
piler results in an assembly you can use from C# 7, and the elements of the returned
tuple will be available by name.

 The attribute gets a bit more complicated when nested tuple types are involved,
but it’s unlikely that you’ll ever need to interpret the attribute directly. It’s just worth
being aware that it exists and that’s how the element names are communicated out-
side local variables. The attributes are emitted by the C# compiler even for private
members, even though it could probably make do without them. I suspect it’s consid-
erably simpler to treat all members the same way regardless of their access modifiers.

NO ELEMENT NAMES AT EXECUTION TIME

In case it isn’t obvious from everything that’s gone before, a tuple value has no concept
of element names at execution time. If you call GetType() on a tuple value, you’ll get
a ValueTuple<...> type with the appropriate element types, but any element names
you have in your source code will be nowhere in sight. If you step through code and the
debugger displays element names, that’s because it’s used extra information to work
out the original element names; it’s not something the CLR knows about directly.

NOTE This approach may feel familiar to Java developers. It’s similar to the
way Java handles generics with type information that isn’t present at execution
time. In Java, there’s no such thing as an ArrayList<Integer> object or
an ArrayList<String> object; they’re just ArrayList objects. That’s
proved painful in Java, but the element names for tuples are less fundamentally
Licensed to André Santos <andrerfcsantos@gmail.com>

341Tuples in the CLR
important than type arguments in generics, so hopefully it won’t end up caus-
ing the same kind of problems.

Element names exist for tuples within the C# language, but not in the CLR. What
about conversions?

11.4.3 Tuple conversion implementations

The types in the ValueTuple family don’t provide any conversions as far as the CLR is
concerned. They wouldn’t be able to; the conversions that the C# language provides
couldn’t be expressed in the type information. Instead, the C# compiler creates a new
value when it needs to, performing appropriate conversions on each element. Here
are two examples of conversions, one implicit (using the implicit conversion from int
to long) and one explicit (using the explicit conversion from int to byte):

(int, string) t1 = (300, "text");
(long, string) t2 = t1;
(byte, string) t3 = ((byte, string)) t1;

The compiler generates code as if you’d written this:

var t1 = new ValueTuple<int, string>(300, "text");
var t2 = new ValueTuple<long, string>(t1.Item1, t1.Item2);
var t3 = new ValueTuple<byte, string>((byte) t1.Item1, t1.Item2));

That example deals only with the conversions between tuple types that you’ve already
seen, but the conversions for tuple literals to tuple types work in exactly the same way:
any conversion required from an element expression to the target element type is just
performed as part of calling the appropriate ValueTuple<...> constructor.

 You’ve now learned about everything the compiler needs in order to provide tuple
syntax, but the ValueTuple<...> types provide more functionality to make them
easy to work with. Given how general they are, they can’t do much, but the
ToString() method has a readable output, and there are multiple options for com-
paring them. Let’s see what’s available.

11.4.4 String representations of tuples

The string representation of a tuple is like a tuple literal in C# source code: a sequence
of values that is separated by commas and enclosed in parentheses. There’s no fine-
tuned control of this output; if you use a (DateTime, DateTime) tuple to represent
a date interval, for example, you can’t pass in a format string to indicate that you want
the elements to be formatted just as dates. The ToString() method calls ToString()
on each non-null element and uses an empty string for each null element.

 As a reminder, none of the names you’ve provided to the tuple elements are
known at execution time, so they can’t appear in the results of calling ToString().
That can make it slightly less useful than the string representation of anonymous
types, although if you’re printing a lot of tuples of the same type, you’ll be grateful for
Licensed to André Santos <andrerfcsantos@gmail.com>

342 CHAPTER 11 Composition using tuples
the lack of repetition. One brief example is sufficient to demonstrate all of the pre-
ceding information:

var tuple = (x: (string) null, y: "text", z: 10);
Console.WriteLine(tuple.ToString());

The output of this snippet is as follows:

(, text, 10)

I’ve called ToString() explicitly here just to prove there’s nothing else going on.
You’d get the same output by calling Console.WriteLine(tuple).

 The string representation of tuples is certainly useful for diagnostic purposes, but
it’d rarely be appropriate to display it directly in an end-user-facing application.
You’re likely to want to provide more context, specify format information for some
types, and possibly handle null values more clearly.

11.4.5 Regular equality and ordering comparisons

Each ValueTuple<...> type implements IEquatable<T> and IComparable<T>,
where T is the same as the type itself. For example, ValueTuple<T1, T2> implements
IEquatable<ValueTuple<T1, T2>> and IComparable<ValueTuple<T1, T2>>.

 Each type also implements the nongeneric IComparable interface and overrides
the object.Equals(object) method in the natural way: Equals(object) will
return false if it’s passed an instance of a different type, and CompareTo(object)
will throw an ArgumentException if it’s passed an instance of a different type.
Otherwise, each method delegates to its counterpart from IEquatable<T> or
IComparable<T>.

 Equality tests are performed element-wise using the default equality comparer for
each element type. Similarly, element hash codes are computed using the default
equality comparers, and then those hash codes are combined in an implementation-
specific way to provide an overall hash code for the tuple. Ordering comparisons
between tuples are performed element-wise too, with earlier elements being deemed
more important in the comparisons than later ones, so (1, 5) compares as less than
(3, 2), for example.

 These comparisons make tuples easy to work with in LINQ. Suppose you have a
collection of (int, int) tuples representing (x, y) coordinates. You can use famil-
iar LINQ operations to find distinct points in the list and order them. This is shown in
the following listing.

var points = new[]
{
 (1, 2), (10, 3), (-1, 5), (2, 1),
 (10, 3), (2, 1), (1, 1)
};

Listing 11.9 Finding and ordering distinct points

Cast null to string so you
can infer the tuple type

Writes the tuple value
to the console
Licensed to André Santos <andrerfcsantos@gmail.com>

343Tuples in the CLR
var distinctPoints = points.Distinct();
Console.WriteLine($"{distinctPoints.Count()} distinct points");
Console.WriteLine("Points in order:");
foreach (var point in distinctPoints.OrderBy(p => p))
{
 Console.WriteLine(point);
}

The Distinct() call means that you see (2, 1) only once in the output. But the fact
that equality is checked element-wise means that (2, 1) isn’t equal to (1, 2).

 Because the first element in the tuple is considered the most important in ordering,
our points will be sorted by their x coordinates; if multiple points have the same x coor-
dinate, those will be sorted by their y coordinates. The output is therefore as follows:

5 distinct points
Points in order:
(-1, 5)
(1, 1)
(1, 2)
(2, 1)
(10, 3)

The regular comparisons provide no way of specifying how to compare each particu-
lar element. You can reasonably easily create your own custom implementations of
IEqualityComparer<T> or IComparer<T> for specific tuple types, of course, but at
that point you might want to consider whether it’s worth implementing a fully custom
type for the data you’re trying to represent and avoid tuples entirely. Alternatively, in
some cases it may be simpler to use structural comparisons.

11.4.6 Structural equality and ordering comparisons

In addition to the regular IEquatable and IComparable interfaces, each Value-
Tuple struct explicitly implements IStructuralEquatable and IStructural-
Comparable. These interfaces have existed since .NET 4.0 and are implemented by
arrays and the Tuple family of immutable classes. I can’t say I’ve ever used the inter-
faces myself, but that’s not to claim they can’t be used and used well. They mirror the
regular APIs for equality and ordering, but each method takes a comparer that’s
intended to be used for the individual elements:

public interface IStructuralEquatable
{
 bool Equals(Object, IEqualityComparer);
 int GetHashCode(IEqualityComparer);
}

public interface IStructuralComparable
{
 int CompareTo(Object, IComparer);
}

Licensed to André Santos <andrerfcsantos@gmail.com>

344 CHAPTER 11 Composition using tuples
The idea behind the interface is to allow composite objects to be compared for equality
or ordering by performing pairwise comparisons with the given comparer. The regular
generic comparisons implemented by ValueTuple types are statically type safe but rel-
atively inflexible, as they always use default comparisons for the elements, whereas the
structural comparisons are less type safe but provide extra flexibility. The following list-
ing demonstrates this using strings and passing in a case-insensitive comparer.

static void Main()
{
 var Ab = ("A", "b");
 var aB = ("a", "B");
 var aa = ("a", "a");
 var ba = ("b", "a");

 Compare(Ab, aB);
 Compare(aB, aa);
 Compare(aB, ba);
}

static void Compare<T>(T x, T y)
 where T : IStructuralEquatable, IStructuralComparable
{
 var comparison = x.CompareTo(
 y, StringComparer.OrdinalIgnoreCase);
 var equal = x.Equals(
 y, StringComparer.OrdinalIgnoreCase);

 Console.WriteLine(
 $"{x} and {y} - comparison: {comparison}; equal: {equal}");
}

The output of listing 11.10 demonstrates that the comparisons are indeed performed
pairwise in a case-insensitive way:

(A, b) and (a, B) - comparison: 0; equal: True
(a, B) and (a, a) - comparison: 1; equal: False
(a, B) and (b, a) - comparison: -1; equal: False

The benefit of this kind of comparison is that it’s all down to composition: the com-
parer knows how to perform comparisons of only individual elements, and the tuple
implementation delegates each comparison to the comparer. This is a little like LINQ,
in which you express operations on individual elements but then ask them to be per-
formed on collections.

 This is all very well if you have tuples with elements that are all of the same type. If
you want to perform structural comparisons on tuples with elements of different kinds,
such as comparing (string, int, double) values, then you need to make sure your
comparer can handle comparing strings, comparing integers, and comparing doubles.
It’d only need to compare two values of the same type in each comparison, however.

Listing 11.10 Structural comparisons with a case-insensitive comparer

Unconventional variable
names that reflect the values

Performs a selection of
interesting comparisons

Performs ordering and equality
comparisons case insensitively
Licensed to André Santos <andrerfcsantos@gmail.com>

345Tuples in the CLR
The ValueTuple implementations still allow only tuples with the same type argu-
ments to be compared; if you compare a (string, int) with an (int, string), for
example, an exception will be thrown immediately and before any elements are com-
pared. An example of such a comparer is beyond the scope of this book, but the sam-
ple code contains a sketch (CompoundEqualityComparer) that should be a good
starting point if you need to implement something similar for production code.

 That concludes our coverage of the arity-2 to arity-7 ValueTuple<...> types, but
I did mention that I’d come back to the other three types you saw in section 11.4.1.
First, let’s look at ValueTuple<T1> and ValueTuple<T1, T2, T3, T4, T5, T6,
T7, TRest>, which are more closely related than you might expect.

11.4.7 Womples and large tuples

A single-value tuple (ValueTuple<T1>), affectionately known as a womple by the C#
team, can’t be constructed on its own using tuple syntax, but it can be part of another
tuple. As described earlier, generic ValueTuple structs exist with only up to eight type
parameters. What should the C# compiler do if it’s presented with a tuple literal with
more than eight elements? It uses the ValueTuple<...> with arity 8 with the first
seven type arguments corresponding to the first seven types from the tuple literal and
the final element being a nested tuple type for the remaining elements. If you have a
tuple literal with exactly eight int elements, the type involved will be as follows:

ValueTuple<int, int, int, int, int, int, int, ValueTuple<int>>

There’s the womple, highlighted in bold. The ValueTuple<...> with arity 8 is espe-
cially designed for this usage; the final type argument (TRest) is constrained to be a
value type, and, as I mentioned at the start of section 11.4.1, there’s no Item8 field.
Instead, there’s a Rest field.

 It’s important that the last element of an arity-8 ValueTuple<...> is always
expected to be a tuple with more elements rather than a final individual element to
avoid ambiguity. For example, a tuple type like this

ValueTuple<A, B, C, D, E, F, G, ValueTuple<H, I>>

could be treated as a C#-syntax type (A, B, C, D, E, F, G, H, I) with arity 9 or a type
(A, B, C, D, E, F, G, (H, I)) with arity 8 and the final element being a tuple type.

 As a developer, you don’t need to worry about all of this, because the C# compiler
allows you to use ItemX names for all the elements in a tuple regardless of the num-
ber of elements and whether you’ve used the tuple syntax or explicitly referred to
ValueTuple. For example, consider a rather long tuple:

var tuple = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
Console.WriteLine(tuple.Item16);

That’s perfectly valid code, but the tuple.Item16 expression is converted by the com-
piler into tuple.Rest.Rest.Item2. If you want to use the real field names, you can
certainly do so; I just wouldn’t advise it. Now from huge tuples to the exact opposite.
Licensed to André Santos <andrerfcsantos@gmail.com>

346 CHAPTER 11 Composition using tuples
11.4.8 The nongeneric ValueTuple struct

If the womple sounded slightly silly to start with, the nuple—a nongeneric tuple, one
without any elements at all—sounds even more pointless. You might have expected the
nongeneric ValueTuple to be a static class, like the nongeneric Nullable class, but
it’s a struct and looks for all the world like the other tuple structs, other than not having
any data. It implements all the interfaces described earlier in this section, but every
nuple value is equal (in both plain equality and ordering senses) to every other nuple
value, which makes sense, as there’s nothing to differentiate them from each other.

 It does have static methods that would be useful for creating ValueTuple<...>
values if we didn’t have tuple literals. Those methods will primarily be useful if you
want to use tuple types from C# 6 or from another language that doesn’t have built-in
support, and you want to use type inference for the element types. (Remember, when
you call a constructor, you always have to specify all the type arguments, which can be
annoying.) For example, to construct an (int, int) value tuple in C# 6 using type
inference, you could use this:

var tuple = ValueTuple.Create(5, 10);

The C# team has hinted that there may be future places where nuples will be useful
with pattern matching and decomposition, but it’s more of a placeholder than any-
thing else at the moment.

11.4.9 Extension methods

The System.TupleExtensions static class is provided in the same assembly as the
System.ValueTuple types. It contains extension methods on the System.Tuple
and System.ValueTuple types. There are three kinds of methods:

 Deconstruct, which extends the Tuple types
 ToValueTuple, which extends the Tuple types
 ToTuple, which extends the ValueTuple types

Each kind of method is overloaded 21 times by generic arity using the same pattern
you saw previously to handle arities of 8 or more. You’ll look at Deconstruct in chap-
ter 12, but ToValueTuple and ToTuple do exactly what you’d expect them to: they
convert between the .NET 4.0 era immutable reference type tuples and the new muta-
ble value type tuples. I expect these to be useful primarily when working with legacy
code using Tuple.

 Phew! That’s just about everything I think is worth knowing about the types
involved in implementing tuples on the CLR. Next, we’re going to consider your
other options: if you’re thinking about using a tuple, you should be aware that’s only
one of the tools in your box, and it isn’t always the most appropriate one to reach for.

11.5 Alternatives to tuples
It may seem trite to remind you of this, but every option you’ve ever used in the past
for a bag of variables is still valid. You don’t have to use the C# 7 tuples anywhere. This
section briefly looks at the pros and cons of the other options.
Licensed to André Santos <andrerfcsantos@gmail.com>

347Alternatives to tuples
11.5.1 System.Tuple<. . .>

The .NET 4 System.Tuple<...> types are immutable reference types, although the
element types within them may be mutable. You can think of it as being immutable in
a shallow fashion, just like readonly fields.

 The biggest downside here is the lack of any kind of language integration. Old-
school tuples are harder to create, the types are more long-winded to specify, the con-
versions I describe in section 11.3 simply aren’t present, and most important, you can
use only the ItemX naming style. Even though the names attached to C# 7 tuples are
compile-time only, they still make a huge difference in usability.

 Beyond this, reference type tuples feel like fully fledged objects instead of bags of
values, which can be good or bad depending on the context. They’re usually less con-
venient to work with, but it’s certainly more efficient to copy a single reference to a
large Tuple<...> object than it is to copy a ValueTuple<...>, which involves
copying all the element values. This also has implications on safe multithreading:
copying a reference is atomic, whereas copying a value tuple isn’t.

11.5.2 Anonymous types

Anonymous types were introduced as part of LINQ, and that remains their primary
use case in my experience. You could use them for regular variables within a method,
but I can’t remember ever seeing that usage in production code.

 Most of the nice features of anonymous types are also present in C# 7 tuples:
named elements, natural equality, and a clear string representation. The main prob-
lem with anonymous types is precisely that they’re anonymous; you can’t return them
from methods or properties without losing all the type safety. (You basically have to
use object or dynamic. The information is still there at execution time, but the com-
piler doesn’t know about it.) C# 7 tuples don’t have that problem. It’s fine to return a
tuple from a method, as you’ve seen.

 I can see four advantages of anonymous types over tuples:

 In C# 7.0, projection initializers that provide both a name and a value in a sin-
gle identifier are simpler than tuples; compare new { p.Name, p.Age } and
(name: p.Name, age: p.Age), for example. This is addressed in C# 7.1, as the
tuple element names can be inferred, leading to compact representations such
as (p.Name, p.Age).

 The use of names within the string representation of anonymous types can be
handy for diagnostic purposes.

 Anonymous types are supported by out-of-process LINQ providers (to databases
and so on). Tuple literals can’t currently be used within expression trees, mak-
ing the value proposition significantly weaker.

 Anonymous types can be more efficient in some contexts due to a single refer-
ence being passed through a pipeline. In most cases, I wouldn’t expect this to be
a problem at all, and the fact that tuples don’t create any objects for the garbage
collector to clean up is an efficiency benefit in the other direction, of course.
Licensed to André Santos <andrerfcsantos@gmail.com>

348 CHAPTER 11 Composition using tuples
Within LINQ to Objects, I expect to use tuples extensively, particularly when using C#
7.1 and its inferred tuple element names.

11.5.3 Named types

Tuples are just bags of variables. There’s no encapsulation; no meaning is attached to
them other than what you decide to do with them. Sometimes that’s exactly what you
want, but be careful of taking this too far. Consider a (double, double). That could
be used as

 2D Cartesian coordinates (x, y)
 2D polar coordinates (radius, angle)
 1D start/end pair
 Any number of other things

Each of these use cases would have different operations on it when modeled as a first-
class type. You wouldn’t need to worry about names not being propagated or acciden-
tally using Cartesian coordinates as polar coordinates, for example.

 If you need the grouping of values only temporarily, or if you’re prototyping and
you’re not sure what you’ll need, tuples are great. But if you find you’re using the
same tuple shape in several places in your code, I’d recommend replacing it with a
named type.

NOTE A Roslyn code analyzer to automate most of this, using tuple element
names to detect different usages, could be wonderful. I don’t know of any
such tool at the moment, unfortunately.

With that background of alternative options, let’s round off this chapter with some
more detailed recommendations about where tuples might be useful.

11.6 Uses and recommendations
First, it’s important to remember that language support for tuples is new within C# 7.
Any suggestions here are the result of thinking about tuples rather than extensive use
of tuples. Reason can get you so far, but it doesn’t give much insight into the actual
experience. My expectations about when I’d use new language features have proved
somewhat incorrect in the past, so take everything here with a grain of salt. That said,
hopefully it at least provides some food for thought.

11.6.1 Nonpublic APIs and easily changed code

Until the community in general has more experience with tuples and best practices
have been established through hard-won battle scars, I’d avoid using tuples in public
APIs, including protected members for types that can be derived from in other assem-
blies. If you’re in the lucky situation where you control (and can modify arbitrarily) all
the code that interacts with yours, you can be more speculative. But you don’t want to
put yourself in a situation where you return a tuple from a public method just because
Licensed to André Santos <andrerfcsantos@gmail.com>

349Uses and recommendations
it’s easy to do, only to discover later that you really wanted to encapsulate those values
more thoroughly. A named type takes more design and implementation work, but the
result is unlikely to be harder for the caller to use. Tuples are mostly convenient for
the implementer rather than the caller.

 My current preference is to go even further and use tuples only as an implementa-
tion detail within a type. I’m comfortable returning a tuple from a private method,
but I’d shy away from doing so from an internal method in production code. In gen-
eral, the more localized the decision, the easier it is to change your mind and the less
you have to think about it.

11.6.2 Local variables

Tuples are primarily designed to allow multiple values to be returned from a method
without using out parameters or a dedicated return type. That doesn’t mean that’s
the only place you can use them, though.

 It’s not unusual within a method to have natural groups of variables. You can often
tell this when you look at the variables if they have a common prefix. For example, list-
ing 11.11 shows a method that might occur in a game to display the highest-scoring
player for a particular date. Although LINQ to Objects has a Max method that’ll
return the highest value for a projection, there’s nothing that will return the original
sequence element associated with that value.

NOTE An alternative is to use OrderByDescending(...).FirstOr-
Default(), but that’s introducing sorting when you need to find only a sin-
gle value. The MoreLinq package has the MaxBy method, which addresses
this deficiency. Another alternative to keeping two variables is to keep a single
highestGame variable and use the Score property of that in the compari-
son. In more complex cases, that may not be as feasible.

public void DisplayHighScoreForDate(LocalDate date)
{
 var filteredGames = allGames.Where(game => game.Date == date);
 string highestPlayer = null;
 int highestScore = -1;
 foreach (var game in filteredGames)
 {
 if (game.Score > highestScore)
 {
 highestPlayer = game.PlayerName;
 highestScore = game.Score;
 }
 }
 Console.WriteLine(highestPlayer == null
 ? "No games played"
 : $"Highest score was {highestScore} by {highestPlayer}");
}

Listing 11.11 Displaying the highest-scoring player for a date
Licensed to André Santos <andrerfcsantos@gmail.com>

350 CHAPTER 11 Composition using tuples
Here you have four local variables, including the parameter:

 date

 filteredGames

 highestPlayer

 highestScore

The last two of these are tightly related to each other; they’re initialized at the same
time and changed together. This suggests you could consider using a tuple variable
instead, as in the following listing.

public void DisplayHighScoreForDate(LocalDate date)
{
 var filteredGames = allGames.Where(game => game.Date == date);
 (string player, int score) highest = (null, -1);
 foreach (var game in filteredGames)
 {
 if (game.Score > highest.score)
 {
 highest = (game.PlayerName, game.Score);
 }
 }
 Console.WriteLine(highest.player == null
 ? "No games played"
 : $"Highest score was {highest.score} by {highest.player}");
}

The changes are shown in bold. Is this better? Maybe. Philosophically, it’s exactly the
same code, when you think about a tuple as just a collection of variables. It feels
slightly cleaner to me, because it reduces the number of concepts the method is con-
sidering at the top level. Obviously, in the kind of simplistic examples that are applica-
ble to books, differences in clarity are likely to be small. But if you have a complicated
method that’s resistant to refactoring into multiple smaller methods, tuple local vari-
ables could make a more significant difference. The same kind of consideration
makes sense for fields, too.

11.6.3 Fields

Just as local variables sometimes cluster together naturally, so do fields. Here’s an
example from Noda Time in PrecalculatedDateTimeZone:

private readonly ZoneInterval[] periods;
private readonly IZoneIntervalMapWithMinMax tailZone;
private readonly Instant tailZoneStart;
private readonly ZoneInterval firstTailZoneInterval;

Listing 11.12 A refactoring to use a tuple local variable
Licensed to André Santos <andrerfcsantos@gmail.com>

351Uses and recommendations
I’m not going to explain the meaning of all these fields, but hopefully it’s reasonably
obvious that the last three of them relate to a tail zone. We could consider changing
this to use two fields instead, one of which is a tuple:

private readonly ZoneInterval[] periods;
private readonly
 (IZoneIntervalMapWithMinMax intervalMap,
 Instant start,
 ZoneInterval firstInterval) tailZone;

The rest of the code can then refer to tailZone.start, tailZone.intervalMap,
and so forth. Note that because the tailZone variable is declared to be readonly,
assignments to the individual elements are invalid except in the constructor. A few
limitations and caveats exist:

 The elements of the tuple can still be assigned individually in the constructor,
but there’s no warning if you initialize some elements but not all of them. For
example, if you forgot to initialize tailZoneStart in the original code, you’d
see a warning, but there’s no equivalent warning if you forget to initialize
tailZone.start.

 Either the whole tuple field is read-only or none of it is. If you have a group of
related fields, some of which are read-only and some of which aren’t, you either
have to forego the read-only aspect or not use this technique. At that point, I’d
usually just not use tuples.

 If some of the fields are automatically generated fields backing automatically
implemented properties, you’d have to write full properties to use the tuple.
Again, at that point I’d skip the tuple.

Finally, one aspect of tuples that may not be obvious is their interaction with dynamic
typing.

11.6.4 Tuples and dynamic don’t play together nicely

I don’t use dynamic much myself anyway, and I suspect that good uses of dynamic typ-
ing and good uses of tuples won’t have much of an intersection. It’s worth being aware
of two issues around element access, however.

THE DYNAMIC BINDER DOESN’T KNOW ABOUT ELEMENT NAMES

Remember that element names are mostly a compile-time concern. Mix that with the
way dynamic binding happens only at execution times, and I suspect you can see
what’s coming. As a simple example, consider the following code:

dynamic tuple = (x: 10, y: 20);
Console.WriteLine(tuple.x);

At first glance, it sounds reasonable to expect this to print 10, but an exception is thrown:

Unhandled Exception: Microsoft.CSharp.RuntimeBinder.RuntimeBinderException:
'System.ValueTuple<int,int>' does not contain a definition for 'x'
Licensed to André Santos <andrerfcsantos@gmail.com>

352 CHAPTER 11 Composition using tuples
Although this is unfortunate, it’d require significant gymnastics for element name
information to be preserved for the dynamic binder to make this work. I’m not
expecting this to change. If you modify the code to print tuple.Item1 instead, that’s
fine. At least, it’s fine for the first seven elements.

THE DYNAMIC BINDER DOESN’T (CURRENTLY) KNOW ABOUT HIGH ELEMENT NUMBERS

In section 11.5.4, you saw how the compiler handles tuples with more than seven ele-
ments. The compiler uses the arity-8 ValueTuple<...> with a final element that
contains another tuple accessed via the Rest field instead of an Item8 field. In addi-
tion to transforming the type itself, the compiler transforms numbered element
access; source code referring to tuple.Item9 refers to tuple.Rest.Item2 in the
generated IL, for example.

 At the time of this writing, the dynamic binder isn’t aware of this, so again you’ll
see an exception where the same code would be fine with compile-time binding. As an
example, you can easily test and play with this yourself:

var tuple = (1, 2, 3, 4, 5, 6, 7, 8, 9);
Console.WriteLine(tuple.Item9);
dynamic d = tuple;
Console.WriteLine(d.Item9);

Unlike the previous issue, this could be fixed by making the dynamic binder smarter.
But the execution-time behavior will then depend on which version of the dynamic
binder your application ends up using. Usually, a reasonably clean separation exists
between which version of the compiler you use and which assembly and framework
versions you use. Requiring a particular version of the dynamic binder would certainly
muddy the waters somewhat.

Summary
 Tuples act as bags of elements with no encapsulation.
 Tuples in C# 7 have distinct language and CLR representations.
 Tuples are value types with public, mutable fields.
 C# tuples support flexible element names.
 The CLR ValueTuple<...> structs always use element names of Item1,

Item2, and so forth.
 C# provides conversions for tuple types and tuple literals.

Works, referring to
tuple.Rest.Item2

Fails at
execution time
Licensed to André Santos <andrerfcsantos@gmail.com>

Deconstruction and
pattern matching
In chapter 11, you learned that tuples allow you to compose data simply without
having to create new types and allowing one variable to act as a bag of other vari-
ables. When you used the tuples—for example, to print out the minimum value
from a sequence of integers and then print out the maximum—you extracted the
values from the tuple one at a time.

 That certainly works, and in many cases it’s all you need. But in plenty of cases,
you’ll want to break a composite value into separate variables. This operation is
called deconstruction. That composite value may be a tuple, or it could be of another

This chapter covers
 Deconstructing tuples into multiple variables

 Deconstructing nontuple types

 Applying pattern matching in C# 7

 Using the three kinds of patterns introduced in
C# 7
353

Licensed to André Santos <andrerfcsantos@gmail.com>

354 CHAPTER 12 Deconstruction and pattern matching
type—KeyValuePair, for example. C# 7 provides simple syntax to allow multiple
variables to be declared or initialized in a single statement.

 Deconstruction occurs in an unconditional way just like a sequence of assign-
ments. Pattern matching is similar, but in a more dynamic context; the input value has
to match the pattern in order to execute the code that follows it. C# 7 introduces pat-
tern matching in a couple of contexts and a few kinds of patterns, and there will likely
be more in future releases. We’ll start building on chapter 11 by deconstructing the
tuples you’ve just created.

12.1 Deconstruction of tuples
C# 7 provides two flavors of deconstruction: one for tuples and one for everything
else. They follow the same syntax and have the same general features, but talking
about them in the abstract can be confusing. We’ll look at tuples first, and I’ll call out
anything that’s tuple specific. In section 12.2, you’ll see how the same ideas are
applied to other types. Just to give you an idea of what’s coming, the following listing
shows several features of deconstruction, each of which you’ll examine in more detail.

var tuple = (10, "text");

var (a, b) = tuple;

(int c, string d) = tuple;

int e;
string f;
(e, f) = tuple;

Console.WriteLine($"a: {a}; b: {b}");
Console.WriteLine($"c: {c}; d: {d}");
Console.WriteLine($"e: {e}; f: {f}");

I suspect that if you were shown that code and told that it would compile, you’d
already be able to guess the output, even if you hadn’t read anything about tuples or
deconstruction before:

a: 10; b: text
c: 10; d: text
e: 10; f: text

All you’ve done is declared and initialized the six variables a, b, c, d, e, and f in a new
way that takes less code than it would’ve before. This isn’t to diminish the usefulness
of the feature, but this time there’s relatively little subtlety to go into. In all cases, the
operation is as simple as copying a value out of the tuple into a variable. It doesn’t
associate the variable with the tuple; changing the variable later won’t change the
tuple, or vice versa.

Listing 12.1 Overview of deconstruction using tuples

Creates a tuple of
type (int, string)

Deconstructs to new
variables a, b implicitly

Deconstructs to new
variables c, d explicitly

Deconstructs to
existing variables

Proves that
deconstruction works
Licensed to André Santos <andrerfcsantos@gmail.com>

355Deconstruction of tuples
Let’s start by looking in more detail at the first two parts of the example, where you
declare and initialize in one statement.

12.1.1 Deconstruction to new variables

It’s always been feasible to declare multiple variables in a single statement, but only if
they were of the same type. I’ve typically stuck to a single declaration per statement for
the sake of readability. But when you can declare and initialize multiple variables in a
single statement, and the initial values all have the same source, that’s neat. In particu-
lar, if that source is the result of a function call, you can avoid declaring an extra vari-
able just to avoid making multiple calls.

 The syntax that’s probably simplest to understand is the one in which each variable
is explicitly typed—the same syntax as for a parameter list or tuple type. To clarify my
preceding point about the extra variable, the following listing shows a tuple as a result
of a method call being deconstructed into three new variables.

static (int x, int y, string text) MethodReturningTuple() => (1, 2, "t");

static void Main()
{
 (int a, int b, string name) = MethodReturningTuple();
 Console.WriteLine($"a: {a}; b: {b}; name: {name}");
}

The benefit isn’t as obvious until you consider the equivalent code without using
deconstruction. This is what the compiler is transforming the preceding code into:

static void Main()
{
 var tmp = MethodReturningTuple();
 int a = tmp.x;

Tuple declaration and deconstruction syntax
The language specification regards deconstruction as closely related to other tuple
features. Deconstruction syntax is described in terms of a tuple expression even
when you’re not deconstructing tuples (which you’ll see in section 12.2). You proba-
bly don’t need to worry too much about that, but you should be aware of potential
causes for confusion. Consider these two statements:

(int c, string d) = tuple;
(int c, string d) x = tuple;

The first uses deconstruction to declare two variables (c and d); the second is a dec-
laration of a single variable (x) of tuple type (int c, string d). I don’t think this
similarity was a design mistake, but it can take a little getting used to just like expres-
sion-bodied members looking like lambda expressions.

Listing 12.2 Calling a method and deconstructing the result into three variables
Licensed to André Santos <andrerfcsantos@gmail.com>

356 CHAPTER 12 Deconstruction and pattern matching
 int b = tmp.y;
 string name = tmp.text;

 Console.WriteLine($"a: {a}; b: {b}; name: {name}");
}

The three declaration statements don’t bother me too much, although I do appreci-
ate the brevity of the original code, but the tmp variable really niggles. As its name sug-
gests, it’s there only temporarily; its sole purpose is to remember the result of the
method call so it can be used to initialize the three variables you really want: a, b, and
name. Even though you want tmp only for that bit of code, it has the same scope as the
other variables, which feels messy to me. If you want to use implicit typing for some
variables but explicit typing for others, that’s fine too, as shown in figure 12.1.

Figure 12.1 Mixing implicit and explicit typing in deconstruction

This is particularly useful if you want to specify a different type than the element type
in the original tuple using an implicit conversion for elements where required; see fig-
ure 12.2.

Figure 12.2 Deconstruction involving implicit conversions

If you’re happy to use implicit typing for all the variables, C# 7 has shorthand to make
it simple; just use var before the list of names:

var (a, b, name) = MethodReturningTuple();

Implicitly typed declaration

(int a, int b, var name) = MethodReturningTuple();

Explicitly typed declarations

Implicitly typed declaration

(long a, var b, XNamespace name) = MethodReturningTuple();

Explicitly typed declarations
using conversions
Licensed to André Santos <andrerfcsantos@gmail.com>

357Deconstruction of tuples
This is equivalent to using var for each variable inside the parameter list, and that in
turn is equivalent to explicitly specifying the inferred type based on the type of the value
being assigned. Just as with regular implicitly typed variable declarations, using var
doesn’t make your code dynamically typed; it just makes the compiler infer the type.

 Although you can mix and match between implicit typing and explicit typing in
terms of the types specified within the brackets, you can’t use var before the variable
list and then provide types for some variables:

var (a, long b, name) = MethodReturningTuple();

A SPECIAL IDENTIFIER: _ DISCARDS

C# 7 has three features that allow new places to introduce local variables:

 Deconstruction (this section and 12.2)
 Patterns (sections 12.3 to 12.7)
 Out variables (section 14.2)

In all these cases, specifying a variable name of _ (a single underscore) has a special
meaning. It’s a discard, which means “I don’t care about the result. I don’t even want it
as a variable at all—just get rid of it.” When a discard is used, it doesn’t introduce a
new variable into scope. You can use multiple discards instead of specifying different
variable names for multiple variables you don’t care about.

 Here’s an example of discards in tuple deconstruction:

var tuple = (1, 2, 3, 4);
var (x, y, _, _) = tuple;
Console.WriteLine(_);

If you already have a variable called _ in scope (declared with a regular variable decla-
ration), you can still use discards in deconstruction to an otherwise new set of vari-
ables, and the existing variable will remain untouched.

 As you saw in our original overview, you don’t have to declare new variables to use
deconstruction. Deconstruction can act as a sequence of assignments instead.

12.1.2 Deconstruction assignments to existing variables and properties

The previous section explained most of our original overview example. In this section,
we’ll look at this part of the code instead:

var tuple = (10, "text");
int e;
string f;
(e, f) = tuple;

In this case, the compiler isn’t treating the deconstruction as a sequence of declara-
tions with corresponding initialization expressions; instead, it’s just a sequence of

Invalid: mixture of “inside
and outside” declarations

Tuple with
four elements

Deconstructs the tuple but keeps
only the first two elements

Error CS0103: The name '_' doesn’t
exist in the current context
Licensed to André Santos <andrerfcsantos@gmail.com>

358 CHAPTER 12 Deconstruction and pattern matching
assignments. This has the same benefit in terms of avoiding temporary variables that
you saw in the previous section. The following listing gives an example using the same
MethodReturningTuple() that you used before.

static (int x, int y, string text) MethodReturningTuple() => (1, 2, "t");

static void Main()
{
 int a = 20;
 int b = 30;
 string name = "before";
 Console.WriteLine($"a: {a}; b: {b}; name: {name}");

 (a, b, name) = MethodReturningTuple();

 Console.WriteLine($"a: {a}; b: {b}; name: {name}");
}

So far, so good, but the feature doesn’t stop with the ability to assign to local variables.
Any assignment that would be valid as a separate statement is also valid using decon-
struction. That can be an assignment to a field, a property, or an indexer, including
working on arrays and other objects.

In addition to regular assignments, you can assign to a discard (the _ identifier),
thereby effectively throwing away the value if there’s nothing called _ in scope. If you
do have a variable named _ in scope, deconstruction assigns to it as normal.

Listing 12.3 Assignments to existing variables using deconstruction

Declarations or assignments: Not a mixture
Deconstruction allows you to either declare and initialize variables or execute a
sequence of assignments. You can’t mix the two. For example, this is invalid:

int x;
(x, int y) = (1, 2);

It’s fine for the assignments to use a variety of targets, however: some existing local
variables, some fields, some properties, and so on.

Using _ in deconstruction: Assign or discard?
This looks a little confusing at first: sometimes deconstruction to _ when there’s an
existing variable with that name changes the value, and sometimes it discards it. You
can avoid this confusion in two ways. The first is to look at the rest of the deconstruc-
tion to see whether it’s introducing new variables (in which case _ is a discard) or
assigning values to existing variables (in which case _ is assigned a new value like
the other variables).

The second way to avoid confusion is to not use _ as a local variable name.

Declares, initializes, and
uses three variables

Assigns to all three variables
using deconstruction

Displays the
new values
Licensed to André Santos <andrerfcsantos@gmail.com>

359Deconstruction of tuples
In practice, I expect almost all uses of assignment deconstruction to target either local
variables or fields and properties of this. In fact, there’s a neat little technique you can
use in constructors that makes the expression-bodied constructors introduced in C# 7
even more useful. Many constructors assign values to properties or fields based on the
constructor parameters. You can perform all those assignments in a single expression
if you collect the parameters into a tuple literal first, as shown in the next listing.

public sealed class Point
{
 public double X { get; }
 public double Y { get; }

 public Point(double x, double y) => (X, Y) = (x, y);
}

I really like the brevity of this. I love the clarity of the mapping from constructor
parameter to property. The C# compiler even recognizes it as a pattern and avoids
constructing a ValueTuple<double, double>. Unfortunately, it still requires a
dependency on System.ValueTuple.dll to build, which is enough to put me off
using it unless I’m also using tuples somewhere else in the project or targeting a
framework that already includes System.ValueTuple.

Assignment deconstruction has an extra wrinkle compared with declaration decon-
struction in terms of ordering. Deconstruction that uses assignment has three distinct
stages:

1 Evaluating the targets of the assignments
2 Evaluating the right-hand side of the assignment operator
3 Performing the assignments

Those three stages are performed in exactly that order. Within each stage, evaluation
occurs in left-to-right source order, as normal. It’s rare that this can make a difference,
but it’s possible.

TIP If you have to worry about this section in order to understand code in
front of you, that’s a strong code smell. When you do understand it, I urge you

Listing 12.4 Simple constructor assignments using deconstruction and a tuple literal

Is this idiomatic C#?
As I’ve described, this trick has pros and cons. It’s a pure implementation detail of
the constructor; it doesn’t even affect the rest of the class body. If you decide to
embrace this style and then decide you don’t like it, removing it should be trivial. It’s
too early to say whether this will catch on, but I hope so. I’d be wary as soon as the
tuple literal needs to be more than just the exact parameter values, though. Even
adding a single precondition tips the balance in favor of a regular sequence of assign-
ments, in my subjective opinion.
Licensed to André Santos <andrerfcsantos@gmail.com>

360 CHAPTER 12 Deconstruction and pattern matching
to refactor it. Deconstruction has all the same caveats of using side effects
within an expression but amplified because you have multiple evaluations to
perform in each stage.

I’m not going to linger on this topic for long; a single example is enough to show the
kind of problem you might see. This is by no means the worst example you might find,
however. There are all kinds of things you could do in order to make this more convo-
luted. The following listing deconstructs a (StringBuilder, int) tuple into an exist-
ing StringBuilder variable and the Length property associated with that variable.

StringBuilder builder = new StringBuilder("12345");
StringBuilder original = builder;

(builder, builder.Length) =
 (new StringBuilder("67890"), 3);

Console.WriteLine(original);
Console.WriteLine(builder);

The middle line is the tricky one here. The key question to consider is which String-
Builder has its Length property set: the one that builder refers to originally or the
new value assigned in the first part of the deconstruction? As I described earlier, all
the targets for the assignments are evaluated first, before any assignments are per-
formed. The following listing demonstrates this in a sort of exploded version of the
same code in which the deconstruction is performed manually.

StringBuilder builder = new StringBuilder("12345");
StringBuilder original = builder;

StringBuilder targetForLength = builder;

(StringBuilder, int) tuple =
 (new StringBuilder("67890"), 3);

builder = tuple.Item1;
targetForLength.Length = tuple.Item2;

Console.WriteLine(original);
Console.WriteLine(builder);

No extra evaluation is required when the target is just a local variable; you can assign
directly to it. But assigning to a property of a variable requires evaluating that variable
value as part of the first phase; that’s why you have the targetForLength variable.

