EXPERT INSIGHT

C# 8.0 and .NET Core 3.0

Modern Cross-Platform P,
Development

Build applications with C#, .NET Core, Entity
Framework Core, ASP.NET Core, and ML.NET £
using Visual Studio Code

Fourth Edition

Mark J. Price PGCI("')

C# 8.0 and .NET Core 3.0 —
Modern Cross-Platform

Development
Fourth Edition

Build applications with C#, .NET Core, Entity
Framework Core, ASP.NET Core, and ML.NET
using Visual Studio Code

Mark J. Price

BIRMINGHAM - MUMBAI

C# 8.0 and .NET Core 3.0 — Modern Cross-Platform
Development

Fourth Edition

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy

of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Acquisition Editor: Ben Renow-Clarke
Acquisition Editor - Peer Reviews: Suresh Jain
Content Development Editor: lan Hough
Project Editor: Radhika Atitkar

Technical Editor: Aniket Shetty

Proofreader: Safis Editing

Indexer: Rekha Nair

Presentation Designer: Sandip Tadge

First published: March 2016
Second edition: March 2017
Third edition: November 2017
Fourth edition: October 2019

Production reference: 1311019

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78847-812-0

www . packt.com

Packt

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

* Learn better with Skill Plans built especially for you

* Get a free eBook or video every month

* Fully searchable for easy access to vital information

* Copy and paste, print, and bookmark content
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. Packt . com

and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.

At www. Packt . com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

https://subscribe.packtpub.com/
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.packtpub.com/

Contributors

About the author

Mark J. Price is a Microsoft Specialist: Programming in C# and Architecting
Microsoft Azure Solutions, with more than 20 years of educational and
programming experience.

Microsoft Microsoft ..

CERTIFIED Specialist

Solutions Developer

Episerver CMS
Programming in C# Certified Developer

App Builder

Since 1993, Mark has passed more than 80 Microsoft programming exams

and specializes in preparing others to pass them too. His students range from
professionals with decades of experience to 16-year-old apprentices with none.

He successfully guides all of them by combining educational skills with real-world
experience in consulting and developing systems for enterprises worldwide.

Between 2001 and 2003, Mark was employed full-time to write official courseware for
Microsoft in Redmond, USA. His team wrote the first training courses for C# while

it was still an early alpha version. While with Microsoft, he taught "train-the-trainer"
classes to get Microsoft Certified Trainers up to speed on C# and .NET.

Currently, Mark creates and delivers training courses for Episerver's Digital
Experience Platform, the best NET CMS for Digital Marketing and E-commerce.

In 2010, Mark studied for a Postgraduate Certificate in Education (PGCE). He
taught GCSE and A-Level mathematics in two London secondary schools. He
holds a Computer Science BSc. Hons. degree from the University of Bristol, UK.

Thank you to my parents, Pamela and Ian, for raising me to be
polite, hardworking, and curious about the world. Thank you to my
sisters, Emily and Juliet, for loving me despite being their awkward
older brother. Thank you to my friends and colleagues who inspire
me technically and creatively. Lastly, thanks to all the students I
have taught over the years for motivating me to be the best teacher
that I can be.

About the reviewer

Damir Arh has many years of experience with software development and
maintenance; from complex enterprise software projects to modern consumer
oriented mobile applications. Although he has worked with a wide spectrum of
different languages, his favorite language remains C#. In his drive towards better
development processes, he is a proponent of test-driven development, continuous
integration, and continuous deployment. He shares his knowledge by speaking at
local user groups and conferences, blogging, and writing articles. He has received
the prestigious Microsoft MVP award for developer technologies 7 times in a row.
In his spare time, he's always on the move: hiking, geocaching, running, and

rock climbing.

I'd like to thank my family and friends for their patience and
understanding during the weekends and evenings I spent on my
computer to help make this book better for everyone.

Table of Contents

Preface XXi
Chapter 1: Hello, C#! Welcome, .NET! 1
Setting up your development environment 2
Using Visual Studio Code for cross-platform development 2
Using Visual Studio 2019 for Windows app development 3
Using Visual Studio for Mac for mobile development 3
Recommended tools for chapters 3
Deploying cross-platform 4
Understanding Microsoft Visual Studio Code versions 4
Downloading and installing Visual Studio Code 6
Installing other extensions 7
Understanding .NET 7
Understanding the .NET Framework 7
Understanding the Mono and Xamarin projects 8
Understanding .NET Core 8
Understanding future versions of .NET 9
Understanding .NET Core support 10
What is different about .NET Core? 11
Understanding .NET Standard 12
.NET platforms and tools used by the book editions 13
Understanding intermediate language 13
Understanding .NET Native 14
Comparing .NET technologies 14
Building console apps using Visual Studio Code 15
Writing code using Visual Studio Code 15
Compiling and running code using dotnet CLI 17
Downloading solution code from a GitHub repository 17
Using Git with Visual Studio Code 18
Cloning the book solution code repository 18
Looking for help 18
Reading Microsoft documentation 19
Getting help for the dotnet tool 19
Getting definitions of types and their members 19
Looking for answers on Stack Overflow 21
Searching for answers using Google 22
Subscribing to the official .NET blog 23

[il

Table of Contents

Practicing and exploring 23
Exercise 1.1 — Test your knowledge 23
Exercise 1.2 — Practice C# anywhere 24
Exercise 1.3 — Explore topics 24
Summary 24
Chapter 2: Speaking C# 25
Introducing C# 25
Understanding language versions and features 25
C#1.0 26
C#2.0 26
C#3.0 26
C#4.0 26
C#5.0 27
C#6.0 27
C#7.0 27
C#7.1 28
C#H72 28
C#73 28
C#8.0 28
Discovering your C# compiler versions 29
Enabling a specific language version compiler 30
Understanding C# basics 31
Understanding C# grammar 32
Statements 32
Comments 32
Blocks 33
Understanding C# vocabulary 33
Help for writing correct code 34
Verbs are methods 35
Nouns are types, fields, and variables 36
Revealing the extent of the C# vocabulary 36
Working with variables 38
Naming things and assigning values 39
Literal values 39
Storing text 40
Understanding verbatim strings 40
Storing numbers 41
Storing whole numbers 42
Storing real numbers 43
Writing code to explore number sizes 44
Comparing double and decimal types 45
Storing Booleans 47
Using Visual Studio Code workspaces 47
Storing any type of object 48

Storing dynamic types 49

Lii]

Table of Contents

Declaring local variables 50
Specifying and inferring the type of a local variable 50
Getting default values for types 51
Storing multiple values 52
Working with null values 53
Making a value type nullable 53
Understanding nullable reference types 54
Enabling nullable and non-nullable reference types 55
Declaring non-nullable variables and parameters 55
Checking for null 57
Exploring console applications further 58
Displaying output to the user 59
Formatting using numbered positional arguments 59
Formatting using interpolated strings 59
Understanding format strings 60
Getting text input from the user 61
Importing a namespace 62
Simplifying the usage of the console 62
Getting key input from the user 63
Getting arguments 63
Setting options with arguments 65
Handling platforms that do not support an API 66
Practicing and exploring 67
Exercise 2.1 — Test your knowledge 67
Exercise 2.2 — Practice number sizes and ranges 68
Exercise 2.3 — Explore topics 69
Summary 69
Chapter 3: Controlling Flow and Converting Types 71
Operating on variables 7
Unary operators 72
Binary arithmetic operators 73
Assignment operators 74
Logical operators 75
Conditional logical operators 76
Bitwise and binary shift operators 77
Miscellaneous operators 79
Understanding selection statements 79
Branching with the if statement 79
Why you should always use braces with if statements 81
Pattern matching with the if statement 81
Branching with the switch statement 82

[iii]

Table of Contents

Pattern matching with the switch statement 84
Simplifying switch statements with switch expressions 85
Understanding iteration statements 86
Looping with the while statement 86
Looping with the do statement 87
Looping with the for statement 88
Looping with the foreach statement 88
Understanding how foreach works internally 89
Casting and converting between types 89
Casting numbers implicitly and explicitly 90
Converting with the System.Convert type 92
Rounding numbers 92
Understanding the default rounding rules 93
Taking control of rounding rules 94
Converting from any type to a string 94
Converting from a binary object to a string 95
Parsing from strings to numbers or dates and times 96
Avoiding exceptions using the TryParse method 97
Handling exceptions when converting types 98
Wrapping error-prone code in a try block 99
Catching all exceptions 100
Catching specific exceptions 100
Checking for overflow 102
Throwing overflow exceptions with the checked statement 102
Disabling compiler overflow checks with the unchecked statement 104
Practicing and exploring 105
Exercise 3.1 — Test your knowledge 105
Exercise 3.2 — Explore loops and overflow 105
Exercise 3.3 — Practice loops and operators 106
Exercise 3.4 — Practice exception handling 107
Exercise 3.5 — Test your knowledge of operators 107
Exercise 3.6 — Explore topics 108
Summary 108
Chapter 4: Writing, Debugging, and Testing Functions 109
Writing functions 109
Writing a times table function 110
Writing a function that returns a value 112
Writing mathematical functions 114
Converting numbers from ordinal to cardinal 114
Calculating factorials with recursion 116
Documenting functions with XML comments 118
Debugging during development 120

[iv]

Table of Contents

Creating code with a deliberate bug 120
Setting a breakpoint 121
Navigating with the debugging toolbar 122
Debugging windows 123
Stepping through code 123
Customizing breakpoints 125
Logging during development and runtime 128
Instrumenting with Debug and Trace 129
Writing to the default trace listener 130
Configuring trace listeners 130
Switching trace levels 132
Unit testing functions 135
Creating a class library that needs testing 136
Writing unit tests 137
Running unit tests 139
Practicing and exploring 139
Exercise 4.1 — Test your knowledge 139
Exercise 4.2 — Practice writing functions with
debugging and unit testing 140
Exercise 4.3 — Explore topics 140
Summary 141
Chapter 5: Building Your Own Types
with Object-Oriented Programming 143
Talking about object-oriented programming 143
Building class libraries 144
Creating a class library 145
Defining a class 145
Understanding members 146
Instantiating a class 147
Referencing an assembly 147
Importing a namespace to use a type 147
Managing multiple files 148
Understanding objects 148
Inheriting from System.Object 149
Storing data within fields 150
Defining fields 150
Understanding access modifiers 150
Setting and outputting field values 151
Storing a value using an enum type 152
Storing multiple values using an enum type 154
Storing multiple values using collections 155

[v]

Table of Contents

Making a field static 156
Making a field constant 158
Making a field read-only 159
Initializing fields with constructors 159
Setting fields with default literals 161
Writing and calling methods 162
Returning values from methods 162
Combining multiple returned values using tuples 163
Naming the fields of a tuple 165
Inferring tuple names 165
Deconstructing tuples 166
Defining and passing parameters to methods 166
Overloading methods 167
Passing optional parameters and naming arguments 168
Controlling how parameters are passed 170
Splitting classes using partial 171
Controlling access with properties and indexers 172
Defining readonly properties 172
Defining settable properties 174
Defining indexers 175
Practicing and exploring 177
Exercise 5.1 — Test your knowledge 177
Exercise 5.2 — Explore topics 177
Summary 178
Chapter 6: Implementing Interfaces and Inheriting Classes 179
Setting up a class library and console application 179
Simplifying methods 181
Implementing functionality using methods 182
Implementing functionality using operators 184
Implementing functionality using local functions 185
Raising and handling events 186
Calling methods using delegates 186
Defining and handling delegates 188
Defining and handling events 190
Implementing interfaces 191
Common interfaces 191
Comparing objects when sorting 192
Comparing objects using a separate class 194
Defining interfaces with default implementations 195
Making types safely reusable with generics 198
Working with generic types 199

[vil

Table of Contents

Working with generic methods 201
Managing memory with reference and value types 202
Working with struct types 203
Releasing unmanaged resources 205
Ensuring that Dispose is called 207
Inheriting from classes 207
Extending classes 208
Hiding members 209
Overriding members 210
Preventing inheritance and overriding 211
Understanding polymorphism 212
Casting within inheritance hierarchies 213
Implicit casting 214
Explicit casting 214
Avoiding casting exceptions 214
Inheriting and extending .NET types 215
Inheriting exceptions 216
Extending types when you can't inherit 217
Using static methods to reuse functionality 217
Using extension methods to reuse functionality 219
Practicing and exploring 220
Exercise 6.1 — Test your knowledge 220
Exercise 6.2 — Practice creating an inheritance hierarchy 220
Exercise 6.3 — Explore topics 221
Summary 222
Chapter 7: Understanding and Packaging .NET Types 223
Introducing .NET Core 3.0 223
.NET Core 1.0 224
.NET Core 1.1 224
.NET Core 2.0 225
.NET Core 2.1 225
.NET Core 2.2 226
.NET Core 3.0 226
Understanding .NET Core components 227
Understanding assemblies, packages, and namespaces 227
Understanding dependent assemblies 228
Understanding the Microsoft .NET Core App platform 228
Understanding NuGet packages 230
Understanding frameworks 230
Importing a namespace to use a type 231
Relating C# keywords to .NET types 231
Sharing code cross-platform with .NET Standard class libraries 233

[vii]

Table of Contents

Publishing your applications for deployment 235
Creating a console application to publish 235
Understanding dotnet commands 236

Creating new projects 236
Managing projects 237
Publishing a self-contained app 238

Decompiling assemblies 238

Packaging your libraries for NuGet distribution 242
Referencing a NuGet package 242

Fixing dependencies 243
Packaging a library for NuGet 243
Testing your package 246

Porting from .NET Framework to .NET Core 247
Could you port? 248
Should you port? 248
Differences between .NET Framework and .NET Core 249
Understanding the .NET Portability Analyzer 249
Using non-.NET Standard libraries 250

Practicing and exploring 251
Exercise 7.1 — Test your knowledge 251
Exercise 7.2 — Explore topics 252

Summary 252

Chapter 8: Working with Common .NET Types 253

Working with numbers 253
Working with big integers 254
Working with complex numbers 255

Working with text 255
Getting the length of a string 256
Getting the characters of a string 256
Splitting a string 257
Getting part of a string 257
Checking a string for content 258
Joining, formatting, and other string members 259
Building strings efficiently 260

Pattern matching with regular expressions 260
Checking for digits entered as text 261
Understanding the syntax of a regular expression 262
Examples of regular expressions 263
Splitting a complex comma-separated string 264

Storing multiple objects in collections 265
Common features of all collections 266

[viii]

Table of Contents

Understanding collection choices 267
Lists 268
Dictionaries 268
Stacks 269
Queues 269
Sets 269

Working with lists 270

Working with dictionaries 271

Sorting collections 271

Using specialized collections 272

Using immutable collections 273

Working with spans, indexes, and ranges 273

Using memory efficiently using spans 274

Identifying positions with the Index type 274

Identifying ranges with the Range type 275

Using indexes and ranges 275

Working with network resources 276
Working with URIs, DNS, and IP addresses 277
Pinging a server 278

Working with types and attributes 279

Versioning of assemblies 280

Reading assembly metadata 280

Creating custom attributes 283

Doing more with reflection 285

Internationalizing your code 286

Practicing and exploring 288

Exercise 8.1 — Test your knowledge 288

Exercise 8.2 — Practice regular expressions 289

Exercise 8.3 — Practice writing extension methods 289

Exercise 8.4 — Explore topics 290

Summary 290

Chapter 9: Working with Files, Streams, and Serialization 291

Managing the filesystem 291

Handling cross-platform environments and filesystems 291

Managing drives 293

Managing directories 294

Managing files 297

Managing paths 299

Getting file information 299

Controlling how you work with files 301

Reading and writing with streams 301

[ix]

Table of Contents

Writing to text streams 303
Writing to XML streams 305
Disposing of file resources 306
Compressing streams 309
Compressing with the Brotli algorithm 310
High-performance streams using pipelines 312
Asynchronous streams 313
Encoding and decoding text 313
Encoding strings as byte arrays 314
Encoding and decoding text in files 316
Serializing object graphs 317
Serializing as XML 317
Generating compact XML 320
Deserializing XML files 321
Serializing with JSON 322
High-performance JSON processing 323
Practicing and exploring 325
Exercise 9.1 — Test your knowledge 325
Exercise 9.2 — Practice serializing as XML 326
Exercise 9.3 — Explore topics 326
Summary 327
Chapter 10: Protecting Your Data and Applications 329
Understanding the vocabulary of protection 329
Keys and key sizes 330
IVs and block sizes 331
Salts 331
Generating keys and Vs 332
Encrypting and decrypting data 332
Encrypting symmetrically with AES 333
Hashing data 337
Hashing with the commonly used SHA256 338
Signing data 342
Signing with SHA256 and RSA 342
Generating random numbers 346
Generating random numbers for games 346
Generating random numbers for cryptography 347
What's new in cryptography 348
Authenticating and authorizing users 349
Implementing authentication and authorization 351
Protecting application functionality 354
Practicing and exploring 355

[x]

Table of Contents

Exercise 10.1 — Test your knowledge

355

Exercise 10.2 — Practice protecting data with encryption and hashing 356

Exercise 10.3 — Practice protecting data with decryption 356
Exercise 10.4 — Explore topics 356
Summary 357
Chapter 11: Working with Databases
Using Entity Framework Core 359
Understanding modern databases 359
Understanding Entity Framework 360
Using a sample relational database 361
Setting up SQLite for macOS 362
Setting up SQLite for Windows 362
Creating the Northwind sample database for SQLite 362
Managing the Northwind sample database with SQLiteStudio 363
Setting up EF Core 364
Choosing an EF Core data provider 364
Connecting to the database 365
Defining EF Core models 366
EF Core conventions 366
EF Core annotation attributes 367
EF Core Fluent API 367
Understanding data seeding 368
Building an EF Core model 368
Defining the Category and Product entity classes 369
Defining the Northwind database context class 371
Querying EF Core models 372
Filtering and sorting products 374
Logging EF Core 375
Logging with query tags 380
Pattern matching with Like 380
Defining global filters 382
Loading patterns with EF Core 382
Eager loading entities 383
Enabling lazy loading 384
Explicit loading entities 385
Manipulating data with EF Core 387
Inserting entities 387
Updating entities 389
Deleting entities 390
Pooling database contexts 391
Transactions 391

[xi]

Table of Contents

Defining an explicit transaction 392
Practicing and exploring 393
Exercise 11.1 — Test your knowledge 393
Exercise 11.2 — Practice exporting data using
different serialization formats 394
Exercise 11.3 — Explore the EF Core documentation 394
Summary 394
Chapter 12: Querying and Manipulating Data Using LINQ 395
Writing LINQ queries 395
Extending sequences with the Enumerable class 396
Filtering entities with Where 397
Targeting a named method 399
Simplifying the code by removing the explicit delegate instantiation 400
Targeting a lambda expression 400
Sorting entities 401
Sorting by a single property using OrderBy 401
Sorting by a subsequent property using ThenBy 402
Filtering by type 402
Working with sets and bags using LINQ 404
Using LINQ with EF Core 406
Building an EF Core model 407
Filtering and sorting sequences 409
Projecting sequences into new types 411
Joining and grouping sequences 412
Aggregating sequences 415
Sweetening LINQ syntax with syntactic sugar 416
Using multiple threads with parallel LINQ 418
Creating an app that benefits from multiple threads 418
Using Windows 10 419
Using macOS 419
For all operating systems 419
Creating your own LINQ extension methods 421
Working with LINQ to XML 425
Generating XML using LINQ to XML 425
Reading XML using LINQ to XML 426
Practicing and exploring 427
Exercise 12.1 — Test your knowledge 427
Exercise 12.2 — Practice querying with LINQ 427
Exercise 12.3 — Explore topics 428

Summary 428

[xii]

Table of Contents

Chapter 13: Improving Performance

and Scalability Using Multitasking 429
Understanding processes, threads, and tasks 429
Monitoring performance and resource usage 431

Evaluating the efficiency of types 431
Monitoring performance and memory use 432
Implementing the Recorder class 433
Measuring the efficiency of processing strings 436
Running tasks asynchronously 437
Running multiple actions synchronously 438
Running multiple actions asynchronously using tasks 439
Waiting for tasks 441
Continuing with another task 442
Nested and child tasks 444
Synchronizing access to shared resources 445
Accessing a resource from multiple threads 446
Applying a mutually exclusive lock to a resource 447
Understanding the lock statement and avoiding deadlocks 448
Making CPU operations atomic 450
Applying other types of synchronization 451
Understanding async and await 451
Improving responsiveness for console apps 451
Improving responsiveness for GUI apps 452
Improving scalability for web applications and web services 453
Common types that support multitasking 453
Using await in catch blocks 454
Working with async streams 454
Practicing and exploring 455
Exercise 13.1 — Test your knowledge 455
Exercise 13.2 — Explore topics 456
Summary 456

Chapter 14: Practical Applications of C# and .NET 457

Understanding app models for C# and .NET 457
Building websites using ASP.NET Core 458
Building websites using a web content management system 458
Understanding web applications 459
Building and consuming web services 460
Building intelligent apps 460

[xiii]

Table of Contents

New features for ASP.NET Core 460
ASP.NET Core 1.0 460
ASP.NET Core 1.1 461
ASP.NET Core 2.0 461
ASP.NET Core 2.1 461
ASP.NET Core 2.2 462
ASP.NET Core 3.0 462

Understanding SignalR 463

Understanding Blazor 464
JavaScript and friends 465
Silverlight — C# and .NET using a plugin 465
WebAssembly — a target for Blazor 465
Blazor on the server-side or client-side 466

Understanding the bonus chapters 466
Building Windows desktop apps 467
Building cross-platform mobile apps 467

Building an entity data model for Northwind 468
Creating a class library for Northwind entity models 468
Creating a class library for a Northwind database context 473

Summary 476

Chapter 15: Building Websites Using ASP.NET Core Razor Pages 477

Understanding web development 477
Understanding HTTP 477
Client-side web development 481

Understanding ASP.NET Core 482
Classic ASP.NET versus modern ASP.NET Core 483
Creating an ASP.NET Core project 484
Testing and securing the website 486
Enabling static and default files 489

Exploring Razor Pages 492
Enabling Razor Pages 492
Defining a Razor Page 493
Using shared layouts with Razor Pages 494
Using code-behind files with Razor Pages 496

Using Entity Framework Core with

ASP.NET Core 498
Configure Entity Framework Core as a service 499
Manipulating data using Razor pages 500

Enabling a model to insert entities 500
Defining a form to insert new suppliers 501
Using Razor class libraries 503

[xiv]

Table of Contents

Using a Razor class library 505
Practicing and exploring 506
Exercise 15.1 — Test your knowledge 506
Exercise 15.2 — Practice building a data-driven web page 507
Exercise 15.3 — Explore topics 507
Summary 508
Chapter 16: Building Websites Using the
Model-View-Controller Pattern 509
Setting up an ASP.NET Core MVC website 509
Creating and exploring an ASP.NET Core MVC website 510
Reviewing the ASP.NET Core MVC website 512
Reviewing the ASP.NET Core Identity database 514
Exploring an ASP.NET Core MVC website 515
Understanding ASP.NET Core MVC startup 515
Understanding the default MVC route 517
Understanding controllers and actions 518
Understanding filters 520
Using a filter to secure an action method 521
Using a filter to cache a response 521
Using a filter to define a custom route 522
Understanding entity and view models 522
Understanding views 524
Customizing an ASP.NET Core MVC website 527
Defining a custom style 528
Setting up the category images 528
Understanding Razor syntax 528
Defining a typed view 529
Testing the customized home page 532
Passing parameters using a route value 533
Understanding model binders 535
Validating the model 539
Understanding view helper methods 542
Querying a database and using display templates 543
Improving scalability using asynchronous tasks 545
Making controller action methods asynchronous 546
Using other project templates 547
Installing additional template packs 548
Practicing and exploring 549
Exercise 16.1 — Test your knowledge 549
Exercise 16.2 — Practice implementing MVC
by implementing a category detail page 549

[xv]

Table of Contents

Exercise 16.3 — Practice improving scalability by

understanding and implementing async action methods 550
Exercise 16.4 — Explore topics 550
Summary 550
Chapter 17: Building Websites Using
a Content Management System 553
Understanding the benefits of a CMS 553
Understanding basic CMS features 554
Understanding enterprise CMS features 554
Understanding CMS platforms 555
Understanding Piranha CMS 555
Creating and exploring a Piranha CMS website 556
Editing site and page content 559
Creating a new top-level page 563
Creating a new child page 564
Reviewing the blog archive 566
Exploring authentication and authorization 567
Exploring configuration 570
Testing the new content 571
Understanding routing 572
Understanding media 574
Understanding the application service 574
Understanding content types 575
Understanding component types 576
Understanding standard fields 576
Reviewing some content types 577
Understanding standard blocks 580
Reviewing component types and standard blocks 581
Defining components, content types, and templates 583
Reviewing the standard page type 583
Reviewing the blog archive page type 585
Defining custom content and component types 586
Creating custom regions 587
Creating an entity data model 588
Creating custom page types 589
Creating custom view models 590
Defining custom content templates for content types 591
Configuring start up and importing from a database 594
Testing the Northwind CMS website 598
Uploading images and creating the catalog root 598
Importing category and product content 599
Managing catalog content 601

[xvi]

Table of Contents

Reviewing how Piranha stores content 603
Practicing and exploring 605
Exercise 17.1 — Test your knowledge 605
Exercise 17.2 — Practice defining a block type for rendering
YouTube videos 605
Exercise 17.3 — Explore topics 606
Summary 606
Chapter 18: Building and Consuming Web Services 607
Building web services using ASP.NET Core Web API 607
Understanding web service acronyms 607
Creating an ASP.NET Core Web API project 608
Reviewing the web service's functionality 611
Creating a web service for the Northwind database 613
Creating data repositories for entities 615
Implementing a Web API controller 618
Configuring the customers repository and Web API controller 620
Specifying problem details 625
Documenting and testing web services 626
Testing GET requests using a browser 626
Testing HTTP requests with REST Client extension 627
Enabling Swagger 631
Testing requests with Swagger Ul 632
Consuming services using HTTP clients 637
Understanding HttpClient 637
Configuring HTTP clients using HttpClientFactory 638
Enabling Cross-Origin Resource Sharing 641
Implementing advanced features 643
Implementing Health Check API 643
Implementing Open API analyzers and conventions 644
Understanding endpoint routing 645
Configuring endpoint routing 645
Understanding other communication technologies 648
Understanding Windows Communication Foundation (WCF) 648
Understanding gRPC 648
Practicing and exploring 649
Exercise 18.1 — Test your knowledge 649
Exercise 18.2 — Practice creating and deleting customers with HttpClient 650
Exercise 18.3 — Explore topics 650
Summary 650

[xvii]

Table of Contents

Chapter 19: Building Intelligent Apps Using Machine Learning 651
Understanding machine learning 651
Understanding the machine learning life cycle 652
Understanding datasets for training and testing 653
Understanding machine learning tasks 654
Understanding Microsoft Azure Machine Learning 655
Understanding ML.NET 656
Understanding InferNET 656
Understanding ML.NET learning pipelines 657
Understanding model training concepts 657
Understanding missing values and key types 659
Understanding features and labels 659
Making product recommendations 659
Problem analysis 660
Data gathering and processing 661
Creating the NorthwindML website project 662
Creating the data and view models 663
Implementing the controller 666
Training the recommendation models 668
Implementing a shopping cart with recommendations 670
Testing the product recommendations website 675
Practicing and exploring 678
Exercise 19.1 — Test your knowledge 678
Exercise 19.2 — Practice with samples 679
Exercise 19.3 — Explore topics 679
Summary 680
Chapter 20: Building Windows Desktop Apps 681
Understanding legacy Windows application platforms 682
Understanding .NET Core 3.0 support for legacy Windows platforms 683
Installing Microsoft Visual Studio 2019 for Windows 683
Working with Windows Forms 684
Building a new Windows Forms application 684
Reviewing a new Windows Forms application 686
Migrating a legacy Windows Forms application 687
Migrating a Windows Forms app 688
Migrating WPF apps to .NET Core 3.0 689
Migrating legacy apps using the Windows Compatibility Pack 689
Understanding the modern Windows platform 689
Understanding Universal Windows Platform 690
Understanding Fluent Design System 690
Filling user interface elements with acrylic brushes 690
Connecting user interface elements with animations 691

[xviii]

Table of Contents

Parallax views and Reveal lighting 691
Understanding XAML Standard 691
Simplifying code using XAML 692
Choosing common controls 693
Understanding markup extensions 693
Creating a modern Windows app 694
Enabling developer mode 694
Creating a UWP project 694
Exploring common controls and acrylic brushes 698
Exploring Reveal 699
Installing more controls 702
Using resources and templates 704
Sharing resources 704
Replacing a control template 705
Using data binding 707
Binding to elements 707
Creating an HTTP service to bind to 709
Downloading the web service's certificate 712
Binding to data from a secure HTTP service 713
Creating the user interface to call the HTTP service 715
Converting numbers to images 717
Testing the HTTP service data binding 724
Practicing and exploring 725
Exercise 20.1 — Test your knowledge 726
Exercise 20.2 — Explore topics 726
Summary 727
Chapter 21: Building Cross-Platform Mobile Apps Using
Xamarin.Forms 729
Understanding Xamarin and Xamarin.Forms 730
How Xamarin.Forms extends Xamarin 730
Mobile first, cloud first 731
Understanding additional functionality 732
Understanding the INotificationPropertyChanged interface 732
Understanding dependency services 733
Understanding Xamarin.Forms user interface components 733
Understanding the ContentPage view 734
Understanding the Entry and Editor controls 734
Understanding the ListView control 735
Building mobile apps using Xamarin.Forms 735
Adding Android SDKs 735
Creating a Xamarin.Forms solution 736
Creating an entity model with two-way data binding 738

[xix]

Table of Contents

Creating a component for dialing phone numbers 742
Creating views for the customers list and customer details 744
Implementing the customer list view 745
Implementing the customer detail view 748
Setting the main page for the mobile app 750
Testing the mobile app 751
Consuming a web service from a mobile app 753
Configuring the web service to allow insecure requests 753
Configuring the iOS app to allow insecure connections 754
Adding NuGet packages for consuming a web service 755
Getting customers from the web service 756
Practicing and exploring 757
Exercise 21.1 — Test your knowledge 757
Exercise 21.2 - Explore topics 758
Summary 758
Epilogue 759
Other Books You May Enjoy 761
Index 765

[xx]

Preface

There are C# books that are thousands of pages long that aim to be comprehensive
references to the C# programming language and the NET Framework.

This book is different. It is concise and aims to be a brisk, fun read that is packed
with practical hands-on walkthroughs of each subject. The breadth of the
overarching narrative comes at the cost of some depth, but you will find many
signposts to explore further if you wish. This book is simultaneously a step-by-step
guide to learning modern C# proven practices using cross-platform .NET and a brief
introduction to the main types of applications that can be built with them. This book
is best for beginners to C# and .NET, or programmers who have worked with C#

in the past but feel left behind by the changes in the past few years. If you already
have experience with C# 5.0 or later, then in the first topic of Chapter 2, Speaking C#,
you can review tables of the new language features and jump straight to them. If
you already have experience with .NET Core 1.0 or later, then in the first topic of
Chapter 7, Understanding and Packaging .NET Types, you can review tables of the new
platform features and jump straight to them.

I will point out the cool corners and gotchas of C# and .NET, so you can impress
colleagues and get productive fast. Rather than slowing down and boring some
readers by explaining every little thing, I will assume that you are smart enough
to Google an explanation for topics that are related but not necessary to include
in a beginner-to-intermediate guide.

You can download solutions for the step-by-step guided tasks and exercises from
the following GitHub repository. If you don't know how, then I provide instructions
on how to do this using Visual Studio Code at the end of Chapter 1, Hello, C#!
Welcome, .NET!

https://github.com/markjprice/cs8dotnetcore3

[xxi]

https://github.com/markjprice/cs7dotnetcore2
https://github.com/markjprice/cs7dotnetcore2
https://github.com/markjprice/cs7dotnetcore2
https://github.com/markjprice/cs7dotnetcore2
https://github.com/markjprice/cs7dotnetcore2
https://github.com/markjprice/cs7dotnetcore2

Preface

What this book covers

Chapter 1, Hello, C#! Welcome, .NET!, is about setting up your development
environment and using Visual Studio Code to create the simplest application
possible with C# and .NET. You will learn how to write and compile code on any of
the supported operating systems: Windows, macOS, and Linux variants. You will
also learn the best places to look for help.

Chapter 2, Speaking C#, introduces the versions of C# and has tables of which version
introduced new features, and then explains the grammar and vocabulary that you
will use every day to write the source code for your applications. In particular, you
will learn how to declare and work with variables of different types, and about the
big change in C# 8.0 with the introduction of nullable reference types.

Chapter 3, Controlling Flow and Converting Types, covers using operators to perform
simple actions on variables including comparisons, writing code that makes
decisions, repeats a block of statements, and converts between types. It also covers
writing code defensively to handle errors when they inevitably occur.

Chapter 4, Writing, Debugging, and Testing Functions, is about following the Don't
Repeat Yourself (DRY) principle by writing reusable functions. You will also learn
how to use debugging tools to track down and remove bugs, monitoring your code
while it executes to diagnose problems, and rigorously testing your code to remove
bugs and ensure stability and reliability before it gets deployed into production.

Chapter 5, Building Your Own Types with Object-Oriented Programming, discusses all the
different categories of members that a type can have, including fields to store data
and methods to perform actions. You will use OOP concepts, such as aggregation
and encapsulation. You will learn language features such as tuple syntax support
and out variables, and default literals and inferred tuple names.

Chapter 6, Implementing Interfaces and Inheriting Classes, explains deriving new types
from existing ones using object-oriented programming (OOP). You will learn how
to define operators and local functions, delegates and events, how to implement
interfaces about base and derived classes, how to override a type member, how

to use polymorphism, how to create extension methods, and how to cast between
classes in an inheritance hierarchy.

Chapter 7, Understanding and Packaging .NET Types, introduces the versions of NET
Core and has tables of which version introduced new features, then presents .NET
Core types that are compliant with .NET Standard, and how they relate to C#. You
will learn how to deploy and package your own apps and libraries.

Chapter 8, Working with Common .NET Types, discusses the types that allow your code
to perform common practical tasks, such as manipulating numbers and text, storing
items in collections, and implementing internationalization.

[xxii]

Preface

Chapter 9, Working with Files, Streams, and Serialization, talks about interacting with the
filesystem, reading and writing to files and streams, text encoding, and serialization
formats like JSON and XML.

Chapter 10, Protecting Your Data and Applications, is about protecting your data from
being viewed by malicious users using encryption and from being manipulated or
corrupted using hashing and signing. You will also learn about authentication and
authorization to protect applications from unauthorized users.

Chapter 11, Working with Databases Using Entity Framework Core, explains reading
and writing to databases, such as Microsoft SQL Server and SQLite, using the object-
relational mapping (ORM) technology named Entity Framework Core.

Chapter 12, Querying and Manipulating Data Using LINQ, teaches you Language
INtegrated Queries (LINQ) —language extensions that add the ability to work
with sequences of items and filter, sort, and project them into different outputs.

Chapter 13, Improving Performance and Scalability Using Multitasking, discusses
allowing multiple actions to occur at the same time to improve performance,
scalability, and user productivity. You will learn about the async Main feature
and how to use types in the System.Diagnostics namespace to monitor your
code to measure performance and efficiency.

Chapter 14, Practical Applications of C# and .NET, introduces you to the types of cross-
platform applications that can be built using C# and .NET.

Chapter 15, Building Websites Using ASP.NET Core Razor Pages, is about learning the
basics of building websites with a modern HTTP architecture on the server-side using
ASP.NET Core. You will learn how to implement the ASP.NET Core feature known as
Razor Pages, which simplifies creating dynamic web pages for small websites.

Chapter 16, Building Websites Using the Model-View-Controller Pattern, is about learning
how to build large, complex websites in a way that is easy to unit test and manage
with teams of programmers using ASP.NET Core MVC. You will learn about startup
configuration, authentication, routes, models, views, and controllers.

Chapter 17, Building Websites Using a Content Management System, explains how a

web Content Management System (CMS) can enable developers to rapidly build
websites with a customizable administration user interface that non-technical users
can use to create and manage their own content. As an example, you will learn about
a simple open source .NET Core-based one named Piranha CMS.

Chapter 18, Building and Consuming Web Services, explains building backend REST
architecture web services using ASP.NET Core Web API and how to properly
consume them using factory-instantiated HTTP clients.

[xxiii]

Preface

Chapter 19, Building Intelligent Apps Using Machine Learning, introduces you to
Microsoft's open source ML.NET package of machine learning algorithms, which can
be used to embed adaptive intelligence into any cross-platform .NET app, such as a
digital commerce website that provides product recommendations for visitors to add
to their shopping cart.

Chapter 20, Building Windows Desktop Apps, is the first of two chapters about topics
that go beyond what is achievable using cross-platform .NET Core and Visual
Studio Code. This chapter introduces you to how .NET Core 3.0 and its Windows
Desktop Pack enable Windows Forms and WPF apps to benefit from running on
NET Core. You will then learn the basics of XAML, which can be used to define the
user interface for a graphical app for Windows Presentation Foundation (WPF) or
the Universal Windows Platform (UWP). You will apply principles and features of
Fluent Design to light up a UWP app. The apps for this chapter must be built using
Visual Studio 2019 on Windows 10.

Chapter 21, Building Cross-Platform Mobile Apps Using Xamarin.Forms, introduces you
to taking C# mobile by building a cross-platform app for iOS and Android. The app
for this chapter will be built using Visual Studio 2019 for Mac on macOS.

Appendix, Answers to the Test Your Knowledge Questions, has the answers to the test
questions at the end of each chapter. You can read this appendix at https://
static.packt-cdn.com/downloads/9781788478120 Appendix Answers to the
Test Your Knowledge Questions.pdf.

What you need for this book

You can develop and deploy C# and .NET Core apps using Visual Studio Code

on many platforms, including Windows, macOS, and many varieties of Linux. An
operating system that supports Visual Studio Code and an internet connection is all
you need to complete Chapters 1 to 19.

You will need Windows 10 to build the apps in Chapter 20, Building Windows Desktop
Apps.

You will need macOS to build the apps in Chapter 21, Building Cross-Platform Mobile Apps
Using Xamarin.Forms, because you must have macOS and Xcode to compile iOS apps.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

[xxiv]

https://static.packt-cdn.com/downloads/9781788478120_Appendix_Answers_to_the_Test_Your_Knowledge_Questions.pdf
https://static.packt-cdn.com/downloads/9781788478120_Appendix_Answers_to_the_Test_Your_Knowledge_Questions.pdf
https://static.packt-cdn.com/downloads/9781788478120_Appendix_Answers_to_the_Test_Your_Knowledge_Questions.pdf

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"The controllers, Models, and Views folders contain ASP.NET Core classes and
the . cshtml files for execution on the server."

A block of code is set as follows:

// storing items at index positions

names [0] = "Kate";
names [1] = "Jack";
names [2] = "Rebecca";
names [3] = "Tom";

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

// storing items at index positions

names [0] = "Kate";
names [1] = "Jack";
names [2] = "Rebecca";
names [3] = "Tom";

Any command-line input or output is written as follows:

dotnet new console

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
on the Next button moves you to the next screen."

appear in a box like this.

Good Practice: Recommendations for how to program like an expert
appear like this.

\/‘/ More Information: Links to external sources of further reading
! /
N\

N\
/

=

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

[xxv]

Preface

To send us general feedback, simply email feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

Log in or register to our website using your email address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WinRAR / 7-Zip for Windows
* Zipeg / iZip / UnRarX for Mac
* 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/CSharp-8.0-and-.NET-Core-3.0-Modern-Cross-Platform-

Development -Third-Edition. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/.
Check them out!

[xxvi]

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/CSharp-8.0-and-.NET-Core-3.0-Modern-Cross-Platform-Development-Third-Edition
https://github.com/PacktPublishing/CSharp-8.0-and-.NET-Core-3.0-Modern-Cross-Platform-Development-Third-Edition
https://github.com/PacktPublishing/CSharp-8.0-and-.NET-Core-3.0-Modern-Cross-Platform-Development-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand
the changes in the output.

You can download this file from https://static.packt-cdn.com/
downloads/9781788478120_ ColorImages.pdf

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at customercareepacktpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, www.packtpub. com/support/errata,
selecting your book, clicking on the Errata Submission Form link, and entering

the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address or
website name. Please contact us at copyrightepackt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub. com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt . com.

[xxvii]

https://static.packt-cdn.com/downloads/9781788478120_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788478120_ColorImages.pdf
https://www.packtpub.com/support/errata
http://authors.packtpub.com/

Chapter 01
Hello, C#! Welcome, .NET!

In this first chapter, the goals are setting up your development environment,
understanding the similarities and differences between .NET Core, .NET Framework,
and .NET Standard, and then creating the simplest application possible with C# and
.NET Core using Microsoft's Visual Studio Code.

After this first chapter, this book can be divided into three parts: first, the grammar
and vocabulary of the C# language; second, the types available in NET Core for
building app features; and third, examples of common cross-platform apps you can
build using C# and .NET. The last two chapters are about two types of application
that can be built with C# but the first is not cross-platform and the second does not
use .NET Core yet so they should be considered bonus chapters.

Most people learn complex topics best by imitation and repetition rather than
reading a detailed explanation of the theory; therefore I will not overload you with
detailed explanations of every step throughout this book. The idea is to get you to
write some code, build an application from that code, and then for you to see it run.

You don't need to know all the nitty-gritty details immediately. That will be
something that comes with time as you build your own apps and go beyond what
any book can teach you.

In the words of Samuel Johnson, author of the English dictionary in 1755, I have
committed "a few wild blunders, and risible absurdities, from which no work of such
multiplicity is free." I take sole responsibility for these and hope you appreciate the
challenge of my attempt to lash the wind by writing this book about rapidly evolving
technologies like C# and .NET Core, and the apps that you can build with them.

This first chapter covers the following topics:

* Setting up your development environment

* Understanding .NET

* Building console apps using Visual Studio Code

* Downloading solution code from a GitHub repository
* Looking for help

[11]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Setting up your development
environment

Before you start programming, you'll need a code editor for C#. Microsoft has a family
of code editors and Integrated Development Environments (IDEs), which include:

e Visual Studio Code
e Visual Studio 2019
e Visual Studio 2019 for Mac

Using Visual Studio Code for cross-platform
development

The most modern and lightweight code editor to choose, and the only one from
Microsoft that is cross-platform, is Microsoft Visual Studio Code. It is able to run on
all common operating systems, including Windows, macOS, and many varieties of
Linux, including Red Hat Enterprise Linux (RHEL) and Ubuntu.

Visual Studio Code is a good choice for modern cross-platform development because
it has an extensive and growing set of extensions to support many languages beyond
C#, and being cross-platform and lightweight it can be installed on all platforms that
your apps will be deployed to for quick bug fixes and so on.

Using Visual Studio Code means a developer can use a cross-platform code editor to
developer cross-platform apps. Therefore, I have chosen to use Visual Studio Code
for all but the last two chapters for this book, because they need special features not
available in Visual Studio Code for building Windows and mobile apps.

Visual Studio Code at the following link: https://github.
com/Microsoft/vscode/wiki/Roadmap.

C’ More Information: You can read about Microsoft's plans for
\"/

If you prefer to use Visual Studio 2019 or Visual Studio for Mac instead of Visual
Studio Code, then of course you can, but I will assume that you are already familiar
with how to use them and so I will not give step-by-step instructions for using them
in this book.

More Information: You can read a comparison of Visual Studio

\/‘/ Code and Visual Studio 2019 at the following link: https://

www.ltworld.com/article/3403683/visual-studio-
code-stepping-on-visual-studios-toes.html.

[2]

https://github.com/Microsoft/vscode/wiki/Roadmap.
https://github.com/Microsoft/vscode/wiki/Roadmap.
https://www.itworld.com/article/3403683/visual-studio-code-stepping-on-visual-studios-toes.html
https://www.itworld.com/article/3403683/visual-studio-code-stepping-on-visual-studios-toes.html
https://www.itworld.com/article/3403683/visual-studio-code-stepping-on-visual-studios-toes.html

Hello, C#! Welcome, .NET! | 01

Using Visual Studio 2019 for Windows app
development

Microsoft Visual Studio 2019 only runs on Windows, version 7 SP1 or later. You
must run it on Windows 10 to create Universal Windows Platform (UWP) apps. It is
the only Microsoft developer tool that can create Windows apps, so we will use it in
Chapter 20, Building Windows Desktop Apps.

Using Visual Studio for Mac for mobile
development

To create apps for the Apple operating systems like iOS to run on devices like iPhone
and iPad, you must have Xcode, but that tool only runs on macOS. Although you
can use Visual Studio 2019 on Windows with its Xamarin extensions to write a cross-
platform mobile app, you still need macOS and Xcode to compile it.

So, we will use Visual Studio 2019 for Mac on macOS in Chapter 21, Building Cross-
Platform Mobile Apps Using Xamarin.Forms.

Recommended tools for chapters

To help you to set up the best environment to use in this book, the following table
summarizes which tools and operating systems I recommend be used for each of the
chapters in this book:

Chapters Tool Operating systems
Chapters 1 to 19 | Visual Studio Code Windows, macOS, Linux
Chapter 20 Visual Studio 2019 Windows 10

Chapter 21 Visual Studio 2019 for Mac | macOS

To write this book, I used my MacBook Pro and the following listed software:

* Visual Studio Code on macOS as my primary code editor.

* Visual Studio Code on Windows 10 in a virtual machine to test OS-specific
behavior like working with the filesystem.

e Visual Studio 2019 on Windows 10 in a virtual machine to build
Windows apps.

* Visual Studio 2019 for Mac on macOS to build mobile apps.

[31]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

More Information: Google and Amazon are supporters of Visual

\/V Studio Code, as you can read at the following link: https://

www.cnbc.com/2018/12/20/microsoft-cmo-capossela-
says-google-employees-use-visual-studio-code.html.

Deploying cross-platform
Your choice of code editor and operating system for development does not limit
where your code gets deployed.
.NET Core 3.0 supports the following platforms for deployment:
e Windows: Windows 7 SP1, or later. Windows 10 version 1607, or later.
Windows Server 2012 R2 SP1, or later. Nano Server version 1803, or later.
* Mac: macOS High Sierra (version 10.13), or later.

e Linux: RHEL 6, or later. RHEL, CentOS, Oracle Linux version 7, or later.
Ubuntu 16.04, or later. Fedora 29, or later. Debian 9, or later. openSUSE 15,
or later.

More Information: You can read the official list of supported

\/V operating systems at the following link: https://github.

com/dotnet/core/blob/master/release-notes/3.0/3.0-
supported-os.md.

Understanding Microsoft Visual Studio Code
versions

Microsoft releases a new feature version of Visual Studio Code (almost) every month
and bug fix versions more frequently. For example:

* Version 1.38, August 2019 feature release.

* Version 1.38.1, August 2019 bug fix release.

\/V More Information: You can read about the latest versions at the

following link: https://code.visualstudio.com/updates.

The version used in this book is 1.38.1 released on 11 September 2019, but the version
of Microsoft Visual Studio Code is less important than the version of the C# for
Visual Studio Code extension that you will install later.

[4]

https://www.cnbc.com/2018/12/20/microsoft-cmo-capossela-says-google-employees-use-visual-studio-code.html
https://www.cnbc.com/2018/12/20/microsoft-cmo-capossela-says-google-employees-use-visual-studio-code.html
https://www.cnbc.com/2018/12/20/microsoft-cmo-capossela-says-google-employees-use-visual-studio-code.html
https://github.com/dotnet/core/blob/master/release-notes/3.0/3.0-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/3.0/3.0-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/3.0/3.0-supported-os.md
https://code.visualstudio.com/updates

Hello, C#! Welcome, .NET! | 01

While the C# extension is not required, it provides IntelliSense as you type, code
navigation, and debugging features, so it's something that's very handy to install. To
support C# 8.0, you should install C# extension version 1.21.3 or later.

In this book, I will show keyboard shortcuts and screenshots of Visual Studio Code
using the macOS version. Visual Studio Code on Windows and variants of Linux are
practically identical, although keyboard shortcuts are likely different.

Some common keyboard shortcuts that we will use are shown in the following table:

Action macOS Windows
Show Command Palette | Cmd + Shift + P, Ctrl + Shift + P,
F1 F1
Go To Definition F12 F12
Go Back Ctrl + - Alt + «
Go Forward Ctrl + Shift + - Alt+—
Show Terminal Ctrl + ' (backtick) Ctrl + ' (quote)
New Terminal Ctrl + Shift + ' (backtick) | Ctrl + Shift +' (quote)
Toggle Line Comment Ctrl+/ Ctrl+/
Toggle Block Comment | Shift + Option + A Shift + Alt+ A

I recommend that you download a PDF of keyboard shortcuts for your operating
system from the following list:

e Windows: https://code.visualstudio.com/shortcuts/keyboard-
shortcuts-windows.pdf

¢ macOS: https://code.visualstudio.com/shortcuts/keyboard-
shortcuts-macos.pdf

e Linux: https://code.visualstudio.com/shortcuts/keyboard-
shortcuts-linux.pdf

More Information: You can learn about the default key bindings

‘ n/ for Visual Studio Code and how to customize them at the
following link: https://code.visualstudio.com/docs/
getstarted/keybindings.

Visual Studio Code has rapidly improved over the past couple of years and has
pleasantly surprised Microsoft with its popularity. If you are brave and like to live
on the bleeding edge, then there is an Insiders edition, which is a daily build of the
next version.

[51]

https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf
https://code.visualstudio.com/docs/getstarted/keybindings
https://code.visualstudio.com/docs/getstarted/keybindings

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Downloading and installing Visual Studio
Code

Now you are ready to download and install Visual Studio Code, its C# extension,
and the NET Core 3.0 SDK.

1. Download and install either the Stable build or the Insiders edition of Visual
Studio Code from the following link: https://code.visualstudio.com/.

2. Download and install the .NET Core SDK from the following link: https://
www.microsoft.com/net/download.

3. Toinstall the C# extension, you must first launch the Visual Studio Code
application.

4. In Visual Studio Code, click the Extensions icon or navigate to View
| Extensions.

5. C# is one of the most popular extensions available, so you should see it at
the top of the list, or you can enter c# in the search box, as shown in the
following screenshot:

| @ Code File Edit Selecton View Go Debug Terminal Window Help g 3 m > @
® Extension: C#

EXTENSIONS: MARKETPLACE = o Extension: C# X o

C# 1213 ©19M * 4 i s
C# for Visual Studio Code (powered by OmniSharp). Microsoft | &> 19,084,338 | * * k% Repository
Micrasoft et c # C# for Visual Studio Code (powered by OmniSharp).
C# FixFormat 0.0.34 936K * 4.5
@ Fix format of usings / indents / braces / empty lines
Leopotam
S OCHING I AUON L IE SRt Details Contributions Changelog
Generate C# XML documentation comments.
Keisuke Kato
C# Extensions 1.0 @sszc *5 C# for Visual Studio Code (powered by OmniSharp)
C# IDE Extensions for VSCode
I
femnnen & Master Release
C# Snippets 0.3.1 4178K * 5
(@) C# Snippets for Visual Studic Code build passing build passing
Jorge Serrano

eppz! (C# theme for Unity) 124 102K *45 i
o Carefully designed colors with meanings

eppz! | install | Welcome to the C# extension for Visual Studio Code! This extension provides the followi
9 C# Extensions 13. DK features inside VS Code: (‘;«%

=

C# IDE Extensions for VSCode
JosKreativ

« Lightweight development tools for NET Core.

6. Click Install and wait for supporting packages to download and install.

/ More Information: You can read more about Visual Studio
\/{p; Code support for C# at the following link: https://code.

visualstudio.com/docs/languages/csharp.

[6]

https://code.visualstudio.com/
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://code.visualstudio.com/docs/languages/csharp
https://code.visualstudio.com/docs/languages/csharp

Hello, C#! Welcome, .NET! | 01

Installing other extensions

In later chapters of this book, you will use more extensions. If you want to install
them now, all the extensions that we will use are shown in the following table:

ms-vscode.csharp

Extension Description
C# for Visual Studio Code C# editing support, including syntax highlighting,
(powered by OmniSharp) IntelliSense, Go to Definition, Find All References,

debugging support for .NET Core (CoreCLR), and
support for project . json and csproj projects on
Windows, macQOS, and Linux.

C# XML Documentation
Comments k--kato.docomment

Generate XML documentation comments for Visual
Studio Code.

C# Extensions

jchannon.csharpextensions

Add C# class, add C# interface, add fields and
properties from constructors, add constructor from
properties.

REST Client

humao.rest-client

Send an HTTP request and view the response directly
in Visual Studio Code.

ILSpy .NET Decompiler

icsharpcode.ilspy-vscode

Decompile MSIL assemblies - support for NET
Framework, NET Core, and .NET Standard.

SharpPad

jmazouri.sharppad

Easily inspect the results of your code. It works
similarly to standalone tools like LinqPad and
RoslynPad.

Understanding .NET

NET Framework, .NET Core, Xamarin, and .NET Standard are related and
overlapping platforms for developers used to build applications and services. In this
section, we're going to introduce you to each of these .NET concepts.

Understanding the .NET Framework

NET Framework is a development platform that includes a Common Language
Runtime (CLR), which manages the execution of code, and a Base Class Library (BCL),
which provides a rich library of classes to build applications from. Microsoft originally
designed the .NET Framework to have the possibility of being cross-platform, but
Microsoft put their implementation effort into making it work best with Windows.

Since .NET Framework 4.5.2 it has been an official component of the Windows
operating system. .NET Framework is installed on over one billion computers so it
must change as little as possible. Even bug fixes can cause problems, so it is updated

infrequently.

[71

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

All of the apps on a computer written for the INET Framework share the same
version of the CLR and libraries stored in the Global Assembly Cache (GAC),
which can lead to issues if some of them need a specific version for compatibility.

\Il

@ Good Practice: Practically speaking, .NET Framework is Windows-
’ only and a legacy platform. Do not create new apps using it.

=
=
=

Understanding the Mono and Xamarin
projects

Third parties developed a .NET Framework implementation named the Mono
project. Mono is cross-platform, but it fell well behind the official implementation
of NET Framework.

\/‘/ More Information: You can read more about the project at the

following link: http://www.mono-project.com/.

Mono has found a niche as the foundation of the Xamarin mobile platform as well as
cross-platform game development platforms like Unity.

\/V More Information: You can read more about Unity at the

following link: https://docs.unity3d.com/.

Microsoft purchased Xamarin in 2016 and now gives away what used to be an
expensive Xamarin extension for free with Visual Studio 2019. Microsoft renamed the
Xamarin Studio development tool, which could only create mobile apps, to Visual
Studio for Mac and gave it the ability to create other types of apps. With Visual Studio
2019 for Mac, Microsoft has replaced parts of the Xamarin Studio editor with parts from
Visual Studio for Windows to provide closer parity of experience and performance.

Understanding .NET Core

Today, we live in a truly cross-platform world where modern mobile and cloud
development have made Windows, as an operating system, much less important.
Because of that, Microsoft has been working on an effort to decouple .NET from

its close ties with Windows. While rewriting .NET Framework to be truly cross-
platform, they've taken the opportunity to refactor and remove major parts that are
no longer considered core.

[8]

http://www.mono-project.com/.
https://docs.unity3d.com/

Hello, C#! Welcome, .NET! | 01

This new product was branded .NET Core and includes a cross-platform
implementation of the CLR known as CoreCLR and a streamlined library
of classes known as CoreFX.

Scott Hunter, Microsoft Partner Director Program Manager for .NET, has said
that "Forty percent of our .NET Core customers are brand-new developers to the
platform, which is what we want with .NET Core. We want to bring new people in."

.NET Core is fast moving and because it can be deployed side by side with an app,

it can change frequently knowing those changes will not affect other .NET Core apps
on the same machine. Improvements that Microsoft can make to .NET Core cannot
be added to .NET Framework.

More Information: You can read more about Microsoft's

‘ p/ positioning of NET Core and .NET Framework at the following
link: https://devblogs.microsoft.com/dotnet /update-
on-net-core-3-0-and-net-framework-4-8/.

Understanding future versions of .NET

At the Microsoft Build developer conference in May 2019, the .NET team announced
that after .NET Core 3.0 is released in September 2019, .NET Core will be renamed
NET and the major version number will skip the number four to avoid confusion
with .NET Framework 4.x. So, the next version of .NET Core will be NET 5.0 and

it is scheduled for release in November 2020. After that, Microsoft plans on annual
major version releases every November, rather like Apple does major version
number releases of iOS every second week in September.

/ More Information: You can read more about Microsoft's

\/§n> plans for .NET 5.0 at the following link: https://devblogs.
microsoft.com/dotnet/introducing-net-5/

The following table shows when the key versions of .NET Core were released,

when future releases are planned, and which version is used by the various editions

of this book:

Version Released Edition | Published
.NET Core RC1 November 2015 | First March 2016
.NET Core 1.0 June 2016

.NET Core 1.1 November 2016

[o]

https://devblogs.microsoft.com/dotnet/update-on-net-core-3-0-and-net-framework-4-8/
https://devblogs.microsoft.com/dotnet/update-on-net-core-3-0-and-net-framework-4-8/
https://devblogs.microsoft.com/dotnet/update-on-net-core-3-0-and-net-framework-4-8/
https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://devblogs.microsoft.com/dotnet/introducing-net-5/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

.NET Core 1.0.4 and .NET Core 1.1.1 March 2017 Second | March 2017
.NET Core 2.0 August 2017

.NET Core for UWP in Windows 10 Fall | October 2017 Third November 2017
Creators Update

.NET Core 2.1 May 2018

.NET Core 2.2 December 2018

.NET Core 3.0 (Current) September 2019 | Fourth | October 2019
.NET Core 3.1 (LTS) November 2019

.NET 5.0 November 2020

.NET 6.0 November 2021

I cannot promise 5th and 6th editions of this book to match future releases of .NET,
but that would be a safe bet.

Understanding .NET Core support

.NET Core versions are either Long-Term Support (LTS) or Current, as described in
the following list:

* LTS releases are stable and require fewer updates over their lifetime.
These are a good choice for applications that you do not intend to update
frequently. LTS releases will be supported for 3 years after general
availability. .NET Core 3.1 will be an LTS release.

.NET Core 1.0 and 1.1 reached end of life and went out of support on 27 June 2019, 3
years after the initial .NET Core 1.0 release.

* Current releases include features that may change based on feedback. These
are a good choice for applications that you are actively developing because
they provide access to the latest improvements. After a 3-month maintenance
period, the previous minor version will no longer be supported. For example,
after 1.2 releases systems running version 1.1 will have 3 months to update
to 1.2 to remain eligible for support. .NET Core 3.0 is a Current release so if
NET Core 3.1 releases in November 2019 as planned, then you will need to
upgrade to it by February 2020.

Both receive critical fixes throughout their lifetime for security and reliability. You
must stay up to date with the latest patches to get support. For example, if a system
is running 1.0 and 1.0.1 has been released, 1.0.1 will need to be installed.

[10]

Hello, C#! Welcome, .NET! | 01

What is different about .NET Core?

NET Core is smaller than the current version of .NET Framework due to the fact
that legacy technologies have been removed. For example, Windows Forms and
Windows Presentation Foundation (WPF) can be used to build graphical user
interface (GUI) applications, but they are tightly bound to the Windows ecosystem,
so they have been removed from .NET Core on macOS and Linux.

One of the new features of INET Core 3.0 is support for running old Windows Forms
and WPF applications using the Windows Desktop Pack that is included with

the Windows version of .NET Core 3.0 which is why it is bigger than the SDKs for
macOS and Linux. You can make some small changes to your legacy Windows app
if necessary, and then rebuild it for INET Core to take advantage of new features and
performance improvements. You'll learn about support for building these types of
Windows apps in Chapter 20, Building Windows Desktop Apps.

The latest technology used to build Windows apps is the Universal Windows
Platform (UWP), which is built on a custom version of NET Core. UWP is not part
of .NET Core because it is not cross-platform.

ASP.NET Web Forms and Windows Communication Foundation (WCF) are old
web application and service technologies that fewer developers are choosing to use
for new development projects today, so they have also been removed from .NET
Core. Instead, developers prefer to use ASP.NET MVC and ASP.NET Web API. These
two technologies have been refactored and combined into a new product that runs on
NET Core, named ASP.NET Core. You'll learn about the technologies in Chapter 15,
Building Websites Using ASP.NET Core Razor Pages, Chapter 16, Building Websites Using
the Model-View-Controller Pattern, and Chapter 18, Building and Consuming Web Services.

More Information: Some .NET Framework developers are
upset that ASP.NET Web Forms, WCF, and Windows Workflow
(WF) are missing from .NET Core and would like Microsoft to

\/V change their minds. There are open source projects to enable
WCF and WF to migrate to .NET Core. You can read more at the
following link: https://devblogs.microsoft.com/dotnet/
supporting-the-community-with-wf-and-wcf-oss-
projects/.

Entity Framework (EF) 6 is an object-relational mapping technology that is designed
to work with data that is stored in relational databases such as Oracle and Microsoft
SQL Server. It has gained baggage over the years, so the cross-platform API has been
slimmed down, will be given support for non-relational databases like Microsoft
Azure Cosmos DB, and named Entity Framework Core. You will learn about it in
Chapter 11, Working with Databases Using Entity Framework Core.

[11]

https://devblogs.microsoft.com/dotnet/supporting-the-community-with-wf-and-wcf-oss-projects/
https://devblogs.microsoft.com/dotnet/supporting-the-community-with-wf-and-wcf-oss-projects/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

If you have existing apps that use the old EF then version 6.3 is supported on .NET
Core 3.0.

In addition to removing large pieces from .NET Framework in order to make .NET
Core, Microsoft has componentized the .NET Core into NuGet packages, those being
small chunks of functionality that can be deployed independently.

Microsoft's primary goal is not to make .NET Core smaller than .NET Framework.
The goal is to componentize .NET Core to support modern technologies and to have
fewer dependencies, so that deployment requires only those packages that your
application needs.

Understanding .NET Standard

The situation with .NET in 2019 is that there are three forked .NET platforms
controlled by Microsoft, as shown in the following list:

* .NET Core: for cross-platform and new apps.
* .NET Framework: for legacy apps.

e Xamarin: for mobile apps.

Each has strengths and weaknesses because they are all designed for different
scenarios. This has led to the problem that a developer must learn three platforms,
each with annoying quirks and limitations. Because of that, Microsoft defined .NET
Standard: a specification for a set of APIs that all NET platforms can implement

to indicate what level of compatibility they have. For example, basic support is
indicated by a platform being compliant with .NET Standard 1.4.

With .NET Standard 2.0 and later, Microsoft made all three platforms converge on
a modern minimum standard, which makes it much easier for developers to share
code between any flavor of .NET.

For .NET Core 2.0 and later, this added a number of the missing APIs that developers
need to port old code written for NET Framework to the cross-platform .NET Core.
However, some APIs are implemented, but throw an exception to indicate to a
developer that they should not actually be used! This is usually due to differences in
the operating system on which you run .NET Core. You'll learn how to handle these
exceptions in Chapter 2, Speaking C#.

It is important to understand that .NET Standard is just a standard. You are not able
to install .NET Standard in the same way that you cannot install HTML5. To use
HTML5, you must install a web browser that implements the HTML5 standard.

[12]

Hello, C#! Welcome, .NET! | 01

To use the NET Standard, you must install a .NET platform that implements the
NET Standard specification. .NET Standard 2.0 is implemented by the latest versions
of NET Framework, .NET Core, and Xamarin.

The latest NET Standard, 2.1, is only implemented by .NET Core 3.0, Mono, and
Xamarin. Some features of C# 8.0 require .NET Standard 2.1. .NET Standard 2.1 is not
implemented by .NET Framework 4.8 so we should treat NET Framework as legacy.

More Information: NET Standard versions and which NET

\/‘/ platforms support them are listed at the following link:

https://github.com/dotnet/standard/blob/master/
docs/versions.md.

.NET platforms and tools used by the book

editions

For the first edition of this book, which was written in March 2016, I focused on .NET
Core functionality but used .NET Framework when important or useful features had
not yet been implemented in .NET Core, because that was before the final release of
.NET Core 1.0. Visual Studio 2015 was used for most examples, with Visual Studio
Code shown only briefly.

The second edition was (almost) completely purged of all .NET Framework code
examples so that readers were able to focus on .NET Core examples that truly run
cross-platform. The third edition completed the switch. It was rewritten so that all of
the code was pure .NET Core. But giving step-by-step instructions for multiple tools
added unnecessary complexity.

In this fourth edition, we'll continue the trend by only showing coding examples
using Visual Studio Code for all but the last two chapters of this book. In Chapter
20, Building Windows Desktop Apps, you'll need to use Visual Studio 2019 running on
Windows 10, and in Chapter 21, Building Cross-Platform Mobile Apps Using Xamarin.
Forms, you'll need to use Visual Studio 2019 for Mac.

Understanding intermediate language

The C# compiler (named Roslyn) used by the dotnet CLI tool converts your
C# source code into intermediate language (IL) code and stores the IL in an
assembly (a DLL or EXE file). IL code statements are like assembly language
instructions, which are executed by .NET Core's virtual machine, known as
CoreCLR.

[13]

https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

At runtime, CoreCLR loads the IL code from the assembly, the just-in-time (JIT)
compiler compiles it into native CPU instructions, and then it is executed by the CPU
on your machine. The benefit of this three-step compilation process is that Microsoft
is able to create CLRs for Linux and macOS, as well as for Windows. The same IL
code runs everywhere because of the second compilation process, which generates
code for the native operating system and CPU instruction set.

Regardless of which language the source code is written in, for example, C#,
Visual Basic or F#, all .NET applications use IL code for their instructions stored
in an assembly. Microsoft and others provide disassembler tools that can open an
assembly and reveal this IL code like the ILSpy .NET Decompiler extension.

Understanding .NET Native

Another .NET initiative is called .NET Native. This compiles C# code to native CPU
instructions ahead of time (AoT), rather than using the CLR to compile IL code JIT
to native code later. NET Native improves execution speed and reduces the memory
footprint for applications because the native code is generated at build time and then
deployed instead of the IL code.

following link: https://github.com/dotnet/corert/blob/
master/Documentation/intro-to-corert.md.

B’ More Information: You can read more about .NET Native at the
\"/

Comparing .NET technologies

We can summarize and compare .NET technologies in 2019, as shown in the
following table:

Technology Description Host OSes

NET Core Modern feature set, full C# 8.0 support, | Windows, macOS, Linux
port existing and create new Windows
and Web apps and services.

.NET Framework Legacy feature set, limited C# 8.0 Windows only
support, maintain existing applications.

Xamarin Mobile apps only. Android, i0S, macOS

By the end of 2020, Microsoft promises that there will be a single .NET platform
instead of three. NET 5.0 is planned to have a single BCL and two runtimes: one
optimized for server or desktop scenarios like websites and Windows desktop apps
based on the .NET Core runtime, and one optimized for mobile apps based on the
Xamarin runtime.

[14]

https://github.com/dotnet/corert/blob/master/Documentation/intro-to-corert.md
https://github.com/dotnet/corert/blob/master/Documentation/intro-to-corert.md
https://github.com/dotnet/corert/blob/master/Documentation/intro-to-corert.md

Hello, C#! Welcome, .NET! | 01

Building console apps using Visual
Studio Code

The goal of this section is to showcase how to build a console app using Visual
Studio Code. Both instructions and screenshots in this section are for macOS, but the
same actions will work with Visual Studio Code on Windows and Linux variants.

The main differences will be native command-line actions such as deleting a file:
both the command and the path are likely to be different on Windows or macOS and
Linux. Luckily, the dotnet command-line tool will be identical on all platforms.

Writing code using Visual Studio Code

Let's get started writing code!

1. Start Visual Studio Code.

2. OnmacOS, navigate to File | Open..., or press Cmd + O. On Windows,
navigate to File | Open Folder..., or press Ctrl + K Ctrl + O. On both OSes, you
can click the Open Folder button in the EXPLORER pane or click the Open
Folder... link on the Welcome page, as shown in the following screenshot:

| ® Code File Edit Selection View Go Debug Terminal Window Help dp 2 3 m)]
il ® Welcome
@ EXPLORER] Weicome X m -
~ OPEN EDITORS
Jof) A wercome Start Customize
f + NO FOLDER OPENED New file
o Open folder. Tools and languages
‘};5 You have not yet opened a folder. Add workspace folder.. nstall support for JavaScript, TypeSeript, Python, P
- Open Folder
=t -
AA Settings and keybindings
nstall the settings and keyboard shortcuts of Vim, S
o Recent . ’
B:‘ PracticalApps (Workspace) ~/Code/PracticalApp:
CcMS7 Code Color theme
dummy2 ~/Code Make the editor and your code look the way you love
S OUTLINE dummy Code
’{’é} NorthwindWeb ~/Code/Practical Apps
> ILSPY DECOMPILED MEMBERS

@0 Ao Binstaling packages...

3. Inthe dialog box, navigate to your user folder on macOS (mine is named
markjprice), your Documents folder on Windows, or any directory or drive
in which you want to save your projects.

Click the New Folder button and name the folder code.
In the code folder, create a new folder named Chaptero1.

In the chaptero1 folder, create a new folder named HellocCs.

NS G

Select the HellocCs folder and on macOS click Open or on Windows click
Select Folder.

[15]

C# 8.0 and .NET Core 3.0 — Modern Cross-Platform Development

8. Navigate to View | Terminal, or on macOS press Ctrl + ' (backtick) and on
Windows press Ctrl + ' (single quote). Confusingly on Windows the key
combination Ctrl + ' (backtick) splits the current window!

9. In TERMINAL, enter the following command:

dotnet new console

10. You will see that the dotnet command-line tool creates a new Console
Application project for you in the current folder, and the EXPLORER
window shows the two files created, Hel1oCS.proj and Program.cs, as
shown in the following screenshot:

® =] Welcome — HelloCS
@ EXPLORER] Weicome X o
“ OPEN EDITORS
O %5 Welcome Start Customize
N . icLlocs New file
o > obj Open folder... Tools and languages
B » HelloCS csproj Add workspace folder... Install support for JavaScript, TypeScript, Python, P.
_ €+ Program.cs PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL 1: bash s+ 0O @ ~ x
Ix}
Getting ready...
o The template "Console Application" was created successfully.
rﬁ Processing post-creation actions...
Running 'dotnet restore' on /Users/markjprice/Code/Chapter8l/HelloCS/HelloCS.csproj...
Restore completed in 72.22 ms for /Users/markjprice/Code/Chapter@l/HelloCS/HelloCS.csproj.
;d‘::% > OUTLINE Restore succeeded.
R > ILSPY DECOMPILED MEMBERS Marks—MacBook—Pro-13:HelloCS markjprices J|

11. In EXPLORER, click on the file named Program. cs to open it in the editor
window. The first time that you do this, Visual Studio Code may have to
download and install C# dependencies like OmniSharp, the Razor Language
Server, and the .NET Core debugger, if it did not do this when you installed
the C# extension.

12. If you see a warning saying that required assets are missing, click Yes, as
shown in the following screenshot:

EXPLORER
“» OPEN EDITORS
X € Program.cs
~ HELLOCS
> bin
> obj
A HelloCS.csproj

Program.cs

> OUTLINE
> ILSPY DECOMPILED MEMBERS
@oAC & WHelloCS

ogram.cs — HelloC$
€ Program.cs X t O
C* Program.cs >
35 using System; i
2
3 namespace HelloCS
4 {
5 class Pragram
6 {
7 static void Main(string[] aras)
8 {
Required assets to build and debug are missing from b4
9 Console.WriteLine("Helle N ! g " @
'HelloCS". Add them?
10 b
11 } ¥ -
| Soure: O (Etsnin Do sk gain
13

Ln1, Col2

Spaces: 4 UTF-8 withBOM CRLF C# SharpPad:5265 @ M1

[16]

Hello, C#! Welcome, .NET! | 01

13. After a few seconds, a folder named . vscode will appear in the EXPLORER
pane. These are used during debugging, as you will learn in Chapter 4,
Writing, Debugging, and Testing Functions.

14. In Program.cs, modify line 9 so that the text that is being written to the
console says, Hello, C#!

15. Navigate to File | Auto Save. This toggle will save the annoyance of
remembering to save before rebuilding your application each time.

Compiling and running code using dotnet CLI

The next task is to compile and run the code.

1. Navigate to View | Terminal and enter the following command:

dotnet run

2. The output in the TERMINAL window will show the result of running your
application, as shown in the following screenshot:

@ & Program.cs — HelloCS
@ EXPLORER C Program.cs X u o
 OPEN EDITORS C Pro {}
) X € Program.cs .
(’) 5 class Program A
v HELLOCS M
6 {
‘f;’” > .vscode
[} > bin 7 static void Main(string[] args)
> obj & {
Navi 9 WriteLine("Hello, C#!");
B 5 HelloCS.cspraj Console.WriteLine("Hello, C#!")
) 10 ¥
€ Program.cs 11 3}
EC? 12 B
TERMINAL 1: bash ¢+ D @ ~ X
S OUTLINE Marks-MacBook-Pro-13:HelloCS markjprice$ dotnet run
¢33 Hello, C#!
> ILSPY DECOMPILED MEMBERS Marks-MacBook-Pro-13:HelloCS markjprices [

@oAO & MHelloCs Ln4,Col2 Spaces:4 UTF-8withBOM CRLF C# SharpPad:5255 @ A&

Downloading solution code from
a GitHub repository

Git is a commonly used source code management system. GitHub is a company,
website, and desktop application that makes it easier to manage Git. Microsoft
recently purchased GitHub, so it will continue to get closer integration with
Microsoft tools.

I used GitHub to store solutions to all the practical exercises that are featured at the
end of each chapter. You will find the repository for this chapter at the following
link: https://github.com/markjprice/cs8dotnetcore3.

[17]

https://github.com/markjprice/cs8dotnetcore3

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Using Git with Visual Studio Code

Visual Studio Code has support for Git, but it will use your OS's Git installation, so
you must install Git 2.0 or later first before you get these features. You can install Git
from the following link: https://git-scm.com/download.

If you like to use a GUI, you can download GitHub Desktop from the following link:
https://desktop.github.com

Cloning the book solution code repository

Let's clone the book solution code repository.

1. Create a folder named Repos in your user or Documents folder, or wherever
you want to store your Git repositories.

2. In Visual Studio Code, open the Repos folder.

3. Navigate to View | Terminal, and enter the following command:
git clone https://github.com/markjprice/cs8dotnetcore3.git

4. Cloning all of the solutions for all of the chapters will take a minute or so, as
shown in the following screenshot:

[] Repos

 OPEN EDITORS
“ REPOS
v csBdotnetcore3
> Assets
> Chapter01
> Chapter02
> Chapter03 PROBLEMS ~ OUTPUT DEBUG CONSOLE TERMINAL 1: bash s+ 0 @ ~ x

Marks-MacBook-Pro-13:Repos markjprice$ git clone https://github.com/markjprice/cs8dotnetcore3.git
Cloning into 'csB8dotnetcore3'...

remote: Enumerating objects: 513, done.

remote: Counting objects: 100% (513/513), done.
remote: Compressing objects: 100% (422/422), done.
remote: Total 1704 (delta 119), reused 324 (delta 68), pack-reused 1191
Receiving objects: 100% (1704/1704), 32.12 MiB | 7.90 MiB/s, done.
Resolving deltas: 100% (447/447), done.
Marks—MacBook-Pro-13:Repos markjprices I

More Information: For more information about source code

\/V version control with Visual Studio Code, visit the following
link: https://code.visualstudio.com/Docs/editor/
versioncontrol

Looking for help

This section is all about how to find quality information about programming on the
web.

[18]

https://git-scm.com/download
https://desktop.github.com
https://code.visualstudio.com/Docs/editor/versioncontrol
https://code.visualstudio.com/Docs/editor/versioncontrol

Hello, C#! Welcome, .NET! | 01

Reading Microsoft documentation

The definitive resource for getting help with Microsoft developer tools and platforms
used to be Microsoft Developer Network (MSDN). Now, it is Microsoft Docs, and
you can find it at the following link: https://docs.microsoft.com/.

Getting help for the dotnet tool

At the command line, you can ask the dotnet tool for help about its commands.

1. To open the official documentation in a browser window for the dotnet new
command, enter the following at the command line or in Visual Studio Code
Terminal:

dotnet help new

2. To get help output at the command line, use the -h or - -help flag, as shown
in the following command:

dotnet new console -h

3. You will see the following partial output:

Console Application (C#)
Author: Microsoft

Description: A project for creating a command-line application
that can run on .NET Core on Windows, Linux and macOS

Options:
--langVersion Sets langVersion in the created project file
text - Optional

--no-restore If specified, skips the automatic restore of the
project on create.

bool - Optional
Default: false / (*) true

* Indicates the value used if the switch is provided without
a value.

Getting definitions of types and their

members

One of the most useful keyboard shortcuts in Visual Studio Code is F12 to Go To
Definition. This will show what the public definition of the type or member looks
like by reading the metadata in the compiled assembly. Some tools like ILSpy .NET
Decompiler will even reverse-engineer from the metadata and IL code back into C#
for you.

[19]

https://docs.microsoft.com/.

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

In Visual Studio Code, open the Hellocs folder.

2. InProgram.cs, inside the Main method, enter the following statement to
declare an integer variable named z:

int z;
3. Click inside int and then press F12, or right-click and choose Go To

Definition. In the new code window that appears, you can see how the int
data type is defined, as shown in the following screenshot:

® =] [metadata] Int32.cs — HelloCS
@ EXPLORER € Program.cs C [metadata] int32.cs X m
+ OPEN EDITORS 1 #region Assembly System.Runtime, Version=4.2.1.8, Culture=neutral, PublicKeyToken=b@3 |
O © Program.cs 2 // System.Runtime.dll -
= B 3 #endregion
X € [metadata] Int32.cs 2
90 ~ HELLOCS 5 using System.Globalization;
- > wscode 6 using System.Runtime,CompilerServices;
~ > bin i
I5F 5 obj 8 namespace System
o= 9 |
» HelloCS.csproj 10 17
B‘ilj C+ Program.cs 11 // Summary:
12 43 Represents a 32-bit signed integer.
13 public readonly struct [[nt32 : IComparable, IComparable<Int32», IConvertible, IEqua
14 {
{g‘z] > OUTLINE 15 "
il > 1LSPY DECOMPILED MEMBERS 16 /7 Summary:

©oA1 & MHeloCS Ln13,Col26 Spaces:2 C# SharpPad:5255 @ M

You can see that int:

° Is defined using the struct keyword.

° Isin the System.Runtime assembly.

° Isin the System namespace.

° Isnamed Int32.

© Is therefore an alias for the System. Int32 type.

° Implements interfaces such as IComparable.

° Has constant values for its maximum and minimum values.

° Has methods like Parse.

Good Practice: When you try to use Go To Definition you will
L, sometimes see an error saying, No definition found. This is because
@ the C# extension does not know about the current project. Navigate
to View | Command Palette, enter and select OmniSharp:
Select Project, and then select the correct project that you want to
work with.

=
=

Right now, the Go To Definition feature is not that useful to you because
you do not yet know what these terms mean.

[20]

Hello, C#! Welcome, .NET! | 01

By the end of the first part of this book, which teaches you about C#, you will
know enough for this feature to become very handy.

4. In the code editor window, scroll down to find the parse method with a single
string parameter starting on line 86, as shown in the following screenshot:

0@ [metadata] Int32.cs — HelloCS
@ EXPLORER C* Program.cs C* [metadata] Int32.cs X m
v OPEN EDITORS 86 I/ |
O € Program.cs 1 87 // Summary:
Vot N 88 I/ Converts the string representation of a number to its 32-bit signed intege
X € [metadata] Int32.cs 89 /7
20 ~ HELLOCS 90 // Parameters:
o > wscode 91 /st
> bin 92 " A string containing a number to convert.
rff > obj b ” §
94 // Returns:
3 HelloCS.cspro 95 I A 32-bit signed integer equivalent to the number contained in s.
BJD C* Program.cs 1 96 "
97 // Exceptions:
98 /7 T:System.ArgumentNullException:
99 / s is null.
100 s
101 I T:System.FormatException:
102 " s 1s not in the correct format.
103 I
104 /7 T:System.OverflowException:
105 /7 s represents a number less than System.Int32.MinValue or greater than Systeuwe
{é‘} > OUTLINE 106 [NullableContextAttribute(1)]
> ILSPY DECOMPILED MEMBERS 107 public static Int32 Parse(string s);

QoA1 & MHeloCs Ln13,Col 26 Spaces:2 C# SharpPad:5255 @ &

In the comment, you will see that Microsoft has documented what exceptions

might occur if you call this method, including ArgumentNullException,
FormatException, and OverflowException. Now, we know that we need to wrap a
call to this method in a try statement and which exceptions to catch.

Hopefully, you are getting inpatient to learn what all this means!

Be patient for a little longer. You are almost at the end of this chapter, and in the next
chapter you will dive into the details of the C# language. But first, let's see where else
you can look for help.

Looking for answers on Stack Overflow

Stack Overflow is the most popular third-party website for getting answers
to difficult programming questions. It's so popular that search engines such as
DuckDuckGo have a special way to write a query to search the site.
1. Start your favorite web browser.
2. Navigate to DuckDuckGo . com, enter the following query, and note the search
results, which are also shown in the following screenshot:

!so securestring

[21]

https://duckduckgo.com/
http://DuckDuckGo.com

C# 8.0 and .NET Core 3.0 — Modern Cross-Platform Development

‘-_':\\ stackoverflow Products Customers Use cases securestring
Home Search Results Advanced Search Tips
PUBLIC

Results for securestring
® Stack Overflow I

Tags securestring Search
Users =
500 results ‘ Relevance | Newest | More ~
Jobs |
TEAMS What's this? 179 Q: When would | need a SecureString in .NET?
Q First 10 Free voles I'm trying to grok the purpose of NET's SecureString. From MSDN: An instance

of the System. String class is both immutable and, when no longer needed,
cannot be programmatically scheduled for ... from computer memory. A
SecureString object is similar to a String object in that it has a text value.
However, the value of a SecureString object is automatically encrypted, can be
modified

asked Sep 26 '08 by Richard
Morgan

.net security encryption

B2 Microsoft Azure

Build and develop apps with
Azure. Free until you say
otherwise.

Try Azure Free >

G ressian

Tessian

Searching for answers using Google

You can search Google with advanced search options to increase the likelihood of

finding what you need.

1. Navigate to Google.

2. Search for information about garbage collection using a simple Google
query, and note that you will probably see a Wikipedia definition of garbage
collection in computer science, and then a list of garbage collection services
in your local area, as shown in the following screenshot:

Go g|e garbage collection Q,
oA B images Bmaps B News [Vigeos More Sefings Tools
About 190,000,000 resulls (0.71 seconds)
In p science, garbag {GC)isa
form of ic memory The garb F
tor, or just t to reclaim

Garbage collection (computer science) - Wikipedia
hitps:{en. wi fia.org » wiki » Garb llection_{computer_science)

garbage, or memory occupied by objects that are no
longer in use by the program.

© About Foatured Snippets 1 Fosdtack

Garbage collection (computer science) - Wikipedia
hitps:llen. wikipedia.org » wiki » Garb llect science)
In computer science, garbage collection (GC) i a form of avlomatic memary managemant
The garbage collector, or just collector, attemnpts to reclaim garbage, or memory occupsed by
objects that are no longer in use by the program.

i counting Garbage Collectors for ...

Find out your rubbish collection day - GOV.UK
https:/fwww.gov.uk » ... » Local councils and services +
Cheek your eouncil's website to find sut when your rubbish will be collected.

[22]

Hello, C#! Welcome, .NET! | 01

3. Improve the search by restricting it to a useful site such as Stack Overflow,
and by removing languages that we might not care about such as C++, Rust,
and Python, or by adding C# and .NET explicitly, as shown in the following
search query:

garbage collection site:stackoverflow.com +C# -Java

Subscribing to the official .NET blog

To keep up to date with .NET, an excellent blog to subscribe to is the official NET
Blog written by the .NET engineering teams, and you can find it at the following
link: https://blogs.msdn.microsoft.com/dotnet/

Practicing and exploring

Let's now test your knowledge and understanding by trying to answer some
questions, getting some hands-on practice, and exploring with deeper research into
the topics covered throughout this chapter.

Exercise 1.1 — Test your knowledge

Try to answer the following questions, remembering that although most answers
can be found in this chapter, some online research or code writing will be needed to
answer others:

1. Why can a programmer use different languages, for example, C# and F#, to
write applications that run on .NET Core?

What do you type at the prompt to create a console app?

What do you type at the prompt to build and execute C# source code?
What is the Visual Studio Code keyboard shortcut to view Terminal?

Is Visual Studio 2019 better than Visual Studio Code?

Is .NET Core better than .NET Framework?

What is .NET Standard and why is it important?

® NSO

What is the name of the entry point method of a .NET console application
and how should it be declared?

9. Where would you look for help about a C# keyword?

10. Where would you look for solutions to common programming problems?

[23]

https://blogs.msdn.microsoft.com/dotnet/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Exercise 1.2 — Practice C# anywhere

You don't need Visual Studio Code, or even Visual Studio 2019 or Visual Studio 2019
for Mac to write C#. You can go to .NET Fiddle - https://dotnetfiddle.net/ -
and start coding online.

Microsoft is also working on an online version of Visual Studio Code that can run in
any browser but currently it is only available in private preview. Eventually, it will be
accessible to everyone at the following link: https://online.visualstudio.com/

Exercise 1.3 — Explore topics
You can use the following links to read more details about the topics we've covered
in this chapter:

e Welcome to .NET Core: http://dotnet.github.io

e .NET Core Command-Line Interface (CLI) tool: https://aka.ms/dotnet-
cli-docs

e _NET Core runtime, CoreCLR: https://github.com/dotnet/coreclr/

* .NET Core Roadmap: https://github.com/dotnet/core/blob/master/
roadmap . md

e . NET Standard FAQ: https://github.com/dotnet/standard/blob/
master/docs/fag.md

e Stack Overflow: http://stackoverflow.com/
* Google Advanced Search: http://www.google.com/advanced_search
* Microsoft Virtual Academy: https://mva.microsoft.com/

* Microsoft Channel 9: Developer Videos: https://channel9.msdn.com/

Summary

In this chapter, we set up your development environment, discussed the differences
between .NET Framework, NET Core, Xamarin, and .NET Standard, we used Visual
Studio Code and .NET Core SDK to create a simple console application, we learned
how to download the solution code for this book from a GitHub repository, and most
importantly, how to find help.

In the next chapter, you will learn to speak C#.

