

http://www.dummies.com/cheatsheet/arduino
http://www.Dummies.com/
http://www.Dummies.com/
http://www.Dummies.com/

by John Nussey

Arduino®

Arduino® For Dummies®

Published by
John Wiley & Sons, Ltd
The Atrium
Southern Gate
Chichester
West Sussex
PO19 8SQ
England

Email (for orders and customer service enquires): cs-books@wiley.co.uk

Visit our home page on www.wiley.com

Copyright © 2013 John Wiley & Sons, Ltd, Chichester, West Sussex, England

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmit-
ted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence
issued by the Copyright Licensing Agency Ltd., Saffron House, 6-10 Kirby Street, London EC1N 8TS, UK,
without the permission in writing of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester,
West Sussex, PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (44) 1243 770620.

Trademarks: Wiley, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies
Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Arduino is a registered
trademark of Arduino LLC. Arduino drawings and circuit diagrams used throughout the book are based
on the Fritzing Arduino drawings. All other trademarks are the property of their respective owners. John
Wiley & Sons, Ltd. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER, THE AUTHOR, AND ANYONE ELSE
IN PREPARING THIS WORK MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM
ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR
PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON
SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES
ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content
that appears in standard print versions of this book may not be available in other formats. For more infor-
mation about Wiley products, visit us at www.wiley.com.

British Library Cataloguing in Publication Data: A catalogue record for this book is available from the
British Library.

ISBN 978-1-118-44637-9 (paperback); ISBN 978-1-118-44643-0 (ebook); 978-1-118-44644-7 (ebook);
978-1-118-44642-3 (ebook)

Printed and bound in the United States by Bind-Rite

10 9 8 7 6 5 4 3 2

mailto:cs-books@wiley.co.uk
http://www.wiley.com
mailto:permreq@wiley.co.uk
http://www.wiley.com/techsupport
http://www.wiley.com

About the Author
John Nussey is a creative technologist based in London. His work involves
using technology in new and interesting ways and covers many areas, includ-
ing physical computing, creative coding, interaction design, and product
prototyping.

During his career, he has worked on many varied projects with clients
such as ARUP, the BBC, the Museum of Science and Industry, the National
Maritime Museum, Nokia, and the Southbank Centre.

He is a proud advocate of the Arduino prototyping platform and has taught
the craft of interaction design and prototyping to people of all ages, compe-
tencies, and abilities at a variety of establishments, including Goldsmiths
College, the Bartlett School of Architecture, the Royal College of Art, and
OneDotZero.

Dedication
To Avril, the love of my life (and only person I trust with a soldering iron), for
providing encouragement when I was writing and distraction when I wished
I wasn’t; to Roanne and Oliver for our stimulating literary chats; to Craig for
helping me bridge the trans-Atlantic gap; to all the guys and girls at Kin for
still feigning interest and asking “How’s the book going?” after 6 months;
and to Alexandra for all the guidance that led me to such an enjoyable and
inspiring career.

Author’s Acknowledgments
John would like to thank the folks at Wiley, especially Craig Smith for always
being upbeat and his gentle reminders, and Susan Christophersen for her
hard work and support throughout.

Many thanks to Andy Huntington for his excellent technical editing and occa-
sional humorous comments that helped me through the long nights.

A big thanks to all my friends, family, and loved ones for their encouragement
and enthusiasm. I love making things, and I hope that this book inspires you
to make things of your own and find the same enjoyment I have.

Special thanks to Thomas Harding, Andrew Tune and Brian Jones for their
vigilance. Your comments and corrections are invaluable to this book and
aspiring Arduin-ists all over the world. I salute you!

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.
Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial
Project and Copy Editor:

Susan Christophersen
Executive Commissioning Editor: Craig Smith
Development Editors: Susan Christophersen,

Susannah Gardner
Technical Editor: Andy Huntington
Editorial Manager: Jodi Jensen
Senior Project Editor: Sara Shlaer
Editorial Assistant: Leslie Saxman
Cover Photo: © John Nussey
Cartoons: Rich Tennant (www.the5thwave.com)

Marketing
Associate Marketing Director: Louise Breinholt
Marketing Manager: Lorna Mein
Senior Marketing Executive: Kate Parrett

Composition Services
Senior Project Coordinator: Kristie Rees
Layout and Graphics: Melanee Habig,

Joyce Haughey, Andrea Hornberger,
Christin Swinford

Proofreader: Wordsmith Editorial
Indexer: Potomac Indexing, LLC

UK Tech Publishing
Michelle Leete, VP Consumer and Technology Publishing Director
Martin Tribe, Associate Director–Book Content Management
Chris Webb, Associate Publisher

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director

Publishing for Consumer Dummies
Kathleen Nebenhaus, Vice President and Executive Publisher

Composition Services
Debbie Stailey, Director of Composition Services

http://dummies.custhelp.com
http://www.the5thwave.com

Contents at a Glance
Foreword .. xvii

Introduction .. 1

Part I: Getting to Know Arduino 5
Chapter 1: What Is Arduino and Where Did It Come From? ... 7
Chapter 2: Finding Your Board and Your Way Around It ... 17
Chapter 3: Downloading and Installing Arduino .. 33
Chapter 4: Blinking an LED ... 41

Part II: Getting Physical with Arduino 61
Chapter 5: Tools of the Trade .. 63
Chapter 6: A Primer on Electricity and Circuitry .. 75
Chapter 7: Basic Sketches: Inputs, Outputs, and Communication 91
Chapter 8: More Basic Sketches: Motion and Sound .. 123

Part III: Building on the Basics 161
Chapter 9: Learning by Example .. 163
Chapter 10: Soldering On .. 179
Chapter 11: Getting Clever with Code ... 209
Chapter 12: Common Sense with Common Sensors ... 241

Part IV: Unlocking Your Arduino’s Potential............... 287
Chapter 13: Becoming a Specialist with Shields and Libraries 289
Chapter 14: Sensing More Inputs and Controlling More Outputs 315
Chapter 15: Multiplying Your Outputs with I2C ... 339

Part V: Sussing Out Software 357
Chapter 16: Getting to Know Processing .. 359
Chapter 17: Processing the Physical World ... 359

Part VI: The Part of Tens .. 407
Chapter 18: Ten Places to Learn More about Arduino ... 409
Chapter 19: Ten Great Shops to Know .. 413
Chapter 20: Ten Places to Find Parts and Components ... 417

Index .. 421

Bonus Chapter: Hacking Other HardwareOn the
 Companion Website at www.dummies.com/go/arduinofd

http://www.dummies.com/go/arduinofd

Table of Contents
Foreword ... xvii
Introduction ... 1

About This Book .. 1
Foolish Assumptions ... 2
How This Book Is Organized .. 2

Part I: Getting to Know Arduino ... 3
Part II: Getting Physical with Arduino ... 3
Part III: Building on the Basics ... 3
Part IV: Unlocking Your Arduino’s Potential 3
Part V: Sussing Out Software .. 3
Part VI: The Part of Tens ... 4

Icons Used In This Book ... 4
Where to Go from Here ... 4

Part I: Getting to Know Arduino 5

Chapter 1: What Is Arduino and Where Did It Come From? 7
Where Did Arduino Come From? ... 8
Learning by Doing .. 11

Patching .. 11
Hacking .. 12
Circuit bending ... 13

Electronics .. 14
Inputs .. 15
Outputs ... 15
Open Source ... 15

Chapter 2: Finding Your Board and Your Way Around It 17
Getting to Know the Arduino Uno R3 .. 18

The Brains: ATmega328 microcontroller chip 19
Header sockets ... 20
Digital pins .. 21
Analog in pins ... 21
What about analog out? ... 22
Power pins .. 22
USB socket .. 22
External power jack ... 22
Reset button ... 24

Arduino For Dummies x
Discovering Other Arduino Boards ... 24

Official Arduino boards ... 24
Contributed (Approved) Arduinos .. 26

Shopping for Arduino .. 27
Official Arduino Store .. 28
Distributors in the United Kingdom .. 28
Distributors in the United States ... 28
Amazon.. 28
Electronics distributors .. 29

Kitted Out: Starting with a Beginner’s Kit .. 29
Preparing a Workspace ... 32

Chapter 3: Downloading and Installing Arduino 33
Installing Arduino .. 33

Installing Arduino for Windows ... 34
Installing Arduino for Mac OS X ... 37
Installing Arduino for Linux .. 39

Surveying the Arduino Environment ... 39

Chapter 4: Blinking an LED .41
Working with Your First Arduino Sketch .. 41

Finding the Blink Sketch.. 42
Identifying your board .. 43
Configuring the software .. 45
Uploading the sketch ... 47
Congratulate yourself! ... 49
What just happened? .. 50

Looking Closer at the Sketch ... 50
Comments ... 51
Declarations .. 52
Variables ... 52
Functions .. 53
Setup .. 54
Loop ... 56

Blinking Brighter .. 57
Tweaking the Sketch ... 59

Part II: Getting Physical with Arduino 61

Chapter 5: Tools of the Trade .63
Finding the Right Tools for the Job ... 63

Breadboard ... 64
Jump wires .. 66
Needle-nose pliers .. 67
Multimeter .. 68

xi Table of Contents

Using the Multimeter to Measure Voltage, Current, and Resistance 70
Measuring voltage (in volts) in a circuit .. 70
Measuring current (in amps) in a circuit ... 71
Measuring resistance (in ohms) of a resistor 72
Measuring resistance (in ohms) of a variable resistor 72
Checking the continuity (in bleeps) of your circuit 73

Chapter 6: A Primer on Electricity and Circuitry 75
Understanding Electricity ... 75
Using Equations to Build Your Circuits .. 77

Ohm’s Law .. 77
Calculating power .. 80
Joule’s Law .. 80

Working with Circuit Diagrams .. 82
A simple circuit diagram ... 82
Using a circuit diagram with an Arduino .. 84

Color Coding .. 85
Datasheets .. 86
Resistor Color Charts .. 87

Chapter 7: Basic Sketches: Inputs, Outputs, and Communication . . .91
Uploading a Sketch .. 91
Using Pulse Width Modulation (PWM) ... 92
The LED Fade Sketch ... 93

Understanding the fade sketch .. 97
Tweaking the fade sketch ... 98

The Button Sketch ... 100
Understanding the Button sketch .. 104
Tweaking the Button sketch ... 105

The AnalogInput Sketch .. 106
Understanding the AnalogInput sketch .. 110
Tweaking the AnalogInput sketch ... 111

Talking Serial .. 112
The DigitalReadSerial Sketch ... 112
Understanding the DigitalReadSerial sketch 115
The AnalogInOutSerial Sketch .. 116
Understanding the AnalogInOutSerial sketch 120

Chapter 8: More Basic Sketches: Motion and Sound 123
Working with Electric Motors .. 123
Discovering Diodes .. 125
Spinning a DC Motor ... 125

The Motor sketch ... 126
Understanding the Motor sketch ... 129

Changing the Speed of Your Motor ... 130
The MotorSpeed sketch .. 130
Understanding the MotorSpeed sketch .. 131

Arduino For Dummies xii
Controlling the Speed of Your Motor .. 132

The MotorControl sketch ... 132
Understanding the MotorControl Sketch 135
Tweaking the MotorControl sketch ... 135

Getting to Know Servo Motors ... 136
Creating Sweeping Movements .. 137

The Sweep sketch .. 137
Understanding the Sweep sketch .. 140

Controlling Your Servo ... 142
The Knob sketch .. 142
Understanding the Knob sketch .. 145

Making Noises .. 146
Piezo buzzer ... 146
The toneMelody sketch... 147
Understanding the sketch ... 153

Making an Instrument ... 156
The PitchFollower sketch ... 156
Understanding the sketch ... 159

Part III: Building on the Basics 161

Chapter 9: Learning by Example .163
Skube ... 163

How it works ... 164
Further reading .. 165

Chorus .. 165
How it works ... 166
Further reading .. 167

Push Snowboarding ... 167
How it works ... 168
Further reading .. 169

Baker Tweet .. 169
How it works ... 170
Further reading .. 171

The National Maritime Museum’s Compass Lounge and Compass Card ...171
How it works ... 172
Further reading .. 174

The Good Night Lamp ... 174
How it works ... 175
Further reading .. 175

Little Printer ... 175
How it works ... 176
Further reading .. 177

Flap to Freedom ... 177
How it works ... 178
Further reading .. 178

xiii Table of Contents

Chapter 10: Soldering On .179
Understanding Soldering .. 179
Gathering What You Need for Soldering .. 180

Creating a workspace .. 180
Choosing a soldering iron ... 181
Solder .. 185
Third hand (helping hand) ... 186
Adhesive putty ... 187
Wire cutters .. 188
Wire strippers .. 188
Needle-nosed pliers ... 189
Multimeter .. 189
Solder sucker .. 190
Solder wick ... 190
Equipment wire .. 191

Staying Safe while Soldering ... 192
Handling your soldering iron ... 192
Keeping your eyes protected ... 193
Working in a ventilated environment .. 193
Cleaning your iron ... 193
Don’t eat the solder! .. 193

Assembling a Shield .. 194
Laying out all the pieces of the circuit .. 195
Assembly ... 196
Header pins ... 196

Acquiring Your Soldering Technique .. 197
Building Your Circuit .. 201

Knowing your circuit ... 201
Laying out your circuit .. 202
Preparing your wire ... 202
Soldering your circuit .. 203
Cleaning up ... 203
Testing your shield .. 205

Packaging Your Project ... 205
Enclosures .. 205
Wiring .. 206
Securing the board and other elements ... 207

Chapter 11: Getting Clever with Code .209
Blinking Better ... 209

Setting up the BlinkWithoutDelay sketch 211
Understanding the BlinkWithoutDelay sketch 214

Taking the Bounce Out of Your Button .. 216
Setting up the Debounce sketch .. 216
Understanding the Debounce sketch .. 219

Making a Better Button ... 221
Setting up the StateChangeDetection sketch 221
Understanding the StateChangeDetection sketch 225

Arduino For Dummies xiv
Smoothing Your Sensors .. 227

Setting up the Smoothing sketch ... 228
Understanding the Smoothing sketch ... 231

Calibrating Your Inputs ... 233
Setting up the Calibration sketch .. 233
Understanding the Calibration sketch .. 237

Chapter 12: Common Sense with Common Sensors 241
Making Buttons Easier .. 242

Implementing the DigitalInputPullup sketch 243
Understanding the DigitalInputPullup sketch 246

Exploring Piezo Sensors ... 247
Implementing the Knock sketch .. 248
Understanding the Knock sketch ... 251

Utilizing Pressure, Force, and Load Sensors .. 252
Implementing the toneKeyboard sketch... 254
Understanding the toneKeyboard sketch 257

Sensing with Style .. 258
Implementing the CapPinSketch sketch ... 261
Understanding the CapPinSketch sketch.. 264

Tripping Along with Lasers .. 267
Implementing the AnalogInOutSerial sketch 268
Understanding the AnalogInOutSerial sketch 271

Detecting Movement ... 271
Implementing the DigitalReadSerial sketch 273
Understanding the DigitalReadSerial sketch 276

Measuring Distance ... 277
Implementing the MaxSonar sketch .. 278
Understanding the MaxSonar sketch .. 281

Testing, Testing . . . Can Anybody Hear This? ... 282
Implementing the AnalogInOutSerial sketch 283
Understanding the AnalogInOutSerial sketch 286

Part IV: Unlocking Your Arduino’s Potential 287

Chapter 13: Becoming a Specialist with Shields and Libraries 289
Looking at Shields ... 289

Considering combinations .. 290
Reviewing the field ... 291
Staying current ... 308

Browsing the Libraries .. 309
Reviewing the standard libraries ... 309
Installing additional libraries ... 311
Obtaining contributed libraries ... 313

xv Table of Contents

Chapter 14: Sensing More Inputs and Controlling More Outputs . . .315
Controlling Multiple LEDs .. 315

Implementing the AnalogWriteMega sketch 318
Understanding the AnalogWriteMega Sketch 322
Tweaking the AnalogWriteMega sketch .. 324

Controlling Lots of LEDs by Shifting Out .. 327
Implementing the shiftOutCode, Hello World sketch 329
Understanding the shiftOutCode, Hello World sketch.................. 333
Tweaking the shiftOutCode, Hello World sketch 334
Doing more with the same cirduit ... 337

Chapter 15: Multiplying Your Outputs with I2C 339
What Is I2C? ... 339
Assembling the I2C PWM/Servo Driver ... 341
Using the I2C PWM/Servo Driver .. 343
Understanding the I2C PWM/Servo Driver Sketch 350
Buying Servo Motors ... 353
Other Uses for I2C .. 355

Part V: Sussing Out Software 357

Chapter 16: Getting to Know Processing .359
Looking Under the Hood ... 360

Installing Processing.. 362
Taking a look at Processing .. 364

Trying Your First Processing Sketch ... 365
Drawing shapes .. 368
Changing color and opacity .. 372
Playing with interaction .. 374

Chapter 17: Processing the Physical World .359
Making a Virtual Button .. 359

Setting up the Arduino code ... 360
Setting up the Processing code .. 362
Understanding the Processing PhysicalPixel sketch 364
Understanding the Arduino Physical Pixel sketch 367

Drawing a Graph .. 369
Setting up the Arduino code ... 371
Setting up the Processing code .. 372
Understanding the Arduino Graph sketch...................................... 374
Understanding the Processing Graph sketch 374

Sending Multiple Signals ... 378
Setting up the Arduino code ... 380
Setting up the Processing code .. 381
Understanding the Arduino SerialCallResponse sketch 383
Understanding the Processing SerialCallResponse sketch 385

Arduino For Dummies xvi
Part VI: The Part of Tens ... 407

Chapter 18: Ten Places to Learn More about Arduino409
Arduino Blog .. 409
Hack a Day .. 409
SparkFun ... 410
MAKE .. 410
Adafruit ... 410
Bildr ... 410
Instructables .. 411
YouTube ... 411
Hackerspaces ... 411
Forum .. 411
Friends, Colleagues, and Workshops .. 412

Chapter 19: Ten Great Shops to Know .413
Shops in the United Kingdom .. 413

SK Pang .. 413
Technobots ... 414
Proto-PIC ... 414
Oomlout .. 414
RoboSavvy .. 414
Active Robots ... 415

Shops around the World ... 415
Adafruit (U.S.) ... 415
Arduino Store (Italy).. 415
Seeed Studio (China) ... 416
SparkFun (U.S.) ... 416

Chapter 20: Ten Places to Find Parts and Components 417
RS Components (World) ... 417
Farnell (World) ... 417
Rapid (World) .. 418
Digi-Key (World) .. 418
eBay (World) .. 418
Maplin (U.K.) .. 418
RadioShack (U.S.) .. 419
Ultraleds (U.K.) .. 419
EnvironmentalLights.com (U.S.) .. 419
Skip/Dumpster Diving (World) .. 419

Index ... 421

Bonus Chapter: Hacking Other HardwareOn the
 Companion Website at www.dummies.com/go/arduinofd

http://www.dummies.com/go/arduinofd

Foreword
The moment a For Dummies book comes out, it’s definitely a milestone in the
history of a product.

Programming embedded computers used to be a very difficult task, reserved
only to experienced engineers willing to master the obscure assembly lan-
guage. In recent years, however, many platforms have tried to make this task
simpler and more accessible to everyday people. Arduino is one of the latest
attempts at making technology less scary and more creative.

With John, this book’s author, we watched this creative tool being adopted
by designers and artists in London, making its way into many memorable
projects. Now Arduino has escaped the lab of Arts & Design and spread like
a virus, becoming the tool of choice for all kinds of people who have great
ideas they want to realize.

I’m really glad that John decided to write this book, because he’s an early
user of the Arduino platform from back in the days when it was still quite
experimental. Having taught Arduino classes for many years, he has the
ability to introduce the subject to all audiences.

Any newcomer to Arduino will, with the right tools and teaching — such as
those found in this book — show true genius in no time.

Massimo Banzi

Arduino For Dummies xviii

Introduction

A
rduino is a tool, a community, and a way of thinking that is affecting
how we use and understand technology. It has rekindled a love and

understanding for electronics for many people, including myself, who felt
that electronics was something that they had left behind at school.

Arduino is tiny circuit board that has huge potential. It can be used to blink
a Morse-code signal using a single LED or to control every light in a building,
depending on how far you take it. Its capabilities are limited only by your
imagination.

Arduino is also providing a new, practical approach to technical education,
lowering the entry level for those wanting to use electronics to complete small
projects and, I hope, encouraging you to read further to take on big ones.

A huge and ever-growing community of Arduin-ists has emerged — users and
developers who learn from each other and contribute to the open source
philosophy by sharing the details of their projects. Arduin-ists and their sup-
porters with their open source attitude are responsible for the huge popular-
ity of Arduino.

Arduino is more than just a “bit of kit”; it’s a tool. A piece of technology that
makes understanding and using today’s technology easier.

So if the prospect of understanding the limitless possibilities of technology
doesn’t sound interesting to you, please put this book down and back away.

Otherwise, read on!

About This Book
This is a technical book, but it’s not for technical people only. Arduino is
designed to be usable by anyone, whether they’re technical, creative, crafty,
or just curious. All you need is an open mind or a problem to fix and you’ll
soon find ways that using Arduino can benefit you.

Arduino has rekindled my love of electronics and opened many avenues for
my career. I wrote this book to share that experience. When I first went to
an Arduino workshop, I had no experience in programming and could only
vaguely remember which end of a soldering iron to hold (don’t worry, I cover

2 Arduino For Dummies

soldering, too). Now the mainstay of my work involves building interactive
installations, prototyping products, and generally finding new ways to play
with technology using Arduino.

I think it is an excellent platform that lowers the entry level into electron-
ics and coding, allowing people who may not have had the attention span
or interest at school to dive straight into the areas that interest them and
explore them from there.

Foolish Assumptions
This book assumes nothing about your technical knowledge. Arduino is an
easy-to-use platform for learning about electronics and programming. It is for
people from all walks of life, whether you’re a designer, an artist, or a hobbyist.

It can also be a great platform for people who are already technical. Maybe
you’ve done a bit of coding but want to bring your projects into the physical
world in some way, or maybe you’ve worked with electronics and want to see
what Arduino can bring to the table.

But whoever you are, you’ll find that Arduino has great potential. It’s really
up to you to decide what to make of it.

This book starts on the most basic level to get you started with using and
understanding Arduino. At times throughout the book, I may refer to a
number of very technical things that will, like anything, take time to under-
stand. I guide you through all the basics and then on to more advanced
activities.

Much of what is in this book is based on my learning and teaching experi-
ences. I learned all about Arduino from scratch, but have always found that
the best way to learn is in practice, by making your own projects. The key is
to learn the basics that I cover in this book and then build on that knowledge
by thinking about how you can apply it to solve problems, create things, or
just entertain yourself.

How This Book Is Organized
Arduino For Dummies is organized in a way that allows you to jump around
the book as you like. If you’ve dabbled in Arduino before, you might want to
skip to the later chapters, or if you’ve forgotten some of the basics, consider
starting at the beginning.

3 Introduction

Part I: Getting to Know Arduino
In Part I, I introduce you to Arduino, outlining a variety of other practices and
circumstances that created a need for Arduino and that have influenced its
development. Then I look at Arduino in more detail, both as a physical board
and software environment, and I walk you through uploading your first sketch.

Part II: Getting Physical with Arduino
In this part, you find out how to do some basic prototyping using bread-
boards and other components to give your Arduino more reach into the
physical world. Using just a few simple components, you can explore a vari-
ety of applications for Arduino and form a base on which you can build your
own projects. The chapters in this part cover a variety of inputs and outputs,
including light, motion, and sound that you can build on and combine to form
your own projects.

Part III: Building on the Basics
After you have covered the basics, you’ll be itching to do more. In Part III, I
tell you about some real-world projects and how they work. You find out how
to solder your own circuit board to get your project out into the world for
others to see. You also learn how to choose the correct sensor for the job
and how to use code to fine-tune or change the behavior of your circuits.

Part IV: Unlocking Your
Arduino’s Potential
This part pushes the possibilities of your Arduino project further. You
learn about using shields to add specific functionality to your Arduino,
using hardware and techniques to allow you project to grow, and hacking
existing hardware. You also find out how to communicate with Processing,
Arduino’s sister project, to combine open source hardware with software.

Part V: Sussing Out Software
If you work through the book to this part, you should have a good under-
standing of how you can use electronics and hardware in your own projects.
In this part, you learn how to combine this knowledge of the physical world
with the digital world of software. I introduce you to a few open source

4 Arduino For Dummies

programming environments and then more specifically to Processing, which
is a digital sketchbook that you can use for a huge variety of applications to
enhance your Arduino project.

Part VI: The Part of Tens
The Part of Tens is a For Dummies standard that breaks down useful infor-
mation into groups of ten bite-sized chunks. This part covers where to learn
more about Arduino, where to shop for Arduino-specific parts, and where to
shop for electronics in general.

Icons Used in This Book
Arduino For Dummies uses icons to highlight important points for you. Keep
an eye out for these:

 This icon highlights a bit of helpful information. That info may be a technique to
help you complete a project more easily or the answer to common problems.

 Arduinos aren’t dangerous on their own; indeed, they’re made to be extremely
safe and easy to use. But if they are used in a circuit without proper planning
as well as care and attention, they can damage your circuit, your computer,
and yourself. When you see a Warning icon, please take special note.

 There are often points that must be considered before proceeding with a task.
I use Remember icons to remind you of such points.

 Some information is more technical than others and is not for the faint
hearted. The joy of Arduino is that you don’t need to fully understand the
technical details immediately. You can skip anything that’s marked with this
icon if it’s more complicated than you want to deal with at the moment; you
can always return to it when you’re ready.

Where to Go from Here
If you’re uncertain about where to start, I suggest the beginning. By the end
of Chapter 2, you’ll have acquired a simple understanding of Arduino and will
know where you can get a kit to continue learning.

If you’ve used Arduino before, you may want to jump straight to Chapter 4 to
cover the basics again, or head straight to the area that interests you.

Part I
Getting to Know

Arduino

In this part . . .

S
o what is an Arduino, anyway? In the chapters ahead,
you find out all about this little blue circuit board, how

it came into being, and what it can be used for. After a brief
introduction, I talk you through all the things you need to get
started with Arduino and where to get them. Next, you learn
how to wield the awesome power of an LED, blinking it on
command with a few simple lines of code.

Chapter 1

What Is Arduino and Where
Did It Come From?

In This Chapter
▶ Discovering Arduino
▶ Learning where Arduino came from and why it’s so important
▶ Introducing the basic principles

A
rduino is made up of both hardware and software.

The Arduino board is a printed circuit board (PCB) that is specifically
designed to use a microcontroller chip as well as other input and outputs. It
also has many other electronic components that are needed for the micro-
controller to function or to extend its capabilities.

Microcontrollers are small computers contained within a single, integrated
circuit or computer chip, and they are an excellent way to program and con-
trol electronics. Many devices, referred to as microcontroller boards, have a
microcontroller chip and other useful connectors and components that allow
a user to attach inputs and outputs. Some examples of devices with micro-
controller boards are the Wiring board, the PIC, and the Basic Stamp.

You write code in the Arduino software to tell the microcontroller what to
do. For example, by writing a line of code, you can tell an LED to blink on and
off. If you connect a pushbutton and add another line of code, you can tell
the LED to turn on only when the button is pressed. Next, you may want to
tell the LED to blink only when the pushbutton is held down. In this way, you
can quickly build a behavior for a system that would be difficult to achieve
without a microcontroller.

Similarly to a conventional computer, an Arduino can perform a multitude of
functions, but it’s not much use on its own. It requires other inputs or out-
puts to make it useful. These inputs and outputs allow a computer to sense
objects in the world and to affect the world.

8 Part I: Getting to Know Arduino

Before you move forward, it might help you to understand a bit of the history
of Arduino.

Where Did Arduino Come From?
Arduino started its life in Italy, at Interaction Design Institute Ivrea (IDII), a
graduate school for interaction design. This is a specific school of design edu-
cation that focuses on how people interact with digital products, systems,
and environments and how they in turn influence us.

The term interaction design was coined by Bill Verplank and Bill Moggridge
in the mid-1980s. The sketch in Figure 1-1 by Verplank illustrates the basic
premise of interaction design. This diagram is an excellent illustration of how
the process of interaction works: If you do something, you feel a change, and
from that you can know something about the world.

Although it is a general principle, interaction design more commonly refers
to how we interact with conventional computers by using peripherals, such
as mice, keyboards, and touchscreens, to navigate a digital environment that
is graphically displayed on a screen.

Figure 1-1:
The prin-

ciple of
interaction

design, illus-
trated by Bill

Verplank.

Courtesy of Bill Verplank

9 Chapter 1: What Is Arduino and Where Did It Come From?

There is another avenue, referred to as physical computing, which is about
extending the range of these computer programs, software, or systems.
Through electronics, computers can sense more about the world and have a
physical impact on the world themselves.

Both of these areas — interaction design and physical computing — require
prototypes to fully understand and explore the interactions, which presented
a hurdle for nontechnical design students.

In 2001, a project called Processing that was started by Casey Reas and
Benjamin Fry aimed to get nonprogrammers into programming by making it
quick and easy to produce onscreen visualizations and graphics. The project
gave the user a digital sketchbook on which to try ideas and experiment with
a very small investment of time. This project in turn inspired a similar project
for experimenting in the physical world.

Building on the same principles as Processing, in 2003 Hernando Barragán
started developing a microcontroller board called Wiring. This board was the
predecessor to Arduino.

In common with the Processing project, the Wiring project also aimed to
involve artists, designers, and other nontechnical people, but Wiring was
designed to get people into electronics rather than programming. The Wiring
board (shown in Figure 1-2) was less expensive than some other microcon-
trollers, such as the PIC and the Basic Stamp, but it was still a sizable invest-
ment for students to make.

Figure 1-2:
An early

Wiring
board.

10 Part I: Getting to Know Arduino

In 2005, the Arduino project began in response to the need for affordable and
easy-to-use devices for Interaction Design students to use in their projects.
It is said that Massimo Banzi and David Cuartielles named the project after
Arduin of Ivrea, an Italian king, but I’ve heard from reliable sources that it
also happens to be the name of the local pub near the university, which may
have been of more significance to the project.

The Arduino project drew from many of the experiences of both Wiring and
Processing. For example, an obvious influence from Processing is the graphic
user interface (GUI) that is used in the Arduino software. This GUI was initially
“borrowed” from Processing, and even though it still looks similar, it has
since been refined to be more specific to Arduino. I cover the Arduino inter-
face in more depth in Chapter 4.

Arduino also kept the naming convention from Processing, naming its pro-
grams sketches. In the same way that Processing gives people a digital sketch-
book to create and test programs quickly, Arduino gives people a way to
sketch out their hardware ideas as well. Throughout this book, I show many
sketches that allow your Arduino to perform a huge variety of tasks. By using
and editing the example sketches in this book, you can quickly build up your
understanding of how they work and will be writing your own in no time.
Each sketch is followed with a line-by-line explanation of how it works to
ensure that no stone is left unturned.

The Arduino board, shown in Figure 1-3, was made to be more robust and for-
giving than Wiring or other earlier microcontrollers. It was not uncommon for
students and professions, especially those from a design or arts background,
to break their microcontroller within minutes of using it, simply by getting the
wires the wrong way around. This fragility was a huge problem, not only finan-
cially but also for the success of the boards outside technical circles.

It is also possible to change the microcontroller chip on an Arduino, so if it is
damaged, you can just replace the chip rather than the whole board.

Another important difference between Arduino and other microcontroller
boards is the cost. In 2006, another popular microcontroller, the Basic Stamp,
cost nearly four times as much (http://blog.makezine.com/2006/
09/25/arduino-the-basic-stamp-k/) as an Arduino, and even today, a
Wiring board still costs nearly double the price of an Arduino.

In one of my first Arduino workshops, I was told that the price was intended
to be affordable for students. The price of a nice meal and a glass of wine
at that time was about 30 euros, so if you had a project deadline, you could
choose to skip a nice meal that week and make your project instead.

The range of Arduino boards on the market is a lot bigger than it was back in
2006. In Chapter 2, you learn about just a few of the most useful Arduino and
Arduino-compatible boards and how they differ to provide you with a variety

http://blog.makezine.com/2006/09/25/arduino-the-basic-stamp-k/
http://blog.makezine.com/2006/09/25/arduino-the-basic-stamp-k/

11 Chapter 1: What Is Arduino and Where Did It Come From?

of solutions for your own projects. Also, in Chapter 13 you learn all about
a special type of circuit board called a shield, which can add useful, and
in some cases phenomenal, features to your Arduino, turning it into a GPS
receiver, a Geiger counter, or even a mobile phone, to name just a few.

Figure 1-3:
The original

Arduino
Serial

board.

Learning by Doing
People have used technology in many ways to achieve their own goals with-
out needing to delve into the details of electronics. Following are just a few
related schools of thought that have allowed people to play with electronics.

Patching
Patching isn’t just a town in West Sussex; it is also a technique for experi-
menting with systems. The earliest popular example of patching is in phone
switchboards. For an operator to put you through to another line they had to
physically attach a cable. This was also a popular technique for synthesizing
music, such as with the Moog synthesizer.

12 Part I: Getting to Know Arduino

When an electronic instrument generates a sound, it is really generating a
voltage. Different collections of components in the instrument manipulate
that voltage before it is outputted as an audible sound. The Moog synthesizer
works by changing the path that that voltage takes, sending it through a
number of different components to apply different effects.

Because so many combinations are possible, for the musician the experience
is largely based on trial and error. But the simple interface means that this
process is extremely quick and requires very little preparation to get going.

Hacking
Hacking is a popular term and is commonly used to refer to subversive
people on the Internet. More generally, though, it refers to exploring systems
and making full use of them or repurposing them to suit your needs.

Hacking in this sense is possible in hardware as well as software. A great
example of hardware hacking is a keyboard hack. Say that you want to use
a big, red button to move through a slideshow. Most software has keyboard
shortcuts, and most PDF viewers move to the next page when the user
presses the spacebar. If you know this, then you ideally want a keyboard with
only a spacebar.

Keyboards have been refined so much that inside a standard keyboard is a
small circuit board, a bit smaller than a credit card (see Figure 1-4). On it are
lots of contacts that are connected when you press different keys. If you can
find the correct combination, you can connect a couple of wires to the con-
tacts and the other ends to a pushbutton. Now every time you hit that button,
you send a space to your computer.

This technique is great for sidestepping the intricacies of hardware and
getting the results you want. In the bonus chapter (www.dummies.com/
go/arduinofd), you learn more about the joy of hacking and how you
can weave hacked pieces of hardware into your Arduino project to control
remote devices, cameras, and even computers with ease.

www.dummies.com/go/arduinofd
www.dummies.com/go/arduinofd

13 Chapter 1: What Is Arduino and Where Did It Come From?

Figure 1-4:
The insides

of a key
board,

ready to be
hacked.

Circuit bending
Circuit bending flies in the face of traditional education and is all about spon-
taneous experimentation. Children’s toys are the staple diet of circuit benders,
but really any electronic device has the potential to be experimented with.

By opening a toy or device and revealing the circuitry, you can alter the path
of the current to affect its behavior. Although this technique is similar to
patching, it’s a lot more unpredictable. However, after you find the combina-
tions, you can also add or replace components, such as resistors or switches,
to give the user more control over the instrument.

Most commonly, circuit bending is about sound, and the finished instrument
becomes a rudimentary synthesizer or drum machine. Two of the most popu-
lar devices are the Speak & Spell (see Figure 1-5) and the Nintendo GameBoy.
Musicians such as the Modified Toy Orchestra (modifiedtoyorchestra.
com), in their own words, “explore the hidden potential and surplus value
latent inside redundant technology.” So think twice before putting your old
toys on eBay!

http://modifiedtoyorchestra.com
http://modifiedtoyorchestra.com

14 Part I: Getting to Know Arduino

Figure 1-5:
A Modified

Toy
Orchestra

Speak &
Spell after

circuit
bending.

Courtesy of Modified Toy Orchestra

Electronics
Although there are many ways to work around technology, eventually you’ll
want more of everything: more precision, more complexity, and more control.

If you learned about electronics at school, you were most likely taught how
to build circuits using specific components. These circuits are based solely
on the chemical properties of the components and need to be calculated in
detail to make sure that the correct amount of current is going to the correct
components.

These are the kind of circuits you find as kits at Radio Shack (or Maplin, in
the United Kingdom) that do a specific job, such as an egg timer or a security
buzzer that goes off when you open a cookie jar. These are very good at their
specific job, but they can’t do much else.

This is where microcontrollers come in. Microcontrollers are tiny comput-
ers, and if used in conjunction with analog circuitry, can give that circuitry
a more advanced behavior. They can also be reprogrammed to perform dif-
ferent functions as needed. Your Arduino is actually designed around one of
these microcontrollers and helps you get the most out of it. In Chapter 2, you
look closely at an Arduino Uno to see exactly how it is designed and what it is
capable of.

15 Chapter 1: What Is Arduino and Where Did It Come From?

The microcontroller is the brains of a system, but it needs data to either
sense things about or affect things in its environment. It uses inputs and out-
puts to do so.

Inputs
Inputs are senses for your Arduino. They tell it what is going on in the world.
At its most basic, an input could be a switch, such as a light switch in your
home. At the other end of the spectrum, it could be a gyroscope, telling the
Arduino the exact direction it’s facing in three dimensions. You learn all
about basic inputs in Chapter 7, and more about the variety of sensors and
when to use them in Chapter 12.

Outputs
Outputs allow your Arduino to affect the real world in some way. An output
could be very subtle and discreet, such as in the same way that a mobile
phone vibrates, or it could be a huge visual display on the side of a build-
ing that can be seen for miles around. The first sketch in the book walks
you through “blinking” an LED (see Chapter 4). From there you can go on
to motor control (Chapter 8) and even controlling huge numbers of outputs
(see Chapters 14 and 15) to discover a variety of outputs for your Arduino
project.

Open Source
Open source software, in particular Processing, has had a huge influence on
the development of Arduino. In the world of computer software, open source
is a philosophy involving sharing the details of a program and encouraging
others to use, remix, and redistribute them, as they like.

Just as the Processing software is open source, so are Arduino software and
hardware. This means that the Arduino software and hardware are both
released freely to be adapted as needed. Possibly because of this openness
on the part of the Arduino team, you find the same open source community
spirit in the Arduino forums.

On the official Arduino forums (www.arduino.cc/forum/) and many other
ones around the world, people have shared their code, projects, and ques-
tions for an informal peer review. This sharing allows all sorts of people,
including experienced engineers, talented developers, practiced designers,

http://www.arduino.cc/forum/

16 Part I: Getting to Know Arduino

and innovative artists, to lend their expertise to complete novices in some or
all of these areas. It also provides a means to gauge people’s areas of interest,
which then occasionally filters into the official release of Arduino software
or board design with new refinements or additions. The Arduino website has
an area known as the Playground (www.playground.arduino.cc) where
people are free to upload their code for the community to use, share, and edit.

This kind of philosophy has encouraged the relatively small community
to pool knowledge on forums, blogs, and websites, thereby creating a vast
resource for new Arduin-ists to tap into.

There is also a strange paradox that despite the open source nature of
Arduino, a huge loyalty to Arduino as a brand exists — so much so that
there is an Arduino naming convention of adding -duino or -ino to the name
of boards and accessories (much to the disgust of Italian members of the
Arduino team)!

http://www.playground.arduino.cc

Chapter 2

Finding Your Board and
Your Way Around It

In This Chapter
▶ Looking closer at the Arduino Uno R3
▶ Discovering other Arduino boards
▶ Knowing where to shop for Arduinos
▶ Finding the right Arduino kit to get started
▶ Setting up a workspace

I
n Chapter 1, I describe Arduino in general terms, but now it’s time to look
a little closer. The name Arduino encompasses a host of concepts. It can

refer to an Arduino board, the physical hardware, the Arduino environment —
that is, a piece of software that runs on your computer — and, finally,
Arduino as a subject in its own right, as in this book: how the hardware and
software can be combined with related craft and electronics knowledge to
create a toolkit for any situation.

This chapter is relatively short and provides an overview of what you need
to get started with Arduino. You may be eager to dive in, so you may want to
quickly scan through this chapter, stopping at any areas of uncertainty and
referring back to it later as needed.

In this chapter, you learn about the components used on the Arduino Uno R3
board, which is the stating point for most Arduin-ists. Beyond that, you learn
about the other available Arduino boards, how they differ, and what uses
they have. The chapter lists a few suppliers that can equip you with all the
parts you need and examines some of the starter kits that are ideal for begin-
ners and for accompanying this book. When you have the kit, all you need is
a workspace and then you’re ready to start.

18 Part I: Getting to Know Arduino

Getting to Know the Arduino Uno R3
No one definitive Arduino board exists; many types of Arduino boards are
available, each with its own design to suit various applications. Deciding
what board to use can be a daunting prospect because the number of boards
is increasing, each with new and exciting prospects. However, one board can
be considered the backbone of the Arduino hardware; this is the one that
almost all people start with and that is suitable for most applications. It’s the
Arduino Uno.

The most recent main board to date is the Arduino Uno R3 (released in 2011).
Think of it as the plain-vanilla of Arduino boards. It’s a good and reliable
workhorse that is suitable for a variety of projects. If you’re just starting out,
this is the board for you (see Figures 2-1 and 2-2).

Uno is Italian for the number one, named for the release of version 1.0 of the
Arduino software. Predecessors to this had a variety of names, such as Serial,
NG, Diecimila (10,000 in Italian, to mark that 10,000 boards have been sold)
and Duemilanove (2009 in Italian, the release date of the board), so the Uno
has ushered in some much needed order to the naming of the boards. R3
relates to the revision of the features on the board, which includes updates,
refinements, and fixes. In this case, it is the third revision.

Figure 2-1:
The front of
an Arduino

Uno R3.

19 Chapter 2: Finding Your Board and Your Way Around It

Figure 2-2:
The back of
an Arduino

Uno R3.

The board has many small components, described throughout much of
this chapter.

The Brains: ATmega328
microcontroller chip
You can think of the microcontroller chip itself as the “brains” of the board.
The chip used in the Arduino Uno is the ATmega328, made by Atmel. It’s the
large, black component in the center of the board. This chip is known as an
integrated circuit, or IC. It’s actually not alone but rather sits in a socket. If
you were to remove it, it would look like the one shown in Figure 2-3.

This same chip can come in different forms, referred to as packages. The one
in a regular Arduino Uno R3 is in a plated-through hole, or PTH, package,
named because of the way it makes contact with the board. Another varia-
tion you may find is the Arduino Uno R3 SMD, where SMD stands for surface
mount device, mounted on the surface of the board rather than in holes that go
through it. This is a much smaller chip but is not replaceable, as the PTH chip
is. Apart from that, as long as the name of the chip is the same, the chips func-
tion exactly the same and differ only in looks. You see another example of this
kind of chip in Chapter 14 when you learn about the Arduino Mega 2560.

20 Part I: Getting to Know Arduino

Figure 2-3:
An

ATmega328
microcon

troller all
by itself.

Header sockets
The microcontroller socket connects all the legs of the ATmega328 microcon-
troller chip to other sockets, referred to as header sockets, which have been
arranged around the board and labeled for ease of use. They are the black
sockets that go around the edge of the Arduino board. These are divided up
into three main groups: digital pins, analog input pins, and power pins.

All these pins transfer a voltage, which can either be sent as output or
received as an input. Why are these pins important? They allow additional
circuitry to be connected to the board quickly and easily when prototyping
with a breadboard (described in Chapter 7) and allow additional boards,
called shields, to be designed that will fit neatly on top of your Arduino board
(see Chapter 13 for more on shields).

This same process of sending and receiving electrical signals is going on
inside modern computers, but because they are so advanced and refined
compared to a humble Arduino, it is difficult to directly link a computer that
is accustomed to digital signals (0s and 1s) to an electronic circuit that deals
with a range of voltages (in the ATmega328’s case 0v to 5v).

The Arduino (see the sketch in Figure 2-4) is so special because it is able to
interpret these electric signals and convert them to digital signals that your

21 Chapter 2: Finding Your Board and Your Way Around It

computer can understand — and vice versa. It also allows you to write a pro-
gram using software on a conventional computer that is converted or com-
piled using the Arduino Software (IDE) to electrical signals that your circuit
can understand.

By bridging this gap, it is possible to use the benefits of a conventional
computer — ease of use, user-friendly interfaces, and code that is easy for
humans to understand — to control a wide range of electronic circuits and
even give them complex behaviors with relative ease.

Figure 2-4:
An Arduino
Uno with all

the impor
tant parts

labeled.

Digital pins
You use the digital pins, which run across the top of the board in Figure 2-1
(shown previously), to send and receive digital signals. Digital implies that
they have two states: off or on. In electrical terms, this would mean a value of
0 or 5 volts, but no values in between.

Analog in pins
You use the analog in pins, which can be seen in the bottom left of the board
in Figure 2-1, to receive an analog value. An analog value is taken from a
range of values. In this case, the range is the same 0 to 5V as with the digital
pins, but the value can be at any point — 0.1, 0.2, 0.3, and so on.

22 Part I: Getting to Know Arduino

What about analog out?
The very shrewd ones among you may have noticed that there seem to be
no analog out pins. In fact, there are, but they’re hidden among the digital
pins marked as PWM using the “~” symbol. PWM stands for Pulse Width
Modulation, which is a technique you can use to give the impression of
an analog output using digital pins. I explain how PWM works in Chapter 7.
The ~ symbol appears next to digital pins 3, 5, 6, 9, 10, and 11, showing that
you have 6 pins that are capable of PWM.

Power pins
You use the power pins to distribute power to inputs and outputs wherever
it’s needed.

Vin, which stands for voltage in, can be used to source a voltage (V) equal to
the one that is supplied by the external supply jack (for example, 12V). You
can also use this pin to supply power to the Arduino from another source.

GND marks the ground pins, which are essential to complete circuits. There
is also a third ground by pin 13. All these pins are linked and share the same
(called common) ground.

You can use 5V to supply a 5 volt power supply to components or circuits.

And finally, you can use 3.3V to supply a 3.3 volt power supply to components
or circuits.

USB socket
To tell the microcontroller on the Arduino board what to do, you need to
send a program to it. On the Uno, you send programs primarily by a USB
connection. The large, metallic socket is a USB port for a USB A-B cable. This
cable is similar to the one used on your home printer or scanner, so you may
find a few around the house that can serve as handy spares. The Arduino
uses the USB both for power and to transfer data. Using a USB cable is per-
fect for low-power applications and when data is being sent to or received
from a computer.

External power jack
Next to the USB socket is another socket; this one is for power. This socket
allows you to power your Arduino from an external power supply. The supply

23 Chapter 2: Finding Your Board and Your Way Around It

could be from an AC-to-DC adaptor (similar to those used on other consumer
electronics), a battery, or even a solar panel.

The connector needed is a 2.1 mm center positive plug. Center positive
simply means that the plug has an outside and an inside that fit the socket
and that, in this case, the inside of the plug must be positive. You should be
able to find this plug among the standard connectors that come with most
power supplies; otherwise, you can buy the connector yourself and attach it
to bare wires.

 If you connect a power supply that is the opposite (center negative), it is
known as having a “reverse polarity.” There are components on the Arduino
Uno R3 to resist your attempts to send voltage the wrong way around the
board, but those components can melt in the progress of saving your board,
depending on how much power you are sending and how long it takes you to
notice the burning smell! If you reverse the polarity when using the Vin, 5V,
or 3.3V pins, you bypass this protection and almost instantly destroy several
parts of your board and the ATmega 328 chip.

The recommended voltage for the Uno R3 board is 7-12V. If you supply too
little power, your board might not function correctly. Or if you provide too
much power you can cause your board to overheat and potentially damage it.

LEDs
The components described in this section are tiny. The Uno board has four
light-emitting diodes (LEDs), labeled L, RX, TX, and ON. An LED is a compo-
nent that produces light when electrical current flows through it.

LEDs come in a variety of shapes and sizes and are found in almost every
modern piece of consumer electronics, from your bike lights to your TV to
your washing machine. They’re almost unavoidable. They are the future, and
you see a lot more of them in numerous examples throughout the book.

These four LEDs are all used to indicate activity on the board, as follows:

 ✓ ON is green and signifies that your Arduino is powered.

 ✓ RX and TX tell you that data is being received or transmitted by the board.

 ✓ L is a very special LED that’s connected to digital pin 13. This is great for
testing to see whether your board is functioning as you want.

If your Arduino is plugged in but you don’t see any lights, you should double-
check that:

24 Part I: Getting to Know Arduino

 ✓ Your USB cable is plugged in

 ✓ Your USB port is working — try another device in the port

 ✓ Your cable is okay — try another cable, if possible

If none of these steps makes the LED illuminate, something is probably wrong
with your Arduino. Your first destination should be the Arduino trouble-
shooting page at http://arduino.cc/en/Guide/troubleshooting. If
you still have no luck, request a replacement Arduino from where you pur-
chased the device.

Reset button
The Uno board also has a button next to the USB socket. This is the reset
button. It resets the program on the Arduino or stops it completely when
held down for a time. Connecting a wire between GND and the reset pin,
which is located next to the 3.3V, achieves the same results.

The board has many other components, all of which perform important jobs, but
the ones described in this section are the key ones for you to know for now.

Discovering Other Arduino Boards
The preceding section describes the standard USB Arduino board, but you
should be aware that many others exist, all designed with different needs in
mind. Some offer more functionality, and others are designed to be more min-
imal, but generally they follow a design that is similar to that of the Arduino
Uno R3. For this reason, all examples in this book are based on the Uno R3
(with a brief mention of the Arduino Mega 2560 in Chapter 14). Previous revi-
sions of the Uno should work without any changes, but if you are using an
older or more specialized board, be sure to follow instructions that are spe-
cific to it. This section gives you a brief rundown of other available boards.

Official Arduino boards
Although Arduino is open source, it is also a trademarked brand, so to
guarantee the quality and consistency of its products, new boards must be
properly approved by the Arduino team before they are officially recognized
and can bear the name Arduino. You can recognize official boards first by the
name — Arduino Pro, Fio, or Lilypad, for example. Other nonofficial boards
often include “Arduino compatible” or “for Arduino” in the name. The other

http://arduino.cc/en/Guide/troubleshooting

25 Chapter 2: Finding Your Board and Your Way Around It

way to recognize an official Arduino, made by the Arduino team, is by the
branding (in the most recent versions): they are turquoise and display the
infinity symbol somewhere on the board, along with a link to Arduino.cc.
Some other companies also have their boards accepted as official boards,
so you may find other company names printed on them, such as Adafruit
Industries and Sparkfun.

You can find more details on the naming guidelines at http://arduino.cc/
en/Main/FAQ#naming.

Because the schematics for the Arduino board are open source, there is a
lot of variation in unofficial Arduino boards, which people have made for
their own needs. These are usually based on the same microcontroller chips
because the official Arduinos and are compatible with the Arduino software,
but they require extra consideration and reading to be sure that they will
work as expected. The Seeeduino (by Seeed Studio), for example, is based
on the Arduino Duemilanove and is 100 percent compatible but adds various
extra connections, switches, and sockets, which may be of more use to you in
certain situations than an official Arduino board might be.

Official boards are the safe option for beginners to choose because the
majority of Arduino examples online are based around these boards. Because
of this official boards are more widely used and because of that, any errors or
‘bugs’ in the board design are likely to be remedied with the next revision or
at least well documented.

Arduino Leonardo
The Leonardo is one of the newest boards in the official Arduino range.
It has the same footprint (shape of circuit board), but the microcontroller
used is different, giving it the benefit of being recognized as a keyboard or
mouse by a computer. I provide more detail about the difference of this
board to the Uno and how to use it in the bonus chapter at www.dummies.
com/go/arduinofd.

Arduino Mega 2560 R3
As the name suggests, the Mega 2560 is a bigger board than the Uno. It is
for people who want more: more inputs, more outputs, and more process-
ing power! The Mega has 54 digital pins and 16 analog pins compared to the
Uno’s measly 15 digital and 6 analog pins. This board is introduced further in
Chapter 14.

Arduino Mega ADK
The Arduino Mega ADK is essentially the same board as the Mega 2560 but
is designed to interface with Android phones. This means that you can share
data between your Android mobile or tablet and an Arduino to broaden the
range of either.

http://arduino.cc/en/Main/FAQ%23naming
http://arduino.cc/en/Main/FAQ%23naming
www.dummies.com/go/arduinofd
www.dummies.com/go/arduinofd

26 Part I: Getting to Know Arduino

Arduino Nano 3.0
The Arduino Nano is a condensed Arduino that measures just 0.70" x 1.70".
This size is perfect for making your project smaller. The Nano has all the
power of an Arduino UNO, using the same ATmega328 microcontroller, but is
a fraction of the size. It is also handily fits into a breadboard, making it ideal
for prototyping as well.

Arduino Mini R5
Despite what the names suggest, the Arduino Mini is smaller than the Nano.
This board also uses the same ATmega328 microcontroller chip but is con-
densed further, removing all header pins and the Mini-USB connector of the
Nano. This board is great if space is at a premium, but it does require great
care when connecting because an incorrect connection can easily destroy
the board.

Arduino Ethernet
This Arduino has the same footprint as the Uno but is specifically for com-
municating with the Internet. Rather than access the abundant amounts of
data available to you through a computer, you can tell your Arduino Ethernet
to access it directly. A web browser on your computer is really just interpret-
ing text that is telling it what to display on your screen: aligning, formatting,
and displaying images, for example. If the correct commands are known, the
Arduino Ethernet can access this text directly and it can be used for other
purposes. A favorite purpose is accessing Twitter so that you can perhaps
display Tweets on an LCD display or have a bell ring every time you’re
mentioned. Some basic examples are included in the Arduino software, but
beyond that, you will require a more advanced knowledge of web develop-
ment to use this board.

Arduino BT
The Arduino BT allows your Arduino to talk with Bluetooth devices in the
surrounding area. This is great for interfacing with mobile phones, tablets, or
anything with Bluetooth!

Contributed (Approved) Arduinos
Many of the Arduino boards are now standardised and designed by the
Arduino team, but some have been contributed by other companies, such as
Adafruit Industries and SparkFun, over the years and are recognised as offi-
cial boards. I list a few of the best ones here.

27 Chapter 2: Finding Your Board and Your Way Around It

Arduino LilyPad
The Arduino LilyPad was made for projects in which technology is combined
with textiles to aid in the development of e-textiles or wearable electron-
ics projects. The LilyPad and its accompanying breakout boards (printed
circuit board that make it easy to integrate various components without
the need to build your own boards) can be sewn together using conductive
thread instead of conventional wire. This board was designed and developed
by Leah Buechley of MIT (http://web.media.mit.edu/~leah/) and
SparkFun Electronics. If you’re interested in e-textiles or wearable electron-
ics, check out the excellent tutorial on Sparkfun’s site to introduce the latest
version of the board and the ProtoSnap kit here: http://www.sparkfun.
com/tutorials/308.

Arduino Fio
The Fio (whose full name is the Arduino Funnel I/O) was designed by Shigeru
Kobayashi with wireless applications in mind. It is based on the design of the
LilyPad but includes a mini USB port, a lithium battery connector, and space
for an XBee wireless module.

Arduino Pro
The Arduino Pro is a minimal and super skinny Arduino, by SparkFun
Electronics, based on the same microcontroller as those used in the Uno R3.
It comes without any of the normal headers or sockets but has all the same
capabilities of an Uno. It’s ideal when height is at a short supply and also has
a battery socket which allows you to easily make your project portable.

Arduino Pro Mini
The Pro mini is another SparkFun product that pushes the minimalism of the
Arduino Pro to new limits. In the scale of Arduinos, this sits neatly between
the Nano and the Mini. It has none of the header pins or the Mini-USB port
of the Nano, and is slightly more spread out than the Arduino Mini. This also
has none of the safety features of the Uno R3, so take great care when wiring
because a wrong connection can easily destroy the board.

Shopping for Arduino
Initially, Arduino was available only from a small number of hobby shops
scattered across the world. Now you have lots of places to purchase an
Arduino from wherever you are, as listed in the following sections. Later in
this chapter, I also tell you about beginner’s kits that pull the basic compo-
nents together for you, which is recommended to get you started on your
Arduino endeavors.

http://web.media.mit.edu/~leah/
http://www.sparkfun.com/tutorials/308
http://www.sparkfun.com/tutorials/308

28 Part I: Getting to Know Arduino

Official Arduino Store
A good place to start is the Arduino Store (store.arduino.cc). This loca-
tion has all the latest Arduino boards, kits, and a select few components.

Distributors in the United Kingdom
There is a wealth of hobby electronics stores in the United Kingdom that
have existed long before Arduino came about. Now, as well as catering for
all sorts of remote control, robotic, and electronics needs, these shops also
stock a lot of Arduino-specific components and equipment. Here are just a
few of them:

 ✓ Active Robots: www.active-robots.com

 ✓ Cool Components: www.coolcomponents.co.uk

 ✓ Oomlout: www.oomlout.co.uk

 ✓ ProtoPic: www.proto-pic.co.uk

 ✓ RoboSavvy: http://robosavvy.com/store

 ✓ SK Pang: www.skpang.co.uk

 ✓ Technobots: www.technobotsonline.com

Distributors in the United States
Two of the biggest distributors and manufacturers of Arduino-compatible
boards are based in the United States. They happily ship worldwide to most
corners of the globe, but you can also often find their range of products in
your local distributors.

 ✓ SparkFun: www.sparkfun.com

 ✓ Adafruit: www.adafruit.com

Amazon
So much has the popularity of Arduino grown that it’s also now stocked in
Amazon (www.amazon.com). Most Arduino boards as well as a variety of
components and kits are available here, although they are harder to find than
on more hobby-specific sites.

http://www.active-robots.com
http://robosavvy.com/store
http://www.amazon.com
http://store.arduino.cc
http://www.coolcomponents.co.uk
http://www.oomlout.co.uk
http://www.proto-pic.co.uk
http://www.skpang.co.uk
http://www.technobotsonline.com
http://www.sparkfun.com
http://www.adafruit.com

29 Chapter 2: Finding Your Board and Your Way Around It

Electronics distributors
Many well-established global electronics distribution companies deliver to all
corners of the world. Relatively recently, they have started stocking Arduino
boards, but they are especially useful for bulk buying components once you
know what you’re looking for.

Be warned: Days can be lost searching through the extensive catalogues of
components, so it’s always a good idea to know the name of what you’re
looking for before you start! Here are some global distribution companies
that stock Arduino boards and components:

 ✓ RS Components: http://rs-online.com

 ✓ Farnell: www.farnell.com

 ✓ Rapid: www.rapidonline.com

Kitted Out: Starting with
a Beginner’s Kit

By this point, you probably know a bit about the Arduino board, but no
board is an island; there are lots of other bits that you need so that you can
make use of it. In the same way that a computer would be no use without a
mouse and keyboards, an Arduino would be no use without components. Or
at least not as much fun.