 After the tuple has been constructed from the literal, you can assign the different
items to your targets, making sure you use targetForLength rather than builder

Listing 12.5 Deconstruction in which evaluation order matters

Listing 12.6 Slow-motion deconstruction to show evaluation order

Keeps a reference to original
builder for diagnostic reasons

Performs the
deconstruction assignments

Displays the contents of
the old and new builders

Evaluates
assignment targets

Evaluates the
tuple literal

Performs the assignments
on the targets
Licensed to André Santos <andrerfcsantos@gmail.com>

361Deconstruction of nontuple types
when assigning the Length property. The Length property is set on the original
StringBuilder with content 12345 rather than the new one with content 67890.
That means the output of listings 12.5 and 12.6 is as follows:

123
67890

With that out of the way, there’s one final—and rather more pleasant—wrinkle of
tuple construction to talk about before moving on to nontuple deconstruction.

12.1.3 Details of tuple literal deconstruction

As I described in section 11.3.1, not all tuple literals have a type. For example, the tuple
literal (null, x => x * 2) doesn’t have a type because neither of its element expres-
sions has a type. But you know it can be converted to type (string, Func<int, int>)
because each expression has a conversion to the corresponding type.

 The good news is that tuple deconstruction has exactly the same sort of “per ele-
ment assignment compatibility” as well. This works for both declaration deconstruc-
tions and assignment deconstructions. Here’s a brief example:

(string text, Func<int, int> func) =
 (null, x => x * 2);
(text, func) = ("text", x => x * 3);

This also works with deconstruction that requires an implicit conversion from an
expression to the target type. For example, using our favorite “int constant within
range of byte” example, the following is valid:

(byte x, byte y) = (5, 10);

Like many good language features, this is probably something you might have implic-
itly expected, but the language needs to be carefully designed and specified to allow
it. Now that you’ve looked at tuple deconstruction fairly extensively, deconstruction of
nontuples is relatively straightforward.

12.2 Deconstruction of nontuple types
Deconstruction for nontuple types uses a pattern-based1 approach in the same way
async/await does and foreach can. Just as any type with a suitable GetAwaiter
method or extension method can be awaited, any type with a suitable Deconstruct
method or extension method can be deconstructed using the same syntax as tuples.
Let’s start with deconstruction using regular instance methods.

1 This is entirely distinct from the patterns coming up in section 12.3. Apologies for the terminology collision.

Deconstruction
declaring text and func

Deconstruction assigning
to text and func
Licensed to André Santos <andrerfcsantos@gmail.com>

362 CHAPTER 12 Deconstruction and pattern matching
12.2.1 Instance deconstruction methods

It’s simplest to demonstrate deconstruction with the Point class used in several exam-
ples now. You can add a Deconstruct method to it like this:

public void Deconstruct(out double x, out double y)
{
 x = X;
 y = Y;
}

Then you can deconstruct any Point to two double variables as in the following listing.

var point = new Point(1.5, 20);
var (x, y) = point;
Console.WriteLine($"x = {x}");
Console.WriteLine($"y = {y}");

The Deconstruct method’s job is to populate the out parameters with the result of
the deconstruction. In this case, you’re just deconstructing to two double values. It’s
like a constructor in reverse, as the name suggests.

 But wait; you used a neat trick with tuples to assign parameter values to properties
in the constructor in a single statement. Can you do that here? Yes, you can, and per-
sonally, I love it. Here are both the constructor and the Deconstruct method so you
can see the similarities:

public Point(double x, double y) => (X, Y) = (x, y);
public void Deconstruct(out double x, out double y) => (x, y) = (X, Y);

The simplicity of this is beautiful, at least after you’ve gotten used to it.
 The rules of Deconstruct instance methods used for deconstruction are pretty

simple:

 The method must be accessible to the code doing the deconstruction. (For
example, if everything is in the same assembly, it’s fine for Deconstruct to be
an internal method.)

 It must be a void method.
 There must be at least two parameters. (You can’t deconstruct to a single value.)
 It must be nongeneric.

You may be wondering why the design uses out parameters instead of requiring that
Deconstruct is parameterless but has a tuple return type. The answer is that it’s useful
to be able to deconstruct to multiple sets of values, which is feasible with multiple meth-
ods, but you can’t overload methods just on return type. To make this clearer, I’ll use an
example deconstructing DateTime, but of course, you can’t add your own instance
methods to DateTime. It’s time to introduce extension deconstruction methods.

Listing 12.7 Deconstructing a Point to two variables

Constructs an
instance of point

Deconstructs it to two
variables of type doubleDisplays the two

variable values
Licensed to André Santos <andrerfcsantos@gmail.com>

363Deconstruction of nontuple types
12.2.2 Extension deconstruction methods and overloading

As I briefly stated in the introduction, the compiler finds any Deconstruct methods
that follow the relevant pattern, including extension methods. You can probably imag-
ine what an extension method for deconstruction looks like, but the following listing
gives a concrete example, using DateTime.

static void Deconstruct(
 this DateTime dateTime,
 out int year, out int month, out int day) =>
 (year, month, day) =
 (dateTime.Year, dateTime.Month, dateTime.Day);

static void Main()
{
 DateTime now = DateTime.UtcNow;
 var (year, month, day) = now;
 Console.WriteLine(
 $"{year:0000}-{month:00}-{day:00}");
}

As it happens, this is a private extension method declared in the same (static) class
that you’re using it from, but it’d more commonly be public or internal, just like most
extension methods are.

 What if you want to deconstruct a DateTime to more than just a date? This is
where overloading is useful. You can have two methods with different parameter lists,
and the compiler will work out which to use based on the number of parameters. Let’s
add another extension method to deconstruct a DateTime in terms of time as well as
date and then use both our methods to deconstruct different values.

static void Deconstruct(
 this DateTime dateTime,
 out int year, out int month, out int day) =>
 (year, month, day) =
 (dateTime.Year, dateTime.Month, dateTime.Day);

static void Deconstruct(
 this DateTime dateTime,
 out int year, out int month, out int day,
 out int hour, out int minute, out int second) =>
 (year, month, day, hour, minute, second) =
 (dateTime.Year, dateTime.Month, dateTime.Day,
 dateTime.Hour, dateTime.Minute, dateTime.Second);

static void Main()
{

Listing 12.8 Using an extension method to deconstruct DateTime

Listing 12.9 Using Deconstruct overloads

Extension method to
deconstruct DateTime

Deconstructs the current
date to year/month/day

Displays the date using
the three variables

Deconstructs a date
to year/month/day

Deconstructs a date to
year/month/day/hour/
minute/second
Licensed to André Santos <andrerfcsantos@gmail.com>

364 CHAPTER 12 Deconstruction and pattern matching
 DateTime birthday = new DateTime(1976, 6, 19);
 DateTime now = DateTime.UtcNow;

 var (year, month, day, hour, minute, second) = now;
 (year, month, day) = birthday;
}

You can use extension Deconstruct methods for types that already have instance
Deconstruct methods, and they’ll be used if the instance methods aren’t applicable
when deconstructing, just as for normal method calls.

 The restrictions for an extension Deconstruct method follow naturally from
those of an instance method:

 It has to be accessible to the calling code.
 Other than the first parameter (the target of the extension method), all param-

eters must be out parameters.
 There must be at least two such out parameters.
 The method may be generic, but only the receiver of the call (the first parame-

ter) can participate in type inference.

The rules indicating when a method can and can’t be generic deserve closer scrutiny,
particularly because they also shed light on why you need to use a different number of
parameters when overloading Deconstruct. The key lies in how the compiler treats
the Deconstruct method.

12.2.3 Compiler handling of Deconstruct calls

When everything’s working as expected, you can get away without thinking too much
about how the compiler decides which Deconstruct method to use. If you run into
problems, however, it can be useful to try to put yourself in the place of the compiler.

 The timing you’ve already seen for tuple decomposition still applies when decon-
structing with methods, so I’ll focus on the method call itself. Let’s take a somewhat
concrete example, working out what the compiler does when faced with a deconstruc-
tion like this:

(int x, string y) = target;

I say this is a somewhat concrete example because I haven’t shown what the type of
target is. That’s deliberate, because all you need to know is that it isn’t a tuple type.
The compiler expands this into something like this:

target.Deconstruct(out var tmpX, out var tmpY);
int x = tmpX;
string y = tmpY;

It then uses all the normal rules of method invocation to try to find the right method
to call. I realize that the use of out var is something you haven’t seen before. You’ll
look at it more closely in section 14.2, but all you need to know for now is that

Uses the six-value
deconstructor

Uses the three-value
deconstructor
Licensed to André Santos <andrerfcsantos@gmail.com>

365Introduction to pattern matching
it’s declaring an implicitly typed variable using the type of the out parameter to infer
the type.

 The important thing to notice is that the types of the variables you’ve declared in
the original code aren’t used as part of the Deconstruct call. That means they can’t
participate in type inference. This explains three things:

 Instance Deconstruct methods can’t be generic, because there’s no informa-
tion for type inference to use.

 Extension Deconstruct methods can be generic, because the compiler may
be able to infer type arguments using target, but that’s the only parameter
that’s going to be useful in terms of type inference.

 When overloading Deconstruct methods, it’s the number of out parameters
that’s important, not their type. If you introduce multiple Deconstruct meth-
ods with the same number of out parameters, that’s just going to stop the com-
piler from using any of them, because the calling code won’t be able to tell
which one you mean.

I’ll leave it at that, because I don’t want to make more of this than needed. If you run
into problems that you can’t understand, try performing the transformation shown
previously, and it may well make things clearer.

 That’s everything you need to know about deconstruction. The rest of the chapter
focuses on pattern matching, a feature that’s theoretically entirely separate from
deconstruction but has a similar feeling to it in terms of the tools available for using
existing data in new ways.

12.3 Introduction to pattern matching
Like many other features, pattern matching is new to C# but not new to programming
languages in general. In particular, functional languages often make heavy use of pat-
terns. The patterns in C# 7.0 satisfy many of the same use cases but in a manner that
fits in with the rest of the syntax of the language.

 The basic idea of a pattern is to test a certain aspect of a value and use the result of
that test to perform another action. Yes, that sounds just like an if statement, but pat-
terns are typically used either to give more context for the condition or to provide
more context within the action itself based on the pattern. Yet again, this feature
doesn’t allow you to do anything you couldn’t do before; it just lets you express the
same intention more clearly.

 I don’t want to go too far without giving an example. Don’t worry if it seems a little
odd right now; the aim is to give you a flavor. Suppose you have an abstract class
Shape that defines an abstract Area property and derived classes Rectangle,
Circle, and Triangle. Unfortunately, for your current application, you don’t need
the area of a shape; you need its perimeter. You may not be able to modify Shape to
add a Perimeter property (you may not have any control over its source at all), but
you know how to compute it for all the classes you’re interested in. Before C# 7, a
Perimeter method might look something like the following listing.
Licensed to André Santos <andrerfcsantos@gmail.com>

366 CHAPTER 12 Deconstruction and pattern matching

static double Perimeter(Shape shape)
{
 if (shape == null)
 throw new ArgumentNullException(nameof(shape));
 Rectangle rect = shape as Rectangle;
 if (rect != null)
 return 2 * (rect.Height + rect.Width);
 Circle circle = shape as Circle;
 if (circle != null)
 return 2 * PI * circle.Radius;
 Triangle triangle = shape as Triangle;
 if (triangle != null)
 return triangle.SideA + triangle.SideB + triangle.SideC;
 throw new ArgumentException(
 $"Shape type {shape.GetType()} perimeter unknown", nameof(shape));
}

NOTE If the lack of curly braces inside offends you, I apologize. I normally
use them for all loops, if statements, and so forth, but in this case, they ended
up dwarfing the useful code here and in some other later pattern examples.
I’ve removed them for brevity.

That’s ugly. It’s repetitive and long-winded; the same pattern of “check whether the
shape is a particular type, and then use that type’s properties” occurs three times.
Urgh. Importantly, even though there are multiple if statements here, the body of
each of them returns a value, so you’re always picking only one of them to execute.
The following listing shows how the same code can be written in C# 7 using patterns
in a switch statement.

static double Perimeter(Shape shape)
{
 switch (shape)
 {
 case null:
 throw new ArgumentNullException(nameof(shape));
 case Rectangle rect:
 return 2 * (rect.Height + rect.Width);
 case Circle circle:
 return 2 * PI * circle.Radius;
 case Triangle tri:
 return tri.SideA + tri.SideB + tri.SideC;
 default:
 throw new ArgumentException(...);
 }
}

This is quite a departure from the switch statement from previous versions of C#, in
which case labels were all just constant values. Here you’re sometimes interested in

Listing 12.10 Computing a perimeter without patterns

Listing 12.11 Computing a perimeter with patterns

Handles a
null value

Handles each type
you know about

If you don’t know what to
do, throw an exception.
Licensed to André Santos <andrerfcsantos@gmail.com>

367Patterns available in C# 7.0
just value matching (for the null case) and sometimes interested in the type of the
value (the rectangle, circle, and triangle cases). When you match by type, that match
also introduces a new variable of that type that you use to calculate the perimeter.

 The topic of patterns within C# has two distinct aspects:

 The syntax for patterns
 The contexts in which you can use patterns

At first, it may feel like everything’s new, and differentiating between these two aspects
may seem pointless. But the patterns you can use in C# 7.0 are just the start: the C#
design team has been clear that the syntax has been designed for new patterns to
become available over time. When you know the places in the language where pat-
terns are allowed, you can pick up new patterns easily. It’s a little bit chicken and
egg—it’s hard to demonstrate one part without showing the other—but we’ll start by
looking at the kinds of patterns available in C# 7.0.

12.4 Patterns available in C# 7.0
C# 7.0 introduces three kinds of patterns: constant patterns, type patterns, and the
var pattern. I’m going to demonstrate each with the is operator, which is one of the
contexts for using patterns.

 Every pattern tries to match an input. This can be any nonpointer expression. For
the sake of simplicity, I’ll refer to this as input in the pattern descriptions, as if it were
a variable, but it doesn’t have to be.

12.4.1 Constant patterns

A constant pattern is just what it sounds like: the pattern consists entirely of a compile-
time constant expression, which is then checked for equality with input. If both input
and the constant are integer expressions, they’re compared using ==. Otherwise, the
static object.Equals method is called. It’s important that it’s the static method that’s
called, because that enables you to safely check for a null value. The following listing
shows an example that serves even less real-world purpose than most of the other exam-
ples in the book, but it does demonstrate a couple of interesting points.

static void Match(object input)
{
 if (input is "hello")
 Console.WriteLine("Input is string hello");
 else if (input is 5L)
 Console.WriteLine("Input is long 5");
 else if (input is 10)
 Console.WriteLine("Input is int 10");
 else
 Console.WriteLine("Input didn't match hello, long 5 or int 10");
}

Listing 12.12 Simple constant matches
Licensed to André Santos <andrerfcsantos@gmail.com>

368 CHAPTER 12 Deconstruction and pattern matching
static void Main()
{
 Match("hello");
 Match(5L);
 Match(7);
 Match(10);
 Match(10L);
}

The output is mostly straightforward, but you may be surprised by the penultimate line:

Input is string hello
Input is long 5
Input didn't match hello, long 5 or int 10
Input is int 10
Input didn't match hello, long 5 or int 10

If integers are compared using ==, why didn’t the last call of Match(10L) match? The
answer is that the compile-time type of input isn’t an integral type, it’s just object, so
the compiler generates code equivalent to calling object.Equals(x, 10). That
returns false when the value of x is a boxed Int64 instead of a boxed Int32, as is the
case in our last call to Match. For an example using ==, you’d need something like this:

long x = 10L;
if (x is 10)
{
 Console.WriteLine("x is 10");
}

This isn’t useful in is expressions like this; it’d be more likely to be used in switch,
where you might have some integer constants (like a pre-pattern-matching switch
statement) along with other patterns. A more obviously useful kind of pattern is the
type pattern.

12.4.2 Type patterns

A type pattern consists of a type and an identifier—a bit like a variable declaration. The
pattern matches if input is a value of that type, just like the regular is operator. The
benefit of using a pattern for this is that it also introduces a new pattern variable of that
type initialized with the value if the pattern matches. If the pattern doesn’t match, the
variable still exists; it’s just not definitely assigned. If input is null, it won’t match any
type. As described in section 12.1.1, the underscore identifier _ can be used, in which
case it’s a discard and no variable is introduced. The following listing is a conversion of
our earlier set of as-followed-by-if statements (listing 12.10) to use pattern matching
without taking the more extreme step of using a switch statement.

static double Perimeter(Shape shape)
{
 if (shape == null)
 throw new ArgumentNullException(nameof(shape));

Listing 12.13 Using type patterns instead of as/if
Licensed to André Santos <andrerfcsantos@gmail.com>

369Patterns available in C# 7.0
 if (shape is Rectangle rect)
 return 2 * (rect.Height + rect.Width);
 if (shape is Circle circle)
 return 2 * PI * circle.Radius;
 if (shape is Triangle triangle)
 return triangle.SideA + triangle.SideB + triangle.SideC;
 throw new ArgumentException(
 $"Shape type {shape.GetType()} perimeter unknown", nameof(shape));
}

In this case, I definitely prefer the switch statement option instead, but that would
be overkill if you had only one as/if to replace. A type pattern is generally used to
replace either an as/if combination or if with is followed by a cast. The latter is
required when the type you’re testing is a non-nullable value type.

 The type specified in a type pattern can’t be a nullable value type, but it can be a
type parameter, and that type parameter may end up being a nullable value type at
execution time. In that case, the pattern will match only when the value is non-null.
The following listing shows this using int? as a type argument for a method that uses
the type parameter in a type pattern, even though the expression value is int? t
wouldn’t have compiled.

static void Main()
{
 CheckType<int?>(null);
 CheckType<int?>(5);
 CheckType<int?>("text");
 CheckType<string>(null);
 CheckType<string>(5);
 CheckType<string>("text");
}

static void CheckType<T>(object value)
{
 if (value is T t)
 {
 Console.WriteLine($"Yes! {t} is a {typeof(T)}");
 }
 else
 {
 Console.WriteLine($"No! {value ?? "null"} is not a {typeof(T)}");
 }
}

The output is as follows:

No! null is not a System.Nullable`1[System.Int32]
Yes! 5 is a System.Nullable`1[System.Int32]
No! text is not a System.Nullable`1[System.Int32]
No! null is not a System.String
No! 5 is not a System.String
Yes! text is a System.String

Listing 12.14 Behavior of nullable value types in type patterns
Licensed to André Santos <andrerfcsantos@gmail.com>

370 CHAPTER 12 Deconstruction and pattern matching

c

To wrap up this section on type patterns, there’s one issue in C# 7.0 that’s addressed
by C# 7.1. It’s one of those cases where if your project is already set to use C# 7.1 or
higher, you may not even notice. I’ve included this mostly so that you don’t get con-
fused if you copy code from a C# 7.1 project to a C# 7.0 project and find it breaks.

 In C# 7.0, type patterns like this

x is SomeType y

required that the compile-time type of x could be cast to SomeType. That sounds
entirely reasonable until you start using generics. Consider the following generic
method that displays details of the shapes provided using pattern matching.

static void DisplayShapes<T>(List<T> shapes) where T : Shape
{
 foreach (T shape in shapes)
 {
 switch (shape)
 {
 case Circle c:
 Console.WriteLine($"Circle radius {c.Radius}");
 break;
 case Rectangle r:
 Console.WriteLine($"Rectangle {r.Width} x {r.Height}");
 break;
 case Triangle t:
 Console.WriteLine(
 $"Triangle sides {t.SideA}, {t.SideB}, {t.SideC}");
 break;
 }
 }
}

In C# 7.0, this listing won’t compile, because this wouldn’t compile either:

if (shape is Circle)
{
 Circle c = (Circle) shape;
}

The use of the is operator is valid, but the cast isn’t. The inability to cast type param-
eters directly has been an annoyance for a long time in C#, with the usual workaround
being to first cast to object:

if (shape is Circle)
{
 Circle c = (Circle) (object) shape;
}

This is clumsy enough in a normal cast, but it’s worse when you’re trying to use an ele-
gant type pattern.

Listing 12.15 Generic method using type patterns

Variable type is a
type parameter (T)

Switches on
that variable

Tries to use type
case to convert to

oncrete shape type
Licensed to André Santos <andrerfcsantos@gmail.com>

371Patterns available in C# 7.0
 In listing 12.15, this can be worked around by either accepting an IEnumera-
ble<Shape> (taking advantage of generic covariance to allow a conversion of
List<Circle> to IEnumerable<Shape>, for example) or by specifying the type of
shape as Shape instead of T. In other cases, the workarounds aren’t as simple. C# 7.1
addresses this by permitting a type pattern for any type that would be valid using the
as operator, which makes listing 12.15 valid.

 I expect the type pattern to be the most commonly used pattern out of the three pat-
terns introduced in C# 7.0. Our final pattern almost doesn’t sound like a pattern at all.

12.4.3 The var pattern

The var pattern looks like a type pattern but using var as the type, so it’s just var fol-
lowed by an identifier:

someExpression is var x

Like type patterns, it introduces a new variable. But unlike type patterns, it doesn’t test
anything. It always matches, resulting in a new variable with the same compile-time
type as input, with the same value as input. Unlike type patterns, the var pattern
still matches even if input is a null reference.

 Because it always matches, using the var pattern with the is operator in an if
statement in the way that I’ve demonstrated for the other patterns is reasonably point-
less. It’s most useful with switch statements in conjunction with a guard clause
(described in section 12.6.1), although it could also occasionally be useful if you want
to switch on a more complex expression without assigning it to a variable.

 Just for the sake of presenting an example of var without using guard clauses, list-
ing 12.16 shows a Perimeter method similar to the one in listing 12.11. But this time,
if the shape parameter has a null value, a random shape is created instead. You use a
var pattern to report the type of the shape if you then can’t compute the perimeter.
You don’t need the constant pattern with the value null now, as you’re ensuring that
you never switch on a null reference.

static double Perimeter(Shape shape)
{
 switch (shape ?? CreateRandomShape())
 {
 case Rectangle rect:
 return 2 * (rect.Height + rect.Width);
 case Circle circle:
 return 2 * PI * circle.Radius;
 case Triangle triangle:
 return triangle.SideA + triangle.SideB + triangle.SideC;
 case var actualShape:
 throw new InvalidOperationException(
 $"Shape type {actualShape.GetType()} perimeter unknown");
 }
}

Listing 12.16 Using the var pattern to introduce a variable on error
Licensed to André Santos <andrerfcsantos@gmail.com>

372 CHAPTER 12 Deconstruction and pattern matching
In this case, an alternative would’ve been to introduce the actualShape variable
before the switch statement, switch on that, and then use the default case as
before.

 Those are all the patterns available in C# 7.0. You’ve already seen both of the con-
texts in which they can be used—with the is operator and in switch statements—but
there’s a little more to say in each case.

12.5 Using patterns with the is operator
The is operator can be used anywhere as part of a normal expression. It’s almost
always used with if statements, but it certainly doesn’t have to be. Until C# 7, the
right-hand side of an is operator had to be just a type, but now it can be any pattern.
Although this does allow you to use the constant or var patterns, realistically you’ll
almost always use type patterns instead.

 Both the var pattern and type patterns introduce a new variable. Prior to C# 7.3,
this came with an extra restriction: you can’t use them in field, property, or construc-
tor initializers or query expressions. For example, this would be invalid:

static int length = GetObject() is string text ? text.Length : -1;

I haven’t found this to be an issue, but the restriction is lifted in C# 7.3 anyway.
 That leaves us with patterns introducing local variables, which leads to an obvious

question: what’s the scope of the newly introduced variable? I understand that this was
the cause of a lot of discussion within the C# language team and the community, but
the final result is that the scope of the introduced variable is the enclosing block.

 As you might expect from a hotly debated topic, there are pros and cons to this.
One of the things I’ve never liked about the as/if pattern shown in listing 12.10 is
that you end up with a lot of variables in scope even though you typically don’t want to
use them outside the condition where the value matched the type you were testing.
Unfortunately, this is still the case when using type patterns. It’s not quite the same sit-
uation, as the variable won’t be definitely assigned in branches where the pattern
wasn’t matched.

 To compare, after this code

string text = input as string;
if (text != null)
{
 Console.WriteLine(text);
}

the text variable is in scope and definitely assigned. The roughly equivalent type pat-
tern code looks like this:

if (input is string text)
{
 Console.WriteLine(text);
}

Licensed to André Santos <andrerfcsantos@gmail.com>

373Using patterns with the is operator
After this, the text variable is in scope, but not definitely assigned. Although this
does pollute the declaration space, it can be useful if you’re trying to provide an alter-
native way of obtaining a value. For example:

if (input is string text)
{
 Console.WriteLine("Input was already a string; using that");
}
else if (input is StringBuilder builder)
{
 Console.WriteLine("Input was a StringBuilder; using that");
 text = builder.ToString();
}
else
{
 Console.WriteLine(
 $"Unable to use value of type ${input.GetType()}. Enter text:");
 text = Console.ReadLine();
}
Console.WriteLine($"Final result: {text}");

Here you really want the text variable to stay in scope, because you want to use it; you
assign to it in one of two ways. You don’t really want builder in scope after the mid-
dle block, but you can’t have it both ways.

 To be a little more technical about the definite assignment, after an is expression
with a pattern that introduces a pattern variable, the variable is (in language specifica-
tion terminology) “definitely assigned after true expression.” That can be important if
you want an if condition to do more than just test the type. For example, suppose
you want to check whether the value provided is a large integer. This is fine:

if (input is int x && x > 100)
{
 Console.WriteLine($"Input was a large integer: {x}");
}

You can use x after the && because you’ll evaluate that operand only if the first oper-
and evaluates to true. You can also use x inside the if statement because you’ll exe-
cute the body of the if statement only if both && operands evaluate to true. But what
if you want to handle both int or long values? You can test the value, but then you
can’t tell which condition matched:

if ((input is int x && x > 100) || (input is long y && y > 100))
{
 Console.WriteLine($"Input was a large integer of some kind");
}

Here, both x and y are in scope both inside and after the if statement, even though
the part declaring y looks as if it may not execute. But the variables are definitely
assigned only within the very small piece of code where you’re checking how large the
values are.
Licensed to André Santos <andrerfcsantos@gmail.com>

374 CHAPTER 12 Deconstruction and pattern matching
 All of this makes logical sense, but it can be a little surprising the first time you see
it. The two takeaways of this section are as follows:

 Expect the scope of a pattern variable declared in an is expression to be the
enclosing block.

 If the compiler prevents you from using a pattern variable, that means the lan-
guage rules can’t prove that the variable will have been assigned a value at that
point.

In the final part of this chapter, we’ll look at patterns used in switch statements.

12.6 Using patterns with switch statements
Specifications are often written not in terms of algorithms as such but in terms of
cases. The following are examples far removed from computing:

 Taxes and benefits—Your tax bracket probably depends on your income and
some other factors.

 Travel tickets—There may be group discounts as well as separate prices for chil-
dren, adults, and the elderly.

 Takeout food ordering—There can be deals if your order meets certain criteria.

In the past, we’ve had two ways of detecting which case applies to a particular input:
switch statements and if statements, where switch statements were limited to sim-
ple constants. We still have just those two approaches, but if statements are already
cleaner using patterns as you’ve seen, and switch statements are much more powerful.

NOTE Pattern-based switch statements feel quite different from the con-
stant-value-only switch statements of the past. Unless you’ve had experience
with other languages that have similar functionality, you should expect it to
take a little while to get used to the change.

switch statements with patterns are largely equivalent to a sequence of if/else
statements, but they encourage you to think more in terms of “this kind of input leads
to this kind of output” instead of steps.

All switch statements can be considered pattern based
Throughout this section, I talk about constant-based switch statements and pat-
tern-based switch statements as if they’re different. Because constant patterns are
patterns, every valid switch statement can be considered a pattern-based switch
statement, and it will still behave in exactly the same way. The differences you’ll see
later in terms of execution order and new variables being introduced don’t apply to
constant patterns anyway.

I find it quite helpful, at least at the moment, to consider these as if they were two
separate constructs that happen to use the same syntax. You may feel more com-
fortable not to make that distinction. It’s safe to use either mental model; they’ll both
predict the code’s behavior correctly.
Licensed to André Santos <andrerfcsantos@gmail.com>

375Using patterns with switch statements

.

You’ve already seen an example of patterns in switch statements in section 12.3,
where you used a constant pattern to match null and type patterns to match different
kinds of shapes. In addition to simply putting a pattern in the case label, there’s one
new piece of syntax to introduce.

12.6.1 Guard clauses

Each case label can also have a guard clause, which consists of an expression:

case pattern when expression:

The expression has to evaluate to a Boolean value2 just like an if statement’s condi-
tion. The body of the case will be executed only if the expression evaluates to true.
The expression can use more patterns, thereby introducing extra pattern variables.

 Let’s look at a concrete example that’ll also illustrate my point about specifica-
tions. Consider the following definition of the Fibonacci sequence:

 fib(0) = 0

 fib(1) = 1

 fib(n) = fib(n-2) + fib(n-1) for all n > 1

In chapter 11, you saw how to generate the Fibonacci sequence by using tuples, which
is a clean approach when considering it as a sequence. If you consider it only as a
function, however, the preceding definition leads to the following listing: a simple
switch statement using patterns and a guard clause.

static int Fib(int n)
{
 switch (n)
 {
 case 0: return 0;
 case 1: return 1;
 case var _ when n > 1: return Fib(n - 2) + Fib(n - 1);
 default: throw new ArgumentOutOfRangeException(
 nameof(n), "Input must be non-negative");
 }
}

This is a horribly inefficient implementation that I’d never use in real life, but it
clearly demonstrates how a specification can be directly translated into code.

 In this example, the guard clause doesn’t need to use the pattern variable, so I
used a discard with the _ identifier. In many cases, if the pattern introduces a new vari-
able, it will be used in the guard clause or at least in the case body.

 When you use guard clauses, it makes perfect sense for the same pattern to
appear multiple times, because the first time the pattern matches, the guard clause

2 It can also be a value that can be implicitly converted to a Boolean value or a value of a type that provides a
true operator. These are the same requirements as the condition in an if statement.

Listing 12.17 Implementing the Fibonacci sequence recursively with patterns

Base cases handled with
constant patterns

Recursive case handled
with var pattern and

guard clause

If you don’t match any
patterns, the input was invalid
Licensed to André Santos <andrerfcsantos@gmail.com>

376 CHAPTER 12 Deconstruction and pattern matching
may evaluate to false. Here’s an example from Noda Time in a tool used to build
documentation:

private string GetUid(TypeReference type, bool useTypeArgumentNames)
{
 switch (type)
 {
 case ByReferenceType brt:
 return $"{GetUid(brt.ElementType, useTypeArgumentNames)}@";
 case GenericParameter gp when useTypeArgumentNames:
 return gp.Name;
 case GenericParameter gp when gp.DeclaringType != null:
 return $"`{gp.Position}";
 case GenericParameter gp when gp.DeclaringMethod != null:
 return $"``{gp.Position}";
 case GenericParameter gp:
 throw new InvalidOperationException(
 "Unhandled generic parameter");
 case GenericInstanceType git:
 return "(This part of the real code is long and irrelevant)";
 default:
 return type.FullName.Replace('/', '.');
 }
}

I have four patterns that handle generic parameters based on the useType-
ArgumentNames method parameter and then whether the generic type parameter
was introduced in a method or a type. The case that throws an exception is almost a
default case for generic parameters, indicating that it’s come across a situation I
haven’t thought about yet. The fact that I’m using the same pattern variable name
(gp) for multiple cases raises another natural question: what’s the scope of a pattern
variable introduced in a case label?

12.6.2 Pattern variable scope for case labels

If you declare a local variable directly within a case body, the scope of that variable is
the whole switch statement, including other case bodies. That’s still true (and unfor-
tunate, in my opinion), but it doesn’t include variables declared within case labels. The
scope of those variables is just the body associated with that case label. That applies to
pattern variables declared by the pattern, pattern variables declared within the guard
clause, and any out variables (see section 14.2) declared in the guard clause.

 That’s almost certainly what you want, and it’s useful in terms of allowing you to
use the same pattern variables for multiple cases handling similar situations, as dem-
onstrated in the Noda Time tool code. There’s one quirk here: just as with normal
switch statements, it’s valid to have multiple case labels with the same body. At that
point, the variables declared within all the case labels for that body are required to
have different names (because they’re contributing to the same declaration space).
But within the case body, none of those variables will be definitely assigned, because
the compiler can’t tell which label matched. It can still be useful to introduce those
variables, but mostly for the sake of using them in guard clauses.
Licensed to André Santos <andrerfcsantos@gmail.com>

377Using patterns with switch statements
 For example, suppose you’re matching an object input, and you want to make sure
that if it’s numeric, it’s within a particular range, and that range may vary by type. You
could use one type pattern per numeric type with a corresponding guard clause. The
following listing shows this for int and long, but you could expand it for other types.

static void CheckBounds(object input)
{
 switch (input)
 {
 case int x when x > 1000:
 case long y when y > 10000L:
 Console.WriteLine("Value is too large");
 break;
 case int x when x < -1000:
 case long y when y < -10000L:
 Console.WriteLine("Value is too low");
 break;
 default:
 Console.WriteLine("Value is in range");
 break;
 }
}

The pattern variables are definitely assigned within the guard clauses, because execu-
tion will reach the guard clause only if the pattern has matched to start with, and they’re
still in scope within the body, but they’re not definitely assigned. You could assign new
values to them and use them after that, but I feel that won’t often be useful.

 In addition to the basic premise of pattern matching being new and different,
there’s one huge difference between the constant-based switch statements of the
past and new pattern-based switch statements: the order of cases matters in a way
that it didn’t before.

12.6.3 Evaluation order of pattern-based switch statements

In almost all situations, case labels for constant-based switch statements can be
reordered freely with no change in behavior.3 This is because each case label matches
a single constant value, and the constants used for any switch statement all have to
be different, so any input can match at most only one case label. With patterns, that’s
no longer true.

 The logical evaluation order of a pattern-based switch statement can be summa-
rized simply:

Listing 12.18 Using multiple case labels with patterns for a single case body

3 The only time this isn’t true is when you use a variable in one case body that was declared in an earlier case
body. That’s almost always a bad idea anyway, and it’s a problem only because of the shared scope of such
variables.
Licensed to André Santos <andrerfcsantos@gmail.com>

378 CHAPTER 12 Deconstruction and pattern matching
 Each case label is evaluated in source-code order.
 The code body of the default label is executed only when all the case labels

have been evaluated, regardless of where the default label is within the
switch statement.

TIP Although you now know that the code associated with the default label
is executed only if none of the case labels matches, regardless of where it
appears, it’s possible that some people reading your code might not. (Indeed,
you might have forgotten it by the time you next come to read your own
code.) If you put the default label as the final part of the switch statement,
the behavior is always clear.

Sometimes it won’t matter. In our Fibonacci-computing method, for example, the
cases were only 0, 1, and more than 1, so they could be freely reordered. Our Noda
Time tool code, however, had four cases that definitely need to be checked in order:

case GenericParameter gp when useTypeArgumentNames:
 return gp.Name;
case GenericParameter gp when gp.DeclaringType != null:
 return $"`{gp.Position}";
case GenericParameter gp when gp.DeclaringMethod != null:
 return $"``{gp.Position}";
case GenericParameter gp:
 throw new InvalidOperationException(...);

Here you want to use the generic type parameter name whenever useType-
ArgumentNames is true (the first case), regardless of the other cases. The second and
third cases are mutually exclusive (in a way that you know but the compiler wouldn’t),
so their order doesn’t matter. The last case must be last within these four because you
want the exception to be thrown only if the input is a GenericParameter that isn’t
otherwise handled.

 The compiler is helpful here: the final case doesn’t have a guard clause, so it’ll
always be valid if the type pattern matches. The compiler is aware of this; if you put
that case earlier than the other case labels with the same pattern, it knows that’s effec-
tively hiding them and reports an error.

 Multiple case bodies can be executed in only one way, and that’s with the rarely
used goto statement. That’s still valid within pattern-based switch statements, but
you can goto only a constant value, and a case label must be associated with that
value without a guard clause. For example, you can’t goto a type pattern, and you
can’t goto a value on the condition that an associated guard clause also evaluates to
true. In reality, I’ve seen so few goto statements in switch statements that I can’t see
this being much of a restriction.

 I deliberately referred to the logical evaluation order earlier. Although the C# com-
piler could effectively translate every switch statement into a sequence of if/else
statements, it can act more efficiently than that. For example, if there are multiple type
patterns for the same type but with different guard clauses, it can evaluate the type pat-
tern part once and then check each guard clause in turn instead. Similarly, for constant
Licensed to André Santos <andrerfcsantos@gmail.com>

379Thoughts on usage
values without guard patterns (which still have to be distinct, just as in previous versions
of C#), the compiler can use the IL switch instruction, potentially after performing an
implicit type check. Exactly which optimizations the compiler performs is beyond the
scope of this book, but if you ever happen to look at the IL associated with a switch
statement and it bears little resemblance to the source code, this may well be the cause.

12.7 Thoughts on usage
This section provides preliminary thoughts on how the features described in this
chapter are best used. Both features are likely to evolve further and possibly even be
combined with a deconstruction pattern. Other related potential features, such as syn-
tax to write an expression-bodied method for which the result is based on a pattern-
based switch, may well affect where these features are used. You’ll see some potential
C# 8 features like this in chapter 15.

 Pattern matching is an implementation concern, which means that you don’t need
to worry if you find later that you’ve overused it. You can revert to an older style of cod-
ing if you find patterns don’t give you the readability benefit you’d expected. The same
is true of deconstruction to some extent. But if you’ve added public Deconstruct
methods all over your API, removing them would be a breaking change.

 More than that, I suggest that most types aren’t naturally deconstructable anyway,
just as most types don’t have a natural IComparable<T> implementation. I suggest
adding a Deconstruct method only if the order of the components is obvious and
unambiguous. That’s fine for coordinates, anything with a hierarchical nature such as
date/time values, or even where there’s a common convention, such as colors being
thought of as RGB with optional alpha. Most business-related entities probably don’t
fall into this category, though; for example, an item in an online shopping basket has
various aspects, but there’s no obvious order to them.

12.7.1 Spotting deconstruction opportunities

The simplest kind of deconstruction to use is likely to be related to tuples. If you’re
calling a method that returns a tuple and you don’t need to keep the values together,
consider deconstructing them instead. For example, with our MinMax method from
chapter 11, I’d almost always deconstruct immediately instead of keeping the return
value as a tuple:

int[] values = { 2, 7, 3, -5, 1, 0, 10 };
var (min, max) = MinMax(values);
Console.WriteLine(min);
Console.WriteLine(max);

I suspect the use of nontuple deconstruction will be rarer, but if you’re dealing with
points, colors, date/time values, or something similar, you may find that it’s worth
deconstructing the value early on if you’d otherwise refer to the components via
properties multiple times. You could’ve done this before C# 7, but the ease of declar-
ing multiple local variables via deconstruction could easily swing the balance between
not worth doing and worth doing.
Licensed to André Santos <andrerfcsantos@gmail.com>

380 CHAPTER 12 Deconstruction and pattern matching
12.7.2 Spotting pattern matching opportunities

 You should consider pattern matching in two obvious places:

 Anywhere you’re using the is or as operators and conditionally executing
code by using the more specifically typed value.

 Anywhere you have an if/else-if/else-if/else sequence using the same
value for all the conditions, and you can use a switch statement instead.

If you find yourself using a pattern of the form var ... when multiple times (in
other words, when the only condition occurs in a guard clause), you may want to ask
yourself whether this is really pattern matching. I’ve certainly come across scenarios
like that, and so far I’ve erred on the side of using pattern matching anyway. Even if it
feels slightly abusive, it conveys the intent of matching a single condition and taking a
single action more clearly than the if/else sequence does, in my view.

 Both of these are transformations of an existing code structure with changes only
to the implementation details. They’re not changing the way you think about and
organize your logic. That grander style of change—which could still be refactoring
within the visible API of a single type, or perhaps within the public API of an assembly,
by changing internal details—is harder to spot. Sometimes it may be a move away
from using inheritance; the logic for a calculation may be more clearly expressed in a
single place that considers all the different cases than as part of the type representing
each of those cases. The perimeter of a shape case in section 12.3 is one example of
this, but you could easily apply the same ideas to many business cases. This is where
disjoint union types are likely to become more widespread within C#.

 As I said, these are preliminary thoughts. As always, I encourage you to experiment
with deliberate introspection: consider opportunities as you code, and if you try some-
thing new, reflect on its pros and cons after you’ve done so.

Summary
 Deconstruction allows you to break values into multiple variables with syntax

that’s consistent between tuples and nontuples.
 Nontuple types are deconstructed using a Deconstruct method with out

parameters. This can be an extension method or an instance method.
 Multiple variables can be declared with a single var deconstruction if all the

types can be inferred by the compiler.
 Pattern matching allows you to test the type and content of a value, and some

patterns allow you to declare a new variable.
 Pattern matching can be used with the is operator or in switch statements.
 A pattern within a switch statement can have an additional guard clause intro-

duced by the when contextual keyword.
 When a switch statement contains patterns, the order of the case labels can

change the behavior.
Licensed to André Santos <andrerfcsantos@gmail.com>

Improving efficiency with
more pass by reference
When C# 7.0 came out, it had a couple of features that struck me as slightly odd: ref
local variables and ref returns. I was slightly skeptical about how many developers
would need them, as they seemed to be targeted situations involving large value
types, which are rare. My expectation was that only near-real-time services and
games would find these useful.