[24]

https://dotnetfiddle.net/
https://dotnetfiddle.net/
https://online.visualstudio.com/
https://online.visualstudio.com/
http://dotnet.github.io
https://aka.ms/dotnet-cli-docs
https://aka.ms/dotnet-cli-docs
https://github.com/dotnet/coreclr/
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
http://stackoverflow.com/
http://www.google.com/advanced_search
https://mva.microsoft.com/
https://channel9.msdn.com/

Chapter 02
Speaking C#

This chapter is all about the basics of the C# programming language. Over the course
of this chapter, you'll learn how to write statements using the grammar of C#, as well
as being introduced to some of the common vocabulary that you will use every day.
In addition to this, by the end of the chapter you'll feel confident in knowing how to
temporarily store and work with information in your computer's memory.

This chapter covers the following topics:

* Introducing C#

* Understanding the basics of C#
* Working with variables

* Working with null values

* Further exploring console applications

Introducing C#

This part of the book is about the C# language —the grammar and vocabulary that
you will use every day to write the source code for your applications.

Programming languages have many similarities to human languages, except that in
programming languages, you can make up your own words, just like Dr. Seuss!

In a book written by Dr. Seuss in 1950, If I Ran the Zoo, he states this:

"And then, just to show them, I'll sail to Ka-Troo And Bring Back an
It-Kutch, a Preep, and a Proo, A Nerkle, a Nerd, and a Seersucker, too!"

Understanding language versions and features

This part of the book covers the C# programming language and is written primarily
for beginners, so it covers the fundamental topics that all developers need to know,
from declaring variables to storing data to how to define your own custom data types.

[25]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Advanced and obscure topics like ref local variable reassignment and reference
semantics with value types are not covered.

This book covers features of the C# language from version 1.0 up to the latest
version, 8.0. If you already have some familiarity with older versions of C# and

are excited to find out about the new features in the most recent versions of C#, I
have made it easier for you to jump around by listing language versions and their
important new features below, along with the chapter number and topic title where
you can learn about them.

C#1.0

C# 1.0 was released in 2002 and included all the important features of a statically
typed object-oriented modern language, as you will see throughout all the chapters
in Part 1.

C# 2.0

C# 2.0 was released in 2005 and focused on enabling strong data typing using
generics, to improve code performance and reduce type errors, including the topics
listed in the following table:

Feature Chapter Topic
Nullable value types 2 Making a value type nullable
Generics 6 Making types more reusable with generics

C# 3.0

C# 3.0 was released in 2007 and focused on enabling declarative coding with
Language INtegrated Queries (LINQ) and related features like anonymous types
and lambda expressions, including the topics listed in the following table:

Feature Chapter | Topic

Implicitly typed local variables | 2 Inferring the type of a local variable

LINQ 12 All topics in Chapter 12, Querying and
Manipulating Data Using LINQ

C#4.0

C# 4.0 was released in 2010 and focused on improving interoperability with dynamic
languages like F# and Python, including the topics listed in the following table:

[26]

Speaking C# | 02

Feature Chapter | Topic
Dynamic types 2 The dynamic type
Named/optional arguments | 5 Optional parameters and named arguments

C#5.0

C# 5.0 was released in 2012 and focused on simplifying asynchronous operation
support by automatically implementing complex state machines while writing what
looks like synchronous statements, including the topics listed in the following table:

Feature Chapter Topic

Simplified asynchronous tasks 13 Understanding async and await

C#6.0

C# 6.0 was released in 2015 and focused on minor refinements to the language,
including the topics listed in the following table:

Feature Chapter Topic

static imports 2 Simplifying the usage of the console
Interpolated strings 2 Displaying output to the user
Expression bodied members | 5 Defining read-only properties

C#7.0

C# 7.0 was released in March 2017 and focused on adding functional language
features like tuples and pattern matching, as well as minor refinements to the
language, including the topics listed in the following table:

Feature Chapter | Topic

Binary literals and digit 2 Storing whole numbers

separators

Pattern matching 3 Pattern matching with the if statement
out variables 5 Controlling how parameters are passed
Tuples 5 Combining multiple values with tuples
Local functions 6 Defining local functions

[27]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

C#T7.1

C# 7.1 was released in August 2017 and focused on minor refinements to the
language, including the topics listed in the following table:

Feature Chapter | Topic

Default literal expressions 5 Setting fields with default literal

Inferred tuple element names | 5 Inferring tuple names

async Main 13 Improving responsiveness for console apps

C#7.2

C# 7.2 was released in November 2017 and focused on minor refinements to the
language, including the topics listed in the following table:

Feature Chapter | Topic

Leading underscores in numeric literals | 2 Storing whole numbers

Non-trailing named arguments 5 Optional parameters and named
arguments

private protected access modifier 5 Understanding access modifiers

You can test == and ! = with tuple types | 5 Comparing tuples

C#7.3

C# 7.3 was released in May 2018 and focused on performance-oriented safe code
that improve ref variables, pointers, and stackalloc. These are advanced and rarely
needed for most developers so they are not covered in this book.

at the following link: https://docs.microsoft.com/en-us/
dotnet/csharp/whats-new/csharp-7-3

C’ More Information: If you're interested, you can read the details
\"/

C# 8.0

C# 8.0 was released in September 2019 and focused on a major change to the
language related to null handling, including the topics listed in the following table:

Feature Chapter | Topic

Nullable reference types 2 Making a reference type nullable

Switch expressions 3 Simplifying switch statements
with switch expressions

[28]

https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-7-3
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-7-3

Speaking C# | 02

Default interface methods 6 Understanding default interface
methods

More Information: You can learn more about the current status

\/V of the C# language at this link: https://github.com/dotnet/

roslyn/blob/master/docs/Language%20Feature%20
Status.md.

Discovering your C# compiler versions

With the C# 7.x generation, Microsoft decided to increase the cadence of language
releases, releasing minor version numbers, also known as point releases, for the first
time since C# 1.1.

NET language compilers for C#, Visual Basic, and F#, also known as Roslyn, are
distributed as part of .NET Core SDK. To use a specific version of C#, you must have
at least that version of .NET Core SDK installed, as shown in the following table:

.NET Core SDK Roslyn C#
1.0.4 20-22 |70
114 23-24 |71
21.2 26-27 |72
2.1.200 28-210 | 7.3
3.0 3.0-33 |80

, More Information: You can see a list of versions at the following
\p/ link: https://github.com/dotnet/roslyn/wiki/NuGet-
packages

Let's see what C# language compiler versions you have available.

1. Start Visual Studio Code.
2. Navigate to View | Terminal.

3. To determine which version of the NET Core SDK you have available, enter
the following command:

dotnet --version

4. Note the version at the time of writing is .NET Core 3.0, as shown in the
following output:

3.0.100

[29]

https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md.
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md.
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md.
https://github.com/dotnet/roslyn/wiki/NuGet-packages
https://github.com/dotnet/roslyn/wiki/NuGet-packages

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

5. To determine which versions of the C# compiler you have available, enter
the following command:

csc -langversion:?
6. Note all the versions available at the time of writing, as shown in the
following output:

Supported language versions:

default
1

2

3

4

5

6

7.0

7.1
7.2

7.3

8.0 (default)

latestmajor
preview

latest

Enabling a specific language version compiler

Developer tools like Visual Studio Code and the dotnet command-line interface
assume that you want to use the latest major version of a C# language compiler by
default. So before C# 8.0 was released, C# 7.0 was the latest major version and was used
by default. To use the improvements in a C# point release like 7.1, 7.2, or 7.3, you had to
add a configuration element to the project file, as shown in the following markup:

<LangVersion>7.3</LangVersion>

If Microsoft releases a C# 8.1 compiler and you want to use its new language features
then you will have to add a configuration element to your project file, as shown in
the following markup:

<LangVersion>8.1l</LangVersions>

Potential values for the <LangVersion> are shown in the following table:

[30]

Speaking C# | 02

LangVersion

Description

7,7.1,7.2,7.3,8 Entering a specific version number will use that compiler if it has

been installed.

latestmajor

Uses the highest major number, for example, 7. 0 in August 2019,
8. 0 in October 2019.

latest Uses the highest major and highest minor number, for example,
7.21in 2017, 7.3 in 2018, 8 in 2019, perhaps 8 . 1 in 2020.
preview Uses the highest available preview version, for example, 8.0

in January 2019 with .NET Core 3.0 Preview 1 installed.

After creating a new project with the dotnet command-line tool, you can edit the
csproj file and add the <Langversion> element, as shown highlighted in the
following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFramework>

<LangVersion>preview</LangVersion>
</PropertyGroup>

</Project>

Your projects must target either netcoreapp3. 0 or netstandard2.1 to use the full
features of C# 8.0.

84

More Information: The version of C# used by your project

is determined by the target framework, as described at the
following link: https://devblogs.microsoft.com/dotnet/
an-update-to-c-versions-and-c-tooling/.

Understanding C# basics

To learn C#, you will need to create some simple applications. To avoid overloading
you with too much information too soon, the chapters in the first part of this book
will use the simplest type of application: a console application.

Let's start by looking at the basics of the grammar and vocabulary of C#. Throughout
this chapter, you will create multiple console applications, with each one showing
a feature of the C# language.

1. If you've completed Chapter 1, Hello, C#! Welcome, .NET!, then you will
already have a code folder in your user folder. If not, then you'll need to

create it.

[31]

https://devblogs.microsoft.com/dotnet/an-update-to-c-versions-and-c-tooling/
https://devblogs.microsoft.com/dotnet/an-update-to-c-versions-and-c-tooling/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Create a subfolder named Chaptero02, with a sub-subfolder named Basics.
Start Visual Studio Code and open the Chapter02/Basics folder.

In Visual Studio Code, navigate to View | Terminal, and enter the following
command:

dotnet new console

5. In EXPLORER, click the Program. cs file, and then click on Yes to add the
missing required assets.

Understanding C# grammar

The grammar of C# includes statements and blocks. To document your code, you
can use comments.

L, Good Practice: Comments should never be the only way that you
@ document your code. Choosing sensible names for variables and

N functions, writing unit tests, and creating literal documents are
other ways to document your code.

=

Statements

In English, we indicate the end of a sentence with a full stop. A sentence can be
composed of multiple words and phrases, with the order of words being part of the
grammar. For example, in English, we say: "the black cat."

The adjective, black, comes before the noun, cat. Whereas French grammar has
a different order; the adjective comes after the noun, "le chat noir." What's important
to take away from this is that the order matters.

C# indicates the end of a statement with a semicolon. A statement can be composed
of multiple variables and expressions. For example, in the following statement,
totalPrice is a variable and subtotal + salesTax is an expression:

var totalPrice = subtotal + salesTax;

The expression is made up of an operand named subtotal, an operator +, and
another operand named salesTax. The order of operands and operators matters.

Comments

When writing your code, you're able to add comments to explain your code using
a double slash, //. By inserting // the compiler will ignore everything after the //
until the end of the line, as shown in the following code:

[32]

Speaking C# | 02

// sales tax must be added to the subtotal
var totalPrice = subtotal + salesTax;

Visual Studio Code will add or remove the comment double slashes at the start of
the currently selected line(s) if you press Ctrl + K + C to add them or Ctrl + K + U to
remove them. In macOS, press Cmd instead of Ctrl.

To write a multiline comment, use /+* at the beginning and */ at the end of the
comment, as shown in the following code:

/*
This is a multi-line
comment .

*/

Blocks

In English, we indicate a paragraph by starting a new line. C# indicates a block of
code with the use of curly brackets, { }. Blocks start with a declaration to indicate
what it is being defined. For example, a block can define a namespace, class, method,
or a statement, something we will learn more about later.

In your current project, note that the grammar of C# is written for you by the
dotnet CLI tool. I've added some comments to the statements written by the project
template, as shown in the following code:

using System; // a semicolon indicates the end of a statement

namespace Basics

{

class Program

{
static void Main(string[] args)
{ // the start of a block
Console.WriteLine ("Hello World!"); // a statement
} // the end of a block

}
}

Understanding C# vocabulary

The C# vocabulary is made up of keywords, symbol characters, and types.

Some of the predefined, reserved keywords that you will see in this book include
using, namespace, class, static, int, string, double, bool, if, switch, break,
while, do, for, and foreach.

[33]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Some of the symbol characters that you will see include ", ', +, -, *, /, %, @, and $.

By default, Visual Studio Code shows C# keywords in blue in order to make them
easier to differentiate from other code. Visual Studio Code allows you to customize
the color scheme.

1. In Visual Studio Code, navigate to Code | Preferences | Color Theme (it is
on the File menu on Windows), or press Ctrl or Cmd + K, Ctrl or Cmd + T.

2. Select a color theme. For reference, I'll use the Light+ (default light) color
theme so that the screenshots look good in a printed book.

There are other contextual keywords that only have a special meaning in a specific
context. However, that still means that there are only about 100 actual C# keywords
in the language.

The English language has more than 250,000 distinct words, so how does C# get
away with only having about one hundred keywords? Moreover, why is C# so
difficult to learn if it has only 0.0416% of the amount of words compared to the
English language?

One of the key differences between a human language and a programming language
is that developers need to be able to define the new "words" with new meanings.
Apart from the 104 keywords in the C# language, this book will teach you about
some of the hundreds of thousands of "words" that other developers have defined,
but you will also learn how to define your own "words."

More Information: Programmers all over the world must learn
English because most programming languages use English
/ words such as namespace and class. There are programming
\/§p> languages that use other human languages, such as Arabic, but
they are rare. If you are interested in learning, this YouTube

video shows a demonstration of an Arabic programming
language: https://youtu.be/dk08cdwf6vs

Help for writing correct code

Plain text editors such as Notepad don't help you write correct English. Likewise,
Notepad won't help you write correct C# either.

Microsoft Word can help you write English by highlighting spelling mistakes
with red squiggles, with Word saying that "icecream" should be ice-cream or ice
cream, and grammatical errors with blue squiggles, like a sentence should have an
uppercase first letter.

[34]

https://youtu.be/dkO8cdwf6v8

Speaking C# | 02

Similarly, Visual Studio Code's C# extension helps you write C# code by
highlighting spelling mistakes, like the method name should be writeLine with an
uppercase L, and grammatical errors, like statements that must end with a semicolon.

The C# extension constantly watches what you type and gives you feedback by
highlighting problems with colored squiggly lines, similar to that of Microsoft Word.

Let's see it in action.

1. Inprogram.cs, change the L in the WriteLine method to lowercase.
2. Delete the semicolon at the end of the statement.

3. Navigate to View | Problems, or press Ctrl or Cmd + Shift + M, and note that
a red squiggle appears under the code mistakes and details are shown in the
PROBLEMS window, as you can see in the following screenshot:

L] [] Program.cs — Basics
@ EXPLORER C Program.cs X IIANEE=
~ OPEN EDITORS C* Program.c {} Basi 3 Bz Program > @ Main{str
C;\ X C Program.cs 2 5 class Program
7 ~ BASICS 6 {
o > wscode -
fo 7 static void Main{(string[] args) ™
o > bin 8 {
= > obj 9 Console.Writeline("Hello World!")
J:‘_:L} & Basics.csproj 10 b
C* Program.cs 2 PROBLEMS (2 WUTPUT DEBUG CONSO| ERMINAL Filter. E.g.: text g2 2 ~ X
B
~ € Program.cs (2
® ' does not contain a definition for 'Writeline' (CS0117) [Basics]
> OUTLINE
§2% ® ; expected (CS1002) [Basics]
- > ILSPY DECOMPILED MEMBERS

©240 & MBasics Lng, Col46 Spaces:4 UTF-8withBOM CRLF C# SharpPad:5255 @ A |

4. Fix the two coding mistakes.

Verbs are methods

In English, verbs are doing or action words, like run and jump. In C#, doing or action
words are called methods. There are hundreds of thousands of methods available to
C#. In English, verbs change how they are written based on when in time the action
happens. For example, Amir was jumping in the past, Beth jumps in the present, they
jumped in the past, and Charlie will jump in the future.

In C#, methods such as wWriteLine change how they are called or executed based
on the specifics of the action. This is called overloading, which is something we will
cover in more detail during Chapter 5, Building Your Own Types with Object-Oriented
Programming. But for now, consider the following example:

// outputs a carriage-return
Console.WriteLine () ;

[35]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

// outputs the greeting and a carriage-return
Console.WriteLine ("Hello Ahmed") ;

// outputs a formatted number and date and a carriage-return
Console.WriteLine (
"Temperature on {0:D} is {1}°C.", DateTime.Today, 23.4);

A different analogy is that some words are spelled the same, but have different
meanings depending on the context.

Nouns are types, fields, and variables

In English, nouns are names that refer to things. For example, Fido is the name of
a dog. The word "dog" tells us the type of thing that Fido is, and so in order for Fido
to fetch a ball, we would use his name.

In C#, their equivalents are types, fields, and variables. For example, Animal and
Car are types; that is, they are nouns for categorizing things. Head and Engine
are fields, that is, nouns that belong to Animal and car. Whilst Fido and Bob are
variables, that is, nouns for referring to a specific thing.

There are tens of thousands of types available to C#, though have you noticed how
I didn't say, "There are tens of thousands of types in C#?" The difference is subtle
but important. The language of C# only has a few keywords for types, such as
string and int, and strictly speaking, C# doesn't define any types. Keywords such
as string that look like types are aliases, which represent types provided by the
platform on which C# runs.

It's important to know that C# cannot exist alone; after all, it's a language that runs
on variants of .NET. In theory, someone could write a compiler for C# that uses a
different platform, with different underlying types. In practice, the platform for C#
is .NET, which provides tens of thousands of types to C#, including System.Int32,
which is the C# keyword alias int maps to, as well as many more complex types,
such as System.Xml.Ling.XDocument.

It's worth taking note that the term type is often confused with class. Have you

ever played the parlor game Twenty Questions, also known as Animal, Vegetable,

or Mineral? In the game, everything can be categorized as an animal, vegetable, or
mineral. In C#, every type can be categorized as a class, struct, enum, interface,
or delegate. The C# keyword stringis a class, but int is a struct. So, it is best to
use the term type to refer to both.

Revealing the extent of the C# vocabulary

We know that there are more than one hundred keywords in C#, but how many
types are there? Let's now write some code in order to find out how many types
(and their methods) are available to C# in our simple console application.

[36]

Speaking C# | 02

Don't worry about how this code works for now; it uses a technique called reflection.

1.

We'll start by adding the following statements at the top of the Program. cs
file, as shown in the following code:

using System.Ling;

using System.Reflection;

Inside the Main method, delete the statement that writes Hello World! and
replace it with the following code:
// loop through the assemblies that this app references

foreach (var r in Assembly.GetEntryAssembly ()
.GetReferencedAssemblies ())

// load the assembly so we can read its details
var a = Assembly.Load(new AssemblyName (r.FullName)) ;

// declare a variable to count the number of methods
int methodCount = 0;

// loop through all the types in the assembly
foreach (var t in a.DefinedTypes)

{

// add up the counts of methods
methodCount += t.GetMethods () .Count () ;

}

// output the count of types and their methods
Console.WriteLine (

"{0:N0} types with {1:N0} methods in {2} assembly.",
arg0: a.DefinedTypes.Count (),

argl: methodCount,

arg2: r.Name) ;

}

Navigate to View | Terminal.
In TERMINAL, enter the following command:

dotnet run

After running that command, you will see the following output, which
shows the actual number of types and methods that are available to you in
the simplest application when running on macOS. The numbers of types and
methods displayed may be different depending on the operating system that
you are using, as shown in the following output:

30 types with 325 methods in System.Runtime assembly.

99 types with 1,068 methods in System.Ling assembly.

56 types with 691 methods in System.Console assembly.

[37]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

6. Add statements to the top of the Main method to declare some variables,
as shown highlighted in the following code:

static void Main(string[] args)

{
// declare some unused variables using types
// in additional assemblies
System.Data.DataSet ds;
System.Net.Http.HttpClient client;

By declaring variables that use types in other assemblies, those assemblies
are loaded with our application, which allows our code to see all the types
and methods in them. The compiler will warn you that you have unused
variables but that won't stop your code from running,.

7. Run the console application again and view the results, which should look
similar to the following output:

30 types with 325 methods in System.Runtime assembly.

371 types with 6,735 methods in System.Data.Common assembly.
406 types with 4,228 methods in System.Net.Http assembly.

99 types with 1,068 methods in System.Ling assembly.

56 types with 691 methods in System.Console assembly.

Now, you have a better sense of why learning C# is a challenge, because there are so
many types and methods to learn. Methods are only one category of a member that a
type can have, and other programmers are constantly defining new members!

Working with variables

All applications process data. Data comes in, data is processed, and then data goes
out. Data usually comes into our program from files, databases, or user input,

and it can be put temporarily into variables that will be stored in the memory of
the running program. When the program ends, the data in memory is lost. Data

is usually output to files and databases, or to the screen or a printer. When using
variables, you should think about, firstly, how much space it takes in the memory,
and, secondly, how fast it can be processed.

We control this by picking an appropriate type. You can think of simple common
types such as int and double as being different-sized storage boxes, where a smaller
box would take less memory but may not be as fast at being processed; for example,
adding 16-bit numbers might not be processed as fast as adding 64-bit numbers on a
64-bit operating system. Some of these boxes may be stacked close by, and some may
be thrown into a big heap further away.

[38]

Speaking C# | 02

Naming things and assigning values

There are naming conventions for things, and it is good practice to follow them,
as shown in the following table:

Naming convention Examples Use for
Camel case cost, orderDetail, Local variables, private fields.
dateOfBirth
Title case String, Int32, Cost, Types, non-private fields, and
DateOfBirth, Run other members like methods.
L Good Practice: Following a consistent set of naming conventions
D\vA will enable your code to be easily understood by other developers
= (and yourself in the future!).
L You can find more information about Naming Guidelines at
'/ \' https://docs.microsoft.com/en-us/dotnet/standard/
= design-guidelines/naming-guidelines

The following code block shows an example of declaring a named local variable and
assigning a value to it with the = symbol. You should note that you can output the
name of a variable using a keyword introduced in C# 6.0, nameof:

// let the heightInMetres variable become equal to the value 1.88
double heightInMetres = 1.88;

Console.WriteLine ($"The variable {nameof (heightInMetres)} has the
value {heightInMetres}.");

The message in double quotes in the preceding code wraps onto a second line
because the width of a printed page is too narrow. When entering a statement like
this in your code editor, type it all in a single line.

Literal values

When you assign to a variable, you often, but not always, assign a literal value. But
what is a literal value? A literal is a notation that represents a fixed value. Data types
have different notations for their literal values, and over the next few sections, you
will see examples of using literal notation to assign values to variables.

[39]

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Storing text

For text, a single letter, such as an 3, is stored as a char type and is assigned using
single quotes around the literal value, or assigning the return value of a function call,
as shown in the following code:

char letter = 'A'; // assigning literal characters

char digit = '1';

char symbol = 'S$';

char userChoice = GetKeystroke(); // assigning from a function

For text, multiple letters, such as Bob, are stored as a string type and are assigned
using double quotes around the literal value, or assigning the return value
of a function call, as shown in the following code:

string firstName = "Bob"; // assigning literal strings
string lastName = "Smith";
string phoneNumber = " (215) 555-4256";

// assigning a string returned from a function call
string address = GetAddressFromDatabase (id: 563) ;

Understanding verbatim strings

When storing text in a string variable, you can include escape sequences, which
represent special characters like tabs and new lines using a backslash, as shown in
the following code:

string fullNameWithTabSeparator = "Bob\tSmith";

More Information: You can read more about escape sequences

\/V at the following link: https://devblogs.microsoft.com/

csharpfag/what-character-escape-sequences-are-
available/.

But what if you are storing the path to a file, and one of the folder names starts with
a T, as shown in the following code:

string filePath = "C:\televisions\sony\bravia.txt";
The compiler will convert the \t into a tab character and you will get errors!

You must prefix with the @ symbol to use a verbatim literal string, as shown in the
following code:

string filePath = @"C:\televisions\sony\bravia.txt";

[40]

https://devblogs.microsoft.com/csharpfaq/what-character-escape-sequences-are-available/
https://devblogs.microsoft.com/csharpfaq/what-character-escape-sequences-are-available/
https://devblogs.microsoft.com/csharpfaq/what-character-escape-sequences-are-available/

Speaking C# | 02

at the following link: https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/tokens/verbatim.

D’ More Information: You can read more about verbatim strings
\’/

To summarize:

* Literal string: Characters enclosed in double-quote characters. They can use
escape characters like \t for tab.

* Verbatim string: A literal string prefixed with e to disable escape characters
so that a backslash is a backslash.

* Interpolated string: A literal string prefixed with $ to enable embedded
formatted variables. You will learn more about this later in this chapter.

Storing numbers

Numbers are data that we want to perform an arithmetic calculation on, for example,
multiplying. A telephone number is not a number. To decide whether a variable
should be stored as a number or not, ask yourself whether you need to perform
arithmetic operations on the number or whether the number includes non-digit
characters such as parentheses or hyphens to format the number as (414) 555-1234. In
this case, the number is a sequence of characters, so it should be stored as a string.

Numbers can be natural numbers, such as 42, used for counting (also called whole
numbers); they can also be negative numbers, such as -42 (called integers); or, they
can be real numbers, such as 3.9 (with a fractional part), which are called single or
double-precision floating point numbers in computing.

Let's explore numbers.

1. Create a new folder inside the chaptero02 folder named Numbers.
2. In Visual Studio Code, open the Numbers folder.

3. In TERMINAL, create a new console application using the dotnet new
console command.

4. Inside the Main method, type statements to declare some number variables
using various data types, as shown in the following code:
// unsigned integer means positive whole number
// including 0
uint naturalNumber = 23;

// integer means negative or positive whole number
// including 0

[41]

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/verbatim
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/verbatim

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

int integerNumber = -23;

// float means single-precision floating point
// F suffix makes it a float literal
float realNumber = 2.3F;

// double means double-precision floating point
double anotherRealNumber = 2.3; // double literal

Storing whole numbers

You might know that computers store everything as bits. The value of a bit is either 0
or 1. This is called a binary number system. Humans use a decimal number system.

The decimal number system, also known as Base 10, has 10 as its base, meaning there
are ten digits, from 0 to 9. Although it is the number base most commonly used by
human civilizations, other number-base systems are popular in science, engineering,
and computing. The binary number system also known as Base 2 has two as its base,
meaning there are two digits, 0 and 1.

The following table shows how computers store the decimal number 10. Take note of
the bits with the value 1 in the 8 and the 2 columns; 8 + 2 = 10:

128 (64 |32 |16 (8 (4 |2
0 0 0 0 1 (0 |1

So, 10 in decimal is 00001010 in binary.

Two of the improvements seen in C# 7.0 and later are the use of the underscore
character, _, as a digit separator and support for binary literals. You can insert
underscores anywhere into the digits of a number literal, including decimal, binary,
or hexadecimal notation, to improve legibility. For example, you could write the
value for one million in decimal notation, that is, Base 10, as 1_000_ 000

To use binary notation, that is, Base 2, using only 1s and 0Os, start the number literal
with 0b. To use hexadecimal notation, that is, Base 16, using 0 to 9 and A to F, start
the number literal with ox.

1. At the bottom of the Main method, type statements to declare some number
variables using underscore separators, as shown in the following code:

// three variables that store the number 2 million
int decimalNotation = 2 _000_000;

int binaryNotation = Ob 0001 1110 1000 0100 1000 _0000;
int hexadecimalNotation = 0x_ OO0lE 8480;

[42]

Speaking C# | 02

// check the three variables have the same value
// both statements output true
Console.WriteLine ($"{decimalNotation == binaryNotation}") ;
Console.WriteLine (
$"{decimalNotation == hexadecimalNotation}");

2. Run the console app and note the result is that all three numbers are the
same, as shown in the following output:

True

True

Computers can always exactly represent integers using the int type or one of its
sibling types such as 1long and short.

Storing real numbers

Computers cannot always exactly represent floating point numbers. The £1loat and
double types store real numbers using single and double precision
floating points.

Most programming languages implement the IEEE Standard for Floating-Point
Arithmetic. IEEE 754 is a technical standard for floating-point arithmetic established
in 1985 by the Institute of Electrical and Electronics Engineers (IEEE).

More Information: If you want to dive deep into understanding

\/V floating point numbers then you can read an excellent primer

at the following link: https://ciechanow.ski/exposing-
floating-point/.

The following table shows how a computer represents the number 12. 75 in binary
notation. Note the bits with the value 1 in the 8, 4, %5, and ¥4 columns.

8+4+ %2+ Ys=12%=12.75.

128 (64 (32 |16 |8 (4 |2 |1 |. |% |% 1/8 | 1/16
0 0 0 0 1 (1 (0 |0 |. |1 1 0 0

So, 12.75 in decimal is 00001100.1100 in binary. As you can see, the number 12.75
can be exactly represented using bits. However, some numbers can't, something that
we'll be exploring shortly.

[43]

https://ciechanow.ski/exposing-floating-point/
https://ciechanow.ski/exposing-floating-point/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Writing code to explore number sizes

C# has an operator named sizeof () that returns the number of bytes that a type
uses in memory. Some types have members named Minvalue and Maxvalue, which
return the minimum and maximum values that can be stored in a variable of that

type. We are now going to use these features to create a console application to
explore number types.

1. Inside the Main method, type statements to show the size of three number
data types, as shown in the following code:
Console.WriteLine ($"int uses {sizeof (int)} bytes and can store
numbers in the range {int.MinvValue:NO} to {int.MaxValue:NO0}.");

Console.WriteLine ($"double uses {sizeof (double)} bytes and can
store numbers in the range {double.MinValue:NO} to {double.
MaxValue:NO}.") ;

Console.WriteLine ($"decimal uses {sizeof (decimal)} bytes and can
store numbers in the range {decimal.MinValue:NO} to {decimal.
MaxValue:NO}.") ;

The width of printed pages in this book make the string values (in double-
quotes) to wrap over multiple lines. You must type them on a single line, or
you will get compile errors.

2. Run the console application by entering dotnet run, and view the output, as
shown in the following screenshot:

L] Program.cs — Numbars

t)} bytes and can store n
[double}} bytes and ca
fidecimall} bytes and can s

bers in the range {i

invalue:Ne} to {int.

re numbers in the ra {double.MinValue:Na} S5

can store numbers in the range -70,228,162,514,264,337,593,543,950, 335 to 79,228,162,514,264,337,503, 543,950, 335,
ers markjprices []

Gols & BNumbers Ln 38, Col6 Spaces:2 UTF-BwithBOM CHLF CR SherpPad:5255

An int variable uses four bytes of memory and can store positive or negative
numbers up to about 2 billion. A double variable uses eight bytes of memory and
can store much bigger values! A decimal variable uses 16 bytes of memory and can
store big numbers, but not as big as a double type.

But you may be asking yourself, why might a double variable be able to store bigger
numbers than a decimal variable, yet it's only using half the space in memory? Well,
let's now find out!

[44]

Speaking C# | 02

Comparing double and decimal types

You will now write some code to compare double and decimal values. Although it
isn't hard to follow, don't worry about understanding the syntax right now.

1.

Under the previous statements, enter statements to declare two double
variables, add them together and compare them to the expected result, and
write the result to the console, as shown in the following code:

Console.WriteLine ("Using doubles:") ;

double a 0.1;
double b

1]
N

if (a + b == 0.3)

{

Console.WriteLine ($"{a} + {b} equals 0.3");

}

else

{

Console.WriteLine ($"{a} + {b} does NOT equal 0.3");

}

Run the console application and view the result, as shown in the following
output:

Using doubles:
0.1 + 0.2 does NOT equal 0.3

The double type is not guaranteed to be accurate because some numbers
literally cannot be represented as floating-point values.

More Information: Read more about why 0.1 does not exist in

‘ p/ floating-point numbers: https://www.exploringbinary.
com/why-0-point-1-does-not-exist-in-floating-
point/.

As a rule of thumb, you should only use double when accuracy, especially
when comparing the equality of two numbers, is not important. An example
of this may be when you're measuring a person's height.

The problem with the preceding code is illustrated by how the computer
stores the number 0.1, or multiples of 0.1. To represent 0.1 in binary, the
computer stores 1 in the 1/16 column, 1 in the 1/32 column, 1 in the 1/256
column, 1 in the 1/512 column, and so on.

[45]

https://www.exploringbinary.com/why-0-point-1-does-not-exist-in-floating-point/
https://www.exploringbinary.com/why-0-point-1-does-not-exist-in-floating-point/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

The number 0.1 in decimal is 0.00011001100110011... repeating forever:

1 [. |% |v |18 |1/16 |1/32 |1/64 [1/128 |1/256 |1/512 |1/1024 |1/2048

0|0 (04.1{0 (0O O |1 |1 |0 |O 1 1 0 0

Good Practice: Never compare double values using ==. During the
L, First Gulf War, an American Patriot missile battery used double
@ values in its calculations. The inaccuracy caused it to fail to track
and intercept an incoming Iraqi Scud missile, and 28 soldiers
were killed; you can read about this at https://www.ima.umn.
edu/~arnold/disasters/patriot.html.

=
=

3. Copy and paste the statements that you wrote before (that used the double
variables).

4. Modify the statements to use decimal and rename the variables to c and 4,
as shown in the following code:

Console.WritelLine ("Using decimals:");

decimal ¢ = 0.1M; // M suffix means a decimal literal value
decimal d = 0.2M;

if (¢ + d == 0.3M)

{

Console.WriteLine($"{c} + {d} equals 0.3");

}

else

{

Console.WriteLine ($"{c} + {d} does NOT equal 0.3");

}

5. Run the console application and view the result, as shown in the following
output:

Using decimals:
0.1 + 0.2 equals 0.3

The decimal type is accurate because it stores the number as a large integer and
shifts the decimal point. For example, 0.1 is stored as 1, with a note to shift the
decimal point one place to the left. 12.75 is stored as 1275, with a note to shift the
decimal point two places to the left.

L, Good Practice: Use int for whole numbers and double for real
@ numbers that will not be compared to other values. Use decimal
for money, CAD drawings, general engineering, and wherever
accuracy of a real number is important.

=
=

[46]

https://www.ima.umn.edu/~arnold/disasters/patriot.html.
https://www.ima.umn.edu/~arnold/disasters/patriot.html.

Speaking C# | 02

The double type has some useful special values; double .NaN means not-a-number,
double.Epsilon is the smallest positive number that can be stored in a double, and
double. Infinity means an infinitely large value.

Storing Booleans

Booleans can only contain one of the two literal values: true or false, as shown in
the following code:

bool happy = true;
bool sad = false;

They are most commonly used to branch and loop. You don't need to fully understand
them yet, as they are covered more in Chapter 3, Controlling Flow and Converting Types.

Using Visual Studio Code workspaces

Before we create any more projects, let's talk about workspaces.

Although we could continue to create and open separate folders for each project,
it can be useful to have multiple folders open at the same time. Visual Studio has
a feature called workspaces that enables this.

Let's create a workspace for the two projects we have created so far in this chapter.

1. In Visual Studio Code, navigate to File | Save Workspace As....

2. Enter chaptero02 for the workspace name, change to the Chaptero2 folder,
and click Save, as shown in the following screenshot:

® Program.cs — Numbers

EXPLORE
@ Save Ast| Chapter0Z.code-workspace

< o+~ g Chapter02

Applications > Chapter01 * Basics
Applications (Paraligls) b Chapter02 L Numbiers

Code .
>

™ iCloud Drive % Desktop
. Progry Dacumeants
a0 1 nrarians g) 2 |

New Falder cancel | D

2 OUTLINE

» ILSPY DECOMPILED MEMBERS

QGohs 4 BMnNumbers

3. Navigate to File | Add Folder to Workspace...

4. Select the Basics folder, click Add, and note that both Basics and Numbers
are now part of the Chapter02 workspace.

[47]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

L, Good Practice: When using workspaces, be careful when entering
@ commands in Terminal. Be sure that you are in the correct folder

NN before entering potentially destructive commands! You will see how
in the next task.

(1]

Storing any type of object

There is a special type named object which can store any type of data, but its
flexibility comes at the cost of messier code and possibly poor performance. Because
of those two reasons, you should avoid it whenever possible.

1. Create a new folder named variables and add it to the Chaptero02
workspace.
Navigate to Terminal | New Terminal.

Select the Variables project, as shown in the following screenshot:

-] & Chapter02 (Workspace]

» OPEN EDITORS

B - CHAPTEROZ [WORKSPACE)

@olka & EHumbers SharpPad:5256 @ &

4. Enter the command to create a new console application: dotnet new
console.

Navigate to View | Command Palette.
Enter and select OmniSharp: Select Project.

Select the Variables project, and if prompted, click Yes to add required assets
to debug.

In EXPLORER, in the Variables project, open Program. cs.

In the Main method, add statements to declare and use some variables using
the object type, as shown in the following code:

object height = 1.88; // storing a double in an object
object name = "Amir"; // storing a string in an object

Console.WriteLine ($"{name} is {height} metres tall.");

int lengthl = name.Length; // gives compile error!
int length2 = ((string)name) .Length; // tell compiler it is a
string

[48]

Speaking C# | 02

Console.WriteLine ($"{name} has {length2} characters.");

10. In Terminal, execute the code by entering dotnet run, and note that the
fourth statement cannot compile because the data type of the name variable is
not known by the compiler.

11. Add comment double slashes to the beginning of the statement that cannot
compile to "comment it out."

12. In Terminal, execute the code by entering dotnet run, and note that the
compiler can access the length of a string if the programmer explicitly tells
the compiler that the object variable contains a string, as shown in the
following output:

Amir is 1.88 metres tall.
Amir has 4 characters.

The object type has been available since the first version of C#, but C# 2.0 and

later have a better alternative called generics, which we will cover in Chapter 6,
Implementing Interfaces and Inheriting Classes, which will provide us with the flexibility
we want, but without the performance overhead.

Storing dynamic types

There is another special type named dynamic that can also store any type of data, but
even more than object, its flexibility comes at the cost of performance. The dynamic
keyword was introduced in C# 4.0. However, unlike an object, the value stored in
the variable can have its members invoked without an explicit cast.

1. Inthe Main method, add statements to declare a dynamic variable and assign
a string value, as shown in the following code:

// storing a string in a dynamic object
dynamic anotherName = "Ahmed";

2. Add a statement to get the length of the string value, as shown in the
following code:

// this compiles but would throw an exception at run-time
// 1f you later store a data type that does not have a

// property named Length

int length = anotherName.Length;

One limitation of dynamic is that Visual Studio Code cannot show IntelliSense to
help you write the code. This is because the compiler cannot check what the type is
during build time. Instead, CLR checks for the member at runtime and throws an
exception if it is missing.

[49]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Exceptions are a way to indicate that something has gone wrong. You will learn
more about them and how to handle them in Chapter 3, Controlling Flow and
Converting Types.

Declaring local variables

Local variables are declared inside methods, and they only exist during the execution
of that method, and once the method returns, the memory allocated to any local
variables is released.

Strictly speaking, value types are released while reference types must wait for a
garbage collection. You will learn about the difference between value types and
reference types in Chapter 6, Implementing Interfaces and Inheriting Classes.

Specifying and inferring the type of a local variable

Let's explore local variables declared with specific types and using type inference.

1. Inside the Main method, enter statements to declare and assign values to
some local variables using specific types, as shown in the following code:
int population = 66_000_000; // 66 million in UK
double weight = 1.88; // in kilograms
decimal price = 4.99M; // in pounds sterling
string fruit = "Apples"; // strings use double-quotes
char letter = 'Z'; // chars use single-quotes
bool happy = true; // Booleans have value of true or false

Visual Studio Code will show green squiggles under each of the variable
names to warn you that the variable is assigned, but its value is never used.

You can use the var keyword to declare local variables. The compiler will
infer the type from the value that you assign after the assignment operator, =.

A literal number without a decimal point is inferred as an int variable, that
is, unless you add the L suffix, in which case, it infers a 1ong variable.

A literal number with a decimal point is inferred as double unless you
add the M suffix, in which case, it infers a decimal variable, or the F suffix,
in which case, it infers a £1oat variable. Double quotes indicate a string
variable, single quotes indicate a char variable, and the true and false
values infer a bool type.

2. Modify the previous statements to use var, as shown in the following code:

var population = 66_000 _000; // 66 million in UK
var weight = 1.88; // in kilograms

[50]

Speaking C# | 02

var price = 4.99M; // in pounds sterling

var fruit = "Apples"; // strings use double-gquotes

var letter = 'Z'; // chars use single-quotes

var happy = true; // Booleans have value of true or false

Good Practice: Although using var is convenient, some developers
avoid using it, to make it easier for a code reader to understand the
A types in use. Personally, I use it only when the type is obvious. For
'/@\' example, in the following code statements, the first statement is just
£ as clear as the second in stating what the type of the xm1 variable
is, but it is shorter. However, the third statement isn't clear, so the
fourth is better. If in doubt, spell it out!

// good use of var because it avoids the repeated type
// as shown in the more verbose second statement

var xmll = new XmlDocument () ;

XmlDocument xml2 = new XmlDocument () ;

// bad use of var because we cannot tell the type, so we
// should use a specific type declaration as shown in

// the second statement

var filel = File.CreateText (@"C:\something.txt") ;
StreamWriter file2 = File.CreateText (@"C:\something.txt") ;

Getting default values for types

Most of the primitive types except string are value types, which means that
they must have a value. You can determine the default value of a type using the
default () operator.

The string type is a reference type. This means that string variables contain the
memory address of a value, not the value itself. A reference type variable can have
anull value, which is a literal that indicates that the variable does not reference
anything (yet). null is the default for all reference types.

You'll learn more about value types and reference types in Chapter 6, Implementing
Interfaces and Inheriting Classes.

Let's explore default values.

1. Inthe Main method, add statements to show the default values of an int,
bool, DateTime, and string, as shown in the following code:

Console.WriteLine ($"default (int) = {default (int)}");
Console.WriteLine ($"default (bool) = {default (bool) }");

[51]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Console.WriteLine (

$"default (DateTime) = {default (DateTime) }");
Console.WriteLine (

$"default (string) = {default (string)}");

2. Run the console app and view the result, as shown in the following output:

default (int) = 0
default (bool) = False
default (DateTime) = 01/01/0001 00:00:00

default (string) =

Storing multiple values
When you need to store multiple values of the same type, you can declare an array.

For example, you may do this when you need to store four names in a string array.

The following code will allocate memory for an array for storing four string values.
It will then store string values at index positions 0 to 3 (arrays count from zero, so
the last item is one less than the length of the array). Finally, it will loop through each
item in the array using a for statement, something that we will cover in more detail
in Chapter 3, Controlling Flow and Converting Types.

1. Inthe chaptero2 folder, create a new folder named Arrays.
Add the Arrays folder to the Chapter02 workspace.
Create a new Terminal window for the Arrays project.
Create a new console application project in the Arrays folder.

Select Arrays as the current project for OmniSharp.

A L

In the Arrays project, in Program. cs, in the Main method, add statements to
declare and use an array of string values, as shown in the following code:

string[] names; // can reference any array of strings

// allocating memory for four strings in an array
names = new string[4];

// storing items at index positions

names [0] = "Kate";
names [1] = "Jack";
names [2] = "Rebecca";
names [3] = "Tom";

// looping through the names

[52]

Speaking C# | 02

for (int i = 0; i < names.Length; i++)

{

// output the item at index position i
Console.WriteLine (names[1i]) ;

}
7. Run the console app and note the result, as shown in the following output:

Kate
Jack
Rebecca

Tom

Arrays are always of a fixed size at the time of memory allocation, so you need to
decide how many items you want to store before instantiating them.

Arrays are useful for temporarily storing multiple items, but collections are a more
flexible option when adding and removing items dynamically. You don't need to
worry about collections right now, as we will cover them in Chapter 8, Working with
Common .NET Types.

Working with null values

You have now seen how to store primitive values like numbers in variables. But what
if a variable does not yet have a value? How can we indicate that? C# has the concept
of a null value, which can be used to indicate that a variable has not been set.

Making a value type nullable

By default, value types like int and DateTime must always have a value, hence their
name. Sometimes, for example, when reading values stored in a database that allows
empty, missing, or null values, it is convenient to allow a value type to be null, we
call this a nullable value type.

You can enable this by adding a question mark as a suffix to the type when declaring
a variable. Let's see an example.
1. Inthe chaptero2 folder, create a new folder named NullHandling.
Add the NullHandling folder to the Chapter02 workspace.
Create a new Terminal window for the Nul1Handling project.

Create a new console application project in the Nul1Handling folder.

ARSI

Select Nul1lHandling as the current project for OmniSharp.

[53]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

6. Inthe NullHandling project, in Program.cs, in the Main method, add
statements to declare and assign values, including null, to int variables, as
shown in the following code:

int thisCannotBeNull = 4;
thisCannotBeNull = null; // compile error!

int? thisCouldBeNull = null;
Console.WriteLine (thisCouldBeNull) ;
Console.WriteLine (thisCouldBeNull.GetValueOrDefault()) ;

thisCouldBeNull = 7;
Console.WriteLine (thisCouldBeNull) ;
Congsole.WriteLine (thigsCouldBeNull.GetValueOrDefault()) ;

Comment out the statement that gives a compile error.

Run the application and view the result, as shown in the following output:

The first line is blank because it is outputting the null value!

Understanding nullable reference types

The use of the null value is so common, in so many languages, that many
experienced programmers never question the need for its existence. But there
are many scenarios where we could write better, simpler code, if a variable is not
allowed to have a null value.

More Information: You can find out more through the

D’ following link, where the inventor of null, Sir Charles Antony
&

Richard Hoare, admits his mistake in a recorded hour-long
talk: https://www.infoqg.com/presentations/Null-
References-The-Billion-Dollar-Mistake-Tony-Hoare.

The most significant change to the language in C# 8.0 is the introduction of nullable
and non-nullable reference types. "But wait!", you are probably thinking, "Reference
types are already nullable!"

And you would be right, but in C# 8.0, reference types can be configured to no
longer allow the null value by setting a file- or project-level option to enable this
useful new feature. Since this is a big change for C#, Microsoft decided to make the
feature opt-in.

[54]

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare.
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare.

Speaking C# | 02

It will take multiple years for this new C# language feature to make an impact since
there are thousands of existing library packages and apps that will expect the old
behavior. Even Microsoft has not had time to fully implement this new feature in
all the core .NET packages. During the transition, you can choose between several
approaches for your own projects:

* Default: No changes needed. Non-nullable references types not supported.

* Opt-in project, opt-out files: Enable the feature at the project level and for
any files that need to remain compatible with old behavior, opt out. This is
the approach Microsoft is using internally while it updates its own packages
to use this new feature.

* Opt-in files: Only enable the feature for individual files.

Enabling nullable and non-nullable reference
types

To enable the feature at the project level, add the following to your project file:

<PropertyGroup>
<Nullable>enable</Nullable>
</PropertyGroup>

To disable the feature at the file level, add the following to the top of a code file:

#nullable disable

To enable the feature at the file level, add the following to the top of a code file:
#nullable enable

Declaring non-nullable variables and
parameters

If you enable nullable reference types and you want a reference type to be assigned
the null value, then you will have to use the same syntax as making a value type
nullable, that is, adding a ? symbol after the type declaration.

So, how do nullable reference types work? Let's look at an example. When storing
information about an address, you might want to force a value for the street, city,
and region, but building can be left blank, that is, null.

1. InNullHandling.csproj, add an element to enable nullable reference types,
as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

[55]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFramework>
<Nullable>enable</Nullable>

</PropertyGroup>

</Project>

2. InProgram.cs, at the top of the file add a statement to enable nullable
reference types, as shown in the following code:

#nullable enable

3. InProgram.cs, in the Nul1Handling namespace, above the Program class,
add statements to declare an Address class with four fields, as shown in the
following code:

class Address

{
public string? Building;
public string Street;
public string City;
public string Region;

}

4. After a few seconds, note that the C# extension warns of problems with the
non-nullable fields like street, as shown in the following screenshot:

® Program.cs — Chapter02 [Werkspace)
€ Program.cs X i
© Program.c {} MuliHandlir dling.Addres
B class Address
7 {

B public string? Building; // can be null

public string Street; Jf must have a value

= NullHandling.csproj

» OUTLINE

2 ILSPY DECOMPILED MEMBERS

BofAa & BNulHanding SharpPad:5265 @ &

5. Assign the empty string value to each of the three fields that are non-
nullable, as shown in the following code:
public string Street = string.Empty;
public string City = string.Empty;
public string Region = string.Empty;

[56]

Speaking C# | 02

6. InMain, add statements to instantiate an Address and set its properties, as
shown in the following code:
var address = new Address() ;
address.Building = null;
address.Street = null;
address.City = "London";
address.Region = null;

7. Note the warnings, as shown in the following screenshot:

(] [] Program.cs — Chapter02 (Workspace)
@ EXPLORER Cr Program.cs X o

> OPEM EDITORS NullHandling > € Program.c {} Mulk
ISR - CHAPTERDZ (WORKSPACE) 28
o Address();
30 address.Building = null;
£ | address.Street = null;
3z address.City = "London";
33 address.Region = null;

29 var address = new

» Basics

2> OUTLINE

” 2 ILSPY DECOMPILED MEMBERS
@oAz & mHulHanding

So, this is why the new language feature is named nullable reference types. Starting
with C# 8.0, unadorned reference types can become non-nullable, and the same
syntax is used to make a reference type nullable, as is used for value types.

More Information: You can watch a video to learn how to get

C’ rid of null reference exceptions forever at the following link:
(&

https://channel9.msdn.com/Shows/On-NET/This-is-
how-you-get-rid-of-null-reference-exceptions-
forever.

Checking for null

Checking whether a nullable reference type or nullable value type variable currently
contains null is important because if you do not, a Nul1ReferenceException can be
thrown, which results in an error. You should check for a null value before using a
nullable variable, as shown in the following code:

// check that the variable is not null before using it
if (thisCouldBeNull != null)

// access a member of thisCouldBeNull
int length = thisCouldBeNull.Length; // could throw exception

[571]

https://channel9.msdn.com/Shows/On-NET/This-is-how-you-get-rid-of-null-reference-exceptions-forever
https://channel9.msdn.com/Shows/On-NET/This-is-how-you-get-rid-of-null-reference-exceptions-forever
https://channel9.msdn.com/Shows/On-NET/This-is-how-you-get-rid-of-null-reference-exceptions-forever

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

If you are trying to use a member of a variable that might be nul1, use the null-
conditional operator ? ., as shown in the following code:

string authorName = null;

// the following throws a NullReferenceException
int x = authorName.Length;

// instead of throwing an exception, null is assigned to y
int? y = authorName?.Length;

More Information: You can read more about the null-

\/‘/ conditional operator at the following link: https://docs.

microsoft.com/en-us/dotnet/csharp/language-
reference/operators/null-conditional-operators

Sometimes you want to either assign a variable to a result or use an alternative value,
such as 3, if the variable is null. You do this using the null-coalescing operator, 22,
as shown in the following code:

// result will be 3 if authorName?.Length is null
var result = authorName?.Length ?? 3;
Console.WriteLine (result) ;

More Information: You can read about the null-coalescing

\/V operator at the following link: https://docs.microsoft.

com/en-us/dotnet/csharp/language-reference/
operators/null-coalescing-operator

Exploring console applications further

We have already created and used basic console applications, but we're now at a
stage where we should delve into them more deeply.

Console applications are text-based and are run at the command line. They typically
perform simple tasks that need to be scripted, such as compiling a file or encrypting
a section of a configuration file.

Equally they can also have arguments passed to them to control their behavior. An
example of this would be to create a new console app using the F# language with
a specified name instead of using the name of the current folder, as shown in the
following command line:

dotnet new console -lang "F#" -name "ExploringConsole"

[58]

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-conditional-operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-conditional-operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-conditional-operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator

Speaking C# | 02

Displaying output to the user

The two most common tasks that a console application performs are writing and
reading data. We have already been using the writeLine method to output, but

if we didn't want a carriage return at the end of the lines, we could have used the
Write method.

Formatting using numbered positional arguments

One way for generating formatted strings is to use numbered positional arguments.

This feature is supported by methods like Wwrite and writeLine, and for methods
that do not support the feature, the string parameter can be formatted using the
Format method of string.

1.

Add a new console application project named Formatting to the Chapter02
folder and workspace.

In the Main method, add statements to declare some number variables and
write them to the console, as shown in the following code:

int numberOfApples = 12;
decimal pricePerApple = 0.35M;

Console.WriteLine (
format: "{0} apples costs {1:C}",
arg0: numberOfApples,
argl: pricePerApple * numberOfApples) ;

string formatted = string.Format (
format: "{0} apples costs {1:C}",
arg0: numberOfApples,
argl: pricePerApple * numberOfApples) ;

//WriteToFile (formatted); // writes the string into a file

The writeToFile method is a nonexistent method used to illustrate the idea.

Formatting using interpolated strings

C# 6.0 and later has a handy feature named interpolated strings. A string prefixed
with $ can use curly braces around the name of a variable or expression to output the
current value of that variable or expression at that position in the string.

1.

In the Main method, enter a statement at the bottom of the Main method, as
shown in the following code:

Console.WriteLine ($" {numberOfApples} apples costs {pricePerApple *
numberOfApples:C}") ;

[59]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2. Run the console app, and view the result, as shown in the following output:

12 apples costs £4.20

For short formatted strings, an interpolated string can be easier for people to read.
But for code examples in a book, where lines need to wrap over multiple lines,
this can be tricky. For many of the code examples in this book I will use numbered
positional arguments.

Understanding format strings

A variable or expression can be formatted using a format string after a comma or
colon.

An NO format string means a number with thousand separators and no decimal places,
while a ¢ format string means currency. The currency format will be determined by the
current thread. For instance, if you run this code on a PC in the UK, you'll get pounds
sterling with commas as the thousand separators, but if you run this code on a PC in
Germany, you would get Euros with dots as the thousand separators.

The full syntax of a format item is:

{ index [, alignment] [: formatString] }

Each format item can have an alignment, which is useful when outputting tables
of values, some of which might need to the left- or right-aligned within a width of
characters. Alignment values are integers. Positive integers are right-aligned and
negative integers are left-aligned.

For example, to output a table of fruit and how many of each there are, we might
want to left-align the names within a column of 8 characters and right-align the
counts formatted as numbers with zero decimal places within a column of six
characters.

1. Inthe Main method, enter statements at the bottom of the Main method:

string applesText = "Apples";
int applesCount = 1234;

string bananasText = "Bananas";
int bananasCount = 56789;

Console.WriteLine (
format: "{0,-8} {1,6:N0}",
arg0: "Name",
argl: "Count") ;

Console.WriteLine (

[60]

Speaking C# | 02

format: "{0,-8} {1,6:N0}",
arg0: applesText,
argl: applesCount) ;

Console.WriteLine (
format: "{0,-8} {1,6:N0}",
arg0: bananasText,
argl: bananasCount) ;

Run the console app and note the effect of the alignment and number format,
as shown in the following output:

Name Count
Apples 1,234
Bananas 56,789

More Information: You can read more details about formatting

microsoft.com/en-us/dotnet/standard/base-types/
formatting-types.

\/V types in .NET at the following link: https://docs.

Getting text input from the user

We can get text input from the user using the ReadLine method. This method waits
for the user to type some text, then as soon as the user presses Enter, whatever the
user has typed is returned as a string value.

1.

In the Main method, type statements to ask the user for their name and age
and then output what they entered, as shown in the following code:

Console.Write ("Type your first name and press ENTER: ");
string firstName = Console.ReadLine() ;

Console.Write ("Type your age and press ENTER: ");
string age = Console.ReadLine() ;

Console.WriteLine (
$"Hello {firstName}, you look good for {age}.");

Run the console application.
Enter name and age, as shown in the following output:
Type your name and press ENTER: Gary

Type your age and press ENTER: 34
Hello Gary, you look good for 34.

[61]

https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types
https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types
https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Importing a namespace

You might have noticed that unlike our very first application in Chapter 1, Hello, C#!
Welcome, .NET!, we have not been typing system before console. This is because
Systemis a namespace, which is like an address for a type. To refer to someone
exactly, you might use 0xford.HighStreet .BobSmith, which tells us to look for a
person named Bob Smith on the High Street in the city of Oxford.

The System.Console.WriteLine line tells the compiler to look for a method named
WriteLine in a type named Console in a namespace named System. To simplify our
code, the dotnet new console command added a statement at the top of the code
file to tell the compiler to always look in the System namespace for types that haven't
been prefixed with their namespace, as shown in the following code:

using System;

We call this importing the namespace. The effect of importing a namespace is that all
available types in that namespace will be available to your program without needing
to enter the namespace prefix and will be seen in IntelliSense while you write code.

Simplifying the usage of the console

In C# 6.0 and later, the using statement can be used to further simplify our code. Then,
we won't need to enter the Console type throughout our code. We can use Visual
Studio Code's Replace feature to remove times we have previously wrote Console.

1. Add a statement to statically import the System. Console class to the top of
the program. cs file, as shown in the following code:

using static System.Console;

2. Select the first Console. in your code, ensuring that you select the dot after
the word console too.

3. Navigate to Edit | Replace and note that an overlay dialog appears ready for
you to enter what you would like to replace console. with, as shown in the
following screenshot:

) L] Program.cs — Chapter02 (Workspace)
@ XPLORER C* Program.cs X m -

» OPEM EDITORS € Progra {} 1 matt r 2 Main(st

“onsole b= x
13 Console.writel
2 14 format: "{ ha | @ 6D |
'_I'_"-" argd: numberQTAQDpILES,
! > argl: pricePerApple # numberOfApples); Replace All (CHEnter)
A > bin
ol b
1:E)

o0 E
1 u] c argl: pricePerApple # numberOfApples);
.f,-.s % OUTLINE 23 fMriteTofFile(formatted); // writes the string into a file
G
Rl > IL5PY DECOMPILED MEMBERS & -
@00 & MFormatting Ln 13, Col 15 (& selected) Spaces: 4 UTF-8 with BOM CRLF C# SharpPad:5256 @ &

[62]

Speaking C# | 02

Click on the Replace All button (the second of the two buttons to the right
of the replace box) or press Alt + A or Alt + Cmd + Enter to replace all, and
then close the replace box by clicking on the cross in its top-right corner.

Getting key input from the user

We can get key input from the user using the Readkey method. This method waits
for the user to type some text, then as soon as the user presses Enter, whatever the
user has typed is returned as a string value.

1.

In the Main method, type statements to ask the user to press any key
combination and then output information about it, as shown in the
following code:

Write ("Press any key combination: ") ;

ConsoleKeyInfo key = ReadKey() ;

WriteLine () ;

WriteLine ("Key: {0}, Char: {1}, Modifiers: {2}",

arg0: key.Key,

argl: key.KeyChar,

arg2: key.Modifiers);

Run the console application, press the K key, and note the result, as shown in
the following output:

Press any key combination: k

Key: K, Char: k, Modifiers: 0

Run the console application, hold down Shift and press the K key, and note
the result, as shown in the following output:

Press any key combination: K

Key: K, Char: K, Modifiers: Shift

Run the console application, press the F12 key, and note the result, as shown
in the following output:

Press any key combination:

Key: F12, Char: , Modifiers: 0

When running a console application in Terminal within Visual Studio Code, some
keyboard combinations will be captured by the code editor or operating system
before they can be processed by your app.

Getting arguments

You might have been wondering what the string[] args arguments are in the
Main method. They're an array used to pass arguments into a console application;
let's take a look to see how it works.

[63]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Command-line arguments are separated by spaces. Other characters like hyphens
and colons are treated as part of an argument value. To include spaces in an
argument value, enclose the argument value in single or double quotes.

Imagine that we want to be able to enter the names of some colors for the foreground
and background, and the dimensions of the Terminal window at the command line.
We would be able to read the colors and numbers by reading them from the args
array, which is always passed into the Main method of a console application.

1. Create a new folder for a console application project named Arguments and
add it to the Chaptero02 workspace.

2. Add a statement to statically import the System. Console type and a
statement to output the number of arguments passed to the application, as
shown highlighted in the following code:
using System;
using static System.Console;

namespace Arguments

{

class Program

{

static void Main(string[] args)

{

WriteLine ($"There are {args.Length} arguments.");

}
}
}

Console type in all future projects to simplify your code, as these

L Good Practice: Remember to statically import the System.
g- comsotene .
= instructions will not be repeated every time.

3. Run the console application and view the result, as shown in the
following output:

There are 0 arguments.

4. In TERMINAL, enter some arguments after the dotnet run
command, as shown in the following command line:
dotnet run firstarg second-arg third:arg "fourth arg"

5. Note the result indicates four arguments, as shown in the following

output:

There are 4 arguments.

[64]

Speaking C# | 02

6. To enumerate or iterate (that is, loop through) the values of those four
arguments, add the following statements after outputting the length of the
array:

foreach (string arg in args)

{

WriteLine (arg) ;

}

7. In TERMINAL, repeat the same arguments after the dotnet run
command, as shown in the following command line:

dotnet run firstarg second-arg third:arg "fourth arg"

8. Note the result shows the details of the four arguments, as shown in the
following output:
There are 4 arguments.
firstarg
second-arg
third:arg

fourth arg

Setting options with arguments

We will now use these arguments to allow the user to pick a color for the
background, foreground, width, and height of the output window.

The system namespace is already imported so that the compiler knows about
the consoleColor and Enum types. If you cannot see either of these types in the

IntelliSense list, it is because you are missing the using System; statement at the top
of the file.

1. Add statements to warn the user if they do not enter four arguments and
then parse those arguments and use them to set the color and dimensions of
the console window, as shown in the following code:

if (args.Length < 4)
{

WriteLine ("You must specify two colors and dimensions,
e.g.");

WriteLine ("dotnet run red yellow 80 40");

return; // stop running

}

ForegroundColor = (ConsoleColor)Enum.Parse (
enumType: typeof (ConsoleColor),

[65]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

value: argsl[0],
ignoreCase: true) ;

BackgroundColor = (ConsoleColor)Enum.Parse (
enumType: typeof (ConsoleColor),
value: args|[1],
ignoreCase: true);

WindowWidth = int.Parse(args[2]) ;
WindowHeight = int.Parse(args[3]);

2. Enter the following command in TERMINAL:
dotnet run red yellow 50 10

On Windows, this will work correctly, although TERMINAL in Visual Studio Code
does not change its size. If this is run in an external Windows Command Prompt,
that window would change size.

On macOS, you'll see an unhandled exception, as shown in the following screenshot:

(] & Program.cs — Chapter02 (Workspace)

@ XPLORER C Program.cs X o
» OPEN EDITORS Ar ents > € Proara [} I P ; . BN

@ - CHAPTEROZ2 (WORKSPACE) in enunType: typeof(ConsaleColar),

- 31 value: args[1],

¥ igroreCase: true);

34 WindowWidth = int.Parselaras(2]);

a5 WindewHeight = int.Parsclargs[3]);
£ 3
EM: G CONSOLE TERMINAL 2: bash : 4+ 0D B ~ x
-AII Cr Program.cs Unhandled exception. System.PlatformNotSupportedException: Operation Is not supported on this plat
== 2 form.
at System.ConsalePal.set Windowdioth{Int32 value]
Pl > OUTLINE ot System, Console. set_Windowhidth{Int32 valuel
Lo &t Arguments.Program.Main(Stringl] args) in /Users/markjprice/Code/ChapterB2/Arguments,/Program,
2 ILSPY DECOMPILED MEMBERS es:line 34

@BofAo & MArguments Ln36 Col6 Spaces:d UTF-BwithBOM CRLF C# SharpPad:5255 @ A

Although the compiler did not give an error or warning, at runtime some API calls
may fail on some platforms. Although a console application running on Windows
can change its size, on macQOS, it cannot.

Handling platforms that do not support an API

So how do we solve this problem? We can solve this by using an exception handler.
You will learn more details about the try-catch statement in Chapter 3, Controlling
the Flow and Converting Types, so for now, just enter the code.

1. Modify the code to wrap the lines that change the height and widthina try
statement, as shown in the following code:

[66]

Speaking C# | 02

try

{
WindowWidth = int.Parse(args[2]) ;
WindowHeight = int.Parse (args[3]);

}

catch (PlatformNotSupportedException)

{

WriteLine ("The current platform does not support changing the
size of a console window.") ;

}

2. Rerun the console application; note the exception is caught, and a friendly
message is shown to the user, as shown in the following screenshot:

® ® Program.cs — Chapter02 [Werkspace)
@ EXPLORER C Programecs X 1
> OPEM EDITORS Arg C Pr s 3 {} Argumen Argumer ogr @ Mainist
@ - CHAPTERDZ (WORKSPACE) 39 catch (PlatforsNotSupportedException)
40 ¥
41 WriteLine{"The current platform does not support changing the size of a
'I:__._;. ¥ } - -l
43 +
v BLEMS EBUG CONSOLE TERMINAL 2 hash 0+ D W ~ x
e Marks-MacBook-Pro-13:Argieents markiprices dotnet run red yellow 50 18
_o i s There are 4 arguaents.
= yellow
L]
Prosl > OUTLINE =
o The current platfors does not support changing the size of & console window.
» ILSPY DECOMPILED MEMBERS Marks-MacBook-Pro-13:Argussnts markiprice$

UTF-B with BOM. CRLF C# SharpPad:5765 @ M

@ohko & WAguments Lnaf Col8 Spaces: 4

Practicing and exploring

Test your knowledge and understanding by answering some questions, get
some hands-on practice, and explore the topics covered in this chapter with deeper

research.

Exercise 2.1 — Test your knowledge

To get the best answer to some of these questions you will need to do your own
research. I want you to "think outside the book" so I have deliberately not provided

all the answers in the book.

I want to encourage you to get in the good habit of looking for help elsewhere,
following the principle of "teach a person to fish."

What type would you choose for the following "numbers"?

1. A person's telephone number.

[67]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

A person's height.

A person's age.

A person's salary.

A book's ISBN.

A book's price.

A book's shipping weight.
A country's population.

O ® NG PN

The number of stars in the universe.

—_
o

. The number of employees in each of the small or medium businesses in the
United Kingdom (up to about 50,000 employees per business).

Exercise 2.2 — Practice number sizes and
ranges

Create a console application project named Exercise02 that outputs the number
of bytes in memory that each of the following number types use, and the minimum
and maximum values they can have: sbyte, byte, short, ushort, int, uint, long,
ulong, float, double, and decimal.

More Information: You can always read the documentation,
, available at https://docs.microsoft.com/en-us/dotnet/
\/;p; standard/base-types/composite-formatting for
Composite Formatting to learn how to align text in a console
application.

The result of running your console application should look something like the
following screenshot:

® ® Chapter02 {Workspace)
> OPEN EDITORS
(@ - CHAPTEROZ [WORKSPACE)
z TERMINAL 3: bash ¢+ M0 @ ~ x
‘i-;_;- Marks-MacBook-Pro-13:Exercisedd markjprice$ detnet run
_ Type Bytels) of memory Min
£ sbyte 1 -128
- byte 1 [
3 short 2 -32768
'ii s ushart 2 @
(m] int -2147483648
3 o uint 4 [
Llong 8 -0223372036854775808
proj uleng 8 @
r 2 float 4 B235E+38 3
3 OUTLINE double & 1.79 157E+308 1.797693134
decimal 16 =-7922816251 43958335 79228162514264337!

2 ILSPY DECOMPILED MEMBERS

@Boho A& WExecise0? SharpPad:5255 @ A

[e8]

https://docs.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting
https://docs.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting

Speaking C# | 02

Exercise 2.3 — Explore topics

Use the following links to read more about the topics covered in this chapter:

C#](eY“KEdS:https://docs.microsoft.com/en—us/dotnet/csharp/
language-reference/keywords/index

Main() and command-line arguments (C# Programming Guide): https://
docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-
and-command-args/

Types (C# Programming Guide): https://docs.microsoft.com/en-us/
dotnet/csharp/programming-guide/types/

Statements, Expressions, and Operators (C# Programming Guide):
https://docs.microsoft.com/en-us/dotnet/csharp/programming-
guide/statements-expressions-operators/

Strings (C# Programming Guide): https://docs.microsoft.com/en-us/
dotnet/csharp/programming-guide/strings/

Nullable Types (C# Programming Guide): https://docs.microsoft.com/
en-us/dotnet/csharp/programming-guide/nullable-types/

Nullable reference types: https://docs.microsoft.com/en-us/dotnet/
csharp/nullable-references

Console Class: https://docs.microsoft.com/en-us/dotnet/api/
system.console?view=netcore-3.0

Summary

In this chapter, you learned how to declare variables with a specified or an inferred
type; we discussed some of the built-in types for numbers, text, and Booleans; we
covered how to choose between number types; we covered nullability of types; we
learned how to control the output formatting in console apps.

In the next chapter, you will learn about operators, branching, looping, and
converting between types.

[69]

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-command-args/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-command-args/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-command-args/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/
https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references
https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-3.0

Chapter 03

Controlling Flow and
Converting Types

This chapter is all about writing code that performs simple operations on variables,
makes decisions, repeats blocks of statements, converts variable or expression values
from one type to another, handles exceptions, and checks for overflows in number
variables.

This chapter covers the following topics:

* Operating on variables

* Understanding selection statements

* Understanding iteration statements

* Casting and converting between types
* Handling exceptions

* Checking for overflow

Operating on variables

Operators apply simple operations such as addition and multiplication to operands
such as variables and literal values. They usually return a new value that is the result
of the operation that can be assigned to a variable.

Most operators are binary, meaning that they work on two operands, as shown in the
following pseudocode:

var resultOfOperation = firstOperand operator secondOperand;

Some operators are unary, meaning they work on a single operand, and can apply
before or after the operand, as shown in the following pseudocode:

var resultOfOperation = onlyOperand operator;
var resultOfOperation2 = operator onlyOperand;

[71]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Examples of unary operators include incrementors and retrieving a type or its size in
bytes, as shown in the following code:

int x = 5;
int incrementedByOne = X++;
int incrementedByOneAgain = ++Xx;

Type theTypeOfAnInteger = typeof (int) ;
int howManyBytesInAnInteger = sizeof (int) ;

A ternary operator works on three operands, as shown in the following pseudocode:

var resultOfOperation = firstOperand firstOperator
secondOperand secondOperator thirdOperand;

Unary operators
Two common unary operators are used to increment, ++, and decrement, - -,
a number.
1. If you have completed the previous chapters, then you will already have
a Code folder in your user folder. If not, create it.
In the code folder, create a folder named Chaptero3.
Start Visual Studio Code and close any open workspace or folder.

Save the current workspace in the Chapter03 folder as Chapter03.code-
workspace.

5. Create a new folder named Operators and add it to the Chaptero03
workspace.

Navigate to Terminal | New Terminal.

In Terminal, enter a command to create a new console application in the
Operators folder.

Open Program. cs.
Statically import System. Console.

10. In the Main method, declare two integer variables named a and b, set a to
three, increment a while assigning the result to b, and then output their
values, as shown in the following code:
int a = 3;
int b = a++;

WriteLine($"a is {a}, b is {b}");

[72]

Controlling Flow and Converting Types | 03

11. Before running the console application, ask yourself a question: what do you
think the value of b will be when output? Once you've thought about that,
run the console application, and compare your prediction against the actual
result, as shown in the following output:

a is 4, b is 3

The variable b has the value 3 because the ++ operator executes after the
assignment; this is known as a postfix operator. If you need to increment
before the assignment, then use the prefix operator.

12. Copy and paste the statements, and then modify them to rename the
variables and use the prefix operator, as shown in the following code:
int ¢ = 3;
int d = ++c; // increment c before assigning it
WriteLine($"c is {c}, 4 is {d}");

13. Rerun the console application and note the result, as shown in the following
output:

a is 4, b is 3

c is 4, d is 4

Good Practice: Due to the confusion between prefix and postfix
for the increment and decrement operators when combined with
A assignment, the Swift programming language designers decided to
',@\' drop support for this operator in version 3. My recommendation
= for usage in C# is to never combine the use of ++ and - - operators
with an assignment operator, =. Perform the operations as separate
statements.

Binary arithmetic operators

Increment and decrement are unary arithmetic operators. Other arithmetic operators
are usually binary and allow you to perform arithmetic operations on two numbers.

1. Add the statements to the bottom of the Main method to declare and assign
values to two integer variables named e and £, and then perform the five
common binary arithmetic operators to the two numbers, as shown in the
following code:

int e = 11;

int £ = 3;

WriteLine ($"e is {e}, £ is {f}");
WriteLine($"e + £ = {e + £}");
WriteLine($"e - £ = {e - £}");
WriteLine($"e * £ = {e * £}");

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

WriteLine ($"e /
WriteLine ($"e %

~

(e / £}
- {e s £}

2. Rerun the console application and note the result, as shown in the following

f e f
f e f

7
7

o°

output:

e is 11, £ is 3
e + £ =14

e - f£f =28

e * £ = 33

e / £ =23

e ¥ f =2

To understand the divide / and modulo % operators when applied to
integers, you need to think back to primary school. Imagine you have
eleven sweets and three friends. How can you divide the sweets between
your friends? You can give three sweets to each of your friends, and there
will be two left over. Those two sweets are the modulus, also known as the
remainder after dividing. If you have twelve sweets, then each friend gets
four of them, and there are none left over, so the remainder would be 0.

3. Add statements to declare and assign a value to a double variable named g
to show the difference between whole number and real number divisions, as
shown in the following code:

double g = 11.0;
WriteLine ($"g is {g:N1}, £ is {f}");
WriteLine($"g / £ = {g / £}");

4. Rerun the console application and note the result, as shown in the following
output:

g is 11.0, £ is 3
g / £ = 3.6666666666666665

If the first operand is a floating-point number, such as g with the value 11. 0, then the
divide operator returns a floating-point value, such as 3.6666666666665, rather than
a whole number.

Assignment operators

You have already been using the most common assignment operator, =.

To make your code more concise, you can combine the assignment operator with
other operators like arithmetic operators, as shown in the following code:

[74]

Controlling Flow and Converting Types | 03

int p = 6;

p += 3; // equivalent to p = p + 3;
p -= 3; // equivalent to p = p - 3;
p *= 3; // equivalent to p = p * 3;
p /= 3; // equivalent to p = p / 3;

Logical operators

Logical operators operate on Boolean values, so they return either true or false.

Let's explore binary logical operators that operate on two Boolean values.

1.

Create a new folder and console application named BooleanOperators and
add it to the Chapter03 workspace. Remember to use the Command Palette
to select BooleanOperators as the project.

In Program. cs, in the Main method, add statements to declare two Boolean
variables with values true and false, and then output truth tables showing
the results of applying AND, OR, and XOR (exclusive OR) logical operators,
as shown in the following code:

bool a = true;
bool b = false;

WriteLine ($"AND | a | b ") ;

WriteLine ($"a | {a & a,-5} | {a & b,-5} ");
WriteLine ($"b | {b & a,-5} | {b & b,-5} ");
WriteLine () ;

WriteLine ($"OR | a | b "

WriteLine ($"a | {a | a,-5} | {a | b,-5} ");
WriteLine ($"b | {b | a,-5} | {b | b,-5} ");
WriteLine () ;

WriteLine ($"XOR | a | b ") ;

WriteLine ($"a | {a *~ a,-5} | {a * b,-5} ");
WriteLine ($"b | {b * a,-5} | {b * b,-5} ");

‘ n/ More Information: Read about truth tables at the following link:
https://en.wikipedia.org/wiki/Truth table

Run the console application and note the results, as shown in the following
output:

AND | a | b

a | True | False

[75]

https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Truth_table

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

b | False | False
OR | a | b

a | True | True
b | True | False
XOR | a | b

a | False | True
b | True | False

For the AND & logical operator, both operands must be true for the result to be true.
For the or | logical operator, either operand can be true for the result to be true.
For the xorR * logical operator, either operand can be true (but not both!) for the
result to be true.

Conditional logical operators

Conditional logical operators are similar to logical operators, but you use two
symbols instead of one, for example, && instead of &, or | | instead of |.

In Chapter 4, Writing, Debugging, and Testing Functions, you will learn about functions
in more detail, but I need to introduce functions now to explain conditional logical
operators, also known as short-circuiting Boolean operators.

A function executes statements and then returns a value. That value could be
a Boolean value like true that is used in a Boolean operation.

1. After and outside the Main method, write statements to declare a function
that writes a message to the console and returns true, as shown highlighted
in the following code:

class Program

{

static void Main(string[] args)

{
}

private static bool DoStuff ()

{
WriteLine ("I am doing some stuff.");
return true;

[76]

Controlling Flow and Converting Types | 03

Inside and at the bottom of the Main method, perform an AND & operation on
the a and b variables and the result of calling the function, as shown in the
following code:

WriteLine ($"a & DoStuff ()
WriteLine ($"b & DoStuff ()

{a & DoStuff()}");
{b & DoStuff()}");

Run the console app, view the result, and note that the function was called
twice, once for a and once for b, as shown in the following output:

I am doing some stuff.
a & DoStuff() = True
I am doing some stuff.

b & DoStuff () = False

Change the & operators into && operators, as shown in the following code:

I

WriteLine ($"a && DoStuff() = {a && DoStuff ()}"
WriteLine ($"b && DoStuff() = {b && DoStuff ()}"

I

)
)

Run the console app, view the result, and note that the function does run
when combined with the a variable, but it does not run when combined with
the b variable because the b variable is false so the result will be false
anyway so it does not need to execute the function, as shown in the following
output:

I am doing some stuff.
a && DoStuff () = True

b && DoStuff () = False // DoStuff function was not executed!

Good Practice: Now you can see why the conditional logical

A operators are described as being short-circuiting. They can make
'@\' your apps more efficient, but they can also introduce subtle bugs in
E cases where you assume that the function would always be called. It

is safest to avoid them.

Bitwise and binary shift operators

Bitwise operators effect the bits in a number. Binary shift operators can perform
some common arithmetic calculations much faster than traditional operators.

Let's explore bitwise and binary shift operators.

1. Create a new folder and console application named

BitwiseAndShiftOperators and add it to the workspace.

[771]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2.

Add statements to the Main method to declare two integer variables with
values 10 and 6, and then output the results of applying AND, OR, and XOR
(exclusive OR) bitwise operators, as shown in the following code:

int a = 10; // 0000 1010
int b = 6; // 0000 0110

WriteLine($"a = {a}");

WriteLine ($"b = {b}");

WriteLine($"a & b = {a & b}"); // 2-bit column only
WriteLine($"a | b = {a | b}"); // 8, 4, and 2-bit columns
WriteLine($"a ~ b = {a *~ b}"); // 8 and 4-bit columns

Run the console application and note the results, as shown in the following
output:

a = 10

a&b=2
a | b= 14
a b =12

Add statements to the Main method to output the results of applying the
left-shift operator to move the bits of the variable a by three columns,
multiplying a by 8, and right-shifting the bits of the variable b by one
column, as shown in the following code:

// 0101 0000 left-shift a by three bit columns
WriteLine($"a << 3 = {a << 3}");

// multiply a by 8
WriteLine($"a * 8 = {a * 8}");

// 0000 0011 right-shift b by one bit column
WriteLine($"b >> 1 = {(b >> 1}");

Run the console application and note the results, as shown in the following
output:

a << 3 = 80

a * 8 = 80

b>>1=23

The 8o result is because the bits in it were shifted three columns to the left, so the
1-bits moved into the 64- and 16-bit columns and 64 + 16 = 80. This is the equivalent
of multiplying by 8 but CPUs can perform a bit-shift faster. The 3 result is because
the 1-bits in b were shifted one column into the 2- and 1-bit columns.

[78]

Controlling Flow and Converting Types | 03

Miscellaneous operators

nameof and sizeof are convenient operators when working with types. nameo£
returns the short name (without namespace) of a variable, type, or member as

a string value, which is useful when outputting exception messages. sizeof returns
the size in bytes of simple types, which is useful for determining efficiency of data
storage.

There are many other operators; for example, the dot between a variable and its
members is called the member access operator and the round brackets at the end of a
function or method name is called the invocation operator, as shown in the following
code:

int age = 47;

// How many operators in the following statement?
string firstDigit = age.ToString() [0];

// There are four operators:

// = is the assignment operator

// . is the member access operator
// () is the invocation operator

// [1 is the indexer access operator

More Information: You can read more about some of these

\/V miscellaneous operators at the following link: https://

docs.microsoft.com/en-us/dotnet/csharp/language-
reference/operators/member-access-operators.

Understanding selection statements

Every application needs to be able to select from choices and branch along different
code paths. The two selection statements in C# are if and switch. You can use if
for all your code, but switch can simplify your code in some common scenarios such
as when there is a single variable that can have multiple values that each require
different processing.

Branching with the if statement

The if statement determines which branch to follow by evaluating a Boolean
expression. If the expression is true, then the block executes. The else block is
optional, and it executes if the if expression is false. The if statement can be
nested.

[79]

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

The if statement combined with other if statements as else if branches, as shown
in the following code:

if (expressionl)

{

// runs if expressionl is true
else if (expression2)

// runs if expressionl is false and expression2 if true
else if (expression3)

// runs if expressionl and expression2 are false
// and expression3 is true

else

// runs if all expressions are false

}

Each if statement's Boolean expression is independent of the others and unlike
switch statements does not need to reference a single value.

Let's create a console application to explore selection statements like if.

1. Create a folder and console application named SelectionStatements and
add it to the workspace.

I
\@/ Good Practice: Remember to statically import the System.

Console type to simplify statements in a console app.

=
=

2. Add the following statements inside the Main method to check whether this
console application has any arguments passed to it:

if (args.Length == 0)

{

WriteLine ("There are no arguments.") ;

}

else

{

WriteLine ("There is at least one argument.");

}

[80]

Controlling Flow and Converting Types | 03

3. Run the console application by entering the following command into
Terminal:

dotnet run

Why you should always use braces with if
statements

As there is only a single statement inside each block, the preceding code could be
written without the curly braces, as shown in the following code:

if (args.Length == 0)
WriteLine ("There are no arguments.");
else
WriteLine ("There is at least one argument.") ;

This style of the if statement should be avoided because it can introduce serious
bugs, for example, the infamous #gotofail bug in Apple's iPhone iOS operating
system. For 18 months after Apple's iOS 6 was released, in September 2012, it had a
bug in its Secure Sockets Layer (SSL) encryption code, which meant that any user
running Safari, the device's web browser, who tried to connect to secure websites,
such as their bank, was not properly secure because an important check was being
accidentally skipped.

You can read about this infamous bug at the following link: https://gotofail.com/.

Just because you can leave out the curly braces, doesn't mean you should. Your code
is not "more efficient" without them; instead, it is less maintainable and potentially
more dangerous.

Pattern matching with the if statement

A feature introduced with C# 7.0 and later is pattern matching. The if statement can
use the is keyword in combination with declaring a local variable to make your code
safer.

1. Add statements to the end of the Main method so that if the value stored in
the variable named o is an int, then the value is assigned to the local variable
named i, which can then be used inside the if statement. This is safer
than using the variable named o because we know for sure that i is an int
variable and not something else, as shown in the following code:

// add and remove the "" to change the behavior
object o = "3";

[81]

https://gotofail.com/
https://gotofail.com/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

int j = 4;

if (o is int 1)
{

WriteLine ($"{i} x {j} = {i * J}");
!

else

{

WriteLine ("o is not an int so it cannot multiply!");

}

2. Run the console application and view the results, as shown in the following
output:

o 1s not an int so it cannot multiply!

3. Delete the double-quote characters around the "3 value so that the value
stored in the variable named o is an int type instead of a string type.

4. Rerun the console application to view the results, as shown in the following
output:
3x 4 =12

Branching with the switch statement

The switch statement is different from the if statement because it compares a single
expression against a list of multiple possible case statements. Every case statement
is related to the single expression. Every case section must end with:

* The break keyword (like case 1 in the following code),

* Orthe goto case keywords (like case 2 in the following code),

* Or they should have no statements (like case 3 in the following code).

Let's write some code to explore the switch statements.

1. Enter some statements for a switch statement after the if statements that
you wrote previously. You should note that the first line is a label that can
be jumped to, and the second line generates a random number. The switch
statement branches based on the value of this random number, as shown in
the following code:

A label:
var number = (new Random()) .Next (1, 7);

WriteLine ($"My random number is {number}");

[82]

Controlling Flow and Converting Types | 03

switch (number)
{
case 1:
WriteLine ("One") ;
break; // jumps to end of switch statement
case 2:
WriteLine ("Two") ;
goto case 1;
case 3:
case 4:
WriteLine ("Three or four") ;
goto case 1;
case 5:
// go to sleep for half a second
System.Threading.Thread.Sleep (500) ;
goto A label;
default:
WriteLine ("Default") ;
break;
} // end of switch statement

I Good Practice: You can use the goto keyword to jump to another
\ / .
@ case or a label. The goto keyword is frowned upon by most
programmers but can be a good solution to code logic in some
scenarios. However, you should use it sparingly.

=
=

Run the console application multiple times in order to see what happens
in various cases of random numbers, as shown in the following example
output:

bash-3.2$ dotnet run
My random number is 4
Three or four

One

bash-3.2$ dotnet run
My random number is 2
Two

One

bash-3.2$ dotnet run
My random number is 1

One

[83]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Pattern matching with the switch statement

Like the if statement, the switch statement supports pattern matching in C# 7.0 and
later. The case values no longer need to be literal values. They can be patterns.

Let's see an example of pattern matching with the switch statement using a folder
path. If you are using macOS, then swap the commented statement that sets the path
variable and replace my username with your user folder name.

1. Add the following statement to the top of the file to import types for working
with input/output:
using System.IO;

2. Add statements to the end of the Main method to declare a string path to
a file, open it as a stream, and then show a message based on what type and
capabilities the stream has, as shown in the following code:

// string path = "/Users/markjprice/Code/Chapter03";
string path = @"C:\Code\Chapter03";

Stream s = File.Open (
Path.Combine (path, "file.txt"), FileMode.OpenOrCreate) ;
string message = string.Empty;

switch (s)

{

case FileStream writeableFile when s.CanWrite:

message = "The stream is a file that I can write to.";
break;
case FileStream readOnlyFile:
message = "The stream is a read-only file.";
break;
case MemoryStream ms:
message = "The stream is a memory address.";
break;
default: // always evaluated last despite its current position
message = "The stream is some other type.";
break;
case null:
message = "The stream is null.";
break;

WriteLine (message) ;

[84]

Controlling Flow and Converting Types | 03

3. Run the console app and note that the variable named s is declared as a stream
type so it could be any subtype of stream like a memory stream or file stream.
In this code, the stream is created using the File.Open method, which returns
a file stream and due to the FileMode, it will be writeable, so the result will be
a message that describes the situation, as shown in the following output:

The stream is a file that I can write to.

In .NET, there are multiple subtypes of stream, including FileStream and
MemoryStream. In C# 7.0 and later, your code can more concisely branch, based on
the subtype of stream, and declare and assign a local variable to safely use it. You
will learn more about the System. 10 namespace and the stream type in Chapter 9,
Working with Files, Streams, and Serialization.

Additionally, case statements can include a when keyword to perform more specific
pattern matching. In the first case statement in the preceding code, s will only be a
match if the stream is a FileStream and its CanWrite property is true.

at the following link: https://docs.microsoft.com/en-us/
dotnet/csharp/pattern-matching.