There are a number of basic examples that are good for every new Arduin-ist
to do that teach all the fundamentals of Arduino (which this book covers in
Chapters 4 through 8). These are all achievable with a few basic components.
To save you the time and effort of finding these yourself, a few enterprising
individuals and companies have put together kits that let you experiment in
no time!

Many of the available kits have been designed by these different individuals
and companies based on their experiences, likes, and dislikes. You can also
find a lot of components that do the same job but have different appear-
ances, based on their application.

All this means that a “beginner’s kit” can often be different things to different
people and, especially for beginners, this can greatly add to the confusion
when building your project.

http://rs-online.com
http://www.farnell.com
http://www.rapidonline.com

30 Part I: Getting to Know Arduino

The following short list describes a few core components that should be
included in all good Arduino beginners’ kits:

 ✓ Arduino Uno: The board you know and love.

 ✓ USB A-B cable: This is essential to make use of your Arduino. It can also
be found on printers and scanners.

 ✓ LEDs: Light-emitting diodes in various colors are great for providing
visual feedback for your project as well as for testing lighting projects
on a small scale.

 ✓ Resistors: Also referred to as fixed resistors, these are fundamental elec-
trical components used to resist the flow of current through a circuit.
These are essential for the smooth running of most circuits. They have a
fixed value that is indicated by colored bands that are on the side of the
resistor.

 ✓ Variable resistors: Also known as potentiometers or pots, variable resis-
tors resist current in the same way as fixed-value resistors, but they are
able to change their resistance. They are most commonly used in radios
and hi-fi equipment for tuning and volume control dials, although they
are also available in other housings to detect other inputs such as force
or flex on a surface.

 ✓ Diodes: Also known as rectifier diodes, diodes are similar to LEDs, but
without the light. They have an extremely high resistance to the flow of
current in one direction and an extremely low (ideally zero) resistance
in the other. This is the same reason that an LED works in only one
direction, but instead of emitting light, diodes are used to control the
flow of current throughout your circuit.

 ✓ Pushbuttons: These are found behind the scenes in many bits of
consumer electronics such as game console controllers and stereos.
They’re used to either connect or disconnect parts of a circuit so that
your Arduino can monitor human inputs.

 ✓ Photo diodes: Also known as photo resistors or light-dependant resis-
tors (LDRs), photo diodes change their resistance when light falls on
them. They can have a variety of different uses depending on how
they’re placed relative to the light source.

 ✓ Temperature sensors: These sensors tell you what the ambient tempera-
ture is wherever they are placed. These are great for observing changes
in your environment.

 ✓ Piezo buzzer: These are technically described as discrete sounding
devices. These simple components can be supplied with a voltage to
produce simple notes or music. They can also be attached to surfaces to
measure vibrations.

31 Chapter 2: Finding Your Board and Your Way Around It

 ✓ Relays: These electrically operated switches are used to switch higher
power circuits using your low-voltage Arduino. Half of a relay is an elec-
tromagnet, and the other half is a magnetic switch. The electromagnet
can be activated by the 5V of the Arduino, which moves the contact of the
switch. Relays are essential for bigger lighting and motor-based projects.

 ✓ Transistors: These are the basis for all modern computers. They are
electrically operated switches, similar to relays, but the switch happens
on a chemical rather than physical level. This means that the switching
can be super fast, making transistors perfect for high-frequency opera-
tions such as animating LED lighting or controlling the speed of motors.

 ✓ DC motors: These are simple electric motors. When electric current
is passed through a motor, it spins in one direction and when that is
reversed, it spins in the other. Electric motors come in great variety,
from those in your phone that vibrate to those in electric drills.

 ✓ Servo motors: These motors have on-board circuitry that monitors their
rotation. Servo motors are commonly used for precision operations
such as controlled opening of valves or moving the joints of robots.

Here are a few of the better-known kits, ascending in price. They include all
the components in the preceding list, and any will be an excellent companion
for the examples in this book:

 ✓ Starter Kit for Arduino (ARDX) by Oomlout, available from http://
www.adafruit.com/products/170 (United States) and costing
$85.00/£59.00 or http://oomlout.co.uk/starter-kit-for-
arduino-ardx-p-183.html (United Kingdom)

 ✓ Sparkfun Inventor’s Kit by Sparkfun (shown in Figure 2-5), available
from https://www.sparkfun.com/products/11227 and costing
$94.95/£60.93/

 ✓ Proto-PIC Boffin Kit for Arduino Uno by Proto-Pic, available from
http://proto-pic.co.uk/proto-pic-boffin-kit-for-arduino-
uno/ and costing $101.07/£64.20/

 ✓ Arduino Starter Kit from Arduino, available from http://uk.rs-
online.com/web/p/processor-microcontroller-development-
kits/7617355/ and costs $102.89/£65.35/

All the basic examples in this book are possible with any of the kits in the
preceding list, although there a slight variation may occur in the number and
type of components. Sometimes the same component can take many different
forms, so be sure to carefully read the parts list to make sure that you can
identify each of the components before you start. Cheaper kits are available,
but these will likely not include some components, such as motors or the
variation of sensors.

http://www.adafruit.com/products/170
http://www.adafruit.com/products/170
http://oomlout.co.uk/starter-kit-for-arduino-ardx-p-183.html
http://oomlout.co.uk/starter-kit-for-arduino-ardx-p-183.html
https://www.sparkfun.com/products/11227
http://proto-pic.co.uk/proto-pic-boffin-kit-for-arduino-uno/
http://proto-pic.co.uk/proto-pic-boffin-kit-for-arduino-uno/
http://uk.rs-online.com/web/p/processor-microcontroller-development-kits/7617355/
http://uk.rs-online.com/web/p/processor-microcontroller-development-kits/7617355/
http://uk.rs-online.com/web/p/processor-microcontroller-development-kits/7617355/

32 Part I: Getting to Know Arduino

Figure 2-5:
The

SparkFun
Inventor’s

Kit has a
good range

of com
ponents

including
flex sensi

tive and
linear

potentio
meters.

Preparing a Workspace
When working on an Arduino project, you could sit on your sofa and work on
your circuit or be at the top of a ladder, setting up an installation. I’ve been
there before! But just because it’s possible to work this way doesn’t mean
that it’s sensible or advisable. You’re far better off to have a good workspace
before you dive into your experiment, and this is doubly important when you
are just starting out with Arduino.

Working with electronics is a fiddly business. You’re dealing with lots of
tiny, delicate, very sensitive components, so you need great precision and
patience when assembling your circuit. If you’re in a dimly lit room trying to
balance things on your lap, you will very quickly go through your supply of
components by either losing or destroying them.

Anything you can do to make things easier for yourself is a good thing. The
ideal workspace is

 ✓ A large, uncluttered desk or table

 ✓ A good work lamp

 ✓ A comfortable chair

 ✓ A cup of tea or coffee (recommended)

Chapter 3

Downloading and
Installing Arduino

In This Chapter
▶ Obtaining and installing the Arduino software
▶ Getting a feel for the Arduino environment

B
efore you can start working with the Arduino board, you need to install
the software for it. This is similar to the software on your home com-

puter, laptop, tablet, or phone: It’s required to make use of your hardware.

The Arduino software is a type of an Integrated Development Environment
(IDE). This is a tool that is common in software development and allows you
to write, test, and upload programs. Versions of Arduino software are avail-
able for Windows, Macintosh OS X, and Linux.

In this chapter, you find out where to obtain the software for the platform
you’re using, and I walk you through the steps for downloading and install-
ing it. Also in this chapter is a brief tour of the environment in which you
develop your Arduino programs.

Installing Arduino
This section talks you through installing the Arduino environment on your
platform of choice. These instructions are specifically for installation using
an Arduino Uno R3, but work just as well for previous boards, such as the
Mega2560, Duemilanove, Mega, or Diecimila. The only difference may be the
drivers needed for the Windows installations.

34 Part I: Getting to Know Arduino

Installing Arduino for Windows
The instructions and screenshots in this section describe the installation of
the Arduino software and Arduino Uno drivers on Windows 7, but the same
instructions work just as well for Windows Vista and Windows XP.

The only hurdle to jump is in Windows 8, which for the time being, at least,
requires a few tricks to install the drivers. You can find a discussion on the
Arduino forum titled “Missing digital signature for driver on Windows 8”
that details a workaround (go to http://arduino.cc/forum/index.
php?topic=94651.15).

With your Arduino Uno and a USB A-B cable (shown in Figure 3-1) at hand,
follow these steps to obtain and install the latest version of Arduino on your
version of Windows:

 1. Open the Arduino downloads page at http://arduino.cc/en/
Main/Software, and click the Windows link to download the .zip file
containing a copy of the Arduino application for Windows.

 At the time of writing, the zipped file was 90.7MB. That’s quite a large
file, so it may take a while to download. When downloading is complete,
unzip the file and place the Arduino folder in an appropriate location,
such as
C:/Program Files/Arduino/

 2. Plug the square end of the USB cable into the Arduino and the flat
end into an available port on your PC to connect the Arduino to your
computer.

Figure 3-1:
An AB

USB cable
and Arduino

Uno.

http://arduino.cc/forum/index.php?topic=94651.15
http://arduino.cc/forum/index.php?topic=94651.15
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

35 Chapter 3: Downloading and Installing Arduino

 As soon as the board is connected, the green LED labeled ON indicates
that your Arduino is receiving power. Windows then makes a valiant
effort to find drivers, but it will likely fail, as indicated in Figure 3-2. It’s
best to close the wizard and install the driver yourself, as described in
the following steps.

Figure 3-2:
New

hardware
found —
or not, as
the case
may be.

 3. Open the Start Menu and type devmgmt.msc in the Search Programs
and Files box; then press Enter.

 The Device Manager window opens. Device Manager shows you all the
different hardware and connected peripherals in your computer, such as
your Arduino board.

 If you look down the list, you should see Arduino Uno with an exclama-
tion mark next to it. The exclamation mark indicates that it is not yet
recognized.

 4. Right-click Arduino Uno and select Update Driver Software in the list
that appears; then click the Browse My Computer for Driver Software
option (see Figure 3-3).

 The window advances to the next page.

 5. Click Browse to find your Arduino folder.

 You should find this folder in the location you saved it to in Step 1 of
these steps.

 6. Within your Arduino folder, click the Drivers folder and then click the
Arduino UNO file.

 Note that if you’re in the FTDI USB Drivers subfolder, you have gone too far.

 7. Click Next, and Windows completes the installation.

36 Part I: Getting to Know Arduino

Figure 3-3:
Installing
drivers in

Device
Manager.

After you’ve taken care of the software installation, an easy way to launch
the program is to place a shortcut on your desktop or your computer’s Start
menu, whichever you prefer. Just go to your main Arduino folder, find the
Arduino.exe file, right-click and click Create Shortcut to make a shortcut.
Double-click the shortcut icon whenever you want to launch the Arduino
application. This opens a new sketch window, as shown in Figure 3-4.

Figure 3-4:
A beautiful

turquoise
Arduino

window in
Windows 7.

37 Chapter 3: Downloading and Installing Arduino

Installing Arduino for Mac OS X
The instructions in this section describe an installation of the Arduino
Software and drivers for an Arduino Uno on Mac OS X Lion, but will work the
same for Leopard, Snow Leopard and Mountain Lion. Previous operating
systems may require you to search the web for your specific situation.

Follow these steps to install the Arduino software on your Mac:

 1. Go to the Arduino downloads page at http://arduino.cc/en/
Main/Software and click the Mac OS X link to download a .zip file
containing a copy of the Arduino application for Mac OS X.

 At the time of writing, the file was 71.1MB. That’s quite a large file, so
it may take a while to download. After you’ve finished downloading,
double-click the file to the Arduino application and place it in your
Applications folder, shown in Figure 3-5.

Figure 3-5:
Place the

Arduino
applica

tion in your
applications

folder.

 2. Plug the square end of the USB cable into the Arduino and the flat
end into an available port on your Mac to connect the Arduino to your
computer.

 As soon as the board is connected, a dialog box appears, showing the
message A new network interface has been detected (see
Figure 3-6).

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

38 Part I: Getting to Know Arduino

Figure 3-6:
Your Mac
will think

the Arduino
board is

a new
network

interface.

 3. Click Network Preferences, and in the window that appears, click
Apply.

 Note that your Arduino is displayed in the list on the left side of this
window as Not Configured, but trust me, the software is installed and
your Arduino board will work.

 4. Close the Network Preferences window.

To launch the Arduino application, go to your Applications folder, locate the
Arduino application, drag it to the Dock, and then click the Arduino icon to
open the Arduino application (Figure 3-7 shows the window that appears). If
you prefer, you can also drag the application to the desktop to create an alias
there instead.

Figure 3-7:
A beautiful

turquoise
Arduino

window in
OS X.

39 Chapter 3: Downloading and Installing Arduino

Installing Arduino for Linux
Installation on Linux is more involved and varies depending on the distribu-
tion you use, so it is not covered in this book. If you use Linux, you are prob-
ably already more than competent at installing the software and will relish
the challenge. All the details on installing Arduino for Linux can be found in
the Arduino Playground:

http://arduino.cc/playground/Learning/Linux

Surveying the Arduino Environment
Programs written for Arduino are known as sketches. This is a naming con-
vention that was passed down from Processing, which allowed users to
create programs quickly, in the same way that you would scribble out an idea
in your sketchbook.

Before you look at your first sketch, I encourage you to stop and take a look
around the Arduino software, and to that end, this section offers a brief tour.
The Arduino software is an integrated development environment, or IDE, and
this environment is presented to you as a graphical user interface, or GUI
(pronounced goo-ey).

A GUI provides a visual way of interacting with a computer. Without it, you
would need to read and write lines of text, similar to what you may have seen
in the DOS prompt in Windows, Terminal in Mac OS X, or that bit about the
white rabbit at the start of the Matrix.

The turquoise window is Arduino’s GUI. It’s divided into the following four
main areas (labeled in Figure 3-8):

 ✓ Menu bar: Similar to the menu bar in other programs you’re familiar
with, the Arduino menu bar contains drop-down menus to all the tools,
settings, and information that are relevant to the program. In Mac OS,
the menu bar is at the top of your screen; in Windows and Linux, the
menu bar is at the top of the active Arduino window.

 ✓ Toolbar: The toolbar contains several buttons that are commonly
needed when writing sketches for Arduino. These buttons, which are
also available on the menu bar, perform the following functions:

	 •	Verify: Checks that your code makes sense to the Arduino soft-
ware. Known as compiling, this process is a bit like a spelling and
grammar checker. Be aware, however, that although the compiler
checks that your code has no obvious mistakes, it does not guaran-
tee that your sketch works correctly.

http://arduino.cc/playground/Learning/Linux

40 Part I: Getting to Know Arduino

	 •	Upload: Sends your sketch to a connected Arduino board. It auto-
matically compiles your sketch before uploading it.

	 •	New: Creates a new sketch.

	 •	Open: Opens an existing sketch.

	 •	Save: Saves the current sketch.

	 •	Serial monitor: Allows you to view data that is being sent to or
received by your Arduino board.

 ✓ Text editor: This area displays your sketch is displayed as text. It is almost
identical to a regular text editor but has a couple of added features. Some
text is color coded if it is recognized by the Arduino software. You also
have the option to auto format the text so that it is easier to read.

 ✓ Message area: Even after years of using Arduino, you’ll still make mis-
takes (everybody does), and this message area is one of the first ways
for you to find out that something is wrong. (Note: The second way is
the smell of burning plastic.)

Figure 3-8:
The areas of

the GUI.

Chapter 4

Blinking an LED
In This Chapter
▶ Finding the Blink sketch
▶ Identifying your board
▶ Setting the software
▶ Uploading Blink
▶ Completing your first Arduino sketch
▶ Explaining the Sketch
▶ More Blink

B
race yourself. You are about to take your first real step into the world
of Arduino! You’ve bought a board, maybe an Arduino starter kit (pos-

sibly from one of the suppliers I recommended), and you’re ready to go.

It’s always a good idea to have a clear work surface or desk to use when
you’re tinkering. It’s not uncommon to drop or misplace some of the many
tiny components you work with, so make sure your workspace is clear, well
lit, and accompanied by a comfortable chair.

By its nature, Arduino is a device intended for performing practical tasks.
The best way to learn about Arduino, then, is in practice — by working
with the device and doing something. That is exactly the way I write about it
throughout this book. In this chapter, I take you through some simple steps
to get you on your way to making something.

I also walk you through uploading your first Arduino sketch. After that, you
examine how it works and see how to change it to do your bidding.

Working with Your First Arduino Sketch
In front of you now should be an Arduino Uno R3, a USB cable, and a com-
puter running your choice of operating system (Windows, Mac OS, or Linux).
The next section shows what you can do with this little device.

42 Part I: Getting to Know Arduino

Finding the Blink Sketch
To make sure that the Arduino software is talking to the hardware, you
upload a sketch. What is a sketch, you ask? Arduino was created as a device
that allows people to quickly prototype and test ideas using little bits of
code that demonstrate the idea — kind of like how you might sketch out an
idea on paper. For this reason, programs written for Arduino are referred to
as sketches. Although a device for quick prototyping was its starting point,
Arduino devices are being used for increasingly complex operations. So don’t
infer from the name sketch that an Arduino program is trivial in any way.

The specific sketch you want to use here is called Blink. It’s about the
most basic sketch you can write, a sort of “Hello, world!” for Arduino.
Click in the Arduino window. From the menu bar, choose File➪Examples➪
01.Basics➪Blink (see Figure 4-1).

A new window opens in front of your blank sketch and looks similar to
Figure 4-2.

Figure 4-1:
Find your

way to
the Blink

sketch.

43 Chapter 4: Blinking an LED

Figure 4-2:
The Arduino

Blink
sketch.

Identifying your board
Before you can upload the sketch, you need to check a few things. First you
should confirm which board you have. As I mention in Chapter 2, you can
choose from a variety of Arduino devices and several variations on the USB
board. The latest generation of USB boards is the Uno R3. If you bought your
device new, you can be fairly certain that this is the type of board you have.
To make doubly sure, check the back of the board. You should see details
about the board’s model, and it should look something like Figure 4-3.

44 Part I: Getting to Know Arduino

Also worth checking is the ATMEL chip on the Arduino. As I mention in
Chapter 2, the ATMEL chip is the brains of the Arduino and is similar to the
processor in your computer. Because the Uno and earlier boards allow you
to replace the chip, there is always a chance, especially with a used board,
that the chip has been replaced with a different one.

Although the ATMEL chip looks quite distinctive on an individual board, if
you compare it to an older Arduino, telling them apart at first glance would
be difficult. The important distinguishing feature is written on the surface of
the chip. In this case, you are looking for ATmega328P-PU. Figure 4-4 shows a
close-up of the chip.

Figure 4-3:
Back side
of Arduino

Uno.

45 Chapter 4: Blinking an LED

Figure 4-4:
Closeup

of the
ATmega
328PPU

chip.

Configuring the software
After you confirm the type of board you are using, you have to provide that
information to the software. From the Arduino main menu bar (at the top of
the Arduino window on Windows and at the top of the screen on Mac OS X),
choose Tools➪Board. You should see a list of the different kinds of boards
supported by the Arduino software. Select your board from the list, as shown
in Figure 4-5.

Next, you we need to select the serial port. The serial port is the connection
that enables your computer and the Arduino device to communicate. Serial
describes the way that data is sent, one bit of data (0 or 1) at a time. The port
the physical interface, in this case a USB socket. I talk more about serial com-
munication in Chapter 7.

To determine the serial port, choose Tools➪Serial Port. A list displays of
devices connected to your computer (see Figure 4-6). This list contains any
device that can talk in serial, but for the moment, you’re only interested
in finding the Arduino. If you’ve just installed Arduino and plugged it in,
it should be at the top of the list. For OS X users, this is shown as /dev/
tty.usbmodemXXXXXX (where XXXXXX is a randomly signed number). On
Windows, the same is true, but the serial ports are named COM1, COM2, COM3,
and so on. The highest number is usually the most recent device.

46 Part I: Getting to Know Arduino

Figure 4-5:
Select

Arduino
Uno from

the Board
menu.

Figure 4-6:
A list of

serial con
nections

available to
the Arduino

environment.

47 Chapter 4: Blinking an LED

After you find your serial port, select it. It should appear in the bottom right
of the Arduino GUI, along with the board you selected (see Figure 4-7).

Figure 4-7:
Arduino GUI

board and
port.

Uploading the sketch
Now that you have told the Arduino software what kind of board you are
communicating with and which serial port connection it is using, you can
upload the Blink sketch you found earlier in this chapter.

First click the Verify button. Verify checks the code to make sure it makes
sense. This doesn’t necessarily mean your code will do what you are
anticipating, but it verifies that the syntax is written in a way Arduino can
understand (see Chapter 2). You should see a progress bar and the text
Compiling Sketch (see Figure 4-8) for a few seconds, followed by the text
Done compiling after the process has finished.

48 Part I: Getting to Know Arduino

Figure 4-8:
The prog

ress bar
shows that

the sketch is
compiling.

If the sketch compiled successfully, you can now click the Upload button next
to the verify button. A progress bar appears, and you see a flurry of activity
on your board from the two LEDs marked RX and TX (that I mentioned in
Chapter 2). These show that the Arduino is sending and receiving data. After
a few seconds, the RX and TX LEDs stop blinking, and a Done Uploading
(see Figure 4-9) message appears at the bottom of the Arduino window.

49 Chapter 4: Blinking an LED

Figure 4-9:
The Arduino
GUI is done
uploading.

Congratulate yourself!
You should see the LED marked L blinking away reassuringly: on for a
second, off for a second. If that is the case, give yourself a pat on the back.
You’ve just uploaded your first piece of Arduino code and entered the world
of physical computing!

If you don’t see the blinking L, go back through all the preceding sections.
Make sure you have installed Arduino properly and then give it one more go.
If you still don’t see the blinking L, check out the excellent troubleshooting
page on the official Arduino site: http://arduino.cc/en/Guide/
troubleshooting.

http://arduino.cc/en/Guide/troubleshooting
http://arduino.cc/en/Guide/troubleshooting

50 Part I: Getting to Know Arduino

What just happened?
Without breaking a sweat you’ve just uploaded your first sketch to an
Arduino. Well done (or good job, if you’re from the States)!

Just to recap, you have now

 ✓ Plugged your Arduino into your computer

 ✓ Opened the Arduino software

 ✓ Set the board and serial port

 ✓ Opened the Blink sketch from the Examples folder and uploaded it to
the board

In the following section, I walk you through the various sections of the first
sketch you just uploaded.

Looking Closer at the Sketch
In this section, I show you the Blink sketch in a bit more detail so that you
can see what’s actually going on. When the Arduino software reads a sketch,
it very quickly works through it one line at a time, in order. So the best way
to understand the code is to work through it the same way, very slowly.

Arduino uses the programming language C, which is one of the most widely
used languages of all time. It is an extremely powerful and versatile language,
but it takes some getting used to.

If you followed the previous section, you should already have
the Blink sketch on your screen. If not, you can find it by choosing File➪
Examples➪01.Basics➪Blink (refer to Figure 4-1).

When the sketch is open, you should see something like this:

/*
 Blink
 Turns on an LED on for one second,
 then off for one second, repeatedly.

 This example code is in the public domain.
 */

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:

51 Chapter 4: Blinking an LED

int led = 13;

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

The sketch is made up of lines of code. When looking at the code as a whole,
you can identify four distinct sections:

 ✓ Comments

 ✓ Declarations

 ✓ void loop

 ✓ void setup

Read on for more details about each of these sections.

Comments
Here’s what you see in the first section of the code:

/*
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.

 This example code is in the public domain.
 */

Multiline comment
Notice that the code lines are enclosed within the symbols /* and */.
These symbols mark the beginning and end of a multi-line or block comment.
Comments are written in plain English and, as the name suggests, provide an
explanation or comment on the code. Comments are completely ignored by
the software when the sketch is compiled and uploaded. Consequently, com-
ments can contain useful information about the code without interfering with
how the code runs.

52 Part I: Getting to Know Arduino

In this example, the comment simply tells you the name of the sketch, and
what it does, and provides a note explaining that this example code is in the
public domain. Comments often include other details such as the name of the
author or editor, the date the code was written or edited, a short description
of what the code does, a project URL, and sometimes even contact informa-
tion for the author.

Single-line comment
Further down the sketch, inside the setup and loop functions, text on
your screen appears with the same shade of gray as the comments above.
This text is also a comment. The symbols // signify a single-line comment
as opposed to a multiline comment. Any code written after these lines will
be ignored for that line. In this case, the comment is describing the piece of
code that comes after it:

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

This single line of code is in the declarations section of the sketch, but “what
is a declaration?” I hear you ask. Read on to find out.

Declarations
Declarations (which aren’t something you put up at Christmas, ho ho ho)
are values that are stored for later use by the program. In this case, a single
variable is being declared, but you could declare many other variables or
even include libraries of code in your sketch. For now, all that is important to
remember is that variables can be declared before the setup function.

Variables
Variables are values that can change depending on what the program does
with them. In C, you can declare the type, name, and value of the variable
before the main body of code, much as ingredients are listed at the start of a
recipe.

int led = 13;

The first part sets the type of the variable, creating an integer (int). An
integer is any whole number, positive or negative, so no decimal places are
required. It’s worth noting that for Arduino, there are lower and upper limits
for the int type of variable: -32,768 to 32,767. Beyond those limits, a different

53 Chapter 4: Blinking an LED

type of variable must be used, known as a long (you learn more about these
in Chapter 11). But for now, an int will do just fine. The name of the variable
is led and is purely for reference; it can be any single word that’s useful for
figuring out what the variable applies to. Finally, the value of the variable is
set to 13. In this case, that is the number of the pin that is being used.

Variables are especially useful when you refer to a value repeatedly. In this
case, the variable is called led because it refers to the pin that the physi-
cal LED is attached to. Now, every time you want to refer to pin 13, you can
write led instead. Although this approach may seem like extra work initially,
it means that if you decided to change the pin to pin 11, you would need
only to change the variable at the start; every subsequent mention of led
would automatically be updated. That’s a big timesaver over having to trawl
through the code to update every occurrence of 13.

With the declaration made, the code enters the setup function.

Functions
The next two sections are functions and begin with the word void: void
setup and void loop. A function is a bit of code that performs a specific task,
and that task is often repetitive. Rather than writing the same code out again
and again, you can use a function to tell the code to perform this task again.

Consider the general process you follow to assemble IKEA furniture. If you
were to write these general instructions in code, using a function, they would
look something like this:

void buildFlatpackFurniture() {
 buy a flatpack;
 open the box;
 read the instructions;
 put the pieces together;
 admire your handiwork;
 vow never to do it again;
}

The next time you want to use these same instructions, rather than writing
out the individual steps, you can simply call the procedure named build-
FlatpackFurniture().

 Although not compulsory, there is a naming convention for function or vari-
able names containing multiple words. Because these names cannot have
spaces, you need a way to distinguish where all the words start and end;
otherwise, it takes a lot longer to scan over them. The convention is to

54 Part I: Getting to Know Arduino

capitalize the first letter of each word after the first. This greatly improves the
readability of your code when scanning through it, so I highly recommend that
you adhere to this rule in all your sketches for your benefit and the benefit of
those reading your code!

The word void is used when the function returns no value, and the word that
follows is the name of that function. In some circumstances, you might either
put a value(s) into a function or expect a value(s) back from it, the same
way you might put numbers into a calculation and expect a total back, for
example.

void setup and void loop must be included in every Arduino sketch;
they are the bare minimum required to upload. But it is also possible to
write your own custom functions for whatever task you need to do. For now,
you just need to remember that you have to include void setup and void
loop in every Arduino sketch you create. Without these functions, the sketch
will not compile.

Setup
Setup is the first function an Arduino program reads, and it runs only once.
Its purpose, as hinted in the name, is to set up the Arduino device, assigning
values and properties to the board that do not change during its operation.
The setup function looks like this:

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}

 Notice on your screen that the text void setup is orange. This color indi-
cates that the Arduino software recognizes it as a core function, as opposed
to a function you have written yourself. If you change the case of the words to
Void Setup, you see that they turn black, which illustrates that the Arduino
code is case sensitive. This is an important point to remember, especially
when it’s late at night and the code doesn’t seem to be working.

The contents of the setup function are contained within the curly brackets,
{ and }. Each function needs a matching set of curly brackets. If you have too
many of either bracket, the code does not compile, and you are presented
with an error message that looks like the one shown in Figure 4-10.

55 Chapter 4: Blinking an LED

Figure 4-10:
The Arduino

software
is telling

you that a
bracket is

missing.

PinMode
The pinMode function configures a specified pin either for input or output: to
either receive or send data. The function includes two parameters:

 ✓ pin: The number of the pin whose mode you want to set

 ✓ mode: Either INPUT or OUTPUT

In the Blink sketch, after the two lines of comments, you see this line of code:

 pinMode(led, OUTPUT);

The word pinMode is highlighted in orange. As I mentioned earlier in this
chapter, orange indicates that Arduino recognizes the word as a core function.
OUTPUT is also coloured blue so that it can be identified as a constant, which is
a predefined variable in the Arduino language. In this case, that constant sets
the mode of this pin. You can find more about constants in Chapter 7.

That’s all you need for setup. The next section moves on to the loop section.

56 Part I: Getting to Know Arduino

Loop
The next section you see in the Blink sketch is the void loop function. This
is also highlighted in orange so the Arduino software recognizes it as a core
function. loop is a function, but instead of running one time, it runs continu-
ously until you until you press the reset button on the Arduino board or you
remove the power. Here is the loop code:

void loop() {
 digitalWrite(led, HIGH); // set the LED on
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // set the LED off
 delay(1000); // wait for a second
}

DigitalWrite
Within the loop function, you again see curly brackets and two different
orange functions: digitalWrite and delay.

First is digitalWrite:

 digitalWrite(led, HIGH); // set the LED on

The comment says set LED on, but what exactly does that mean? The func-
tion digitalWrite sends a digital value to a pin. As mentioned in Chapter 2,
digital pins have only two states: on or off. In electrical terms, these can be
referred to as either a HIGH or LOW value, which is relative to the voltage of
the board.

An Arduino Uno requires 5V to run, which is provided by either a USB or a
higher external power supply, which the Arduino board reduces to 5V. This
means that a HIGH value is equal to 5V and LOW is equal to 0V.

The function includes two parameters:

 ✓ pin: The number of the pin whose mode you want to set

 ✓ value: Either HIGH or LOW

So digitalWrite(led, HIGH); in plain English would be “send 5V to pin
13 on the Arduino,” which is enough voltage to turn on an LED.

Delay
In the middle of the loop code, you see this line:

 delay(1000); // wait for a second

57 Chapter 4: Blinking an LED

This function does just what it says: It stops the program for an amount of
time in milliseconds. In this case, the value is 1000 milliseconds, which is
equal to one second. During this time, nothing happens. Your Arduino is
chilling out, waiting for the delay to finish.

The next line of the sketch provides another digitalWrite function, to the
same pin, but this time writing it low:

 digitalWrite(led, LOW); // set the LED off

This tells Arduino to send 0V (ground) to pin 13, which turns the LED off.
This is followed by another delay that pauses the program for one second:

 delay(1000); // wait for a second

At this point, the program returns to the start of the loop and repeats itself,
ad infinitum.

So the loop is doing this:

 ✓ Sending 5v to pin 13, turning on the LED

 ✓ Waiting a second

 ✓ Sending 0v to pin 13, turning off the LED

 ✓ Waiting a second

As you can see, this gives you the blink!

Blinking Brighter
I have mentioned pin 13 a few times in this chapter. Why does that pin blink
the LED on the Arduino board? The LED marked L is actually connected just
before it reaches pin 13.On early boards, it was necessary to provide your
own LED. Because the LED proved so useful for debugging and signaling,
there is now one in permanent residence to help you out.

For this next bit, you need a loose LED from your kit. LEDs come in a variety
of shapes, colors, and sizes but should look something like the one shown in
Figure 4-11.

Take a look at your LED and notice that one leg is longer than the other. Place
the long leg (anode or +) of the LED in pin 13 and the short leg (cathode or -) in
GND (ground). You see the same blink, but it is (hopefully) bigger and brighter
depending on the LED you use. Insert the LED as shown in Figure 4-12.

58 Part I: Getting to Know Arduino

Figure 4-11:
A lone LED,
ready to be
put to work.

Figure 4-12:
Arduino LED

Pin 13.

From the description of the digitalWrite function in the preceding sec-
tion, you know that your Arduino is sending 5V to pin 13 when it is HIGH.
This can be too much voltage for most LEDs. Fortunately, another feature of
pin 13 is a built-in pull-down resistor. This resistor keeps your LED at a com-
fortable voltage and ensures it has a long and happy life.

59 Chapter 4: Blinking an LED

Tweaking the Sketch
I’ve gone over this sketch in great detail, and I hope everything is making
sense. The best way to understand what is going on, however, is to experi-
ment! Try changing the delay times to see what results you get. Here are a
couple of things you can try:

 ✓ Make the LED blink the SOS signal.

 ✓ See how fast you can make the LED blink before it appears to be on all
the time.

60 Part I: Getting to Know Arduino

Part II
Getting Physical

with Arduino

In this part . . .

R
eady to get down to business? Part I of this book
gives you an introduction, but in this part, you learn

more about the prototyping tools you need to build your
projects. You briefly dip into a bit of electronics theory
before getting back to the physical side of Arduino. From
this point on, it’s all downhill as you learn new and inter-
esting things that your Arduino can do by building a few
basic examples. All that’s left is to think of your own proj-
ects to apply your Arduino to.

Chapter 5

Tools of the Trade
In This Chapter
▶ Introducing the breadboard, a blank canvas for circuits
▶ Assembling a tool kit
▶ Becoming an electronics super-sleuth, with a multimeter

I
n Chapter 4, I cover one of the most basic Arduino applications: blinking
an LED. This application requires only an Arduino and a few lines of code.

Although blinking an LED is fun, you can use an Arduino for an almost unlim-
ited number of other things — making interactive installations, controlling
your home appliances, and talking with the Internet, to name a few.

In this chapter, you branch out by gaining an understanding of prototyping
and how to use some basic prototyping tools to do more with your Arduino.
Prototyping tools allow you to make temporary circuits to try new compo-
nents, test circuits, and build simple prototypes. In this chapter, you find out
about all the equipment and techniques you’ll need to build your own cir-
cuits and prototype your ideas.

Finding the Right Tools for the Job
Prototyping is all about exploring ideas, which also happens to be the core
of what Arduino is all about. Although theory is important, you often learn
better and faster from doing an experiment.

This section introduces you to some prototyping tools and components that
you can use to start building circuits. You can then use these circuits to form
the basis for your own projects.

There are a great number of tools at your disposal to help you experiment. This
is a short list of the recommended ones. Breadboards and jumper wires are
included in most kits and are essential for building circuits for your Arduino
project. Needle-nose pliers are not essential but are highly recommended.

64 Part II: Getting Physical with Arduino

Breadboard
Breadboards are the most essential part of your prototyping kit. They are
the base on which you can prototype your circuits. Breadboards allow you
to temporarily use components rather than committing them to a circuit and
soldering them in place. (Soldering is covered in Chapter 10.).

Breadboards get their name from a practice used in the early 1900s. At that
time, components were a lot bigger, and people would prototype circuits by
fixing them to an actual breadboard — that is, a board intended for cutting
bread on. The components were joined together by wrapping lengths of wire
around nails that came in contact with the components. By unwrapping the
wire from one nail and wrapping it around another, you could quickly change
the circuit.

Modern breadboards are much more refined. The outside consists of a plas-
tic case with rows and columns of holes, underneath which are tracks of
copper. These tracks allow you to quickly and easily connect components
electrically.

Breadboards come in many different shapes and sizes, and many have con-
nectors to allow you to lay them out in an arrangement suitable for what
you’re doing.

Figure 5-1 shows a fairly standard breadboard. If you were to remove the
cream-colored plastic coating, copper tracks would run down each of the
long sides of the board, broken in the middle. These copper lengths are
generally used to provide a source of power (PWR) and ground (GND) and
are sometimes marked with a positive (+) or negative (-) symbol or a red and
black or red and blue line. Red is always positive (+) in this and black or blue
is negative (-).

A power or ground “rail” is basically a source of voltage or ground. Circuits
often need power or ground for a variety of different functions, and often, one
source isn’t enough. You may have multiple wires that all need to get to the
same place, so you use a rail. From this rail, jump wires can source whatever
is needed, without your having to fear running out of space.

Although these tracks are marked, you can use them for anything. However,
keeping to convention ensures that other people can easily understand your
circuit, so I advise that you do so.

Down the center of the breadboard are lots of short tracks running parallel
to the short edge, separated with a trench down the middle. The primary

65 Chapter 5: Tools of the Trade

reason for this middle trench is to mount integrated circuits (such as the
74HC595 Shift Register, described in Chapter 15) because the trench means
that the legs on one side aren’t connected to the legs on the other, and also
provides space for jump wires to connect them to the places they need to get
to. Lots of other components are also able to make use of this gap, including
pushbuttons (discussed in Chapter 5) and optocouplers (see bonus chapter
at www.dummies.com/go/arduinofd), making it easier to lay out your
circuit.

When you place a jump wire or component into one of these sockets, you
should feel a bit of friction. This is a pincer-like device that holds the wire or
component in place. It provides enough grip to hold things in place for a proj-
ect while working at a desk, but it’s loose enough for you to easily remove it
with your fingers.

I have seen people taping breadboards into boxes for their final projects,
but this isn’t advisable. Smaller components or loose wires can easily come
loose, and it can be a real pain to figure out why something isn’t working.
If you have a project working and want to get it out into the real world, you
should jump ahead to soldering (explained in Chapter 10) because soldering
makes your project last longer, and it’s a lot of fun, too!

Figure 5-1:
A

breadboard.

http://www.dummies.com/go/arduinofd

66 Part II: Getting Physical with Arduino

Jump wires
Jump wires (shown in Figure 5-2) are essential to make use of your bread-
board. They’re short lengths of insulated equipment wire used to connect
your components to the rows of your breadboard, other components and
your Arduino. A jump wire is no different from other wire in a material sense,
but it’s usually cut to a short length that is useful for breadboards.

You can find insulated wire everywhere. It can be the thick mains cable used
to plug in any of your household appliances, or it can be much thinner, like
wire used for an earphone. Insulated wire is basically a conductive metal wire
surrounded by an insulator that protects you from the electricity and pro-
tects the electrical signal from any outside interference.

The wire used most often in this book (and that’s most useful for your Arduino
projects) could be subcategorised as insulated equipment wire. This type of
wire is generally used on a small scale for low-voltage electrical applications.

The equipment wire you use is one of two varieties: single core and multicore.
Single core is a single piece of wire, just as a coat hanger is a single piece.
Single-core wire is extremely good for holding its shape, but if you bend it too
much, it shears. Therefore, this type of wire is useful for laying out wires on
your breadboard neatly as long as you won’t need to move them much.

Multicore wire can have the same diameter as single core, but instead of just
one wire, it consists of lots of little ones. The little wires are twisted together,
giving the multicore wire more strength and resistance to bending than a
single core wire has. This twisted design is the same technique used on sus-
pension bridges. Multicore wires are especially suited to connections that
will change often, and they last a long time.

You can cut jump wires yourself, but they also come in handy packs of
assorted colors and lengths. Each alternative has its pros and cons.

Cutting them yourself is significantly cheaper because you can buy a large
reel of wire. On the other hand, if you want a variety of colors, you have to
buy a reel for each color, which can amount to a fairly big investment for
your first circuit. The packs save you this initial cost and give you the variety
you need. You can buy the large reels when you know you’ll need them.

Also, when considering cutting your own, bear in mind the difference in
finishing for homemade jump wires. Single-core wires are much the same
whether you cut them yourself or someone else does, but they deteriorate
quicker as they bend. Multicore wires last longer, but if they are cut from a
reel, you are left with a few small wires on the ends that can easily fray in the
same way as the end of a piece of string or thread does. You have to fiddle

67 Chapter 5: Tools of the Trade

with them often, twisting with your thumb and forefinger between uses to
ensure that the small wires stay as straight and ridged as possible.

The pre-made multicore jump wire packets have the benefit of being usually
either soldered to a point or have a connecting pin soldered to the end of the
wire. This design ensures that the connecting end is as reliable as single core
while giving you the flexibility of multicore.

Ideally, you should have a pack of pre-made multicore jump wires to get you
going. These are the most versatile and long-lasting choice for your prototyp-
ing kit. Eventually, you’ll want to have a variety so that you can be prepared
for any situation when building a circuit.

Figure 5-2:
A selection

of jump
wires.

Needle-nose pliers
Needle-nosed pliers, shown in Figure 5-3, are the same as your regular pliers
but with a very fine point, ideal for picking up tiny components. Electronics
can be an extremely fiddly business, and it’s extremely easy to mangle the deli-
cate legs of components when pushing them into a breadboard. These special-
ist pliers are not essential but add a little bit of finesse to building circuits.

68 Part II: Getting Physical with Arduino

Figure 5-3:
Needle

nose pliers:
the con

noisseur’s
choice.

Multimeter
A multimeter is a meter that measures volts, amps, and resistance. It can tell
you the values of different components and what’s going on with different
parts of your circuit. Because you can’t see what’s going on in a circuit or com-
ponent, a multimeter is essential for understanding its inner workings. Without
it, you have to rely on guesswork, which is always a bad idea with electronics.

Figure 5-4 shows a good mid-range digital multimeter. As does this one, most
multimeters include:

 ✓ A digital display: This is the same as on your digital alarm clock and
displays the values that you’re reading. Because of the limited number
of digits, the decimal place moves to accommodate larger or smaller
numbers. The number is found automatically by a multimeter with an
auto-ranging function, or, if your multimeter doesn’t have that feature,
you have to change the mode manually to the range that you require.

 ✓ A mode-selection dial: This dial allows you to choose among the dif-
ferent functions on the multimeter. These functions can be for volts,
amperes, and ohms as well as for the range within each of those, such as
ohms on hundred, thousand, tens of thousands, hundreds of thousands,
and millions. The best multimeters also include a continuity tester that
tells you whether your connections are actually connected by sounding
a tone. Having a tone has saved me hours of work of having to retrace
my steps on projects, so I definitely recommend investing in a good mid-
range multimeter with this feature.

69 Chapter 5: Tools of the Trade

 ✓ A set of probes: These are the implements that you use to test parts of
your circuit. Most multimeters come with two skewer-like probes that
are designed to be poked into contact with the wires. You can also find
probes, or test leads as they are sometimes known, that have crocodile
clips on the end, or you can simply buy crocodile clips that you can
attach yourself. These are especially useful for grabbing onto wires.

 ✓ A set of sockets: The probes can be repositioned into different sockets
depending on the use. In this case, the sockets are labeled A, mA, COM,
and VΩHz. The socket marked A is for measuring large currents in amps
(A), up to 20A. There is also a warning that it can read that current for
only 10 seconds. These limits are indicated on a line between this socket
and the COM socket, which also indicates that the two probes should
be placed in A (red probe) and COM (black probe). The mA socket (red
probe) is for smaller currents that are less than 500mA. The COM socket
(black probe) is short for Common and is a point of reference for your
measurements. In most cases, this is the ground of your circuit and uses
the black probe. The socket marked VΩ Hz (red probe) is used for mea-
suring voltage (V or volts), resistance (Ω or ohms) and frequency (Hz or
hertz) between this socket and the COM port (black probe).

Figure 5-4:
A good

digital multi
meter can
often save

your project.

70 Part II: Getting Physical with Arduino

Using the Multimeter to Measure
Voltage, Current, and Resistance

There are a few basic techniques that all Arduin-ists should know to check
their circuit. Volts, amps, and current can all be calculated in advance (as
you learn in Chapter 6), but in the real world, many other factors can arise
that you can’t account for. If you have a broken component or a faulty con-
nection, you can lose hours of time guessing at what could be wrong, so a
multimeter becomes essential for solving problems on your circuit. In this
section, you learn about measuring voltage, current, and resistance and
checking the continuity of your connections.

Measuring voltage (in volts) in a circuit
Measuring the voltage is essential. It could be checking the voltage of a bat-
tery or checking the voltage that is passing through a component. If things
aren’t lighting up or whirring, you might just have a loose connection or
you’ve sent too much power and burnt out what you were trying to power.
This is the perfect occasion to check the voltage in your circuit and make
sure it is correct.

First you need to check that the probes of your multimeter are in the correct
sockets. These sockets should be marked V for volts using the red probe and
COM (common) for ground using the black one. Next, you set your multimeter
to Volts in DC, which can be signified by a V followed by a square-shaped digi-
tal wave, as opposed to an AC voltage, which is indicated by a smooth, analog
wave. In this case, my multimeter has a button to toggle between DC and AC.

Voltage is measured in parallel, which means that you must bridge the part
of the circuit that you want to measure without interfering in it. Figure 5-5
shows how you do this. The positive probe should always be on the positive
side of the component and the negative on the other side. Getting the probes
the wrong way won’t cause any damage to your circuit but will give you a
negative reading rather than a positive one.

Figure 5-5:
A multi
meter is
used in
parallel

to find the
voltage.

71 Chapter 5: Tools of the Trade

A good way to test your multimeter is to measure the voltage between the
5V pin and GND on your Arduino. Make sure that your Arduino is plugged in,
and connect a jump wire to each pin to make them easier to access with your
probes. Place the red voltage probe on the 5V wire and the black common
probe on the GND wire. This should return a value of 5V on the screen of your
multimeter and prove that your Arduino is supplying 5 volts as expected.

Measuring current (in amps) in a circuit
You may have the right voltage, but sometimes there just won’t be enough
current to power the light or motor that you’re driving. The best way to find
out is to check the circuit to see how much current is being drawn and com-
pare that to the power supply you’re using.

Check that your probes are connected to the correct sockets of the multi-
meter. Some meters have two possible sockets, one for very high currents
measured in amps (or A) and another for low currents measures in milliamps
(mA). In most cases, basic Arduino circuits require only a reading in milli-
amps, but if you are using large lights, motors, or other devices, you should
set it to amps. Then turn the dial on your meter to select the correct level of
amps, A or mA or even μA (microamps).

Current is measured in series, which means that the multimeter must be
placed in line with the other components the circuit so that the current flows
through the multimeter as if it were another component. Figure 5-6 shows
this series measurement in action.

If you built a circuit similar to this on your breadboard, you can use two
jump wires to break the circuit, allowing your multimeter to fill the gap. This
should display the current in the circuit.

Note: If you are blinking or fading the output, your current changes, so you may
want to set it to always be on to be sure of the maximum continuous current.

Figure 5-6:
A multi
meter is
used in

series to
find the
current.

72 Part II: Getting Physical with Arduino

Measuring resistance (in ohms)
of a resistor
Sometimes it can be difficult to read the value of a resistor, and it is neces-
sary, or just easier, to confirm it with a multimeter. Simply set the multimeter
to Ohms or Ω and place one probe on each leg of the resistor, as shown in
Figure 5-7.

Figure 5-7:
Finding the
resistance

of a resistor.

Measuring resistance (in ohms)
of a variable resistor
With variable resistors, it can be good to know that you’re getting the full
range of resistances promised on the label. Variable resistors are similar to
passive resistors but have three legs. If you connect the probes across the
legs on either side, you should be reading the maximum resistance of the
variable resistor, and the reading does not change when you move the dial.
If you place the probes between the center and one side of the resistor, you
should read the actual value of variable resistance, which changes as you
turn the dial, as shown in Figure 5-8. If you switch to the center and the oppo-
site side, doing so should change the direction of the dial.

73 Chapter 5: Tools of the Trade

Figure 5-8:
Finding the
resistance

of a variable
resistor.

Checking the continuity (in bleeps)
of your circuit
If you have a quality multimeter, it should have a speaker or sound symbol
on the dial. This speaker or symbol is a continuity tester. You use it to verify
that parts of your circuit are connected, and the multimeter communicates
the connection to you by bleeping, ideally producing a continuous tone when
the connection is good. Turn your dial to the continuity test symbol and
touch the ends together to test that it is working. If you hear an unbroken
tone, the connection is working correctly. Place the probes along any length
of wire or connection, as shown in Figure 5-9, to test the connection.

Figure 5-9:
Checking

the continu
ity of your

circuit.

74 Part II: Getting Physical with Arduino

Chapter 6

A Primer on Electricity
and Circuitry

In This Chapter
▶ Coming to grips with electricity
▶ Understanding a few useful equations
▶ Finding your way around circuit diagrams
▶ Realising the importance of color coding

I
n this chapter, you look at the fundamentals of electricity. In later chap-
ters, you delve deeper into electronics, so it’s important that you have a

basic understanding of how electricity behaves in your circuit.

The great thing about Arduino is that you don’t need to study electronics for
years to use it. That being said, it’s a good idea to know a bit of the theory to
back up the practical side of your project. In this chapter, you look at a few
equations to help you build a balanced and efficient circuit; you look at circuit
diagrams, which provide you with a roadmap of your circuit; and you learn a
bit about color coding, which can make your life easier when building circuits.

Understanding Electricity
Electricity is one of those things that most people take for granted but find
difficult to define. Simply put, electricity is a form of energy resulting from
the existence of charged particles (such as electrons or protons), either stati-
cally as an accumulation of charge or dynamically as a current.

This definition of electricity is describing electricity on an atomic level, which
is more complex than you need to know for dealing with the circuitry of your
Arduino projects. Your main concern is simply to understand that electricity
is energy and that it has a current. For those of you who want to understand
electricity at this level, you can check out Electronics For Dummies, by Dickon
Ross, Cathleen Shamieh, and Gordon McComb.

76 Part II: Getting Physical with Arduino

To illustrate the idea of the flow of a current, take a look at a simple light
switch circuit (see Figure 6-1). The circuit is similar to those you may have
made in physics or electronics classes at school with no Arduino involved,
using only a battery, a switch, a resistor, and an LED.

Figure 6-1:
A basic

light switch
circuit.

In this circuit, you have a source of electrical power in the form of a battery.
Power is supplied in watts and is made up of voltage (in volts) and current
(in amps). Voltage and current are supplied to the circuit through the posi-
tive (+) end of the battery.

You use a switch to control the power to the circuit. The switch can either be
open, which breaks the circuit and stops the flow of current, or closed, which
completes the circuit and allows it to function.

The power can be used for various applications. In this case, the circuit is
powering an LED. The battery is supplying the LED with 4.5V, which is more
than the LED needs to light. If the LED were supplied with this much voltage,
you would risk damaging it, so you need a resistor before it to resist the volt-
age. Also, if the voltage is too low, the LED will not reach full brightness.

To complete the circuit, the power must return to ground at the negative (-)
end of the battery. The LED draws as much current as necessary to light to
full brightness.

By drawing current, the LED is also resisting the flow, ensuring that only the
required current is drawn. If the current is not used or resisted by compo-
nents (that is, if the positive is connected directly to the negative) it draws all
the available current as quickly as possible. This is known as a short circuit.

The basic principles that you need to understand are

 ✓ An electrical circuit is, as the name suggests, a circular system.

 ✓ The circuit needs to use the power inside it before it returns to
the source.

77 Chapter 6: A Primer on Electricity and Circuitry

 ✓ If the circuit does not use the power, that power has nowhere to go and
can damage the circuit.

 ✓ The easiest way to interact with a circuit is to break it. By controlling
when and where the power is, you have instant control over the outputs.

Using Equations to Build Your Circuits
You are now aware of a few characteristics of electricity.

 ✓ Power in watts (P), such as 60W

 ✓ Voltage in volts (V or E), such as 12V

 ✓ Current in amps or amperes (I), such as 3A

 ✓ Resistance in ohms (R), such as 150Ω

These characteristics can be quantified and put into equations, which allow
you to carefully balance your circuit to ensure that everything works in per-
fect harmony. A variety of equations exist for determining all manner of attri-
butes, but in this section I cover two of the most basic ones that will be of
most use to you when working with Arduino: Ohm’s Law and Joule’s Law.

Ohm’s Law
Perhaps the most important relationship to understand is that among volt-
age, current, and resistance. In 1827, Georg Simon Ohm discovered that the
voltage and current were directly proportional if applied to a simple equation
(recall from the preceding list that “I” stands for “amps,” or “amperes”):

V = I x R

This equation became known as Ohm’s Law. Using algebra, the equation can
be rearranged to give you any one value from the remaining two:

I = V / R

or

R = V / I

You can take a look at this equation at work in an actual circuit. Figure 6-2
shows a simple circuit with a power source and a resistor.

78 Part II: Getting Physical with Arduino

Figure 6-2:
A power

source and
resistor.

In many situations, you will know the voltage of your power supply and the
value of the resistor, so you can first calculate the current of the circuit
as follows:

I = V / R = 4.5V / 150Ω = 0.03A

This equation works in any order you want to put the values:

R = V / I = 4.5V / 0.03A = 150Ω

V = I x R = 0.03A x 150 Ω = 4.5V

The easiest way to remember Ohm’s Law is as a pyramid (see Figure 6-3). By
eliminating any one element from the pyramid, you are left with the equation.

Figure 6-3:
Ohm’s Law

pyramid.

“But how is this calculation useful to me in the context of Arduino?” I hear
you cry. Here’s a practical example that you might run into in a basic Arduino
circuit.

The digital pins on an Arduino can supply up to 5V, so this is the most
common supply of power that you use. An LED is one of the most basic out-
puts you want to control, and a fairly standard LED requires a voltage of 2V
and about 30 milliamps or 30mA (0.03A) of current.

If you plug in the LED directly to the power supply, you promptly witness a
bright light followed by a plume of smoke and a burning smell. You’re not
likely to want that! To make sure that you can use the LED again and again
safely, you should add a resistor.

79 Chapter 6: A Primer on Electricity and Circuitry

Ohm’s Law tells you that

R = V / I

But you also have to include two different voltage values, the voltage of the
power supply (supply voltage) and the voltage required to power the LED (for-
ward voltage). Forward voltage is a term that is often found in datasheets, espe-
cially when referring to diodes, indicating the recommended amount of voltage
that the component can take in the direction that the current is intended to
flow. For LEDs, this direction is from anode to cathode, with the anode con-
nected to positive and the cathode to negative. When referring to a nonlight-
emitting diodes (covered in Chapter 8), you are using them to resist the flow
of current on the opposite direction, from cathode to anode. In this case, the
term you will be looking for is reverse voltage, which indicates the value in
volts that the circuit must exceed for current to flow through the diode.

In this case, the voltages are labelled VSUPPLY and VFORWARD, respectively. The
Ohm’s Law equation requires the voltage across the resistor (voltage that
passes through the resistor), which is equal to the supply voltage minus the
LED forward voltage, or

VSUPPLY - VFORWARD

The new equation looks like this:

R = (VSUPPLY - VFORWARD) / I = (5V - 2V) / 0.03A = 100Ω

This tells you that you need a 100 ohm resistor to power an LED safely; the
example circuit is shown in Figure 6-4.

Figure 6-4:
Applying

Ohm’s
Law to an

Arduino
circuit.

80 Part II: Getting Physical with Arduino

Calculating power
To calculate the power consumption of your circuit in watts, you multiply the
voltage and current of the circuit. The equation is

P = V x I

If you apply this equation to the same circuit as the example used in “Ohm’s
Law,” earlier in this chapter, you can calculate its power.

P = (Vsupply - Vforward) × I = (5V - 2V) × 0.03A = 0.09W

This algebra works in the same way as Ohm’s Law and can be reconfigured to
find the missing value:

V = P / I

I = P / V

This calculation is useful because some hardware, such as light bulbs, shows
only the power and voltage rating, leaving you to figure out the current draw.
This is especially useful if you are trying (or failing) to run power hungry
devices, such as lighting or motors, off your Arduino pins. A USB-powered
Arduino is capable of supplying 500mA of current, but an Arudino Uno can
supply only a maximum of 40mA per pin and 200mA in total from all the pins
being used, which is not much at all. (You can find more details at http://
playground.arduino.cc/Main/ArduinoPinCurrentLimitations.).

This is a very simple calculation, but you can combine it with your knowledge
of Ohm’s Law to help you fill in the blanks in a number of different circuits.

Joule’s Law
Another man who gave his name to an equation was James Prescott Joule.
Although not as well known as ohm, he discovered a similar and perhaps
complementary mathematical relationship between power, current, and
resistance in a circuit.

Joule’s Law is written like so:

P = I2R

The best way to understand it is to look at how you arrive at it.

If V = I x R (Ohm’s Law) and P = V x I (Power Calculation)

Then P = I x (I x R)

http://playground.arduino.cc/Main/ArduinoPinCurrentLimitations
http://playground.arduino.cc/Main/ArduinoPinCurrentLimitations

81 Chapter 6: A Primer on Electricity and Circuitry

Which can also be written as

P = I2 x R

If this is applied to the same circuit as before we can discover the power con-
sumption of the circuit

P = I2 x R = (0.03A x 0.03A) x 100Ω = 0.09W

As you can see, this tallies with our previous power calculation. This allows
us to calculate the power with only the knowing the current and resistance or
any value with any combination of other values.

I = P / (I x R)

R = P / I2

We can also do the same calculation for situations where we only know the
voltage and resistance

If, I = V / R (Ohm’s Law) and P = I / V (Power Calculation)

Then, P = (V / R) * V

Which can also be written as

P = V2 / R

Try the same circuit again to check the results.

P = V2 / R = ((5V-2V) * (5V-2V)) / 100Ω = 0.09W

This can also be rearranged into any combination, depending on which
values you know.

V = P / (V * R)

R = V2 / P

Many Arduin-ists, myself included, are more practical than theoretical,
attempting to build the circuit based on examples and documentation before
doing the sums ourselves. This is perfectly all right and in the spirit of
Arduino! In most cases, your circuit will have the desired outcome, but it’s
always good to know what equations you need, when you need them. With
these few equations, it’s possible to fill in the blanks to most circuits and
ensure that everything is in order, so you can always refer back to them
as needed.

82 Part II: Getting Physical with Arduino

Working with Circuit Diagrams
Recreating circuits from photos or illustrations can be difficult, and for that
reason, standardized symbols are used to represent the variety of compo-
nents and connections that you may want to use in your circuit. These circuit
diagrams are like maps of the underground: They show you everything con-
nection clearly but have very little resemblance to the way things look or
connect in the physical world. The following sections delve a bit more into
circuit diagrams.

A simple circuit diagram
This section takes a look at a basic light switch circuit (shown in Figure 6-5)
made up of four components: a battery, a pushbutton, a resistor, and an LED.

Figure 6-5:
A simple

light switch
circuit

diagram.

Table 6-1 shows the individual symbols for each component.

Table 6-1 Basic Symbols
Name Symbol
Battery

Pushbutton

Resistor

LED

83 Chapter 6: A Primer on Electricity and Circuitry

Figure 6-6 shows the same circuit laid out on a breadboard. The first thing
you may notice is that this example has no battery. Because your Arduino
has a 5V pin and a GND pin, these take the place of the positive (+) and nega-
tive (-) of the battery and allow you make the same circuit. The second thing
you may notice is that the physical circuit uses a pushbutton and, therefore,
is not technically a light switch. This is more convenient, given that the com-
ponents in most Arduino kits and the pushbutton can easily be swapped out
for a switch later if you desire.