 C# 7.2 brought another raft of ref-related features: in parameters, read-only ref
locals and returns, read-only structs, and ref-like structs. These were complementary

This chapter covers
 Aliasing variables with the ref keyword

 Returning variables by reference with ref returns

 Efficient argument passing with in parameters

 Preventing data changes with read-only ref
returns, read-only ref locals, and read-only struct
declarations

 Extension methods with in or ref targets

 Ref-like structs and Span<T>
381

Licensed to André Santos <andrerfcsantos@gmail.com>

382 CHAPTER 13 Improving efficiency with more pass by reference
to the 7.0 features but still appeared to be making the language more complicated for
the benefit of a small set of users.

 I’m now convinced that although many developers may not directly see more ref-
based code in their projects, they’ll reap the benefits of the features existing because
more-efficient facilities are being made available in the framework. At the time of writ-
ing, it’s too early to say for sure how revolutionary this will prove, but I think it’s likely
to be significant.

 Often performance comes at the expense of readability. I still believe that’s the
case with many of the features described in this chapter; I’m expecting them to be
used sparingly in cases where performance is known to be important enough to justify
the cost. The framework changes enabled by all of this are a different matter, though.
They should make it reasonably easy to reduce object allocations and save both mem-
ory and garbage collector work without making your code harder to read.

 I bring all of this up because you may have similar reactions. While reading this
chapter, it’s entirely reasonable to decide that you’ll try to avoid most of the language
features here. I urge you to plow on to the end, though, to see the framework-related
benefits. The final section, on ref-like structs, introduces Span<T>. Far more can be
said about spans than I have room to write in this book, but I expect spans and related
types to be important parts of the developer toolbox in the future.

 Throughout this chapter, I’ll mention when a feature is available only in a point
release of C# 7. As with other point release features, that means if you’re using a C# 7
compiler, you’ll be able to take advantage of those features only with appropriate proj-
ect settings to specify the language version. I suggest you take an all-or-nothing
approach to ref-related features: either use them all, with appropriate settings to allow
this, or use none of them. Using only the features in C# 7.0 is likely to be less satisfy-
ing. With all of that said, let’s start by revisiting the use of the ref keyword in earlier
versions of C#.

13.1 Recap: What do you know about ref?
You need a firm grasp of how ref parameters work in C# 6 and earlier in order to
understand the ref-related features in C# 7. This, in turn, requires a firm grasp of the
difference between a variable and its value.

 Different developers have different ways of thinking
about variables, but my mental model is always that of a
piece of paper, as shown in figure 13.1. The piece of
paper has three items of information:

 The name of the variable
 The compile-time type
 The current value

Assigning a new value to the variable is just a matter of
erasing the current value and writing a new one instead.

Name Type

5int x = 5;

x int

Value

Figure 13.1 Representing
a variable as a piece of paper
Licensed to André Santos <andrerfcsantos@gmail.com>

383Recap: What do you know about ref?
When the type of the variable is a reference type, the value written on the piece of
paper is never an object; it’s always an object reference. An object reference is just a
way of navigating to an object in the same way that a street address is a way of navigat-
ing to a building. Two pieces of paper with the same address written on them refer to
the same building, just as two variables with the same reference value refer to the
same object.

TIP The ref keyword and object references are different concepts. Similari-
ties certainly exist, but you need to distinguish between them. Passing an
object reference by value isn’t the same thing as passing a variable by refer-
ence, for example. In this section, I’ve emphasized the difference by using
object reference instead of just reference.

Importantly, when an assignment copies one variable’s value into another variable, it
really is just the value that’s copied; the two pieces of paper remain independent, and
a later change to either variable doesn’t change the other. Figure 13.2 illustrates this
concept.

This sort of value copying is exactly what happens with a value parameter when you
call a method; the value of the method argument is copied onto a fresh piece of
paper—the parameter—as shown in figure 13.3. The argument doesn’t have to be a
variable; it can be any expression of an appropriate type.

Figure 13.3 Calling a method with value parameters: the parameters are
new variables that start with the values of the arguments.

5int x = 5;

Value is copied.

x int

5int y = x;

x int

5

y int

Figure 13.2 Assignment copying
a value into a new variable

5

Value of x (first
argument) is 5.

Value of x * 2 (second
argument) is 10.

x int

5

a int

10

b int

int x = 5;
M(x, x * 2);

void M(int a, int b)
{ ... }
Licensed to André Santos <andrerfcsantos@gmail.com>

384 CHAPTER 13 Improving efficiency with more pass by reference
Figure 13.4 A ref parameter uses the same piece of paper rather
than creating a new one with a copy of the value.

A ref parameter behaves differently, as shown in figure 13.4. Instead of acting as a new
piece of paper, a reference parameter requires the caller to provide an existing piece of
paper, not just an initial value. You can think of it as a piece of paper with two names
written on it: the one the calling code uses to identify it and the parameter name.

 If the method modifies the value of the ref parameter, thereby changing what’s
written on the paper, then when the method returns, that change is visible to the
caller because it’s on the original piece of paper.

NOTE There are different ways of thinking about ref parameters and vari-
ables. You may read other authors who treat ref parameters as entirely sepa-
rate variables that just have an automatic layer of indirection so that any
access to the ref parameter follows the indirection first. That’s closer to what
the IL represents, but I find it less helpful.

There’s no requirement that each ref parameter uses a different piece of paper. The
following listing provides a somewhat extreme example, but it’s good for checking
your understanding before moving on to ref locals.

static void Main()
{
 int x = 5;
 IncrementAndDouble(ref x, ref x);
 Console.WriteLine(x);
}

static void IncrementAndDouble(ref int p1, ref int p2)
{
 p1++;
 p2 *= 2;
}

Listing 13.1 Using the same variable for multiple ref parameters

5

Parameter
name

Variable name
in calling code

Same piece of paper; not
a copy of the value on a
separate page

x int

5

x
a

int

int x = 5;
M(ref x);

void M(ref int a)
{ ... }
Licensed to André Santos <andrerfcsantos@gmail.com>

385Ref locals and ref returns
The output here is 12: x, p1, p2 all represent
the same piece of paper. It starts with a value of
5; p1++ increments it to 6, and p2 *= 2 dou-
bles it to 12. Figure 13.5 shows a graphical repre-
sentation of the variables involved.

 A common way of talking about this is alias-
ing: in the preceding example, the variables x,
p1, and p2 are all aliases for the same storage
location. They’re different ways of getting to the
same piece of memory.

 Apologies if this seems long-winded and old
hat. You’re now ready to move on to the genu-
inely new features of C# 7. With the mental model of variables as pieces of paper,
understanding the new features will be much easier.

13.2 Ref locals and ref returns
Many of the ref-related C# 7 features are interconnected, which makes it harder to
understand the benefits when you see them one at a time. While I’m describing the
features, the examples will be even more contrived than normal, as they try to demon-
strate just a single point at a time. The first two features you’ll look at are the ones
introduced in C# 7.0, although even they were enhanced in C# 7.2. First up, ref locals.

13.2.1 Ref locals

Let’s continue our earlier analogy: ref parameters allow a piece of paper to be shared
between variables in two methods. The same piece of paper used by the caller is the
one that the method uses for the parameter. Ref locals take that idea one step further
by allowing you declare a new local variable that shares the same piece of paper as an
existing variable.

 The following listing shows a trivial example of this, incrementing twice via differ-
ent variables and then showing the result. Note that you have to use the ref keyword
in both the declaration and in the initializer.

int x = 10;
ref int y = ref x;
x++;
y++;
Console.WriteLine(x);

This prints 12, just as if you’d incremented x twice.
 Any expression of the appropriate type that’s classified as a variable can be used to

initialize a ref local, including array elements. If you have an array of large mutable
value types, this can avoid unnecessary copy operations in order to make multiple

Listing 13.2 Incrementing twice via two variables

5

Parameter
names

Variable name
in calling code

x int

5

x
p1
p2

int

int x = 5;

IncrementAndDouble(ref x, ref x);

Figure 13.5 Two ref parameters
referring to the same piece of paper
Licensed to André Santos <andrerfcsantos@gmail.com>

386 CHAPTER 13 Improving efficiency with more pass by reference
changes. The following listing creates an array of tuples and then modifies both items
within each array element without copying.

var array = new (int x, int y)[10];

for (int i = 0; i < array.Length; i++)
{
 array[i] = (i, i);
}

for (int i = 0; i < array.Length; i++)
{
 ref var element = ref array[i];
 element.x++;
 element.y *= 2;
}

Before ref locals, there would’ve been two alternatives to modify the array. You could
use either multiple array access expressions such as the following:

for (int i = 0; i < array.Length; i++)
{
 array[i].x++;
 array[i].y *= 2;
}

Or you could copy the whole tuple out of the array, modify it, and then copy it back:

for (int i = 0; i < array.Length; i++)
{
 var tuple = array[i];
 tuple.x++;
 tuple.y *= 2;
 array[i] = tuple;
}

Neither of these is particularly appealing. The ref local approach expresses our aim of
working with an array element as a normal variable for the body of the loop.

 Ref locals can also be used with fields. The behavior for a static field is predictable,
but the behavior for instance fields may surprise you. Consider the following listing,
which creates a ref local to alias a field in one instance via a variable (obj) and then
changes the value of obj to refer to a different instance.

class RefLocalField
{
 private int value;

 static void Main()
 {

Listing 13.3 Modifying array elements using ref local

Listing 13.4 Aliasing the field of a specific object by using ref local

Initializes the array with
(0, 0), (1, 1), and so on

For each element of
the array, increments x
and doubles y
Licensed to André Santos <andrerfcsantos@gmail.com>

387Ref locals and ref returns

va

mo
 var obj = new RefLocalField();
 ref int tmp = ref obj.value;
 tmp = 10;
 Console.WriteLine(obj.value);

 obj = new RefLocalField();
 Console.WriteLine(tmp);
 Console.WriteLine(obj.value);
 }
}

The output is shown here:

10
10
0

The possibly surprising line is the middle one. It demonstrates that using tmp isn’t the
same as using obj.value each time. Instead, tmp acts as an alias for the field
expressed as obj.value at the point of initialization. Figure 13.6 shows a snapshot of
the variables and objects involved at the end of the Main method.

As a corollary of this, the tmp variable will prevent the first instance from being garbage
collected until after the last use of tmp in the method. Similarly, using a ref local for an
array element stops the array containing that element from being garbage collected.

NOTE A ref variable that refers to a field within an object or an array element
makes life harder for the garbage collector. It has to work out which object the
variable is part of and keep that object alive. Regular object references are sim-
pler because they directly identify the object involved. Each ref variable that
refers to a field in an object introduces an interior pointer into a data structure

Creates an instance
of RefLocalField

Declares a ref local variable referring
to the field of the first instance

Assigns a new
lue to ref local

Demonstrates
that this has

dified the field Reassigns the obj variable
to refer to a second
instance of RefLocalField

Demonstrates that tmp still uses
the field in the first instance

Demonstrates that the value of the
field in the second instance really is 0

10

Initial instance

Instance created
after assigning tmp

ref local
variable tmp

RefLocalField
objects

value
tmp

int

RefLocalField
objects

0

value intobj RefLocalField

Figure 13.6 At the end of listing 13.4,
the tmp variable refers to a field in the
first instance created, whereas the value
of obj refers to a different instance.
Licensed to André Santos <andrerfcsantos@gmail.com>

388 CHAPTER 13 Improving efficiency with more pass by reference
maintained by the garbage collector. It’d be expensive to have a lot of these
present concurrently, but ref variables can occur only on the stack, which
makes it less likely that there’ll be enough to cause performance issues.

Ref locals do have a few restrictions around their use. Most of them are obvious and
won’t get in your way, but it’s worth knowing them just so you don’t experiment to try
to work around them.

INITIALIZATION: ONCE, ONLY ONCE, AND AT DECLARATION (BEFORE C# 7.3)
Ref locals always have to be initialized at the point of declaration. For example, the
following code is invalid:

int x = 10;
ref int invalid;
invalid = ref int x;

Likewise, there’s no way to change a ref local to alias a different variable. (In our
model terms, you can’t rub the name off and then write it on a different piece of
paper.) Of course, the same variable can effectively be declared several times; for
example, in listing 13.3, you declared the element variable in a loop:

for (int i = 0; i < array.Length; i++)
{
 ref var element = ref array[i];
 ...
}

On each iteration of the loop, element will alias a different array element. But that’s
okay, because it’s effectively a new variable on each iteration.

 The variable used to initialize the ref local has to be definitely assigned, too. You
might expect the variables to share definite assignment status, but rather than making
the definite assignment rules even more complicated, the language designers ensured
that ref locals are always definitely assigned. Here’s an example:

int x;
ref int y = ref x;
x = 10;
Console.WriteLine(y);

This code doesn’t try to read from any variable until everything is definitely assigned,
but it’s still invalid.

 C# 7.3 lifts the restriction on reassignment, but ref locals still have to be initialized
at the point of declaration using a definitely assigned variable. For example:

int x = 10;
int y = 20;
ref int r = ref x;
r++;
r = ref y;
r++;
Console.WriteLine($"x={x}; y={y}");

Invalid, as x isn’t
definitely assigned

Valid only
in C# 7.3

Prints x = 11,
y = 21
Licensed to André Santos <andrerfcsantos@gmail.com>

389Ref locals and ref returns
I urge a degree of caution around using this feature anyway. If you need the same ref
variable to refer to different variables over the course of a method, I suggest at least
trying to refactor the method to be simpler.

NO REF FIELDS, OR LOCAL VARIABLES THAT WOULD LIVE BEYOND THE METHOD CALL

Although a ref local can be initialized using a field, you can’t declare a field using ref.
This is one aspect of protecting against having a ref variable that acts like an alias for
another variable with a shorter lifetime. It’d be problematic if you could create an
object with a field that aliased a local variable in a method; what would happen to that
field after the method had returned?

 The same concern around lifetimes extends to local variables in three cases:

 Iterator blocks can’t contain ref locals.
 Async methods can’t contain ref locals.
 Ref locals can’t be captured by anonymous methods or local methods. (Local

methods are described in chapter 14.)

These are all cases where local variables can live beyond the original method call. At
times, the compiler could potentially prove that it wouldn’t cause a problem, but the
language rules have been chosen for simplicity. (One simple example of this is a local
method that’s only called by the containing method rather than being used in a
method group conversion.)

NO REFERENCES TO READ-ONLY VARIABLES

Any ref local variable introduced in C# 7.0 is writable; you can write a new value on the
piece of paper. That causes a problem if you try to initialize the ref local by using a piece
of paper that isn’t writable. Consider this attempt to violate the readonly modifier:

class MixedVariables
{
 private int writableField;
 private readonly int readonlyField;

 public void TryIncrementBoth()
 {
 ref int x = ref writableField;
 ref int y = ref readonlyField;

 x++;
 y++;
 }
}

If this were valid, all the reasoning we’ve built up over the years about read-only fields
would be lost. Fortunately, that isn’t the case; the compiler prevents the assignment to
y just as it would prevent any direct modification of readonlyField. But this code
would be valid in the constructor for the MixedVariables class, because in that situ-
ation you’d be able to write directly to readonlyField as well. In short, you can ini-
tialize a ref local only in a way that aliases a variable you’d be able to write to in other

Aliases a
writable field

Attempts to alias
a readonly field

Increments both variables
Licensed to André Santos <andrerfcsantos@gmail.com>

390 CHAPTER 13 Improving efficiency with more pass by reference
situations. This matches the behavior from C# 1.0 onward for using fields as argu-
ments for ref parameters.

 This restriction can be frustrating if you want to take advantage of the sharing
aspect of ref locals without the writable aspect. In C# 7.0, that’s a problem; but you’ll
see in section 13.2.4 that C# 7.2 offers a solution.

TYPES: ONLY IDENTITY CONVERSIONS ARE PERMITTED

The type of the ref local either has to be the same as the type of the variable it’s being
initialized with or there has to be an identity conversion between the two types. Any
other conversion—even reference conversions that are allowed in many other scenar-
ios—aren’t enough. The following listing shows an example of a ref local declaration
using a tuple-based identity conversion that you learned about in chapter 11.

NOTE See section 11.3.3 for a reminder on identity conversions.

(int x, int y) tuple1 = (10, 20);
ref (int a, int b) tuple2 = ref tuple1;
tuple2.a = 30;
Console.WriteLine(tuple1.x);

This prints 30, as tuple1 and tuple2 share the same storage location; tuple1.x
and tuple2.a are equivalent to each other, as are tuple1.y and tuple2.b.

 In this section, you’ve looked at initializing ref locals from local variables, fields,
and array elements. A new kind of expression is categorized as a variable in C# 7: the
variable returned by a ref return method.

13.2.2 Ref returns

In some ways, it should be easy to understand ref returns. Using our previous model,
it’s the idea that a method can return a piece of paper instead of a value. You need to
add the ref keyword to the return type and to any return statement. The calling code
will often declare a ref local to receive the return value, too. This means you have to
sprinkle the ref keyword pretty liberally in your code to make it very clear what
you’re trying to do. The following listing shows about the simplest possible use of ref
return; the RefReturn method returns whatever variable was passed into it.

static void Main()
{
 int x = 10;
 ref int y = ref RefReturn(ref x);
 y++;
 Console.WriteLine(x);
}

Listing 13.5 Identity conversion in ref local declaration

Listing 13.6 Simplest possible ref return demonstration
Licensed to André Santos <andrerfcsantos@gmail.com>

391Ref locals and ref returns
static ref int RefReturn(ref int p)
{
 return ref p;
}

This prints 11, because x and y are on the same piece of paper, just as if you’d written

ref int y = ref x;

The method is essentially an identity function just to show the syntax. It could’ve been
written as an expression-bodied method, but I wanted to make the return part clear.

 So far, so simple, but a lot of details get in the way, mostly because the compiler
makes sure that any piece of paper that’s returned is still going to exist when the
method has finished returning. It can’t be a piece of paper that was created in the
method.

 To put this in implementation terms, a method can’t return a storage location that
it’s just created on the stack, because when the stack is popped, the storage location
won’t be valid anymore. When describing how the C# language works, Eric Lippert is
fond of saying that the stack is an implementation detail (see http://mng.bz/oVvZ).
In this case, it’s an implementation detail that leaks into the language. The restric-
tions are for the same reasons that ref fields are prohibited, so if you feel you under-
stand one of these, you can apply the same logic to the other.

 I won’t go into an exhaustive list of every kind of variable that can and can’t be
returned using ref return, but here are the most common examples:

VALID

 ref or out parameters
 Fields of reference types
 Fields of structs where the struct variable is a ref or out parameter
 Array elements

INVALID

 Local variables declared in the method (including value parameters)
 Fields of struct variables declared in the method

In addition to these restrictions on what can and can’t be returned, ref return is
entirely invalid in async methods and iterator blocks. Similar to pointer types, you
can’t use the ref modifier in a type argument, although it can appear in interface and
delegate declarations. For example, this is entirely valid

delegate ref int RefFuncInt32();

But you couldn’t get the same result by trying to refer to Func<ref int>.
 Ref return doesn’t have to be used with a ref local. If you want to perform a single

operation on the result, you can do that directly. The following listing shows this using
the same code as listing 13.6 but without the ref local.
Licensed to André Santos <andrerfcsantos@gmail.com>

http://mng.bz/oVvZ

392 CHAPTER 13 Improving efficiency with more pass by reference

y

static void Main()
{
 int x = 10;
 RefReturn(ref x)++;
 Console.WriteLine(x);
}

static ref int RefReturn(ref int p)
{
 return ref p;
}

Again, this is equivalent to incrementing x, so the output is 11. In addition to modify-
ing the resulting variable, you can use it as a ref argument to another method. To
make our already purely demonstrative example even sillier, you could call Ref-
Return with the result of itself (twice):

RefReturn(ref RefReturn(ref RefReturn(ref x)))++;

Ref returns are valid for indexers as well as methods. This is most commonly useful to
return an array element by reference, as shown in the following listing.

class ArrayHolder
{
 private readonly int[] array = new int[10];

 public ref int this[int index] => ref array[index];
}

static void Main()
{
 ArrayHolder holder = new ArrayHolder();
 ref int x = ref holder[0];
 ref int y = ref holder[0];

 x = 20;
 Console.WriteLine(y);
}

You’ve now covered all the new features in C# 7.0, but later point releases expanded
the set of ref-related features. The first feature was one I was quite frustrated by when
writing my initial draft of this chapter: lack of conditional ?: operator support.

13.2.3 The conditional ?: operator and ref values (C# 7.2)

The conditional ?: operator has been present since C# 1.0 and is familiar from other
languages:

condition ? expression1 : expression2

Listing 13.7 Incrementing the result of a ref return directly

Listing 13.8 A ref return indexer exposing array elements

Increments the returned
variable directly

Indexer returns an arra
element by reference

Declares two ref locals referring
to the same array element

Changes the array
element value via xObserves the

change via y
Licensed to André Santos <andrerfcsantos@gmail.com>

393Ref locals and ref returns
It evaluates its first operand (the condition), and then evaluates either the second or
third operand to provide the overall result. It feels natural to want to achieve the same
thing with ref values, picking one or another variable based on a condition.

 With C# 7.0, this wasn’t feasible, but it is in C# 7.2. A conditional operator can use
ref values for the second and third operands, at which point the result of the condi-
tional operator is also a variable that can be used with the ref modifier. As an exam-
ple, the following listing shows a method that counts the even and odd values in a
sequence, returning the result as a tuple.

static (int even, int odd) CountEvenAndOdd(IEnumerable<int> values)
{
 var result = (even: 0, odd: 0);
 foreach (var value in values)
 {
 ref int counter = ref (value & 1) == 0 ?
 ref result.even : ref result.odd;
 counter++;
 }
 return result;
}

The use of a tuple here is somewhat coincidental, although it serves to demonstrate
how useful it is for tuples to be mutable. This addition makes the language feel much
more consistent. The result of the conditional operator can be used as an argument to
a ref parameter, assigned to a ref local, or used in a ref return. It all just drops out nicely.
The next C# 7.2 feature addresses an issue you looked at in section 13.2.1 when discuss-
ing the restrictions on ref locals: how do you take a reference to a read-only variable?

13.2.4 Ref readonly (C# 7.2)

So far, all the variables you’ve been aliasing have been writable. In C# 7.0, that’s all
that’s available. But that’s insufficient in two parallel scenarios:

 You may want to alias a read-only field for the sake of efficiency to avoid copy-
ing.

 You may want to allow only read-only access via the ref variable.

The introduction of ref readonly in C# 7.2 addresses both scenarios. Both ref locals
and ref returns can be declared with the readonly modifier, and the result is read-
only, just like a read-only field. You can’t assign a new value to the variable, and if it’s a
struct type, you can’t modify any fields or call property setters.

TIP Given that one of the reasons for using ref readonly is to avoid copy-
ing, you could be surprised to hear that sometimes it has the opposite effect.
You’ll look at this in detail in section 13.4. Don’t start using ref readonly in
your production code without reading that section!

Listing 13.9 Counting even and odd elements in a sequence

Picks the appropriate
variable to increment

Increments it
Licensed to André Santos <andrerfcsantos@gmail.com>

394 CHAPTER 13 Improving efficiency with more pass by reference
The two places you can put the modifier work together: if you call a method or
indexer with a ref readonly return and want to store the result in a local variable, it
has to be a ref readonly local variable, too. The following listing shows how the
read-only aspects chain together.

static readonly int field = DateTime.UtcNow.Second;

static ref readonly int GetFieldAlias() => ref field;

static void Main()
{
 ref readonly int local = ref GetFieldAlias();
 Console.WriteLine(local);
}

This works with indexers, too, and it allows immutable collections to expose their data
directly without any copying but without any risk of the memory being mutated. Note
that you can return a ref readonly without the underlying variable being read-only,
which provides a read-only view over an array, much like ReadOnlyCollection does
for arbitrary collections but with copy-free read access. The following listing shows a
simple implementation of this idea.

class ReadOnlyArrayView<T>
{
 private readonly T[] values;

 public ReadOnlyArrayView(T[] values) =>
 this.values = values;

 public ref readonly T this[int index] =>
 ref values[index];
}
...
static void Main()
{
 var array = new int[] { 10, 20, 30 };
 var view = new ReadOnlyArrayView<int>(array);

 ref readonly int element = ref view[0];
 Console.WriteLine(element);
 array[0] = 100;
 Console.WriteLine(element);
}

This example isn’t compelling in terms of efficiency gains because int is already a
small type, but in scenarios using larger structs to avoid excessive heap allocation and
garbage collection, the benefits can be significant.

Listing 13.10 ref readonly return and local

Listing 13.11 A read-only view over an array with copy-free reads

Initializes a read-only field
with an arbitrary value

Returns a read-only
alias to the field

Initializes a read-only ref
local using the method

Copies the array reference
without cloning contents

Returns a read-only alias
to the array element

Modification to the array
is visible via the local.
Licensed to André Santos <andrerfcsantos@gmail.com>

395in parameters (C# 7.2)
The readonly modifier can be applied to local variables and return types as you’ve
seen, but what about parameters? If you have a ref readonly local and want to pass
it into a method without just copying the value, what are your options? You might
expect the answer to be the readonly modifier again, just applied to parameters, but
reality is slightly different, as you’ll see in the next section.

13.3 in parameters (C# 7.2)
C# 7.2 adds in as a new modifier for parameters in the same style as ref or out but
with a different intention. When a parameter has the in modifier, the intention is that
the method won’t change the parameter value, so a variable can be passed by refer-
ence to avoid copying. Within the method, an in parameter acts like a ref
readonly local variable. It’s still an alias for a storage location passed by the caller, so
it’s important that the method doesn’t modify the value; the caller would see that
change, which goes against the point of it being an in parameter.

 There’s a big difference between an in parameter and a ref or out parameter:
the caller doesn’t have to specify the in modifier for the argument. If the in modi-
fier is missing, the compiler will pass the argument by reference if the argument is a
variable but take a copy of the value as a hidden local variable and pass that by refer-
ence if necessary. If the caller specifies the in modifier explicitly, the call is valid only
if the argument can be passed by reference directly. The following listing shows all
the possibilities.

static void PrintDateTime(in DateTime value)
{
 string text = value.ToString(
 "yyyy-MM-dd'T'HH:mm:ss",
 CultureInfo.InvariantCulture);

Implementation details
In IL, a ref readonly method is implemented as a regular ref-returning method (the
return type is a by-ref type) but with [InAttribute] from the System.Runtime
.InteropServices namespace applied to it. This attribute is, in turn, specified
with the modreq modifier in IL: if a compiler isn’t aware of InAttribute, it should
reject any call to the method. This is a safety mechanism to prevent misuse of the
method’s return value. Imagine a C# 7.0 compiler (one that’s aware of ref returns
but not ref readonly returns) trying to call a ref readonly returning method
from another assembly. It could allow the caller to store the result in a writable ref
local and then modify it, thereby violating the intention of the ref readonly return.

You can’t declare ref readonly returning methods unless InAttribute is avail-
able to the compiler. That’s rarely an issue, because it’s been in the desktop frame-
work since .NET 1.1 and in .NET Standard 1.1. If you absolutely have to, you can
declare your own attribute in the right namespace, and the compiler will use that.

Listing 13.12 Valid and invalid possibilities for passing arguments for in parameters

Declares method
with in parameter
Licensed to André Santos <andrerfcsantos@gmail.com>

396 CHAPTER 13 Improving efficiency with more pass by reference
 Console.WriteLine(text);
}

static void Main()
{
 DateTime start = DateTime.UtcNow;
 PrintDateTime(start);
 PrintDateTime(in start);
 PrintDateTime(start.AddMinutes(1));
 PrintDateTime(in start.AddMinutes(1));
}

In the generated IL, the parameter is equivalent to a ref parameter decorated with
[IsReadOnlyAttribute] from the System.Runtime.CompilerServices name-
space. This attribute was introduced much more recently than InAttribute; it’s in
.NET 4.7.1, but it’s not even in .NET Standard 2.0. It’d be annoying to have to either
add a dependency or declare the attribute yourself, so the compiler generates the
attribute in your assembly automatically if it’s not otherwise available.

 The attribute doesn’t have the modreq modifier in IL; any C# compiler that
doesn’t understand IsReadOnlyAttribute will treat it as a regular ref parameter.
(The CLR doesn’t need to know about the attribute either.) Any callers recompiled
with a later version of a compiler will suddenly fail to compile, because they’ll now
require the in modifier instead of the ref modifier. That leads us to a bigger topic of
backward compatibility.

13.3.1 Compatibility considerations

The way that the in modifier is optional at the call site leads to an interesting back-
ward-compatibility situation. Changing a method parameter from being a value
parameter (the default, with no modifiers) to an in parameter is always source compat-
ible (you should always be able to recompile without changing calling code) but is
never binary compatible (any existing compiled assemblies calling the method will fail
at execution time). Exactly what that means will depend on your situation. Suppose
you want to change a method parameter to be an in parameter for an assembly that
has already been released:

 If your method is accessible to callers outside your control (if you’re publishing
a library to NuGet, for example), this is a breaking change and should be
treated like any other breaking change.

 If your code is accessible only to callers that will definitely be recompiled when
they use the new version of your assembly (even if you can’t change that calling
code), then this won’t break those callers.

 If your method is only internal to your assembly,1 you don’t need to worry about
binary compatibility because all the callers will be recompiled anyway.

1 If your assembly uses InternalsVisibleTo, the situation is more nuanced; that level of detail is beyond the
scope of this book.

Variable is passed by
reference implicitly.

Variable is passed by reference
explicitly (due to in modifier).

Result is copied to hidden
local variable, which is
passed by reference.

Compile-time error: argument
can’t be passed by reference.
Licensed to André Santos <andrerfcsantos@gmail.com>

397in parameters (C# 7.2)
Another slightly less likely scenario exists: if you have a method with a ref parameter
purely for the sake of avoiding copying (you never modify the parameter in the
method), changing that to an in parameter is always binary compatible, but never
source compatible. That’s the exact opposite of changing a value parameter to an in
parameter.

 All of this assumes that the act of using an in parameter doesn’t break the seman-
tics of the method itself. That’s not always a valid assumption; let’s see why.

13.3.2 The surprising mutability of in parameters: External changes

So far, it sounds like if you don’t modify a parameter within a method, it’s safe to make
it an in parameter. That’s not the case, and it’s a dangerous expectation. The com-
piler stops the method from modifying the parameter, but it can’t do anything about
other code modifying it. You need to remember that an in parameter is an alias for a
storage location that other code may be able to modify. Let’s look at a simple example
first, which may seem utterly obvious.

static void InParameter(in int p, Action action)
{
 Console.WriteLine("Start of InParameter method");
 Console.WriteLine($"p = {p}");
 action();
 Console.WriteLine($"p = {p}");
}

static void ValueParameter(int p, Action action)
{
 Console.WriteLine("Start of ValueParameter method");
 Console.WriteLine($"p = {p}");
 action();
 Console.WriteLine($"p = {p}");
}

static void Main()
{
 int x = 10;
 InParameter(x, () => x++);
 ValueParameter(x, () => x++);
}

The first two methods are identical except for the log message displayed and the
nature of the parameter. In the Main method, you call the two methods in the same
way, passing in a local variable with an initial value of 10 as the argument and an
action that increments the variable. The output shows the difference in semantics:

Start of InParameter method
p = 10
p = 11

Listing 13.13 in parameter and value parameter differences in the face of side effects
Licensed to André Santos <andrerfcsantos@gmail.com>

398 CHAPTER 13 Improving efficiency with more pass by reference
Start of ValueParameter method
p = 10
p = 10

As you can see, the InParameter method is able to observe the change caused by
calling action(); the ValueParameter method isn’t. This isn’t surprising; in
parameters are intended to share a storage location, whereas value parameters are
intended to take a copy.

 The problem is that although it’s obvious in this particular case because there’s so
little code, in other examples it might not be. For example, the in parameter could
happen to be an alias for a field in the same class. In that case, any modifications to the
field, either directly in the method or by other code that the method calls, will be visible
via the parameter. That isn’t obvious either in the calling code or the method itself. It
gets even harder to predict what will happen when multiple threads are involved.

 I’m deliberately being somewhat alarmist here, but I think this is a real problem.
We’re used to highlighting the possibility of this sort of behavior2 with ref parameters
by specifying the modifier on the parameter and the argument. Additionally, the ref
modifier feels like it’s implicitly concerned with how changes in a parameter are visi-
ble, whereas the in modifier is about not changing the parameter. In section 13.3.4,
I’ll give more guidance on using in parameters, but for the moment you should just
be aware of the potential risk of the parameter changing its value unexpectedly.

13.3.3 Overloading with in parameters

One aspect I haven’t touched on yet is method overloading: what happens if you want
two methods with the same name and the same parameter type, but in one case the
parameter is an in parameter and in the second method it’s not?

 Remember that as far as the CLR is concerned, this is just another ref parameter.
You can’t overload the method by just changing between ref, out, and in modifiers;
they all look the same to the CLR. But you can overload an in parameter with a regu-
lar value parameter:

void Method(int x) { ... }
void Method(in int x) { ... }

New tiebreaker rules in overload resolution make the method with the value parame-
ter better with respect to an argument that doesn’t have an in modifier:

int x = 5;
Method(5);
Method(x);
Method(in x);

2 I like to think of it as being similar to the quantum entanglement phenomenon known as “spooky action at a
distance.”

Call to first
method Call to first

method

Call to second method because
of in modifier
Licensed to André Santos <andrerfcsantos@gmail.com>

399in parameters (C# 7.2)
These rules allow you to add overloads for existing method names without too many
compatibility concerns if the existing methods have value parameters and the new
methods have in parameters.

13.3.4 Guidance for in parameters

Full disclosure: I haven’t used in parameters in real code yet. The guidance here is
speculative.

 The first thing to note is that in parameters are intended to improve perfor-
mance. As a general principle, I wouldn’t start making any changes to your code to
improve performance before you’ve measured performance in a meaningful and
repeatable way and set goals for it. If you’re not careful, you can complicate your code
in the name of optimization, only to find out that even if you massively improved the
performance of one or two methods, those methods weren’t on a critical path for the
application anyway. The exact goals you have will depend on the kind of code you’re
writing (games, web applications, libraries, IoT applications, or something else), but
careful measurement is important. For microbenchmarks, I recommend the Bench-
markDotNet project.

 The benefit of in parameters lies in reducing the amount of data that needs to be
copied. If you’re using only reference types or small structs, no improvement may
occur at all; logically, the storage location still needs to be passed to the method, even
if the value at that storage location isn’t being copied. I won’t make too many claims
here because of the black box of JIT compilation and optimization. Reasoning about
performance without testing it is a bad idea: enough complex factors are involved to
turn that reasoning into an educated guess at best. I’d expect the benefits of in
parameters to increase as the size of the structs involved increases, however.

 My main concern about in parameters is that they can make reasoning about your
code much harder. You can read the value of the same parameter twice and get differ-
ent results, despite your method not changing anything, as you saw in section 13.3.2.
That makes it harder to write correct code and easy to write code that appears to be
correct but isn’t.

 There’s a way to avoid this while still getting many of the benefits of in parameters,
though: by carefully reducing or removing the possibilities of them changing. If you
have a public API that’s implemented via a deep stack of private method calls, you can
use a value parameter for that public API and then use in parameters in the private
methods. The following listing provides an example, although it’s not doing any
meaningful computations.

public static double PublicMethod(
 LargeStruct first,
 LargeStruct second)
{
 double firstResult = PrivateMethod(in first);

Listing 13.14 Using in parameters safely

Public method using
value parameters
Licensed to André Santos <andrerfcsantos@gmail.com>

400 CHAPTER 13 Improving efficiency with more pass by reference
 double secondResult = PrivateMethod(in second);
 return firstResult + secondResult;
}

private static double PrivateMethod(
 in LargeStruct input)
{
 double scale = GetScale(in input);
 return (input.X + input.Y + input.Z) * scale;
}

private static double GetScale(in LargeStruct input) =>
 input.Weight * input.Score;

With this approach, you can guard against unexpected change; because all the methods
are private, you can inspect all the callers to make sure they won’t be passing in values
that could change while your method is executing. A single copy of each struct will be
made when PublicMethod is called, but those copies are then aliased for use in the
private methods, isolating your code from any changes the caller may be making in
other threads or as side effects of the other methods. In some cases, you may want the
parameter to be changeable, but in a way that you carefully document and control.

 Applying the same logic to internal calls is also reasonable but requires more disci-
pline because there’s more code that can call the method. As a matter of personal
preference, I’ve explicitly used the in modifier at the call site as well as in the parame-
ter declaration to make it obvious what’s going on when reading the code.

 I’ve summed all of this up in a short list of recommendations:

 Use in parameters only when there’s a measurable and significant perfor-
mance benefit. This is most likely to be true when large structs are involved.

 Avoid using in parameters in public APIs unless your method can function cor-
rectly even if the parameter values change arbitrarily during the method.

 Consider using a public method as a barrier against change and then using in
parameters within the private implementation to avoid copying.

 Consider explicitly using the in modifier when calling a method that takes an
in parameter unless you’re deliberately using the compiler’s ability to pass a
hidden local variable by reference.

Many of these guidelines could be easily checked by a Roslyn analyzer. Although I
don’t know of such an analyzer at the time of this writing, I wouldn’t be surprised to
see a NuGet package become available.

NOTE If you detect an implicit challenge here, you’re right. If you let me
know about an analyzer like this, I’ll add a note on the website.

All of this depends on the amount of copying genuinely being reduced, and that’s not
as straightforward as it sounds. I alluded to this earlier, but now it’s time to look much
more closely at when the compiler implicitly copies structs and how you can avoid that.

Private method using
an in parameter

Another method with
an in parameter
Licensed to André Santos <andrerfcsantos@gmail.com>

401Declaring structs as readonly (C# 7.2)
13.4 Declaring structs as readonly (C# 7.2)
The point of in parameters is to improve performance by reducing copying for
structs. That sounds great, but an obscure aspect of C# gets in our way unless we’re
careful. We’ll look at the problem first and then at how C# 7.2 solves it.

13.4.1 Background: Implicit copying with read-only variables

C# has been implicitly copying structs for a long time. It’s all documented in the spec-
ification, but I wasn’t aware of it until I spotted a mysterious performance boost in
Noda Time when I’d accidentally forgotten to make a field read-only.

 Let’s take a look at a simple example. You’re going to declare a YearMonthDay
struct with three read-only properties: Year, Month, and Day. You’re not using the
built-in DateTime type for reasons that will become clear later. The following listing
shows the code for YearMonthDay; it’s really simple. (There’s no validation; it’s
purely for demonstration in this section.)

public struct YearMonthDay
{
 public int Year { get; }
 public int Month { get; }
 public int Day { get; }

 public YearMonthDay(int year, int month, int day) =>
 (Year, Month, Day) = (year, month, day);
}

Now let’s create a class with two YearMonthDay fields: one read-only and one read-
write. You’ll then access the Year property in both fields.

class ImplicitFieldCopy
{
 private readonly YearMonthDay readOnlyField =
 new YearMonthDay(2018, 3, 1);
 private YearMonthDay readWriteField =
 new YearMonthDay(2018, 3, 1);

 public void CheckYear()
 {
 int readOnlyFieldYear = readOnlyField.Year;
 int readWriteFieldYear = readWriteField.Year;
 }
}

Listing 13.15 A trivial year/month/day struct

Listing 13.16 Accessing properties via a read-only or read-write field
Licensed to André Santos <andrerfcsantos@gmail.com>

402 CHAPTER 13 Improving efficiency with more pass by reference
The IL generated for the two property accesses is different in a subtle but important
way. Here’s the IL for the read-only field; I’ve removed the namespaces from the IL
for simplicity:

ldfld valuetype YearMonthDay ImplicitFieldCopy::readOnlyField
stloc.0
ldloca.s V_0
call instance int32 YearMonthDay::get_Year()

It loads the value of the field, thereby copying it to the stack. Only then can it call the
get_Year() member, which is the getter for the Year property. Compare that with
the code using the read-write field:

ldflda valuetype YearMonthDay ImplicitFieldCopy::readWriteField
call instance int32 YearMonthDay::get_Year()

This uses the ldflda instruction to load the address of the field onto the stack rather
than ldfld, which loads the value of the field. This is only IL, which isn’t what your
computer executes directly. It’s entirely possible that in some cases the JIT compiler is
able to optimize this away, but in Noda Time I found that making fields read-write
(with an attribute purely to explain why they weren’t read-only) made a significant dif-
ference in performance.

 The reason the compiler takes this copy is to avoid a read-only field being mutated
by the code within the property (or method, if you’re calling one). The intention of a
read-only field is that nothing can change its value. It’d be odd if readOnly-
Field.SomeMethod() was able to modify the field. C# is designed to expect that any
property setters will mutate the data, so they’re prohibited entirely for read-only
fields. But even a property getter could try to mutate the value. Taking a copy is a
safety measure, effectively.

Until C# 7.2, only fields could be read-only. Now we have ref readonly local vari-
ables and in parameters to worry about. Let’s write a method that prints out the year,
month, and day from a value parameter:

private void PrintYearMonthDay(YearMonthDay input) =>
 Console.WriteLine($"{input.Year} {input.Month} {input.Day}");

This affects only value types
Just as a reminder, it’s fine to have a read-only field that’s a reference type and for
methods to mutate the data in the objects they refer to. For example, you could have
a read-only StringBuilder field, and you’d still be able to append to that String-
Builder. The value of the field is only the reference, and that’s what can’t change.