C’ More Information: You can read more about pattern matching
\"/

Simplifying switch statements with switch
expressions

In C# 8.0 or later, you can simplify switch statements using switch expressions.

Most switch statements are very simple, yet they require a lot of typing. Switch
expressions are designed to simplify the code you need to type while still expressing
the same intent.

Let's implement the previous code that uses a switch statement using a switch
expression so that you can compare the two styles.

1. Add statements to the end of the Main method to set the message based on
what type and capabilities the stream has using a switch expression, as
shown in the following code:

message = s switch
{
FileStream writeableFile when s.CanWrite
=> "The stream is a file that I can write to.",
FileStream readOnlyFile
=> "The stream is a read-only file.",
MemoryStream ms
=> "The stream is a memory address.",

[85]

https://docs.microsoft.com/en-us/dotnet/csharp/pattern-matching.
https://docs.microsoft.com/en-us/dotnet/csharp/pattern-matching.

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2.

null
=> "The stream is null.",

}i

WriteLine (message) ;

=> "The stream is some other type."

The main differences are the removal of the case and break keywords. The
underscore character is used to represent the default return value.

Run the console app, and note the result is the same as before.

More Information: You can read more about patterns and

\/V switch expressions at the following link: https://devblogs.

microsoft.com/dotnet/do-more-with-patterns-
in-c-8-0/.

Understanding iteration statements

Iteration statements repeat a block of statements either while a condition is true or for
each item in a collection. The choice of which statement to use is based on a combination
of ease of understanding to solve the logic problem and personal preference.

Looping with the while statement

The while statement evaluates a Boolean expression and continues to loop while it is
true. Let's explore iteration statements.

1.

Create a new folder and console application project named
IterationStatements and add it to the workspace.
Type the following code inside the Main method:

int x = 0;

while (x < 10)

{

WriteLine (x) ;

X++;

}

Run the console application and view the results, which should be the
numbers 0 to 9, as shown in the following output:

0

[86]

https://devblogs.microsoft.com/dotnet/do-more-with-patterns-in-c-8-0/
https://devblogs.microsoft.com/dotnet/do-more-with-patterns-in-c-8-0/

Controlling Flow and Converting Types | 03

© ©® 9 o U W N R

Looping with the do statement

The do statement is like while, except the Boolean expression is checked at the
bottom of the block instead of the top, which means that the block always executes at
least once.

1.

Type the following code at the end of the Main method:

string password = string.Empty;

do

{

Write ("Enter your password: ");
password = ReadLine() ;

}

while (password != "Pa$$SwOrd") ;

WriteLine ("Correct!") ;

Run the console application, and note that you are prompted to enter your
password repeatedly until you enter it correctly, as shown in the following
output:

Enter your password: password

Enter your password: 12345678

Enter your password: ninja

Enter your password: correct horse battery staple
Enter your password: Pa$swOrd

Correct!

As an optional challenge, add statements so that the user can only make ten
attempts before an error message is displayed.

[87]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Looping with the for statement

The for statement is like while, except that it is more succinct. It combines:

* Aninitializer expression, which executes once at the start of the loop.

* A conditional expression, which that executes on every iteration at the start
of the loop to check whether the looping should continue.

* Aniterator expression, which that executes on every loop at the bottom of
the statement.

The for statement is commonly used with an integer counter. Let's explore
some code.

1. Enter a for statement to output the numbers 1 to 10, as shown in the
following code:

for (int y = 1; y <= 10; y++)

{

WriteLine (y) ;

}

2. Run the console application to view the result, which should be the numbers
1 to 10.

Looping with the foreach statement

The foreach statement is a bit different from the previous three iteration statements.

It is used to perform a block of statements on each item in a sequence, for example,
an array or collection. Each item is usually read-only, and if the sequence structure
is modified during iteration, for example, by adding or removing an item, then an
exception will be thrown.

1. Type statements to create an array of string variables and then output the
length of each one, as shown in the following code:

string[] names = { "Adam", "Barry", "Charlie" };

foreach (string name in names)

{

WriteLine ($"{name} has {name.Length} characters.");

}

2. Run the console application and view the results, as shown in the following
output:

Adam has 4 characters.

[88]

Controlling Flow and Converting Types | 03

Barry has 5 characters.

Charlie has 7 characters.

Understanding how foreach works internally

Technically, the foreach statement will work on any type that follows these rules:

1. The type must have a method named GetEnumerator that returns an object.

2. The returned object must have a property named Current and a method
named MoveNext.

3. The MoveNext method must return true if there are more items to enumerate
through or false if there are no more items.

There are interfaces named IEnumerable and IEnumerable<T> that formally define
these rules but technically the compiler does not require the type to implement these
interfaces.

The compiler turns the foreach statement in the preceding example into something
similar to the following pseudocode:

IEnumerator e = names.GetEnumerator () ;

while (e.MoveNext ())

{

string name = (string)e.Current; // Current is read-only!
WriteLine ($"{name} has {name.Length} characters.");

}

Due to the use of an iterator, the variable declared in a foreach statement cannot be
used to modify the value of the current item.

Casting and converting between types

You will often need to convert values of variables between different types. For
example, data input is often entered as text at the console, so it is initially stored in

a variable of the string type, but it then needs to be converted into a date/time, or
number, or some other data type, depending on how it should be stored and processed.

Sometimes you will need to convert between number types, like between an integer
and a floating-point, before performing calculations.

Converting is also known as casting, and it has two varieties: implicit and explicit.
Implicit casting happens automatically, and it is safe, meaning that you will not lose
any information.

[89]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Explicit casting must be performed manually because it may lose information, for
example, the precision of a number. By explicitly casting, you are telling the C#
compiler that you understand and accept the risk.

Casting numbers implicitly and explicitly
Implicitly casting an int variable into a double variable is safe because no
information can be lost.

1. Create a new folder and console application project named
CastingConverting and add it to the workspace.

2. Inthe Main method, enter statements to declare and assign an int variable
and a double variable, and then implicitly cast the integer's value when
assigning it to the double variable, as shown in the following code:
int a = 10;
double b = a; // an int can be safely cast into a double
WriteLine (b) ;

3. Inthe Main method, enter the following statements:

double ¢ = 9.8;
int d = ¢; // compiler gives an error for this line
WriteLine (d) ;

4. View the PROBLEMS window by navigating to View | Problems, and note
the error message, as shown in the following screenshot:

Program.cs — Chapter03 (Workspace)

C Programcs X m -
o
static void Main(string[] args)
e int a = 18;

11 double b = a; // an int can be safely cast into a double
WriteLine{b);

double ¢ = 9.3; -

int d c; // compiler gives an error for this line

C* Program.cs

» OUTLINE

» ILSPY DECOMPILED MEMBERS

@140 & BCasungConverting Ln13, Col 2 Spaces:2 UTF-8 withBOM CRLF C# SharpPad:5255 @ A&

If you need to create the required assets to show PROBLEMS, then

try closing and reopening the workspace, select the correct project for
OmniSharp, and then click Yes when prompted to create missing assets for
example, the .vscode folder. The status bar should show the currently active
project, like CastingConverting in the preceding screenshot.

[90]

Controlling Flow and Converting Types | 03

You cannot implicitly cast a double variable into an int variable because it is
potentially unsafe and could lose data.

View the TERMINAL window, and enter the dotnet run command, and
note the error message, as shown in the following output:
Program.cs(19,15) : error CS0266: Cannot implicitly convert type
'double' to 'int'. An explicit conversion exists (are you missing

a cast?) [/Users/markjprice/Code/Chapter03/CastingConverting/
CastingConverting.csproj]

The build failed. Please fix the build errors and run again.

You must explicitly cast a double variable into an int variable using a pair
of round brackets around the type you want to cast the double type into. The
pair of round brackets is the cast operator. Even then, you must beware that
the part after the decimal point will be trimmed off without warning because
you have chosen to perform an explicit cast and therefore understand the
consequences.

Modify the assignment statement for the d variable, as shown in the
following code:

int d = (int)c;

WriteLine(d); // d is 9 losing the .8 part

Run the console application to view the results, as shown in the following
output:

10
9

We must perform a similar operation when converting values between larger
integers and smaller integers. Again, beware that you might lose information
because any value too big will have its bits copied and then interpreted in
ways that you might not expect!

Enter statements to declare and assign a 1ong 64-bit variable to an int 32-bit
variable, both using a small value that will work and a too-large value that
will not, as shown in the following code:

long e = 10;

int £ = (int)e;

WriteLine ($"e is {e:NO} and f is {f:NO}");

e = long.MaxValue;
f = (int)e;
WriteLine ($"e is {e:NO} and f is {£f:NO}");

[91]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

9. Run the console application to view the results, as shown in the following
output:

e ig 10 and f is 10
e is 9,223,372,036,854,775,807 and £ is -1

10. Modify the value of e to 5 billion, as shown in the following code:
e = 5_000_000_000;

11. Run the console application to view the results, as shown in the following
output:

e is 5,000,000,000 and £ is 705,032,704

Converting with the System.Convert type

An alternative to using the cast operator is to use the System. Convert type. The
System.Convert type can convert to and from all the C# number types as well as
Booleans, strings, and date and time values.

1. At the top of the Program. cs file, statically import the System. Convert
class, as shown in the following code:

using static System.Convert;

2. Add statements to the bottom of the Main method to declare and assign
a value to a double variable, convert it to an integer, and then write both
values to the console, as shown in the following code:
double g = 9.8;
int h = ToInt32(g);

WriteLine($"g is {g} and h is {h}");

3. Run the console application and view the result, as shown in the following
output:

g is 9.8 and h is 10

One difference between casting and converting is that converting rounds the double
value 9.8 up to 10 instead of trimming the part after the decimal point.

Rounding numbers

You have now seen that the cast operator trims the decimal part of a real number and
that the System. Convert methods round up or down. However, what is the rule for
rounding?

[92]

Controlling Flow and Converting Types | 03

Understanding the default rounding rules

In British primary schools for children aged 5 to 11, pupils are taught to round up if
the decimal part is .5 or higher and round down if the decimal part is less.

Let's explore if C# follows the same primary school rule.

1.

At the bottom of the Main method, add statements to declare and assign an
array of double values, convert each of them to an integer, and then write the
result to the console, as shown in the following code:

double[] doubles = newl]
{ 9.49, 9.5, 9.51, 10.49, 10.5, 10.51 };

foreach (double n in doubles)

{

WriteLine ($"ToInt ({n}) is {ToInt32(n)}");

}

Run the console application and view the result, as shown in the following
output:

ToInt (9.49) is 9
ToInt(9.5) is 10
ToInt (9.51) is 10
ToInt (10.49) is 10
ToInt (10.5) is 10
ToInt (10.51) is 11

We have shown that the rule for rounding in C# is subtly different from the primary
school rule:

It always rounds down if the decimal part is less than the midpoint .5.
It always rounds up if the decimal part is more than the midpoint .5.

It will round up if the decimal part is the midpoint .5 and the non-decimal
part is odd, but it will round down if the non-decimal part is even.

This rule is known as Banker's Rounding, and it is preferred because it reduces bias
by alternating when it rounds up or down. Sadly, other languages such as JavaScript
use the primary school rule.

[93]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Taking control of rounding rules

You can take control of the rounding rules by using the Round method of the Math
class.

1. At the bottom of the Main method, add statements to round each of the double
values using the "away from zero" rounding rule also known as rounding "up",
and then write the result to the console, as shown in the following code:

foreach (double n in doubles)

{

WriteLine (format:
"Math.Round ({0}, 0, MidpointRounding.AwayFromZero) is {1}",
arg0: n,
argl: Math.Round(value: n,
digits: 0,
mode: MidpointRounding.AwayFromZero)) ;

}

2. Run the console application and view the result, as shown in the following
output:

Math.Round(9.49, 0, MidpointRounding.AwayFromZero) is 9
Math.Round (9.5, 0, MidpointRounding.AwayFromZero) is 10
Math.Round(9.51, 0, MidpointRounding.AwayFromZero) is 10
Math.Round(10.49, 0, MidpointRounding.AwayFromZero) is 10
Math.Round(10.5, 0, MidpointRounding.AwayFromZero) is 11

Math.Round(10.51, 0, MidpointRounding.AwayFromZero) is 11

More Information: MidpointRounding.AwayFromZero
/ is the primary school rule. You can read more about taking
\/;»; control of rounding at the following link: https://docs.
microsoft.com/en-us/dotnet/api/system.math.
round?view=netcore-3.0.

I
\@/ Good Practice: For every programming language that you use,

check its rounding rules. They may not work the way you expect!

=
=

Converting from any type to a string

The most common conversion is from any type into a string variable for outputting
as human-readable text, so all types have a method named Tostring that they
inherit from the System.0Object class.

[94]

https://docs.microsoft.com/en-us/dotnet/api/system.math.round?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.math.round?view=netcore-3.0

Controlling Flow and Converting Types | 03

The Tostring method converts the current value of any variable into a textual
representation. Some types can't be sensibly represented as text, so they return their
namespace and type name.

1.

At the bottom of the Main method, type statements to declare some variables,
convert them to their string representation, and write them to the console,
as shown on the following code:

int number = 12;
WriteLine (number.ToString()) ;

bool boolean = true;
WriteLine (boolean.ToString()) ;

DateTime now = DateTime.Now;
WriteLine (now.ToString()) ;

object me = new object () ;
WriteLine (me.ToString()) ;

Run the console application and view the result, as shown in the following
output:

12

True

27/01/2019 13:48:54

System.Object

Converting from a binary object to a string

When you have a binary object like an image or video that you want to either store
or transmit, you sometimes do not want to send the raw bits, because you do not
know how those bits could be misinterpreted, for example, by the network protocol
transmitting them or another operating system that is reading the store binary object.

The safest thing to do is to convert the binary object into a string of safe characters.
Programmers call this Base64 encoding.

The convert type has a pair of methods, ToBase64String and FromBase64String,
that perform this conversion for you.

1.

Add statements to the end of the Main method to create an array of bytes
randomly populated with byte values, write each byte nicely formatted to the
console, and then write the same bytes converted to Base64 to the console, as
shown in the following code:

// allocate array of 128 bytes
byte[] binaryObject = new byte[128];

[95]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

// populate array with random bytes
(new Random ()) .NextBytes (binaryObject) ;

WriteLine ("Binary Object as bytes:");

for (int index = 0; index < binaryObject.Length; index++)
{
Write ($"{binaryObject [index] :X} ") ;

}

WriteLine () ;

// convert to Baseé64 string and output as text
string encoded = Convert.ToBaseé64String(binaryObject) ;
WriteLine ($"Binary Object as Base64: {encoded}");

By default, an int value would output assuming decimal notation, that
is, basel0. You can use format codes such as :X to format the value using
hexadecimal notation.

2. Run the console application and view the result:

Binary Object as bytes:

B3
4F
90
E7
A9
79

4D 55
7A 81
7A D4
47 B7
3C D5

DE
EC
36
62
E2

2D
49
42
C3
46

E BB CF BE 4D E6 53 C3 C2 9B 67 3 45 F9 E5 20 61 7E
FO 49 1D 8E D4 F7 DB 54 AF A0 81 5 B8 BE CE F8 36
4 75 81 1B AB 51 CE 5 63 AC 22 72 DE 74 2F 57 7F CB
F4 2D 61 93 85 18 EA 6 17 12 AE 44 A8 D B8 4C 89 85
EO0O 59 CS DF 10 AF ED EF 8AAl Bl 8D EE 4A BE 48 EC

A5 A 5F 2F 30 87 4A C7 7F 5D C1 D 26 EE

Binary Object as Base64: s01V3i00u8++TeZTw8KbZwNF +eUgYX5PeoHsS

fBJHY7U99tUr6CBBbi+2zvg2kHrUNKkIEdYEbglHOBWOsInLedC9Xf8vnR7diw/QtY
ZOFGOOGFxKURKgNUEyJhak81eJG4FnJ3xCv7e+KobGN7kg+SO x5pQpfLzCHSsd/
XcENJu4=

Parsing from strings to numbers or dates and

times

The second most common conversion is from strings to numbers or date and time

values.

The opposite of ToString is Parse. Only a few types have a Parse method,
including all the number types and DateTime.

1. Add statements to the Main method to parse an integer and a date and time
value from strings and then write the result to the console, as shown in the
following code:

[96]

Controlling Flow and Converting Types | 03

int age = int.Parse("27");
DateTime birthday = DateTime.Parse("4 July 1980");

WriteLine ($"I was born {age} years ago.");
WriteLine ($"My birthday is {birthday}.");
WriteLine ($"My birthday is {birthday:D}.");

Run the console application and view the result, as shown in the following
output:

I was born 27 years ago.
My birthday is 04/07/1980 00:00:00.
My birthday is 04 July 1980.

By default, a date and time value outputs with the short date and time
format. You can use format codes such as D to output only the date part using
long date format.

More Information: There are many other format codes for

D’ common scenarios that you can read about at the following
\"/

link: https://docs.microsoft.com/en-us/dotnet/
standard/base-types/standard-date-and-time-
format-strings.

One problem with the parse method is that it gives errors if the string
cannot be converted.

Add a statement to the bottom of the Main method to attempt to parse a string
containing letters into an integer variable, as shown in the following code:

int count = int.Parse("abc") ;

Run the console application and view the result, as shown in the following
output:

Unhandled Exception: System.FormatException: Input string was not
in a correct format.

As well as the preceding exception message, you will see a stack trace. I have not
included stack traces in this book because they take up too much space.

Avoiding exceptions using the TryParse method

To avoid errors, you can use the TryParse method instead. TryParse attempts to
convert the input string and returns true if it can convert it and false if it cannot.

[97]

https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

The out keyword is required to allow the TryParse method to set the count variable
when the conversion works.

1.

Replace the int count declaration with statements to use the TryParse
method and ask the user to input a count for a number of eggs, as shown in
the following code:

Write ("How many eggs are there? ");

int count;

string input = Console.ReadLine() ;
if (int.TryParse (input, out count))

{
}
else

{
}

Run the console application.

WriteLine ($"There are {count} eggs.");

WriteLine ("I could not parse the input.");

Enter 12 and view the result, as shown in the following output:
How many eggs are there? 12

There are 12 eggs.

Run the console application again.

Enter twelve and view the result, as shown in the following output:

How many eggs are there? twelve
I could not parse the input.

You can also use methods of the System. Convert type to convert string values into
other types; however, like the pParse method, it gives an error if it cannot convert.

Handling exceptions when converting types

You've seen several scenarios when errors have occurred when converting types.
When this happens, we say a runtime exception has been thrown.

As you have seen, the default behavior of a console application is to write a message
about the exception including a stack trace in the output and then stop running the
application.

L, Good Practice: Avoid writing code that will throw an exception
@ whenever possible, perhaps by performing if statement checks, but
sometimes you can't. In those scenarios, you could catch the exception
and handle it in a better way than the default behavior.

=
=
=

[98]

Controlling Flow and Converting Types | 03

Wrapping error-prone code in a try block

When you know that a statement can cause an error, you should wrap that statement
in a try block. For example, parsing from text to a number can cause an error. Any
statements in the catch block will be executed only if an exception is thrown by a
statement in the try block. We don't have to do anything inside the catch block.

1.

Create a folder and console application named HandlingExceptions and
add it to the workspace.

In the Main method, add statements to prompt the user to enter their age and
then write their age to the console, as shown in the following code:

WriteLine ("Before parsing") ;

Write ("What is your age? ");

string input = Console.ReadLine() ;
try
{

int age = int.Parse (input) ;

WriteLine ($"You are {age} years old.");

}

catch

{
}

WriteLine ("After parsing") ;

This code includes two messages to indicate before parsing and after parsing
to make clearer the flow through the code. These will be especially useful as
the example code grows more complex.

Run the console application.

Enter a valid age, for example, 47, and view the result, as shown in the
following output:

Before parsing

What is your age? 47

You are 47 years old.

After parsing

Run the console application again.

Enter an invalid age, for example, kermit, and view the result, as shown in
the following output:

Before parsing

[99]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

What is your age? Kermit

After parsing

When the code executed, the error exception was caught and the default message
and stack trace were not output, and the console application continued running. This
is better than the default behavior, but it might be useful to see the type of error that
occurred.

Catching all exceptions

To get information about any type of exception that might occur, you can declare a
variable of type System.Exception to the catch block.

1. Add an exception variable declaration to the catch block and use it to write
information about the exception to the console, as shown in the following code:

catch (Exception ex)

{

WriteLine ($"{ex.GetType ()} says {ex.Message}");

}

Run the console application.

Enter an invalid age, for example, kermit, and view the result, as shown in
the following output:

Before parsing
What is your age? kermit

System.FormatException says Input string was not in a correct
format.

After parsing

Catching specific exceptions

Now that we know which specific type of exception occurred, we can improve our
code by catching just that type of exception and customizing the message that we
display to the user.

1. Leave the existing catch block, and above it, add a new catch block for the
format exception type, as shown in the following highlighted code:
catch (FormatException)
{
WriteLine ("The age you entered is not a valid number format.");

}

catch (Exception ex)

{

[100]

Controlling Flow and Converting Types | 03

WriteLine ($"{ex.GetType ()} says {ex.Message}");

}

Run the console application.

Enter an invalid age, for example, kermit, and view the result, as
shown in the following output:

Before parsing
What is your age? kermit
The age you entered is not a valid number format.

After parsing

The reason we want to leave the more general catch below is because there
might be other types of exceptions that can occur.

Run the console application.

Enter a number that is too big for an integer, for example,
9876543210, and view the result, as shown in the following output:
Before parsing

What is your age? 9876543210

System.OverflowException says Value was either too large or too
small for an Int32.

After parsing
Let's add another catch block for this type of exception.

Leave the existing catch blocks, and add a new catch block for the
overflow exception type, as shown in the following highlighted code:

catch (OverflowException)

{

WriteLine ("Your age is a valid number format but it is either
too big or small.");

}

catch (FormatException)

{

WriteLine ("The age you entered is not a valid number format.");

}

Run the console application.

Enter a number that is too big, and view the result, as shown in the
following output:

Before parsing

[101]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

What is your age? 9876543210

Your age is a valid number format but it is either too big or
small.

After parsing

The order in which you catch exceptions is important. The correct order is related
to the inheritance hierarchy of the exception types. You will learn about inheritance
in Chapter 5, Building Your Own Types with Object-Oriented Programming. However,
don't worry too much about this —the compiler will give you build errors if you get
exceptions in the wrong order anyway.

Checking for overflow

Earlier, we saw that when casting between number types, it was possible to lose
information, for example, when casting from a 1ong variable to an int variable.
If the value stored in a type is too big, it will overflow.

Throwing overflow exceptions with the checked
statement

The checked statement tells .NET to throw an exception when an overflow happens
instead of allowing it to happen silently.

We will set the initial value of an int variable to its maximum value minus one.
Then, we will increment it several times, outputting its value each time. Once it

gets above its maximum value, it overflows to its minimum value and continues
incrementing from there.

1. Create a folder and console application named CheckingForOverflow and
add it to the workspace.

2. Inthe Main method, type statements to declare and assign an integer to one
less than its maximum possible value, and then increment it and write its
value to the console three times, as shown in the following code:

int X = int.MaxValue - 1;

WriteLine ($"Initial value: {x}");

X++;

WriteLine ($"After incrementing: {x}");
X++;

WriteLine ($"After incrementing: {x}");
X++;

WriteLine ($"After incrementing: {x}");

[102]

Controlling Flow and Converting Types | 03

Run the console application and view the result, as shown in the following
output:

Initial value: 2147483646

After incrementing: 2147483647

After incrementing: -2147483648
After incrementing: -2147483647

Now, let's get the compiler to warn us about the overflow by wrapping the
statements using a checked statement block, as shown highlighted in the
following code:

checked
{
int x = int.MaxValue - 1;
WriteLine ($"Initial value: {x}");
X++;
WriteLine ($"After incrementing: {x}");
X++;
WriteLine ($"After incrementing: {x}");
X++;

WriteLine ($"After incrementing: {x}");

}

Run the console application and view the result, as shown in the
following output:

Initial value: 2147483646

After incrementing: 2147483647

Unhandled Exception: System.OverflowException: Arithmetic
operation resulted in an overflow.

Just like any other exception, we should wrap these statements in a

try statement block and display a nicer error message for the user, as shown
in the following code:

try

{
!
catch (OverflowException)

{
}

Run the console application and view the result, as shown in the
following output:

// previous code goes here

WriteLine ("The code overflowed but I caught the exception.");

Initial value: 2147483646
After incrementing: 2147483647
The code overflowed but I caught the exception.

[103]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Disabling compiler overflow checks with the
unchecked statement

A related keyword is unchecked. This keyword switches off overflow checks
performed by the compiler within a block of code.

1. Type the following statement at the end of the previous statements.
The compiler will not compile this statement because it knows it would
overflow:

int y = int.MaxValue + 1;
2. View the PROBLEMS window by navigating to View | Problems, and

note a compile-time check is shown as an error message, as shown in the
following screenshot:

@ ® Program.cs — Chapter3 (Workspace)
@ S XPLORER C Programecs % @
“ OPEN EDITORS eckingForQvartiow ¥ £ Beanr = % L} CharkinnFor g arkinnf arfir ’ @M
i = 2147483647
Bl % © Program.cs CheckingForowertiow. 1 = ' int int.MaxValue = 214748364
~ CHAPTERODS (WORKSPACE) 24 catch {0 Represents the largest possible value of an System.Int32 . This field is constant.
e 35 {
¥ : Writel The operation overflows at compile time in checked mode (CS@22@)
g > } [CheckingForOverflowl
4 28 Peek Problem Mo quick fixes avallable
2 0 2 int y = int.MaxValue » 1; =
30 1
~0 1 }
] B 32 1
© Program.cs 1 PROBLEMS ({ DEBLG CONSOLE NINAL her. Eg:text, ™. 8§ & »~ X
v O Program.cs 1
frp > OUTUNE @7 1 overfl t compile time i d mode (CS02 KingFor
» ILSPY DECOMPILED MEMBERS

G140 & BCheckingForOverllon Ln28 Col1 Spaces:d UTF-8with BOM CRLF C# SharpPad:5255 @ &

3. To disable compile-time checks, wrap the statement in an unchecked block,
write the value of y to the console, decrement it, and repeat, as shown in the
following code:

unchecked

{

int y = int.MaxValue + 1;

WriteLine ($"Initial value: {y}");:

Y--7
WriteLine ($"After decrementing: {y}");
Y--7

WriteLine ($"After decrementing: {y}");

}

4. Run the console application and view the results, as shown in the
following output:

Initial value: -2147483648

[104]

Controlling Flow and Converting Types | 03

After decrementing: 2147483647
After decrementing: 2147483646

Of course, it would be rare that you would want to explicitly switch off a check like
this because it allows an overflow to occur. But, perhaps, you can think of a scenario
where you might want that behavior.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore with deeper research into this chapter's topics.

Exercise 3.1 — Test your knowledge

Answer the following questions:

1. What happens when you divide an int variable by 0?
2. What happens when you divide a double variable by 0?

3. What happens when you overflow an int variable, that is, set it to a
value beyond its range?

What is the difference between x = y++; andx = ++y;?

What is the difference between break, continue, and return when
used inside a loop statement?

6. What are the three parts of a for statement and which of them are
required?

What is the difference between the = and == operators?
Does the following statement compile? for (; true;) ;
What does the underscore _ represent in a switch expression?

10. What interface must an object implement to be enumerated over by using
the foreach statement?

Exercise 3.2 — Explore loops and overflow
What will happen if this code executes?

int max = 500;
for (byte i = 0; 1 < max; i++)

{

WriteLine (1) ;

}

[105]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Create a console application in Chapter03 named Exercise02 and enter the
preceding code. Run the console application and view the output. What happens?

What code could you add (don't change any of the preceding code) to warn us about
the problem?

Exercise 3.3 — Practice loops and operators

FizzBuzz is a group word game for children to teach them about division. Players
take turns to count incrementally, replacing any number divisible by three with
the word fizz, any number divisible by five with the word buzz, and any number
divisible by both with fizzbuzz.

Some interviewers give applicants simple FizzBuzz-style problems to solve during
interviews. Most good programmers should be able to write out on paper or
whiteboard a program to output a simulated FizzBuzz game in under a couple

of minutes.

Want to know something worrisome? Many computer science graduates can't.
You can even find senior programmers who take more than 10-15 minutes to write
a solution.

"199 out of 200 applicants for every programming job can't write code at
all. I repeat: they can't write any code whatsoever."

- Reginald Braithwaite

This quote is taken from the following website: http://blog.codinghorror.com/
why-cant-programmers-program/ .

, More Information: Refer to the following link for more
\/ip> information: http://imranontech.com/2007/01/24/using-
fizzbuzz-to-find-developers-who-grok-coding/.

Create a console application in Chapter03 named Exercise03 that outputs a
simulated FizzBuzz game counting up to 100. The output should look something like
the following screenshot:

[106]

http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/.
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/.

Controlling Flow and Converting Types | 03

L @ Chapterd3 [Warkspace)

“+ OPEN EDITORS
(@R - cHAPTERDS (WORKSPACE)

N : GOGEEGE UTBUT TERMINA B 4 bash + + M 8 ~ x

Marks-MacBook-Pro-13:Ex
1, 2 z, 4 zz, Fizz
. FizzBuzz,

cised3 markjprice$ dotnet run
7., 8

&1, 62, F

7, Fizz, 73,
Wl OUTLINE Fizz, 82, 83, Fizz, Buzz, BG, Fizz, 88,
? 91, 92, Fizz, 94, Buzz, Fizz, 97, 98, Fi

6
7

> ILSPY DECOMPILED MEMBERS
c xerciseld SharpPad:5255
@olA0 & WE 03 SharpPad:5255 @ &

Exercise 3.4 — Practice exception handling

Create a console application in Chapter03 named Exercise04 that asks the user for
two numbers in the range 0-255 and then divides the first number by the second:

Enter a number between 0 and 255: 100
Enter another number between 0 and 255: 8

100 divided by 8 is 12

Write exception handlers to catch any thrown errors, as shown in the following
output:

Enter a number between 0 and 255: apples

Enter another number between 0 and 255: bananas

FormatException: Input string was not in a correct format.

Exercise 3.5 — Test your knowledge of
operators

What are the values of x and y after the following statements execute?

1. x = 3;
YV = 2 + ++X;
2. x = 3 << 2;
y = 10 >> 1;
3. x =10 & 8;
y =10 | 7;

[107]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Exercise 3.6 — Explore topics

Use the following links to read in more detail about the topics covered in this
chapter:

C# Operators: https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/statements-expressions-operators/operators

Bitwise and shift operators: https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/operators/bitwise-and-shift-
operators#left-shift-operator-

Selection Statements (C# Reference): https://docs.microsoft.com/
en-us/dotnet/articles/csharp/language-reference/keywords/
selection-statements

Iteration Statements (C# Reference): https://docs.microsoft.com/
en-us/dotnet/articles/csharp/language-reference/keywords/
iteration-statements

Jump Statements (C# Reference): https://docs.microsoft.com/en-
us/dotnet/articles/csharp/language-reference/keywords/jump-
statements

Casting and Type Conversions (C# Programming Guide): https://docs.
microsoft.com/en-us/dotnet/articles/csharp/programming-guide/
types/casting-and-type-conversions

Exception Handling Statements (C# Reference): https://docs.
microsoft.com/en-us/dotnet/articles/csharp/language-reference/
keywords/exception-handling-statements

Summary

In this chapter, you experimented with some operators, learned how to branch and
loop, how to convert between types, and how to catch exceptions.

You are now ready to learn how to reuse blocks of code by defining functions, how
to pass values into them and get values back, and how to track down bugs in your
code and squash them!

[108]

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/operators
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/selection-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/selection-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/selection-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/iteration-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/iteration-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/iteration-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/jump-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/jump-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/jump-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/exception-handling-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/exception-handling-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/exception-handling-statements

Chapter 04

Writing, Debugging, and
Testing Functions

This chapter is about writing functions to reuse code, debugging logic errors during
development, logging exceptions during runtime, and unit testing your code to
remove bugs and ensure stability and reliability.

This chapter covers the following topics:

* Writing functions

* Debugging during development
* Logging during runtime

* Unit testing

Writing functions

A fundamental principle of programming is Don't Repeat Yourself (DRY).

While programming, if you find yourself writing the same statements over and over
again, then turn those statements into a function. Functions are like tiny programs
that complete one small task. For example, you might write a function to calculate
sales tax and then reuse that function in many places in a financial application.

Like programs, functions usually have inputs and outputs. They are sometimes
described as black boxes, where you feed some raw materials in one end and

a manufactured item emerges at the other. Once created, you don't need to think
about how they work.

Let's say that you want to help your child learn their times tables, so you want
to make it easy to generate a times table for a number, such as the 12 times table:

1 x 12
2 x 12

12
24

12 x 12 = 144

[109]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

You previously learned about the for statement earlier in this book, so you know
that for can be used to generate repeated lines of output when there is a regular
pattern, like the 12 times table, as shown in the following code:

for (int row = 1; row <= 12; row++)

{

Console.WriteLine ($"{row} x 12 = {row * 12}");

}

However, instead of outputting the 12 times table, we want to make this more
flexible, so it could output the times table for any number. We can do this by creating
a function.

Writing a times table function

Let's explore functions by creating a function to draw a times table.

1. Inyour Code folder, create a folder named Chaptero4.

2. Start Visual Studio Code. Close any open folder or workspace and save the
current workspace in the Chaptero04 folder as Chapter04 .code-workspace.

3. Inthe chaptero4 folder, create a folder named WritingFunctions, add it
to the chapter04 workspace, and create a new console application project
in WritingFunctions

4. Modify Program.cs, as shown in the following code:

using static System.Console;

namespace WritingFunctions

{

class Program

{

static void TimesTable (byte number)

{

WriteLine ($"This is the {number} times table:");

for (int row = 1; row <= 12; row++)
{
WriteLine (
$"{row} x {number} = {row * number}");
}
WriteLine () ;

}

static void RunTimesTable ()

{

[110]

Writing, Debugging, and Testing Functions | 04

bool isNumber;
do

{

Write ("Enter a number between 0 and 255: ") ;

isNumber = byte.TryParse (
ReadLine (), out byte number) ;

if (isNumber)

{

TimesTable (number) ;

}

else

{

WriteLine ("You did not enter a valid number!") ;

}
}

while (isNumber) ;

static void Main(string[] args)

{

RunTimesTable () ;

}
}
}

In the preceding code, note the following:
° We have statically imported the console type so that we can simplify
calls to its methods such as writeLine.

We have written a function named TimesTable that must have
a byte value passed to it named number.

TimesTable does not return a value to the caller, so it is declared
with the void keyword before its name.

TimesTable uses a for statement to output the times table for the
number passed to it.

We have written a function named RunTimesTable that prompts the
user to enter a number, and then calls TimesTable, passing it the
entered number. It loops while the user enters valid numbers.

We call RunTimesTable in the Main method.

5. Run the console application.

[111]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

6. Enter a number, for example, 6, and then view the result, as shown in the
following output:

Enter a number between 0 and 255: 6

This is the 6 times table:

X

X

X

©® 9 o U W N R
X

10 x 6
11 x 6
12 x 6

O OO OO OO OO OO O O O

= 6

=12
= 18
= 24
= 30
= 36
= 42
= 48
= 54

= 60
= 66
= 72

Writing a function that returns a value

The previous function performed actions (looping and writing to the console), but it
did not return a value. Let's say that you need to calculate sales or valued-added tax
(VAT). In Europe, VAT rates can range from 8% in Switzerland to 27% in Hungary.
In the United States, state sales taxes can range from 0% in Oregon to 8.25% in

California.

1. Add a function to the Program class named calculateTax, with a second
function to run it, as shown in the code below. Before you run the code, note
the following;:

o

The calculateTax function has two inputs: A parameter named
amount that will be the amount of money spent, and a parameter
named twoLetterRegionCode that will be the region the amount is
spent in.

The calculateTax function will perform a calculation using

a switch statement, and then return the sales tax or VAT owed on
the amount as a decimal value; so, before the name of the function,
we have declared the data type of the return value.

The RunCalculateTax function prompts the user to enter an amount
and a region code, and then calls calculateTax and outputs the
result.

[112]

Writing, Debugging, and Testing Functions | 04

static decimal CalculateTax(
decimal amount, string twoLetterRegionCode)

decimal rate = 0.0M;
switch (twoLetterRegionCode)
{
case "CH": // Switzerland
rate = 0.08M;
break;
case "DK": // Denmark
case "NO": // Norway
rate = 0.25M;
break;
case "GB": // United Kingdom
case "FR": // France
rate = 0.2M;
break;
case "HU": // Hungary
rate = 0.27M;
break;
case "OR": // Oregon
case "AK": // Alaska
case "MT": // Montana
rate = 0.0M; break;
case "ND": // North Dakota
case "WI": // Wisconsin
case "ME": // Maryland
case "VA": // Virginia
rate = 0.05M;
break;
case "CA": // California
rate = 0.0825M;
break;
default: // most US states
rate = 0.06M;
break;

}

return amount * rate;

static void RunCalculateTax()

{

Write ("Enter an amount: ") ;
string amountInText = ReadLine() ;

[113]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Write ("Enter a two-letter region code: ");
string region = ReadLine() ;

if (decimal.TryParse (amountInText, out decimal amount))

decimal taxToPay = CalculateTax(amount, region) ;
WriteLine ($"You must pay {taxToPay} in sales tax.");

}

else

{

WriteLine ("You did not enter a valid amount!");

2. Inthe Main method, comment the RunTimesTable method call, and call the
RunSalesTax method, as shown in the following code:

// RunTimesTable () ;
RunSalesTax () ;

3. Run the console application.

Enter an amount like 149 and a valid region code like FR to view the result,
as shown in the following output:

Enter an amount: 149

Enter a two-letter region code: FR

You must pay 29.8 in sales tax.

Challenge: Can you think of any problems with the
, CalculateTax function as written? What would happen if the
\/§p> user enters a code like £r or UK? How could you rewrite the
function to improve it? Would using a switch expression instead
of a switch statement be clearer?

Writing mathematical functions

Although you might never create an application that needs to have mathematical
functionality, everyone studies mathematics at school, so using mathematics
is a common way to learn about functions.

Converting numbers from ordinal to cardinal

Numbers that are used to count are called cardinal numbers, for example, 1, 2, and 3.

Whereas numbers that are used to order are ordinal numbers, for example, 1st, 2nd,
and 3rd.

[114]

Writing, Debugging, and Testing Functions | 04

Write a function named CardinalToOrdinal that converts a cardinal int
value into an ordinal string value; for example, it converts 1 into 1st, 2 into

2nd, and so on, as shown in the following code:

static string CardinalToOrdinal (int number)

{

switch (number)
{
case 11:
case 12:
case 13:
return $"{number}th";
default:
string numberAsText = number.ToString() ;
char lastDigit = numberAsText [numberAsText.Length - 1];
string suffix = string.Empty;
switch (lastDigit)
{
case 'l':
suffix = "st";
break;
case '2':
suffix = "nd";
break;
case '3':
suffix = "rd";
break;
default:
suffix = "th";
break;
}

return $"{number}{suffix}";

static void RunCardinalToOrdinal ()

{

for (int number = 1; number <= 40; number++)

{

Write ($"{CardinalToOrdinal (number)} ") ;

}

WriteLine () ;

[115]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

From the preceding code, note the following;:

o

The cardinalToOrdinal function has one input: a parameter of
the int type named number, and one output: a return value of the
string type.

A switch statement is used to handle the special cases of 11, 12, and
13.

A nested switch statement then handles all other cases: if the last
digit is 1, then use st as the suffix, if the last digit is 2, then use nd as
the suffix, if the last digit is 3, then use rd as the suffix, and if the last
digit is anything else, then use th as the suffix.

The RunCardinalToOrdinal function uses a for statement to loop
from 1 to 40, calling the CardinalToOrdinal function for each
number and writing the returned string to the console, separated
by a space character.

6. In the Main method, comment the RunSalesTax method call, and call the
RunCardinalToOrdinal method, as shown in the following code:

// RunTimesTable () ;
// RunSalesTax () ;
RunCardinalToOrdinal () ;

7. Run the console application and view the results, as shown in the following

output:

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
l6th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th
29th 30th 31st 32nd 33rd 34th 35th 36th 37th 38th 39th 40th

Calculating factorials with recursion

The factorial of 5 is 120, because factorials are calculated by multiplying the starting
number by one less than itself, and then by one less again, and so on, until the
number is reduced to 1. An example can be seenin: 5 x4 x3 x2x 1 =120.

We will write a function named Factorial; this will calculate the factorial for an
int passed to it as a parameter. We will use a clever technique called recursion,
which means a function that calls itself within its implementation, either directly

or indirectly.

<

More Information: Recursion is clever, but it can lead to
problems, such as a stack overflow due to too many function
calls because memory is used to store data on every function call
and it eventually uses too much.

[116]

Writing, Debugging, and Testing Functions | 04

Iteration is a more practical, if less succinct, solution in languages

https://en.wikipedia.org/wiki/Recursion_ (computer

\/V like C#. You can read more about this at the following link:

science) #Recursion versus_iteration

1. Add a function named Factorial, and a function to call it, as shown in the
following code:

static int Factorial (int number)

{

if

{
}

(number < 1)

return 0O;

else if (number == 1)

{

}

return 1;

else

{

}
}

return number * Factorial (number - 1) ;

static void RunFactorial ()

{

bool isNumber;

do

{

}

Write ("Enter a number: ") ;

isNumber = int.TryParse (
ReadLine (), out int number) ;

if (isNumber)
{
WriteLine (
$"{number:N0}! = {Factorial (number) :NO}") ;

}

else

{

WriteLine ("You did not enter a valid number!") ;

}

while (isNumber) ;

[117]

https://en.wikipedia.org/wiki/Recursion_(computer_science)#Recursion_versus_iteration
https://en.wikipedia.org/wiki/Recursion_(computer_science)#Recursion_versus_iteration

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

As before, there's several noteworthy elements of the above code, including
the following;:

o

If the input number is zero or negative, Factorial returns o.

° If the input number is 1, Factorial returns 1, and therefore stops

calling itself. If the input number is larger than one, Factorial
multiplies the number by the result of calling itself and passing one
less than the number. This makes the function recursive.

RunFactorial prompts the user to enter a number, calls the
Factorial function, and then outputs the result, formatted using the
code N0, which means number format and use thousands separators
with zero decimal places, and repeats in a loop as long as another
number is entered.

In the Main method, comment the RunCardinalToOrdinal method
call, and call the RunFactorial method.

Run the console application.

Enter the numbers 3, 5, 31, and 32, and view the results, as shown in the
following output:

Enter a number: 3
31 =6

Enter a number: 5
5! = 120

Enter a number: 31
31! = 738,197,504
Enter a number: 32

32! = -2,147,483,648

Factorials are written like this: 5!, where the exclamation mark is read as bang, so 5! =
120, that is, five bang equals one hundred and twenty. Bang is a good name for factorials
because they increase in size very rapidly, just like an explosion. As you can see in
the previous output, factorials of 32 and higher will overflow the int type because
they are so big.

Documenting functions with XML comments

By default, when calling a function like CardinalTooOrdinal, Visual Studio Code
will show a tooltip with basic information, as shown in the following screenshot:

[118]

Writing, Debugging, and Testing Functions | 04

@9 Program.cs — Chapter04 (Workspace)

[Eﬂ EXPLORER € Program.cs X it
-+ OPEN EDITORS WritingFunctions > € Program.cs » {} WritingFunctions > & W Functions.Prograr & RunCardinal ToOrding
) X C Program.cs

128 static void RunCardinalToOrdinal()

~ CHAPTERO4 (WORKSPACE) {
L 132 | for (int number = 1; number <— ARs rmheras)
133 { string Program.CardinalToOrdinal{int number)
® | write{s"{CardinalToOrdinalijumber)} *);
}
WriteLine() N
S

» DUTLINE

@oho & BwntingFunctions Ln 134, Col 386 Spaces: 4 UTF-8 with BOM CRLF C#

Let's improve the tooltip by adding extra information.

1. If you haven't already installed the C# XML Documentation Comments
extension, do so now. Instructions for installing extensions for Visual Studio
Code were covered in Chapter 1, Hello, C#! Welcome, .NET!.

2. On the line above the cardinalToOrdinal function, type three forward
slashes, and note the extension expands this into an XML comment and
recognizes that it has a single parameter named number.

3. Enter suitable information for the XML documentation comment, as shown
in the following code and screenshot:

/// <summary>

/// Pass a 32-bit integer and it will be converted into its
ordinal equivalent.

/// </summarys>

/// <param name="number"s>Number is a cardinal value e.g. 1, 2, 3,
and so on.</param>

/// <returns>Number as an ordinal value e.g. 1st, 2nd, 3rd, and so
on.</returns>

@9 Program.cs — Chapter04 (Workspace)
@ EXPLORER € Program.cs X it
-+ OPEN EDITORS WritingFunctions > € Program.cs > {} WritingFunctions > & W Functions.Prograr B CardinalToOrdina T
9] X C Program.cs o
S - CHAPTEROA (WORKSPAGE) 49 $5 4 Ssummarys
= log 4/ Pass a 32-bit integer and it will be cenverted into its ordinal equivalent.

£17 </ summary>

/// <param name="number"=Number is a cardinal value e.g. 1, 2, 3, and so on.</param=

» hin 183 f/4 <returns=Number as an ordinal walue e.g. 1st, 2nd, 3rd, and se on.</returns> g B
o 104 static string CardinalTeOrdinalfint ﬂumhtr)l
185 {
> DUTLINE ' 186 switch {nunber)

@oho & BwntingFunctions Ln 104, Col 48 Spaces: 4 UTF-8 with BOM CRLF C#

4. Now, when calling the function, you will see more details, as shown in the
following screenshot:

[119]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

L & Frogram.cs — Chapter0d (Workspaca)
@ € Programcs ¥ m
» DPEN EDITORS Writ C ra {} 1 t WritingFunctions Progras @ RunCardinalT
o X O Program.cs 2 string Program.CardinalToOrdinal{int nusber)
£ “w CHAPTERDS (WORKSPACE) 135 static void RunCardinalToOrdina
v WritinaFunclions 136 { number: Number is a cardinal value e.g. 1, 2, 3, and s0 on.
2 R 137 for {int nuaber = 1; number <
scode 138 § Pass a 32-bit intager and it will be converted into its ordinal equivalent.
139 Write(s"{CardinalToOrdinallpumber)} "};
14 T
o Proaram.ce 141 WriteLine(}:
0, N e o 142 *
> OUTLINE 143

Sodo & WWitingFunctions Ln 139, Col 36 Spaces:d UTF-8 with BOM CRLF C# SharpPadis2ss @ &

!
\@l Good Practice: Add XML documentation comments to all your
functions.

Debugging during development

In this section, you will learn how to debug problems at development time.

Creating code with a deliberate bug
Let's explore debugging by creating a console app with a deliberate bug that we will
then use the tools to track down and fix.

1. Inchaptero04, create a folder named Debugging, add it to the workspace,

and create a console application in the folder.

2. Navigate to View | Command Palette, enter and select OmniSharp: Select
Project, and then select the Debugging project.

3. In the Debugging folder, open and modify Program.cs to define a function
with a deliberate bug and call it in the Main method, as shown in the
following code:

using static System.Console;

namespace Debugging

{ class Program
{ static double Add(double a, double b)
{ return a * b; // deliberate bug!
}
?tatic void Main(string[] args)

[120]

Writing, Debugging, and Testing Functions | 04

double a = 4.5; // or use var

double b = 2.5;

double answer = Add(a, b);

WriteLine($"{a} + {b} = {answer}");
ReadLine(); // wait for user to press ENTER

}
}
}

4. Run the console application and view the result, as shown in the following
output:

4.5 + 2.5 = 11.25
5. Press ENTER to end the console application.
But wait, there's a bug! 4.5 added to 2.5 should be 7, not 11.25!

We will use the debugging tools to hunt for and squash the bug.

Setting a breakpoint

Breakpoints allow us to mark a line of code that we want to pause at to inspect the
program state and find bugs.

1. Click the open curly brace at the beginning of the Main method.

2. Navigate to Debug | Toggle Breakpoint or press F9. A red circle will then
appear in the margin bar on the left-hand side to indicate that a breakpoint
has been set, as shown in the following screenshot:

[] Program.cs — Chapter0d (Warkspace)

~ OPEN EDITORS ing ¥ € T {) De jing Ging 2 @ Ma
o % © Program.cs Dt
v CHAPTERD4 (WORKSPACE)

5; /f or use var

} = {answer}");
ait for user to press ENTER

@uoho & Wmoebugging Ln13,Col5 Spaces:d UTF-BwithBOM CRLF C# SharpPag:s2ss @ &

Breakpoints can be toggled with F9. You can also left-click in the margin
to toggle the breakpoint on and off, or right-click to see more options, such
as remove, disable, or edit an existing breakpoint, or adding a breakpoint,
conditional breakpoint, or logpoint when a breakpoint does not yet exist.

3. In Visual Studio Code, go to View | Debug, or press Ctrl or Cmd + Shift + D.

[121]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

4. At the top of the DEBUG window, click on the dropdown to the right of the
Start Debugging button (green triangular "play" button), and select NET
Core Launch (console) (Debugging), as shown in the following screenshot:

@ Code File Edit Selection View Go Debug Terminal Window Help PV aegE)
® @ KET Cora Launch (consola) (WritingFunctions] Program.cs — ChapterDd (Workspace)
NET Core Attac ingFunctions)
l_l—-] [B-THCRE - ~ NET Core Launch (console} [Debugging)

m -
NET Cora Attach (Debugging)
~ VARIABLE

Functions)... L
[Debugging] ..
dd Config {workspaca)...

static void Hain{stringl] args)
* 13 {

:.L_-j- 14 double a = 4.5; // or use var]
JEL — 15 double b = 2.5;
16

double answer = Add(a, b);

{answer}"};

wait for user to press ENTER

@oAo

O _NET Core Launch [console) (Debuggng) & I Debugging

Ln 13, Col & (1 setecled) Spaces:4 UTF-Bwith BOM CRLF C& SharpPad:5255 @ A

5. At the top of the DEBUG window, click the Start Debugging button (green
triangular "play" button), or press F5. Visual Studio Code starts the console
application executing and then pauses when it hits the breakpoint. This is
known as break mode. The line that will be executed next is highlighted in

yellow, and a yellow block points at the line from the gray margin bar, as
shown in the following screenshot:

® ® Program.cs — ChapterDd (Workspace)

|.|'-'-i DEBUG B MET ¢ & [€' Program.cs X] N AR R | (03]

B - variABLES yebugging » € Program.cs ¥ {} Debugging > %3 Debugging.Program > @ Main(st

0O w Locals

Erinal: [string 12 static void Mainlstringl] args)

= 13 {

il 1 double a = /1 or use var —
15 double b =

@ 16 wer = Addla, bl;
= s

o 1 a} + {b} = {answer}");
R
0 2 CALLSTACK PAUSED ONBREA. DEBUG COMSOLE = ~ X
il - CREAKPOINTS I .

| @0A0 O .NETCore Launch (console) (Debugping) & [Debugging

Ln13 Col 6 (1 selected) Spaces:d4 UTF-8withBOM CRLF CF SharpPed:5255 @ &

Navigating with the debugging toolbar

Visual Studio Code shows a floating toolbar with six buttons to make it easy to
access debugging features, as described in the following list:

Continue/F5 (blue bar and triangle): This button will continue running the
program from the current position until it ends or hits another breakpoint.

[122]

Writing, Debugging, and Testing Functions | 04

Step Over/F10, Step Into/F11, and Step Out/ Shift + F11 (blue arrows over
blue dots): These buttons step through the code statements in various ways,
as you will see in a moment.

Restart/ Ctrl or Cmd + Shift + F5 (green circular arrow): This button will stop
and then immediately restart the program.

Stop Debugging/ Shift + F5 (red square): This button will stop the program.

Debugging windows

DEBUG view on the left-hand side allows you to monitor useful information, such
as variables, while you step through your code. It has four sections:

VARIABLES, including Locals, which shows the name, value, and type for
any local variables automatically. Keep an eye on this window while you
step through your code.

WATCH, which shows the value of variables and expressions that you
manually enter.

CALL STACK, which shows the stack of function calls.

BREAKPOINTS, which shows all your breakpoints and allows finer control
over them.

DEBUG CONSOLE enables live interaction with your code. For example,
you can ask a question such as, "What is 1+2?" by typing 1+2 and pressing
Enter. You can also interrogate the program state, for example, by entering
the name of a variable.

Stepping through code

Let's explore some ways to step through the code.

1.

Navigate to Debug | Step Into or click on the Step Into button in the toolbar
or press F11. The yellow highlight steps forward one line.

Navigate to Debug | Step Over or click on the Step Over button in the
toolbar or press F10. The yellow highlight steps forward one line. At the
moment, you can see that there is no difference between using Step Into or
Step Over.

Press F10 again so that the yellow highlight is on the line that calls the add
method, as shown in the following screenshot:

[123]

C# 8.0 and .NET Core 3.0 — Modern Cross-Platform Development

L] L Program.cs — Chapter0d (Workspace)
Ii B DEAUG P .NETCoreL# €} [+] C Program.ecs * L g O 5 o
B . variABLES Debugging » € Programcs > {] m > @ Ma rir
) T y FELUCN @ ® 0 4/
O ol i3 '
ar : {string[8]} 1
b 12 static void Main{stringl] args)
i al: 8 * 13 {
I\Cﬁ. 14 double a = 4.5; // or use var
e . waToH 15 double b = 2.5;]
N CALL STACK PAUSED ON DREAKPOINT 16 double:answer = Add (e, b}_F #
LS R 17 WriteLine(s"{a} + {b} = {answer}"});
Sl - PREAKPOIN 18 ReadLine(); // wait for user to press ENTER
All ns 19 3
Us ed Exceptions 20 }

® 8 Frogram.c 13 2}
@0 A0 ©.NETCore Launch [console) (Debugging) & I8 Debugging Ln 16, Col 33 {26 selected) Speces:4 UTF-8withBOM CRLF C# SharpPad:5255 @ A

The difference between Step Into and Step Over can be seen when you are
about to execute a method call:

If you were to click on Step Into, the debugger steps into the method

so that you can step through every line in that method.

If you were to click on Step Over, the whole method is executed in

one go; it does not skip over the method without executing it.

4. Click on Step Into to step inside the method.

5. Select the expression a * b, right-click the expression, and select Debug;:
Add to Watch...

The expression is added to the WATCH window, showing that this operator
is multiplying a by b to give the result 11.25. We can see that this is the bug,
as shown in the following screenshot:

® 0 Program.cs — Chapter04 (Workspace)]
I| ™ DEOUG b | NETCoreLd {8 [3] g A | wm
B - varisBLES Program.cs > {} Debugging > %3 Debugging.Program > @ Add(double a, double b)
o “ Locals R
4.5
]: 2.5 5 class Program
6 {
O static double Add{double a, double b)
27 8 {
~ WATCH
— 9 return @@tk /¢ deliberate bug!
0 a*b:11.25 i }
18] 1
12 static void Main({stringl] args)
s 13 i
14 double a = 4.5; /f or use var
¥ CALLSTACK BAUSED ON EEAKPOINT i double. b =
16 double ans Addla, bl;
METEAKEOINIS 1y WriteLine(s"{a} + {b} = {answer}");
All Exc s 18 ReadLine{); // wait for user to press ENTER
User-Unhandied Exceptions 19 ¥
o B Program.cs Debugg 13 24 }
@040 O .NET Core Launch (console) (Debugging) & BB Debugging Ln9, Col 18 (5 selected) Spaces:4 UTF-8 with BOM CRLF C# SharpPad:5255 @ A&

[124]

Writing, Debugging, and Testing Functions | 04

If you hover your mouse pointer over the a or b parameters in the code
editing window, then a tooltip appears showing the current value.

6. Fix the bug by changing * to + in both the watch expression and in the
function.

7. Stop, recompile, and restart by clicking the green circular arrow Restart
button or press Ctrl or Cmd + Shift + F5.

8. Step into the function, though take a minute to note how it now calculates
correctly, click the Continue button or press F5, and note that when writing
to the console during debugging, the output appears in the DEBUG
CONSOLE window instead of the TERMINAL window, as shown in the
following screenshot:

@ ® Program.cs — Chapter0d (Workspaca]
|-|"-'] B NETCoeL3 {3 [] © Program.cs X 5 g R m -
BN . vaRiABLES =hu ¢ Program.cs > {} Det @
o 7 static double Addidouble a, double b)
y & {
o el 9 r a+ b // delib e b
= 10 }
5
;?} SRR 12 static void Main{stringl] args)
. 13 { -
no 14 var
B 15
16 {a, b);
17 W } = {answer}"};
18 F wait for user to press ENTER
19 }
» CALLSTACK PAUSED ON BREAKPOINT Y ¥

“ BREAKPOINTS - }

F EMS E 5 = o
o epii
B » O cs L
@040 O .NET Coro Launch (console) (Debugging) & B Debugging Ln 18, Col 18 (11 selectod) Spaces:d UTF-8 withBOM CRLF C# SharpPad:5255 @ &

Customizing breakpoints

It is easy to make more complex breakpoints.

1.

If you are still debugging, click the Stop button, or navigate to Debug | Stop
Debugging, or press Shift + F5.

In the BREAKPOINTS window, click the last button in its mini toolbar to
Remove All Breakpoints, or navigate to Debug | Remove All Breakpoints.

Click on the writeLine statement.

Set a breakpoint by pressing F9 or navigating to Debug | Toggle
Breakpoint.

Right-click the breakpoint and choose Edit Breakpoint.....

[125]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

6. Enter an expression, like the answer variable must be greater than 9, and
note the expression must evaluate to true for the breakpoint to activate, as
shown in the following screenshot:

® Program.cs — Chapter0d (Workspace)

s b O NETCoeLd {8 [3] € Program.cs X m
> VARIABLES yebugging » € Program.cs > {} Debugg %4 Debugging. Progra @ Main(string[] arg
» WATCH 12 static wvoid Main{stringl] args)
> CALLSTACK PAUSED ON BREAKFOINT i {

S EREARPOINTS l double a = 4.5; // or use var
15 double b = 2.5;
16 double answer = Addia, bl);
. 17 WriteLine(s"{a} + {b} = {answer}"};
W, Expression % answer > 9
18 ReadLine(); // wait for user to press ENTER

Ln17 Col1 Spaces:d UTF-8 with BOM CRLF C# SharpPad:5255 @ &

7. Start debugging and note the breakpoint is not hit.

8. Stop debugging.

9. Edit the breakpoint and change its expression to less than 9.
10. Start debugging and note the breakpoint is hit.

11. Stop debugging.

12. Edit the breakpoint and select Hit Count, then enter a number like 3,
meaning that you would have to hit the breakpoint three times before it
activates.

13. Hover your mouse over the breakpoint's red circle to see a summary, as
shown in the following screenshot:

L] L] Program.cs — Chapter0d (Workspace)
||'-'-; DEBUG b | METCoreL® 83 [3] € Program.cs X m

3 VARIABLES ebugging > € Program.cs > {)} Debugg %3 Debugging.Progra @ Main(string[] arg
@i » WATCH 13 {
Bt > CALLSTACK pAUSED ON BREAKFOINT e ble 2 - A0 I o . e

e 15 double b = 2.5
Sl 16 double answer = Add(a, b);
All E> @ Expression: answer < 95"{a} + {b} = {answer}"};
B User-Unhandle) Hit Count: 3 : /i wait for user to press ENTER —
e @ Frogram.cs 7 19 }

©0A0 O NETCome Launch (console) (Debugging) & 8 Debugging Ln17,Col1 Spaces:4 UTF-B withBOM CRLF C# SharpPad:5255 @ &

You have now fixed a bug using some debugging tools and seen some advanced
possibilities for setting breakpoints.

Dumping variables using SharpPad

For experienced .NET developers, one of their favorite tools is LINQPad. With
complex nested objects it is convenient to be able to quickly output their values into a
tool window.

[126]

Writing, Debugging, and Testing Functions | 04

More Information: Despite its name, LINQPad is not just for
‘ / LINQ, but any C# expression, statement block, or program. If
) . .
\/ you work on Windows, I recommend it, and you can learn more
about it at the following link: https://www.lingpad.net.

For a similar tool that works cross-platform, we will use the SharpPad extension for
Visual Studio Code.

1.
2.

In Visual Studio Code, navigate to View | Extensions.
Search for sharppad and click Install.

In Chaptero4, create a folder named Dumping, add it to the workspace, and
create a console application project in the folder.

In Terminal, enter the following command to add the sharppad package to
the Dumping project:
dotnet add package SharpPad

Open Dumping.csproj and note the package reference, as shown highlighted
in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="SharpPad" Version="1.0.4" />
</ItemGroup>

</Project>

Modify Program. cs to import the SharpPad and System.Threading. Tasks
namespaces, change the return type of the Main method to async Task,
define a complex object variable, and then dump it to the SharpPad window,
as shown in the following code:

using System;

using SharpPad;

using System.Threading.Tasks;

using static System.Console;

namespace Dumping

{

[127]

https://www.linqpad.net
https://www.linqpad.net
https://www.linqpad.net

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

class Program

{

static async Task Main(string[] args)

{

var complexObject = new
FirstName = "Petr",
BirthDate = new DateTime (
year: 1972, month: 12, day: 25),
Friends = newl[] { "Amir", "Geoff",

}i

nggln }

WriteLine (
$"Dumping {nameof (complexObject)} to SharpPad.");

await complexObject.Dump () ;

}
}

You will learn more about asynchronous tasks in Chapter 13, Improving
Performance and Scalability Using Multitasking. For now, I have just shown you
enough to be able to await the call to the asynchronous Dump method.

7. Run the application and view the result, as shown in the following

screenshot:
® ® Program.cs — Chapter0d (Workspace)
[|;j C Program.cs X m - SharnPad
“ OPEN EDITORS Dumpir © Pro {}D Durr aam % ER 2 entiies
3 GROUP 1 .
' it Branrar e Dok 18 static async Task Main{string[] args) = complexObject
11 o))
D GROUP 5 - var complexObject = new o e ik g
& SharpPad e o it i FirstName
. i BirthDate
w CHAPTERO4 (WORKSPACE) 14 FirstName = "Petr",
waude Friends {
15 BirthDate = new ime(
16 year:; 1972, month: 12, day: 25)
17 Friends = new[] { "Amir", "Geoff'
E 18 b
- 0
© Program.cs .
i : TERMINAL 4: bash ¢+ 0 8 ~ x
- Marks-MacBook-Pro-13:Dumping markjprice$ dotnet run
L Dunping complexObject to SharpPad.

Harks-HacBook-Pro-13:Dumping markjprices [|

2 ILSPY DECOMPILED MEMBERS
Ln 10, Col1 Spaces:4 UTF-Bwith BOM CRLF C# SharpPad:5255 @ &

Boho & BOumping

Logging during development and runtime

Once you believe that all the bugs have been removed from your code, you would
then compile a release version and deploy the application, so that people can use it.
But no code is ever bug free, and during runtime unexpected errors can occur.

[128]

Writing, Debugging, and Testing Functions | 04

End users are notoriously bad about remembering, admitting to, and then accurately
describing what they were doing when an error occurred, so you should not rely on
them accurately providing useful information to reproduce the problem in order to
understand what causes the problem and then fix it.

\@/ Good Practice: Add code throughout your application to log what

is happening, and especially when exceptions occur, so that you can
= review the logs and use them to trace the issue and fix the problem.

There are two types that can be used to add simple logging to your code: Debug and
Trace.

Before we delve into them in more detail, let's look at a quick overview of each one:

* Debug is used to add logging that gets written during development.

* Traceis used to add logging that gets written during both development and
runtime.

Instrumenting with Debug and Trace

You have seen the use of the console type and its WriteLine method to provide
output to the console or TERMINAL or DEBUG CONSOLE windows in Visual
Studio Code.

We also have a pair of types named Debug and Trace that have more flexibility in
where they write out to.

More Information: You can read more about the Debug

\/‘/ class at the following link: https://docs.microsoft.

com/en-us/dotnet/api/system.diagnostics.
debug?view=netcore-3.0

The Debug and Trace classes can write to any trace listener. A trace listener is a type
that can be configured to write output anywhere you like when the Trace.WriteLine
method is called. There are several trace listeners provided by .NET Core, and you can
even make your own by inheriting from the TraceListener type.

More Information: You can see the list of trace listeners that

\/V derive from TraceListener at the following link: https://

docs.microsoft.com/en-us/dotnet/api/system.
diagnostics.tracelistener?view=netcore-3.0

[129]

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.debug?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.debug?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.debug?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.tracelistener?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.tracelistener?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.tracelistener?view=netcore-3.0

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Writing to the default trace listener

One trace listener, the DefaultTraceListener class, is configured automatically

and writes to Visual Studio Code's DEBUG CONSOLE window. You can configure
others manually using code.

1. In Chaptero04, create a folder named Instrumenting, add it to the
workspace, and create a console application project in the folder.

2. Modify program.cs, as shown in the following code:

using System.Diagnostics;

namespace Instrumenting

{
class Program
{
static void Main(string[] args)
{
Debug.WriteLine ("Debug says, I am watching!");
Trace.WriteLine ("Trace says, I am watching!");
}
}
}

3. Navigate to the DEBUG view.

Start debugging by launching the Instrumenting console application, and
note the DEBUG CONSOLE shows the two messages in black, mixed with

other debugging information like loaded assembly DLLs in orange, as shown
in the following screenshot:

® ® Program.cs — Chapter0d (Workspace)
|_|-—_,] [.NET Core Launch (console) (Instrumenting) & 3 [] © Program.es X m -
3 VARIABLES ting » € {31
[@Q - waTCH
o 7 static void Main(strim args
> CALL STACK Y - [ql] args)
R 7 ARANPOINTS a Debug.Writet ine{"Debug says, T am watching!®);
2 ! Trace.WriteLine{"Trace says, I am watching!"};
1 1
<) i,
HEL
OGNS0 = %

@00 © NETCome Launch (console) {Instrumenting] A 8 Instrumenting

Ln7 Col1 Spaces:d UTF-BwithBOM CRLF C# SharpPad:5255 @ &

Configuring trace listeners

Now, we will configure another trace listener that will write to a text file.

[130]

Writing, Debugging, and Testing Functions | 04

Modify the code to add a statement to import the System.I0 namespace,
create a new text file for logging to, and enable automatic flushing of the
buffer, as shown highlighted in the following code:

using System.Diagnostics;

using System.IO;

namespace Instrumenting

{

class Program

{
static void Main(string[] args)
{
// write to a text file in the project folder
Trace.Listeners.Add (new TextWriterTracelListener (
File.CreateText("log.txt")))

// text writer is buffered, so this option calls
// Flush() on all listeners after writing
Trace.AutoFlush = true;

Debug.WriteLine ("Debug says, I am watching!");
Trace.WriteLine ("Trace says, I am watching!");

}
}
}

Any type that represents a file usually implements a buffer to improve
performance. Instead of writing immediately to the file, data is written to

an in-memory buffer and only once the buffer is full will it be written in one
chunk to the file. This behavior can be confusing while debugging because
we do not immediately see the results! Enabling AutoFlush means it calls the
Flush method automatically after every write.

Run the console application by entering the following command in the
Terminal window for the Instrumenting project:

dotnet run --configuration Release

Nothing will appear to have happened.

In EXPLORER, open the file named log. txt and note that it contains the
message, "Trace says, I am watching!".

Run the console application by entering the following command in the
Terminal window for the Instrumenting project:

dotnet run --configuration Debug

[131]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

6. In EXPLORER, open the file named log.txt and note that it contains both
the message, "Debug says, I am watching!" and "Trace says, I am watching!"

Good Practice: When running with the Debug configuration, both
Debug and Trace are active and will show their output in DEBUG
A CONSOLE. When running with the Release configuration, only the
'/@\ Trace output is shown. You can therefore use Debug.WriteLine
E calls liberally throughout your code, knowing they will be stripped
out automatically when you build the release version of your
application.

Switching trace levels

The Trace.WriteLine calls are left in your code even after release. So, it would be
great to have fine control over when they are output. This is something we can do
with a trace switch.

The value of a trace switch can be set using a number or a word. For example, the
number 3 can be replaced with the word Info, as shown in the following table:

Number | Word Description

0 Off This will output nothing

1 Error This will output only errors

2 Warning | This will output errors and warnings

3 Info This will output errors, warnings, and information
4 Verbose | This will output all levels

Let's explore using trace switches. We will need to add some packages to enable
loading configuration settings from a JSON appsettings file. You will learn more
about this in Chapter 7, Understanding and Packaging .NET Types.

1. Navigate to the TERMINAL window.

2. Enter the following command:

dotnet add package Microsoft.Extensions.Configuration

3. Enter the following command:

dotnet add package Microsoft.Extensions.Configuration.Binder

4. Enter the following command:

dotnet add package Microsoft.Extensions.Configuration.Json

[132]

Writing, Debugging, and Testing Functions | 04

5. Enter the following command:

dotnet add package Microsoft.Extensions.Configuration.
FileExtensions

6. Open Instrumenting.csproj and note the extra <ItemGroup> section with
the extra packages, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference
Include="Microsoft.Extensions.Configuration"
Version="3.0.0" />
<PackageReference
Include="Microsoft.Extensions.Configuration.Binder"
Version="3.0.0" />
<PackageReference
Include="Microsoft.Extensions.Configuration.FileExtensions"
Version="3.0.0" />
<PackageReference
Include="Microsoft.Extensions.Configuration.Json"
Version="3.0.0" />
</ItemGroup>

</Project>

Add a file named appsettings.json to the Instrumenting folder.

Modify appsettings.json, as shown in the following code:

{

"PacktSwitch": {
"Level": "Info"

}

9. InProgram.cs, import the Microsoft.Extensions.Configuration
namespace.

10. Add some statements to the end of the Main method to create a configuration
builder that looks in the current folder for a file named appsettings.json,
build the configuration, create a trace switch, set its level by binding to the
configuration, and then output the four trace switch levels, as shown in the
following code:

var builder = new ConfigurationBuilder ()

[133]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

.SetBasePath (Directory.GetCurrentDirectory ())
.AddJsonFile ("appsettings.json",
optional: true, reloadOnChange: true);

IConfigurationRoot configuration = builder.Build() ;

var ts = new TraceSwitch(
displayName: "PacktSwitch",
description: "This switch is set via a JSON config.");

configuration.GetSection ("PacktSwitch") .Bind(ts) ;

Trace.WriteLineIf (ts.TraceError, "Trace error") ;
Trace.WriteLineIf (ts.TraceWarning, "Trace warning") ;
Trace.WriteLineIf (ts.TraceInfo, "Trace information") ;
Trace.WriteLineIf (ts.TraceVerbose, "Trace verbose") ;

11. Set a breakpoint on the Bind statement.

12. Start debugging the Instrumenting console application.

13. In the VARIABLES window, expand the ts variable watch, and note that its
Level is Off and its TraceError, TraceWarning, and so on are all false.

14. Step into the call to the Bind method by clicking the Step Into button or
pressing F11 and note the ts variable watch updates to Info level.

15. Step into the four calls to Trace.WriteLineIf and note that all levels up to
Info are written to the DEBUG CONSOLE but not verbose, as shown in the
following screenshot:

® Program.cs — ChapterDd (Workspace)
3 b NET Core Launch (console) (ir 8 & [3] € Program i i R R) m

+ VARIABLES trumenting > € Pragram.c 1} Instrumentin s Instrumenting Program > () Main{string

e 33 configuration.GetSection{"PacktSwitch").Bind{ts);

nelf(ts.TraceError, "Trac

If(ts.TraceWarning, =
If(ts.Tracelnfo, "Trace information");
oIf(ts.TraceVerbose, "Trace verbose");

alized. 38
This switch is set vi

: "PacktSwitch" }

> WATCH
2 CALL STACK

> BREAKPOINTS b

@0A0 O NET Coe Launch (console) (instrumenting) & I instrumenting Ln 40, Col 6 (1 selected) Spaces: 2 UTF-8 with BOM CRLF C# SharpPed:5255 @ &

[134]

Writing, Debugging, and Testing Functions | 04

16. Stop debugging.

17. Modify appsettings.json to set a level of 2, which means warning, as
shown in the following JSON file:

{

"PacktSwitch": {
"Level" . ||2||

}
}

18. Save the changes.
19. Run the console application by entering the following command in the
Terminal window for the Instrumenting project:

dotnet run --configuration Release

20. Open the file named log. txt and note that this time, only trace error and
warning levels are the output of the four potential trace levels, as shown in
the following text file:

Trace says, I am watching!
Trace error

Trace warning

If no argument is passed, the default trace switch level is 0££ (0), so none of the
switch levels are output.

Unit testing functions

Fixing bugs in code is expensive. The earlier that a bug is discovered in the
development process, the less expensive it will be to fix.

Unit testing is a good way to find bugs early in the development process. Some
developers even follow the principle that programmers should create unit tests
before they write code, and this is called Test-Driven Development (TDD).

/ More Information: You can learn more about TDD at the
\/;n> following link: https://en.wikipedia.org/wiki/Test-

driven development

Microsoft has a proprietary unit testing framework known as MS Test; however, we
will use the third-party framework xUnit.net.

[135]

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Creating a class library that needs testing

First, we will create a function that needs testing.

1. Inside the chaptero04 folder, create two subfolders named calculatorLib
and CalculatorLibUnitTests, and add them each to the workspace.

Navigate to Terminal | New Terminal and select CalculatorLib.
Enter the following command in TERMINAL:

dotnet new classlib

Rename the file named Classl.cs to Calculator.cs.
5. Modify the file to define a calculator class (with a deliberate bug!), as
shown in the following code:

namespace Packt

{

public class Calculator

{

public double Add(double a, double b)

{

return a * b;

}
}
}

6. Enter the following command in TERMINAL:
dotnet build

7. Navigate to Terminal | New Terminal and select
CalculatorLibUnitTests.
8. Enter the following command in TERMINAL:

dotnet new xunit

9. Click on the file named calculatorLibUnitTests.csproj, and modify
the configuration to add an item group with a project reference to the
CalculatorLib project, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>netcoreapp3.0</TargetFrameworks>
<IsPackable>false</IsPackables>

</PropertyGroup>

<ItemGroup>

[136]

Writing, Debugging, and Testing Functions | 04

<PackageReference Include="Microsoft.NET.Test.Sdk"
Version="16.2.0" />
<PackageReference Include="xunit"

Version="2.4.0" />
<PackageReference Include="xunit.runner.visualstudio"
Version="2.4.0" />
<PackageReference Include="coverlet.collector"

Version="1.0.1" />

</ItemGroup>
<ItemGroup>
<ProjectReference
Include="..\CalculatorLib\CalculatorLib.csproj" />
</ItemGroup>

</Projects>

More Information: You can view Microsoft's NuGet feed for

\/‘/ the latest Microsoft .NET. Test . Sdk and other packages at

the following link: https://www.nuget .org/packages/
Microsoft .NET.Test.Sdk

10. Rename the file UnitTest1l.cs to CalculatorUnitTests.cs.

11. Enter the following command in TERMINAL:
dotnet build

Writing unit tests

A well-written unit test will have three parts:

* Arrange: This part will declare and instantiate variables for input and output.

* Act: This part will execute the unit that you are testing. In our case, that
means calling the method that we want to test.

* Assert: This part will make one or more assertions about the output. An
assertion is a belief that if not true indicates a failed test. For example, when
adding 2 and 2 we would expect the result would be 4.

Now, we will write the unit tests for the calculator class.

[137]

https://www.nuget.org/packages/Microsoft.NET.Test.Sdk
https://www.nuget.org/packages/Microsoft.NET.Test.Sdk

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

1. Open calculatorUnitTests.cs, rename the class to
CalculatorUnitTests, import the Packt namespace, and modify
it to have two test methods for adding 2 and 2, and adding 2 and 3,
as shown in the following code:

using Packt;
using System;
using Xunit;

namespace CalculatorLibUnitTests

{

public class CalculatorUnitTests
{
[Fact]
public void TestAdding2And?2 ()
{
// arrange
double a = 2;
double b = 2;
double expected = 4;
var calc = new Calculator() ;

// act
double actual = calc.Add(a, b);

// assert
Assert.Equal (expected, actual);

[Fact]
public void TestAdding2And3 ()
{

// arrange

double a = 2;

double b = 3;

double expected = 5;

var calc = new Calculator() ;

// act
double actual = calc.Add(a, Db);

// assert
Assert.Equal (expected, actual);

[138]

Writing, Debugging, and Testing Functions | 04

Running unit tests

Now we are ready to run the unit tests and see the results.

1. Inthe calculatorLibUnitTest TERMINAL window, enter the following
command:

dotnet test

2. Note that the results indicate that two tests ran, one test passed, and one test
failed, as shown in the following screenshot:

& @ Chapter(4 (Workspace)

TERMINAL 3 bash)+ M B ~ x

dotnet test

HacBook-Pre-13:Calc
j orLibUnitTests/bin/Debug/netcoreappd. @/ CalculatorLibl

run for /fUsers/
nitTests.dll{.NETCor
Microsoft (R}

Copyright {c)

itTests markjprice

de/Chapterdd/Calculat
ion=vi,

ion Command Line Tool Version .

ation. ALl rights reserved.

rosoft G
Starting test execution, please wait...

A total of 1 test files matched the specified pattern.

AUnit.net @p:@
ts. Testadd ing2And3 [FAIL]
X Calculatorl

TestAdding2And3() in /Users/markjprice/Code/ChapterBd/Ca

» OUTLINE

Total ti 1.5416 Seconds
2 ILSPY DECOMPILED MEMBERS Harks-HacBook-Pro-13:CalculatorLibUnitTests markjprices []

DoA0 & WCalculatorlibUnitTests

SharpPad:5255 @ &

3. Fix the bug in the Add method.

4. Run the unit tests again to see that the bug has now been fixed.

5. Close the workspace.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore with deeper research into the topics covered in this
chapter.

Exercise 4.1 — Test your knowledge

Answer the following questions. If you get stuck, try Googling the answers if
necessary:

1. What does the C# keyword void mean?

2. How many parameters can a method have?

[139]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

3. In Visual Studio Code, what is the difference between pressing F5, Ctrl or
Cmd + F5, Shift + F5, and Ctrl or Cmd + Shift + F5?

Where does the Trace.WriteLine method write its output to?
What are the five trace levels?
What is the difference between Debug and Trace?

When writing a unit test, what are the three A's?

*® NS Gk

When writing a unit test using xunit, what attribute must you decorate the
test methods with?

9. What dotnet command executes xUnit tests?
10. What is TDD?

Exercise 4.2 — Practice writing functions with
debugging and unit testing

Prime factors are the combination of the smallest prime numbers that, when
multiplied together, will produce the original number. Consider the following
example:

* Prime factors of 4 are: 2 x 2

* Prime factors of 7 are: 7

* Prime factors of 30 are: 5 x 3 x 2

* Prime factors of 40 are: 5x2x2x 2

e Prime factors of 50 are: 5 x5 x 2

Create a workspace; a class library with a method named primeFactors that, when
passed an int variable as a parameter, returns a string showing its prime factors;

a unit tests project; and a console application to use it. To keep it simple, you can
assume that the largest number entered will be 1000.

Use the debugging tools and write unit tests to ensure that your function works
correctly with multiple inputs and returns the correct output.

Exercise 4.3 — Explore topics

Use the following links to read more about the topics covered in this chapter:

* Debugging in Visual Studio Code: https://code.visualstudio.com/
docs/editor/debugging

[140]

https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/debugging

Writing, Debugging, and Testing Functions | 04

* Instructions for setting up the .NET Core debugger: https://github.com/
OmniSharp/omnisharp-vscode/blob/master/debugger.md

* System.Diagnostics Namespace: https://docs.microsoft.com/en-us/
dotnet/core/api/system.diagnostics

* Unit testing in .NET Core and .NET Standard: https://docs.microsoft.
com/en-us/dotnet/core/testing/

e xUnit.net: http://xunit.github.io/

Summary

In this chapter, you learned how to write reusable functions and then use the Visual
Studio Code debugging and diagnostic features to fix any bugs in them, and then
unit tested your code.

In the next chapter, you will learn how to build your own types using object-oriented
programming techniques.

[141]

https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md
https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md
https://docs.microsoft.com/en-us/dotnet/core/api/system.diagnostics
https://docs.microsoft.com/en-us/dotnet/core/api/system.diagnostics
https://docs.microsoft.com/en-us/dotnet/core/testing/
https://docs.microsoft.com/en-us/dotnet/core/testing/
http://xunit.github.io/

Chapter 05

Building Your Own Types
with Object-Oriented
Programming

This chapter is about making your own types using object-oriented programming
(OOP). You will learn about all the different categories of members that a type can
have, including fields to store data and methods to perform actions. You will use
OOP concepts such as aggregation and encapsulation. You will also learn about
language features such as tuple syntax support, out variables, inferred tuple names,
and default literals.

This chapter will cover the following topics:

Talking about OOP

Building class libraries

Storing data with fields

Writing and calling methods

Controlling access with properties and indexers

Talking about object-oriented
programming

An object in the real world is a thing, such as a car or a person, whereas an object

in programming often represents something in the real world, such as a product
or bank account, but this can also be something more abstract.

In C#, we use the class (mostly) or struct (sometimes) C# keywords to define
a type of object. You will learn about the difference between classes and structs in
Chapter 6, Implementing Interfaces and Inheriting Classes. You can think of a type as
being a blueprint or template for an object.

[143]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

The concepts of object-oriented programming are briefly described here:

Encapsulation is the combination of the data and actions that are related
to an object. For example, a BankAccount type might have data, such

as Balance and AccountName, as well as actions, such as Deposit and
wWithdraw. When encapsulating, you often want to control what can access
those actions and the data, for example, restricting how the internal state
of an object can be accessed or modified from the outside.

Composition is about what an object is made of. For example, a car is
composed of different parts, such as four wheels, several seats, and an
engine.

Aggregation is about what can be combined with an object. For example,

a person is not part of a car object, but they could sit in the driver's seat and
then becomes the car's driver. Two separate objects that are aggregated
together to form a new component.

Inheritance is about reusing code by having a subclass derive from a base

or super class. All functionality in the base class is inherited by and becomes
available in the derived class. For example, the base or super Exception class
has some members that have the same implementation across all exceptions,
and the sub or derived SqlException class inherits those members and has
extra members only relevant to when an SQL database exception occurs like
a property for the database connection.

Abstraction is about capturing the core idea of an object and ignoring the
details or specifics. C# has an abstract keyword which formalizes the
concept. If a class is not explicitly abstract then it can be described as being
concrete. Base or super classes are often abstract, for example, the super class
Streamis abstract and its sub classes like FileStream and MemoryStream
are concrete. Abstraction is a tricky balance. If you make a class more
abstract, more classes would be able to inherit from it, but at the same time
there will be less functionality to share.

Polymorphism is about allowing a derived class to override an inherited
action to provide custom behavior.

Building class libraries

Class library assemblies group types together into easily deployable units (DLL
files). Apart from when you learned about unit testing, you have only created
console applications to contain your code. To make the code that you write reusable
across multiple projects, you should put it in class library assemblies, just like
Microsoft does.

[144]

Building Your Own Types with Object-Oriented Programming | 05

\@/ Good Practice: Put types that you might reuse in a .NET Standard

2.0 class library to enable them to be reused in .NET Core, NET
= Framework, and Xamarin projects.

Creating a class library

The first task is to create a reusable .NET Standard class library.
1. Inyour existing Code folder, create a folder named Chapteros, with
a subfolder named PacktLibrary.

2. In Visual Studio Code, navigate to File | Save Workspace As..., enter the
name Chaptero5s, select the Chapteros folder, and click Save.

3. Navigate to File | Add Folder to Workspace..., select the PacktLibrary
folder, and click Add.

4. In TERMINAL, enter the following command: dotnet new classlib.

Defining a class

The next task is to define a class that will represent a person.

1. In EXPLORER, rename the file named classi.cs to Person.cs.
2. Click person.cs to open it and change the class name to Person.

3. Change the namespace to Packt . Shared.

Good Practice: We're doing this because it is important to put your
L, classes in a logically named namespace. A better namespace name
@ would be domain-specific, for example, System. Numerics for
types related to advanced numbers, but in this case the types we
will create are Person, BankAccount, and WondersOfTheWorld
and they do not have a normal domain.

=

Your class file should now look like the following code:

using System;

namespace Packt.Shared

{
public class Person
{
}

}

[145]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Note that the C# keyword public is applied before class. This keyword is called an
access modifier, and it allows for all the other code to access this class.

If you do not explicitly apply the public keyword, then it would only be accessible
within the assembly that defined it. This is because the implicit access modifier for
a class is internal. We need this class to be accessible outside the assembly, so we
must make sure it is public.

Understanding members

This type does not yet have any members encapsulated within it. We will create
some over the following pages. Members can be fields, methods, or specialized
versions of both. You'll find a description of them below:

* Fields are used to store data. There are also three specialized categories
of field, as shown in the following bullets:

° Constant: The data never changes. The compiler literally copies the

data into any code that reads it.

Read-only: The data cannot change after the class is instantiated, but
the data can be calculated or loaded from an external source at the
time of instantiation.

Event: The data references one or more methods that you want to
execute when something happens, such as clicking on a button, or
responding to a request from other code. Events will be covered in
Chapter 6, Implementing Interfaces and Inheriting Classes.

* Methods are used to execute statements. You saw some examples when
you learned about functions in Chapter 4, Writing, Debugging, and Testing
Functions. There are also four specialized categories of method:

o

Constructor: The statements execute when you use the new keyword
to allocate memory and instantiate a class.

Property: The statements execute when you get or set data. The

data is commonly stored in a field, but could be stored externally, or
calculated at runtime. Properties are the preferred way to encapsulate
fields unless the memory address of the field needs to be exposed.

Indexer: The statements execute when you get or set data using array
syntax [].

Operator: The statements execute when you use an operator like +
and / on operands of your type.

[146]

Building Your Own Types with Object-Oriented Programming | 05

Instantiating a class

In this section, we will make an instance of the Person class, which is described as
instantiating a class.

Referencing an assembly

Before we can instantiate a class, we need to reference the assembly that contains it.

1.
2.

SARIRS LI s

Create a subfolder under Chapter05 named PeopleApp.

In Visual Studio Code, navigate to File | Add Folder to Workspace..., select
the Peoplenpp folder, and click Add.

Navigate to Terminal | New Terminal and select PeopleApp.

In TERMINAL, enter the following command: dotnet new console.
In EXPLORER, click on the file named PeopleApp.csproi.

Add a project reference to PacktLibrary, as shown highlighted in the
following markup:

<Project Sdk="Microsoft.NET.Sdk>

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFrameworks>
</PropertyGroup>

<ItemGroup>
<ProjectReference Include="../PacktLibrary/PacktLibrary.
csproj" />
</ItemGroup>

</Projects>

In TERMINAL, enter a command to compile the PeopleApp project and its
dependency PacktLibrary project, as shown in the following command:
dotnet build.