Figure 6-6:
A simple

light switch
circuit laid

out on a
breadboard.

I find that the best way is to compare a circuit diagram to the actual circuit is
to follow the connections from positive to negative.

If you start at the positive (+) 5V pin on the Arduino, it leads on to the push-
button. The physical pushbutton has four legs, whereas the symbol has only
two. The legs of the physical pushbutton are actually mirrored so that two
are connected on one side and two on the other. For this reason, it’s very
important to get the orientation of the pushbutton right. The legs of the

84 Part II: Getting Physical with Arduino

physical switch are this way to make it more versatile, but as far as the cir-
cuit diagram is concerned, there is only one switch with one line in and one
line out.

The other side of the pushbutton is connected to a resistor. The resistor
symbol on the diagram is not as bulbous as the physical resistor, but apart
from that the diagram and physical resistor match up well; there is one wire
into the resistor and another out. The value of the resistor is written along-
side the component, as opposed to having color-coded stripes on the physi-
cal one. There is no polarity for resistors (no positive or negative), so there is
nothing else to show.

An LED, by contrast, does have a polarity. If you connect it the wrong way
around, it won’t illuminate. On the circuit diagram, the symbol marks the
polarity with an arrow pointing in the direction of the current flow from +
(anode) to - (cathode) and uses a horizontal line as a barrier in the other
direction. On the physical LED, a long leg marks the anode and the flat sec-
tion on the side of the lens marks the cathode (in case the legs are chopped
off; see Figure 6-7).

Figure 6-7:
A long leg or
the flat side

of the lens
marks

an LED’s
polarity.

The - (cathode) of the LED is then connected to the negative (-) GND pin on
the Arduino to the negative terminal of the battery to complete the circuit.

Using a circuit diagram with an Arduino
Although it’s useful to understand this simple circuit, you will most likely be
using an Arduino in your circuit somewhere, so take a look again at the same
circuit powered from an Arduino (see Figure 6-8).

This circuit has more components than the circuit described in the previous
section.

85 Chapter 6: A Primer on Electricity and Circuitry

Figure 6-8:
A light

switch cir
cuit running
through an

Arduino.

The large, caterpillar-shaped item on the diagram is the Arduino. This is the
standard symbol for an integrated circuit and is similar to the physical rep-
resentation — a rectangle with lots of legs poking out. All the legs or pins are
labeled so that you can tell them apart.

Also, rather than have one circuit, the diagram shows two, each running back
to the Arduino. This is good to illustrate how the Arduino fits in with conven-
tional circuits. Instead of switching the power on and off, you’re sending a
signal to the Arduino, which interprets it and outputs it to the LED.

This is a great practice to adopt when you have a complicated circuit: Rather
than tackle it as a whole, break it up into its components. This circuit has one
input circuit and one output. I describe this circuit in more depth in Chapter 7.

Color Coding
An important technique in electronics is color coding, and it becomes even
more important as you progress to more complex circuits. Wiring circuits
correctly can be hard enough, but staring at a sea of same-colored wires
makes the task infinitely harder.

You’re probably aware of this even if you’re new to electronics. Traffic lights,
for example, are color coded to give a clear message to drivers of what to do.

86 Part II: Getting Physical with Arduino

 ✓ Green means proceed.

 ✓ Amber means prepare to stop.

 ✓ Red means stop.

Color coding is a quick and easy way to visually get a message across without
lots of words.

All sorts of electrical applications, such as the 120v or 240v plugs and sockets
in your home are color coded. Because plugs and sockets are widely used
and potentially dangerous, the colors need to be consistent from plug to plug
and match the national standards. This makes it easy for any electrician or
DIY enthusiast to make the correct connections.

Less potential for causing yourself serious harm exists with low voltage DC
electronics, but you still have great potential to destroy the delicate compo-
nents in your circuit. No definitive rules exist for organizing your circuit, but
here are a few conventions that help you and others know what’s going on:

 ✓ Red is positive (+).

 ✓ Black is negative (-).

 ✓ Different colors are used for different signal pins.

This is true on most breadboard circuits. Power and ground colors can
change; for example, they can be white (+) and black (-) or brown (+) and
blue (-), sometimes depending on the wire that is available to the person.
As long as you use a color-coding system of some sort (and it’s consistent),
reading, copying, and fixing the circuit will be easier.

I’ve fixed many circuits that have broken because of the simple error of con-
necting the wires to the wrong places.

If the color coding of the wire is ever questionable, checking the connection
(using the continuity checker on your multimeter) or the voltage running
through the wire (using the voltage meter on your multimeter) is always
advisable to make sure that everything is as expected.

Datasheets
Picture the scene. Your friend has heard that you know a bit of electronics
and has asked you to have a look at a circuit, copied from the Internet, that
isn’t working. But the board has lots of non-descript integrated circuits, so
what do you do? The answer: Google!

87 Chapter 6: A Primer on Electricity and Circuitry

The world contains millions, if not billions, of different components. The
information you need to make sense of them is normally presented in the
form of a datasheet. Every component should have its own datasheet pro-
vided by the manufacturer. This datasheet should list every detail of the
component and often gives more details than you need.

The easiest way to find a datasheet is to Google it. To find the right one, you
need to know as much about the component as you can find out. The most
important information for search purposes is the model number of the com-
ponent. Figure 6-9 shows the model number of a transistor. If you Google that
number plus the word datasheet, you should locate numerous PDF files that
provide the details about the component. If you can’t find a model or part
number, try to find it out from the place you purchased the component.

Figure 6-9:
The small

print on this
transistor

tells you
exactly

what it is.

Resistor Color Charts
Resistors are extremely important to Arduino projects, and you can find a
great variety of them to allow you to finely tune your circuit. Resistors can
also be extremely small, meaning that, unlike the transistor shown in Figure 6-9,
it’s impossible to fit the resistance value on the resistor in writing. For this
reason, a color chart system exists to tell you what you need to know about
these tiny components. If you take a close look at a resistor, you can see a
number of colored bands that run all the way around it (see Figure 6-10), which
indicate the value in ohms of the resistor.

88 Part II: Getting Physical with Arduino

Figure 6-10:
A close look
at the color

bands on
a resistor.

Table 6-2 lists the value in ohms of the colors and what they mean depending
on the band.

Table 6-2 Resistor Color Chart
Color Value Multiplier Tolerance
Black 0 x100
Brown 1 x101 ±1%
Red 2 x102 ±2%
Orange 3 x103
Yellow 4 x104 ±5%
Green 5 x105 ±0.5%
Blue 6 x106 ±0.25%
Violet 7 x107 ±0.1%
Gray 8 x108 ±0.05%
White 9 x109
Gold x101 ±5%
Silver x102 ±10%
None ±20%

89 Chapter 6: A Primer on Electricity and Circuitry

Now that you know each band’s meaning and value, you need to know what
order to read them in. There will normally be an equal-sized gap between the
first three bands and a larger one separating out the fourth tolerance band.

For example, a few values you might find in your kit are

Orange, Orange, Brown, Gold = 33*10 = 330 ohms with ±5% tolerance

Red, Red, Red, Gold = 22*10*10 = 2.2K ohms ±5% tolerance

Brown, Black, Orange, Gold = 10*10*10*10 = 10K ohms ±5% tolerance

It can be difficult to see the colors and sometimes even to be able to tell
which end to start reading from. So, in most situations it’s advisable to use
a multimeter to check the value of your resistor in ohms. You should find an
ohm symbol (Ω) on the dial of your multimeter that will allow you to get an
accurate reading for your resistor.

 Resistors of the same value will also often be supplied on a reel of paper tape,
holding the resistors together in a kind of ladder. The reason for this arrange-
ment is to allow machines to easily feed in a reel of resistors in an orderly
fashion before placing them on a PCB. This paper tape is also a handy place
for writing the value of that reel of resistors, which will save you the time read-
ing or measuring resistors each time you use them.

90 Part II: Getting Physical with Arduino

Chapter 7

Basic Sketches: Inputs, Outputs,
and Communication

In This Chapter
▶ Fading like a pro
▶ Coming to grips with inputs
▶ Varying resistances with potentiometers
▶ Showing off your stats with the serial monitor

I
n this chapter, I discuss some of the basic sketches that you need to get
you on your Arduino feet. This chapter covers a broad range of inputs

and outputs using the sensors in your kit. If you don’t yet have a kit, I suggest
reading through Chapter 2 to find one of the recommended ones.

The Blink sketch (described in Chapter 4) gives you the basis of an Arduino
sketch, but in this chapter, you expand on it by adding circuits to your
Arduino. This chapter walks you through building circuits using a bread-
board, as mentioned in Chapter 5, and additional components from your kit
to build a variety of circuits.

I detail uploading the appropriate code to your Arduino, walk you through
each sketch line by line, and suggest tweaking the code yourself to gain a
better understanding of it.

Uploading a Sketch
Throughout this chapter and much of the book, you learn about a variety of
circuits, each with their respective sketches. The content of the circuits and
sketches can vary greatly and are detailed in each of the examples in this
book. Before you get started, there is one simple process for uploading a
sketch to an Arduino board that you can refer back to.

92 Part II: Getting Physical with Arduino

Follow these steps to upload your sketch:

 1. Connect your Arduino using the USB cable.

 The square end of the USB cable connects to your Arduino and the flat
end connects to a USB port on your computer.

 2. Choose Tools➪Board➪Arduino Uno to find your board in the Arduino
menu.

 In most of the examples in this book, the board is Arduino Uno, but you
can also find many other boards through this menu as well, such as the
Arduino MEGA 2560 and Arduino Leonardo.

 3. Choose the correct serial port for your board.

 You find a list of all the available serial ports by choosing Tools➪Serial
Port➪ comX or /dev/tty.usbmodemXXXXX. X marks a sequentially or
randomly assigned number. In Windows, if you have just connected your
Arduino, the COM port will normally be the highest number, such as
com 3 or com 15. Many devices can be listed on the COM port list, and if
you plug in multiple Arduinos, each one will be assigned a new number.
On Mac OS X, the /dev/tty.usbmodem number will be randomly assigned
and can vary in length, such as /dev/tty.usbmodem1421 or /dev/tty.usb
modem262471. Unless you have another Arduino connected, it should
be the only one visible.

 4. Click the Upload button.

 This is the button that points to the right in the Arduino environment, as
detailed in Chapter 3. You can also use the keyboard shortcut Ctrl+U for
Windows or Cmd+U for Mac OS X.

Now that you know how to upload a sketch, you should be suitably hungry
for some more Arduino sketches. To help you understand the first sketch in
this chapter, I first tell you about a technique called Pulse Width Modulation
(PWM). The next section briefly describes PWM and prepares you for
fading an LED.

Using Pulse Width Modulation (PWM)
When I tell you about the board in Chapter 2, I mention that sending an
analog value uses something called Pulse Width Modulation (PWM). This is
a technique that allows your Arduino, a digital device, to act like an analog
device. In the following example, this allows you to fade an LED rather than
just turn it on or off.

Here’s how it works: A digital output is either on or off. But it can be turned
on and off extremely quickly thanks in part to the miracle of silicon chips. If

93 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

the output is on half the time and off half the time, it is described as having
a 50 percent duty cycle. The duty cycle is the period of time during which the
output is active, so that could be any percentage — 20 percent, 30 percent,
40 percent, and so on.

When you’re using LEDs as an output, the duty cycle has a special effect.
Because it is blinking faster than the human eye can perceive, an LED with a
50 percent duty cycle looks as though it is at half brightness. This is the same
effect that allows you to perceive still images shown at 24 frames per second
(or above) as a moving image.

With a DC motor as an output, a 50 percent duty cycle has the effect of
moving the motor at half speed. So in this case PWM allows you to control
the speed of a motor by pulsing it at an extremely fast rate.

So despite PWM’s being a digital function, it is referred to as an analogWrite
because of the perceived effect it has on components.

The LED Fade Sketch
In this sketch, you make an LED fade on and off. In contrast to the sketch that
resulted in a blinking LED in Chapter 4, you need some extra hardware to
make the LED fade on and off.

For this project you need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ An LED

 ✓ A resistor (greater than 120 ohm)

 ✓ Jump wires

 It’s always important to make sure that your circuit is not powered while
you’re making changes to it. You can easily make incorrect connections,
potentially damaging the components. So before you begin, make sure that the
Arduino is unplugged from your computer or any external power supply.

Lay out the circuit as shown in Figure 7-1. This makes a simple circuit like
the one used for the Blink sketch in Chapter 4, using pin 9 instead of pin 13.
The reason for using pin 9 instead of 13 is that 9 is capable of Pulse Width
Modulation (PWM), which is necessary to fade the LED. However, note that
pin 9 requires a resistor to limit the amount of current supplied to the LED.
On pin 13, this resistor is already included on the Arduino board itself, so
you didn’t need to worry about this.

94 Part II: Getting Physical with Arduino

Figure 7-2 shows the schematic of the circuit. This schematic shows you the
simple circuit connection. Your digital pin, pin 9, is connected to the long leg
of the LED; the short leg connects to the resistor and that goes on to ground,
GND. In this circuit, the resistor can be either before or after the LED, as long
as it is in the circuit.

It’s always a good idea to color code your circuits — that is, use various
colors to distinguish one type of circuit from another. Doing so greatly helps
keep things clear and can make problem solving much easier. There are a
few good standards to keep to. The most important areas to color code are
power and ground. These are nearly always colored red and black, respec-
tively, but you might occasionally see them as white and black as well, as
mentioned in Chapter 6.

The other type of connection is usually referred to as a signal wire, which is
a wire that sends or receives an electrical signal between the Arduino and a
component. Signal wires can be any color that is not the same as the power
or ground color.

Putting up resistance
As you learn from Chapter 6, calculating the
correct resistance is important for a safe
and long lasting circuit. In this case you are
potentially supplying your LED with a source
5V (volts), the maximum that a digital pin can
supply. A typical LED such as those in your kit
has an approximate maximum forward voltage
of 2.1V (volts), so a resistor is needed to pro-
tect it. It draws a maximum current of approxi-
mately 25mA (milliamps). Using these figures,
you can calculate the resistance (ohms):

 R = (VS-VL) / I

 R = (5-2.1) / 0.025 = 116 ohms

The nearest fixed resistor above this calcula-
tion that you can buy is 120 ohms (brown, red,

brown), so if you have one of those you are in
luck. If not you can apply the rule of using the
nearest resistor above this value. This resists
more voltage than the optimum, but your LED
is safe and you can always switch out the
resistor later when you are looking to make
your project more permanent. Suitable values
from various kits would include 220Ω, 330Ω,
and 560Ω.

You can always refer to Chapter 6 to find your
resistor value on the color chart or use a mul-
timeter to measure the value of your resistors.
There are even apps for your smartphone that
have resistor color charts (although this may
be a source of great embarrassment and ridi-
cule among friends).

95 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

Figure 7-1:
Pin 9 is

connected
to a resistor
and an LED

and then
goes back
to ground.

Figure 7-2:
A schematic
of the circuit

to fade
an LED.

96 Part II: Getting Physical with Arduino

After you assemble your circuit, you need the appropriate software to use it.
From the Arduino menu, choose File➪Examples➪01.Basics➪Fade to call up
the Fade sketch. The complete code for the Fade sketch is as follows:

/*
 Fade

 This example shows how to fade an LED on pin 9
 using the analogWrite() function.

 This example code is in the public domain.
 */

int led = 9; // the pin that the LED is attached to
int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by

// the setup routine runs once when you press reset:
void setup() {
 // declare pin 9 to be an output:
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 // set the brightness of pin 9:
 analogWrite(led, brightness);

 // change the brightness for next time through the loop:
 brightness = brightness + fadeAmount;

 // reverse the direction of the fading at the ends of the fade:
 if (brightness == 0 || brightness == 255) {
 fadeAmount = -fadeAmount ;
 }
 // wait for 30 milliseconds to see the dimming effect
 delay(30);
}

Upload this sketch to your board following the instructions at the start of the
chapter. If everything has uploaded successfully, the LED fades from off to
full brightness and then back off again.

If you don’t see any fading, double-check your wiring:

 ✓ Make sure that you’re using the correct pin number.

 ✓ Check that your LED is correctly situated, with the long leg connected
by a wire to pin 9 and the short leg connected via the resistor and a wire
to GND (ground).

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

97 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

Understanding the fade sketch
By the light of your fading LED, take a look at how this sketch works.

The comments at the top of the sketch reveal exactly what’s happening in
this sketch: Using pin 9, a new function called analogWrite() causes the
LED to fade off and on. After the comments, three declarations appear:

int led = 9; // the pin that the LED is attached to
int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by

Declarations, as mentioned in Chapter 4, are declared before the setup or
loop functions. The Fade sketch has three variables: led, brightness and
fadeAmount. These are integer variables and are capable of the same range
of values, but are all used for different parts of the process of fading an LED.

 With declarations made, the code enters the setup function. The comments
are reminders that setup runs only once and that just one pin is set as an
output. Here you can see the first variable at work. Instead of writing pinMode
(9, OUTPUT), you have pinMode(led, OUTPUT). Both work exactly the
same, but the latter uses the led variable.

// the setup routine runs once when you press reset:
void setup() {
 // declare pin 9 to be an output:
 pinMode(led, OUTPUT);
}

The loop starts to get a bit more complicated:

// the loop routine runs over and over again forever:
void loop() {
 // set the brightness of pin 9:
 analogWrite(led, brightness);

 // change the brightness for next time through the loop:
 brightness = brightness + fadeAmount;

 // reverse the direction of the fading at the ends of the fade:
 if (brightness == 0 || brightness == 255) {
 fadeAmount = -fadeAmount ;
 }
 // wait for 30 milliseconds to see the dimming effect
 delay(30);
}

Instead of just on and off values, a fade needs a range of values. analogWrite
allows you to send a value of 0 to 255 to a PWM pin on the Arduino. 0 is equal
to 0v and 255 is equal to 5v, and any value in between gives a proportional
voltage, thus fading the LED.

98 Part II: Getting Physical with Arduino

The loop begins by writing the brightness value to pin 9. A brightness
value of 0 means that the LED is currently off.

// set the brightness of pin 9:
 analogWrite(led, brightness);

Next you add the fade amount to the brightness variable, making it equal
to 5. This won’t be written to pin 9 until the next loop.

// change the brightness for next time through the loop:
 brightness = brightness + fadeAmount;

The brightness must stay within the range that the LED can understand. This
is done using an if statement, which essentially tests variables to determine
what to do next.

The word if starts the statement. The conditions are in the brackets that
follow, so in this case you have two: the first being, is brightness equal to 0?
The second is, is brightness equal to 255? In this case == is used rather than =.
The double equal sign indicates that the code is comparing two values (if a
is equal to b) rather than assigning a value (a equals b). In between the two
conditional statements is the symbol ||, which is the symbol for OR.

 if (brightness == 0 || brightness == 255) {
 fadeAmount = -fadeAmount ;
 }

So the complete statement is, “If the variable named brightness is equal to
0 or equal to 255, then do whatever is inside the curly brackets.” When this
eventually becomes true, the line of code inside the curly brackets is read.
This is a basic mathematical statement that inverts the variable named
fadeAmount. During the fade up to full brightness, 5 is added to the bright-
ness with every loop. When 255 is reached, the if statement becomes
true and fadeAmount changes from 5 to -5. Then every loop updates to
“add minus 5” to the brightness until 0 is reached, when the if statement
becomes true again. This inverts the fadeAmount of -5 back to 5 to bring
everything back to where it started.

 fadeAmount = -fadeAmount ;

These conditions give us a number that is continually counting up and then
down that an Arduino can use to continually fade your LED on and then
off again.

Tweaking the fade sketch
There are many ways to get something done, but I don’t cover them all in
this book; I can, however, show you one different way to fade an LED using

99 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

the circuit that you created in the previous section. The following code is the
Fading code from a previous release of Arduino, and in some ways I prefer it
to the current example. Upload it and you will see that no visible difference
exists between this and the previous example.

 Some areas of the code appear colored on your screen, most often either orange
or blue. This marks a function or a statement that is recognized by the Arduino
environment (can be extremely handy for spotting typos). Color can be difficult
to recreate in a black-and-white book, so any colored code appears in bold.

/*
 Fading

 This example shows how to fade an LED using the analogWrite() function.

 The circuit:
 * LED attached from digital pin 9 to ground.

 Created 1 Nov 2008
 By David A. Mellis
 modified 30 Aug 2011
 By Tom Igoe

 http://arduino.cc/en/Tutorial/Fading

 This example code is in the public domain.

 */

int ledPin = 9; // LED connected to digital pin 9

void setup() {
 // nothing happens in setup
}

void loop() {
 // fade in from min to max in increments of 5 points:
 for(int fadeValue = 0;fadeValue <= 255;fadeValue +=5) {
 // sets the value (range from 0 to 255):
 analogWrite(ledPin, fadeValue);
 // wait for 30 milliseconds to see the dimming effect
 delay(30);
 }

 // fade out from max to min in increments of 5 points:
 for(int fadeValue = 255 ; fadeValue >= 0; fadeValue -=5) {
 // sets the value (range from 0 to 255):
 analogWrite(ledPin, fadeValue);
 // wait for 30 milliseconds to see the dimming effect
 delay(30);
 }
}

100 Part II: Getting Physical with Arduino

The default example is very efficient and does a simple fade very well, but it
relies on the loop function to update the LED value. This version uses for
loops, which operate within the main Arduino loop function.

Using for loops
After a sketch enters a for loop, it sets up the criteria for exiting the loop
and cannot move out of it until the criteria are met. for loops are often used
for repetitive operations; in this case, for loops are used for increasing or
decreasing a number at a set rate to create the repeating fade.

The first line of the for loop defines the initialization, the test, and the
amount of increment or decrement:

for(int fadeValue = 0;fadeValue <= 255;fadeValue +=5)

In plain English, this would read: “Make a variable called fadeValue (that
is local to this for loop) equal to a value of 0; check to see whether it is less
than or equal to 255; if it is, set fadeValue to be equal to fadeValue plus
5.” fadeValue is equal to 0 only when it is created; after that, it is increased
by 5 every time the for loop cycles.

Within the loop, the code updates the analogWrite value of the LED and
waits 30 milliseconds (ms) before attempting the loop one more time.

for(int fadeValue = 0 ; fadeValue <= 255; fadeValue +=5) {
 // sets the value (range from 0 to 255):
 analogWrite(ledPin, fadeValue);
 // wait for 30 milliseconds to see the dimming effect
 delay(30);
 }

This for loop behaves the same as the main loop in the default Fade exam-
ple, but because the fadeValue is contained in its own loop, and broken
into fade up and fade down loops, it is a lot easier for to start experimenting
with fading patterns in a more controlled way. For example, try changing +=5
and –=5 to different values (that divide into 255 neatly) and you can have
some interesting asymmetrical fading.

You could also copy and paste the same for loops to create further fading
animations. Bear in mind, however, that while it’s in a for loop, your Arduino
can do nothing else.

The Button Sketch
This is the first and perhaps most basic of inputs that you can and should
learn for your Arduino projects: the modest pushbutton.

101 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

For this project, you need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A 10k ohm resistor

 ✓ A pushbutton

 ✓ An LED

 ✓ Jump wires

Figure 7-3 shows the breadboard layout for the Button circuit. It’s impor-
tant to note which legs of the pushbutton are connected. In most cases,
these small pushbuttons are made to bridge the gap over the center of your
breadboard exactly. If they do bridge the gap, the legs are usually split at 90
degrees to the gap (left to right on this diagram).

You can test the legs of a pushbutton with a continuity tester if your multime-
ter has that function (as detailed in Chapter 5).

Figure 7-3:
Pin 2 is

reading the
pushbutton.

102 Part II: Getting Physical with Arduino

From the schematic in Figure 7-4, you can see that the resistor leading to
ground should be connected to the same side as pin 2, and that when the
button is pressed, it connects those to the 5V pin. This setup is used to com-
pare ground (0V) to a voltage (5V) so that you can tell whether the switch is
open or closed.

Figure 7-4:
A sche

matic of the
pushbutton

circuit.

Build the circuit and upload the code from File➪Examples➪02.Digital➪Button.

/*
 Button

 Turns on and off a light emitting diode(LED) connected to digital
 pin 13, when pressing a pushbutton attached to pin 2.

 The circuit:
 * LED attached from pin 13 to ground
 * pushbutton attached to pin 2 from +5V
 * 10K resistor attached to pin 2 from ground

 * Note: on most Arduinos there is already an LED on the board
 attached to pin 13.

 created 2005
 by DojoDave <http://www.0j0.org>
 modified 30 Aug 2011

103 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

 by Tom Igoe

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/Button
 */

// constants won’t change. They’re used here to
// set pin numbers:
const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

// variables will change:
int buttonState = 0; // variable for reading the pushbutton status

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);
}

void loop(){
 // read the state of the pushbutton value:
 buttonState = digitalRead(buttonPin);

 // check if the pushbutton is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 }
 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 }
}

After you upload the sketch, give your button a press and you should see
the pin 13 LED light up. You can add a bigger LED to your Arduino board
between pin 13 and GND to make it easier to see.

If you don’t see anything lighting up, you should double-check your wiring:

 ✓ Make sure that your button is connected to the correct pin number.

 ✓ If you are using an additional LED, check that it is correctly situated,
with the long leg in pin 13 and the short leg in GND. You can also remove
it and monitor the LED mounted on the board (marked L) instead.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

104 Part II: Getting Physical with Arduino

Understanding the Button sketch
This is your first interactive Arduino project. The previous sketches were
all about outputs, but now you are able to affect those outputs by providing
your own real-world, human input!

While pressed, your button turns on a light. When released, the light turns
off. Take a look at the sketch from the top to see how this happens.

As before, the first step is to declare variables. In this case, there are a
couple of differences. The word const is short for constant, so instead of
changing these two values, they are fixed for the duration of the program.
This approach is best used for values that aren’t supposed to change; this
way, you can make doubly sure that they won’t. In this case, pin numbers are
being assigned because you won’t change the pin number physically.

The variable buttonState is set to 0. This is used to monitor changes to
the button.

const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

// variables will change:
int buttonState = 0; // variable for reading the pushbutton status

Setup establishes pinMode, with ledPin (pin 13) as the output and
buttonPin,(pin 2) as the input.

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);
}

In the main loop, you can see the order of things quite clearly. First, the
digitalRead function is used on pin 2. Just as digitalWrite can write a
HIGH or LOW (1 or 0) value to a pin, digitalRead can read a value from a
pin. That value is then stored in the variable buttonState.

void loop(){
 // read the state of the pushbutton value:
 buttonState = digitalRead(buttonPin);

105 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

With the button state established, a test is used to determine what happens
next using an if statement. The statement reads: “If there is a HIGH value
(voltage connected to the circuit), then send a HIGH value to ledPin (pin 13)
to turn the LED on; if there is a LOW value (the pin is grounded), then send a
LOW value to ledPin to turn the LED off; repeat.”

 // check if the pushbutton is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 }
 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 }
}

Tweaking the Button sketch
It’s often necessary to invert the output of a switch or sensor, and you have
two ways to do this. The easiest is to change one word in the code.

By changing the line of code in the above sketch from

 if (buttonState == HIGH)

to

 if (buttonState == LOW)

the output is reversed.

This means that the LED is on until the button is pressed. If you have a com-
puter, this is the easiest option. Simply upload the code.

However, there are often occasions (such as when your laptop battery is
dead) when you don’t have the means to upload the edited code. Often, the
easiest way to flip the logic is to flip the polarity of the circuit.

Instead of connecting pin 2 to a resistor and then GND, connect that resistor
to 5V and move the GND wire to the other side of the button, as shown in
Figure 7-5.

106 Part II: Getting Physical with Arduino

Figure 7-5:
A button
with the
polarity
flipped.

The AnalogInput Sketch
The previous sketch showed you how to use a digitalRead to read either
on or off, but what if you want to handle an analog value such as a dimmer
switch or volume control knob?

For this project, you need

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A 10k ohm variable resistor

 ✓ An LED

 ✓ Jump wires

107 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

In Figure 7-7 you see the layout for this circuit. You need an LED and a resis-
tor for your output, and a variable resistor for your input. If you’re not quite
sure what a variable resistor is, check out the “Variable resistors” sidebar.

In Figures 7-6 and 7-7, the variable resistor has power and ground connected
across opposite pins, with the central pin providing the reading. To read
the analog input, you need to use the special set of analog input pins on the
Arduino board.

 It’s also worth noting that if you were to swap the polarity (swap the posi-
tive and negative wires) of the resistor, you would invert the direction of
the potentiometer. This can be a quick fix if you find that you’re going in the
wrong direction.

Variable resistors
As do your standard passive resistors, vari
able resistors (also known as potentiometers
or pots) resist the flow of current in a circuit.
The difference is that rather than having a fixed
value, they have a range. Normally, the upper
limit of this range is printed on the resistor. For
example, a variable resistor with a value of 10K
Ω gives you a range of 0 ohms to 10,000 ohms.
This change is something that can be monitored
electrically to give a variable analog input.

Variable resistors come in a variety of different
shapes and sizes, as shown in the following
figure. Think of anything with this analog move
ment in your house, such as a thermostat, the
dial on your washing machine, or the dial on
your toaster to set the time, and it most likely
has a potentiometer underneath.

108 Part II: Getting Physical with Arduino

Figure 7-6:
The poten
tiometer is
connected

to Analog
Pin 0.

Figure 7-7:
A sche

matic of the
AnalogInput

circuit.

109 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

Build the circuit and upload the code from File➪Examples➪03.Analog➪
AnalogInput.

/*
 Analog Input
 Demonstrates analog input by reading an analog sensor on analog pin 0 and
 turning on and off a light emitting diode(LED) connected to digital pin 13.
 The amount of time the LED will be on and off depends on
 the value obtained by analogRead().

 The circuit:
 * Potentiometer attached to analog input 0
 * center pin of the potentiometer to the analog pin
 * one side pin (either one) to ground
 * the other side pin to +5V
 * LED anode (long leg) attached to digital output 13
 * LED cathode (short leg) attached to ground

 * Note: because most Arduinos have a built-in LED attached
 to pin 13 on the board, the LED is optional.

 Created by David Cuartielles
 modified 30 Aug 2011
 By Tom Igoe

 This example code is in the public domain.

 http://arduino.cc/en/Tutorial/AnalogInput

 */

int sensorPin = A0; // select the input pin for the potentiometer
int ledPin = 13; // select the pin for the LED
int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {
 // declare the ledPin as an OUTPUT:
 pinMode(ledPin, OUTPUT);
}

void loop() {
 // read the value from the sensor:
 sensorValue = analogRead(sensorPin);
 // turn the ledPin on
 digitalWrite(ledPin, HIGH);
 // stop the program for <sensorValue> milliseconds:
 delay(sensorValue);
 // turn the ledPin off:
 digitalWrite(ledPin, LOW);
 // stop the program for for <sensorValue> milliseconds:
 delay(sensorValue);
}

110 Part II: Getting Physical with Arduino

After the sketch is uploaded, turn the potentiometer. The result is an LED
that blinks slower or faster depending on the value of the potentiometer. You
can add another LED between pin 13 and GND to improve the effect of this
spectacle.

If you don’t see anything lighting up, double-check your wiring:

 ✓ Make sure that you’re using the correct pin number for your variable
resistor.

 ✓ Check that your LED is the correct way around, with the long leg in pin 13
and the short leg in GND.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

Understanding the AnalogInput sketch
Analog sensors come in a variety of forms, but the principle is generally the
same for each of them. In this section you examine the sketch to get a better
understanding of how Arduino interprets these sensors.

The declarations state the pins that this sketch uses. The pin for the analog
reading is written as A0. This is short for analog input pin 0 to mark it as
the first analog input pin in the row of 6 (numbered 0 to 5). Both ledPin
and sensorValue are declared as standard variables. It’s worth noting
that ledPin and sensorPin could both be declared as constant integers
(const) because they don’t change. The variable sensorValue stores the
analog value so it does change and must remain as a variable.

int sensorPin = A0; // select the input pin for the potentiometer
int ledPin = 13; // select the pin for the LED
int sensorValue = 0; // variable to store the value coming from the sensor

During setup, you need only declare the pinMode of the digital ledPin. The
analog input pins are, as their name implies, for input only.

 You can also use the analog input pins as more basic digital input or output
pins. Instead of referring to them as analog pins A0 – A5, you could number
them as digital pins 14 – 19, as an extension of the existing digital pins. Each
must then be declared as either an input or output using the pinMode func-
tion, as with any digital pin:

void setup() {
 // declare the ledPin as an OUTPUT:
 pinMode(ledPin, OUTPUT);
}

111 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

Similarly to the button sketch, the AnalogInput sketch reads the sensor first.
When using the function analogRead it interprets the voltage value of an
analog pin. As the resistance changes so does the voltage. The accuracy of
this depends on the quality of the variable resistor. The Arduino uses the
analog-to-digital converter on the ATmega328 chip to read this analog volt-
age. Instead of 0V, 0.1V, 0.2V, and so on, the Arduino returns a value as an
integer in the range of 0–1023. For example a voltage of 2.5V would be inter-
preted as 511.

It’s generally a good idea to read the sensor data first. Although the loop hap-
pens extremely quickly, it’s better for the sensor to be read first to prevent
any delays when reading values. Otherwise, this can give the effect of a lag in
the response of the sensor.

After the sensorValue is read, the sketch is essentially the same as the
Blink sketch, but with a variable delay. The ledPin is written HIGH, waits, is
written LOW, waits for the same amount of time, and then updates the sensor
value and repeats.

Using the raw sensor value (0–1023) will make the delay be between 0 sec-
onds and 1.023 seconds.

void loop() {
 // read the value from the sensor:
 sensorValue = analogRead(sensorPin);
 // turn the ledPin on
 digitalWrite(ledPin, HIGH);
 // stop the program for <sensorValue> milliseconds:
 delay(sensorValue);
 // turn the ledPin off:
 digitalWrite(ledPin, LOW);
 // stop the program for for <sensorValue> milliseconds:
 delay(sensorValue);
}

This sketch blinks your LED at various rates, but bear in mind that as the
blinks become slower, the delays in the loop are becoming longer and, there-
fore, the readings from the sensor are less frequent. This can make your
sensor less responsive when it’s at the higher values, giving you less consis-
tent readings. For another look at sensors, as well as how to smooth and cali-
brate them, head over to Chapter 11.

Tweaking the AnalogInput sketch
The analogRead function has supplied an integer value, and you can apply
all sorts of conditions or calculations to that number in your sketch. In this
example I show you how to measure whether a sensor value is above a cer-
tain number or threshold.

112 Part II: Getting Physical with Arduino

By putting an if statement around the digitalWrite part of the loop, you
are able to set a threshold. In this example, the LED blinks only if it is over
the sensors halfway value of 511.

void loop() {
 // read the value from the sensor:
 sensorValue = analogRead(sensorPin);
if (sensorValue > 511){
 // turn the ledPin on
 digitalWrite(ledPin, HIGH);
 // stop the program for <sensorValue> milliseconds:
 delay(sensorValue);
 // turn the ledPin off:
 digitalWrite(ledPin, LOW);
 // stop the program for for <sensorValue> milliseconds:
 delay(sensorValue);
 }
}

Try adding dome conditions yourself, but be aware that if there are too many
delays, the sensor doesn’t update as frequently. For other sketches that
remedy this problem, check out the BlinkWithoutDelay sketch in Chapter 11.

Talking Serial
It’s good to see the effects of your circuit through an LED, but unless you can
see the actual values, you might find it difficult to know whether a circuit is
behaving as expected. The project in this section and the one following are
designed to display the value of inputs using the serial monitor

Serial is a method of communication between a peripheral and a computer.
In this case, it is serial communication over Universal Serial Bus (USB). Data
is sent one byte at a time in the order that it is written. When reading sensors
with an Arduino, the values are sent over this connection and can be moni-
tored or interpreted on your computer.

The DigitalReadSerial Sketch
In the DigitalReadSerial project you monitor the HIGH and LOW values of a
button over the serial monitor.

113 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

For this project, you need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A 10k ohm resistor

 ✓ A pushbutton

 ✓ Jump wires

Figures 7-8 and 7-9 use the same circuit as you use for the Button sketch
described earlier in this chapter, but note that there are some slight changes
to the code for this project.

Figure 7-8:
Pin 2 is

reading the
pushbutton.

114 Part II: Getting Physical with Arduino

Figure 7-9:
A sche

matic of the
pushbutton

circuit.

Complete the circuit and upload the code from File➪Examples➪01.Basics➪
DigitalReadSerial.

/*
 DigitalReadSerial
 Reads a digital input on pin 2, prints the result to the serial monitor

 This example code is in the public domain.
 */

// digital pin 2 has a pushbutton attached to it. Give it a name:
int pushButton = 2;

// the setup routine runs once when you press reset:
void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
 // make the pushbutton’s pin an input:
 pinMode(pushButton, INPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 // read the input pin:
 int buttonState = digitalRead(pushButton);
 // print out the state of the button:
 Serial.println(buttonState);
 delay(1); // delay in between reads for stability
}

115 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

After you upload the sketch, click the serial monitor button on the top right
of the Arduino window. Clicking this button opens the serial monitor window
(shown in Figure 7-10) and displays any values being sent to the currently
selected serial port (which is the same as the one you have just uploaded to
unless you selected otherwise).

In the window, you should see a cascade of 0 values. Press the button a few
times, and you should see some 1 values appear.

Figure 7-10:
The serial

monitor win
dow is great
for keeping

an eye on
whatever

your
Arduino is

up to.

If you don’t see anything, or you see incorrect values, double-check your
wiring:

 ✓ Make sure that you’re using the correct pin number for your button.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

 ✓ If you are receiving strange characters instead of 0s and 1s, check the
baud rate in the serial monitor; if it is not set to 9600, use the drop-down
menu to select that rate.

Understanding the DigitalReadSerial
sketch
The only variable to declare in this sketch is the pin number for the
pushbutton:

int pushButton = 2;

116 Part II: Getting Physical with Arduino

In the setup, there is a new function called Serial.begin. This function
initializes serial communication. The number in parentheses represents
the speed of the communication. This is referred to as the baud rate and is
the number of bits sent per second; in this case, it is sending 9600 bits per
second. When viewing the communication in the serial monitor, it is impor-
tant to read the data at the same rate it is being written. If you don’t, the
data is scrambled and you are presented with what looks like gibberish. In
the bottom right of the window, you can set the baud rate, but by default it
should be set to 9600.

void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
 // make the pushbutton’s pin an input:
 pinMode(pushButton, INPUT);
}

In the loop, pushButton is read and its value stored in the variable
buttonState.

void loop() {
 // read the input pin:
 int buttonState = digitalRead(pushButton);

The value of buttonState is then written to the serial port using the func-
tion Serial.println. When println is used, it signifies that a carriage
return (new line) should be added after the value is printed. The carriage
return is especially useful when you’re reading the values because they
appear much clearer than they do in one line of values.

 // print out the state of the button:
 Serial.println(buttonState);

A delay of 1ms is added to the end of the loop to slow down the speed at
which the button is read. Having values written faster than they can be dis-
played can cause unstable results, so it’s advisable to keep this delay.

 delay(1); // delay in between reads for stability
}

The AnalogInOutSerial Sketch
In this project, you monitor an analog value sent by a variable resistor over
the serial monitor. These variable resistors are the same as the volume con-
trol knobs on your stereo, but people often have no idea how they work. In
this example, you monitor the value as detected by your Arduino and display
it on your screen in the serial monitor, giving you a greater understanding of
the range of values and performance of this analog sensor.

117 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A 10k ohm variable resistor

 ✓ A resistor (greater than 120 ohm)

 ✓ An LED

 ✓ Jump wires

The circuit, as shown in Figures 7-11 and 7-12, is similar to the previous
example for the AnalogInput circuit, but with the addition of an LED con-
nected to pin 9 as in the Fade circuit. The code fades the LED on and off
according to the turn of the potentiometer. Because the input and the output
have a different range of values, the sketch needs to include a conversion to
use the potentiometer to fade the LED. This is a great example of using the
serial monitor for debugging and displays both the input and output values
for maximum clarity.

Figure 7-11:
Dimmer

circuit to be
read over

serial.

118 Part II: Getting Physical with Arduino

Figure 7-12:
A schematic

of the dim
mer circuit.

Complete the circuit and upload the code from File➪Examples➪03.Analog➪
AnalogInOutSerial.

/*
 Analog input, analog output, serial output

 Reads an analog input pin, maps the result to a range from 0 to 255,
 and uses the result to set the pulsewidth modulation (PWM) of an output pin.
 Also prints the results to the serial monitor.

 The circuit:
 * potentiometer connected to analog pin 0.
 Center pin of the potentiometer goes to the analog pin.
 side pins of the potentiometer go to +5V and ground
 * LED connected from digital pin 9 to ground

 created 29 Dec. 2008
 modified 9 Apr 2012
 by Tom Igoe

 This example code is in the public domain.

 */

// These constants won’t change. They’re used to give names
// to the pins used:
const int analogInPin = A0; // Analog input pin that the potentiometer is

// attached to

119 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

const int analogOutPin = 9; // Analog output pin that the LED is attached to

int sensorValue = 0; // value read from the pot
int outputValue = 0; // value output to the PWM (analog out)

void setup() {
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);
}

void loop() {
 // read the analog in value:
 sensorValue = analogRead(analogInPin);
 // map it to the range of the analog out:
 outputValue = map(sensorValue, 0, 1023, 0, 255);
 // change the analog out value:
 analogWrite(analogOutPin, outputValue);

 // print the results to the serial monitor:
 Serial.print(“sensor = “);
 Serial.print(sensorValue);
 Serial.print(“\t output = “);
 Serial.println(outputValue);

 // wait 2 milliseconds before the next loop
 // for the analog-to-digital converter to settle
 // after the last reading:
 delay(2);
}

After you upload the sketch, turn the potentiometer with your fingers. The
result should be an LED that fades on and off depending on the value of the
potentiometer. Now click the serial monitor button on the top right of the
Arduino window to monitor the same values that you are receiving and send-
ing to the LED.

If you don’t see anything happening, double-check your wiring:

 ✓ Make sure that you’re using the correct pin number for your variable
resistor.

 ✓ Check that your LED is the correct way round, with the long leg con-
nected to Pin 9 and the short leg in GND, via a resistor.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

 ✓ If you are receiving strange characters instead of words and numbers,
check the baud rate in the serial monitor. If it is not set to 9600, use the
drop-down menu to select that rate.

120 Part II: Getting Physical with Arduino

Understanding the AnalogInOutSerial
sketch
The start of the sketch is fairly straightforward. It declares both of the pins
in use for the analog input and the PWM output. There are also two variables
for the raw data from the sensor (sensorValue) and the value that is sent to
the LED (outputValue).

const int analogInPin = A0; // Analog input pin that the potentiometer is
attached to

const int analogOutPin = 9; // Analog output pin that the LED is attached to

int sensorValue = 0; // value read from the pot
int outputValue = 0; // value output to the PWM (analog out)

In setup, you have very little to do beyond opening the serial communication
line:

void setup() {
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);
}

The loop is where the real action is. As in the Fade sketch, the best place to
start is with reading the input. The variable sensorValue stores the reading
from analogInPin, which will be in the range of 0–1024.

void loop() {
 // read the analog in value:
 sensorValue = analogRead(analogInPin);

Because fading an LED using PWM requires a range of 0–255, you need to
scale the sensorValue down to make it fit the lower range of outputValue.
To do so, you use the map function. The map function takes a variable, the
variable’s minimum and maximum, and a new minimum and maximum
and and handles all the scaling for you. Using the map function creates
an outputValue directly proportional to the sensorValue, but on a
smaller scale.

 // map it to the range of the analog out:
 outputValue = map(sensorValue, 0, 1023, 0, 255);

 Sometimes functions like this are useful, but other times they can be overkill.
In this case, it’s also possible to do some simple math and divide the sensor
value by 4 to achieve the same result.

121 Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

 outputValue = sensorValue/4;

The outputValue is then written to the LED using the analogWrite function.

 // change the analog out value:
 analogWrite(analogOutPin, outputValue);

This is enough for the circuit to function, but if you want to know what’s
going on, you need to write some values to the serial port. The code has
three lines of Serial.print, before the Serial.println, which means
that each of those parts is written on one line of the serial monitor every time
the program completes a loop.

Text inside the quotation marks is for labeling or adding characters. You can
also use special characters such as \t, which adds a tab for spacing.

 // print the results to the serial monitor:
 Serial.print(“sensor = “);
 Serial.print(sensorValue);
 Serial.print(“\t output = “);
 Serial.println(outputValue);

An example of this line in the serial monitor would read:

sensor = 1023 output = 511

The loop is finished with a short delay to stabilize the results and then repeats
the loop, updating the input, output, and readings on the serial monitor.

 // wait 2 milliseconds before the next loop
 // for the analog-to-digital converter to settle
 // after the last reading:
 delay(2);
}

 This delay time is largely arbitrary and instead of 2 ms could just as well be
1 ms, as in the previous example. These small delays are something that you
may have to experiment with. If a sensor is particularly jumpy, you may want
to go up to 10 ms, or you may find that the reading is perfectly smooth and
can be removed completely. There is no magic value.

122 Part II: Getting Physical with Arduino

Chapter 8

More Basic Sketches:
Motion and Sound

In This Chapter
▶ Moving DC motors
▶ Switching bigger loads with transistors
▶ Speeding up your motor
▶ Turning with precision using a stepper motor
▶ Making electronic music with a buzzer

C
hapter 7 shows you how to use some simple LEDs as outputs for vari-
ous circuits. Although in Arduino land nothing is more beautiful than a

blinking LED, you have a variety of other outputs as options. In this chapter, I
explore two other areas: motion provided by motors, and sound from a buzzer.

Working with Electric Motors
Electric motors allow you to move things with electricity using the power
of electromagnetism. When an electrical current is passed through a coil of
wire, it creates an electromagnetic field. This process works similarly to a
normal permanent bar magnet but gives you control over the presence of
the field, meaning that you can turn it on and off at will and even change the
direction of the magnetism. As you may remember from school, magnets
have two possible states: attraction or repulsion. In an electromagnetic field,
you can switch between these by changing the polarity, which in practical
terms means switching the positive and negative wires.

Electromagnets have a variety of uses, such as for electrically operated locks,
automated plumbing valves, and read-write heads on hard disks. They’re also
used for lifting scrap metal. Even the CERN Larger Hadron Collider uses an
electromagnet.

In this chapter, I focus on another important use: electric motors.

124 Part II: Getting Physical with Arduino

An electric motor is made up of a coil of wire (electromagnet) between two
regular, permanent magnets. By alternating the polarity of the coil, it is pos-
sible to rotate it because it is pulled by one magnet and then pushed toward
the next. If this is done fast enough, the coil gathers momentum to spin.

The first part to understand is how the coil can spin if it is attached to wires.
This is achieved by mounting two copper brushes on the axel. These brushes
stay in contact with two semicircles of copper, as shown in Figure 8-1. This
means that a connection can be maintained without any fixed wires. The
semicircles also mean that the two points are never in contact, which would
cause a short circuit.

Figure 8-1:
How a

motor’s axle
can be

connected
but still be

free to spin.

With a freely spinning coil in place on an axle, you can affect the coil by plac-
ing two permanent bar magnets near it. As shown in Figure 8-2, the magnets
are placed on either side of the coil, with different poles on each side. If you
put electrical current across the coil, you give it a polarity — either north or
south, as with conventional bar magnets. If the coil is north, it is repelled by
the north bar magnet and attracted by the south bar magnet.

Figure 8-2:
A diagram
of an elec
tric motor.

If you look at the brush again, you realize that something else happens when
the coil does a half rotation: the polarity flips. When this happens, the cycle
starts again and the north coil becomes south and is pushed away by the
south magnet back to north again. Because of the momentum produced when
the coil is repelled, this movement continues in the same direction while suf-
ficient power exists.

125 Chapter 8: More Basic Sketches: Motion and Sound

This is the most basic form of electric motor, and modern ones are highly
refined, having more coils and magnets to produce a smoother movement.
Other motors are also based on this principle but have more advanced con-
trol to move, for example by a precise number of degrees or to a specific
location. In your kit, you should have two varieties of electric motor: a DC
motor and a servo motor.

Discovering Diodes
An essential component for motor control circuits is the diode. As explained
earlier in this chapter, you can spin an electric motor by putting voltage
through it. But if a motor is spinning or is turned without having a voltage put
through it, it generates a voltage in the opposite direction; this is how elec-
tric generators and dynamos produce electricity from movement.

If this reversal of voltage happens in your circuit, the effects can be disas-
trous, including damaged or destroyed components. So to control this
reverse current, you use a diode. Diodes block current in one direction and
allow it in the other. Current can flow from the anode to the cathode. Figure
8-3 shows how this is marked for both the physical diode and the circuit dia-
gram, with a band on the physical one and a solid line on the schematic, both
indicating the cathode.

Figure 8-3:
A physi

cal diode
and its

schematic
symbol.

Spinning a DC Motor
The DC motor in your kit (also known as a hobby motor or brushed DC
motor) is the most basic of electric motors and is used in all types of hobby
electronics such as model planes and trains. When current is passed through
a DC motor, it spins continuously in one direction until the current stops.
Unless specifically marked with a + or -, DC motors have no polarity, meaning
that you can swap the two wires over to reverse the direction of the motor.
There are many other, bigger motors, but in this example I stick to the small
hobby motors.

126 Part II: Getting Physical with Arduino

The Motor sketch
In this section, I show you how to set up a simple control circuit to turn your
motor on and off.

You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A transistor

 ✓ A DC motor

 ✓ A diode

 ✓ A 2.2k ohm resistor

 ✓ Jump wires

Figure 8-4 shows the layout for this circuit, and the circuit diagram in Figure
8-5 should clarify exactly what is going on. To power the motor, you need to
send 5V through it and then on to ground. This voltage spins the motor, but
you have control of it. To give your Arduino control of the motor’s power,
and therefore its rotation, you place a transistor just after the motor. The
transistor, as described in the sidebar “Understanding Transistors,” is an
electrically operated switch that can be activated by your Arduino’s digital
pins. In this example it is controlled by pin 9 on your Arduino, in the same
way as an LED except that the transistor allows you the turn the motor cir-
cuit on and off.

This circuit works, but it still allows the chance of creating a reverse cur-
rent because of the momentum of the motor as it slows down, or because
the motor could be turned. If reverse current is generated, it travels from
the negative side of the motor and tries to find the easiest route to ground.
This route may be through the transistor or through the Arduino. You can’t
know for sure what will happen, so you need to provide a way to control this
excess current.

To be safe, you place a diode across the motor. The diode faces toward the
source of the voltage, meaning that the voltage is forced through the motor,
which is what you want. If current is generated in the opposite direction, it is
now be blocked from flowing into the Arduino.

127 Chapter 8: More Basic Sketches: Motion and Sound

 If you place the diode the wrong way, the current bypasses the motor and you
create a short circuit. The short circuit tries to ground all the available current
and could break your USB port or at the very least, show a warning message,
informing you that your USB port is drawing too much power.

Understanding transistors
Sometimes it’s not possible or advisable to
power an output directly from your Arduino pins.
By using a transistor, you can control a bigger
circuit from your modestly powerful Arduino.

Motors and other larger outputs (such as lots
of LED lighting) often require more voltage and
current than your Arduino pins can supply,
so they need their own circuits to supply this
power. To allow you to control these bigger cir
cuits, you can use a component called a tran
sistor. In the same way that a physical switch is
used to turn a circuit on and off, a transistor is
an electronic switch that can be turned on and
off by using a very small voltage.

Types of transistors abound, and each has
its own product number that you can Google

to find out more about it. The one I use in this
section’s example is a P2N2222A, which is an
NPNtype type transistor. There are two types
of transistor — NPN and PNP.

A transistor has three legs: base, collector, and
emitter. The base is where the Arduino digital
signal is sent; the collector is the power source;
and the emitter is the ground. These can some
times go by the other names Gate (Base), Drain
(Collector), and Source (Emitter). These are all
numbered and, you hope, named in the data
sheet to tell you which leg is which. In a circuit
diagram, it is drawn as in the following figure,
with the collector at the top, the base to the left,
and the emitter at the bottom.

128 Part II: Getting Physical with Arduino

Figure 8-4:
A transistor

circuit to
drive your

electric
motor.

Figure 8-5:
A circuit

diagram of
a transistor

circuit.

129 Chapter 8: More Basic Sketches: Motion and Sound

Build the circuit as shown, and open a new Arduino sketch. Choose the Save
button and save the sketch with a memorable name, such as myMotor, and
then type the following code:

int motorPin = 9;

void setup() {

 pinMode(motorPin, OUTPUT);

}

void loop() {

 digitalWrite(motorPin, HIGH);
 delay(1000);

 digitalWrite(motorPin, LOW);
 delay(1000);

}

After you’ve typed the sketch, save it and press the Compile button to check
your code. The Arduino Environment checks your code for any syntax errors
(grammar for your code) and highlights them in the message area (as cov-
ered in Chapter 3). The most common mistakes include typos, missing semi-
colons, and case sensitivity.

If the sketch compiles correctly, click Upload to upload the sketch to your
board. You should see your motor spinning for one second and stopping for
one second repeatedly.

If that’s not what happens, you should double-check your wiring:

 ✓ Make sure that you’re using pin number 9.

 ✓ Check that your diode is facing the correct way, with the band facing the
5v connection.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

Understanding the Motor sketch
This is a very basic sketch, and you may notice that it’s a variation on the
Blink sketch. This example changes the hardware but uses the same code to
control an LED.

First, the pin is declared using digital pin 9.

130 Part II: Getting Physical with Arduino

int motorPin = 9;

In setup, pin 9 is defined as an output.

void setup() {

 pinMode(motorPin, OUTPUT);

}

The loop tells the output signal to go to HIGH, wait for 1000mS (1 second), go
to LOW, wait for another 1000mS, and then repeat. This scenario gives you the
most basic of motor control, telling the motor when to go on and off.

void loop() {

 digitalWrite(motorPin, HIGH);
 delay(1000);

 digitalWrite(motorPin, LOW);
 delay(1000);

}

Changing the Speed of Your Motor
On and off is all well and good, but sometimes you need to have greater con-
trol over the speed of your motor. The following sketch shows you how to
control the speed of your motor with the same circuit.

The MotorSpeed sketch
Using the same circuit as in the preceding section, open a new Arduino
sketch, save it with another memorable name, such as myMotorSpeed, and
then type the following code.

int motorPin = 9;

void setup(){

 pinMode(motorPin, OUTPUT);

}

131 Chapter 8: More Basic Sketches: Motion and Sound

void loop() {

 for(int motorValue = 0 ; motorValue <= 255; motorValue +=5){
 analogWrite(motorPin, motorValue);
 delay(30);
 }

 for(int motorValue = 255 ; motorValue >= 0; motorValue -=5){
 analogWrite(motorPin, motorValue);
 delay(30);
 }

}

After you’ve typed the sketch, save it and press the Compile button to check
your code. The Arduino Environment should highlight any grammatical
errors in the Message Area if they are discovered.

If the sketch compiles correctly, click Upload to upload the sketch to your
board. When uploading is done, you should have a motor that spins very
slowly to start with, speeds up to its fastest spin, spins back down to a stop,
and then repeats. It can be difficult to see this, so you should fix something
more visible, such as a piece of tape or adhesive putty (such as Blu-Tack), to
show you what’s going on.

You may find that at its slowest point, the motor just hums. If so, this is not
a problem; it just means that the electromagnet doesn’t have enough voltage
to spin the motor; it needs more voltage to generate the magnetism and gain
momentum.

Understanding the MotorSpeed sketch
This sketch is a slight variation on the Fade sketch described in Chapter 7,
but works in exactly the same way.

The pin you are using to control the motor circuit, digital pin 9, is declared.

int motorPin = 9;

Because it’s an output, you define it in setup.

void setup() {
 pinMode(motorPin, OUTPUT);
}

132 Part II: Getting Physical with Arduino

In the main loop, you use analogWrite to send a PWM value to pin 9. This
is the same principle as in the Fade sketch, used to fade an LED. The first for
loop sends a gradually increasing value to pin 9 until it reaches the maximum
PWM value of 255. The second for loop gradually returns this value to 0;
then the cycle repeats itself

void loop() {

 for(int motorValue = 0 ; motorValue <= 255; motorValue +=5){
 analogWrite(motorPin, motorValue);
 delay(30);
 }

 for(int motorValue = 255 ; motorValue >= 0; motorValue -=5){
 analogWrite(motorPin, motorValue);
 delay(30);
 }

}

This process could be likened to revving a car engine. If you push the pedal
down, you accelerate to full speed. If you tap the gas pedal, the engine accel-
erates and then slows down. If you tap it at a constant rate before it slows,
you will maintain some of the momentum of the spinning motor and achieve
an average (if somewhat jerky) speed. This is what the transistor is doing,
but very quickly. The intervals between on and off and the momentum of the
motor allow you to achieve analog behavior from a digital signal.

Controlling the Speed of Your Motor
The sketch in the preceding section gave you control of the motor. In this
section, you find out how to put some input into it to give you full control of
the motor on the fly.

The MotorControl sketch
To gain control of the speed of your motor whenever you need it, you need to
add a potentiometer to your circuit.

You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A transistor

 ✓ A DC motor

133 Chapter 8: More Basic Sketches: Motion and Sound

	 ✓	A diode

	 ✓	A 10k ohm variable resistor

	 ✓	A 2.2k ohm resistor

	 ✓	Jump wires

Follow the diagram in Figure 8-6 and the circuit diagram in Figure 8-7 to add a
potentiometer alongside your motor control circuit.

Find a space on your breadboard to place your potentiometer. The central
pin of the potentiometer is connected back to pin 9 using a jump wire, and
the remaining two pins are connected to 5V on one side and GND on the
other. The 5V and GND can be on either side, but switching them will invert
the value that the potentiometer sends to the Arduino. Although the poten-
tiometer uses the same power and ground as the motor, note that they are
separate circuits that both communicate through the Arduino.

Figure 8-6:
A transistor

circuit to
drive your

electric
motor.

134 Part II: Getting Physical with Arduino

Figure 8-7:
A circuit

diagram of
a transistor

circuit.

After you have built the circuit, open a new Arduino sketch and save it
with another memorable name, such as myMotorControl. Then type the
following code.

int potPin = A0;
int motorPin = 9;

int potValue = 0;
int motorValue = 0;

void setup() {
 Serial.begin(9600);
}

void loop() {
 potValue = analogRead(potPin);
 motorValue = map(potValue, 0, 1023, 0, 255);

 analogWrite(motorPin, motorValue);

 Serial.print(“potentiometer = “);
 Serial.print(potValue);
 Serial.print(“\t motor = “);
 Serial.println(motorValue);

 delay(2);
}

After you’ve typed the sketch, save it and click the Compile button to high-
light any syntax errors. .