In this section, we’re focusing on the field type being a value type like decimal or
DateTime. It doesn’t matter whether the type that contains the field is a class or a
struct.
Licensed to André Santos <andrerfcsantos@gmail.com>

403Declaring structs as readonly (C# 7.2)
The IL for this uses the address of the value that’s already on the stack. Each property
access looks as simple as this:

ldarga.s input
call instance int32 Chapter13.YearMonthDay::get_Year()

This doesn’t create any additional copies. The assumption is that if the property mutates
the value, it’s okay for your input variable to be changed; it’s just a read-write variable,
after all. But if you decide to change input to an in parameter like this, things change:

private void PrintYearMonthDay(in YearMonthDay input) =>
 Console.WriteLine($"{input.Year} {input.Month} {input.Day}");

Now in the IL for the method, each property access has code like this:

ldarg.1
ldobj Chapter13.YearMonthDay
stloc.0
ldloca.s V_0
call instance int32 YearMonthDay::get_Year()

The ldobj instruction copies the value from the address (the parameter) onto the
stack. You were trying to avoid one copy being made by the caller, but in doing so
you’ve introduced three copies within the method. You’d see the exact same behavior
with readonly ref local variables, too. That’s not good! As you’ve probably guessed,
C# 7.2 has a solution to this: read-only structs to the rescue!

13.4.2 The readonly modifier for structs

To recap, the reason the C# compiler needs to make copies for read-only value type
variables is to avoid code within those types changing the value of the variable. What if
the struct could promise that it didn’t do that? After all, most structs are designed to
be immutable. In C# 7.2, you can apply the readonly modifier to a struct declaration
to do exactly that.

 Let’s modify our year/month/day struct to be read-only. It’s already obeying the
semantics within the implementation, so you just need to add the readonly modifier:

public readonly struct YearMonthDay
{
 public int Year { get; }
 public int Month { get; }
 public int Day { get; }

 public YearMonthDay(int year, int month, int day) =>
 (Year, Month, Day) = (year, month, day);
}

After that simple change to the declaration, and without any changes to the code
using the struct, the IL generated for PrintYearMonthDay(in YearMonthDay
input) becomes more efficient. Each property access now looks like this:

ldarg.1
call instance int32 YearMonthDay::get_Year()
Licensed to André Santos <andrerfcsantos@gmail.com>

404 CHAPTER 13 Improving efficiency with more pass by reference
Finally, you’ve managed to avoid copying the whole struct even once.
 If you look in the downloadable source code that accompanies the book, you’ll see

this in a separate struct declaration: ReadOnlyYearMonthDay. That was necessary so
I could have samples with before and after, but in your own code you can just make an
existing struct read-only without breaking source or binary compatibility. Going in the
opposite direction is an insidious breaking change, however; if you decide to remove
the modifier and modify an existing member to mutate the state of the value, code
that was previously compiled expecting the struct to be read-only could end up mutat-
ing read-only variables in an alarming way.

 You can apply the modifier only if your struct is genuinely read-only and therefore
meets the following conditions:

 Every instance field and automatically implemented instance property must be
read-only. Static fields and properties can still be read-write.

 You can assign to this only within constructors. In specification terms, this is
treated as an out parameter in constructors, a ref parameter in members of
regular structs, and an in parameter in members of read-only structs.

Assuming you already intended your structs to be read-only, adding the readonly
modifier allows the compiler to help you by checking that you aren’t violating that. I’d
expect most user-defined structs to work right away. Unfortunately, there’s a slight
wrinkle when it comes to Noda Time, which may affect you, too.

13.4.3 XML serialization is implicitly read-write

Currently, most of the structs in Noda Time implement IXmlSerializable. Unfor-
tunately, XML serialization is defined in a way that’s actively hostile to writing read-
only structs. My implementation in Noda Time typically looks like this:

void IXmlSerializable.ReadXml(XmlReader reader)
{
 var pattern = /* some suitable text parsing pattern for the type */;
 var text = /* extract text from the XmlReader */;
 this = pattern.Parse(text).Value;
}

Can you see the problem? It assigns to this in the last line. That prevents me from
declaring these structs with the readonly modifier, which saddens me. I have three
options at the moment:

 Leave the structs as they are, which means in parameters and ref readonly
locals are inefficient.

 Remove XML serialization from the next major version of Noda Time.
 Use unsafe code in ReadXml to violate the readonly modifier. The System

.Runtime.CompilerServices.Unsafe package makes this simpler.

None of these options is pleasant, and there’s no twist as I reveal a cunning way of sat-
isfying all the concerns. At the moment, I believe that structs implementing IXml-
Serializable can’t be genuinely read-only. No doubt there are other interfaces that
Licensed to André Santos <andrerfcsantos@gmail.com>

405Extension methods with ref or in parameters (C# 7.2)
are implicitly mutable in the same way that you might want to implement in a struct,
but I suspect that IXmlSerializable will be the most common one.

 The good news is that most readers probably aren’t facing this issue. Where you can
make your user-defined structs read-only, I encourage you to do so. Just bear in mind
that it’s a one-way change for public code; you can safely remove the modifier later only
if you’re in the privileged position of being able to recompile all the code that uses the
struct. Our next feature is effectively tidying up consistency: providing the same func-
tionality to extension methods that’s already present in struct instance methods.

13.5 Extension methods with ref or in parameters (C# 7.2)
Prior to C# 7.2, the first parameter in any extension method had to be a value param-
eter. This restriction is partially lifted in C# 7.2 to embrace the new ref-like semantics
more thoroughly.

13.5.1 Using ref/in parameters in extension methods to avoid copying

Suppose you have a large struct that you’d like to avoid copying around and a method
that computes a result based on the values of properties in that struct—the magnitude
of a 3D vector, for example. If the struct provides the method (or property) itself,
you’re fine, particularly if the struct is declared with the readonly modifier. You can
avoid copying with no problems. But maybe you’re doing something more complex
that the authors of the struct hadn’t considered. The samples in this section use a triv-
ial read-only Vector3D struct introduced in the following listing. The struct just
exposes X, Y, and Z properties.

public readonly struct Vector3D
{
 public double X { get; }
 public double Y { get; }
 public double Z { get; }

 public Vector3D(double x, double y, double z)
 {
 X = x;
 Y = y;
 Z = z;
 }
}

If you write your own method accepting the struct with an in parameter, you’re fine.
You can avoid copying, but it may be slightly awkward to call. For example, you might
end up having to write something like this:

double magnitude = VectorUtilities.Magnitude(vector);

Listing 13.17 A trivial Vector3D struct
Licensed to André Santos <andrerfcsantos@gmail.com>

406 CHAPTER 13 Improving efficiency with more pass by reference
That would be ugly. You have extension methods, but a regular extension method like
this would copy the vector on each call:

public static double Magnitude(this Vector3D vector)

It’s unpleasant to have to choose between performance and readability. C# 7.2 comes
to the rescue in a reasonably predictable way: you can write extension methods with a
ref or in modifier on the first parameter. The modifier can appear before or after
the this modifier. If you’re only computing a value, you should use an in parameter,
but you can also use ref if you want to be able to modify the value in the original stor-
age location without having to create a new value and copy it in. The following listing
provides two sample extension methods on a Vector3D.

public static double Magnitude(this in Vector3D vec) =>
 Math.Sqrt(vec.X * vec.X + vec.Y * vec.Y + vec.Z * vec.Z);

public static void OffsetBy(this ref Vector3D orig, in Vector3D off) =>
 orig = new Vector3D(orig.X + off.X, orig.Y + off.Y, orig.Z + off.Z);

The parameter names are abbreviated more than I’m normally comfortable with to
avoid long-winded formatting in the book. Note that the second parameter in the
OffsetBy method is an in parameter; you’re trying to avoid copying to as great an
extent as you can.

 It’s simple to use the extension methods. The only possibly surprising aspect is that
unlike regular ref parameters, there’s no sign of the ref modifier when calling ref
extension methods. The following listing uses both of the extension methods I’ve
shown to create two vectors, offset the first vector by the second vector, and then dis-
play the resulting vector and its magnitude.

var vector = new Vector3D(1.5, 2.0, 3.0);
var offset = new Vector3D(5.0, 2.5, -1.0);

vector.OffsetBy(offset);

Console.WriteLine($"({vector.X}, {vector.Y}, {vector.Z})");
Console.WriteLine(vector.Magnitude());

The output is as follows:

(6.5, 4.5, 2)
8.15475321515004

This shows that the call to OffsetBy modified the vector variable as you intended
it to.

Listing 13.18 Extension methods using ref and in

Listing 13.19 Calling ref and in extension methods
Licensed to André Santos <andrerfcsantos@gmail.com>

407Extension methods with ref or in parameters (C# 7.2)
NOTE The OffsetBy method makes our immutable Vector3D struct feel
somewhat mutable. This feature is still in its early days, but I suspect I’ll feel
much more comfortable writing extension methods with initial in parame-
ters than with ref parameters.

An extension method with an initial in parameter can be called on a read-write vari-
able (as you’ve seen by calling vector.Magnitude()), but an extension method
with an initial ref parameter can’t be called on a read-only variable. For example, if
you create a read-only alias for vector, you can’t call OffsetBy:

ref readonly var alias = ref vector;
alias.OffsetBy(offset);

Unlike regular extension methods, restrictions exist about the extended type (the
type of the first parameter) for initial ref and in parameters.

13.5.2 Restrictions on ref and in extension methods

Normal extension methods can be declared to extend any type. They can use either a
regular type or a type parameter with or without constraints:

static void Method(this string target)
static void Method(this IDisposable target)
static void Method<T>(this T target)
static void Method<T>(this T target) where T : IComparable<T>
static void Method<T>(this T target) where T : struct

In contrast, ref and in extension methods always have to extend value types. In the
case of in extension methods, that value type can’t be a type parameter either. These
are valid:

static void Method(this ref int target)
static void Method<T>(this ref T target) where T : struct
static void Method<T>(this ref T target) where T : struct, IComparable<T>
static void Method<T>(this ref int target, T other)
static void Method(this in int target)
static void Method(this in Guid target)
static void Method<T>(this in Guid target, T other)

But these are invalid:
static void Method(this ref string target)
static void Method<T>(this ref T target)
 where T : IComparable<T>
static void Method<T>(this in string target)
static void Method<T>(this in T target)
 where T : struct

Note the difference between in and ref, where a ref parameter can be a type
parameter so long as it has the struct constraint. An in extension method can still
be generic (as per the final valid example), but the extended type can’t be a type

Error: trying to use a
read-only variable as ref

Reference type target
for ref parameter

Type parameter target for ref
parameter without struct constraint

Reference type
target for in
parameter

Type parameter target
for in parameter
Licensed to André Santos <andrerfcsantos@gmail.com>

408 CHAPTER 13 Improving efficiency with more pass by reference
parameter. At the moment, there’s no constraint that can require that T is a
readonly struct, which would be required for a generic in parameter to be useful.
That may change in future versions of C#.

 You may wonder why the extended type is constrained to be a value type at all.
There are two primary reasons for this:

 The feature is designed to avoid expensive copying of value types, so there’s no
benefit for reference types.

 If a ref parameter could be a reference type, it could be set to a null reference
within the method. That would disrupt an assumption C# developers and tool-
ing can always make at the moment: that calling x.Method() (where x is a vari-
able of some reference type) can never make x null.

I don’t expect to use ref and in extension methods very much, but they do provide a
pleasant consistency to the language.

 The features in the remainder of the chapter are somewhat different from the
ones you’ve examined so far. Just to recap, so far you’ve looked at these:

 Ref locals
 Ref returns
 Read-only versions of ref locals and ref returns
 in parameters: read-only versions of ref parameters
 Read-only structs, which allow in parameters and read-only ref locals and

returns to avoid copying
 Extension methods targeting ref or in parameters

If you started with ref parameters and wondered how to extend the concept further,
you might have come up with something similar to this list. We’re now going to move
on to ref-like structs, which are related to all of these but also feel like a whole new
kind of type.

13.6 Ref-like structs (C# 7.2)
C# 7.2 introduces the notion of a ref-like struct: one that’s intended to exist only on the
stack. Just as with custom task types, it’s likely that you’ll never need to declare your
own ref-like struct, but I expect C# code written against up-to-date frameworks in the
next few years to use the ones built into the framework quite a lot.

 First, you’ll look at the basic rules for ref-like structs and then see how they’re used
and the framework support for them. I should note that these are a simplified form of
the rules; consult the language specification for the gory details. I suspect that rela-
tively few developers will need to know exactly how the compiler enforces the stack
safety of ref-like structs, but it’s important to understand the principle of what it’s try-
ing to achieve:

A ref-like struct value must stay on the stack, always.
Licensed to André Santos <andrerfcsantos@gmail.com>

409Ref-like structs (C# 7.2)
Let’s start by creating a ref-like struct. The declaration is the same as a normal struct
declaration with the addition of the ref modifier:

public ref struct RefLikeStruct
{

}

13.6.1 Rules for ref-like structs

Rather than say what you can do with it, here are some of the things you can’t do with
RefLikeStruct and a brief explanation:

 You can’t include a RefLikeStruct as a field of any type that isn’t also a ref-
like struct. Even a regular struct can easily end up on the heap either via boxing
or by being a field in a class. Even within another ref-like struct, you can use
RefLikeStruct only as the type of an instance field—never a static field.

 You can’t box a RefLikeStruct. Boxing is precisely designed to create an
object on the heap, which is exactly what you don’t want.

 You can’t use RefLikeStruct as a type argument (either explicitly or by type
inference) for any generic method or type, including as a type argument for a
generic ref-like struct type. Generic code can use generic type arguments in all
kinds of ways that put values on the heap, such as creating a List<T>.

 You can’t use RefLikeStruct[] or any similar array type as the operand for
the typeof operator.

 Local variables of type RefLikeStruct can’t be used anywhere the compiler
might need to capture them on the heap in a special generated type. That
includes the following:
– Async methods, although this could potentially be relaxed so a variable could

be declared and used between await expressions, so long as it was never used
across an await expression (with a declaration before the await and a usage
after it). Parameters for async methods can’t be ref-like struct types.

– Iterator blocks, which already appear to have the “only using RefLike-
Struct between two yield expressions is okay” rules. Parameters for iterator
blocks can’t be ref-like struct types.

– Any local variable captured by a local method, LINQ query expression, anon-
ymous method, or lambda expression.

Additionally, complicated rules3 indicate how ref local variables of ref-like types can be
used. I suggest trusting the compiler here; if your code fails to compile because of ref-
like structs, you’re likely trying to make something available at a point where it will no

3 Translation: I’m finding them hard to understand. I understand the general purpose, but the complexity
required to prevent bad things from happening is beyond my current level of interest in going over the rules
line by line.

Struct members
as normal
Licensed to André Santos <andrerfcsantos@gmail.com>

410 CHAPTER 13 Improving efficiency with more pass by reference
longer be alive on the stack. With this set of rules keeping values on the stack, you can
finally look at using the poster child for ref-like structs: Span<T>.

13.6.2 Span<T> and stackalloc

There are several ways of accessing chunks of memory in .NET. Arrays are the most
common, but ArraySegment<T> and pointers are also used. One large downside of
using arrays directly is that the array effectively owns all its memory; an array is never
just part of a larger piece of memory. That doesn’t sound too bad until you think of
how many method signatures you’ve seen like this:

int ReadData(byte[] buffer, int offset, int length)

This “buffer, offset, length” set of parameters occurs all over the place in .NET, and it’s
effectively a code smell suggesting that we haven’t had the right abstraction in place.
Span<T> and the related types aim to fix this.

NOTE Some uses of Span<T> will work just by adding a reference to the
System.Memory NuGet package. Others require framework support. The
code presented in this section has been built against .NET Core 2.1. Some list-
ings will build against earlier versions of the framework as well.

Span<T> is a ref-like struct that provides read/write, indexed access to a section of
memory just like an array but without any concept of owning that memory. A span is
always created from something else (maybe a pointer, maybe an array, even data cre-
ated directly on the stack). When you use a Span<T>, you don’t need to care where
the memory has been allocated. Spans can be sliced: you can create one span as a sub-
section of another without copying any data. In new versions of the framework, the
JIT compiler will be aware of Span<T> and handle it in a heavily optimized manner.

 The ref-like nature of Span<T> sounds irrelevant, but it has two significant benefits:

 It allows a span to refer to memory with a tightly controlled lifecycle, as the span
can’t escape from the stack. The code that allocates the memory can pass a span
to other code and then free the memory afterward with confidence that there
won’t be any spans left to refer to that now-deallocated memory.

 It allows custom one-time initialization of data in a span without any copying
and without the risk of code being able to change the data afterward.

Let’s demonstrate both of these points in a simple way by writing a method to generate
a random string. Although Guid.NewGuid often can be used for this purpose, some-
times you may want a more customized approach using a different set of characters and
length. The following listing shows the traditional code you might have used in the past.

static string Generate(string alphabet, Random random, int length)
{
 char[] chars = new char[length];

Listing 13.20 Generating a random string by using a char[]
Licensed to André Santos <andrerfcsantos@gmail.com>

411Ref-like structs (C# 7.2)
 for (int i = 0; i < length; i++)
 {
 chars[i] = alphabet[random.Next(alphabet.Length)];
 }
 return new string(chars);
}

Here’s an example of calling the method to generate a string of 10 lowercase letters:

string alphabet = "abcdefghijklmnopqrstuvwxyz";
Random random = new Random();
Console.WriteLine(Generate(alphabet, random, 10));

Listing 13.20 performs two heap allocations: one for the char array and one for the
string. The data needs to be copied from one place to the other when constructing
the string. You can improve this slightly if you know you’ll always be generating rea-
sonably small strings, and if you’re in a position to use unsafe code. In that situation,
you can use stackalloc, as shown in the following listing.

unsafe static string Generate(string alphabet, Random random, int length)
{
 char* chars = stackalloc char[length];
 for (int i = 0; i < length; i++)
 {
 chars[i] = alphabet[random.Next(alphabet.Length)];
 }
 return new string(chars);
}

This performs only one heap allocation: the string. The temporary buffer is stack allo-
cated, but you need to use the unsafe modifier because you’re using a pointer.
Unsafe code takes me out of my comfort zone; although I’m reasonably confident that
this code is okay, I wouldn’t want to do anything much more complicated with point-
ers. There’s still the copy from the stack allocated buffer to the string, too.

 The good news is that Span<T> also supports stackalloc without any need for
the unsafe modifier, as shown in the following listing. You don’t need the unsafe
modifier because you’re relying on the rules for ref-like structs to keep everything safe.

static string Generate(string alphabet, Random random, int length)
{
 Span<char> chars = stackalloc char[length];
 for (int i = 0; i < length; i++)
 {
 chars[i] = alphabet[random.Next(alphabet.Length)];
 }
 return new string(chars);
}

Listing 13.21 Generating a random string by using stackalloc and a pointer

Listing 13.22 Generating a random string by using stackalloc and a Span<char>
Licensed to André Santos <andrerfcsantos@gmail.com>

412 CHAPTER 13 Improving efficiency with more pass by reference
That makes me more confident, but it’s no more efficient; you’re still copying data in
a way that feels redundant. You can do better. All you need is this factory method in
System.String:

public static string Create<TState>(
 int length, TState state, SpanAction<char, TState> action)

That uses SpanAction<T, TArg>, which is a new delegate with this signature:

delegate void SpanAction<T, in TArg>(Span<T> span, TArg arg);

These two signatures may look a little odd to start with, so let’s unpack what the imple-
mentation of Create does. It takes the following steps:

1 Allocates a string with the requested length
2 Creates a span that refers to the memory inside the string
3 Calls the action delegate, passing in whatever state the method was given and

the span
4 Returns the string

The first thing to note is that our delegate is able to write to the content of a string.
That sounds like it defies everything you know about the immutability of strings, but
the Create method is in control here. Yes, you can write whatever you like to the
string, just as you can create a new string with whatever content you want. But by the
time the string is returned, the content is effectively baked into the string. You can’t
try to cheat by holding onto the Span<char> that’s passed to the delegate, because
the compiler makes sure it doesn’t escape the stack.

 That still leaves the odd part about the state. Why do you need to pass in state
that’s then passed back to our delegate? It’s easiest to show you an example; the fol-
lowing listing uses the Create method to implement our random string generator.

static string Generate(string alphabet, Random random, int length) =>
 string.Create(length, (alphabet, random), (span, state) =>
 {
 var alphabet2 = state.alphabet;
 var random2 = state.random;
 for (int i = 0; i < span.Length; i++)
 {
 span[i] = alphabet2[random2.Next(alphabet2.Length)];
 }
 });

At first, it looks like a lot of pointless repetition occurs. The second argument to
string.Create is (alphabet, random), which puts the alphabet and random
parameters into a tuple to act as the state. You then unpack these values from the
tuple again in the lambda expression:

Listing 13.23 Generating a random string with string.Create
Licensed to André Santos <andrerfcsantos@gmail.com>

413Ref-like structs (C# 7.2)
var alphabet2 = state.alphabet;
var random2 = state.random;

Why not just capture the parameters in the lambda expression? Using alphabet and
random within the lambda expression would compile and behave correctly, so why
bother using the extra state parameter?

 Remember the point of using spans: you’re trying to reduce heap allocations as well
as copying. When a lambda expression captures a parameter or local variable, it has to
create an instance of a generated class so that the delegate has access to those variables.
The lambda expression in listing 13.23 doesn’t need to capture anything, so the com-
piler can generate a static method and cache a single delegate instance to use every
time Generate is called. All the state is passed via the parameters to string.Create,
and because C# 7 tuples are value types, there’s no allocation for that state.

 At this point, your simple string generation method is as good as it’s going to get: it
requires a single heap allocation and no extra data copying. Your code just writes
straight into the string data.

 This is just one example of the kind of thing that Span<T> makes possible. Related
types exist; ReadOnlySpan<T>, Memory<T>, and ReadOnlyMemory<T> are the most
important ones. A full deep-dive into them is beyond the scope of this book.

 Importantly, our optimization of the Generate method didn’t need to change its
signature at all. It was a pure implementation change isolated from anything else, and
that’s what makes me excited. Although passing large structs by reference throughout
your codebase would help avoid excessive copying, that’s an invasive optimization. I
far prefer optimizations that I can perform in a piecemeal, targeted fashion.

 Just as string gains extra methods to make use of spans, so will many other types.
We now take it for granted that any I/O-based operation will have an async option
available in the framework, and I expect the same to be true for spans over time; wher-
ever they’d be useful, they’ll be available. I expect third-party libraries will offer over-
loads accepting spans, too.

STACKALLOC WITH INITIALIZERS (C# 7.3)
While we’re on the subject of stack allocation, C# 7.3 adds one extra twist: initializers.
Whereas with previous versions you could use stackalloc only with a size you
wanted to allocate, with C# 7.3 you can specify the content of the allocated space as
well. This is valid for both pointers and spans:

Span<int> span = stackalloc int[] { 1, 2, 3 };
int* pointer = stackalloc int[] { 4, 5, 6 };

I don’t believe this has any significant efficiency gains over allocating and then manu-
ally populating the space, but it’s certainly simpler code to read.

PATTERN-BASED FIXED STATEMENTS (C# 7.3)
As a reminder, the fixed statement is used to obtain a pointer to memory, temporar-
ily preventing the garbage collector from moving that data. Before C# 7.3, this could
Licensed to André Santos <andrerfcsantos@gmail.com>

414 CHAPTER 13 Improving efficiency with more pass by reference
be used only with arrays, strings, and taking the address of a variable. C# 7.3 allows it
to be used with any type that has an accessible method called GetPinnable-
Reference that returns a reference to an unmanaged type. For example, if you have
a method returning a ref int, you can use that in a fixed statement like this:

fixed (int* ptr = value)
{

}

This isn’t something most developers would normally implement themselves, even
within the small proportion of developers who use unsafe code on a regular basis. As
you might expect, the types you’re most likely to use this with are Span<T> and Read-
OnlySpan<T>, allowing them to interoperate with code that already uses pointers.

13.6.3 IL representation of ref-like structs

Ref-like structs are decorated with an [IsRefLikeAttribute] attribute that is again
from the System.Runtime.CompilerServices namespace. If you’re targeting a
version of the framework that doesn’t have the attribute available, it’ll be generated in
your assembly.

 Unlike in parameters, the compiler doesn’t use the modreq modifier to require any
tools consuming the type to be aware of it; instead, it also adds an [Obsolete-
Attribute] to the type with a fixed message. Any compiler that understands [IsRef-
LikeAttribute] can ignore the [ObsoleteAttribute] if it has the right text. If the
type author wants to make the type obsolete, they just use [ObsoleteAttribute] as
normal, and the compiler will treat it as any other obsolete type.

Summary
 C# 7 adds support for pass-by-reference semantics in many areas of the

language.
 C# 7.0 included only the first few features; use C# 7.3 for the full range.
 The primary aim of the ref-related features is for performance. If you’re not

writing performance-critical code, you may not need to use many of these
features.

 Ref-like structs allow the introduction of new abstractions in the framework,
starting with Span<T>. These abstractions aren’t just for high-performance sce-
narios; they’re likely to affect a large proportion of .NET developers over time.

Calls
value.GetPinnableReference

Code using
the pointer
Licensed to André Santos <andrerfcsantos@gmail.com>

Concise code in C# 7
C# 7 comes with large features that change the way we approach code: tuples,
deconstruction, and patterns. It comes with complex but effective features that are
squarely aimed at high-performance scenarios. It also comes with a set of small fea-
tures that just make life a little bit more pleasant. There’s no single feature in this
chapter that’s earth-shattering; each makes a small difference, and the combina-
tion of all of them can lead to beautifully concise, clear code.

14.1 Local methods
If this weren’t C# in Depth, this section would be short indeed; you can write meth-
ods within methods. There’s more to it than that, of course, but let’s start with a
simple example. The following listing shows a simple local method within a regular

This chapter covers
 Declaring methods within methods

 Simplifying calls by using out parameters

 Writing numeric literals more readably

 Using throw as an expression

 Using default literals
415

Licensed to André Santos <andrerfcsantos@gmail.com>

416 CHAPTER 14 Concise code in C# 7
Main method. The local method prints and then increments a local variable declared
within Main, demonstrating that variable capture works with local methods.

static void Main()
{
 int x = 10;
 PrintAndIncrementX();
 PrintAndIncrementX();
 Console.WriteLine($"After calls, x = {x}");

 void PrintAndIncrementX()
 {
 Console.WriteLine($"x = {x}");
 x++;
 }
}

This looks a bit odd when you see it for the first time, but you soon get used to it.
Local methods can appear anywhere you have a block of statements: methods, con-
structors, properties, indexers, event accessors, finalizers, and even within anonymous
functions or nested within another local method.

 A local method declaration is like a normal method declaration but with the fol-
lowing restrictions:

 It can’t have any access modifiers (public and so on).
 It can’t have the extern, virtual, new, override, static, or abstract

modifiers.
 It can’t have any attributes (such as [MethodImpl]) applied to it.
 It can’t have the same name as another local method within the same parent;

there’s no way to overload local methods.

On the other hand, a local method acts like standard methods in other ways, such as
the following:

 It can be void or return a value.
 It can have the async modifier.
 It can have the unsafe modifier.
 It can be implemented via an iterator block.
 It can have parameters, including optional ones.
 It can be generic.
 It can refer to any enclosing type parameters.
 It can be the target of a method group conversion to a delegate type.

As shown in the listing 14.1, it’s fine to declare the method after it’s used. Local meth-
ods can call themselves or other local methods that are in scope. Positioning can still

Listing 14.1 A simple local method that accesses a local variable

Declares local variable
used within method

Calls local method twice

Local method
Licensed to André Santos <andrerfcsantos@gmail.com>

417Local methods
be important, though, largely in terms of how the local methods refer to captured vari-
ables: local variables declared in the enclosing code but used in the local method.

 Indeed, much of the complexity around local methods, both in language rules and
implementation, revolves around the ability for them to read and write captured vari-
ables. Let’s start off by talking about the rules that the language imposes.

14.1.1 Variable access within local methods

You’ve already seen that local variables in the enclosing block can be read and written,
but there’s more nuance to it than that. There are a lot of small rules here, but you
don’t need to worry about learning them exhaustively. Mostly of the time you won’t
even notice them, and you can refer back to this section if the compiler complains
about code that you expect to be valid.

A LOCAL METHOD CAN CAPTURE ONLY VARIABLES THAT ARE IN SCOPE

You can’t refer to a local variable outside its scope, which is, broadly speaking, the
block in which it’s declared. For example, suppose you want your local method to use
an iteration variable declared in a loop; the local method itself has to be declared in
the loop, too. As a trivial example, this isn’t valid:

static void Invalid()
{
 for (int i = 0; i < 10; i++)
 {
 PrintI();
 }

 void PrintI() => Console.WriteLine(i);
}

But with the local method inside the loop, it’s valid1:

static void Valid()
{
 for (int i = 0; i < 10; i++)
 {
 PrintI();

 void PrintI() => Console.WriteLine(i);
 }
}

A LOCAL METHOD MUST BE DECLARED AFTER THE DECLARATION OF ANY
VARIABLES IT CAPTURES

Just as you can’t use a variable earlier than its declaration in regular code, you can’t
use a captured variable in a local method until after its declaration, either. This rule is
more for consistency than out of necessity; it would’ve been feasible to specify the

1 It may be a little strange to read, but it’s valid.

Unable to access i;
it’s not in scope.

Local method declared
within loop; i is in scope.
Licensed to André Santos <andrerfcsantos@gmail.com>

418 CHAPTER 14 Concise code in C# 7
language to require that any calls to the method occur after the variable’s declaration,
for example, but it’s simpler to require all access to occur after declaration. Here’s
another trivial example of invalid code:

static void Invalid()
{
 void PrintI() => Console.WriteLine(i);
 int i = 10;
 PrintI();
}

Just moving the local method declaration to after the variable declaration (whether
before or after the PrintI() call) fixes the error.

A LOCAL METHOD CAN’T CAPTURE REF PARAMETERS OF THE
ENCLOSING METHOD

Just like anonymous functions, local methods aren’t permitted to use reference
parameters of their enclosing method. For example, this is invalid:

static void Invalid(ref int p)
{
 PrintAndIncrementP();
 void PrintAndIncrementP() =>
 Console.WriteLine(p++);
}

The reason for this prohibition for anonymous functions is that the created delegate
might outlive the variable being captured. In most cases, this reason wouldn’t apply to
local methods, but as you’ll see later, it’s possible for local methods to have the same
kind of issue. In most cases, you can work around this by declaring an extra parameter
in the local method and passing the reference parameter by reference again:

static void Valid(ref int p)
{
 PrintAndIncrement(ref p);
 void PrintAndIncrement(ref int x) => Console.WriteLine(x++);
}

If you don’t need to modify the parameter within the local method, you can make it a
value parameter instead.

 As a corollary of this restriction (again, mirroring a restriction for anonymous
functions), local methods declared within structs can’t access this. Imagine that
this is an implicit extra parameter at the start of every instance method’s parameter
list. For class methods, it’s a value parameter; for struct methods, it’s a reference
parameter. Therefore, you can capture this in local methods in classes but not in
structs. The same workaround applies as for other reference parameters.

NOTE I’ve provided an example in the source code accompanying the book
in LocalMethodUsingThisInStruct.cs.

CS0841: Can’t use local
variable i before it’s declared

Invalid access to
reference parameter
Licensed to André Santos <andrerfcsantos@gmail.com>

419Local methods
LOCAL METHODS INTERACT WITH DEFINITE ASSIGNMENT

The rules of definite assignment in C# are complicated, and local methods complicate
them further. The simplest way to think about it is as if the method were inlined at any
point where it’s called. That impacts assignment in two ways.

 First, if a method that reads a captured variable is called before it’s definitely
assigned, that causes a compile-time error. Here’s an example that tries to print the
value of a captured variable in two places: once before it’s been assigned a value and
once afterward:

static void AttemptToReadNotDefinitelyAssignedVariable()
{
 int i;
 void PrintI() => Console.WriteLine(i);
 PrintI();
 i = 10;
 PrintI();
}

Notice that it’s the location of the call to PrintI that causes the error here; the loca-
tion of the method declaration itself is fine. If you move the assignment to i before
any calls to PrintI(), that’s fine, even if it’s still after the declaration of PrintI().

 Second, if a local method writes to a captured variable in all possible execution
flows, the variable will be definitely assigned at the end of any call to that method.
Here’s an example that assigns a value within a local method but then reads it within
the containing method:

static void DefinitelyAssignInMethod()
{
 int i;
 AssignI();
 Console.WriteLine(i);
 void AssignI() => i = 10;
}

There are a couple of final points to make about local methods and variables, but this
time the variables under discussion are not captured variables but fields.

LOCAL METHODS CAN’T ASSIGN READ-ONLY FIELDS

Read-only fields can be assigned values only in field initializers or constructors. That
rule doesn’t change with local methods, but it’s made a little stricter: even if a local
method is declared within a constructor, it doesn’t count as being inside the construc-
tor in terms of field initialization. This code is invalid:

class Demo
{
 private readonly int value;

 public Demo()
 {
 AssignValue();

CS0165: Use of unassigned
local variable ‘i’

No error: i is
definitely assigned here.

Call to the method makes
i definitely assigned. So it’s fine to

print it out.

Method performs
the assignment.
Licensed to André Santos <andrerfcsantos@gmail.com>

420 CHAPTER 14 Concise code in C# 7
 void AssignValue()
 {
 value = 10;
 }
 }
}

This restriction isn’t likely to be a significant problem, but it’s worth being aware of.
It stems from the fact that the CLR hasn’t had to change in order to support local
methods. They’re just a compiler transformation. This leads us to considering exactly
how the compiler does implement local methods, particularly with respect to captured
variables.

14.1.2 Local method implementations

Local methods don’t exist at the CLR level.2 The C# compiler converts local methods
into regular methods by performing whatever transformations are required to make
the final code behave according to the language rules. This section provides examples
of the transformations implemented by Roslyn (the Microsoft C# compiler) and
focuses on how captured variables are treated, as that’s the most complex aspect of
the transformation.

Local methods feel like anonymous functions in the way they can capture local vari-
ables from their surrounding code. But significant differences in the implementation
can make local methods rather more efficient in many cases. At the root of this differ-
ence is the lifetime of the local variables involved. If an anonymous function is con-
verted into a delegate instance, that delegate could be invoked long after the method
has returned, so the compiler has to perform tricks, hoisting the captured variables
into a class and making the delegate refer to a method in that class.

 Compare that with local methods: in most cases, the local method can be invoked
only during the call of the enclosing method; you don’t need to worry about it referring

2 If a C# compiler were to target an environment where local methods did exist, all of the information in this
section would probably be irrelevant for that compiler.

Implementation details: Nothing guaranteed here
This section really is about how the C# 7.0 version of Roslyn implements local meth-
ods. This implementation could change in future versions of Roslyn, and other C#
compilers may use a different implementation. It also means there’s quite a lot of
detail here that you may not be interested in.

The implementation does have performance implications that may affect how com-
fortable you are with using local methods in performance-sensitive code. But as with
all performance matters, you should be basing your decisions more on careful mea-
surement than on theory.

Invalid assignment
to read-only field
Licensed to André Santos <andrerfcsantos@gmail.com>

421Local methods
to captured variables after that call has completed. That allows for a more efficient,
stack-based implementation with no heap allocations. Let’s start reasonably simply with
a local method that increments a captured variable by an amount specified as an argu-
ment to the local method.

static void Main()
{
 int i = 0;
 AddToI(5);
 AddToI(10);
 Console.WriteLine(i);
 void AddToI(int amount) => i += amount;
}

What does Roslyn do with this method? It creates a private mutable struct with public
fields to represent all the local variables in the same scope that are captured by any
local method. In this case, that’s just the i variable. It creates a local variable within
the Main method of that struct type and passes the variable by reference to the regu-
lar method created from AddToI along with the declared amount parameter, of
course. You end up with something like the following listing.

private struct MainLocals
{
 public int i;
}

static void Main()
{
 MainLocals locals = new MainLocals();
 locals.i = 0;
 AddToI(5, ref locals);
 AddToI(10, ref locals);
 Console.WriteLine(locals.i);
}

static void AddToI(int amount, ref MainLocals locals)
{
 locals.i += amount;
}

As usual, the compiler generates unspeakable names for the method and the struct.
Note that in this example, the generated method is static. That’s the case when either
the local method is originally contained in a static member or when it’s contained in
an instance member but the local method doesn’t capture this (explicitly or implic-
itly by using instance members within the local method).

Listing 14.2 Local method modifying a local variable

Listing 14.3 What Roslyn does with listing 14.2

Generated mutable struct to store
the local variables from Main

Creates and uses a value of
the struct within the method

Passes the struct by reference
to the generated method

Generated method
to represent the
original local method
Licensed to André Santos <andrerfcsantos@gmail.com>

422 CHAPTER 14 Concise code in C# 7
 The important point about generating this struct is that the transformation is
almost free in terms of performance: all the local variables that would’ve been on the
stack before are still on the stack; they are just bunched together in a struct so that
they can be passed by reference to the generated method. Passing the struct by refer-
ence has two benefits:

 It allows the local method to modify the local variables.
 However many local variables are captured, calling the local method is cheap.

(Compare that with passing them all by value, which would mean creating a sec-
ond copy of each captured local variable.)

All of this without any garbage being generated on the heap. Hooray! Now let’s make
things a little more complex.

CAPTURING VARIABLES IN MULTIPLE SCOPES

In an anonymous function, if local variables are captured from multiple scopes, multi-
ple classes are generated with a field in each class representing the inner scope hold-
ing a reference to an instance of the class representing the outer scope. That wouldn’t
work with the struct approach for local methods that you just saw because of the copy-
ing involved. Instead, the compiler generates one struct for each scope containing a
captured variable and uses a separate parameter for each scope. The following listing
deliberately creates two scopes, so we can see how the compiler handles it.

static void Main()
{
 DateTime now = DateTime.UtcNow;
 int hour = now.Hour;
 if (hour > 5)
 {
 int minute = now.Minute;
 PrintValues();

 void PrintValues() =>
 Console.WriteLine($"hour = {hour}; minute = {minute}");
 }
}

I used a simple if statement to introduce a new scope rather than a for or foreach
loop, because this made the translation simpler to represent reasonably accurately.
The following listing shows the compiler how the compiler translates the local meth-
ods into regular ones.

struct OuterScope
{
 public int hour;
}

Listing 14.4 Capturing variables from multiple scopes

Listing 14.5 What Roslyn does with listing 14.4

Generated struct
for outer scope
Licensed to André Santos <andrerfcsantos@gmail.com>

423Local methods
struct InnerScope
{
 public int minute;
}

static void Main()
{
 DateTime now = DateTime.UtcNow;
 OuterScope outer = new OuterScope();
 outer.hour = now.Hour;
 if (outer.hour > 5)
 {
 InnerScope inner = new InnerScope();
 inner.minute = now.Minute;
 PrintValues(ref outer, ref inner);
 }
}

static void PrintValues(
 ref OuterScope outer, ref InnerScope inner)
{
 Console.WriteLine($"hour = {outer.hour}; minute = {inner.minute}");
}

In addition to demonstrating how multiple scopes are handled, this listing shows that
uncaptured local variables aren’t included in the generated structs.

 So far, we’ve looked at cases where the local method can execute only while the con-
taining method is executing, which makes it safe for the local variables to be captured
in this efficient way. In my experience, this covers most of the cases where I’ve wanted
to use local methods. There are occasional exceptions to that safe situation, though.

PRISON BREAK! HOW LOCAL METHODS CAN ESCAPE THEIR CONTAINING CODE

Local methods behave like regular methods in four ways that can stop the compiler from
performing the “keep everything on the stack” optimization we’ve discussed so far:

 They can be asynchronous, so a call that returns a task almost immediately
won’t necessarily have finished executing the logical operation.

 They can be implemented with iterators, so a call that creates a sequence will
need to continue executing the method when the next value in the sequence is
requested.

 They can be called from anonymous functions, which could in turn be called
(as delegates) long after the original method has finished.

 They can be the targets of method group conversions, again creating delegates
that can outlive the original method call.

The following listing shows a simple example of the last bullet point. A local Count
method captures a local variable in its enclosing CreateCounter method. The
Count method is used to create an Action delegate, which is then invoked after the
CreateCounter method has returned.