Importing a namespace to use a type

Now, we are ready to write statements to work with the person class.

1.

In Visual Studio Code, in the Peopleapp folder, open Program. cs.

[147]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2.

At the top of the Program. cs file, enter statements to import the namespace
for our people class and statically import the Console class, as shown in the
following code:

using Packt.Shared;

using static System.Console;

In the Main method, enter statements to:
° Create an instance of the person type.
° Output the instance using a textual description of itself.
The new keyword allocates memory for the object and initializes any internal

data. We could use person in place of the var keyword, but the use of var
involves less typing and is still just as clear, as shown in the following code:

var bob = new Person() ;
WriteLine (bob.ToString()) ;

You might be wondering, "Why does the bob variable have a method named
ToString? The person class is empty!" Don't worry, we're about to find out!

Run the application, by entering dotnet runin TERMINAL, and then view

the result, as shown in the following output:
Packt.Shared.Person

Managing multiple files

If you have multiple files that you want to work with at the same time, then you can
put them side-by-side as you edit them.

1.
2.
3.

In EXPLORER, expand the two projects.
Open both person.cs and Program.cs.

Click, hold, and drag the edit window tab for one of your open files to
arrange them so that you can see both person.cs and Program. cs at the
same time.

You can click on the Split Editor Right button or press Cmd + \ so that you have two
files open side by side vertically.

Understanding objects

Although our person class did not explicitly choose to inherit from a type, all types
ultimately inherit directly or indirectly from a special type named System.0Object.

[148]

Building Your Own Types with Object-Oriented Programming | 05

The implementation of the Tostring method in the System.0Object type simply
outputs the full namespace and type name.

Back in the original pPerson class, we could have explicitly told the compiler that
person inherits from the System.Object type, as shown in the following code:

public class Person : System.Object

When class B inherits from class A, we say that A is the base or super class and B is
the derived or subclass. In this case, System.0Object is the base or super class and
Person is the derived or subclass.

You can also use the C# alias keyword object:

public class Person : object

Inheriting from System.Object
Let's make our class explicitly inherit from object and then review what members
all objects have.

1. Modify your person class to explicitly inherit from object.

2. (Click inside the object keyword and press F12, or right-click on the object

keyword and choose Go to Definition.

You will see the Microsoft-defined System.0Object type and its members. This is
something you don't need to understand the details of yet, but notice that it has
a method named ToString, as shown in the following screenshot:

@ & [metadata] Object cs — Chapter05 (Workspace)

€ [metadata] Obfect.cs X i) i

#region Assembly netstandard, Version=2.0.0.8, Culture=nectral, PublicKeyToken=cc7bl3ffcd2ddd51
£/ netstandard.dll
#endregion

namespace System
{
public class pbject
1
public Object{};

~Object{);

public static bool Equals{Object objA, Object objB);

4 public static bool ls(0bject objA, Object objB);
public virtual bool E {0bject obj);

public virtual int GetHashCode();

17 public Type Type();
18 public vi
14 protected Object Meaberwis

@GoA0 A4 WPopespp Ln7 Col16 Spaces:2 C# SharpPad:5255 @ &

[149]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

I
\@/ Good Practice: Assume other programmers know that if inheritance

is not specified, the class will inherit from System.Object.

=
=

Storing data within fields

In this section, we will be defining a selection of fields in the class in order to store
information about a person.

Defining fields
Let's say that we have decided that a person is composed of a name and a date of

birth. We will encapsulate these two values inside a person, and the values will be
visible outside it.

1. Inside the person class, write statements to declare two public fields for
storing a person's name and date of birth, as shown in the following code:

public class Person : object
{

// fields

public string Name;

public DateTime DateOfBirth;

}

You can use any type for a field, including arrays and collections such as lists and
dictionaries. These would be used if you needed to store multiple values in one
named field. In this example, a person only has one name and one date of birth.

Understanding access modifiers

Part of encapsulation is choosing how visible the members are.

Note that, like we did with the class, we explicitly applied the public keyword to
these fields. If we hadn't, then they would be implicitly private to the class, which
means they are accessible only inside the class.

There are four access modifier keywords, and two combinations of access modifier
keywords that you can apply to a class member, such as a field or method, as shown
in the following table:

[150]

Building Your Own Types with Object-Oriented Programming | 05

Access Modifier Description

private Member is accessible inside the type only. This is the default.

internal Member is accessible inside the type and any type in the same
assembly.

protected Member is accessible inside the type and any type that inherits from
the type.

public Member is accessible everywhere.

internal Member is accessible inside the type, any type in the same

protected assembly, and any type that inherits from the type. Equivalent
to a fictional access modifier named internal or protected.

private Member is accessible inside the type, or any type that inherits from

protected the type and is in the same assembly. Equivalent to a fictional access
modifier named internal and protected. This combination is
only available with C# 7.2 or later.

Good Practice: Explicitly apply one of the access modifiers to all
type members, even if you want to use the implicit access modifier

|
\@/ for members, which is private. Additionally, fields should usually
N\

be private or protected, and you should then create public
properties to get or set the field values. This is because it controls
access.

=
=
=

Setting and outputting field values

Now we will use those fields in the console app.

1.
2.

At the top of Program. cs, make sure the System namespace is imported.

Inside the Main method, change the statements to set the person's name and
date of birth, and then output those fields nicely formatted, as shown in the
following code:

var bob = new Person() ;
bob.Name = "Bob Smith";
bob.DateOfBirth = new DateTime (1965, 12, 22);

WriteLine (
format: "{0} was born on {1:dddd, d MMMM yyyvy}",
arg0: bob.Name,
argl: bob.DateOfBirth) ;

[151]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

We could have used string interpolation too, but for long strings it will wrap
over multiple lines, which can be harder to read in a printed book. In the
code examples in this book, remember that {0} is a placeholder for argo, and
so on.

3. Run the application and view the result, as shown in the following output:
Bob Smith was born on Wednesday, 22 December 1965

The format code for arg1 is made of several parts. dddd means the name

of the day of the week. d means the number of the day of the month. MmMvMM
means the name of the month. Lower case 'm's are used for minutes in time
values. yyyy means the full number of the year. yy would mean the two-digit
year.

You can also initialize fields using a shorthand object initializer syntax using
curly braces. Let's see how.

4. Add the following code underneath the existing code to create another new
person. Notice the different format code for the date of birth when writing to
the console:

var alice = new Person

{

Name = "Alice Jones",
DateOfBirth = new DateTime (1998, 3, 7)

Vi

WriteLine (
format: "{0} was born on {1:dd MMM yy}",
arg0: alice.Name,
argl: alice.DateOfBirth);

5. Run the application and view the result, as shown in the following output:

Bob Smith was born on Wednesday, 22 December 1965

Alice Jones was born on 07 Mar 98

Storing a value using an enum type

Sometimes, a value needs to be one of a limited set of options. For example, there are
seven ancient wonders of the world, and a person may have one favorite. In other
times, a value needs to be a combination of a limited set of options. For example, a
person may have a bucket list of ancient world wonders they want to visit.

We are able to store this data by defining an enum type.

[152]

Building Your Own Types with Object-Oriented Programming | 05

An enum type is a very efficient way of storing one or more choices because,
internally, it uses integer values in combination with a lookup table of string
descriptions.

1.

Add a new class to the class library by selecting packtLibrary, clicking
on the New File button in the mini toolbar, and entering the name
WondersOfTheAncientWorld.cs

Modify the WondersOfTheAncientWorld. cs file, as shown in the following
code:

namespace Packt.Shared

{

public enum WondersOfTheAncientWorld

{

GreatPyramidOfGiza,
HangingGardensOfBabylon,
StatueOfZeusAtOlympia,
TempleOfArtemisAtEphesus,
MausoleumAtHalicarnassus,
ColossusOfRhodes,
LighthouseOfAlexandria

}
}

In the person class, add the following statement to your list of fields:

public WondersOfTheAncientWorld FavoriteAncientWonder;

In the Main method of Program. cs, add the following statements:

bob.FavoriteAncientWonder =
WondersOfTheAncientWorld.StatueOfZeusAtOlympia;

WriteLine (format:
"{0}'s favorite wonder is {1}. It's integer is {2}.",
arg0: bob.Name,
argl: bob.FavoriteAncientWonder,
arg2: (int)bob.FavoriteAncientWonder) ;

Run the application and view the result, as shown in the following output:

Bob Smith's favorite wonder is StatueOfZeusAtOlympia. Its
integer is 2.

The enum value is internally stored as an int for efficiency. The int values are
automatically assigned starting at 0, so the third world wonder in our enum has a
value of 2. You can assign int values that are not listed in the enum. They will output
as the int value instead of a name since a match will not be found.

[153]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Storing multiple values using an enum type

For the bucket list, we could create a collection of instances of the enum, and
collections will be explained later in this chapter, but there is a better way. We can
combine multiple choices into a single value using flags.

1.
2.

Modify the enum by decorating it with the [System.Flags] attribute.
Explicitly set byte value for each wonder that represent different bit
columns, as shown in the following code:

namespace Packt.Shared

{

[System.Flags]
public enum WondersOfTheAncientWorld : byte

{

None = 0b_0000 0000, // i.e. O
GreatPyramidOfGiza = 0b_0000_0001, // i.e. 1
HangingGardensOfBabylon = Ob_0000_0010, // i.e. 2
StatueOfZeusAtOlympia = 0b_0000_0100, // i.e. 4
TempleOfArtemisAtEphesus = 0b_0000_1000, // i.e. 8
MausoleumAtHalicarnassus = Ob_0001_0000, // i.e. 16
ColossusOfRhodes = 0Ob_0010_0000, // i.e. 32
LighthouseOfAlexandria = 0Ob_0100_0000 // i.e. 64

}
}

We are assigning explicit values for each choice that would not overlap when
looking at the bits stored in memory. We should also decorate the enum type
with the system.Flags attribute so that when the value is returned it can
automatically match with multiple values as a comma-separated string
instead of returning an int value. Normally, an enum type uses an int
variable internally, but since we don't need values that big, we can reduce
memory requirements by 75%, that is, 1 byte per value instead of 4 bytes, by
telling it to use a byte variable.

If we want to indicate that our bucket list includes the Hanging Gardens and
Mausoleum at Halicarnassus ancient world wonders, then we would want the
16 and 2 bits set to 1. In other words, we would store the value 18:

64 32 16 8 4 2 1 0
0 0 1 0 0 1 0 0

In the person class, add the following statement to your list of fields:

public WondersOfTheAncientWorld BucketList;

[154]

Building Your Own Types with Object-Oriented Programming | 05

3. Inthe Main method of Peoplenpp, add the following statements to set the

bucket list using the | operator (logical OR) to combine the enum values.
We could also set the value using the number 18 cast into the enum type, as
shown in the comment, but we shouldn't because that would make the code
harder to understand:
bob.BucketList =

WondersOfTheAncientWorld.HangingGardensOfBabylon

| WondersOfTheAncientWorld.MausoleumAtHalicarnassus;

// bob.BucketList = (WondersOfTheAncientWorld)18;

WriteLine ($"{bob.Name}'s bucket list is {bob.BucketList}");

4. Run the application and view the result, as shown in the following output:

Bob Smith's bucket list is HangingGardensOfBabylon,
MausoleumAtHalicarnassus

Good Practice: Use the enum values to store combinations of
L discreet options. Derive an enum type from byte if there are up to
',@\' eight options, from short if there are up to 16 options, from int
= if there are up to 32 options, and from long if there are up to 64
options.

Storing multiple values using collections

Let's now add a field to store a person's children. This is an example of aggregation
because children are instances of a class that is related to the current person but are
not part of the person itself. We will use a generic List<T> collection type.

1. Import the System.Collections.Generic namespace at the top of the
person.cs class file, as shown in the following code:

using System.Collections.Generic;

You will learn more about collections in Chapter 8, Working with Common
.NET Types. For now, just follow along.

2. Declare a new field in the Person class, as shown in the following code:
public List<Person> Children = new List<Persons>();

List<Persons> is read aloud as "list of Person," for example, "the type of the
property named Children is a list of Person instances." We must ensure the
collection is initialized to a new instance of a list of Person before we can add items
to it otherwise the field will be nul1l and it will throw runtime exceptions.

[155]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

The angle brackets in the List<T> type is a feature of C# called generics that was
introduced in 2005 with C# 2.0. It's just a fancy term for making a collection strongly
typed, that is, the compiler knows more specifically what type of object can be stored
in the collection. Generics improve the performance and correctness of your code.

Strongly typed is different from statically typed. The old System.Collection

types are statically typed to contain weakly typed System.0Object items. The newer
System.Collection.Generic types are statically typed to contain strongly typed <T>
instances. Ironically, the term generics means we can use a more specific static type!

1. In the Main method, add statements to add two children for Bob and then
show how many children he has and what their names are, as shown in the
following code:
bob.Children.Add (new Person { Name "Alfred" });
bob.Children.Add (new Person { Name = "Zoe" });

WriteLine (
$"{bob.Name} has {bob.Children.Count} children:");

for (int child = 0; child < bob.Children.Count; child++)

{

WriteLine ($" {bob.Children[child] .Name}") ;

}

We could also use a foreach statement. As an extra challenge, change the
for statement to output the same information using foreach.

2. Run the application and view the result, as shown in the following output:

Bob Smith has 2 children:
Alfred

zZoe

Making a field static

The fields that we have created so far have all been instance members, meaning that
a different value of each field exists for each instance of the class that is created. The
bob variable has a different Name value to alice.

Sometimes, you want to define a field that only has one value that is shared across all
instances. These are called static members because fields are not the only members
that can be static.

Let's see what can be achieved using static fields.

[156]

Building Your Own Types with Object-Oriented Programming | 05

In the PacktLibrary project, add a new class file named BankAccount . cs.

Modify the class to give it three fields, two instance fields and one static field,
as shown in the following code:

namespace Packt.Shared

{

public class BankAccount

{

public string AccountName; // instance member
public decimal Balance; // instance member
public static decimal InterestRate; // shared member

}

Each instance of BankaAccount will have its own AccountName and Balance
values, but all instances will share a single InterestRate value.

In Program.cs and its Main method, add statements to set the shared interest
rate and then create two instances of the BankAccount type, as shown in the
following code:

BankAccount.InterestRate = 0.012M; // store a shared value

var jonesAccount = new BankAccount () ;
jonesAccount .AccountName = "Mrs. Jones";
jonesAccount .Balance = 2400;

WriteLine (format: "{0} earned {1:C} interest.",
arg0: jonesAccount.AccountName,

argl: jonesAccount.Balance * BankAccount.InterestRate) ;

var gerrierAccount = new BankAccount () ;

gerrierAccount.AccountName = "Ms. Gerrier";
gerrierAccount.Balance = 98;
WriteLine (format: "{0} earned {1:C} interest.",

arg0: gerrierAccount.AccountName,
argl: gerrierAccount.Balance * BankAccount.InterestRate);

:C is a format code that tells .NET to use the currency format for the
numbers. In Chapter 8, Working with Common .NET Types, you will learn how
to control the culture that determines the currency symbol. For now, it will
use the default for your operating system installation. I live in London, UK,
hence my output shows British Pounds (£).

[157]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

4. Run the application and view the additional output:

Mrs. Jones earned £28.80 interest.

Ms. Gerrier earned £1.18 interest.

Making a field constant

If the value of a field will never ever change, you can use the const keyword and
assign a literal value at compile time.

1. Inthe person class, add the following code:
// constants

public const string Species = "Homo Sapien';

2. Inthe Main method, add a statement to write Bob's name and species to the
console, as shown in the following code:

WriteLine ($"{bob.Name} is a {Person.Species}");

To get the value of a constant field, you must write the name of the class, not
the name of an instance of the class.

3. Run the application and view the result, as shown in the following output:
Bob Smith is a Homo Sapien

Examples of the const fields in Microsoft types include system. Int32.MaxValue
and System.Math.PI because neither value will ever change, as you can see in the
following screenshot:

o0 e [metadata] Math.cs — Chapter0S (Workspace)

|1 il © [metadata] Math.cs X m

1 #region Assembly Systes

Runtime.Extensions, Version=4.2.1.8, Culture=npeutral, PublicKeyToken=b@3f5f7f11d50a3a =]
2 /f System.Runtime.Extensions.dll ¥
wendregion

L= 5 namespace Sy
o 61
8 /4 Suemary:
] i Provides constants and static methods for trigonometric, logarithmic, and other
_ 10 i common mathematical functiens.
Z','I— 11 public static class Math
m N {
13 i
4 /¢ Summary:
15 i Represents the natural logarithmic base, specified by the constant, e.
16 public const double E = 2.71B2818284590451;
i
18 ¢ Summary:
19 i Represents the ratio of the circumference of a circle to its diameter, specified
20 i by the constant, m.
21 public const double PI = 3,1415926535897931;

@GohA0 & WPecperpp Ln21, Col25 Spaces:2 C# SharpPad:5255

[158]

Building Your Own Types with Object-Oriented Programming | 05

Good Practice: Constants should be avoided for two important
reasons: the value must be known at compile time, and it must

A be expressible as a literal string, Boolean, or number value. Every
'@\' reference to the const field is replaced with the literal value
= at compile time, which will, therefore, not be reflected if the

value changes in a future version and you do not recompile any
assemblies that reference it to get the new value.

Making a field read-only

A better choice for fields that should not change is to mark them as read-only.

1.

Inside the pPerson class, add a statement to declare an instance read-only field
to store a person's home planet, as shown in the following code:

// read-only fields
public readonly string HomePlanet = "Earth";

You can also declare static readonly fields whose value would be shared
across all instances of the type.

Inside the Main method, add a statement to write Bob's name and home
planet to the console, as shown in the following code:

WriteLine ($"{bob.Name} was born on {bob.HomePlanet}") ;

Run the application and view the result, as shown in the following output:

Bob Smith was born on Earth

Good Practice: Use read-only fields over the const fields for two
L, important reasons: the value can be calculated or loaded at runtime
@ and can be expressed using any executable statement. So, a read-
7\ only field can be set using a constructor or a field assignment. Every
= reference to the field is a live reference, so any future changes will
be correctly reflected by calling code.

Initializing fields with constructors

Fields often need to be initialized at runtime. You do this in a constructor that will be
called when you make an instance of the class using the new keyword. Constructors
execute before any fields are set by the code that is using the type.

1.

Inside the person class, add the following highlighted code after the existing
read-only HomePlanet field:

// read-only fields

[159]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

public readonly string HomePlanet = "Earth";
public readonly DateTime Instantiated;

// constructors

public Person ()

{
// set default values for fields
// including read-only fields
Name = "Unknown";
Instantiated = DateTime.Now;

}

2. Inside the Main method, add statements to instantiate a new person and then
output its initial field values, as shown in the following code:

var blankPerson = new Person() ;

WriteLine (format:
"{0} of {1} was created at {2:hh:mm:ss} on a {2:dddd}.",
arg0: blankPerson.Name,
argl: blankPerson.HomePlanet,
arg2: blankPerson.Instantiated) ;

3. Run the application and view the result, as shown in the following output:

Unknown of Earth was created at 11:58:12 on a Sunday

You can have multiple constructors in a type. This is especially useful to
encourage developers to set initial values for fields.

4. In the person class, add statements to define a second constructor that allows
a developer to set initial values for the person's name and home planet, as
shown in the following code:

public Person(string initialName, string homePlanet)

Name = initialName;
HomePlanet = homePlanet;
Instantiated = DateTime.Now;

}
5. Inside the Main method, add the following code:

var gunny = new Person("Gunny", "Mars");

WriteLine (format:
"{0} of {1} was created at {2:hh:mm:ss} on a {2:dddd}.",
arg0: gunny.Name,

[160]

Building Your Own Types with Object-Oriented Programming | 05

argl: gunny.HomePlanet,
arg2: gunny.Instantiated) ;

Run the application and view the result:

Gunny of Mars was created at 11:59:25 on a Sunday

Setting fields with default literals

A language feature introduced in C# 7.1 was default literals. Back in Chapter 2,
Speaking C#, you learned about the default (type) keyword.

As a reminder, if you had some fields in a class that you wanted to initialize to their
default type values in a constructor, you have been able to use default (type) since

C#2.0.

1.
2.

In the PacktLibrary folder, add a new file named ThingOfDefaults.cs.

In the ThingOfDefaults.cs file, add statements to declare a class with four
fields of various types and set them to their default values in a constructor,
as shown in the following code:

using System;
using System.Collections.Generic;

namespace Packt.Shared

{

public class ThingOfDefaults
{
public int Population;
public DateTime When;
public string Name;
public List<Person> People;

public ThingOfDefaults ()

{

Population = default(int); // C# 2.0 and later
When = default (DateTime) ;

Name = default (string);

People = default (List<Persons>) ;

}
}
}

You might think that the compiler ought to be able to work out what type
we mean without being explicitly told, and you'd be right, but for the first
15 years of the C# compiler's life, it didn't. Finally, with the C# 7.1 and later
compilers it does.

[161]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

3. Simplify the statements setting the defaults, as shown highlighted in the
following code:

using System;
using System.Collections.Generic;

namespace Packt.Shared

{

public class ThingOfDefaults

{

public int Population;
public DateTime When;
public string Name;

public List<Person> People;

public ThingOfDefaults ()

{

Population = default; // C# 7.1 and later
When = default;

Name = default;

People = default;

}
}
}

Constructors are a special category of method. Let's look at methods in more detail.

Writing and calling methods

Methods are members of a type that execute a block of statements.

Returning values from methods

Methods can return a single value or return nothing.
* A method that performs some actions but does not return a value indicates
this with the void type before the name of the method.

* A method that performs some actions and returns a value indicates this with
the type of the return value before the name of the method.

For example, you will create two methods:

* WriteToConsole: This will perform an action (writing some text to the
console), but it will return nothing from the method, indicated by the void
keyword.

[162]

Building Your Own Types with Object-Oriented Programming | 05

* GetOrigin: This will return a string value, indicated by the string keyword.

Let's write the code.

1. Inside the person class, statically import System.Console.

2. Add statements to define the two methods, as shown in the following code:

// methods
public void WriteToConsole ()

{

WriteLine ($"{Name} was born on a {DateOfBirth:dddd}.");

}

public string GetOrigin()

{

return $"{Name} was born on {HomePlanet}.";

}

3. Inside the Main method, add statements to call the two methods, as shown in
the following code:

bob.WriteToConsole() ;
WriteLine (bob.GetOrigin()) ;

4. Run the application and view the result, as shown in the following output:

Bob Smith was born on a Wednesday.

Bob Smith was born on Earth.

Combining multiple returned values using
tuples

Each method can only return a single value that has a single type. That type could
be a simple type, such as string in the previous example, a complex type, such as
person, or a collection type, such as List<Persons.

Imagine that we want to define a method named GetTheData that returns

both a string value and an int value. We could define a new class named
TextAndNumber with a string field and an int field, and return an instance of that
complex type, as shown in the following code:

public class TextAndNumber

{

public string Text;
public int Number;

[163]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

}

public class Processor

{

public TextAndNumber GetTheData ()

{

return new TextAndNumber

{

Text = "What's the meaning of life?",
Number = 42
}i
}
}

But defining a class just to combine two values together is unnecessary, because in
modern versions of C# we can use tuples. I pronounce them as tuh-ples but I have
heard other developers pronounce them as too-ples. To-may-toe, to-mah-toe, po-tay-
toe, po-tah-toe, I guess.

Tuples have been a part of some languages such as F# since their first version, but
.NET only added support for them in .NET 4.0 with the System. Tuple type.

It was only in C# 7.0 that C# added language syntax support for tuples and at the
same time, INET added a new System.ValueTuple type that is more efficient in
some common scenarios than the old .NET 4.0 System. Tuple type, and the C# tuple
uses the more efficient one.

System.ValueTuple is not part of .NET Standard 1.6, and therefore not available by
default in .NET Core 1.0 or 1.1 projects. System.ValueTuple is built in with .NET
Standard 2.0, and therefore, NET Core 2.0 and later.

Let's explore tuples.

1. Inthe pPerson class, add statements to define a method that returns a string
and int tuple, as shown in the following code:

public (string, int) GetFruit ()

{

return ("Apples", 5);

}

2. Inthe Main method, add statements to call the GetFruit method and then
output the tuple's fields, as shown in the following code:

(string, int) fruit = bob.GetFruit() ;
WriteLine ($"{fruit.Iteml}, {fruit.Item2} there are.");

[164]

Building Your Own Types with Object-Oriented Programming | 05

3.

Run the application and view the result, as shown in the following output:

Apples, 5 there are.

Naming the fields of a tuple

To access the fields of a tuple, the default names are Itemi1, Item2, and so on.

You can explicitly specify the field names.

1.

In the Person class, add statements to define a method that returns a tuple
with named fields, as shown in the following code:

public (string Name, int Number) GetNamedFruit ()

{

return (Name: "Apples", Number: 5);

}

In the Main method, add statements to call the method and output the tuple's
named fields, as shown in the following code:

var fruitNamed = bob.GetNamedFruit () ;
WriteLine ($"There are {fruitNamed.Number} {fruitNamed.Name}.");

Run the application and view the result, as shown in the following output:

There are 5 Apples.

Inferring tuple names

If you are constructing a tuple from another object, you can use a feature introduced
in C# 7.1 called tuple name inference.

1.

In the Main method, create two tuples, made of a string and int value each,
as shown in the following code:

var thingl ("Neville", 4);

WriteLine ($"{thingl.Iteml} has {thingl.Item2} children.");

var thing2 = (bob.Name, bob.Children.Count) ;
WriteLine ($"{thing2.Name} has {thing2.Count} children.");

In C# 7.0, both things would use the Iteml and Item2 naming schemes. In C# 7.1
and later, the second thing can infer the names Name and Count.

[165]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Deconstructing tuples

You can also deconstruct tuples into separate variables. The deconstructing
declaration has the same syntax as named field tuples, but without a variable name
for the tuple, as shown in the following code:

// store return value in a tuple variable with two fields
(string name, int age) tupleWithNamedFields = GetPerson() ;
// tupleWithNamedFields.name
// tupleWithNamedFields.age

// deconstruct return value into two separate variables
(string name, int age) = GetPerson() ;

// name

// age

This has the effect of splitting the tuple into its parts and assigning those parts to
new variables.

1. Inthe Main method, add the following code:

(string fruitName, int fruitNumber) = bob.GetFruit () ;
WriteLine ($"Deconstructed: {fruitName}, {fruitNumber}");

2. Run the application and view the result, as shown in the following output:

Deconstructed: Apples, 5

More Information: Deconstruction is not just for tuples.

C’ Any type can be deconstructed if it has a Deconstruct
&

method. You can read about this at the following link:
https://docs.microsoft.com/en-us/dotnet/csharp/
tuples#deconstruction

Defining and passing parameters to methods

Methods can have parameters passed to them to change their behavior. Parameters
are defined a bit like variable declarations, but inside the parentheses of the method.

1. In the Person class, add statements to define two methods, the first without
parameters and the second with one parameter, as shown in the following
code:

public string SayHello()

{

return $"{Name} says 'Hello!'";

}

[166]

https://docs.microsoft.com/en-us/dotnet/csharp/tuples#deconstruction
https://docs.microsoft.com/en-us/dotnet/csharp/tuples#deconstruction

Building Your Own Types with Object-Oriented Programming | 05

public string SayHelloTo (string name)

{

return $"{Name} says 'Hello {name}!'";

}

2. Inthe Main method, add statements to call the two methods and write the
return value to the console, as shown in the following code:

WriteLine (bob.SayHello()) ;
WriteLine (bob.SayHelloTo ("Emily")) ;

3. Run the application and view the result:

Bob Smith says 'Hello!'
Bob Smith says 'Hello Emily!'

When typing a statement that calls a method, IntelliSense shows a tooltip with the
name and type of any parameters, and the return type of the method, as shown in
the following screenshot:

L] Program.cs — Chapter05 (Workspace)
@ XPLORER C© Pragramcs X € Person.cs m -
-+ OPEN EDITORS pleag CF » {} Peoples 20 SrogrE @ Ma
¥ € Program.cs leAf 139
O Pairace ie /4 Defining and passing parameters te metheds

lei)) String Person.SayHelloTo{string name)
teTolfEmily"));

141
142 WriteLine(bob.Say

“ CHAPTEROS (WORKSPACE)
‘{w b 143 W elbob., 5ay
14

@oA0 & MPeopieinn Ln 143, Col32 Spaces:2 UTF-8 with BOM CRLF C# SharpPad:5255 @ M

Overloading methods

Instead of having two different method names, we could give both methods the
same name. This is allowed because the methods each have a different signature.

A method signature is a list of parameter types that can be passed when calling the
method (as well as the type of the return value).

1. Inthe person class, change the name of the sayHelloTo method to
SayHello.

2. InMain, change the method call to use the sayHello method, and note that
the quick info for the method tells you that it has one additional overload,
1/2, as well as 2/2, as shown in the following screenshot:

[167]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

L]] Program.cs — Chapter05 (Workspace)
@ “PLORER C Program.cs X © Person.cs [B} e

-+ OPEN EDITORS pled CF {) Peoplen SrogrE @ Ma

¥ € Program.cs . A

#/ Defining and passing parameters to metheds
€ Personcs 141 ", string Person.SayHello(string_name)

“~ CHAPTEROS |WORKSPACE) 142 i

{‘-3',"- i 143

B > Bir 144

@oA0 & MPeopieinn Ln 143 Col 30 Spaces:2 UTF-8 with BOM CRLF C# SharpPad:5255 @ M

1
\@/ Good Practice: Use overloaded methods to simplify your class by

making it appear to have fewer methods.

=
=
=

Passing optional parameters and naming
arguments

Another way to simplify methods is to make parameters optional. You make a
parameter optional by assigning a default value inside the method parameter list.
Optional parameters must always come last in the list of parameters.

More Information: There is one exception to optional
parameters always coming last. C# has a params keyword that
‘ , allows you to pass a comma-separated list of parameters of any
a2 .
length as an array. You can read about params at the following
link: https://docs.microsoft.com/en-us/dotnet/
csharp/language-reference/keywords/params

We will now create a method with three optional parameters.

1. Inthe person class, add statements to define the method, as shown in the
following code:
public string OptionalParameters (
string command = "Run!",

double number = 0.0,
bool active = true)

{

return string.Format (
format: "command is {0}, number is {1}, active is {2}",
arg0: command, argl: number, arg2: active);

}

2. Inthe Main method, add a statement to call the method and write its return
value to the console, as shown in the following code:

WriteLine (bob.OptionalParameters()) ;

[168]

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/params
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/params

Building Your Own Types with Object-Oriented Programming | 05

3. Watch IntelliSense appear as you type the code. You will see a tooltip,
showing the three optional parameters with their default values, as shown
in the following screenshot:

L] Program.cs — Chapter05 (Workspace)
@ XPLORER C© Pragramcs X € Person.cs (1§
-+ OPEN EDITORS pleAg CF {} Peoples g SrogrE & Mai

=4 LU JayE voEmLLY fRa

¥ € Program.cs

C* Person.cs 145 4/ Passing eptisnal parameters S5tring Person.OptionalParameters(string command = “Run!”,
“ CHAPTEROS (WORKSPACE) 146 double number = @, bool active = true)
83 147 WriteLinelbob,OptionalParametersi));
ard by

Ln 147 Col 40 Spaces: 2 UTF-8with BOM CRLF C# SharpPad:5255 @ &

4. Run the application and view the result, as shown in the following output:

command is Run!, number is 0, active is True

5. Inthe Main method, add a statement to pass a string value for the command
parameter and a double value for the number parameter, as shown in the
following code:

WritelLine (bob.OptionalParameters ("Jump!", 98.5));

6. Run the application and see the result, as shown in the following output:

command is Jump!, number is 98.5, active is True

The default values for command and number have been replaced, but the
default for active is still true.

Optional parameters are often combined with naming parameters when you
call the method, because naming a parameter allows the values to be passed
in a different order than how they were declared.

7. In the Main method, add a statement to pass a string value for the command
parameter and a double value for the number parameter but using named
parameters, so that the order they are passed through can be swapped
around, as shown in the following code:

WriteLine (bob.OptionalParameters (
number: 52.7, command: "Hide!"));

8. Run the application and view the result, as shown in the following output:

command is Hide!, number is 52.7, active is True
You can even use named parameters to skip over optional parameters.

9. Inthe Main method, add a statement to pass a string value for the command
parameter using positional order, skip the number parameter, and use the
named active parameter, as shown in the following code:

WriteLine (bob.OptionalParameters ("Poke!", active: false));

[169]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

10. Run the application and view the result, as shown in the following output:

command is Poke!, number is 0, active is False

Controlling how parameters are passed

When a parameter is passed into a method, it can be passed in one of three ways:

* By value (this is the default): Think of these as being in-only.
* By reference as a ref parameter: Think of these as being in-and-out.

* Asan out parameter: Think of these as being out-only.

Let's see some examples of passing parameters in and out.

1. Inthe pPerson class, add statements to define a method with three
parameters, one in parameter, one ref parameter, and one out parameter, as
shown in the following method:

public void PassingParameters (int x, ref int y, out int z)

{

// out parameters cannot have a default
// AND must be initialized inside the method
z = 99;

// increment each parameter
X++;
YA+
Z++;

}

2. Inthe Main method, add statements to declare some int variables and pass
them into the method, as shown in the following code:

int a = 10;
int b = 20;
int ¢ = 30;
WriteLine ($"Before: a = {a}, b = {b}, ¢ = {c}");
bob.PassingParameters(a, ref b, out c);
WriteLine ($"After: a = {a}, b = {b}, ¢ = {c}");
3. Run the application and view the result, as shown in the following output:

Before: a = 10, b

Il
N
o
Q
Il

30
After: a = 10, b = 21, ¢ = 100

[170]

Building Your Own Types with Object-Oriented Programming | 05

When passing a variable as a parameter by default, its current value gets
passed, not the variable itself. Therefore, x is a copy of the a variable. The
a variable retains its original value of 10. When passing a variable as a ref
parameter, a reference to the variable gets passed into the method.

Therefore, y is a reference to b. The b variable gets incremented when the
y parameter gets incremented. When passing a variable as an out parameter,
a reference to the variable gets passed into the method.

Therefore, z is a reference to c. The c variable gets replaced by whatever
code executes inside the method. We could simplify the code in the Main
method by not assigning the value 30 to the c variable, since it will always
be replaced anyway.

In C# 7.0 and later, we can simplify code that uses the out variables.

4. Inthe Main method, add statements to declare some more variables including
an out parameter named f declared inline, as shown in the following code:

int d = 10;
int e = 20;
WriteLine (

$"Before: d = {d}, e = {e}, f doesn't exist yet!");

// simplified C# 7.0 syntax for the out parameter
bob.PassingParameters(d, ref e, out int f);

WriteLine ($"After: d = {d}, e = {e}, £ = {£}");

In C# 7.0 and later, the ref keyword is not just for passing parameters into a
method: it can also be applied to the return value. This allows an external variable to
reference an internal variable and modify its value after the method call. This might
be useful in advanced scenarios, for example, passing around placeholders into big
data structures, but it's beyond the scope of this book.

Splitting classes using partial

When working on large projects with multiple team members, it is useful to be able
to split the definition of a complex class across multiple files. You do this using the
partial keyword.

Imagine we want to add statements to the Person class that are automatically
generated by a tool like an object-relational mapper that reads schema information
from a database. If the class is defined as partial, then we can split the class into an
auto-generated code file and a manually edited code file.

[171]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

1. Inthe person class, add the partial keyword, as shown highlighted in the
following code:

namespace Packt.Shared

{

public partial class Person

{

2. In EXPLORER, click on the New File button in the PacktLibrary folder, and
enter a name of PersonAutoGen.cs.

3. Add statements to the new file, as shown in the following code:

namespace Packt.Shared

{

public partial class Person

{
}
}

The rest of the code we write for this chapter will be written in the
PersonAutoGen.cs file.

Controlling access with properties and
indexers

Earlier, you created a method named GetOrigin that returned a string containing
the name and origin of the person. Languages such as Java do this a lot. C# has a
better way: properties.

A property is simply a method (or a pair of methods) that acts and looks like a field
when you want to get or set a value, thereby simplifying the syntax.

Defining readonly properties

A readonly property only has a get implementation.

1. Inthe PersonAutoGen.cs file, in the Person class, add statements to define
three properties:
© The first property will perform the same role as the Getorigin
method using the property syntax that works with all versions of C#
(although, it uses the C# 6 and later string interpolation syntax).

° The second property will return a greeting message using the
C# 6 and, later, the lambda expression (=>) syntax.

° The third property will calculate the person's age.

[172]

Building Your Own Types with Object-Oriented Programming | 05

Here's the code:

// a property defined using C# 1 - 5 syntax
public string Origin
{

get

{

return $"{Name} was born on {HomePlanet}";

}

// two properties defined using C# 6+ lambda expression
syntax
public string Greeting => $"{Name} says 'Hello!'";

public int Age => System.DateTime.Today.Year -
DateOfBirth.Year;

More Information: Obviously, this isn't the best way to
calculate age, but we aren't learning how to calculate ages from

\/V dates of birth. If you need to do that properly, you can read a

discussion at the following link: https://stackoverflow.
com/questions/9/how-do-i-calculate-someones-age-
in-c.

In the Main method, add statements to get the properties, as shown in the
following code:

var sam = new Person

{

Name = "Sam",
DateOfBirth = new DateTime (1972, 1, 27)

Vi

WriteLine (sam.Origin) ;
WriteLine (sam.Greeting) ;
WriteLine (sam.Age) ;

Run the application and view the result, as shown in the following output:

Sam was born on Earth
Sam says 'Hello!'

47

[173]

https://stackoverflow.com/questions/9/how-do-i-calculate-someones-age-in-c
https://stackoverflow.com/questions/9/how-do-i-calculate-someones-age-in-c

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

The output shows 47 because I ran the console application on 25th September 2019
when Sam was 47 years old.

Defining settable properties

To create a settable property, you must use the older syntax and provide a pair of
methods —not just a get part, but also a set part.

1.

In the PersonAutoGen. cs file, add statements to define a string property
that has both a get and set method (also known as getter and setter), as
shown in the following code:

public string FavoriteIceCream { get; set; } // auto-syntax

Although you have not manually created a field to store the person's favorite
ice cream, it is there, automatically created by the compiler for you.

Sometimes, you need more control over what happens when a property
is set. In this scenario, you must use a more detailed syntax and manually
create a private field to store the value for the property.

In the PersonAutoGen. cs file, add statements to define a string field and
string property that has both a get and set, as shown in the following
code:

private string favoritePrimaryColor;

public string FavoritePrimaryColor
{
get

{

return favoritePrimaryColor;

set

{

switch (value.ToLower ())
{
case "red":
case "green":
case "blue":
favoritePrimaryColor = value;
break;
default:
throw new System.ArgumentException (
$"{value} is not a primary color. " +
"Choose from: red, green, blue.");

[174]

Building Your Own Types with Object-Oriented Programming | 05

}
}
}

3. Inthe Main method, add statements to set Sam's favorite ice cream and color,
and then write them to the console, as shown in the following code:

sam.FavoriteIceCream = "Chocolate Fudge";

WriteLine ($"Sam's favorite ice-cream flavor is {sam.
FavoriteIceCream}.");

sam.FavoritePrimaryColor = "Red";

WriteLine ($"Sam's favorite primary color is {sam.
FavoritePrimaryColor}.");

4. Run the application and view the result, as shown in the following
output:

Sam's favorite ice-cream flavor is Chocolate Fudge.

Sam's favorite primary color is Red.

If you try to set the color to any value other than red, green, or blue, then the code
will throw an exception. The calling code could then use a try statement to display
the error message.

Good Practice: Use properties instead of fields when you want to

N validate what value can be stored, when you want to data bind in
'/@\' XAML which we will cover in Chapter 20, Building Windows Desktop
E Apps, and when you want to read and write to fields without using
methods.

More Information: You can read more about encapsulation

\/V of fields using properties at the following link: https://

stackoverflow.com/questions/1568091/why-use-
getters-and-setters-accessors

Defining indexers

Indexers allow the calling code to use the array syntax to access a property. For
example, the string type defines an indexer so that the calling code can access
individual characters in the string individually.

We will define an indexer to simplify access to the children of a person.

[175]

https://stackoverflow.com/questions/1568091/why-use-getters-and-setters-accessors
https://stackoverflow.com/questions/1568091/why-use-getters-and-setters-accessors
https://stackoverflow.com/questions/1568091/why-use-getters-and-setters-accessors

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

1.

In the PersonAutoGen. cs file, add statements to define an indexer to get and
set a child using the index of the child, as shown in the following code:

// indexers

public Person this[int index]

{

get

{

return Children[index] ;

}

set

{

Children[index] = value;

}

You can overload indexers so that different types can be used for their
parameters. For example, as well as passing an int value, you could also
pass a string value.

In the Main method, add the following code. After adding to the

children, we will access the first and second child using the longer children
field and the shorter indexer syntax:

sam.Children.Add (new Person { Name = "Charlie" });
sam.Children.Add (new Person { Name = "Ella" });

WriteLine ($"Sam's first child is {sam.Children[0] .Name}") ;
WriteLine ($"Sam's second child is {sam.Children[1] .Name}") ;
WriteLine ($"Sam's first child is {sam[0] .Name}") ;
WriteLine ($"Sam's second child is {sam[1] .Name}");

Run the application and view the result, as shown in the following
output:

Sam's first child is Charlie
Sam's second child is Ella
Sam's first child is Charlie
Sam's second child is Ella

\@/ Good Practice: Only use indexers if it makes sense to use the square

bracket, also known as array syntax. As you can see from the
= preceding example, indexers rarely add much value.

[176]

Building Your Own Types with Object-Oriented Programming | 05

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with deeper research.

Exercise 5.1 — Test your knowledge

Answer the following questions:

1.

Ll N

O X NG

What are the six access modifiers and what do they do?
What is the difference between the static, const, and readonly keywords?
What does a constructor do?

Why should you apply the [Flags] attribute to an enum type when you want
to store combined values?

Why is the partial keyword useful?
What is a tuple?

What does the C# ref keyword do?
What does overloading mean?

What is the difference between a field and a property?

10. How do you make a method parameter optional?

Exercise 5.2 — Explore topics

Use the following links to read more about this chapter's topics:

Fields (C# programming guide): https://docs.microsoft.com/en-us/
dotnet/articles/csharp/programming-guide/classes-and-structs/
fields

Access modifiers (C# programming guide): https://docs.microsoft.
com/en-us/dotnet/articles/csharp/language-reference/keywords/
access-modifiers

Constructors (C# programming guide): https://docs.microsoft.com/
en-us/dotnet/articles/csharp/programming-guide/classes-and-
structs/constructors

Methods (C# programming guide): https://docs.microsoft.com/en-us/
dotnet/articles/csharp/methods

Properties (C# programming guide): https://docs.microsoft.com/en-
us/dotnet/articles/csharp/properties

[177]

https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/fields
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/fields
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/fields
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/access-modifiers
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/access-modifiers
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/access-modifiers
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/articles/csharp/methods
https://docs.microsoft.com/en-us/dotnet/articles/csharp/methods
https://docs.microsoft.com/en-us/dotnet/articles/csharp/properties
https://docs.microsoft.com/en-us/dotnet/articles/csharp/properties

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Summary

In this chapter, you learned about making your own types using OOP. You learned
about some of the different categories of members that a type can have, including
fields to store data and methods to perform actions, and you used OOP concepts,
such as aggregation and encapsulation.

In the next chapter, you will take these concepts further by defining delegates and
events, implementing interfaces, and inheriting from existing classes.

[178]

Chapter 06

Implementing Interfaces
and Inheriting Classes

This chapter is about deriving new types from existing ones using object-oriented
programming (OOP). You will learn about defining operators and local functions for
performing simple actions, delegates and events for exchanging messages between
types, implementing interfaces for common functionality, generics, the difference
between reference and value types, inheriting from a base class to create a derived
class to reuse functionality, overriding a type member, using polymorphism, creating
extension methods, and casting between classes in an inheritance hierarchy.

This chapter covers the following topics:

* Setting up a class library and console application

* Simplifying methods

* Raising and handling events

* Implementing interfaces

* Making types more reusable with generics

* Managing memory with reference and value types
* Inheriting from classes

* Casting within inheritance hierarchies

* Inheriting and extending .NET types

Setting up a class library and console
application

We will start by defining a workspace with two projects like the one created
in Chapter 5, Building Your Own Types with Object-Oriented Programming. If you
completed all the exercises in that chapter, then you can open the Chaptero0s
workspace and continue working with its projects.

[179]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Otherwise, follow the instructions given in this section:

1.

10.

11.

12.

13.

In your existing code folder, create a folder named Chapteroes with two
subfolders named packtLibrary and PeopleApp, as shown in the following
hierarchy:

Chapter06

o

PacktLibrary

o

PeopleRApp

Start Visual Studio Code.

Navigate to File | Save As Workspace..., enter the name Chaptero06, and
click Save.

Navigate to File | Add Folder to Workspace..., select the packtLibrary
folder, and click Add.

Navigate to File | Add Folder to Workspace..., select the peoplenpp folder,
and click Add.

Navigate to Terminal | New Terminal and select PacktLibrary.
In TERMINAL, enter the following command:

dotnet new classlib

Navigate to Terminal | New Terminal and select PeopleApp.
In TERMINAL, enter the following command:

dotnet new console

In the EXPLORER pane, in the PacktLibrary project, rename the file named
Classl.cs to Person.cs.
Modify the file contents, as shown in the following code:

using System;

namespace Packt.Shared

{

public class Person

{
}
}

In the EXPLORER pane, expand the folder named peoplerpp and click on
the file named PeopleApp.csproj.

Add a project reference to PacktLibrary, as shown in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

[180]

Implementing Interfaces and Inheriting Classes | 06

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFramework>

</PropertyGroup>

<ItemGroup>
<ProjectReference
Include="..\Packtlibrary\PacktLibrary.csproj" />
</ItemGroup>

</Projects>

14. In the TERMINAL window for the Peopleapp folder, enter the
dotnet build command, and note the output indicating that both projects
have been built successfully.

15. Add statements to the Person class to define three fields and a method, as
shown in the following code:

using System;
using System.Collections.Generic;
using static System.Console;

namespace Packt.Shared

{

public class Person

{

// fields

public string Name;

public DateTime DateOfBirth;

public List<Person> Children = new List<Person>();

// methods
public void WriteToConsole ()

{
WriteLine ($"{Name} was born on a {DateOfBirth:dddd}.");

Simplifying methods

We might want two instances of Person to be able to procreate. We can implement
this by writing methods. Instance methods are actions that an object does to itself;
static methods are actions the type does.

[181]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Which you choose depends on what makes most sense for the action.

Good Practice: Having both the static and instance methods to
perform similar actions often makes sense. For example, string

\/V has both a Compare static method and a CompareTo instance

method. This puts the choice of how to use the functionality in
the hands of the programmers using your type, giving them more
flexibility.

Implementing functionality using methods

Let's start by implementing some functionality by using methods.

1. Add one instance method and one static method to the Person class that will
allow two Person objects to procreate, as shown in the following code:

// static method to "multiply"
public static Person Procreate (Person pl, Person p2)

{

var baby = new Person

{
}i

Name = $"Baby of {pl.Name} and {p2.Name}"

pl.Children.Add (baby) ;
p2.Children.Add (baby) ;

return baby;

}

// instance method to "multiply"
public Person ProcreateWith (Person partner)

{

}
Note the following:

return Procreate (this, partner);

o

In the static method named Procreate, the Person objects to
procreate are passed as parameters named p1 and p2.

A new Person class named baby is created with a name made of
a combination of the two people who have procreated.

° The baby object is added to the children collection of both parents
and then returned. Classes are reference types, meaning a reference
to the baby object stored in memory is added, not a clone of the baby.

[182]

Implementing Interfaces and Inheriting Classes | 06

In the instance method named Procreatewith, the Person object
to procreate with is passed as a parameter named partner, and it,
along with this, is passed to the static Procreate method to reuse
the method implementation. this is a keyword that references the
current instance of the class.

C’ Good Practice: A method that creates a new object, or modifies an
\’/

existing object, should return a reference to that object so that the
caller can see the results.

In the Peoplenpp project, at the top of the Program. cs file, import the
namespace for our class and statically import the Console type, as shown
highlighted in the following code:

using System;

using Packt.Shared;

using static System.Console;

In the Main method, create three people and have them procreate with each
other, noting that to add a double-quote character into a string, you must
prefix it with a backslash character, like this: \ ", as shown in the following
code:

var harry = new Person { Name = "Harry" };
var mary = new Person { Name = "Mary" };
var jill = new Person { Name = "Jill" };

// call instance method
var babyl = mary.ProcreateWith (harry) ;

// call static method
var baby2 = Person.Procreate (harry, jill);

WriteLine ($"{harry.Name} has {harry.Children.Count} children.");
WriteLine ($"{mary.Name} has {mary.Children.Count} children.");
WriteLine ($"{jill.Name} has {jill.Children.Count} children.");

WriteLine(
format: "{0}'s first child is named \"{1}\".",
arg0: harry.Name,
argl: harry.Children[0] .Name) ;

Run the application and view the result, as shown in the following output:

Harry has 2 children.

[183]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Mary has 1 children.
Jill has 1 children.

Harry's first child is named "Baby of Mary and Harry".

Implementing functionality using operators

The System.String class has a static method named Concat that concatenates two
string values and returns the result, as shown in the following code:

string sl = "Hello ";
string s2 = "World!";
string s3 = string.Concat(sl, s2);

WriteLine(s3); // => Hello World!

Calling a method like concat works, but it might be more natural for a programmer to
use the + symbol to add two string values together, as shown in the following code:

string sl = "Hello ";
string s2 = "World!";
string s3 = sl + s2;

WriteLine(s3); // => Hello World!

A well-known biblical phrase is Go forth and multiply, meaning to procreate. Let's
write code so that the * (multiply) symbol will allow two pPerson objects to procreate.

We do this by defining a static operator for a symbol like *. The syntax is rather
like a method, because in effect, an operator is a method, but uses a symbol instead
of a method name, which makes the syntax more concise.

More Information: The * symbol is just one of many that you

D’ can implement as an operator. The complete list of symbols
&

is listed at this link: https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/statements-
expressions-operators/overloadable-operators

1. Inthe PacktLibrary project, in the Person class, create a static operator
for the » symbol, as shown in the following code:

// operator to "multiply"
public static Person operator * (Person pl, Person p2)

{
}

return Person.Procreate(pl, p2);

[184]

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators

Implementing Interfaces and Inheriting Classes | 06

Good Practice: Unlike methods, operators do not appear in
IntelliSense lists for a type. For every operator you define, make a

C’ method as well, because it may not be obvious to a programmer that
\”/

the operator is available. The implementation of the operator can
then call the method, reusing the code you have written. A second
reason for providing a method is that operators are not supported
by every language compiler.

2. Inthe Main method, after calling the static Procreate method, use the *
operator to make another baby, as shown in the following highlighted code:

// call static method
var baby2 = Person.Procreate (harry, jill);

// call an operator
var baby3 = harry * mary;

3. Run the application and view the result, as shown in the following output:

Harry has 3 children.
Mary has 2 children.
Jill has 1 children.

Harry's first child is named "Baby of Mary and Harry".

Implementing functionality using local
functions

A language feature introduced in C# 7.0 is the ability to define a local function.

Local functions are the method equivalent of local variables. In other words, they are
methods that are only accessible from within the containing method in which they
have been defined. In other languages, they are sometimes called nested or inner
functions.

Local functions can be defined anywhere inside a method: the top, the bottom,
or even somewhere in the middle!

We will use a local function to implement a factorial calculation.

1. In the Person class, add statements to define a Factorial function that uses
a local function inside itself to calculate the result, as shown in the following
code:

// method with a local function
public static int Factorial (int number)

[185]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

{

if (number < 0)

{

throw new ArgumentException (
$"{nameof (number) } cannot be less than zero.");

}

return localFactorial (number) ;

int localFactorial (int localNumber) // local function

{

if (localNumber < 1) return 1;
return localNumber * localFactorial (localNumber - 1) ;

}

2. In Program.cs, in the Main method, add a statement to call the Factorial
function and write the return value to the console, as shown in the following
code:

WriteLine ($"5! is {Person.Factorial(5)}");

3. Run the application and view the result, as shown in the following output:

5! is 120

Raising and handling events

Methods are often described as actions that an object can perform, either on itself or to
related objects. For example, List can add an item to itself or clear itself, and File can
create or delete a file in the filesystem.

Events are often described as actions that happen to an object. For example, in a

user interface, Button has a click event, click being something that happens to a
button. Another way of thinking of events is that they provide a way of exchanging
messages between two objects.

Events are built on delegates, so let's start by having a look at how delegates work.

Calling methods using delegates

You have already seen the most common way to call or execute a method: use the .
operator to access the method using its name. For example, Console.WriteLine tells
the console type to access its WriteLine method.

[186]

Implementing Interfaces and Inheriting Classes | 06

The other way to call or execute a method is to use a delegate. If you have used
languages that support function pointers, then think of a delegate as being a type-
safe method pointer. In other words, a delegate contains the memory address of a
method that matches the same signature as the delegate so that it can be called safely
with the correct parameter types.

For example, imagine there is a method in the Person class that must have a string
type passed as its only parameter, and it returns an int type, as shown in the
following code:

public int MethodIWantToCall (string input)

{

return input.Length; // it doesn't matter what this does

}
I can call this method on an instance of Person named p1 like this:

int answer = pl.MethodIWantToCall ("Frog") ;

Alternatively, I can define a delegate with a matching signature to call the method
indirectly. Note that the names of the parameters do not have to match. Only the
types of parameters and return values must match, as shown in the following code:

delegate int DelegateWithMatchingSignature (string s) ;

Now, I can create an instance of the delegate, point it at the method, and finally, call
the delegate (which calls the method!), as shown in the following code:

// create a delegate instance that points to the method
var d = new DelegateWithMatchingSignature (pl.MethodIWantToCall) ;

// call the delegate, which calls the method
int answer2 = d("Frog") ;

You are probably thinking, "What's the point of that?" Well, it provides flexibility.

For example, we could use delegates to create a queue of methods that need to be
called in order. Queuing actions that need to be performed is common in services to
provide improved scalability.

Another example is to allow multiple actions to perform in parallel. Delegates have
built-in support for asynchronous operations that run on a different thread, and that
can provide improved responsiveness. You will learn how to do this in Chapter 13,
Improving Performance and Scalability Using Multitasking.

[187]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

The most important example is that delegates allow us to implement events
for sending messages between different objects that do not need to know about
each other.

Delegates and events are two of the most confusing features of C# and can take a few
attempts to understand, so don't worry if you feel lost!

Defining and handling delegates

Microsoft has two predefined delegates for use as events. Their signatures are
simple, yet flexible, as shown in the following code:

public delegate void EventHandler (
object sender, EventArgs e);

public delegate void EventHandler<TEventArgs> (
object sender, TEventArgs e);

\/‘/ Good Practice: When you want to define an event in your own

types, you should use one of these two predefined delegates.

1. Add statements to the Person class and note the following points, as shown
in the following code:

° It defines an EventHandler delegate field named shout.
° It defines an int field to store AngerLevel.
° It defines a method named Poke.

° Each time a person is poked, their AngerLevel increments. Once
their AngerLevel reaches three, they raise the shout event, but only
if there is at least one event delegate pointing at a method defined
somewhere else in the code; that is, it is not null.

// event delegate field
public EventHandler Shout;

// data field
public int AngerLevel;

// method
public void Poke ()

{

AngerLevel++;
if (AngerLevel >= 3)

[188]

Implementing Interfaces and Inheriting Classes | 06

// 1f something is listening...
if (Shout != null)

{

// ...then call the delegate
Shout (this, EventArgs.Empty) ;

}

Checking whether an object is null before calling one of its methods is very
common. C# 6.0 and later allows null checks to be simplified inline, as
shown in the following code:

Shout?.Invoke (this, EventArgs.Empty) ;

In Program, add a method with a matching signature that gets a reference to
the person object from the sender parameter and outputs some information
about them, as shown in the following code:

private static void Harry Shout (object sender, EventArgs e)
{

Person p = (Person)sender;

WriteLine ($"{p.Name} is this angry: {p.AngerLevel}.");

}

Microsoft's convention for method names that handle events is
ObjectName EventName.

In the Main method, add a statement to assign the method to the delegate
tield, as shown in the following code:

harry.Shout = Harry Shout;

Add statements to call the Poke method four times, after assigning the
method to the shout event, as shown highlighted in the following code:

harry.Shout = Harry Shout;

harry.Poke() ;
harry.Poke() ;
harry.Poke () ;
harry.Poke() ;

Delegates are multicast, meaning that you can assign multiple delegates to a
single delegate field. Instead of the = assignment, we could have used the +=
operator so we could add more methods to the same delegate field. When the
delegate is called, all the assigned methods are called, although you have no
control over the order that they are called.

[189]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

5. Run the application and view the result, as shown in the following output,
and note that Harry says nothing the first two times he is poked, and only
gets angry enough to shout once he's been poked at least three times:

Harry is this angry: 3.

Harry is this angry: 4.

Defining and handling events

You've now seen how delegates implement the most important functionality of
events: the ability to define a signature for a method that can be implemented by

a completely different piece of code, and then call that method and any others that
are hooked up to the delegate field.

But what about events? There is less to them than you might think.

When assigning a method to a delegate field, you should not use the simple
assignment operator as we did in the preceding example, and as shown in the
following code:

harry.Shout = Harry Shout;

If the shout delegate field was already referencing one or more methods, by
assigning a method, it would replace all the others. With delegates that are used for
events, we usually want to make sure that a programmer only ever uses either the +=
operator or the -= operator to assign and remove methods:

1. To enforce this, add the event keyword to the delegate field declaration,
as shown in the following code:
public event EventHandler Shout;

2. In TERMINAL, enter the command: dotnet build, and note the compiler
error message, as shown in the following output:
Program.cs(41,13): error CS0079: The event 'Person.Shout' can

only appear on the left hand side of += or -=

This is (almost) all that the event keyword does! If you will never have more
than one method assigned to a delegate field, then you do not need "events".

3. Modify the method assignment to use +=, as shown in the following code:

harry.Shout += Harry Shout;

4. Run the application and note that it has the same behavior as before.

[190]

Implementing Interfaces and Inheriting Classes | 06

More Information: You can define your own custom EventArgs-

t\/ derived types so that you can pass additional information into an
\”/

event handler method. You can read more at the following link:
https://docs.microsoft.com/en-us/dotnet/standard/
events/how-to-raise-and-consume-events

Implementing interfaces

Interfaces are a way of connecting different types together to make new things.
Think of them like the studs on top of LEGO™ bricks, which allow them to "stick"
together, or electrical standards for plugs and sockets.

If a type implements an interface, then it is making a promise to the rest of .NET that
it supports a certain feature.

Common interfaces

Here are some common interfaces that your types might need to implement:

Interface Method(s) Description
This defines a comparison method that
IComparable CompareTo (other) a type implements to order or sort its
instances.

Compare (This defines a Comparison method that
IComparer , a secondary type implements to order
first, second) or sort instances of a primary type.

This defines a disposal method to release
IDisposable Dispose () unmanaged resources more efficiently
than waiting for a finalizer.

ToString (This defines a culture-aware method to

IFormattable format the value of an object into a string
format, culture)

representation.
Serialize(
This defines methods to convert an object
IFormatter stream, to and from a stream of bytes for storage
object) and or transfer.
Deserialize (stream)
IF . . .
ormat GetFormat (type) This defines a method to forrpat inputs
Provider based on a language and region.

[191]

https://docs.microsoft.com/en-us/dotnet/standard/events/how-to-raise-and-consume-events
https://docs.microsoft.com/en-us/dotnet/standard/events/how-to-raise-and-consume-events

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Comparing objects when sorting

One of the most common interfaces that you will want to implement is IComparable.
It allows arrays and collections of any type that implements it to be sorted.

1.

In the Main method, add statements that create an array of Person instances
and writes the items to the console, and then attempts to sort the array and
writes the items to the console again, as shown in the following code:

Person[] people =

{

new Person { Name = "Simon" },
new Person { Name = "Jenny" },
new Person { Name = "Adam" },
new Person { Name = "Richard" }

Vi

WriteLine ("Initial list of people:");
foreach (var person in people)

{
}

WritelLine ("Use Person's IComparable implementation to
sort:");

Array.Sort (people) ;

foreach (var person in people)

{
}

Run the application, and you will see the following runtime error:

WriteLine ($"{person.Name}") ;

WriteLine ($"{person.Name}") ;

Unhandled Exception: System.InvalidOperationException: Failed
to compare two elements in the array. --->
System.ArgumentException: At least one object must implement
IComparable.

As the error explains, to fix the problem, our type must implement
IComparable.

In the PacktLibrary project, in the Person class, after the class name, add a
colon and enter IComparable<Persons, as shown in the following code:

public class Person : IComparable<Persons>

Visual Studio Code will draw a red squiggle under the new code to warn you
that you have not yet implemented the method you have promised to. It can
write the skeleton implementation for you if you click on the light bulb and
choose the Implement interface option.

[192]

Implementing Interfaces and Inheriting Classes | 06

Interfaces can be implemented implicitly and explicitly. Implicit
implementations are simpler. Explicit implementations are only necessary if

a type must have multiple methods with the same name and signature. For
example, both IGamePlayer and IKeyHolder might have a method called
Lose with the same parameters. In a type that must implement both interfaces,
only one implementation of Lose can be the implicit method. If both interfaces
can share the same implementation, that works, but if not then the other Lose
method will have to be implemented differently and called explicitly.

More Information: You can read more about explicit interface

\/‘/ implementations at the following link: https://docs.

microsoft.com/en-us/dotnet/csharp/programming-
guide/interfaces/explicit-interface-implementation

Scroll down to find the method that was written for you and delete the
statement that throws the Not ImplementedException error.

Add a statement to call the compareTo method of the Name field, which uses
the string type's implementation of CcompareTo, as shown highlighted in the
following code:

public int CompareTo (Person other)

{

return Name.CompareTo (other.Name) ;

}

We have chosen to compare two Person instances by comparing their Name
fields. Person instances will, therefore, be sorted alphabetically by their
name.

For simplicity I have not added nul1l checks throughout these examples.

Run the application, and note that this time it works as expected, as shown in
the following output:

Initial list of people:

Simon

Jenny

Adam

Richard

Use Person's IComparable implementation to sort:
Adam

Jenny

Richard

Simon

[193]

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/explicit-interface-implementation
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/explicit-interface-implementation
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/explicit-interface-implementation

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

1
\@/ Good Practice: If anyone will want to sort an array or collection of

NN instances of your type, then implement the IComparable interface.

(]

Comparing objects using a separate class

Sometimes, you won't have access to the source code for a type, and it might not
implement the IComparable interface. Luckily, there is another way to sort instances
of a type. You can create a separate type that implements a slightly different
interface, named IComparer.

1. Inthe PacktLibrary project, add a new class named pPersonComparer that
implements the IComparer interface that will compare two people, that is,
two Person instances by comparing the length of their Name field, or if the
names are the same length, then by comparing the names alphabetically, as
shown in the following code:

using System.Collections.Generic;

namespace Packt.Shared

{

public class PersonComparer : IComparer<Persons>

{

public int Compare (Person x, Person y)
{
// Compare the Name lengths...
int result = x.Name.Length
.CompareTo (y.Name.Length) ;

/// ...if they are equal...

if (result == 0)

{
// ...then compare by the Names...
return x.Name.CompareTo (y.Name) ;

}

else

{

// ...otherwise compare by the lengths.
return result;

[194]

Implementing Interfaces and Inheriting Classes | 06

2. In Peoplenpp, in the Program class, in the Main method, add statements
to sort the array using this alternative implementation, as shown in the
following code:

WriteLine ("Use PersonComparer's IComparer implementation to
sort:");

Array.Sort (people, new PersonComparer()) ;
foreach (var person in people)

{

WriteLine ($"{person.Name}") ;

}

3. Run the application and view the result, as shown in the following output:
Initial list of people:
Simon
Jenny
Adam
Richard
Use Person's IComparable implementation to sort:
Adam
Jenny
Richard
Simon
Use PersonComparer's IComparer implementation to sort:
Adam
Jenny
Simon

Richard

This time, when we sort the people array, we explicitly ask the sorting algorithm to
use the PersonComparer type instead, so that the people are sorted with the shortest
names first, and when the lengths of two or more names are equal, to sort them
alphabetically.

Defining interfaces with default
implementations

A language feature introduced in C# 8.0 is default implementations for an interface.
1. Inthe packtLibrary project, add a new file named 1Playable.cs. If you

have installed C# Extensions, then you can right-click the packtLibrary
folder and choose Add C# Interface.

[195]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2.

Modify the statements to define a public I1Playable interface with two
methods to Play and Pause, as shown in the following code:

using static System.Console;

namespace Packt.Shared

{

public interface IPlayable

{

void Play () ;

void Pause () ;

}
}

In the PacktLibrary project, add a new file named Dvdplayer.cs. If you
have installed C# Extensions, then you can right-click the packtLibrary
folder and choose Add C# Class.

Modify the statements in the file to implement the 1Playable interface, as
shown in the following code:

using static System.Console;

namespace Packt.Shared

{

public class DvdPlayer : IPlayable

{

public void Pause()

{

WriteLine ("DVD player is pausing.");

}

public void Play ()

{

WriteLine ("DVD player is playing.");
}
}
}

This is useful, but what if we decide to add a third method, stop? Before C#
8.0 this would be impossible once at least one type implements the original
interface. One of the main points of an interface is that it is a fixed contract.

C# 8.0 allows an interface to add new members after release as long as
they have a default implementation. C# purists do not like the idea, but for
practical reasons it is useful, and other languages such as Java and Swift
enable similar techniques.

[196]

Implementing Interfaces and Inheriting Classes | 06

More Information: You can read about the design decisions

D’ around default interface implementations at the following link:
&

https://docs.microsoft.com/en-us/dotnet/csharp/
language-reference/proposals/csharp-8.0/default-
interface-methods

Support for default interface implementations requires some fundamental
changes to the underlying platform, so they are only supported with C# 8.0
if the target framework is either .NET Core 3.0 or .NET Standard 2.1. they are
therefore not supported by .NET Framework.

Modify the IPlayable interface to add a stop method with a default
implementation, as shown highlighted in the following code:

using static System.Console;

namespace Packt.Shared

{

public interface IPlayable

{

void Play () ;
void Pause () ;

void Stop()
{

WriteLine ("Default implementation of Stop.");

}

In Terminal, compile the Peoplerpp project by entering the following
command: dotnet build, and note the compiler errors, as shown in the
following output:

IPlayable.cs(12,10) : error CS8370: Feature 'default interface
implementation' is not available in C# 7.3. Please use
language version 8.0 or greater.
[/Users/markjprice/Code/Chapter06/PacktLibrary/PacktLibrary.cs
projl

IPlayable.cs(12,10) : error CS8701: Target runtime doesn't
support default interface implementation.
[/Users/markjprice/Code/Chapter06/PacktLibrary/PacktLibrary.cs
proj]

[197]

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/default-interface-methods
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/default-interface-methods
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/default-interface-methods
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/default-interface-methods

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

7. Open packtLibrary.csproj and modify the target framework to use .NET
Standard 2.1, as shown in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>netstandard2.1</TargetFramework>
</PropertyGroup>

</Projects>

8. In Terminal, compile the Peoplerpp project by entering the following
command: dotnet build, and note the projects compile successfully.

More Information: You can read a tutorial about updating

\/V interfaces with default interface members at the following link:

https://docs.microsoft.com/en-us/dotnet/csharp/
tutorials/default-interface-members-versions

Making types safely reusable with
generics

In 2005, with C# 2.0 and .NET Framework 2.0, Microsoft introduced a feature named
generics, which enables your types to be more safely reusable and more efficient. It
does this by allowing a programmer to pass types as parameters, similar to how you
can pass objects as parameters.

First, let's look at an example of a non-generic type, so that you can understand the
problem that generics is designed to solve.

1. Inthe pPacktLibrary project, add a new class named Thing, as shown in the
following code, and note the following;:

° Thing has an object field named Data.

° Thing has a method named Process that accepts an object input
parameter and returns a string value.

using System;

namespace Packt.Shared

{

public class Thing

{

public object Data = default (object) ;

[198]

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/default-interface-members-versions
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/default-interface-members-versions
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/default-interface-members-versions

Implementing Interfaces and Inheriting Classes | 06

public string Process (object input)

{

if (Data == input)

{

return "Data and input are the same.";

}

else

{

return "Data and input are NOT the same.";

}

In the Peoplerpp project, add some statements to the end of Main, as shown
in the following code:

var tl = new Thing() ;
tl.Data = 42;
WriteLine ($"Thing with an integer: {tl.Process(42)}");

var t2 = new Thing() ;
t2.Data = "apple";
WriteLine ($"Thing with a string: {t2.Process("apple")}");

Run the application and view the result, as shown in the following output:

Thing with an integer: Data and input are NOT the same.

Thing with a string: Data and input are the same.

Thing is currently flexible, because any type can be set for the Data field and input
parameter. But there is no type checking, so inside the Process method we cannot
safely do much and the results are sometimes wrong; for example, when passing int
values into an object parameter!

Working with generic types

We can solve this problem using generics:

1.

In the PacktLibrary project, add a new class named GenericThing, as
shown in the following code:

using System;

namespace Packt.Shared

[199]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

{

public class GenericThing<T> where T : IComparable

{

public T Data = default(T);

public string Process (T input)

{

if (Data.CompareTo (input) == 0)

{

return "Data and input are the same.";

}

else

{

return "Data and input are NOT the same.";

}
Note the following;:

o

GenericThing has a generic type parameter named T, which

can be any type that implements IComparable, so it must have a
method named CompareTo that returns 0 if two objects are equal.
By convention, name the type parameter T if there is only one type
parameter.

GenericThing has a T field named Data.

GenericThing has a method named Process that accepts a T input
parameter, and returns a string value.

2. Inthe Peopleapp project, add some statements to the end of Main, as shown
in the following code:

var gtl = new GenericThing<ints> () ;
gtl.Data = 42;

WriteLine ($"GenericThing with an integer:
{gt1l.Process (42)}");

var gt2 = new GenericThing<strings>() ;
gt2.Data = "apple";

WriteLine ($"GenericThing with a string:
{gt2.Process ("apple") }");

[200]

Implementing Interfaces and Inheriting Classes | 06

Note the following;:

o

When instantiating an instance of a generic type, the developer
must pass a type parameter. In this example, we pass int as the
type parameter for gt1 and string as the type parameter for gt2,
so wherever T appears in the GenericThing class, it is replaced with
int and string.

When setting the Data field and passing the input parameter, the
compiler enforces the use of an int value, such as 42, for the gt1
variable, and a string value, such as "apples", for the gt2 variable.

Run the application, view the result, and note the logic of the Process
method correctly works for GenericThing for both int and string values,
as shown in the following output:

Thing with an integer: Data and input are NOT the same.

Thing with a string: Data and input are the same.

GenericThing with an integer: Data and input are the same.

GenericThing with a string: Data and input are the same.

Working with generic methods

Generics can be used for methods as well as types, even inside a non-generic type:

1.

In PacktLibrary, add a new class named Squarer, with a generic method
named Square, as shown in the following code:

using System;

using System.Threading;

namespace Packt.Shared

{

public static class Squarer
{
public static double Square<Ts> (T input)
where T : IConvertible
{
// convert using the current culture
double d = input.ToDouble (
Thread.CurrentThread.CurrentCulture) ;

return d * d;

[201]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Note the following;:

o

The squarer class is non-generic.

The square method is generic, and its type parameter T must
implement IConvertible, so the compiler will make sure that it has
a ToDouble method.

T is used as the type for the input parameter.

ToDouble requires a parameter that implements IFormatProvider to
understand the format of numbers for a language and region. We can
pass the currentCulture property of the current thread to specify
the language and region used by your computer. You will learn
about cultures in Chapter 8, Working with Common .NET Types.

The return value is the input parameter multiplied by itself, that is,
squared.

2. In Peoplenpp, in the Program class, at the bottom of the Main method, add
the following code. Note that when calling a generic method, you can specify
the type parameter to make it clearer, as shown in the first example, although
the compiler can work it out on its own, as shown in the second example:
string numberl = "4";

WriteLine ("{0} squared is {1}",
arg0: numberl,
argl: Squarer.Square<strings (numberl)) ;

byte number2 = 3;

WriteLine ("{0} squared is {1}",
arg0: number2,
argl: Squarer.Square (number2)) ;

3. Run the application and view the result, as shown in the following output:

4 squared is 16

3 squared is 9

Managing memory with reference and
value types

There are two categories of memory: stack memory and heap memory. With
modern operating systems, the stack and heap can be anywhere in physical or
virtual memory.

[202]

Implementing Interfaces and Inheriting Classes | 06

Stack memory is faster to work with (because it is managed directly by the CPU
and because it uses a first-in, first-out mechanism, it is more likely to have the data
in its L1 or L2 cache) but limited in size, while heap memory is slower but much
more plentiful. For example, on my macOS, in Terminal, I can enter the command:
ulimit -a to discover that stack size is limited to 8,192 KB and other memory is
"unlimited." This is why it is so easy to get a "stack overflow."

There are two C# keywords that you can use to create object types: class and
struct. Both can have the same members, such as fields and methods. The
difference between the two is how memory is allocated.

When you define a type using class, you are defining a reference type. This means
that the memory for the object itself is allocated on the heap, and only the memory
address of the object (and a little overhead) is stored on the stack.

More Information: If you are interested in the technical details

\/V of the internal memory layout of types in .NET, you can read

the article at the following link: https://adamsitnik.com/
Value-Types-vs-Reference-Types/

When you define a type using struct, you are defining a value type. This means
that the memory for the object itself is allocated on the stack.

If a struct uses field types that are not of the struct type, then those fields will be
stored on the heap, meaning the data for that object is stored in both the stack and
the heap!

These are the most common struct types:

* Numbers: byte, sbyte, short, ushort, int, uint, long, ulong, float,
double, and decimal

e Miscellaneous: char and bool

* System.Drawing: Color, Point, and Rectangle

Almost all the other types are class types, including string.

Apart from the difference in where in memory the data for a type is stored, the other
major difference is that you cannot inherit from a struct.

Working with struct types

Let's explore working with value types:

1. Add afile named DisplacementVector.cs to the PacktLibrary project.

[203]

https://adamsitnik.com/Value-Types-vs-Reference-Types/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2. Modify the file, as shown in the following code, and note the following:

o

The type is declared using struct instead of class.

° It has two int fields, named x and v.

[e]

It has a constructor for setting initial values for x and v.

° It has an operator for adding two instances together that returns a

new instance of the type with x added to X, and ¥ added to v.

namespace Packt.Shared

{

public struct DisplacementVector

{
public int X;
public int Y;

public DisplacementVector (int initialX, int initialy)

{

X
Y

initialX;

initialY;

public static DisplacementVector operator +(
DisplacementVector vectorl,
DisplacementVector vector2)
{
return new DisplacementVector (
vectorl.X + vector2.X,
vectorl.Y + vector2.Y);

}

3. Inthe Peopleapp project, in the Program class, in the Main method, add
statements to create two new instances of DisplacementVector, add them
together, and output the result, as shown in the following code:

var dvl = new DisplacementVector (3, 5);

var dv2 = new DisplacementVector (-2, 7);

var dv3 = dvl + dv2;

WriteLine ($" ({dv1.X}, {dvi.Y}) + ({dv2.x}, {dv2.Y}) =
({av3.x}, {av3.Y})");

4. Run the application and view the result, as shown in the following output:

[204]

Implementing Interfaces and Inheriting Classes | 06

Good Practice: If the total bytes used by all the fields in your type
L, is 16 bytes or less, your type only uses struct types for its fields,
@ and you will never want to derive from your type, then Microsoft
7N recommends that you use struct. If your type uses more than
= 16 bytes of stack memory, if it uses class types for its fields, or if you
might want to inherit from it, then use class.

Releasing unmanaged resources

In the previous chapter, we saw that constructors can be used to initialize fields and
that a type may have multiple constructors. Imagine that a constructor allocates an
unmanaged resource; that is, anything that is not controlled by .NET, such as a file or
mutex under the control of the operating system. The unmanaged resource must be
manually released because .NET cannot do it for us.

For this topic, I will show some code examples, but you do not need to create them in
your current project.

Each type can have a single finalizer that will be called by the .NET runtime when
the resources need to be released. A finalizer has the same name as a constructor; that
is, the type name, but it is prefixed with a tilde, ~, as shown in the following code:

public class Animal

{

public Animal ()

{

// allocate any unmanaged resources

}

~Animal () // Finalizer aka destructor

{
// deallocate any unmanaged resources
}
}

Do not confuse a finalizer (also known as a destructor) with a deconstruct method.
A destructor releases resources; that is, it destroys an object. A deconstruct method
returns an object split up into its constituent parts and uses the C# deconstruction
syntax, for example, when working with tuples.

The preceding code example is the minimum you should do when working with
unmanaged resources. But the problem with only providing a finalizer is that the
.NET garbage collector requires two garbage collections to completely release the
allocated resources for this type.

[205]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Though optional, it is recommended to also provide a method to allow a developer
who uses your type to explicitly release resources so that the garbage collector can
release an unmanaged resource, such as a file, immediately and deterministically,
and then release the managed memory part of the object in a single collection.

There is a standard mechanism to do this by implementing the IDisposable
interface, as shown in the following example:

public class Animal : IDisposable

{

public Animal ()

{

// allocate unmanaged resource

~Animal () // Finalizer

{

if (disposed) return;
Dispose (false) ;

}

bool disposed = false; // have resources been released?

public void Dispose ()

Dispose (true) ;
GC.SuppressFinalize (this) ;

}

protected virtual void Dispose (bool disposing)

{

if (disposed) return;

// deallocate the *unmanaged* resource

//

if (disposing)

{

// deallocate any other *managed* resources

//

disposed = true;

[206]

Implementing Interfaces and Inheriting Classes | 06

There are two Dispose methods, public and private:

* Thepublic Dispose method will be called by a developer using your type.
When called, both unmanaged and managed resources need to be deallocated.

* Theprivate Dispose method with a bool parameter is used internally to
implement the deallocation of resources. It needs to check the disposing
parameter and disposed flag because if the finalizer has already run, then
only unmanaged resources need to be deallocated.

The call to GC. SuppressFinalize (this) is what notifies the garbage collector that it
no longer needs to run the finalizer, and removes the need for a second collection.

Ensuring that Dispose is called

When someone uses a type that implements IDisposable, they can ensure that
the public Dispose method is called with the using statement, as shown in the
following code:

using (Animal a = new Animal ())

{

// code that uses the Animal instance

}

The compiler converts your code into something like the following, which
guarantees that even if an exception occurs, the Dispose method will still be called:

Animal a = new Animal () ;
try

{

// code that uses the Animal instance

}

finally

{

if (a != null) a.Dispose();

}

You will see practical examples of releasing unmanaged resources with
IDisposable, the using statements, and the try. . .finally blocks in Chapter 9,
Working with Files, Streams, and Serialization.

Inheriting from classes

The person type we created earlier implicitly derived (inherited) from
System.Object. Now, we will create a class that inherits from Person:

1. Add anew class named Employee to the PacktLibrary project.

[207]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2. Modify its statements, as shown in the following code:

using System;

namespace Packt.Shared

{

public class Employee : Person

{
}
}

3. Add statements to the Main method to create an instance of the Employee
class, as shown in the following code:

Employee john = new Employee

{

Name = "John Jones",
DateOfBirth = new DateTime (1990, 7, 28)

bi

john.WriteToConsole () ;

4. Run the console application and view the result, as shown in the following
output:

John Jones was born on a Saturday

Note that the Employee class has inherited all the members of Person.

Extending classes

Now, we will add some employee-specific members to extend the class.

1. Inthe Employee class, add the following code to define two properties:

public string EmployeeCode { get; set; }
public DateTime HireDate { get; set; }

2. Back in the Main method, add statements to set John's employee code and
hire date, as shown in the following code:

john.EmployeeCode = "JJgool";
john.HireDate = new DateTime (2014, 11, 23);

WriteLine ($"{john.Name} was hired on
{john.HireDate:dd/MM/yy}") ;

[208]

Implementing Interfaces and Inheriting Classes | 06

3. Run the console application and view the result, as shown in the following
output:

John Jones was hired on 23/11/14

Hiding members

So far, the WriteToConsole method is being inherited from person, and it only
outputs the employee's name and date of birth. We might want to change what this
method does for an employee:

1. Inthe Employee class, add the following highlighted code to redefine the
WriteToConsole method:
using System;
using static System.Console;

namespace Packt.Shared

{

public class Employee : Person

{

public string EmployeeCode { get; set; }
public DateTime HireDate { get; set; }

public void WriteToConsole ()

{

WriteLine (format:
"{0} was born on {1:dd/MM/yy} and hired on {2:dd/MM/yyl}",
arg0: Name,
argl: DateOfBirth,
arg2: HireDate));

}
2. Run the application and view the result, as shown in the following output:

John Jones was born on 28/07/90 and hired on 01/01/01

John Jones was hired on 23/11/14

[209]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

The Visual Studio Code C# extension warns you that your method now hides the
method by drawing a squiggle under the method name, the PROBLEMS window
includes more details, and the compiler would output the warning when you build
and run the console application, as shown in the following screenshot:

e L Employes.cs — Chapter06 (Workspace}
@ XPLORER C Employee.cs X m -
~ OPEN EDITORS it C Employe {} t t Sha . @V
) X © Employee.cs Packilibrary
Bl - CHAPTERGE (WORKSPACE) ie putiLlc: vodd WElfefaboozglal)
7o 13 { void Employee.WriteToConsole()
Ts " ob 14 teLine =
i 15 "} was Employee.WriteToConsole()' hides inherited mesber
! = 16 argé: Na 'Person.WriteToConsole()'. Use the new keyword 1if hiding was intended.
= C Dw 17 argl: pa (C50108) [PacktLibrary]
© 18 arg2: Hi pepk Problem No quick fies available
0 C Ge 19 ¥
He i
(m] C P PROBLEMS i B 2 ~ x
C La
, 5 R
ARl OUTLINE
';rf . = i nber 'Person 2 ew ke T hic
> ILSPY DECOMPILED MEMBERS

GoA1 & WPackilibrary Ln12,Col 11 Spaces:2 UTF-B LF C# SharpPad:5255 @ &

As the warning describes, you can remove this by applying the new keyword to the
method, to indicate that you are deliberately replacing the old method, as shown
highlighted in the following code:

public new void WriteToConsole ()

Overriding members

Rather than hiding a method, it is usually better to override it. You can only override
if the base class chooses to allow overriding, by applying the virtual keyword:

1. Inthe Main method, add a statement to write the value of the john variable
to the console as a string, as shown in the following code:

WriteLine (john.ToString()) ;

2. Run the application and note that the Tostring method is inherited from
System.Object so the implementation returns the namespace and type
name, as shown in the following output:

Packt.Shared.Employee

3. Override this behavior for the Person class by adding a Tostring method
to output the name of the person as well as the type name, as shown in the
following code:

// overridden methods
public override string ToString/()

{
}

return $"{Name} is a {base.ToString()}";

[210]

Implementing Interfaces and Inheriting Classes | 06

The base keyword allows a subclass to access members of its super class; that
is, the base class that it inherits or derives from.

4. Run the application and view the result. Now, when the ToString
method is called, it outputs the person's name, as well as the base class's
implementation of Tostring, as shown in the following output:

John Jones is a Packt.Shared.Employee

Good Practice: Many real-world APIs, for example, Microsoft's
L, Entity Framework Core, Castle's DynamicProxy, and Episerver's
@ content models, require the properties that you define in your
classes to be marked as virtual so that they can be overridden.
Unless you have a good reason not to, mark your method and
property members as virtual.

=
=
=

Preventing inheritance and overriding

You can prevent someone from inheriting from your class by applying the sealed
keyword to its definition. No one can inherit from Scrooge McDuck, as shown in the
following code:

public sealed class ScroogeMcDuck

{
}

An example of sealed in .NET Core is the string class. Microsoft has implemented
some extreme optimizations inside the string class that could be negatively affected
by your inheritance; so, Microsoft prevents that.

You can prevent someone from further overriding a virtual method in your class
by applying the sealed keyword to the method. No one can change the way Lady
Gaga sings, as shown in the following code:

using static System.Console;

namespace Packt.Shared

{

public class Singer

{

// virtual allows this method to be overridden
public virtual void Sing/()

{

WriteLine ("Singing...");

}

[211]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

}

public class LadyGaga : Singer

{

// sealed prevents overriding the method in subclasses
public sealed override void Sing /()

{

WriteLine ("Singing with style...");
}
}
}

You can only seal an overridden method.

Understanding polymorphism

You have now seen two ways to change the behavior of an inherited method. We can
hide it using the new keyword (known as non-polymorphic inheritance), or we can
override it (known as polymorphic inheritance).

Both ways can access members of the base class by using the base keyword, so what
is the difference?

It all depends on the type of the variable holding a reference to the object. For
example, a variable of the Person type can hold a reference to a person class, or any
type that derives from pPerson:

1. Inthe Employee class, add statements to override the Tostring method
so it writes the employee's name and code to the console, as shown in the
following code:

public override string ToString/()

{

return $"{Name}'s code is {EmployeeCode}";

}

2. Inthe Main method, write statements to create a new employee named Alice,
store it in a variable of type Person, and call both variables' WriteToConsole
and ToString methods, as shown in the following code:

Employee aliceInEmployee = new Employee
{ Name = "Alice", EmployeeCode = "AA123" };

Person aliceInPerson = aliceInEmployee;

aliceInEmployee.WriteToConsole () ;

[212]

Implementing Interfaces and Inheriting Classes | 06

aliceInPerson.WriteToConsole () ;
WriteLine (aliceInEmployee.ToString()) ;

WriteLine (aliceInPerson.ToString()) ;

3. Run the application and view the result, as shown in the following output:

Alice was born on 01/01/01 and hired on 01/01/01
Alice was born on a Monday

Alice's code is AA123

Alice's code is AA123

When a method is hidden with new, the compiler is not smart enough to know that
the object is an Employee, so it calls the WriteToConsole method in Person.

When a method is overridden with virtual and override, the compiler is smart
enough to know that although the variable is declared as a Person class, the object
itself is an Employee class and, therefore, the Employee implementation of ToString
is called.

The access modifiers and the effect they have is summarized in the following table:

Variable type | Access modifier Method executed In class
Person WriteToConsole Person
Employee new WriteToConsole Employee
Person virtual ToString Employee
Employee override ToString Employee

In my opinion, polymorphism is literally academic to most programmers. If you
get the concept, that's cool; but, if not, I suggest that you don't worry about it. Some
people like to make others feel inferior by saying understanding polymorphism is
important, but IMHO it's not. You can have a successful career with C# and never
need to be able to explain polymorphism, just as a racing car driver doesn't need to
be able to explain the engineering behind fuel injection.