135 Chapter 8: More Basic Sketches: Motion and Sound

If the sketch compiles correctly, click Upload to upload the sketch to your
board. When it is done uploading, you should be able to control your motor
using the potentiometer. Turning the potentiometer in one direction causes the
motor to speed up; turning it the other way causes it to slow down. The next
section explains how the code allows the potentiometer to change the speed.

Understanding the MotorControl Sketch
This sketch is a variation on the AnalogInOutSerial sketch and works in
exactly the same way with a few name changes to better indicate what you
are controlling and monitoring on the circuit.

As always, you declare the different variables used in the sketch. You use the
potPin to assign the potentiometer pin and motorPin to send a signal to the
motor. The potValue variable is used to store the raw value of the potentiom-
eter and the motorValue variable stores the converted value that you want to
output to the transistor to switch the motor.

int potPin = A0;
int motorPin = 9;

int potValue = 0;
int motorValue = 0;

For more details on the workings of this sketch, see the AnalogInOutSerial
example in Chapter 7.

Tweaking the MotorControl sketch
You may find that there is a minimum speed after which the motor will just
hum. It does so because it doesn’t have enough power to spin. By monitoring
the values sent to the motor using the MotorControl sketch, you can find the
motor’s minimum value to turn and optimize the motorValue to turn the
motor within its true range.

To find the range of motorValue, follow these steps:

 1. With the MotorControl sketch uploaded, click the serial monitor
button at the top right of your Arduino window.

 The serial monitor window will show you the potentiometer value fol-
lowed by the output value that is being sent to the motor, in this fashion:

 potentiometer = 1023 motor = 255

 These values are displayed in a long list and update as you turn the
potentiometer. If you don’t see the list scrolling down, make sure that
the Autoscroll option is selected.

136 Part II: Getting Physical with Arduino

 2. Starting with your potentiometer reading a value of 0, turn your
potentiometer very slowly until the humming stops and the motor
starts spinning.

 3. Make a note of the value displayed at this point.

 4. Use an if statement to tell the motor to change speed only if the
value is greater than the minimum speed needed to spin the motor,
as follows:

 (a). Find the part of your code that writes the motorValue to the motor:
analogWrite(motorPin, motorValue);

 (b). Replace it with the following piece of code:
if(motorValue > yourValue) {
 analogWrite(motorPin, motorValue);
} else {
 digitalWrite(motorPin, LOW);
}

 5. Now replace yourValue with the number that you made a note of.

 If the value motorValue is greater than that, the motor speeds up. If it
is lower than that, the pin is written LOW so that it is fully off. You could
also type analogWrite(motorPin, 0) to accomplish the same thing.
Tiny optimizations like this can help your project function smoothly,
with no wasted movement or values.

Getting to Know Servo Motors
A servo motor is made up of a motor and a device called an encoder that
can track the rotation of the motor. Servo motors are used for precision
movements, moving by a number of degrees to an exact location. Using your
Arduino, you can tell the servo motor what degree you want it to move to,
and it will go there from its current position. Most servo motors can move
only 180 degrees, but you can use gearing to extend this.

The servo in your kit will most likely be a hobby servo, similar to those
shown in Figure 8-8. A hobby servo motor has plastic gears and can manage
only relatively light loads. After you experiment with small servos, you have
plenty of larger ones to choose from for heavy lifting. Servos are widely used
in the robotics community for walkers that need precise movement in each of
their feet.

The examples in the following section walk you through the basic opera-
tions of how to send signals to a servo and how to control one directly with a
potentiometer.

137 Chapter 8: More Basic Sketches: Motion and Sound

Figure 8-8:
A servo

motor.

Creating Sweeping Movements
This first servo motor example requires only a servo motor and will allow
you to turn the motor through its full range of movement. The servo sweeps
from 0º to 179º and then back again, in a similar way to the movement of an
old rotary clock.

The Sweep sketch
You need:

 ✓ An Arduino Uno

 ✓ A servo

 ✓ Jump wires

The wiring for a servo is extremely simple because it comes with a neat, three-
pin socket. To connect it to your Arduino, simply use jump wires between
the Arduino pins and the servo sockets directly or use a set of header pins
to connect the socket to your breadboard. As shown in Figures 8-9 and 8-10,
the servo has a set of three sockets with wires connected to them, usually

138 Part II: Getting Physical with Arduino

red, black, and white. All the calculations and readings to move the motor are
done on the circuitry inside the servo itself, so all that is needed is power and
a signal from the Arduino. Red is connected to 5V on the Arduino to power
the motor and the circuitry inside it; black is connected to GND to ground the
servo; and white is connected to pin 9 to control the servos movement. The
colors of these wires can vary, so always check the datasheet or any avail-
able documentation for your specific motor. Other common colors are red
(5V), brown (GND), and yellow (signal).

Figure 8-9:
A servo

motor wired
to your

Arduino.

139 Chapter 8: More Basic Sketches: Motion and Sound

Figure 8-10:
A circuit

diagram of
the servo

circuit.

Complete the circuit as described and open the Sweep sketch by choosing
File➪Examples➪Servo➪Sweep. The Sweep sketch is as follows:

// Sweep
// by BARRAGAN <http://barraganstudio.com>
// This example code is in the public domain.

#include <Servo.h>

Servo myservo; // create servo object to control a servo
 // a maximum of eight servo objects can be created

int pos = 0; // variable to store the servo position

void setup()
{
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}

140 Part II: Getting Physical with Arduino

void loop()
{
 for(pos = 0; pos < 180; pos += 1) // goes from 0 degrees to 180 degrees
 { // in steps of 1 degree
 myservo.write(pos); // tell servo to go to position in variable

 // ‘pos’
 delay(15); // waits 15ms for the servo to reach the

 // position
 }
 for(pos = 180; pos>=1; pos-=1) // goes from 180 degrees to 0 degrees
 {
 myservo.write(pos); // tell servo to go to position in variable

 // ‘pos’
 delay(15); // waits 15ms for the servo to reach the

 // position
 }
}

After you have found the sketch, press the Compile button to check the code.
The compiler should, as always, highlight any grammatical errors in red in
the Message Area when they are discovered.

If the sketch compiles correctly, click Upload to upload the sketch to your
board. When the sketch has finished uploading, your motor should start turn-
ing backward and forward through 180 degress, doing a dance on the table.

If nothing happens, you should double-check your wiring:

 ✓ Make sure that you’re using pin 9 for the data (white/yellow) line.

 ✓ Check that you have the other servo wires connected to the correct pins.

Understanding the Sweep sketch
At the start of this sketch, a library is included. This is the servo library and
will help you to get a lot out of your servo with very little complex code.

#include <Servo.h>

The next line makes a servo object. The library knows how to use servos
but needs you to give each one a name so that it can talk to each servo. In

141 Chapter 8: More Basic Sketches: Motion and Sound

this case, the new Servo object is called myservo. Using a name is similar to
naming your variables; that is, they can be any name as long as they are con-
sistent throughout your code and you don’t use any names that are reserved
by the Arduino language, such as int or delay.

Servo myservo; // create servo object to control a servo
 // a maximum of eight servo objects can be created

The final line in the declarations is a variable to store the position of the servo.

int pos = 0; // variable to store the servo position

In setup, the only item to set is the pin number of the Arduino pin that is
communicating with the servo. In this case, you are using pin 9, but it could
be any PWM pin.

void setup()
{
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}

The loop performs two simple actions, and both are for loops. The first
for loop gradually increases the pos variable from 0 to 180. Because of
the library, you can write values in degrees rather than the normal 0 to 255
used for PWM control. With every loop, the value is increased by 1 and sent
to the servo using a function specific to the servo library, <servoName>.
write(<value>). After the loop updates the value, a short delay of 15 milli-
seconds occurs while the servo reaches its new location. In contrast to other
outputs, after a servo is updated it starts moving to its new position instead
of needing to be constantly told.

void loop()
{
 for(pos = 0; pos < 180; pos += 1) // goes from 0 degrees to 180 degrees
 { // in steps of 1 degree
 myservo.write(pos); // tell servo to go to position in variable

 // ‘pos’
 delay(15); // waits 15ms for the servo to reach the

 // position
 }

The second for loop does the same in the opposite direction, returning the
servo to its start position.

142 Part II: Getting Physical with Arduino

 for(pos = 180; pos>=1; pos-=1) // goes from 180 degrees to 0 degrees
 {
 myservo.write(pos); // tell servo to go to position in variable

 // ‘pos’
 delay(15); // waits 15ms for the servo to reach the

 // position
 }
}

This is the most simple servo example, and it’s a good idea to test whether
the servo is working correctly.

Controlling Your Servo
Now that you have mastered control of the servo, you can try something with
a bit more interaction. By using a potentiometer (or any analog sensor), it’s
possible to directly control your servo in the same way that you’d control a
mechanical claw at the arcades.

The Knob sketch
This example shows you how you can easily use a potentiometer to move
your servo to a specific degree.

You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A servo

 ✓ A 10k ohm variable resistor

 ✓ Jump wires

The servo is wired exactly as in the Sweep example, but this time you need
extra connections to 5V and GND for the potentiometer, so you must use a
breadboard to provide the extra pins. Connect the 5V and GND pins on the
Arduino to the positive (+) and negative (-) rows on the breadboard. Connect
the servo to the breadboard using either a row of three header pins or three
jump wires. Connect the red socket to the 5V row, the black/brown socket to
the GND row, and the white/yellow socket to pin 9 on the Arduino. Find a space
on the breadboard for the potentiometer. Connect the center pin to pin A0 on
the Arduino and the remaining pins to 5V on one side and GND on the other.
Refer to the circuit diagram in Figure 8-11 and the schematic in Figure 8-12.

143 Chapter 8: More Basic Sketches: Motion and Sound

Figure 8-11:
A servo

motor with
control

knob.

Figure 8-12:
A circuit

diagram for
a servo and
potentiom

eter.

144 Part II: Getting Physical with Arduino

After you have built the circuit, open the sketch by choosing File➪Examples➪
Servo➪Knob. The code for the sketch is as follows:

// Controlling a servo position using a potentiometer (variable resistor)
// by Michal Rinott <http://people.interaction-ivrea.it/m.rinott>

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin

void setup()
{
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}

void loop()
{
 val = analogRead(potpin); // reads the value of the potentiometer

 // (value between 0 and 1023)
 val = map(val, 0, 1023, 0, 179); // scale it to use it with the servo

 // (value between 0 and 180)
 myservo.write(val); // sets the servo position according to

 // the scaled value
 delay(15); // waits for the servo to get there
}

 You may notice that there are a few discrepancies between the comments and
the code. When referring to the range of degrees to move the servo, the sketch
mentions both 0 to 179 and 0 to 180. With all Arduino tutorials, it’s best to
assume that they’re works in progress and may not always be accurate.

The correct range is 0 to 179, which gives you 180 values. Counting from zero
is referred to as zero indexing and is a common occurrence in Arduino, as
you may have noticed by this point.

After you have found the sketch, press the Compile button to check the code.
The compiler should highlight any syntax errors in the message box, which
lights up red when they are discovered.

If the sketch compiles correctly, click Upload to upload the sketch to your
board. When it is done uploading, your servo should turn as you turn your
potentiometer.

If that isn’t what happens, you should double check your wiring:

145 Chapter 8: More Basic Sketches: Motion and Sound

 ✓ Make sure that you’re using pin 9 to connect the data (white/yellow) line
to the servo.

 ✓ Check your connections to the potentiometer and make sure that the
center pin is connected to Analog pin 0.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

Understanding the Knob sketch
In the declarations, the servo library, Servo.h, and a new servo object are
named. The analog input pin is declared with a value of 0, showing that you
are using Analog 0.

 You may have noticed that the pin is numbered as 0, not A0 as in other exam-
ples. Either is fine, because A0 is just an alias of 0, as A1 is of 1, and so on.
Using A0 is good for clarity, but optional.

There is one last variable to store the value of the reading, which will become
the output.

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin

 In setup, the only item to define is myservo, which is using pin 9.

void setup()
{
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}

Rather than use two separate variables for input and output, this sketch
simply uses one. First, val is used to store the raw sensor data, a value from
0 to 1023. This value is then processed using the map function to scale its
range to that of the servo: 0 to 179. This value is then written to the servo
using myservo.write. There is also a 15 millisecond delay to reach that
location. Then the loop repeats and updates its position as necessary.

void loop()
{
 val = analogRead(potpin); // reads the value of the potentiometer
 // (value between 0 and 1023)
 val = map(val, 0, 1023, 0, 179); // scale it to use it with the servo
 // (value between 0 and 180)

146 Part II: Getting Physical with Arduino

 myservo.write(val); // sets the servo position according to
 // the scaled value
 delay(15); // waits for the servo to get there
}

With this simple addition to the circuit, it’s possible to control a servo with
any sort of input. In this example, the code uses an analog input, but with a
few changes it could just as easily use a digital input.

Making Noises
If you’ve just finished the motor sketches, you have mastered movement and
must be ready for a new challenge. In this section, I look at a project that’s
a bit more tuneful than the previous ones: making music (or noise at least)
with your Arduino. Yes, you can make electronic music — albeit simple —
using a piezo buzzer.

Piezo buzzer
A piezo or piezoelectric buzzer is found in hundreds of thousands of devices.
If you hear a tick, buzz, or beep, it’s likely caused by a piezo. The piezo is
composed of two layers, a ceramic and a metal plate joined together. When
electricity passes from one layer to the other, the piezo bends on a micro-
scopic level and makes a sound, as shown in Figure 8-13.

Figure 8-13:
An exagger

ation of the
miniature

movements
of a piezo.

 Original illustration by Sonitron Support

If you switch between a voltage and ground, the piezo bends and generates
a tick sound; if this happens fast enough, these ticks turn into a tone. This
tone can be quite a harsh sound, similar to the old mobile phone ringtone or
computer game sounds from the 1980s, and is known as a square wave. Every
time the piezo changes polarity fully, it produces a square wave with abrupt,
hard edges, like a square. Other types of waves include triangle waves and
sine waves, which are progressively less harsh. Figure 8-14 shows an illustra-
tion of these waves to show the differences between them.

147 Chapter 8: More Basic Sketches: Motion and Sound

Figure 8-14:
Square,

triangle and
sine waves

all have
different
shapes,

which
produce
different
sounds.

 Original illustration by Omegatron

Digital devices like this as well as other electronic instruments generate
square waves, resulting in a buzzing sound. The buzzer isn’t restricted to
just one pitch. By changing the frequency that the buzzer is switched at (the
width between the square waves), you can generate different frequencies and
therefore different notes.

The toneMelody sketch
With this sketch, you see how to change the frequency of your piezo and play
a predefined melody. This setup allows you to program your own melodies
with a bit of time and consideration to figure out the notes and beats.

Piezo buzzers are supplied in most Arduino kits but can take many different
forms. They can be supplied without an enclosure, as shown in Figure 8-15, or
can be enclosed in plastic housing ranging from small cylinders to flat coin-like
shapes. They may also have different connections, either a set of two pins pro-
truding from the underside of the piezo or two wires protruding from its side.

You need:

 ✓ An Arduino Uno

 ✓ Breadboard

 ✓ A piezo buzzer

 ✓ Jump wires

148 Part II: Getting Physical with Arduino

Figure 8-15:
A piezo
buzzer

out of its
enclosure.

Connect the piezo buzzer to the breadboard and use a set of jump wires to
connect it to digital pin 8 on one side and ground on the other. Some piezos
have a polarity, so make sure that you connect the positive (+) to pin 9 and
the negative (-) to GND. Other piezos don’t have a polarity, so if you see no
symbols, don’t worry. The piezo circuit is shown in Figure 8-16, and the cir-
cuit diagram appears in 8-17.

Figure 8-16:
A piezo
buzzer
circuit.

149 Chapter 8: More Basic Sketches: Motion and Sound

Figure 8-17:
A circuit

diagram of a
piezo buzzer

circuit.

Complete the circuit and open the sketch by choosing File➪Examples➪
02.digital➪toneMelody. You see the following code:

/*
 Melody

 Plays a melody

 circuit:
 * 8-ohm speaker on digital pin 8

 created 21 Jan 2010
 modified 30 Aug 2011
 by Tom Igoe

This example code is in the public domain.

 http://arduino.cc/en/Tutorial/Tone

 */
 #include “pitches.h”

// notes in the melody:
int melody[] = {
 NOTE_C4, NOTE_G3,NOTE_G3, NOTE_A3, NOTE_G3,0, NOTE_B3, NOTE_C4};

// note durations: 4 = quarter note, 8 = eighth note, etc.:
int noteDurations[] = {
 4, 8, 8, 4,4,4,4,4 };

void setup() {

150 Part II: Getting Physical with Arduino

 // iterate over the notes of the melody:
 for (int thisNote = 0; thisNote < 8; thisNote++) {

 // to calculate the note duration, take one second
 // divided by the note type.
 //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
 int noteDuration = 1000/noteDurations[thisNote];
 tone(8, melody[thisNote],noteDuration);

 // to distinguish the notes, set a minimum time between them.
 // the note’s duration + 30% seems to work well:
 int pauseBetweenNotes = noteDuration * 1.30;
 delay(pauseBetweenNotes);
 // stop the tone playing:
 noTone(8);
 }
}

void loop() {
 // no need to repeat the melody.
}

In this sketch, you have another tab called pitches.h, which contains all the
data needed to make the correct tones with your buzzer. In your Arduino
sketch folder, this tab (and other, additional tabs) appears as its own indi-
vidual file and must be included in the main sketch using the #include func-
tion followed by the name of the file to be included. In this case, this reads
#include “pitches.h”. The pitches.h file follows for your reference.

pitches.h

/***
 * Public Constants
 ***/

#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_A1 55
#define NOTE_AS1 58
#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_CS2 69
#define NOTE_D2 73

151 Chapter 8: More Basic Sketches: Motion and Sound

#define NOTE_DS2 78
#define NOTE_E2 82
#define NOTE_F2 87
#define NOTE_FS2 93
#define NOTE_G2 98
#define NOTE_GS2 104
#define NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_DS5 622
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_FS5 740
#define NOTE_G5 784
#define NOTE_GS5 831
#define NOTE_A5 880
#define NOTE_AS5 932
#define NOTE_B5 988
#define NOTE_C6 1047
#define NOTE_CS6 1109
#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_E6 1319
#define NOTE_F6 1397

(continued)

152 Part II: Getting Physical with Arduino

pitches.h (continued)
#define NOTE_FS6 1480
#define NOTE_G6 1568
#define NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_AS6 1865
#define NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_CS7 2217
#define NOTE_D7 2349
#define NOTE_DS7 2489
#define NOTE_E7 2637
#define NOTE_F7 2794
#define NOTE_FS7 2960
#define NOTE_G7 3136
#define NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978

After you have found the sketch, press the Compile button to check the code.
The Message Area should highlight any grammatical errors in red when they
are discovered.

If the sketch compiles correctly, click Upload to upload the sketch to your
board. When it is done uploading, you should hear a buzzer that sings a tune
to you and then stops. To hear the tune again, press the reset button on your
Arduino.

If you don’t hear a buzzer, you should double-check your wiring:

 ✓ Make sure you’re using pin 8 as your output.

 ✓ Check that your piezo is correctly positioned. Symbols may be hidden
on the underside if they are not visible on the top. If you see no mark-
ings, try the piezo in the other orientation.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

153 Chapter 8: More Basic Sketches: Motion and Sound

Understanding the sketch
This is the first sketch in this book that uses multiple tabs. You sometimes
use tabs as a convenient way of separating your sketches. In this case, the
tab pitches.h is used as a reference or lookup table for all the possible
notes in the piezo’s range. Because this code won’t change, it doesn’t need to
be in the main body of code.

At the top of the toneMelody sketch is a note to include pitches.h, which is
treated in the same way as a library. It is an external file that can be brought
into sketches if needed. In this case, it is needed to determine which frequen-
cies are used to create the notes.

#include “pitches.h”

Now that the sketch knows the different notes, the melody can be defined. It
is defined in an array so that the notes can be stepped through in order. To
find out more about arrays, see the following “Introducing arrays” sidebar.
The names, such as NOTE_C4, refer to the names of notes in the pitches.h
tab. If you look at pitches.h, you will see that it uses a C function called
define for each of these note references and follows them with a number,
such as #define NOTE_C4 262. This means that whenever NOTE_C4 is
mentioned, it is really just a variable name for the value 262.

// notes in the melody:
int melody[] = {
 NOTE_C4, NOTE_G3,NOTE_G3, NOTE_A3, NOTE_G3,0, NOTE_B3, NOTE_C4};

Introducing arrays
In its simplest form, an array is a list of data. Think
of it as being like a shopping list, as shown in the
following table. Each row has a number, referred
to as the index, and the data contained in that part
of the list. This kind of array is a onedimensional
array, containing only one item of data for each, in
this case the name of a piece of fruit.

Index Value
1 apples
2 bananas
3 oranges

How is an array relevant to Arduino? Arrays can
store integers, floats, characters, or any other
type of data, but I use integers here to keep things
simple. Here is an array of six integer values.
int simpleArray[] =
 {1, 255, -51,
0, 102, 27};

First, int defines the type of data that is being
stored as integers (whole numbers). The data
type could also be float for floatingpoint
numbers or char for characters. The name
of the array is simpleArray, but this can

(continued)

154 Part II: Getting Physical with Arduino

Without the beat, your melody wouldn’t sound right, so another array stores
the duration for each note.

// note durations: 4 = quarter note, 8 = eighth note, etc.:
int noteDurations[] = {
 4, 8, 8, 4,4,4,4,4 };

(continued)

be any relevant name that best describes your
array. The square brackets ([]) store the
length of the array (the number of values that
can be stored in it), but in this case, the space
is left blank, meaning that this array has no fixed
length. The numbers inside the curly braces {}
are values that are defined in the array. These
are optional, so if they are not defined, the array
will be left empty.

There are other correct ways to declare arrays,
including:
int simpleArray[10];
float simpleArray[5] =
 {2.7, 42.1, -9.1, 300.6};
char simpleArray[14] = “hello, world!”;

You may notice that the last entry for a char
acter array has one more space than there
are characters. This is required for character
arrays, so if you’re getting errors, that’s why!

Now that your array is defined, you need to
know how to use it. To use values in an array,
you refer to them by their index. If you wanted
to send a value to the serial monitor, you would
write
Serial.println(simpleArray[2]);

This would display a value of 51 because that
is stored in index 2 of the array.

You can also update values in the array. An
effective way to do this is with a for loop,
to count through each index in the array (see
Chapter 11 for more details) as in the following
example:
for (int i = 0; i < 6; i++) {
 simpleArray[i] = analogRead(sensor

Pin);
}

The for loop in this case will loop six times,
increasing the variable i by 1 each loop. The
variable i is also used to represent the index
of the array, so with each loop, a new analog
reading from sensorPin is stored in the cur
rent index and the index of the array is incre
mented for the next loop.

This is a very clever and efficient way to work
through arrays, either using or updating the data
stored in them. Arrays can get even more com
plicated, storing many strings of text, or they can
even be multidimensional, like a spreadsheet,
with many values associated with each index.
For more information, head over to the official
Arduino reference page on arrays at http://
arduino.cc/en/Reference/Array.

http://arduino.cc/en/Reference/Array
http://arduino.cc/en/Reference/Array

155 Chapter 8: More Basic Sketches: Motion and Sound

In setup, a for loop is used to cycle through each of the eight notes, from 0
to 7. The thisNote value is used as an index to point to the correct items in
each array.

void setup() {
 // iterate over the notes of the melody:
 for (int thisNote = 0; thisNote < 8; thisNote++) {

The duration is calculated by dividing 1,000 (or 1 second) by the required
duration, 4 for a quarter note or crotchet, 8 for and eighth note or quaver,
and so on. This is then written to the function tone, which sends the current
note to pin 8 for the duration that is assigned.

 // to calculate the note duration, take one second
 // divided by the note type.
 //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
 int noteDuration = 1000/noteDurations[thisNote];
 tone(8, melody[thisNote],noteDuration);

A small pause between notes is used so that they are better defined. In this
case, it is relative to the length of the note, which is set to 30 percent of the
current duration.

 // to distinguish the notes, set a minimum time between them.
 // the note’s duration + 30% seems to work well:
 int pauseBetweenNotes = noteDuration * 1.30;
 delay(pauseBetweenNotes);

Next, the noTone function is used to turn off pin 8, stopping the note after it
has played for its duration.

 // stop the tone playing:
 noTone(8);
 }
}

In the loop, nothing happens. As it stands, the melody plays once at the start
and then ends. The melody could be moved to the loop to play forever, but
this may cause mild headaches.

void loop() {
 // no need to repeat the melody.
}

156 Part II: Getting Physical with Arduino

 This is a great example of using a melody as an audio signal at the start of a
sketch. If your project is out of sight, it can sometimes be more helpful to have
a sound to say “I’m okay” rather than have an LED flash.

Making an Instrument
In the preceding section, you find out how to make your project play a sound
rather than blink a light, as in previous sketches. In the example in this
section, you see how to go beyond playing a sound — you create your own
instrument, similar to the Theremin. The Theremin, named after its inventor
Léon Theremin, was one of the first electronic instruments, developed in the
1920s. It worked by detecting the electromagnetic field of the player’s hands
to change signals: one hand for volume and the other for pitch.

The PitchFollower sketch
In this sketch, you find out how to make a budget Theremin using a piezo as a
light sensor to control the pitch.

You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A piezo

 ✓ A light sensor

 ✓ A 4.7k ohm resistor

 ✓ Jump wires

This circuit has two separate halves, the piezo and the light sensor circuit.
The piezo is wired as in the toneMelody sketch, with one wire to digital pin 8
and the other to GND. The light sensor is connected to analog 0 on one side
and 5V on the other; the 4.7K resistor is connected between analog 0 and
ground (as shown in Figures 8-18 and 8-19). If you do not have a 4.7K resistor,
use the nearest you have to that value.

157 Chapter 8: More Basic Sketches: Motion and Sound

Figure 8-18:
A light
sensor

controlled
Theremin

circuit.

Figure 8-19:
A circuit

diagram of
the light

sensor
controlled
Theremin.

158 Part II: Getting Physical with Arduino

Complete the circuit, and open the sketch by choosing File➪Examples➪
02.Digital➪tonePitchFollower.

/*
 Pitch follower

 Plays a pitch that changes based on a changing analog input

 circuit:
 * 8-ohm speaker on digital pin 8
 * photoresistor on analog 0 to 5V
 * 4.7K resistor on analog 0 to ground

 created 21 Jan 2010
 modified 9 Apr 2012
 by Tom Igoe

This example code is in the public domain.

 http://arduino.cc/en/Tutorial/Tone2

 */

void setup() {
 // initialize serial communications (for debugging only):
 Serial.begin(9600);
}

void loop() {
 // read the sensor:
 int sensorReading = analogRead(A0);
 // print the sensor reading so you know its range
 Serial.println(sensorReading);
 // map the pitch to the range of the analog input.
 // change the minimum and maximum input numbers below
 // depending on the range your sensor’s giving:
 int thisPitch = map(sensorReading, 400, 1000, 100, 1000);

 // play the pitch:
 tone(8, thisPitch, 10);
 delay(1); // delay in between reads for stability
}

After you have found the sketch, press the Compile button to check the code.
Any syntax errors turn the Message box red when they are discovered, and
you see an error message stating what is wrong.

If the sketch compiles correctly, click Upload to upload the sketch to your
board. When it is done uploading, you should have a light sensor that will
change the pitch of your buzzer. If you don’t hear any change, make sure that

159 Chapter 8: More Basic Sketches: Motion and Sound

you are in a well-lit area or turn a desk lamp on over your breadboard. This will
help increase the difference when you cover the light sensor with your hand.

If nothing happens, you should double-check your wiring:

 ✓ Make sure that you’re using the correct pin number for the inputs and
outputs.

 ✓ Check that your piezo is turned the correct way. Symbols may be hidden
on the underside if they are not visible.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

Understanding the sketch
This sketch is a lot shorter than the toneMelody sketch, presented earlier
in the chapter, because it is directly converting the readings from the light
sensor to a frequency rather than requiring a lookup table. This means that
you can slide between notes as well as choose them individually.

In setup, the serial port is opened to allow you to monitor the sensor read-
ings as they come in.

void setup() {
 // initialize serial communications (for debugging only):
 Serial.begin(9600);
}

In the main loop, the light sensor is read from analog pin 0. This reading is
also forwarded onto the serial monitor.

void loop() {
 // read the sensor:
 int sensorReading = analogRead(A0);
 // print the sensor reading so you know its range
 Serial.println(sensorReading);

To convert the sensor’s range to the range of frequencies that the buzzer can
cover, you use the map function.

 // map the pitch to the range of the analog input.
 // change the minimum and maximum input numbers below
 // depending on the range your sensor’s giving:
 int thisPitch = map(sensorReading, 400, 1000, 100, 1000);

160 Part II: Getting Physical with Arduino

The tone function then outputs the note with the mapped sensor value and
a very short duration of 10 milliseconds. This duration serves to make the
sound audible, but the real duration will be determined by how long you hold
your hand over the sensor, as described previously.

 // play the pitch:
 tone(8, thisPitch, 10);

Finally, a tiny delay occurs at the end of the loop to improve the stability for
the readings.

 delay(1); // delay in between reads for stability
}

With this setup, you can quickly make an easy controller and maybe even
form a traveling Theremin band with your friends.

Part III
Building on the

Basics

In this part . . .

T
o get your mind in gear, this part starts with showing
you some of the varied uses of Arduino through a few

projects that are already out in the world. After you have
some food for thought, you’ll be itching to make your own
projects, so in this part you learn how to make your basic
prototypes into something more solid by learning all
about soldering. You also learn more about using code to
improve the reliability of your project, as well as how to
choose the right sensors for the right job.

Chapter 9

Learning by Example
In This Chapter
▶ Looking at Arduino projects that are already out in the world
▶ Understanding how they work and why they’re so great
▶ Getting ideas for your own amazing Arduino projects

I
n previous chapters, I show you the beginnings of Arduino projects, but it
can be difficult to know what to do with that knowledge. In this chapter,

you read about a few Arduino projects that already exist and are functioning
in the world. Read this chapter for a taste of the vast variety of uses and huge
potential of Arduino. In this chapter, you discover projects that have used
Arduino to create breathtaking art installations, long-lasting interactive exhi-
bitions, and prototypes for products that have made it out into the world.

Skube
The Skube project was developed by Andrew Nip, Ruben van der Vleuten,
Malthe Borch, and Andrew Spitz as part of the Tangible User Interface
module at the Copenhagen Institute of Interaction Design (CIID). It is an
excellent example of how to use Arduino for product prototyping and
development.

Skube (shown in Figure 9-1) is a product that allows you to interact with
digital music services that you would usually access on your computer. The
project aims to rethink the way audio devices work and how they are used to
make better use of digital music services. Each Skube has two modes, Playlist
and Discovery, that you select by tapping the top of the device. Playlist plays
through a predefined playlist of music, and Discovery searches for similar
artists or tracks. Skubes can also be combined to shuffle between each of the
predefined playlists. They will physically snap together, giving the user a tan-
gible way of mixing different playlists and discovering new music.

164 Part III: Building on the Basics

Figure 9-1:
A single

Skube.

Courtesy of Andrew Spitz

How it works
Thankfully, the Skube team offers a great amount of documentation and an
excellent video of both the finished prototypes as well as good look under
the hood. Inside each Skube is an Arduino and an XBee Wireless Module
(unfortunately,this book doesn’t have enough room to cover these amazing
modules, but with a quick Google search, you should find ample resources
online). The Arduino’s main function is to act as the middleman, hosting a
number of different sensors and communication devices and relaying the cor-
rect data to the correct places. The tap sensor is the same as that described
in Chapter 12 of this book and uses a simple piezo element to monitor vibra-
tions. When Skubes snap together, the magnet is actually acting as a switch
as well, activating a reed switch. The reed switch closes its metal contacts
when a magnet comes near, giving the device a clear indication of when the
magnet is present.

The project also has an FM radio module, which is used to output the music
for each Skube. Using the XBee Wireless Modules, you can communicate
with each Skube and coordinate them using custom software on a computer,
which is written in Max/MSP.

Max/MSP is a visual programming language that is used for many audio and
music projects. Using Max/MSP, the Skube team used data from the music

165 Chapter 9: Learning by Example

services Last.fm and Spotify to make use of their playlist and find similar
artist features. These companies both provide various features to their
customers (such as assembling playlists based on your favorite tracks or
providing a database of albums and artists), but they also provide access to
these features for developers that have interesting ideas for their own proj-
ects, smartphone applications, or products. This resource is known as an
Application Programming Interface (API). The API for Last.fm (http://
www.last.fm/api) and Spotify (https://developer.spotify.com/
technologies/web-api/) are just two examples, but many more are avail-
able for other specific web services as well; so always give it a Google!

You can see that this project has many elements, involving not just com-
municating wirelessly using Arduino (which can be a task in itself) but also
communicating with other software, and from that software, communicating
with other services on the Internet. For the more code-savvy among you,
this application of Arduino may allow you to build from your existing knowl-
edge to integrate hardware with other software. In Part V, I introduce you to
the other available software and look in more depth at communicating with
Processing.

Further reading
You can find out more about this project by checking out the project pages
on the CIID website at http://ciid.dk/education/portfolio/idp12/
courses/tangible-user-interface/projects/skube/ and Andrew
Spitz’s website at http://www.soundplusdesign.com/?p=5516.

Chorus
Chorus is a kinetic installation by United Visual Artists (UVA), a London-
based art and design practice. UVA’s work crosses many disciplines, includ-
ing sculpture, architecture, live performance, moving image, and installation.
The group has a reputation for creating visually stunning projects that push
the boundaries of all those disciplines.

Chorus (shown in Figure 9-2) uses sound, light, and motion with dramatic
effect and is an excellent example of how Arduino can play a role in huge
installations as well as tiny prototypes. The installation is made up of eight
tall black pendulums swinging back and forth, simultaneously emitting light
and sound. Spectators can walk underneath the pendulums, immersing them-
selves in the performance, as “the rhythm of the work moves between chaos
and unison.” Each pendulum has its own score, composed by Mira Calix,
which can be heard when the audience gets near enough.

http://www.last.fm/api
http://www.last.fm/api
https://developer.spotify.com/technologies/web-api/
https://developer.spotify.com/technologies/web-api/
http://ciid.dk/education/portfolio/idp12/courses/tangible-user-interface/projects/skube/
http://ciid.dk/education/portfolio/idp12/courses/tangible-user-interface/projects/skube/
http://www.soundplusdesign.com/?p=5516

166 Part III: Building on the Basics

Figure 9-2:
Chorus in

full swing.

Courtesy of United Visual Artists

How it works
In this project, an Arduino is used not only for light and sound but also the
motion of the pendulums. The swing of each pendulum is controlled by an
electric motor mounted on a reduction gearbox. This motor can be con-
trolled with a relay circuit, allowing the Arduino to affect this huge mechani-
cal object. Each pendulum has two custom circuit boards, each with 50 LEDs
to provide the light for the piece and one speaker mounted in the base of the
pendulum, both of which are controlled by the Arduino. The Arduino itself is
controlled by custom software that is constantly sending and receiving data
to make sure that the pendulums are coordinated at the right moments to
coincide with the score that is playing.

This project shows that you can use Arduino to great effect when combined
with an understanding of other disciplines, such as art, mechanical engineer-
ing, and architecture. On their own, each of the elements of this project is rel-
atively simple: controlling a motor; controlling an LED; playing a melody. The
real challenge is when the scale of each of these increases. Controlling high-
powered motors requires knowledge of loads and mechanics; controlling lots

167 Chapter 9: Learning by Example

of LEDs requires an understanding of controlling higher voltage and current;
and playing high-quality sound requires specific hardware. Chapter 13 intro-
duces you to shields that can make a lot of functions, similar to those used
in Chorus, a lot easier to achieve with your Arduino. Increasing the scale of
your project in either size of the hardware or the number of outputs can be
a challenge, but Chapters 14 and 15 walk you through some of the issues you
face to make everything more manageable.

Further reading
You can find the project page at UVA’s website: http://www.uva.co.uk/
work/chorus-wapping-project#/0. There is also an excellent paper by
Vince Dziekan that looks at both UVA’s working practice and the Chorus proj-
ect in detail: http://fibreculturejournal.org/wp-content/pdfs/
FCJ-122Vince%20Dziekan.pdf.

Push Snowboarding
Push Snowboarding is a collaborative project between Nokia and Burton that
aimed to visualize all the data about your snowboarding run that you usually
wouldn’t see. A company called Vitamins Design Ltd was contacted by the
creative agency Hypernaked to design and build a set of wireless sensors to
communicate with a mobile phone in the snowboarder’s pocket. Vitamins
was founded by Duncan Fitzsimons, Clara Gaggero, and Adrian Westaway,
who dub themselves a “design and invention studio.” They are located in
London where they develop and make products, experiences, concepts, and
systems for their clients. They have worked on a variety of projects, which is
best described in their own words, having “worked on fashion catwalks and
in operating theatres . . . with pro snowboarders and factory workers . . . for
experimental theatre as well as techno-phobic pensioners.”

For the snowboarding project, Vitamins designed a set of 3D printed sensor
boxes (as shown in Figure 9-3) to measure galvanic skin response, heart rate,
balance, 3D motion, position, geographical location, speed, and altitude. This
data was then layered over a live video of the snowboarding run to show the
links between different situations and the physical response of the snow-
boarder. This project is an excellent example of making well-finished Arduino
products that are closer to bespoke products than prototypes.

http://fibreculturejournal.org/wp-content/pdfs/FCJ-122Vince Dziekan.pdf
http://fibreculturejournal.org/wp-content/pdfs/FCJ-122Vince Dziekan.pdf
http://www.uva.co.uk/work/chorus-wapping-project#/0

168 Part III: Building on the Basics

Figure 9-3:
Snow

boarding
sensors in

bespoke
sensor
boxes.

Courtesy of Vitamins Design Ltd

How it works
Each sensor is in a waterproof enclosure with a power button. When
switched on, the Arduino talks wirelessly to the smartphone, communicating
whatever data it finds. From there, the smartphone, with its superior pro-
cessing power, crunches the numbers and compiles the data to present the
snowboard run visually to the snowboarder.

The first challenge of this project is the size. Many sensors can be tiny, but
the Arduino itself creates quite a big footprint, and if a snowboarder were
wearing several sensor boxes, the data would be useless if the boxes were
obstructing his or her movement. For this reason, each sensor box has an
Arduino Pro Mini, which is wafer thin and only 18mm x 33mm. The same is
true for the power source, which is provided by a rechargeable lithium bat-
tery, the same kind that is found in model aircraft and even smartphones.
The project uses a variety of sensors: pressure sensors on the feet to judge
balance; inertial measurement units (IMU), also referred to as degrees of free-
dom sensors, which are used to find the 3D orientation of the snowboarder;

169 Chapter 9: Learning by Example

galvanic skin-response sensors to monitor sweat levels of the snowboarder;
and a heart rate monitor to track the snowboarder’s BPM.

This data is sent back to the phone wirelessly using a Bluetooth module,
located in each sensor box. The Bluetooth module is small, has a reliable,
secure connection, and will reliably work over the short distance between
the sensor box and the phone in the snowboarder’s pocket. The gathered
data can then be combined with other data, such as GPS, that can be gath-
ered by the phone and then formatted by custom software on the phone.

Each of the sensors in this project is available from most online Arduino-
related shops, along with examples and tutorials of how you can integrate
them into your own project. The execution of this project is what makes it a
great example for aspiring Arduin-ists. The combination of sensors provides
a wealth of information to snowboarders that could be used to improve their
technique or rate their performance in different ways. In addition, these
products have been made to survive in extremely tough environments. The
electronics are carefully packaged away so that they are accessible but
located behind a tough case to protect from impact, and they’re carefully
padded to be protected from shock. There is even a damp course to trap any
moisture that may get in.

Further reading
You can find more details about the project on the Vitamins website at
http://vitaminsdesign.com/projects/push-snowboarding-for-
nokia-burton/.

Baker Tweet
Baker Tweet is a project by Poke that tweets the latest freshly baked goods
from the Albion Café as they come out of the oven. Poke is a creative com-
pany based in London and New York that specializes in all things digital. The
project resulted from an assignment Poke London was given to put the newly
opened Albion Café on the map. It proposed a “magical box” that allowed
the café to announce its freshly baked goods using Twitter so that the locals
would know when to visit to get the freshest bread, croissants, and buns. You
can see a picture of the Baker Tweet device in Figure 9-4, or pop in to the café
if you’re in the neighborhood!

http://vitaminsdesign.com/projects/push-snowboarding-for-nokia-burton/
http://vitaminsdesign.com/projects/push-snowboarding-for-nokia-burton/

170 Part III: Building on the Basics

Figure 9-4:
Baker

Tweet in
the Albion

Bakery.

Courtesy of Poke London

How it works
The “magical box” that produces Twitter messages has a simple interface
consisting of a dial, a button, and an LCD screen. The dial is used to select
the freshly baked item to be tweeted, and the tweet is displayed on the LCD
screen. After it finds the correct item, the pushbutton sends the tweet and
the user is given feedback on the LCD when the tweet is successfully sent.
This simple interface is ideal for a busy café, requiring very little time for the
online status to be updated. To have new items added, the project uses an
easy-to-use web interface that updates the list.

At the heart of this project is an Arduino that communicates with the Internet.
This can be accomplished either with a wired Ethernet connection, using the
Arduino Ethernet shield, or wirelessly, using a Linksys Wi-Fi adapter. The dial
provides an analog input; the button, and a digital input. When they combine
with the LCD screen, they create a user interface for easily moving through the
list and sending tweets. The prototype is encased within a sturdy enclosure to
prevent dough and floury hands from damaging the circuit.

This project shows a great application for Arduino that performs the often
time-consuming activity of updating an online status quickly and easily. The

171 Chapter 9: Learning by Example

prototype is also built to suit its environment, being robust enough to sur-
vive constant use with stainless steel inputs. It’s also easy to clean consid-
ering the messy bakery environment. The complexity of this project lies in
the communication with the Internet, which for the more web savvy of you
may be an area of interest, allowing your physical project to send data to the
World Wide Web and vice versa.

Further reading
You can find much more information on the Baker Tweet site at http://
www.bakertweet.com) and the Poke London projects page at www.
pokelondon.com/portfolio/bakertweet. Also, take a look at a few
excellent prototyping photos that show the development of the project
from breadboard to bakery (http://flickr.com/photos/aszolty/
sets/72157614293377430/).

The National Maritime Museum’s
Compass Lounge and Compass Card

The Compass Lounge was developed as part of a new wing of the National
Maritime Museum in London. London-based design studio Kin designed and
developed the interactive areas of the Compass Lounge, which used a number
of Arduino projects behind the scenes to allow the public to interact with the
digital archive of the museum as well as the physical pieces on display.

A set of digital plan chests (plan chests are large drawers that usually store
large prints, blueprints or paperwork) allow visitors to browse the museum’s
online archive and access the most popular items in high resolution. When
the plan chest is opened, a large touch screen is activated, and the visitor
can browse items on display. While the visitors are browsing, a hidden LED
display lights up through the wallpaper (as shown in Figure 9-5), displaying the
reference number of the current item so that it can be found in the physical
archive.

Another aspect of the Arduino-powered part of this project is the Compass
Card system. Each visitor is given a card to use to collect items from all over
the museum. Next to certain items are collection points where the card is
scanned to collect the item digitally and stamped to leave a physical mark
on the card to show the visitors journey through the museum. Visitors can
browse their collected items in the compass lounge or at home in a browser.

http://www.bakertweet.com
http://www.bakertweet.com
http://flickr.com/photos/aszolty/sets/72157614293377430/
http://flickr.com/photos/aszolty/sets/72157614293377430/
http://www.pokelondon.com/portfolio/bakertweet

172 Part III: Building on the Basics

Figure 9-5:
The hidden
LED display

lights up
from under

neath the
wallpaper.

Courtesy of Kin

How it works
The plan chests use a couple of simple Arduino projects to complement the
digital content displayed on the large touch screens.

The first part of the Arduino is used to activate the screens when they are
opened. If the screens are left on throughout the day when not in use, the
image can often be burned into the screen, leaving shadows when the con-
tent is changed. Setting the background to black when the plan chest is
closed reduces this “screen burn” and extends the lifetime of the monitors.
This result is accomplished by a tiny microswitch on the back of each
drawer — no different from the setup for the Button sketch in Chapter 7.
Whenever the button is pressed, a character is sent over the serial port to tell
the monitor to go black. This sort of communication is covered in Chapter 8.

Above the plan chests is a hidden LED display made up of rows of LEDs
aligned in a grid. These rows consist of the same addressable LED ribbon as
described in Chapter 15, with some clever coding to display the appropriate
LEDs when letters need to be displayed. The letters are sent over the serial
port as a string from the custom software that displays the images so that
the correct number appears with the correct image. Because the LEDs are
so bright, they can shine through the fabric wallpaper when on and remain
hidden when not. This is an excellent example of using a premade product in
a different arrangement to suit the purpose.

173 Chapter 9: Learning by Example

The compass cards are also a great example of using (relatively) old and
existing technologies in a new and interesting way. The compass cards
themselves use barcodes to know which card is being scanned. This returns
a number to the Arduino that can be forwarded to a central server that
coordinates the barcode number and the scanner number to identify where
the card has been scanned and by who. All this information is sent over the
Ethernet to a server using an Ethernet shield, where the information can be
collated and outputted as needed. This is a great example of using Arduinos
to do the relatively complicated task of relaying back data over a network
without the need for computers at every collection point. This scenario not
only cuts the cost of data transfer down but also makes the operation of the
network easier because an Arduino requires no startup or shutdown proce-
dures. This digital system works alongside a physical stamping system to
mark the cards with an embosser, which makes an impression into the card
when the lever is pushed (the inside of the compass card collection point can
be seen in Figure 9-6).

Figure 9-6:
A look

inside the
compass

card collec
tion points.

Courtesy of Kin

This collection of projects gives a great example of how many applications
you can bring together to create an experience, providing many different
forms of interaction and feedback. It’s also a great example of an extreme-
use case for Arduino. Many projects, prototypes, or installations show that
Arduino can work, but it is often regarded unreliable and seen as a temporary
solution rather than a long-term one. In this case, the museum demands a
reliable and robust solution, and this project shows that Arduino is more
than capable of the task when used correctly.

174 Part III: Building on the Basics

Further reading
You can find much more information as well as illustrations on the Kin proj-
ect page at http://kin-design.com/project.php?id=147 and on the
National Maritime Museum website at http://www.rmg.co.uk/visit/
exhibitions/compass-lounge/.

The Good Night Lamp
The Good Night Lamp is an Internet-connected family of lamps founded by
Alexandra Dechamps-Sonsino. Each family is made up of a Big Lamp and
numerous Little Lamps. When the Big Lamp is on, the Little Lamps that are
connected turn on as well, wherever they are in the world. They allow loved
ones to remain in touch with each other by simply going about their daily
routine, without actively using any application. The Good Night Lamp is cur-
rently in development using Arduino as the basis for the prototypes. A set of
lamps appears in Figure 9-7.

Figure 9-7:
Whenever

the Big
Lamp is

turned on,
the Little

Lamp turns
on as well,
wherever
it is in the

world.

Courtesy of Good Night Lamp Ltd

http://kin-design.com/project.php?id=147
http://www.rmg.co.uk/visit/exhibitions/compass-lounge/
http://www.rmg.co.uk/visit/exhibitions/compass-lounge/

175 Chapter 9: Learning by Example

How it works
The system for the preproduction prototypes of the Good Night Lamp is
relatively simple. The Big Lamp is a functional light that is operated with a
pushbutton, similar to the ButtonChangeState example in Chapter 11. It illu-
minates the light and sends the id number of the lamp and state of the light
to a web server using an Arduino Wi-Fi Shield.

Somewhere else, maybe on the other side of the world, the Little Lamps
download this state using the same Wi-Fi Shield and relay it to all the Little
Lamps that are linked to it. If a Big Lamp is on, any Little Lamps that are
paired with it are also turned on.

The lamps themselves are high-power LED bulbs running off 12V and requir-
ing 0.15 amps for the Little Lamps and 0.4 amps for the Big Lamp. These are
ideal for the high brightness needed for functional lamps and require a tran-
sistor circuit to run them, the same as the one explained in Chapter 8.

This project is a great example of using Arduino to produce a prototype of
a product with relatively complex behavior. Using Arduino and other tools
enable you to develop the electronics inside a product to reliably demon-
strate its behaviour.

Further reading
If you would like to read more about the Good Night Lamp, go to the product
home page at http://goodnightlamp.com.

Little Printer
Little Printer (shown in Figure 9-8) is a miniature home printer developed by
Berg, a design consultancy based in London. Using your smartphone, you can
manage content from the web to print all sorts of information to create your
own personal newspaper. In between your phone and the web is BERG Cloud,
which does all the heavy lifting. You can access BERG Cloud by smartphone
to send content to your Little Printer and potentially future devices to come.
Little Printer is built with custom hardware and software but was originally
prototyped using Arduino.

http://goodnightlamp.com

176 Part III: Building on the Basics

Figure 9-8:
A Little
Printer

ready to
print

whatever
data

you’d like.

Courtesy of Berg

How it works
The Little Printer is made up of several parts, starting with the printer itself.
This is a thermal printer, similar to those used to print shopping receipts.
Thermal printers communicate over serial, so with the right code, it’s pos-
sible to talk directly to a device like an Arduino. Adafruit stocks one such
printer that is easy to integrate into your own Arduino projects (go to
https://www.adafruit.com/products/597).

The printer itself is powered but talks wirelessly to the BERG Cloud Bridge.
This is a small device that handles all data in a way similar to your home
router. Data is then sent and received using a wired Internet connection, the
same as that used on the Arduino Ethernet shield.

In early prototypes, XBee wireless modules — the same as those used on
the Arduino Wireless Shield — handled communication between the Little
Printer and the BERG Cloud Bridge.

Much of the complexity of this product is handled in the BERG Cloud, where
data is gathered, sorted, and then sent to the printer as requested.

The Little Printer is a great example of a product that has used Arduino to
develop and refine the idea, before being developed further into a product
with its own custom hardware. It also shows that it is possible for your
Arduino project to make use of the abundance of data on the Internet.

https://www.adafruit.com/products/597

177 Chapter 9: Learning by Example

Further reading
To find out more about the Little Printer and even order one, head over to
the BERG Cloud home page at http://bergcloud.com.

Flap to Freedom
Flap to Freedom was a game by ICO, a London-based design consultancy cre-
ated as part of the V&A Village Fete, described by the V&A as a “contempo-
rary take on the British Summer Fete.” It took the form of a game where two
players would race, head-to-head, to help a chicken to escape from its bat-
tery farm (as shown in Figure 9-9). If a player flaps his arms, the chicken does
also, but if he flaps too quickly, the chicken tires out. Each race was timed
and put on the “pecking order” leader board to determine the winner.

Figure 9-9:
Chicken

run!

Reproduced by permission of ICO Design Printers Ltd

http://bergcloud.com

178 Part III: Building on the Basics

How it works
For the Arduino-related project, the existing toy chickens used in this race
were taken apart and given new custom circuits that communicated
wirelessly with software on a computer. The circuits inside the chickens
were remade to give an Arduino control of the various motors that moved
the wings, beak, and feet. These were each told what to do using wireless
modules, similar to the XBee modules on the Arduino wireless shield, which
communicated with a piece of custom software on a computer.

The software used was openFrameworks. Using a hidden webcam, the
program analysed people’s movements to determine how fast the chickens
should waddle and then sent the appropriate signal to each chicken.

This is an extremely fun and engaging application for Arduino. It allows
people of all ages to play a game and have instant physical feedback from
the toy chickens as well as elevates the toys to a new level. This example
of hacking existing toys to give them a different use can also apply to other
products.

Further reading
You can find much more to read on the ICO project page at http://www.
icodesign.co.uk/project/V%26A%3A+Flap+to+Freedom+Environment.
Benjamin Tomlinson and Chris O’Shea worked on technical side of the proj-
ect; for more of a technical description, go to Chris O’Shea’s project page at
http://www.chrisoshea.org/flap-to-freedom.

http://www.icodesign.co.uk/project/V%26A%3A+Flap+to+Freedom+Environment
http://www.icodesign.co.uk/project/V%26A%3A+Flap+to+Freedom+Environment
http://www.chrisoshea.org/flap-to-freedom

Chapter 10

Soldering On
In This Chapter
▶ Learning all about soldering
▶ Getting all the right kits for the job
▶ Being safe with solder
▶ Assembling a shield
▶ Soldering with style
▶ Moving from the breadboard to strip board
▶ Preparing your project for the real world

I
n previous chapters, I cover in great detail how to assemble circuits on
a breadboard. If you read those chapters, you most likely already have a

few ideas that build on or combine a few of the basic examples, so you may
be asking, “What do I do next?”

This chapter takes you through the process, or art, of soldering. You find out
the ins and outs of all the tools that you need to get your project ready for the
real world. No more precariously balanced breadboards or flailing wires. From
this point on, you can know what you need to solder circuit boards that last.

Understanding Soldering
Soldering is a technique for joining metals. By melting metal with a much
lower melting point than those you’re joining, you can link pieces of metal
together to form your circuit. Mechanical joints are great for prototyping,
allowing you to change your mind and quickly change your circuit, but after
you’re sure of what you’re making, it’s time to commit.

You use a soldering iron or solder gun to melt solder, a metal alloy (mixture
of metals) with a low melting point, and apply it to the joint. When the solder
has cooled around the pieces that are being connected, it forms a secure
chemical bond rather than a mechanical bond. This is a far superior way
to fix components in place, and bonded areas can still be melted and resol-
dered, if needed.

180 Part III: Building on the Basics

But why do you need to mess with soldering at all? Picture this: You have
your circuit on a breadboard and you’re ready to use it, but every time you
do, the wires fall out. You could persevere and keep replacing the wires, but
every time you do, you take the chance of replacing the wrong wire and dam-
aging the Arduino or yourself.

The best solution is to make a soldered circuit board that’s robust and can
survive in the real world. The benefit of the solderless breadboard is that it
allows you to quickly and easily build and change your circuit, but after you
know that it works, you need to start soldering to keep it intact.

Creating your own circuit board is also an opportunity to refine your circuit
by making circuit boards that fit the components. After you know what you
want to do, the process of miniaturization can start and you’re eventually left
with a circuit board that takes up only the required space and no more.

Gathering What You Need for Soldering
Before you dive in to soldering, make sure that you have what you need to
get the job done. Read on to find out more.

Creating a workspace
For your soldering adventures, what you need above all is a good workspace.
Having a good workspace can make all the difference between a success-
ful project and hours spent on your hands and knees, swearing at cracks in
the floorboards. A large desk or workbench would be perfect, but even the
kitchen table, if clear, will work. Because you’re dealing with hot soldering
irons and molten metal, it’s a good idea to cover the surface of the table with
something you don’t mind damaging to prevent permanent damage to your
favorite table. A cutting mat, piece of wood, or piece of cardboard will do fine
for this purpose.

Your workspace should be well lit as well. Always make sure that you have
ample daylight by day and a good work light at night to help find those tiny
components.

For soldering, it’s also good to have easy access to a power source. If your
soldering iron functions at a fixed temperature and with a short lead con-
nected directly to a plug, it can be especially important to have a plug
nearby. If you overstretch your lead, you run the risk of having the iron
pulled off the table and burning anything it touches. A table top power strip

181 Chapter 10: Soldering On

or multi-plug is the best solution to this problem because it will provide
power for your laptop, your lamp, and your soldering iron.

A comfortable chair is always important. Also remember to stand up every
half hour or so to prevent back cramp. You can easily get drawn into solder-
ing and forget what a horrible posture you’re in.

Solder fumes, although not lethal, are not good for your lungs, so make every
attempt to avoid breathing them in. Always work in a well ventilated area. It’s
also advisable to work with lead-free solder, as mentioned later in this section.

 If you’re working at home and are under pressure from other people in your
house to not cover every surface with bits of metal, designate a soldering
surface. This could be a rigid, wooden surface that can fit all your kit on it and
can be moved, neatly packed away, or covered when not in use. This arrange-
ment saves you the chore of unboxing and packing up every time you want to
solder and keeps everyone else happy as well.

Choosing a soldering iron
The most important tool for soldering is, obviously, a soldering iron or solder
station. You have a huge variety to choose from, but they are generally
divided into four types: fixed temperature; portable; temperature-controlled;
and complete solder stations. I describe each type in the following sections
and provide a rough price from my local retailers to give you an idea of the
cost. When you have an idea of what you’re looking for, it’s always best to
shop around locally to see what deals you can find. If you’re lucky, you may
even find some high-quality second-hand gear on eBay!

Fixed-temperature soldering iron
Fixed-temperature irons (see an example in Figure 10-1) are normally sold as
just an iron on a piece of mains cable with a plug at the other end. They are
usually sold with a sponge and a very flimsy piece of bent metal as a stand.
Others that are slightly better have a plastic stand with a place to put your
sponge and a decent spring-like holster for your iron.

Fixed-temperature irons are adequate but offer no control over the tempera-
ture of your iron. They are sold with a power rating or wattage, which is of
very little help to most people. On these fixed-temperature irons, a higher
wattage means a higher temperature, although that can vary wildly from
manufacturer to manufacturer. This variation can cause trouble with more
delicate components as you progress because a high temperature is quickly
conducted and melts integrated circuits and plastic components.

182 Part III: Building on the Basics

A quick study of the Maplin website (a U.K. retailer for hobby electronics;
U.S. equivalent is RadioShack) shows a 12W, 15W, 18W, 25W, 30W, and 40W,
which could cover a range of approximately 400 degrees F to 750 degrees F.
The difficulty is in finding an iron that is hot enough so that it heats the part
that you want to heat quickly and allows you to melt the solder before the
heat spreads. For this reason, a low-temperature iron can often do more
damage than a higher temperature one. If you go too high, you encounter
other problems, such as having the tips erode faster and running a higher
risk of overheating parts.

If you want to go with a fixed-temperature iron, my best advice is to pick a
midrange iron to start with. I recommend a 25W iron as a good starter. This
costs in the region of $22.50 (£15) from Maplin.

Figure 10-1:
A basic

fixed
temperature

soldering
iron.

Portable soldering iron
Portable irons do away with cables and electricity in favor of gas power. They
burn butane gas, which is more commonly known as lighter fuel, to maintain
their heat. They have a wattage rating to allow comparison with other irons,
but unlike the fixed-temperature ones described in the previous section, this
rating indicates the maximum temperature, which can be lowered by use of
a valve. The flames burn around the edge of the iron, which can make them
awkward to use on precise joints, so I recommend using a portable iron only
if necessary.