Generated struct
for inner scope

Uncaptured
local variable

Creates and uses struct
for outer scope variable hour

Creates and uses struct for
inner scope variable minute

Passes both structs by reference
to generated method

Generated method to represent
the original local method
Licensed to André Santos <andrerfcsantos@gmail.com>

424 CHAPTER 14 Concise code in C# 7

static void Main()
{
 Action counter = CreateCounter();
 counter();
 counter();
}

static Action CreateCounter()
{
 int count = 0;
 return Count;
 void Count() => Console.WriteLine(count++);
}

You can’t use a struct on the stack for count anymore. The stack for CreateCounter
won’t exist by the time the delegate is invoked. But this feels very much like an anony-
mous function now; you could’ve implemented CreateCounter by using a lambda
expression instead:

static Action CreateCounter()
{
 int count = 0;
 return () => Console.WriteLine(count++);
}

That gives you a clue as to how the compiler can implement the local method: it can
apply a similar transformation for the local method as it would for the lambda expres-
sion, as shown in the following listing.

static void Main()
{
 Action counter = CreateCounter();
 counter();
 counter();
}

static Action CreateCounter()
{
 CountHolder holder = new CountHolder();
 holder.count = 0;
 return holder.Count;
}

private class CountHolder
{
 public int count;

 public void Count() => Console.WriteLine(count++);
}

Listing 14.6 Method group conversion of a local method

Listing 14.7 What Roslyn does with listing 14.6

Invokes the delegate after
CreateCounter has finished

Local variable
captured by Count Method group conversion of

Count to an Action delegate

Local method

Alternative implementation
using a lambda expression

Creates and initializes object
holding captured variables

Method group conversion of
instance method from holder

Private class with
captured variables
and local methodCaptured variable

Local method is now
an instance method
in generated class
Licensed to André Santos <andrerfcsantos@gmail.com>

425Local methods
The same kind of transformation is performed if the local method is used within an
anonymous function if it’s an async method or if it’s an iterator (with yield state-
ments). The performance-minded may wish to be aware that async methods and itera-
tors can end up generating multiple objects; if you’re working hard to prevent
allocations and you’re using local methods, you may wish to pass parameters explicitly
to those local methods instead of capturing local variables. An example of this is
shown in the next section.

 Of course, the set of possible scenarios is pretty huge; one local method could use
a method conversion for another local method, or you could use a local method
within an async method, and so on. I’m certainly not going to try to cover every possi-
ble case here. This section is intended to give you a good idea of the two kinds of
transformation the compiler can use when dealing with captured variables. To see
what it’s doing with your code, use a decompiler or ildasm, remembering to disable
any “optimizations” the decompiler might do for you. (Otherwise, it could easily just
show the local method, which doesn’t help you at all.) Now that you’ve seen what you
can do with local methods and how the compiler handles them, let’s consider when
it’s appropriate to use them.

14.1.3 Usage guidelines

There are two primary patterns to spot where local methods might be applicable:

 You have the same logic repeated multiple times in a method.
 You have a private method that’s used from only one other method.

The second case is a special case of the first in which you’ve taken the time to refactor
the common code already. But the first case can occur when there’s enough local state
to make that refactoring ugly. Local methods can make the extraction significantly
more appealing because of the ability to capture local variables.

 When refactoring an existing method to become a local method, I advise con-
sciously taking a two-stage approach. First, move the single-use method into the code
that uses it without changing its signature.3 Second, look at the method parameters: are
all the calls to the method using the same local variables as arguments? If so, those are
good candidates for using captured variables instead, removing the parameter from the
local method. Sometimes you may even be able to remove the parameters entirely.

 Depending on the number and size of the parameters, this second step could even
have a performance impact. If you were previously passing large value types by value,
those were being copied on each call. Using captured variables instead can eliminate
that copy, which could be significant if the method is being called a lot.

 The important point about local methods is that it becomes clear that they’re an
implementation detail of a method rather than of a type. If you have a private

3 Sometimes this requires changes to the type parameters in the signature. Often if you have one generic
method calling another, when you move the second method into the first, it can just use the type parameters
of the first. Listing 14.9 demonstrates this.
Licensed to André Santos <andrerfcsantos@gmail.com>

426 CHAPTER 14 Concise code in C# 7
method that makes sense as an operation in its own right but happens to be used in
only one place at the moment, you may be better off leaving it where it is. The pay-
off—in terms of logical type structure—is much bigger when a private method is
tightly bound to a single operation and you can’t easily imagine any other circum-
stances where you’d use it.

ITERATOR/ASYNC ARGUMENT VALIDATION AND LOCAL METHOD OPTIMIZATION

One common example of this is when you have iterator or async methods and want to
eagerly perform argument validation. For example, the Listing 14.8 provides a sample
implementation of one overload of Select in LINQ to Objects. The argument valida-
tion isn’t in an iterator block, so it’s performed as soon as the method is called,
whereas the foreach loop doesn’t execute at all until the caller starts iterating over
the returned sequence.

public static IEnumerable<TResult> Select<TSource, TResult>(
 this IEnumerable<TSource> source,
 Func<TSource, TResult> selector)
{
 Preconditions.CheckNotNull(source, nameof(source));
 Preconditions.CheckNotNull(
 selector, nameof(selector));
 return SelectImpl(source, selector);
}

private static IEnumerable<TResult> SelectImpl<TSource, TResult>(
 IEnumerable<TSource> source,
 Func<TSource, TResult> selector)
{
 foreach (TSource item in source)
 {
 yield return selector(item);
 }
}

Now, with local methods available, you can move the implementation into the Select
method, as shown in the following listing.

public static IEnumerable<TResult> Select<TSource, TResult>(
 this IEnumerable<TSource> source,
 Func<TSource, TResult> selector)
{
 Preconditions.CheckNotNull(source, nameof(source));
 Preconditions.CheckNotNull(selector, nameof(selector));
 return SelectImpl(source, selector);

 IEnumerable<TResult> SelectImpl(
 IEnumerable<TSource> validatedSource,

Listing 14.8 Implementing Select without local methods

Listing 14.9 Implementing Select with a local method

Eagerly checks
arguments

Delegates to the
implementation

Implementation
executes lazily
Licensed to André Santos <andrerfcsantos@gmail.com>

427Out variables
 Func<TSource, TResult> validatedSelector)
 {
 foreach (TSource item in validatedSource)
 {
 yield return validatedSelector(item);
 }
 }
}

I’ve highlighted one interesting aspect of the implementation: you still pass the (now-
validated) parameters into the local method. This isn’t required; you could make the
local method parameterless and just use the captured source and selector vari-
ables, but it’s a performance tweak—it reduces the number of allocations required. Is
this performance difference important? Would the version using variable capture be
significantly more readable? Answers to both questions depend on the context and
are likely to be somewhat subjective.

READABILITY SUGGESTIONS

Local methods are still new enough to me that I’m slightly wary of them. I’m erring
on the side of leaving code as it is rather than refactoring toward local methods at the
moment. In particular, I’m avoiding using the following two features:

 Even though you can declare a local method within the scope of a loop or other
block, I find that odd to read. I prefer to use local methods only when I can
declare them right at the bottom of the enclosing method. I can’t capture any
variables declared within loops, but I’m okay with that.

 You can declare local methods within other local methods, but that feels like a
rabbit hole I’d rather not go down.

Your tastes may vary, of course, but as always, I caution against using a new feature just
because you can. (Experiment with it for the sake of experimentation, certainly, but
don’t let the new shiny things lure you into sacrificing readability.)

 Time for some good news: the first feature of this chapter was the big one. The
remaining features are much simpler.

14.2 Out variables
Before C# 7, out parameters were slightly painful to work with. An out parameter
required a variable to already be declared before you could use it as an argument for
the parameter. Because declarations are separate statements, this meant that in some
places where you wanted a single expression—initializing a variable, for example—
you had to reorganize your code to have multiple statements.

14.2.1 Inline variable declarations for out parameters

C# 7 removes this pain point by allowing new variables to be declared within the
method invocation itself. As a trivial example, consider a method that takes textual
input, attempts to parse it as an integer using int.TryParse, and then returns either
Licensed to André Santos <andrerfcsantos@gmail.com>

428 CHAPTER 14 Concise code in C# 7
the parsed value as a nullable integer (if it parsed successfully) or null (if it didn’t). In
C# 6, this would have to be implemented using at least two statements: one to declare
the variable and a second to call int.TryParse passing the newly declared variable
for the out parameter:

static int? ParseInt32(string text)
{
 int value;
 return int.TryParse(text, out value) ? value : (int?) null;
}

In C# 7, the value variable can be declared within the method call itself, which
means you can implement the method with an expression body:

static int? ParseInt32(string text) =>
 int.TryParse(text, out int value) ? value : (int?) null;

In several ways, out variable arguments behave similarly to variables introduced by
pattern matches:

 If you don’t care about the value, you can use a single underscore as the name
to create a discard.

 You can use var to declare an implicitly typed variable (the type is inferred
from the type of the parameter).

 You can’t use an out variable argument in an expression tree.
 The scope of the variable is the surrounding block.
 You can’t use out variables in field, property, or constructor initializers or in

query expressions before C# 7.3. You’ll look at an example of this shortly.
 The variable will be definitely assigned if (and only if) the method is definitely

invoked.

To demonstrate the last point, consider the following code, which tries to parse two
strings and sum the results:

static int? ParseAndSum(string text1, string text2) =>
 int.TryParse(text1, out int value1) &&
 int.TryParse(text2, out int value2)
 ? value1 + value2 : (int?) null;

In the third operand of the conditional operator, value1 is definitely assigned (so
you could return that if you like), but value2 isn’t definitely assigned; if the first call
to int.TryParse returned false, you wouldn’t call int.TryParse the second time
because of the short-circuiting nature of the && operator.

14.2.2 Restrictions lifted in C# 7.3 for out variables and pattern variables

As I mentioned in section 12.5, pattern variables can’t be used when initializing fields
or properties, in construction initializers (this(...) and base(...)), or in query
expressions. The same restriction applies to out variables until C# 7.3, which lifts all
Licensed to André Santos <andrerfcsantos@gmail.com>

429Improvements to numeric literals
those restrictions. The following listing demonstrates this and shows that the result of
the out variable is also available within the constructor body.

class ParsedText
{
 public string Text { get; }
 public bool Valid { get; }

 protected ParsedText(string text, bool valid)
 {
 Text = text;
 Valid = valid;
 }
}

class ParsedInt32 : ParsedText
{
 public int? Value { get; }

 public ParsedInt32(string text)
 : base(text, int.TryParse(text, out int parseResult))
 {
 Value = Valid ? parseResult : (int?) null;
 }
}

Although the restrictions prior to C# 7.3 never bothered me, it’s nice that they’ve now
been removed. In the rare cases that you needed to use patterns or out variables for
initializers, the alternatives were relatively annoying and usually involved creating a
new method just for this purpose.

 That’s about it for out variable arguments. They’re just a useful little shorthand to
avoid otherwise-annoying variable declaration statements.

14.3 Improvements to numeric literals
Literals haven’t changed much in the course of C#’s history. No changes at all occurred
from C# 1 until C# 6, when interpolated string literals were introduced, but that didn’t
change numbers at all. In C# 7, two features are aimed at number literals, both for the
sake of improving readability: binary integer literals and underscore separators.

14.3.1 Binary integer literals

Unlike floating-point literals (for float, double, and decimal), integer literals have
always had two options for the base of the literal: you could use decimal (no prefix) or
hex (a prefix of 0x or 0X).4 C# 7 extends this to binary literals, which use a prefix of

Listing 14.10 Using an out variable in a constructor initializer

4 The C# designers wisely eschewed the ghastly octal literals that Java inherited from C. What’s the value of 011?
Why, 9, “of course.”
Licensed to André Santos <andrerfcsantos@gmail.com>

430 CHAPTER 14 Concise code in C# 7
0b or 0B. This is particularly useful if you’re implementing a protocol with specific bit
patterns for certain values. It doesn’t affect the execution-time behavior at all, but it
can make the code a lot easier to read. For example, which of these three lines initial-
izes a byte with the top bit and the bottom three bits set and the other bits unset?

byte b1 = 135;
byte b2 = 0x83;
byte b3 = 0b10000111;

They all do. But you can tell that easily in the third line, whereas the other two take
slightly longer to check (at least for me). Even that last one takes longer than it might,
because you still have to check that you have the right number of bits in total. If only
there were a way of clarifying it even more.

14.3.2 Underscore separators

Let’s jump straight into underscore separators by improving the previous example. If
you want to specify all the bits of a byte and do so in binary, it’s easier to spot that you
have two nibbles than to count all eight bits. Here’s the same code with a fourth line
that uses an underscore to separate the nibbles:

byte b1 = 135;
byte b2 = 0x83;
byte b3 = 0b10000111;
byte b4 = 0b1000_0111;

Love it! I can really check that at a glance. Underscore separators aren’t restricted to
binary literals, though, or even to integer literals. You can use them in any numeric lit-
eral and put them (almost) anywhere within the literal. In decimal literals, you’re
most likely to use them every three digits like thousands separators (at least in Western
cultures). In hex literals, they’re generally most useful every two, four, or eight digits
to separate 8-, 16-, or 32-bit parts within the literal. For example:

int maxInt32 = 2_147_483_647;
decimal largeSalary = 123_456_789.12m;
ulong alternatingBytes = 0xff_00_ff_00_ff_00_ff_00;
ulong alternatingWords = 0xffff_0000_ffff_0000;
ulong alternatingDwords = 0xffffffff_00000000;

This flexibility comes at a price: the compiler doesn’t check that you’re putting the
underscores in sensible places. You can even put multiple underscores together. Valid
but unfortunate examples include the following:

int wideFifteen = 1____________________5;
ulong notQuiteAlternatingWords = 0xffff_000_ffff_0000;

You also should be aware of a few restrictions:

 You can’t put an underscore at the start of the literal.
 You can’t put an underscore at the end of the literal (including just before the

suffix).
Licensed to André Santos <andrerfcsantos@gmail.com>

431Throw expressions
 You can’t put an underscore directly before or after the period in a floating-
point literal.

 In C# 7.0 and 7.1, you can’t put an underscore after the base specifier (0x or
0b) of an integer literal.

The final restriction has been lifted in C# 7.2. Although readability is subjective, I def-
initely prefer to use an underscore after the base specifier when there are underscores
elsewhere, as in the following examples:

 0b_1000_0111 versus 0b1000_0111
 0x_ffff_0000 versus 0xffff_0000

That’s it! A nice simple feature with very little nuance. The next feature is similarly
straightforward and permits a simplification in some cases where you need to throw
an exception conditionally.

14.4 Throw expressions
Earlier versions of C# always included the throw statement, but you couldn’t use
throw as an expression. Presumably, the reasoning was that you wouldn’t want to,
because it would always throw an exception. It turns out that as more language fea-
tures were added that needed expressions, this classification became increasingly
more irritating. In C# 7, you can use throw expressions in a limited set of contexts:

 As the body of a lambda expression
 As the body of an expression-bodied member
 As the second operand of the ?? operator
 As the second or third operand of the conditional ?: operator (but not both in

the same expression)

All of these are valid:

public void UnimplementedMethod() =>
 throw new NotImplementedException();

public void TestPredicateNeverCalledOnEmptySequence()
{
 int count = new string[0]
 .Count(x => throw new Exception("Bang!"));
 Assert.AreEqual(0, count);
}

public static T CheckNotNull<T>(T value, string paramName) where T : class
 => value ??
 throw new ArgumentNullException(paramName);

public static Name =>
 initialized
 ? data["name"]
 : throw new Exception("...");

Expression-bodied method

Lambda
expression

?? operator (in expression-
bodied method)

?: operator (in expression-
bodied property)
Licensed to André Santos <andrerfcsantos@gmail.com>

432 CHAPTER 14 Concise code in C# 7
You can’t use throw expressions everywhere, though; that just wouldn’t make sense.
For example, you can’t use them unconditionally in assignments or as method
arguments:

int invalid = throw new Exception("This would make no sense");
Console.WriteLine(throw new Exception("Nor would this"));

The C# team has given us flexibility where it’s useful (typically, where it allows you to
express the exact same concepts as before, but in a more concise fashion) but pre-
vented us from shooting ourselves in the foot with throw expressions that would be
ludicrous in context.

 Our next feature continues the theme of allowing us to express the same logic but
with less fluff by simplifying the default operator with default literals.

14.5 Default literals (C# 7.1)
The default(T) operator was introduced in C# 2.0 primarily for use with generic
types. For example, to retrieve a value from a list if the index was in bounds or the
default for the type instead, you could write a method like this:

static T GetValueOrDefault<T>(IList<T> list, int index)
{
 return index >= 0 && index < list.Count ? list[index] : default(T);
}

The result of the default operator is the same default value for a type that you
observe when you leave a field uninitialized: a null reference for reference types, an
appropriately typed zero for all numeric types, U+0000 for char, false for bool, and
a value with all fields set to the corresponding default for other value types.

 When C# 4 introduced optional parameters, one way of specifying the default value
for a parameter was to use the default operator. This can be unwieldy if the type name
is long, because you end up with the type name in both the parameter type and its
default value. One of the worst offenders for this is CancellationToken, particularly
because the conventional name for a parameter of that type is cancellationToken.
A common async method signature might be something like this:

public async Task<string> FetchValueAsync(
 string key,
 CancellationToken cancellationToken = default(CancellationToken))

The second parameter declaration is so long it needs a whole line to itself for book
formatting; it’s 64 characters.

 In C# 7.1, in certain contexts, you can use default instead of default(T) and
let the compiler figure out which type you intended. Although there are definitely
benefits beyond the preceding example, I suspect it was one of the main motivating
factors. The preceding example can become this:

public async Task<string> FetchValueAsync(
 string key, CancellationToken cancellationToken = default)
Licensed to André Santos <andrerfcsantos@gmail.com>

433Nontrailing named arguments (C# 7.2)
That’s much cleaner. Without the type after it, default is a literal rather than an oper-
ator, and it works similarly to the null literal, except that it works for all types. The lit-
eral itself has no type, just like the null literal has no type, but it can be converted to
any type. That type might be inferred from elsewhere, such as an implicitly typed array:

var intArray = new[] { default, 5 };
var stringArray = new[] { default, "text" };

That code snippet doesn’t list any type names explicitly, but intArray is implicitly an
int[] (with the default literal being converted to 0), and stringArray is implic-
itly a string[] (with the default literal being converted to a null reference). Just
like the null literal, there does have to be some type involved to convert it to; you
can’t just ask the compiler to infer a type with no information:

var invalid = default;
var alsoInvalid = new[] { default };

The default literal is classified as a constant expression if the type it’s converted to is
a reference type or a primitive type. This allows you to use it in attributes if you want to.

 One quirk to be aware of is that the term default has multiple meanings. It can
mean the default value of a type or the default value of an optional parameter. The
default literal always refers to the default value of the appropriate type. That could
lead to some confusion if you use it as an argument for an optional parameter that has
a different default value. Consider the following listing.

static void PrintValue(int value = 10)
{
 Console.WriteLine(value);
}

static void Main()
{
 PrintValue(default);
}

This prints 0, because that’s the default value for int. The language is entirely consis-
tent, but this code could cause confusion because of the different possible meanings
of default. I’d try to avoid using the default literal in situations like this.

14.6 Nontrailing named arguments (C# 7.2)
Optional parameters and named arguments were introduced as complementary fea-
tures in C# 4, and both had ordering requirements: optional parameters had to come
after all required parameters (other than parameter arrays), and named arguments
had to come after all positional arguments. Optional parameters haven’t changed, but
the C# team has noticed that often named arguments can be useful as tools for increas-
ing clarity, even for arguments in the middle of an argument list. This is particularly

Listing 14.11 Specifying a default literal as a method argument

Parameter’s default
value is 10.

Method argument
is default for int.
Licensed to André Santos <andrerfcsantos@gmail.com>

434 CHAPTER 14 Concise code in C# 7
true when the argument is a literal (typically, a number, Boolean, literal, or null) where
the context doesn’t clarify the purpose of the value.

 As an example, I’ve been writing samples for the BigQuery client library recently.
When you upload a CSV file to BigQuery, you can specify a schema, let the server
determine the schema, or fetch it from the table if that already exists. When writing
the samples for the autodetection, I wanted to make it clear that you can pass a null
reference for the schema parameter. Written in the simplest—but not clearest—form,
it’s not at all obvious what the null argument means:

client.UploadCsv(table, null, csvData, options);

Before C# 7.2, my options for making this clearer were to either use named arguments
for the last three parameters, which ended up looking a little awkward, or use an
explanatory local variable:

TableSchema schema = null;
client.UploadCsv(table, schema, csvData, options);

That’s clearer, but it’s still not great. C# 7.2 allows named arguments anywhere in the
argument list, so I can make it clear what the second argument means without any
extra statements:

client.UploadCsv(table, schema: null, csvData, options);

This can also help differentiate between overloads in some cases in which the argu-
ment (typically null) could be converted to the same parameter position in multiple
overloads.

 The rules for nontrailing named arguments have been designed carefully to avoid
any subsequent positional arguments from becoming ambiguous: if there are any
unnamed arguments after a named one, the named argument has to correspond to the
same parameter as it would if it were a simple positional argument. For example, con-
sider this method declaration and three calls to it:

void M(int x, int y, int z){}

M(5, z: 15, y: 10);
M(5, y: 10, 15);
M(y: 10, 5, 15);

The first call is valid because it consists of one positional argument followed by two
named arguments; it’s obvious that the positional argument corresponds to the
parameter x, and the other two are named. No ambiguity.

 The second call is valid because although there’s a named argument with a later
positional argument, the named argument corresponds to the same parameter as it
would if it were positional (y). Again, it’s clear what value each parameter should take.

 The third call is invalid: the first argument is named but corresponds to the second
parameter (y). Should the second argument correspond to the first parameter (x) on

Valid: trailing named
arguments out of order

Valid: nontrailing named
argument in orderInvalid: nontrailing named

argument out of order
Licensed to André Santos <andrerfcsantos@gmail.com>

435Minor improvements in C# 7.3
the grounds that it’s the first non-named argument? Although the rules could work
this way, it all becomes a bit confusing; it’s even worse when optional parameters get
involved. It’s simpler to prohibit it, so that’s what the language team decided to do.
Next is a feature that has been in the CLR forever but was exposed only in C# 7.2.

14.7 Private protected access (C# 7.2)
A few years ago, private protected was going to be part of C# 6 (and perhaps they
planned to introduce it even earlier than this). The problem was coming up with a
name. By the time the team had reached 7.2, they decided they weren’t going to find
a better name than private protected. This combination of access modifiers is
more restrictive than either protected or internal. You have access to a private
protected member only from code that’s in the same assembly and is within a subclass
of the member declaration (or is in the same type).

 Compare this with protected internal, which is less restrictive than either
protected or internal. You have access to a protected internal member from code
that’s in the same assembly or is within a subclass of the member declaration (or is in
the same type).

 That’s all there is to say about it; it doesn’t even merit an example. It’s nice to have
from a completeness perspective, as it was odd for there to be an access level that could
be expressed in the CLR but not in C#. I’ve used it only once so far in my own code, and
I don’t expect it to be something I find much more useful in the future. We’ll finish this
chapter with a few odds and ends that don’t fit in neatly anywhere else.

14.8 Minor improvements in C# 7.3
As you’ve already seen in this chapter and earlier in the book, the C# design team
didn’t stop work on C# 7 after releasing C# 7.0. Small tweaks were made, mostly to
enhance the features released in C# 7.0. Where possible, I’ve included those details
along with the general feature description. A few of the features in C# 7.3 don’t fit in
that way, and they don’t really fit in with this chapter’s theme of concise code, either.
But it wouldn’t feel right to leave them out.

14.8.1 Generic type constraints

When I briefly described type constraints in section 2.1.5, I left out a few restrictions.
Prior to C# 7.3, a type constraint couldn’t specify that the type argument must derive
from Enum or Delegate. This restriction has been lifted, and a new kind of constraint
has been added: a constraint of unmanaged. The following listing gives examples of
how these constraints are specified and used.

enum SampleEnum {}
static void EnumMethod<T>() where T : struct, Enum {}
static void DelegateMethod<T>() where T : Delegate {}
static void UnmanagedMethod<T>() where T : unmanaged {}
...

Listing 14.12 New constraints in C# 7.3
Licensed to André Santos <andrerfcsantos@gmail.com>

436 CHAPTER 14 Concise code in C# 7
EnumMethod<SampleEnum>();
EnumMethod<Enum>();

DelegateMethod<Action>();
DelegateMethod<Delegate>();
DelegateMethod<MulticastDelegate>();

UnmanagedMethod<int>();
UnmanagedMethod<string>();

I’ve shown a constraint of where T : struct, Enum for the enum constraint, because
that’s how you almost always want to use it. That constrains T to be a real enum type: a
value type derived from Enum. The struct constraint excludes the Enum type itself. If
you’re trying to write a method that works with any enum type, you usually wouldn’t
want to handle Enum, which isn’t really an enum type in itself. Unfortunately, it’s far too
late to add these constraints onto the various enum parsing methods in the framework.

 The delegate constraint doesn’t have an equivalent, unfortunately. There’s no way
of expressing a constraint of “only the types declared with a delegate declaration.” You
could use a constraint of where T : MulticastDelegate instead, but then you’d still
be able to use MulticastDelegate itself as a type argument.

 The final constraint is for unmanaged types. I’ve mentioned these in passing before,
but an unmanaged type is a non-nullable, nongeneric value type whose fields aren’t
reference types, recursively. Most of the value types in the framework (Int32,
Double, Decimal, Guid) are unmanaged types. As an example of a value type that
isn’t, a ZonedDateTime in Noda Time wouldn’t be an unmanaged type because it
contains a reference to a DateTimeZone instance.

14.8.2 Overload resolution improvements

The rules around overload resolution have been tweaked over and over again, usually
in hard-to-explain ways, but the change in C# 7.3 is welcome and reasonably simple. A
few conditions that used to be checked after overload resolution had finished are now
checked earlier. Some calls that would have been considered to be ambiguous or
invalid in an earlier version of C# are now fine. The checks are as follows:

 Generic type arguments must meet any constraints on the type parameters.
 Static methods can’t be called as if they were instance methods.
 Instance methods can’t be called as if they were static methods.

As an example of the first scenario, consider these overloads:

static void Method<T>(object x) where T : struct =>
 Console.WriteLine($"{typeof(T)} is a struct");

static void Method<T>(string x) where T : class =>
 Console.WriteLine($"{typeof(T)} is a reference type");
...
Method<int>("text");

Valid: enum
value typeInvalid: doesn’t meet

struct constraint
All valid
(unfortunately)

Valid: System.Int32 is
an unmanaged type.Invalid: System.String

is a managed type.

Method with a
struct constraint

Method with a
class constraint
Licensed to André Santos <andrerfcsantos@gmail.com>

437Summary
In previous versions of C#, overload resolution would’ve ignored the type parameter
constraints to start with. It would’ve picked the second overload, because string is a
more specific regular parameter type than object, and then discovered that the sup-
plied type argument (int) violated the type constraint.

 With C# 7.3, the code compiles with no error or ambiguity because the type con-
straint is checked as part of finding applicable methods. The other checks are similar;
the compiler discards methods that would be invalid for the call earlier than it used to.
Examples of all three scenarios are in the downloadable source code.

14.8.3 Attributes for fields backing automatically implemented
properties

Suppose you want a trivial property backed by a field, but you need to apply an attri-
bute to the field to enable other infrastructure. Prior to C# 7.3, you’d have to declare
the field separately and then write a simple property with boilerplate code. For exam-
ple, suppose you wanted to apply a DemoAttribute (just an attribute I’ve made up)
to a field backing a string property. You’d have needed code like this:

[Demo]
private string name;
public string Name
{
 get { return name; }
 set { name = value; }
}

That’s annoying when automatically implemented properties do almost everything
you want. In C# 7.3, you can specify a field attribute directly to an automatically imple-
mented property:

[field: Demo]
public string Name { get; set; }

This isn’t a new modifier for attributes, but previously it wasn’t available in this con-
text. (At least not officially and not in the Microsoft compiler. The Mono compiler has
allowed it for some time.) It’s just another rough edge of the specification where the
language wasn’t consistent that has been smoothed out for C# 7.3.

Summary
 Local methods allow you to clearly express that a particular piece of code is an

implementation detail of a single operation rather than being of general use
within the type itself.

 out variables are pure ceremony reduction that allow some cases that involved
multiple statements (declaring a variable and then using it) to be reduced to a
single expression.
Licensed to André Santos <andrerfcsantos@gmail.com>

438 CHAPTER 14 Concise code in C# 7
 Binary literals allow more clarity when you need to express an integer value, but
the bit pattern is more important than the magnitude.

 Literals with many digits that could easily become confusing to the reader are
clearer when digit separators are inserted.

 Like out variables, throw expressions often allow logic that previously had to
be expressed in multiple statements to be represented in a single expression.

 Default literals remove redundancy. They also stop you from having to say the
same thing twice.5

 Unlike the other features, using nontrailing named arguments may increase
the size of your source code, but all in the name of clarity. Or, if you were previ-
ously specifying lots of named arguments when you wanted to name only one in
the middle, you’ll be able to remove some names without losing readability.

5 See how annoying redundancy is? Sorry, I couldn’t resist.
Licensed to André Santos <andrerfcsantos@gmail.com>

C# 8 and beyond
At the time of this writing, C# 8 is still being designed. The GitHub repository
shows a lot of potential features, but only a few have reached the stage of publicly
available preview builds of the compiler. This chapter is educated guesswork; noth-
ing here is set in stone. It’s almost inconceivable that all the features being consid-
ered would be included in C# 8, and I’ve restricted myself to the ones I consider
reasonably likely to make the cut. I’ve provided the most detail about the features
available in preview at the time of writing, but even so, that doesn’t mean further
changes won’t occur.

This chapter covers
 Expressing null and non-null expectations for

reference types

 Using switch expressions with pattern matching

 Matching patterns recursively against properties

 Using index and range syntax for concise and
consistent code

 Using asynchronous versions of the using,
foreach, and yield statements
439

Licensed to André Santos <andrerfcsantos@gmail.com>

440 CHAPTER 15 C# 8 and beyond
NOTE At the time of this writing, only a few C# 8 features are available in pre-
view builds, and there are different builds with different features. The preview
for nullable reference types supports only full .NET projects (rather than .NET
Core SDK style projects), which makes it harder to experiment with them on
real code if all your projects use the new project format. I expect these limita-
tions to be overcome in later builds, possibly by the time you read this.

We’ll start with nullable reference types.

15.1 Nullable reference types
Ah, null references. The so-called billion-dollar mistake that Tony Hoare apologized
for in 2009 after introducing them in the 1960s. It’s hard to find an experienced C#
developer who hasn’t been bitten by a NullReferenceException at least a few
times. The C# team has a plan to tame null references, making it clearer where we
should expect to find them.

15.1.1 What problem do nullable reference types solve?

As an example that I’ll expand on over the course of this section, let’s consider the
classes in the following listing. If you’re following along in the downloadable source
code, you’ll see that I’ve declared them as separate nested classes within each exam-
ple, as the code changes over time.

public class Customer
{
 public string Name { get; set; }
 public Address Address { get; set; }
}

public class Address
{
 public string Country { get; set; }
}

An address would usually contain far more information than a country, but a single
property is enough for the examples in this chapter. With those classes in place, how
safe is this code?

Customer customer = ...;
Console.WriteLine(customer.Address.Country);

If you know (somehow) that customer is non-null and that a customer always has an
associated address, that may be fine. But how can you know that? If you know that only
because you’ve looked at documentation, what has to change to make the code safer?

 Since C# 2, we’ve had nullable value types, non-nullable value types, and implicitly
nullable reference types. A grid of nullable/non-nullable against value/reference

Listing 15.1 Initial model before C# 8
Licensed to André Santos <andrerfcsantos@gmail.com>

441Nullable reference types
types has had three of the four cells filled in, but the fourth has been elusive, as shown
in table 15.1.

The fact that there’s only one supported cell in the top row means we have no way of
expressing an intention that some reference values may be null and others should
never be null. When you run into a problem with an unexpected null value, it can be
hard to determine where the fault lies unless the code has been carefully documented
with null checks implemented consistently.1

 Given the huge body of .NET code that now exists with no machine-readable dis-
crimination between references that can reasonably be null and those that must
always be non-null, any attempt to rectify this situation can only be a cautious one.
What can we do?

15.1.2 Changing the meaning when using reference types

The broad idea of the null safety feature is to assume that when a developer is inten-
tionally discriminating between non-null and nullable reference types, the default is
to be non-nullable. New syntax is introduced for nullable reference types: string is a
non-nullable reference type, and string? is a nullable reference type. The grid then
evolves, as shown in table 15.2.

That sounds like the opposite of caution; it’s changing the meaning of all C# code
that deals with reference types! Turning on the feature changes the default from
nullable to non-nullable. The expectation is that there are far fewer places where a
null reference is intended to be valid than places where it should never occur.

 Let’s go back to our customer and address example. Without any changes to the
code, the compiler warns us that our Customer and Address classes are allowing

Table 15.1 Support for nullability and non-nullability for reference and value types in C# 7

Nullable Non-nullable

Reference types Implicit Not supported

Value types Nullable<T> or ? suffix Default

1 The day before I wrote this paragraph, most of my time was spent trying to track down a problem of exactly
this kind. The issue is very real.

Table 15.2 Support for nullability and non-nullability for reference and value types in C# 8

Nullable Non-nullable

Reference types No CLR type representation, but the ?
suffix as an annotation

Default when nullable reference type
support is enabled

Value types Nullable<T> or ? suffix Default
Licensed to André Santos <andrerfcsantos@gmail.com>

442 CHAPTER 15 C# 8 and beyond
non-nullable properties to be uninitialized. That can be fixed by adding constructors
with non-nullable parameters, as shown in the following listing.

public class Customer
{
 public string Name { get; set; }
 public Address Address { get; set; }

 public Customer(string name, Address address) =>
 (Name, Address) = (name, address);
}

public class Address
{
 public string Country { get; set; }

 public Address(string country) =>
 Country = country;
}

At this point, you “can’t” construct a Customer without providing a non-null name and
address, and you “can’t” construct an Address without providing a non-null country.
I’ve deliberately put can’t in scare-quotes for reasons you’ll see in section 15.1.4.

 But now consider our console output code again:

Customer customer = ...;
Console.WriteLine(customer.Address.Country);

This is safe, assuming everyone is obeying the contracts properly. Not only will it not
throw an exception, but you won’t be passing a null value to Console.WriteLine,
because the country in the address won’t be null.

 Okay, so the compiler can check that things aren’t null. But what about when you
want to allow null values? It’s time to explore the new syntax I mentioned before.

15.1.3 Enter nullable reference types

The syntax used to indicate a reference type that can be null is designed to be imme-
diately familiar. It’s the same as the syntax for nullable value types: adding a question
mark after the type name. This can be used in most places that a reference type can
appear. For example, consider this method:

string FirstOrSecond(string? first, string second) =>
 first ?? second;

The signature of the method shows the following:

 The type of first is nullable string.
 The type of second is non-nullable string.
 The return type is non-nullable string.

Listing 15.2 Model with non-nullable properties everywhere
Licensed to André Santos <andrerfcsantos@gmail.com>

443Nullable reference types
The compiler then uses that information to warn you if try to misuse a value that
might be null. For example, it can warn you if you do the following:

 Assign a possibly null value to a non-nullable variable or property.
 Pass a possibly null value as an argument for a non-nullable parameter.
 Dereference a possibly null value.

Let’s build this into our customer model. Let’s suppose the customer address could be
null. You need to modify the Customer class as follows:

 Change the property type.
 Either remove the constructor parameter for the address, make it nullable, or

overload it.

The Address type itself doesn’t change, only how it’s used. The following listing
shows the new Customer class. I’ve chosen to remove the constructor parameter for
the address.

public class Customer
{
 public string Name { get; set; }
 public Address? Address { get; set; }

 public Customer(string name) =>
 Name = name;
}

Great, you’ve now made your intent clear: the Name property won’t be null, but the
Address property might be. The compiler now gives you a different warning when
you try to display the country of the user’s address:

CS8602 Possible dereference of a null reference.

Great! It’s now identifying the problem you originally faced, which caused a
NullReferenceException. How do you fix the problem? It’s time to look at the
behavior of nullable reference types rather than just the syntax.

15.1.4 Nullable reference types at compile time and execution time

One golden rule of the new feature is that no behavior is changed implicitly. Even
though the meaning of your code has changed to assume an intent of non-nullable
types, the behavior hasn’t. The only difference is at compile time in terms of the warn-
ings generated. No new real types are involved; the CLR has no notion of a nullable
versus non-nullable reference type. Attributes are used to propagate nullability
information, but that’s all. This is similar to the extra information about tuple ele-
ment names, which are not part of the type at execution time. This has two important
consequences:

Listing 15.3 Making the customer Address property nullable

The address is now
optional information.

Removes the address parameter
from the constructor
Licensed to André Santos <andrerfcsantos@gmail.com>

444 CHAPTER 15 C# 8 and beyond
 Defensive programming remains a best practice. With the code you’ve written
so far, it’s possible for Name to be null, because a user could be ignoring warn-
ings or using code from another project that uses only C# 7. Argument valida-
tion is still important.

 To understand the feature fully, you need to understand the compiler warnings.
You definitely shouldn’t just ignore them; they’re present to provide value.

Let’s look at the warning you’re currently facing and consider all the ways you could
avoid it. You currently have this:

Console.WriteLine(customer.Address.Country);

The compiler is correctly telling you this is dangerous because customer.Address
could be null. You’ll look at three ways you can make the code safer. First, you can use
the null conditional and null coalescing operators in tandem, as shown in the next
listing.

Console.WriteLine(customer.Address?.Country ?? "(Address unknown)");

If customer.Address is null, the expression customer.Address?.Country won’t
try to evaluate the Country property, and the result of the expression will be null.
The null coalescing operator then provides a default value to print. The compiler
understands that you’re no longer trying to dereference anything that might be null,
and the warning goes away.

 You may be a little uneasy with this at the moment. It’s easy to get lost in a sea of
question marks if you’re not careful. I believe that C# developers will become more
comfortable with this over time, but it’s not the only solution available. You could take
a more verbose approach that’s simple to follow, as shown in the following listing.

Address? address = customer.Address;
if (address != null)
{
 Console.WriteLine(address.Country);
}
else
{
 Console.WriteLine("(Address unknown)");
}

There’s an interesting point to note here: the compiler needs to keep track of more
than just the type of the variable. If the rule were as simple as “dereferencing a value
of a nullable reference type causes a warning,” this code would still generate a warn-
ing, despite being safe. Instead, the compiler keeps track of whether a variable’s value

Listing 15.4 Safe dereferencing using the null conditional operator

Listing 15.5 Checking a reference with a local variable

Extracts address to
a new local variableChecks for nullity

and dereferences
only if non-null
Licensed to André Santos <andrerfcsantos@gmail.com>

445Nullable reference types
can be null at each place in the code in a similar manner to the way it keeps track of
definite assignment. By the time you reach the body of the if statement, the compiler
knows that the value of address can’t be null, so it doesn’t warn when you derefer-
ence it. Our third approach, shown in the following listing, is similar to the second
one, but without the local variable.

if (customer.Address != null)
{
 Console.WriteLine(customer.Address.Country);
}
else
{
 Console.WriteLine("(Address unknown)");
}

Even when you understand how the second example compiles without a warning, list-
ing 15.6 can be a little surprising. The compiler doesn’t just keep track of whether a
variable value can be null; it does that for properties, too. It assumes that if you access
the same property on the same value twice, the result will be the same both times.

 This may worry you. It means the feature isn’t guaranteed to stop your code from
dereferencing null values. Another thread could modify the Address property
between the two calls you’ve seen, or the Address property itself could be written to
randomly return a null value sometimes. There are other ways you can fool the com-
piler into believing your code is fine when it’s not absolutely safe. This is known and
accepted by the C# design team, because it’s a pragmatic balance between safety and
awkwardness. Code using the C# 8 features will be much more null-safe than code
written before, but making it 100% safe would almost certainly require more-invasive
changes that would put a lot of developers off. So long as you understand the limits of
what it’s trying to achieve, you’ll be fine.

 You’ve seen that the compiler works hard to understand what might or might not
be null. What can you do when it doesn’t have as much context as you do?

15.1.5 The damn it or bang operator

There’s one additional piece of syntax you haven’t looked at yet: the dammit, or damn
it, or bang operator.2 This is an exclamation mark at the end of an expression, and it’s a
way of telling the compiler to ignore whatever it thinks it knows about that expression
and just treat it as non-null.

 This is useful in two opposite situations:

 Sometimes you have more information than the compiler does, so you know a
value won’t be null, even though the compiler thinks it might be.

Listing 15.6 Checking a reference with repeated property access

2 I doubt that it’ll ever officially be called the damn it operator, but I suspect the name will live on in the com-
munity, just like everyone calls the Microsoft .NET Compiler Platform by its original name of Roslyn.
Licensed to André Santos <andrerfcsantos@gmail.com>

446 CHAPTER 15 C# 8 and beyond
 Sometimes you want to deliberately pass in a null value to check your argument
validation.

Brief examples of the first situation are somewhat contrived, because you’d typically
try to reorganize the code to avoid getting into that situation. In small examples, that’s
almost always feasible, but it’s harder in real applications. The following listing shows
a method to print the length of a string with input that can be null.

static void PrintLength(string? text)
{
 if (!string.IsNullOrEmpty(text))
 {
 Console.WriteLine($"{text}: {text!.Length}");
 }
 else
 {
 Console.WriteLine("Empty or null");
 }
}

In this example, you know something the compiler doesn’t in terms of the relation-
ship between the input to string.IsNullOrEmpty and the return value. If
string.IsNullOrEmpty returns false, the input can’t be null, so it’s fine to deref-
erence that value to get the length of the string. If you just try to use text.Length,
the compiler issues a warning. With text!.Length, you’re telling the compiler that
you know better, effectively taking responsibility for reasoning about the value.