Casting within inheritance hierarchies

Casting between types is subtly different from converting between types.

[213]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Implicit casting
In the previous example, you saw how an instance of a derived type can be stored in

a variable of its base type (or its base's base type, and so on). When we do this, it is
called implicit casting.

Explicit casting
Going the other way is an explicit cast, and you must use parentheses around the
type you want to cast into as a prefix to do it:

1. Inthe Main method, add a statement to assign the aliceInPerson variable to
a new Employee variable, as shown in the following code:

Employee explicitAlice = aliceInPerson;

2. Visual Studio Code displays a red squiggle and a compile error, as shown in
the following screenshot:

[] Program.cs — Chapter0& (Workspace)

C Programcs X o -
~ OPEN EDITORS leh o {} 4 5 - & Ma
X © Program.cs Peopledpp 1 141 Person alicelnPerson = alicelnEmployee;
“ CHAPTEROS (WORKSPACE) 142
: 143 aliceInEmployee.vriteToConsole();
~ Peopledps 14
PO 145 aliceInPerson.WriteToConsolel);
 wscode 148
> bir 147 WriteLinelalicelnEm| Person alicelnPerson

43 writeLinelaliceInpe Cannot implicitly convert type 'Packt.Shared.Person’ to ol
H it ‘Packt.Shared.Employee’. An explicit conversion exists (are you

missing a cast?) (CS@266) [PeopleApp]

spleApp

Program.cs /4 Explicit casting
Peak Problem Mo quick fixes available

Employee explicitAlice = aliceInPerson;

OUTLINE

> ILSPY DECOMPILED MEMOERS
Q1A0 & WFeopleppp

Ln 144, Col1 Spaces: 2 UTF-8 with BOM CRLF C# SharpPad:5255 @ &

3. Change the statement to prefix the assigned variable named with a cast to the
Employee type, as shown in the following code:

Employee explicitAlice = (Employee)aliceInPerson;

Avoiding casting exceptions

The compiler is now happy; but, because aliceInPerson might be a different
derived type, like Student instead of Employee, we need to be careful. In a real
application with more complex code, the current value of this variable could
have been set to a Student instance and then this statement would throw an
InvalidCastException error.

We can handle this by writing a try statement, but there is a better way. We can
check the type of an object using the is keyword:

[214]

Implementing Interfaces and Inheriting Classes | 06

1. Wrap the explicit cast statement in an if statement, as shown in the
following code:

if (aliceInPerson is Employee)

{

WriteLine ($"{nameof (aliceInPerson)} IS an Employee") ;

Employee explicitAlice = (Employee)aliceInPerson;
// safely do something with explicitAlice

}

2. Run the application and view the result, as shown in the following output:

aliceInPerson IS an Employee

Alternatively, you can use the as keyword to cast. Instead of throwing an
exception, the as keyword returns null if the type cannot be cast.

3. Add the following statements to the end of the Main method:

Employee aliceAsEmployee = aliceInPerson as Employee;

if (aliceAsEmployee != null)

{

WriteLine ($"{nameof (aliceInPerson)} AS an Employee") ;
// do something with aliceAsEmployee

}

Since accessing a null variable can throw a NullReferenceException error,
you should always check for null before using the result.

4. Run the application and view the result, as shown in the following output:

aliceInPerson AS an Employee

L, Good Practice: Use the is and as keywords to avoid throwing
@ exceptions when casting between derived types. If you

A\UAS don't do this, you must write try. . . catch statements for
InvalidCastException.

Inheriting and extending .NET types

NET has prebuilt class libraries containing hundreds of thousands of types. Rather
than creating your own completely new types, you can often get a head start by
deriving from one of Microsoft's types to inherit some or all of its behavior and then
overriding or extending it.

[215]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Inheriting exceptions

As an example of inheritance, we will derive a new type of exception:

1. Inthe PacktLibrary project, add a new class named pPersonException, with
three constructors, as shown in the following code:

using System;

namespace Packt.Shared

{

public class PersonException : Exception

{

public PersonException() : base() { }
public PersonException(string message) : base (message) { }

public PersonException (
string message, Exception innerException)
base (message, innerException) { }

}

Unlike ordinary methods, constructors are not inherited, so we must
explicitly declare and explicitly call the base constructor implementations in
System.Exception to make them available to programmers who might want
to use those constructors with our custom exception.

2. In the Person class, add statements to define a method that throws an
exception if a date/time parameter is earlier than a person's date of birth, as
shown in the following code:

public void TimeTravel (DateTime when)

{

if (when <= DateOfBirth)

{

throw new PersonException("If you travel back in time to
a date earlier than your own birth, then the universe will
explode!") ;

}

else

{

WriteLine ($"Welcome to {when:yyyy}!");

}

[216]

Implementing Interfaces and Inheriting Classes | 06

3. Inthe Main method, add statements to test what happens when employee
John Jones tries to time travel too far back, as shown in the following code:

try

{

el.TimeTravel (new DateTime (1999, 12, 31));

el.TimeTravel (new DateTime (1950, 12, 25));
catch (PersonException ex)

{

WriteLine (ex.Message) ;

}

4. Run the application and view the result, as shown in the following output:

Welcome to 1999!

If you travel back in time to a date earlier than your own
birth, then the universe will explode!

!
\@l Good Practice: When defining your own exceptions, give them the
same three constructors that explicitly call the built-in ones.

=
=
=

Extending types when you can't inherit

Earlier, we saw how the sealed modifier can be used to prevent inheritance.

Microsoft has applied the sealed keyword to the System.String class so that no
one can inherit and potentially break the behavior of strings.

Can we still add new methods to strings? Yes, if we use a language feature named
extension methods, which was introduced with C# 3.0.

Using static methods to reuse functionality

Since the first version of C#, we've been able to create static methods to reuse
functionality, such as the ability to validate that a string contains an email address.
This implementation will use a regular expression that you will learn more about in
Chapter 8, Working with Common .NET Types:

1. Inthe pPacktLibrary project, add a new class named StringExtensions, as
shown in the following code, and note the following:

[e]

The class imports a namespace for handling regular expressions.

[217]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

° The 1svalidEmail static method uses the Regex type to check for
matches against a simple email pattern that looks for valid characters
before and after the @ symbol.

using System.Text.RegularExpressions;

namespace Packt.Shared

{

public class StringExtensions

{

public static bool IsValidEmail (string input)

{

// use simple regular expression to check

// that the input string is a valid email

return Regex.IsMatch (input,
@"[a-2zA-20-9\.-]+@[a-2zA-Z0-9\.-]+");

}
}

2. Add statements to the bottom of the Main method to validate two examples
of email addresses, as shown in the following code:

string emaill = "pamela@test.com";
string email2 = "ian&test.com";
WriteLine (

"{0} is a valid e-mail address: {1}",
arg0: emaill,
argl: StringExtensions.IsValidEmail (emaill)) ;

WriteLine (
"{0} is a valid e-mail address: {1}",
arg0: email2,
argl: StringExtensions.IsValidEmail (email2)) ;

3. Run the application and view the result, as shown in the following output:

pamela@test.com is a valid e-mail address: True

ian&test.com is a valid e-mail address: False

This works, but extension methods can reduce the amount of code we must type and
simplify the usage of this function.

[218]

Implementing Interfaces and Inheriting Classes | 06

Using extension methods to reuse functionality

It is easy to make static methods into extension methods for their usage:

1. Inthe stringExtensions class, add the static modifier before the class,
and add the this modifier before the string type, as highlighted in the
following code:

public static class StringExtensions

{

public static bool IsValidEmail (this string input)

{

These two changes tell the compiler that it should treat the method as one
that extends the string type.

2. Back in the pProgram class, add some new statements to use the extension
method for string values:

WriteLine (
"{0} is a valid e-mail address: {1}",
arg0: emaill,
argl: emaill.IsValidEmail());

WriteLine (
"{0} is a valid e-mail address: {1}",
arg0: email2,
argl: email2.IsValidEmail()) ;

Note the subtle simplification in the syntax. The older, longer syntax still
works too.

3. The IsvalidEmail extension method now appears to be an instance
method just like all the actual instance methods of the string type, such as
IsNormalized and Insert, as shown in the following screenshot:

® ® Program.cs — Chapterdd (Workspace)
[D © Programes X |

“ OPEN EDITORS Panplah or s {) Peaples %4 PeonieApii Progeam ¥ @ Mal

) X € Program.cs PeopleApp

* CHAPTEROS (WORKSPACE)

T} argl: emaill.IsValidEmail{)};

1 Writelinel) IsNormalized

pp.cspraj 202 "0} is a valid @ IsValidEmail bool IsValidEmail()
© Program.cs 2 283 argeé: emailz,) Insert
ony [T 04 argl: emai‘:)._l:ti
@ ° 5 } n

> ILSPY DECOMPILED MEMBERS

@240 & WPecpleinp Ln 204 Col24 Spaces:?2 UTF-BwithBOM CRLF C# SharpPad:5255 @ M

[219]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Extension methods cannot replace or override existing instance methods, so you
cannot, for example, redefine the Insert method. The extension method will appear
as an overload in IntelliSense, but an instance method will be called in preference to
an extension method with the same name and signature.

Although extension methods might not seem to give a big benefit, in Chapter 12,
Querying and Manipulating Data Using LINQ, you will see some extremely powerful
uses of extension methods.

Practicing and exploring

Test your knowledge and understanding by answering some questions. Get some
hands-on practice and explore with deeper research into this chapter's topics.

Exercise 6.1 — Test your knowledge

Answer the following questions:

1. Whatis a delegate?
What is an event?
How are a base class and a derived class related?

What is the difference between is and as operators?

AR

Which keyword is used to prevent a class from being derived from,
or a method from being further overridden?

6. Which keyword is used to prevent a class from being instantiated with the
new keyword?

Which keyword is used to allow a member to be overridden?
What's the difference between a destructor and a deconstruct method?

What are the signatures of the constructors that all exceptions should
have?

10. What is an extension method and how do you define one?

Exercise 6.2 — Practice creating an inheritance
hierarchy

Explore inheritance hierarchies by following these steps:

1. Add anew console application named Exercise02 to your workspace.

[220]

Implementing Interfaces and Inheriting Classes | 06

Create a class named shape with properties named Height, Width, and Area.

Add three classes that derive from it—Rectangle, Square, and
Circle—with any additional members you feel are appropriate and that
override and implement the Area property correctly.

In Program. cs, in the Main method, add statements to create one
instance of each shape, as shown in the following code:

var r = new Rectangle (3, 4.5);
WriteLine ($"Rectangle H: {r.Height}, W: {r.wWidth}, Area:
{r.Area}");

var s = new Square(5);
WriteLine ($"Square H: {s.Height}, W: {s.wWidth}, Area:
{s.Area}");

var ¢ = new Circle(2.5);
WriteLine ($"Circle H: {c.Height}, W: {c.wWidth}, Area:
{c.Area}");

Run the console application and ensure that the result looks like the
following output:

Rectangle H: 3, W: 4.5, Area: 13.5
Square H: 5, W: 5, Area: 25
Circle H: 5, W: 5, Area: 19.6349540849362

Exercise 6.3 — Explore topics

Use the following links to read more about the topics covered in this chapter:

Operator (C# reference): https://docs.microsoft.com/en-us/dotnet/
articles/csharp/language-reference/keywords/operator

Delegates: https://docs.microsoft.com/en-us/dotnet/articles/
csharp/tour-of-csharp/delegates

Events (C# programming guide): https://docs.microsoft.com/en-us/
dotnet/articles/csharp/language-reference/keywords/event

Interfaces: https://docs.microsoft.com/en-us/dotnet/articles/
csharp/tour-of-csharp/interfaces

Generics (C# Programming Guide): https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/generics

Reference Types (C# Reference): https://docs.microsoft.com/en-us/
dotnet/articles/csharp/language-reference/keywords/reference-

types

[221]

https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/operator
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/operator
https://docs.microsoft.com/en-us/dotnet/articles/csharp/tour-of-csharp/delegates
https://docs.microsoft.com/en-us/dotnet/articles/csharp/tour-of-csharp/delegates
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/articles/csharp/tour-of-csharp/interfaces
https://docs.microsoft.com/en-us/dotnet/articles/csharp/tour-of-csharp/interfaces
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/reference-types
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/reference-types
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/reference-types

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

* Value Types (C# Reference): https://docs.microsoft.com/en-us/
dotnet/articles/csharp/language-reference/keywords/value-types

* Inheritance (C# Programming Guide): https://docs.microsoft.com/
en-us/dotnet/articles/csharp/programming-guide/classes-and-
structs/inheritance

* Finalizers (C# Programming Guide): https://docs.microsoft.com/
en-us/dotnet/articles/csharp/programming-guide/classes-and-
structs/destructors

Summary

In this chapter, you learned about local functions and operators, delegates and
events, implementing interfaces, generics, and deriving types using inheritance
and OOP. You also learned about base and derived classes, how to override a type
member, use polymorphism, and cast between types.

In the next chapter, you will learn about .NET Core 3.0 and .NET Standard 2.1, and
the types that they provide you with to implement common functionality such as file
handling, database access, encryption, and multitasking.

[222]

https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/destructors

Chapter 07

Understanding and
Packaging .NET Types

This chapter is about how .NET Core implements the types that are defined in

the NET Standard. Over the course of this chapter, you'll learn how C# keywords
are related to .NET types, and about the relationship between namespaces and
assemblies. You'll also become familiar with how to package and publish your NET
Core apps and libraries for use cross-platform, how to use existing .NET Framework
libraries in .NET Standard libraries, and the possibility of porting NET Framework
code bases to .NET Core.

This chapter covers the following topics:

* Introducing .NET Core 3.0

* Understanding .NET Core components

* Publishing your applications for deployment

* Decompiling assemblies

* Packaging your libraries for NuGet distribution
e Porting from .NET Framework to .NET Core

Introducing .NET Core 3.0

This part of the book is about the functionality in the APIs provided by .NET Core
3.0, and how to reuse functionality across all the different .NET platforms using
.NET Standard. .NET Core 2.0 and later's support for a minimum of .NET Standard
2.0 is important because it provides many of the APIs that were missing from the
tirst version of .NET Core. The 15 years' worth of libraries and applications that
.NET Framework developers had available to them that are relevant for modern
development have now been migrated to .NET Core and can run cross-platform
on macOS and Linux variants, as well as on Windows. For example, API support
increased by 142% from .NET Core 1.1 to .NET Core 2.0.

[223]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

NET Standard 2.1 adds about 3,000 new APIs. Some of those APIs need runtime
changes that would break backwards compatibility, so .NET Framework 4.8 only
implements .NET Standard 2.0. .NET Core 3.0, Xamarin, Mono, and Unity implement
.NET Standard 2.1.

More Information: The full list of NET Standard 2.1 APIs and

‘ p/ a comparison with .NET Standard 2.0 are documented at the
following link: https://github.com/dotnet/standard/
blob/master/docs/versions/netstandard2.1.md

To summarize the progress that INET Core has made over the past three years I have
compared the major .NET Core versions with the equivalent NET Framework
versions in the following list:

* .NET Core 1.0: much smaller API compared to .NET Framework 4.6.1, which
was the current version in March 2016.

* .NET Core 2.0: reached API parity with .NET Framework 4.7.1 for modern
APIs because they both implement .NET Standard 2.0.

* .NET Core 3.0: larger API compared to .NET Framework for modern
APIs because .NET Framework 4.8 does not implement .NET Standard 2.1.

the following link: https://docs.microsoft.com/en-us/
dotnet/api/

D’ More Information: You can search and browse all NET APIs at
\"/

.NET Core 1.0

.NET Core 1.0 was released in June 2016 and focused on implementing an API
suitable for building modern cross-platform apps, including web and cloud
applications and services for Linux using ASP.NET Core.

, More Information: You can read the .NET Core 1.0 announcement
\/in> at the following link: https://blogs.msdn.microsoft.com/

dotnet/2016/06/27/announcing-net-core-1-0/

.NET Core 1.1

.NET Core 1.1 was released in November 2016 and focused on fixing bugs, increasing
the number of Linux distributions supported, supporting .NET Standard 1.6, and
improving performance, especially with ASP.NET Core for web apps and services.

[224]

https://github.com/dotnet/standard/blob/master/docs/versions/netstandard2.1.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard2.1.md
https://docs.microsoft.com/en-us/dotnet/api/
https://docs.microsoft.com/en-us/dotnet/api/
https://blogs.msdn.microsoft.com/dotnet/2016/06/27/announcing-net-core-1-0/
https://blogs.msdn.microsoft.com/dotnet/2016/06/27/announcing-net-core-1-0/

Understanding and Packaging .NET Types | 07

More Information: You can read the NET Core 1.1

\/V announcement at the following link: https://blogs.msdn.

microsoft.com/dotnet/2016/11/16/announcing-net-
core-1-1/

.NET Core 2.0

NET Core 2.0 was released in August 2017 and focused on implementing

NET Standard 2.0, the ability to reference .NET Framework libraries, and more
performance improvements. .NET Core for UWP apps was released with Windows
10 Fall Creators Update in October 2017.

More Information: You can read the .NET Core 2.0

\/V announcement at the following link: https://blogs.msdn.

microsoft.com/dotnet/2017/08/14/announcing-net-
core-2-0/

The third edition of this book was published in November 2017, so it covered up to
.NET Core 2.0 and .NET Core for UWP apps. This fourth edition covers some of the
new APIs added in later versions up to .NET Core 3.0.

.NET Core 2.1

.NET Core 2.1 was released in May 2018 and focused on an extendable tooling
system, adding new types like Span<T>, new APIs for cryptography and
compression, a Windows Compatibility Pack with an additional 20,000 APIs to
help port old Windows applications, Entity Framework Core value conversions,
LINQ GroupBy conversions, data seeding, query types, and even more performance
improvements, including the topics listed in the following table:

Feature Chapter | Topic

Spans, indexes, ranges 8 Working with spans, indexes, and ranges
Brotli compression 9 Compressing with the Brotli algorithm
Cryptography 10 What's new in cryptography?

Lazy loading 11 Enabling lazy loading

Data seeding 11 Understanding data seeding

[225]

https://blogs.msdn.microsoft.com/dotnet/2016/11/16/announcing-net-core-1-1/
https://blogs.msdn.microsoft.com/dotnet/2016/11/16/announcing-net-core-1-1/
https://blogs.msdn.microsoft.com/dotnet/2017/08/14/announcing-net-core-2-0/
https://blogs.msdn.microsoft.com/dotnet/2017/08/14/announcing-net-core-2-0/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

More Information: You can read the INET Core 2.1

\/‘/ announcement at the following link: https://blogs.msdn.

microsoft.com/dotnet/2018/05/30/announcing-net-
core-2-1/

.NET Core 2.2

NET Core 2.2 was released in December 2018 and focused on diagnostic improvements
for the runtime, optional tiered compilation, and adding new features to ASP.NET
Core and Entity Framework Core like spatial data support using types from the
NetTopologySuite (NTS) library, query tags, and collections of owned entities.

More Information: You can read the NET Core 2.2

\/V announcement at the following link: https://blogs.msdn.

microsoft.com/dotnet/2018/12/04/announcing-net-
core-2-2/

.NET Core 3.0

.NET Core 3.0 was released in September 2019 and focused on adding support for
building Windows desktop applications using Windows Forms (2001), Windows
Presentation Foundation (WPF; 2006), and Entity Framework 6.3, side-by-side

and app-local deployments, a fast JSON reader, serial port access and other PIN
access for Internet of Things (IoT) solutions, and tiered compilation on by default,
including the topics listed in the following table:

Feature Chapter | Topic

Embedding .NET Core inapp |7 Publishing your applications for deployment
Index and Range 8 Working with spans, indexes, and ranges
System.Text.Json 9 High-performance JSON processing

Async streams 13 Working with async streams

C’ More Information: You can read the .NET Core 3.0
\”/

announcement at the following link: https://devblogs.
microsoft.com/dotnet/announcing-net-core-3-0/

[226]

https://blogs.msdn.microsoft.com/dotnet/2018/05/30/announcing-net-core-2-1/
https://blogs.msdn.microsoft.com/dotnet/2018/05/30/announcing-net-core-2-1/
https://blogs.msdn.microsoft.com/dotnet/2018/05/30/announcing-net-core-2-1/
https://blogs.msdn.microsoft.com/dotnet/2018/12/04/announcing-net-core-2-2/
https://blogs.msdn.microsoft.com/dotnet/2018/12/04/announcing-net-core-2-2/
https://blogs.msdn.microsoft.com/dotnet/2018/12/04/announcing-net-core-2-2/
https://devblogs.microsoft.com/dotnet/announcing-net-core-3-0/
https://devblogs.microsoft.com/dotnet/announcing-net-core-3-0/

Understanding and Packaging .NET Types | 07

Understanding .NET Core components

.NET Core is made up of several pieces, which are as follows:

Language compilers: These turn your source code written with languages
such as C#, F#, and Visual Basic into intermediate language (IL) code stored
in assemblies. With C# 6.0 and later, Microsoft switched to an open source
rewritten compiler known as Roslyn that is also used by Visual Basic. You
can read more about Roslyn at the following link: https://github.com/
dotnet/roslyn

Common Language Runtime (CoreCLR): This runtime loads assemblies,
compiles the IL code stored in them into native code instructions for your
computer's CPU, and executes the code within an environment that manages
resources such as threads and memory.

Base Class Libraries (BCL) of assemblies in NuGet packages (CoreFX):
These are prebuilt assemblies of types packaged and distributed using NuGet
for performing common tasks when building applications.

You can use them to quickly build anything you want rather like combining
LEGO™ pieces. .NET Core 2.0 implemented .NET Standard 2.0, which is a
superset of all previous versions of .NET Standard, and lifted .NET Core up
to parity with .NET Framework and Xamarin. NET Core 3.0 implements
.NET Standard 2.1, which adds new capabilities and enables performance
improvements beyond those available in .NET Framework.

More Information: You can read the announcement of .NET

\/V Standard 2.1 at the following link: https://blogs.msdn.
microsoft.com/dotnet/2018/11/05/announcing-net-
standard-2-1/

Understanding assemblies, packages, and
namespaces

An assembly is where a type is stored in the filesystem. Assemblies are a mechanism
for deploying code. For example, the System.Data.dl1l assembly contains types for
managing data. To use types in other assemblies, they must be referenced.

Assemblies are often distributed as NuGet packages, which can contain multiple
assemblies and other resources. You will also hear about metapackages and
platforms, which are combinations of NuGet packages.

[227]

https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://blogs.msdn.microsoft.com/dotnet/2018/11/05/announcing-net-standard-2-1/
https://blogs.msdn.microsoft.com/dotnet/2018/11/05/announcing-net-standard-2-1/
https://blogs.msdn.microsoft.com/dotnet/2018/11/05/announcing-net-standard-2-1/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

A namespace is the address of a type. Namespaces are a mechanism to uniquely
identify a type by requiring a full address rather than just a short name. In the real
world, Bob of 34 Sycamore Street is different from Bob of 12 Willow Drive.

In .NET, the 1ActionFilter interface of the System.Web.Mvc namespace is different
from the IActionFilter interface of the System.Web.Http.Filters namespace.

Understanding dependent assemblies

If an assembly is compiled as a class library and provides types for other assemblies
to use, then it has the file extension .d11 (dynamic link library), and it cannot be
executed standalone.

Likewise, if an assembly is compiled as an application, then it has the file extension
.exe (executable) and can be executed standalone. Before .NET Core 3.0, console
apps were compiled to .d11 files and had to be executed by the dotnet run
command or a host executable.

Any assembly can reference one or more class library assemblies as dependencies,
but you cannot have circular references. So, assembly B cannot reference assembly
A, if assembly A already references assembly B. The compiler will warn you if you
attempt to add a dependency reference that would cause a circular reference.

Good Practice: Circular references are often a warning sign of poor
’ code design. If you are sure that you need a circular reference,
',@\' then use an interface to solve it, as explained in the Stack Overflow
answer at the following link: https://stackoverflow.com/
questions/6928387/how-to-solve-circular-reference

N

(]

Understanding the Microsoft .NET Core App
platform

By default, console applications have a dependency reference on the Microsoft .NET
Core App platform. This platform contains thousands of types in NuGet packages
that almost all applications would need, such as the int and string types.

When using .NET Core, you reference the dependency assemblies, NuGet packages,
and platforms that your application needs in a project file.

Let's explore the relationship between assemblies and namespaces.

1. In Visual Studio Code, create a folder named Chaptero7 with a subfolder
named AssembliesAndNamespaces, and enter dotnet new console to
create a console application.

[228]

https://stackoverflow.com/questions/6928387/how-to-solve-circular-reference
https://stackoverflow.com/questions/6928387/how-to-solve-circular-reference

Understanding and Packaging .NET Types | 07

2. Save the current workspace as Chapter07 in the Chaptero7 folder and add
the AssembliesAndNamespaces folder to the workspace.

3. Open AssembliesAndNamespaces.csproj, and note that it is a typical
project file for a .NET Core application, as shown in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFrameworks>

</PropertyGroup>

</Project>

Although it is possible to include the assemblies that your application uses with its
deployment package, by default the project will probe for shared assemblies installed
in well-known paths.

First, it will look for the specified version of .NET Core in the current user's
.dotnet/store and .nuget folders, and then it looks in a fallback folder that
depends on your OS, as shown in the following root paths:

* Windows: C:\Program Files\dotnet\sdk

e macOS: /usr/local/share/dotnet/sdk

Most common .NET Core types are in the System.Runtime.d11 assembly. You
can see the relationship between some assemblies and the namespaces that they
supply types for, and note that there is not always a one-to-one mapping between
assemblies and namespaces, as shown in the following table:

Assembly Example namespaces Example types
System.Runtime.dll System, System.Collections, Int32, String,
System.Collections.Generic IEnumerable<Ts>
System.Console.dll System Console
System.Threading.dll |System.Threading Interlocked,

Monitor, Mutex

System.Xml. System.Xml.Ling XDocument,
XDocument .dll XElement, XNode

[229]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Understanding NuGet packages

.NET Core is split into a set of packages, distributed using a Microsoft-supported
package management technology named NuGet. Each of these packages represents
a single assembly of the same name. For example, the System.Collections package
contains the System.Collections.dll assembly.

The following are the benefits of packages:

* Packages can ship on their own schedule.
* Packages can be tested independently of other packages.

* Packages can support different OSes and CPUs by including multiple
versions of the same assembly built for different OSes and CPUs.

* Packages can have dependencies specific to only one library.

* Apps are smaller because unreferenced packages aren't part of the
distribution.

The following table lists some of the more important packages and their important
types:

Package Important types

System.Runtime Object, String, Int32, Array
System.Collections List<T>, Dictionary<TKey, TValues>
System.Net .Http HttpClient, HttpResponseMessage

System.IO.FileSystem |File, Directory

System.Reflection Assembly, TypeInfo, MethodInfo

Understanding frameworks

There is a two-way relationship between frameworks and packages. Packages define
the APIs, while frameworks group packages. A framework without any packages
would not define any APIs.

More Information: If you have a strong understanding of
interfaces and types that implement them, you might find the
‘ p/ following URL useful for grasping how packages, and their
\/ APIs, relate to frameworks such as the various .NET Standard
versions: https://gist.github.com/davidfowl/8939£f3055
67e1755412d6dc0b8baflb7

[230]

https://gist.github.com/davidfowl/8939f305567e1755412d6dc0b8baf1b7
https://gist.github.com/davidfowl/8939f305567e1755412d6dc0b8baf1b7

Understanding and Packaging .NET Types | 07

.NET packages each support a set of frameworks. For example, the
System.IO.FileSystem package version 4.3.0 supports the following frameworks:

.NET Standard, version 1.3 or later.
.NET Framework, version 4.6 or later.

Six Mono and Xamarin platforms (for example, Xamarin.iOS 1.0).

link: https://www.nuget .org/packages/System.
I0.FileSystem/

C’ More Information: You can read the details at the following
\’/

Importing a namespace to use a type

Let's explore how namespaces are related to assemblies and types.

1.

In the AssembliesAndNamespaces project, in the Main method, enter the
following code:

var doc = new XDocument () ;

The XxDocument type is not recognized because we have not told the compiler
what the namespace of the type is. Although this project already has a
reference to the assembly that contains the type, we also need to either prefix
the type name with its namespace or to import the namespace.

Click inside the XDocument class name. Visual Studio Code displays a light
bulb, showing that it recognizes the type and can automatically fix the
problem for you.

Click the light bulb, or in Windows, press Ctrl + . (dot), or in macOS, press
Cmd + . (dot).

4. Select using System.Xml.Ling; from the menu.

This will import the namespace by adding a using statement to the top of the file.
Once a namespace is imported at the top of a code file, then all the types within the
namespace are available for use in that code file by just typing their name without
the type name needing to be fully qualified by prefixing with its namespace.

Relating C# keywords to .NET types

One of the common questions I get from new C# programmers is, What is the
difference between string with a lowercase and String with an uppercase?

The short answer is easy: none. The long answer is that all C# type keywords
are aliases for a .NET type in a class library assembly.

[231]

https://www.nuget.org/packages/System.IO.FileSystem/
https://www.nuget.org/packages/System.IO.FileSystem/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

When you use the string keyword, the compiler turns it into a System. String
type. When you use the int type, the compiler turns it into a System. Int32 type.

1. Inthe Main method, declare two variables to hold string values, one using
lowercase and one using uppercase, as shown in the following code:

string sl =
String s2 =

"Hello";
"World";

At the moment, they both work equally well, and literally mean the same

thing.

2. At the top of the class file, comment out the using System; statement by
prefixing the statement with //, and note the compiler error.

3. Remove the comment slashes to fix the error.

\ /
/@\

=

Good Practice: When you have a choice, use the C# keyword
instead of the actual type because the keywords do not need the
namespace imported.

The following table shows the 16 C# type keywords along with their actual

.NET types:
Keyword |.NET type Keyword |.NET type
string System.String char System.Char
sbyte System.SByte byte System.Byte
short System.Intlé6 ushort System.UIntleé
int System.Int32 uint System.UInt32
long System.Inté64 ulong System.UInté64
float System.Single double System.Double
decimal | System.Decimal bool System.Boolean
object System.Object dynamic | System.Dynamic.DynamicObject

Other .NET programming language compilers can do the same thing. For
example, the Visual Basic .NET language has a type named Integer thatis

its alias for System. Int32.

Right-click inside XDocument and choose Go to Definition or press F12.

5. Navigate to the top of the code file and note the assembly filename is
System.Xml .XDocument .d11 but the class is in the System.Xml.Ling
namespace, as shown in the following screenshot:

[232]

Understanding and Packaging .NET Types | 07

L L [metadata] XDocument.cs — Chapter07 (Workspace)

|-| 5| C [metadata] XDocument.cs X B e

#region Asse y System.Xal,XDocument, Version=4.1.1.8, Culture=neutral, PublicKeyToken=b@3f5f7f11d50a3a -
£f System.Xml. XDocument.dll

#endregion

using System.I0;

14 il object,
- 15 ubli X
223 15 public class

Go0A? & WAssembliesAndNamespaces Spaces: 2 C# SharpPad:5255 @ M

6. Close the [metadata] XDocument.cs tab.

7. Right-click inside string or String and choose Go to Definition or
press F12.

8. Navigate to the top of the code file and note the assembly filename is
System.Runtime.dll but the class is in the System namespace.

Sharing code cross-platform with .NET

Standard class libraries

Before .NET Standard, there were Portable Class Libraries (PCLs). With PCLs, you
could create a library of code and explicitly specify which platforms you want the
library to support, such as Xamarin, Silverlight, and Windows 8. Your library could
then use the intersection of APIs that are supported by the specified platforms.

Microsoft realized that this is unsustainable, so they created .NET Standard —a single
API that all future .NET platforms will support. There are older versions of NET
Standard, but only .NET Standard 2.0 and later is supported by multiple NET
platforms. For the rest of this book I will use the term .NET Standard to mean .NET
Standard 2.0 or later.

NET Standard is similar to HTML5 in that they are both standards that a platform
should support. Just as Google's Chrome browser and Microsoft's Edge browser
implement the HTMLS5 standard, so .NET Core, INET Framework, and Xamarin all
implement .NET Standard. If you want to create a library of types that will work
across variants of .NET, you can do so most easily with .NET Standard.

Your choice of which .NET Standard version to target comes down to a balance
between maximizing platform support or available functionality. A lower version
supports more platforms but has a smaller set of APIs. A higher version supports
fewer platforms but has a larger set of APIs. Generally, you should choose the lowest
version that supports all the APIs that you need.

[233]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

The versions of .NET Standard and which platforms they support are summarized in
the following table:

Platform 11 |12 |13 (14 |15 |1.6 2.0 21
NET Core - | — - |—- |— |10,11 |20 3.0
NET Framework (4.5 |451 (46 |—> |—> |— 4.6.1 n/a
Mono - | — - |—> | —> |46 54 6.2
Xamarin.iOS - |- - |—> |— [10.0 10.14 12.12
UWP - |- - |10 |—> |— 10.0.16299 |[n/a

More Information: An online tool for visualizing which
‘ n/ platforms support which version of .NET Standard can be
\/ found at the following link: http://immo.landwerth.net/
netstandard-versions/

Good Practice: Since many of the API additions in .NET Standard
2.1 require runtime changes, and .NET Framework is Microsoft's
L, legacy platform that needs to remain as unchanging as possible,

@ .NET Framework 4.8 will remain on .NET Standard 2.0 rather

than implement .NET Standard 2.1. If you need to support .NET
Framework customers, then you should create class libraries on
.NET Standard 2.0 even though it is not the latest and does not
support all the new features in C# 8.0 and .NET Core 3.0.

We will create a class library using .NET Standard 2.0 so that it can be used across
all important .NET platforms and cross-platform on Windows, macOS, and Linux
operating systems while also having access to a wide set of .NET APIs.

1. Inthe code/Chaptero7 folder, create a subfolder named SharedLibrary.

2. In Visual Studio Code, add the sharedLibrary folder to the Chaptero7
workspace.

3. Navigate to Terminal | New Terminal and select SharedLibrary.

In Terminal, enter the following command:

dotnet new classlib

5. Click on sharedLibrary.csproj and note that a class library generated
by the dotnet CLI targets .NET Standard 2.0 by default, as shown in the
following markup:

[234]

http://immo.landwerth.net/netstandard-versions/
http://immo.landwerth.net/netstandard-versions/

Understanding and Packaging .NET Types | 07

<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<TargetFramework>netstandard2.0</TargetFramework>

</PropertyGroup>

</Projects>

Good Practice: If you need to create a type that uses new features in

A .NET Standard 2.1 then create separate class libraries: one targeting
'/@\' .NET Standard 2.0 and one targeting .NET Standard 2.1. You will
E see this in action in Chapter 11, Working with Databases Using Entity

Framework Core.

Publishing your applications for
deployment

There are three ways to publish and deploy a .NET Core application. They are:

* Framework-dependent deployment (FDD).
* Framework-dependent executables (FDEs).
* Self-contained.

If you choose to deploy your application and its package dependencies, but not NET
Core itself, then you rely on .NET Core already being on the target computer. This
works well for web applications deployed to a server because .NET Core and lots of
other web applications are likely already on the server.

Sometimes, you want to be able to give someone a USB stick containing your
application and know that it can execute on their computer. You want to perform
a self-contained deployment. While the size of the deployment files will be larger,
you'll know that it will work.

Creating a console application to publish
Let's explore how to publish a console application.
1. Create a new console application project named DotNetCoreEverywhere and
add it to the Chapter07 workspace.

2. Inprogram.cs, add a statement to output a message saying the console app
can run everywhere, as shown in the following code:

using static System.Console;

[235]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

namespace DotNetCoreEverywhere

{

class Program

{

static void Main(string[] args)

{

WriteLine ("I can run everywhere!");

}
}
}

3. Open DotNetCoreEverywhere.csproj and add the runtime identifiers to
target three operating systems inside the <pPropertyGroup> element, as
shown in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFrameworks>
<RuntimeIdentifiers>
winl0-x64;0sx-x64;rhel.7.4-x64
</RuntimeIdentifiers>
</PropertyGroup>

</Project>

e The win10-x64 RID value means Windows 10 or Windows Server 2016.
¢ The osx-x64 RID value means macOS Sierra 10.12 or later.

* The rhel.7.4-x64 RID value means Red Hat Enterprise Linux (RHEL) 7.4
or later.

More Information: You can find the currently supported

\/V Runtime IDentifier (RID) values at the following link:

https://docs.microsoft.com/en-us/dotnet/articles/
core/rid-catalog

Understanding dotnet commands

When you install .NET Core SDK, it includes the command-line interface (CLI)
named dotnet.

Creating new projects

The dotnet CLI has commands that work on the current folder to create a new
project using templates.

[236]

https://docs.microsoft.com/en-us/dotnet/articles/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/articles/core/rid-catalog

Understanding and Packaging .NET Types | 07

You can install additional templates from the following link:

https://dotnetnew.azurewebsites.net/

More Information: You can define your own project templates,
/ as explained in the official documentation for the dotnet new
\/<n> command at the following link: https://docs.microsoft.
com/en-us/dotnet/core/tutorials/create-custom-
template

In Visual Studio Code, navigate to Terminal.

5. Enter the dotnet new -1 command to list your currently installed templates,
as shown in the following screenshot:

L L] Chapterd? (Waorkspace]

|'|""'I PROBLEMS OUTPUT EAUG COMSOLE TERMINAL 1: bash % +

Marks-MacBook-Pro-13:DothetCoraEverywhere markjprices dotnet new -1
@) Usage: new [optiens]

Options:

Displays help for this command.
Lists templates containing the specified name. If no name is specified, lists all templates.

The name for the output being created. IT no name is specified, the name of the current directory is used.
Location to place the generated output.

plates based on available types. Predefined values are “project®, “item" or “other".

mnary of what would happen if the given comsand line were run if it would result im a template creation.
ent to be generated even if it would change existing files.

s based on language and specifies the language of the template to create.

tly installed template packs for updates.

itly installed template packs for update, and install the updates.

—force
lang, language Filters
update-check Check the c

—update-apply Check the cu

Templates Short Name Languaqge Tags

. F=, VB Com onsole

Consale A cati console 1 onman/
, F#, VB Common/Library

Class Libr classiib

@oA0 & WDothetCoreFvarywhere SharpPad: 5255

Managing projects
The dotnet CLI has the following commands that work on the project in the current
folder, to manage the project:

* dotnet restore: This downloads dependencies for the project.

* dotnet build: This compiles the project.

* dotnet test: This runs unit tests on the project.

* dotnet run: This runs the project.

* dotnet pack: This creates a NuGet package for the project.

* dotnet publish: This compiles and then publishes the project, either with
dependencies or as a self-contained application.

* add: This adds a reference to a package or class library to the project.

[237]

https://dotnetnew.azurewebsites.net/
https://docs.microsoft.com/en-us/dotnet/core/tutorials/create-custom-template
https://docs.microsoft.com/en-us/dotnet/core/tutorials/create-custom-template
https://docs.microsoft.com/en-us/dotnet/core/tutorials/create-custom-template

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

* remove: This removes a reference to a package or class library from the project.

* 1list: This lists the package or class library references for the project.

Publishing a self-contained app

Now we can publish our cross-platform console app.

1. In Visual Studio Code, navigate to Terminal, and enter the following
command to build the release version of the console application for
Windows 10:

dotnet publish -c Release -r winl0-x64

Microsoft Build Engine will then compile and publish the console
application.

2. In Terminal, enter the following commands to build release versions for
macOS and RHEL:
dotnet publish -c Release -r osx-x64

dotnet publish -c Release -r rhel.7.4-x64

3. Open a macOS Finder window or Windows File Explorer, navigate to
DotNetCoreEverywhere\bin\Release\netcoreapp3 .0, and note the
output folders for the three operating systems and the files, including a
Linux executable named DotNetCoreEverywhere, as shown in the following

screenshot:
@ rhel.7.4-x64
< m=lcig- - ala ¥ ~RQ
Emvouiles Dabug > natcoreapp3.0 > osx-x64 + W createdump
Release 3 rhel.7.4-x64 . DotNetCoreEverywhere
iCloud win10-x84 * DotNetCoreE..re.deps.json
&5 iCloud Drive DotNetCoreEverywhera.dil exec
DotNetCoreEverywhere.pdb il
Locations DotNetCareE..nfig.devjson
1 Mark's MacBook Pro 13 DotMetCoreE...econfig.json
= 2 libeirjit.so
(&) Remote Disc fibeareci &6
Tags libcoreciriraceplprovider.so
libdbgshim.so

If you copy any of those folders to the appropriate operating system, the console
application will run; this is because it is a self-contained deployable .NET Core
application.

Decompiling assemblies

One of the best ways to learn how to code for .NET is to see how professionals do it.

[238]

Understanding and Packaging .NET Types | 07

For learning purposes, you can decompile any .NET assembly with a tool like ILSpy.
N ! /
/@

=
=
=

Good Practice: You could decompile someone else's assemblies for
non-learning purposes but remember that you are viewing their
intellectual property so please respect that.

1. If you have not already installed the ILSpy .NET Decompiler extension for
Visual Studio Code, then search for it and install it now.

2. In Visual Studio Code, navigate to View | Command Palette... or press
Cmd + Shift + P.

3. Type ilspy and then select ILSpy: Decompile IL Assembly (pick file).

Navigate to the Code/Chapter07/DotNetCodeEverywhere/bin /
Release/netcoreapp3.0/winl0-x64 folder.

Select the System.IO.FileSystem.dll assembly and click Select assembly.

In the EXPLORER window, expand ILSPY DECOMPILED MEMBERS,
select the assembly, and note the two edit windows that open showing
assembly attributes using C# code and external DLL and assembly
references using IL code, as shown in the following screenshot:

llspy-decompilation cs — Chaptard? (Warkspaca)

m - spy-decompilation
/¢ fUsers/markjprice/Code/Chapterd?/Dos o

C llspy-decompilation.cs @

£t fUsers/markjprice/Code/Chapterd?/Do

~ OPEN EDITORS | 2 UNSAVED

GROUP 1
.module extern kernel3z.dil

> CHAPTERO? (WORKSPACE)
» OUTLINE
“ ILSPY DECOMPILED MEMBERS

using Sys
using System.Security.Permissic

‘roduct("Micresoft
mpatibility (Wraphc

18 [assembly: &
lassembly: R

@oho & BOoNetCoreEverywhere

® © ilspy-decompilation.cs i | .module extern advapi32.dll
GROUP 2 #/ This assembly in .module extern ntdll.dll
L] Ispy-decompilation.i // Runtime: v4.9.30219 .assembly extern System.Runtime

{
.publickeytoken = {

be 3f 5Ff 7f 11 d5 0a 2a
18)
1 over 4:2:1:0
}
.assembly extern System.Runtime.Inter
1

«publickeytoken = { i
b2 3f 57 71 11 45 @a 3a ol
i
.ver 4:2:1:8
}

Ln 41, Col1 Spaces:2 UTF-B LF C# SharpPad:5255 @ &

In the IL code, note the reference to the System.Runtime assembly including

version number, as shown in the following code:

.assembly extern System.Runtime

{
.publickeytoken = (
bo 3f 5f 7f 11 d5 0Oa 3a
)
.ver 4:2:1:0
}

[239]

C# 8.0 and .NET Core 3.0 — Modern Cross-Platform Development

.module extern kernel32.dll means this assembly makes function
calls to Win32 APIs as you would expect from code that interacts with the

filesystem.

8. In the EXPLORER window, expand the namespaces, expand the System.
IO namespace, select Directory, and note the two edit windows that open
showing the decompiled Directory class using C# code and IL code, as

shown in the following screenshot:

® ilspy-decompilation.cs — Chapter0? (Workspace)
RER Cr lispy-decompilation.cs @ o

“ OPEN EDITORS 2 UNSAVED
GROUP 1

@ C jIspy-decompilation.cs

GROUP 2 5 namespace System,IO
® - ilspy-decompilation.il € {
» CHAPTERO7 [WORKSPACE) 7 public static class Directory
» OUTLINE {
E) public static DirectoryInfo GetParent{string path)
~ ILSPY DECOMPILED MEMBERS {
w [/Usersimarkjprice/Code/Cha... if (path == null}
¥ {} 1
> {} FxRescurces throw new ArqumentNullExceptiond“path”);
}
if (path.Length == @}
4
throw new ArgumentException(SR.Argument_PathEmpt
}

string fullPath = Path.GetFullPath{path); ==
string directoryMame = Path.GetDirectoryNase{fullP —=
if (directoryName == null)

{

23 return null;
24 }
25 return new DirectoryInfo{directoryName);

Ln 375, Cal 1 UTF-8

Spaces: 2

@oAC A W DotNetCoreEverywhere

acompilation.|

.class public auto %z
extends [System.

{

£/ Methods -+
.method /+ @GOB0E [
class System. 1077
string path 5

) cil managed

{

/¢ Method begin
// Code size 647
Jmaxstack 2 o
.locals /f+ 1100
(2] string, L
111 string

)

IL_p000:
IL_geal:

IL_ea@3:
IL_B@8:
IL_onad:

IL_28de:
IL_gnar:

9. Compare the C# source code for the Get Parent method, shown in the

following code:
public static DirectoryInfo GetParent (string path)

{

if (path == null)

throw new ArgumentNullException ("path") ;

}

if (path.Length == 0)

{
}

string fullPath = Path.GetFullPath (path) ;

throw new ArgumentException (SR.Argument PathEmpty,

string directoryName = Path.GetDirectoryName (fullPath) ;

if (directoryName == null)

{
}

return new DirectoryInfo (directoryName) ;

return null;

I
L
Bk

i

ldarg. =
brirue F

"path") ;

[240]

Understanding and Packaging .NET Types | 07

10. With the equivalent IL source code of the GetParent method, as shown in
the following code

.method /* 06000067 */ public hidebysig static
class System.IO.DirectoryInfo GetParent (
string path
) cil managed
{
// Method begins at RVA 0x62d4
// Code size 64 (0x40)
.maxstack 2
.locals /* 1100000E */ (
[0] string,
[1] string
)

IL 0000: ldarg.o
IL 0001: brtrue.s IL 000e

IL 0003: ldstr "path" /* 700005CB */

IL 0008: newobj instance void [System.Runtime]System.
ArgumentNullException::.ctor (string) /* 0A000035 */

IL 000d: throw

IL_000e: ldarg.o0

IL 000f: callvirt instance int32 [System.Runtime]System.
String::get Length() /* 0A000022 */

IL 0014: brtrue.s IL 0026

IL 0016: call string System.SR::get Argument PathEmpty () /*
0600004C */

IL 00lb: ldstr "path" /* 700005CB */

IL _0020: newobj instance void [System.Runtime]System.
ArgumentException::.ctor(string, string) /* 0A000036 */

IL_0025: throw

IL_0026: ldarg.o0

IL 0027: call string [System.Runtime.Extensions]System.
I0.Path::GetFullPath(string) /* O0A000037 */

IL 002c: stloc.0

IL 002d: ldloc.0

IL 002e: call string [System.Runtime.Extensions]System.IO.Path::
GetDirectoryName (string) /* 0A000038 */

IL 0033: stloc.1

IL 0034: ldloc.1

IL 0035: brtrue.s IL 0039

IL,_0037: ldnull
IL_0038: ret

IL 0039: ldloc.1

IL 003a: newobj instance void System.IO.DirectoryInfo::.
ctor(string) /* 06000097 */

IL 003f: ret
} // end of method Directory::GetParent

[241]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Good Practice: The IL code edit windows are not especially useful
unless you get very advanced with C# and .NET development

A where knowing how the C# compiler translates your source code
'/@_ into IL code can be important. The much more useful edit windows
= contain the equivalent C# source code written by Microsoft experts.

You can learn a lot of good practices from seeing how professionals
implement types.

11. Close the edit windows without saving changes.

12. In the EXPLORER window, in ILSPY DECOMPILED MEMBERS, right-
click the assembly and choose Unload Assembly.

Packaging your libraries for NuGet
distribution

Before we learn how to create and package our own libraries, we will review how
a project can use an existing package.

Referencing a NuGet package

Let's say that you want to add a package created by a third-party developer, for
example, Newtonsoft.Json, a popular package for working with the JavaScript
Object Notation (JSON) serialization format.

1. In Visual Studio Code, open the AssembliesAndNamespaces project.

2. Enter the following command in Terminal:

dotnet add package newtonsoft.json

3. Open AssembliesAndNamespaces.csproj, and you will see the package
reference has been added, as shown in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFrameworks>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="newtonsoft.json"
Version="12.0.2" />
</ItemGroup>

</Project>

[242]

Understanding and Packaging .NET Types | 07

You might have a more recent version of the newtonsoft.json package because it
has likely been updated since this book was published.

Fixing dependencies
To consistently restore packages and write reliable code, it's important that you

fix dependencies. Fixing dependencies means you are using the same family of
packages released for a specific version of .NET Core, for example, 3.0.

To fix dependencies, every package should have a single version with no additional
qualifiers. Additional qualifiers include betas (betal), release candidates (rc4),

and wildcards (*). Wildcards allow future versions to be automatically referenced
and used because they always represent the most recent release. But wildcards

are therefore dangerous because it could result in the use of future incompatible
packages that break your code.

If you use the dotnet add package command, then it will always use the latest
specific version of a package. But if you copy and paste configuration from a blog
article or manually add a reference yourself, you might include wildcard qualifiers.

The following dependencies are NOT fixed and should be avoided:

<PackageReference Include="System.Net.Http"
Version="4.1.0-*" />

<PackageReference Include="Newtonsoft.Json"
Version="12.0.3-betal" />

L, Good Practice: Microsoft guarantees that if you fixed your
@ dependencies to what ships with a specific version of .NET Core, for
example, 3.0, those packages will all work together. Always fix your
dependencies.

=
=
=

Packaging a library for NuGet

Now, let's package the sharedLibrary project that you created earlier.

1. Inthe SharedLibrary project, rename Classl.cs to StringExtensions.cs,
and modify its contents, as shown in the following code:

using System.Text.RegularExpressions;

namespace Packt.Shared

{

public static class StringExtensions

{

public static bool IsValidXmlTag(this string input)

[243]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

{

return Regex.IsMatch (input,

@" "< ([a-z]+) ([T<]1+)*(?:>(.*)<\/\1>|\s+\/>)$");
}

public static bool IsValidPassword(this string input)

{

// minimum of eight valid characters
return Regex.IsMatch(input, "*[a-zA-Z0-9 -1{8,}$");

}

public static bool IsValidHex(this string input)

{

// three or six valid hex number characters
return Regex.IsMatch (input,
"#? ([a-fA-F0-9]1 {3}]| [a-fA-F0-9]{6})s");
}

}
}

These extension methods use regular expressions to validate the string
value. You will learn how to write regular expressions in Chapter 8, Working
with Common .NET Types.

2. Edit sharedLibrary.csproj, and modify its contents, as shown in the
following markup, and note the following;:

° PackageId must be globally unique, so you must use a different
value if you want to publish this NuGet package to the https://
www.nuget .org/ public feed for others to reference and download.

° PackageLicenseExpression must be a value from the following
link: https://spdx.org/licenses/ or you could specify a custom
license.

° All the other elements are self-explanatory:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>netstandard2.0</TargetFramework>
<GeneratePackageOnBuild>true</GeneratePackageOnBuild>
<PackageId>Packt.CS8.SharedLibrary</PackageId>
<PackageVersion>1.0.0.0</PackageVersions>
<Authorss>Mark J Price</Authors>
<PackagelLicenseExpressions>
MS-PL
</PackageLicenseExpression>
<PackageProjectUrl>
http://github.com/markjprice/cs8dotnetcore3
</PackageProjectUrl>

[244]

https://www.nuget.org/
https://www.nuget.org/
https://spdx.org/licenses/
https://spdx.org/licenses/

Understanding and Packaging .NET Types | 07

<PackageIcon>packt-cs8-sharedlibrary.png</Packagelcon>
<PackageRequireLicenseAcceptance>true

</PackageRequireliicenseAcceptances>
<PackageReleaseNotes>

Example shared library packaged for NuGet.
</PackageReleaseNotes>
<Description>

Three extension methods to validate a string value.
</Description>
<Copyright>

Copyright © 2019 Packt Publishing Limited
</Copyright>
<PackageTags>string extension packt cs8</PackageTagss>

</PropertyGroup>

<ItemGroup>
<None Include="packt-cs8-sharedlibrary.png"s>
<Pack>True</Pack>
<PackagePath></PackagePath>
</None>
</ItemGroup>

</Projects>

Configuration property values that are true or false values cannot have
any whitespace so the <PackageRequireLicenseAcceptances entry cannot
have a carriage-return and indentation as shown in the preceding markup.

Download the icon file and save it in the SharedLibrary folder from the
following link: https://github.com/markjprice/cs8dotnetcore3/tree/
master/Chapter07/SharedLibrary/packt-cs8-sharedlibrary.png

Navigate to Terminal | New Terminal and select SharedLibrary.
In Terminal, enter commands to build the release assembly and then
generate a NuGet package, as shown in the following commands:
dotnet build -c Release

dotnet pack -c Release

Start your favorite browser and navigate to the following link: https://www.
nuget .org/packages/manage/upload

You will need to sign in with a Microsoft account at https://www.nuget.
org/ if you want to upload a NuGet package for other developers to
reference as a dependency package.

Click on Browse... and select the .nupkg file that was

created by the pack command. The folder path should be
Code\Chapter07\SharedLibrary\bin\Release and the file is named
Packt.CS8.SharedLibrary.1.0.0.nupkg

[245]

https://github.com/markjprice/cs8dotnetcore3/tree/master/Chapter07/SharedLibrary/packt-cs8-sharedlibrary.png
https://github.com/markjprice/cs8dotnetcore3/tree/master/Chapter07/SharedLibrary/packt-cs8-sharedlibrary.png
https://github.com/markjprice/cs8dotnetcore3/tree/master/Chapter07/SharedLibrary/packt-cs8-sharedlibrary.png
https://www.nuget.org/packages/manage/upload
https://www.nuget.org/packages/manage/upload
https://www.nuget.org/
https://www.nuget.org/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

9. Verify that the information you entered in the SharedLibrary.csproj file
has been correctly filled in, and then click on Submit.

10. Wait a few seconds, and you will see a success message showing that your
package has been uploaded, as shown in the following screenshot:

'a nuget Packages |poad S : Jownioads Bog "\ markjprice ~

Search for packages...

@ You successfully uploaded Packt.CS8.SharedLibrary 1.0.0.

° Packt.CS8.SharedLibrary 1.0 Info

Three extension methods to validate a string value. ‘D last updated a few
seconds ago
£ This package has not been published yet. It will appear in search results and & Project Site

will be available for install/restore after both validation and indexing are complete.

Package validation and indexing may take up to an hour. Read more. &) License: MS-PL

3 Contact owners

& The package icon will become available after this package is indexed. 2 Contact support

More Information: If you get an error, then review the

\/V project file for mistakes, or read more information about the

PackageReference format at the link: https://docs.
microsoft.com/en-us/nuget/reference/msbuild-targets

Testing your package

You will now test your uploaded package by referencing it in the
AssembliesAndNamespaces project.

1. Open AssembliesAndNamespaces.csproj.

2. Modify it to reference your package (or you could use the dotnet add
package command), as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="newtonsoft.json"
Version="12.0.2" />
<PackageReference Include="packt.cs8.sharedlibrary"
Version="1.0.0" />

[246]

https://docs.microsoft.com/en-us/nuget/reference/msbuild-targets
https://docs.microsoft.com/en-us/nuget/reference/msbuild-targets
https://docs.microsoft.com/en-us/nuget/reference/msbuild-targets

Understanding and Packaging .NET Types | 07

</ItemGroup>
</Projects>

In the preceding markup I used my package reference. You should use your
own if you successfully uploaded it.

3. Edit program.cs to import the Packt . Shared namespace.

In the Main method, prompt the user to enter some string values, and then
validate them using the extension methods in the package, as shown in the
following code:

Write ("Enter a color value in hex: ");
string hex = ReadLine() ;

WriteLine("Is {0} a valid color value? {1}",
arg0: hex, argl: hex.IsValidHex()) ;

Write ("Enter a XML tag: ");
string xmlTag = ReadLine() ;

WriteLine ("Is {0} a valid XML tag? {1}",
arg0: xmlTag, argl: xmlTag.IsValidXmlTag()) ;

Write ("Enter a password: ");
string password = ReadLine() ;

WriteLine ("Is {0} a valid password? {1}",
arg0: password, argl: password.IsValidPassword()) ;

5. Run the application and view the result, as shown in the following output:

Enter a color value in hex: 00ffc8

Is 00ffc8 a valid color value? True

Enter an XML tag: <hl class="<" />

Is <hl class="<" /> a valid XML tag? False
Enter a password: secretsauce

Is secretsauce a valid password? True

Porting from .NET Framework to .NET
Core

If you are an existing .NET Framework developer, then you may have existing
applications that you are wondering if you should port to .NET Core. You should
consider if porting is the right choice for your code, because sometimes, the best
choice is not to port.

[247]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Could you port?
.NET Core has great support for the following types of applications on Windows,
macOS, and Linux:

* ASP.NET Core MVC web applications.

* ASP.NET Core Web API web services (REST/HTTP).

* Console applications.

NET Core has great support for the following types of applications on Windows:

* Windows Forms applications.
* Windows Presentation Foundation (WPF) applications.

* Universal Windows Platform (UWP) applications.

More Information: UWP apps can be created using C++,

C’ JavaScript, C#, and Visual Basic using a custom version of
\”’/

.NET Core. You can read more about this at the following link:
https://docs.microsoft.com/en-us/windows/uwp/get-
started/universal-application-platform-guide

.NET Core does not support the following types of legacy Microsoft applications and
many others:

* ASP.NET Web Forms web applications.

* Windows Communication Foundation services.

* Silverlight applications.

Silverlight and ASP.NET Web Forms applications will never be able to be ported

to .NET Core, but existing Windows Forms and WPF applications could be ported
to .NET Core 3.0 on Windows in order to benefit from the new APIs and faster
performance. Existing ASP.NET MVC web applications and ASP.NET Web API web
services could be ported to .NET Core 3.0 on Windows, Linux, or macOS.

Should you port?

Even if you could port, should you? What benefits do you gain? Some common
benefits include the following:

[248]

https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide

Understanding and Packaging .NET Types | 07

* Deployment to Linux or Docker for web applications and web services:
These OSes are lightweight and cost-effective as web application and web
service platforms, especially when compared to Windows Server.

* Removal of dependency on IIS and System.Web.dll: Even if you continue
to deploy to Windows Server, ASP.NET Core can be hosted on lightweight,
higher-performance Kestrel (or other) web servers.

* Command-line tools: Tools that developers and administrators use
to automate their tasks are often built as console applications. The ability
to run a single tool cross-platform is very useful.

Differences between .NET Framework and

.NET Core

There are three key differences, as shown in the following table:

.NET Core

NET Framework

Distributed as NuGet packages, so each
application can be deployed with its own
app-local copy of the version of NET
Core that it needs.

Distributed as a system-wide, shared set of
assemblies (literally, in the Global Assembly
Cache (GAQ)).

Split into small, layered components, so

a minimal deployment can be performed.

Single, monolithic deployment.

Removes older technologies, such as
ASP.NET Web Forms, and non-cross-
platform features, such as AppDomains,
.NET Remoting, and binary serialization.

As well as the technologies in .NET Core,
it retains some older technologies such as
ASP.NET Web Forms.

Understanding the .NET Portability Analyzer

Microsoft has a useful tool that you can run against your existing applications to
generate a report for porting. You can watch a demonstration of the tool at the

following link:

https://channel9.msdn.com/Blogs/Seth-Juarez/A-Brief-Look-at-the-NET-

Portability-Analyzer

[249]

https://channel9.msdn.com/Blogs/Seth-Juarez/A-Brief-Look-at-the-NET-Portability-Analyzer
https://channel9.msdn.com/Blogs/Seth-Juarez/A-Brief-Look-at-the-NET-Portability-Analyzer

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Using non-.NET Standard libraries

Most existing NuGet packages can be used with .NET Core, even if they are not
compiled for .NET Standard. If you find a package that does not officially support
.NET Standard, as shown on its nuget . org web page, you do not have to give up.
You should try it and see if it works.

\/V More Information: You can search for useful NuGet packages at

the following link: https: //www.nuget . org/packages

For example, there is a package of custom collections for handling matrices created
by Dialect Software LLC, documented at the following link:

https://www.nuget.org/packages/DialectSoftware.Collections.Matrix/

This package was last updated in 2013, which was long before .NET Core existed, so
this package was built for NET Framework. As long as an assembly package like this
only uses APIs available in .NET Standard, it can be used in a .NET Core project.

Let's try using it and see if it works.

1. Open AssembliesAndNamespaces.csproj.
2. Add <packageReferences for Dialect Software's package, as shown in the
following markup:

<PackageReference Include="dialectsoftware.collections.matrix"
Version="1.0.0" />

3. In Terminal, restore the dependent packages, as shown in the following
command:

dotnet restore

4. Open program.cs and add statements to import the DialectSoftware.
CollectionsEnuiDialectSoftware.Collections.GenericsIunnespace&

5. Add statements to create instances of Axis and Matrix<T>, populate them
with values, and output them, as shown in the following code:

var x
var y

= new Axis("x", 0, 10, 1);
= new Axis("y", 0, 4, 1);
var matrix
for (int i

{

matrix.Axes[0] .Points[i] .Label = "x" + 1i.ToString() ;

}

for (int i = 0; 1 < matrix.Axes[1l].Points.Length; i++)

new Matrix<longs>(new[] { x, v });
0; 1 < matrix.Axes[0].Points.Length; i++)

[250]

http://nuget.org
https://www.nuget.org/packages/DialectSoftware.Collections.Matrix/
https://www.nuget.org/packages

Understanding and Packaging .NET Types | 07

{

matrix.Axes[1l] .Points[i] .Label = "y" + i.ToString() ;

}

foreach (long[] c¢ in matrix)

{

matrix[c] = c[0] + cl[1];

}

foreach (long[] c¢ in matrix)

{

WriteLine ("{0},{1} ({2},{3}) = {4}",
matrix.Axes [0] .Points[c[0]] .Label,
matrix.Axes[1l] .Points[c[1]] .Label,
c[0], cl[1], matrix[c]);

}
Run the console application, view the output, and note the warning message:

warning NU1701: Package 'DialectSoftware.Collections.Matrix 1.0.0"'
was restored using ' .NETFramework,Version=v4.6.1' instead of the
project target framework '.NETCoreApp,Version=v3.0'. This package
may not be fully compatible with your project.

x0,y0 (0,0) =0
x0,yl (0,1) =1
x0,y2 (0,2) = 2
x0,y3 (0,3) = 3

..and so on.

Even though this package was created before NET Core existed, and the compiler
and runtime have no way of knowing if it will work and therefore show warnings,
because it happens to only call .NET Standard-compatible APIs, it works.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore, with deeper research into topics of this chapter.

Exercise 7.1 — Test your knowledge

Answer the following questions:

1.
2.
3.

What is the difference between a namespace and an assembly?
How do you reference another project in a . csproj file?

What is the difference between a package and a metapackage? Give an
example of each.

[251]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Which .NET type does the C# float alias represent?

What is the difference between the packages named NETStandard.Library
and Microsoft .NETCore.App?

6. What is the difference between framework-dependent and self-contained
deployments of .NET Core applications?

What is a RID?

What is the difference between the dotnet pack and dotnet publish
commands?

9. What types of applications written for the .NET Framework can be ported to
NET Core?

10. Can you use packages written for .NET Framework with .NET Core?

Exercise 7.2 — Explore topics

Use the following links to read in more detail the topics covered in this chapter:

* Porting to .NET Core from .NET Framework: https://docs.microsoft.
com/en-us/dotnet/articles/core/porting/

* Packages, Metapackages, and Frameworks: https://docs.microsoft.
com/en-us/dotnet/articles/core/packages

* .NET Blog: https://blogs.msdn.microsoft.com/dotnet/

* What .NET Developers ought to know to start in 2017: https://www.
hanselman.com/blog/WhatNETDevelopersOughtToKnowToStartIn2017.
aspx

e CoreFX README.md: https://github.com/dotnet/corefx/blob/
master/Documentation/README.md

* .NET Core Application Deployment: https://docs.microsoft.com/en-
us/dotnet/articles/core/deploying/

* Announcing .NET Standard 2.1: https://devblogs.microsoft.com/
dotnet/announcing-net-standard-2-1/

Summary

In this chapter, you explored the relationship between assemblies and namespaces,
and we also discussed options for porting existing .NET Framework code bases,
published your apps and libraries, and deployed your code cross-platform.

In the next chapter, you will learn about some common .NET Standard types that are
included with .NET Core.

[252]

https://docs.microsoft.com/en-us/dotnet/articles/core/porting/
https://docs.microsoft.com/en-us/dotnet/articles/core/porting/
https://docs.microsoft.com/en-us/dotnet/articles/core/packages
https://docs.microsoft.com/en-us/dotnet/articles/core/packages
https://blogs.msdn.microsoft.com/dotnet/
https://www.hanselman.com/blog/WhatNETDevelopersOughtToKnowToStartIn2017.aspx
https://www.hanselman.com/blog/WhatNETDevelopersOughtToKnowToStartIn2017.aspx
https://www.hanselman.com/blog/WhatNETDevelopersOughtToKnowToStartIn2017.aspx
https://github.com/dotnet/corefx/blob/master/Documentation/README.md
https://github.com/dotnet/corefx/blob/master/Documentation/README.md
https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/
https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/
https://devblogs.microsoft.com/dotnet/announcing-net-standard-2-1/
https://devblogs.microsoft.com/dotnet/announcing-net-standard-2-1/

Chapter 08

Working with Common

NET Types

This chapter is about some common .NET Standard types that are included with
NET Core. This includes types for manipulating numbers, text, collections, network
access, reflection, attributes, improving working with spans, indexes, and ranges,
and internationalization.

This chapter covers the following topics:

* Working with numbers

* Working with text

* Pattern matching with regular expressions

* Storing multiple objects in collections

* Working with spans, indexes, and ranges

* Working with network resources

* Working with types and attributes

* Internationalizing your code

Working with numbers

One of the most common types of data are numbers. The most common types
in .NET Standard for working with numbers are shown in the following table:

Namespace | Example type(s) Description
SByte, Intl6, Int32, Integers; that is, zero and positive and negative
System
Int64 whole numbers.
Svstem Byte, UIntl6,UInt32, Cardinals; that is, zero and positive whole
4 UInté4 numbers.

[253]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

System Single, Double Reals; that is, floating point numbers.
, Accurate reals; that is, for use in science,
System Decimal
engineering, or financial scenarios.
System BigInteger, Complex, Arbitrarily large integers, complex numbers,
.Numerics | Quaternion and quaternion numbers.

the following link: https://docs.microsoft.com/en-us/
dotnet/standard/numerics

B’ More Information: You can read more about this subject at
\"/

Working with big integers
The largest whole number that can be stored in .NET Standard types that have a C#

alias is about eighteen and a half quintillion, stored in an unsigned long. But what if
you need to store numbers larger than that? Let's explore numerics:

1. Create a new console application named WorkingWithNumbers in a folder
named Chapteros.

2. Save the workspace as Chaptero08 and add WworkingWithNumbers to it.

3. InProgram.cs, add a statement to import System.Numerics, as shown
in the following code:

using System.Numerics;

4. InMain, add statements to output the largest value of ulong, and a number
with 30 digits using BigInteger, as shown in the following code:

var largest = ulong.MaxValue;
WriteLine ($"{largest,40:N0}");

var atomsInTheUniverse =
BigInteger.Parse ("123456789012345678901234567890") ;

WriteLine ($"{atomsInTheUniverse,40:NO}") ;

The 40 in the format code means right-align 40 characters, so both numbers
are lined up to the right-hand edge. The N0 means use thousand separators
and zero decimal places.

5. Run the console application and view the result, as shown in the following
output:

18,446,744,073,709,551,615
123,456,789,012,345,678,901,234,567,890

[254]

https://docs.microsoft.com/en-us/dotnet/standard/numerics
https://docs.microsoft.com/en-us/dotnet/standard/numerics

Working with Common .NET Types | 08

Working with complex numbers

A complex number can be expressed as a + bi, where a and b are real numbers, and
i is the imaginary unit, where i = —1. If the real part is zero, it is a pure imaginary
number. If the imaginary part is zero, it is a real number.

Complex numbers have practical applications in many STEM (science, technology,
engineering, and mathematics) fields of study. Additionally, they are added by
separately adding the real and imaginary parts of the summands; consider this:

(a + bi) + (c +di) = (a +c) + (b +d)i
Let's explore complex numbers:

1. InMain, add statements to add two complex numbers, as shown in the
following code:
var cl = new Complex (4, 2);
var c2 = new Complex (3, 7);
var ¢3 = cl + c2;
WriteLine ($"{cl} added to {c2} is {c3}");

2. Run the console application and view the result, as shown in the following
output:

(4, 2) added to (3, 7) is (7, 9)

Quaternions are a number system that extends complex numbers. They form
a four-dimensional associative normed division algebra over the real numbers, and
therefore also a domain.

Huh? Yes, I know. I don't understand that either. Don't worry; we're not going

to write any code using them! Suffice to say, they are good at describing spatial
rotations, so video game engines use them, as do many computer simulations and
flight control systems.

Working with text

One of the other most common types of data for variables is text. The most
common types in .NET Standard for working with text are shown in the
following table:

Namespace Type Description
System Char Storage for a single text character
System String Storage for multiple text characters

[255]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

System. Text StringBuilder | Efficiently manipulates strings

System.Text
.RegularExpressions

Regex Efficiently pattern-matches strings

Getting the length of a string

Let's explore some common tasks when working with text, for example, sometimes
you need to find out the length of a piece of text stored in a string variable:

1.

Create a new console application project named WorkingWithText in the
Chaptero08 folder and add it to the Chapteros workspace.

Navigate to View | Command Palette, enter and select OmniSharp: Select
Project, and select WorkingWithText.

In the workingWithText project, in Program.cs, in Main, add statements
to define a variable to store the name of the city London, and then write its
name and length to the console, as shown in the following code:

string city = "London";
WriteLine ($"{city} is {city.Length} characters long.");

Run the console application and view the result, as shown in the following
output:

London is 6 characters long.

Getting the characters of a string

The string class uses an array of char internally to store the text. It also has an
indexer, which means that we can use the array syntax to read its characters:

1.

Add a statement to write the characters at the first and third position in the
string variable, as shown in the following code:

WriteLine ($"First char is {city[0]} and third is {city[2]}.");

Run the console application and view the result, as shown in the following
output:

First char is L and third is n.

Array indexes start at zero, so the third character is at index 2.

[256]

Working with Common .NET Types | 08

Splitting a string
Sometimes, you need to split some text wherever there is a character, such as
a comma:

1.

Add statements to define a single string variable containing comma-
separated city names, then use the split method and specify that you want
to treat commas as the separator, and then enumerate the returned array of
string values, as shown in the following code:

string cities = "Paris,Berlin,Madrid,New York";
string[] citiesArray = cities.Split(',');

foreach (string item in citiesArray)

{
}

Run the console application and view the result, as shown in the following
output:

WriteLine (item) ;

Paris
Berlin
Madrid

New York

Later in this chapter you will learn how to handle more complex scenarios, for
example, what if a string variable contains film titles, as shown in the following
exanqﬂe:”"Monsters, Inc.","I, Tonya","Lock, Stock and Two

Smoking Barrels"'.

Getting part of a string

Sometimes, you need to get part of some text. The Index0f method has nine
overloads that return the index position of a specified char or string. The
Substring method has two overloads, as shown in the following list:

Substring (startIndex, length):returns a substring starting
at startIndex and containing the next length characters.

Substring (startIndex): returns a substring starting at startIndex
and containing all characters up to the end of the string.

[257]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Let's explore a simple example:

1. Add statements to store a person's full name in a string variable with a
space character between the first and last name, find the position of the space,
and then extract the first name and last name as two parts so that they can be
recombined in a different order, as shown in the following code:

string fullName = "Alan Jones";
int indexOfTheSpace = fullName.IndexOf (' ');

string firstName = fullName.Substring/(
startIndex: 0, length: indexOfTheSpace) ;

string lastName = fullName.Substring/(
startIndex: indexOfTheSpace + 1);

WriteLine ($"{lastName}, {firstName}");

2. Run the console application and view the result, as shown in the following
output:

Jones, Alan

If the format of the initial full name was different, for example, "LastName,
FirstName", then the code would need to be different. As an optional exercise,
try writing some statements that would change the input "Jones, Alan" into
"Alan Jones".

Checking a string for content

Sometimes, you need to check whether a piece of text starts or ends with some
characters or contains some characters. You can achieve this with methods named
StartsWith, EndsWith, and Contains:

1. Add statements to store a string value and then check if it starts with or
contains a couple of different string values, as shown in the following code:
string company = "Microsoft";
bool startsWithM = company.StartsWith("M") ;
bool containsN = company.Contains ("N") ;

WriteLine ($"Starts with M: {startsWithM}, contains an N:
{containsN}") ;

2. Run the console application and view the result, as shown in the following
output:

Starts with M: True, contains an N: False

[258]

Working with Common .NET Types | 08

Joining, formatting, and other string members

There are many other string members, as shown in the following table:

Member

Description

Trim, TrimStart, and
TrimEnd

These trim whitespace characters such as space, tab, and
carriage-return from the beginning and/or end of the
string variable.

ToUpper and ToLower

These convert all the characters in the string variable into
uppercase or lowercase.

Insert and Remove

These insert or remove some text in the string variable.

Replace

This replaces some text with other text.

string.Concat

This concatenates two string variables. The + operator
calls this method when used between string variables.

string.Join

This concatenates one or more string variables with
a character in between each one.

string.IsNullOrEmpty

This checks whether a string variable is null or empty

(")

string.
IsNullOrWhitespace

This checks whether a string variable is null or
whitespace; that is, a mix of any number of horizontal and
vertical spacing characters, for example, tab, space, carriage
return, line feed, and so on.

string.Empty

This can be used instead of allocating memory each time
you use a literal string value using an empty pair of
double quotes (" ").

string.Format

An older, alternative method to string interpolation to
output formatted string variables, which uses positioned
instead of named parameters.

Some of the preceding methods are static methods. This means that the method can
only be called from the type, not from a variable instance. In the preceding table, I
indicated the static methods by prefixing them with string. like string.Format.

Let's explore some of these methods:

1.

Add statements to take an array of string values and combine them back
together into a single string variable with separators using the Join

method, as shown in the following code:

string recombined = string.Join(" => ",

WriteLine (recombined) ;

citiesArray) ;

[259]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2.

Run the console application and view the result, as shown in the following
output:

Paris => Berlin => Madrid => New York

Add statements to use positioned parameters and interpolated string
formatting syntax to output the same three variables twice, as shown in the
following code:

string fruit = "Apples";
decimal price = 0.39M;
DateTime when = DateTime.Today;

WriteLine ($"{fruit} cost {price:C} on {when:dddd}.");

WriteLine (string.Format ("{0} cost {1:C} on {2:dddd}.",
fruit, price, when)) ;

Run the console application and view the result, as shown in the following
output:

Apples cost £0.39 on Thursdays.
Apples cost £0.39 on Thursdays.

Building strings efficiently

You can concatenate two strings to make a new string variable using the
String.Concat method or simply using the + operator. But both of these choices are
bad practice because .NET must create a completely new string variable in memory.

This might not be noticeable if you are only adding two string values, but if you
concatenate inside a loop with many iterations, it can have a significant negative
impact on performance and memory use.

In Chapter 13, Improving Performance and Scalability Using Multitasking, you will learn
how to concatenate string variables efficiently using the StringBuilder type.

Pattern matching with regular
expressions

Regular expressions are useful for validating input from the user. They are very
powerful and can get very complicated. Almost all programming languages have
support for regular expressions and use a common set of special characters to
define them:

[260]

Working with Common .NET Types | 08

Create a new console application project named
WorkingWithRegularExpressions, add it to the workspace, and select it as
the active project for OmniSharp.

At the top of the file, import the following namespace:

using System.Text.RegularExpressions;

Checking for digits entered as text

1.

In the Main method, add statements to prompt the user to enter their age and
then check that it is valid using a regular expression that looks for a digit
character, as shown in the following code:

Write ("Enter your age: ");
string input = ReadLine() ;

var ageChecker = new Regex(@"\d") ;

if (ageChecker.IsMatch (input))

{

WriteLine ("Thank you!") ;

}

else

{

WriteLine ($"This is not a valid age: {input}");

}

The @ character switches off the ability to use escape characters in the string.
Escape characters are prefixed with a backslash. For example, \t means a tab
and \n means a new line.

When writing regular expressions, we need to disable this feature. To
paraphrase the television show The West Wing, "Let backslash be backslash."

Once escape characters are disabled with @, then they can be interpreted by a
regular expression. For example, \d means digit. You will learn more regular
expressions that are prefixed with a backslash later in this topic.

Run the console application, enter a whole number such as 34 for the age,
and view the result, as shown in the following output:

Enter your age: 34

Thank you!

Run the console application again, enter carrots, and view the result,
as shown in the following output:

Enter your age: carrots

This is not a valid age: carrots

[261]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

4.

Run the console application again, enter bob30smith, and view the result,
as shown in the following output:

Enter your age: bob30smith
Thank you!

The regular expression we used is \d, which means one digit. However,
it does not specify what can be entered before and after that one digit. This
regular expression could be described in English as "Enter any characters
you want as long as you enter at least one digit character."

Change the regular expression to *\ds, as shown in the following code:

var ageChecker = new Regex (@"*\d$");

Rerun the application. Now, it rejects anything except a single digit.
We want to allow one or more digits. To do this, we add a + after the \d
expression to modify the meaning to one or more.

Change the regular expression, as shown in the following code:

var ageChecker = new Regex (@"*\d+$");

Run the application and see how the regular expression now only allows
zero or positive whole numbers of any length.

Understanding the syntax of a regular

expression
Here are some common regular expression symbols that you can use in regular
expressions:
Symbol Meaning Symbol Meaning
” Start of input $ End of input
\d A single digit \D A single NON-digit
\w Whitespace \W NON-whitespace
[A-Za-20-9] | Range(s) of characters * * (caret) character
[aeiou] Set of characters ["aeiou] | NOT in a set of characters
Any single character \. . (dot) character

[262]

Working with Common .NET Types | 08

More Information: To specify a Unicode character, use \u

character. For example, \u00co0 is the A character. You can

C’ followed by four characters specifying the number of the
&

learn more at the following link: https://www.regular-
expressions.info/unicode.html

In addition, here are some regular expression quantifiers that affect the previous
symbols in a regular expression:

Symbol | Meaning Symbol | Meaning

+ One or more ? One or none
{3} Exactly three {3,5} | Three to five
{3.} At least three | {,3} Up to three

Examples of regular expressions

Here are some examples of regular expressions with a description of their meaning;:

Expression Meaning

\d A single digit somewhere in the input

a The character a somewhere in the input

Bob The word Bob somewhere in the input

“Bob The word Bob at the start of the input

Bobs The word Bob at the end of the input

“\d{2}s Exactly two digits

“[0-91{2}$ Exactly two digits

“[a-z1{4,}s At least four uppercase English letters in the ASCII character set

only

*[a-Za-z1{4,}s

At least four upper or lowercase English letters in the ASCII
character set only

*[a-z1{2}\d{3}s

Two uppercase English letters in the ASCII character set and three
digits only

*[A-Za-z
\u00c0-\uo01l7e]
+5

At least one uppercase or lowercase English letter

in the ASCII character set or European letters in the
Unicode character set, as shown in the following list:
AARAAARCEEEEITIIDNOOOOOx@UTTUYDR

NZ2AMNSZAD XNNZAND N 2Am -

[263]

https://www.regular-expressions.info/unicode.html
https://www.regular-expressions.info/unicode.html

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

“d.gs The letter d, then any character, and then the letter g, so it would
match both dig and dog or any single character between the d and

9

“d\.g$ The letter d, then a dot (.), and then the letter g, so it would match
d.gonly

user. The same regular expressions can be reused in other languages

A Good Practice: Use regular expressions to validate input from the
@ |
E such as JavaScript.

Splitting a complex comma-separated string

Earlier in this chapter you learned how to split a simple comma-separated string
variable. But what about the following example of film titles?

"Monsters, Inc.","I, Tonya","Lock, Stock and Two Smoking Barrels"

The string value uses double-quotes around each film title. We can use these to
identify whether we need to split on a comma (or not). The split method is not
powerful enough so we can use a regular expression instead.

To include double-quotes inside a string value, we prefix them with a backslash:

1. Add statements to store a complex comma-separated string variable,
and then split it in a dumb way using the split method, as shown in the
following code:

string films = "\"Monsters, Inc.\",\"I, Tonya\",\"Lock, Stock and
Two Smoking Barrels\"";

string[] filmsDumb = films.Split(',6');

WriteLine ("Dumb attempt at splitting:");
foreach (string film in filmsDumb)

{

WriteLine (£ilm) ;

}

2. Add statements to define a regular expression to split and write the film titles
in a smart way, as shown in the following code:

var csv = new Regex(

ML) (2= NN)N (2 (1) [ON"T ALY AR)\ (2=, [8) ") ;
MatchCollection filmsSmart = csv.Matches (films) ;

WriteLine ("Smart attempt at splitting:");

[264]

Working with Common .NET Types | 08

foreach

{

(Match film in filmsSmart)

WriteLine (film.Groups [2] .Value) ;

}

3. Run the console application and view the result, as shown in the following

output:

Dumb attempt at splitting:

"Monsters

Inc."
llI
Tonya"

"Lock

Stock and Two Smoking Barrels"

Smart attempt at splitting:
Monsters,

I, Tonya

Inc.

Lock, Stock and Two Smoking Barrels

84

More Information: Regular expressions are a massive topic.
Books more than an inch thick have been written about them.
You can read more about them at the following link: https://
www.regular-expressions.info

Storing multiple objects in collections

Another of the most common types of data is collections. If you need to store
multiple values in a variable, then you can use a collection.

A collection is a data structure in memory that can manage multiple items in
different ways, although all collections have some shared functionality.

The most common types in .NET Standard for working with collections are shown in

the following table:
Namespace Example type(s) Description
System IEnumerable, Interfaces and base classes used by
.Collections | IEnumerable<T> collections.

[265]

https://www.regular-expressions.info
https://www.regular-expressions.info

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Introduced in C# 2.0 with .NET

List<T>, .

System Teb<t> Framework 2.0. These collections allow
. Dictionary<Ts>, .

.Collections Queue<T> you to specify the type you want to store
.Generic ’ using a generic type parameter (which is

Stack<T> . .

safer, faster, and more efficient).

System BlockingCollection,

These collections are safe to use in

.Collections | ConcurrentDictionar . .
Y7 | multithreaded scenarios.

.Concurrent ConcurrentQueue

Svstem ImmutableArray, Designed for scenarios where the contents
Y , ImmutableDictionary, of the original collection will never
.Collections) e
Tmmutable ImmutableList, change, although they can create modified
’ ImmutableQueue collections as a new instance.

the following link: https://docs.microsoft.com/en-us/
dotnet/standard/collections

D’ More Information: You can read more about collections at
\"/

Common features of all collections

All collections implement the ICollection interface; this means that they must have
a Count property to tell you how many objects are in them.

For example, if we had a collection named passengers, we could do this:
int howMany = passengers.Count;

All collections implement the IEnumerable interface, which means that they must
have a GetEnumerator method that returns an object that implements IEnumerator;
this means that the returned object must have a MoveNext method and a current
property so that they can be iterated using the foreach statement.

For example, to perform an action on each object in the passengers collection,
we could do this:

foreach (var passenger in passengers)

{

// do something with each passenger

}

[266]

https://docs.microsoft.com/en-us/dotnet/standard/collections
https://docs.microsoft.com/en-us/dotnet/standard/collections

Working with Common .NET Types | 08

To understand collections, it can be useful to see the most common interfaces that
collections implement, as shown in the following diagram:

| ICollection<T> # |
=+ |Enumerable<T>
+ |Enumerable
| IDicti > A |
4 Properties IDictionary<TKey, TValue:
& count + |Collection<Key\aluePair<TKey, Tval..
F IskeadCnly =+ |Enumerable <KeyValuePair<TKey, TV... KeyValuePair<TKey, TValue> A
=+ |Enumerable 3
4 Methods o Generic Struct
2 Add 4 Properties
i 2 4 Properties
= @ Clear F e
IEnumerable<T> & @ Contains 5o & Key
i ;i . this
i E—— @ Copylo & Value
+ |Enumerable & o 4 & volues T
=] @ Remove 4 Methods
L) 4 Methods
4 Methods N ——— o KeyValuePair
& Gt ' ToStrin
P Gett i Containsiey 9
A — @ Remove
I L . T TnGetValue
- ~
IEnumerator A IList<T> A
SeNET e Fric 7 s
eria _ 1Set<T> A
= + |Collection<T> "
P z + |Enumerable<1> ol e
4 Properties + |Enumerable ¥ |Collection<T>
F Curent = = |Enumerable<T>
i P i = IFnumerable
4 Methods TOperkes |-
& Mo K rhis + Methods
P Reset 4 Methods ¥ Add
v & IndexOf @ FxceptWith
Trisert % IntersectWith
Removedt ¥ IsProperSubsetOf
A @ IsProperSupersetOf
@ IsSubsetOf
T IsSuperselOf
T Overlaps
T Setfquals
2 SymmetricExceptWith
@ UnionWith

Lists, that is, a type that implements IList, are ordered collections. As you can see
in the preceding diagram, IList<T> includes ICollection<T> so they must have
a Count property, and an Add method to put an item at the end of the collection,
as well as an Insert method to put an item in the list at a specified position, and
RemoveAt to remove an item at a specified position.

Understanding collection choices

There are several different choices of collection that you can use for different purposes:
lists, dictionaries, stacks, queues, sets, and many other more specialized collections.

[267]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Lists

Lists are a good choice when you want to manually control the order of items in

a collection. Each item in a list has a unique index (or position) that is automatically
assigned. Items can be any type defined by T and items can be duplicated. Indexes
are int types and start from 0, so the first item in a list is at index 0, as shown in the
following table:

Index | Item
0 London
1 Paris
2 London
3 Sydney

If a new item (for example, Santiago) is inserted between London and Sydney, then
the index of Sydney is automatically incremented. Therefore, you must be aware
that an item's index can change after inserting or removing items, as shown in the
following table:

Index | Item

0 London
1 Paris

2 London
3 Santiago
4 Sydney

Dictionaries

Dictionaries are a good choice when each value (or object) has a unique sub value
(or a made-up value) that can be used as a key to quickly find the value in the
collection later. The key must be unique. For example, if you are storing a list of
people, you could choose to use a government-issued identity number as the key.