A portable iron (shown in Figure 10-2) is great for tight situations when an
extension lead just won’t reach, but it’s a bit too expensive and wasteful to be
used often. It’s also considered a lot more dangerous than conventional irons
by most airport security because of the use of gas. So if you’re planning on
doing any soldering abroad, take an electric iron.

183 Chapter 10: Soldering On

Butane soldering irons vary in price, but you can usually find them in the
range of $45 to $90 (£30 to £60) from Maplin. You also need to buy additional
butane refill cans for $7.50 (£5) each, so bear this in mind.

Figure 10-2:
A butane
soldering

iron. Watch
those eye

brows!

Temperature-controlled soldering iron
A temperature-controlled soldering iron, shown in Figure 10-3, is preferable to
the fixed-temperature variety because it gives you more control at a reason-
able price. This increase in control can make all the difference between melting
and burning. This type of soldering iron should have a wattage rating, but it
will be the maximum power possible. For this type of iron, a higher wattage is
preferable because it should give you a better range of higher temperatures.

Figure 10-3:
A tem

perature
controlled
soldering

iron.

184 Part III: Building on the Basics

A temperature control dial allows you to scale your temperature range up or
down as needed. The difference between this type of temperature control and
the control you have when using more accurate solder stations is that you
have temperature control but no reading of the current temperature. Most
temperature-controlled irons have a color wheel indicating warm to hot, so a
bit of trial and error may be necessary to get just the right temperature.

You can get an affordable temperature-controlled soldering iron from Maplin
for around $30 (£20). Because you have more control over the temperature of
the iron, you have greater control and more longevity than a fixed-temperature
iron gives you.

Solder stations
A solder station is something to aspire to. After you gain some experience
(and can justify the expense), a solder station is what you’ll want. It is usu-
ally made up of an iron, a stand or cage for the iron, a temperature display,
a dial or buttons for temperature adjustment, and a tray for a sponge. It can
also include various other accessories for de-soldering or reworking, such as
a hot air gun or vacuum pickup tool, but these are generally for more profes-
sional applications and not immediately necessary.

You can find many available brands of solder stations, but one of the most rep-
utable and widely used is Weller (see Figure 10-4). Of that company’s stations,
I recommend the WES51 (120V AC), the WESD51 (120V AC), or the WESD51D
(240V AC). My WES51 is still performing excellently after four years of use.
Note that the 120V irons need a transformer to step the voltage down in coun-
tries that use 240V AC; the transformer can often be heavier than the iron itself!

Figure 10-4:
A Weller

solder
station.

185 Chapter 10: Soldering On

Before using a Weller solder station, I owned a cheap Maplin temperature-
controlled soldering iron that did very well for a number of years. As I cover
in more detail later in this chapter, the best way to maintain and get the most
out of your iron is to use it correctly. Remove any melted solder from the
tip using the sponge, reapply fresh solder before using it, and leave a little
melted solder on the tip before replacing it.

Regardless of which iron you buy, I also recommend buying a few spare tips
because tips eventually degrade. You’ll find a vast variety of tips for different
purposes, too, so it’s good to have a selection to cover a variety of needs.

Solder
Solder is what you use to join your circuits. Although many different types
of solder are used with different combinations of metals, they commonly fall
into two categories: lead and leadfree. Many people I know prefer lead solder,
finding it easier to work with. This might be the case because it has a lower
melting point, meaning that your iron can be cooler and less likely to damage
components.

Lead poisoning has been known about for a long time, but only relatively
recently have attitudes about using it begun to change. Lead pipes were
switched to copper as recently as the 1980s, and the use of lead solder in
consumer electronics was addressed in 1996, when and the Restriction of
Hazardous Substances Directive (RoHS) and the European Union Waste
Electrical and Electronic Equipment Directive (WEEE) addressed use and
disposal of certain materials in electronics.

You commonly find RoHS on components that comply with their guidelines,
which should, therefore, be better for the environment when disposed of.
Commercially, U.S. and European companies enjoy tax benefits for using lead-
free solder (shown in Figure 10-5), but lead is still widely used in the rest of
the world. Steven Tai, a colleague of mine, visited China to complete a project
we were working on. When he asked where he could buy lead-free solder, he
was laughed at outright because lead-free solder was not only was unheard of
in most cases but not even available! For the more conscientious Arduin-ists,
most electronics supplier and shops offer lead-free solder that contain other
metals such as tin, copper, silver, and zinc. From my experience, lead-free
solder works just fine for any Arduino projects, so if you want to do your bit
for the environment and avoid using lead in your work, please do!

Another variety of solder is flux-cored solder. Flux is used to reduce oxi-
dization, the reaction on the surface of a metal when it reacts with the air
(oxygen), as with rust on an iron anchor. Reducing the oxidization allows a
better, more reliable connection on your solder joint and allows the solder
to flow more easily and fill the joint. Some solders have flux in the core of the
solder, dispensing flux to the joint as the solder is melted. You sometimes

186 Part III: Building on the Basics

see smoke as you melt your solder; in most cases, the smoke is from the
flux burning off. You can be sure that you have flux core if, when you cut the
solder, you see a black center surrounded by a tube of solder.

Figure 10-5:
Leadfree

solder.

Always work in a well-ventilated area and avoid breathing the solder fumes
no matter which solder you are using. Solder fumes are not good for you, and
neither is eating solder. Always wash your hands and face thoroughly after
soldering. Sometimes the flux in solder can spit, so wear clothes that are not
precious — and definitely use eye protection.

Third hand (helping hand)
Sometimes you just don’t have enough hands to hold the fiddly electronics
that you’re trying to solder. It would be great to have someone nearby with
asbestos hands to hold the tiny red-hot pieces of metal, but failing that, you
can use a little device known as a third hand (a.k.a. helping hand; shown in
Figure 10-6). A third hand is a set of crocodile clips on an adjustable arm.
You can arrange the clips to help you get your component, circuit board,
and solder into place. A third hand costs around $22.50 (£15) and can be

187 Chapter 10: Soldering On

extremely useful for holding circuit board at an angle or holding components
together while you work on the soldering. The drawback is that setting it up
can be extremely tricky. If you’re doing lots of solder joints, you may spend a
lot of time loosening, adjusting, and retightening. If you do purchase a third
hand, make sure that the parts are all metal. Plastic parts, such as the grips
on the vices, will not stand up to much use.

Figure 10-6:
Give the

man a hand!

Adhesive putty
A good alternative to a third hand is adhesive putty, such as Bostik’s Blu-
Tack, UHU’s White Tack, or Locktite’s Fun-Tak. Rather than use a mechanical
device to grip a component or circuit board, you can use the adhesive putty
to hold the objects you’re soldering in place on one side of the board, leav-
ing you free to work on the other side of the board without the components
or circuit board moving. You can also use the adhesive putty to tack your
work to your work surface, stopping it from moving around the surface as
you solder. After the solder joints are done, you remove the adhesive putty,
which you can reuse. Note that putty goes extremely soft if it is heated and
takes a while to return to its usual tackiness. After it cools, you can roll the
ball of putty along the circuit board to remove any remaining bits.

188 Part III: Building on the Basics

Wire cutters
A good pair of wire cutters or snips is invaluable. Many are available that are
capable of cutting wire, but try to get the most versatile pair. Many pairs of
wire cutters have a rounded, claw-like shape. These are tough but can be dif-
ficult to use when cutting in confined spaces or pinpointing a specific wire.
Precision wire cutters have a more precise, pointed shape that is far more
useful for the vast majority of electronics work.

Note that wire cutters are good for soft metal such as copper but do not
stand up to tougher metals such as paper clips or staples. Figure 10-7 shows
a pair of pointed wire cutters.

Figure 10-7:
Pointed wire

cutters are
good for

getting into
and out of

tight spots.

Wire strippers
To connect wires to your project, you need to strip back the plastic insula-
tion. You can do this stripping with a knife if you’re careful or don’t value
your finger tips, but the quickest, easiest, and safest way to strip a wire is
to use a purpose-made wire stripper. There are two kinds of wire strippers:
manual and mechanical (see Figure 10-8). Manual wire strippers are like clip-
pers but have semicircular notches made to various diameters. When the
wire stripper is closed on wire, it cuts just deep enough to cut through the

189 Chapter 10: Soldering On

plastic sheath but stops before it hits the wire. Mechanical wire strippers
work with a trigger action to remove the insulation on the wire without any
need to pull on the wire.

Mechanical wire stripers are a great time saver but can be less reliable in the
long run because the mechanisms are more likely to fail than are those in the
simple manual ones.

Figure 10-8:
Manual

and
mechanical

wire
strippers.

Needle-nosed pliers
Needle-nose pliers, as with a solderless breadboard, are a great help for get-
ting to those hard to reach places. With soldering they’re especially useful,
because they spare your fingers from any excess heat from the soldering. I
cover needle-nosed pliers in more detail in Chapter 5.

Multimeter
A multimeter is a great help for testing your circuits. When you’re soldering
connections, the continuity-testing function can be a great help for verifying
that the solder joints are as they should be and are connected to the right
places. See Chapter 5 for more about working with a multimeter.

190 Part III: Building on the Basics

 When testing the continuity, always unplug any power supplies connected to
your circuit to avoid false bleeps.

Solder sucker
Everyone makes mistakes, and they can be more difficult to undo when
you’re dealing with hot metal. One tool to keep handy for fixing mistakes is a
solder sucker, shown in Figure 10-9, or de-soldering gun. Each of these tools
is a pneumatic pump that sucks molten solder straight off the surface of a cir-
cuit board. Most have a piston that can be pressed down and will lock when
all the air is pressed out. When you hit the trigger, a spring pushes the piston
back out and sucks any molten solder into the piston chamber. Next time you
press the piston down, it pushes out any solder that was removed. Using this
type of tool takes a bit of practice because you need to heat the solder with
your soldering iron in one hand and suck it away with the sucker in the other.

Figure 10-9:
A solder

sucker can
save your

project.

Solder wick
Another method of removing solder is to use solder wick (see Figure 10-10),
also known as copper braid or de-soldering wire. Solder wick is a copper
wire that has been braided, and you buy it in reels. It provides lots of surface
area for solder to grip into, to remove it from other surfaces. Place the braid
on the joint or hole that has too much solder, and hold your soldering iron

191 Chapter 10: Soldering On

on top of it to heat the solder wick. Apply some pressure, and the solder
continues to melt and fill the gaps in between the braids of the copper wire.
Remove the wick and the soldering iron together, and the solder should be
cleared. If it’s not, repeat as necessary. After the solder is cleared, you can
cut off the used solder wick and dispose of it.

 Do not pull the solder wick away if the solder has cooled. If the solder has
cooled, the wick is attached to the board and you risk pulling off the metal
pads on your board, making it unusable.

Figure 10-10:
Solder wick
is great for
those more

stubborn
mistakes.

 Solder suckers and solder wick are both equally effective at removing solder,
but they are each suited to different situations and require an element of dexter-
ity and skill to use. If you’re worried about overheating components, a solder
sucker is more suitable; if you can’t remove all the solder with the sucker or
can’t get close enough to the components with it, the solder wick may be a
better option. I advise getting both to prepare yourself for any situation.

Equipment wire
Equipment wire is the general name given to electronics wire. It’s the same
as the jump wires you may have in your kit but is unfinished. You buy it in
reels. Equipment wire can be either single-core or multicore. Single-core wire
is made up of one solid piece of wire and is malleable, so it holds its shape
if bent, but if it is bent too much, it snaps. Multicore is made up of many fine
wires and can withstand a great deal more flexing than single core, but does
not keep its shape if bent. To use the equipment wire, you need to cut it to
length and bare the ends of the insulation to reveal the wire underneath.

192 Part III: Building on the Basics

Wire also comes in different diameters, indicated with numbers such as 7/0.2
or 1/0.6. In this format, the first digit is the number of wires in the bundle and
the second is the diameter of those individual wires. So 7/0.2 is a bundle of
7 wires, each measuring 0.2 mm, making it multicore; 1/0.6 is one individual,
single-core wire with a diameter of 0.6mm.

When you’re starting out, it can be difficult to know what to invest in because
wire is cheaper when bought by the reel but you don’t want to be stuck with
wire that isn’t fit for purpose. As a general guideline, I have found that mul-
ticore wire is the most versatile and robust for most applications. The diam-
eter 7/0.2 is a good diameter; it should fit most PCB holes. I also recommend
having three colors — red, black, and a color to signify your signal wires.
With three reels of this type and size, you should be able to complete most
projects. Some hobby electronic shops also supply lengths in various colors,
such as the ones shown in Figure 10-11, by Oomlout.

Figure 10-11:
Equipment

wire in vari
ous colors.

Staying Safe while Soldering
With a few simple precautions, you can easily solder safely. Remember that
soldering is not dangerous if you take proper care — but it can be if you
don’t. Please keep the tips in the following sections in mind whenever you’re
soldering.

Handling your soldering iron
A soldering iron is safe if used correctly but is still potentially dangerous. The
iron has two ends, the hot end and the handle. Don’t hold it by the hot end!
The correct way to hold a soldering iron is like a pen, between your thumb

193 Chapter 10: Soldering On

and index finder, resting on your middle finger. When you’re not using the
iron, keeping it in its holster or cage is important. The cage holds the iron
safely, helping to dissipate heat and preventing accidental burns.

Keeping your eyes protected
You definitely need to wear proper eye protection when soldering. Solder,
especially the flux-cored kind, has a tendency to spit when it’s being heated.
When you use clippers to neaten up your circuit board, the small bits of
metal you cut off often shoot around the room in all directions if they’re
not held down. Also, if you’re working in a group, you need to protect your-
self from the person next to you. Safety goggles are relatively inexpensive
depending on what amount of comfort that you are looking for, and they’re a
lot cheaper than eye surgery, so make sure you keep them on.

Working in a ventilated environment
Breathing in fumes of any kind is generally bad for you, so it’s important to
always solder in a well ventilated environment. Also make sure that you’re
not working under any smoke alarms because the fumes from soldering can
set them off.

Cleaning your iron
Your soldering iron should come with a sponge, which you use to wipe away
excess solder. You should dampen the sponge but not use it soaking wet,
so make sure to squeeze out the excess water. When you’re heating solder,
it oxidises on the tip of the iron. If the tip itself oxidizes, it can degrade over
time. To prevent oxidizing the tip, leave a blob of solder on the end of the
iron while it’s in its cage. Doing so makes the blob of solder oxidize rather
than the tip, and you just wipe off it off using the sponge the next time you
need the iron.

Don’t eat the solder!
Although the chemicals and metals in solder are not deadly, they are definitely
not healthy for your body. While soldering, you should avoid touching your
face and getting solder around your eyes and mouth to prevent irritation. It’s
also a good idea to wash your hands (and face if needed) after soldering.

194 Part III: Building on the Basics

Assembling a Shield
The best way to learn soldering is by doing it. Soldering requires learning a
great amount of technique, and you develop good technique with practice.
In this example, you find out how to assemble an Arduino shield. A shield is a
specific printed circuit board (PCB) that sits on top of the Arduino to give it
a function (you learn more about it in Chapter 13). There are many different
shields for different functions that you can plug into your Arduino when you
want to use them. This one is the Proto Shield Kit (as shown assembled in
Figure 10-12), which is essentially a blank canvas to solder your project onto,
after prototyping it on a breadboard. In this example, you see how to assem-
ble the bare minimum of the kit to attach it to your Arduino and then how to
build a simple circuit on it.

As with many Arduino kits, you need to assemble this shield yourself. The
basic principles of soldering remain the same but may vary in difficulty as
you encounter smaller or more sensitive components.

Figure 10-12:
A complete

Proto
Shield.

195 Chapter 10: Soldering On

Laying out all the pieces of the circuit
When assembling a circuit, your first step should always be to lay out all
the pieces to check that you have everything you’re supposed to have. Your
work surface should be clear and have a solid-colored cover to make things
easy to find.

Figure 10-13 shows the Arduino Proto Kit laid out in an orderly fashion. It
contains:

 ✓ 1 row of header pin connectors (40x1)

 ✓ 1 header pin head connector (3x2)

 ✓ 2 pushbuttons

 ✓ 1 red LED

 ✓ 1 yellow LED

 ✓ 1 green LED

 ✓ 5 10K Ohm Resistors 1/4W

 ✓ 5 220 Ohm Resistors 1/4W

 ✓ 5 1K Ohm Resistors 1/4W

Some kits may ship the PCB only and leave you to choose the headers that
are connected. Remember that there is no right or wrong way as long as the
assembly suits your purpose.

Figure 10-13:
All the parts
of the shield

laid out.

196 Part III: Building on the Basics

To assemble this shield, you can work from a picture to see the layout of the
components, but for more difficult ones, you usually have instructions. In
this example, I walk you through the construction of this shield step by step
and point out various techniques for soldering along the way

Assembly
To assemble this kit, you need to solder the header pins and the pushbut-
ton. Soldering these pieces allows the shield to sit in the header sockets on
your Arduino, extending all the pin connections to the proto shield. Note that
some versions of the proto board have header sockets (or stackable head-
ers) rather than header pins. Header sockets have long legs so that they can
sit on top of an Arduino in the same way as header pins but also allow sock-
ets for another shield to be placed on top. The benefit of header pins is that
your shield is shorter and needs less space for any enclosure. Header sockets
are used in the assembled shield shown in Figure 10-12. They are the black
sockets that run down either side on the top of the board, with pins extend-
ing underneath.

In this example, I use header pins and do not connect the ICSP (In-Circuit
Serial Programming) connector, which is the 3x2 connector in the center
right of the Uno. The ICSP is used as an alternative for uploading sketches
with an external programmer as opposed to the Arduino and is for
advanced users.

Header pins
First you will need to cut the header pins to length (Figure 10-14). This kit uses
a length of 1 x 40, which is a row of 40 pins that is 1 row deep. Each pin has a
notch in the plastic part that can be cut to divide the pins neatly. To secure the
shield, you need lengths of 6 (analog in pins), 8 (power pins), 8 (digital pins),
and 10 (digital pins). Use your clippers to cut the header pins to the correct
length and you should be left with 8 spare pins. (Put these in a box for future
use!) The pins should fit exactly because there is a 2.54mm (0.1 inch) pitch
between them, which matches the board. You need to look for this same pitch
if you are buying header pins of any other connectors separately.

Now that you’re clear about where the header pins go, you can solder them
in place. In the next section, I talk you through some soldering technique.
Have a read through before you start.

197 Chapter 10: Soldering On

Figure 10-14:
Close up of
the header

pins.

Acquiring Your Soldering Technique
The first step with soldering is to make sure that your components are secure.
It’s common to try balancing your circuit board on whatever objects are clos-
est to hand to arrange it in an accessible position, but if you do it’s destined to
fall over at some point, most likely when you have a hot soldering iron in your
hand. As mentioned in the “Gathering What You Need for Soldering” section,
earlier in this chapter, two good ways to secure your work are to use a third
hand or adhesive putty. You can use the crocodile clips on the third hand to
grip the plastic of the pins and the circuit board as well, holding them firmly
at 90 degrees from one another. Similarly, you can hold the pins at 90 degress
and press adhesive putty into the underside to hold them together. You can
then press them into a rigid, weighty support to bring the board closer to you.
I sometimes use a big reel of solder for the support.

 A third way to secure your components might occur to you, and because it’s
very tempting, I describe it here so that you won’t do it! You might think that
the perfect way to lay out the pins would be to place them in the Arduino itself
(with the long ends sticking into the sockets) and then place the circuit board
on top. This approach holds everything at 90 degrees; however, because the
pins are designed to connect to the Arduino and conduct electrical current,
they can also conduct other things, such as heat. If they conduct the heat of
your soldering iron, that heat can be passed through the board to the legs of
the very sensitive microcontroller chip and damage it irreparably.

198 Part III: Building on the Basics

When you have your circuit board supported and ready, you can rotate it
to a comfortable working angle, most likely the same angle that your iron is
coming from (as shown in Figure 10-15).

Fire up your soldering iron. My Weller WES51 has a temperature range of
35–85 and the units show this as °F x 10, so the real range is 350–850 degrees
F! The hotter you set it, the quicker it will melt solder to make joints, but it will
also melt everything else faster, such as plastic parts and silicon chips. Always
set your iron to the lowest convenient temperature. A good way to test this is
to melt some solder. If it’s taking a very long time to melt, make sure that you
have a good amount of the surface area of the soldering iron’s tip in contact
with the solder, and if it’s still not working, increase the temperature gradually,
allowing time for it to get up to temperature. I normally set it to 650 degrees F
(340 degrees C), which is hot enough, but not too hot.

Figure 10-15:
Always
arrange

your work
in a com

fortable
position.

Some quality soldering irons have a thermostat that tells you when you’re up
to temperature. The really fancy ones have a digital display. With the cheaper
ones, you have to use your best judgment.

While your iron is getting up to temperature, you can wet your sponge. On
some irons, the sponge is stuck down for “convenience,” but it’s particularly
inconvenient when you need to wet it. I recommend unsticking it and taking
it over to a basin rather than spilling water over your soldering iron and the
surrounding area. The sponge should be damp but not full of water. The
dampness stops the sponge from burning when you pass your iron across
it. If the sponge is too wet, however, it can lower the temperature of the iron
and the solder, meaning that the solder hardens or solidifies and can’t be
removed until it’s up to temperature again.

199 Chapter 10: Soldering On

Now you’re ready you can start soldering. Follow these steps:

 1. Melt a small amount of solder on the tip of your iron, (called tinning
the tip); see Figure 10-16.

 The solder should stick to the edge and smoke. Generally, with a new or
well-maintained iron, the solder latches onto the tip with no problem. If
it does not stick to the edge of the tip, you may need to try rotating it to
find a good patch that isn’t oxidized. Failing that, you can use some tip
cleaner to remove any layer that’s built up. By pressing your hot iron
into the tip cleaner and wiping away any build up as it loosens, you can
restore your iron to its former glory.

 Tip cleaner is generally quite a nasty, toxic substance, and you should
make sure not to ingest or inhale any of it.

Figure 10-16:
Tinning the
tip helps to

preserve
your iron

and makes
soldering

easier.

 2. When you have a blob of solder on your iron, wipe it off on a sponge
to reveal a bright metallic tip on your iron.

 The aim is to apply this freshly tinned edge of your iron (not the point)
to the area that you are joining. Using the edge gives you more surface
area and allows the joint to heat up quicker. It’s also important to note
that a variety of tips is available for soldering irons, and if you choose
good ones, they are easily interchangeable, allowing you to suit them to
different situations. Some are pointed, as in Figure 10-16, but there are
also screwdriver tips, chisel tips, and beveled tips to provide different
amounts of surface area for different situations.

 3. Starting on the first pin in one of the rows, apply the iron to the metal
plate on the circuit board and the pin that is connecting to it.

 This heats the board and pin, preparing them for the solder.

200 Part III: Building on the Basics

 4. With your other hand (the one not holding the iron), apply the solder
to the point where the iron, the pin, and the metal plate all meet.

 As the solder is heated, it melts and spreads to fill the gap, sealing the
pin and the board together. To apply more solder, press it into the joint
where it is melting; to apply less, simply pull it back out. You may need
only a few millimeters of solder for small joints.

 5. When it has filled the area, remove the solder, but keep your iron
there for a second or two longer.

 This allows the solder to melt fully and fill any gaps for a solid joint.

 6. Remove your soldering iron by wiping it up the leg of the pin.

 Any excess solder is directed upward into a point that can be cut off
rather than sitting in a blob.

This entire process should take around 2–3 seconds. That probably sounds
impossible, but after you get used to the rhythm, it’s totally achievable. All it
takes is practice.

Following the preceding steps should leave you with a neat, pyramid-shaped
solder joint, and the metal pad on the circuit board should be completely
covered. If you can see the hole that the pin has come through or have a blob
of solder on the pin that is not connected to the circuit board, you need to
reapply heat using the soldering iron, and maybe reapply a little solder as well.

After you solder the first pin, it’s a good idea to do the pin at the other end of
the row. By doing these two, you secure the row in place, and if it is not level
or at 90 degrees, you can still straighten the row by heating up the solder
at either end. If you find that you have too much solder, first try reapplying
heat. Watch as the solder melts, and you should see it filling all the gaps. If
you still have too much solder, you can use a solder sucker or copper braid
(described in “Gathering What You Need to Solder,” earlier in this chapter) to
remove any excess and try again.

For examples of well-soldered joints versus bad ones, see the image at
http://highfields-arc.co.uk/constructors/info/h2solder.htm.

When you are happy with the row, you can solder every pin in place and
repeat this process for each section of header pins. For the pushbutton,
simply place it in the position indicated on the top side of the circuit board
and it should clip in because of the design of the pushbutton legs. Secure with
adhesive putty if necessary and then turn the board over and repeat the same
soldering technique as before. When you are done, do one last visual check to
make sure that no solder joints are touching. Having two pins connected could

http://highfields-arc.co.uk/constructors/info/h2solder.htm

201 Chapter 10: Soldering On

cause a short circuit and damage your board, so check carefully. If in doubt,
you can use the continuity test function on your multimeter to check consecu-
tive pins. You shouldn’t hear any beeps on pins that should not be joined.

Place the shield on top of your Arduino and check that it fits correctly. If it
does, you’re ready to solder your first circuit, which you find out about next.

Building Your Circuit
After you have a shield to work on (see “Assembling a Shield,” earlier in this
chapter), you can think about what circuit you want to build on it. Before you
actually build that circuit, though, you should do some proper planning to avoid
having to undo what you’ve done, which can be difficult. The best way to start
is by prototyping the circuit on a solder-less breadboard. This is quick, easy,
and — more important — not permanent. As covered in Chapters 7 and 8, throw-
ing together a circuit and making sure that it works is simple. For this example,
I use AnalogInOutSerial example (see Chapter 7) to demonstrate how you can
transform a solderless breadboard into a soldered one.

Knowing your circuit
First, recreate the AnalogInOutSerial circuit on the breadboard as shown
at the end of Chapter 7. Upload the sketch by choosing File➪Examples➪03.
Analog➪AnalogInOutSerial. This should give you an LED that can be faded by
twisting the potentiometer.

When you have this circuit working, take a look at the AnalogInOutSerial cir-
cuit again on the breadboard. One difference that you can immediately see is
that the Proto Shield does not have the same rows and columns as the bread-
board, except in one corner. This is specifically for ICs (integrated circuits)
or chips, but can in fact be used for anything. The rest of the Proto Shield
has individual holes that components can be soldered into. You can connect
these with wires to join the various components.

The easiest way to convert the circuit to one that will work on the shield is
to look at the circuit diagram. The lines that connect the components can be
substituted for real wires and soldered directly to the correct pins. For the
potentiometer, you need three wires: 5V, GND, and Analog 0. For the LED and
resistor, you need two more: GND and Pin 9. It’s always a good idea to draw
the circuit first for clarity. It doesn’t need to be as neat as the circuit diagram

202 Part III: Building on the Basics

in the examples, but planning your circuit will save a lot of painful desolder-
ing later. As the old carpentry saying goes, measure twice, cut once (or in this
case, sketch twice, solder once).

Notice that the wires all go to holes next to the wire they need to connect
with. Because you don’t have enough space to comfortably fit the wires and
the component legs in one hole, you need to get them close and then bridge
the gap using the ends of the wire or the legs of the components.

Laying out your circuit
Now that you’ve drawn the circuit, you should lay it out so that you know
what length to cut your wires. To secure the components to the board, insert
them and bend the legs at 45 degrees. They should look something like that
shown in Figure 10-17.

Figure 10-17:
An LED

secured
in a circuit

board.

Preparing your wire
You can see that the lengths of wire required are relatively short. If you have
solid core wire, you can bend it neatly into shape to sit flat on the circuit
board, using your needle-nose pliers. If you have multicore wire, it is easier

203 Chapter 10: Soldering On

to do an arc of wire up out of one hole and into the next. Remember to mea-
sure or estimate the distance and add a small amount on each end to fit into
the hole before you cut your lengths. Strip back the wire and sit it in place to
make sure that the length is correct. Note that sometimes the end of multicore
wire can become frayed. If this happens, grip it between your thumb and
forefinger and twist the end into a point. If you lightly coat the end in solder,
you can prevent the wire from unravelling and tin it in preparation for solder-
ing. When you are happy with the length, place the wires to one side.

Soldering your circuit
Now that you have all the components and wires, it’s time to solder them in
place. Earlier, you bent the component leg at 45 degrees, so the wires should
still be hanging on. Because the resistor and LED are next to each other,
you can use their legs to connect them, avoiding the use of another wire.
Remember to check that your LED is the right way around. If required, use
adhesive putty to further secure the components in place and then solder
them as with the pin headers.

When all the components are in place, you can solder the wire. Insert the
wire and bend to 45 degrees as before. When it is secured, you can solder it
in place or bend it further to meet the component legs, bridging the gap as
with the resistor and LED. As always, there is no right or wrong in the appear-
ance of your result; it depends how neat you want to be. Some people prefer
to wind the wire around the legs of the component to get a good grip; others
prefer to join them side by side to get a clean joint. The choice is yours. As
long as you have a good connection, you’re in good shape.

Cleaning up
When you finish soldering, give the board a good check over for any loose con-
nections. If all seems well, you can start neatening the board. Using your clip-
pers, carefully remove the legs of the components from just above the solder
joint, at the top of the pyramid. You can cut lower, but the solder is thicker and
you risk tearing the metal contacts off the circuit board, which cannot be fixed.
Remember, always hold or cover the piece of metal that you are clipping. If you
don’t, it can fly a great distance and seriously injure someone.

204 Part III: Building on the Basics

Using stripboard rather than a PCB
Specially designed shields are made to fit
your Arduino perfectly but can often be rela
tively expensive. Stripboard, or perfboard as
it’s sometimes known, provides a cheap alter
native that is highly versatile. Stripboard is a
circuit board with strips of copper and a grid
of perforated holes that you can use to lay out
your circuit in a similar way as on a breadboard.
An example of stripboard appears in the follow
ing figure.

The pitch of the holes and the layout of the
copper strips can vary. The most useful pitch
for Arduinorelated applications is the same
as the pitch on the Arduino pins, 0.1 inches
(2.54mm), because that pitch allows you to build
on the layout of your Arduino to make your own
custom shields. You can buy stripboard in vari
ous arrangements of copper strip as well. It is
commonly either long copper columns that run
the length of the board or sets of columns three
rows deep (usually called triboard).

205 Chapter 10: Soldering On

Testing your shield
Now that you have your shield with a completed circuit assembled on it, it’s
time to plug it in and try it. If everything is working correctly, you should have a
neatly packaged dimmer circuit shield resembling something like Figure 10-18.

Figure 10-18:
My new
dimmer
shield,

ready to
be taken

out into the
world!

Packaging Your Project
Now that your circuit is no longer at risk of falling apart, it’s a good idea to
look at protecting it from the outside world by boxing it up.

Enclosures
The simplest way to protect your circuit is by putting it in a box. In electron-
ics terms, such a box is called an enclosure or project box. Generally you find
a variety of plastic or metal enclosures in a vast array of shapes and sizes
and finishes. The only task is to find the one that’s right for you.

206 Part III: Building on the Basics

Many of the online suppliers (RS, Farnell, DigiKey, and others) have huge lists
of possible enclosures, but you can’t tell whether it’s right without holding
it in your hands. Many enclosures have accurate measurements for internal
and external dimensions, but even with that there are usually omissions,
such as the molded plastic for the screw fixings. My best advice is to find a
retail store such as Maplin or Radio Shack and take an Arduino with you to
see whether it will fit correctly with enough space for wires and any shields.
Now you know what works and what to order next time.

Keep the following considerations in mind when boxing up your project.

 ✓ The ability to access the USB for code changes. You may have to
unscrew your enclosure to update the code. If this is too time consum-
ing, you may need to drill a hole big enough to plug the USB in from the
outside.

 ✓ Power to run the Arduino. If your Arduino is not powered by USB,
how is it powered? It could be an external power supply that plugs into
the power jack, which needs a big enough hole for the plug. You could
remove the plug and solder the bare wires to the Vin and Gnd pins if
you’re looking for something more permanent. Or you could even run it
off a battery pack and only open it to charge every week or so.

 ✓ The ability to access the inputs and outputs. What use is an LED or a
button if it’s inside the box? Most projects need some contact with the
outside world, if only to tell you that they’re still working, and most com-
ponents are often designed with this need in mind. The lip on an LED
means that you can drill a 1.9-inch (5 mm) hole and push the front end
through without it going all the way, and if you take the plastic or metal
knob off a radio, you see that, too, is just a hole.

Always think carefully about the needs of your circuit before soldering it in
place and boxing it up. Examine other cheap electronics around you to see
what tricks the industry has been using. You may be amazed to find out that
most the remote controls for remote control cars that give you forward,
backward, left, and right are just a few simple pushbuttons underneath those
complex-looking control sticks.

Wiring
To give you more flexibility with your wiring, consider attaching inputs, out-
puts, or power to flexible lengths of cable using terminal blocks, which are
sometimes also known as connector strips, screw terminals or chocolate
blocks (“choc blocks”). By doing this, you can fix the inputs and outputs to
the enclosure rather than the circuit board. This approach gives you more
flexibility and means that if you drill a hole slightly out of alignment, you
won’t need to de-solder or re-solder your circuit.

207 Chapter 10: Soldering On

Following is a little more detail on adding wires to your project and selecting
terminal blocks. This adds flexibility to your project and makes assembling
and disassembling your project a lot easier.

Twisting
When you make wire connectors, I recommend twisting or braiding the wires
together. This gives the wires extra strength if pulled on and, as a bonus,
looks nice! To twist two wires together, cut them to length and grip one end
in a power drill. Hold onto the other end of the two wires with your hand or
a vice. Pull the wire taut enough to have no slack, but not too tight. Spin the
drill until the wires are neatly twisted together, and you should be left with
one twisted wire.

Braiding
If you have three wires, you can braid them in the same way that you braid
hair. With three wires in your hand, hold them at one end facing forward.
Pass the leftmost wire over the middle and under the rightmost. Keep repeat-
ing this process with the new left wire until you have braided the full length.
This makes your project more robust and looks extra professional. Note that
if you use the same color of wire for all three, you need to use the continuity
tester on your multimeter to figure out which is which, so it’s advisable to
use different colors.

Terminal blocks
Terminal blocks come in a variety of sizes, depending on the amount of cur-
rent passing through them, and are usually marked with the upper limit that
they can maintain. When selecting one for your power supply, always read
the current rating and choose a size with a bit of tolerance. If you have a 3A
supply, choose a 5A terminal block. When connecting wires, especially multi-
core wires, you should tin the tip of the wire with a small amount of solder or
fold the wire back under the insulation layer so that the screw grips the insu-
lated side. This prevents the screw from cutting any of the strands of wire as
it is tightened.

Securing the board and other elements
When you’re happy with your cabling and have all the required holes, it’s a
good idea to secure your items so that they don’t rattle around inside the
box. To secure your Arduino, screw terminals, or stripboard, you can use
Velcro-type tape or hot glue. If you have any loose wires, you can use cable
ties to neatly tie them together.

208 Part III: Building on the Basics

Chapter 11

Getting Clever with Code
In This Chapter
▶ Understanding timers
▶ Debouncing your buttons
▶ Getting more from your buttons
▶ Averaging your results
▶ Adjusting the sensitivity of sensors

A
s you find different uses and needs for Arduino, you can refine your
code to make it more accurate, responsive, and efficient. Also, by think-

ing about the code in your project, you may be able to avoid or minimize
many of the unexpected results that can occur when dealing with physical
hardware and the real world. In this chapter, you look at a few sketches that
will help you fine-tune your project.

Blinking Better
Blink is most likely the first sketch you encountered. It’s a magical moment
when that first LED lights up, isn’t it? But what if I told you it that it can get
even better? The basic blink sketch presented in Chapter 4 performs its task
well, with one significant drawback: It can’t do anything else while blinking.

Take a look at it again:

/*
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.

 This example code is in the public domain.
 */

// Pin 13 has an LED connected on most Arduino boards.

210 Part III: Building on the Basics

// give it a name:
int led = 13;

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

The loops can be summarized this way:

 1. Turn the LED on.

 2. Wait for a second.

 3. Turn the LED off.

 4. Wait for a second.

This delay or “waiting” is what can be problematic for a lot of people when
they try to integrate the blink sketch with another bit of code. When the
sketch uses the delay function, it waits for the amount of time specified (in
this case, a second), during which it doesn’t do anything else. Effectively, the
sketch is twiddling its thumbs.

If you wanted to change something — for example, you wanted the LED to
blink only when a light sensor was dark — you might think of writing the
code in the loop section something like this:

void loop() {

sensorValue = analogRead(sensorPin);

if (sensorValue < darkValue) {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
 }
}

211 Chapter 11: Getting Clever with Code

This almost works. When the value threshold for a darkValue is crossed,
the if loop starts and turns the LED on, waits for one second, and then turns
it off and waits for one second. But because the sketch is occupied doing
this blink for two seconds, the sketch cannot check to see if the light level
becomes brighter again until the blink has finished.

The solution is to use a timer rather than pause the program. A timer or
counter is like a clock that can be used to time events. For example, the timer
can count from 0 to 1,000, and when it reaches 1,000 it can do something, and
then start counting from 0 again. This can be especially useful for regularly
timed events, such as checking a sensor every second — or in this case trig-
gering an LED every second.

Setting up the BlinkWithoutDelay sketch
To complete this project, you need:

 ✓ An Arduino Uno

 ✓ An LED

Place the legs of the LED between pin 13 (long leg) and GND (short leg), as
shown in Figures 11-1 and 11-2. This makes it a bit easier to see the blink
in action. If you do not have an LED, look for the one fixed to your Arduino
marked L. Upload the sketch to the correct serial port to see the LED blinking
away as it would with the standard Blink sketch.

Figure 11-1:
All you need
is an LED in

pin 13.

212 Part III: Building on the Basics

Figure 11-2:
A circuit
diagram
showing

the LED in
pin 13.

Find the BlinkWithoutDelay sketch by choosing File➪Examples➪02.Digital➪
BlinkWithoutDelay and open it.

The complete code for the BlinkWithoutDelay sketch is as follows:

/* Blink without Delay

Turns on and off a light emitting diode(LED) connected
to a digital pin,
without using the delay() function. This means that
other code can run
at the same time without being interrupted by the LED
code.

The circuit:
 * LED attached from pin 13 to ground.
 * Note: on most Arduinos, there is already an LED on the

board that’s attached
to pin 13, so no hardware is needed for this example.

 created 2005
 by David A. Mellis
 modified 8 Feb 2010
 by Paul Stoffregen

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/BlinkWithoutDelay

213 Chapter 11: Getting Clever with Code

 */

// constants won’t change. Used here to
// set pin numbers:

// the number of the LED pin
const int ledPin = 13;

// Variables will change:
int ledState = LOW;
// ledState used to set the LED

long previousMillis = 0;
// will store last time LED was updated

// the follow variables is a long because the time,
// measured in miliseconds,will quickly become a bigger
// number than can be stored in an int.
long interval = 1000;
// interval at which to blink (milliseconds)

void setup() {
 // set the digital pin as output:
 pinMode(ledPin, OUTPUT);
}

void loop()
{
 // here is where you’d put code that needs to be
 // running all the time.

 // check to see if it’s time to blink the LED; that
 // is, if the difference between the current time and
 // last time you blinked the LED is bigger than the
 // interval at which you want to blink the LED.
 unsigned long currentMillis = millis();

 if(currentMillis - previousMillis > interval) {
 // save the last time you blinked the LED
 previousMillis = currentMillis;

 // if the LED is off turn it on and vice-versa:
 if (ledState == LOW)
 ledState = HIGH;
 else
 ledState = LOW;

 // set the LED with the ledState of the variable:
 digitalWrite(ledPin, ledState);
 }
}

214 Part III: Building on the Basics

This sketch is quite a bit longer than Blink and may seem more confusing, so
walking through it one line at a time to see what’s happening is a good idea.

Understanding the BlinkWithoutDelay
sketch
First, in the declarations, a const int is used to set ledPin to 13 because it
is a constant integer and does not change.

// constants won’t change. Used here to
// set pin numbers:
const int ledPin = 13; // the number of the LED pin

Next are the variables. ledState is set to LOW so that our LED starts the
sketch in an off state.

// Variables will change:
int ledState = LOW; // ledState used to set the LED

Then there is a new variable referred to as a long rather than an int. See the
“Long and Unsigned Long” sidebar later in this chapter for more about longs.
The first instance, previousMillis, is used to store the time in milliseconds
so that you can monitor how much time has passed each time you do a loop.

long previousMillis = 0; // will store last time LED was updated

The second variable, named interval, is the time in milliseconds between
each blink, which is set to 1000 milliseconds, or 1 second.

long interval = 1000; // interval at which to blink (milliseconds)

Long and unsigned long
Longs are for extra long number storage
and can store a value from 2,147,483,648 to
2,147,483,647, whereas an int can store only
32,768 to 32,767. When measuring time in mil
liseconds, you need access to big numbers
because every second is stored as 1,000 mil
liseconds. To get an idea of just how big a
long value is, imagine the maximum amount
of time that it could store. This could be written

as 2,147,483.6 seconds, 35791.4 minutes, 596.5
hours, or approximately 24.9 days!

In some cases, you have no need for a negative
range, so to avoid unnecessary calculations,
you can use an unsigned long instead.
An unsigned long is similar to a regular
long but has no negative values. This gives
your unsigned long a whopping range of
0 to 4,294,967,295.

215 Chapter 11: Getting Clever with Code

In setup, you have only one pin to define as an OUTPUT. Pin 13 is referred to
as ledPin, just as it is in the declarations.

void setup() {
 // set the digital pin as output:
 pinMode(ledPin, OUTPUT);
}

In the loop, things start to get more complicated. The code for the timer can
be run at the end of every loop, so you can add your own code at the start
of the loop so that it doesn’t interfere with the timer. Following your code,
the timer code begins, which declares another variable: an unsigned long
to store the current value the timer in milliseconds. This uses the function
millis() that returns the number of milliseconds since the current Arduino
program began running. After approximately 50 days, this value resets to 0,
but for most applications this is more than enough time.

unsigned long currentMillis = millis();

 Variables declared inside a loop or other functions are known as local vari-
ables. These exist only within the function in which they are declared (and
other sub-functions contained inside), but cease to exist after the function
is completed. They are redeclared the next time the function is called. If you
have a variable that needs to be either read or written to by other functions or
pieces of code, you should use a global variable and declare it at the start of
the sketch before the setup loop.

Next you need to check the current millis() value to see how much time
has passed. You do so using a simple if loop that subtracts the previous
value from the current value to get the difference. If that difference is gr
eater than the interval value, the sketch knows that it’s time to blink. It’s
important that you also tell the code to reset the previousMillis, other-
wise it’ll measure the interval only once. This is what setting previous
Millis = currentMillis does.

 if(currentMillis - previousMillis > interval) {
 // save the last time you blinked the LED
 previousMillis = currentMillis;

Because the LED could already be on or off, the code needs to check the
state of the LED to know what to do. The state is stored in ledState, so
another simple if statement can check the state and do the opposite: if
LOW, then make HIGH; or if HIGH, then make LOW. The following code updates
the variable ledState:

// if the LED is off turn it on and vice-versa:
 if (ledState == LOW)
 ledState = HIGH;
 else
 ledState = LOW;

216 Part III: Building on the Basics

Now, all that is left to do is to write the newly updated state to the LED using
digitalWrite:

 // set the LED with the ledState of the variable:
 digitalWrite(ledPin, ledState);
}

This code allows you to happily blink your LED while performing any number
of other functions.

Taking the Bounce Out of Your Button
A strange occurrence that happens with pushbuttons is bouncing. The
microcontroller on your Arduino can read a switch thousands of times per
second, much faster than we are able to operate it. This is great in some
ways because it ensures that the reading is instantaneous (as far as human
perception can tell), but sometimes there is a moment of fuzziness when
the contact on a switch is neither fully down nor fully up, which causes it to
read on and off rapidly in quick succession until it reaches the correct state.
This is bouncing. To remove this peculiarity, you have to ignore any sudden
changes when the switch state changes using a timer. It’s relatively simple
and can greatly improve the reliability of your buttons. If you have just read
the Blinking Better, note that this is a further use of timers for your inputs as
well as outputs.

Setting up the Debounce sketch
Complete the circuit in Figure 11-3 to try out the Debounce sketch.

You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A pushbutton

 ✓ An LED

 ✓ A 10k ohm resistor

 ✓ Jump wires

Complete the circuit shown in Figures 11-3 and 11-4, using a breadboard to
mount the pushbutton part of the circuit. The LED can be inserted straight
into pin 13 and its neighboring GND pin.

217 Chapter 11: Getting Clever with Code

Figure 11-3:
The push

button
circuit
layout.

Figure 11-4:
A circuit

diagram of
the push

button
circuit.

218 Part III: Building on the Basics

Build the circuit and choose File➪Examples➪02.Digital➪Debounce to find
the pushbutton Debounce sketch and open it. The complete code for the
Debounce sketch is as follows:

/*
 Debounce

 Each time the input pin goes from LOW to HIGH (e.g. because of a push-button
 press), the output pin is toggled from LOW to HIGH or HIGH to LOW. There’s
 a minimum delay between toggles to debounce the circuit (i.e. to ignore
 noise).

 The circuit:
 * LED attached from pin 13 to ground
 * pushbutton attached from pin 2 to +5V
 * 10K resistor attached from pin 2 to ground

 * Note: On most Arduino boards, there is already an LED on the board
 connected to pin 13, so you don’t need any extra components for this example.

 created 21 November 2006
 by David A. Mellis
 modified 30 Aug 2011
 by Limor Fried

This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/Debounce
 */

// constants won’t change. They’re used here to
// set pin numbers:
const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

// Variables will change:
int ledState = HIGH; // the current state of the output pin
int buttonState; // the current reading from the input pin
int lastButtonState = LOW; // the previous reading from the input pin

// the following variables are long’s because the time, measured in miliseconds,
// will quickly become a bigger number than can be stored in an int.
long lastDebounceTime = 0; // the last time the output pin was toggled
long debounceDelay = 50; // the debounce time; increase if the output

// flickers

void setup() {
 pinMode(buttonPin, INPUT);
 pinMode(ledPin, OUTPUT);
}

void loop() {

219 Chapter 11: Getting Clever with Code

 // read the state of the switch into a local variable:
 int reading = digitalRead(buttonPin);

 // check to see if you just pressed the button
 // (i.e. the input went from LOW to HIGH), and you’ve waited
 // long enough since the last press to ignore any noise:

 // If the switch changed, due to noise or pressing:
 if (reading != lastButtonState) {
 // reset the debouncing timer
 lastDebounceTime = millis();
 }

 if ((millis() - lastDebounceTime) > debounceDelay) {
 // whatever the reading is at, it’s been there for longer
 // than the debounce delay, so take it as the actual current state:
 buttonState = reading;
 }

 // set the LED using the state of the button:
 digitalWrite(ledPin, buttonState);

 // save the reading. Next time through the loop,
 // it’ll be the lastButtonState:
 lastButtonState = reading;
}

When you have uploaded the sketch, you should have a reliable, debounced
button. It can be difficult to see the effects, because if everything’s working
correctly, you should just see accurate button presses and responses from
your LED.

Understanding the Debounce sketch
This sketch has quite a few variables. The first two are constants, used to
define the input and output pins.

// constants won’t change. They’re used here to
// set pin numbers:
const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

The next set of variables hold details about the button state. The ledState
is set to HIGH so that the LED starts as being turned on; buttonState is left
empty and holds the current state; lastButtonState holds the previous
button state so that it can be compared with the current state.

220 Part III: Building on the Basics

// Variables will change:
int ledState = HIGH; // the current state of the output pin
int buttonState; // the current reading from the input pin
int lastButtonState = LOW; // the previous reading from the input pin

Finally, there are two long variables to store time values. These are used in a
timer to monitor the time between readings and prevent any sudden changes
in values, such as those that occur during bounces.

// the following variables are long’s because the time, measured in miliseconds,
// will quickly become a bigger number than can be stored in an int.
long lastDebounceTime = 0; // the last time the output pin was toggled
long debounceDelay = 50; // the debounce time; increase if the output
 // flickers

Setup is straightforward and sets only the input and output pins.

void setup() {
 pinMode(buttonPin, INPUT);
 pinMode(ledPin, OUTPUT);
}

In the loop, a reading is taken from the button pin and is stored in a vari-
able, in this case called reading:

void loop() {
 // read the state of the switch into a local variable:
 int reading = digitalRead(buttonPin);

reading is then checked against the lastButtonState. The first time this
runs, lastButtonState is LOW because it was set in the variable declarations
at the beginning of the sketch. In the if statement, the comparison symbol !=
is used. This means: “If reading is not equal to the lastButtonState, then
do something.” If this change has occurred, lastDebounceTime is updated so
that a fresh comparison can be made the next time the loop runs.

 // If the switch changed, due to noise or pressing:
 if (reading != lastButtonState) {
 // reset the debouncing timer
 lastDebounceTime = millis();
 }

If reading has been the same for longer than the debounce delay of 50 milli-
seconds, it can be assumed that the value is not erratic and can be forwarded
to the buttonState variable.

 if ((millis() - lastDebounceTime) > debounceDelay) {
 // whatever the reading is at, it’s been there for longer
 // than the debounce delay, so take it as the actual current state:
 buttonState = reading;
 }

221 Chapter 11: Getting Clever with Code

The trusted value can then be used to trigger the LED directly. In this case, if
the button is HIGH, it is closed, so the same HIGH value can be written to the
LED to turn it on.

 digitalWrite(ledPin, buttonState);

The current buttonState becomes the lastButtonState for the next
loop and then it returns to the start.

 lastButtonState = reading;
}

Some pushbuttons and triggers can be more or less reliable than others,
depending on the way they’re made or used. By using bits of code like this,
you can sort out any inconsistencies and create more reliable results.

Making a Better Button
Buttons are usually very simple things. They are either on or off, depending
on whether you’re pressing them or not. You can monitor these changes and
interpret them to make a button more intelligent than this. If you can tell
when a button has been pressed, you don’t need to constantly read its value
and can instead just look for this change of state. This is a much better prac-
tice when connecting your Arduino to a computer, and efficiently sends the
appropriate data as it is needed, rather than hogging the serial port.

Setting up the StateChangeDetection
sketch
To make this circuit, you need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A pushbutton

 ✓ A 10k ohm resistor

 ✓ An LED

 ✓ Jump wires

Using the layout and circuit diagrams shown in Figures 11-5 and 11-6, you can
lay out a simple button circuit with an LED as an output. The hardware in
this circuit is the same as the basic button sketch, but with the use of some
simple code, you can make a button a lot more intelligent.

222 Part III: Building on the Basics

Figure 11-5:
A button cir

cuit layout.

Figure 11-6:
A button

circuit
diagram.

223 Chapter 11: Getting Clever with Code

Complete the circuit and open a new Arduino sketch. Choose File➪Examples➪
02.Digital➪StateChangeDetection from the Arduino menu to load the sketch.

/*
 State change detection (edge detection)

 Often, you don’t need to know the state of a digital input all the time,
 but you just need to know when the input changes from one state to another.
 For example, you want to know when a button goes from OFF to ON. This is
called state change detection, or edge detection.

 This example shows how to detect when a button or button changes from off to on
 and on to off.

 The circuit:
 * pushbutton attached to pin 2 from +5V
 * 10K resistor attached to pin 2 from ground
 * LED attached from pin 13 to ground (or use the built-in LED on
 most Arduino boards)

 created 27 Sep 2005
 modified 30 Aug 2011
 by Tom Igoe

This example code is in the public domain.

 http://arduino.cc/en/Tutorial/ButtonStateChange

 */

// this constant won’t change:
const int buttonPin = 2; // the pin that the pushbutton is attached to
const int ledPin = 13; // the pin that the LED is attached to

// Variables will change:
int buttonPushCounter = 0; // counter for the number of button presses
int buttonState = 0; // current state of the button
int lastButtonState = 0; // previous state of the button

void setup() {
 // initialize the button pin as a input:
 pinMode(buttonPin, INPUT);
 // initialize the LED as an output:
 pinMode(ledPin, OUTPUT);
 // initialize serial communication:
 Serial.begin(9600);
}

void loop() {
 // read the pushbutton input pin:
 buttonState = digitalRead(buttonPin);

224 Part III: Building on the Basics

 // compare the buttonState to its previous state
 if (buttonState != lastButtonState) {
 // if the state has changed, increment the counter
 if (buttonState == HIGH) {
 // if the current state is HIGH then the button
 // wend from off to on:
 buttonPushCounter++;
 Serial.println(“on”);
 Serial.print(“number of button pushes: “);
 Serial.println(buttonPushCounter);
 }
 else {
 // if the current state is LOW then the button
 // wend from on to off:
 Serial.println(“off”);
 }
 }
 // save the current state as the last state,
 //for next time through the loop
 lastButtonState = buttonState;

 // turns on the LED every four button pushes by
 // checking the modulo of the button push counter.
 // the modulo function gives you the remainder of
 // the division of two numbers:
 if (buttonPushCounter % 4 == 0) {
 digitalWrite(ledPin, HIGH);
 } else {
 digitalWrite(ledPin, LOW);
 }

}

Press the compile button to check your code. Compiling should highlight
any grammatical errors and light up red if any are discovered. If the sketch
compiles correctly, click Upload to send the sketch to your board. When the
sketch is done uploading, choose the serial monitor and you should be pre-
sented with a readout showing when the button was turned on and off as well
as how many times it was pressed. Also, the LED should illuminate every four
button pushes to show that it’s counting.

If nothing happens, try the following:

 ✓ Double-check your wiring.

 ✓ Make sure that you’re using the correct pin number.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

225 Chapter 11: Getting Clever with Code

Understanding the StateChangeDetection
sketch
In the StateChangeDetection sketch, the first action is that the variables for
the sketch are declared. The input and output pins won’t change, so they are
declared as constant integers: pin 2 for the pushbutton and pin 13 for the LED.

// this constant won’t change:
const int buttonPin = 2; // the pin that the pushbutton is attached to
const int ledPin = 13; // the pin that the LED is attached to

Other variables are needed to keep track of the pushbutton’s behavior. One
variable is a counter that keeps a running total of the number of button
presses, and two other variables track the current and previous states of the
pushbutton. These are used to monitor the button presses as the signal goes
from HIGH to LOW or LOW to HIGH.

// Variables will change:
int buttonPushCounter = 0; // counter for the number of button presses
int buttonState = 0; // current state of the button
int lastButtonState = 0; // previous state of the button

In setup, the pins are set to INPUT and OUTPUT accordingly. The serial port is
opened for communication to display changes in the pushbutton.

void setup() {
 // initialize the button pin as a input:
 pinMode(buttonPin, INPUT);
 // initialize the LED as an output:
 pinMode(ledPin, OUTPUT);
 // initialize serial communication:
 Serial.begin(9600);
}

The first stage in the main loop is to read the state of the pushbutton.

void loop() {
 // read the pushbutton input pin:
 buttonState = digitalRead(buttonPin);

If this state is not equal to the previous value, which happens when the push-
button is pressed, the program progresses to the next if () statement.

 // compare the buttonState to its previous state
 if (buttonState != lastButtonState) {

The next condition is to check whether the button is HIGH or LOW. If it is
HIGH, the pushbutton has changed to on.

226 Part III: Building on the Basics

 // if the state has changed, increment the counter
 if (buttonState == HIGH) {
 // if the current state is HIGH then the button
 // wend from off to on:

This bit of code increments the counter and then prints a line on the serial
monitor to show the state and the number of pushes. The counter is incre-
mented on the downward part of the button press rather than the release.

 buttonPushCounter++;
 Serial.println(“on”);
 Serial.print(“number of button pushes: “);
 Serial.println(buttonPushCounter);
 }

If the pushbutton went from HIGH to LOW, the button state is off, and this
change of state is printed on the serial monitor, as shown in Figure 11-7.

Figure 11-7:
The serial

monitor
provides a

window into
what your
Arduino is

experiencing.

 else {
 // if the current state is LOW then the button
 // wend from on to off:
 Serial.println(“off”);
 }
 }

This piece of code allows you to click a pushbutton rather than have to hold
it; the code also leaves plenty of room to add your own functionality to it.

Because a change has occurred, the current state becomes the last state in
preparation for the next loop.

227 Chapter 11: Getting Clever with Code

 // save the current state as the last state,
 //for next time through the loop
 lastButtonState = buttonState;

At the end of the loop, a check is done to make sure that four button presses
have occurred. If the total number of presses is divisible by four and equals
0, the LED pin is set to HIGH; if not the pin is set to LOW again.

 // turns on the LED every four button pushes by
 // checking the modulo of the button push counter.
 // the modulo function gives you the remainder of
 // the division of two numbers:
 if (buttonPushCounter % 4 == 0) {
 digitalWrite(ledPin, HIGH);
 } else {
 digitalWrite(ledPin, LOW);
 }

}

 You may find that the counter in this sketch can occasionally jump up,
depending on the type and quality of pushbutton that you’re using, and you
may quite rightly ask, “Why doesn’t this sketch include debouncing?” as
explained in the previous section. The sketches in the Arduino examples are
designed to help you understand many individual principles easily, to equip
you for any situation. To include two or more techniques in one sketch may be
good for the application, but would make it more difficult for you, the person
learning, to understand how each element works.

It is possible to combine numerous examples to reap the benefits of each.
Unfortunately, this is not covered in the context of this book, but it is best
achieved by opening the two sketch examples side by side and combining
them into one sketch, one line at a time, checking as you go that there are
no repetitions of variables or omissions. The Compile shortcut (Ctrl+R or
cmd+R) are very helpful for this task. Good luck!

Smoothing Your Sensors
Analog sensors can be highly accurate, allowing you to measure light levels or
distance to a high degree of accuracy. Sometimes, however, they can be overly
sensitive and flinch at the slightest change. If that’s what you’re looking for,
that’s great, but if not, you may want to smooth the results so that any errone-
ous readings don’t spoil your results. Smoothing is effectively averaging your
results so that any of these anomalies don’t affect your reading as much. In
Chapter 17 you also learn about showing these results on a bar graph, using
Processing, which can be a great help for spotting inconsistencies.

228 Part III: Building on the Basics

Setting up the Smoothing sketch
For this example, you try smoothing on a light sensor.

For this sketch, you need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ An LED

 ✓ A light sensor

 ✓ A 10k ohm resistor

 ✓ A 220 ohm resistor

 ✓ Jump wires

Complete the circuit for reading a light-dependent resistor (LDR) as shown in
Figures 11-8 and 11-9.

Figure 11-8:
The light

sensor
circuit
layout.

229 Chapter 11: Getting Clever with Code

Figure 11-9:
A circuit
diagram

of the light
sensor
circuit.

Choose File➪Examples➪03.Analog➪Smoothing to find the sketch and upload it.