 Now it’d be nice if the compiler did understand that input/result relationship for
string.IsNullOrEmpty method. We’ll come back to that idea in section 15.1.7.

 The second use of the bang operator is far easier to demonstrate with a realistic
example. I mentioned earlier that you should still validate parameters for null,
because it’s still entirely possible for you to receive null values. You may then want to
add a unit test for that validation, but then the compiler warns you because you’re
providing a null value when you’ve said it shouldn’t be null. The following listing
shows how the bang operator fixes this.

public class Customer
{
 public string Name { get; }
 public Address? Address { get; }

 public Customer(string name, Address? address)
 {
 Name = name ?? throw new ArgumentNullException(nameof(name));
 Address = address;

Listing 15.7 Using the bang operator to satisfy the compiler

Listing 15.8 Using the bang operator in unit tests

Input can be null

If IsNullOrEmpty returns
false, it’s not null.

Use the bang operator to
convince the compiler.
Licensed to André Santos <andrerfcsantos@gmail.com>

447Nullable reference types
 }
}

public class Address
{
 public string Country { get; }

 public Address(string country)
 {
 Country = country ??
 throw new ArgumentNullException(nameof(country));
 }
}

[Test]
public void Customer_NameValidation()
{
 Address address = new Address("UK");
 Assert.Throws<ArgumentNullException>(
 () => new Customer(null!, address));
}

I’ve made the Customer and Address types immutable in listing 15.8 for simplicity.
It’s interesting to note that the compiler doesn’t raise any kind of warning on the vali-
dation itself. Even though it knows the value shouldn’t be null, it doesn’t complain
that the code checks whether it is null. But it does try to enforce that when you call the
constructor in the test, the first argument is non-null. In an earlier version of C#, the
lambda expression in the test would look like this:

() => new Customer(null, address)

That code generates a warning, as you’d want it to in almost all cases. Changing the
argument to null! satisfies the compiler, and the test does what you want. This raises
the question of what it’s like working with nullable reference types in practice, and, in
particular, how to migrate existing code to use the feature.

15.1.6 Experiences of nullable reference type migration

There’s no better way to get a feel for how a feature works than to try it. I used the C#
8 preview build with Noda Time to see how much work would be required to make it
warning free and to see whether it found any bugs. This section describes this experi-
ence and some guidelines I found myself following. Your code may face different chal-
lenges, but I suspect there’ll be plenty of commonality.

USING ATTRIBUTES TO EXPRESS NULLABLE INTENT BEFORE C# 8
For a long time, Noda Time has used attributes (at least for all public methods) to
indicate whether reference type parameters can be null and likewise whether return
values may return null. For example, here’s the signature for a method in IDate-
TimeZoneProvider:

[CanBeNull] DateTimeZone GetZoneOrNull([NotNull] string id);

Deliberately passes in a null value
for the non-nullable parameter
Licensed to André Santos <andrerfcsantos@gmail.com>

448 CHAPTER 15 C# 8 and beyond
This shows that the argument for the id parameter must not be null, but the method
may return a null reference. I’ve already expressed the intent around nullity, just not
in a way that the C# compiler understood. That meant my first pass was just to go to all
the places in the code where I’d said that null values were allowed and change them
to use nullable reference types.

 I happened to use the JetBrains annotations provided with ReSharper. This allows
ReSharper to perform the same kind of inspection that C# 8 does in the language. I
won’t go into the details of these annotations other than to note that they’re available.
You don’t have to use a third-party set of annotations at all, however. You can easily
create your own attributes and apply them right now. Even without any tooling sup-
port, this can make your code easier to maintain, and you’ll be in a better position to
move to the C# 8 nullable reference types in the future.

ITERATION IS NATURAL

After this first pass, I had about 100 warnings. I went through and fixed most of those
and then rebuilt. After the second pass, I had about 110 warnings—more than before!
I went through and fixed most of those and then rebuilt. After the third pass, I still
had about 100 warnings. I went through and fixed most of those and then rebuilt.

 I don’t remember how many iterations this took, but it’s not a sign of anything
being wrong. The process of making a codebase nullable-reference-type compliant is
like playing whack-a-mole: you decide to change the nullability in one place, and then
that can cause warnings everywhere that value is used. You change those, and the
problem moves again. Decisions about nullability propagate through the code and
need careful checking. This is fine and is what you should expect to happen.

 But when part of the code needs a value to be nullable and another part needs it to
be non-nullable, you’ve discovered a problem. This isn’t a problem that C# 8 has
introduced; it’s a problem that the feature has revealed. How you handle it will be
context specific.

BEST PRACTICES FOR USING THE BANG OPERATOR

If you have to use the bang operator in production code, add a comment to explain
why you did so. If you use a nicely searchable format (for example, including
NULLABLEREF in the comment), you’ll be able to find them later. You may be able to
remove the operator later through further tooling improvements. It’s not that using
the operator is wrong, but it’s an assertion that you know better than the compiler,
and I prefer not to trust myself that much.

 I used the operator more often in test code and mostly for performing the sort of
validation tests you saw in the previous section. Beyond that, if I expect a value to be
non-null because of the way I’ve set up the test, I’m usually happy forcing the compiler
to be happy with it, particularly if I know that it’ll be validated by the code I’m calling
afterward anyway. If I’m wrong, the result should be the test failing with either an
ArgumentNullException or NullReferenceException, which is fine, as I’d still
know that my assumptions were invalid. Arguably, test code should be less defensive
Licensed to André Santos <andrerfcsantos@gmail.com>

449Nullable reference types
than production code in general; instead of trying to handle unexpected situations in
a graceful way, it’s fine for them to fail.

NULL-INCONSISTENT GENERICS

I found it odd to implement IEqualityComparer<T> for reference types in Noda
Time, because it was defined long before nullable reference types were considered.
Both Equals and GetHashCode are defined in terms of parameters of type T, but
they’re inconsistent in terms of null handling: Equals is meant to handle null values,
but GetHashCode is meant to throw an ArgumentNullException.

 It’s unclear how this should be expressed in implementations. If I have an equality
comparer for the Period class, should I implement IEqualityComparer

<Period?> to allow null arguments or IEqualityComparer<Period> to prohibit
them? Either way, callers could be surprised either at compile time or execution time.

 Beyond just an implementation issue, it’s unclear to me how this could be
expressed more clearly in the interface itself. More language design work may be
required here in order to express how generic type parameters should be handled.
Just using T? in the interface would feel wrong, as you wouldn’t want to accept
Nullable<T> when T is a value type.

 Although I happened to encounter this with IEqualityComparer<T>, I antici-
pate the same issue cropping up in other interfaces and even in generic classes. I’m
mostly mentioning it here so that you don’t think you’ve done anything wrong when
you come across it.

THE END RESULT

The Noda Time codebase isn’t huge, but it’s not tiny either. The whole process took
me about five hours, including time diagnosing a bug in the preview build of Roslyn.
In the end, I found a bug (now fixed) in Noda Time around inconsistent handling of
an odd situation where TimeZoneInfo.Local returns null in some environments on
Mono. I also found some missing annotations and had to clarify the intent for some
internal members.

 I was pleased with the result; knowing the compiler was checking the consistency
of the code improves my confidence in it. Additionally, after I’ve published a version
of Noda Time built with C# 8, anyone using the library from C# 8 will benefit from
the extra information. This will help move more errors from execution time to com-
pile time, giving users more confidence in how they’re using Noda Time. It’s a win-
win situation.

 All of this experience was with the preview from the first half of 2018. This isn’t the
end state of the language design or the implementation, however. Let’s take a specula-
tive look at the future.

15.1.7 Future improvements

In June 2018, I spent time in conferences and user groups with Mads Torgersen, the
lead of the C# language design team. I traveled with a laundry list of feature requests
and issues based on my experience with Noda Time, and his responses reassured me
about the future of the features.
Licensed to André Santos <andrerfcsantos@gmail.com>

450 CHAPTER 15 C# 8 and beyond
 The C# team is aware that the preview that’s available already isn’t quite ready for
mainstream adoption. A few things need a bit more work, but the preview allows the
team to gather early feedback. The changes listed here won’t be the only ones, but
they’re the ones I was most interested in.

PROVIDING THE COMPILER WITH MORE SEMANTIC INFORMATION

When I introduced the bang operator in section 15.1.5, I showed that the compiler
didn’t understand the semantics of string.IsNullOrEmpty. (The compiler doesn’t
infer that if the method returns false, the input couldn’t have been null.) This isn’t
the only situation in which a relationship between input and output should be able to
help the compiler. Here are three examples that feel like they should compile without
warnings (including string.IsNullOrEmpty again for completeness):

string? a = ...;
if (!string.IsNullOrEmpty(a))
{
 Console.WriteLine(a.Length);
}

object b = ...;
if (!ReferenceEquals(b, null))
{
 Console.WriteLine(b.GetHashCode());
}

XElement c = ...;
string d = (string) c;

In each case, the semantics of the code you’re calling are important. For these exam-
ples, the compiler would need to know the following:

 If the result of string.IsNullOrEmpty is false, the input can’t be null.
 If the result of ReferenceEquals is false and one of the inputs is known to be

a null reference, the other input can’t be null.
 If the input to the XElement to string conversion operator is non-null, the

output is also non-null.

These are all examples of relationships between inputs and outputs, and those rela-
tionships can’t be expressed at the moment. I suspect that most uses of the bang oper-
ator in the preview build could be avoided if the compiler understood these
relationships. How can the compiler get that extra information?

 One approach that could work for these specific examples would be for the com-
piler to have the information hardcoded. That would be easy for the C# design team
but unsatisfactory in other ways. It’d put the framework libraries on a different footing
to third-party libraries, which would be annoying. I may want to express relationships
like this in Noda Time, for example, which would make it more pleasant to use.

 It’s likely that the C# team will instead design a whole new mini-language that can
be expressed in attributes to give the compiler the extra semantic information it
Licensed to André Santos <andrerfcsantos@gmail.com>

451Nullable reference types
needs to be smarter about determining whether a particular value should be consid-
ered “definitely not null.” This will require a lot of work to design and implement but
will provide a much more complete solution.

DEEPER THINKING ABOUT GENERICS

Generics present interesting challenges for nullability design. I mentioned one exam-
ple when implementing IEqualityComparer<T>, but the issue goes well beyond
that. Consider the following simple class that’s already valid in C# 7:

public class Wrapper<T>
{
 public T Value { get; set; }
}

Should that be valid, and what does it mean? In particular, what’s the result of con-
structing an instance of it without setting the Value property?

 For Wrapper<int>, the value of Value will be 0 by default.
 For Wrapper<int?>, the value of Value will be the null value for int? by

default.
 For Wrapper<string>, the value of Value will be a null reference by default.

That’s bad, as it goes against the type of Value being the non-nullable string type.
 For Wrapper<string?>, the value of Value will be a null reference by default.

That’s okay, as the type of Value is the nullable string type.

It gets even more confusing when you consider that at execution time, Wrapper
<int> and Wrapper<int?> will be different CLR types, but Wrapper<string> and
Wrapper<string?> will be the same CLR type.

 I don’t know how this confusion will be resolved in C# 8, but the team is aware of
it. I’m glad it’s their job rather than mine to make sense of it, as it makes my head hurt
just thinking about it.

 That example uses only syntax that’s valid in C# 7 and doesn’t explicitly refer to
nullable types at all. What if you try to use T? within a generic type or method?

 In C# 7, if you have a type parameter T, the type T? can be used only when T is con-
strained to be a non-nullable value type, at which point it means Nullable<T>. That’s
reasonably simple, but what can you do for nullable reference types? It seems likely
that you’ll need a new generic constraint of non-nullable reference type, at which
point T? could be used when T is either constrained to be a non-nullable value type or
is constrained to be a non-nullable reference type. I wouldn’t expect a single con-
straint to indicate “some non-nullable type,” because the representation of the corre-
sponding nullable type is very different between value types and reference types.

OPT-IN PARAMETER VALIDATION

The only changes implemented so far have been at compile time. The IL generated by
the compiler doesn’t change, and you still need to perform parameter validation to
protect against code that ignores compiler warnings, uses the bang operator, or is
compiled against an earlier version of C#.
Licensed to André Santos <andrerfcsantos@gmail.com>

452 CHAPTER 15 C# 8 and beyond
 That makes sense, but the validation feels like boilerplate code. The null-coalesc-
ing operator, nameof operator, and throw expressions are all features that have
helped improve the code required for validation in some cases, but it’s still annoying
and easy to forget.

 One feature under discussion is to allow an exclamation mark after a parameter
name to indicate that the compiler should generate a null validation at the start of a
method. Consider a method that might currently be written like this:

static void PrintLength(string text)
{
 string validated =
 text ?? throw new ArgumentNullException(nameof(text));
 Console.WriteLine(validated.Length);
}

You could instead write this:

static void PrintLength(string text!)
{
 Console.WriteLine(text.Length);
}

It’s possible that properties could have automatic validation in the same way.

ENABLING NULLABILITY CHECKING

In the preview build I’ve used, nullability checking is turned on by default. Although
you can suppress warnings in the normal way, it’s likely that the C# 8 compiler will
have more nuanced settings before it launches. There are lots of different scenarios to
consider.

 When developers upgrade to the C# 8 compiler, they’re likely to want to do this
without seeing any new warnings. This is particularly important if the project settings
treat warnings as errors. I suspect this means nullability checking will be turned off by
default, at least for existing projects.

 Not all class libraries will embrace C# 8 at the same time. It’ll be important for
code that uses C# 8 with nullability checking turned on to be able to consume librar-
ies that haven’t migrated yet. This is likely to be geared toward reporting as few errors
as possible. For example, the compiler could treat all inputs to the library as nullable
but all outputs from the library as non-nullable. Additionally, there’ll need to be a way
for a library to indicate when it has migrated.

 When developers decide to migrate a project to use nullable reference types, they
may want to do so over the course of several changes. It’s possible that their project
may contain generated code that can’t be easily modified to express nullability. This
suggests it’d be useful to be able to express the concept of “this code expresses nul-
lability” on a per type basis.

 These considerations are new for C#. We’ve never had a language feature with
such a broad impact on compatibility. I expect the team to iterate on this aspect sev-
eral times before the final launch on C# 8.

Automatic null
validation
Licensed to André Santos <andrerfcsantos@gmail.com>

453Switch expressions
 Nullable reference types likely will be the biggest feature in C# 8, but others are
also available in preview builds already. One of my favorites is switch expressions.

15.2 Switch expressions
The switch statement has been available in C# right from the start, and the only way it
has changed in all that time is to permit pattern matching in C# 7. It remains an
imperative control structure: if this case matches, do this; if that case matches, do that.
A lot of the uses of switch statements are more functional, though, with each case
computing a result: if this case matches, the result is X; if that case matches, the result
is Y. This is a common construct in functional programming languages in which many
functions are expressed purely in terms of pattern matching.

 The introduction of expression-bodied members has made this stick out like a sore
thumb. Many methods can be implemented with a single expression, but if you want
to use a switch/case structure, you have to use a block body. This is usually just an
inconvenience, but it’s still a point of friction.

 C# 8 introduces switch expressions as an alternative to switch statements. This uses
somewhat different syntax from switch statements, so it’s worth comparing the two. In
chapter 12, when I introduced pattern matching, you looked at an example of a
switch statement to compute the perimeter of different shapes. Here’s the code used
in chapter 12:

static double Perimeter(Shape shape)
{
 switch (shape)
 {
 case null:
 throw new ArgumentNullException(nameof(shape));
 case Rectangle rect:
 return 2 * (rect.Height + rect.Width);
 case Circle circle:
 return 2 * PI * circle.Radius;
 case Triangle triangle:
 return triangle.SideA + triangle.SideB + triangle.SideC;
 default:
 throw new ArgumentException(
 $"Shape type {shape.GetType()} perimeter unknown",
 nameof(shape));
 }
}

The following listing shows the equivalent code using a switch expression instead but
still using a regular block-bodied method.

static double Perimeter(Shape shape)
{
 return shape switch
 {

Listing 15.9 Converting a switch statement into a switch expression
Licensed to André Santos <andrerfcsantos@gmail.com>

454 CHAPTER 15 C# 8 and beyond
 null => throw new ArgumentNullException(nameof(shape)),
 Rectangle rect => 2 * (rect.Height + rect.Width),
 Circle circle => 2 * PI * circle.Radius,
 Triangle triangle =>
 triangle.SideA + triangle.SideB + triangle.SideC,
 _ => throw new ArgumentException(
 $"Shape type {shape.GetType()} perimeter unknown",
 nameof(shape))
 };
}

There are a lot of things to point out here, so I haven’t tried to cram them all into the
code as annotations. Here are all the differences between a switch statement and a
switch expression:

 Instead of switch (value), the introductory syntax for switch expressions is
value switch.

 A fat arrow => comes between the pattern and the result to return if that pat-
tern is matched. (In a switch statement, a colon is used instead.)

 The case keyword isn’t used at all in switch expressions. The left side of the =>
is just a pattern with an optional guard clause with the when keyword.

 The right side of the => is just an expression. The return keyword isn’t used,
because every pattern results in a value or throws. Likewise, there’s never a
break statement.

 The patterns are comma separated. If you’re converting a switch statement into
a switch expression, this usually means changing semicolons into commas.

 There’s no default case. Instead, the discard _ (underscore) is used to match
anything that hasn’t already been matched.

My experience has mostly been writing methods that return a switch expression result
directly, but you can also use it like any other expression. For example, you could
write this:

double circumference = shape switch
{

};

This is fine, but as I mentioned before, one of the nicest aspects of switch expressions
is to use them for expression-bodied methods. The following listing shows the evolu-
tion of listing 15.9 into an expression-bodied method.

static double Perimeter(Shape shape) =>
 shape switch
 {
 null => throw new ArgumentNullException(nameof(shape)),
 Rectangle rect => 2 * (rect.Height + rect.Width),

Listing 15.10 Using a switch expression to implement an expression-bodied method

Body of switch
expression as before
Licensed to André Santos <andrerfcsantos@gmail.com>

455Recursive pattern matching
 Circle circle => 2 * PI * circle.Radius,
 Triangle triangle =>
 triangle.SideA + triangle.SideB + triangle.SideC,
 _ => throw new ArgumentException(
 $"Shape type {shape.GetType()} perimeter unknown",
 nameof(shape))
 };

You can format this however you like, perhaps moving the shape switch onto the
first line, or maybe outdenting the braces to the same level as the method declaration.

 One important difference between switch statements and switch expressions is that
there must always be some result (which could be an exception) from a switch expres-
sion. A switch expression isn’t allowed to do nothing and produce no value. You can
use the _ discard to make sure of that, but it’s possible to write a switch expression that
isn’t exhaustive—in other words, an expression that may not always match. With the
preview build I’ve been working with, this produces a compiler warning, and then the
compiler emits invalid IL. This might become a compile-time error instead, or the
compiler may inject code to throw an exception (possibly InvalidOperation-
Exception) to indicate that the code encountered a situation it didn’t expect.

 The one issue I have with switch expressions at the moment is that there’s no way
of expressing multiple patterns that should evaluate to the same result. In a switch
statement, you can specify multiple case labels, but there’s no equivalent in switch
expressions yet. The C# team is aware of the desire for this, so hopefully it will be
included before C# 8 is released.

 The use of patterns in C# 8 isn’t just improved via switch expressions. The patterns
themselves are growing in scope.

15.3 Recursive pattern matching
As a reminder, the patterns introduced in C# 7 were as follows:

 Type patterns (expression is Type t)
 Constant patterns (expression is 10, expression is null, and so on)
 The var pattern (expression is var v)

C# 8 will introduce recursive patterns (patterns can be nested within bigger patterns)
as well as deconstruction patterns. The simplest way of explaining recursive patterns is
to show them in action. We’ll come back to deconstruction patterns.

15.3.1 Matching properties in patterns

To match properties with additional patterns inside an overall pattern, you use braces
containing a comma-separated list of patterns against properties. The property pat-
terns match the property value against the nested pattern using any of the normal pat-
tern types. As an example, let’s have another look at the three patterns we’re using to
work out the areas of rectangles, circles, and triangles taken from listing 15.10:

Rectangle rect => 2 * (rect.Height + rect.Width),
Circle circle => 2 * PI * circle.Radius,
Triangle triangle => triangle.SideA + triangle.SideB + triangle.SideC,
Licensed to André Santos <andrerfcsantos@gmail.com>

456 CHAPTER 15 C# 8 and beyond
In each case, you don’t need the shape itself; you just need properties from it. You can
use nested var patterns to match those properties against any value and extract pat-
tern variables for each of the properties you need. The following listing shows the full
method with the nested patterns.

static double Perimeter(Shape shape) => shape switch
{
 null => throw new ArgumentNullException(nameof(shape)),
 Rectangle { Height: var h, Width: var w } => 2 * (h + w),
 Circle { Radius: var r } => 2 * PI * r,
 Triangle { SideA: var a, SideB: var b, SideC: var c } => a + b + c,
 _ => throw new ArgumentException(
 $"Shape type {shape.GetType()} perimeter unknown", nameof(shape))
};

Is this clearer than the previous code? I’m not sure. I’ve used it as an example that fol-
lows neatly from the previous one, but I might easily stick with the code in listing
15.10. You’ll look at a more complicated example later, in which the feature becomes
more compelling but would be harder to immediately understand.

 Note that although here you’ve stopped capturing the Rectangle, Circle, or
Triangle in their own pattern variables (rect, circle, and triangle before),
that’s only because you don’t need them for anything. It’s still valid to introduce a pat-
tern variable that way. For example, if you were describing shapes, you might have a
pattern to describe a flat rectangle with zero height:

Rectangle { Height: 0 } rect => $"Flat rectangle of width {rect.Width}"

This is useful when you have a lot of properties but you’re just testing patterns against
a few of them. Next up, we’ll look at deconstruction patterns.

15.3.2 Deconstruction patterns

You saw deconstruction of tuples in section 12.1 and deconstruction via the Decon-
struct method in section 12.2. Patterns in C# 8 will be extended to allow deconstruc-
tion with nested patterns inside. As a somewhat contrived example, you might decide
that it’s natural to deconstruct a Triangle to all three of its sides:

public void Deconstruct
 (out double sideA, out double sideB, out double sideC) =>
 (sideA, sideB, sideC) = (SideA, SideB, SideC);

You could then simplify our perimeter computation to deconstruct to three variables
instead of specifying each property name. So instead of this case in our switch
expression

Triangle { SideA: var a, SideB: var b, SideC: var c } => a + b + c

Listing 15.11 Matching nested patterns
Licensed to André Santos <andrerfcsantos@gmail.com>

457Recursive pattern matching

c

you could have this:

Triangle (var a, var b, var c) => a + b + c

Again, is that more readable than just matching against the type? Maybe. Over time, I
suspect each developer will work out their own preferences around pattern matching
and ideally come to a convention within the codebases they’re working in, too.

15.3.3 Omitting types from patterns

The ability to look inside objects makes patterns useful even when you’re not testing the
value’s type. At that point, it feels redundant to specify the type as part of the pattern.
For this example, let’s go back to the customer and address example used for nullable
reference types. You’ll go back to the first data model: all mutable, all nullable:

public class Customer
{
 public string Name { get; set; }
 public Address Address { get; set; }
}

public class Address
{
 public string Country { get; set; }
}

Now suppose you want to greet customers in different ways depending on the coun-
try in their address. Your input could be of type Customer, so you don’t want to have
to repeat that within the pattern. When you match the Address of a customer within
a pattern, that will always be of type Address, so you don’t need to specify that type
either.

 The following listing shows multiple patterns matching different kinds of custom-
ers. It also demonstrates the { } pattern, which is a special case of a property pattern
that doesn’t have any properties to match. That pattern matches any non-null value.

static void Greet(Customer customer)
{
 string greeting = customer switch
 {
 { Address: { Country: "UK" } } =>
 "Welcome, customer from the United Kingdom!",
 { Address: { Country: "USA" } } =>
 "Welcome, customer from the USA!",
 { Address: { Country: string country } } =>
 $"Welcome, customer from {country}!",
 { Address: { } } =>
 "Welcome, customer whose address has no country!",
 { } =>

Listing 15.12 Matching customers against multiple patterns concisely

Matches a
country of UK

Matches a
ountry of USA

Matches any country,
but it must be present

Matches
any address

Matches any customer,
even with a null address
Licensed to André Santos <andrerfcsantos@gmail.com>

458 CHAPTER 15 C# 8 and beyond
 "Welcome, customer of an unknown address!",
 _ =>
 "Welcome, nullness my old friend!"
 };
 Console.WriteLine(greeting);
}

The ordering is important here. For example, a customer with an address with a coun-
try of USA could match every pattern except the first one. You could make the pat-
terns more selective instead (using the constant null pattern to match customers with
a null Address property value, for example), but it’s simpler to rely on the ordering.

 The enhancements to pattern matching in C# 8 will allow them to be used in more
cases where currently you need if statements. Switch expressions add to this flexibil-
ity, too. I expect more and more code to be written with patterns. As always, it’s impor-
tant to avoid going over the top; not all code will be simpler when written with
patterns than with the control structures we had before. Still, this area of C#’s evolu-
tion definitely has a lot of potential. Our next feature is really a pair of features
enabled by two new framework types.

15.4 Indexes and ranges
Compared with nullable reference types and improved pattern handling, indexes and
ranges feel like a small feature, even combined. But I suspect over time we’ll come to
wonder why it took so long to have them. The following listing provides a tiny taste
before you look at the details.

string quotedText = "'This text was in quotes'";
Console.WriteLine(quotedText);
Console.WriteLine(quotedText.Substring(1..^1));

The output is as follows:

'This text was in quotes'
This text was in quotes

The highlighted expression of 1..^1 is the interesting part here. To understand this
code, you need to learn about two new types.

15.4.1 Index and Range types and literals

The idea is simple. Index and Range are two structs that will be provided in the
framework but currently need to be defined in your own code:

 Index is an integer from either the start or end of something indexable. The
value of the index is never negative.

 Range is a pair of indexes: one for the start of the range and one for the end.

Listing 15.13 Trimming the first and last character from a string with a range

Matches anything, even a
null customer reference

Takes a substring of the
string with a range literal
Licensed to André Santos <andrerfcsantos@gmail.com>

459Indexes and ranges
There are then three pieces of important syntax:

 A regular implicit conversion from int to create a “from the start” Index.
 A new unary operator (^) that can be used with int to create a “from the end”

Index. Here a value of 0 means the element just past the end, and a value of 1
means the last element.3

 A new binary-ish operator (..) with optional operands for the start and end to
create a Range.

The .. operator is binary-ish because there can be zero, one, or two operands. The
following listing shows examples of all of these. You’re not applying the indexes or
ranges to anything; you’re just creating the values.

Index start = 2;
Index end = ^2;
Range all = ..;
Range startOnly = start..;
Range endOnly = ..end;
Range startAndEnd = start..end;
Range implicitIndexes = 1..5;

One point to note is that the start and end points of a range can be any index. For
example, you could have a range of ^5..10 representing the fifth element from the
end to the tenth element from the start. This would be unusual, but valid.

 This is the sum total of the direct language support for indexes and ranges. It’s
when they also have framework support that they become useful.

15.4.2 Applying indexes and ranges

All the examples in this section require extension methods and extension operators
supported by the C# 8 preview build. The exact APIs may change, and the extensions
provided in the preview work with only a limited set of types; this is just enough to
demonstrate the benefits. In listing 15.13, I showed how the Substring method can
be used with a Range. Both indexes and ranges will be applied and most often to types
that represent sequences of some form, such as

 Arrays
 Spans
 Strings (as sequences of UTF-16 code units)

These all support two operations:

 Retrieving a single element
 Creating a slice to represent part of the sequence

3 This is slightly counterintuitive when using an Index with an indexer, but it makes a lot more sense with
ranges, which have exclusive upper bounds. A range with an upper bound of ^0 is effectively “to the end of
the sequence,” which is probably what you’d expect.

Listing 15.14 Index and range literals
Licensed to André Santos <andrerfcsantos@gmail.com>

460 CHAPTER 15 C# 8 and beyond
The single-element-retrieval operation already has a common representation using an
indexer accepting an int parameter, but this makes it hard to retrieve the last ele-
ment in a uniform way. The Index type solves this with its from the start or from the
end aspect. The slice operation has previously taken different forms depending on
the type involved. For example, Span<T> has a Slice method, whereas String has a
Substring method.

 By adding indexer overloads accepting Index and Range values, you can use a
consistent and convenient syntax to perform both operations on all of the relevant
types. The following listing shows similar calls working for a string and a Span<int>.

string text = "hello world";
Console.WriteLine(text[2]);
Console.WriteLine(text[^3]);
Console.WriteLine(text[2..7])

Span<int> span = stackalloc int[] { 5, 2, 7, 8, 2, 4, 3 };
Console.WriteLine(span[2]);
Console.WriteLine(span[^3]);
Span<int> slice = span[2..7];
Console.WriteLine(string.Join(", ", slice.ToArray()));

The output is as follows:

l
r
llo w
7
2
7, 8, 2, 4, 3

Both the string and span indexers accepting a Range treat the upper bound of the
range as exclusive: the range [2..7] returns the elements with indexes 2, 3, 4, 5, and 6.

 In listing 15.15, the ranges included both start and end indexes, and both index
values were computed from the start. You can use any range with the indexers so long
as the indexes are valid for the sequence they’re applied to. For example, using
text[^5..] with the code in listing 15.15 would return world as the last five charac-
ters of text.

 Likewise, you could write text[^10..5], which would return ello. In the con-
text of a string of length 11 (hello world), an index of ^10 is equivalent to an index
of 1, so text[^10..5] is equivalent (in this case, it does depend on the length of
text) to text[1..5], returning the four characters after the first. Next, we’ll look at
increased language support for asynchrony.

Listing 15.15 Using indexer overloads for index and range in a string and a span

Accesses a single character
by index from start

Accesses a single
character by
index from end Takes a substring

using a range

Accesses a single element
by index from start

Accesses a single
element by index
from end

Creates a slice
using a range
Licensed to André Santos <andrerfcsantos@gmail.com>

461More async integration
15.5 More async integration
When async/await was introduced in C# 5, it revolutionized asynchrony for many C#
developers. But a few language features have so far stayed synchronous, making it
hard to go all in on asynchrony. In this section, we’ll look at the following:

 Async disposal
 Async iteration (foreach)
 Async iterators (yield return)

These require framework support as well as language support. It wouldn’t be appro-
priate for the compiler to approximate asynchrony by executing the synchronous
code on a different thread, for example. Let’s start with async disposal, which is the
simplest of the three features.

15.5.1 Asynchronous resource disposal with using await

The IDisposable interface with its single Dispose method is naturally synchro-
nous. If that method needs to perform I/O, such as to flush a stream, then it can
block with all the normal issues that causes.

 A new interface will be introduced for classes that support asynchronous disposal:

public interface IAsyncDisposable
{
 Task DisposeAsync();
}

There’s no requirement that a type that implements IAsyncDisposable also imple-
ments IDisposable, although I suspect many types will do so.

 There’s then corresponding language support in the form of the using await
statement, which works as you’d expect it to, calling DisposeAsync automatically
and awaiting the resulting task. The following listing shows an example of implement-
ing the interface and then using it.

class AsyncResource : IAsyncDisposable
{
 public async Task DisposeAsync()
 {
 Console.WriteLine("Disposing asynchronously...");
 await Task.Delay(2000);
 Console.WriteLine("... done");
 }

 public async Task PerformWorkAsync()
 {
 Console.WriteLine("Performing work asynchronously...");
 await Task.Delay(2000);
 Console.WriteLine("... done");
 }
}

Listing 15.16 Implementing IAsyncDisposal and calling it with using await
Licensed to André Santos <andrerfcsantos@gmail.com>

462 CHAPTER 15 C# 8 and beyond
async static Task Main()
{
 using await (var resource = new AsyncResource())
 {
 await resource.PerformWorkAsync();
 }
 Console.WriteLine("After the using await statement");
}

The output shows the resource disposal:

Performing work asynchronously...
... done
Disposing asynchronously...
... done
After the using await statement

This is simple, but it hides two aspects of complexity that need to be addressed:

 Libraries typically await tasks with ConfigureAwait(false). Applications typ-
ically await tasks without this. If the compiler is doing the awaiting automati-
cally, how can the user configure this?

 It’d be natural to have cancellation available for disposal. Where does that fit
into the interface and the call site?

The C# team is aware of both points, and I expect them to be addressed in some form
before release. The same problems occur for the other async features in C# 8, and I
hope they’ll all be solved in a similar way. Let’s look at the next feature now: asynchro-
nous iteration with foreach.

15.5.2 Asynchronous iteration with foreach await

Spoiler alert: there’s quite a lot of text before we reach the language feature in this
section. That’s necessary in order to explain it properly, but the upshot is that code
like this will be valid, where asyncSequence requires asynchronous work to retrieve
the items:

foreach await (var item in asyncSequence)
{

}

The interfaces introduced for asynchronous iteration aren’t quite as straightforward
as the one for disposal. There are two interfaces, mirroring IEnumerable<T> and
IEnumerator<T> to some extent, but not quite so obviously:

public interface IAsyncEnumerable<out T>
{
 IAsyncEnumerator<T> GetAsyncEnumerator();
}

public interface IAsyncEnumerator<out T>
{

Uses item
Licensed to André Santos <andrerfcsantos@gmail.com>

463More async integration
 Task<bool> WaitForNextAsync();
 T TryGetNext(out bool success);
}

IAsyncEnumerable<T> may be closer to IEnumerable<T> than you expect; there’s
nothing asynchronous in it. Instead of GetEnumerator(), it has GetAsync-
Enumerator(), and that returns an IAsyncEnumerator<T>, but it does so synchro-
nously. It’s possible that for some implementations this will be problematic, but I
expect it to be the natural approach for most asynchronous sequences. Any imple-
mentation that wants to perform asynchronous operations as part of setup will proba-
bly need to defer that work until the caller starts iterating over the result.

 The IAsyncEnumerator<T> interface is much further from IEnumerator<T>
and reflects a common pattern in real-world implementations. Asynchrony is often
used when I/O is involved, such as retrieving results over a network. That often natu-
rally results in sequences being retrieved in chunks; you may perform a query and
retrieve the first 10 results together, then the next 7, and then be told that’s the com-
plete result set.

 While you’re iterating within a set of results that has been buffered, there’s no
need for asynchrony. Although asynchrony is quite efficient, it’s not completely free,
so it’s worth avoiding if you can. Instead, you can iterate synchronously, so long as you
have a way of determining when you’ve reached the end of the current result set. At
that point, you can asynchronously fetch the next one and iterate through that syn-
chronously again.

 The IAsyncEnumerator<T> interface exposes this pattern through its two
methods:

 WaitForNextAsync is asynchronous, returning a task that indicates whether
any more results were retrieved or whether you’ve reached the end of the
sequence.

 TryGetNext is synchronous, returning the next item. The out parameter is
used to indicate whether there was a next item to return.4 When this is false,
that doesn’t mean you’ve necessarily reached the end of sequence; it just means
you need to call WaitForNextAsync again.

That may all sound complicated, but the good news is that you’re unlikely to need to
do any of this yourself; the new foreach await statement handles it all for you.

 Let’s look at an example, which draws heavily from my experience working with
Google Cloud Platform APIs. Many APIs have list operations, such as listing contacts
in an address book or virtual machines in a cluster. There may be too many results to
return in a single RPC response, so we have a page-based pattern: each response con-
tains a “next page token” that the client supplies on a subsequent request to retrieve
more data. For the first request, the client doesn’t supply a page token, and the final

4 This is oddly inconsistent with most TryXyz methods, which return bool and use an out parameter for the
value. This could change before release.
Licensed to André Santos <andrerfcsantos@gmail.com>

464 CHAPTER 15 C# 8 and beyond
response doesn’t contain a page token. A simplified view of the API might look like
the following listing.

public interface IGeoService
{
 Task<ListCitiesResponse> ListCitiesAsync(ListCitiesRequest request);
}

public class ListCitiesRequest
{
 public string PageToken { get; }
 public ListCitiesRequest(string pageToken) =>
 PageToken = pageToken;
}

public class ListCitiesResponse
{
 public string NextPageToken { get; }
 public List<string> Cities { get; }

 public ListCitiesResponse(string nextPageToken, List<string> cities) =>
 (NextPageToken, Cities) = (nextPageToken, cities);
}

That’s unwieldy to use directly, but it can easily be wrapped in a client that exposes
this API instead, as shown in the next listing.

public class GeoClient
{
 public GeoClient(IGeoService service) { ... }
 public IAsyncEnumerable<string> ListCitiesAsync() { ... }
}

With GeoClient in place, you can finally use foreach await, as in the following
listing.

var client = new GeoClient(service);

foreach await (var city in client.ListCitiesAsync())
{
 Console.WriteLine(city);
}

The final code here is a lot simpler than all the code I had to show you to set up the
example, and that’s without even looking at the implementation of GeoClient. But

Listing 15.17 Simplified RPC-based service for listing cities

Listing 15.18 Wrapper around the RPC service to provide a simpler API

Listing 15.19 Using foreach await with a GeoClient

Constructs a GeoClient
with an RPC service

Provides a simple async
sequence of cities
Licensed to André Santos <andrerfcsantos@gmail.com>

465More async integration
that’s a good thing; it shows the benefit of the feature. You’ve taken relatively complex
definitions in both IGeoService and IAsyncEnumerable<T> and consumed them
in a simple and efficient manner with foreach await.

NOTE The downloadable source code contains a complete example with an
in-memory fake service implementation.

One thing you may be surprised about is that IAsyncEnumerator<T> doesn’t imple-
ment IAsyncDisposable. That could change before release, but even if it doesn’t, I
expect the compiler to dispose of an enumerator if it turns out to implement
IAsyncDisposable at execution time.

 Just like the synchronous foreach statement, foreach await won’t require the
IAsyncEnumerable<T> and IAsyncEnumerator<T> interfaces to be implemented.
It’ll be pattern based, so any type providing a GetAsyncEnumerator() method that
returns a type that in turn provides the appropriate WaitForNextAsync and
TryGetNext methods will be supported. This could allow some optimizations, but I
expect the interfaces to be used most of the time.

 So far, you’ve seen how to consume asynchronous sequences. What about produc-
ing them?

15.5.3 Asynchronous iterators

C# 2 introduced iterators with yield return and yield break statements to make
it easy to write methods returning IEnumerable<T> or IEnumerator<T>. C# 8 will
have the same feature for asynchronous sequences. The feature isn’t available in the
preview, but the following listing shows how I expect it to work.

public async IAsyncEnumerable<string> ListCitiesAsync()
{
 string pageToken = null;
 do
 {
 var request = new ListCitiesRequest(pageToken);
 var response = await service.ListCitiesAsync(request);
 foreach (var city in response.Cities)
 {
 yield return city;
 }
 pageToken = response.NextPageToken;
 } while (pageToken != null);
}

The mapping between the async iterator method and the IAsyncEnumerator<T>
interface, with its mixture of asynchronous and synchronous parts, will be complex to
implement. Whenever you continue executing code in the async method, it can com-
plete that specific call in several ways:

Listing 15.20 Implementing ListCitiesAsync with an iterator
Licensed to André Santos <andrerfcsantos@gmail.com>

466 CHAPTER 15 C# 8 and beyond
 It could await an incomplete asynchronous operation.
 It could reach a yield return statement.
 It could reach a yield break statement.
 It could reach the end of the method.
 It could throw an exception.

How those are handled will depend on whether the caller is executing WaitForNext-
Async() or TryGetNext(). To make this efficient, the generated code should effec-
tively switch between synchronous mode (if you’re yielding values with no intervening
awaits) and asynchronous mode (if you’re awaiting an asynchronous operation). I can
broadly picture how this might be achieved, but I’m glad I’m not the one having to
implement it.

 There are other features not available in the C# 8 preview yet. We’ll look at these
more briefly.

15.6 Features not yet in preview
If C# 8 turns out to have only the features I’ve listed so far, it’ll still be a big deal. In
some ways, I wish we could have a release with just nullable reference types, wait a year
or so for most codebases to be updated to it, and then continue with more features.
But C# 8 likely will ship with more features than I’ve shown so far.

 This section discusses the features I think are the most likely to be included in C#
8. Even more features have been proposed either by members of the C# team or by
external developers. The C# team uses GitHub to keep track of language proposals,
which makes it easy to see what’s going on and contribute yourself; see https://
github.com/dotnet/csharplang. We’ll start with a feature inspired by Java.

15.6.1 Default interface methods

Whereas C# introduced extension methods for LINQ, Java took a different approach
to enable its support for streams, which covers many of the same use cases as LINQ. In
Java 8, Oracle introduced default methods in Java interfaces: an interface could declare
a method and a default implementation for it, which could then be overridden within
a concrete implementation. The default implementation can’t declare any state in
terms of fields; it has to be expressed in terms of the other members of the interface.

 The two features are similar in some ways: they both allow logic to be expressed so
the consumer of an interface can call a method without every interface implementa-
tion having to directly know about it or implement it. There are pros and cons with
each approach:

 Extension methods can be introduced by anyone, not just the author of the
interface. You can’t add a default method to an interface you can’t control.
(Extension methods can also be applied to classes and structs, of course.)