Think of the key as being like an index entry in a real-world dictionary. It allows you
to quickly find the definition of a word because the words (for example, keys) are
kept sorted, and if we know we're looking for the definition of manatee, we would
jump to the middle of the dictionary to start looking, because the letter M is in the
middle of the alphabet.

[268]

Working with Common .NET Types | 08

Dictionaries in programming are similarly smart when looking something up. They
must implement the interface IDictionary<TKey, TValues.

The key and value can be any types defined by TKey and Tvalue. The example
Dictionary<string, Persons> usesa string as the key and a Person instance as
the value. Dictionary<string, strings uses string values for both, as shown in
the following table:

Key | Value

BSA | Bob Smith

MW | Max Williams
BSB | Bob Smith

AM | Amir Mohammed

Stacks

Stacks are a good choice when you want to implement the last-in, first-out (LIFO)
behavior. With a stack, you can only directly access or remove the one item at the top
of the stack, although you can enumerate to read through the whole stack of items.
You cannot, for example, directly access the second item in a stack.

For example, word processors use a stack to remember the sequence of actions you
have recently performed, and then when you press Ctrl + Z, it will undo the last
action in the stack, and then the next to last action, and so on.

Queues

Queues are a good choice when you want to implement the first-in, first-out (FIFO)
behavior. With a queue, you can only directly access or remove the one item at the
front of the queue, although you can enumerate to read through the whole queue of
items. You cannot, for example, directly access the second item in a queue.

For example, background processes use a queue to process work items in the order
that they arrive, just like people standing in line at the post office.

Sets

Sets are a good choice when you want to perform set operations between two
collections. For example, you may have two collections of city names, and you want
to know which names appear in both sets (known as the intersect between the sets).
Items in a set must be unique.

[269]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Working with lists

Let's explore lists.

1. Create a new console application project named WorkingWithLists, add it to
the workspace, and select it as the active project for OmniSharp.

2. At the top of the file, import the following namespace:

using System.Collections.Generic;

3. Inthe Main method, type statements that illustrate some of the common
ways of working with lists, as shown in the following code:
var cities = new List<string>();
cities.Add ("London") ;

cities.Add ("Paris") ;
citieg.Add("Milan") ;

WriteLine ("Initial list");
foreach (string city in cities)

{

WriteLine ($" {city}");

WriteLine ($"The first city is {cities([0]}.");
WriteLine ($"The last city is {cities[cities.Count - 11}.");

cities.Insert (0, "Sydney");
WriteLine ("After inserting Sydney at index 0");
foreach (string city in cities)

{

WriteLine ($" {city}"):

}

cities.RemoveAt (1) ;

cities.Remove ("Milan") ;

WriteLine ("After removing two cities");
foreach (string city in cities)

{

WriteLine ($" {city}");

}

4. Run the console application and view the result, as shown in the following
output:

Initial list
London
Paris
Milan
The first city is London.
The last city is Milan.
After inserting Sydney at index 0
Sydney

[270]

Working with Common .NET Types | 08

London
Paris
Milan
After removing two cities
Sydney
Paris

Working with dictionaries
Let's explore dictionaries:
1. Create a new console application project named WorkingWithDictionaries,
add it to the workspace, and select it as the active project for OmniSharp.
Import the System.Collections.Generic namespace.

In the Main method, type statements that illustrate some of the common
ways of working with dictionaries, as shown in the following code:

var keywords = new Dictionary<string, strings();

keywords.Add ("int", "32-bit integer data type");
keywords.Add ("long", "64-bit integer data type");
keywords.Add ("float", "Single precision floating point number") ;

WritelLine ("Keywords and their definitions");
foreach (KeyValuePair<string, string> item in keywords)

{

WriteLine ($" {item.Key}: {item.Value}");

}

WriteLine ($"The definition of long is {keywords["long"l}");

4. Run the console application and view the result, as shown in the following
output:

Keywords and their definitions
int: 32-bit integer data type
long: 64-bit integer data type
float: Single precision floating point number

The definition of long is 64-bit integer data type

Sorting collections

A List<T> class can be sorted by manually calling its Sort method (but remember
that the indexes of each item will change). Manually sorting a list of string values
or other built-in types will work without extra effort on your part, but if you create
a collection of your own type, then that type must implement an interface named
IComparable. You learned how to do this in Chapter 6, Implementing Interfaces and
Inheriting Classes.

[271]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

A Dictionary<Ts>, Stack<T>, Or Queue<T> collection cannot be sorted because you
wouldn't usually want that functionality; for example, you would never sort a queue
of guests checking into a hotel. But sometimes, you might want to sort a dictionary
or a set.

Sometimes it would be useful to have an automatically sorted collection that is,

one that maintains the items in a sorted order as you add and remove them. There
are multiple auto-sorting collections to choose from. The differences between

these sorted collections are often subtle but can have an impact on the memory
requirements and performance of your application, so it is worth putting effort into
picking the most appropriate option for your requirements.

Some common auto-sorting collections are shown in the following table:

Collection Description

SortedDictionary<TKey, This represents a collection of key/value pairs that
TValues> are sorted by key.

SortedList<TKey, TValue> This represents a collection of key/value pairs

that are sorted by key, based on the associated
IComparer<TKey> implementation.

SortedSet<T> This represents a collection of unique objects that
are maintained in a sorted order.

Using specialized collections

There are a few other collections for special situations, as shown in the following
table:

Collection Description

System.Collections This manages a compact array of bit values, which are

.BitArray represented as Booleans, where true indicates that the
bit is on (1) and false indicates the bit is off (0).

System.Collections This represents a doubly-linked list where every item

has a reference to its previous and next items. They
provide better performance compared to List<T>
for scenarios where you will frequently insert and
remove items from the middle of the list because
in a LinkedList<T> the items do not have to be
rearranged in memory.

.Generics.LinkedList<T>

[272]

Working with Common .NET Types | 08

Using immutable collections

Sometimes you need to make a collection immutable, meaning that its members
cannot change; that is, you cannot add or remove them.

If you import the System.Collections. Immutable namespace, then any collection
that implements IEnumerable<T> is given six extension methods to convert it into an
immutable list, dictionary, hash set, and so on:

1.

In the workingWithLists project, in Program.cs, import the
System.Collections.Immutable namespace, and then add the following
statements to the end of the Main method, as shown in the following code:
var immutableCities = cities.ToImmutablelList() ;

var newList = immutableCities.Add("Rio") ;

Write ("Immutable list of cities:");
foreach (string city in immutableCities)

{

Write ($" {city}");

}

WriteLine () ;

Write("New list of cities:");
foreach (string city in newList)

{

Write ($" {city}");
}

WriteLine () ;

Run the console application, view the result, and note that the immutable list
of cities does not get modified when you call the Add method on it; instead,
it returns a new list with the newly added city, as shown in the following
output:

Immutable cities: Sydney Paris

New cities: Sydney Paris Rio

U, Good Practice: To improve performance, many applications store
@ a shared copy of commonly accessed objects in a central cache. To

safely allow multiple threads to work with those objects knowing
they won't change, you should make them immutable.

Working with spans, indexes, and ranges

One of Microsoft's goals with .NET Core 2.1 was to improve performance and
resource usage. A key .NET feature that enables this is the Span<T> type.

[273]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Span<T> at the following link: https://docs.microsoft.com/
en-us/dotnet/api/system.span-1?view=netstandard-2.1

\g More Information: You can read the official documentation for
o

Using memory efficiently using spans

When manipulating collections of objects, you will often create new collections from
existing ones so that you can pass parts of a collection. This is not efficient because
duplicate objects are created in memory.

If you need to work with a subset of a collection, instead of replicating the subset into
a new collection, a span is like a window into a subset of the original collection. This
is more efficient in terms of memory usage and improves performance.

Before we look at spans in more detail, we need to understand some related new
objects: indexes and ranges.

Identifying positions with the Index type

C# 8.0 introduces two new features for identifying an item's index within a collection
and a range of items using two indexes. Why did I not introduce these new language
features in Part 1: C# 8.0?

Some C# language features require features of .NET, not all of which have been
available since version 1.0. The index and range language features require the Index
and Range value types that were introduced with .NET Core 3.0.

You learned in the previous topic that objects in a list can be accessed by passing an
integer into their indexer, as shown in the following code:

int index = 3;
Person p = people[index]; // fourth person in list or array
char letter = namel[index]; // fourth letter in name

The 1ndex value type is a more formal way of identifying a position, and supports
counting from the end, as shown in the following code:

// two ways to define the same index, 3 in from the start
var i1l = new Index(value: 3); // counts from the start
Index i2 = 3; // using implicit int conversion operator

// two ways to define the same index, 5 in from the end
var i3 = new Index(value: 5, fromEnd: true) ;
var i4 = *5; // using the C# 8.0 caret operator

We had to explicitly define the Index type in the second statement because
otherwise, the compiler would treat it as an int. In the fourth statement, the caret *
was enough for the compiler to understand our meaning.

[274]

https://docs.microsoft.com/en-us/dotnet/api/system.span-1?view=netstandard-2.1
https://docs.microsoft.com/en-us/dotnet/api/system.span-1?view=netstandard-2.1

Working with Common .NET Types | 08

Identifying ranges with the Range type

The rRange value type uses Index values to indicate the start and end of its range,
using its constructor, C# syntax, or its static methods, as shown in the following code:

Range rl = new Range (start: new Index(3), end: new Index(7));
Range r2 = new Range(start: 3, end: 7); // using implicit int
conversion

Range r3 = 3..7; // using C# 8.0 syntax

Range r4 = Range.StartAt(3); // from index 3 to last index
Range r5 = 3..; // from index 3 to last index

Range r6 = Range.EndAt(3); // from index 0 to index 3

Range r7 .3; // from index 0 to index 3

Extension methods have been added to string values, int arrays, and spans
to make ranges easier to work with. These extension methods accept a range as
a parameter and return a Span<T>. This makes them very memory-efficient.

Using indexes and ranges
Let's explore using indexes and ranges to return spans:
1. Create a new console application named WorkingWithRanges, add it to the
workspace, and select it as the active project for OmniSharp.

2. Inthe Main method, type statements to compare using the string type's
Substring method with using ranges to extract parts of someone's name,
as shown in the following code:

string name = "Samantha Jones";
int indexOfSpace = name.IndexOf (' ');
string firstName = name.Substring(
startIndex: O,
length: indexOfSpace) ;
string lastName = name.Substring/(
startIndex: name.Length - (name.Length - indexOfSpace - 1),
length: name.Length - indexOfSpace - 1);
WriteLine ($"First name: {firstName}, Last name: {lastName}");
ReadOnlySpan<char> nameAsSpan = name.AsSpan() ;
var firstNameSpan = nameAsSpan[0..lengthOfFirst];
var lastNameSpan = nameAsSpan|[”lengthOfLast..”0];
WriteLine ("First name: {0}, Last name: {1}",

arg0: firstNameSpan.ToString(),
argl: lastNameSpan.ToString()) ;

[275]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

3. Run the console application and view the result, as shown in the following

output:
First name: Samantha, Last name: Jones
First name: Samantha, Last name: Jones

84

More Information: You can read more about how spans work
internally at the following link: https://msdn.microsoft.
com/en-us/magazine/mt814808.aspx

Working with network resources

Sometimes you will need to work with network resources. The most common types
in .NET for working with network resources are shown in the following table:

Namespace

Example type(s)

Description

System.Net

Dns, Uri, Cookie,
WebClient, IPAddress

These are for working with DNS
servers, URIs, IP addresses, and

HttpResponseMessage

SO on.
FtpStatusCode
P ’ These are for working with FTP
System.Net FtpWebRequest,
servers.
FtpWebResponse
These are for working with
HttpStatusCode, HTTP servers; that is, websites
System.Net HttpWebRequest, and services. Types from
HttpWebResponse System.Net .Http are easier to
use.
These are for working with HTTP
HttpClient, servers; that is, websites and
System.Net HttpMethod, . .
services. You will learn how to use
.Http HttpRequestMessage,

these in Chapter 18, Building and
Consuming Web Services.

System.Net

.NetworkInformation

NetworkChange, Ping,
TcpStatistics

Attachment, . .
. These are for working with SMTP
System.Net MailAddress, . . .
i] servers; that is, sending email
.Mail MailMessage,
. messages.
SmtpClient
IPStatus,

These are for working with low-
level network protocols.

[276]

https://msdn.microsoft.com/en-us/magazine/mt814808.aspx
https://msdn.microsoft.com/en-us/magazine/mt814808.aspx

Working with Common .NET Types | 08

Working with URIs, DNS, and IP addresses

Let's explore some common types for working with network resources:

1. Create a new console application project named WorkingWithNetwork
Resources, add it to the workspace, and select it as the active project for
OmniSharp.

2. At the top of the file, import the following namespace:

using System.Net;

3. Inthe Main method, type statements to prompt the user to enter a website
address, and then use the Uri type to break it down into its parts, including
scheme (HTTP, FIP, and so on), port number, and host, as shown in the
following code:

Write ("Enter a valid web address: ");

string url = ReadLine() ;
if (string.IsNullOrWhiteSpace (url))

{

url = "https://world.episerver.com/cms/?g=pagetype";

}

var uri = new Uri (url);

WriteLine ($"URL: {url}");

WriteLine ($"Scheme: {uri.Scheme}");
WriteLine ($"Port: {uri.Port}");
WriteLine ($"Host: {uri.Host}");
WriteLine ($"Path: {uri.AbsolutePath}");
WriteLine ($"Query: {uri.Query}");

For convenience, I have also allowed the user to press ENTER to use an
example URL:

4. Run the console application, enter a valid website address or press Enter, and
view the result, as shown in the following output:

Enter a valid web address:

URL: https://world.episerver.com/cms/?g=pagetype
Scheme: https

Port: 443

Host: world.episerver.com

Path: /cms/

Query: ?g=pagetype

[277]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

5. Add statements to the Main method to get the IP address for the entered
website, as shown in the following code:
IPHostEntry entry = Dns.GetHostEntry(uri.Host) ;

WriteLine($"{entry.HostName} has the following IP addresses:");
foreach (IPAddress address in entry.AddressList)

{

WriteLine ($" {address}");

}

6. Run the console application, enter a valid website address or press Enter, and
view the result, as shown in the following output:

world.episerver.com has the following IP addresses:

217.114.90.249

Pinging a server

Now you will add code to ping a web server to check its health:

1. InProgram.cs, add a statement to import
System.Net .NetworkInformation, as shown in the following code:

using System.Net.NetworkInformation;

2. Add statements to Main to get the IP addresses for the entered website, as
shown in the following code:

try

{
var ping = new Ping();
WriteLine ("Pinging server. Please wait...");
PingReply reply = ping.Send(uri.Host) ;

WriteLine ($"{uri.Host} was pinged and replied: {reply.
Status}.");

if (reply.Status == IPStatus.Success)
{
WriteLine ("Reply from {0} took {1:NO}ms",
reply.Address, reply.RoundtripTime) ;
}
}

catch (Exception ex)

{

WriteLine ($"{ex.GetType () .ToString ()} says {ex.Message}");

}

[278]

Working with Common .NET Types | 08

Run the console application, press Enter, view the result, and note that
Episerver's developer site does not respond to ping requests (this is often
done to avoid DDoS attacks), as shown in the following output on macOS:

world.episerver.com was pinged and replied: TimedOut.
Note that on Windows, you will see an exception is caught instead.

Run the console application again and enter http://google. com, as shown
in the following output:

Enter a valid web address: http://google.com

URL: http://google.com

Scheme: http

Port: 80

Host: google.com

Path: /

Query:

google.com has the following IP addresses:
216.58.204 .46
2a00:1450:4009:804::200e

google.com was pinged and replied: Success.

Reply from 216.58.204.46 took 19ms

Working with types and attributes

Reflection is a programming feature that allows code to understand and manipulate
itself. An assembly is made up of up to four parts:

Assembly metadata and manifest: Name, assembly, and file version,
referenced assemblies, and so on.

Type metadata: Information about the types, their members, and so on.
IL code: Implementation of methods, properties, constructors, and so on.

Embedded Resources (optional): Images, strings, JavaScript, and so on.

The metadata comprises items of information about your code. The metadata is
applied to your code using attributes.

Attributes can be applied at multiple levels: to assemblies, to types, and to their
members, as shown in the following code:

// an assembly-level attribute

[279]

http://google.com/
http://google.com/
http://google.com/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

[assembly: AssemblyTitle ("Working with Reflection")]

// a type-level attribute
[Serializable]
public class Person

// a member-level attribute
[Obsolete ("Deprecated: use Run instead.")]
public void Walk ()

{
//

}

Versioning of assemblies

Version numbers in .NET are a combination of three numbers, with two optional
additions. If you follow the rules of semantic versioning:

* Major: Breaking changes.

* Minor: Non-breaking changes, including new features and bug fixes.

* Patch: Non-breaking bug fixes.

Good Practice: When updating a NuGet package, you
should specify an optional flag to make sure that you only

L upgrade to the highest minor to avoid breaking changes, or
'/@\' to the highest patch if you are extra cautious and only want
= to receive bug fixes, as shown in the following commands:

Update-Package Newtonsoft.Json -ToHighestMinor
Update-Package EPiServer.Cms -ToHighestPatch

Optionally, a version can include these:

* Prerelease: Unsupported preview releases.
* Build number: Nightly builds.

]
\@/ Good Practice: Follow the rules of semantic versioning, as described
\ at the following link: http://semver.org

=

Reading assembly metadata

Let's explore working with attributes:

[280]

http://semver.org

Working with Common .NET Types | 08

Create a new console application project named WorkingWithReflection,
add it to the workspace, and select it as the active project for OmniSharp.

At the top of the file, import the following namespace:

using System.Reflection;

In the Main method, enter statements to get the console app's assembly,
output its name and location, and get all assembly-level attributes and output
their types, as shown in the following code:

WriteLine ("Assembly metadata:") ;

Assembly = Assembly.GetEntryAssembly () ;

WriteLine ($" Full name: {assembly.FullName}");
WriteLine ($" Location: {assembly.Location}");

var attributes = assembly.GetCustomAttributes() ;
WriteLine ($" Attributes:");
foreach (Attribute a in attributes)

{
}

Run the console application and view the result, as shown in the following
output:

WriteLine ($" {a.GetType () }");

Assembly metadata:

Full name: WorkingWithReflection, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=null

Location: /Users/markjprice/Code/Chapter08/
WorkingWithReflection/bin/Debug/netcoreapp 3.0/
WorkingWithReflection.dll

Attributes:

System.Runtime.CompilerServices.
CompilationRelaxationsAttribute

System.Runtime.CompilerServices.RuntimeCompatibilityAttribute
System.Diagnostics.DebuggableAttribute
System.Runtime.Versioning.TargetFrameworkAttribute
System.Reflection.AssemblyCompanyAttribute
System.Reflection.AssemblyConfigurationAttribute
System.Reflection.AssemblyFileVersionAttribute
System.Reflection.AssemblyInformationalVersionAttribute
System.Reflection.AssemblyProductAttribute
System.Reflection.AssemblyTitleAttribute

[281]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Now that we know some of the attributes decorating the assembly, we can
ask for them specifically.

5. Add statements to the end of the Main method to get the
AssemblyInformationalVersionAttribute and AssemblyCompany
Attribute classes, as shown in the following code:

var version = assembly.GetCustomAttribute
<AssemblyInformationalVersionAttributes> () ;

WriteLine ($" Version: {version.InformationalVersion}");

var company = assembly.GetCustomAttribute
<AssemblyCompanyAttributes> () ;

WriteLine ($" Company: {company.Company}");

6. Run the console application and view the result, as shown in the following
output:
Version: 1.0.0
Company: WorkingWithReflection

Hmm, let's explicitly set this information. The old .NET Framework way to
set these values was to add attributes in the C# source code file, as shown in
the following code:

[assembly: AssemblyCompany ("Packt Publishing")]
[assembly: AssemblyInformationalVersion("1.3.0")]

The Roslyn compiler used by .NET Core sets these attributes automatically,
so we can't use the old way. Instead, they can be set in the project file.

7. Modify workingWithReflection.csproj, as shown in the following
markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFrameworks>
<Version>1.3.0</Versions>
<Company>Packt Publishing</Company>
</PropertyGroup>

</Project>

8. Run the console application and view the result, as shown in the following
output:

Version: 1.3.0

Company: Packt Publishing

[282]

Working with Common .NET Types | 08

Creating custom attributes

You can define your own attributes by inheriting from the Attribute class:

Add a class file to your project named CoderAttribute.cs.

Define an attribute class that can decorate either classes or methods with two
properties to store the name of a coder and the date they last modified some
code, as shown in the following code:

using System;

[AttributeUsage (AttributeTargets.Class | AttributeTargets.Method,
AllowMultiple = true)]
public class CoderAttribute : Attribute

{

public string Coder { get; set; }
public DateTime LastModified { get; set; }

public CoderAttribute (string coder, string lastModified)

{

Coder = coder;
LastModified = DateTime.Parse(lastModified) ;

}
}

3. In the Program class, add a method named Dostuff, and decorate it with the
Coder attribute with data about two coders, as shown in the following code:
[Coder ("Mark Price", "22 August 2019")]

[Coder ("Johnni Rasmussen", "13 September 2019")]
public static void DoStuff ()

{
}

4. InProgram.cs, import System.Ling, as shown in the following code:

using System.Ling; // to use OrderByDescending

You will learn more about LINQ in Chapter 12, Querying and
Manipulating Data Using LINQ. We have imported it to use its
OrderByDescending method.

5. Inthe Main method, add code to get the types, enumerate their members,
read any Coder attributes on those members, and write the information
to the console, as shown in the following code:

WriteLine () ;

WriteLine ($"* Types:");
Typel[]l types = assembly.GetTypes() ;

[283]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

foreach (Type in types)

{

WriteLine () ;

WriteLine ($"Type: {type.FullName}");
MemberInfo[] members = type.GetMembers() ;
foreach (MemberInfo member in members)

{
WriteLine ("{0}: {1} ({2})",
arg0: member.MemberType,
argl: member.Name,
arg2: member.DeclaringType.Name) ;

var coders = member.GetCustomAttributes<CoderAttributes ()
.OrderByDescending (¢ => c.LastModified) ;

foreach (CoderAttribute coder in coders)

{
WriteLine ("-> Modified by {0} on {1}",
coder.Coder, coder.LastModified.ToShortDateString()) ;
}

}
}

6. Run the console application and view the result, as shown in the following
output:

* Types:

Type: CoderAttribute

Method: get Coder (CoderAttribute)
Method: set Coder (CoderAttribute)
Method: get LastModified (CoderAttribute)
Method: set LastModified (CoderAttribute)
Method: Equals (Attribute)

Method: GetHashCode (Attribute)

Method: get TypeId (Attribute)

Method: Match (Attribute)

Method: IsDefaultAttribute (Attribute)
Method: ToString (Object)

Method: GetType (Object)

Constructor: .ctor (CoderAttribute)
Property: Coder (CoderAttribute)
Property: LastModified (CoderAttribute)

[284]

Working with Common .NET Types | 08

Property: TypeId (Attribute)

Type: WorkingWithReflection.Program

Method: DoStuff (Program)

-> Modified by Johnni Rasmussen on 13/09/2019
-> Modified by Mark Price on 22/08/2019
Method: ToString (Object)

Method: Equals (Object)

Method: GetHashCode (Object)

Method: GetType (Object)

Constructor: .ctor (Program)

Type: WorkingWithReflection.Program+<>c
Method: ToString (Object)

Method: Equals (Object)

Method: GetHashCode (Object)

Method: GetType (Object)

Constructor: .ctor (<>c)

Field: <>9 (<>c)

Field: <>9 0 0 (<>c)

More Information: What is the

/ WorkingWithReflection.Program+<>c type? It is a compiler-
\/{p; generated display class. <> indicates compiler-generated and
c indicates a display class. You can read more at the following

link: http://stackoverflow.com/a/2509524/55847

As an optional challenge, add statements to your console application
to filter compiler-generated types by skipping types decorated with
CompilerGeneratedAttribute

Doing more with reflection

This is just a taster of what can be achieved with reflection. We only used reflection
to read metadata from our code. Reflection can also do the following:

* Dynamically load assemblies that are not currently referenced:
https://docs.microsoft.com/en-us/dotnet/standard/assembly/
unloadability-howto

[285]

https://docs.microsoft.com/en-us/dotnet/standard/assembly/unloadability-howto
https://docs.microsoft.com/en-us/dotnet/standard/assembly/unloadability-howto
http://stackoverflow.com/a/2509524/55847
http://stackoverflow.com/a/2509524/55847

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

* Dynamically execute code: https://docs.microsoft.com/en-us/dotnet/
api/system.reflection.methodbase.invoke?view=netcore-3.0

* Dynamically generate new code and assemblies: https://docs.
microsoft.com/en-us/dotnet/api/system.reflection.emit.assemblyb
uilder?view=netcore-3.0

Internationalizing your code

Internationalization is the process of enabling your code to run correctly all over the
world. It has two parts: globalization and localization.

Globalization is about writing your code to accommodate multiple languages and
region combinations. The combination of a language and a region is known as a
culture. It is important for your code to know both the language and region because
the date and currency formats are different in Quebec and Paris, despite them both
using the French language.

There are International Organization for Standardization (ISO) codes for all
culture combinations. For example, in the code da-DX, da indicates the Danish
language and Dk indicates the Denmark region, and in the code fr-ca, fr indicates
the French language and ca indicates the Canadian region.

ISO is not an acronym. ISO is a reference to the Greek word isos (which means equal).

Localization is about customizing the user interface to support a language, for
example, changing the label of a button to be Close (en) or Fermer (fr). Since
localization is more about the language, it doesn't always need to know about the
region, although ironically enough, standardization (en-Us) and standardisation
(en-GB) suggest otherwise.

Internationalization is a huge topic on which several thousand-page books have
been written. In this section, you will get a brief introduction to the basics using the
CultureInfotypeintheSystem.Globalizationqunespace

1. Create a new console application project named Internationalization,
add it to the workspace, and select it as the active project for OmniSharp.

2. At the top of the file, import the following namespace:

using System.Globalization;

3. Inthe Main method, enter statements to get the current globalization and
localization cultures and write some information about them to the console,
and then prompt the user to enter a new culture code and show how that
affects the formatting of common values such as dates and currency, as
shown in the following code:

[286]

https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.invoke?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.invoke?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.assemblybuilder?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.assemblybuilder?view=netcore-3.0

Working with Common .NET Types | 08

CultureInfo globalization = CultureInfo.CurrentCulture;
CultureInfo localization = CultureInfo.CurrentUICulture;

WriteLine ("The current globalization culture is {0}: {1}",
globalization.Name, globalization.DisplayName) ;
WriteLine ("The current localization culture is {0}: {1}",
localization.Name, localization.DisplayName) ;
WriteLine () ;

WriteLine ("en-US: English (United States)");

WriteLine ("da-DK: Danish (Denmark)") ;

WriteLine ("fr-CA: French (Canada)");

Write ("Enter an ISO culture code: ") ;

string newCulture = ReadLine() ;

if (!string.IsNullOrEmpty (newCulture))

{
var ci = new CultureInfo (newCulture) ;
CultureInfo.CurrentCulture = ci;
CultureInfo.CurrentUICulture = ci;

}

WriteLine () ;

Write ("Enter your name: ") ;

string name = ReadLine() ;

Write ("Enter your date of birth: ");
string dob = ReadLine() ;

Write ("Enter your salary: ");

string salary = ReadLine() ;

DateTime date = DateTime.Parse (dob) ;
int minutes = (int)DateTime.Today.Subtract (date) .TotalMinutes;
decimal earns = decimal.Parse (salary) ;

WriteLine (

"{0} was born on a {1:dddd}, is {2:N0} minutes old, and earns
{3:C}m,

name, date, minutes, earns);

When you run an application, it automatically sets its thread to use the
culture of the operating system. I am running my code in London, UK, so the
thread is set to English (United Kingdom).

The code prompts the user to enter an alternative ISO code. This allows your
applications to replace the default culture at runtime.

The application then uses standard format codes to output the day of

the week using format code dddd; the number of minutes with thousand
separators using format code N0; and the salary with the currency symbol.
These adapt automatically, based on the thread's culture.

[287]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

4. Run the console application and enter en-GB for the ISO code and then enter
some sample data including a date in a format valid for British English, as
shown in the following output:

Enter an ISO culture code: en-GB

Enter your name: Alice

Enter your date of birth: 30/3/1967

Enter your salary: 23500

Alice was born on a Thursday, is 25,469,280 minutes old, and earns

£23,500.00

Rerun the application and try a different culture, such as Danish in Denmark,
as shown in the following output:

Enter an ISO culture code: da-DK
Enter your name: Mikkel
Enter your date of birth: 12/3/1980

Enter your salary: 340000

Mikkel was born on a onsdag, is 18.656.640 minutes old, and earns
340.000,00 kr.

Good Practice: Consider whether your application needs to be

A internationalized and plan for that before you start coding! Write
'/@\' down all the pieces of text in the user interface that will need to be
] localized. Think about all the data that will need to be globalized

(date formats, number formats, and sorting text behavior).

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore with deeper research into the topics in this chapter.

Exercise 8.1 — Test your knowledge

Use the web to answer the following questions:
1. What is the maximum number of characters that can be stored in a string
variable?
When and why should you use a securestring class?
When is it appropriate to use a StringBuilder type?

When should you use a LinkedList<T> class?

[288]

Working with Common .NET Types | 08

5. When should you use a SortedDictionary<T> class rather than a
SortedList<T> class?

What is the ISO culture code for Welsh?

What is the difference between localization, globalization, and
internationalization?

In a regular expression, what does $ mean?

In a regular expression, how could you represent digits?

10. Why should you not use the official standard for email addresses to create a
regular expression to validate a user's email address?

Exercise 8.2 — Practice regular expressions

Create a console application named Exercise02 that prompts the user to enter
a regular expression, and then prompts the user to enter some input and compare the
two for a match until the user presses Esc, as shown in the following output:

The default regular expression checks for at least one digit.

Enter a regular expression (or press ENTER to use the default): "[a-z]+$
Enter some input: apples

apples matches " [a-z]+3$? True

Press ESC to end or any key to try again.

Enter a regular expression (or press ENTER to use the default): "[a-z]+$
Enter some input: abcl23xyz

abcl123xyz matches *[a-z]+$? False

Press ESC to end or any key to try again.

Exercise 8.3 — Practice writing extension
methods

Create a class library named Exercise03 that defines extension methods that extend
number types such as BigInteger and int with a method named Towords that
returns a string describing the number; for example, 18,000,000 would be eighteen
million, and 18,456,002,032,011,000,007 would be eighteen quintillion, four hundred
and fifty six quadrillion, two trillion, thirty two billion, eleven million, and seven.

numbers at the following link: https://en.wikipedia.org/
wiki/Names of large numbers

C’ More Information: You can read more about names for large
\"/

[289]

https://en.wikipedia.org/wiki/Names_of_large_numbers
https://en.wikipedia.org/wiki/Names_of_large_numbers

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Exercise 8.4 — Explore topics

Use the following links to read in more detail the topics covered in this chapter:

NET Core API Reference: https://docs.microsoft.com/en-us/dotnet/
api/index?view=netcore-3.0

String Class: https://docs.microsoft.com/en-us/dotnet/api/system.
string?view=netcore-3.0

Regex(ﬂass:https://docs.microsoft.com/en—us/dotnet/api/system.
text.regularexpressions.regex?view=netcore-3.0

Regular expressions in .NET: https://docs.microsoft.com/en-us/
dotnet/articles/standard/base-types/regular-expressions

Regular Expression Language - Quick Reference: https://docs.
microsoft.com/en-us/dotnet/articles/standard/base-types/quick-
ref

Collections (C# and Visual Basic): https://docs.microsoft.com/en-us/
dotnet/api/system.collections?view=netcore-3.0

Extending Metadata Using Attributes: https://docs.microsoft.com/en-
us/dotnet/standard/attributes/

Globalizing and localizing .NET applications: https://docs.microsoft.
com/en-us/dotnet/standard/globalization-localization/

Summary

In this chapter, you explored some choices for types to store and manipulate
numbers and text, including regular expressions, which collections to use for
storing multiple items; worked with indexes, ranges, and spans; used some network
resources; reflected on code and attributes; and learned how to internationalize your
code. In the next chapter, we will manage files and streams, encode and decode text,
and perform serialization.

[290]

https://docs.microsoft.com/en-us/dotnet/api/index?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/index?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/quick-ref
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/quick-ref
https://docs.microsoft.com/en-us/dotnet/api/system.collections?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/standard/attributes/
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/

Chapter 09

Working with Files,
Streams, and Serialization

This chapter is about reading and writing to files and streams, text encoding,
and serialization. We will be covering the following topics:

Managing the filesystem

Reading and writing with streams
Encoding and decoding text
Serializing object graphs

Managing the filesystem

Your applications will often need to perform input and output with files and
directories in different environments. The System and System. IO namespaces
contain classes for this purpose.

Handling cross-platform environments and
filesystems

Let's explore how to handle cross-platform environments like the differences
between Windows and Linux or macOS.

1.

Create a new console application named WorkingWithFileSystems
in a folder named Chapter09.

Save the workspace as Chapter09 and add WorkingWithFileSystems to it.

Import the system. I0 namespace, and statically import the
System.Console, System.IO.Directory, System.Environment,
and System. IO.Path types, as shown in the following code:

using System.IO; // types for managing the filesystem

[291]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

using static System.Console;
using static System.IO.Directory;
using static System.IO.Path;
using static System.Environment;

Paths are different for Windows, macOS, and Linux, so we will start by
exploring how .NET Core handles this.

4. Create a static outputFileSystemInfo method, and write statements to
do the following;:

o

Output the path and directory separation characters

o

Output the path of the current directory

o

Output some special paths for system files, temporary files, and
documents

static void OutputFileSystemInfo ()

{

WriteLine ("{0,-33} {1}", "Path.PathSeparator", PathSeparator) ;
WriteLine ("{0,-33} {1}", "Path.DirectorySeparatorChar",
DirectorySeparatorChar) ;
WriteLine ("{0,-33} {1}", "Directory.GetCurrentDirectory ()",
GetCurrentDirectory()) ;
WriteLine ("{0,-33} {1}", "Environment.CurrentDirectory",
CurrentDirectory) ;
WriteLine("{0,-33} {1}", "Environment.SystemDirectory",
SystemDirectory) ;
WriteLine ("{0,-33} {1}", "Path.GetTempPath()", GetTempPath());
WriteLine ("GetFolderPath (SpecialFolder") ;
WriteLine("{0,-33} {1}", " .System)",
GetFolderPath (SpecialFolder.System)) ;
WriteLine("{0,-33} {1}", " .ApplicationData)",
GetFolderPath (SpecialFolder.ApplicationData)) ;
WriteLine("{0,-33} {1}", " .MyDocuments)",
GetFolderPath (SpecialFolder.MyDocuments)) ;
WriteLine("{0,-33} {1}", " .Personal)",

GetFolderPath (SpecialFolder.Personal)) ;

}

The Environment type has many other useful members, including
the GetEnvironmentvariables method and the osversion and
ProcessorCount properties.

5. Inthe Main method, call outputFileSystemInfo, as shown in the following
code:

static void Main(string[] args)

{
}

OutputFileSystemInfo() ;

[292]

Working with Files, Streams, and Serialization | 09

6. Run the console application and view the result, as shown in the following
screenshot when run on Windows:

4] File Edit Selection View Go Debug Terminal Help Program.cs - WerkingWithFileSystems - Visual Studio Code = O x
@ EXPLORER € Programecs X p @
4 OPEN EDITORS 17 Writeline("{@,-33} -,1}'); “Directory.GetCurrentDirectory(}”, - .
18 e ectory());
’D % © Programice 10 L1 YEeud rnnmant Cureanthd ractans® 7]
4 WORKINGWITHFILESYSTEMS
PROBLEM TERMINAL 1: powershell v+ M B A X%
Y " PS C:\Code\Chapter@®\WorkingWithFileSystems: t run
- Path.Pathseparator ;
o o Path.DirectorySeparatorChar \
{_:'\‘ hFile i T CurrentDirectory() C:\Code\Chapterg®MorkingWithFilesystems
Environment.CurrentDirectory C:\Code\Chapter@d\WorkingWithFileSystems
Environment.SystemDirectory C\WINDOWS\ system3d2
A Path.GetTempPath() C:\Users\markj\AppDataiLocal\Temp',
GetFolderPath(SpecialFolder
System) O \WINDOWS \ system32
+ApplicationData) C:\Users\markj\AppData\Roaming
MyDocuments) Y \Mac\Home\Documents
ﬁ. .Personal) \\Mac\Home'\Documents
* DUTLINE PS C:‘\Code\Chapter2di\WorkingWithFileSystems:> I

Sodo W WorkingWithFileSystems Ln34,Col 10 Spaces:d UTF-BwithBOM CRLF €& @ M1

Windows uses a backslash for the directory separator character. macOS and Linux
use a forward slash for the directory separator character.

Managing drives
To manage drives, use DriveInfo, which has a static method that returns information
about all the drives connected to your computer. Each drive has a drive type.

1. Create a WorkWithDrives method, and write statements to get all the drives
and output their name, type, size, available free space, and format, but only
if the drive is ready, as shown in the following code:

static void WorkWithDrives ()
{
WriteLine("{0,-30} | {1,-10} | {2,-7} | {3,18} | {4,18}",
"NAME", "TYPE", "FORMAT", "SIZE (BYTES)", "FREE SPACE") ;

foreach (DriveInfo drive in DriveInfo.GetDrives())

{

if (drive.IsReady)
{
WriteLine (
v{o,-30} | {1,-10} | {2,-7} | {3,18:N0} | {4,18:NO}",
drive.Name, drive.DriveType, drive.DriveFormat,
drive.TotalSize, drive.AvailableFreeSpace) ;

}

else

{

WriteLine("{0,-30} | {1,-10}", drive.Name, drive.DriveType) ;

}

[293]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

—

A Good Practice: Check that a drive is ready before reading properties
'@\' such as TotalSize or you will see an exception thrown with

= removable drives.

4

2. InMain, comment out the previous method call, and add a call to
WorkWithDrives, as shown in the following code:

static void Main(string[] args)

{
// OutputFileSystemInfol() ;
WorkWithDrives () ;

}

3. Run the console application and view the result, as shown in the following

screenshot:
® Program.cs — WorkingWithFilaSystems
EXPLORE C Programcs X m
4 OPEN EDITORS 142 static void Main(stringl] args)
143
X €+ Program.cs : i
- 144 // DutputFileSystemInfol);
4 WORKINGWITHFILESYSTEMS 145 e Gaai)e
15 Work ves();
» vscode a2
S PROBLEMS OUTRU DERUG CONSOLE TERMINAL 1: bash s 4+ M G ~ x
o Marks-MacBook-Pro-13:WorkingWithFileSystems markjprices dotnet run
RAHE | TYPE | FORMAT S1ZF [BYTES) | FREE SPACE
/ | Fixed 499,963,174,912 | 66,428,538, 260
¥slems.cspro; fdev | Ram 193,536 | (]
fprivate/varSvm | Fixed 499,963,174,912 | 66,428,536, 860
* OUTLINE fret | Metwork 8| @
/home | W | @
¥ ILSPY DECOMPILED MEMBERS Marks-MacBook-Pro-13:WorkingWithFileS
QoA I VWorkingWithF ileSystems Ln 150, Col 2 2 UTF-BwithBOM CRLF C# SharpPad:s2ss @ A

Managing directories

To manage directories, use the Directory, Path, and Environment static classes.

These types include many properties and methods for working with the filesystem,
as shown in the following diagram:

[294]

Working with Files, Streams, and Serialization | 09

i o

L

@ aaaaaadaa

@ a aaaa

@ aaaaaa

@ aaaaa

&

i Static Class

4 Methods

CreateDirectory (+ 1 overload)
Delete (+ 1 overload)
EnumerateDirectories (+ 2 overloads)
Enumeratefiles (+ 2 overloads)

EnumerateFileSystemEntries (+ 2 overloads)

Exists

GetAccessControl (+ 1 overload)
GetCreationTime
GetCreationTimeltc
GetCurrentDirectory
GetDirectories (+ 2 overloads)
GetDirectoryRoot

GetFiles (+ 2 overloads)
GetFileSystemEntries (+ 2 overloads)
GetlastAccessTime
GetlastAccessTimeUtc
GetlastWriteTime
GetlastWriteTimeUtc
GetlogicalDrives

GetParent

Maove

SetAccessControl
SetCreationTime
SetCreationTimeltc
SetCurrentDirectory
SetlastAccessTime
SetlastAccessTimeUtc
SetlastWriteTime
SetlastWriteTimellte

4 Fields
AltDirectorySeparatorChar
DirectorySeparatorChar
InvalidPathChars
PathSeparator
VeolumeSeparatorChar

4 Methods

L 28 N N N 4

ChangeExtension
Combine (+ 3 overloads)

GetDirectoryName

GetExtension
GetFileName
GetFileMameWithoutExtension
GetFullPath
GetinvalidFileNameChars
GetinvalidPathChars
GetPathRoot
GetRandomFileName
GetTempFileName
GetTempPath
HasExtension
IsPathRooted

T - — . - . - . - . -

£ -
I Environment

N

TrererrerrrererrerrerereeeeY™

Static Class
E= |

4 Properties

CommandLine
CurrentDirectory
CurrentManagedThreadid
ExitCode
HasShutdownStarted
Is&4BitOperatingSystem
IsE4BitProcess
MachineName
MewLine

O5Version
ProcessorCount
StackTrace
SystemDirectory
SystemPageSize
TickCount
UserComainName
Userlnteractive
UserMame

Version

WorkingSet

Methods

Q@ 8 9 a @

@

a a a

Exit

ExpandEnvironmentVariables

FailFast (+ 1 overload)
GetCommandLineArgs
GetEnvironmentVariable (+ 1 overload)
GetEnvironmentVariables [+ 1 overload)
GetFolderPath (+ 1 overload)
GetLogicalDrives
SetEnvirenmentVanable (+ 1 overload)

b Mested Types

N N - RN T TN e

o . . .

When constructing custom paths, you must be careful to write your code so that it

makes no assumptions about the platform, for example, what to use for the directory
separator character.

1. Create a WorkWithDirectories method, and write statements to do the

following:

° Define a custom path under the user's home directory by creating an

array of strings for the directory names, and then properly combining
them with the Path type's static Combine method.

[295]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

© Check for the existence of the custom directory path using the static
Exists method of the Directory class.

° Create and then delete the directory, including files and
subdirectories within it, using the static createDirectory and
Delete methods of the Directory class.

static void WorkWithDirectories()

{

// define a directory path for a new folder
// starting in the user's folder
var newFolder = Combine (
GetFolderPath (SpecialFolder.Personal),
"Code", "Chapter09", "NewFolder");

WriteLine ($"Working with: {newFolder}");

// check if it exists
WriteLine ($"Does it exist? {Exists(newFolder)}");

// create directory

WriteLine ("Creating it...");

CreateDirectory (newFolder) ;

WriteLine ($"Does it exist? {Exists(newFolder)}");

Write ("Confirm the directory exists, and then press ENTER: ");
ReadLine () ;

// delete directory

WriteLine ("Deleting it...");

Delete (newFolder, recursive: true);

WriteLine ($"Does it exist? {Exists(newFolder)}");

}

2. Inthe Main method, comment out the previous method call, and add a call to
WorkWithDirectories, as shown in the following code:

static void Main(string[] args)

{

// OutputFileSystemInfol() ;
// WorkWithDrives () ;
WorkWithDirectories () ;

}

3. Run the console application and view the result, and use your favorite file
management tool to confirm that the directory has been created before
pressing Enter to delete it, as shown in the following output:

Working with: /Users/markjprice/Code/Chapter09/NewFolder

Does it exist? False

[296]

Working with Files, Streams, and Serialization | 09

Creating it...

Does it exist? True

Confirm the directory exists, and then press ENTER:

Deleting it...

Does it exist? False

Managing files

When working with files, you could statically import the File type, just as we did
for the Directory type, but, for the next example, we will not, because it has some of
the same methods as the Directory type and they would conflict. The File type has
a short enough name not to matter in this case.

1. Create a WworkwithFiles method, and write statements to do the following;:

° Check for the existence of a file.
° Create a text file.
° Write a line of text to the file.

° Close the file to release system resources and file locks (this would
normally be done inside a try-finally statement block to ensure
that the file is closed even if an exception occurs when writing to it).

° Copy the file to a backup.
° Delete the original file.

° Read the backup file's contents and then close it.

static void WorkWithFiles ()

{

// define a directory path to output files
// starting in the user's folder
var dir = Combine (
GetFolderPath (SpecialFolder.Personal),
"Code", "Chapter09", "OutputFiles");

CreateDirectory(dir) ;
// define file paths
string textFile = Combine (dir, "Dummy.txt");

string backupFile = Combine(dir, "Dummy.bak") ;

WriteLine ($"Working with: {textFile}");

[297]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

// check if a file exists
WriteLine ($"Does it exist? {File.Exists(textFile)}");

// create a new text file and write a line to it
StreamWriter textWriter = File.CreateText (textFile) ;
textWriter.WriteLine ("Hello, C#!");

textWriter.Close(); // close file and release resources
WriteLine ($"Does it exist? {File.Exists(textFile)}");

// copy the file, and overwrite if it already exists
File.Copy (sourceFileName: textFile,
destFileName: backupFile, overwrite: true);

WriteLine (
$"Does {backupFile} exist? {File.Exists(backupFile)}");

Write ("Confirm the files exist, and then press ENTER: ") ;
ReadLine () ;

// delete file
File.Delete (textFile) ;

WriteLine ($"Does it exist? {File.Exists(textFile)}");

// read from the text file backup

WriteLine ($"Reading contents of {backupFile}:");
StreamReader textReader = File.OpenText (backupFile) ;
WriteLine (textReader.ReadToEnd()) ;
textReader.Close() ;

}

2. InMain, comment out the previous method call, and add a call to
WorkWithFiles.

3. Run the application and view the result, as shown in the following output:
Working with: /Users/markjprice/Code/Chapter09/OutputFiles/Dumny.
txt
Does it exist? False
Does it exist? True

Does /Users/markjprice/Code/Chapter09/OutputFiles/Dummy.bak exist?
True

[298]

Working with Files, Streams, and Serialization | 09

Confirm the files exist, and then press ENTER:
Does it exist? False

Reading contents of /Users/markjprice/Code/Chapter09/OutputFiles/
Dummy . bak:

Hello, C#!

Managing paths

Sometimes, you need to work with parts of a path; for example, you might want to
extract just the folder name, the filename, or the extension. Sometimes, you need to
generate temporary folders and filenames. You can do this with static methods of the
Path class.

1.

Add the following statements to the end of the WorkwithFiles method:

// Managing paths

WriteLine ($"Folder Name: {GetDirectoryName (textFile)}");

WriteLine ($"File Name: {GetFileName (textFile)}");

WriteLine ("File Name without Extension: {0}",
GetFileNameWithoutExtension (textFile)) ;

WriteLine ($"File Extension: {GetExtension (textFile)}");

WriteLine ($"Random File Name: {GetRandomFileName()}");

WriteLine ($"Temporary File Name: {GetTempFileName()}");

Run the application and view the result, as shown in the following output:

Folder Name: /Users/markjprice/Code/Chapter09/OutputFiles
File Name: Dummy.txt

File Name without Extension: Dummy

File Extension: .txt

Random File Name: u45wlzki.co3

Temporary File Name:

/var/folders/tz/xx0y wld5sx0nv0fjtg4tnpc0000gn/T/tmpyqgrepP.tmp

GetTempFileName creates a zero-byte file and returns its name, ready for you to use.
GetRandomFileName just returns a filename; it doesn't create the file.

Getting file information

To get more information about a file or directory, for example, its size or when it was
last accessed, you can create an instance of the FileInfo or DirectoryInfo class.

[299]

C# 8.0 and .NET Core 3.0 — Modern Cross-Platform Development

FileInfo and DirectoryInfo both inherit from FileSystemInfo, so they both have
members such as LastAccessTime and Delete, as shown in the following diagram:

(P ISerializable

s ; s

Filelnfo FileSysteminfo Directoryinfo

Sealed Class Abstract Class Sealed Class

* FileSysteminfo =+ MarshalByRefObject = FileSysteminfo

2 o | =

4 Properties 4 Fields 4 Properties
F 4 Directory 9‘ FullPath K Exists
& DirectoryName @ OriginalPath F FullName
& Exists 4 Properties & Name
& IsReadOnly K Attributes F Parent
Length & CreationTime # Root
& Name F CreationTimeUtc 4 Methods

4 Methods K Exists @ Create (+ 1 overload)
% AppendText & Extension @ CreateSubdirectory (+ 1 overload)
@ CopyTo (+ 1 overload) K FullName T Delete (+ 1 overload)
% Create & LastAccessTime @ Directorylnfo
T CreateText ﬁ LastAccessTimeltc % EnumerateDirectories (+ 2 overloads)
% Decrypt K LastWriteTime @ EnumerateFiles (+ 2 overloads)
T Delete & LastWriteTimeUtc @ EnumerateFileSysteminfos (+ 2 overloads)
@ Encrypt & Name @ GetAccessControl (+ 1 overload)
% Filelnfo 4 Methods % GetDirectories (+ 2 overloads)
el @ il
@ GetAccessControl (+ 1 overload) @ Delete % GetFiles (+ 2 overloads)
() - @ il
¥ MoveTo @, FileSysteminfo (+ 1 overload) ? GetFileSysteminfos (+ 2 overloads)
() o)
@ Open (+ 2 overloads) © GetObjectData ® MoveTo
el el
% OpenRead @ Refresh SetAccessControl
¥ OpenText ¥ ToString
2 OpenWrite \
% Replace (+ 1 overload)
@ SetAccessControl
@ ToString

\

1. Let's write some code that uses a FileInfo instance for efficiently
performing multiple actions on a file. Add statements to the end of the
WorkWithFiles method to create an instance of FileInfo for the backup file

and write information about it to the console, as shown in the following code:

var info = new FileInfo (backupFile) ;
WriteLine ($"{backupFile}:");
WriteLine ($"Contains {info.Length} bytes");
WriteLine ($"Last accessed {info.LastAccessTime}");
WriteLine ($"Has readonly set to {info.IsReadOnly}");

2. Run the application and view the result, as shown in the following output:

/Users/markjprice/Code/Chapter09/OutputFiles/Dummy.bak:

Contains 11 bytes

Last accessed 26/11/2018 09:08:26

Has readonly set to False

[300]

Working with Files, Streams, and Serialization | 09

The number of bytes might be different on your operating system because operating
systems can use different line endings.

Controlling how you work with files

When working with files, you often need to control how they are opened. The
File.Open method has overloads to specify additional options using enum values.
The enum types are as follows:

* FileMode: This controls what you want to do with the file, like createNew,
OpenOrCreate, Or Truncate.

* FileAccess: This controls what level of access you need, like Readwrite.

* FileShare: This controls locks on the file to allow other processes the
specified level of access, like Read.

You might want to open a file and read from it, and allow other processes to read it
too, as shown in the following code:

FileStream file = File.Open (pathToFile,
FileMode.Open, FileAccess.Read, FileShare.Read) ;

There is also an enum for attributes of a file as follows:

* FileAttributes: Thisis to check a FileSystemInfo-derived types
Attributes property for values like Archive and Encrypted.

You could check a file or directory's attributes, as shown in the following code:

var info = new FileInfo (backupFile) ;
WriteLine ("Is the backup file compressed? {0}",
info.Attributes.HasFlag(FileAttributes.Compressed)) ;

Reading and writing with streams

A stream is a sequence of bytes that can be read from and written to. Although files
can be processed rather like arrays, with random access provided by knowing the
position of a byte within the file, it can be useful to process files as a stream in which
the bytes can be accessed in sequential order.

Streams can also be used to process terminal input and output and networking
resources such as sockets and ports that do not provide random access and cannot
seek to a position. You can write code to process some arbitrary bytes without
knowing or caring where it comes from. Your code simply reads or writes to

a stream, and another piece of code handles where the bytes are actually stored.

[301]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

There is an abstract class named Stream that represents a stream. There are many
classes that inherit from this base class, including FileStream, MemoryStream,
BufferedStream, GZipStream, and Ss1Stream, so they all work the same way.

All streams implement IDisposable, so they have a Dispose method to release
unmanaged resources.

In the following table are some of the common members of the Stream class:

Member Description

CanRead, CanWrite This determines whether you can read from and write
to the stream.

Length, Position This determines the total number of bytes and the current
position within the stream. These properties may throw
an exception for some types of stream.

Dispose () This closes the stream and releases its resources.

Flush() If the stream has a buffer, then the bytes in the buffer
are written to the stream and the buffer is cleared.

Read (), ReadAsync () This reads a specified number of bytes from the stream
into a byte array and advances the position.

ReadByte () This reads the next byte from the stream and advances
the position.

Seek () This moves the position to the specified position
(if canSeek is true).

Write (), WriteAsync () | This writes the contents of a byte array into the stream.

WriteByte () This writes a byte to the stream.

In the following table are some storage streams that represent a location where the
bytes will be stored:

Namespace Class Description

System. IO FileStream Bytes stored in the filesystem.

System. IO MemoryStream Bytes stored in memory in the current
process.

System.Net.Sockets |NetworkStream | Bytes stored at a network location.

In the following table are some function streams that cannot exist on their own. They
can only be "plugged onto" other streams to add functionality:

[302]

Working with Files, Streams, and Serialization | 09

Namespace Class Description

System.Security CryptoStream This encrypts and decrypts

.Cryptography the stream.

System.IO. GZipStream, This compresses and

Compression DeflateStream decompresses the stream.

System.Net.Security AuthenticatedStream This sends credentials across
the stream.

Although there will be occasions where you need to work with streams at a low
level, most often, you can plug helper classes into the chain to make things easier.

All the helper types for streams implement IDisposable, so they have a Dispose
method to release unmanaged resources.

In the following table are some helper classes to handle common scenarios:

Namespace Class Description

System. IO StreamReader | This reads from the underlying stream as text.
System.IO StreamWriter | This writes to the underlying stream as text.
System.IO BinaryReader | This reads from streams as .NET types. For example,

the ReadDecimal method reads the next 16 bytes
from the underlying stream as a decimal value and
the ReadInt32 method reads the next 4 bytes as an
int value.

System. IO BinaryWriter | This writes to streams as .NET types. For example, the
Write method with a decimal parameter writes 16
bytes to the underlying stream and the Write method
with an int parameter writes 4 bytes.

System.Xml |XmlReader This reads from the underlying stream as XML.

System.Xml XmlWriter This writes to the underlying stream as XML.

Writing to text streams

Let's type some code to write text to a stream.
1. Create a new console application project named WorkingWithStreams, add it
to the Chapter09 workspace, and select the project as active for OmniSharp.

2. Import the System. 10 and System.Xml namespaces, and statically import
the System.Console, System.Environment and System.IO.Path types.

[303]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

3. Define an array of string values, perhaps containing Viper pilot call signs,
and create a WorkwithText method that enumerates the call signs, writing
each one on its own line in a single text file, as shown in the following code:

// define an array of Viper pilot call signs

static string[] callsigns = new string[] {
"Husker", "Starbuck", "Apollo", "Boomer",
"Bulldog", "Athena", "Helo", "Racetrack" };

static void WorkWithText ()

{

// define a file to write to
string textFile = Combine (CurrentDirectory, "streams.txt");

// create a text file and return a helper writer
StreamWriter text = File.CreateText (textFile) ;

// enumerate the strings, writing each one
// to the stream on a separate line
foreach (string item in callsigns)

{

text .WriteLine (item) ;

}

text.Close(); // release resources

// output the contents of the file
WriteLine ("{0} contains {1:N0} bytes.",
arg0: textFile,
argl: new FileInfo (textFile) .Length) ;

WriteLine (File.ReadAllText (textFile)) ;

}

In Main, call the workwithText method.

5. Run the application and view the result, as shown in the following output:

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.txt
contains 60 bytes.

Husker
Starbuck
Apollo
Boomer
Bulldog
Athena
Helo

Racetrack

6. Open the file that was created and check that it contains the list of call signs.

[304]

Working with Files, Streams, and Serialization | 09

Writing to XML streams

There are two ways to write an XML element, as follows:

WriteStartElement and WriteEndElement: use this pair when an element
might have child elements.

WriteElementString: use this when an element does not have children.

Now, let's try storing the same array of string values in an XML file.

1.

Create a Workwithxml method that enumerates the call signs, writing each
one as an element in a single XML file, as shown in the following code:

static void WorkWithXml ()

{

// define a file to write to
string xmlFile = Combine (CurrentDirectory, "streams.xml");

// create a file stream
FileStream xmlFileStream = File.Create(xmlFile) ;

// wrap the file stream in an XML writer helper

// and automatically indent nested elements

XmlWriter xml = XmlWriter.Create (xmlFileStream,
new XmlWriterSettings { Indent = true });

// write the XML declaration
xml .WriteStartDocument () ;

// write a root element
xml .WriteStartElement ("callsigns") ;

// enumerate the strings writing each one to the stream
foreach (string item in callsigns)

{

xml .WriteElementString("callsign", item) ;

}

// write the close root element
xml . WriteEndElement () ;

// close helper and stream
xml.Close () ;
xmlFileStream.Close () ;

// output all the contents of the file
WriteLine ("{0} contains {1:N0} bytes.",
arg0: xmlFile,

[305]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

argl: new FileInfo (xmlFile) .Length) ;

WriteLine (File.ReadAllText (xmlFile)) ;

}

2. InMain, comment the previous method call, and add a call to the
WorkWithXml method.

3. Run the application and view the result, as shown in the following the
output:

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.xml

contains 310 bytes.

<?xml version="1.0" encoding="utf-8"?>

<callsigns>
<callsign>Husker</callsign>
<callsign>Starbuck</callsign>
<callsign>Apollo</callsign>
<callsign>Boomer</callsign>
<callsign>Bulldog</callsign>
<callsign>Athena</callsign>
<callsign>Helo</callsign>
<callsign>Racetrack</callsign>

</callsigns>

Disposing of file resources

When you open a file to read or write to it, you are using resources outside of .NET.
These are called unmanaged resources and must be disposed of when you are done
working with them. To guarantee that they are disposed of, we can call the Dispose
method inside of a finally block.

Let's improve our previous code that works with XML to properly dispose of its
unmanaged resources.

1. Modify the workwithxml method, as shown highlighted in the following
code:

static void WorkWithXml ()

{

FileStream xmlFileStream = null;
XmlWriter xml = null;

try
{

[306]

Working with Files, Streams, and Serialization | 09

// define a file to write to
string xmlFile = Combine (CurrentDirectory, "streams.xml");

// create a file stream
xmlFileStream = File.Create (xmlFile) ;

// wrap the file stream in an XML writer helper
// and automatically indent nested elements
xml = XmlWriter.Create (xmlFileStream,

new XmlWriterSettings { Indent = true });

// write the XML declaration
xml .WriteStartDocument () ;

// write a root element
xml .WriteStartElement ("callsigns") ;

// enumerate the strings writing each one to the stream
foreach (string item in callsigns)

{
}

xml .WriteElementString("callsign", item) ;

// write the close root element
xml .WriteEndElement () ;

// close helper and stream
xml.Close () ;
xmlFileStream.Close () ;

// output all the contents of the file
WriteLine ($"{0} contains {1:NO} bytes.",
arg0: xmlFile,
argl: new FileInfo (xmlFile) .Length) ;

WriteLine (File.ReadAllText (xmlFile)) ;
}
catch (Exception ex)
{
// if the path doesn't exist the exception will be caught
WriteLine ($"{ex.GetType ()} says {ex.Messagel}l");
}
finally
{
if (xml '= null)
{
xml .Dispose() ;
WriteLine ("The XML writer's unmanaged resources have been
disposed.") ;

[307]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

}

if (xmlFileStream !'= null)
{
xmlFileStream.Dispose() ;
WriteLine ("The file stream's unmanaged resources have been
disposed.") ;
}
}
}

You could also go back and modify the other methods you previously
created but I will leave that as an optional exercise for you.

2. Run the application and view the result, as shown in the following output:

The XML writer's unmanaged resources have been disposed.

The file stream's unmanaged resources have been disposed.

]
\@/ Good Practice: Before calling Dispose, check that the object is not

null.

=
=

You can simplify the code that needs to check for a null object and then call its
Dispose method by using the using statement.

Confusingly, there are two uses for the using keyword: importing a namespace and
generating a finally statement that calls Dispose on an object that implements
IDisposable

The compiler changes a using statement block into a try-finally statement
without a catch statement. You can use nested try statements; so, if you do want
to catch any exceptions, you can, as shown in the following code example:

using (FileStream file2 = File.OpenWrite (
Path.Combine (path, "file2.txt")))

{

using (StreamWriter writer2 = new StreamWriter (file2))

{

try

{

writer2.WriteLine ("Welcome, .NET Core!");

}

catch (Exception ex)

{

WriteLine ($"{ex.GetType ()} says {ex.Message}");

}

} // automatically calls Dispose if the object is not null
} // automatically calls Dispose if the object is not null

[308]

Working with Files, Streams, and Serialization | 09

Compressing streams

XML is relatively verbose, so it takes up more space in bytes than plain text. We can
squeeze the XML using a common compression algorithm known as GZIP.

1.

Import the following namespace:

using System.IO.Compression;

Add a WorkwWithCompression method, which uses instances of GZzipSteam
to create a compressed file containing the same XML elements as before
and then decompresses it while reading it and outputting to the console,
as shown in the following code:

static void WorkWithCompression ()

{

// compress the XML output
string gzipFilePath = Combine (
CurrentDirectory, "streams.gzip");

FileStream gzipFile = File.Create(gzipFilePath) ;

using (GZipStream compressor = new GZipStream(
gzipFile, CompressionMode.Compress))

using (XmlWriter xmlGzip = XmlWriter.Create (compressor))

{

xmlGzip.WriteStartDocument () ;
xmlGzip.WriteStartElement ("callsigns™") ;

foreach (string item in callsigns)

{
}

// the normal call to WriteEndElement is not necessary
// because when the XmlWriter disposes, it will
// automatically end any elements of any depth

}

} // also closes the underlying stream

xmlGzip.WriteElementString("callsign", item) ;

// output all the contents of the compressed file
WriteLine ("{0} contains {1:N0} bytes.",
gzipFilePath, new FileInfo(gzipFilePath) .Length) ;

WriteLine ($"The compressed contents:");
WriteLine (File.ReadAllText (gzipFilePath)) ;

// read a compressed file
WriteLine ("Reading the compressed XML file:");
gzipFile = File.Open(gzipFilePath, FileMode.Open) ;

[309]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

using (GZipStream decompressor = new GZipStream/(
gzipFile, CompressionMode.Decompress))

{

using (XmlReader reader = XmlReader.Create (decompressor))

{

while (reader.Read()) // read the next XML node

{
// check if we are on an element node named callsign
if ((reader.NodeType == XmlNodeType.Element)
&& (reader.Name == "callsign"))

{

reader.Read(); // move to the text inside element
WriteLine ($"{reader.Value}"); // read its value

3. InMain, leave the call to Workwithxml, and add a call to
WorkWithCompression, as shown in the following code:

static void Main(string[] args)

{

// WorkWithText () ;
WorkWithXml () ;
WorkWithCompression () ;

}

4. Run the console application and compare the sizes of the XML file and the
compressed XML file. It is less than half the size of the same XML without
compression, as shown in the following edited output:

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.xml
contains 310 bytes.

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.gzip
contains 150 bytes.

Compressing with the Brotli algorithm

In .NET Core 2.1, Microsoft introduced an implementation of the Brotli compression
algorithm. In performance, Brotli is similar to the algorithm used in DEFLATE and
GZIP, but the output is about 20% denser.

1. Modify the workwithCompression method to have an optional parameter
to indicate if Brotli should be used and to use Brotli by default, as shown
highlighted in the following code:

[310]

Working with Files, Streams, and Serialization | 09

static void WorkWithCompression (bool useBrotli = true)

{

string fileExt = useBrotli ? "brotli" : "gzip";

// compress the XML output
string filePath = Combine (
CurrentDirectory, $"streams.{fileExt}");

FileStream file = File.Create(filePath) ;
Stream compressor;

if (useBrotli)

{

compressor

}

else

{

compressor = new GZipStream(file, CompressionMode.Compress) ;

new BrotliStream(file, CompressionMode.Compress) ;

using (compressor)

{

using (XmlWriter xml = XmlWriter.Create (compressor))
{

xml .WriteStartDocument () ;

xml .WriteStartElement ("callsigns") ;

foreach (string item in callsigns)

{

xml .WriteElementString("callsign", item) ;

}

}

} // also closes the underlying stream

// output all the contents of the compressed file
WriteLine ("{0} contains {1:NO} bytes.",
filePath, new FileInfo(filePath) .Length) ;

WriteLine (File.ReadAllText (filePath)) ;

// read a compressed file

WriteLine ("Reading the compressed XML file:");
file = File.Open(filePath, FileMode.Open) ;
Stream decompressor;

if (useBrotli)

{

decompressor = new BrotliStream(

[311]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

file, CompressionMode.Decompress) ;

}

else

{
decompressor = new GZipStream(
file, CompressionMode.Decompress) ;

}

using (decompressor)

{

using (XmlReader reader = XmlReader.Create (decompressor))

{

while (reader.Read())

{

// check if we are on an element node named callsign
if ((reader.NodeType == XmlNodeType.Element)

&& (reader.Name == "callsign"))
{

reader.Read(); // move to the text inside element
WriteLine ($"{reader.value}"); // read its value

2. Modify the Main method to call WorkwithCompression twice, once with the
default using Brotli and once with GZIP, as shown in the following code:

WorkWithCompression() ;
WorkWithCompression (useBrotli: false);

3. Run the console application and compare the sizes of the two compressed
XML files. Brotli is more than 21% denser, as shown in the following edited
output:

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.brotli
contains 118 bytes.

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.gzip
contains 150 bytes.

High-performance streams using pipelines

In .NET Core 2.1, Microsoft introduced pipelines. Processing data from a stream
correctly requires a lot of complex boilerplate code that is difficult to maintain.
Testing on your local laptop often works with small example files, but it fails in the
real world due to poor assumptions. Pipelines help with this.

[312]

Working with Files, Streams, and Serialization | 09

More Information: Although pipelines are powerful for real-
world use and eventually you will want to learn about them,

C’ a decent example gets complicated so I have no plans to cover
\"/

them in this book. You can read a detailed description of the
problem and how pipelines help at the following link: https://
blogs.msdn.microsoft.com/dotnet/2018/07/09/system-
io-pipelines-high-performance-io-in-net/

Asynchronous streams

With C# 8.0 and .NET Core 3.0, Microsoft introduced asynchronous processing of
streams. You will learn about this in Chapter 13, Improving Performance and Scalability
Using Multitasking.

More Information: You can complete a tutorial about async

\/V streams at the following link: https://docs.microsoft.com/

en-us/dotnet/csharp/tutorials/generate-consume-
asynchronous-stream

Encoding and decoding text

Text characters can be represented in different ways. For example, the alphabet can
be encoded using Morse code into a series of dots and dashes for transmission over a
telegraph line.

In a similar way, text inside a computer is stored as bits (ones and zeros)
representing a code point within a code space. Most code points represent a single
character, but they can also have other meanings like formatting.

For example, ASCII has a code space with 128 code points. .NET uses a standard
called Unicode to encode text internally. Unicode has more than one million
code points.

Sometimes, you will need to move text outside .NET for use by systems that do not
use Unicode or use a variation of Unicode so it is important to learn how to convert
between encodings.

[313]

https://blogs.msdn.microsoft.com/dotnet/2018/07/09/system-io-pipelines-high-performance-io-in-net/
https://blogs.msdn.microsoft.com/dotnet/2018/07/09/system-io-pipelines-high-performance-io-in-net/
https://blogs.msdn.microsoft.com/dotnet/2018/07/09/system-io-pipelines-high-performance-io-in-net/
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/generate-consume-asynchronous-stream
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/generate-consume-asynchronous-stream

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

The following table lists some alternative text encodings commonly used by

computers:

Encoding Description

ASCII This encodes a limited range of characters using the lower seven bits
of a byte.

UTF-8 This represents each Unicode code point as a sequence of one to four
bytes.

UTE-7 This is designed to be more efficient over 7-bit channels than UTF-8 but
it has security and robustness issues so UTF-8 is recommended over
UTEF-7.

UTF-16 This represents each Unicode code point as a sequence of one or two 16-
bit integers.

UTF-32 This represents each Unicode code point as a 32-bit integer and is
therefore a fixed-length encoding unlike the other Unicode encodings,
which are all variable-length encodings.

ANSI/ISO This provides support for a variety of code pages that are used to

encodings support a specific language or group of languages.

In most cases today, UTF-8 is a good default, which is why it is literally the default
encoding, that is, Encoding.Default.

Encoding strings as byte arrays

Let's explore text encodings.

1.

Create a new console application project named WorkingWithEncodings,
add it to the chaptero9 workspace, and select the project as active for
OmniSharp.

Import the system. Text namespace and statically import the console class.

Add statements to the Main method to encode a string using an encoding
chosen by the user, loop through each byte, and then decode it back into
a string and output it, as shown in the following code:

WriteLine ("Encodings") ;

WriteLine (" [1] ASCII");
)
)

7

WriteLine (" [2] UTF-7"
WriteLine (" [3] UTF-8");
WriteLine (" [4] UTF-16 (Unicode)");
WriteLine (" [5] UTF-32");
WriteLine (" [any other key] Default");

// choose an encoding

[314]

Working with Files, Streams, and Serialization | 09

Write ("Press a number to choose an encoding: ") ;
ConsoleKey number = ReadKey (intercept: false) .Key;
WriteLine () ;

WriteLine () ;

Encoding encoder = number switch

{
ConsoleKey.D1l => Encoding.ASCITI,
ConsoleKey.D2 => Encoding.UTF7,
ConsoleKey.D3 => Encoding.UTF8,
ConsoleKey.D4 => Encoding.Unicode,
ConsoleKey.D5 => Encoding.UTF32,

=> Encoding.Default

Vi

// define a string to encode
string message = "A pint of milk is £1.99";

// encode the string into a byte array
byte[] encoded = encoder.GetBytes (message) ;

// check how many bytes the encoding needed
WriteLine ("{0} uses {1:NO} bytes.",
encoder.GetType () .Name, encoded.Length) ;

// enumerate each byte
WriteLine (S"BYTE HEX CHAR");
foreach (byte b in encoded)

{

WriteLine ($"{b,4} {b.ToString("X"),4} {(char)b,5}");

}

// decode the byte array back into a string and display it
string decoded = encoder.GetString(encoded) ;
WriteLine (decoded) ;

Run the application and press 1 to choose ASCII and note that when
outputting the bytes, the pound sign (£) cannot be represented in ASCII,
so it uses a question mark instead, as shown in the following output:

ASCIIEncodingSealed uses 23 bytes.
BYTE HEX CHAR

65 41 A
32 20

112 70 o)
105 69 i
110 6E n

[315]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

116 74 t
32 20
111 6F o
102 66
32 20
109 6D m
105 69 i
108 6C
107 6B k
32 20
105 69 i
115 73 s
32 20
63 3F ?
49 31 1
46 2E
57 39 9
57 39 9

A pint of milk is ?1.99

5. Rerun the application and press 3 to choose UTF-8 and note that UTF-8
requires one extra byte (24 bytes instead of 23 bytes) but it can store the £
sign.

6. Rerun the application and press 4 to choose Unicode (UTF-16) and note that
UTF-16 requires two bytes for every character, taking 46 total bytes, and it
can store the £ sign. This encoding is used internally by .NET to store char
and string values.

Encoding and decoding text in files

When using stream helper classes, such as StreamReader and StreamiWriter,
you can specify the encoding you want to use. As you write to the helper, the text
will automatically be encoded, and as you read from the helper, the bytes will be
automatically decoded.

To specify an encoding, pass the encoding as a second parameter to the helper type's
constructor, as shown in the following code:

var reader = new StreamReader (stream, Encoding.UTF7) ;
var writer = new StreamWriter (stream, Encoding.UTF7) ;

[316]

Working with Files, Streams, and Serialization | 09

L, Good Practice: Often, you won't have the choice of which encoding
@ to use, because you will be generating a file for use by another
7N system. However, if you do, pick one that uses the least number of
= bytes, but can store every character you need.

Serializing object graphs
Serialization is the process of converting a live object into a sequence of bytes using
a specified format. Deserialization is the reverse process.

There are dozens of formats you can specify, but the two most common ones are
eXtensible Markup Language (XML) and JavaScript Object Notation (JSON).

Good Practice: JSON is more compact and is best for web and mobile
applications. XML is more verbose but is better supported in more
L legacy systems. Use JSON to minimize the size of serialized object
'/@\ graphs. JSON is also a good choice when sending object graphs to
] web applications and mobile applications because JSON is the native
serialization format for JavaScript and mobile apps often make calls
over limited bandwidth, so the number of bytes is important.

.NET Core has multiple classes that will serialize to and from XML and JSON. We
will start by looking at XmlSerializer and JsonSerializer.

Serializing as XML

Let's start by looking at XML, probably the world's most used serialization format
(for now).

1. Create a new console application project named
WorkingWithSerialization, add it to the Chapter09 workspace,
and select the project as active for OmniSharp.

To show a typical example, we will define a custom class to store information
about a person and then create an object graph using a list of Person
instances with nesting.

2. Add aclass named person with a Salary property that is protected,
meaning it is only accessible to itself and derived classes. To populate the
salary, the class has a constructor with a single parameter to set the initial
salary, as shown in the following code:

using System;

[317]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

using System.Collections.Generic;

namespace Packt.Shared

{

public class Person

{

public Person(decimal initialSalary)

{
}

Salary = initialSalary;

public string FirstName { get; set; }

public string LastName { get; set; }

public DateTime DateOfBirth { get; set; }
public HashSet<Person> Children { get; set; }
protected decimal Salary { get; set; }

}
}

3. Backin program.cs, import the following namespaces:

using System; // DateTime

using System.Collections.Generic; // List<T>, HashSet<T>
using System.Xml.Serialization; // XmlSerializer
using System.IO; // FileStream

using Packt.Shared; // Person

using static System.Console;
using static System.Environment;
using static System.IO.Path;

4. Add the following statements to the Main method:

// create an object graph
var people = new List<Persons

new Person(30000M) { FirstName = "Alice",
LastName = "Smith",
DateOfBirth = new DateTime (1974, 3, 14) },
new Person (40000M) { FirstName = "Bob",
LastName = "Jones",
DateOfBirth = new DateTime (1969, 11, 23) },
new Person (20000M) { FirstName = "Charlie",

LastName = "Cox",
DateOfBirth = new DateTime (1984, 5, 4),
Children = new HashSet<Person>
{ new Person(0M) { FirstName = "Sally",
LastName = "Cox",
DateOfBirth = new DateTime (2000, 7, 12) } } }

[318]

Working with Files, Streams, and Serialization | 09

}i

// create object that will format a List of Persons as XML
var xs = new XmlSerializer (typeof (List<Persons)) ;

// create a file to write to
string path = Combine (CurrentDirectory, "people.xml");

using (FileStream stream = File.Create (path))

{

// serialize the object graph to the stream
xs.Serialize (stream, people) ;

}

WriteLine ("Written {0:NO} bytes of XML to {1}",
arg0: new FileInfo (path) .Length,
argl: path);

WriteLine () ;

// Display the serialized object graph
WriteLine (File.ReadAllText (path)) ;

Run the console application, view the result, and note that an exception
is thrown, as shown in the following output:

Unhandled Exception: System.InvalidOperationException: Packt.
Shared.Person cannot be serialized because it does not have a
parameterless constructor.

Back in the person. cs file, add the following statement to define a
parameter-less constructor, as shown in the following code:

public Person() { }

The constructor does not need to do anything, but it must exist so that the
XmlSerializer can call it to instantiate new pPerson instances during the
deserialization process.

Rerun the console application and view the result, and note that the object
graph is serialized as XML and the salary property is not included,
as shown in the following output:

Written 752 bytes of XML to

/Users/markjprice/Code/Chapter09/WorkingWithSerialization/people.
xml

<?xml version="1.0"?>

<ArrayOfPerson xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

[319]

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

<Person>
<FirstName>Alice</FirstName>
<LastName>Smith</LastName>
<DateOfBirth>1974-03-14T00:00:00</DateOfBirth>
</Person>
<Person>
<FirstName>Bob</FirstName>
<LastName>Jones</LastName>
<DateOfBirth>1969-11-23T00:00:00</DateOfBirth>
</Person>
<Person>
<FirstName>Charlie</FirstName>
<LastName>Cox</LastName>
<DateOfBirth>1984-05-04T00:00:00</DateOfBirth>
<Children>
<Person>
<FirstName>Sally</FirstName>
<LastName>Cox</LastName>
<DateOfBirth>2000-07-12T00:00:00</DateOfBirth>
</Persons>
</Children>
</Person>

</ArrayOfPerson>

Generating compact XML

We could make the XML more compact using attributes instead of elements for some
fields.

1. Inthe person.cs file, import the System.Xml.Serialization namespace.

2. Decorate all the properties, except Children, with the [XmlAttribute]
attribute, and set a short name for each property, as shown in the following
code:

[XmlAttribute ("fname")]
public string FirstName { get; set; }

[XmlAttribute ("lname")]
public string LastName { get; set; }

[320]

Working with Files, Streams, and Serialization | 09

[XmlAttribute ("dob")]
public DateTime DateOfBirth { get; set; }

Rerun the application and note that the size of the file has been reduced
from 752 to 462 bytes, a space saving of more than a third, as shown in the
following output:

Written 462 bytes of XML to /Users/markjprice/Code/Chapter09/
WorkingWithSerialization/people.xml

<?xml version="1.0"?>

<ArrayOfPerson xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<Person fname="Alice" lname="Smith" dob="1974-03-14T00:00:00" />

<Person fname="Bob" lname="Jones" dob="1969-11-23T00:00:00" />

<Person fname="Charlie" lname="Cox" dob="1984-05-04T00:00:00">
<Childrens>

<Person fname="Sally" lname="Cox" dob="2000-07-12T00:00:00"
/>
</Childrens>
</Person>

</ArrayOfPerson>

Deserializing XML files

Now let's try deserializing the XML file back into live objects in memory.

1.

Add statements to the end of the Main method to open the XML file and then
deserialize it, as shown in the following code:

using (FileStream xmlLoad = File.Open(path, FileMode.Open))

{
// deserialize and cast the object graph into a List of Person
var loadedPeople = (List<Persons)xs.Deserialize (xmlLoad) ;

foreach (var item in loadedPeople)

WriteLine ("{0} has {1} children.",
item.LastName, item.Children.Count) ;

}
}

Rerun the application and note that the people are loaded successfully from
the XML file, as shown in the following output:

Smith has 0 children.

Jones has 0 children.

Cox has 1 children.

[321]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

There are many other attributes that can be used to control the XML generated.

I Good Practice: When using XmlSerializer, remember that only
N\ /
@ the public fields and properties are included, and the type must
7N have a parameter-less constructor. You can customize the output
with attributes.

=
=

Serializing with JSON

One of the most popular .NET libraries for working with the JSON serialization
format is Newtonsoft . son, known as Json.NET. It is mature and powerful.

Let's see it in action.

1. Edit the WorkingWithSerialization.csproj file to add a package reference

for the latest version of Newtonsoft .Json, as shown highlighted in the
following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFrameworks>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Newtonsoft.Json"
Version="12.0.2" />
</ItemGroup>

</Projects>

I Good Practice: Search for NuGet packages on Microsoft's
N\ / . .
@ NuGet feed to discover the latest supported version, as shown
LA at the following link: https://www.nuget .org/packages/
Newtonsoft.Json/

2. Add statements to the end of the Main method to create a text file and then
serialize the people into the file as JSON, as shown in the following code:

// create a file to write to
string jsonPath = Combine (CurrentDirectory, "people.json");

using (StreamWriter jsonStream = File.CreateText (jsonPath))

{

// create an object that will format as JSON

[322]

https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/

Working with Files, Streams, and Serialization | 09

var jss = new Newtonsoft.Json.JsonSerializer () ;

// serialize the object graph into a string
jss.Serialize (jsonStream, people) ;

}

WriteLine () ;

WriteLine ("Written {0:NO} bytes of JSON to: {1}",
arg0: new FileInfo (jsonPath) .Length,
argl: jsonPath) ;

// Display the serialized object graph
WriteLine (File.ReadAllText (jsonPath)) ;

Rerun the application and note that JSON requires less than half the number
of bytes compared to XML with elements. It's even smaller than the XML file,
which uses attributes, as shown in the following output:

Written 366 bytes of JSON to: /Users/markjprice/Code/Chapter09/
WorkingWithSerialization/people.json

[{"FirstName":"Alice","LastName":"Smith","DateOfBirth":"1974—
03-14T00:00:00", "Children" :null} , {"FirstName" :"Bob", "LastN

ame" :"Jones", "DateOfBirth":"1969-11-23T00:00:00", "Children
":null},{"FirstName":"Charlie","LastName":"Cox","DateOfBir
th":"1984-05-04T00:00:00","Children": [{"FirstName" :"Sally", "LastN-
ame" : "Cox", "DateOfBirth":"2000-07-12T00:00:00", "Children" :null}] }]

High-performance JSON processing

.NET Core 3.0 introduces a new namespace for working with JSON:
System. Text .Json, which is optimized for performance by leveraging APIs like
Span<Ts>.

Also, Json.NET is implemented by reading UTF-16. It would be more performant
to read and write JSON documents using UTF-8 because most network protocols
including HTTP use UTF-8 and you can avoid transcoding UTF-8 to and from
Json.NET's Unicode string values. With the new API, Microsoft achieved between
1.3x and 5x improvement, depending on the scenario.

More Information: You can read more about the new
‘ , System.Text .JIson APIs at the following link: https://
2 .
devblogs.microsoft.com/dotnet/try-the-new-system-
text-json-apis/

[323]

https://devblogs.microsoft.com/dotnet/try-the-new-system-text-json-apis/
https://devblogs.microsoft.com/dotnet/try-the-new-system-text-json-apis/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

The original author of Json.NET, James Newton-King, joined Microsoft and has
been working with them to develop their new JSON types. As he says in a comment
discussing the new JSON APIs, "Json.NET isn't going away," as shown in the
following screenshot:

o

JamesNK commented on 29 Oct 2018 Member

@Thorium Json.NET isn't going away. You aren't losing anything. This is another option for simple and
high performance scenarios.

19

More Information: You can read more about the issues solved
‘ n/ by the new JSON APIs, including JamesNK's comments, at
\\’,» the following link: https://github.com/dotnet/corefx/
issues/33115

Let's explore the new JSON APIs.

Import the System.Threading.Tasks namespace.

Modify the Main method to enable awaiting on tasks by changing void to
async Task, as shown highlighted in the following code:

static async Task Main(stringl[] args)

Import the new JSON class for performing serialization using an alias to
avoid conflicting names with the Json.NET one we used before, as shown in
the following code:

using Nudson = System.Text.Json.JsonSerializer;

Add statements to open the JSON file, deserialize it, and output the names
and counts of the children of the people, as shown in the following code:

using (FileStream jsonLoad = File.Open (
jsonPath, FileMode.Open))
{
// deserialize object graph into a List of Person
var loadedPeople = (List<Persons)
await NuJson.DeserializeAsync (
utf8Json: jsonLoad,
returnType: typeof (List<Persons)) ;

foreach (var item in loadedPeople)

{

[324]

https://github.com/dotnet/corefx/issues/33115
https://github.com/dotnet/corefx/issues/33115

Working with Files, Streams, and Serialization | 09

WriteLine ("{0} has {1} children.",
item.LastName, item.Children?.Count) ;
}

}

Run the console application and view the result, as shown in the following
output:

Smith has children.
Jones has children.

Cox has 1 children.

I
\@/ Good Practice: Choose Json.NET for developer productivity and

a large feature set or System. Text . Json for performance.

=
=

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some

hands-

on practice, and explore this chapter's topics with more in-depth research.

Exercise 9.1 — Test your knowledge

Answer the following questions:

1.
2.

NS 9o

10.

What is the difference between using the File class and the FileInfo class?

What is the difference between the ReadByte method and the Read method
of a stream?

When would you use the stringReader, TextReader, and StreamReader
classes?

What does the DeflateStream type do?
How many bytes per character does the UTF-8 encoding use?
What is an object graph?

What is the best serialization format to choose for minimizing space
requirements?

What is the best serialization format to choose for cross-platform
compatibility?

Why is it bad to use a string value like \Code\Chapter01 to represent a path
and what should you do instead?

Where can you find information about NuGet packages and their
dependencies?

[325]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Exercise 9.2 — Practice serializing as XML

Create a console application named Exercise02 that creates a list of shapes, uses
serialization to save it to the filesystem using XML, and then deserializes it back:

// create a list of Shapes to serialize
var listOfShapes = new List<Shapes>

{

new Circle { Colour = "Red", Radius = 2.5 },

new Rectangle { Colour = "Blue", Height = 20.0, Width = 10.0 },
new Circle { Colour = "Green", Radius = 8.0 }

new Circle { Colour = "Purple", Radius = 12.3 },

new Rectangle { Colour = "Blue", Height = 45.0, Width = 18.0 }

bi

Shapes should have a read-only property named Area so that when you deserialize,
you can output a list of shapes, including their areas, as shown here:

List<Shape> loadedShapesXml =
serializerXml.Deserialize (fileXml) as List<Shapes>;
foreach (Shape item in loadedShapesXml)

{
WriteLine ("{0} is {1} and has an area of {2:N2}",
item.GetType () .Name, item.Colour, item.Area) ;
}

This is what your output should look like when you run the application:

Loading shapes from XML:

Circle is Red and has an area of 19.63
Rectangle is Blue and has an area of 200.00
Circle is Green and has an area of 201.06
Circle is Purple and has an area of 475.29

Rectangle is Blue and has an area of 810.00

Exercise 9.3 — Explore topics

Use the following links to read more on this chapter's topics:

* File System and the Registry (C# Programming Guide): https://docs.
microsoft.com/en-us/dotnet/csharp/programming-guide/file-
system/

* Character encoding in .NET: https://docs.microsoft.com/en-us/
dotnet/articles/standard/base-types/character-encoding

* Serialization (C#): https://docs.microsoft.com/en-us/dotnet/
articles/csharp/programming-guide/concepts/serialization/

[326]

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/character-encoding
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/character-encoding
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/serialization/
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/serialization/

Working with Files, Streams, and Serialization | 09

* Serializing to Files, TextWriters, and XmlWriters: https://docs.
microsoft.com/en-us/dotnet/articles/csharp/programming-guide/
concepts/ling/serializing-to-files-textwriters-and-xmlwriters

* Newtonsoft Json.NET: http://www.newtonsoft.com/json

Summary
In this chapter, you learned how to read from and write to text files and XML files,

how to compress and decompress files, how to encode and decode text, and how to
serialize an object into JSON and XML (and deserialize it back again).