 The sketch indicates that a potentiometer works for testing. This is true, but it
is more difficult to see the effects of smoothing with a potentiometer because
the mechanics of the device already make it quite a smooth analog input.
Light, distance, and movement sensors are far more likely to need smoothing.

/*

 Smoothing

 Reads repeatedly from an analog input, calculating a running average
 and printing it to the computer. Keeps ten readings in an array and
 continually averages them.

 The circuit:
 * Analog sensor (potentiometer will do) attached to analog input 0

 Created 22 April 2007
 By David A. Mellis <dam@mellis.org>
 modified 9 Apr 2012
 by Tom Igoe
 http://www.arduino.cc/en/Tutorial/Smoothing

 This example code is in the public domain.

*/

// Define the number of samples to keep track of. The higher the number,

230 Part III: Building on the Basics

// the more the readings will be smoothed, but the slower the output will
// respond to the input. Using a constant rather than a normal variable lets
// use this value to determine the size of the readings array.
const int numReadings = 10;

int readings[numReadings]; // the readings from the analog input
int index = 0; // the index of the current reading
int total = 0; // the running total
int average = 0; // the average

int inputPin = A0;

void setup()
{
 // initialize serial communication with computer:
 Serial.begin(9600);
 // initialize all the readings to 0:
 for (int thisReading = 0; thisReading < numReadings; thisReading++)
 readings[thisReading] = 0;
}

void loop() {
 // subtract the last reading:
 total= total - readings[index];
 // read from the sensor:
 readings[index] = analogRead(inputPin);
 // add the reading to the total:
 total= total + readings[index];
 // advance to the next position in the array:
 index = index + 1;

 // if we’re at the end of the array...
 if (index >= numReadings)
 // ...wrap around to the beginning:
 index = 0;

 // calculate the average:
 average = total / numReadings;
 // send it to the computer as ASCII digits
 Serial.println(average);
 delay(1); // delay in between reads for stability
}

This sketch gives you a nicely smoothed reading based on what the sensor is
detecting. The smoothing is achieved by averaging a number of readings. The
averaging process may slow down the number of readings per second, but
because the Arduino is capable of reading these changes far faster than you
are, the slowness doesn’t affect how the sensor works in any noticeable way.

231 Chapter 11: Getting Clever with Code

Understanding the Smoothing sketch
The start of the sketch declares the constants and variables. First is the
number of readings to average, declared as numReadings with a value of 10.

const int numReadings = 10;

The next four variables are used to keep track of how many readings have
been stored and to average them. These sensor readings are added to an
array (or list), which is defined here as readings. The number of items in
the readings array is defined in the square brackets. Because numRead-
ings has already been declared, it can be used to set the array length to 10
(which are numbered, or “indexed,” from 0 to 9).

int readings[numReadings]; // the readings from the analog input

Index is the common term for the current value and is used to keep track of
how many loops or readings are taken. Because the index increases every
time reading is taken, it can be used to store the results of that reading in the
correct place in your array, before increasing to store the next reading in the
next position in the array.

int index = 0; // the index of the current reading

The total variable provides a running total that is added to as readings are
made. The average variable is where the average value is stored when the
total is processed.

int total = 0; // the running total
int average = 0; // the average

The last variable is inputPin, the analog in pin that is being read.

int inputPin = A0;

In setup, the serial port is initialized to allow you to view the readings from
the light sensor.

void setup()
{
 // initialize serial communication with computer:
 Serial.begin(9600);

Next in the code is a for loop, which is used to effectively reset the array. In
the loop, a new local variable (thisReading) is initialized and made equal
to zero. The variable thisReading is then compared to the length of the

232 Part III: Building on the Basics

array. If it’s less than the length of the array, the current reading the value in
that part of the array is made equal to zero.

 // initialize all the readings to 0:
 for (int thisReading = 0; thisReading < numReadings; thisReading++)
 readings[thisReading] = 0;
}

In layman’s terms, the code reads something like this: “Make a variable equal
to 0, and if that variable is less than 10, make that same value in the array
equal to zero; then increase the variable by one.” As you can see, it is work-
ing through all the numbers 0 to 9 and setting that same position in the array
to a zero value. After it reaches 10, the for loop ceases running and the code
moves on to the main loop.

 This type of automation is great for setting arrays. The alternative is to write
them all as individual integer variables, which is a lot less efficient, both for
you and the Arduino.

The first line of code in the main loop subtracts any reading in the current
index of the array from the total. That value is replaced in this loop, so it is
essential to remove it from the total first.

void loop() {
 // subtract the last reading:
 total= total - readings[index];

The next line obtains a new reading using analogRead, which is stored in
the current index of the array, overwriting the previous value.

 // read from the sensor:
 readings[index] = analogRead(inputPin);

This reading is then added to the total to correct it.

 // add the reading to the total:
 total= total + readings[index];

 // advance to the next position in the array:
 index = index + 1;

It’s important to check when the end of the array is reached so that the pro-
gram doesn’t loop forever without telling you your results. You can do this
with a simple if statement: If the index value is greater than or equal to the
number of readings that the sketch is looking for, set index back to zero. This
if statement counts the index value from 0 to 9, as in setup, and then resets
as soon as it reaches 10.

233 Chapter 11: Getting Clever with Code

 // if we’re at the end of the array...
 if (index >= numReadings)
 // ...wrap around to the beginning:
 index = 0;

To get the average from all the data in the array, the total is simply divided
by the number of readings. This average is then displayed on the serial moni-
tor for you to check. Because of the command used to display the message,
this could also be referred to as “printing to the serial port.” There is also a 1
millisecond delay at the end, which slows the program down considerably as
well as helping to prevent erratic readings.

 // calculate the average:
 average = total / numReadings;
 // send it to the computer as ASCII digits
 Serial.println(average);
 delay(1); // delay in between reads for stability
}

Using simple procedures like this to average your results helps control
unpredictable behavior in your projects. Averaging is especially useful if the
sensor readings are directly linked to your output.

Calibrating Your Inputs
Think of calibrating your circuit as setting the thermostat in your home. Your
furnace or boiler is capable of a range of temperatures, but depending on
where you are in the world, different temperatures are appropriate. If you’re
in a mild climate, you may have the heating on only infrequently for a couple
of months, but if you’re in a cold climate, you may have the heating on every
night for most of the year.

By calibrating the sensors on your Arduino project, you can tailor the sensor
to its location. In this example, you learn how to calibrate a light sensor.
Light, of course, is highly variable, whether you’re inside, outside, in a well-lit
room, or working by candlelight. Despite the huge variation, all these ranges
of light can be sensed and interpreted by your Arduino as long as it knows
the range that you’re working to. The following sketch shows you how to cali-
brate a light sensor to its surroundings.

Setting up the Calibration sketch
For this example, complete the circuit shown in Figures 11-10 and 11-11 to
calibrate your light sensor automatically.

234 Part III: Building on the Basics

You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ An LED

 ✓ A light sensor

 ✓ A 10k ohm resistor

 ✓ A 220 ohm resistor

 ✓ Jump wires

Figure 11-10:
The light

sensor
circuit
layout.

235 Chapter 11: Getting Clever with Code

Figure 11-11:
A circuit
diagram

of the light
sensor
circuit.

Build the circuit and go to File➪Examples➪03.Analog➪Calibration and to find
the sketch. The code for this example is as follows:

/*
 Calibration

 Demonstrates one technique for calibrating sensor input. The
 sensor readings during the first five seconds of the sketch
 execution define the minimum and maximum of expected values
 attached to the sensor pin.

 The sensor minimum and maximum initial values may seem backwards.
 Initially, you set the minimum high and listen for anything
 lower, saving it as the new minimum. Likewise, you set the
 maximum low and listen for anything higher as the new maximum.

 The circuit:
 * Analog sensor (potentiometer will do) attached to analog input 0
 * LED attached from digital pin 9 to ground

 created 29 Oct 2008
 By David A Mellis
 modified 30 Aug 2011
 By Tom Igoe

 http://arduino.cc/en/Tutorial/Calibration

 This example code is in the public domain.

236 Part III: Building on the Basics

 */

// These constants won’t change:
const int sensorPin = A0; // pin that the sensor is attached to
const int ledPin = 9; // pin that the LED is attached to

// variables:
int sensorValue = 0; // the sensor value
int sensorMin = 1023; // minimum sensor value
int sensorMax = 0; // maximum sensor value

void setup() {
 // turn on LED to signal the start of the calibration period:
 pinMode(13, OUTPUT);
 digitalWrite(13, HIGH);

 // calibrate during the first five seconds
 while (millis() < 5000) {
 sensorValue = analogRead(sensorPin);

 // record the maximum sensor value
 if (sensorValue > sensorMax) {
 sensorMax = sensorValue;
 }

 // record the minimum sensor value
 if (sensorValue < sensorMin) {
 sensorMin = sensorValue;
 }
 }

 // signal the end of the calibration period
 digitalWrite(13, LOW);
}

void loop() {
 // read the sensor:
 sensorValue = analogRead(sensorPin);

 // apply the calibration to the sensor reading
 sensorValue = map(sensorValue, sensorMin, sensorMax, 0, 255);

 // in case the sensor value is outside the range seen during calibration
 sensorValue = constrain(sensorValue, 0, 255);

 // fade the LED using the calibrated value:
 analogWrite(ledPin, sensorValue);
}

237 Chapter 11: Getting Clever with Code

Upload the sketch, and let your Arduino settle with your normal ambient
light levels for five seconds. Then try moving your hand over it. You should
find it a lot more responsive than it is when it’s just reading the analog value
normally, and the LED should have a range from fully on when it is open to
fully off when it is covered.

Understanding the Calibration sketch
The first part of the sketch lays out all the constants and variables. The con-
stants are the pins that used for the light sensor and the LED. Note that the
LED fades up and down, so it must use a PWM pin.

// These constants won’t change:
const int sensorPin = A0; // pin that the sensor is attached to
const int ledPin = 9; // pin that the LED is attached to

The variables are used for the current sensor value and the minimum and
maximum values of the sensor. You can see that sensorMin is initially set to a
high value and sensorMax is set to a low one. This is because they must each
work down and up, respectively, to set the minimum and maximum values.

// variables:
int sensorValue = 0; // the sensor value
int sensorMin = 1023; // minimum sensor value
int sensorMax = 0; // maximum sensor value

In setup, quite a bit is going on. First, the usual pinMode sets pin 13 as an
OUTPUT. This is followed by a digitalWrite to pin 13 to set it HIGH, which
signals that the sensor is in its calibration phase.

void setup() {
 // turn on LED to signal the start of the calibration period:
 pinMode(13, OUTPUT);
 digitalWrite(13, HIGH);

For the first 5 seconds the sensor will calibrate. Because millis() starts
counting the (milli)second that the program starts, the easiest way to count
for 5 seconds is by using a while loop. The following code continues to
check the value of millis(), and although this value is less than 5000 (5
seconds), it carries out the code inside the curly brackets.

 // calibrate during the first five seconds
 while (millis() < 5000) {

The brackets contain the calibration code. sensorValue stores the current
sensor reading. If this reading is more than the maximum or less than the

238 Part III: Building on the Basics

minimum, the values are updated. Because this happens during five seconds,
you get a number of readings, and they all help to better define the expected
range.

 sensorValue = analogRead(sensorPin);

 // record the maximum sensor value
 if (sensorValue > sensorMax) {
 sensorMax = sensorValue;
 }

 // record the minimum sensor value
 if (sensorValue < sensorMin) {
 sensorMin = sensorValue;
 }
 }

The LED pin is then written LOW to indicate that the calibration phase is over.

 // signal the end of the calibration period
 digitalWrite(13, LOW);
}

Now that the range is known, it just needs to be applied to the output LED. A
reading is taken from the sensorPin. Because the reading is between 0 to 1024,
it needs to be mapped to the LED’s range of 0 to 255. sensorValue is con-
verted to this new range using the map() function, using the sensorMin and
sensorMax values from the calibration rather than the full range of 0 to 1024.

void loop() {
 // read the sensor:
 sensorValue = analogRead(sensorPin);

 // apply the calibration to the sensor reading
 sensorValue = map(sensorValue, sensorMin, sensorMax, 0, 255);

It is still possible for the sensor to read values outside those of the calibra-
tion, so sensorValue must be restricted using the constrain () function.
This means that any values outside 0 to 255 are ignored. The calibration
gives a good idea of the range of values, so any larger or smaller values are
likely to be anomalies.

 // in case the sensor value is outside the range seen during calibration
 sensorValue = constrain(sensorValue, 0, 255);

All that is left to do is to update the LED with the mapped and constrained
value by analog writing to the ledPin.

 // fade the LED using the calibrated value:
 analogWrite(ledPin, sensorValue);
}

239 Chapter 11: Getting Clever with Code

This code should give you a better representation of your sensor’s changing
values relative to the environment you are in. The calibration runs only once
when the program is started, so if the range still seems off, it’s best to restart
it or calibrate over a longer period. Calibration is designed to remove noise —
erratic variations in the readings — so you should also make sure that the
environment that is being measured does not have anything that you don’t
want to measure in it.

240 Part III: Building on the Basics

Chapter 12

Common Sense with
Common Sensors

In This Chapter
▶ Learning about sensors
▶ Understanding the complexities of different inputs
▶ Paying the right amount for what you want
▶ Knowing where to use sensors
▶ Wiring up some examples

I
n my experience of teaching, I often find that when people first have an
idea, they get caught up in how to carry it out using a specific piece of

hardware they’ve found instead of focusing on what they want to achieve. If
Arduino is a toolbox with the potential of solving numerous problems, using
the right tool for the right job is key.

If you go to any Arduino-related site, you’re likely to see a list of sensors, and
it can be a baffling experience trying to find the right ones for your project.
A common next step is to search the web for projects similar to the one you
want to do to see what other people have done. Other people’s efforts and
successes can be a great source of inspiration and knowledge, but these
resources can also plunge you into a black hole of too many possible solu-
tions, or solutions that are overkill for your needs.

In this chapter, you discover more about different sensors and how to use
them, but also — and more important — why to use them.

Note that all prices given are approximate for buying an individual sensor
to give you a rough idea of the cost. If you buy in bulk or do some thorough
shopping around, you should be able to make considerable savings. Have a
read of Chapters 19 and 20 for some places to start shopping.

242 Part III: Building on the Basics

Making Buttons Easier
The first sensor described in this book (in Chapter 7), and arguably the
best, is the pushbutton. There are many kinds of pushbuttons, and switches
are also included in this category. Generally, switches stick in their posi-
tion in the same way that a light switch does, whereas buttons pop back.
Some exceptions to this general rule are microswitches and toggle buttons.
They are essentially the same electrically, and these differences are largely
mechanical.

If you plan to use a button for your project, run through the following
considerations:

 ✓ Complexity: In its simplest form, a pushbutton can be two metal con-
tacts that are pushed together. At its most complex, it can be a set of
carefully engineered contacts in an enclosed pushbutton. Pushbuttons
tend to be mounted in enclosures that are designed around different
uses. A pushbutton like the one in your kit is perfect for breadboard lay-
outs and suited to prototyping. If it were used in the real world, it would
need protecting. Take apart an old game console controller and you may
well find an enclosed pushbutton inside. If you needed a more industrial
button, such as an emergency stop button, the switch may be larger,
more robust, and may even contain a bigger spring to handle the force
of someone hitting or kicking it.

 The great thing about pushbuttons is that they never get really compli-
cated, but the right spring or click to a button can make all the differ-
ence in the quality of your project, so choose wisely.

 ✓ Cost: The cost of a pushbutton varies greatly depending on the quality
of the enclosure and the materials used. The prices on RS Components
range from 9 cents (6p) for a microswitch to around $150 (£100) for an
industrial stop button in an enclosure. It’s very possible to use cheaper
buttons for most applications with a bit of lateral thinking.

 ✓ Where: You can use buttons to detect presses from intentional human
contact (or even unintentional, if you are clever with how you house the
buttons). Museum exhibits are a great example of using buttons to regis-
ter intentional human contact because people “get” how to use buttons.
They’re everywhere, and people use them every day without thinking.
Sometimes it may seem clever to use subtler methods, but if in doubt, a
button is always a safe option.

 You can also consider how you might apply the use of a button to what’s
already in place. For example, maybe you’re monitoring how often a
door is opened in your house. If you put a highly sensitive microswitch
against the door when it’s closed, that switch tells you every time the
door moves away from it.

243 Chapter 12: Common Sense with Common Sensors

In Chapters 7 and 11 of this book, you learn how to wire a button circuit and
to refine it. In the example in the following section of this chapter, you learn
how to simplify the hardware of your button. By using a hidden feature of
your Arduino, you can use a button with no additional hardware.

Implementing the DigitalInputPullup
sketch
The basic button circuit is a relatively simple one, but it can be made simpler
still by using a little-known function on your microcontroller. On the basic
button example in Chapter 7 (see Figure 12-1) a pull-down resistor is con-
nected to ground to make the button pin read LOW. Whenever pressed, the
button is connects to 5V and goes HIGH. This behavior allows you to read the
button’s state as an input.

In the microcontroller, there is an internal pull-up resistor that can be acti-
vated to give you a constant HIGH value. When a button connected to ground
is pressed, it grounds the current and sets the pin to LOW. This design gives
you the same functionality as the basic example from Chapter 7, but the logic
is inverted: HIGH is an open switch, and LOW is a closed switch. The wiring
is, therefore, simpler because you eliminate the need for an extra wire and
resistor.

To complete this example, you need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A pushbutton

 ✓ An LED (optional)

 ✓ Jump wires

Complete the circuit shown in Figures 12-1 and 12-2 to try the new, simpler
pushbutton using the Digital Pull-up sketch.

 There is already an LED on the board linked to pin 13, but if you want to
accentuate the output, an LED can be inserted straight into pin 13 and its
neighbouring GND pin.

Complete the circuit and choose File➪Examples➪02.Digital➪ DigitalIputPullup
to find the Digital Input Pull-Up sketch.

244 Part III: Building on the Basics

Figure 12-1:
The push

button
circuit
layout.

Figure 12-2:
A circuit

diagram of
the pushbut

ton circuit.

245 Chapter 12: Common Sense with Common Sensors

The smart ones among you notice that the title of this example has a typo.
It’s not uncommon in Arduino sketches to find typos, so I have left any words
as they appear in the software to avoid confusion.

/*
 Input Pullup Serial

 This example demonstrates the use of pinMode(INPUT_PULLUP). It reads a
 digital input on pin 2 and prints the results to the serial monitor.

 The circuit:
 * Momentary switch attached from pin 2 to ground
 * Built-in LED on pin 13

 Unlike pinMode(INPUT), there is no pull-down resistor necessary. An internal
 20K-ohm resistor is pulled to 5V. This configuration causes the input to
 read HIGH when the switch is open, and LOW when it is closed.

 created 14 March 2012
 by Scott Fitzgerald

 http://www.arduino.cc/en/Tutorial/InputPullupSerial

 This example code is in the public domain

 */

void setup(){
 //start serial connection
 Serial.begin(9600);
 //configure pin2 as an input and enable the internal pull-up resistor
 pinMode(2, INPUT_PULLUP);
 pinMode(13, OUTPUT);

}

void loop(){
 //read the pushbutton value into a variable
 int sensorVal = digitalRead(2);
 //print out the value of the pushbutton
 Serial.println(sensorVal);

 // Keep in mind the pullup means the pushbutton’s
 // logic is inverted. It goes HIGH when it’s open,
 // and LOW when it’s pressed. Turn on pin 13 when the
 // button’s pressed, and off when it’s not:
 if (sensorVal == HIGH) {
 digitalWrite(13, LOW);
 }
 else {
 digitalWrite(13, HIGH);
 }
}

246 Part III: Building on the Basics

Understanding the DigitalInputPullup
sketch
The DigitalInputPullup sketch is similar to the standard button sketch but
with a few changes. In setup, serial communication is started to monitor the
state of the button. Next, the pinMode of the inputs and outputs is set. Pin 2
is your button pin, but instead of setting it to an INPUT, you use INPUT_
PULLUP. Doing so activates the internal pull-up resistor. Pin 13 is set to be an
output as an LED control pin.

void setup(){
 //start serial connection
 Serial.begin(9600);
 //configure pin2 as an input and enable the internal pull-up resistor
 pinMode(2, INPUT_PULLUP);
 pinMode(13, OUTPUT);

}

In the main loop, you read the value of the pull-up pin and store it in the vari-
able sensorVal. This then prints to the serial monitor to show you what
value is being read.

void loop(){
 //read the pushbutton value into a variable
 int sensorVal = digitalRead(2);
 //print out the value of the pushbutton
 Serial.println(sensorVal);

But because the logic is inverted, you need to invert your if () statement to
make it correct. A HIGH value is open and a LOW value is closed. Inside the if
() statement, you can write any actions to perform. In this case, the LED is
being turned off, or set LOW, whenever the button pin is open, or pulled HIGH.

 // Keep in mind the pullup means the pushbutton’s
 // logic is inverted. It goes HIGH when it’s open,
 // and LOW when it’s pressed. Turn on pin 13 when the
 // button’s pressed, and off when it’s not:
 if (sensorVal == HIGH) {
 digitalWrite(13, LOW);
 }
 else {
 digitalWrite(13, HIGH);
 }
}

247 Chapter 12: Common Sense with Common Sensors

This method is great for situations in which you don’t have enough spare
components around, and it allows you to make a switch with only a couple
of wires, if necessary. This functionality can be used on any digital pins, but
only for inputs.

Exploring Piezo Sensors
In Chapter 8, you learn how to make sound using a piezo buzzer, but you
should know that you have another way to use the same hardware as an
input rather than an output. To make a sound with a piezo, you put a current
through it and it vibrates, so it follows that if you vibrate the same piezo, you
generate a small amount of electrical current. This is commonly known as
a knock sensor and is used to measure vibrations on the surface to which
it is fixed.

Piezos vary in size, and that determines the scale of the vibrations that they
can detect. Small piezos are extremely sensitive to vibrations and need very
little to max out their range. Bigger piezos have a broader range, but more
vibration is necessary for a reading to register. There are also specialised
piezo sensors that are made to act as inputs to detect flex, touch, vibration,
and shock. These cost slightly more than a basic piezo element but are usu-
ally made from a flexible film, which makes them a lot more robust.

When using a piezo, consider the following:

 ✓ Complexity: Piezos are relatively simple to wire, needing only a resistor
to function in a circuit. The hardware of a piezo itself is also simple, and
very little additional work on your part is necessary. Because the top
half is made of a fragile ceramic, it is often enclosed in a plastic case,
which makes it easier to mount and avoids any direct contact with the
fragile solder joints on the surface of the piezo.

 ✓ Cost: Piezo elements are inexpensive, costing from around 40 cents
(25p) for the cheapest elements without a casing to $15 (£10) for high-
power piezo buzzers. As an input, a piezo element is preferable to the
more specific piezo buzzer. The usual difference is a smaller form factor
for buzzers, whereas elements usually have a broader base. The latter
is preferable for the knock sensor because it gives you more area on the
piezo as well as more contact with the surface that is being monitored.

 Piezos are much cheaper to purchase from the major electronics
companies, but because these require you to browse their vast online
catalogues, you might find it more useful to buy a selection from retail
stores first, such as Maplin (UK) or RadioShack (US), where you can see

248 Part III: Building on the Basics

the product in real life and get a feel for the different shapes, styles, and
housings.

 ✓ Where: Knock sensors are not usually used as a direct input. Because
they are so fragile, having people tapping on them all the time is risky.
Instead, fix your piezo to a rigid surface such as wood, plastic, or metal
and let that surface take the punishment. For example, a knock sensor
mounted on a staircase could be very discreet and unobtrusive but still
give highly accurate readings.

Piezos are simple and inexpensive sensors with a large variety of uses. You
can use them to detect vibrations, or more directly in a homemade electric
drum kit. This section’s example shows you how to wire your own set of
piezo knock sensors.

Implementing the Knock sketch
Knock sensors use a piezo element to measure vibration. When a piezo
vibrates, it produces a voltage that can be interpreted by your Arduino as
an analog signal. Piezo elements are more commonly used as buzzers, which
inversely make a vibration when a current is passed through them.

You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A piezo

 ✓ A 1M ohm resistor

 ✓ Jump wires

Using the layout and circuit diagrams in Figures 12-3 and 12-4, assemble the
circuit for the knock sensor. The hardware in this circuit is similar to the
piezo buzzer sketch in Chapter 8, but with a few changes you can make this
piezo element into an input as well.

Complete the circuit and open a new Arduino sketch. Choose File➪Examples➪
06.Sensors➪Knock from the Arduino menu to load the sketch.

249 Chapter 12: Common Sense with Common Sensors

Figure 12-3:
A knock

sensor
circuit
layout.

Figure 12-4:
A knock

sensor
circuit

diagram.

250 Part III: Building on the Basics

/* Knock Sensor

 This sketch reads a piezo element to detect a knocking sound.
 It reads an analog pin and compares the result to a set threshold.
 If the result is greater than the threshold, it writes
 “knock” to the serial port, and toggles the LED on pin 13.

 The circuit:
 * + connection of the piezo attached to analog in 0
 * - connection of the piezo attached to ground
 * 1-megohm resistor attached from analog in 0 to ground

 http://www.arduino.cc/en/Tutorial/Knock

 created 25 Mar 2007
 by David Cuartielles <http://www.0j0.org>
 modified 30 Aug 2011
 by Tom Igoe

 This example code is in the public domain.

 */

// these constants won’t change:
const int ledPin = 13; // led connected to digital pin 13
const int knockSensor = A0; // the piezo is connected to analog pin 0
const int threshold = 100; // threshold value to decide when the detected
 // sound is a knock or not

// these variables will change:
int sensorReading = 0; // variable to store the value read from the sensor

// pin
int ledState = LOW; // variable used to store the last LED status, to
 // toggle the light

void setup() {
 pinMode(ledPin, OUTPUT); // declare the ledPin as as OUTPUT
 Serial.begin(9600); // use the serial port
}

void loop() {
 // read the sensor and store it in the variable sensorReading:
 sensorReading = analogRead(knockSensor);

 // if the sensor reading is greater than the threshold:
 if (sensorReading >= threshold) {
 // toggle the status of the ledPin:
 ledState = !ledState;
 // update the LED pin itself:
 digitalWrite(ledPin, ledState);

http://www.arduino.cc/en/Tutorial/Knock

251 Chapter 12: Common Sense with Common Sensors

 // send the string “Knock!” back to the computer, followed by newline
 Serial.println(“Knock!”);
 }
 delay(100); // delay to avoid overloading the serial port buffer
}

Press the Compile button to check your code. Doing so highlights any gram-
matical errors and lights them up in red when they are discovered. If the
sketch compiles correctly, click Upload to send the sketch to your board.
When it is done uploading, choose the serial monitor and give the surface
that your piezo is on a good knock. If it’s working, you should see “Knock!” on
the serial monitor and the LED change with each successful knock.

If nothing happens, double-check your wiring:

 ✓ Make sure that you’re using the correct pin number.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

Understanding the Knock sketch
The first declarations are constant values, the LED pin number, the knock
sensor pin number, and the threshold for a knock value. These are set and
don’t change throughout the sketch.

// these constants won’t change:
const int ledPin = 13; // led connected to digital pin 13
const int knockSensor = A0; // the piezo is connected to analog pin 0
const int threshold = 100; // threshold value to decide when the
 // detected sound is a knock or not

Two variables do change: the current sensor reading and the state of the LED.

// these variables will change:
int sensorReading = 0; // variable to store the value read from the sensor

pin
int ledState = LOW; // variable used to store the last LED status,
 // to toggle the light

In setup, the LED pin is set to be an output and the serial port is opened for
communication.

void setup() {
 pinMode(ledPin, OUTPUT); // declare the ledPin as as OUTPUT
 Serial.begin(9600); // use the serial port
}

252 Part III: Building on the Basics

The first line in the loop is to read the analog value from the knock sensor pin.

void loop() {
 // read the sensor and store it in the variable sensorReading:
 sensorReading = analogRead(knockSensor);

This value is compared to the threshold value.

 // if the sensor reading is greater than the threshold:
 if (sensorReading >= threshold) {

If the value of sensorReading is greater than or equal to the threshold
value, the LED’s state is switched between 0 and 1 using the !, the NOT
symbol. The ! symbol in this case is used to return the opposite Boolean
value of whatever the ledState variable currently is. As you know, Booleans
are either 1 or 0 (true or false), the same as the possible values of ledState.
This line of code could be written as “make ledState equal to whatever
value it is not.”

 // toggle the status of the ledPin:
 ledState = !ledState;

The ledState value is then sent to the LED pin using digitalWrite. The
digitalWrite function interprets a value of 0 as LOW and 1 as HIGH.

 // update the LED pin itself:
 digitalWrite(ledPin, ledState);

Finally, the word “Knock” is sent to the serial port with a short delay, for
stability.

 // send the string “Knock!” back to the computer, followed by newline
 Serial.println(“Knock!”);
 }
 delay(100); // delay to avoid overloading the serial port buffer
}

Utilizing Pressure, Force,
and Load Sensors

Three closely related kinds of sensors are commonly confused: pressure,
force, and load sensors. These three sensors are actually extremely differ-
ent in how they behave and what data they can give you, so it’s important to
know the difference so that you pick the one that’s right for your situation.
In this section, you learn about the different definitions of each of these sen-
sors, as well as where you use them and why you use one over the other.

253 Chapter 12: Common Sense with Common Sensors

Consider the following as you plan:

 ✓ Complexity: As you might expect, complexity increases depending on
how accurate you need to be:

	 •	Pressure pads are designed to detect when pressure is applied
to an area, and they come in quite a variety of both quality and
accuracy. The simplest pressure pads are often misnamed and are
really the equivalent of big switches. Inside a simple pressure pad
are two layers of foil separated by a layer of foam with holes in it.
When the foam is squashed, the metal contacts touch through the
foam and complete the circuit. This means that instead of measur-
ing pressure or weight, the pad is actually detecting when there is
enough weight to squash the foam. These pads do a fine job and
are similar to the mechanisms found inside dance mats — ample
proof that you don’t need to overthink your sensors!

	 •	For	more	precision,	you	may	want	to	use	force sensors, which
measure the force applied by whatever is put on them within their
range. Although force sensors are accurate enough to detect a
change in weight, they are not accurate enough provide a precise
measurement. Force sensors are usually flexible, force-sensitive
resistors; that is, resistors that are made on a flexible PCB, that
change their resistance when force is applied. The resistor itself is
on the flexible circuit board, and although it can tolerate extremely
high forces and loads, protecting it from direct contact is a good
idea to prevent it from bending, folding, or tearing.

	 •	With	pressure	pads	at	one	end	of	the	spectrum,	at	the	other	are	
load sensors. An example of a load sensor is found in your bath-
room scale. Load sensors can accurately measure weight up to
their limit. They work in much the same way as force sensors by
changing resistance as they bend. In most cases, a load sensor is
fixed to a rigid piece of metal and monitors changes as the metal
is put under strain. The changes are so minute that they often
require an amplification circuit known as a Wheatstone Bridge.
Incorporating this kind of sensor is more complex than the others,
but you can find material on the Internet that can walk you thor-
ough the process.

 ✓ Cost: The cost of each sensor is relatively low, even for the most sensi-
tive ones. A cheap pressure pad can set you back $3 (£2), for all the
materials to make a DIY one, to $12 (£8), for an inexpensive, entry-level
pressure mat available from most electronics stores and suppliers.
Force sensitive resistors range from $8 to $23 (£5 to £15), but cover a
much smaller area than a pressure pad, so you may need quite a few
of them to cover a large area. Load sensors are also relatively cheap at
around $11 (£7), most likely because they are so widespread that mass
production has knocked the price down. There may be an extra cost in
time to plan and make the additional circuitry.

254 Part III: Building on the Basics

 ✓ Where: The real challenge with all these sensors is housing them to
prevent damage. In the case of the pressure pad and the force-sensitive
resistors, placing a good layer of upholstery foam on the side that the
force is coming from is a good idea. Depending on the density of the foam,
it should dampen enough of the force to protect the sensor but still com-
press it enough for a good reading. Underneath the sensors, you want to
have a solid base to give you something to push against. This could just
be the floor or surface that the sensor is placed on or a sheet of MDF/
plywood could be attached to the underside of the sensor. It’s a good
idea to protect the exterior of your pressure sensor as well, so consider
something a bit more sturdy than foam on the exterior. For a soft finish,
upholstery vinyl is a great option. If you plan to have people walk on the
surface, for example, a layer of wood on the top to sandwich the foam is
a good option to spread the load and can easily be replaced, if needed.
In the case of load sensors, they require very little movement and should
be connected to or placed in direct contact with a ridged surface. In the
case of your bathroom scales, it may take some trial and error to place
the sensor in the correct location to get an accurate reading. Sometimes
multiple sensors are used to get an average reading across the surface.

Picked a sensor? Now you need to figure out how to use it:

 ✓ Pressure pads are an extremely simple circuit, the same as for a pushbut-
ton. The hardware of a pressure pad is also easy enough that you can
make one yourself using two sheets of foil, a sheet of foam, a cover, and a
couple of wires. As an alternative to foil, a great material to use is conduc-
tive fabric or conductive thread, which are a lot more flexible than foil.

 ✓ Force sensors are also relatively easy to use and can take the place of
other analog sensors, such as light or temperature sensors, in simple
Arduino circuits. The ranges of force may vary, but whatever the range,
you can scale the force to your needs quite simply in the code.

 ✓ Load sensors are probably the most complex sensor if they are being
used for accurate reading, as with a set of weight scales. They require
extra circuitry and an amplifier for the Arduino to read the minute
changes in resistance. This topic is outside the scope of this book, so if
you want to know more, get friendly with Google.

Force sensors are just like any other variable resistor and can easily be
switched with potentiometer or light-dependant resistors as needed. In this
section’s example, you learn how to use force-sensitive resistors to make an
Arduino piano keyboard using the toneKeyboard sketch.

Implementing the toneKeyboard sketch
You may think of pushbuttons as the perfect input for a keyboard, but force-
sensitive resistors give you much more sensitivity to touch. Rather than

255 Chapter 12: Common Sense with Common Sensors

detect just a press, you can also detect the intensity of the key press in the
same way as on a traditional piano.

You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ Three force-sensitive resistors

 ✓ Three 10k ohm resistors

 ✓ One 100 ohm resistor

 ✓ A piezo element

 ✓ Jump wires

Using the layout and circuit diagrams in Figures 12-5 and 12-6, lay out the
force-sensitive resistors and the piezo to make your own keyboard.

Figure 12-5:
A button cir

cuit layout.

256 Part III: Building on the Basics

Figure 12-6:
A button

circuit
diagram.

Complete the circuit and open a new Arduino sketch. Choose File➪Examples➪
02.Digital➪toneKeyboard from the Arduino menu to load the sketch.

/*
 keyboard

 Plays a pitch that changes based on a changing analog input

 circuit:
 * 3 force-sensing resistors from +5V to analog in 0 through 5
 * 3 10K resistors from analog in 0 through 5 to ground
 * 8-ohm speaker on digital pin 8

 created 21 Jan 2010
 modified 9 Apr 2012
 by Tom Igoe

This example code is in the public domain.

 http://arduino.cc/en/Tutorial/Tone3

 */

#include “pitches.h”

const int threshold = 10; // minimum reading of the sensors that generates a
// note

// notes to play, corresponding to the 3 sensors:

257 Chapter 12: Common Sense with Common Sensors

int notes[] = {
 NOTE_A4, NOTE_B4,NOTE_C3 };

void setup() {

}

void loop() {
 for (int thisSensor = 0; thisSensor < 3; thisSensor++) {
 // get a sensor reading:
 int sensorReading = analogRead(thisSensor);

 // if the sensor is pressed hard enough:
 if (sensorReading > threshold) {
 // play the note corresponding to this sensor:
 tone(8, notes[thisSensor], 20);
 }
 }
}

Press the Compile button to check your code. The compiler should highlight
any grammatical errors and light them up in red when they are discovered. If
the sketch compiles correctly, click Upload to send the sketch to your board.
When it is done uploading, try the keys to make sure they’re working. If they
are, you’re ready to play.

If nothing happens, double-check your wiring:

 ✓ Make sure that you’re using the correct pin number.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
won’t work.

Understanding the toneKeyboard sketch
The toneKeyboard sketch uses the same table of notes as the Melody sketch
in Chapter 8. The first line includes pitches.h, which should be open in a
separate tab next to the main sketch.

#include “pitches.h”

A low threshold of 10 (out of a possible 1024) is set to avoid any low readings
resulting from background vibrations.

const int threshold = 10; // minimum reading of the sensors that generates a
// note

258 Part III: Building on the Basics

The notes for each sensor are stored in an array with values (0,1 and 2) that
correspond to the analog input pin numbers (A0, A1 and A2). You can change
these the note values that are contained in this array manually using the
look-up table on pitches.h. Simply copy and paste new note values in the
change the note of each sensor.

// notes to play, corresponding to the 3 sensors:
int notes[] = {
 NOTE_A4, NOTE_B4,NOTE_C3 };

In setup, you have nothing to define because the analog input pins are set to
be inputs by default.

void setup() {

}

In the main loop, a for () loop cycles through the numbers 0 to 2.

void loop() {
 for (int thisSensor = 0; thisSensor < 3; thisSensor++) {

The value of the for () loop is used as the pin number, and its value is
stored temporarily to sensorReading.

 // get a sensor reading:
 int sensorReading = analogRead(thisSensor);

If the reading is greater than the threshold, it is used to trigger the correct
note assigned to that input.

 // if the sensor is pressed hard enough:
 if (sensorReading > threshold) {
 // play the note corresponding to this sensor:
 tone(8, notes[thisSensor], 20);
 }
 }
}

Because the loop happens so quickly, any delay in reading each sensor is
unnoticeable.

Sensing with Style
Capacitive sensors detect changes in electromagnetic fields. Every living
thing has an electromagnetic field — even you. Capacitive sensors are
extremely useful because they can detect human contact and ignore other
environmental factors. You are probably familiar with high-end capacitive

259 Chapter 12: Common Sense with Common Sensors

sensors because they are present in nearly all smartphones, but they have
actually been around since the late 1920s. You can find Arduino kits with
capacitive sensors, such as Capacitive Touch Keypads, that you can hook
up easily. But it’s just as easy to make your own capacitive sensors with an
Arduino and an antenna.

Consider the following in your plans:

 ✓ Complexity: Because all that is required is an antenna, you can be quite
creative with what the antenna is and where it is placed. Short pieces
of wire or copper tape are great for simple touch sensors. The piece of
copper tape suddenly becomes a touch switch, meaning that you don’t
even need a pushbutton to get the same functionality. You could even
connect the antenna to a bigger metal object such as a lamp, turning it
into a touch lamp.

 If the antenna is made from a reel of wire or a piece of foil, you can
extend the range of the sensor beyond touch, which is known as a pro-
jected capacitive sensor. This means that you can detect a person’s
hand a couple of inches away from the antenna, which creates a lot
of new possibilities for hiding sensors behind other materials. These
discreet capacitive sensors are now commonly seen in many recent
consumer electronics to remove the physical buttons and maintain the
sleek shape of the product. The electronics can also under layers of
other material and be perfectly protected from the outside world.

 Capacitive touch sensors are easy to make. The real difficulty is with
projected field sensors to determine the range of the field. The best way
to determine this range is by experimentation, testing to see whether
the field that you are generating is far reaching enough.

 ✓ Cost: A capacitive touch kit designed for a specific purpose costs
around $15 to $23 (£10 to £15). The kit should perform its job well, but it
will be limited to the design of the interface. There is a capacitive sensor
breakout board from Sparkfun for around $10 (£6.50) that lets you con-
trol up to 12 capacitive sensors. You have to wire your own touch pads,
but you’re free to design an interface that suits your purpose.

 The cheapest option is to use the CapSense library for Arduino, which
allows you to make a capacitive sensor with an antenna and no addi-
tional hardware! This means that you could spend a few cents (or
pence) for an antenna or repurpose an old one.

 ✓ Where: Capacitive touch sensors can work with any conductive metal,
so if you can design an attractive metal exterior, the only work will be
to connect that exterior to your Arduino. If you’re looking for some-
thing more discreet, you may want to experiment with different layers
of wood or plastic to hide your metal antenna. A thin layer of plywood
allows the metal to be close to the surface, able to trigger the sensor.
By covering the antenna with a non-conductive surface, you also give it
a seemingly magical property, ensuring that people are left guessing at
how it works.

260 Part III: Building on the Basics

Getting the CapSense library
The CapSense library is available from GitHub.
GitHub is an online repository of software that
manages different versions and allows you to
see who has updated the software, and how. It’s
an excellent system for sharing and collaborat
ing on code projects. You can find the Arduino
platform on GitHub; check it out if you’re curious
about any changes. To get the library:

 1 . Point your Web browser to the GitHub
CapSense page at https://github.
com/moderndevice/CapSense .

 2 . On the CapSense page, click the Download
This Repository as a Zip File button .

 The button is marked with a cloud and the
word ZIP.

 This downloads the latest version of the
library to your downloads folder or a folder
you specify.

 3 . Rename the folder “CapSense .”

 Inside the folder, you should see a number
of files ending in .h and .cpp as well as
an Examples folder.

 4 . Move the entire folder to your Arduino
libraries directory .

 This should be the same directory that
your sketches are saved to, for example:
Username/Documents/Arduino/libraries.
If you don’t have a libraries directory,
create one.

 Your can find your Arduino Save directory
by choosing Arduino➪Preferences from
the Arduino menu bar. After the CapSense
library is inside this folder, it will be avail
able the next time you run Arduino.

https://github.com/moderndevice/CapSense
https://github.com/moderndevice/CapSense

261 Chapter 12: Common Sense with Common Sensors

 5 . Start or restart Arduino and go to
Sketch➪Import Library in the Arduino
menu .

 Look for CapSense under the Contributed
libraries section. If you don’t find it, check
your directories and spelling and then
restart Arduino.

The easiest way to make a capacitive sensor is to use the CapSense library
by Paul Badger. By using the CapSense library (I explain how in the “Getting
the CapSense Library” sidebar), you can do away with mechanical switches
altogether and replace them with highly robust capacitive touch sensors or
capacitive presence detectors.

Implementing the CapPinSketch sketch
For this project, you need:

 ✓ An Arduino Uno

 ✓ A wire antenna

 ✓ Crocodile clips (optional)

262 Part III: Building on the Basics

As you can see from the photo in Figure 12-7, very little work is needed.
You can simply have a wire antenna connected to pin 5 and you can enlarge
this by connecting that to any other conductive surface. Crocodile clips are
useful to latch onto different antennas quickly and easily.

Figure 12-7:
A photo of a
DIY capaci
tive sensor.

If the CapSense library is recognized, the Examples folder inside it should be,
too. Build the circuit and choose File➪Examples➪CapSense➪Examples➪Cap
PinSketch from the Arduino menu to load the sketch.

#include <CapPin.h>

/* CapPin
 * Capacitive Library CapPin Demo Sketch
 * Paul Badger 2011
 * This class uses the bullt-in pullup resistors read the capacitance on a pin
 * The pin is set to input and then the pullup is set,
 * A loop times how long the pin takes to go HIGH.
 * The readPin method is fast and can be read 1000 times in under 10 mS.
 * By reading the pin repeated you can sense “hand pressure”
 * at close range with a small sensor. A larger sensor (piece of foil/metal)
 * will yield larger return values and be able to sense at more distance. For
 * a more sensitive method of sensing pins see CapTouch
 * Hook up a wire with or without a piece of foil attached to the pin.
 * I suggest covering the sensor with mylar, packing tape, paper or other insulator

263 Chapter 12: Common Sense with Common Sensors

 * to avoid having users directly touch the pin.
 */

CapPin cPin_5 = CapPin(5); // read pin 5

float smoothed;

void setup()
{

 Serial.begin(115200);
 Serial.println(“start”);
 // slider_2_7.calibrateSlider();

}

void loop()
{

 delay(1);
 long total1 = 0;
 long start = millis();
 long total = cPin_5.readPin(2000);

 // simple lowpass filter to take out some of the jitter
 // change parameter (0 is min, .99 is max) or eliminate to suit
 smoothed = smooth(total, .8, smoothed);

Serial.print(millis() - start); // time to execute in mS
Serial.print(“\t”);
Serial.print(total); // raw total
Serial.print(“\t”);
Serial.println((int) smoothed); // smoothed
 delay(5);
}

// simple lowpass filter
// requires recycling the output in the “smoothedVal” param
int smooth(int data, float filterVal, float smoothedVal){

 if (filterVal > 1){ // check to make sure param’s are within range
 filterVal = .999999;
 }
 else if (filterVal <= 0){
 filterVal = 0;
 }

 smoothedVal = (data * (1 - filterVal)) + (smoothedVal * filterVal);

 return (int)smoothedVal;
}

264 Part III: Building on the Basics

Press the Compile button to check your code. Compiling highlights any gram-
matical errors, which light up in red when they are discovered. If the sketch
compiles correctly, click Upload to send the sketch to your board. When it is
done uploading, open the serial monitor and touch or approach the antenna.
You should see two values racing down the screen. On the left is the raw
value that is being read; on the right is the same reading after smoothing.

If nothing happens, double-check your wiring:

 ✓ Make sure that you’re using the correct pin number.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

Understanding the CapPinSketch sketch
At the start of the sketch in the declarations, a new CapPin object is
named. Notice that cPin_5 is the name and that it is assigned to pin 5 using
CapPin(5).

CapPin cPin_5 = CapPin(5); // read pin 5

A float named smoothed is declared to store the processed value of the
sensor.

float smoothed;

In setup, serial communication is started on the fastest baud rate available
to Arduino 115200, and the message “start” is sent to indicate to you that the
serial port is connected.

void setup()
{

 Serial.begin(115200);
 Serial.println(“start”);

What is a float?
A float, or floating point number, is any number
with a decimal point. Variables can be set to
floating point numbers instead of integers. This
is preferable in some situations, such as in this

case where you are taking extremely precise
readings of capacitance. However, processing
floats takes much more time than integers and
should, therefore, be avoided if possible.

265 Chapter 12: Common Sense with Common Sensors

This commented line is not used in this sketch, but is referenced in some of the
other CapSense examples. It can be uncommented to include further calibra-
tion functions that are in the library, but is not be covered in this example:

// slider_2_7.calibrateSlider();

}

In this sketch, many variables are declared locally. Because they are not
needed outside the loop, they are removed after each loop and redeclared at
the start of the next loop.

First, a one-millisecond delay occurs to help improve stability of the reading:

void loop()
{

 delay(1);

Next, the long variable total1 is declared. This variable can look confusing
because the lowercase L and the numeral one look the same in most fonts.
Incidentally, this variable does not appear to be used in this sketch. It may
well be leftover from a previous version.

 long total1 = 0;

The next long variable is set to the current millis () value. Because this is
a local variable, this value is reset on each loop.

 long start = millis();

The specific function .readPin() reads your capacitive pin.

 long total = cPin_5.readPin(2000);

If you want to explore in more depth what’s happening, look at CapPin.cpp
in the CapSense library. At first this looks baffling, but by finding the line that
follows, you can see that the value relates to the number of samples that the
Arduino is taking of the capacitance reading:

long CapPin::readPin(unsigned int samples)

 Editing the inner workings of libraries is not advised for beginners, but it is
good to have a look at them to know what’s happening in your code and try to
gain a better understanding of them.

266 Part III: Building on the Basics

A smoothing function is also included in the sketch. This function takes
the raw reading from the sensor, the smoothing value, and then the output
variable. At present, it is set to 0.8, but go ahead and experiment with this
value to find the appropriate amount of smoothing for your application. This
amount is dependent on how fast the loop is completed and how many read-
ings are made in that time, so bear that in mind if you expect to add a lot of
other controls or outputs.

 // simple lowpass filter to take out some of the jitter
 // change parameter (0 is min, .99 is max) or eliminate to suit
 smoothed = smooth(total, .8, smoothed);

Finally, the values are printed to the serial port to be monitored. millis() –
start gives the time that is taken to carry out the reading. If more samples
are taken or any delays are added to the code, these activities increase the
time to complete the loop and, therefore, the reaction time of the sensor.

Serial.print(millis() - start); // time to execute in mS

Tabs are used to neatly space the values. The total and smoothed values are
both printed for comparison. You may notice a slight delay in the response
time of the smoothed value. This delay shows you that your Arduino is read-
ing many more values to do the smoothing, which takes time. This is barely
noticeable when the sensor is in use because the baud rate is so high.

Serial.print(“\t”);
Serial.print(total); // raw total
Serial.print(“\t”);
Serial.println((int) smoothed); // smoothed
 delay(5);
}

At the bottom of the sketch outside the main loop is an additional function.
This is referred to as a lowpass filter and gives you the smoothed result. You
can see that rather than starting with void as is the case in setup () and
loop (), the function starts with int, which means that an integer value is
returned. Starting with int indicates that when this function is called, it is
possible to assigned its return value to a variable.

// simple lowpass filter
// requires recycling the output in the “smoothedVal” param
int smooth(int data, float filterVal, float smoothedVal){

 if (filterVal > 1){ // check to make sure param’s are within range
 filterVal = .999999;

267 Chapter 12: Common Sense with Common Sensors

 }
 else if (filterVal <= 0){
 filterVal = 0;
 }

 smoothedVal = (data * (1 - filterVal)) + (smoothedVal * filterVal);

 return (int)smoothedVal;
}

Tripping Along with Lasers
Laser trip wires are made up of two parts, a laser light source and a light
sensor. As you know from the movies, when the beam is broken an alarm
sounds and the henchmen come running. With an Arduino, you can make a
laser trip wire very simply and trigger anything you want from it. Rather than
buy a state-of-the-art security system, you can build one yourself using a few
simple components. You’re on your own for the henchmen, though.

 ✓ Complexity: Lasers are a difficult subject area because of the poten-
tial risks of working with them. But rather than risk your eyesight or
spend a few years studying, why not use something that’s already been
tested, certified, and turned into a product? Laser pens or laser point-
ers are widely available and relatively cheap. These are usually Class 1
lasers, the lowest class, and are visible and safe under all conditions of
normal use, but you’re still advised to check the specifications of your
laser to ensure that it is appropriate for the audience and the environ-
ment. Adults are normally sensible enough not to look directly into the
laser, but with children, you want to err on the side of caution and find
another sensor.

 Because a laser beam is so precise, it’s best to choose one with a fairly
large sensor so that you have a large area to aim for. The only added
complexity of this sensor may be powering the laser. A laser pointer is
usually battery powered (because it’s not much use with a huge plug
on the end), so you may need to replace the batteries every few days or
wire a power supply of equal value to the battery compartment.

 To make them useful in the outside world, I recommend that you house
both the laser and the light sensor in enclosures. A nice touch is to
mount the enclosures on mini tripods to give you some flexibility when
aligning them.

268 Part III: Building on the Basics

 ✓ Cost: For around $15 (£10) you can purchase a small, discreet laser
pointer from RadioShack, in the United States, or Maplin in the United
Kingdom. Battery life and beam color are the main differences between
pointers. The light sensor costs around 75 cents to $2.50 (50p to £1.50),
depending on the size. If you opt for an enclosure, it may cost around $6
(£4). A mini tripod is around $9 (£6).

 ✓ Where: If you have a fixed location for your tripwire, mounting the enclo-
sure on either side of a doorway is simple. The best position is as low to
the floor as possible to avoid eye contact with the laser. If you’re not sure
where you want it or want to try a few ideas, keep it mobile and take your
tripod-mounted trip wire with you wherever it’s needed. Laser tripwires
make especially good camera triggers, which you can read more about in
the bonus chapter at www.dummies.com/go/arduinofd.

The laser trip wire is a refinement of a conventional light sensor. By provid-
ing a more intense, controlled light source, you can increase the accuracy of
a simple light sensor.

In this example, you use a laser to make your light sensor achieve its full
potential. By using the DigitalInOutSerial circuit, you can monitor the levels
of your sensor when the laser is hitting it and look for the change when the
laser is obscured. From this reading, you can trigger any number of outputs.

Implementing the AnalogInOutSerial
sketch
You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A light sensor

 ✓ An LED

 ✓ A 10k ohm resistor

 ✓ A 220 ohm resistor

 ✓ Jump wires

Complete the circuit from the layout in Figures 12-8 and 12-9 to make the
receiver side of the circuit. The laser pen can be battery powered or wired to
a power supply of equal voltage as the batteries. For more detail on choosing
a power supply, head over to Chapter 15.

http://www.dummies.com/go/arduinofd

269 Chapter 12: Common Sense with Common Sensors

Figure 12-8:
Analog input

and LED
output cir
cuit layout.

Figure 12-9:
Analog

input and
LED output

circuit
diagram.

270 Part III: Building on the Basics

Choose File➪Examples➪03.Analog➪AnalogInOutSerial from the Arduino
menu to load the sketch.

/*
 Analog input, analog output, serial output

 Reads an analog input pin, maps the result to a range from 0 to 255
 and uses the result to set the pulsewidth modulation (PWM) of an output pin.
 Also prints the results to the serial monitor.

 The circuit:
 * potentiometer connected to analog pin 0.
 Center pin of the potentiometer goes to the analog pin.
 side pins of the potentiometer go to +5V and ground
 * LED connected from digital pin 9 to ground

 created 29 Dec. 2008
 modified 9 Apr 2012
 by Tom Igoe

 This example code is in the public domain.

 */

// These constants won’t change. They’re used to give names
// to the pins used:
const int analogInPin = A0; // Analog input pin that the potentiometer is

attached to
const int analogOutPin = 9; // Analog output pin that the LED is attached to

int sensorValue = 0; // value read from the pot
int outputValue = 0; // value output to the PWM (analog out)

void setup() {
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);
}

void loop() {
 // read the analog in value:
 sensorValue = analogRead(analogInPin);
 // map it to the range of the analog out:
 outputValue = map(sensorValue, 0, 1023, 0, 255);
 // change the analog out value:
 analogWrite(analogOutPin, outputValue);

 // print the results to the serial monitor:
 Serial.print(“sensor = “);
 Serial.print(sensorValue);
 Serial.print(“\t output = “);
 Serial.println(outputValue);

 // wait 2 milliseconds before the next loop

271 Chapter 12: Common Sense with Common Sensors

 // for the analog-to-digital converter to settle
 // after the last reading:
 delay(2);
}

Press the Compile button to check your code. The compiler highlights any
grammatical errors, which light up in red when they are discovered. If the
sketch compiles correctly, click Upload to send the sketch to your board.
When it is done uploading, mount your laser so that it hits the center of the
light sensor. On the serial monitor, you should see analog values at the high
end of the range (1024 max). When you obstruct the beam, that range should
drop, and the change should be shown by the LED as well. Experiment with
the values in the map function to determine the best range of values.

When the value drops below a certain threshold, you can trigger any of a
variety of actions — you have a highly sensitive trip wire sensor.

If nothing happens, double-check your wiring:

 ✓ Make sure that you’re using the correct pin number.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
do not work.

Understanding the AnalogInOutSerial
sketch
For more details on the workings of this sketch, see the notes in
AnalogInOutSerial in Chapter 7. You can also find suggestions for different
sketches to provide smoothing and calibration in Chapter 11.

Detecting Movement
A Passive Infrared (PIR) sensor is a common sensor in some homes and
most commercial buildings. You may have seen this sensor in the corner
of a room, blinking red every once in a while. It registers heat given off by
people, animals, or other heat sources as infrared radiation. Infrared radia-
tion is invisible to the human eye but is easy for the sensor to distinguish.
The sensor itself is similar to the sensor found in a digital camera, but with-
out the complex lenses to capture a detailed picture. Essentially, a PIR sensor
is somewhere between a high-resolution light sensor and a low-resolution
camera. Simple lenses are usually fitted to PIR sensors to give them a wider
viewing angle.

272 Part III: Building on the Basics

Most commonly, this type of sensor is used for motion detection in bur-
glar alarms. Rather than detect motion, it actually detects changes in tem-
perature. Temperature changes can trigger an alarm system or something
more interesting (henchmen!), but the sensor is purely a way of monitoring
changes in an environment.

You have two ways to get a PIR sensor. The first is to take apart a PIR burglar
alarm, which is likely pre-packaged with a lens and a sensor, which may be
difficult to identify. The second method is to buy one specifically intended for
microcontroller projects. This most often comes with a basic, ping-pong-ball-
styled lens and a bare circuit board underneath. The latter is easier to work
with because all the details are known and it is detailed later in this section.

Consider the following during planning:

 ✓ Complexity: It can be tricky to hack an existing PIR sensor made for
a specific system. Because it needs to communicate with that system,
however, the sensor usually has clearly marked connections on the
back. One of the benefits of using an existing sensor is that it is prepack-
aged, which reduces the amount of time you have to spend putting
components together. Prepackaged systems are designed to be easy to
install, so you may also be able to use manual calibration, by way of a
potentiometer or screwdriver slot, which can be a huge benefit for on-
the-fly calibration rather than having to re-upload.

 If you’re using a PIR sensor that is not prepackaged, it should be a lot
more straightforward on the hardware and software side but requires
some careful thought concerning the housing. Some PIR sensors have
their own on-board logic and operate like a switch, going HIGH when
movement occurs over the threshold. This kind of sensor needs calibra-
tion to identify change from the norm.

 ✓ Cost: A household PIR sensor costs between $15 and $45 (£10 and £30).
The main expense is the housing, usually designed to be discreet or
look suitably high-tech. Bare PIR sensors cost a fraction of the price at
around $10 (£6.50), but need a suitable housing to be of any real use.

 ✓ Where: Many housings allow you to neatly fit the sensor against a wall,
or you might consider using mini tripods for direction, as suggested in
the previous section of this chapter. Some of the tripod mounts also
come with a suction-cup mount, which is perfect for fixing your sensor
to glossy surfaces such as glass.

Most PIR sensors come ready for action, needing only power. They calibrate
themselves based on what they can see and then send a HIGH or LOW value
when they detect change. This makes them extremely easy to program
because you are dealing with the same signals as with a pushbutton.

273 Chapter 12: Common Sense with Common Sensors

Implementing the DigitalReadSerial sketch
In this example, you learn how to use the SE-10, a PIR sensor available from
all the major Arduino retailers. This particular PIR sensor has three wires:
red, brown, and black. The red wire is the power source and should be con-
nected to 5V. Oddly, the black wire is the signal wire and not the ground (see
Figure 12-10; the black is the leftmost wire, brown is in the middle, and red is
on the right). Brown should be wired to ground and black to pin 2.

Figure 12-10:
The SE10,

with its
strangely

colored
wires.

The signal pin is known as an open-collector and needs to be pulled HIGH to
start with. To do so, you use a 10k resistor to connect it to 5V as well. The
pin, therefore, reads HIGH when no motion occurs and is pulled to LOW when
there is motion.

You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ An SE-10 PIR Motion Sensor

 ✓ A 10k ohm resistor

 ✓ Jump wires

274 Part III: Building on the Basics

Lay out the circuit as in the layout and circuit diagrams shown in Figures 12-11
and 12-12.