 Default methods can be overridden by implementing classes, often for the sake
of optimization. Extension methods can’t be overridden; they’re just static
Licensed to André Santos <andrerfcsantos@gmail.com>

https://github.com/dotnet/csharplang
https://github.com/dotnet/csharplang

467Features not yet in preview
methods with syntactic sugar to make calling them look more like they’re regu-
lar instance methods.

The second point can be easily appreciated using LINQ’s Enumerable.Count()
method as an example. By default, it counts the elements in a sequence by calling
GetEnumerator() and then counting how many calls to MoveNext() on that enu-
merator return true.

 Many implementations of IEnumerable<T> have far more efficient ways of deter-
mining the number of elements. Enumerable.Count() is specifically optimized for
some of those, such as ICollection and ICollection<T> implementations. But
what about a collection that doesn’t want to implement either of those interfaces but
still wants to provide the Count cheaply? It’s stuck; it has no way of communicating to
Enumerable.Count() that it can implement that part of LINQ itself more effi-
ciently. If Count() had been a method in IEnumerable<T> with a default implemen-
tation, however, our new collection could just override that method.

 Here’s an example of how IEnumerable<T> could’ve been declared using C# 8
default interface methods:

public interface IEnumerable<T>
{
 IEnumerator<T> GetEnumerator();

 int Count()
 {
 using (var iterator = GetEnumerator())
 {
 int count = 0;
 while (iterator.MoveNext())
 {
 count++;
 }
 }
 }
 return count;
}

Default interface methods also allow interfaces to be expanded over time in a rather
more version-friendly way. New methods can be added with a default implementation
that either implements the new functionality using the existing members or poten-
tially throws a NotSupportedException. That way, old implementations will still
build, even if the new method can’t be called reliably. Versioning is a tricky subject, to
say the least, but having another option in our toolbox is welcome. In numerous situa-
tions, this would’ve made things simpler in code that I maintain.

 Default interface methods are proving to be a controversial feature. They require
CLR support, which makes the feature harder to experiment with before committing
to it wholeheartedly. If the feature is included, it’ll be interesting to see its adoption
rate. It may remain rarely used until the runtime versions that support it are widely
Licensed to André Santos <andrerfcsantos@gmail.com>

468 CHAPTER 15 C# 8 and beyond
adopted, too. Next, we’ll look at a feature that has been talked about and even proto-
typed for a long time.

15.6.2 Record types

The forerunner of record types was a feature called primary constructors, which was
originally intended to be present in C# 6. The language team wasn’t happy with some
of the rough edges in the original design, so they decided to delay its introduction
until it could be improved.

 Record types are designed to make it easy to create immutable classes or structs with
a given set of properties. I tend to think of them in terms of starting with anonymous
types but adding all kinds of features. They can be declared incredibly simply. For exam-
ple, here’s a complete class declaration:

public class Point(int X, int Y, int Z);

That generates a bunch of members for you, although you can still introduce your
own behavior as well. The generated members are a constructor, properties, equality
methods, a Deconstruct method for deconstruction, and a With method like this:

public Point With(int X = this.X, int Y = this.Y, int Z = this.Z) =>
 new Point(X, Y, Z);

That isn’t valid syntax for optional parameter default values at the moment, and it’s
not clear whether it’ll be valid to write that code explicitly, but it at least shows the
intention of the method’s behavior.

 The With method is designed to interoperate with new syntax in the form of with
expressions. The idea is that both the method and the syntax make it easy to create a
new instance of the immutable type that’s the same as an existing one but with one or
more properties changed. WithFoo methods are common in immutable types already
(where Foo is the name of a property in the type), but they typically work on one
property at a time. For example, with an immutable Point class with X, Y, and Z prop-
erties, you might use the following code to create a new point that has the same Z
value as a previous point, but new X and Y values:

var newPoint = oldPoint.WithX(10).WithY(20);

Each WithFoo method calls a constructor, passing in all the existing properties other
than the one named in the method, where the new value specified in the parameter is
used. These methods become tedious to write and have a performance implication,
too: to “change” N properties, you need to make N method calls, each one of which
creates a new object.

 The With method for record types is different: it has one parameter for each prop-
erty of the type, with new syntax for a default parameter value if that parameter isn’t
specified, indicating that the value should be taken from the current object. For exam-
ple, consider the With method in our Point type. You could either call that directly

var newPoint = oldPoint.With(X: 10, Y: 20);
Licensed to André Santos <andrerfcsantos@gmail.com>

469Features not yet in preview
or use the new with expression syntax, which looks more like an object initializer:

var newPoint = oldPoint with { X = 10, Y = 20 };

The two would compile to the same IL. This way, only a single new object is
constructed.

 This is only a simple example. It becomes trickier when you have a complex type
and you want to modify just one leaf node. For example, if you have a Contact type
with an Address property, you may want to create a new contact that’s the same as the
old one but with one part of the Address property different. It’s possible that’ll still
be tricky in C# 8 but that with expression syntax may be enhanced to make that simpler
over time, just as the syntax for pattern matching has grown.

 I’m excited about the possibilities here. Immutable types have been a pain to cre-
ate and work with in C# for a long time. Whereas C# 7 tuples filled one gap left by
anonymous types, record types fill another. I’ve always loved anonymous types for the
work the compiler does for you in terms of equality, constructor, and property code.
It’s just a shame we couldn’t name them or add more functionality later. Record types
fix all of this and more. Finally, I want to highlight a few features that involve a little
more thinking outside the box.

15.6.3 Even more features in brief

Although some minor features are more likely to make it into C# 8, they’re not as
interesting as the ones I discuss here. Remember, you can always check GitHub to
learn more about what might be included and its up-to-date status.

TYPE CLASSES (AKA CONCEPTS, SHAPES, OR STRUCTURAL GENERIC CONSTRAINTS)
Although generics are great for many situations, they have limitations. There are
“shapes” of data types that can’t be expressed with generics, such as operators and con-
structors. Although you can require that a type argument has a parameterless construc-
tor, you can’t require that it has a constructor with a specific parameter list.
Additionally, at times types can have the same shape in some useful way but not imple-
ment any common interfaces or have any common base classes other than System
.Object. Type classes would be a new kind of type to address these concerns. They’d be
a little like interfaces, but the implementing class wouldn’t need to know about them.
You would be able to constrain a generic type parameter by the type class instead.

 This has the potential to be powerful but somewhat confusing; I’m of two minds
about it myself. It’s likely to require runtime changes in order to execute efficiently. It
may take C# developers (or me, at least) a while to work out when it’s useful and when
it’s just confusing. Adding a whole new kind of type at this stage in the language’s evo-
lution feels like a giant step. For all these caveats, this feature definitely fills a gap:
where you need this functionality, the current tools don’t offer any clean solutions.

EXTENSION EVERYTHING

At the time of this writing, this has a milestone of X.0 in GitHub, but I wouldn’t be
overly surprised to see it move up the priority list. The name does a good job of
Licensed to André Santos <andrerfcsantos@gmail.com>

https://github.com/dotnet/csharplang

470 CHAPTER 15 C# 8 and beyond
explaining the feature: the concept of extension methods would be applied to other
member types, such as properties, constructors, and operators. It may also allow static
extension members to be introduced—ones that look like they’re static methods on
the extended type. (For example, you could write a method in StringExtensions
that could be called as string.IsNullOrTabs as a more specific version of
string.IsNullOrWhiteSpace.)

 The syntax used for extension methods doesn’t lend itself to other member types,
so it’s probable that a whole new syntax would be used instead. This might be an
extension type that’s purely present to create multiple extension members all on one
specific extended type.

 Extension types still wouldn’t be able to introduce new state. Any extension prop-
erties would be likely to present a different view of existing properties. For example,
you could have an extension property on DateTime called FinancialQuarter that
knew your company’s financial reporting dates and used the existing Year/Month/
Day properties to compute the appropriate quarter.

TARGET-TYPED NEW

Implicit typing with var can be useful for reducing clutter when long type names are
involved. It doesn’t help for fields, though, because they can’t be implicitly typed. We
still end up with code like this:

Dictionary<string, List<DateTime>> entryTimesByName =
 new Dictionary<string, List<DateTime>>();

The target-typed new feature wouldn’t affect where you could use var. Instead, it would
shorten the right-hand side of the declaration:

Dictionary<string, List<DateTime>> entryTimesByName = new();

Anytime the compiler can tell which type you probably mean when calling a construc-
tor, you’d be able to leave out the type name entirely. This introduces interesting com-
plexity with member invocations. For example, Method(new()) would take the target
type from the method parameter, which is fine until Method is generic or overloaded.

 I love and hate this feature proposal, in roughly equal measure. It could certainly
make code unreadable if used excessively, but almost any feature can be misused. On
the other hand, I relish the possibility of removing the duplication of long field
initialization.

 I expect this to be even more controversial than default interface methods. We’ll
see what happens, and you can be part of the conversation.

15.7 Getting involved
The C# design process is more open than ever before. Although a lot of work goes on
in the background with Language Design Meetings (LDMs) in Microsoft offices,
there’s plenty of room for community involvement, too. The GitHub repository at
https://github.com/dotnet/csharplang is the place to start. It contains notes from
Licensed to André Santos <andrerfcsantos@gmail.com>

https://github.com/dotnet/csharplang

471Conclusion
LDMs, proposals, discussions, and specifications. You’re welcome to engage at any of
the following levels:

 Trying out preview builds to see how well new features fit with your existing code
 Discussing currently proposed features
 Proposing new features
 Prototyping new features in Roslyn
 Helping draft language in the specification for new features
 Spotting mistakes in the existing specification (it happens!)

You may feel it’s a better use of your time to wait for full releases with complete docu-
mentation and a polished implementation. That’s perfectly fine, too. It’s easy enough
to dip your toe in the water at any time, if only to look at the set of proposed features
for a given milestone.

 This open design process is relatively new, and I expect it to be fine-tuned over
time. I’d be surprised if the team ever went back to a more closed process. Although
community engagement like this is expensive in terms of time, there are huge benefits
in making sure the new features are ones developers really need.

Conclusion
There’s been a lot more text than code in this chapter, mostly because I don’t want to
present too much code that’ll be wrong by the time C# 8 ships. I doubt that all the fea-
tures I’ve described will be present in C# 8, but I think it’s at least likely that some of
them will be. I’d be surprised if nullable reference types or the pattern-related fea-
tures didn’t make it into C# 8.

 What comes beyond that? Well, minor releases in the C# 8 line, presumably, and
then on to C# 9. Some of the features of C# 9 are probably already on GitHub as pro-
posals, but I suspect there’ll be some that haven’t been talked about at all yet. I expect
C# to continue to evolve to meet the needs of developers as the computing landscape
changes.

Licensed to André Santos <andrerfcsantos@gmail.com>

472 CHAPTER 15 C# 8 and beyond

Licensed to André Santos <andrerfcsantos@gmail.com>

appendix
Language features by version

This book is mostly organized by version, but it can be difficult to get a sense of the
features introduced in each version at a glance. This is particularly true for the fea-
tures introduced in minor versions of C# 7, which typically improve a feature intro-
duced in C# 7.0.

 Additionally, it can be useful to know whether a language feature requires run-
time or framework support or whether it’s pure compiler magic. This appendix
aims to make all of this information available as simply as possible.

 One aspect I haven’t mentioned is how generic type inference has evolved over
versions. It’s changed many times and usually in ways that are too complicated to
capture in just a few words. I suggest you take it as a given that anytime a new ver-
sion is introduced, generic type inference may have improved.

Feature Notes and requirements Section

C# 2

Generics Runtime and framework support required. 2.1

Nullable value types Runtime and framework support required. 2.2

Method group conversions 2.3.1

Anonymous methods 2.3.2

Delegate covariance and
contravariancea

a This refers to constructing a delegate from a method with a compatible but not identical signature. This isn’t the
 same as generic variance introduced in C# 4.

2.3.3

Iterators (yield return) 2.4

Partial types 2.5.1

Static classes 2.5.2
473

Licensed to André Santos <andrerfcsantos@gmail.com>

474 APPENDIX Language features by version
Feature Notes and requirements Section

C# 2 (continued)

Separate getter/setter access on
properties

2.5.3

Namespace alias qualifier :: syntax 2.5.4

The global namespace alias 2.5.4

Extern aliases 2.5.5

Fixed-size buffers 2.5.6

InternalsVisibleToAttribute
support

Runtime and framework support required. 2.5.7

C# 3

Partial methods 2.5.1

Automatically implemented properties 3.1

Implicitly typed local variables (var) 3.2.2

Implicitly typed arrays (new[]) 3.2.3

Object initializers 3.3.2

Collection initializers 3.3.3

Anonymous types 3.4

Lambda expressions (delegates) 3.5

Lambda expressions (expression trees) Framework support required (expression tree
types).

3.5.3

Extension methods Framework support required (attribute). 3.6

Query expressions 3.7

C# 4

Dynamic typing Framework support required (called the
Dynamic Language Runtime but not part of
the runtime).

4.1

Optional parameters 4.2

Named arguments 4.2

Linked primary interop assemblies Runtime and framework support required. 4.3.1

Special rules for optional parameters
in COM

4.3.2

Access to named indexers (COM only) 4.3.3
Licensed to André Santos <andrerfcsantos@gmail.com>

475 APPENDIX Language features by version

Feature Notes and requirements Section

C# 4 (continued)

Generic variance for interfaces and
delegates

Framework changes to existing interfaces
and delegates. (Runtime support was already
present.)

4.4

Implementation change to lock
statements

Framework support required:
Monitor.Enter(object, ref bool).

Third edition,
section 13.4.1

Implementation changes to field-like
events

Third edition,
section 13.4.2

Field-like event access within the
declaring class

Third edition,
section 13.4.2

C# 5

Async/await Framework support (task types and addi-
tional infrastructure used by the compiler).

Chapters 5
and 6

Changes to foreach iteration variable
capture

Change in behavior, but only for code that
was almost certainly broken in previous
versions.

7.1

Caller information attributes Framework support (the attributes them-
selves).

7.2

C# 6

Read-only automatically implemented
properties

8.2.1

Initializers for automatically imple-
mented properties

8.2.2

Remove requirement to call this() in
constructors for structs containing
automatically implemented properties

8.2.3

Expression-bodied members 8.3

Interpolated string literals Additional support for
FormattableString when that class
and FormattableStringFactory
are available.

9.2, 9.3

The nameof operator 9.5

The using static directive 10.1

Object initializers using indexers 10.2.1

Collection initializers using extension
Add methods

10.2.2

The null conditional ?. operator 10.3
Licensed to André Santos <andrerfcsantos@gmail.com>

476 APPENDIX Language features by version
C# 6 (continued)

Exception filters 10.4

Removed restrictions on awaiting in
try/catch, try/finally, and
try/catch statements

5.4.2

C# 7.0

Tuples Framework support (ValueTuple types). 11.2–11.4

Deconstruction via Deconstruct
methods

Required ValueTuple types to be present
until C# 7.2 compiler, but not a C# 7.2
language feature. (Implementation change,
effectively.)

12.1, 12.2

Initial patterns: constant patterns, type
patterns, var patterns

12.4

Use of patterns with the is operator 12.5

Use of patterns in switch statements,
including guard clauses (when)

12.6

Ref locals 13.2.1

Ref return 13.2.2

Binary integer literals 14.3.1

Underscore separators in numeric
literals

14.3.2

Returning custom task types from
async methods

Framework support required (attributes). 5.8

More kinds of expression-bodied
members

8.3.3

C# 7.1

The default literal 14.5

Improvements to type patterns
matching against generic values

12.4.2

Async entry points (async Task
Main)

5.9

Inferred tuple element names 11.2.2

C# 7.2

Allow the conditional ?: operator to
work with ref

13.2.3

Feature Notes and requirements Section
Licensed to André Santos <andrerfcsantos@gmail.com>

477 APPENDIX Language features by version
C# 7.2 (continued)

ref readonly locals and return
types

Methods returning ref readonly can be
called only by compilers that understand
them. Additionally, InAttribute is required
at compile time but has been present since
.NET 1.1 and .NET Standard 1.1.

13.2.4

in parameters Requires IsReadOnlyAttribute, but
that’s bundled in the output if it’s missing
from the target framework.

13.3

Read-only structs Requires IsReadOnlyAttribute as noted
the preceding entry.

13.4

Extension methods with ref/in
parameters

13.5

Ref-like structs Requires IsReadOnlyAttribute as noted
previously. Additionally, ref-like structs have
ObsoleteAttribute applied to them with
a specific message. Ref-like-struct-aware
compiler versions ignore this, but earlier
compilers will prevent the type being used.

13.6

stackalloc support for Span<T> Framework support required. 13.6.2

Nontrailing named arguments 14.6

The private protected access
modifier

14.7

Underscore separators in numeric
literals directly after the 0x or 0b
base specifier

14.3.2

C# 7.3

Access to fixed-sized buffers via fields
without fixed statements

2.5.6

== and != operators for tuples Availability of tuples, but no new
requirements.

11.3.6

Use of pattern and out variables
in field, property, and constructor
initializers

14.2.2

Reassignment of ref locals 13.2.1

Initializers in stackalloc
statements

13.6.2

Pattern-based fixed statements
using GetPinnableReference

13.6.2

Feature Notes and requirements Section
Licensed to André Santos <andrerfcsantos@gmail.com>

478 APPENDIX Language features by version
C# 7.3 (continued)

Generic type constraints now
permitted on Enum and Delegate

14.8.1

New generic type constraint
of unmanaged

Types and methods with the unmanaged
constraint can be used only by compilers
recent enough to understand it. Also required
UnmanagedType enum, available since .NET
1.1 and .NET Standard 1.1.

14.8.1

Placement of attributes of fields
backing automatically implemented
properties

14.8.3

Feature Notes and requirements Section
Licensed to André Santos <andrerfcsantos@gmail.com>

index
Symbols

! operator 46, 445–447
!= operator 337, 477
& operator 45–46
&& operator 373
== operator 301, 337, 368, 477
=> syntax 8, 92, 243, 454
?. operator 49, 475
?: operator 86, 273, 392, 431, 476
?? operator 48–49, 302
^ operator 46
_ discards 357
| operator 45–46

A

Action delegate 49
add signatures

general-purpose 296
specialized 296–297

Add() method 27, 55, 85, 245, 292, 298, 475
Add(key, value) method 85
AddOrUpdate method 293
AddRange method 296
Advanced Build Settings dialog box 13
AggregateException 174–175
aliases 281

extern 71–72
global namespace 71
predefined 282
See also namespace aliases

aliasing 385
alignment 254
alt.NET community 15

AND operator 46
anonymous classes, Java 87
anonymous functions

asynchronous 180–181
overview of 129–130

anonymous methods 6, 50–52, 91
anonymous object creation expression 87
anonymous types 5, 86–91, 130–131

as alternatives to tuples 347–348
behavior of 86–89
compiler-generated types 89–90
limitations of 90–91
syntax of 86–89

Any() method 128
application programming interfaces (APIs)

nonpublic 348–349
null-returning 304

args parameter array 256
ArgumentException 342
ArgumentNullException 106, 249, 448–449
ArgumentOutOfRangeException 222
arguments

iterator/async 426–427
named 433–435
validating 177–179, 277
See also type arguments

arity 28–29
array types 282
ArrayList 23, 25
arrays 22, 79–81
as operator 48, 118, 371
as-followed-by-if statements 368
AsQueryable() method 130
assemblies, interop 139–140
Assert.ThrowsAsync method 191
assignment operator 102
479

Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX480
assignments
deconstruction

to existing properties 357–361
to existing variables 357–361

definite 419
AsTask method 182
async methods 10
async/await feature 10–11, 151
asynchronous code

asynchronous anonymous functions 180–181
asynchronous method declarations 160–162

parameters in asynchronous methods 162
return types from asynchronous

methods 161–162
asynchronous method flow 168–180

awaitable pattern members 173–174
awaited 168–169
evaluating await expressions 169–172
exception unwrapping 174–176
method completion 176–180

avoid mixing with synchronous code 190
await expressions 162–166

awaitable patterns 163–165
restrictions on 165–166

control flow and MoveNext() 210–216
awaiting within loops 212–213
awaiting within try/finally blocks 213–216
control flow between await expressions 211

custom task types 150–182, 186–219
execution contexts 216–218
flow 216–218
functions 152–155
implementing MoveNext() method 205–210

examples of 205–206
general structure of 207–209
zooming into await expressions 209–210

main methods in C# 7.1 186–187
structure of generated code 195–205

MoveNext() method 202–204
SetStateMachine method 204–205
state machine boxing 204–205
structure of state machines 199–202
stub method 198–199

usage tips 187–192
allowing cancellation 190–191
avoiding context capture using

ConfigureAwait 187–189
enabling parallelism 189–190
testing asynchrony 191–192

wrapping return values 166–168
asynchronous integration 461–466

asynchronous iterators 465–466
asynchronous resource disposal with using

await 461–462
with foreach await 462–465

asynchronous iterations
with foreach await 462–465
overview of 465–466

asynchronous methods
flow 168–180

await 168–169
awaitable pattern members 173–174
evaluating await expressions 169–172
exception unwrapping 174–176
method completion 176–180

method declarations 160–162
parameters in asynchronous methods 162
return types from asynchronous

methods 161–162
modeling 158–160
parameters in 162
return types from 161–162

asynchronous resource disposal 461–462
asynchrony 10–11

overview of 155–160
fundamentals of asynchronous

execution 155–157
modeling asynchronous methods 158–160
synchronization contexts 157–158

testing 191–192
AsyncTaskMethodBuilder class 198, 200, 204,

 217–218
AsyncTaskMethodBuilderAttribute 200
AsyncVoidMethodBuilder 200
attributes 278–279

expressing nullable intent with 447–448
for fields backing automatically implemented

properties 437–438
See also caller information attributes

automatically implemented properties 8, 76,
 238–242

attributes for fields backing 437–438
initializing 239–240
read-only 238–239
in structs 240–242

await expressions 10, 162–166
awaitable patterns 163–165
control flow between 211
evaluating 169–172
foreach await 462–465
overview of 168–169
restrictions on 165–166
using await statement 461–462

await operator 152
awaitable patterns 163–165, 173–174
awaiters 201, 204, 207–208
awaiting

within loops 212–213
within try/finally blocks 213–216

AwaitOnCompleted 210, 217
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX 481
AwaitUnsafeOnCompleted method 186, 210,
 217–218

B

bang operators
best practices 448–449
overview of 445–447

BenchmarkDotNet project 399
BigQuery 434
binary compatible 396
binary integer literals 429–430
binary-ish operator 459
BindableObject class 226
Binder class 127
binding 77, 115

See also dynamic binding
Blazor 14
boilerplate code 6
Boolean comparisons 301–302
boxing

behavior 42–43
state machines 204–205

buffers. See fixed-size buffers
BuilderType property 185
Button classes 70
Button.OnClick method 155
byte-wise access 183
ByteStream 183

C

C# 2 21–74
generics 22–38

advantages of 25–29
default operators 34–37
generic type initialization 37–38
generic type state 37–38
identifying 29–30
type constraints 32–34
type inference for type arguments to

methods 30–32
typeof operators 34–37

iterators 53–66
evaluating finally blocks 58–62
evaluating yield statements 56–57
implementation sketches 62–66
lazy execution 55–58
overview of 54–55

language features in 473–474
minor features of 66–74

fixed-size buffers 73
InternalsVisibleTo 73–74
namespace aliases 70–72

partial types 67–69
pragma directives 72
separate getter/setter access for

properties 69–70
static classes 69

nullable value types 38–49
expressing absence of information 39–40
language support 43–49
Nullable struct 40–43

simplified delegate creation 49–53
anonymous methods 50–52
delegate compatibility 52–53
method group conversions 50

C# 3 75–112
anonymous types 86–91

behavior of 86–89
compiler-generated types 89–90
limitations of 90–91
syntax of 86–89

automatically implemented properties 76
collection initializers 81–86

benefits of single expressions for
initialization 86

overview of 81–83
extension methods 103–107

chaining method calls 106–107
declaring 103–104
invoking 104–106

implicit typing 77–81
implicitly typed arrays 79–81
implicitly typed local variables 78–79
typing terminology 77

Lambda expressions 91–103
capturing variables 94–101
expression trees 101–103
syntax of 92–94

language features in 474
LINQ 111–112
object initializers 81–86

benefits of single expressions for
initialization 86

overview of 81–83
query expressions 107–110

LINQ syntax 110
range variables 108–109
translating from C# to C# 108
transparent identifiers 108–109

C# 4 113–149
COM interoperability improvements 138–143

linking primary interop assemblies 139–140
named indexers 142–143
optional parameters in COM 140–142

dynamic typing 114–133
advantages of 127–131
anonymous functions 129–130
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX482
C# 4 (continued)
anonymous types 130–131
dynamic behavior 119–124
explicit interface implementation 131
extension methods 128–129
generating IL for 125–127
generics and 127–128
limitations of 127–131
overview of 114–119, 124–127
usage suggestions 131–133

generic variance 143–149
examples of 143–144
in practice 147–149
restrictions on using variance 145–147
syntax for variance in interface

declarations 144–145
language features in 474–475
named arguments 133–138

determining meaning of method calls
135–137

impact on versioning 137–138
optional parameters 133–138

determining meaning of method calls
135–137

impact on versioning 137–138
parameters with default values 134–135

C# 5 220–232
caller information attributes 222–232

behavior of 222–223
corner cases of 226–232
logging 224
with old versions of .NET 232
simplifying INotifyPropertyChanged

implementations 224–226
capturing variables in foreach loops 220–222
language features in 475

C# 6
language features in 475–476
restrictions on expression-bodied members

in 247–249
C# 7 415–438

custom task types in 182–186
building 184–186
ValueTask 182–184

improvements to numeric literals 429–431
binary integer literals 429–430
underscore separators 430–431

local methods 415–427
implementing 420–425
usage guidelines 425–427
variables within 417–420

out variables 427–429
inline variable declarations for out

parameters 427–428
restrictions lifted in C# 7.3 for out

variables 428–429

restrictions lifted in C# 7.3 for pattern
variables 428–429

throw expressions 431–432
C# 7.0

language features in 476
patterns in 367–372

constant patterns 367–368
type patterns 368–371
var pattern 371–372

C# 7.1
asynchronous code in 186–187
default literals in 432–433
inferred element names for tuple literals

in 323–324
language features in 476

C# 7.2
accessing private protected in 435
conditional ?: operator in 392–393
declaring structs as readonly in 401–405

implicit copying with read-only variables
401–403

readonly modifier for structs 403–404
XML serialization implicitly read-write

404–405
in parameters in 395–400

compatibility 396–397
extension methods with 405–408
guidance for 399–400
mutability of 397–398
overloading with 398–399

language features in 476–477
nontrailing named arguments in 433–435
ref parameters in 405–408
ref readonly in 393–395
ref values in 392–393
ref-like structs in 408–414

IL representation of 414
rules for 409–410
Span 410–414
stackalloc 410–414

C# 7.3
equality operators in 337–338
improved access to fixed-size buffers in 73
improvements in 435–438

attributes for fields backing automatically
implemented properties 437–438

generic type constraints 435–436
overload resolution 436–437

inequality operators in 337–338
language features in 477–478
pattern-based fixed statements in 413–414
restrictions lifted for out variables 428–429
restrictions lifted for pattern variables 428–429
stackalloc with initializers in 413
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX 483
C# 8 439–471
asynchronous integration 461–466

asynchronous iteration with foreach
await 462–465

asynchronous iterators 465–466
asynchronous resource disposal with using

await 461–462
default interface methods 466–468
extensions 469–470
indexes 458–460

applying 459–460
index literals 458–459
index types 458–459

nullable reference types 440–453
advantages of 440–441
bang operator 445–447
changing meaning when using reference

types 441–442
at compile time 443–445
entering 442–443
at execution time 443–445
future improvements to 449–453
migration of 447–449

ranges 458–460
applying 459–460
range literals 458–459
range types 458–459

record types 468–469
recursive pattern matching 455–458

deconstruction patterns 456–457
matching properties in patterns 455–456
omitting types from patterns 457–458

switch expressions 453–455
target-typed new 470
type classes 469

Caliburn Micro MVVM framework 226
call sites 127
callback 156
caller information attributes 8, 222–232

attributes with 230–232
behavior of 222–223
corner cases of 226–232

dynamically invoked members 226–227
implicit constructor invocations 228–229
non-obvious member names 228
query expression invocations 229–230

logging 224
with old versions of .NET 232
simplifying INotifyPropertyChanged

implementations 224–226
CallerFilePathAttribute 222
CallerLineNumberAttribute 222
CallerMemberNameAttribute 222–224, 226, 277
cancellations

allowing 190–191
handling 179–180

CancellationToken 135, 156, 174, 179, 432
CancellationTokenSource 174, 179
candidate types 80
captured variables 221, 417–418
capturing

ref parameters of enclosing methods 418
variables 94–101

in foreach loops 220–222
implementing captured variables with gener-

ated class 95–97
multiple instantiations of local variables 97–99
from multiple scopes 99–101

carriage-return line-feed separators 260
case labels 376–377
case-specific exception filters 313–314
catch block 305, 307
catch clause 307
ceremony 6
chaining method calls 106–107
checking nullability 452–453
class keyword 33
classes

generated 95–97
static 69
type 469

clauses, guard 375–376
closed constructed types 36–37
closures 7, 51
CLR. See Common Runtime Language
CodedInputStream class 184
collection initializers 7, 81–86

benefits of single expressions for
initialization 86

enhancements to 290–299
extension methods in 294–298

creating general-purpose add signatures 296
creating specialized add signatures 296–297
reexposing existing methods 297–298

overview of 81–83
test code vs. production code 298–299

colons 70, 273
COM. See Component Object Model
Common Language Runtime (CLR), tuples

in 338–346
element name handling 339–341
extension methods 346
implementing tuple conversions 341
nongeneric ValueTuple struct 346
regular equality and ordering

comparisons 342–343
string representations of 341–342
structural equality and ordering

comparisons 343–345
System.ValueTuple 338–339
womples 345
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX484
community 14–15
Community Technology Preview (CTP) 193
Company class 39
CompareTo method 34
comparisons

Boolean, handling 301–302
ordering

regular equality and 342–343
structural equality and 343–345

compatibility
of delegates 52–53
of in parameters 396–397

compile time 443–445
Compile() method 103
compile-time error 419
compiler handling

of Deconstruct calls 364–365
of interpolated string literals 261

compiler-generated types 89–90
compilers

overview of 117–118
providing with semantic information 450–451

compiling expression trees 102–103
Complete state 195
completed tasks 170
Component Object Model (COM)

improvements to interoperability 138–143
linking primary interop assemblies 139–140
named indexers 142–143

optional parameters in 140–142
composite format string 253
computed properties

property change notifications for 277–278
read-only 242–245

delegating properties 244–245
pass-through properties 244–245
performing simple logic on another piece of

state 245
conditional ?: operator 392–393
conditional operators. See null conditional

operators
ConfigureAwait method 184, 187–189
ConfigureAwaitChecker.Analyzer NuGet

package 189
Console.WriteLine method 51, 212, 259, 442
constant patterns 367–368
constraints, type

generic 435–436
overview of 32–34

construction 6–8
constructor constraint 33
constructor invocations 228–229
context capture 187–189
contexts

execution 216–218
synchronization 157–158

continuations 155–156
contravariance 144
control flow

between await expressions 211
MoveNext() and 210–216

awaiting within loops 212–213
awaiting within try/finally blocks 213–216

Control.BeginInvoke 157
Control.Invoke 157
conversion constraint 33
conversions 44–45

between tuple types 334–336
generic variance conversions 336
tuple type identity conversions 335–336

explicit 331–332
to expression trees 102
generic variance 336
identity conversions of tuple types 335–336
implicit 330–331
method group conversions 50
of tuples 329–338

element name checking in inheritance
336–337

equality operators in C# 7.3 337–338
implementing 341
inequality operators in C# 7.3 337–338
uses of 336

to tuples types 330–334
copying, implicitly 401–403
corner cases, of caller information attributes

226–232
attributes with caller information

attributes 230–232
dynamically invoked members 226–227
implicit constructor invocations 228–229
non-obvious member names 228
query expression invocations 229–230

Count() method 8, 172, 467
covariance 144
cruft 6
CTP. See Community Technology Preview
CultureInfo 255

CultureInfo.CurrentCulture property 257
CultureInfo.InvariantCulture property 257, 263

cultures
default 257
formatting FormattableString in 263–265
noninvariant 265

Current property 56, 64

D

damn it operators. See bang operators
data access with LINQ 9–10
database access 119–120
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX 485
DateTime 363
DateTime.Add(TimeSpan) method 85
DateTimeOffset 104
debug 194
declarations

delegate declarations 144–145
interface declarations 144–145
variable declarations 427–428
See also asynchronous methods, method declara-

tions
declaring

extension methods 103–104
local methods after declaring captured

variables 417–418
decompilers 196, 213
Deconstruct methods 364–365, 379, 476
deconstruction 353–380

assignments to existing properties 357–361
assignments to existing variables 357–361
to new variables 355–357
of nontuple types 361–365

compiler handling of Deconstruct calls
364–365

extension deconstruction methods 363–364
instance deconstruction methods 362
overloading 363–364

opportunities for 379
of tuple literals 361
of tuples 354–361

deconstruction patterns 456–457
default cultures 257
default indexer 142
default interface methods 466–468
default literals 135, 432–433
default operators 34–37, 432
default values 134

changing 137–138
parameters with 134–135

definite assignment 240, 419
delegate creation expressions 50
delegate declarations 144–145
delegate keyword 92
delegates 74

compatibility of 52–53
compiling expression trees to 102–103
creating 49–53

anonymous methods 50–52
method group conversions 50

delegating properties 244–245
dereferencing properties 299–300
Dictionary collection 85
directives. See pragma directives
Dispose() method 55, 61, 66
Distinct() method 343
DLR. See Dynamic Language Runtime

dot operator 163
dot syntax 110
DownloadString 153
dynamic behavior 119–124

dynamic view of Json.NET 121
examples of database access 119–120
ExpandoObject 120–121
implementing 121–124

dynamic binder
element names 351–352
high element numbers 352
tuples and 351–352

dynamic binding
dynamic values and 118
overview of 116–117

dynamic formatting 272
Dynamic Language Runtime (DLR) 125
dynamic typing 77, 114–133

anonymous functions 129–130
anonymous types 130–131
applying dynamic binding 116–117
compilers 117–118
dynamic behavior 119–124

dynamic view of Json.NET 121
examples of database access 119–120
ExpandoObject 120–121
implementing 121–124

dynamic values and dynamic binding 118
dynamic values and static types 118–119
extension methods 128–129
generating IL for 125–127
generics and 127–128
implementing explicit interfaces 131
libraries for 133
limitations of 127–131
overview of 114–119, 124–127
usage suggestions 131–133

common members without common
interface 133

reflection 132
dynamic values

dynamic binding and 118
static types and 118–119

dynamically invoked members 226–227
DynamicMetaObject 122–123
DynamicObject class 133, 149

E

element initializers 84
element names

checking in inheritance 336–337
dynamic binder and 351–352
at execution time 340–341
handling 339–341
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX486
element names (continued)
inferred 323–324
in metadata 340
in tuple literal conversions 332–334

elements
accessing by name 325–326
accessing by position 325–326
copying 27

encapsulation 91
enclosing methods 418
end users 271–272
entry points 187
Enumerable class 111
Enumerable.Count() method 289, 467
enums 29
equality 91

regular 342–343
structural 343–345

equality operators 45, 337–338
Equals() method 41, 89, 302, 337, 449
evaluation order 377–379
event subscription 162
EventHandler 49–51, 303
EventInfo 282
events, raising 303
exception filters 305–315

case-specific 313–314
logging as side effect 312–313
rethrowing 314–315
retrying operations 311–312
syntax of 306–310

catching exception type multiple times 310
two-pass exception model 307–310

exception types 310
exceptions

lazy 177–179
unwrapping 174–176

exclusive OR operator 46
Executing state 195
execution

asynchronous 155–157
element names at time of 340–341

execution contexts 216–218
execution time 443–445
ExecutionContext class 216
ExecutionContext.Capture 217
ExecutionContext.Run 217
ExpandoObject 120–121
explicit conversions 331–332
explicit interfaces 131
explicit typing 77
exposing methods 297–298
expression bodies 92
Expression class 102, 124
expression trees 10, 92, 101–103

compiling to delegates 102–103
limitations of conversions to 102

expression-bodied indexers 245–247
expression-bodied lambda expressions 102
expression-bodied members 8, 242–251

guidelines for 249–251
read-only computed properties 242–245

delegating properties 244–245
pass-through properties 244–245
performing simple logic on another piece of

state 245
restrictions on 247–249

expression-bodied methods 245–247
expression-bodied operators 245–247
expressions

reevaluating 272–273
single 86
switch 453–455
throw expressions 431–432
See also await expressions

extended type 104
[Extension] attribute 104
extension deconstruction methods 363–364
extension methods 103–107

chaining method calls 106–107
in collection initializers 294–298

creating general-purpose add signatures 296
creating specialized add signatures 296–297
reexposing existing methods 297–298

declaring 103–104
with in parameters in C# 7.2 405–408
invoking 104–106
overview of 128–129
ref extension methods 407–408
with ref parameters in C# 7.2 405–408
ref/in parameters in 405–407
static directives and 288–290

extensions 469–470
extern aliases 71–72

F

false operator 45
fast path 207
fetch result 171
Fibonacci sequence 327, 375
fields 350–351

attributes for 437–438
read-only 419–420
ref fields 389

File.ReadLines method 61
filters. See also exception filters
finally blocks 58–62, 307, 310, 314
FirstOrDefault 304
fixed statements, pattern-based 413–414
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX 487
fixed-size buffers 73
flow 216–218

See also asynchronous methods, flow
fluent syntax 110
for statement 249
foreach await statement 462–465
foreach loops 220–222
Format method 253
format string 254
FormattableString class 330, 475

formatting in noninvariant culture 265
formatting in specific cultures 263–265
localization using 261–270
with older versions of .NET 268–270
uses for 265–268

FormattableStringFactory class 268, 475
formatting

with default cultures 257
deferring for strings 273–274
dynamically 272
FormattableString in noninvariant cultures 265
FormattableString in specific cultures 263–265
for machines 257–258
for readability 274–275
strings in .NET 253–258

custom formatting with format strings 253–255
localization 255–258
simple string formatting 253

strings in interpolated string literals 259
from clause 108–109
function member 17
functions. See anonymous functions

G

generated classes 95–97
generated code, structure of 195–205

MoveNext() method 202–204
SetStateMachine method 204–205
state machine boxing 204–205
structure of state machines 199–202
stub method 198–199

generators 54
generic methods 28–29
generic type constraints 435–436
generic types 35

arity of 28–29
initializing 37–38
states 37–38

generic variance 53, 143–149
conversions 336
examples of 143–144
in practice 147–149
restrictions on using variance 145–147
syntax for variance in delegate

declarations 144–145

syntax for variance in interface
declarations 144–145

GenericParameter 378
generics 4, 22–38

advantages of 25–29
arity of generic methods 28–29
arity of generic types 28–29
type arguments 26–28
type parameters 26–28

default operators 34–37
dynamic typing and 127–128
generic type initialization 37–38
generic type state 37–38
identifying 29–30
null-inconsistent generics 449
overview of 281, 451
type constraints 32–34
type inference for type arguments to

methods 30–32
typeof operators 34–37

GetAsyncEnumerator() method 463, 465
GetAwaiter() method 163, 165, 187, 201, 209, 361
GetEnumerator() method 8, 56, 64
GetHashCode() method 41, 89, 449
GetPinnableReference method 414, 477
GetResult() method 164–165, 174, 176, 187, 209
GetStringAsync() method 153, 175
getter/setter access 69–70
GetType() method 35, 43, 340
GetValueOrDefault() method 41
global namespace aliases 71
globalization 255
Google.Protobuf package 184
goto statement 206, 212–213, 378
guard clauses 371, 375–376
Guid 135
Guid.NewGuid 410

H

handling catch block 307
hash codes 91
HasValue property 40–42, 44
Height property 278
HotSpot JIT compiler, Java 11
HttpClient 83, 151
HttpClient.GetStringAsync 178
HttpRequestException 175

I

IAsyncEnumerator interface 463, 465
IAsyncStateMachine interface 199–200
IAsyncStateMachine.SetStateMachine 218
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX488
IComparable interface 342–343
IComparable<T> interface 34
ICriticalNotifyCompletion method 216–217, 219
ICriticalNotifyCompletion.UnsafeOnCompleted

217–218
identifiers

accessing with nameof 275–283
common uses of nameof 277–279
nameof examples 275–276
tricks when using nameof 280–283

transparent 108–109
identity conversions 53, 146, 335–336
IDisposable interface 53, 61, 163, 461
IDynamicMetaObjectProvider interface 120, 122,