In the next chapter, you will learn how to protect data and files using hashing,
signing encryption, authentication, and authorization.

[327]

https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/linq/serializing-to-files-textwriters-and-xmlwriters
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/linq/serializing-to-files-textwriters-and-xmlwriters
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/linq/serializing-to-files-textwriters-and-xmlwriters
http://www.newtonsoft.com/json

Chapter 10

Protecting Your Data
and Applications

This chapter is about protecting your data from being viewed by malicious users using
encryption, and from being manipulated or corrupted using hashing and signing.

In .NET Core 2.1, Microsoft introduced new span<T>-based cryptography APIs
for hashing, random number generation, asymmetric signature generation and
processing, and RSA encryption. This chapter covers the following topics:

Understanding the vocabulary of protection
Encrypting and decrypting data

Hashing data

Signing data

Generating random numbers

What's new in cryptography?

Authenticating and authorizing users

Understanding the vocabulary of
protection

There are many techniques to protect your data; below we'll briefly introduce six
of the most popular ones and you will see more detailed explanations and practical
implementations throughout this chapter:

Encryption and decryption: These are a two-way process to convert your
data from clear-text into crypto-text and back again.

Hashes: This is a one-way process to generate a hash value to securely store
passwords, or can be used to detect malicious changes or corruption of
your data.

[329]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

* Signatures: This technique is used to ensure that data has come from
someone you trust by validating a signature that has been applied to some
data against someone's public key.

* Authentication: This technique is used to identify someone by checking their
credentials.

* Authorization: This technique is used to ensure that someone has permission
to perform an action or work with some data by checking the roles or groups

they belong to.

Good Practice: If security is important to you (and it should be!),
L then hire an experienced security expert for guidance rather than
'/@\' relying on advice found online. It is very easy to make small

mistakes and leave your applications and data vulnerable without
realizing until it is too late!

(]

Keys and key sizes

Protection algorithms often use a key. Keys are represented by byte arrays of varying
size.

\ ! /
'@' Good Practice: Choose a bigger key size for stronger protection.

/ N\

Keys can be symmetric (also known as shared or secret because the same key is used
to encrypt and decrypt) or asymmetric (a public-private key pair where the public
key is used to encrypt and only the private key can be used to decrypt).

Good Practice: Symmetric key encryption algorithms are fast and

“O)- can encrypt large amounts of data using a stream. Asymmetric key
7N encryption algorithms are slow and can only encrypt small byte
= arrays.
I In the real world, get the best of both worlds by using a symmetric
N\ /

key to encrypt your data, and an asymmetric key to share the
LA symmetric key. This is how Secure Sockets Layer (SSL) encryption
on the internet works.

Keys come in various byte array sizes.

[330]

Protecting Your Data and Applications | 10

IVs and block sizes

When encrypting large amounts of data, there are likely to be repeating sequences.
For example, in an English document, in the sequence of characters, the would
appear frequently, and each time it might get encrypted as ho2. A good cracker
would use this knowledge to make it easier to crack the encryption, as shown in the
following output:

When the wind blew hard the umbrella broke.
5:84&hQ2aj#D £9d1d£8fh"&hQ2s0)an DF8SFA#] [1

We can avoid repeating sequences by dividing data into blocks. After encrypting
a block, a byte array value is generated from that block, and this value is fed into
the next block to adjust the algorithm so that the isn't encrypted in the same
way. To encrypt the first block, we need a byte array to feed in. This is called the
initialization vector (IV).

\ /
'/@\' Good Practice: Choose a small block size for stronger encryption.

Salts

A salt is a random byte array that is used as an additional input to a one-way
hash function. If you do not use a salt when generating hashes, then when many
of your users register with 123456 as their password (about 8% of users still did
this in 2016!), they will all have the same hashed value, and their accounts will be
vulnerable to a dictionary attack.

\/V More Information: Dictionary Attacks 101: https://blog.

codinghorror.com/dictionary-attacks-101/

When a user registers, the salt should be randomly generated and concatenated
with their chosen password before being hashed. The output (but not the original
password) is stored with the salt in the database.

Then, when the user next logs in and enters their password, you look up their salt,
concatenate it with the entered password, regenerate a hash, and then compare its
value with the hash stored in the database. If they are the same, you know they
entered the correct password.

[331]

https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Generating keys and IVs

Keys and Vs are byte arrays. Both of the two parties that want to exchange
encrypted data need the key and IV values, but byte arrays can be difficult to
exchange reliably.

You can reliably generate a key or IV using a password-based key derivation
function (PBKDF2). A good one is the Rfc2898DeriveBytes class, which takes
a password, a salt, and an iteration count, and then generates keys and IVs by
making calls to its GetBytes method.

\@/ Good Practice: The salt size should be 8 bytes or larger, and

the iteration count should be greater than zero. The minimum
= recommended number of iterations is 1,000.

Encrypting and decrypting data

In .NET Core, there are multiple encryption algorithms you can choose from.

Some algorithms are implemented by the operating system and their names are
suffixed with CryptoServiceProvider. Some algorithms are implemented in .NET
Core and their names are suffixed with Managed.

Some algorithms use symmetric keys, and some use asymmetric keys. The main
asymmetric encryption algorithm is RSA.

Symmetric encryption algorithms use Cryptostream to encrypt or decrypt large
amounts of bytes efficiently. Asymmetric algorithms can only handle small amounts
of bytes, stored in a byte array instead of a stream.

The most common symmetric encryption algorithms derive from the abstract class
named SymmetricAlgorithmand are shown in the following list:

 AES

* DESCryptoServiceProvider

* TripleDESCryptoServiceProvider
* RC2CryptoServiceProvider

* RijndaelManaged

If you need to write code to decrypt some data sent by an external system, then you
will have to use whatever algorithm the external system used to encrypt the data. Or
if you need to send encrypted data to a system that can only decrypt using a specific
algorithm then again you will not have a choice of algorithm.

[332]

Protecting Your Data and Applications | 10

If your code will both encrypt and decrypt then you can choose the algorithm that
best suits your requirements for strength, performance, and so on.

Good Practice: Choose the Advanced Encryption Standard (AES),
A which is based on the Rijndael algorithm for symmetric encryption.
-/@\ Choose RSA for asymmetric encryption. Do not confuse RSA with
= DSA. Digital Signature Algorithm (DSA) cannot encrypt data. It
can only generate hashes and signatures.

Encrypting symmetrically with AES
To make it easier to reuse your protection code in the future, we will create a static
class named Protector in its own class library.

1. In the code folder, create a folder named Chapter10, with two subfolders

named CryptographyLib and EncryptionApp.

2. In Visual Studio Code, save a workspace as Chapter10 in the Chapter10
folder.

3. Add the folder named cryptographyLib to the workspace.
Navigate to Terminal | New Terminal.

In Terminal, enter the following command:

dotnet new classlib

Add the folder named EncryptionApp to the workspace.
Navigate to Terminal | New Terminal and select EncryptionApp.

In Terminal, enter the following command:

dotnet new console

9. In EXPLORER, expand CryptographyLib and rename the Class1.cs file to
Protector.cs.

10. In the EncryptionApp project folder, open the file named EncryptionApp.
csproj, and add a package reference to the CryptographyLib library, as
shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFramework>
</PropertyGroup>

<ItemGroup>

[333]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

<ProjectReference
Include="..\CryptographyLib\CryptographylLib.csproj" />
</ItemGroup>

</Projects>

11. In Terminal, enter the following command:
dotnet build

12. Open the Protector.cs file and change its contents to define a static class
named Protector with fields for storing a salt byte array and a number
of iterations, and methods to Encrypt and Decrypt, as shown in the
following code:
using System;
using System.Collections.Generic;
using System.IO;
using System.Security.Cryptography;
using System.Security.Principal;
using System.Text;
using System.Xml.Ling;
using static System.Convert;

namespace Packt.Shared

{

public static class Protector
{
// salt size must be at least 8 bytes, we will use 16 bytes
private static readonly byte[] salt =
Encoding.Unicode.GetBytes ("7BANANAS") ;

// iterations must be at least 1000, we will use 2000
private static readonly int iterations = 2000;

public static string Encrypt (
string plainText, string password)

byte[] encryptedBytes;
byte[] plainBytes = Encoding.Unicode
.GetBytes (plainText) ;
var aes = Aes.Create();
var pbkdf2 = new Rfc2898DeriveBytes (
password, salt, iterations);
aes.Key = pbkdf2.GetBytes(32); // set a 256-bit key

[334]

Protecting Your Data and Applications | 10

aes.IV = pbkdf2.GetBytes(16); // set a 128-bit IV

using (var ms = new MemoryStream())
using (var cs = new CryptoStream/(
ms, aes.CreateEncryptor(),
CryptoStreamMode.Write))

cs.Write(plainBytes, 0, plainBytes.Length) ;

}

encryptedBytes = ms.ToArray () ;

return Convert.ToBase64String (encryptedBytes) ;

public static string Decrypt (
string cryptoText, string password)

byte[] plainBytes;

byte[] cryptoBytes = Convert
.FromBase64String (cryptoText) ;

var aes = Aes.Create();

var pbkdf2 = new Rfc2898DeriveBytes (
password, salt, iterations);

aes.Key = pbkdf2.GetBytes(32);

aes.IV = pbkdf2.GetBytes(1l6) ;

using (var ms = new MemoryStream())

{
using (var cs = new CryptoStream(
ms, aes.CreateDecryptor(),
CryptoStreamMode.Write))

cs.Write (cryptoBytes, 0, cryptoBytes.Length) ;

}

plainBytes = ms.ToArray() ;

return Encoding.Unicode.GetString(plainBytes) ;

[335]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

13.

14.

Note the following points about the preceding code:

o

We used double the recommended salt size and iteration count.

o

Although the salt and iteration count can be hardcoded, the
password must be passed at runtime when calling the Encrypt and
Decrypt methods.

We use a temporary MemoryStream type to store the results of
encrypting and decrypting, and then call ToArray to turn the stream
into a byte array.

We convert the encrypted byte arrays to and from a Base64 encoding
to make them easier to read.

A Good Practice: Never hardcode a password in your source code
'@_ because, even after compilation, the password can be read in the
= assembly by using disassembler tools.

In the EncryptionApp project, open the Program.cs file and then import the
namespace for the protector class and statically import the console class,
as shown in the following code:

using Packt.Shared;
using static System.Console;

In Main, add statements to prompt the user for a message and a password,
and then encrypt and decrypt, as shown in the following code:

Write ("Enter a message that you want to encrypt: ");
string message = ReadLine() ;

Write ("Enter a password: ");

string password = ReadLine() ;

string cryptoText = Protector.Encrypt (message, password) ;

WriteLine ($"Encrypted text: {cryptoText}");
Write ("Enter the password: ");
string password2 = ReadLine();

try
string clearText = Protector.Decrypt (cryptoText, password2) ;
WriteLine ($"Decrypted text: {clearText}");

}

catch (CryptographicException ex)

{

[336]

Protecting Your Data and Applications | 10

WriteLine ("{0}\nMore details: {1}",
arg0: "You entered the wrong password!",
argl: ex.Message) ;

}

catch (Exception ex)

{
WriteLine ("Non-cryptographic exception: {0}, {1}",
arg0: ex.GetType () .Name,
argl: ex.Message) ;

}

15. Run the console application, try entering a message and password, and view
the result, as shown in the following output:

Enter a message that you want to encrypt: Hello Bob

Enter a password: secret

Encrypted text: pV5gPDf1CCZmGzUMH2gapFSkn5731g7tMj5ajice3cQ=
Enter the password: secret

Decrypted text: Hello Bob

16. Rerun the application and try entering a message and password, but this
time enter the password incorrectly after encrypting and view the output:

Enter a message that you want to encrypt: Hello Bob

Enter a password: secret

Encrypted text: pV5gPDf1CCZmGzUMH2gapFSkn5731g7tMj5ajice3cQ=
Enter the password: 123456

You entered the wrong password!

More details: Padding is invalid and cannot be removed.

Hashing data

In .NET Core, there are multiple hash algorithms you can choose from. Some do not
use any key, some use symmetric keys, and some use asymmetric keys.

There are two important factors to consider when choosing a hash algorithm:

* Collision resistance: How rare is it to find two inputs that share the same
hash?

* Preimage resistance: For a hash, how difficult would it be to find another
input that shares the same hash?

[337]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Some common non-keyed hashing algorithms are shown in the following table:

Algorithm | Hash size | Description

MD5 16 bytes This is commonly used because it is fast, but it is not
collision-resistant

SHA1 20 bytes The use of SHA1 on the internet has been deprecated since
2011

SHA256 32 bytes These are the Secure Hashing Algorithm 2™ generation
SHA384 48 bytes (SHA2) algorithms with different hash sizes
SHA512

64 bytes

\

Good Practice: Avoid MD5 and SHA1 because they have known
weaknesses. Choose a larger hash size to reduce the possibility of
L, repeated hashes. The first publicly known MD5 collision happened
@_ in 2010. The first publicly known SHAT1 collision happened in 2017.
You can read more at the following link: https://arstechnica.
co.uk/information-technology/2017/02/at-deaths-
door-for-years-widely-used-shal-function-is-now-
dead/

=
=

Hashing with the commonly used SHA256

We will now add a class to represent a user stored in memory, a file, or a database.
We will use a dictionary to store multiple users in memory.

1.

In the cryptographyLib class library project, add a new class file named
User.cs, as shown in the following code:

namespace Packt.Shared

{

public class User
{
public string Name { get; set; }
public string Salt { get; set; }
public string SaltedHashedPassword { get; set; }
}
}

Add statements to the Protector class to declare a dictionary to store users
and define two methods, one to register a new user and one to validate their
password when they subsequently log in, as shown in the following code:

private static Dictionary<string, User> Users =
new Dictionary<string, Users>();

[338]

https://arstechnica.co.uk/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/
https://arstechnica.co.uk/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/
https://arstechnica.co.uk/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/
https://arstechnica.co.uk/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/

Protecting Your Data and Applications | 10

public static User Register(

string username, string password)

// generate a random salt

var rng = RandomNumberGenerator.Create() ;

var saltBytes = new byte[1l6];

rng.GetBytes (saltBytes) ;

var saltText = Convert.ToBase64String(saltBytes) ;

// generate the salted and hashed password
var saltedhashedPassword = SaltAndHashPassword (

password, saltText) ;

var user = new User

{

Name = username, Salt = saltText,
SaltedHashedPassword = saltedhashedPassword

}i

Users.Add (user.Name, user) ;

return user;

public static bool CheckPassword (
string username, string password)

if (!Users.ContainsKey (username))

{

return false;

}

var user = Users[username] ;

// re-generate the salted and hashed password
var saltedhashedPassword = SaltAndHashPassword (

password, user.Salt);

return (saltedhashedPassword == user.SaltedHashedPassword) ;

private static string SaltAndHashPassword (
string password, string salt)

[339]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

var sha = SHA256.Create() ;

var saltedPassword = password + salt;

return Convert.ToBase64String (
sha.ComputeHash (Encoding.Unicode.GetBytes (
saltedPassword))) ;

}

3. Create a new console application project named Hashingapp, add it to the
workspace, and select the project as active for OmniSharp.

4. Add areference to the CryptographyLib assembly as you did before and
import the Packt . Shared namespace.

5. Inthe Main method, add statements to register a user and prompt to register
a second user, and then prompt to log in as one of those users and validate
the password, as shown in the following code:

WriteLine ("Registering Alice with Pa$SwOrd.") ;
var alice = Protector.Register ("Alice", "Pas$sSwlOrd");
WriteLine ($"Name: {alice.Name}") ;
WriteLine ($"Salt: {alice.Salt}");
WriteLine ("Password (salted and hashed): {0}",
arg0: alice.SaltedHashedPassword) ;
WriteLine () ;

Write ("Enter a new user to register: ");

string username = ReadLine() ;

Write ($"Enter a password for {username}: ");

string password = ReadLine() ;

var user = Protector.Register (username, password) ;

WriteLine ($"Name: {user.Name}");

WriteLine ($"Salt: {user.Salt}");

WriteLine ("Password (salted and hashed): {0}",
arg0: user.SaltedHashedPassword) ;

WriteLine () ;

bool correctPassword = false;

while (!correctPassword)

{
Write ("Enter a username to log in: ");
string loginUsername = ReadLine() ;
Write ("Enter a password to log in: ");
string loginPassword = ReadLine() ;

correctPassword = Protector.CheckPassword (
loginUsername, loginPassword) ;

if (correctPassword)

{

[340]

Protecting Your Data and Applications | 10

WriteLine ($"Correct! {loginUsername} has been logged in.");

}

else

{

}
}

When using multiple projects, remember to use a Terminal window for the
correct console application before entering the dotnet build and dotnet
run commands.

WriteLine ("Invalid username or password. Try again.");

6. Run the console application, register a new user with the same password as
Alice, and view the result, as shown in the following output:
Registering Alice with PasS$wOrd.
Name: Alice
Salt: I1I1dzIjkd7EYDf/6jafdw==

Password (salted and hashed): pIloadjE4W/XaRFkgS3br3UuAuPv/3LVQ8kzj
6mvcz+s=

Enter a new user to register: Bob
Enter a password for Bob: Pas$swOrd
Name: Bob

Salt: 1X7ym/UjxTiuEWBC/vIHpw==

Password (salted and hashed) :
DoBFtDhKeNOaaaLVJdErtrZ3mpZSvpWDQITXDosTq0sQ=

Enter a username to log in: Alice

Enter a password to log in: secret
Invalid username or password. Try again.
Enter a username to log in: Bob

Enter a password to log in: secret
Invalid username or password. Try again.
Enter a username to log in: Bob

Enter a password to log in: Pas$$wOrd

Correct! Bob has been logged in.

Even if two users register with the same password, they have randomly generated
salts so that their salted and hashed passwords are different.

[341]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Signing data
To prove that some data has come from someone we trust, it can be signed. Actually,
you do not sign the data itself; instead, you sign a hash of the data.

We will be using the SHA256 algorithm for generating the hash, combined with the
RSA algorithm for signing the hash.

We could use DSA for both hashing and signing. DSA is faster than RSA for
generating a signature, but it is slower than RSA for validating a signature. Since
a signature is generated once but validated many times, it is best to have faster
validation than a generation.

More Information: The RSA algorithm is based on the

D’ factorization of large integers, compared to the DSA algorithm,
\"/

which is based on the discrete logarithm calculation. You can
read more at the following link: http://mathworld.wolfram.
com/RSAEncryption.html

Signing with SHA256 and RSA

Let's explore signing data and checking the signature with a public key.

1. Inthe CryptographyLib class library project, add statements to the
Protector class to declare a field for the public key, two extension methods
to convert an RSA instance to and from XML, and two methods to generate
and validate a signature, as shown in the following code:

public static string PublicKey;

public static string ToXmlStringExt (
this RSA, bool includePrivateParameters)
{
var p = rsa.ExportParameters (includePrivateParameters) ;
XElement xml;
if (includePrivateParameters)
{
xml = new XElement ("RSAKeyValue",
new XElement ("Modulus", ToBase64String(p.Modulus)),
new XElement ("Exponent", ToBase64String (p.Exponent)),
"P", ToBase64String(p.P)),
"Q", ToBase64String(p.Q)),
"DP", ToBase64String(p.DP)),
"DQ", ToBase64String(p.DQ)),
"InverseQ", ToBaseé4String(p.InverseQ))

new XElement
new XElement
new XElement
new XElement

(
(
(
(
(
(

new XElement

[342]

http://mathworld.wolfram.com/RSAEncryption.html
http://mathworld.wolfram.com/RSAEncryption.html
http://mathworld.wolfram.com/RSAEncryption.html

Protecting Your Data and Applications | 10

)
}
else
{
xml = new XElement ("RSAKeyValue",
new XElement ("Modulus", ToBase64String(p.Modulus)),
new XElement ("Exponent",
ToBase64String (p.Exponent))) ;

}

return xml?.ToString() ;

public static void FromXmlStringExt (
this RSA rsa, string parametersAsXml)

var xml = XDocument.Parse (parametersAsXml) ;
var root = xml.Element ("RSAKeyValue") ;
var p = new RSAParameters

Modulus = FromBase64String(
root.Element ("Modulus") .Value),
Exponent = FromBase64String (
root .Element ("Exponent") .Value)

}i

if (root.Element ("P") != null)
{

.P
.Q
.DP = FromBaseé64String(root.Element ("DP") .Value) ;
.DQ = FromBase64String (root.Element ("DQ") .Value) ;
.InverseQ = FromBaseé64String(

FromBase64String (root.Element ("P") .Value) ;

FromBase64String (root.Element ("Q") .Value) ;

o lo L ol ol e}

root.Element ("InverseQ") .Value) ;

rsa.ImportParameters (p) ;

public static string GenerateSignature (string data)

{
byte[] dataBytes = Encoding.Unicode.GetBytes(data) ;
var sha = SHA256.Create() ;
var hashedData = sha.ComputeHash (dataBytes) ;

[343]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

var rsa = RSA.Create();
PublicKey = rsa.ToXmlStringExt (false); // exclude private key

return ToBase64String(rsa.SignHash (hashedData,
HashAlgorithmName.SHA256, RSASignaturePadding.Pkcsl)) ;

public static bool ValidateSignature (
string data, string signature)

byte[] dataBytes = Encoding.Unicode.GetBytes(data) ;
var sha = SHA256.Create() ;

var hashedData = sha.ComputeHash (dataBytes) ;

byte[] signatureBytes = FromBase64String(signature) ;
var rsa = RSA.Create();

rsa.FromXmlStringExt (PublicKey) ;

return rsa.VerifyHash (hashedData, signatureBytes,
HashAlgorithmName.SHA256, RSASignaturePadding.Pkcsl) ;

}

Note the following from the preceding code:

o

The rsA type has two methods named ToxmlsString and
FromXmlString. These serialize and deserialize the RSAParameters
structure, which contains the public and private keys. However,
the implementation of these methods on macOS throws a
PlatformNotSupportedException exception. I have had

to re-implement them myself as extension methods named
ToXmlStringExt and FromXmlStringExt using LINQ to XML
types such as XDocument, which you will learn about in Chapter 12,
Querying and Manipulating Data Using LINQ.

Only the public part of the public-private key pair needs to be made
available to the code that is checking the signature so that we can
pass the false value when we call the ToxmlStringExt method. The
private part is required to sign data and must be kept secret because
anyone with the private part can sign data as if they are you!

The hash algorithm used to generate the hash from the data by
calling the signHash method must match the hash algorithm set
when calling the VerifyHash method. In the preceding code, we
used SHA256.

Now we can test signing some data and checking its signature.

[344]

Protecting Your Data and Applications | 10

Create a new console application project named Signingapp, add it to the
workspace, and select the project as active for OmniSharp.

Add a reference to the cryptographyLib assembly, in Program. cs import
the appropriate namespaces, and then in Main, add statements to prompt
the user to enter some text, sign it, check its signature, then modify the text,
check the signature again to deliberately cause a mismatch, as shown in the
following code:

Write ("Enter some text to sign: ");

string data = ReadLine() ;

var signature = Protector.GenerateSignature (data) ;
WriteLine ($"Signature: {signature}");

WriteLine ("Public key used to check signature:");
WriteLine (Protector.PublicKey) ;

if (Protector.ValidateSignature (data, signature))

{
}

else

{

WriteLine ("Correct! Signature is wvalid.");

WriteLine ("Invalid signature.");

// simulate a fake signature by replacing the
// first character with an X
var fakeSignature = signature.Replace (signature[0], 'X');

if (Protector.ValidateSignature (data, fakeSignature))

{
}

else

{
}

Run the console application and enter some text, as shown in the following
output (edited for length):

WriteLine ("Correct! Signature is wvalid.");

WriteLine ($"Invalid signature: {fakeSignature}");

Enter some text to sign: The cat sat on the mat.
Signature: BXSTdM...4Wrg==
Public key used to check signature:

<RSAKeyValue>

[345]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

<Modulus>nHtwl3...mw3w==</Modulus>
<Exponent >AQAB</Exponent >
</RSAKeyValue>
Correct! Signature is wvalid.

Invalid signature: XXSTdM. . .4Wrg==

Generating random numbers

Sometimes you need to generate random numbers, perhaps in a game that simulates
rolls of a die, or for use with cryptography in encryption or signing. There are a
couple of classes that can generate random numbers in .NET Core.

Generating random numbers for games

In scenarios that don't need truly random numbers like games, you can create an
instance of the Random class, as shown in the following code example:

var r = new Random() ;

Random has a constructor with a parameter for specifying a seed value used to
initialize its pseudo-random number generator, as shown in the following code:

var r = new Random(Seed: 12345);

Good Practice: Shared seed values act as a secret key, so if you use
L, the same random number generation algorithm with the same seed
@ value in two applications, then they can generate the same "random'
7\ sequences of numbers. Sometimes this is necessary, for example,
= when synchronizing a GPS receiver with a satellite. But usually, you
want to keep your seed secret.

1

As you learned in Chapter 2, Speaking C#, parameter names should use camel
case. The developer who defined the constructor for the Random class broke this
convention! The parameter name should be seed, not seed.

Once you have a Random object, you can call its methods to generate random
numbers, as shown in the following code examples:

int dieRoll = r.Next (minvValue: 1, maxValue: 7); // returns 1 to 6
double randomReal = r.NextDouble(); // returns 0.0 to 1.0

var arrayOfBytes = new byte[256];

r.NextBytes (arrayOfBytes); // 256 random bytes in an array

[346]

Protecting Your Data and Applications | 10

The Next method takes two parameters: minvalue and maxvValue. Now, maxvalue
is not the maximum value that the method returns! It is an exclusive upper bound,
meaning it is one more than the maximum value.

Generating random numbers for cryptography

Random generates pseudo-random numbers. This is not good enough for
cryptography! If the random numbers are not truly random then they are repeatable,
and if they are repeatable, then a cracker can break your protection.

For truly random numbers, you must use a RandomNumberGenerator derived type,
such as RNGCryptoServiceProvider.

We will now create a method to generate a truly random byte array that can be used
in algorithms like encryption for key and IV values.

1. Inthe cryptographyLib class library project, add statements to the
protector class to define a method to get a random key or IV for use in
encryption, as shown in the following code:

public static byte[] GetRandomKeyOrIV (int size)
{
var r = RandomNumberGenerator.Create() ;
var data = new byte[size];
r.GetNonZeroBytes (data) ;
// data is an array now filled with
// cryptographically strong random bytes
return data;

}

Now we can test the random bytes generated for a truly random encryption
key or IV.

2. Create a new console application project named Randomizingapp, add it to
the workspace, and select the project as active for OmniSharp.

3. Add areference to the CryptographyLib assembly, import the appropriate
namespaces, and in Main, add statements to prompt the user to enter a size
of byte array and then generate random byte values and write them to the
console, as shown in the following code:

Write ("How big do you want the key (in bytes): ");
string size = ReadLine() ;

byte[] key = Protector.GetRandomKeyOrIV (int.Parse(size)) ;

[347]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

WriteLine ($"Key as byte array:");
for (int b = 0; b < key.Length; b++)

{
Write ($"{key[b]:x2} ");
if (((b + 1) % 16) == 0) WriteLine();

}

WriteLine () ;

Run the console application, enter a typical size for the key, such as 256, and
view the randomly generated key, as shown in the following output:

How big do you want the key (in bytes): 256

Key as byte array:

£1 57 3f 44 80 e7 93 dc 8e 55 04 6¢c 76 6f 51 b9

e8 84 59 e5 8d eb 08 d5 e6 59 65 20 bl 56 fa 68

' -
What's new in cryptography
An automatic benefit of using .NET Core 3.0 is that algorithms for hashing, HMAC,
random number generation, asymmetric signature generation and processing,
and RSA encryption have been rewritten to use Span<T> so they achieve better
performance. For example, Rf c2898DeriveBytes is about 15% faster.

Some enhancements have been made to the cryptography APIs that are useful
in advanced scenarios, including;:

Signing and verifying of CMS/PKCS #7 messages.

Enable Xx509Certificate.GetCertHash and X509Certificate.
GetCertHashString to get certificate thumbprint values using algorithms
other than SHA-1.

The CryptographicOperations class with useful methods like ZeroMemory
to securely clear memory.

RandomNumberGenerator has a Fi11 method that will fill a span with
random values and doesn't require you to manage an IDisposable resource.

[348]

Protecting Your Data and Applications | 10

* APIs to read, validate, and create RFC 3161 TimestampToken values.
* Elliptic-Curve Diffie-Hellman support using the ECDif fieHellman classes.
* Support for RSA-OAEP-SHA2 and RSA-PSS on Linux platforms.

Authenticating and authorizing users

Authentication is the process of verifying the identity of a user by validating their
credentials against some authority. Credentials include a username and password
combination, or a fingerprint or face scan.

Once authenticated, the authority can make claims about the user, for example, what
their email address is, and what groups or roles they belong to.

Authorization is the process of verifying membership of groups or roles before
allowing access to resources such as application functions and data. Although
authorization can be based on individual identity, it is good security practice to
authorize based on group or role membership (that can be indicated via claims) even
when there is only one user in the role or group. This is because that allows the user's
membership to change in future without reassigning the user's individual access
rights.

For example, instead of assigning access rights to launch a nuclear strike to Donald
Trump (a user), you would assign access rights to launch a nuclear strike to the
President of the United States (a role) and then add Donald Trump as a member of
that role.

There are multiple authentication and authorization mechanisms to choose from.
They all implement a pair of interfaces in the System. Security.Principal
namespace: IIdentity and IPrincipal.

IIdentity represents a user, so it has a Name property and an IsAuthenticated
property to indicate if they are anonymous or if they have been successfully
authenticated from their credentials.

The most common class that implements this interface is GenericIdentity, which
inherits from ClaimsIdentity, as shown in the following diagram:

[349]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

-

lidentity

-]

4 Properties

K Authentication Type

\[) lidentity

Claimsldentity

= 3

4 Fields

@ Defaultlssuer

& DefaultNameClaimType

E DefaultRoleClaimType

4 Properties

Actor

AuthenticationType

BootstrapContext

CustomSenializationData

IsAuthenticated

Label

MName

NameClaimType

RoleClaimType

4 Methods

2 AddClaim
AddClaims

*rerrrererr

Claimsldentity [+ 12 overloads)

Clane
2, CreateClaim
FindAll (+ 1 averload)
FindFirst (+ 1 overload)
¥, GewObjectData
HasClaim {« 1 overload)
RemoveClaim
TryRemeveClaim
WriteTo (+ 1 overload)

Genericldentity # |
=+ Claimsidentity
-

4+ Properties
& AuthenticationType
F Claims
& 1sAuthenticated
F MName

4 Methods

F Claims

Clone

Genericldentity (+ 2 overloads)

| Claim A |

=]
4 Properties

#, CustomSerializationData
F lssuer

H Originallssuer
F Froperties
F subject

& Type

& value

& VelueType
Methods

@ Claim (+ § overloads)

Clone [+ 1 overload)
@ TeString
WriteTo (= 1 overload)

I EEECEOEEEEOEOEECENODEEOEEONEODEREE®

Actor

Ancnymous
Authentication
Authenticationinstant
AuthenticationMethod
AuthonzationDecision
CackiePath

Country

DateOfBirth
DenyOnlyPrimaryGroupSid
DenyOnlyPrimarySid
DenyOnlySid
DenyOnlyWindowsDeviceGroup
Dns

Dsa

Email

Expiraticn

Expired

Gender

GivenName

GroupSid

Hash

HomePhone
IsPersistent

Lecality

MabilePhone

MName

Nameldentifier
OtherPhone
PostalCode
PrimaryGreupSid
PrimarySid

Role

Each claimsIdentity class has a Claims property that is shown in the preceding
diagram as a double-arrowhead between the claimsIdentity and claim classes.

The claim objects have a Type property that indicates if the claim is for their name,

their membership of a role or group, their date of birth, and so on.

IPrincipal is used to associate an identity with the roles and groups that they
are members of, so it can be used for authorization purposes. The current thread

executing your code has a CurrentPrincipal property that can be set to any object

that implements IPrincipal, and it will be checked when permission is needed to
perform a secure action.

The most common class that implements this interface is GenericPrincipal, which

inherits from ClaimsPrincipal, as shown in the following diagram:

[350]

Protecting Your Data and Applications | 10

(P _Thread

-
Thread #
Sealed Class
= CriticalFinalizerObject
=]

4 Properties
ApartmentState
CurrentContext
CurrentCulture
CurrentPrincipal
CurrentThread
CurrentUICulture
ExecutionContext
IsAlive
IsBackground
IsThreadPeoolThread
ManagedThread|d
Name

Priority
ThreadState

r Methods

Trererrerrerrereree®

. J

[1Principal

-
4 Properties
ﬁ Identity
4 Methods
Isinfole

(P IPrincipal

ClaimsPrincipal
Class
-

4 Properties

F Claims
& ClaimsPrincipalSelector
;‘ Current

#, CustomSerializationData
& Identities

& Identity

& PrimaryldentitySelector

.

Methods
% Addldentities
% Addldentity

@ ClaimsPrincipal (+ 5 overloads)

@ Clone

¥, CreateClaimsldentity

@ FindAll (+ 1 overload)
FindFirst (+ 1 overload)

%, GetObjectData

%@ HasClaim (+ 1 overload)

@ IsinRole

@ WriteTo (+ 1 overload)

-,

A

[GenericPrincipal
Class
<+ ClaimsPrincipal
o

4 Properties

& Identity
4 Methods

GenericPrincipal
IsinRole

Implementing authentication and
authorization

Let's explore authentication and authorization.

1. Inthe CryptographyLib class library project, add a property to the user
class to store an array of roles, as shown in the following code:

public string[] Roles { get; set; }

2. Modify the Register method in the Protector class to allow an array
of roles to be passed as an optional parameter, as shown highlighted in the
following code:

public static User Register(

string username,

string[] roles =

3. Modify the Register method in the Protector class to set the array of roles

string password,

in the User object, as shown in the following code:

var user

{

new User

Name = username,

SaltedHashedPassword

saltText,
saltedhashedPassword,

[351]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Roles = roles

}i

4. Inthe cryptographyLib class library project, add statements to the
Protector class to define a LogIn method to log in a user, and use generic
identity and principal to assign them to the current thread, as shown in the
following code:

public static void LogIn(string username, string password)

{

if (CheckPassword (username, password))
{
var identity = new GenericIdentity(
username, "PacktAuth");
var principal = new GenericPrincipal (
identity, Users[username] .Roles) ;
System.Threading.Thread.CurrentPrincipal = principal;

}

5. Create a new console application project named securerpp, add it to the
workspace, and select the project as active for OmniSharp.

6. Add areference to the CryptographyLib assembly, and then in Program. cs,
import the following namespaces:

using static System.Console;

using Packt.Shared;

using System.Threading;

using System.Security;

using System.Security.Permissions;
using System.Security.Principal;
using System.Security.Claims;

7. In the Main method, write statements to register three users named Alice,
Bob, and Eve, in various roles, prompt the user to log in, and then output
information about them, as shown in the following code:

Protector.Register ("Alice", "PaS$swOrd",
new([] { "Admins" });

Protector.Register ("Bob", "Pa$SwOrd",
new([] { "Sales", "TeamLeads" });

Protector.Register ("Eve", "Pa$$SwOrd") ;

Write ($S"Enter your user name: ") ;
string username = ReadLine() ;
Write ($"Enter your password: ");

[352]

Protecting Your Data and Applications | 10

string password = ReadLine() ;

Protector.LogIn (username, password) ;
if (Thread.CurrentPrincipal == null)

{
WriteLine ("Log in failed.");
return;

var p = Thread.CurrentPrincipal;

WriteLine (

$"IsAuthenticated: {p.Identity.IsAuthenticated}");
WriteLine (

$"AuthenticationType: {p.Identity.AuthenticationType}");
WriteLine ($"Name: {p.Identity.Name}");
WriteLine ($"IsInRole (\"Admins\"): {p.IsInRole("Admins")}");
WriteLine ($"IsInRole(\"Sales\"): {p.IsInRole("Sales")}");

if (p is ClaimsPrincipal)

{

WriteLine (
$"{p.Identity.Name} has the following claims:");

foreach (Claim in (p as ClaimsPrincipal) .Claims)

{

WriteLine ($"{claim.Type}: {claim.vValue}");
}
}

Run the console application, log in as Alice with Pasword, and view the
results, as shown in the following output:

Enter your user name: Alice
Enter your password: Pa$swOrd
IsAuthenticated: True
AuthenticationType: PacktAuth
Name: Alice

IsInRole ("Admins") : True
IsInRole ("Sales"): False

Alice has the following claims: http://schemas.xmlsoap.org/
ws/2005/05/identity/claims/name: Alice http://schemas.microsoft.
com/ws/2008/06/identity/claims/role: Admins

[353]

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
http://schemas.microsoft.com/ws/2008/06/identity/claims/role
http://schemas.microsoft.com/ws/2008/06/identity/claims/role

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

9.

10.

Run the console application, log in as Alice with secret, and view the
results, as shown in the following output:

Enter your user name: Alice
Enter your password: secret

Log in failed.

Run the console application, log in as Bob with Pa$$word, and view the
results, as shown in the following output:

Enter your user name: Bob

Enter your password: Pa$swOrd

IsAuthenticated: True

AuthenticationType: PacktAuth

Name: Bob

IsInRole ("Admins") : False

IsInRole ("Sales"): True

Bob has the following claims:
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name: Bob

http://schemas.microsoft.com/ws/2008/06/identity/claims/role:
Sales http://schemas.microsoft.com/ws/2008/06/identity/claims/
role: TeamLeads

Protecting application functionality

Now let's explore how we can use authorization to prevent some users from
accessing some features of an application.

1.

Add a method to the Program class, secured by checking for permission
inside the method, and throw appropriate exceptions if the user is
anonymous or not a member of the Admins role, as shown in the following
code:

static void SecureFeature ()

{

if (Thread.CurrentPrincipal == null)

{

throw new SecurityException (
"A user must be logged in to access this feature.");

if (!Thread.CurrentPrincipal.IsInRole ("Admins"))

{

[354]

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name:
http://schemas.microsoft.com/ws/2008/06/identity/claims/role:

Protecting Your Data and Applications | 10

throw new SecurityException (
"User must be a member of Adming to access this feature.");

WriteLine ("You have access to this secure feature.");

}

2. Add statements to the end of the Main method to call the SecureFeature
method in a try statement, as shown in the following code:

try

{

SecureFeature () ;

}

catch (System.Exception ex)

{

WriteLine ($"{ex.GetType()}: {ex.Message}");

}

3. Run the console application, log in as Alice with Pa$$word, and view the
results:

You have access to this secure feature.

4. Run the console application, log in as Bob with pPas$$word, and view the
results:

System.Security.SecurityException: User must be a member of Admins
to access this feature.

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore the topics covered in this chapter with deeper
research.

Exercise 10.1 — Test your knowledge
Answer the following questions:
1. Of the encryption algorithms provided by .NET, which is the best choice for
symmetric encryption?

2. Of the encryption algorithms provided by .NET, which is the best choice for
asymmetric encryption?

3. What is a rainbow attack?

[355]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

For encryption algorithmes, is it better to have a larger or smaller block size?
What is a hash?

What is a signature?

What is the difference between symmetric and asymmetric encryption?
What does RSA stand for?

Why should passwords be salted before being stored?

10. SHAL1 is a hashing algorithm designed by the United States National Security
Agency. Why should you never use it?

O X NS Gk

Exercise 10.2 — Practice protecting data with
encryption and hashing

Create a console application named Exercise02 that protects an XML file, such as
the following example:

<?xml version="1.0" encoding="utf-8" ?>
<customers>
<customer>
<name>Bob Smith</names>
<creditcard>1234-5678-9012-3456</creditcards>
<password>Pas$wlOrd</password>
</customers>

</customerss>

The customer's credit card number and password are currently stored in clear text.
The credit card must be encrypted so that it can be decrypted and used later, and the
password must be salted and hashed.

Exercise 10.3 — Practice protecting data with
decryption

Create a console application named Exercise03 that opens the XML file that you
protected in the preceding code and decrypts the credit card number.

Exercise 10.4 — Explore topics

Use the following links to read more about the topics covered in this chapter:

[356]

Protecting Your Data and Applications | 10

* Key Security Concepts: https://docs.microsoft.com/en-us/dotnet/
standard/security/key-security-concepts

* Encrypting Data: https://docs.microsoft.com/en-us/dotnet/
standard/security/encrypting-data

* Cryptographic Signatures: https://docs.microsoft.com/en-us/dotnet/
standard/security/cryptographic-signatures

* Principal and Identity Objects: https://docs.microsoft.com/en-us/
dotnet/standard/security/principal-and-identity-objects

Summary

In this chapter, you learned how to encrypt and decrypt using symmetric encryption,
how to generate a salted hash, how to sign data and check the signature on the

data, how to generate truly random numbers, and how to use authentication and
authorization to protect features of your applications.

In the next chapter, you will learn how to work with databases using Entity
Framework Core.

[357]

https://docs.microsoft.com/en-us/dotnet/standard/security/key-security-concepts
https://docs.microsoft.com/en-us/dotnet/standard/security/key-security-concepts
https://docs.microsoft.com/en-us/dotnet/standard/security/cryptographic-signatures
https://docs.microsoft.com/en-us/dotnet/standard/security/cryptographic-signatures
https://docs.microsoft.com/en-us/dotnet/standard/security/principal-and-identity-objects
https://docs.microsoft.com/en-us/dotnet/standard/security/principal-and-identity-objects
https://docs.microsoft.com/en-us/dotnet/standard/security/principal-and-identity-objects

Chapter 11

Working with Databases
Using Entity Framework Core

This chapter is about reading and writing to data stores, such as Microsoft SQL
Server, SQLite, and Azure Cosmos DB, by using the object-to-data store mapping
technology named Entity Framework Core (EF Core).

This chapter will cover the following topics:

* Understanding modern databases
* Setting up EF Core

* Defining EF Core models

* Querying EF Core models

* Loading patterns with EF Core

* Manipulating data with EF Core

Understanding modern databases

Two of the most common places to store data are in a Relational Database
Management System (RDBMS) such as Microsoft SQL Server, PostgreSQL, MySQL,
and SQLite, or in a NoSQL data store such as Microsoft Azure Cosmos DB, Redis,
MongoDB, and Apache Cassandra.

This chapter will focus on RDBMSes such as SQL Server and SQLite. If you wish to
learn more about NoSQL databases, such as Cosmos DB and MongoDB, and how to
use them with EF Core, then I recommend the following links, which will go over
them in detail:

e Welcome to Azure Cosmos DB: https://docs.microsoft.com/en-us/
azure/cosmos-db/introduction

[359]

https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

* Use NoSQL databases as a persistence infrastructure: https://docs.
microsoft.com/en-us/dotnet/standard/microservices-architecture/
microservice-ddd-cqgrs-patterns/nosqgl-database-persistence-
infrastructure

* Document Database Providers for Entity Framework Core: https://
github.com/BlueshiftSoftware/EntityFrameworkCore

Understanding Entity Framework

Entity Framework (EF) was first released as part of the NET Framework 3.5 with
Service Pack 1 back in late 2008. Since then, Entity Framework has evolved, as
Microsoft has observed how programmers use an object-relational mapping (ORM)
tool in the real world.

ORMs use a mapping definition to associate columns in tables to properties in
classes. Then, a programmer can interact with objects of different types in a way
that they are familiar with, instead of having to deal with knowing how to store the
values in a relational table or other structure provided by a NoSQL data store.

The version of EF included with the last version of .NET Framework is Entity
Framework 6 (EF6). It is mature, stable, and supports an old EDMX (XML file)
way of defining the model as well as complex inheritance models, and a few other
advanced features.

EF 6.3 is supported on .NET Core 3.0 cross-platform in order to enable existing
projects like web applications and services to be ported. However, EF6 should be
considered a legacy technology, has some limitations when running cross-platform,
and no new features will be added to it.

More Information: You can read more about Entity Framework

\/V 6.3 and its NET Core 3.0 support at the following link:

https://devblogs.microsoft.com/dotnet/announcing-
ef-core-3-0-and-ef-6-3-general-availability/

The truly cross-platform version, EF Core, is different. Although EF Core has a
similar name, you should be aware of how it varies from EF6. For example, as well
as traditional RDBMSes, EF Core also supports modern cloud-based, nonrelational,
schema-less data stores, such as Microsoft Azure Cosmos DB and MongoDB,
sometimes with third-party providers.

Core Cosmos DB provider at the following link: https://msdn.
microsoft.com/en-us/magazine/mt833286.aspx

C’ More Information: You can read a preview article about the EF
\”/

[360]

https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/nosql-database-persistence-infrastructure
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/nosql-database-persistence-infrastructure
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/nosql-database-persistence-infrastructure
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/nosql-database-persistence-infrastructure
https://github.com/BlueshiftSoftware/EntityFrameworkCore
https://github.com/BlueshiftSoftware/EntityFrameworkCore
https://devblogs.microsoft.com/dotnet/announcing-ef-core-3-0-and-ef-6-3-general-availability/
https://devblogs.microsoft.com/dotnet/announcing-ef-core-3-0-and-ef-6-3-general-availability/
https://devblogs.microsoft.com/dotnet/announcing-ef-core-3-0-and-ef-6-3-general-availability/
https://msdn.microsoft.com/en-us/magazine/mt833286.aspx
https://msdn.microsoft.com/en-us/magazine/mt833286.aspx

Working with Databases Using Entity Framework Core | 11

Using a sample relational database

To learn how to manage an RDBMS using .NET Core, it would be useful to have

a sample one so that you can practice on one that has a medium complexity and a
decent amount of sample records. Microsoft offers several sample databases, most of
which are too complex for our needs, so instead, we will use a database that was first
created in the early 1990s known as Northwind.

Let's take a minute to look at a diagram of the Northwind database. You can use the
diagram below to refer to as we write code and queries throughout this book:

Customers Orders Order Details Products Cateqories
¢ CustomerlD FO——03 ¢+ OrderlD =900 |+ OrderlD CO-E= |+ ProductlD oG ¢ CategorylD
CompanyName Customer|} + ProductlD ProductName CategoryMame
ContactName EmplayeelD UnitPrice SupplierD = Description
ContactTitle OrderDate Quantity CategorylD Picture
Address RequiredDate Discount QuantityPerUnit
City ShippedDate UnitPrice
Region ShipVia UnitsinStock Suppliers
PostalCode Freight UnitsOnOrder €= ¢+ SupplierlD
Country ShipName ReorderLevel CompanyName
Phone ShipAddress Discontinued ContactMame
Fax ShipCity ContactTitle
ShipRegion Address
ShipPostalCode City
ShipCountry Region
PostalCode
Country
Phone
Fax
HomePage

You will write code to work with the categories and Products tables later in this
chapter and other tables in later chapters. But before we do, note that:

* Each category has a unique identifier, name, description, and picture.

* Each product has a unique identifier, name, unit price, units in stock, and
other fields.

* Each product is associated with a category by storing the category's unique
identifier.

* The relationship between categories and Products is one-to-many,
meaning each category can have zero or more products.

SQLite is a small, cross-platform, self-contained RDBMS that is available in the
public domain. It's the most common RDBMS for mobile platforms such as iOS
(iPhone and iPad) and Android.

[361]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Setting up SQL.ite for macOS

SQLite is included in macOS in the /usr/bin/ directory as a command-line
application named sglite3s.

Setting up SQLite for Windows

SQLite can be downloaded and installed for other OSes. On Windows, we also need
to add the folder for SQLite to the system path so it will be found when we enter
commands in Command Prompt.

1.

O X NS TN

R R R R
W N R O

Start your favorite browser and navigate to the following link: https://www.
sglite.org/download.html

Scroll down the page to the Precompiled Binaries for Windows section.
Click sglite-tools-win32-x86-3290000.zip.

Extract the ZIP file into a folder named c:\sSglite\

Navigate to Windows Settings.

Search for environment and choose Edit the system environment variables.
Click the Environment Variables button.

In System variables, select Path in the list, and then click Edit...

Click New, enter Cc:\sglite, and press Enter.

. Click OK.
. Click OK.
. Click OK.
. Close Windows Settings.

Creating the Northwind sample database for
SQLite

Now we can create the Northwind sample database using an SQL script.

1.

Create a folder named Chapter11 with a subfolder named
WorkingWithEFCore.

[362]

https://www.sqlite.org/download.html
https://www.sqlite.org/download.html

Working with Databases Using Entity Framework Core | 11

Download the script to create the Northwind database for SQLite from the
following link: https://github.com/markjprice/cs8dotnetcore3/blob/
master/sqgl-scripts/Northwind.sqgl

Copy Northwind.sql into the WorkingWithEFCore folder.

In Visual Studio Code, open the WworkingwithEFCore folder, navigate to
Terminal, and pipe the script to SQLite to create the Northwind.db database,
as shown in the following command:

sglite3 Northwind.db < Northwind.sqgl

Be patient because this command might take a while to create all the database
structure.

C’ More Information: You can read about the SQL statements
\"/

supported by SQLite at the following link: https://sglite.
org/lang.html

Managing the Northwind sample database
with SQLiteStudio

You can use a cross-platform graphical database manager named SQLiteStudio to
easily manage SQLite databases.

1.

Navigate to the following link: http://sglitestudio.pl and download
and install the application.

Launch SQLiteStudio.

On the Database menu, choose Add a database, or press Cmd + O on macOS
or Ctrl + O on Windows.

In the Database dialog, click on the folder button to browse for an existing
database file on the local computer, and select the Northwind. db file in the
WorkingWithEFCore folder, and then click OK.

Right-click on the Northwind database and choose Connect to the database.
You will see the tables that were created by the script.

Right-click on the Products table and choose Edit the table.

[363]

https://github.com/markjprice/cs8dotnetcore3/blob/master/sql-scripts/Northwind.sql
https://github.com/markjprice/cs8dotnetcore3/blob/master/sql-scripts/Northwind.sql
https://github.com/markjprice/cs8dotnetcore3/blob/master/sql-scripts/Northwind.sql
http://sqlitestudio.pl/
http://sqlitestudio.pl
https://sqlite.org/lang.html
https://sqlite.org/lang.html

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

In the table editor window, you will see the structure of the products table,
including column names, data types, keys, and constraints, as shown in the
following screenshot:

® @9 # 5QLiteStudio (3.1.1)
& P 2 B 0B y O B & - s | @ 3 a3 B s il & » »
[x15] Databases e e I~ Products (Northwind)
Filter by name U0 Dpata Constraints Indexes Triggers DDL
» | piranha.blog (GLite 3) 2 vt BB & =
v £ Morthwind (sQLite 3) 2] LR 10 R&E2 09
v I Tablesfia) Table name: Products WITHOUT ROWID
» [7| Categories X .
» I Customars Name Data type p""’:” F"'k:'f" Unique Check NTJTL Collate Default value
> Employees
» I EmployeeTerrtories | 7 Productid INTEGER NULL
» [T Order Details 2 ProductName nvarchar (40) - NULL
> BN Ordars 3 SupglierlD “int” NULL
> Preducts e,
» I Shippers 4 CategorylD int! NULL
* [7| Suppliers 65 QuantityPerUnit nwvarchar (20) NULL
> I Teritories 8 UnitPrice “money" 5] 0
ik Views o ; 1|
7 UnitsinStock "smallint” El Q
8 UnitsOnOrder "smallint" El 0
4 ReorderLevel “smallint" El a
10 Discontinued "bit" - 0

7. In the table editor window, click the Data tab. You will see 77 products, as
shown in the following screenshot:

Databases [[] [Products (Northwind)
1 Structure [sTIPEY Constraints Indexes Triggers DOL
piranha.blog (S0OLite 3) m Form view
v & Northwind (SOLite 3)
¥ . Tables (10) (o] L — I~ B =) |1 B E M I & B | Fiter data I+ ™ Total rows loaded: 77
» [T Categories
» [Customers ProductiD ierlD CategorylD QuantityPerUnit UnitPrice UnitsinStock UnitsOr
» [T Employees 1 1 Chai 1 1 10 boxes x 20 bags 18 kL] o
» [EmployeaTerritories 2 2 Chang 1 1 24 - 12 oz bottles 19 7 40
» [Order Details 3 3 Aniseed Syrup 1 2 12 - 550 ml bottles 10 13 70
= [Orders 4 4 Chef Anten's Cajun Seasoning z 2 48 - 6 oz jars 22 53 o
e Products [6 Chef Anten's Gurmbe Mix 2 2 36 baxes 21.36 0 o

Setting up EF Core

Before we dive into the practicalities of managing data using EF Core, let's briefly
talk about choosing between EF Core data providers.

Choosing an EF Core data provider

To manage data in a specific database, we need classes that know how to efficiently
talk to that database. EF Core data providers are sets of classes that are optimized for
a specific data store. There is even a provider for storing the data in the memory of
the current process, which is useful for high-performance unit testing since it avoids
hitting an external system.

[364]

Working with Databases Using Entity Framework Core | 11

They are distributed as NuGet packages, as shown in the following table:

To manage this data store Install this NuGet package

Microsoft SQL Server 2008 or later |Microsoft.EntityFrameworkCore.SqglServer

SQLite 3.7 or later Microsoft.EntityFrameworkCore.SQLite
MySQL MySQL.Data.EntityFrameworkCore
In-memory Microsoft.EntityFrameworkCore.InMemory

More Information: Devart is a third party that offers EF Core

\/V providers for a wide range of data stores. Find out more at the

following link: https://www.devart .com/dotconnect/
entityframework.html

Connecting to the database

To connect to SQLite, we just need to know the database filename. We specify this
information in a connection string.

1. In Visual Studio Code, make sure that you have opened the
WorkingWithEFCore folder, and then in Terminal, enter the dotnet new
console command.

2. Edit workingWithEFCore.csproj to add a package reference to the EF Core
data provider for SQLite, as shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFramework>

</PropertyGroup>

<ItemGroup>
<PackageReference
Include="Microsoft.EntityFrameworkCore.Sqlite"
Version="3.0.0" />
</ItemGroup>

</Projects>

[365]

https://www.devart.com/dotconnect/entityframework.html
https://www.devart.com/dotconnect/entityframework.html

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

3. In Terminal, build the project to restore packages, as shown in the following
command:

dotnet build

the following link: https://www.nuget .org/packages/
Microsoft.EntityFrameworkCore. Sglite/

D’ More Information: You can check the most recent version at
\"/

Defining EF Core models

EF Core uses a combination of conventions, annotation attributes, and Fluent API
statements to build an entity model at runtime so that any actions performed on the
classes can later be automatically translated into actions performed on the actual
database. An entity class represents the structure of a table and an instance of the
class represents a row in that table.

First we will review the three ways to define a model, with code examples, and then
we will create some classes that implement those techniques.

EF Core conventions
The code we will write will use the following conventions:
* The name of a table is assumed to match the name of a DbSet<T> property in
the DbContext class, for example, Products.

* The names of the columns are assumed to match the names of properties in
the class, for example, Product ID.

* The string .NET type is assumed to be a nvarchar type in the database.
* The int .NET type is assumed to be an int type in the database.

* A property that is named 1D, or if the class is named product, then the
property can be named ProductID. That property is then assumed to be a
primary key. If this property is an integer type or the Guid type, then it is also
assumed to be IDENTITY (a column type that automatically assigns a value
when inserting).

More Information: There are many other conventions, and you

\g can even define your own, but that is beyond the scope of this
)

book. You can read about them at the following link:

https://docs.microsoft.com/en-us/ef/core/modeling/

[366]

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore. Sqlite/
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore. Sqlite/
https://docs.microsoft.com/en-us/ef/core/modeling/
https://docs.microsoft.com/en-us/ef/core/modeling/

Working with Databases Using Entity Framework Core | 11

EF Core annotation attributes

Conventions often aren't enough to completely map the classes to the database objects.
A simple way of adding more smarts to your model is to apply annotation attributes.

For example, in the database, the maximum length of a product name is 40, and the
value cannot be null. In a Product class, we could apply attributes to specify this, as
shown in the following code:

[Required]
[StringLength(40)]
public string ProductName { get; set; }

When there isn't an obvious map between .NET types and database types, an
attribute can be used.

For example, in the database, the column type of UnitPrice for the Products table
is money. .NET Core does not have a money type, so it should use decimal instead, as
shown in the following code:

[Column (TypeName = "money")]
public decimal? UnitPrice { get; set; }

In the category table, the Description column can be longer than the 8,000
characters that can be stored in a nvarchar variable, so it needs to map to ntext
instead, as shown in the following code:

[Column (TypeName = "ntext")]
public string Description { get; set; }

EF Core Fluent API

The last way that the model can be defined is by using the Fluent API. This API

can be used instead of attributes, as well as being used in addition to them. For
example, let's look at the following two attributes in a Product class, as shown in the
following code:

[Required]
[StringLength(40)]
public string ProductName { get; set; }

The attributes could be removed from the class to keep it simpler, and replaced with
an equivalent Fluent API statement in the onModelCreating method of a database
context class, as shown in the following code:

modelBuilder.Entity<Products ()

[367]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

.Property (product => product.ProductName)
.IsRequired ()
.HasMaxLength (40) ;

Understanding data seeding

You can use the Fluent API to provide initial data to populate a database. EF Core
automatically works out what insert, update, or delete operations must be executed.
If we wanted to make sure that a new database has at least one row in the Product
table then we would call the HasData method, as shown in the following code:

modelBuilder.Entity<Products> ()
.HasData (new Product

{

ProductID = 1,
ProductName = "Chai",
UnitPrice = 8.99M

3N

Our model will map to an existing database that is already populated with data so
we will not need to use this technique in our code.

following link: https://docs.microsoft.com/en-us/ef/
core/modeling/data-seeding

D’ More Information: You can read more about data seeding at the
\"/

Building an EF Core model

Now that you've learned about model conventions, let's build a model to represent
two tables and the Northwind database. To make the classes more reusable, we
will define them in the pPackt . Shared namespace. These three classes will refer to
each other, so to avoid compiler errors we will create the three classes without any
members first.

1. Add three class files to the WorkingWithEFCore project named
Northwind.cs, Category.cs, and Product.cs.

2. In the file named Northwind. cs, define a class named Northwind, as shown
in the following code:

namespace Packt.Shared

{

public class Northwind

{
}

[368]

https://docs.microsoft.com/en-us/ef/core/modeling/data-seeding
https://docs.microsoft.com/en-us/ef/core/modeling/data-seeding

Working with Databases Using Entity Framework Core | 11

3. In the file named category.cs, define a class named Category, as shown in
the following code:

namespace Packt.Shared

{

public class Category

{
}
}

4. In the file named Product . cs, define a class named Product, as shown in the
following code:

namespace Packt.Shared

{

public class Product

{
}

Defining the Category and Product entity classes

Ccategory will be used to represent a row in the Categories table, which has four
columns, as shown in the following screenshot:

(x]=] Databases o0 e _ Categories (Northwind)
Filter by name W Data Constraints Indexes Triggers DDL
» | piranha.blog (SQLite 3) - wi BB &
¥ 1 Morthwind (5QLite 3) u I L
v (& Tabies (10) Table name: Categories WITHOUT ROWID
» [l Categories °9 : =
» I Customers Hame Data type F';(':;"' F“.::')f" Unigue Check NTJTL Coliate Default value
> Employees
» I EmployeeTerritories | ! C3tegorylD INTEGER NULL
» || Order Details 2 CategoryName nvarchar (15) k- NULL
> [0 Orders 3 Description “ntext” NULL
> Products = =
_ 4 Picture “image” NULL

_| Shippers

We will use conventions to define three of the four properties (we will not map
the picture column), the primary key, and the one-to-many relationship to the
Products table. To map the Description column to the correct database type, we
will need to decorate the string property with the column attribute.

Later on in this chapter, we will use the Fluent API to define that categoryName
cannot be null and is limited to a maximum of 15 characters.

1. Modify category.cs, as shown in the following code:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

[369]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

namespace Packt.Shared

{

public class Category

{
// these properties map to columns in the database
public int CategoryID { get; set; }

public string CategoryName { get; set; }

[Column (TypeName = "ntext")]
public string Description { get; set; }

// defines a navigation property for related rows
public virtual ICollection<Product> Products { get; set; }

public Category ()

{

// to enable developers to add products to a Category we
must

// initialize the navigation property to an empty list

this.Products = new List<Product> () ;

}

product will be used to represent a row in the Products table, which has ten
columns. You do not need to include all columns from a table as properties
of a class. We will only map six properties: ProductID, ProductName,
UnitPrice, UnitsInStock, Discontinued, and CategoryID.

Columns that are not mapped to properties cannot be read or set using the
class instances. If you use the class to create a new object, then the new row
in the table will have NULL or some other default value for the unmapped
column values in that row. In this scenario, the rows already have data
values and I have decided that I do not need to read those values in the
console application.

We can rename a column by defining a property with a different name, like
Cost, and then decorating the property with the [Column] attribute and
specifying its column name, like UnitPrice.

The final property, CategoryID, is associated with a Category property that
will be used to map each product to its parent category.

2. Modify Product.cs, as shown in the following code:

using System.ComponentModel .DataAnnotations;

[370]

Working with Databases Using Entity Framework Core | 11

using System.ComponentModel .DataAnnotations.Schema;

namespace Packt.Shared

{

public class Product

{

public int ProductID { get; set; }

[Required]
[StringLength (40)]
public string ProductName { get; set; }

[Column ("UnitPrice", TypeName = "money")]
public decimal? Cost { get; set; }

[Column ("UnitsInStock")]
public short? Stock { get; set; }

public bool Discontinued { get; set; }

// these two define the foreign key relationship
// to the Categories table
public int CategoryID { get; set; }

public virtual Category Category { get; set; }

}
}

The two properties that relate the two entities, Category . Products and Product.
Category, are both marked as virtual. This allows EF Core to inherit and override
the properties to provide extra features, such as lazy loading. Lazy loading is not
available in .NET Core 2.0 or earlier.

Defining the Northwind database context class

The Northwind class will be used to represent the database. To use EF Core, the class
must inherit from Dbcontext. This class understands how to communicate with
databases and dynamically generate SQL statements to query and manipulate data.

Inside your DbContext-derived class, you must define at least one property of the
DbSet<T> type. These properties represent the tables. To tell EF Core what columns
each table has, the Dbset properties use generics to specify a class that represents a
row in the table, with properties that represent its columns.

[371]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Your DbContext-derived class should have an overridden method named
onConfiguring, which will set the database connection string.

Likewise, your DbContext-derived class can optionally have an overridden method
named OnModelCreating. This is where you can write Fluent API statements as an
alternative to decorating your entity classes with attributes.

1. Modify Northwind.cs, as shown in the following code:

using Microsoft.EntityFrameworkCore;
namespace Packt.Shared

// this manages the connection to the database

public class Northwind : DbContext

{
// these properties map to tables in the database
public DbSet<Category> Categories { get; set; }
public DbSet<Product> Products { get; set; }

protected override void OnConfiguring(
DbContextOptionsBuilder optionsBuilder)

{

string path = System.IO.Path.Combine (
System.Environment.CurrentDirectory, "Northwind.db");

optionsBuilder.UseSqglite ($"Filename={path}");

}

protected override void OnModelCreating (
ModelBuilder modelBuilder)

{

// example of using Fluent API instead of attributes
// to limit the length of a category name to 15
modelBuilder.Entity<Categorys ()

.Property (category => category.CategoryName)

.IsRequired() // NOT NULL

.HasMaxLength (15) ;

Querying EF Core models

Now that we have a model that maps to the Northwind database and two of its
tables, we can write some simple LINQ queries to fetch data. You will learn much
more about writing LINQ queries in Chapter 12, Querying and Manipulating Data
Using LINQ. For now, just write the code and view the results.

1. Open program.cs and import the following namespaces:

[372]

Working with Databases Using Entity Framework Core | 11

using static System.Console;

using Packt.Shared;

using Microsoft.EntityFrameworkCore;
using System.Ling;

In Program, define a QueryingCategories method, and add statements to
do these tasks, as shown in the following code:

o

Create an instance of the Northwind class that will manage the
database.

Create a query for all categories that include their related products.

Enumerate through the categories, outputting the name and number
of products for each one.

static void QueryingCategories ()

{

using (var db = new Northwind())

{

WritelLine ("Categories and how many products they have:");

// a query to get all categories and their related products
IQueryable<Category> cats = db.Categories
.Include(c => c.Products) ;

foreach (Category c in cats)

{

WriteLine ($"{c.CategoryName} has {c.Products.Count}
products.") ;

}
}

In Main, call the QueryingCategories method, as shown in the following
code:

static void Main(string[] args)

{

QueryingCategories () ;

}
Run the application and view the result, as shown in the following output:

Categories and how many products they have:
Beverages has 12 products.

Condiments has 12 products.

[373]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Confections has 13 products.

Dairy Products has 10 products.

Grains/Cereals has 7 products.

Meat/Poultry has 6 products.

Produce has 5 products.

Seafood has 12 products.

Filtering and sorting products

Let's explore a more complex query that filters and sorts data.

1. In Program, define a QueryingProducts method, and add statements to do

the following, as shown in the following code:

o

database.

Prompt the user for a price for products.

with US dollars), and the number of units in stock.

static void QueryingProducts ()

{

using (var db = new Northwind())

{

top.

WriteLine ("Products that cost more than a price,
")
string input;
decimal price;
do
Write ("Enter a product price: ");
input = ReadLine() ;
} while(!decimal.TryParse (input, out price)) ;

IQueryable<Product> prods = db.Products
.Where (product => product.Cost > price)
.OrderByDescending (product => product.Cost) ;

foreach (Product item in prods)

{

WriteLine (

[374]

Create an instance of the Northwind class that will manage the

Create a query for products that cost more than the price using LINQ.
Loop through the results, outputting the ID, name, cost (formatted

highest at

Working with Databases Using Entity Framework Core | 11

"{0}: {1} costs {2:$#,##0.00} and has {3} in stock.",
item.ProductID, item.ProductName, item.Cost, item.Stock) ;

}

2. InMain, comment the previous method, and call the method, as shown in the
following code:

static void Main(string[] args)

{
// QueryingCategories() ;
QueryingProducts () ;

}

3. Run the application, enter 50 when prompted to enter a product price, and
view the result, as shown in the following output:
Products that cost more than a price, highest at top.
Enter a product price: 50
38: Cbte de Blaye costs $263.50 and has 17 in stock.
29: Thiringer Rostbratwurst costs $123.79 and has 0 in stock.
9: Mishi Kobe Niku costs $97.00 and has 29 in stock.
20: Sir Rodney's Marmalade costs $81.00 and has 40 in stock.
18: Carnarvon Tigers costs $62.50 and has 42 in stock.
59: Raclette Courdavault costs $55.00 and has 79 in stock.
51: Manjimup Dried Apples costs $53.00 and has 20 in stock.

There is a limitation with the console provided by Microsoft on versions of Windows
before the Windows 10 Fall Creators Update. By default, the console cannot display
Unicode characters. You can temporarily change the code page (also known as the
character set) in a console to Unicode UTF-8 by entering the following command at
the prompt before running the app:

chcp 65001

Logging EF Core

To monitor the interaction between EF Core and the database, we can enable logging.
This requires the following two tasks:

* The registering of a logging provider

* The implementation of a logger

[375]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Add a file to your project named ConsoleLogger.cs.

2. Modify the file to define two classes, one to implement ILoggerProvider
and one to implement ILogger, as shown in the following code, and note the
following;:

o

ConsoleLoggerProvider returns an instance of ConsoleLogger. It
does not need any unmanaged resources, so the Dispose method
does not do anything, but it must exist.

ConsoleLogger is disabled for log levels None, Trace, and
Information. It is enabled for all other log levels.

ConsoleLogger implements its Log method by writing to console.

using Microsoft.Extensions.Logging;
using System;
using static System.Console;

namespace Packt.Shared

{

public class ConsoleloggerProvider : ILoggerProvider

{

public ILogger Createlogger (string categoryName)

{

return new ConsolelLogger () ;

}

// if your logger uses unmanaged resources,
// you can release the memory here
public void Dispose() { }

public class ConsolelLogger : ILogger

{
// 1f your logger uses unmanaged resources, you can
// return the class that implements IDisposable here
public IDisposable BeginScope<TStates> (TState state)

{

return null;

public bool IsEnabled(LogLevel logLevel)
{
// to avoid overlogging, you can filter
// on the log level
switch (logLevel)

{

[376]

Working with Databases Using Entity Framework Core | 11

}

case LogLevel.Trace:
case LogLevel.Information:
case LogLevel .None:

return false;
case LogLevel.Debug:
case LogLevel.Warning:
case LogLevel.Error:
case LogLevel.Critical:
default:

return true;

bi

public void Log<TStates> (LogLevel,

}
}
}

EventId eventId, TState state, Exception exception,
Func<TState, Exception, string> formatter)

// log the level and event identifier
Write ($"Level: {logLevel}, Event ID: {eventId.Id}");

// only output the state or exception if it exists
if (state != null)

{
}

Write($", State: {state}");

if (exception != null)

Write ($", Exception: {exception.Message}");
}
WriteLine () ;

At the top of the Program. cs file, add statements to import the namespaces
needed for logging, as shown in the following code:

using Microsoft.EntityFrameworkCore.Infrastructure;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Logging;

To both the QueryingCategories and QueryingProducts methods, add
statements immediately inside the using block for the Northwind database
context to get the logging factory and register your custom console logger, as
shown highlighted in the following code:

using

(var db = new Northwind())

[377]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

var loggerFactory = db.GetService<ILoggerFactory>() ;
loggerFactory.AddProvider (new ConsolelLoggerProvider()) ;

5. Run the console application and view the logs, which are partially shown in
the following output:
Level: Debug, Event ID: 20000, State: Opening connection to

database 'main' on server '/Users/markjprice/Code/Chapterll/
WorkingWithEFCore/Northwind.db'.

Level: Debug, Event ID: 20001, State: Opened connection to
database 'main' on server '/Users/markjprice/Code/Chapterll/
WorkingWithEFCore/Northwind.db'.

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30"]

PRAGMA foreign keys=ON;

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30"]

SELECT "product"."ProductID", "product"."CategoryID",
"product"."UnitPrice", "product"."Discontinued",
"product"."ProductName", "product"."UnitsInStock"

FROM "Products" AS "product"

ORDER BY "product"."UnitPrice" DESC

The event ID values and what they mean will be specific to the .NET data
provider. If we want to know how the LINQ query has been translated into
SQL statements and is executing, then the Event 1D to output has an 1d
value of 20100.

6. Modify the Log method in ConsoleLogger to only output events with 1d of
20100, as highlighted in the following code:

public void Log<TStates>(LogLevel logLevel, EventId eventId, TState
state,
Exception exception,Func<TState, Exception, string> formatter)
{
if (eventId.Id == 20100)
{
// log the level and event identifier
Write("Level: {0}, Event ID: {1}, Event: {2}"
logLevel, eventId.Id, eventId.Name) ;

// only output the state or exception if it exists
if (state != null)

{

Write($", State: {state}");

[378]

Working with Databases Using Entity Framework Core | 11

}

if (exception != null)
{
Write ($", Exception: {exception.Message}");
}
WriteLine () ;

}

In Main, uncomment the QueryingCategories method and comment the
QueryingProducts method so that we can monitor the SQL statements that
are generated when joining two tables.

Run the console application, and note the following SQL statements that
were logged, as shown in the following output:

Categories and how many products they have:

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30"]

PRAGMA foreign keys=ON;
Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30"]

SELECT "c"."CategoryID", "c"."CategoryName", "c"."Description"
FROM "Categories" AS "c"

ORDER BY "c"."CategoryID"

Level: Debug, Event ID: 20100, State: Executing DbCommand

[Parameters=[], CommandType='Text', CommandTimeout='30"]
SELECT "c.Products"."ProductID", "c.Products"."CategoryID",
"c.Products"."UnitPrice", "c.Products"."Discontinued",
"c.Products"."ProductName", "c.Products"."UnitsInStock"
FROM "Products" AS "c.Products"

INNER JOIN (

SELECT "cO"."CategoryID"

FROM "Categories" AS "cO"
) AS "t" ON "c.Products"."CategoryID" = "t"."CategoryID"
ORDER BY "t"."CategoryID"
Beverages has 12 products.
Condiments has 12 products.
Confections has 13 products.
Dairy Products has 10 products.
Grains/Cereals has 7 products.
Meat/Poultry has 6 products.
Produce has 5 products.

Seafood has 12 products.

[379]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Logging with query tags
When logging LINQ queries it can be tricky to correlate log messages in complex

scenarios. EF Core 2.2 introduced the query tags feature to help by allowing you to
add SQL comments to the log.

You can annotate a LINQ query using the Tagwith method, as shown in the
following code:

IQueryable<Product> prods = db.Products
.TagWith ("Products filtered by price and sorted.")
.Where (product => product.Cost > price)
.OrderByDescending (product => product.Cost) ;

This will add an SQL comment to the log, as shown in the following output:

-- Products filtered by price and sorted.

D’ More Information: You can read more about query tags at the
\"/

following link: https://docs.microsoft.com/en-us/ef/
core/querying/tags

Pattern matching with Like

EF Core supports common SQL statements including Like for pattern matching.

1. In Program, add a method named QueryingWithLike, as shown in the
following code, and note:

o

We have enabled logging.

o

We prompt the user to enter part of a product name and then use the
EF.Functions.Like method to search anywhere in the ProductName
property.

For each matching product, we output its name, stock, and if it is
discontinued.

static void QueryingWithLike ()

{

using (var db = new Northwind())

{
var loggerFactory = db.GetService<ILoggerFactorys() ;
loggerFactory.AddProvider (new ConsolelLoggerProvider()) ;

[380]

https://docs.microsoft.com/en-us/ef/core/querying/tags
https://docs.microsoft.com/en-us/ef/core/querying/tags

Working with Databases Using Entity Framework Core | 11

Write ("Enter part of a product name: ");
string input = ReadLine () ;

IQueryable<Product> prods = db.Products
.Where (p => EF.Functions.Like (p.ProductName, $"%{input}%"));

foreach (Product item in prods)

WriteLine ("{0} has {1} units in stock. Discontinued? {2}",
item.ProductName, item.Stock, item.Discontinued) ;

}

In Main, comment the existing methods, and call QueryingwWithLike, as
shown in the following code:

static void Main(string[] args)

{
// QueryingCategories|() ;
// QueryingProducts () ;
QueryingWithLike () ;

}

Run the console application, enter a partial product name such as che, and
view the result, as shown in the following output:

Enter part of a product name: che

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30"]

PRAGMA foreign keys=ON;

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[@ Format 1='?' (Size = 5)], CommandType='Text',
CommandTimeout="'30"]

SELECT "p"."ProductID", "p"."CategoryID", "p"."UnitPrice",
"p". "Discontinued", "p"."ProductName", "p"."UnitsInStock"

FROM "Products" AS "p"
WHERE "p"."ProductName" LIKE @ Format 1

Chef Anton's Cajun Seasoning has 53 units in stock. Discontinued?
False

Chef Anton's Gumbo Mix has 0 units in stock. Discontinued? True

Queso Manchego La Pastora has 86 units in stock. Discontinued?
False

Gumbar Gummibarchen has 15 units in stock. Discontinued? False

[381]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Defining global filters

The Northwind products can be discontinued, so it might be useful to ensure that
discontinued products are never returned in results, even if the programmer forgets
to use Where to filter them out.

1. Modify the onModelCreating method in the Northwind class to add a
global filter to remove discontinued products, as shown highlighted in the
following code:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
// example of using Fluent API instead of attributes
// to limit the length of a category name to under 15
modelBuilder.Entity<Categorys ()
.Property (category => category.CategoryName)
.IsRequired() // NOT NULL
.HasMaxLength (15) ;

// global filter to remove discontinued products
modelBuilder.Entity<Product>()
.HasQueryFilter (p => !p.Discontinued) ;

}

2. Run the console application, enter the partial product name che, view the
result, and note that Chef Anton's Gumbo Mix is now missing, because the
SQL statement generated includes a filter for the Discontinued column, as
shown in the following output:

SELECT "p"."ProductID", "p"."CategoryID", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"

FROM "Products" AS "p"

WHERE ("p"."Discontinued" = 0) AND "p"."ProductName" LIKE @
Format_ 1

Chef Anton's Cajun Seasoning has 53 units in stock. Discontinued?
False

Queso Manchego La Pastora has 86 units in stock. Discontinued?
False

Gumbar Gummib&rchen has 15 units in stock. Discontinued? False

Loading patterns with EF Core

There are three loading patterns that are commonly used with EF: lazy loading, eager
loading, and explicit loading. In this section, we're going to introduce each of them.

[382]

Working with Databases Using Entity Framework Core | 11

Eager loading entities

In the QueryingCategories method, the code currently uses the categories
property to loop through each category, outputting the category name and the
number of products in that category. This works because when we wrote the query,
we used the Include method to use eager loading (also known as early loading) for
the related products.

1. Modify the query to comment out the Include method call, as shown in the
following code:

IQueryable<Categorys> cats =
db.Categories; //.Include(c => c.Products);

2. InMain, comment all methods except QueryingCategories, as shown in the
following code:

static void Main(string[] args)

{
QueryingCategories () ;
// QueryingProducts () ;
// QueryingWithLike ()

}

3. Run the console application and view the result, as shown in the following
partial output:

I

Beverages has 0 products.
Condiments has 0 products.
Confections has 0 products.
Dairy Products has 0 products.
Grains/Cereals has 0 products.
Meat/Poultry has 0 products.
Produce has 0 products.

Seafood has 0 products.

Each item in foreach is an instance of the category class, which has a property
named Products, that is, the list of products in that category. Since the original
query is only selected from the categories table, this property is empty for each
category.

Lazy loading was introduced in EF Core 2.1, and it can automatically load missing
related data.

[383]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Enabling lazy loading

To enable lazy loading, developers must:

Reference a NuGet package for proxies.

Configure lazy loading to using a proxy.

Open WorkingWithEFCore.csproj and add a package reference, as shown
in the following markup:

<PackageReference
Include="Microsoft.EntityFrameworkCore.Proxies"
Version="3.0.0" />

In Terminal, build the project to restore packages, as shown in the following
command:

dotnet build

CﬁxnlNorthwind.cs,anorttheMicrosoft.EntityFrameworkCore.
Proxies namespace, and call an extension method to use lazy loading
proxies before using SQLite, as shown highlighted in the following code:

optionsBuilder.UseLazyLoadingProxies ()
.UseSqglite ($"Filename={path}");

Now, every time the loop enumerates and an attempt is made to read the
Products property, the lazy loading proxy will check if they are loaded. If
not, it will load them for us "lazily" by executing a SELECT statement to load
just that set of products for the current category, and then the correct count
would be returned to the output.

Run the console app and you will see that the problem with lazy loading is
that multiple round trips to the database server are required to eventually
fetch all the data, as shown in the following partial output:

Categories and how many products they have:

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30"]

PRAGMA foreign keys=ON;

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30"]
SELECT "c"."CategoryID", "c"."CategoryName", "c"."Description"
FROM "Categories" AS "c"

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[@ p 0='?'], CommandType='Text', CommandTimeout='30"]

SELECT "p"."ProductID", "p"."CategoryID", "p"."UnitPrice",

[384]

Working with Databases Using Entity Framework Core | 11

"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"
FROM "Products" AS "p"
WHERE ("p"."Discontinued" = 0) AND ("p"."CategoryID" = @ p 0)

Beverages has 11 products.
Level: Debug, Event ID: 20100, State: Executing DbCommand

[Parameters=[@ p 0='?'], CommandType='Text', CommandTimeout='30"]
SELECT "p"."ProductID", "p"."CategoryID", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"

FROM "Products" AS "p"

WHERE ("p"."Discontinued" = 0) AND ("p"."CategoryID" = @ p 0)

Condiments has 11 products.

Explicit loading entities
Another type of loading is explicit loading. It works in a similar way to lazy loading,

with the difference being that you are in control of exactly what related data is
loaded and when.

1.

In the QueryingCategories method, modify the statements to disable lazy
loading and then prompt the user if they want to enable eager loading and
explicit loading, as shown in the following code:

IQueryable<Category> cats;
// = db.Categories;
// .Include(c => c.Products);

db.ChangeTracker.LazyLoadingEnabled = false;

Write ("Enable eager loading? (Y/N): ");

bool eagerloading = (ReadKey () .Key == ConsoleKey.Y);
bool explicitloading = false;

WriteLine () ;

if (eagerloading)

{

cats = db.Categories.Include(c => c.Products) ;

}

else

{
cats = db.Categories;
Write ("Enable explicit loading? (Y/N): ");
explicitloading = (ReadKey () .Key == ConsoleKey.Y) ;
WriteLine () ;

[385]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2.

Inside the foreach loop, before the writeLine method call, add statements
to check if explicit loading is enabled, and if so, prompt the user if they want
to explicitly load each individual category, as shown in the following code:

if (explicitloading)

{
Write ($"Explicitly load products for {c.CategoryName}? (Y/N):
")

ConsoleKeyInfo key = ReadKey () .Key;

WriteLine () ;

if (key.Key == ConsoleKey.Y)

{
var products = db.Entry(c).Collection(c2 => c2.Products) ;
if (!products.IsLoaded) products.Load() ;

}
}

WriteLine ($"{c.CategoryName} has {c.Products.Count}
products.") ;

Run the console application; press N to disable eager loading, and press Y to
enable explicit loading. For each category, press Y or N to load its products
as you wish. I chose to load products for only two of the eight categories,
Beverages and Seafood, as shown in the following output:

Categories and how many products they have:

Enable eager loading? (Y/N): n

Enable explicit loading? (Y/N): y

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30"]

PRAGMA foreign keys=ON;

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30"]

SELECT "c"."CategoryID", "c"."CategoryName", "c"."Description"
FROM "Categories" AS "c"

Explicitly load products for Beverages? (Y/N): y

Level: Debug, Event ID: 20100, State: Executing DbCommand

[Parameters=[@ p 0='?'], CommandType='Text', CommandTimeout='30"]
SELECT "p"."ProductID", "p"."CategoryID", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"

FROM "Products" AS "p"

WHERE ("p"."Discontinued" = 0) AND ("p"."CategoryID" = @ p 0)
Beverages has 11 products.

Explicitly load products for Condiments? (Y/N): n

Condiments has 0 products.

Explicitly load products for Confections? (Y/N): n

[386]

Working with Databases Using Entity Framework Core | 11

Confections has 0 products.

Explicitly load products for Dairy Products? (Y/N): n
Dairy Products has 0 products.

Explicitly load products for Grains/Cereals? (Y/N): n
Grains/Cereals has 0 products.

Explicitly load products for Meat/Poultry? (Y/N): n
Meat/Poultry has 0 products.

Explicitly load products for Produce? (Y/N): n
Produce has 0 products.

Explicitly load products for Seafood? (Y/N): y

Level: Debug, Event ID: 20100, State: Executing DbCommand

[Parameters=[@ p 0='?'], CommandType='Text', CommandTimeout='30"]
SELECT "p"."ProductID", "p"."CategoryID", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"

FROM "Products" AS "p"
WHERE ("p"."Discontinued" = 0) AND ("p"."CategoryID" = @ p 0)
Seafood has 12 products.

Good Practice: Carefully consider which loading pattern is best for
A your code. Lazy loading could literally make you a lazy database
',@\' developer! Read more about loading patterns at the following link:
= https://docs.microsoft.com/en-us/ef/core/querying/
related-data

Manipulating data with EF Core

Inserting, updating, and deleting entities using EF Core is an easy task to accomplish.
DbContext maintains change tracking automatically, so the local entities can have
multiple changes tracked, including adding new entities, modifying existing entities,
and removing entities. When you are ready to send those changes to the underlying
database, call the savechanges method. The number of entities successfully changed
will be returned.

Inserting entities

Let's start by looking at how to add a new row to a table.

1.

In Program, create a new method named AddProduct, as shown in the
following code:

static bool AddProduct (int categoryID, string productName,
decimal? price)

[387]

https://docs.microsoft.com/en-us/ef/core/querying/related-data
https://docs.microsoft.com/en-us/ef/core/querying/related-data

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

{

using (var db = new Northwind())

{

var newProduct = new Product
CategoryID = categorylD,
ProductName = productName,
Cost = price

Vi

// mark product as added in change tracking
db.Products.Add (newProduct) ;

// save tracked change to database
int affected = db.SaveChanges|() ;
return (affected == 1);

}

2. In program, create a new method named ListProducts that outputs the ID,
name, cost, stock, and discontinued properties of each product sorted with
the costliest first, as shown in the following code:

static void ListProducts()

{

using (var db = new Northwind())
{
WriteLine("{0,-3} {1,-35} {2,8} {3,5} {4}",
"ID", "Product Name", "Cost", "Stock", "Disc.");

foreach (var item in db.Products.OrderByDescending(p =>
p.Cost))

{
WriteLine ("{0:000} {1,-35} {2,8:3#,##0.00} {3,5} {4},
item.ProductID, item.ProductName, item.Cost,
item.Stock, item.Discontinued) ;

}

Remember that 1, -35 means left-align argument number 1 within a 35
character-wide column and 3, 5 means right-align argument number
3 within a 5 character-wide column.

[388]

Working with Databases Using Entity Framework Core | 11

3.

In Main, comment previous method calls, and then call AddProduct and
ListProducts, as shown in the following code:

static void Main(string[] args)

{

// QueryingCategories() ;
// QueryingProducts () ;
// QueryingWithLike () ;

if (AddProduct (6, "Bob's Burgers", 500M))

{

WriteLine ("Add product successful.");

ListProducts() ;

}

Run the application, view the result, and note the new product has been
added, as shown in the following partial output:

Add
ID

078
038
020

product successful.

Product Name Cost Stock Disc.
Bob's Burgers $500.00 False
Coéte de Blaye $263.50 17 False
Sir Rodney's Marmalade $81.00 40 False

Updating entities

Now, let's modify an existing row in a table.

1.

{

In Program, add a method to increase the price of the first product with a
name that begins with Bob by $20, as shown in the following code:

static bool IncreaseProductPrice (string name, decimal amount)

using (var db = new Northwind())

{

// get first product whose name starts with name
Product updateProduct = db.Products.First (
p => p.ProductName.StartsWith (name)) ;

updateProduct.Cost += amount;

int affected = db.SaveChanges|() ;
return (affected == 1) ;

[389]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2.

In Main, comment the whole if statement block that calls AddProduct,
and add a call to IncreaseProductPrice before the call to list products,
as shown highlighted in the following code:

if (IncreaseProductPrice("Bob", 20M))

{

WriteLine ("Update product price successful.");

}
ListProducts () ;

Run the console application, view the result, and note that the existing entity
for Bob's Burgers has increased in price by $20, as shown in the following
output:

Update product price successful.