Figure 12-11:
A PIR

sensor
circuit
layout.

Figure 12-12:
A PIR sen
sor circuit

diagram.

275 Chapter 12: Common Sense with Common Sensors

Complete the circuit and choose File➪Examples➪01.Basics➪DigitalReadSerial
from the Arduino menu to load the sketch. This sketch is intended for a push-
button but follows the same principles. If you want to make the sketch more
specific, you can save it with a more appropriate name and variable names.

/*
 DigitalReadSerial
 Reads a digital input on pin 2, prints the result to the serial monitor

 This example code is in the public domain.
 */

// digital pin 2 has a pushbutton attached to it. Give it a name:
int pushButton = 2;

// the setup routine runs once when you press reset:
void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
 // make the pushbutton’s pin an input:
 pinMode(pushButton, INPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 // read the input pin:
 int buttonState = digitalRead(pushButton);
 // print out the state of the button:
 Serial.println(buttonState);
 delay(1); // delay in between reads for stability
}

Press the Compile button to check your code. Doing so highlights any gram-
matical errors and turns them red when they are discovered. If the sketch
compiles correctly, click Upload to send the sketch to your board. When it
is done uploading, affix the PIR sensor to a surface that is free of movement
and open the serial monitor. Opening the serial monitor resets the sketch
and the sensor calibrates itself in the first 1 to 2 seconds. When movement is
detected, you should see the buttonState value change from 1 (no move-
ment) to 0 (movement).

If nothing happens, double-check your wiring:

 ✓ Make sure that you’re using the correct pin number.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

 ✓ Try restarting the PIR sensor by disconnecting and reconnecting the
GND wire, and be sure that it does not move during or after calibration.

276 Part III: Building on the Basics

Understanding the DigitalReadSerial
sketch
The only variable to declare is pin 2, the pushButton pin, or in this case the
pirSensor pin.

// digital pin 2 has a pushbutton attached to it. Give it a name:
int pushButton = 2;

In setup, the serial port is opened and set to a baud rate of 9600; the input pin
is set to an output.

// the setup routine runs once when you press reset:
void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
 // make the pushbutton’s pin an input:
 pinMode(pushButton, INPUT);
}

In the loop (), the input pin is read and its value stored in buttonState.
This value reads HIGH when no movement is occurring because the pull-up
resistor is providing a voltage from the 5V pin. When there is movement, the
open-collector grounds the voltage and reads LOW.

// the loop routine runs over and over again forever:
void loop() {
 // read the input pin:
 int buttonState = digitalRead(pushButton);

The value of the input is then printed to the serial monitor.

 // print out the state of the button:
 Serial.println(buttonState);
 delay(1); // delay in between reads for stability
}

 This is one example of how to use existing code for different hardware. From
this point, it is possible to trigger different outputs based on the HIGH or LOW
signal of the PIR sensor. For the ease of use and clarity of other people using
your code, you should rename variables to more appropriate names, add your
own comments, and save the sketch so that you can easily distinguish it.

277 Chapter 12: Common Sense with Common Sensors

Measuring Distance
Two sensors for measuring distance are extremely popular: the infrared
proximity sensor and the ultrasonic range finder. They work in similar ways
and achieve pretty much the same thing, but it’s important to pick the right
sensor for the environment you’re in. An infrared proximity sensor has a light
source and a sensor. The light source bounces infrared light off objects and
back to the sensor, and the time it takes the light to return is measured to
indicate how far away an object is.

An ultrasonic range finder fires out high frequency sound waves and listens
for an echo when they hit a solid surface. By measuring the time that it takes
a signal to bounce back, the ultrasonic range finder can determine the dis-
tance travelled.

Infrared proximity sensors are not as accurate and have a much shorter
range than ultrasonic range finders.

Consider the following during planning:

 ✓ Complexity: Both of these sensors are designed to be extremely easy
to integrate with Arduino projects. In the real world, they’re used for
similar electronics applications, such as proximity meters on the back
of cars that beep as you approach the curb. Again, the main complexity
is housing them effectively. Infrared proximity sensors such as those
made by Shape have useful screw holes on the outside of the body of
the sensor. Maxbotix makes ultrasonic range finders that do not have
these mounts, but their cylindrical shape makes them simple to mount
in a surface by drilling a hole through.

 ✓ Cost: Infrared proximity sensors cost in the region of $15 (£10) and have
a range up to about 59 inches (150 cm) or less. Ultrasonic range find-
ers have a far greater possible range and accuracy but an equally great
price, costing between $27 (£18) for a sensor that can read up to 254
inches (645 cm) and $100 (£65) for a more weather-resistant model that
can read up to 301 inches (765 cm).

 ✓ Where: A common application for these sensors is monitoring presence
of a person or an object in a particular floor space, especially when
a pressure pad would be too obvious or easy to avoid, or when a PIR
sensor would measure too widely. Using a proximity sensor lets you
know where someone is in a straight line from that sensor, making it a
very useful tool.

278 Part III: Building on the Basics

IR proximity sensors are okay in dark environments but perform terribly in
direct sunlight. The MaxBotix Ultrasonic Range Finder is one of my favorite
and most reliable sensors. When using ultrasonic range finders, you can
also choose how wide or narrow a beam you want. A large, teardrop-shaped
sensor is perfect for detecting large objects moving in a general direction,
whereas narrow beams are great for precision measurement.

Implementing the MaxSonar sketch
In this example, you learn how to measure precise distances using a
MaxBotix LV-EZ0. The EZ0, EZ1, EZ2, EZ3 and EZ4 all work the same way,
but each has a slightly narrower beam, so choose the appropriate one for
your project.

The range finder needs some minor assembly. To use the range finder in your
circuit, you either need to solder on header pins to use it on a breadboard, or
solder on lengths of wire.

You have three ways to connect your range finder: using analog, pulse width,
or serial communication. In this example, you learn how to measure the pulse
width and convert that to distance. The analog output can be read straight
into your analog input pins but provide less accurate results than pulse
width. This example does not cover serial communication.

You need:

 ✓ An Arduino Uno

 ✓ An LV-EZ0 Ultrasonic Range Finder

 ✓ Jump wires

Complete the circuit from the layout and circuit diagrams in Figures 12-13
and 12-14. The connections for the range finder are clearly marked on the
underside of the PCB. The 5V and GND connections provide power for
the sensor and should be connected to the 5V and GND supplies on your
Arduino. The PW connection is the pulse width signal that will be read by pin
7 on your Arduino. Make sure that your distance sensor is affixed to some
sort of base pointed in the direction that you want to measure.

279 Chapter 12: Common Sense with Common Sensors

Figure 12-13:
An LVEZ0

circuit
layout.

Figure 12-14:
An LVEZ0

circuit
diagram.

280 Part III: Building on the Basics

You can find the MaxSonar code by Bruce Allen in the Arduino playground
at www.arduino.cc/playground/Main/MaxSonar, along with some addi-
tional notes and functions. Create a new sketch, copy or type the code into it,
and save it with a memorable name, such as myMaxSonar.

//Feel free to use this code.
//Please be respectful by acknowledging the author in the code if you use or

modify it.
//Author: Bruce Allen
//Date: 23/07/09
//Digital pin 7 for reading in the pulse width from the MaxSonar device.
//This variable is a constant because the pin will not change throughout

execution of this code.
const int pwPin = 7;
//variables needed to store values
long pulse, inches, cm;

void setup() {
 //This opens up a serial connection to shoot the results back to the PC

console
 Serial.begin(9600);
}

void loop() {

 pinMode(pwPin, INPUT);

 //Used to read in the pulse that is being sent by the MaxSonar device.
 //Pulse Width representation with a scale factor of 147 uS per Inch.

 pulse = pulseIn(pwPin, HIGH);
 //147uS per inch
 inches = pulse/147;
 //change inches to centimetres
 cm = inches * 2.54;

 Serial.print(inches);
 Serial.print(“in, “);
 Serial.print(cm);
 Serial.print(“cm”);
 Serial.println();

 delay(500);

}

Press the Compile button to check your code. The compiler highlights any
grammatical errors, turning them red when they are discovered. If the sketch
compiles correctly, click Upload to send the sketch to your board. When it
is done uploading, open the serial monitor and you should see the distance
measured in inches and centimeters. If the value is fluctuating, try using an
object with a bigger surface.

http://www.arduino.cc/playground/Main/MaxSonar

281 Chapter 12: Common Sense with Common Sensors

This sketch allows you to accurately measure distance in a straight line.
Test this with a tape measure and make adjustments to the code if you find
discrepancies.

If nothing happens, double-check your wiring:

 ✓ Make sure that you’re using the correct pin number.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

Understanding the MaxSonar sketch
In the declarations, pin 7 is defined as the pwPin.

//This variable is a constant because the pin will not change throughout
execution of this code.

const int pwPin = 7;

long variables are used to store the pulse width and distances in inches
and centimeters. Notice that you can declare all three in a list if they have no
value.

//variables needed to store values
long pulse, inches, cm;

In setup, the serial connection is opened to print the results.

void setup() {
 //This opens up a serial connection to shoot the results back to the PC

console
 Serial.begin(9600);
}

In the main loop (), the pwPin is set as an input. You can set the input in
the loop () but can also move it to setup ().

void loop() {

 pinMode(pwPin, INPUT);

You use the function pulseIn to return the length of time it takes the pulse
to return to the sensor in microseconds, or μS.

 //Used to read in the pulse that is being sent by the MaxSonar device.
 //Pulse Width representation with a scale factor of 147 uS per Inch.

 pulse = pulseIn(pwPin, HIGH);

282 Part III: Building on the Basics

A pulse travels 1 inch every 147 μS, so you can calculate the number of
inches from the time. From this information, a simple conversion outputs the
distance in different units.

 //147uS per inch
 inches = pulse/147;
 //change inches to centimetres
 cm = inches * 2.54;

The results are printed to the serial monitor, with a Serial.println at the
end to start a new line in between each reading.

 Serial.print(inches);
 Serial.print(“in, “);
 Serial.print(cm);
 Serial.print(“cm”);
 Serial.println();

A delay is added to slow down the readings for legibility, but you can remove
the delay if responsiveness is more important.

 delay(500);

}

This provides you with an accurate distance reading that you can incorpo-
rate into your own projects. A simple way to make use of this is with an if
statement. For example:

if (cm < 50) {
// do something!
}

Testing, Testing . . . Can
Anybody Hear This?

Sound is another way to detect presence, and the best way to do it is with an
electret microphone. It’s common to think of sounds in their analog form as
recognizable noises, but a lot of the sounds we hear every day have under-
gone or will undergo an analog to digital conversion. By converting sound
into a digital signal, it’s possible to interpret it on a computer or an Arduino.
An electret microphone is similar to the microphones found in computer
headsets and is extremely sensitive, but needs an amplifier in order for the
Arduino to register the readings.

283 Chapter 12: Common Sense with Common Sensors

Consider the following during your planning:

 ✓ Complexity: There are plenty of electret mics to choose from, but by
far the easiest is Sparkfun’s Breakout Board for Electret Microphone.
It comes preassembled with the mic mounted on a circuit board and
with an amplifier, and can easily be wired up to an Arduino as an analog
input. It is possible to use electret mics from other headsets or desktop
microphones, but these need their own amplifier to be of any use. There
is some work involved to make the correct housing for the mic to pro-
tect it from the environment or human contact, but this could simply be
an enclosure with a hole.

 ✓ Cost: The microphone itself is extremely cheap at 90 cents (61p) from
Sparkfun (or distributors of their products). The breakout board costs
$7.50 (£5.10), which is not a huge expense for the amount of labor saved.

 ✓ Where: As an ambient sensor, the mic could be placed just about any-
where to map the noise levels of a room. If you’re listening for a specific
noise like a door slamming, it may be best to place the microphone near
that source to get a clear reading.

One unusual use for a mic that I have encountered is monitoring someone’s
breath. As the mic measures the amplitude or volume of the sound, it’s perfect
for this application. By placing the mic at the end of a tube it’s even possible to
monitor the length and intensity of breaths as the air rushes past the mic.

Electret mics are great for measuring the amplitude or volume of noise. This
can be a trigger for a variety of outputs.

Implementing the AnalogInOutSerial sketch
In this example, you monitor sound levels wherever you are using an electret
mic. This simple sensor can be read as an analog input into your Arduino.

You need:

 ✓ An Arduino Uno

 ✓ A Breakout Board for Electret Microphone

 ✓ Jump wires

Complete the circuit from the layout and circuit diagrams in Figures 12-15
and 12-16 to connect the mic as your input and the LED as your output. The
Electret Mic breakout board requires a small amount of soldering to use on
a breadboard or connect to your Arduino. You can either solder on a set of
three header pins or solder on a length of wire, depending on your situation.

284 Part III: Building on the Basics

Figure 12-15:
An electret
mic circuit

layout.

Figure 12-16:
An electret
mic circuit

diagram

285 Chapter 12: Common Sense with Common Sensors

Choose File➪Examples➪03.Analog➪AnalogInOutSerial from the Arduino
menu to load the sketch.

/*
 Analog input, analog output, serial output

 Reads an analog input pin, maps the result to a range from 0 to 255
 and uses the result to set the pulsewidth modulation (PWM) of an output pin.
 Also prints the results to the serial monitor.

 The circuit:
 * potentiometer connected to analog pin 0.
 Center pin of the potentiometer goes to the analog pin.
 side pins of the potentiometer go to +5V and ground
 * LED connected from digital pin 9 to ground

 created 29 Dec. 2008
 modified 9 Apr 2012
 by Tom Igoe

 This example code is in the public domain.

 */

// These constants won’t change. They’re used to give names
// to the pins used:
const int analogInPin = A0; // Analog input pin that the potentiometer is

attached to
const int analogOutPin = 9; // Analog output pin that the LED is attached to

int sensorValue = 0; // value read from the pot
int outputValue = 0; // value output to the PWM (analog out)

void setup() {
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);
}

void loop() {
 // read the analog in value:
 sensorValue = analogRead(analogInPin);
 // map it to the range of the analog out:
 outputValue = map(sensorValue, 0, 1023, 0, 255);
 // change the analog out value:
 analogWrite(analogOutPin, outputValue);

 // print the results to the serial monitor:
 Serial.print(“sensor = “);
 Serial.print(sensorValue);
 Serial.print(“\t output = “);

286 Part III: Building on the Basics

 Serial.println(outputValue);

 // wait 2 milliseconds before the next loop
 // for the analog-to-digital converter to settle
 // after the last reading:
 delay(2);
}

Press the Compile button to check your code. Doing so highlights any gram-
matical errors and turns them red when they are discovered. If the sketch
compiles correctly, click Upload to send the sketch to your board. When it is
done uploading, open the serial monitor to see analog values in the range of
0 to 1024.

If nothing happens, double-check your wiring:

 ✓ Make sure that you’re using the correct pin number.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

See what range of values you get from different noises in your environment
and how sensitive or over sensitive the mic is. Another sketch to consider is
the Smoothing sketch in Chapter 11.By using if statements, you can perform
actions whenever the sound level crosses a threshold.

Understanding the AnalogInOutSerial
sketch
For more details on the workings of this sketch, see the notes in
AnalogInOutSerial in Chapter 7. You can also find suggestions for different
sketches to provide smoothing and calibration in Chapter 11.

Part IV
Unlocking Your

Arduino’s Potential

In this part . . .

P
art IV is all about how to do more with your Arduino
project. You learn how to use the Arduino Mega

2560, which can control more outputs than a regular Uno.
You also learn how additional hardware can allow your
Uno board to do much more than you thought possible,
with shift registers and PWM drivers. With this knowl-
edge, you could animate huge numbers of LEDs to create
your own version of the Las Vegas Strip (or the Blackpool
Illuminations, for my British friends) and control an army
of servo motors to create your very own robot walker to
do your bidding!

Chapter 13

Becoming a Specialist with
Shields and Libraries

In This Chapter
▶ Finding out about shields
▶ Looking at the range of shields available
▶ Understanding libraries

T
he further you progress in learning about Arduino, the more you want
to do, and it’s natural to want to run before you can walk. The areas that

interest you may be highly specialized in themselves and require a huge
investment of time to understand. Perhaps the most important thing about
Arduino is the Arduino community, which is where you can get help when
you want go further.

The traditional viewpoint that is hammered into us in education is to protect
our ideas for dear life. Thankfully, many people in the Arduino community
have seen past that limitation and are kind enough to share their hard work.
By sharing this knowledge, the Arduino community helps the hardware and
software become available to more people, who find new and interesting uses
for it. If these people in turn share their results, the community continues to
grow and eventually makes even the most difficult projects achievable. In this
chapter, you find out more about how powerful shared resources such as
shields and libraries can be, even for beginners.

Looking at Shields
Shields are pieces of hardware that sit on top of your Arduino, often to give
it a specific purpose. For example, you can use a shield to make it easier to
connect and control motors or even to turn your Arduino into something as
complex as a mobile phone. A shield may start out as an interesting bit of
hardware that an enthusiast has been experimenting with and wants to share
with the community. Or an enterprising individual (or company) may design
a shield to make a specific application easier based on demand from the
Arduino community.

290 Part IV: Unlocking Your Arduino’s Potential

Shields can be very simple or very complex. They are sold preassembled or
as kits. Kits allow you more freedom to assemble the shield as you need it to
be. Some kits require you to assemble the circuitry of the boards, although
more complex shields may already be largely assembled, needing only
header pins.

Shields allow you to use your Arduino for more than one purpose and to
change that purpose easily. They neatly package the electronics for that cir-
cuit in the same footprint as an Arduino. They are stackable to combine dif-
ferent functionalities. But they all have to use the same pins on the Arduino,
so if you stack shields, watch out for those that need to use the same pins.
They always connect the GND pins, too, because any communication by your
Arduino and another device needs a common GND.

Considering combinations
In theory, shields could be stacked on top of each other forever, but you
should take some points into consideration before combining them:

 ✓ Physical size: Some shields just don’t fit on top of one another.
Components that are higher than the header sockets may touch the
underside of any board on top of it. This situation, which can cause
short circuits if a connection is made that shouldn’t be, can seriously
damage your boards.

 ✓ Obstruction of inputs / outputs: If an input or output is obstructed by
another shield, it becomes redundant. For example, there’s no point
having a Joystick Shield or an LCD Shield under another shield because
no more than one can be used.

 ✓ Power requirements: Some hardware requires a lot of power. Although
it is all right for shields to use the same power and ground pins, there is
a limit to the amount of current that can flow through the other input/
output (I/O) pins: 40mA per pin and 200mA max. between all I/O pins.
Exceed this, and you run the risk of seriously damaging your board and
any other attached shield. In most cases, you can easily remedy this
problem by powering your Arduino and shields from an external power
supply so that the current isn’t passed through the Arduino. Make sure
to use a common GND if you’re communicating between a board using
I2C, SPI, or serial.

 ✓ Pins: Some shields require the use of certain pins. It’s important to make
sure that shields aren’t doubling up on the same pins. In the best case,
the hardware will just be confused; in the worst case, you can send volt-
age to the wrong place and damage your board.

 ✓ Software: Some of these shields need specific libraries to work. There
can be conflicts in libraries calling on the same functions, so make sure
to read up on what’s required for your shield.

291 Chapter 13: Becoming a Specialist with Shields and Libraries

 ✓ Interference with radio/WiFi/GPS/GSM: Wireless devices need space
to work. Move antennas or aerials away from the board to get a clear
signal. If an antenna is mounted on the board, it’s generally a bad idea to
cover it. Always try to place wireless shields at the top of the stack.

Reviewing the field
To give you an idea of available shields, this section covers some of the most
interesting and useful shields on the market shows you where to look for
more information.

 Note that all prices were current at the time this book was written and are
liable to change, but I’ve included them to give you an idea of the cost. Links
to products may also change, so always try searching for the product if the
link is broken. Technical information is gathered from the manufacturers web-
sites, but you should always check the details yourself to make sure that you
are buying what you need. Boards are revised occasionally, so always keep an
eye out for the latest versions.

Finally, a lot of feedback on all of these products is available online, so
always read the comments and forums to get a good understanding of what
you’re buying.

This range of shields covers a vast number of different uses and the huge
potential of Arduino projects. For many projects, a shield is all you need, but
a shield is also an excellent stepping stone for proving a concept before refin-
ing or miniaturizing your project.

 Prices provided are from a range of distributors to show the approximate
value of the items. If you’re a savvy shopper or looking to buy in bulk, you may
also be able to reduce the cost further.

Proto Shield Kit Rev3
Made by: Arduino

Price: £8.95 from RS Components; $12.95 from Mouser

Pins used: None

The Proto Shield (shown in Figure 13-1) is a platform for building custom
circuits on your Arduino. Many shields listed in this chapter add a specific
function to your Arduino, but with a Proto Shield, you can decide how to use
it. Take your existing breadboard layouts and solder them to the surface of
the Proto Shield to make your project much more durable. Proto Shields also
come in a larger size to match the Arduino Mega’s footprint. Another handy
feature of these shields is the handy space to attach SMD parts, which can be
difficult to do otherwise.

292 Part IV: Unlocking Your Arduino’s Potential

The Proto Shield is either sold fully assembled or as a kit that requires
soldering.

You can find details about the shield on the Arduino product page
(http://arduino.cc/en/Main/ArduinoProtoShield).

Figure 13-1:
A fully

assembled
Proto

Shield.

ProtoScrew Shield
Made by: WingShield Industries

Price: £9.94 from Proto-Pic; $14.95 from SparkFun

Pins used: None

The ProtoScrew Shield is extremely similar to the regular Proto Shield but
has large screw terminals connected to the pins as well. This feature is great
for applications that have lots of inputs that may need changing or swapping,
or just for easier assembly and disassembly. Changing a piece of wire is much
easier with screw terminals than with soldering, so bear this in mind when
planning your next project.

The ProtoScrew Shield is sold as a kit and requires soldering.

http://arduino.cc/en/Main/ArduinoProtoShield

293 Chapter 13: Becoming a Specialist with Shields and Libraries

You can find more details on the SparkFun products page (www.sparkfun.
com/products/9729).

Adafruit Wave Shield v1.1
Made by: Adafruit

Price: £18.00 from Oomlou; $22.00 from Adafruit

Pins used: 13, 12, 11, 10, 5, 4, 3, 2 on the Uno R3

The Wave Shield (see Figure 13-2) is a relatively cheap kit that allows you to
play sounds or music with your Arduino. The Wave Shield allows you to play
.WAV files directly from an SD card, making it easy to upload and change the
sound files from your computer. To use the shield, you need the WaveHC
library available from the product page or Google Code (http://code.
google.com/p/wavehc/).

The Wave Shield is sold as a kit and requires soldering. The SD card reader
must use pins 13, 12, and 11 because they support high-speed serial periph-
eral interface (SPI), which is a protocol needed to transfer data quickly. Pin
10 is used to communicate with the SD card reader, and pins 5, 4, 3, and 2 are
used to talk to the digital to analog converter (DAC), which converts a digital
music signal into an analog voltage.

For more details, visit the product page on Adafruit’s website (www.
adafruit.com/products/94), where you can find a thorough tutorial as
well (www.ladyada.net/make/waveshield/).

Figure 13-2:
A fully

assembled
Wave

Shield.

https://www.sparkfun.com/products/9729
https://www.sparkfun.com/products/9729
http://code.google.com/p/wavehc/
http://code.google.com/p/wavehc/
http://www.adafruit.com/products/94
http://www.adafruit.com/products/94
http://www.ladyada.net/make/waveshield/

294 Part IV: Unlocking Your Arduino’s Potential

MP3 Player Shield
Made by: SparkFun

Price: £23.95 from HobbyTronics; $39.95 from SparkFun

Pins used: 13, 12, 11, 9, 8, 7, 6, 5, 4, 3, 2 on the Uno R3

Turn your Arduino into an MP3 player with this easy-to-assemble shield! Not
only can it decode MP3 files, it’s also capable of decoding Ogg Vorbis, AAC,
WMA, and MIDI. The MP3 Shield also has a MicroSD card reader for ease
of uploading files, and it has a 3.5mm mini jack that you can plug into most
speaker systems.

The MP3 Player Shield (shown in Figure 13-3) is assembled, but requires
minor soldering to attach the header pins or header sockets. The SD card
reader uses pins 13, 12, and 11. You use pin 9 to talk with the SD card reader.
Use pins 8, 7, 6, and 2 talk to the MP3 Audio Decoder VS1053B, and you use 4
and 3 for additional midi functionality.

Figure 13-3:
An MP3

shield kit.

For more details, visit the SparkFun products page (www.sparkfun.com/
products/10628). There is also a tutorial page to get you started (www.
sparkfun.com/tutorials/295), but this was written quite a while ago

http://www.sparkfun.com/tutorials/295
http://www.sparkfun.com/products/10628

295 Chapter 13: Becoming a Specialist with Shields and Libraries

and is out of date. Thankfully, the comments beneath the tutorial address
many of the issues with this guide, and one user has even written a library to
make your life easier. This is a great example of the Arduino community sup-
porting the products that already exist.

 Always read the comments and forum entries on products and kits. These
comments often contain a lot of detail on the ease (or lack of) of a specific
product. This is also the place to voice your own problems. Just be sure that
you’re not repeating something that’s solved further down the page; other-
wise, you’ll be advised to read the manual!

MIDI Shield
Made by: SparkFun

Price: £13.90 from HobbyTronics; $19.95 from SparkFun

Pins used: Uses pins 7, 6, 4, 3, 2, A1, A0 on the Uno R3

MIDI is short for Musical Instrument Digital Interface, and it revolutionized
the music industry in the 1980s. Despite being relatively old now, MIDI is still
a good standard to connect instruments, computer, stage effects, and other
hardware and so is still widely used. With the MIDI shield, you can interface
with anything that can send or receive MIDI data and incorporate it into your
Arduino project.

The MIDI Shield is sold as a kit and requires soldering.

For more details, visit the Sparkfun product page (www.sparkfun.com/
products/9595). You can find some excellent general tutorials on MIDI
available at (http://arduino.cc/en/Tutorial/Midi and http://
itp.nyu.edu/physcomp/Labs/MIDIOutput). A lot of excellent reference
material is at (www.tigoe.net/pcomp/code/communication/midi/ and
http://hinton-instruments.co.uk/reference/midi/protocol/).

RGB LCD Shield w/16 x 2 character display
Made by: Adafruit

Price: £15.36 from Adafruit; $24.95 from Adafruit

Pins used: Uses pins A4 and A5 on the Uno R3

This handy LCD (liquid crystal display) shield packages everything you
need onto one board. LCDs are found in older mobile phones and Nintendo
GameBoys (wow, that sounds old already). They use a film that sits over a
solid-colored surface that is usually backlit. The pixels of this film can be
turned on or off to make shapes, text, or graphics, and this is what you
control with your Arduino. At the center of the shield is an RGB LCD display,
so instead of being stuck with just one color, you can choose from any RGB

http://arduino.cc/en/Tutorial/Midi
http://itp.nyu.edu/physcomp/Labs/MIDIOutput
http://itp.nyu.edu/physcomp/Labs/MIDIOutput
http://hinton-instruments.co.uk/reference/midi/protocol/
http://www.sparkfun.com/products/9595
http://www.tigoe.net/pcomp/code/communication/midi/

296 Part IV: Unlocking Your Arduino’s Potential

color. The RGB backlight is controlled directly from your Arduino. The dis-
play is a 16 x 2 character display (no graphics), and you can write two rows
of 16 characters. Depending on which display you choose, your display is
either colored text on a dark background (negative) or dark text on a colored
background (positive). You have a variety of LCD character displays with
various backlighting and dimensions from which to choose, so be sure to
shop around.

The RGB LCD Shield is sold as a kit and requires soldering. Instead of using
nine pins or more, the LDC, backlight, and the buttons all use just two. By
using the I2C to communicate with the shield, you can use use only an analog
pin 4, which is the data (SDA) line, and analog pin 5, which is the clock (SCL)
line. This protocol is used in many devices, so it is extremely useful to know
about. For more details on I2C, check John Boxall’s excellent tutorial at
http://tronixstuff.wordpress.com/2010/10/20/tutorial-
arduino-and-the-i2c-bus/.

For more details, check out the Adafruit products page (http://adafruit.
com/products/714) and tutorial (http://learn.adafruit.com/rgb-
lcd-shield).

Shields are also available that use the same technology but don’t limit you to
just letters and numbers. If you’re looking to display your own graphics, you
might want to use the SparkFun Color LCD shield, which uses a Nokia 6100
screen, or the larger TFT Touch Shield.

TFT Touch Shield
Made by: Adafruit

Price: £56.74 from Proto-PIC; $59.00 from Adafruit

Pins used: 5, 6, 7, 8, 9, 10, 11, 12, 13, A0, A1, A2, A3

If an LCD display isn’t enough for you, try this TFT Touch Shield to add full
color and touch input to your project. This display is a TFT LCD screen (a
variation on a standard LCD screen that uses thin-film transistor (TFT) tech-
nology to improve the image quality) with a resolution of 240 x 320 pixels and
18-bit colors, giving you 262,144 different shades. The screen is also fitted
with a resistive touch screen to register finger presses anywhere on the sur-
face of the screen.

The TFT Touch Shield is sold fully assembled and requires no soldering, so it
can simply be plugged on top of your Arduino. The Touch Shield needs a lot
of pins to function and leaves you with only digital pins 2 and 3 and analog
pins 4 and 5. Pin 12 is also available if you are not using the microSD reader.

Check out the products page at www.adafruit.com/products/376 and a
full tutorial at http://learn.adafruit.com/2-8-tft-touch-shield.
Adafruit has also very kindly written a complete library for the TFT to draw

http://tronixstuff.wordpress.com/2010/10/20/tutorial-arduino-and-the-i2c-bus/
http://tronixstuff.wordpress.com/2010/10/20/tutorial-arduino-and-the-i2c-bus/
http://adafruit.com/products/714
http://adafruit.com/products/714
http://learn.adafruit.com/rgb-lcd-shield
http://learn.adafruit.com/rgb-lcd-shield
http://learn.adafruit.com/2-8-tft-touch-shield
http://www.adafruit.com/products/376

297 Chapter 13: Becoming a Specialist with Shields and Libraries

pixels, shapes and text (https://github.com/adafruit/TFTLCD-
Library) and a library for the touch screen that detects x, y, and z horizon-
tal movement, vertical movement, and pressure (https://github.com/
adafruit/Touch-Screen-Library).

Joystick Shield
Made by: SparkFun

Price: £8.94 from Proto-PIC; $12.95 from SparkFun

Pins used: 2, 3, 4, 5, 6, A0, A1

The Joystick Shield (shown in Figure 13-4) has all the functions of a modern
game controller on a single Arduino-compatible board. Not only does it give
you four pushbuttons to assign to various functions, it also has a hidden
button in the control stick itself. With the ergonomic control stick, you can
smoothly transition between x and y axes to perform movements with great
accuracy.

The Joystick Shield is sold as a kit and requires soldering. The Joystick Shield
uses only five digital pins and two analog pins, leaving many other Arduino
pins free for other uses. It has five pushbuttons, using digital pins 2 to 6. The
movement of the joystick is measured using two potentiometers: analog 0
maps the x or horizontal movement; analog 1 maps the y or vertical movement.

Figure 13-4:
A Joystick

Shield.

https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/Touch-Screen-Library
https://github.com/adafruit/Touch-Screen-Library

298 Part IV: Unlocking Your Arduino’s Potential

You can find more details on the SparkFun product page (www.sparkfun.
com/products/9760). You can also see in-depth assembly tutorial (www.
sparkfun.com/tutorials/161) and quick-start guide (www.sparkfun.
com/tutorials/171).

Gameduino
Made by: James Bowman

Price: £41.99 from Cool Components; $52.95 from SparkFun

Pins used: 9, 11, 12, 13

The Atmel AVR processor in your Arduino is much more powerful than the
8-bit game consoles of the 1980s, so James Bowman decided to make his own
shield to harness this power and created a game adapter for Arduino: the
Gameduino (see Figure 13-5). With the Gameduino, you can output graphics
to a monitor, projector, or any VGA-compatible display, using the VGA con-
nector on the board. Output audio using the 3.5mm mini jack connector. You
can pair this shield with the Joystick Shield described in the previous section
to create an all-in-one console and controller.

Figure 13-5:
A

Gameduino,
which plays

nicely with
a Joystick

Shield.

https://www.sparkfun.com/products/9760
https://www.sparkfun.com/products/9760
http://www.sparkfun.com/tutorials/171
http://www.sparkfun.com/tutorials/171
http://www.sparkfun.com/tutorials/161

299 Chapter 13: Becoming a Specialist with Shields and Libraries

The Gameduino is sold fully assembled and ready to use. The Gameduino
is treated as an SPI (Serial Peripheral Interface) peripheral by the Arduino,
and four pins are used for communication. For more details, on SPI periph-
erals go to (http://en.wikipedia.org/wiki/Serial_Peripheral_
Interface_Bus). You can find Arduino-specific reading at http://
arduino.cc/en/Reference/SPI. For reference, pin 9 is SEL or SS (slave
select), 11 is MOSI (master output, slave input), 12 is MISO (master input,
slave output), and 13 is SCK or SCLK: serial clock.

A wealth of resources is available on the Gameduino product page (http://
excamera.com/sphinx/gameduino/). To get started, download the exam-
ple sketches to see what’s possible from http://excamera.com/sphinx/
gameduino/samples/. Many specifics of the Gameduino require a lot of read-
ing to fully understand and should be considered advanced work. Good luck!

Adafruit Motor/Stepper/Servo Shield Kit v1.0
Made by: Adafruit

Price: £16.00 from Oomlout; $19.50 from Adafruit

Pins used: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Love motors? Want to try them all? Then this shield is the one for you. The
Adafruit Motor/Stepper/Servo Shield is aptly named and allows you to run
all those motors you love. You can connect up to two 5V hobby servos, two
stepper motors, or four bidirectional DC motors. The screw terminals make
attaching and switching motors as needed easy. When dealing with motors,
it’s always important to make sure that you have enough current to drive
them all, so a handy screw terminal is on the shield to allow you to power
your motors independently of your Arduino.

The Adafruit Motor/Stepper/Servo Shield Kit is sold as a kit and requires sol-
dering. If any DC or stepper motors are in use, pins 4, 7, 8 and 12 are needed
to operate the chip that drives them all (74HC595). Pins 3, 5, 6, or 11 control
the speed of each individual DC or stepper motor. Pins 9 and 10 control any
servos that are connected. This leaves you with digital pins 2 and 13 as well
as a full complement of analog input pins, which you can use as digital pins
if needed.

You can find many details on the Adafruit product page (www.adafruit.
com/products/81). A full, in-depth tutorial is on ladyada.net (www.lady
ada.net/make/mshield/). Be aware of how much load is on the motor
because the shield is designed to provide up to 600 mA per motor, with 1.2A
peak current. If you’re approaching 1A, include a heat sink on the motor
driver to dissipate the heat.

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://excamera.com/sphinx/gameduino/
http://excamera.com/sphinx/gameduino/
http://excamera.com/sphinx/gameduino/samples/
http://excamera.com/sphinx/gameduino/samples/
http://www.adafruit.com/products/81
http://www.adafruit.com/products/81
http://www.ladyada.net/make/mshield/

300 Part IV: Unlocking Your Arduino’s Potential

Also, the nice people at Adafruit provide an easy-to-use library for your
motor project (www.ladyada.net/make/mshield/download.html).
Happy motoring!

Motor Shield R3
Made by: Arduino

Price: £18.90 from RS Components; $36.25 from Arduino Store

Pins used: 3, 8, 9, 11, 12, 13, A0, A1

The Arduino Motor Shield is the official motor shield designed by the
Arduino team. It can control a modest number of motors, either two DC
motors or one unipolar stepper motor, but it can cope with high currents of
up to 2A per channel, allowing some heavy lifting. It’s also compatible with
the TinkerKit, which is ideal for situations in which wire stripping and solder-
ing aren’t an option, or for quickly experimenting with using different sensors
to control your motors.

The Arduino Motor Shield Rev3 is sold fully assembled and ready to use. The
pins on the Arduino Motor Shield are divided into A and B channels. You can
use each channel for two individual DC motors to provide four functions:
direction, speed, brake and current sensing. Pins 12 and 13 control the direc-
tion of each channel, respectively; pins 3 and 11 control the speed of each
motor using pwm; pins 9 and 8 are used to break the motor suddenly, rather
than allowing it to slow down; and analog pins 0 and 1 can be used read the
current draw of the motor on each channel, outputting 3.3V at the maximum
rated current of 2A.

To power the motors, you need to use an external power supply that can be
connected using the screw terminals on the shield. It’s also worth noting that
headers on top of the board are for the TinkerKit modules and are not so
easy to use without the correct connectors.

To find out more about the Arduino Motor Shield, head over to the prod-
uct page at the Arduino store (http://store.arduino.cc/ww/index.
php?main_page=product_info&cPath=11_5&products_id=204).
You can find even more more detail about the shield on the Arduino site
(http://arduino.cc/en/Main/ArduinoMotorShieldR3). Curious about
TinkerKit modules? Visit www.tinkerkit.com.

LiPower Shield
Made by: SparkFun

Price: £23.57 from Proto-PIC; $29.95 from SparkFun

Pins used: 3

http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=11_5&products_id=204
http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=11_5&products_id=204
http://arduino.cc/en/Main/ArduinoMotorShieldR3
http://www.tinkerkit.com/
http://www.ladyada.net/make/mshield/download.html

301 Chapter 13: Becoming a Specialist with Shields and Libraries

If you want to make your Arduino project more mobile, batteries are the
answer. Rather than use bulky AA or AAA battery packs, the LiPower Shield
allows you to use rechargeable lithium batteries instead. Although lithium
batteries are rated only as 3.7V, some clever hardware steps them up to 5V
to make them sufficient to power your Arduino.

The LiPower Shield is assembled but requires minor soldering to attach
the header pins or header sockets. Because the LiPower shield is there to
provide power and not consume it, only one pin is in use. Pin 3 can be con-
figured as an alert interrupt pin to signal whenever the battery drops to 32
percent or lower.

For more details, check out the SparkFun product page (www.sparkfun.
com/products/10711). You find interesting notes on the hardware around
the difficulties with charging lithium batteries, so make sure to read all the
comments below the product description.Many other smaller lithium break-
out boards are available that supply the standard 3.7V, such as the Lithium
Polymer USB Charger and Battery by SparkFun (www.sparkfun.com/
products/9876) and the USB/DC Lithium Polymer battery charger 5-12V -
3.7/4.2v by Adafruit (www.adafruit.com/products/280). These breakout
boards are perfect when paired with an appropriate low-voltage Arduino,
such as the Pro Micro - 3.3V/8Mhz (www.sparkfun.com/products/
10999) or the Arduino Pro 328 - 3.3V/8MHz (www.sparkfun.com/products/
10914). These are useful when trying to reduce the size of your Arduino
project.

GPS Shield Retail Kit
Made by: SparkFun

Price: £60.59 from Cool Components; $79.95 from SparkFun

Pins used: 0, 1 or 2, 3 (default)

Using the GPS Shield (Figure 13-6), it’s quick and easy to incorporate location
data into your project. Find your location to within a few meters, maybe to
create GPS art or to map all your movements over the month. This shield is
also great for giving you an extremely accurate time.

The GPS Shield comes assembled but requires minor soldering to attach the
header pins or header sockets. Data from the GPS module can either be set
to UART to directly send location data to the Arduino’s hardware RX and TX
pins, 0 and 1, or set to DLINE to send the data to digital pins 2 and 3 (default).
Code can be sent to the Arduino only when it is set to DLINE.

Note that the retail kit is sold with a GPS module and header pins. This shield
is designed for the EM-406a module (www.sparkfun.com/products/465).

http://www.sparkfun.com/products/10711
http://www.sparkfun.com/products/9876
http://www.sparkfun.com/products/10999
http://www.sparkfun.com/products/10914
http://www.sparkfun.com/products/465
http://www.adafruit.com/products/280

302 Part IV: Unlocking Your Arduino’s Potential

You can use other modules, such as the EM-408 and EB-85A, but you need to
buy the appropriate socket separately.

For more details, visit the SparkFun product page (www.sparkfun.com/
products/10710). There is also a great GPS Shield Quickstart Guide to
get you going in no time; go to (www.sparkfun.com/tutorials/173/).
SparkFun also has an excellent GPS buying guide (www.sparkfun.com/
pages/GPS_Guide).

Figure 13-6:
The

Sparkfun
GPS Shield

with the
EM406a.

GPS Logger Shield Kit v1.1
Made by: Adafruit

Price: £20.53 from Proto-PIC; $19.50 from Adafruit

Pins used: 10, 11, 12, 13 and any two other pins

The GPS Logger Shield lets you track and store location information using the
Global Positioning System. You can find your location within a few meters.
Use it to create GPS art or to map all your movements over the month. It’s
also great for giving you an extremely accurate time. This data is stored on

http://www.sparkfun.com/commerce/product_info.php?products_id=8288
http://www.sparkfun.com/products/10710
http://www.sparkfun.com/tutorials/173/
http://www.sparkfun.com/pages/GPS_Guide

303 Chapter 13: Becoming a Specialist with Shields and Libraries

an SD card as a .txt file which can then be overlaid onto Google Maps or visu-
alized in some other way.

With the (ever increasing) size of SD cards, you are able to store much more
data than your Arduino can on its own internal memory. This is especially
useful because it keeps your data-logging device mobile without the need for
a computer, meaning that you can leave that bulky laptop at home and send
your GPS device out into the world!

The Adafruit GPS Logger Shield Kit is sold as a kit and requires soldering.
Pins 10, 11, 12, and 13 are used for communication with the SD card. The GPS
module actually requires only a few pins, which are connected by using jump
wires to whichever pins you would prefer. RX and TX pins must be connected
to two digital pins, such as 2 and 3. You can enable other optional functions,
such as a signalling LED to indicate when data is logged, a pin to monitor the
pulse from the GPS synchronization clock, and a pin to detect when an SD
card is in the slot.

Note that you need to buy a GPS module and SD separately. This shield is
designed for the EM-406a module (www.adafruit.com/products/99) but
works with a variety of modules (listed at http://ladyada.net/make/
gpsshield/modules.html).

Get the shield and more information on Adafruit (www.adafruit.com/
products/98). You can view an in-depth tutorial on Ladyada’s site (www.
ladyada.net/make/gpsshield/) that details everything from construc-
tion of the kit through to the Arduino code, along with uses for the GPS data.

Wireless Proto Shield and Wireless SD Shield
Made by: Arduino

Price: £12.22 and £15.92 from RS Components; $27 and $36 from Arduino Store

Pin requirements: 0 and 1 for the Wireless Proto Shield; 0, 1, 4, 11, 12, 13 for
the Wireless Shield SD

The Arduino Wireless Proto Shield lets you create a network of wireless
devices using XBee radio modules. These highly versatile, reliable, and
affordable modules are used to link multiple Arduino boards to create your
very own wireless sensor network. The Wireless Shield SD also gives you
the ability to store any data you might be collecting from your network and
visualize it later on a computer. Each shield also has ample space to add a
number of sensors or actuators to your project.

The Wireless Shield and Wireless Shield SD are sold fully assembled and
ready to use. The shield talks with either the sketch on the Arduino or
through the Arduino to a computer using USB. Using the serial select switch,
you can toggle between these two modes. If you have the Wireless Shield

http://ladyada.net/make/gpsshield/modules.html
http://ladyada.net/make/gpsshield/modules.html
http://www.adafruit.com/products/99
http://www.adafruit.com/products/98
http://www.ladyada.net/make/gpsshield/

304 Part IV: Unlocking Your Arduino’s Potential

SD, pins 4, 11, 12 and 13 are used to communicate with it and are therefore
unavailable for any other function.

Note that you need to purchase the XBee module separately. The XBee 1mW
Chip Antenna - Series 1 (802.15.4) is a good one to start with and is available
from RS Components (http://uk.rs-online.com/web/p/zigbee-ieee-
802154/0102715/) and SparkFun (www.sparkfun.com/products/8664).
SparkFun has an excellent XBee buying guide that is extremely helpful if
you’re starting in the world of wireless networks (www.sparkfun.com/
pages/xbee_guide).

The Arduino product page has more detail on the shield (http://arduino.
cc/en/Main/ArduinoWirelessShield), and there is a tutorial for
simple communication using the XBee 1mW Chip Antenna - Series 1
(802.15.4) on the Arduino site (http://arduino.cc/en/Guide/
ArduinoWirelessShield).

Ethernet Shield R3 and Ethernet Shield R3 with PoE
Made by: Arduino

Price: £25.42 and £36.82 from RS Components; $45.95 and $59.95 from
SparkFun

Pin requirements: 4, 10, 11, 12, 13

The Ethernet Shield (shown in Figure 13-7) allows your Arduino to talk to
the Internet without the need for a computer in the middle. Your Arduino
can, therefore, either use or contribute to the wealth of data on the Internet.
It may be monitoring Twitter for hashtags or uploading sensor data for the
world to see. The shield even has a microSD card reader to allow you to save
results or store files to distribute over the network. The R3 is the latest ver-
sion of this shield and adds a few extra pins to make the shield compatible
with the Uno R3.

The Ethernet Shield R3 with Power-over-Ethernet (PoE) includes an extra
module that runs diagonally across the board. This is a PoE module and
allows you to power your Arduino using the Ethernet cable. This requires a
Category 5 (CAT5) Ethernet cable, conforming to the IEEE 802.3af PoE stan-
dard and a port that supports PoE. In many cases, a conventional house hub
or router does not support PoE, but it’s a good feature to be aware of.

The Ethernet Shield R3 and Ethernet Shield R3 with PoE are sold fully assem-
bled and ready to use. Pins 4, 11, 12, and 13 are used to communicate with
the SD card on the shield, so they should not be used for any other function.

Get more details on the Arduino product page (http://arduino.cc/en/
Main/ArduinoEthernetShield) as well as information in the Ethernet
library (http://arduino.cc/en/Reference/Ethernet).

http://uk.rs-online.com/web/p/zigbee-ieee-802154/0102715/
http://uk.rs-online.com/web/p/zigbee-ieee-802154/0102715/
http://arduino.cc/en/Main/ArduinoWirelessShield
http://arduino.cc/en/Main/ArduinoWirelessShield
http://arduino.cc/en/Guide/ArduinoWirelessShield
http://arduino.cc/en/Guide/ArduinoWirelessShield
http://arduino.cc/en/Main/ArduinoEthernetShield
http://arduino.cc/en/Main/ArduinoEthernetShield
http://arduino.cc/en/Reference/Ethernet
http://www.sparkfun.com/pages/xbee_guide
http://www.sparkfun.com/products/8664

305 Chapter 13: Becoming a Specialist with Shields and Libraries

Figure 13-7:
An Ethernet

Shield
(without PoE

module).

WiFi Shield
Made by: Arduino

Price: £74.39 from Proto-PIC; $84.95 from SparkFun

Pin requirements: 4, 7, 10, 11, 12, 13

The WiFi Shield (shown in Figure 13-8) allows you to connect wirelessly to
a hub or hotspot. It’s especially useful when you don’t have access to an
Ethernet port or want a degree of mobility for your project, or to access or
put information on the Internet. The shield even has a microSD card reader
to allow you to save results or store files to distribute over the network.

The WiFi Shield is sold fully assembled and ready to use. The Arduino talks
with both the WiFi Shield’s processor and the microSD card reader using the
SPI bus, pins 11, 12, and 13. You use pin 10 to select the processor on the
WiFi Shield (HDG104) and pin 4 to select the microSD card reader. Use pin 7
for handshaking — the process of setting up communication between two
devices, in this case the Arduino and the WiFi Shield.

Find more details on the WiFi Shield on the Arduino product page (http://
arduino.cc/en/Main/ArduinoWiFiShield). There is an excellent tuto-
rial for getting started with the WiFi Sshield on the Arduino site (http://
arduino.cc/en/Guide/ArduinoWiFiShield) and details of the

http://arduino.cc/en/Main/ArduinoWiFiShield
http://arduino.cc/en/Main/ArduinoWiFiShield
http://arduino.cc/en/Guide/ArduinoWiFiShield
http://arduino.cc/en/Guide/ArduinoWiFiShield

306 Part IV: Unlocking Your Arduino’s Potential

WiFi library on the Arduino Reference page (http://arduino.cc/en/
Reference/WiFi).

Figure 13-8:
The Arduino
WiFi Shield.

Cellular Shield with SM5100B
Made by: SparkFun

Price: £66.17 from Proto-PIC; $99.95 from SparkFun

Pin requirements: 0, 1 or 2, 3 (default)

The Cellular Shield (Figure 13-9) turns your modest Arduino into a functional
mobile phone. With this shield, you can send and receive calls, text mes-
sages, and even data. All you need is a prepaid SIM card and an antenna, and
you’re ready to communicate with the world. By using Serial.print, you can
send the correct codes to talk to the SM5100B.

The Cellular Shield with SM5100B is sold fully assembled and ready to use.
You need to purchase an antenna with an SMA connector; SparkFun offers the
Quad-band Cellular Duck Antenna SMA (www.sparkfun.com/products/
675). The Arduino talks with the SM5100B using either the RX and TX pins 0
and 1 or pins 2 and 3 using the SoftwareSerial library. By default, this is set to 2
and 3 but can be changed by removing the solder jumper on the board.

http://arduino.cc/en/Reference/WiFi
http://arduino.cc/en/Reference/WiFi
http://www.sparkfun.com/products/675

307 Chapter 13: Becoming a Specialist with Shields and Libraries

The SIM card should have enough credit to perform the actions you’re trying
to do. Those offering unlimited text messages are especially useful. Other
optional extras are a mic and speaker; without them, you can call and hang
up but won’t be able to do any more than that.

Find more details on the SparkFun products page (www.sparkfun.
com/products/9607). That page has an example sketch, but for a real
introduction, I recommend heading over to John Boxall’s site (http://
tronixstuff.wordpress.com/2011/01/19/tutorial-arduino-and-
gsm-cellular-part-one/). He has some excellent resources available
through his introduction to GSM, so make sure to have a good read.

Figure 13-9:
The Cellular

Shield ready
to connect

people.

Geiger Counter – Radiation Sensor Board
Made by: Liberium

Price: £110.80 from Cooking Hacks; $170 from MicroController Pros

Pin requirements: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

The Radiation Sensor Board is probably one of the most impressive Arduino
shields. It allows you to monitor radiation levels in the environment. This
board was made to help the people of Japan monitor radiation levels

http://tronixstuff.wordpress.com/2011/01/19/tutorial-arduino-and-gsm-cellular-part-one/
http://tronixstuff.wordpress.com/2011/01/19/tutorial-arduino-and-gsm-cellular-part-one/
http://tronixstuff.wordpress.com/2011/01/19/tutorial-arduino-and-gsm-cellular-part-one/
http://www.sparkfun.com/products/9607

308 Part IV: Unlocking Your Arduino’s Potential

following the radiation leakages in Fukushima in March 2011. The Geiger
counter can use various Geiger tubes to detect different types and levels of
radiation. There is also an LCD display, LED, and piezo speaker for feedback.

 This shield uses Geiger tubes that operate at dangerously high voltages (400V–
1000V), so it requires extreme care. It is best to keep the Radiation Sensor
Board in an enclosure to keep it out of human contact. Radiation is dangerous,
but so is electricity. If you don’t know what you’re doing, don’t mess around.

The piezo speaker and LED are connected to pin 2, which triggers an inter-
rupt with every pulse that the Geiger tube generates. Depending on the tube
used and the number of pulses or counts per minute (cpm), you can deter-
mine the actual radiation level in Sieverts per hour. Pins 3 to 8 are used for
the LCD display to generate the sensor readings in detail. Pins 9 to 13 are
used for the LED bar to give clear visual feedback of the radiation level. The
first three LEDs are green, and the last two are red, showing that a high and
potentially dangerous level of radiation is being approached.

More details on this project can be found on the Cooking Hacks product page
(www.cooking-hacks.com/index.php/documentation/tutorials/
geiger-counter-arduino-radiation-sensor-board).

Staying current
Many other great shields are available, and new and improved ones are being
released all the time. You can take some actions to keep up to date, though.

Check the stores regularly for the latest products. It’s a bit like browsing in a
DIY shop; you never know what you’ll find.

 ✓ Arduino Store (http://store.arduino.cc)

 ✓ Adafruit(www.adafruit.com)

 ✓ Maker Shed (www.makershed.com)

 ✓ Seeed Studio (www.seeedstudio.com)

 ✓ SparkFun(www.sparkfun.com)

Also, check Arduino-related blogs regularly. Blogs and news pages on Arduino-
related sites often show off new kits or new and interesting applications of
older hardware, so they’re always worth checking for a spot of inspiration.

 ✓ Arduino Blog (http://arduino.cc/blog)

 ✓ Adafruit (www.adafruit.com/blog)

 ✓ Hack A Day (http://hackaday.com)

http://www.cooking-hacks.com/index.php/documentation/tutorials/geiger-counter-arduino-radiation-sensor-board
http://www.cooking-hacks.com/index.php/documentation/tutorials/geiger-counter-arduino-radiation-sensor-board
http://store.arduino.cc
http://arduino.cc/blog
http://hackaday.com
http://www.adafruit.com/blog
http://www.adafruit.com
http://www.makershed.com
http://www.seeedstudio.com
http://www.sparkfun.com

309 Chapter 13: Becoming a Specialist with Shields and Libraries

 ✓ Make (http://blog.makezine.com)

 ✓ Seeed Studio (www.seeedstudio.com/blog)

 ✓ SparkFun (www.sparkfun.com/news)

Some people have made efforts to document the various shields. Check
these sites:

 ✓ Arduino Playground (www.arduino.cc/playground/Main/
SimilarBoards#goShie)

 ✓ Arduino Shield List (http://shieldlist.org)

Browsing the Libraries
Basic sketches can get you quite a long way, but when you get more
advanced you need to know about libraries. Libraries provide extra function-
ality to your sketch, either to use specific hardware or to incorporate more
complex functions in software. In the same way that you’d go to a physical
library to learn something new, you include libraries in your code to teach
your Arduino something new. By including a library in a sketch you can
quickly and easily access functions to help you achieve your goals.

Getting started with complex hardware or software can be a difficult thing to
do. Luckily a lot of people have taken the time to document their progress
and have released libraries, often with examples, that can be easily inte-
grated into your own sketches. From this it’s possible to get something work-
ing, get to grips with it, and hopefully gain a better understanding of it. This
is the learn-by-doing approach of Arduino that allows you to make a lot of
progress quickly and easily with hardware or software that would otherwise
be a huge challenge.

Reviewing the standard libraries
This section covers is a selection of the libraries included in the current
release of Arduino at the time of writing (1.0.1). The standard libraries cover
a wide range of subject areas and are usually popular topics that have been
heavily documented. You can find these libraries by choosing Sketch➪Import
Library. Choosing a library includes one line at the top of your current
sketch, such as #include <EEPROM.h>. Before you understand a library,
you should try an example of it. You’ll find examples at the bottom of the
menu that appears at File➪Examples.

http://blog.makezine.com
http://shieldlist.org
http://www.seeedstudio.com/blog
http://www.sparkfun.com/news
www.arduino.cc/playground/Main/SimilarBoards#goShie

310 Part IV: Unlocking Your Arduino’s Potential

Here is a brief description of what library does:

 ✓ EEPROM (http://arduino.cc/en/Reference/EEPRO): Your
Arduino has Electrically Erasable Programmable Read-Only Memory
(EEPROM), which is permanent storage similar to the hard drive in a
computer. Data stored in this location stays there even if your Arduino
is powered down. Using the EEPROM library, you can read from and
write to this memory.

 ✓ Ethernet (http://arduino.cc/en/Reference/Ethernet): After you
have your Ethernet Shield, the Ethernet library allows you to quickly
and easily start talking to the Internet. When you use this library, your
Arduino can either act as a server that is accessible to other devices or
as a client that requests data.

 ✓ Firmata (http://arduino.cc/en/Reference/Firmata): Firmata
is one way to control your Arduino from software on a computer. It is a
standard communication protocol, which means that rather than write
your own communication software, you can use the library to allow easy
communication between hardware and software.

 ✓ LiquidCrystal (http://arduino.cc/en/Reference/LiquidCrystal):
The LiquidCrystal library helps your Arduino talk to most liquid crystal
displays. The library is based on the Hitachi HD44780 driver, and you can
usually identify these displays by their 16-pin interface.

 ✓ SD (http://arduino.cc/en/Reference/SD): The SD library allows
you to read from and write to SD and microSD cards connected to your
Arduino. SD cards need to use SPI to transfer data quickly, which hap-
pens on pins 11, 12, and 13. You also need to have another pin to select
the SD card when it’s needed.

 ✓ Servo (http://arduino.cc/en/Reference/Servo): The Servo
library allows you to control up to 12 servo motors on the Uno R3 (and
up to 48 on the Mega). Most “hobby” servos turn 180 degrees, and using
this library, you can specify the degree that you want your servo(s) to
turn to.

 ✓ SPI (http://arduino.cc/en/Reference/SPI): The Serial Peripheral
Interface (SPI) is a method of communication allowing your Arduino
to communicate very quickly with one or more devices over a short
distance. This could be could be receiving data from sensors, talking to
peripherals such as an SD card reader, or communicating with another
microcontroller.

 ✓ SoftwareSerial (http://arduino.cc/en/Reference/Software
Serial): The Software Serial library allows you to use any digital pins to
send and receive serial messages instead of, or in addition to, the usual
hardware pins, 0 and 1. This is great if you want to keep the hardware
pins free for communication to a computer, allowing you to have a per-
manent debug connection to your project while still being able to upload
new sketches, or to send duplicate data to multiple serial devices.

http://arduino.cc/en/Reference/EEPRO
http://arduino.cc/en/Reference/Ethernet
http://arduino.cc/en/Reference/Firmata
http://arduino.cc/en/Reference/LiquidCrystal
http://arduino.cc/en/Reference/SD
http://arduino.cc/en/Reference/Servo
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SoftwareSerial
http://arduino.cc/en/Reference/SoftwareSerial

311 Chapter 13: Becoming a Specialist with Shields and Libraries

 ✓ Stepper (http://arduino.cc/en/Reference/Stepper): The step-
per library allows you to control stepper motors from your Arduino.
This code also requires the appropriate hardware to work, so make
sure to read Tom Igoe’s notes on the subject (www.tigoe.net/pcomp/
code/circuits/motors/stepper-motors/).

 ✓ WiFi (http://arduino.cc/en/Reference/WiFi): The WiFi library is
based on the Ethernet library listed previously, but with alterations spe-
cific to the WiFi Shield to allow you to wirelessly connect to the Internet.
The WiFi library also works well with the SD library, allowing you to
store data on the shield.

 ✓ Wire (http://arduino.cc/en/Reference/Wire): The Wire library
allows your Arduino to communicate with I2C devices (also known as
TWI, or two-wire interface). Such devices could be addressable LEDs or
a Wii Nunchuk, for example.