133, 149
IEnumerable interface 28
IEnumerable.GetEnumerator() method 55
IEnumerator interface 61
IEquatable interface 343
IFormatProvider interface 255
IFormattable interface 32–33, 259, 262
IFormattable.ToString(string, IFormatProvider)

method 33
IIS. See Internet Information Server
IL. See Intermediate Language
ILogger interface 224
implicit constructor invocations 228–229
implicit conversions 77, 330–332
implicit copying 401–403
implicit typing 6, 77–81

implicitly typed arrays 79–81
implicitly typed local variables 5, 78–79

importing static members 285–288
in extension methods 407–408
in parameters, in C# 7.2 395–400

compatibility 396–397
extension methods with 405–408
guidance for 399–400
mutability of 397–398
overloading with 398–399

InAttribute attribute 395–396, 477
index literals 458–459
index types 458–459
IndexerNameAttribute 228
indexers

expression-bodied 245–247
named 142–143
null conditional operators and 302–303
in object initializers 291–294

indexes 458–460
applying 459–460
index literals 458–459
index types 458–459

inequality operators 337–338
inference. See type inference

inferring element names 323–324
infoof operator 282
information, absence of 39–40
inheritance 336–337
initializers 413
initializing 6–8

automatically implemented properties 239–240
benefits of single expressions for 86
generic types 37–38
ref locals 388–389

initializing. See also collection initializers
inline variable declarations 427–428
INotifyCompletion interface 216, 219
INotifyCompletion.OnCompleted method 217
INotifyPropertyChanged 224–226, 277
instance deconstruction methods 362
instance method 94
instantiations of local variables 97–99
int.TryParse 427–428
integration. See asynchronous integration
interface declarations 144–145
interface methods 466–468
interfaces

common members without common
interface 133

explicit 131
interior pointer 387
Intermediate Language (IL)

generating for dynamic types 125–127
representation of ref-like structs 414

InternalsVisibleToAttribute attribute 67, 73–74,
91, 131, 397, 474

Internet Information Server (IIS) 13
interop assemblies 139–140
interpolated string literals 9

compiler handling of 261–263
formatting strings in 259
interpolated verbatim string literals 259–260
limitations of 272–273
overview of 258–261
simple interpolations 258–259

interpolations 258–259
InvalidCastException 24
InvalidOperationException 42, 455
invariance 144
invariant culture 257
Invariant method 263–264, 270
invocations

implicit constructor invocations 228–229
query expression invocations 229–230

Invoke method 303
invoking extension methods 104–106
IOException 313
is operator 48, 118, 370, 372–374, 476
IsFixedSize property 131
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX 489
IsReadOnlyAttribute 396, 477
[IsRefLikeAttribute] attribute 414
IStructuralComparable interface 343
IStructuralEquatable interface 343
Items property 83
iteration variables 220
iterations

asynchronous 462–465
overview of 448

iterator blocks 18, 54
iterator/async arguments 426–427
iterators 53–66, 74

asynchronous 465–466
evaluation of finally blocks 58–62
evaluation of yield statements 56–57
implementing 62–66
lazy execution 55–58
overview of 54–55

IXmlSerializable 404–405

J

Java HotSpot JIT compiler 11
JIT (just-in-time) compilers 11
Json.NET 121

K

KeyNotFoundException 9
KeyValuePair 354

L

Lambda expressions 7, 18, 91–103, 244, 246
capturing variables 94–101

implementing captured variables with gener-
ated class 95–97

multiple instantiations of local variables 97–99
from multiple scopes 99–101

expression trees 101–103
compiling to delegates 102–103
limitations of conversions to 102

syntax of 92–94
Language Design Meetings (LDMs) 470
language support 43–49

? type suffix 43
conversions 44–45
lifted operators 45–46
null literal 44
nullable logic 46–48
null-coalescing ?? operator 48–49

lazy exceptions 56, 177–179
lazy execution

importance of 57–58
overview of 55–56

LDMs. See Language Design Meetings
Length property 93, 109, 360–361
let clause 109
libraries for dynamic typing 133
lifted operators 45–46
lifting 44
linking 139
LINQ framework

data access with 9–10
overview of 111–112
syntax of 110

LINQ queries 5
List collection 25–27, 36, 131
literals

binary integer 429–430
default 432–433
index 458–459
null 44
range 458–459
See also interpolated string literals

literal-to-type conversion 334
local methods 415–427

declaring 417–418
escaping containing code 423–425
implementing 420–425
interacting with definite assignment 419
optimizing 426–427
read-only fields and 419–420
usage guidelines 425–427

iterator/async argument validation 426–427
suggestions for readability 427

variables within 417–420
capturing ref parameters of enclosing

methods 418
capturing variables in scope 417

local variables
implicitly typed 78–79
multiple instantiations of 97–99
overview of 349–350, 389

localization 255–258
formatting for machines 257–258
formatting with default cultures 257
using FormattableString 261–270

compiler handling of interpolated string
literals 262–263

formatting FormattableString in specific
cultures 263–265

uses for FormattableString 265–268
using FormattableString with older versions of

.NET 268–270
localized data 90
lock statement 310
logging

caller information attributes 224
as side effect 312–313
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX490
logic
nullable 46–48
performing on another piece of state 245

loops
awaiting within 212–213
foreach 220–222

M

machine.builder field 199
machine.builder.Start() method 199
machine-readable strings 270–271
Main() method 30, 59, 71, 126, 171, 307, 312, 387,

397, 416
matching. See pattern matching
matching properties in patterns 455–456
MaxBy method 349
member initializers 83
members

common members without common
interface 133

dynamically invoked 226–227
non-obvious member names 228
of other types, referring to 280
static 285–288
See also expression-bodied members

message pump 172
MessageBox.Show method 138
metadata 340
method calls

chaining 106–107
determining meaning of 135–137

method completion 176–180
argument validation 177–179
handling cancellations 179–180
lazy exceptions 177–179
returning successfully 177

method declarations 8
 See also asynchronous methods, method declara-

tions
method flow. See asynchronous methods, flow
method group conversions 6, 50
method returns 170
method syntax 110
[MethodImpl] attribute 416
MethodInfo 132, 282
methods

anonymous 50–52
enclosing 418
expression-bodied 245–247
generic 28–29
interface 466–468
partial 68–69
reexposing 297–298
type arguments to 30–32

See also asynchronous methods; extension meth-
ods; MoveNext() method

Microsoft C# compiler 72
Microsoft.Bcl package, NuGet 232
Microsoft.CSharp.RuntimeBinder 127
migration of nullable reference types 447–449

best practices for using bang operators 448–449
end results 449
expressing nullable intent with attributes

447–448
iterations 448
null-inconsistent generics 449

minor versions 12–13
model-view-viewmodel (MVVM) 226
modreq modifier 396
Monitor.Exit method 166
Monitor.TryEnter method 166
MoreLinq package 349
MoveNext() method 56–57, 59–63, 65–66, 178,

202–204, 467
control flow and 210–216

awaiting within loops 212–213
awaiting within try/finally blocks 213–216
control flow between await expressions 211

examples of 205–206
general structure of 207–209
implementing 209–210

MulticastDelegate 436
mutability of in parameters 397–398
mutable value types 198
MVVM. See model-view-viewmodel

N

name attribute 304
named arguments, nontrailing 433–435
named indexers 142–143
named types 348
nameof operator 9, 225, 452, 475

accessing identifiers with 275–283
common uses of 277–279

argument validation 277
attributes 278–279
property change notifications for computed

properties 277–278
examples of 275–276
tricks when using 280–283

array types 282
generics 281
namespaces 282–283
nullable value types 282
predefined aliases 282
referring to members of other types 280
simple name 282
using aliases 281
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX 491
names
accessing elements by 325–326
of members 228
of parameters 137
simple name 282
See also element names

namespace aliases 70–72
extern aliases 71–72
global namespace 71
qualifier syntax 70–71

namespaces 282–283
nested patterns 456
.NET platform

caller information attributes with 232
FormattableString with 268–270
formatting strings in 253–258

custom formatting with format strings
253–255

localization 255–258
simple string formatting 253

Noda Time 16–17, 242, 244, 289, 376
nonasync method 178
noncompleted tasks 170
nongeneric ValueTuple struct 346
noninvariant cultures 265
non-obvious member names 228
nonpublic APIs 348–349
nontrailing named arguments 433–435
nontuple types, deconstruction of 361–365

compiler handling of Deconstruct calls 364–365
extension deconstruction methods 363–364
instance deconstruction methods 362
overloading 363–364

Not started state 195
NotifyOfPropertyChange method 226
NotImplementedException 85
NotSupportedException 467
NuGet (NuPack) package manager 15
null conditional operators 9, 299–305

dereferencing properties 299–300
handling Boolean comparisons 301–302
indexers and 302–303
limitations of 305
overview of 300–301
working with 303–304

event raising 303
null-returning APIs 304

null literals 44
null values 105
nullability checking 452–453
Nullable class 346
nullable integers 46
nullable intent 447–448
Nullable interface 44
nullable logic 46–48

nullable reference types 5, 440–453
advantages of 440–441
bang operator 445–447
changing meaning when using reference

types 441–442
at compile time 443–445
entering 442–443
at execution time 443–445
future improvements to 449–453

deeper thinking about generics 451
enabling nullability checking 452–453
opt-in parameter validation 451–452
providing compilers with semantic

information 450–451
migration of 447–449

best practices for using bang operators
448–449

end results 449
expressing nullable intent with

attributes 447–448
iterations 448
null-inconsistent generics 449

Nullable struct 40–43
nullable value types 5, 38–49, 282

as operator and 48
expressing absence of information 39–40
language support 43–49

? type suffix 43
conversions 44–45
lifted operators 45–46
null literal 44
nullable logic 46–48
null-coalescing ?? operator 48–49

Nullable struct 40–43
null-coalescing ?? operator 48–49, 452
null-inconsistent generics 449
NullPointerException 38
NullReferenceException 38, 43, 106, 299, 301,

305, 440, 443, 448
null-returning APIs 304
numeric literals, improvements to 429–431

binary integer literals 429–430
underscore separators 430–431

O

object initializers 7, 81–86
benefits of single expressions for

initialization 86
enhancements to 290–299
indexers in 291–294
overview of 81–83
test code vs. production code 298–299

object-based collections 22
object.Equals method 367
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX492
object-relational mapping (ORM) 119
ObsoleteAttribute 477
OnPropertyChanged method 226
op_Addition operator 228
OpenWrap project 15
OperationCanceledException 174, 179–180
operations, retrying 311–312
operators

as operator 48
conditional ?: operator 392–393
default 34–37
equality operators 337–338
expression-bodied 245–247
inequality 337–338
is operator 372–374
lifted 45–46
null-coalescing ?? 48–49
typeof 34–37
See also bang operators; null conditional opera-

tors
opt-in parameter validation 451–452
OR operator 46
OrderBy method 108
ordering

comparisons
regular equality and 342–343
structural equality and 343–345

evaluation order of pattern-based switch
statements 377–379

ORM. See object-relational mapping
out parameters 427–428
out variables 427–429

inline variable declarations for out
parameters 427–428

restrictions lifted in C# 7.3 for 428–429
out-of-process data 10
overload resolution 436–437
overloading 138

with in parameters 398–399
overview of 363–364

P

parallelism 189–190
parameters 133–138

in asynchronous methods 162
with default values 134–135
determining meaning of method calls 135–137
impact on versioning 137–138

adding overloads 138
default value changes 137–138

name changes 137
opt-in parameter validation 451–452
optional 140–142
type parameters 26–28

See also ref parameters
params modifier 135
partial methods 68–69
partial types 67–69
pass-through properties 244–245
pattern matching 353–380

opportunities for 380
overview of 365–367
See also recursive pattern matching

pattern variable scopes 376–377
pattern variables 428–429
pattern-based fixed statements 413–414
pattern-based switch statements 377–379
patterns

in C# 7.0 367–372
constant 367–368
of deconstruction 456–457
with is operator 372–374
matching properties in 455–456
omitting types from 457–458
with switch statements 374–379

evaluation order of pattern-based switch
statements 377–379

guard clauses 375–376
pattern variable scopes for case labels

376–377
type 368–371
var 371–372

Paused state 195
pausing 10, 195
position, accessing elements by 325–326
positional arguments 134–135
pragma directives 72
Preconditions.CheckNotNull 277
predefined aliases 282
primary constructors 468
private protected 435, 477
production code vs. test code 298–299
projection initializer 87–88
properties 235–251

delegating 244–245
dereferencing 299–300
existing, deconstruction assignments to

357–361
getter/setter access for 69–70
history of 236–238
matching in patterns 455–456
pass-through 244–245
See also automatically implemented properties

Properties property 294
property declarations 8
PropertyChangedBase class 226
PropertyChangedEventArgs 225
PropertyChangedEventHandler 224
PropertyInfo 132, 282
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX 493
Q

queries, LINQ 5
query expressions 107–110

invocations 229–230
LINQ syntax 110
range variables 108–109
translating from C# to C# 108
transparent identifiers 108–109

Queryable class 111

R

raising events 303
range variables 108–109
ranges 458–460

applying 459–460
range literals 458–459
range types 458–459

RanToCompletion 176
readability

formatting for 274–275
suggestions for 427

read-only automatically implemented
properties 238–239

read-only computed properties 242–245
delegating properties 244–245
pass-through properties 244–245
performing simple logic on another piece of

state 245
read-only fields 419–420
read-only property 245
read-only structs 11
read-only variables

implicit copying with 401–403
references to 389–390

readonly
declaring structs as 401–405
modifier for structs 403–404

readonly modifier 403
ReadOnlyCollection 394
record types 6, 468–469
recursive pattern matching 455–458

deconstruction patterns 456–457
matching properties in patterns 455–456
omitting types from patterns 457–458

redundant copying 11
reevaluating expressions 272–273
reexposing methods 297–298
ref extension methods 407–408
ref features 11
ref keyword 383, 385
ref locals 390–395

conditional ?: operator in C# 7.2 392–393
initializing 388–389

local variables 389
overview of 385
ref fields 389
ref readonly in C# 7.2 393–395
ref values in C# 7.2 392–393
references to read-only variables 389–390
types 390

ref parameters 381–414
in C# 7.2 405–408
of enclosing methods 418
overview of 382–385

ref readonly 393–395
ref returns 392–395

conditional ?: operator in C# 7.2 392–393
overview of 385–390
ref readonly in C# 7.2 393–395
ref values in C# 7.2 392–393

refactoring 88
reference conversion 145
reference types 22, 33, 74, 441–442

See also nullable reference types
ReferenceEquals 450
reflection 132
ref-like structs, in C# 7.2 408–414

IL representation of 414
rules for 409–410
Span 410–414
stackalloc 410–414

regular equality 342–343
regular parameters 29
relational operators 45
release builds 194
resolution. See overload resolution
resource disposal 461–462
Result property 176
rethrowing exception filters 314–315
retry policies 311
retrying operations 311–312
return statement 167, 312
return types 161–162
return values, wrapping 166–168
returning 177
Roslyn code analyzer 348, 400
RuntimeBinderException 115–116, 123, 129, 131

S

safe awaiting 186
schemaless entity type 293
scopes

capturing variables in 99–101, 422–423
pattern variable 376–377

SecurityContext class 216
select clause 86
Select method 129
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX494
semantic information 450–451
separators. See underscore separators
serializing XML 404–405
SetException method 218
SetResult method 186, 218
SetStateMachine() method 199, 203–205, 210,

218
short date 256
signatures. See add signatures
simple name 282
Sin method 288
single expressions 86
single value 326–328
slow path 207
source compatible 396
Span feature 11, 410–414
specialized collections 22
SqlCommand constructor 266
SqlException 313
stack trace 224
stackalloc 410–414, 477

pattern-based fixed statements in C# 7.3 413–414
with initializers in C# 7.3 413

StackOverflowException 208
Start() method 198, 200, 203
state, performing logic on 245
state machines 64, 195

boxing 204–205
structure of 199–202

statement bodies 92
statements. See fixed statements, pattern-based
static classes 69
static directives 284–290

extension methods and 288–290
importing static members 285–288

static members 285–288
static typing 77, 118–119
string class 252–253
string representations of tuples 341–342
stringArray 433
StringBuilder 291
StringCollection 22, 24–25
string.Format method 259
string.IsNullOrEmpty method 446, 450
string.IsNullOrWhiteSpace 470
strings 252–283

accessing identifiers with nameof 275–283
common uses of nameof 277–279
examples of 275–276
tricks when using nameof 280–283

formatting in .NET 253–258
custom formatting with format strings

253–255
localization 255–258
simple string formatting 253

guidelines 270–275
messages for end users 271–272
messages for other developers 271

handling 8–9
interpolated string literals 258–261

compiler handling of interpolated string
literals 261

formatting strings in interpolated string
literals 259

interpolated verbatim string literals 259–260
simple interpolations 258–259

limitations of 273–275
deferring formatting for strings 273–274
formatting for readability 274–275
limitations of interpolated string literals

272–273
localization using FormattableString 261–270

compiler handling of interpolated string
literals 262–263

formatting FormattableString in specific
cultures 263–265

uses for FormattableString 265–268
using FormattableString with older versions of

.NET 268–270
machine-readable 270–271

strongly typed 77
structs

automatically implemented properties in
240–242

declaring as readonly in C# 7.2 401–405
implicit copying with read-only variables

401–403
XML serialization implicitly read-write

404–405
nongeneric ValueTuple struct 346
readonly modifer for 403–404
See also ref-like structs, in C# 7.2

structural equality 343–345
stub method 195, 198–199
Substring method 126, 459
switch expressions 453–455
switch statements 197, 366

pattern-based 377–379
patterns with 374–379

guard clauses 375–376
pattern variable scopes for case labels 376–377

synchronization contexts 157–158
SynchronizationContext class 157
synchronous code 190
SynonymInfo indexer 142
System.Collections.CollectionBase class 25
System.Collections.Generic 282
System.ComponentModel namespace 224
System.Diagnostics.StackTrace 224
System.Linq namespace 230
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX 495
System.Linq.Enumerable class 107, 289
System.Linq.Expressions namespace 102
System.Linq.Queryable class 289
System.Object.ToString() method 259
System.Runtime.CompilerServices

namespace 127, 223, 232, 340, 396, 414
System.Runtime.CompilerServices.AsyncMethodB

uilderAttribute 184
System.Runtime.CompilerServices.Formatta-

bleStringFactory class 263
System.Runtime.CompilerServices.Unsafe

package 404
System.Runtime.INotifyCompletion interface 163
System.Runtime.InteropServices namespace 395
System.Threading.Tasks.Extensions package 182
System.Tuple 347
System.TupleExtensions class 346
System.ValueTuple 338–339

T

target-typed new 470
Task class 155
Task Parallel Library (TPL) 151, 179
Task property 218
task types 161

in C# 7 182–186
building 184–186
ValueTask 182–184

custom 218–219
TaskAwaiter 217
task-based asynchronous pattern 151
TaskCanceledException 174
Task.ConfigureAwait 170
Task.Delay 170, 212
Task.FromCanceled 191
Task.FromException 191
Task.FromResult 170, 191, 202
Task.Result 158
Task.Result property 190
Task.Wait() method 158, 190
Task.WhenAll() method 175
Task.Yield() method 164
test code vs. production code 298–299
TestCaseSource attribute 279–280
testing asynchrony 191–192
this keyword 103, 475
ThreadAbortException 208
throw expressions 431–432
throw statement 312, 314
ThrowIfCancellationRequested 179
Title property 119
tokens 156
ToList() method 148
ToString() method 33, 68, 89, 249, 341–342

ToString(IFormatProvider) method 263, 265
ToString(string, IFormatProvider) method 32
TPL. See Task Parallel Library
trampoline technique 215
translating query expressions 108
transparent identifiers 108–109
true operator 45
Try .NET 14
try block 59
try statement 205
TryAdd method 293
try/catch block 208
try/finally blocks 213–216
TryGetNext method 463, 465
Tuple class 28, 31
tuple expression 355
tuple literals 321–328

conversions 332–334
conversions to tuples types from 330–334

explicit conversions 331–332
implicit conversions 330–331

deconstruction 361
inferred element names for in C# 7.1 323–324
syntax 321–323
types of 329–330

tuple types 321–338
conversions between 334–336

generic variance conversions 336
tuple type identity conversions 335–336

conversions from tuple literals 330–334
element name checking in inheritance 336–337
equality operators in C# 7.3 337–338
inequality operators in C# 7.3 337–338
syntax 321–323

Tuple<,> class 320
TupleElementNamesAttribute 340
tuples 6, 319–352

alternatives to 346–348
anonymous types 347–348
named types 348
System.Tuple 347

as bags of variables 324–328
accessing elements by name 325–326
accessing elements by position 325–326

in CLR 338–346
element name handling 339–341
extension methods 346
nongeneric ValueTuple struct 346
regular equality and ordering

comparisons 342–343
string representations of tuples 341–342
structural equality and ordering

comparisons 343–345
System.ValueTuple 338–339
womples 345
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX496
tuples (continued)
conversions 329–338

element name checking in inheritance
336–337

equality operators in C# 7.3 337–338
inequality operators in C# 7.3 337–338
uses of 336

deconstruction of 354–361
dynamic binder and 351–352

element names 351–352
high element numbers 352

fields 350–351
implementing conversions 341
large 345
local variables 349–350
nonpublic APIs 348–349
overview of 320
as single value 326–328

two-pass exception model 307–310
type arguments

to methods 30–32
overview of 26–28

type classes 35, 469
type constraints

generic 435–436
overview of 32–34

type inference 30–32
Type Library Importer tool (tlbimp) 139
type parameters 26–28
type patterns 368–371
typeof operator 34–37, 275, 409
types 4–6, 390

arrays 282
compiler-generated 89–90
exceptions 310
indexes 458–459
named 348
omitting from patterns 457–458
range 458–459
record 468–469
reference 441–442
referring to members of 280
return 161–162
static 118–119
See also anonymous types; generic types; nontu-

ple types, deconstruction of; nullable refer-
ence types; nullable value types; partial
types; task types; tuple types

type-to-type conversion 334
typing

explicit 77
static 77
terminology of 77
See also dynamic typing; implicit typing

U

unary operator 46, 459
underlying type 41
underscore separators 430–431
unit-test frameworks 191
Unity 14
Universal Windows Applications (UWA/

UWP) 151
unmanaged constraint 478
UnmanagedType enum 478
unnamed arguments 434
unsafe awaiting 186
unspeakable names 17, 237
unwrapping exceptions 174–176
users. See end users
using await statement 461–462
using statement 205, 310
using static directive 286, 288, 314, 475
UWA/UWP. See Universal Windows Applications

V

validation
arguments 177–179, 277
iterator/async arguments 426–427
See also opt-in parameter validation

Value property 42
value types 33, 198

See also nullable value types
values

ref values in C# 7.2 392–393
tuples as single values 326–328
wrapping return values 166–168
See also default values; dynamic values

ValueTask 182–184
ValueTuple constructor 341
ValueTuple struct, nongeneric 346
ValueTuple types 476
var keyword 78–79, 87
var pattern 371–372
variable declarations 427–428
variables

captured 417–418
capturing 94–101

from multiple scopes 99–101
implementing with generated class 95–97
in foreach loops 220–222
in scopes 417

existing, deconstruction assignments to
357–361

within local methods 417–420
capturing ref parameters of enclosing

methods 418
declaring local method after declaring cap-

tured variables 417–418
Licensed to André Santos <andrerfcsantos@gmail.com>

INDEX 497
local methods and read-only fields 419–420
local methods interacting with definite

assignment 419
new, deconstruction to 355–357
range 108–109
tuples as bags of 324–328

accessing elements by name 325–326
accessing elements by position 325–326

See also local variables; out variables
variance

conversions 336
in delegate declarations 144–145
in interface declarations 144–145
restrictions on using 145–147
See also generic variance

VARIANT type 140
versioning, impact of parameters on 137–138

adding overloads 138
default value changes 137–138
parameter name changes 137

void method 167, 177, 246, 362

W

Wait() method 157, 174, 179
WaitForNextAsync method 463, 465
weakly typed 77

WebAssembly 14
WebClient 154, 156
WebClient.DownloadStringAsync method 154
WebException 310, 314
WebRequest 24
WhenAll() method 175
where clause 33
Where method 301
Windows Forms 13
Windows Presentation Foundation (WPF) 13
Windows Runtime platform (WinRT) 151
womples 345
wrapping return values 166–168

X

Xamarin Forms 14
XElement 44, 450
XML serialization 404–405
XNamespace 116

Y

yield statements 54, 56–57, 59, 160, 465
yield type 54
Yield() method 164
YieldAwaitable 164
Licensed to André Santos <andrerfcsantos@gmail.com>

For ordering information go to www.manning.com

Concurrency in .NET
Modern patterns of concurrent and parallel programming
by Riccardo Terrell

ISBN: 9781617292996
568 pages, $59.99
June 2018

ASP.NET Core in Action
by Andrew Lock

ISBN: 9781617294617
712 pages, $49.99
June 2018

Entity Framework Core in Action
by Jon P Smith

ISBN: 9781617294563
520 pages, $49.99
July 2018

Microservices in .NET Core
with examples in Nancy
by Christian Horsdal Gammelgaard

ISBN: 9781617293375
344 pages, $49.99
January 2017

RELATED MANNING TITLES

Licensed to André Santos <andrerfcsantos@gmail.com>

https://www.manning.com/books/concurrency-in-dot-net
https://www.manning.com/books/asp-net-core-in-action
https://www.manning.com/books/entity-framework-core-in-action
https://www.manning.com/books/microservices-in-net-core

Jon Skeet

T
he powerful, fl exible C# programming language is the
foundation of .NET development. Even aft er two decades
of success, it’s still getting better! Exciting new features in

C# 6 and 7 make it easier than ever to take on big data applica-
tions, cloud-centric web development, and cross-platform
soft ware using .NET Core. Th ere’s never been a better time
to learn C# in depth.

C# in Depth, Fourth Edition is a revised edition of the bestseller
written by C# legend Jon Skeet. Th is authoritative and engaging
guide is your key to unlocking this powerful language, including
the new features of C# 6 and 7. In it, Jon introduces expression-
bodied members, interpolated strings, pattern matching, and
more. Real-world examples drive it all home. By the end of this
awesome book, you’ll be writing C# code with skill, style, and
confi dence.

What’s Inside
● Comprehensive coverage of C# 6 and 7
● Greatest hits of C# 2–5
● Extended pass-by-reference functionality
● String interpolation
● Composition with tuples
● Decomposition and pattern matching

For intermediate C# developers.

Jon Skeet is a senior soft ware engineer at Google. He studied
mathematics and computer science at Cambridge, is a recog-
nized authority in Java and C#, and maintains the position of
top contributor to Stack Overfl ow.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/c-sharp-in-depth-fourth-edition

$49.99 / Can $65.99 [INCLUDING eBOOK]

C# IN DEPTH Fourth Edition

PROGRAMMING LANGUAGES

M A N N I N G

“Jon doesn’t just explain how
C# works; he explains how

the whole thing holds
together as a unifi ed design,

and also points out
 when it doesn’t.”—From the Foreword by

Eric Lippert, Facebook

“Provides an excellent
overview of the evolution of
C# with helpful and realistic
examples that make learning

the newest features
 of C# easy.”

—Meredith Godar, Innovative
Soft ware Engineering

“Th is book has it all—from
the beginnings of C# to

insights on the future of the
language and everything

in between!”—Willem van Ketwich
National Australia Bank

See first page

	C# in Depth
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	Book forum
	Other online resources

	about the author
	about the cover illustration
	Part 1 C# in context
	1 Survival of the sharpest
	1.1 An evolving language
	1.1.1 A helpful type system at large and small scales
	1.1.2 Ever more concise code
	1.1.3 Simple data access with LINQ
	1.1.4 Asynchrony
	1.1.5 Balancing efficiency and complexity
	1.1.6 Evolution at speed: Using minor versions

	1.2 An evolving platform
	1.3 An evolving community
	1.4 An evolving book
	1.4.1 Mixed-level coverage
	1.4.2 Examples using Noda Time
	1.4.3 Terminology choices

	Summary

	Part 2 C# 2–5
	2 C# 2
	2.1 Generics
	2.1.1 Introduction by example: Collections before generics
	2.1.2 Generics save the day
	2.1.3 What can be generic?
	2.1.4 Type inference for type arguments to methods
	2.1.5 Type constraints
	2.1.6 The default and typeof operators
	2.1.7 Generic type initialization and state

	2.2 Nullable value types
	2.2.1 Aim: Expressing an absence of information
	2.2.2 CLR and framework support: The Nullable<T> struct
	2.2.3 Language support

	2.3 Simplified delegate creation
	2.3.1 Method group conversions
	2.3.2 Anonymous methods
	2.3.3 Delegate compatibility

	2.4 Iterators
	2.4.1 Introduction to iterators
	2.4.2 Lazy execution
	2.4.3 Evaluation of yield statements
	2.4.4 The importance of being lazy
	2.4.5 Evaluation of finally blocks
	2.4.6 The importance of finally handling
	2.4.7 Implementation sketch

	2.5 Minor features
	2.5.1 Partial types
	2.5.2 Static classes
	2.5.3 Separate getter/setter access for properties
	2.5.4 Namespace aliases
	2.5.5 Pragma directives
	2.5.6 Fixed-size buffers
	2.5.7 InternalsVisibleTo

	Summary

	3 C# 3: LINQ and everything that comes with it
	3.1 Automatically implemented properties
	3.2 Implicit typing
	3.2.1 Typing terminology
	3.2.2 Implicitly typed local variables (var)
	3.2.3 Implicitly typed arrays

	3.3 Object and collection initializers
	3.3.1 Introduction to object and collection initializers
	3.3.2 Object initializers
	3.3.3 Collection initializers
	3.3.4 The benefits of single expressions for initialization

	3.4 Anonymous types
	3.4.1 Syntax and basic behavior
	3.4.2 The compiler-generated type
	3.4.3 Limitations

	3.5 Lambda expressions
	3.5.1 Lambda expression syntax
	3.5.2 Capturing variables
	3.5.3 Expression trees

	3.6 Extension methods
	3.6.1 Declaring an extension method
	3.6.2 Invoking an extension method
	3.6.3 Chaining method calls

	3.7 Query expressions
	3.7.1 Query expressions translate from C# to C#
	3.7.2 Range variables and transparent identifiers
	3.7.3 Deciding when to use which syntax for LINQ

	3.8 The end result: LINQ
	Summary

	4 C# 4: Improving interoperability
	4.1 Dynamic typing
	4.1.1 Introduction to dynamic typing
	4.1.2 Dynamic behavior beyond reflection
	4.1.3 A brief look behind the scenes
	4.1.4 Limitations and surprises in dynamic typing
	4.1.5 Usage suggestions

	4.2 Optional parameters and named arguments
	4.2.1 Parameters with default values and arguments with names
	4.2.2 Determining the meaning of a method call
	4.2.3 Impact on versioning

	4.3 COM interoperability improvements
	4.3.1 Linking primary interop assemblies
	4.3.2 Optional parameters in COM
	4.3.3 Named indexers

	4.4 Generic variance
	4.4.1 Simple examples of variance in action
	4.4.2 Syntax for variance in interface and delegate declarations
	4.4.3 Restrictions on using variance
	4.4.4 Generic variance in practice

	Summary

	5 Writing asynchronous code
	5.1 Introducing asynchronous functions
	5.1.1 First encounters of the asynchronous kind
	5.1.2 Breaking down the first example

	5.2 Thinking about asynchrony
	5.2.1 Fundamentals of asynchronous execution
	5.2.2 Synchronization contexts
	5.2.3 Modeling asynchronous methods

	5.3 Async method declarations
	5.3.1 Return types from async methods
	5.3.2 Parameters in async methods

	5.4 Await expressions
	5.4.1 The awaitable pattern
	5.4.2 Restrictions on await expressions

	5.5 Wrapping of return values
	5.6 Asynchronous method flow
	5.6.1 What is awaited and when?
	5.6.2 Evaluation of await expressions
	5.6.3 The use of awaitable pattern members
	5.6.4 Exception unwrapping
	5.6.5 Method completion

	5.7 Asynchronous anonymous functions
	5.8 Custom task types in C# 7
	5.8.1 The 99.9% case: ValueTask<TResult>
	5.8.2 The 0.1% case: Building your own custom task type

	5.9 Async main methods in C# 7.1
	5.10 Usage tips
	5.10.1 Avoid context capture by using ConfigureAwait (where appropriate)
	5.10.2 Enable parallelism by starting multiple independent tasks
	5.10.3 Avoid mixing synchronous and asynchronous code
	5.10.4 Allow cancellation wherever possible
	5.10.5 Testing asynchrony

	Summary

	6 Async implementation
	6.1 Structure of the generated code
	6.1.1 The stub method: Preparation and taking the first step
	6.1.2 Structure of the state machine
	6.1.3 The MoveNext() method (high level)
	6.1.4 The SetStateMachine method and the state machine boxing dance

	6.2 A simple MoveNext() implementation
	6.2.1 A full concrete example
	6.2.2 MoveNext() method general structure
	6.2.3 Zooming into an await expression

	6.3 How control flow affects MoveNext()
	6.3.1 Control flow between await expressions is simple
	6.3.2 Awaiting within a loop
	6.3.3 Awaiting within a try/finally block

	6.4 Execution contexts and flow
	6.5 Custom task types revisited
	Summary

	7 C# 5 bonus features
	7.1 Capturing variables in foreach loops
	7.2 Caller information attributes
	7.2.1 Basic behavior
	7.2.2 Logging
	7.2.3 Simplifying INotifyPropertyChanged implementations
	7.2.4 Corner cases of caller information attributes
	7.2.5 Using caller information attributes with old versions of .NET

	Summary

	Part 3 C# 6
	8 Super-sleek properties and expression-bodied members
	8.1 A brief history of properties
	8.2 Upgrades to automatically implemented properties
	8.2.1 Read-only automatically implemented properties
	8.2.2 Initializing automatically implemented properties
	8.2.3 Automatically implemented properties in structs

	8.3 Expression-bodied members
	8.3.1 Even simpler read-only computed properties
	8.3.2 Expression-bodied methods, indexers, and operators
	8.3.3 Restrictions on expression-bodied members in C# 6
	8.3.4 Guidelines for using expression-bodied members

	Summary

	9 Stringy features
	9.1 A recap on string formatting in .NET
	9.1.1 Simple string formatting
	9.1.2 Custom formatting with format strings
	9.1.3 Localization

	9.2 Introducing interpolated string literals
	9.2.1 Simple interpolation
	9.2.2 Format strings in interpolated string literals
	9.2.3 Interpolated verbatim string literals
	9.2.4 Compiler handling of interpolated string literals (part 1)

	9.3 Localization using FormattableString
	9.3.1 Compiler handling of interpolated string literals (part 2)
	9.3.2 Formatting a FormattableString in a specific culture
	9.3.3 Other uses for FormattableString
	9.3.4 Using FormattableString with older versions of .NET

	9.4 Uses, guidelines, and limitations
	9.4.1 Developers and machines, but maybe not end users
	9.4.2 Hard limitations of interpolated string literals
	9.4.3 When you can but really shouldn’t

	9.5 Accessing identifiers with nameof
	9.5.1 First examples of nameof
	9.5.2 Common uses of nameof
	9.5.3 Tricks and traps when using nameof

	Summary

	10 A smörgåsbord of features for concise code
	10.1 Using static directives
	10.1.1 Importing static members
	10.1.2 Extension methods and using static

	10.2 Object and collection initializer enhancements
	10.2.1 Indexers in object initializers
	10.2.2 Using extension methods in collection initializers
	10.2.3 Test code vs. production code

	10.3 The null conditional operator
	10.3.1 Simple and safe property dereferencing
	10.3.2 The null conditional operator in more detail
	10.3.3 Handling Boolean comparisons
	10.3.4 Indexers and the null conditional operator
	10.3.5 Working effectively with the null conditional operator
	10.3.6 Limitations of the null conditional operator

	10.4 Exception filters
	10.4.1 Syntax and semantics of exception filters
	10.4.2 Retrying operations
	10.4.3 Logging as a side effect
	10.4.4 Individual, case-specific exception filters
	10.4.5 Why not just throw?

	Summary

	Part 4 C# 7 and beyond
	11 Composition using tuples
	11.1 Introduction to tuples
	11.2 Tuple literals and tuple types
	11.2.1 Syntax
	11.2.2 Inferred element names for tuple literals (C# 7.1)
	11.2.3 Tuples as bags of variables

	11.3 Tuple types and conversions
	11.3.1 Types of tuple literals
	11.3.2 Conversions from tuple literals to tuple types
	11.3.3 Conversions between tuple types
	11.3.4 Uses of conversions
	11.3.5 Element name checking in inheritance
	11.3.6 Equality and inequality operators (C# 7.3)

	11.4 Tuples in the CLR
	11.4.1 Introducing System.ValueTuple<...>
	11.4.2 Element name handling
	11.4.3 Tuple conversion implementations
	11.4.4 String representations of tuples
	11.4.5 Regular equality and ordering comparisons
	11.4.6 Structural equality and ordering comparisons
	11.4.7 Womples and large tuples
	11.4.8 The nongeneric ValueTuple struct
	11.4.9 Extension methods

	11.5 Alternatives to tuples
	11.5.1 System.Tuple<...>
	11.5.2 Anonymous types
	11.5.3 Named types

	11.6 Uses and recommendations
	11.6.1 Nonpublic APIs and easily changed code
	11.6.2 Local variables
	11.6.3 Fields
	11.6.4 Tuples and dynamic don’t play together nicely

	Summary

	12 Deconstruction and pattern matching
	12.1 Deconstruction of tuples
	12.1.1 Deconstruction to new variables
	12.1.2 Deconstruction assignments to existing variables and properties
	12.1.3 Details of tuple literal deconstruction

	12.2 Deconstruction of nontuple types
	12.2.1 Instance deconstruction methods
	12.2.2 Extension deconstruction methods and overloading
	12.2.3 Compiler handling of Deconstruct calls

	12.3 Introduction to pattern matching
	12.4 Patterns available in C# 7.0
	12.4.1 Constant patterns
	12.4.2 Type patterns
	12.4.3 The var pattern

	12.5 Using patterns with the is operator
	12.6 Using patterns with switch statements
	12.6.1 Guard clauses
	12.6.2 Pattern variable scope for case labels
	12.6.3 Evaluation order of pattern-based switch statements

	12.7 Thoughts on usage
	12.7.1 Spotting deconstruction opportunities
	12.7.2 Spotting pattern matching opportunities

	Summary

	13 Improving efficiency with more pass by reference
	13.1 Recap: What do you know about ref?
	13.2 Ref locals and ref returns
	13.2.1 Ref locals
	13.2.2 Ref returns
	13.2.3 The conditional ?: operator and ref values (C# 7.2)
	13.2.4 Ref readonly (C# 7.2)

	13.3 in parameters (C# 7.2)
	13.3.1 Compatibility considerations
	13.3.2 The surprising mutability of in parameters: External changes
	13.3.3 Overloading with in parameters
	13.3.4 Guidance for in parameters

	13.4 Declaring structs as readonly (C# 7.2)
	13.4.1 Background: Implicit copying with read-only variables
	13.4.2 The readonly modifier for structs
	13.4.3 XML serialization is implicitly read-write

	13.5 Extension methods with ref or in parameters (C# 7.2)
	13.5.1 Using ref/in parameters in extension methods to avoid copying
	13.5.2 Restrictions on ref and in extension methods

	13.6 Ref-like structs (C# 7.2)
	13.6.1 Rules for ref-like structs
	13.6.2 Span<T> and stackalloc
	13.6.3 IL representation of ref-like structs

	Summary

	14 Concise code in C# 7
	14.1 Local methods
	14.1.1 Variable access within local methods
	14.1.2 Local method implementations
	14.1.3 Usage guidelines

	14.2 Out variables
	14.2.1 Inline variable declarations for out parameters
	14.2.2 Restrictions lifted in C# 7.3 for out variables and pattern variables

	14.3 Improvements to numeric literals
	14.3.1 Binary integer literals
	14.3.2 Underscore separators

	14.4 Throw expressions
	14.5 Default literals (C# 7.1)
	14.6 Nontrailing named arguments (C# 7.2)
	14.7 Private protected access (C# 7.2)
	14.8 Minor improvements in C# 7.3
	14.8.1 Generic type constraints
	14.8.2 Overload resolution improvements
	14.8.3 Attributes for fields backing automatically implemented properties

	Summary

	15 C# 8 and beyond
	15.1 Nullable reference types
	15.1.1 What problem do nullable reference types solve?
	15.1.2 Changing the meaning when using reference types
	15.1.3 Enter nullable reference types
	15.1.4 Nullable reference types at compile time and execution time
	15.1.5 The damn it or bang operator
	15.1.6 Experiences of nullable reference type migration
	15.1.7 Future improvements

	15.2 Switch expressions
	15.3 Recursive pattern matching
	15.3.1 Matching properties in patterns
	15.3.2 Deconstruction patterns
	15.3.3 Omitting types from patterns

	15.4 Indexes and ranges
	15.4.1 Index and Range types and literals
	15.4.2 Applying indexes and ranges

	15.5 More async integration
	15.5.1 Asynchronous resource disposal with using await
	15.5.2 Asynchronous iteration with foreach await
	15.5.3 Asynchronous iterators

	15.6 Features not yet in preview
	15.6.1 Default interface methods
	15.6.2 Record types
	15.6.3 Even more features in brief

	15.7 Getting involved
	Conclusion

	appendix Language features by version
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	C# in Depth-back