ID Product Name Cost Stock Disc.
078 Bob's Burgers $520.00 False
038 Cbéte de Blaye $263.50 17 False

Deleting entities

Now let's see how to delete a row from a table.

1.

In Program, import System.Collections.Generic, and then add a method
to delete all products with a name that begins with Bob, as shown in the
following code:

static int DeleteProducts (string name)

{

using (var db = new Northwind())

{

IEnumerable<Product> products = db.Products.Where (
p => p.ProductName.StartsWith (name)) ;

db.Products.RemoveRange (products) ;

int affected = db.SaveChanges|() ;
return affected;

}
}

You can remove individual entities with the Remove method. RemoveRange is
more efficient when you want to delete multiple entities.

In Main, comment the whole if statement block that calls
IncreaseProductPrice, and add a call to DeleteProducts, as shown

highlighted in the following code:

[390]

Working with Databases Using Entity Framework Core | 11

int deleted = DeleteProducts ("Bob") ;
WriteLine ($"{deleted} product(s) were deleted.");

ListProducts() ;

3. Run the console application and view the result, as shown in the following

output:

1 product (s) were deleted.

ID Product Name Cost Stock Disc.
038 Cbéte de Blaye $263.50 17 False
020 Sir Rodney's Marmalade $81.00 40 False

If multiple product names started with Bob, then they are all deleted. As an optional
challenge, uncomment the statements to add three new products that start with Bob
and then delete them.

Pooling database contexts

The Dbcontext class is disposable and is designed following the single-unit-of-work
principle. In the previous code examples, we created all the DbContext-derived
Northwind instances in a using block.

A feature of ASP.NET Core that is related to EF Core is that it makes your code more
efficient by pooling database contexts when building web applications and web
services.

This allows you to create and dispose of as many DbContext-derived objects as you
want, knowing your code is still very efficient.

More Information: You can read more about pooling database

‘ p/ contexts at the following link: https://docs.microsoft.com/
en-us/ef/core/what-is-new/ef-core-2.0#dbcontext-
pooling

Transactions

Every time you call the saveChanges method, an implicit transaction is started so
that if something goes wrong, it would automatically roll back all the changes. If the
multiple changes within the transaction succeed, then the transaction and all changes
are committed.

Transactions maintain the integrity of your database by applying locks to prevent
reads and writes while a sequence of changes is occurring.

[391]

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.0#dbcontext-pooling
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.0#dbcontext-pooling
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.0#dbcontext-pooling

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Transactions are ACID, which is an acronym explained in the following list:

A is for atomic. Either all the operations in the transaction commit, or none of
them do.

C is for consistent. The state of the database before and after a transaction is
consistent. This is dependent on your code logic; for example, when transferring
money between bank accounts it is up to your business logic to ensure that if
you debit $100 in one account, you credit $100 in the other account.

Iis for isolated. During a transaction, changes are hidden from other processes.
There are multiple isolation levels that you can pick from (refer to the following
table). The stronger the level, the better the integrity of the data. However, more
locks must be applied, which will negatively affect other processes. Snapshot is
a special case because it creates multiple copies of rows to avoid locks, but this
will increase the size of your database while transactions occur.

D is for durable. If a failure occurs during a transaction, it can be recovered.
This is often implemented as a two-phase commit and transaction logs. The
opposite of durable is volatile.

Isolation level Lock(s) ;rlllt(firelgy problems
Dirty reads,

ReadUncommitted |None nonrepeatable
reads, and

phantom data

ReadCommitted other users from reading the record(s) until | reads and phantom

When editing, it applies read lock(s) to block | Nonrepeatable

the transaction ends data

RepeatableRead | other users from editing the record(s) until | Phantom data

When reading, it applies edit lock(s) to block

the transaction ends

Serializable action that would affect the results, None

Applies key-range locks to prevent any

including inserts and deletes

Snapshot None None

Defining an explicit transaction

You can control explicit transactions using the Database property of the database
context.

1.

Import the following namespace in Program. cs to use the
IDbContextTransaction interface:

[392]

Working with Databases Using Entity Framework Core | 11

using Microsoft.EntityFrameworkCore.Storage;

2. Inthe DeleteProducts method, after the instantiation of the db variable,
add the following highlighted statements to start an explicit transaction
and output its isolation level. At the bottom of the method, commit the
transaction, and close the brace, as shown in the following code:

static int DeleteProducts (string name)

{

using (var db = new Northwind())

{

using (IDbContextTransaction t = db.Database.
BeginTransaction())

{

WriteLine ("Transaction isolation level: {0}",
t.GetDbTransaction () .IsolationLevel) ;

var products = db.Products.Where (
p => p.ProductName.StartsWith (name)) ;

db.Products.RemoveRange (products) ;

int affected = db.SaveChanges|() ;
t.Commit () ;
return affected;

}
}
}

3. Run the console application and view the result, as shown in the following
output:

Transaction isolation level: Serializable

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with deeper research.

Exercise 11.1 — Test your knowledge

Answer the following questions:

1. What type would you use for the property that represents a table, for
example, the Products property of a database context?

[393]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2. What type would you use for the property that represents a one-to-many
relationship, for example, the Products property of a Category entity?

What is the EF Core convention for primary keys?

When would you use an annotation attribute in an entity class?

Why might you choose the Fluent API in preference to annotation attributes?
What does a transaction isolation level of Serializable mean?

What does the DbContext . SaveChanges () method return?

What is the difference between eager loading and explicit loading?

0 X N oW

How should you define an EF Core entity class to match the following table?

CREATE TABLE Employees (
EmpID INT IDENTITY,
FirstName NVARCHAR (40) NOT NULL,
Salary MONEY

)

10. What benefit do you get from declaring entity navigation properties as
virtual?

Exercise 11.2 — Practice exporting data using
different serialization formats

Create a console application named Exercise02 that queries the Northwind
database for all the categories and products, and then serializes the data using at
least three formats of serialization available to .NET Core.

Which format of serialization uses the least number of bytes?

Exercise 11.3 — Explore the EF Core
documentation

Use the following link to read more about the topics covered in this chapter:

https://docs.microsoft.com/en-us/ef/core/index

Summary

In this chapter, you learned how to connect to a database, how to execute a simple
LINQ query and process the results, how to add, modify, and delete data, and how
to build entity data models for an existing database, such as Northwind. In the next
chapter, you will learn how to write more advanced LINQ queries to select, filter,
sort, join, and group.

[394]

https://docs.microsoft.com/en-us/ef/core/index
https://docs.microsoft.com/en-us/ef/core/index

Chapter 12

Querying and Manipulating
Data Using LINQ

This chapter is about Language INtegrated Query (LINQ), a set of language
extensions that add the ability to work with sequences of items and then filter,
sort, and project them into different outputs.

This chapter will cover the following topics:

Writing LINQ queries

Working with sets using LINQ

Using LINQ with EF Core

Sweetening LINQ syntax with syntactic sugar
Using multiple threads with parallel LINQ
Creating your own LINQ extension methods
Working with LINQ to XML

Writing LINQ queries
Although we wrote a few LINQ queries in Chapter 11, Working with Databases Using

Entity Framework Core, they weren't the focus, and so I didn't properly explain how
LINQ works, but let's now take time to properly understand them.

LINQ has several parts; some are required, and some are optional:

Extension methods (required): These include examples such as wWhere,
OrderBy, and Select. These are what provide the functionality of LINQ.

LINQ providers (required): These include LINQ to Objects, LINQ to Entities,
LINQ to XML, LINQ to OData, and LINQ to Amazon. These are what
convert standard LINQ operations into specific commands for different types
of data.

[395]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

* Lambda expressions (optional): These can be used instead of named
methods to simplify LINQ extension method calls.

* LINQ query comprehension syntax (optional): These include from, in,
where, orderby, descending, and select. These are C# keywords that are
aliases for some of the LINQ extension methods, and their use can simplify
the queries you write, especially if you already have experience with other
query languages, such as Structured Query Language (SQL).

When programmers are first introduced to LINQ, they often believe that LINQ query
comprehension syntax is LINQ, but ironically, that is one of the parts of LINQ that is
optional!

Extending sequences with the Enumerable
class

The LINQ extension methods, such as Wwhere and Select, are appended by the
Enumerable static class to any type, known as a sequence, that implements
IEnumerable<T>.

For example, an array of any type implements the IEnumerable<T> class,
where T is the type of item in the array, so all arrays support LINQ to query and
manipulate them.

All generic collections, such as List<T>, Dictionary<TKey, TValues>, Stack<T>,
and Queue<T>, implement IEnumerable<T>, so they can be queried and manipulated
with LINQ.

Enumerable defines more than 45 extension methods, as summarized in the
following table:

Method(s) Description
First, FirstOrDefault, Last, Gets the first or last item in the sequence or returns
LastOrDefault the default value for the type, for example, 0 for an

int, null for a reference type, if there is no first
or last item.

Where Returns a sequence of items that match a specified
filter.
Single, SingleOrDefault Returns an item that matches a specific filter

or throws an exception, or returns the default
value for the type, if there is not exactly one match.

[396]

Querying and Manipulating Data Using LINQ | 12

ElementAt,
ElementAtOrDefault

Returns an item at a specified index position or
throws an exception, or returns the default value for
the type, if there is not an item at that position.

Select, SelectMany

Projects items into a different shape, that is, type, and
flattens a nested hierarchy of items.

OrderBy, OrderByDescending,
ThenBy, ThenByDescending

Sorts items by a specified property.

Reverse

Reverses the order of items.

GroupBy, GroupJoin, Join

Group and join sequences.

Skip, SkipWhile

Skip a number of items or skip while an expression is
true.

Take, TakeWhile

Take a number of items or take while an expression is
true.

Aggregate, Average, Count,
LongCount, Max, Min, Sum

Calculates aggregate values.

All, Any, Contains

Returns true if all or any of the items match the
filter, or if the sequence contains a specified item.

Cast

Converts items into a specified type.

OfType

Removes items that do not match a specified type.

Except, Intersect, Union

Performs operations that return sets. Sets cannot
have duplicate items. Although the inputs of these
methods can be any sequence so can have duplicates,
the result is always a set.

Append, Concat, Prepend

Performs sequence combining operations.

Zip Performs a match operation based on the position of
items.
Distinct Removes duplicate items from the sequence.

ToArray, ToList,
ToDictionary, ToLookup

Convert the sequence into an array or collection.

Filtering entities with Where

The most common reason for using LINQ is to filter items in a sequence using the
Where extension method. Let's explore filtering by defining a sequence of names and
then applying LINQ operations on it.

1. Inthe code folder, create a folder named Chapteri12, with a subfolder named

LingWithObjects.

2. In Visual Studio Code, save a workspace as Chapterl2.code-workspace in

the chapteri2 folder.

[397]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Add the folder named LingWithObjects to the workspace.
Navigate to Terminal | New Terminal.

5. In Terminal, enter the following command:

dotnet new console

6. In Program.cs, add a LingWithArrayofstrings method, which defines an
array of string values and then attempts to call the where extension method
on it, as shown in the following code:

static void LingWithArrayOfStrings ()

var names = new string[] { "Michael", "Pam", "Jim", "Dwight",
"Angela", "Kevin", "Toby", "Creed" };
var query = names.

7. Asyou type the where method, note that it is missing from the IntelliSense
list of members of a string array, as shown in the following screenshot:

‘ Code File Edit Selection View Go Debug Terminal Window Help

[@ Program.cs — LingWithObjects
@ XPLORER O Program.cs X L
4 DPEN EDITORS 1 using System; -
O % O Progrin.cs 2 2 @ GetUpperBound
7~ 3 namespace LingWithODbject [GetValue
4 LINQWITHOBJECTS 2 { I::f Initialize
- 4
V » .vscode M IsFixedSize
& * bin 5 class Program A TsReadOnly I
5 obj 6 { A IsSynchronized
2
|.¥} ® LingWithQbjects csproj L & Length
L 7 static void LingWith J& LonglLength
¢ Program.cs 2 B { J Rank
sse 9 var names = new st [SetValue
18 “Angela", "Kevin S SyncRoot
11 7 ToString
12 var query = names.
'a » DUTLINE 13 ' e

b ILSPY DECOMPILED MEMBERS

Q240 [ALliveShare I LingWithObjects Ln12 Col26 Spaces:4 UTF-8 withBOM CRLF

This is because Where is an extension method. It does not exist on the array
type. To make the where extension method available, we must import the
System.Ling namespace.

8. Add the following statement to the top of the Program. cs file:

using System.Ling;

9. Retype the where method and note that the IntelliSense list shows many
more methods, including the extension methods added by the Enumerable
class, as shown in the following screenshot:

[398]

Querying and Manipulating Data Using LINQ | 12

® Code File Edit Selection View Go Debug Terminal Window Help
® @ Program,cs — LingWithObjects
@ EXPLORER € Program.cs X > m
4 OPEN EDITORS 1 using System;
s 5 2 using System.Ling;
p gram, 3 © Take
4 LINQWITHOBJECTS 4 namespace LingWithObject) Takelast
“‘; b yseode 5 {) TakeWhile
b hin : 3 ToArray i
» obj B class Program ﬁ’]ToDictmnary
l/‘,‘:‘ . . » 7 {) ToHashSet
il a LingWithObjects.csproj 9 ToList
C* Program.cs 2 8 static void LingWith @@ ToLookup
— 9 { [TaString
18 var names = new st (7 Union
11 "Angela®, “"Kevin) Where
12 0 Zip
ﬂ. Y QUTLINE 13 var query = namr“i:_l
b ILSPY DECOMPILED MEMBERS 14 }

a EEA 0 [%Live Share W LingWithObjects Ln13,Col 26 Spaces: 4 UTF-8with BOM CRLF C#

10. As you type the parentheses for the where method, IntelliSense tells us
that to call where, we must pass in an instance of a Func<string, bools>
delegate, as shown in the following screenshot:

B LgWITTOBIECTE Copra)
IEnumerable<string= IEnumerable<string=>.Where=string>
C© Program.cs 2 8 static void Line oonee) oSt HE ; 9 9
Funcestring, bool> predicate
9 {
12 var names = ne predicate: A function to test each element for a condition.
11 "angela”, " .
12 v-' Filters a sequence of values based on a predicate.
ERLL 13 var query = names.mlﬂ

11. Enter an expression to create a new instance of a Func<string, bools
delegate, and for now note that we have not yet supplied a method name
because we will define it in the next step, as shown in the following code:

var query = names.Where (new Func<string, bools())

The Func<string, bools> delegate tells us that for each string variable passed to
the method, the method must return a bool value. If the method returns true, it
indicates that we should include the string in the results, and if the method returns
false, it indicates that we should exclude it.

Targeting a named method

Let's define a method that only includes names that are longer than four characters.

1. Add a method to Program, as shown in the following code:

static bool NameLongerThanFour (string name)

{

return name.Length > 4;

[399]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2.

Back in the LingWithArrayofStrings method, pass the method's name into
the Func<string, bools delegate, and then loop through the query items,
as shown in the following code:

var query = names.Where (
new Func<string, bools (NameLongerThanFour)) ;

foreach (string item in query)

{

WriteLine (item) ;

}

In Main, call the LingWithArrayOfStrings method, run the console
application, and view the results, noting that only names longer than four
letters are listed, as shown in the following output:

Michael
Dwight
Angela
Kevin

Creed

Simplifying the code by removing the explicit
delegate instantiation

We can simplify the code by deleting the explicit instantiation of the Func<string,
bool> delegate because the C# compiler can instantiate the delegate for us.

1.

4.

To help you learn by seeing progressively improved code, copy and paste the
query.
Comment out the first example, as shown in the following code:

// var query = names.Where (
// new Func<string, bools (NameLongerThanFour)) ;

Modify the copy to remove the explicit instantiation of the delegate, as
shown in the following code:

var query = names.Where (NameLongerThanFour) ;

Rerun the application and note that it has the same behavior.

Targeting a lambda expression

We can simplify our code even further using a lambda expression in place of
a named method.

[400]

Querying and Manipulating Data Using LINQ | 12

Although it can look complicated at first, a lambda expression is simply a nameless
function. It uses the => (read as "goes to") symbol to indicate the return value.

1.

Copy and paste the query, comment the second example, and modify the
query, as shown in the following code:

var query = names.Where (name => name.Length > 4);

Note that the syntax for a lambda expression includes all the important parts
of the NameLongerThanFour method, but nothing more. A lambda expression
only needs to define the following;:

° The names of input parameters.

° Areturn value expression
The type of the name input parameter is inferred from the fact that the

sequence contains string values, and the return type must be a bool value for
Where to work, so the expression after the => symbol must return a bool value.

The compiler does most of the work for us, so our code can be as concise as
possible.

Rerun the application and note that it has the same behavior.

Sorting entities

Other commonly used extension methods are 0rderBy and ThenBy, used for sorting
a sequence.

Extension methods can be chained if the previous method returns another sequence,
that is, a type that implements the IEnumerable<T> interface.

Sorting by a single property using OrderBy

Let's continue working with the current project to explore sorting.

1.

Append a call to orderBy to the end of the existing query, as shown in the
following code:

var query = names
.Where (name => name.Length > 4)
.OrderBy (name => name.Length) ;

I
N 7/
@_ Good Practice: Format the LINQ statement so that each extension

’ method call happens on its own line to make them easier to read.

=
=

[401]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

2.

Rerun the application and note that the names are now sorted by shortest
first, as shown in the following output:

Kevin
Creed
Dwight
Angela
Michael

To put the longest name first, you would use orderByDescending.

Sorting by a subsequent property using ThenBy
We might want to sort by more than one property, for example, to sort names of the
same length in alphabetical order.

1.

Add a call to the ThenBy method at the end of the existing query, as shown
highlighted in the following code:
var query = names

.Where (name => name.Length > 4)

.OrderBy (name => name.Length)

.ThenBy (name => name) ;

Rerun the application and note the slight difference in the following sort
order. Within a group of names of the same length, the names are sorted
alphabetically by the full value of the string, so Creed comes before Kevin,
and Angela comes before Dwight, as shown in the following output:

Creed
Kevin
Angela
Dwight
Michael

Filtering by type

Where is great for filtering by values, such as text and numbers. But what if the
sequence contains multiple types, and you want to filter by a specific type and
respect any inheritance hierarchy?

Imagine that you have a sequence of exceptions. Exceptions have a complex
hierarchy, as shown in the following diagram:

[402]

Querying and Manipulating Data Using LINQ | 12

ISerializable
i 3 o
_Exception NotimplementedException v TimeoutException ¥
Class Class
Excepti A
.“EP i -+ SystemException =+ SystemException
Class = 2
0
4 Properties P
K Data FileNotFoundException ¥
& HelpLink I0Excepti S
ption <+ "
& HResult s “Jmmmm
F 4 InnerException =+ SystemException p -
F Message = | PathToolongException A
& source SystemException ¥ riuss
+ .
& StackTrace Class _JIOE)(cepmn
& Targetsite * Exceplion
2 FormatException ¥
4 Methods pay e
@ Exception (+ 3 overloads) =+ SystemException
@ GetBaseException ek
@ GetObjectData o]
@ GetType = ; 7 =
® Tostin NotSupportedException ¥ PlatformNotSupportedException ¥
- 9 Class l}— Class
4 Events '; SystemException ‘:) NotSuppartedException
¥, SeralizeObjectState - 4
e w. |
~
NullReferenceException ¥
Class
- + SystemException
ApplicationException b s DivideByZeroException ¥
Class Class
= Exception o | : = ArithmeticException
i ArithmeticException ¥ ad
Class 3
i W
e recepiion k1 OverflowException
\ C | Class
=+ ArithmeticException
2
?lkmmwh
(P ISerializable _ ArgumentOutOfRangeException ¥
Class
i W
LAIrliurnerltExcept:on 15 rgucnenexcption
£ | o
= SystemException =
= A g NullException W
Class
ArgumentException
“2

Let's explore filtering by type.

1. In Program, add a LingWithArrayOfExceptions method, which defines an
array of Exception-derived objects, as shown in the following code:

static void LingWithArrayOfExceptions ()

{

var errors = new Exception/[]
new ArgumentException(),
new SystemException(),
new IndexOutOfRangeException (),
new InvalidOperationException(),

[403]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

new NullReferenceException(),
new InvalidCastException(),
new OverflowException(),

new DivideByZeroException(),
new ApplicationException ()

bi
}

2. Write statements using the 0£Type<T> extension method to filter exceptions
that are not arithmetic exceptions and write them to the console, as shown in
the following code:

var numberErrors = errors.OfType<ArithmeticExceptions () ;

foreach (var error in numberErrors)

{

WriteLine (error) ;

}

3. Inthe Main method, comment out the call to the LingWithArrayOfStrings
method and add a call to the LingWithArrayOfExceptions method.

4. Run the console application and note that the results only include exceptions
of the ArithmeticException type, or the ArithmeticException-derived
types, as shown in the following output:

System.OverflowException: Arithmetic operation resulted in an
overflow.

System.DivideByZeroException: Attempted to divide by zero.

Working with sets and bags using LINQ

Sets are one of the most fundamental concepts in mathematics. A set is a collection of
one or more unique objects. A multiset or bag is a collection of one or more objects
that can have duplicates. You might remember being taught about Venn diagrams

in school. Common set operations include the intersect or union between sets.

Let's create a console application that will define three arrays of string values for
cohorts of apprentices and then perform some common set and multiset operations
on them.

1. Create a new console application project named LingWithSets, add it to the
workspace for this chapter, and select the project as active for OmniSharp.

2. Import the following additional namespaces:

using System.Collections.Generic; // for IEnumerable<T>
using System.Ling; // for LINQ extension methods

[404]

Querying and Manipulating Data Using LINQ | 12

In Program, before the Main method, add the following method that outputs
any sequence of string variables as a comma-separated single string to the
console output, along with an optional description:

static void Output (IEnumerable<strings> cohort,
string description = "")

if (!string.IsNullOrEmpty (description))

{

WriteLine (description) ;

}

Write(" ");
WriteLine (string.Join(", ", cohort.ToArray()));

}

In Main, add statements to define three arrays of names, output them, and
then perform various set operations on them, as shown in the following code:

var cohortl = new stringl[]

{ "Rachel", "Gareth", "Jonathan", "George" };
var cohort2 = new stringl[]

{ "Jack", "Stephen", "Daniel", "Jack", "Jared" };
var cohort3 = new stringl[]

{ "Declan", "Jack", "Jack", "Jasmine", "Conor" };

Output (cohortl, "Cohort 1");
Output (cohort2, "Cohort 2");
Output (cohort3, "Cohort 3");

WriteLine () ;

Output (cohort2.Distinct (), "cohort2.Distinct():");
WriteLine () ;

Output (cohort2.Union (cohort3), "cohort2.Union (cohort3):");
WriteLine () ;

Output (cohort2.Concat (cohort3), "cohort2.Concat (cohort3) :");
WriteLine () ;

Output (cohort2.Intersect (cohort3), "cohort2.Intersect (cohort3d):");
WriteLine () ;

Output (cohort2.Except (cohort3), "cohort2.Except (cohort3) :");
WriteLine () ;

Output (cohortl.Zip (cohort2, (cl, c2) => $"{cl} matched with {c2}"),
"cohortl.Zip (cohort2) : ") ;

Run the console application and view the results, as shown in the following
output:

Cohort 1

Rachel, Gareth, Jonathan, George
Cohort 2

Jack, Stephen, Daniel, Jack, Jared

[405]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Cohort 3

Declan, Jack, Jack, Jasmine, Conor

cohort2.Distinct () :

Jack, Stephen, Daniel, Jared

cohort2.Union (cohort3) :

Jack, Stephen, Daniel, Jared, Declan, Jasmine, Conor

cohort2.Concat (cohort3) :

Jack, Stephen, Daniel, Jack, Jared, Declan, Jack, Jack, Jasmine,
Conor

cohort2.Intersect (cohort3) :
Jack

cohort2.Except (cohort3) :
Stephen, Daniel, Jared

cohortl.Zip (cohort2) :

Rachel matched with Jack, Gareth matched with Stephen, Jonathan
matched with Daniel, George matched with Jack

With zip, if there are unequal numbers of items in the two sequences, then some
items will not have a matching partner. Those without a partner will not be included
in the result.

Using LINQ with EF Core

To learn about projection, it is best to have some more complex sequences to work
with, so in the next project, we will use the Northwind sample database.

1. Create a new console application project named LingWithEFCore, add
it to the workspace for this chapter, and select the project as active for
OmniSharp.

2. Modify the LingWithEFCore.csproj file, as shown highlighted in the
following markup:
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>

[406]

Querying and Manipulating Data Using LINQ | 12

<TargetFramework>netcoreapp3.0</TargetFramework>

</PropertyGroup>

<ItemGroup>
<PackageReference
Include="Microsoft.EntityFrameworkCore.Sqlite"
Version="3.0.0" />
</ItemGroup>

</Projects>

In Terminal, download the referenced package and compile the current
project, as shown in the following command:

dotnet build

Copy the Northwind. sql file into the LingWithEFCore folder, and then
use Terminal to create the Northwind database by executing the following
command:

sglite3 Northwind.db < Northwind.sqgl

Detailed instructions of how to create the Northwind database were in Chapter 11,
Working with Databases Using Entity Framework Core.

Building an EF Core model

Let's define an Entity Framework Core model to represent the database and tables
that we will work with. Your bbContext-derived class must have an overridden
method named onConfiguring. This will set the database connection string.

1.

Add three class files to the project named Northwind.cs, Category.cs, and
Product.cs.

Modify the class file named Northwind. cs, as shown in the following code:

using Microsoft.EntityFrameworkCore;

namespace Packt.Shared
{
// this manages the connection to the database
public class Northwind : DbContext
{
// these properties map to tables in the database
public DbSet<Category> Categories { get; set; }
public DbSet<Product> Products { get; set; }

[407]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

protected override void OnConfiguring (
DbContextOptionsBuilder optionsBuilder)

string path = System.IO.Path.Combine (

System.Environment.CurrentDirectory, "Northwind.db");

optionsBuilder.UseSqglite ($"Filename={path}");

}
3. Modify the class file named category.cs, as shown in the following code:

using System.ComponentModel.DataAnnotations;

namespace Packt.Shared

{

public class Category

{

public int CategoryID { get; set; }

[Required]
[StringLength (15)]
public string CategoryName { get; set; }

public string Description { get; set; }

}
}

4. Modity the class file named Product . cs, as shown in the following code:

using System.ComponentModel.DataAnnotations;

namespace Packt.Shared

{

public class Product

{
public int ProductID { get; set; }
[Required]

[StringLength (40)]

public string ProductName { get; set; }
public int? SupplierID { get; set; }

public int? CategoryID { get; set; }

[StringLength (20)]
public string QuantityPerUnit { get; set; }

[408]

Querying and Manipulating Data Using LINQ | 12

}

}

public decimal? UnitPrice { get; set; }
public short? UnitsInStock { get; set; }
public short? UnitsOnOrder { get; set; }
public short? ReorderLevel { get; set; }

public bool Discontinued { get; set; }

We have not defined relationships between the two entity classes. This is deliberate.
Later, you will use LINQ to join the two entity sets.

Filtering and sorting sequences

Now let's write statements to filter and sort sequences of rows from the tables.

1.

Open the Program. cs file and import the following type and namespaces:

using static System.Console;

using Packt.Shared;

using Microsoft.EntityFrameworkCore;

using System.Ling;

Create a method to filter and sort products, as shown in the following code:

static void FilterAndSort ()

{

using (var db = new Northwind())

{

var query = db.Products
.Where (product => product.UnitPrice < 10M)
// IQueryable<Product>
.OrderByDescending (product => product.UnitPrice) ;

WriteLine ("Products that cost less than $10:");
foreach (var item in query)

{
WriteLine ("{0}: {1} costs {2:$#, ##0.00}",
item.ProductID, item.ProductName, item.UnitPrice) ;

}

WriteLine () ;

[409]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

DbSet<T> implements IQueryable<T>, which implements IEnumerable<T>, 5O
LINQ can be used to query and manipulate collections of entities in models built for
EF Core.

You might have also noticed that the sequences implement 1Queryable<T> (or
IorderedQueryable<T> after a call to an ordering LINQ method) instead of
IEnumerable<T> Or IO0OrderedEnumerable<T>.

This is an indication that we are using a LINQ provider that builds the query in
memory using expression trees. They represent code in a tree-like data structure and
enable the creation of dynamic queries, which is useful for building LINQ queries for
external data providers like SQLite.

More Information: You can read more about expression

\/V trees at the following link: https://docs.microsoft.com/

en-us/dotnet/csharp/programming-guide/concepts/
expression-trees/

The LINQ query will be converted into another query language, such as SQL.
Enumerating the query with foreach or calling a method such as ToArray will force
execution of the query.

1. InMain, call the FilterAndsSort method.

2. Run the console application and view the result, as shown in the following
output:

Products that cost less than $10:

41: Jack's New England Clam Chowder costs $9.65
45: Rogede sild costs $9.50

47: Zaanse koeken costs $9.50

19: Teatime Chocolate Biscuits costs $9.20
23: Tunnbrdd costs $9.00

75: Rhonbrau Klosterbier costs $7.75

54: Tourtiére costs $7.45

52: Filo Mix costs $7.00

13: Konbu costs $6.00

24: Guarana Fantéstica costs $4.50

33: Geitost costs $2.50

Although this query outputs the information we want, it does so inefficiently
because it gets all columns from the Products table instead of just the three columns
we need, which is the equivalent of the following SQL statement:

SELECT * FROM Products;

[410]

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/expression-trees/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/expression-trees/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/expression-trees/

Querying and Manipulating Data Using LINQ | 12

In Chapter 11, Working with Databases Using Entity Framework Core, you learned how
to log the SQL commands executed against SQLite to see this for yourself.

Projecting sequences into new types

Before we look at projection, we need to review object initialization syntax. If you
have a class defined, then you can instantiate an object using new, the class name,
and curly braces to set initial values for fields and properties, as shown in the
following code:

var alice = new Person

{

Name = "Alice Jones",
DateOfBirth = new DateTime (1998, 3, 7)

Vi

C# 3.0 and later allows instances of anonymous types to be instantiated, as shown in
the following code:

var anonymouslyTypedObject = new

{

Name = "Alice Jones",
DateOfBirth = new DateTime (1998, 3, 7)

Vi

Although we did not specify a type name, the compiler could infer an anonymous
type from the setting of two properties named Name and DateoOfBirth. This
capability is especially useful when writing LINQ queries to project an existing type
into a new type without having to explicitly define the new type. Since the type is
anonymous, this can only work with var-declared local variables.

Let's add a call to the select method to make the SQL command executed against
the database table more efficient by projecting instances of the Product class into
instances of a new anonymous type with only three properties.

1. InMain, modify the LINQ query to use the Select method to return only the
three properties (that is, table columns) that we need, as shown highlighted
in the following code:

var query = db.Products
.Where (product => product.UnitPrice < 10M) //
IQueryable<Products>

.OrderByDescending (product => product.UnitPrice)
// IOrderedQueryable<Products>
.Select (product => new // anonymous type

{

[411]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

product.ProductlD,
product.ProductName,
product.UnitPrice

}) s

2. Run the console application and confirm that the output is the same as
before.

Joining and grouping sequences

There are two extension methods for joining and grouping;:

* Join: This method has four parameters: the sequence that you want to
join with, the property or properties on the left sequence to match on, the
property or properties on the right sequence to match on, and a projection.

* GroupJoin: This method has the same parameters, but it combines the
matches into a group object with a Key property for the matching value and
an IEnumerable<T> type for the multiple matches.

Let's explore these methods when working with two tables: categories and products.

1. Create a method to select categories and products, join them and output
them, as shown in the following code:

static void JoinCategoriesAndProducts ()

{

using (var db = new Northwind())
{
// join every product to its category to return 77 matches
var queryJoin = db.Categories.Join(
inner: db.Products,
outerKeySelector: category => category.CategoryID,
innerKeySelector: product => product.CategoryID,
resultSelector: (c, p) =>
new { c.CategoryName, p.ProductName, p.ProductID });

foreach (var item in queryJoin)
WriteLine ("{0}: {1} is in {2}.",
arg0: item.ProductlID,
argl: item.ProductName,
arg2: item.CategoryName) ;

[412]

Querying and Manipulating Data Using LINQ | 12

In a join there are two sequences, outer and inner. In the previous example,
categories is the outer sequence and products is the inner sequence.

In Main, comment out the call to FilterandJoin and call
JoinCategoriesAndProducts.

Run the console application and view the results. Note that there is a single
line output for each of the 77 products, and the results show all products in
the Beverages category first, then the condiments category, and so on, as
shown in the following output:

1: Chai is in Beverages.

2: Chang is in Beverages.

24: Guarana Fantastica is in Beverages.

34: Sasquatch Ale is in Beverages.

35: Steeleye Stout is in Beverages.

38: Cbte de Blaye is in Beverages.

39: Chartreuse verte is in Beverages.

43: Ipoh Coffee is in Beverages.

67: Laughing Lumberjack Lager is in Beverages.

70: Outback Lager is in Beverages.

75: Rhonbrau Klosterbier is in Beverages.

76: Lakkalik&édri is in Beverages.

3: Aniseed Syrup is in Condiments.

4: Chef Anton's Cajun Seasoning is in Condiments.

At the end of the existing query, call the orderBy method to sort by
ProductID, as shown in the following code:

.OrderBy (cp => cp.ProductID) ;

Rerun the application and view the results, as shown in the following output
(edited to only include the first 10 items):

Chai is in Beverages.

Chang is in Beverages.

Aniseed Syrup is in Condiments.

Chef Anton's Cajun Seasoning is in Condiments.

1
2
3
4
5: Chef Anton's Gumbo Mix is in Condiments.
6: Grandma's Boysenberry Spread is in Condiments.
7: Uncle Bob's Organic Dried Pears is in Produce.
8: Northwoods Cranberry Sauce is in Condiments.

9: Mishi Kobe Niku is in Meat/Poultry.

1

0: Ikura is in Seafood.

[413]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

6. Create a method to group and join, show the group name, and then show all
the items within each group, as shown in the following code:

static void GroupJdoinCategoriesAndProducts ()

{

using (var db = new Northwind())
{
// group all products by their category to return 8 matches
var queryGroup = db.Categories.AsEnumerable () .GroupJdoin (
inner: db.Products,
outerKeySelector: category => category.CategoryID,
innerKeySelector: product => product.CategoryID,
resultSelector: (c, matchingProducts) => new {
c.CategoryName,
Products = matchingProducts.OrderBy (p => p.ProductName)

I3F;

foreach (var item in queryGroup)

{

WriteLine ("{0} has {1} products.",
arg0: item.CategoryName,
argl: item.Products.Count()) ;

foreach (var product in item.Products)

{

}
}

WriteLine ($" {product.ProductName}") ;

}
}

If we had not called the AsEnumerable method, then a runtime exception is
thrown, as shown in the following output:

Unhandled exception. System.NotImplementedException: The method or
operation is not implemented.

at Microsoft.EntityFrameworkCore.Relational.Query.Pipeline.
RelationalQueryableMethodTranslatingExpressionVisitor.Translat
eGroupJdoin (ShapedQueryExpression outer, ShapedQueryExpression
inner, LambdaExpression outerKeySelector, LambdaExpression
innerKeySelector, LambdaExpression resultSelector)

This is because not all LINQ extension methods can be converted from
expression trees into other query syntax like SQL. In these cases, we

can convert from IQueryable<T> to IEnumerable<T> by calling the
AsEnumerable method, which forces query processing to use LINQ to EF
Core only to bring the data into the application and then use LINQ to Objects
to execute more complex processing in-memory. But, often, this is less
efficient.

[414]

Querying and Manipulating Data Using LINQ | 12

7. InMain, comment the previous method call and call
GroupJoinCategoriesAndProducts

8. Rerun the console application, view the results, and note that the products
inside each category have been sorted by their name, as defined in the query
and shown in the following partial output:

Beverages has 12 products.
Chai
Chang
Chartreuse verte
Coéte de Blaye
Guarand Fantéastica
Ipoh Coffee
Lakkalikddri
Laughing Lumberjack Lager
Outback Lager
Rhoénbrau Klosterbier
Sasquatch Ale
Steeleye Stout

Condiments has 12 products.
Aniseed Syrup
Chef Anton's Cajun Seasoning
Chef Anton's Gumbo Mix

Aggregating sequences
There are LINQ extension methods to perform aggregation functions, such as

Average and Sum. Let's write some code to see some of these methods in action
aggregating information from the Products table.

1. Create a method to show the use of the aggregation extension methods, as
shown in the following code:

static void AggregateProducts ()

{

using (var db = new Northwind())

{
WriteLine ("{0,-25} {1,10}",
arg0: "Product count:",
argl: db.Products.Count()) ;

WriteLine ("{0,-25} {1,10:$#,##0.00}",
arg0: "Highest product price:",
argl: db.Products.Max(p => p.UnitPrice));

WriteLine("{0,-25} {1,10:N0}",

[415]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

arg0: "Sum of units in stock:",
argl: db.Products.Sum(p => p.UnitsInStock));

WriteLine("{0,-25} {1,10:N0}",
arg0: "Sum of units on order:",
argl: db.Products.Sum(p => p.UnitsOnOrder)) ;

WriteLine ("{0,-25} {1,10:$#,##0.00}",
arg0: "Average unit price:",
argl: db.Products.Average (p => p.UnitPrice));

WriteLine ("{0,-25} {1,10:$#,##0.00}",
arg0: "Value of units in stock:",
argl: db.Products.AsEnumerable ()
.Sum(p => p.UnitPrice * p.UnitsInStock));

}
}

In Main, comment the previous method and call AggregatepProducts.

Run the console application and view the result, as shown in the following

output:

Product count: 77
Highest product price: $263.50
Sum of units in stock: 3,119
Sum of units on order: 780
Average unit price: $28.87

Value of units in stock: $74,050.85

In Entity Framework Core 3.0 and later, LINQ operations that cannot be translated to
SQL are no longer automatically evaluated on the client side, so you must explicitly
call AsEnumerable to force further processing of the query on the client.

More Information: You can learn more about this breaking

C’ change at the following link: https://docs.microsoft.com/
&

en-us/ef/core/what-is-new/ef-core-3.0/breaking-
changes-ling-queries-are-no-longer-evaluated-on-
the-client

Sweetening LINQ syntax with syntactic
sugar

C# 3.0 introduced some new language keywords in 2008 in order to make it easier
for programmers with experience with SQL to write LINQ queries. This syntactic
sugar is sometimes called the LINQ query comprehension syntax.

[416]

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-3.0/breaking-changes
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-3.0/breaking-changes
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-3.0/breaking-changes
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-3.0/breaking-changes

Querying and Manipulating Data Using LINQ | 12

More Information: The LINQ query comprehension syntax is
limited in functionality. It only provides C# keywords for the
, most commonly used LINQ features. You must use extension
\/§Q> methods to access all the features of LINQ. You can read more
about why it is called comprehension syntax at the following
link: https://stackoverflow.com/questions/6229187/
ling-why-is-it-called-comprehension-syntax

Consider the following array of string values:

var names = new string[] { "Michael", "Pam", "Jim", "Dwight",
"Angela", "Kevin", "Toby", "Creed" };

To filter and sort the names, you could use extension methods and lambda
expressions, as shown in the following code:

var query = names
.Where (name => name.Length > 4)
.OrderBy (name => name.Length)
.ThenBy (name => name) ;

Or you could achieve the same results by using query comprehension syntax, as
shown in the following code:

var query = from name in names
where name.Length > 4
orderby name.Length, name
select name;

The compiler changes the query comprehension syntax to the equivalent extension
methods and lambda expressions for you.

The select keyword is always required for LINQ query comprehension syntax. The
Select extension method is optional when using extension methods and lambda
expressions because the whole item is implicitly selected.

Not all extension methods have a C# keyword equivalent, for example, the skip and
Take extension methods, which are commonly used to implement paging for lots of
data.

A query that skips and takes cannot be written using only the query comprehension
syntax so we could write the query using all extension methods, as shown in the
following code:

var query = names
.Where (name => name.Length > 4)
.Skip(80)
.Take (10) ;

[417]

https://stackoverflow.com/questions/6229187/linq-why-is-it-called-comprehension-syntax
https://stackoverflow.com/questions/6229187/linq-why-is-it-called-comprehension-syntax

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Or, you can wrap query comprehension syntax in parentheses and then switch to
using extension methods, as shown in the following code:

var query = (from name in names
where name.Length > 4
select name)

.Skip (80)
.Take (10) ;
L, Good Practice: Learn both extension methods with lambda
@ expressions and the query comprehension syntax ways of writing
L LINQ queries, because you are likely to have to maintain code that
= uses both.

Using multiple threads with parallel LINQ

By default, only one thread is used to execute a LINQ query. Parallel LINQ (PLINQ)
is an easy way to enable multiple threads to execute a LINQ query.

\@/ Good Practice: Do not assume that using parallel threads will

- improve the performance of your applications. Always measure

4 . .
= real-world timings and resource usage.

N\

Creating an app that benefits from multiple
threads

To see it in action, we will start with some code that only uses a single thread to
square 200 million integers. We will use the Stopwatch type to measure the change
in performance.

We will use operating system tools to monitor CPU and CPU core usage. If you do
not have multiple CPUs or at least multiple cores, then this exercise won't show
much!

1. Create a new console application project named LingInParallel, add
it to the workspace for this chapter, and select the project as active for
OmniSharp.

2. Import the System.Diagnostics namespace so that we can use the
StopWatch type; System.Collections.Generic so that we can use the
IEnumerable<T> type, System.Ling so that we can use LINQ; and statically
import the System. Console type.

[418]

Querying and Manipulating Data Using LINQ | 12

3. Add statements to Main to create a stopwatch to record timings, wait for
a key press before starting the timer, create 200 million integers, square each
of them, stop the timer, and display the elapsed milliseconds, as shown in the
following code:

var watch = Stopwatch.StartNew() ;
Write ("Press ENTER to start: ");
ReadLine () ;

watch.Start () ;

IEnumerable<int> numbers = Enumerable.Range (1, 200 _000_000) ;
var squares = numbers.Select (number => number * number) .ToArray() ;

watch.Stop () ;
WriteLine ("{0:#,##0} elapsed milliseconds.",
watch.ElapsedMilliseconds) ;

4. Run the console application, but do not press Enter to start yet.

Using Windows 10

1. If you are using Windows 10, then right-click on the Windows Start button
or press Ctrl + Alt + Delete, and then click on Task Manager.

2. At the bottom of the Task Manager window, click on the More details
button. At the top of the Task Manager window, click on the Performance
tab.

3. Right-click on the CPU Utilization graph, choose Change graph to, and then
select Logical processors.

Using macOS
1. If you are using macOS, then launch Activity Monitor.
2. Navigate to View | Update Frequency | Very often (1 sec).
3. To see the CPU graphs, navigate to Window | CPU History.

For all operating systems

1. Rearrange Task Manager or CPU History or your Linux tool and Visual
Studio Code so that they are side by side.

2. Wait for the CPUs to settle and then press Enter to start the stopwatch and
run the query.

[419]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

The result should be an amount of elapsed milliseconds, as shown in the
following output and screenshot:

Press ENTER to start.
173,689 elapsed milliseconds.

® Code File FEdit Selection View Go Debug Terminal Window Help
L L] Program.cs — LINGinParallel

@ C' Program.cs X » M - '

using System;

using sta
3 using S
4 using Sy
5
i

using System.Ling;

namespace LINQinParallel

CH o
) 11 static veid Main{stringl] args)
/& 12 {
13 var watch = Stopwatch.StartNew();
r 14 Write("Press ENTER to start: “);
ﬂ% - et ot
FROBLEMS OUTPUT DEBUG CONSOLE TERMIMAL 1: bash o4+ M B ~ %
ok-Pro-13:LINGinParallel markjprices dotmet runm

o start:
- =d milliseconds.
Marks-MacBook-Pro-13: LINQinParallel markjprices]

@0 A0 [ALive Share B LiNGinParalle] Ln 18, Col 51 Spaces:2 UTF-BwithBOM CRLF C¢ @ A

The Task Manager or CPU History windows should show that one or two
CPUs were used the most. Others may execute background tasks at the
same time, such as the garbage collector, so the other CPUs or cores won't be
completely flat, but the work is certainly not being evenly spread among all
the possible CPUs or cores.

3. InMain, modify the query to make a call to the Asparallel extension
method, as shown in the following code:

var squares = numbers.AsParallel ()
.Select (number => number * number) .ToArray () ;

Run the application again.

Wait for the Task Manager or CPU History windows to settle and then press
Enter to start the stopwatch and run the query. This time, the application
should complete in less time (although it might not be as less as you might
hope for —managing those multiple threads takes extra effort!):

Press ENTER to start.

145,904 elapsed milliseconds.

[420]

Querying and Manipulating Data Using LINQ | 12

6. The Task Manager or CPU History windows should show that all CPUs
were used equally to execute the LINQ query, as shown in the following
screenshot:

_ﬂ Code File Edit Selection WView Go Debug Terminal Window Help
@ @ Program.cs — LINGinParallel

C Program.cs X » @
var watch = Stopwatch.StartNew();
Write("Press ENTER to start: ");

ine();

Res

16 watch.Starti);

: numerable<int> numbers Enumerable.Range(1l, 200_g08_aaa);

¢

20 /f war squares = numbers

21 /f .Select(number == number + 2}.ToArray{); .
23 var squares = numbers.AsParallel(}

24 slect {number == number % 2).ToArray();

25

opl);
ne{"{@:#,##0} elapsed milliseconds.",
watch. ElapsedMillisecond

1: hash s 4+ M B ~ %

Marks-MacBook-Pro-13:LINQinParallel markjprices dotnet run
Press ENTER to start:
173,689 elapsed mill
Marks-MacBook-Pro-13
Press ENTER to start:

145,994 elapsed milliseconds. |
Marks-MacBook—Pro-13:LINOinParallel markjprices |

nds.
inParallel markjprice$ dotnet run

@0 A0 [ZLive Share I LINGinParallel Ln 25 Col1 Spaces:2 UTF-BwithBOM CRLF C¢ @ A

You will learn more about managing multiple threads in Chapter 13, Improving
Performance and Scalability Using Multitasking.

Creating your own LINQ extension
methods

In Chapter 6, Implementing Interfaces and Inheriting Classes, you learned how to create
your own extension methods. To create LINQ extension methods, all you must do is
extend the IEnumerable<T> type.

L Good Practice: Put your own extension methods in a separate class
'@' library so that they can be easily deployed as their own assembly or
£ NuGet package.

We will look at the Average extension method as an example. Any school child will
tell you that average can mean one of three things:

* Mean: Sum the numbers and divide by the count.

[421]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

¢ Mode: The most common number.

¢ Median: The number in the middle of the numbers when ordered.

Microsoft's implementation of the Average extension method calculates the mean.
We might want to define our own extension methods for Mode and Median.

1. Inthe LingWithEFCore project, add a new class file named
MyLingExtensions.cs

2. Modify the class, as shown in the following code:

using System.Collections.Generic;

namespace System.Ling

{

public static class MyLingExtensions
// this is a chainable LINQ extension method
public static IEnumerable<T> ProcessSequence<T> (
this IEnumerable<T> sequence)

// you could do some processing here
return sequence;

}

// these are scalar LINQ extension methods

public static int? Median(this IEnumerable<int?> sequence)
var ordered = sequence.OrderBy(item => item);
int middlePosition = ordered.Count () / 2;
return ordered.ElementAt (middlePosition) ;

}

public static int? Median<Ts>(
this IEnumerable<T> sequence, Func<T, int?> selector)

}

return sequence.Select (selector) .Median() ;

public static decimal? Median(
this IEnumerable<decimal?> sequence)
{

var ordered = sequence.OrderBy(item => item);
int middlePosition = ordered.Count() / 2;
return ordered.ElementAt (middlePosition) ;

}

public static decimal? Median<Ts> (

[422]

Querying and Manipulating Data Using LINQ | 12

this IEnumerable<T> sequence, Func<T, decimal?> selector)

{
}

public static int? Mode (this IEnumerable<int?> sequence)

{

return sequence.Select (selector) .Median() ;

var grouped = sequence.GroupBy(item => item) ;
var orderedGroups = grouped.OrderBy (group => group.Count()) ;
return orderedGroups.FirstOrDefault () .Key;

}

public static int? Mode<Ts> (
this IEnumerable<T> sequence, Func<T, int?> selector)

{

return sequence.Select (selector) .Mode() ;

}

public static decimal? Mode (
this IEnumerable<decimal?> sequence)
var grouped = sequence.GroupBy(item => item);
var orderedGroups = grouped.OrderBy (group => group.Count ()) ;
return orderedGroups.FirstOrDefault () .Key;

}

public static decimal? Mode<T> (
this IEnumerable<T> sequence, Func<T, decimal?> selector)

{

return sequence.Select (selector) .Mode () ;

}
}
}

If this class was in a separate class library, to use your LINQ extension
methods, you simply need to reference the class library assembly because the
System.Ling namespace is often already imported.

In Program.cs, in the FilterAndSort method, modify the LINQ query for
Products to call your custom chainable extension method, as shown in the
following code:

var query = db.Products
.ProcessSequence ()
.Where (product => product.UnitPrice < 10M)
.OrderByDescending (product => product.UnitPrice)
.Select (product => new

{

product .ProductID,

[423]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

4.

product .ProductName,
product.UnitPrice

3N

In the Main method, uncomment the FilterandSort method and comment
out any calls to other methods.

Run the console application and note that you see the same output as before
because your method doesn't modify the sequence. But you now know how
to extend LINQ with your own functionality.

Create a method to output the mean, median, and mode, for UnitsInStock
and UnitPrice for products, using your custom extension methods and the
built-in Average extension method, as shown in the following code:

static void CustomExtensionMethods ()

{

using (var db = new Northwind())

{

WriteLine ("Mean units in stock: {0:NO}",
db.Products.Average (p => p.UnitsInStock)) ;

WriteLine ("Mean unit price: {0:$#,##0.00}",
db.Products.Average (p => p.UnitPrice)) ;

WriteLine ("Median units in stock: {0:NO}",
db.Products.Median(p => p.UnitsInStock)) ;

WriteLine ("Median unit price: {0:$#,##0.00}",
db.Products.Median(p => p.UnitPrice));

WriteLine ("Mode units in stock: {0:NO}",
db.Products.Mode (p => p.UnitsInStock)) ;

WriteLine ("Mode unit price: {0:$#,##0.00}",
db.Products.Mode (p => p.UnitPrice)) ;

}
}

In Main, comment any previous method calls and call
CustomExtensionMethods

Run the console application and view the result, as shown in the following
output:

Mean units in stock: 41
Mean unit price: $28.87
Median units in stock: 26
Median unit price: $19.50
Mode units in stock: 13
Mode unit price: $22.00

[424]

Querying and Manipulating Data Using LINQ | 12

Working with LINQ to XML

LINQ to XML is a LINQ provider that allows you to query and manipulate XML.

Generating XML using LINQ to XML

Let's create a method to convert the Products table into XML.

1. InProgram.cs, import the System.Xml.Ling namespace.

2. Create a method to output the products in XML format, as shown in the
following code:

static void OutputProductsAsXml ()

{

using (var db = new Northwind())

{

var productsForXml = db.Products.ToArray () ;

var xml = new XElement ("products",
from p in productsForXml
select new XElement ("product",
new XAttribute ("id", p.ProductID),
new XAttribute ("price", p.UnitPrice),
new XElement ("name", p.ProductName))) ;

WriteLine (xml.ToString()) ;

}
}

3. InMain, comment the previous method call and call outputProductsAsxml.

Run the console application, view the result, and note that the structure of
the XML generated matches the elements and attributes that the LINQ to
XML statement declaratively described in the preceding code, as shown in
the following partial output:

<products>
<product id="1" price="18">
<name>Chai</name>
</product>
<product id="2" price="19">
<name>Chang</name>

</product>

[425]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Reading XML using LINQ to XML

You might want to use LINQ to XML to easily query or process XML files.

In the LingWithEFCore project, add a file named settings.xml.
Modify its contents, as shown in the following markup:
<?xml version="1.0" encoding="utf-8" ?>
<appSettingss>
<add key="color" value="red" />
<add key="size" value="large" />

<add key="price" value="23.99" />
</appSettings>

3. Create a method to complete these tasks:
° Load the XML file.

o

Use LINQ to XML to search for an element named appSettings and
its descendants named add.

Project the XML into an array of an anonymous type with a Key and
Value property.

Enumerate through the array to show the results:

static void ProcessSettings ()

{

XDocument doc = XDocument.Load("settings.xml") ;

var appSettings = doc.Descendants ("appSettings")
.Descendants ("add")
.Select (node => new
{
Key = node.Attribute ("key") .Value,
Value = node.Attribute("value") .Value
}) .ToArray () ;

foreach (var item in appSettings)

{

}
}

WriteLine ($"{item.Key}: {item.vValue}");

In Main, comment the previous method call and call ProcessSettings.

5. Run the console application and view the result, as shown in the following
output:

color: red
size: large
price: 23.99

[426]

Querying and Manipulating Data Using LINQ | 12

Practicing and exploring

Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore with deeper research into the topics covered in
this chapter.

Exercise 12.1 — Test your knowledge

Answer the following questions:

1. What are the two required parts of LINQ?

2. Which LINQ extension method would you use to return a subset of
properties from a type?

3. Which LINQ extension method would you use to filter a sequence?
List five LINQ extension methods that perform aggregation.

What is the difference between the select and SelectMany extension
methods?

6. What is the difference between IEnumerable<T> and IQueryable<T>? and
how do you switch between them

7. What does the last type parameter in the generic Func delegates represent?
8. What is the benefit of a LINQ extension method that ends with orbefault?
9. Why is query comprehension syntax optional?

10. How can you create your own LINQ extension methods?

Exercise 12.2 — Practice querying with LINQ

Create a console application, named Exercise02, that prompts the user for a city
and then lists the company names for Northwind customers in that city, as shown in
the following output:

Enter the name of a city: London
There are 6 customers in London:
Around the Horn

B's Beverages

Consolidated Holdings

Eastern Connection

North/South

Seven Seas Imports

[427]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Then, enhance the application by displaying a list of all unique cities that customers
already reside in as a prompt to the user before they enter their preferred city, as
shown in the following output:

Aachen, Albuquerque, Anchorage, Arhus, Barcelona, Barquisimeto,
Bergamo, Berlin, Bern, Boise, Bracke, Brandenburg, Bruxelles,
Buenos Aires, Butte, Campinas, Caracas, Charleroi, Cork, Cowes,
Cunewalde, Elgin, Eugene, Frankfurt a.M., Genéve, Graz, Helsinki,
I. de Margarita, Kirkland, Kobenhavn, K&ln, Lander, Leipzig,
Lille, Lisboa, London, Luled, Lyon, Madrid, Mannheim, Marseille,
México D.F., Montréal, Munchen, Munster, Nantes, Oulu, Paris,
Portland, Reggio Emilia, Reims, Resende, Rio de Janeiro, Salzburg,
San Cristdbal, San Francisco, Sao Paulo, Seattle, Sevilla,
Stavern, Strasbourg, Stuttgart, Torino, Toulouse, Tsawassen,
Vancouver, Versailles, Walla Walla, Warszawa

Exercise 12.3 — Explore topics

Use the following links to read more details about the topics covered in this
chapter:

e LINQin C#: https://docs.microsoft.com/en-us/dotnet/csharp/ling/
ling-in-csharp

* 101 LINQ Samples: https://code.msdn.microsoft.com/101-LINQ-
Samples-3fb9811b

e Parallel LINQ (PLINQ): https://docs.microsoft.com/en-us/dotnet/
standard/parallel-programming/parallel-ling-pling

* LINQ to XML Overview (C#): https://docs.microsoft.com/en-gb/
dotnet/csharp/programming-guide/concepts/ling/ling-to-xml-
overview

* LINQPad 6 for .NET Core 3.0: https://www.lingpad.net/LINQPadé6.aspx

Summary

In this chapter, you learned how to write LINQ queries to select, project, filter, sort,
join, and group data in many different formats, including XML, which are tasks you
will perform every day.

In the next chapter, you will use the Task type to improve the performance of your
applications.

[428]

https://docs.microsoft.com/en-us/dotnet/csharp/linq/linq-in-csharp
https://docs.microsoft.com/en-us/dotnet/csharp/linq/linq-in-csharp
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-linq-plinq
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-linq-plinq
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx

Chapter 13

Improving Performance and
Scalability Using Multitasking

This chapter is about allowing multiple actions to occur at the same time to improve
performance, scalability, and user productivity for the applications that you build.

In this chapter, we will cover the following topics:

* Understanding processes, threads, and tasks
* Monitoring performance and resource usage
* Running tasks asynchronously

* Synchronizing access to shared resources

* Understanding async and await

Understanding processes, threads,
and tasks

A process, with one example being each of the console applications we have created,
has resources, like memory and threads allocated to it. A thread executes your code,
statement by statement. By default, each process only has one thread, and this can
cause problems when we need to do more than one task at the same time. Threads
are also responsible for keeping track of things like the currently authenticated user
and any internationalization rules that should be followed for the current language
and region.

Windows and most other modern operating systems use preemptive multitasking,
which simulates the parallel execution of tasks. It divides the processor time among
the threads, allocating a time slice to each thread one after another. The current
thread is suspended when its time slice finishes. The processor then allows another
thread to run for a time slice.

[429]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

When Windows switches from one thread to another, it saves the context of the
thread and reloads the previously saved context of the next thread in the thread
queue. This takes both time and resources to complete.

Threads have a Priority property and a ThreadsState property. In addition, there is

a ThreadPool class, which is for managing a pool of background worker threads, as

shown in the following diagram:

(I) Thread

-
Thread
< CriticalfinalizerObject
a4

4 Properties

Trrererrrerreree

L.

ApartmentState
CurrentContext
CurrentCulture
CurrentPrincipal
CurrentThread
CurrentUICulture
ExecutionContext
IsAlive
IsBackground
IsThreadPool Thread
ManagedThread|d
Name

» Methods

F Priority

F ThreadState

ThreadPriority
o
Lowest
BelowMormal
Mormal
AboveNormal
Highest

ThreadState

=1
Rurning
StopRequested
SuspendRequested
Background
Unstarted
Stopped
Waitsleepleoin
Suspended
AbortRequested
Aborted

ThreadPeol

-]

4 Methods

If
I
I
I
I
I
I
I
I
I
| L
I
I
I
I
I
I
I
I
I
I
I
I
|

BindHandle (+ 1 overload)
GetAvailableThreads

GethMaxThreads

GetMinThreads

? QueueUserWorkltem (+ 1 overload)

? RegisterWaitForSingleObject (+ 3 overloads)
% SetMaxThreads

? SetMinThreads

7 UnsafeQueueMativeOverlapped
UnzafeQuauellserWorkitem
UnszafeRegisterWaitForSingleObject (+ 3 overloads)

As a developer, if you have a small number of complex pieces of work and you want
complete control over them, then you can create and manage individual Thread
instances. If you have one main thread and multiple small pieces of work that can be
executed in the background, then you can add delegate instances that point to those
pieces of work implemented as methods to a queue, and they will be automatically
allocated to threads in the thread pool.

84

More Information: You can read more about the thread pool at
the following link: https://docs.microsoft.com/en-us/
dotnet/standard/threading/the-managed-thread-pool

Threads may have to compete for and also wait for access to shared resources, such
as variables, files, and database objects.

Depending on the task, doubling the number of threads (workers) to perform a task
does not halve the number of seconds that it will take to complete that task. In fact, it
can increase the duration of the task, as pointed out in the following tweet:

[430]

https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool

Improving Performance and Scalability Using Multitasking | 13

Carl T. Bergstrom I_Bergstrom - Dec 17
My son clearly has a better grasp on the real world than his teacher
does.

8. If 6 workers can make a car in 90 hours, how long would it take
12 workers to make the same car?

(A) 12 hours
B) 25 hours
'\) 30 hours

/(D) 45 hours
180 hours

Good Practice: Never assume that more threads will improve
L, performance! Run performance tests on a baseline code
@ implementation without multiple threads, and then again on a code
implementation with multiple threads. You should also perform
performance tests in a staging environment that is as close as
possible to the production environment.

=
=

Monitoring performance and resource
usage

Before we can improve the performance of any code, we need to be able to monitor
its speed and efficiency in order to record a baseline that we can then measure

improvements from.

Evaluating the efficiency of types

What is the best type to use for a scenario? To answer this question, we need to
carefully consider what we mean by best, and through this, we should consider the

following factors:

* Functionality: This can be decided by checking whether the type provides
the features you need.

* Memory size: This can be decided by the number of bytes of memory the
type takes up.

[431]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

* Performance: This can be decided by how fast the type is.

* Future needs: This depends on the changes in requirements and
maintainability.

There will be scenarios, such as when storing numbers, where multiple types have
the same functionality, so we will need to consider the memory and performance to
make a choice.

If we need to store millions of numbers, then the best type to use would be the one
that requires the least bytes of memory. But if we only need to store a few numbers,
yet we need to perform lots of calculations on them, then the best type to use would
be the one that runs fastest on a specific CPU.

You have seen the use of the sizeof () function, which shows the number of bytes
a single instance of a type uses in memory. When we are storing a large number
of values in more complex data structures, such as arrays and lists, then we need

a better way of measuring memory usage.

You can read lots of advice online and in books, but the only way to know for sure
what the best type would be for your code is to compare the types yourself.

In the next section, you will learn how to write the code to monitor the actual
memory requirements and the performance when using different types.

Today a short variable might be the best choice, but it might be an even better choice
to use an int variable, even though it takes twice as much space in the memory. This
is because we might need a wider range of values to be stored in the future.

There is another metric we should consider: maintenance. This is a measure of how
much effort another programmer would have to put in to understand and modify
your code. If you use a nonobvious type choice without explaining that choice with a
helpful comment, then it might confuse the programmer who comes along later and
needs to fix a bug or add a feature.

Monitoring performance and memory use
The system.Diagnostics namespace has lots of useful types for monitoring your
code. The first one we will look at is the stopwatch type.
1. Inthe code folder, create a folder named Chapteri13 with two subfolders
named MonitoringLib and MonitoringApp.

2. In Visual Studio Code, save a workspace as Chapter13.code-workspace.

[432]

Improving Performance and Scalability Using Multitasking | 13

3. Add the folder named MonitoringLib to the workspace, open a new
Terminal window for it, and create a new class library project, as shown in
the following command:

dotnet new classlib

4. Add the folder named MonitoringApp to the workspace, open a new
Terminal window for it, and create a new console app project, as shown in
the following command:

dotnet new console

In the MonitoringLib project, rename the Class1.cs file to Recorder.cs.

In the MonitoringApp project, open MonitoringApp.csproj and add
a project reference to the MonitoringLib class library, as shown highlighted
in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>netcoreapp3.0</TargetFramework>
</PropertyGroup>

<ItemGroup>
<ProjectReference
Include="..\MonitoringLib\MonitoringLib.csproj" />
</ItemGroup>

</Project>

7. In Terminal, compile the projects, as shown in the following command:

dotnet build

Implementing the Recorder class

The stopwatch type has some useful members, as shown in the following table:

Member Description

Restart method This resets the elapsed time to zero and then starts
the timer.

Stop method This stops the timer.

Elapsed property This is the elapsed time stored as a TimeSpan
format (for example, hours:minutes:seconds)

[433]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

ElapsedMilliseconds property | This is the elapsed time in milliseconds stored as a

long.

The process type has some useful members, as shown in the following table:

Member

Description

VirtualMemorySizeé64 | This displays the amount of virtual memory, in bytes,

allocated for the process.

WorkingSeté64 This displays the amount of physical memory, in bytes,

allocated for the process.

To implement our Recorder class, we will use the Stopwatch and Process classes.

1.

Open Recorder. cs, and change its contents to use a Stopwatch instance to
record timings and the current Process instance to record memory usage, as
shown in the following code:

using System;

using System.Diagnostics;

using static System.Console;

using static System.Diagnostics.Process;

namespace Packt.Shared

{

public static class Recorder

{

static Stopwatch timer = new Stopwatch() ;
static long bytesPhysicalBefore = 0;
static long bytesVirtualBefore = 0;

public static void Start ()

{

// force two garbage collections to release memory that is
// no longer referenced but has not been released yet
GC.Collect () ;

GC.WaitForPendingFinalizers() ;

GC.Collect () ;

// store the current physical and virtual memory use
bytesPhysicalBefore = GetCurrentProcess () .WorkingSeté64;
bytesVirtualBefore = GetCurrentProcess() .

VirtualMemorySize64;

}

timer.Restart () ;

public static void Stop ()

{

[434]

Improving Performance and Scalability Using Multitasking | 13

timer.Stop() ;

long bytesPhysicalAfter = GetCurrentProcess () .WorkingSeté64;

long bytesVirtualAfter =
GetCurrentProcess () .VirtualMemorySizeé4;

WriteLine ("{0:NO} physical bytes used.",
bytesPhysicalAfter - bytesPhysicalBefore) ;

WriteLine ("{0:N0O} virtual bytes used.",
bytesVirtualAfter - bytesVirtualBefore) ;

WriteLine ("{0} time span ellapsed.", timer.Elapsed) ;

WriteLine ("{0:NO} total milliseconds ellapsed.",
timer.ElapsedMilliseconds) ;

}
}
}

The start method of the Recorder class uses the garbage collector (the

GC class) type to ensure that any currently allocated but not referenced
memory is collected before recording the amount of used memory. This is an
advanced technique that you should almost never use in application code.

In the Program class, in Main, write statements to start and stop the Recorder
while generating an array of 10,000 integers, as shown in the following code:
using System.Ling;

using Packt.Shared;

using static System.Console;

namespace MonitoringApp

{

class Program

{

static void Main(string[] args)
WriteLine ("Processing. Please wait...");
Recorder.Start () ;

// simulate a process that requires some memory resources...
int [] largeArrayOfInts =
Enumerable.Range (1, 10 _000) .ToArray () ;

// ...and takes some time to complete
System.Threading.Thread.Sleep (
new Random () .Next (5, 10) * 1000) ;

Recorder.Stop () ;

[435]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

}
}
}

3. Run the console application and view the result, as shown in the following
output:
Processing. Please wait...
655,360 physical bytes used.
536,576 virtual bytes used.
00:00:09.0038702 time span ellapsed.
9,003 total milliseconds ellapsed.

Measuring the efficiency of processing strings

Now that you've seen how the Stopwatch and Process types can be used to
monitor your code, we will use them to evaluate the best way to process string
variables.

1. Comment out the previous statements in the Main method by wrapping them
in/* */.

2. Add statements to the Main method to create an array of 50,000 int variables
and then concatenate them with commas as separators using a string and
StringBuilder class, as shown in the following code:

int [] numbers = Enumerable.Range(l, 50 000) .ToArray() ;

Recorder.Start () ;

WriteLine ("Using string with +");
string s = "";

for (int 1 = 0; 1 < numbers.Length; i++)

{
}

Recorder.Stop () ;

s += numbers[i] + ", ";

Recorder.Start () ;

WriteLine ("Using StringBuilder") ;

var builder = new System.Text.StringBuilder() ;
for (int i = 0; 1 < numbers.Length; i++)

{
}

Recorder.Stop () ;

builder.Append (numbers[i]); builder.Append(", ");

[436]

Improving Performance and Scalability Using Multitasking | 13

3. Run the console application and view the result, as shown in the following
output:

Using string with +

11,231,232 physical bytes used.
29,843,456 virtual bytes used.
00:00:02.6908216 time span ellapsed.
2,690 total milliseconds ellapsed.
Using StringBuilder

4,096 physical bytes used.

0 virtual bytes used.
00:00:00.0023091 time span ellapsed.

2 total milliseconds ellapsed.

We can summarize the results as follows:

o

The string class with the + operator used about 11 MB of physical
memory, 29 MB of virtual memory, and took 2.7 seconds.

The stringBuilder class used 4 KB of physical memory, 0 virtual
memory, and took a little more than 2 milliseconds.

In this scenario, StringBuilder is more than 1,000 times faster and about 10,000
times more memory efficient when concatenating text!

\Il

@ Good Practice: Avoid using the String.Concat method or the +
LA operator inside loops. Use StringBuilder instead.

o

Now that you've learned how to measure the performance and resource efficiency of
your code, let's learn about processes, threads, and tasks.

Running tasks asynchronously

To understand how multiple tasks can be run simultaneously (at the same time), we
will create a console application that needs to execute three methods.

There will be three methods that need to be executed: the first takes 3 seconds, the
second takes 2 seconds, and the third takes 1 second. To simulate that work, we can
use the Thread class to tell the current thread to go to sleep for a specified number of
milliseconds.

[437]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Running multiple actions synchronously

Before we make the tasks run simultaneously, we will run them synchronously, that
is, one after the other.

1.

Create a new console application named WorkingWithTasks, add its
folder to your Chapter13 workspace, and select the project as active for
OmniSharp.

In Program. cs, import namespace to work with threading and tasks, as
shown in the following code:

using System;

using System.Threading;

using System.Threading.Tasks;

using System.Diagnostics;

using static System.Console;

In the Program class, add the three methods, as shown in the following code:
static void MethodA ()

{

WriteLine ("Starting Method A...");
Thread.Sleep(3000); // simulate three seconds of work
WriteLine ("Finished Method A.");

}

static void MethodB ()

{

WriteLine ("Starting Method B...");
Thread.Sleep(2000); // simulate two seconds of work
WriteLine ("Finished Method B.");

}

static void MethodcC ()

{

WriteLine ("Starting Method C...");
Thread.Sleep(1000); // simulate one second of work
WriteLine ("Finished Method C.");

}

In Main, add statements to define a stopwatch and output the milliseconds
elapsed, as shown in the following code:

[438]

Improving Performance and Scalability Using Multitasking | 13

static void Main(string[] args)

{

var timer = Stopwatch.StartNew() ;
WriteLine ("Running methods synchronously on one thread.");

MethodA () ;
MethodB () ;
MethodC () ;

WriteLine ($"{timer.ElapsedMilliseconds:#, ##0}ms elapsed.") ;

}

5. Run the console application, view the result, and note that when there is only
one thread doing the work the total time required is just over 6 seconds, as
shown in the following output:

Running methods synchronously on one thread.
Starting Method A

Finished Method
Starting Method
Finished Method
Starting Method
Finished Method

QA N W w W

6,015ms elapsed.

Running multiple actions asynchronously
using tasks

The Thread class has been available since the first version of .NET and can be used
to create new threads and manage them, but it can be tricky to work with directly.

NET Framework 4.0 introduced the Task class in 2010, which is a wrapper
around a thread that enables easier creating and management. Managing multiple
threads wrapped in tasks will allow our code to execute at the same time,

aka asynchronously.

[439]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Each Task has a status property, and a CreationOptions property has a

Cont inuewWith method that can be customized with the TaskContinuationOptions
enum, and can be managed with the TaskFactory class, as shown in the following
diagram:

|AsyncResult
IDisposable

Task # | Task<TRosult> # TaskContinuationOptions # TaskFactory<TResult> # |
= =+ Task = 2
-
+ Properties None 4 Properties
P -

Ko AsyncState alCoperies Preferfaimess Ko CancellationToken

K CompletedTask & Factory LengRunning K ContinuationOgptions

& Cumentid | & Result AttachedTeParent £ CreationOptions

£ Exception + Methods DenyChildAttach & Scheduler

K Factory @ ConfigureAwait HideScheduler 2 Mathods

Ko 2 ContinueWith (+ 19 cverdoads) I;:zyCCaﬂ:.ellaa.on 4 h s 2 ContinueWhendll [+ 7 overloads)

@ i pnContinuationsAsynchronousty N N
F sCanceled 7 Gethwaiter) " %@ ContinueWhenAny [+ 7 overloads)
K lsCompleted @ Task [+ 7 overloads) NotOnRanToCompletion
- v Sinad " Faulted @ FromAsync (+ 10 overlgads)
K lsFaulted otOnFoultte Starthy 7 overoads]
MNotOnCanceled tartNew (+ 7 averioads)

4 Methods @ -

o - .». OnlyOnRanTeCompletion e TaskFactory (+ 4 overloads)

@ ConfigureAwait et OnlyOnFaulted)

ContinueWith (+ 19 cvedoads)

- OnlyOnCanceled
@ Delay [+ 3 overloads) =

q o Created ExecuteSynchronously
Dispose (+ 1 overload)

FromCanceled [+ 1 overload) Fostatus
FromExcegtion [+ 1 overload) |

WaitingForActivation
WaitingToRun

FromResult<TResult> FRunning
T GetAwaiter WaitingForChildrenTeComplete
@ Run [+ 7 overloads) RanToCompletion TaskCreationOptions #
RunSynchronously (+ 1 overload) Canceled "
.y " Faulted =
® Start (+ 1 overload)
Mone

? Task [+ 7 overloads)

? Wait (+ 4 overloads)

7 Waitall (+ 4 cverdoads) § CreationOptions
2 Waithny (+ 4 overlcads)

7 Whenall [+ 3 overloads)

Preferfaimess
LengRunning
AmachedToParent
DeryChildAttach

HideSchedular
¥ Whendny [+ 3 overloads)

) RunContinuationsAsynchronously
@ Yield

We will look at three ways to start the methods using Task instances. Each has
a slightly different syntax, but they all define a Task and start it.

1. Comment out the calls to the three methods and the associated console
message.

2. Add statements to create and start three tasks, one for each method, as
shown highlighted in the following code:

static void Main(string[] args)

{
var timer = Stopwatch.StartNew() ;
// WriteLine ("Running methods synchronously on one thread.");
// MethodA() ;
// MethodB () ;
// MethodC () ;

WriteLine ("Running methods asynchronously on multiple

[440]

Improving Performance and Scalability Using Multitasking | 13

threads.") ;

Task taskA = new Task (Methoda) ;
taskA.Start() ;

Task taskB = Task.Factory.StartNew (MethodB) ;
Task taskC = Task.Run(new Action (MethodC)) ;

WriteLine($"{timer.ElapsedMillisecondS:#,##O}ms elapsed.") ;

}

Run the console application, view the result, and note that the elapsed
milliseconds appear almost immediately. This is because each of the three
methods is now being executed by three new threads and the original thread
can, therefore, write the elapsed time before they finish, as shown in the
following output:

Running methods asynchronously on multiple threads.
Starting Method A...
Starting Method B...
Starting Method C...

3ms elapsed.

It is even possible that the console app will end before one or more of the tasks have
a chance to start and write to the console!

More Information: You can read more about the pros and cons

‘ p/ of different ways to start tasks at the following link: https://
devblogs.microsoft.com/pfxteam/task-factory-
startnew-vs-new-task-start/

Waiting for tasks

Sometimes, you need to wait for a task to complete before continuing. To do this,
you can use the wait method on a Task instance, or the waitAll or WaitAny static
methods on an array of tasks, as described in the following table:

WaitAny (Task[])

Method Description
t.Wait () This waits for the task instance named t to complete execution.
Task.

This waits for any of the tasks in the array to complete
execution.

Task.
WaitAll (Task([])

This waits for all the tasks in the array to complete execution.

[441]

https://devblogs.microsoft.com/pfxteam/task-factory-startnew-vs-new-task-start/
https://devblogs.microsoft.com/pfxteam/task-factory-startnew-vs-new-task-start/
https://devblogs.microsoft.com/pfxteam/task-factory-startnew-vs-new-task-start/

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Let's see how we can use these wait methods to fix the problem with our
console app.

1. Add statements to the Main method (after creating the three tasks and before
outputting the elapsed time) to combine references to the three tasks into an
array and pass them to the waitall method, as shown in the following code:

Task[] tasks = { taskA, taskB, taskC };
Task.WaitAll (tasks) ;

Now, the original thread will pause on that statement, waiting for all three
tasks to finish before outputting the elapsed time.

2. Run the console application and view the result, as shown in the following
output:

Running methods asynchronously on multiple threads.
Starting Method
Starting Method
Starting Method
Finished Method
Finished Method
Finished Method

PowoQ w o N

3,006ms elapsed.

The three new threads execute their code simultaneously, and they start in any order.
MethodC should finish first because it takes only 1 second, then MethodB, which takes
2 seconds, and finally Methoda, because it takes 3 seconds.

However, the actual CPU used has a big effect on the results. It is the CPU that
allocates time slices to each process to allow them to execute their threads. You have
no control over when the methods run.

Continuing with another task

If all three tasks can be performed at the same time, then waiting for all tasks to
finish will be all we need to do. However, often a task is dependent on the output
from another task. To handle this scenario, we need to define continuation tasks.

We will create some methods to simulate a call to a web service that returns a
monetary amount that then needs to be used to retrieve how many products cost
more than that amount in a database. The result returned from the first method
needs to be fed into the input of the second method. We will use the Random class
to wait for a random interval of between 2 and 4 seconds for each method call to
simulate the work.

[442]

Improving Performance and Scalability Using Multitasking | 13

Add two methods to the program class that simulate calling a web service
and a database stored procedure, as shown in the following code:

static decimal CallWebService()

{

WriteLine ("Starting call to web service...");
Thread.Sleep ((new Random()) .Next (2000, 4000)) ;
WriteLine ("Finished call to web service.");
return 89.99M;

}

static string CallStoredProcedure (decimal amount)

{

WriteLine ("Starting call to stored procedure...");
Thread.Sleep ((new Random()) .Next (2000, 4000)) ;
WriteLine ("Finished call to stored procedure.");
return $"12 products cost more than {amount:C}.";

}

In the Main method, comment out the previous three tasks by wrapping them
in multiline comment characters, /* */. Leave the statement that outputs the
elapsed milliseconds.

Add statements before the existing statement to output the total time elapsed
and then call ReadLine to wait for the user to press Enter, as shown in the
following code:

WriteLine ("Passing the result of one task as an input into
another.") ;

var taskCallWebServiceAndThenStoredProcedure =
Task.Factory.StartNew (CallWebService)
.ContinueWith (previousTask =>
CallStoredProcedure (previousTask.Result)) ;

WriteLine ($"Result: {taskCallWebServiceAndThenStoredProcedure.
Result}");

Run the console application and view the result, as shown in the following
output:

Passing the result of one task as an input into another.
Starting call to web service...

Finished call to web service.

Starting call to stored procedure...

Finished call to stored procedure.

Result: 12 products cost more than £89.99.

5,971lms elapsed.

[443]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Nested and child tasks

As well as defining dependencies between tasks, you can define nested and child
tasks. A nested task is a task that is created inside another task. A child task is
a nested task that must finish before its parent task is allowed to finish.

Let's explore how these types of task work.

1.

Create a new console application named NestedandChildTasks, add it to the
Chapter13 workspace, and select the project as active for OmniSharp.

In Program. cs, import namespaces to work with threads and tasks, as shown
in the following code:

using System;

using System.Threading;

using System.Threading.Tasks;

using System.Diagnostics;

using static System.Console;

Add two methods, one of which starts a task to run the other, as shown in the
following code:

static void OuterMethod ()

{

WriteLine ("Outer method starting...");
var inner = Task.Factory.StartNew (InnerMethod) ;
WriteLine ("Outer method finished.");

}

static void InnerMethod()

{

WriteLine ("Inner method starting...");
Thread.Sleep(2000) ;
WriteLine ("Inner method finished.");

}

In Main, add statements to start a task to run the outer method and wait for it
to finish before stopping, as shown in the following code:

var outer = Task.Factory.StartNew (OuterMethod) ;
outer.Wait () ;
WriteLine ("Console app is stopping.");

Run the console application and view the result, as shown in the following
output:

Outer method starting...

Outer method finished.

Console app is stopping.

Inner method starting...

[444]

Improving Performance and Scalability Using Multitasking | 13

Note that, although we wait for the outer task to finish, its inner task does not
have to finish as well. In fact, the outer task might finish, and the console app
could end, before the inner task even starts! To link these nested tasks, we
must use a special option.

6. Modify the existing code that defines the inner task to add a
TaskCreationOption value of AttachedToParent, as shown highlighted in
the following code:

var inner = Task.Factory.StartNew (InnerMethod,
TaskCreationOptions.AttachedToParent) ;

7. Run the console application, view the result, and note that the inner task
must finish before the outer task can, as shown in the following output:

Outer method starting...
Outer method finished.
Inner method starting...
Inner method finished.

Console app is stopping.

The outerMethod can finish before the InnerMethod, as shown by its writing to the
console, but its task must wait, as shown by the console not stopping until both the
outer and inner tasks finish.

Synchronizing access to shared
resources

When you have multiple threads executing at the same time, there is a possibility
that two or more of the threads may access the same variable or another resource
at the same time, and as a result, may cause a problem. For this reason, you should
carefully consider how to make your code thread safe.

The simplest mechanism for implementing thread safety is to use an object variable
as a flag or traffic light to indicate when a shared resource has an exclusive lock
applied.

In William Golding's Lord of the Flies, Piggy and Ralph spot a conch shell and use it to
call a meeting. The boys impose a "rule of the conch" on themselves, deciding that no
one can speak unless they're holding the conch.

I like to name the object variable I use for implementing thread-safe code the "conch."
When a thread has the conch, no other thread can access the shared resource(s)
represented by that conch.

[445]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

We will explore a couple of types that can be used to synchronize access to resources:

Monitor: A flag to prevent multiple threads accessing a resource
simultaneously within the same process.

Interlocked: An object for manipulating simple numeric types at the CPU
level.

Accessing a resource from multiple threads

1.

Create a console application named SynchronizingResourceAccess, add it
to the chapter13 workspace, and select the project as active for OmniSharp.

Import namespaces for working with threads and tasks, as shown in the
following code:

using System;

using System.Threading;

using System.Threading.Tasks;
using System.Diagnostics;
using static System.Console;

In Program, add statements to do the following:

o

Declare and instantiate an object to generate random wait times.

o

Declare a string variable to store a message (this is the shared
resource).

Declare two methods that add a letter, & or B, to the shared string
five times in a loop, and wait for a random interval of up to 2 seconds
for each iteration:

static Random r = new Random() ;
static string Message; // a shared resource

static void MethodA ()
{
for (int 1 = 0; 1 < 5; 1++)
{
Thread.Sleep (r.Next (2000)) ;
Message += "A";
Write(".");
}
}

static void MethodB ()

{

for (int 1 = 0; 1 < 5; i++)

{

Thread.Sleep (r.Next (2000)) ;
Message += "B";

[446]

Improving Performance and Scalability Using Multitasking | 13

Write(".");
}
}

In Main, execute both methods on separate threads using a pair of tasks and
wait for them to complete before outputting the elapsed milliseconds, as
shown in the following code:

WriteLine ("Please wait for the tasks to complete.");
Stopwatch watch = Stopwatch.StartNew() ;

Task a = Task.Factory.StartNew (MethodA) ;
Task b = Task.Factory.StartNew (MethodB) ;

Task.WaitAll (new Task[] { a, b });

WriteLine () ;

WriteLine ($"Results: {Message}.");

WriteLine ($"{watch.ElapsedMilliseconds:#, ##0} elapsed
milliseconds.");

Run the console application and view the result, as shown in the following
output:

Please wait for the tasks to complete.

Results: BABABAABBA.

5,753 elapsed milliseconds.

This shows that both threads were modifying the message concurrently. In an actual
application, this could be a problem. But we can prevent concurrent access by applying
a mutually exclusive lock to the resource, which we will do in the following section.

Applying a mutually exclusive lock to a
resource

Now, let's use a conch to ensure that only one thread has access to the share resource
at a time.

1.

In Program, declare and instantiate an object variable to act as a conch, as
shown in the following code:

static object conch = new object() ;

In both Methoda and MethodB, add a 1ock statement around the for
statement, as shown highlighted in the following code:

lock (conch)

[447]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

{

for (int 1 = 0; 1 < 5; 1++)

{

Thread.Sleep (r.Next (2000)) ;
Message += "A";
Write(".");
}
}

3. Run the console application and view the result, as shown in the following
output:

Please wait for the tasks to complete.
Results: BBBBBAAAAA.
10,345 elapsed milliseconds.

Although the time elapsed was longer, only one method at a time could access

the shared resource. Either MethodA or MethodB can start first. Once a method has
finished its work on the shared resource, then the conch gets released, and the other
method has the chance to do its work.

Understanding the lock statement and
avoiding deadlocks

You might wonder how the lock statement works when it locks an object variable, as
shown in the following code:

lock (conch)

{

// work with shared resource

}

The C# compiler changes the lock statement into a try-finally statement that
uses the Monitor class to enter and exit the conch object variable, as shown in the
following code:

try

{

Monitor.Enter (conch) ;
// work with shared resource

}

finally

{

Monitor.Exit (conch) ;

}

[448]

Improving Performance and Scalability Using Multitasking | 13

Knowing how the lock statement works internally is important because using the
lock statement can cause a deadlock.

Deadlocks occur when there are two or more shared resources (and therefore
conches), and the following sequence of events happens:

Thread X locks conch A.
Thread Y locks conch B.

Thread X attempts to lock conch B but is blocked because thread Y already
has it.

Thread Y attempts to lock conch A but is blocked because thread X already
has it.

A proven way to prevent deadlocks is to specify a timeout when attempting to get a
lock. To do this, you must manually use the Monitor class instead of using the 1ock
statement.

1.

Modify your code to replace the 1ock statements with code that tries to enter
the conch with a timeout, as shown in the following code:

try

{

Monitor.TryEnter (conch, TimeSpan.FromSeconds (15)) ;
for (int 1 = 0; 1 < 5; 1i++)

Thread.Sleep (r.Next (2000)) ;
Message += "A";
Write(".");
}
}

finally

{

Monitor.Exit (conch) ;

}

Run the console application and view the result, which should return the
same results as before (although either A or B could grab the conch first) but
is better code because it will avoid potential deadlocks.

Good Practice: Only use the 1ock keyword if you can write your
L, code such that it avoids potential deadlocks. If you cannot avoid
@ potential deadlocks, then always use the Monitor.TryEnter
7\ method instead of lock, in combination with a try-finally
= statement, so that you can supply a timeout and one of the threads
will back out of a deadlock if it occurs.

[449]

C# 8.0 and .NET Core 3.0 - Modern Cross-Platform Development

Making CPU operations atomic

Atomic is from the Greek word atomos, which means undividable. Is the C#
increment operator atomic, as shown in the following code?

int x = 3;
X++; // is this an atomic CPU operation?

It is not atomic! Incrementing an integer requires the following three CPU
operations:

1. Load a value from an instance variable into a register.
2. Increment the value.

3. Store the value in the instance variable.

A thread could be preempted after executing the first two steps. A second thread
could then execute all three steps. When the first thread resumes execution, it will
overwrite the value in the variable, and the effect of the increment or decrement
performed by the second thread will be lost!

There is a type named Interlocked that can perform atomic actions on value types,
such as integers and floats.

1. Declare another shared resource that will count how many operations have
occurred, as shown in the following code:

static int Counter; // another shared resource

2. In both methods, inside the for statement and after modifying the string
value, add a statement to safely increment the counter, as shown in the
following code:

Interlocked.Increment (ref Counter) ;

3. After outputting the elapsed time, write the cur