Installing additional libraries
Many libraries aren’t included in the Arduino software. Some libraries are
for completely unique applications such as specific hardware or functions;
others are refinements or adaptations of existing libraries. Luckily, Arduino
makes including these incredibly easy, so you can quickly try them all to see
which are right for your needs.

Libraries are usually be distributed as .zip files that have the same name
as the library; for example, the capacitive sensing library CapSense should
be distributed as CapSense.zip and should contain a folder of the same
name when unzipped. It may also be distributed as a version, such as
CapSense-1.0.1 or CapSense_20120930. Distributing it as a version allows you
to keep track of the current version so that you can use the latest or a spe-
cific revision. Whichever version you are using, be sure to name the library
folder with the library name CapSense.

Inside the folder there are files ending in .h and .cpp, such as CapPin.h
and CapPin.cpp, and maybe even an Examples folder. If your .zip file
contains only loose .h and .cpp files, you should place them in a folder with
a library name. Sometimes you may find many .h and .cpp files that
all perform different functions in the library, so make sure they’re all inside
the folder.

In the latest release of Arduino (1.0.1 at time of writing), it’s easy to include
libraries. Simply move the library folder into your Arduino sketch folder.

In Mac OSX, it will look like this:

~/Documents/Arduino/libraries/CapSense/CapPin.h
~/Documents/Arduino/libraries/CapSense/CapPin.cpp
~/Documents/Arduino/libraries/CapSense/examples

http://arduino.cc/en/Reference/Stepper
http://arduino.cc/en/Reference/WiFi
http://arduino.cc/en/Reference/Wire
http://www.tigoe.net/pcomp/code/circuits/motors/stepper-motors/

312 Part IV: Unlocking Your Arduino’s Potential

In Windows, it will look like this:

My Documents /Arduino/libraries/CapSense/CapPin.h
My Documents /Arduino/libraries/CapSense/CapPin.cpp
My Documents /Arduino/libraries/CapSense/examples

After the library is installed, restart Arduino and choose Sketch➪Import
Library to check that your library is in the list, as shown in Figure 13-10. The
libraries does not function if the files are not in the correct folder structure
or if the names are changed, so be sure to check this if you cannot see the
library there.

Figure 13-10:
The Arduino
menu shows
the library in

the Import
Library

dropdown
list.

If the library has an Examples folder, you should also be able to see the exam-
ples in File➪Examples under the name of the library, as in Figure 13-11.

That’s all there is to installing a library. Removing a library is as simple as
taking the library folder in question out of the Arduino sketch folder.

313 Chapter 13: Becoming a Specialist with Shields and Libraries

Figure 13-11:
If there are

examples
with the

library, you
should also

be able to
see them in

the menu.

Obtaining contributed libraries
A long list of community-contributed libraries appears on the Arduino librar-
ies page (http://arduino.cc/en/Reference/Libraries), and an
exhaustive list appears on the Arduino Playground (http://arduino.cc/
playground/Main/LibraryList).

CapSense and TimerOne are two commonly used and helpful libraries to start
with as you get familiar with contributed libraries:

 ✓ CapSense (www.arduino.cc/playground/Main/CapSense):
CapSense is a library that allows you to make one or many pins on your
Arduino into capacitive sensors. This allows you to make simple touch,
pressure, or presence detection sensors quickly and easily with very
little hardware.

 The Arduino Playground page has a lot of useful information, but a more
recent version of the code can be found on GitHub (https://github.
com/moderndevice/CapSense).

http://arduino.cc/en/Reference/Libraries
http://arduino.cc/playground/Main/LibraryList
http://arduino.cc/playground/Main/LibraryList
https://github.com/moderndevice/CapSense
https://github.com/moderndevice/CapSense
http://www.arduino.cc/playground/Main/CapSense

314 Part IV: Unlocking Your Arduino’s Potential

 ✓ TimerOne (http://playground.arduino.cc//Code/Timer1):
TimerOne or Timer1 uses a hardware timer on your Arduino to perform
timed events at regular intervals. It’s a great library for reading sensor
data regularly without interrupting what’s going on in the main loop.
There is a page on the Arduino Playground and an up-to-date version of
the library on Google Code (http://code.google.com/p/arduino-
timerone/).

If you’re really keen to understand libraries more and maybe even write your
own, check out this introduction to writing your own libraries on the Arduino
page at http://arduino.cc/en/Hacking/LibraryTutorial.

http://playground.arduino.cc/Code/Timer1
http://code.google.com/p/arduino-timerone/
http://code.google.com/p/arduino-timerone/
http://arduino.cc/en/Hacking/LibraryTutorial

Chapter 14

Sensing More Inputs and
Controlling More Outputs

In This Chapter
▶ Sending lots of signals using a Mega 2560 board
▶ Using a shift register
▶ Learning how to count in binary

A
n individual input and output is great, and sometimes that’s all that
is necessary for your project. Often, however, you want to sense or

control with a lot of inputs and outputs all at one time. Many of the most
well-known digital art and installations are actually very simple at heart; the
real complexity is in instructing those simple actions to occur hundreds, and
maybe even thousands, of times.

In this chapter, you find out how to perform lots of activities simultaneously
with your Arduino. You might accomplish this by using a bigger board, such
as the Arduino Mega 2560, or by using additional hardware to allow your reg-
ular Arduino Uno to do more than it can on its own. You learn about the pros
and cons of each of these methods to equip you with the right knowledge to
help you build a monster of an Arduino project.

Controlling Multiple LEDs
One of the simplest ways to extend your Arduino project is by using a bigger
board: the Arduino Mega 2560. This monster of a board, shown in Figure 14-1,
gives you a many more pins to play with than a typical Arduino board does:
54 digital I/O pins, 15 PWM capable pins, and 16 analog input pins. With the
Mega 2560, you have a lot more space for all kinds of inputs and outputs. But
that’s not all. The Mega has four hardware serial ports, allowing it to commu-
nicate with multiple serial devices simultaneously. This capability is great for
keeping the USB serial line free for communication with a computer without
disturbing any connections to serial devices.

316 Part IV: Unlocking Your Arduino’s Potential

Figure 14-1:
An Arduino
Mega 2560.

This communication is all possible because of the ATmega2560 microproces-
sor on the board. If you compare the Mega 2560 to an Uno, the first differ-
ence you notice is physical. If you look at the chip on an Uno R3, you see that
ATmega328 is shaped like a millipede — a form known as dual in-line package
(also known as DIP and DIL) because of the two parallel lines of pins. More
specifically, this is a plastic dual in-line package (PDIP). If you look at the
center of your Mega 2560, you see a diamond-shaped computer chip known
as a quad flat package (QFP) because of the four sets of pins and the very flat
profile of the chip. Specifically, this one is a thin quad flat package (TQFP),
and it has many other variations. You see both chips in Figure 14-2.

The physical form isn’t the only difference; the names of the chips are also
slightly different. The microcontroller names are printed on top of the chip:
the Uno reads ATMEGA328P-PU and the Mega shows ATMEGA2560 16-AU

317 Chapter 14: Sensing More Inputs and Controlling More Outputs

(both names are visible in Figure 14-2). These are product numbers that
relate to the amount of memory on the chip. The two important numbers to
understand are 328 and 2560, which relate to the amount of flash memory
that each microcontroller has — 32KB and 256KB, respectively. Flash
memory is used to store your sketches, so you can see that the Mega 2560
has more than seven times the space of the Uno, which can be especially
useful for programs that are storing a lot of data, such as strings.

Figure 14-2:
PDIP and

TQFP.

To familiarize yourself with the Mega, take a look at the layout of the board
with the pins labeled shown in Figure 14-3. Much of the board is similar to the
Uno, but you have to pay special attention to the block of pins at the end to
make sure that you don’t use the extra 5V and GND pins rather than the digi-
tal pins. Also, some shields need modification to work with the Mega 2560, so
read the instructions carefully.

318 Part IV: Unlocking Your Arduino’s Potential

Figure 14-3:
The Mega

2560 board
layout with

labels.

Implementing the AnalogWriteMega sketch
In this example, you learn how to make a Nightrider-style LED bar. Because
the Mega 2560 has 15 possible PWM pins, it’s perfect for precise control of
many analog outputs. The AnalogWriteMega sketch allows you to smoothly
transition between LEDs.

For this project, you need:

 ✓ An Arduino Mega 2560

 ✓ A breadboard

 ✓ Twelve LEDs

 ✓ Twelve 220 ohm resistors

 ✓ Jump wires

This circuit is all about repetition, so it’s a good idea to find a pack of color-
coded jump wires or carefully cut and strip lengths of equipment wire, pref-
erably single core. When choosing LEDs and resistors, be sure to do your
calculations. Standard 3mm or 5mm LEDs in most kits require a voltage of
around 2.5V and a current of around 25mA, and the Arduino’s digital pins are
capable of providing a maximum of 5V.

319 Chapter 14: Sensing More Inputs and Controlling More Outputs

In an equation, this means:

(5V - 2.5V) / 0.025A = 100 ohms

A 100 ohm resistor is an exact match for running the LED up to the maximum
recommended power, but by using a 220 ohm resistor, you keep the LED
well within its limits, which allows it to operate longer. A general rule when
choosing a resistor is to pick the nearest available resistor that is above the
calculated resistance. If you feel that your LEDs just aren’t bright enough,
you can find resistors that are closer to the optimum resistance, find higher
brightness LEDs, or find a higher power LED that consumes closer to 5V.

After you have your LEDs, resistors, and jump wires, assemble the circuit as
shown in Figures 14-4 and 14-5. The circuit is basically 12 of the same, smaller
circuits, each of the Arduino Mega pins being connected to a 220 ohm resis-
tor, then onto the anode (long leg) of the LED, with the cathode (short leg)
being connected to ground.

Figure 14-4:
Lots of LEDs
wired up to
your Mega.

320 Part IV: Unlocking Your Arduino’s Potential

Figure 14-5:
A schematic

of the LED
controller

circuit.

After you’ve assembled your circuit, you want to find the appropriate sketch.
From the Arduino menu, choose File➪Examples➪03.Analog➪AnalogWriteMega
to display a sketch for doing lots of analogWrite() functions on the Mega.
The code for the sketch is as follows:

/*
 Mega analogWrite() test

 This sketch fades LEDs up and down one at a time on digital pins 2 through 13.
 This sketch was written for the Arduino Mega, and will not work on previous
boards.

 The circuit:
 * LEDs attached from pins 2 through 13 to ground.

 created 8 Feb 2009

321 Chapter 14: Sensing More Inputs and Controlling More Outputs

 by Tom Igoe

 This example code is in the public domain.

 */
// These constants won’t change. They’re used to give names
// to the pins used:
const int lowestPin = 2;
const int highestPin = 13;

void setup() {
 // set pins 2 through 13 as outputs:
 for (int thisPin =lowestPin; thisPin <= highestPin; thisPin++) {
 pinMode(thisPin, OUTPUT);
 }
}

void loop() {
 // iterate over the pins:
 for (int thisPin =lowestPin; thisPin <= highestPin; thisPin++) {
 // fade the LED on thisPin from off to brightest:
 for (int brightness = 0; brightness < 255; brightness++) {
 analogWrite(thisPin, brightness);
 delay(2);
 }
 // fade the LED on thisPin from brithstest to off:
 for (int brightness = 255; brightness >= 0; brightness--) {
 analogWrite(thisPin, brightness);
 delay(2);
 }
 // pause between LEDs:
 delay(100);
 }
}

If your sketch uploads correctly, you see each LED fade up and then down in
sequence, and then return to the start again.

If you don’t see this happening, double-check your wiring:

 ✓ Make sure that you’re using the correct pin numbers.

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
don’t work.

 ✓ Check that your LEDs are the right way around, with the digital pin going
to a resistor to the long leg and the short leg going to ground.

322 Part IV: Unlocking Your Arduino’s Potential

Understanding the AnalogWriteMega
Sketch
This sketch is similar to fading a single LED, as in the basic AnalogWrite
sketch (see Chapter 7), but involves a lot of repetition. Using for loops it’s
possible to perform a lot of repetitive tasks without writing the same code for
each LED.

At the start of this sketch, you declare the constant integers. Rather than
declare 12 separate values, you can declare the lowest and highest pin
because the board has 12 PWM pins all in a row, from pin 2 to pin 13. The
other three PWM pins are 44, 45, and 46, so they’re not quite as conveniently
spaced for the sketch.

const int lowestPin = 2;
const int highestPin = 13;

In setup, the pins are set to be outputs using a for loop. Because the pins are
in one unbroken row, the for loop can simply count up through each pin from
the first to the last and set each of them to OUTPUT. Inside the for loop, the
local variable thisPin is declared as an integer equal to the lowestPin; this
is your start point. The variable thisPin is then compared to highestPin. If
thisPin is less than or equal to (<=) highestPin, the digital pin of the same
number is set as an output and thisPin is incremented by one for the next
loop. This process quickly and effectively sets all your pins to an output with
two lines of code rather than 12.

void setup() {
 // set pins 2 through 13 as outputs:
 for (int thisPin =lowestPin; thisPin <= highestPin; thisPin++) {
 pinMode(thisPin, OUTPUT);
 }
}

In the main loop, there are for loops within for loops! You can see where
each loop sits by the indentation of the for loop code. To format your code
automatically, choose Tools➪Auto Format (or press Ctrl+T on Windows or
⌘+T on a Mac). If you get confused, move the cursor to the right side of a
{} curly brace to see the other corresponding curly brace highlighted. This
is helpful but can be incorrect if you have too few curly braces, so make
sure that you have them in the right places. Start with the first or highest
level for loop, which contains the other two loops. The highest loop counts
through the pins 2 to 13 in order, each time incrementing the value thisPin
until it reaches 14.

323 Chapter 14: Sensing More Inputs and Controlling More Outputs

void loop() {
 // iterate over the pins:
 for (int thisPin =lowestPin; thisPin <= highestPin; thisPin++) {
 // fade the LED on thisPin from off to brightest:

The first loop gives you the current pin number, so it can be used again in
the next two for loops. The first of these loops creates another loop with the
local variable brightness. This brightness, too, is incremented, counting from
0 to 255, one value at a time. Every time the brightness is incremented, an
analogWrite is run with the current brightness value, with a short delay of
2mS before increasing the brightness again.

 for (int brightness = 0; brightness < 255; brightness++) {
 analogWrite(thisPin, brightness);
 delay(2);
 }

After the brightness has reached its maximum PWM value of 255, the next
for loop returns to 0. This is done exactly the same way, but instead counts
down one point of brightness at a time.

 for (int brightness = 255; brightness >= 0; brightness--) {
 analogWrite(thisPin, brightness);
 delay(2);
 }

At the end of the second for loop, a 100mS delay occurs before the sketch
returns to the higher level for loop. The next loop round the LED (as held
in the variable thisPin) moves on one and repeats the same task until it
reaches pin 13. After pin 13, the criteria of the for loop is no longer true,
so it exits and starts the main loop from scratch, completing the sketch and
ready to start again.

 // pause between LEDs:
 delay(100);
 }
}

This sketch fades up and down each LED from pin 2 to 13 and works well to
check that the circuit is functioning. This isn’t the most interesting of appli-
cations, though, so in the next section you learn how to do more with this
setup.

324 Part IV: Unlocking Your Arduino’s Potential

Tweaking the AnalogWriteMega sketch
Animating a string of LEDs can be great fun. There is a huge difference
between blinking them on and off and animating them, which really has to be
seen in the flesh (or LED) to be appreciated.

The first step is to change the sequence to make it more interesting. By
adding another for loop and commenting out the delay, you can create an
animation that loops nicely. Create a new sketch, type the code that follows,
and save it with a memorable name, such as myLedAnimation. Alternatively,
you can open the AnalogWriteMega sketch, make the changes (indicated by
the arrows in the margin), and choose File➪Save As to save the sketch with a
new name.

It’s also a good habit to update the comments of your sketch as you modify it,
as shown in the code that follows.

/*
➦ myLedAnimation

 This sketch fades LEDs up one at a time on digital pins 2 through 13
 and then down one at a time on digital pins 13 through 2.

 This sketch was written for the Arduino Mega, and will not work on previous
boards.

 The circuit:
 * LEDs attached from pins 2 through 13 to ground.

 Original code by Tom Igoe (2009) - Mega analogWrite() test
 Modified by [Your_Name] (20__)

 */

const int lowestPin = 2;
const int highestPin = 13;

void setup() {

 for (int thisPin =lowestPin; thisPin <= highestPin; thisPin++) {
 pinMode(thisPin, OUTPUT);
 }
}

void loop() {

 for (int thisPin =lowestPin; thisPin <= highestPin; thisPin++) {

325 Chapter 14: Sensing More Inputs and Controlling More Outputs

 // fade the LED on thisPin from off to brightest:
 for (int brightness = 0; brightness < 255; brightness++) {
 analogWrite(thisPin, brightness);
 delay(2);
 }
 }

➦ for (int thisPin =highestPin; thisPin >= lowestPin; thisPin--) {

 for (int brightness = 255; brightness >= 0; brightness--) {
 analogWrite(thisPin, brightness);
 delay(2);
 }
 // pause between LEDs:

➦ // delay(100);
 }
}

When you run the changes, you get a row of LEDs that light up quickly one
at a time. After the row is full, each LED dims until all are off; then the whole
sequence repeats.

That’s fun, but you can do even more. This next bit of code transforms your
LED display into something similar to KITT, David Hasselhoff’s companion
from Knight Rider.

Create a new sketch, type the following code, and save it with a memorable
name, such as myKnightRider. Alternatively, open the AnalogWriteMega
sketch, make the changes (indicated by the arrows in the margin), and
choose File➪Save As to save the sketch with a new name.

/*
➦ myKnightRider

 This sketch quickly fades each LED up then down on digital pins 2 through 13
 and returns on 13 through 2, like KITT from Knight Rider.
 Unfortunately it won’t make your car talk.

 This sketch was written for the Arduino Mega, and will not work on previous
boards.

 The circuit:
 * LEDs attached from pins 2 through 13 to ground.

 Original code by Tom Igoe (2009) - Mega analogWrite() test
➦ Modified by [Your_Name] (20__)

 */

326 Part IV: Unlocking Your Arduino’s Potential

// These constants won’t change. They’re used to give names
// to the pins used:
const int lowestPin = 2;
const int highestPin = 13;

void setup() {
 // set pins 2 through 13 as outputs:
 for (int thisPin =lowestPin; thisPin <= highestPin; thisPin++) {
 pinMode(thisPin, OUTPUT);
 }
}

void loop() {
 // iterate over the pins:
 for (int thisPin =lowestPin; thisPin <= highestPin; thisPin++) {
 // fade the LED on thisPin from off to brightest:
 for (int brightness = 0; brightness < 255; brightness++) {
 analogWrite(thisPin, brightness);
 delay(2);
 }
 for (int brightness = 255; brightness >= 0; brightness--) {
 analogWrite(thisPin, brightness);
 delay(2);
 }

➦ }

➦ for (int thisPin =highestPin; thisPin >= lowestPin; thisPin--) {
➦ // fade the LED on thisPin from brightest to off:
➦ for (int brightness = 0; brightness < 255; brightness++) {
➦ analogWrite(thisPin, brightness);
➦ delay(2);
➦ }
➦ for (int brightness = 255; brightness >= 0; brightness--) {
➦ analogWrite(thisPin, brightness);
➦ delay(2);
➦ }

 // pause between LEDs:
➦ // delay(100);

 }
}

This sketch gives you an awesome LED animation, with the row of LEDs light-
ing up one at a time, moving from left to right, and then repeating. You can
tweak it further by adjusting the delay() times and brightness values to get
the timing just right. For more inspiration give “KITT from Knight Rider” a
Google and you’ll find a lot of videos of people doing similar.

327 Chapter 14: Sensing More Inputs and Controlling More Outputs

Controlling Lots of LEDs by Shifting Out
Sometimes even the Mega 2560 with its 70 pins isn’t enough, and you need
options that allow you to have even more inputs and outputs. Luckily, you
can obtain chips that allow you to increase the number of outputs your
Arduino can control. One such chip is a shift register.

Many types of shift registers are available. A popular one is the 74HC595,
which is described as an “8-bit serial-in, serial or parallel-out shift register
with output latches; 3 state” on its datasheet (http://www.nxp.com/
documents/data_sheet/74HC_HCT595.pdf). The “8-bit” part refers to
the number of outputs that can be controlled, so to understand how the shift
register works, you must first look at binary, bits, and bytes, which I explain
in the “Making sense of binary, bits, and bytes” sidebar. The 74HC595 is
shown in Figure 14-6.

Figure 14-6:
A 74HC595

shift
register.

http://www.nxp.com/documents/data_sheet/74HC_HCT595.pdf
http://www.nxp.com/documents/data_sheet/74HC_HCT595.pdf

328 Part IV: Unlocking Your Arduino’s Potential

Figure 14-7 shows a diagram of the pins on the 74HC595. The pin names are
explained in Table 14-1.

Figure 14-7:
A diagram
of the pins

on the
74HC595.

In the case of the 74HC595, there are eight output pins and, conveniently,
there are also eight bits in a byte. The values are sent one bit at a time to the
shift register. When the clock pin (SH_CP) is set HIGH, all the bits shift one
place forward, the last pin “shifts out” and a new pin takes its value from the

Making sense of binary, bits, and bytes
The binary number system uses only two values: 0 or 1. Because it uses only two values, it is also
known as base2. Decimal numbers that you use are usually referred to as base10 and use 0 to 9;
hexadecimal numbers are base16, and use 0 to 9 and A to F.

But how is binary useful when you’re trying to talk to lots of things and have only two options? The
answer is that you use a lot of binary values.

If you take a base2 binary number such as 10101101, you can determine its value in base10 using a
simple lookup table. Binary is typically read from right to left. Because binary is base2, each value
is the binary value multiplied by 2 to the power of (2x), where x is equal to the order of the bit, start
ing at 0 on the right. For example, as shown below the fourth binary value is equal to 1x(2x2x2) = 8.

Binary 1 0 1 0 1 1 0 1

Calculation 1×27 0×26 1×25 0×24 1×23 1×22 0×21 1×20 Total
Decimal 128 0 32 0 8 4 0 1 173

As you can see, extremely large numbers can be formed using only zeros and ones. In this case,
you have eight binary values with a total decimal value of 255. When talking about memory, each
binary value takes one bit of memory, and each group of eight bits is referred to as a byte. To give
you an idea of scale, a blank Arduino sketch uses 466 bytes; an Uno can store a maximum of 32,256
bytes, and a Mega can store a maximum of 258,048 bytes.

329 Chapter 14: Sensing More Inputs and Controlling More Outputs

serial data input (DS). The bits are all stored in the register until the latch pin
(ST_CP) is pulled HIGH and the values are sent to the outputs.

Table 14-1 74HC595 Pins
Pin Description Use
Q0–Q7 Output pins These are linked to your LEDs.
GND Ground This is linked to your Arduino’s ground.
Q7’ Serial out Serial out is used to shift data to another

74HC595.
MR Master Reclear,

active low
This clears the shift register if pulled LOW.

SH_CP Shift register clock
pin

If pulled HIGH, this shifts all the values for
ward one.

ST_CP Storage register
lock pin (latch pin)

When pulled HIGH, it outputs the new shift
register values. This must be pulled HIGH
straight after SH_CP goes low again.

OE Output enable,
active low

This enables the output when grounded
and disables it when HIGH.

DS Serial data input This is the input pin for the new serial data.
Vcc Positive voltage

supply
This is the voltage supply for the LEDs.

The total value in eight bits (or one byte or a decimal number from 0 to 255)
represents every combination of the register, and that is how the shift regis-
ter communicates its outputs. If you send 11111111, all output pins go HIGH;
if you send 10101101, pins 0, 2, 3, 5 and 7 go HIGH. You can also cascade the
74HC595s, meaning that you can add multiple chips to extend the number of
outputs further by using the serial out pin (Q7). Doing so gives you more reg-
isters to shift bits of data into. If you send 16 bits (ortwo bytes or a decimal
number from 0 to 511), the bits flow through to the first register and into the
second as they are shifted.

Implementing the shiftOutCode,
Hello World sketch
In this example, you look at shifting out using a single 74HC595 to control
eight LEDs. The LEDs count up in binary from 0 to 255.

You need:

330 Part IV: Unlocking Your Arduino’s Potential

 ✓ An Arduino Uno

 ✓ A big breadboard

 ✓ A 74HC595

 ✓ Eight LEDs

 ✓ Eight 220 ohm resistors

 ✓ Jump wires

The 74HC595 is placed across the gap in the center of the breadboard and
should be an exact fit. That’s because your breadboard was designed with
this placement in mind. The gap in the center allows you to easily connect
wires to both sides of the chip, keeping each side of pins separate from one
another. Moreso for this example than some others, it is a good idea to have
a power and ground rail on each side of the board. To that end, you want to
link the Arduino’s 5V and ground pins to each of the two tracks on both sides
of the board, as shown in the Figure 14-8 circuit layout.

The layout of the pins is quite straightforward, except that the first pin —
pin 0 — is on the opposite side of the board from the others. For this exam-
ple, it’s a good idea to use lots of color-coded jump wires or equipment wire
to keep track of where the connections are going. Complete the circuit as
shown in Figures 14-8 and 14-9.

Figure 14-8:
A circuit

layout for
using a

74HC595.

331 Chapter 14: Sensing More Inputs and Controlling More Outputs

Figure 14-9:
A sche

matic for
using one
74HC595.

After your circuit is assembled, you need the appropriate software to use it.
Create a new sketch by typing the code that follows and saving it with a mem-
orable name, such as myShiftOut. Alternatively, you can find this example at
http://arduino.cc/en/Tutorial/ShftOut11.

//**//
// Name : shiftOutCode, Hello World
// Author : Carlyn Maw,Tom Igoe, David A. Mellis
// Date : 25 Oct, 2006
// Modified: 23 Mar 2010
// Version : 2.0
// Notes : Code for using a 74HC595 Shift Register //
// : to count from 0 to 255
//**

//Pin connected to ST_CP of 74HC595
int latchPin = 8;
//Pin connected to SH_CP of 74HC595
int clockPin = 12;
////Pin connected to DS of 74HC595
int dataPin = 11;

void setup() {
 //set pins to output so you can control the shift register
 pinMode(latchPin, OUTPUT);

http://arduino.cc/en/Tutorial/ShftOut11

332 Part IV: Unlocking Your Arduino’s Potential

 pinMode(clockPin, OUTPUT);
 pinMode(dataPin, OUTPUT);
}

void loop() {
 // count from 0 to 255 and display the number
 // on the LEDs
 for (int numberToDisplay = 0; numberToDisplay < 256; numberToDisplay++) {
 // take the latchPin low so
 // the LEDs don’t change while you’re sending in bits:
 digitalWrite(latchPin, LOW);
 // shift out the bits:
 shiftOut(dataPin, clockPin, MSBFIRST, numberToDisplay);

 //take the latch pin high so the LEDs will light up:
 digitalWrite(latchPin, HIGH);
 // pause before next value:
 delay(500);
 }
}

You should see your row of LEDs counting up in binary from 0 to 255.
Usually, binary is read from right to left, with the least significant bit (LSB),
1, on the right and the most significant bit, in this case 128, on the left. Work
out the first few numbers to see whether the pattern looks right. Table 14-2
shows you numbers 0 to 9.

Table 14-2 Decimal to Binary
Decimal Binary
0 00000000
1 00000001
2 00000010
3 00000011
4 00000100
5 00000101
6 00000110
7 00000111
8 00001000
9 00001001

333 Chapter 14: Sensing More Inputs and Controlling More Outputs

If you don’t see this happening, double-check your wiring:

 ✓ Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

 ✓ Make sure that your LEDs are oriented correctly, in the right order, and
that the Arduino pins are wired to the correct 74HC595 pins.

Understanding the shiftOutCode,
Hello World sketch
At the start of the sketch, the three pins needed to control the shift register
are declared. Pin 8 is the latch pin, used to output the values from the reg-
ister; pin 12 is the clock pin, used to shift the bits along by one pin; pin 11 is
used to send new data into the register.

//Pin connected to ST_CP of 74HC595
int latchPin = 8;
//Pin connected to SH_CP of 74HC595
int clockPin = 12;
////Pin connected to DS of 74HC595
int dataPin = 11;

In setup, you simply set the pinMode of each pin to OUTPUT.

void setup() {
 //set pins to output so you can control the shift register
 pinMode(latchPin, OUTPUT);
 pinMode(clockPin, OUTPUT);
 pinMode(dataPin, OUTPUT);
}

You immediately notice that the loop() is quite small for the seemingly
complicated task explained earlier. A for() loop is used to count from 0 to
255. A local variable called numberToDisplay is the current number.

void loop() {
 // count from 0 to 255 and display the number
 // on the LEDs
 for (int numberToDisplay = 0; numberToDisplay < 256; numberToDisplay++) {

The latch pin is set LOW so that it doesn’t output the value of the register
while you are changing it.

334 Part IV: Unlocking Your Arduino’s Potential

 // take the latchPin low so
 // the LEDs don’t change while you’re sending in bits:
 digitalWrite(latchPin, LOW);

The shiftOut function is included in Arduino for this exact purpose and
requires four parameters. The first is dataPin; the second is clockPin; the
third is the order of the bits, either most significant bit (MSBFIRST) or least
significant bit (LSBFIRST); the fourth parameter is the value to display, which
is the local variable numberToDisplay. This function takes the value and
handles all the pulses to convert it to a combination of pins that fills the buffer.

 // shift out the bits:
 shiftOut(dataPin, clockPin, MSBFIRST, numberToDisplay);

All that is left to do is to set the latch pin HIGH again to send the updated
values to the LEDs.

 //take the latch pin high so the LEDs will light up:
 digitalWrite(latchPin, HIGH);

There is a brief pause of half a second by using the delay function, before
the program returns to the start of the for loop and incrementing the
number by one.

 // pause before next value:
 delay(500);
 }
}

This cycle continues until the for loop reaches 255, which sets all the LEDs
HIGH, then returns to 0 and repeats the count. This is great for counting in
binary, but not much else. In the next section, I refine the code to let you
address the LEDs individually.

Tweaking the shiftOutCode,
Hello World sketch
The previous binary method is great for understanding how the shift register
works, but what if you want to turn on a specific pin without converting it to
binary? This code uses the same circuit as described previously but allows
you to select LEDs individually from the serial port.

Start by creating a new sketch by typing out the code that follows and saving
it with a memorable name, such as mySerialShiftOut. Alternatively, find this
example at http://arduino.cc/en/Tutorial/ShftOut12.

http://arduino.cc/en/Tutorial/ShftOut12

335 Chapter 14: Sensing More Inputs and Controlling More Outputs

/*
 Shift Register Example
 for 74HC595 shift register

 This sketch turns reads serial input and uses it to set the pins
 of a 74HC595 shift register.

 Hardware:
 * 74HC595 shift register attached to pins 2, 3, and 4 of the Arduino,
 as detailed below.
 * LEDs attached to each of the outputs of the shift register

 Created 22 May 2009
 Created 23 Mar 2010
 by Tom Igoe

 */

//Pin connected to latch pin (ST_CP) of 74HC595
const int latchPin = 8;
//Pin connected to clock pin (SH_CP) of 74HC595
const int clockPin = 12;
////Pin connected to Data in (DS) of 74HC595
const int dataPin = 11;

void setup() {
 //set pins to output because they are addressed in the main loop
 pinMode(latchPin, OUTPUT);
 pinMode(dataPin, OUTPUT);
 pinMode(clockPin, OUTPUT);
 Serial.begin(9600);
 Serial.println(“reset”);
}

void loop() {
 if (Serial.available() > 0) {
 // ASCII ‘0’ through ‘9’ characters are
 // represented by the values 48 through 57.
 // so if the user types a number from 0 through 9 in ASCII,
 // you can subtract 48 to get the actual value:
 int bitToSet = Serial.read() - 48;

 // write to the shift register with the correct bit set high:
 registerWrite(bitToSet, HIGH);
 }
}

// This method sends bits to the shift register:

void registerWrite(int whichPin, int whichState) {

336 Part IV: Unlocking Your Arduino’s Potential

// the bits you want to send
 byte bitsToSend = 0;

 // turn off the output so the pins don’t light up
 // while you’re shifting bits:
 digitalWrite(latchPin, LOW);

 // turn on the next highest bit in bitsToSend:
 bitWrite(bitsToSend, whichPin, whichState);

 // shift the bits out:
 shiftOut(dataPin, clockPin, MSBFIRST, bitsToSend);

 // turn on the output so the LEDs can light up:
 digitalWrite(latchPin, HIGH);

}

After the sketch is done uploading, click the serial monitor button to open
the window. The first word should be “reset,” which is displayed in setup
when the sketch starts. Enter numbers between 0 and 7 and click Send (or
press Return) to turn on different LEDs in the row.

In this piece of code, you convert the binary addressing system to a deci-
mal one, and instead of having to enter all the binary combinations, you
can just pick out individual addresses of each LED by entering a decimal
number from 0 to 7.

In the main loop, the if statement checks to see whether there is any data
to read. Serial.available is the buffer or storage for incoming bytes, so
the if statement is true and then progress only if data has been sent.

 if (Serial.available() > 0) {

Characters sent through the serial port are sent as ASCII characters, and
when they are read using Serial.read, they are interpreted as their equiva-
lent integer value on the ASCII chart. This puts 0 to 9 in the range of 48 to 57,
so to get them to the correct range, you simply subtract 48 from the reading.

 int bitToSet = Serial.read() - 48;

A custom function called registerWrite makes conversion of 0 to 9 to the
relevant byte value simpler. The function is outside the main loop at the
bottom of the sketch.

 // write to the shift register with the correct bit set high:
 registerWrite(bitToSet, HIGH);
 }

337 Chapter 14: Sensing More Inputs and Controlling More Outputs

The two values that can be entered into registerWrite are declared at the
top of the sketch as whichPin and whichState. These variables and any
within the function are local and cannot be referenced in the main loop.

void registerWrite(int whichPin, int whichState) {

A byte variable is declared and set to 0.

// the bits you want to send
 byte bitsToSend = 0;

As in the previous example, the latch pin is set LOW before the bits are shifted.

 // turn off the output so the pins don’t light up
 // while you’re shifting bits:
 digitalWrite(latchPin, LOW);

This time, a new function called bitWrite is used. It has three parameters:
the variable that you are writing to, in this case bitsToSend; which bit of
the byte to write to, from 0 (least significant bit, rightmost bit) to 7 (most sig-
nificant bit, leftmost bit); and the state, either HIGH or LOW.

 // turn on the next highest bit in bitsToSend:
 bitWrite(bitsToSend, whichPin, whichState);

For example, if byte bitsToSend is equal to 0, it equals 00000000 in binary.
When you use the bitWrite function with whichPin equal to 4 and which-
State equal to HIGH (or 1), bitsToSend equals 00010000.

After bitWrite updates the value of the byte bitsToSend, bitsToSend is
put through the shiftOut() function to update the register.

 // shift the bits out:
 shiftOut(dataPin, clockPin, MSBFIRST, bitsToSend);

Finally, the latch pin is set HIGH and the results are updated on the LEDs
themselves.

 // turn on the output so the LEDs can light up:
 digitalWrite(latchPin, HIGH);

}

Doing more with the same circuit
This last example allows you to communicate values over serial, but you
could just as easily automate this process using a for loop to count from
0 to 7 and back again. The value could also respond to a sensor, such as a

338 Part IV: Unlocking Your Arduino’s Potential

potentiometer, using the map function to give you a power bar as you turn it.
The possibilities are endless. There are many other examples on the Arduino
site for increasingly complex functionality (go to http://arduino.cc/en/
Tutorial/ShiftOut) including cascading multiple shift registers.

 After you go past two shift registers, you’re well-advised to power the LEDs
externally to reduce the amount of current passing through the Arduino.
When you’re using lots of LEDs, you can easily go over the 200mA max current
draw, so use your multimeter to check the current draw of the circuit and stay
safe.

This chapter’s example described just one chip that is available. You can
find many other chips, such as the TLC5940, which can control 16 PWM out-
puts and works on a very similar principle. The Google Code page contains
many details as well as a library contributed by Alex Leone (http://code.
google.com/p/tlc5940arduino/). You can also reverse the principle
of shifting out with a different chip and read lots of inputs. More details on
shifting in are available on the Arduino site at http://arduino.cc/en/
Tutorial/ShiftIn.

http://arduino.cc/en/Tutorial/ShiftOut
http://arduino.cc/en/Tutorial/ShiftOut
http://code.google.com/p/tlc5940arduino/
http://code.google.com/p/tlc5940arduino/
http://arduino.cc/en/Tutorial/ShiftIn
http://arduino.cc/en/Tutorial/ShiftIn

Chapter 15

Multiplying Your Outputs with I2C
In This Chapter
▶ Discovering I2C
▶ Driving lots of servos
▶ Finding the right power supply

T
his chapter tells you all about working with I2C (pronounced eye-squared-
see or eye-two-see), giving you another way to control lots of outputs. As

an example of this great communications protocol, instead of just controlling
LEDs (described in Chapter 14), you learn how to control an army of servo
motors. With the potential to control hundreds of servos comes the need to
power them all so this chapter also talks you through the various options
when choosing a power supply.

What Is I2C?
I2C is a great communication protocol that is ideal for getting signals to
lots of outputs (I also talk about other ways to control multiple outputs in
Chapter 14). Luckily, I’m not the only one who thinks so. There’s an excellent
product that uses the I2C controlled PCA9685 chip, a PWM driver that lets
you drive up to 16 servo motors with a single board. The 16-channel 12-bit
PWM/Servo Driver (see Figure 15-1), I2C interface (http://www.adafruit.
com/products/815) from Adafruit Industries is a partially assembled kit
that makes it easy to control lots of motors, LEDs, or even other circuits.

The board is designed around controlling servos, which have three pin con-
nections (ground, 5V, and the signal wire), so there are 16 groups of three to
allow you to easily plug your servos in using the standard three-pin socket.
Physically, these pins are in groups of four, so the header pin is three deep
and four wide (3 x 4). On either end of the board is space for a six-header pin
to communicate with the PCA9685 chip.

http://www.adafruit.com/products/815
http://www.adafruit.com/products/815

340 Part IV: Unlocking Your Arduino’s Potential

Figure 15-1:
I2C PWM/

Servo Driver
board.

A servo, as mentioned in Chapter 8, is a DC motor packaged with an encoder
that allows it to keep track of its position. Standard DC motors are work-
horses that are great at speeding up and continuously rotating in one direc-
tion, as they do on remote control cars and planes. Servos, on the other
hand, are for precision movement; some servos continuously rotate (or can
be hacked to do so), but generally they move to a specific degree within their
range and are excellent for all sorts of applications, from walking robots to
electronic sail winches on boats.

The pins from top to bottom are

 ✓ GND: Ground

 ✓ OE: Output eEnable

 ✓ SCL: Serial clock

 ✓ SDA: Serial data

 ✓ VCC: Power line for the PCA9685

 ✓ V+: Power line for the servos

Of these pins, all you need to use are VCC and GND to power the PCA9685
chip, and SCL and SDA to let I2C talk with the Arduino and other boards.
Because the board has the same pins on each side, you may rightly assume

341 Chapter 15: Multiplying Your Outputs with I2C

that these boards have the ability to be daisy chained together. Each board
is given a physical address using the little golden terminals to the top right of
the board, known as solder jumpers. These allow you to set the order of the
boards by connecting the relevant jumpers to give each board a binary value.
Board 0 has no terminals connected, so boards are addressed from 1 onward
by soldering the terminals together, using the same principles of counting up
in binary that Chapter 14 covers. This arrangement is semi-permanent but
can be undone with use of a solder sucker or solder braid.

The V+ pin is linked to the last component, the screw terminal that sits at
the top of the board. This is an important feature of this board. Although
it is possible to power motors and their controllers using the same supply,
doing so is rarely advisable. Motors often need very large amounts of current
and voltage to rotate and move loads. Sometimes, current spikes or drops
depending on the number of motors and the load on them. Such spikes can
be extremely hazardous for the low-voltage PCA9685 control chip, so on this
board, the voltage supply has been separated, meaning that the servo motors
(or LEDs) can be run from a separate high-voltage, high-current power 12V
supply, and the PWM driver chip can operate from an Arduino’s low-voltage,
low-current, 5V power supply.

Unlike the 74HC595 shift register and the TLC5940 PWM driver, the PCA9685
has a built-in clock, so your Arduino doesn’t need to constantly send mes-
sages to update it, leaving it free to do other things.

In the following example, you learn how to assemble and control an I2C PWM/
Servo Driver to make your own mass motor project.

Assembling the I2C PWM/Servo Driver
All the tricky components on the I2C PWM/Servo Driver board have been
assembled for you, but you need to know a trick for doing the final bits of
soldering. Doing a dry run and laying out the components is a good idea, so
do that first.

In the kit, you have:

 ✓ One I2C PWM/Servo Driver board

 ✓ Four 3 x 4 header pins

 ✓ One length of header pins

 ✓ One screw terminal

Follow these steps to perform your dry run of the assembly:

342 Part IV: Unlocking Your Arduino’s Potential

 1. Using a pair of wire cutters, cut the length of header pins so that you
have two lengths of 1 x 6 (see Figure 15-2).

 You use these at either end to connect your first board to the Arduino
and any daisy chained boards.

 2. Place all the parts loosely in the board to make sure they all fit.

 The header pins should have the long side pointing up, and the screw
terminal should be facing away from the board, to make it easier to con-
nect cables. When you’re happy with where the pins are, it’s time to get
soldering.

 3. Ensure that you have a clear workspace (as described in Chapter 5),
power up your soldering iron, wet your sponge, and find your solder.

 Making a cup of tea or coffee is optional, but always advised.

Figure 15-2:
Cutting the
headers to

length.

 Before you start soldering, note that the data pins on the board are the most
sensitive to heat, and if they get too hot, they can be damaged. These are the
single rows of headers at either end and the signal pin on the servo headers. I
recommend using a high heat on your iron to allow the solder to melt quickly.
This means that the solder melts around the joint before it can be conducted
and spread all the way down to the chip, by which time you have finished the
joint and it is already cooling down. If you are uncomfortable with this level of
soldering, practice first on a piece of stripboard with some spare header pins.

The 3 x 4 header pins are the most difficult, so you do best to start with
them. The aim is to get the plastic bit level on the board. You can do so by
pressing adhesive putty onto the component and board or by using a third
hand clamp. I find third hands and other clamps useful for holding boards,

343 Chapter 15: Multiplying Your Outputs with I2C

but more trouble than they are worth for holding components. They can also
sometimes scratch the delicate circuitry, so be careful with them and avoid
dragging boards out of their teeth. Using Blue Tack, you can safely secure the
component until you have a couple of solder joints. Then you should secure
the header pins. I recommend connecting the GND and V+ first, because
these can handle more heat than the data line can.

When soldering the inside connectors of the 3 x 4 headers, it can be awkward
to get the soldering iron in position. Try holding your iron at an angle across
the rows and working from one side to the other, such as left to right if you
are right handed. Doing so avoids working over your previous solder joints
and lessens the chance of the individual joints becoming connected. If they
do connect, simply use a solder sucker to remove the excess and reapply
solder if necessary.

After you have the 3 x 4 header pins soldered in place, move on to the header
pins at each end. These should be a lot simpler in comparison, and with luck,
your technique improves after the repetition of the previous task.

Finally, connect the screw terminal. Notice that the holes and pins are a lot
wider than the header pins. This is because this connection is used for sup-
plying power to every motor connected, so a thicker piece of metal is needed
to cope with the amount of current. If the connection is too small, it builds up
heat until it melts, so it’s important to always have thick wires and connec-
tors that are rated for more than the current that you are expecting. Because
of this thicker connection, you may notice that the screw terminal takes a
little longer to heat up and melt the solder. If it takes too long, the plastic part
may melt, so be sure to turn up the heat on your iron if it’s taking a while.

That’s it. Simple, isn’t it? You now have an I2C PWM/Servo Driver board ready
for use. Make sure to check over your connections for any short circuits, and
use your multimeter’s continuity checker when the board isn’t attached to a
power source to check connections if you are unsure. The V+ and GND lines
for the servos should be connected in two rows because they all draw power
from the same source. For now, you should leave the addressable solder
jumpers unsoldered because you are starting with the first board, board 0.

Using the I2C PWM/Servo Driver
In the previous section, you find out how to assemble an I2C PWM/Servo
Driver. In this section, you see how to make it perform. The example in this
section shows you how to send a signal to the board to control servos on
each pin. You can test this functionality with a single servo, which is included
in most Arduino kits, but after you have it working, you want to order other
servos to get the full effect.

For this project, you need:

344 Part IV: Unlocking Your Arduino’s Potential

 ✓ An Arduino Uno

 ✓ A servo motor

 ✓ Jump wires or pre-crimped wires

 ✓ An external power supply

 ✓ A precision screwdriver

The shield has header pins to connect to, but these pins don’t slot directly
into an Arduino. A good way to connect them is to use jump wires with sock-
ets on one side and pins on the other (male to female), such as those from
Cool Components (http://www.coolcomponents.co.uk/catalog/
jumper-wires-male-female-p-355.html) or from SparkFun (https://
www.sparkfun.com/products/9140), shown in Figure 15-3.

Figure 15-3:
Jump wires

with
sockets.

If you’re a real connoisseur, you can make your own custom cables using pre-
crimped wires and header sockets, such as these from Technobots (http://
www.technobotsonline.com/cable-and-accessories/cable/
pre-crimped-wires.html and http://www.technobotsonline.com/
connectors-and-headers/cable-assembly-housings.html) or
Pololu (http://www.pololu.com/catalog/category/71 and http://
www.pololu.com/catalog/category/70). These leave you with one con-
nector at each end and look super professional when bound up using spiral
cable wrap, available from RS Components (http://uk.rs-online.com/
mobile/p/cable-spiral-wrapping/6826842/).

http://www.coolcomponents.co.uk/catalog/jumper-wires-male-female-p-355.html
http://www.coolcomponents.co.uk/catalog/jumper-wires-male-female-p-355.html
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
http://www.technobotsonline.com/cable-and-accessories/cable/pre-crimped-wires.html
http://www.technobotsonline.com/cable-and-accessories/cable/pre-crimped-wires.html
http://www.technobotsonline.com/cable-and-accessories/cable/pre-crimped-wires.html
http://www.technobotsonline.com/connectors-and-headers/cable-assembly-housings.html
http://www.technobotsonline.com/connectors-and-headers/cable-assembly-housings.html
http://www.pololu.com/catalog/category/71
http://www.pololu.com/catalog/category/70
http://www.pololu.com/catalog/category/70
http://uk.rs-online.com/mobile/p/cable-spiral-wrapping/6826842/
http://uk.rs-online.com/mobile/p/cable-spiral-wrapping/6826842/

345 Chapter 15: Multiplying Your Outputs with I2C

For the power supply, ensure that you have the correct voltage and current
for the number of servos you are using. Some small hobby servos use 5V,
but you can find much more variety after you get onto 12V ones. You have
two easy options for a power supply: a bench-top power supply to quickly
connect your board, or a modified external power supply like those used for
charging phones, drills, or laptops. See the “Bench-top power supply” and
“External power supplies” sidebars in this chapter for more information.

Bench-top power supply
Benchtop power supplies (shown in the follow
ing figure) are good for testing circuits quickly,
allowing you to try a range of voltages with a
high maximum current and (if you get a posh
one) monitor the power consumption of your
circuit. For comparison, you might check out
a couple of varieties from Maplin in the United
Kingdom. You can try cheap ones, such as a DC
3 12V 3A Compact Bench Power Supply avail
able from Maplin at http://www.maplin.
co.uk/dc-3-12v-3a-compact-bench-
power-supply-96963, which has no feed
back of the current consumed. Or try more
expensive ones such as a Bench Power Supply
with LCD Screen available from Maplin at

http://www.maplin.co.uk/
bench-power-supply-with-lcd-
screen-219129, which can display the
current consumed by your circuit. If you opt
for a benchtop power supply, you can simply
connect two lengths of wire to the positive and
negative terminals and connect the other end to
the screw terminal on the board.

Always disconnect the power supply before
turning it on to check that the voltage is set to
the appropriate level. It’s easy to accidentally
turn a dial too high when the bench top power
supply is off and damage your circuit as the
power comes on.

http://www.maplin.co.uk/dc-3-12v-3a-compact-bench-power-supply-96963
http://www.maplin.co.uk/dc-3-12v-3a-compact-bench-power-supply-96963
http://www.maplin.co.uk/dc-3-12v-3a-compact-bench-power-supply-96963
http://www.maplin.co.uk/bench-power-supply-with-lcd-screen-219129
http://www.maplin.co.uk/bench-power-supply-with-lcd-screen-219129
http://www.maplin.co.uk/bench-power-supply-with-lcd-screen-219129

346 Part IV: Unlocking Your Arduino’s Potential

External power supplies
When shopping for external power supplies
(shown in the following figure), you should always
buy those that are regulated. Unregulated supplies
don’t have a definite voltage and so are cheaper,
but more risky. Look on the box and the supply to
find out which is regulated and which isn’t. They
can also be either fixed or multivoltage. Fixed
gives you the specified voltage and current; multi
voltage gives you a selection of voltages (such as
3, 4.5, 6, 9, 12) and, often, the current varies, allow
ing more current on the lower voltages.

A good example from Maplin in the United
Kingdom. is the High Power MultiVoltage Desktop
Power Supply at http://www.maplin.co.
uk/high-power-multi-voltage-
desktop-power-supply-48517. It’s
expensive but can operate on a very useful range
of voltages (5, 6, 9, 12, 13.5, and 15) and supply a
maximum current of up to 4A, which is more than
enough for most applications. You can find simi
lar power supplies from RadioShack, such as the
EnercellUniversal 1000mA AC Adapter (http://
www.radioshack.com/product/
index.jsp?productId=3875403).

These normally come with a variety of common
connectors, such as the 2.1mm power jack con
nector on the Arduino. This is useful for lower
amounts of current (up to 500mA), because it
can be plugged into the Arduino to allow you
to power things from the Vin pin. However, run
ning lots of servos requires a significant current
that could be over 1A, so I don’t advise running
this through your Arduino.

Instead, you can strip and tin the wires to allow
them to be easily connected directly to the
screw terminal on your servo driver board or to
a choc block to extend the length of wire. First
make sure that the power supply is unplugged.
Cut the wire 10cm or so from the base of the
connector (that way, you can always connect
it back again). The wire on the power supply is
most likely either biaxial — two multicore wire
side by side — or coaxial — one multicore wire
in the center and another surrounding it.

Biaxial is easy to bare using cable strippers and
can then be tinned using a bit of solder. The
positive is usually be marked in some discreet
way, such as faint white or red dashes, but not
always, so be sure to test with a multimeter.

Coaxial is a bit more difficult to work with. If
you strip back the top layer of insulation on the
wire with a cable stripper, you expose a mesh
of wire. This can be straightened out and pulled
to one side to reveal the central wire. Twist the
nowstraightened mesh of wire to one side of
the central wire and then strip back the cen
tral wire as well, leaving enough insulation so
that the two wires do not touch. You can then
solder these two wires to keep the multicore
wire together and connect it to a screw termi
nal. The ground wire is usually on the outside
mesh of wire, but not always, so test it with a
multimeter. When you’re tinning, be careful not
to melt the insulation around the center core
because doing so could create a short circuit.

To test your power supply’s polarity, secure the
loose ends to your work surface so that they
cannot touch; electrical tape is good for this. Plug
in your power supply. Turn your multimeter to the
DC voltage setting and place the probes on the
ends of each wire. The probes are usually red
and black for clarity. If you’re reading a negative
voltage, you are reading the power supply the
wrong way around — switch your probes to find
the correct positive and negative lines. Unplug the
supply until the ends of each wire are secured on
a screw terminal or tape them up with electrical
tape when not in use to avoid accidents.

Always test the voltage of your external power
supply with a multimeter before using it to power
your project (as shown in Chapter 5). It can be
easy to forget the voltage that your supply is
supplying, and it is also good to practice to test
older power supplies to ensure that they’re up to
scratch and supplying the full voltage for which
they’re rated.

http://www.maplin.co.uk/high-power-multi-voltage-desktop-power-supply-48517
http://www.maplin.co.uk/high-power-multi-voltage-desktop-power-supply-48517
http://www.maplin.co.uk/high-power-multi-voltage-desktop-power-supply-48517
http://www.radioshack.com/product/index.jsp?productId=3875403
http://www.radioshack.com/product/index.jsp?productId=3875403
http://www.radioshack.com/product/index.jsp?productId=3875403

347 Chapter 15: Multiplying Your Outputs with I2C

If you have an external power supply or a bench-top power supply with-
out a current display, link your multimeter in series with either the power
or ground line to see how much current you’re drawing as explained in
Chapter 5. When you are sure of your positive and negative wires, turn the
power supply off and attach them to the screw terminal using a miniature
screwdriver. The polarity is marked on the top of the board, so make sure
that the +5V and GND are the right way around.

The circuit diagram (Figure 15-4) and schematic (Figure 15-5) detail the wiring
for the PWM driver board. The connections can be broken into three areas.
First, to power the I2C chip on the board, the VCC and GND pins on the board
must be connected to the 5V and GND pins on your Arduino. To send data to
the chip, the SCL and SDA pins on the board connect to the SCL and SDA pins
on your Arduino. If you are using an older board than the Uno R3, you won’t
be able to see these pins because they’re a recent addition. Instead, use analog
pins 4 (SDA) and 5 (SCL). The last bit of the wiring is separate from the others
and is to supply the power for the servo motors. Connect your power supply to
the positive and negative terminals using a precision screwdriver.

Figure 15-4:
Diagram

of a PWM
Driver board

wiring.

After your circuit is assembled, you need the appropriate software to use it.
To get it, follow these steps:

 1. Download the Adafruit PWM/Servo Driver Library from Github
(https://github.com/adafruit/Adafruit-PWM-Servo-Driver-
Library).

 2. From the project page, download the .zip file and unzip it to display
the library folder.

https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library
https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library

348 Part IV: Unlocking Your Arduino’s Potential

 3. Rename the library folder to Adafruit_PWMServoDriver, and place it
in your libraries folder in your Arduino sketch directory.

 4. Restart Arduino and click File➪Examples to find the Adafruit_
PWMServoDriver sketch.

Figure 15-5:
A schematic

of a PWM
Driver
board.

Following is the code for this sketch:

/***
 This is an example for our Adafruit 16-channel PWM & Servo driver
 Servo test - this will drive 16 servos, one after the other

 Pick one up today in the adafruit shop!
 ------> http://www.adafruit.com/products/815

 These displays use I2C to communicate, 2 pins are required to
 interface. For Arduino UNOs, thats SCL -> Analog 5, SDA -> Analog 4

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 Written by Limor Fried/Ladyada for Adafruit Industries.
 BSD license, all text above must be included in any redistribution
 **/

349 Chapter 15: Multiplying Your Outputs with I2C

#include <Wire.h>
#include <Adafruit_PWMServoDriver.h>

// called this way, it uses the default address 0x40
Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();
// you can also call it with a different address you want
//Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver(0x41);

// Depending on your servo make, the pulse width min and max may vary, you
// want these to be as small/large as possible without hitting the hard stop
// for max range. You’ll have to tweak them as necessary to match the servos you
// have!
#define SERVOMIN 150 // this is the ‘minimum’ pulse length count (out of 4096)
#define SERVOMAX 600 // this is the ‘maximum’ pulse length count (out of 4096)

// our servo # counter
uint8_t servonum = 0;

void setup() {
 Serial.begin(9600);
 Serial.println(“16 channel Servo test!”);

 pwm.begin();

 pwm.setPWMFreq(60); // Analog servos run at ~60 Hz updates
}

// you can use this function if you’d like to set the pulse length in seconds
// e.g. setServoPulse(0, 0.001) is a ~1 millisecond pulse width. its not

precise!
void setServoPulse(uint8_t n, double pulse) {
 double pulselength;

 pulselength = 1000000; // 1,000,000 us per second
 pulselength /= 60; // 60 Hz
 Serial.print(pulselength); Serial.println(“ us per period”);
 pulselength /= 4096; // 12 bits of resolution
 Serial.print(pulselength); Serial.println(“ us per bit”);
 pulse *= 1000;
 pulse /= pulselength;
 Serial.println(pulse);
 pwm.setPWM(n, 0, pulse);
}

void loop() {
 // Drive each servo one at a time
 Serial.println(servonum);
 for (uint16_t pulselen = SERVOMIN; pulselen < SERVOMAX; pulselen++) {
 pwm.setPWM(servonum, 0, pulselen);

350 Part IV: Unlocking Your Arduino’s Potential

 }
 delay(500);
 for (uint16_t pulselen = SERVOMAX; pulselen > SERVOMIN; pulselen--) {
 pwm.setPWM(servonum, 0, pulselen);
 }
 delay(500);

 servonum ++;
 if (servonum > 15) servonum = 0;
}

Upload the sketch, and turn on your power supply. The servo moves to its
maximum degree value and then back to its 0 position. If you have only one,
there is a delay while it works through all 16 outputs. Monitor the current
draw of your circuit, and if you are within the maximum current of the power
supply, you can add more servos to the board to see the full effect. If you
want to monitor the progression of the program, open the Serial Monitor to
see the current motor as it works through each of them from 0 to 15.

If you don’t see any movement or see erratic behavior, double-check your
wiring:

 ✓ Make sure you’re using the correct pin numbers.

 ✓ If you see a jerking movement from the servo(s), you are most likely not
providing enough current. Monitor the current draw for any peaks in
current and compare that to your supply.

 ✓ If you hear nasty grating noises from your servo, power it down immedi-
ately; you may have to adjust the SERVOMAX and SERVOMIN values. See
how in the next section.

Understanding the I2C PWM/Servo
Driver Sketch

Before setup, two libraries are included that are essential to use this
hardware. Wire.h is included to allow you to talk I2C with the board, and
Adafruit_PWMServoDriver.h is included to perform more specific func-
tions relating to the design of this board.

#include <Wire.h>
#include <Adafruit_PWMServoDriver.h>

A new object, named pwm, is declared using a custom function from
Adafruit_PWMServoDriver.h. This sets the address of the board, which

351 Chapter 15: Multiplying Your Outputs with I2C

defaults to 0x40 if omitted. This is used as the zero value for choosing a
board. If you wanted to choose a board with id 1, you’d use 0x41, as shown.

// called this way, it uses the default address 0x40
Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();
// you can also call it with a different address you want
//Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver(0x41);

The next two statements use #define to set the minimum and maximum
pulse length. Practically, this sets the degrees of rotation of the servos, so if
you find that your servo is rotating too far or not far enough, you can adjust
this value to fine-tune it.

// Depending on your servo make, the pulse width min and max may vary, you
// want these to be as small/large as possible without hitting the hard stop
// for max range. You’ll have to tweak them as necessary to match the servos you
// have!
#define SERVOMIN 150 // this is the ‘minimum’ pulse length count (out of 4096)
#define SERVOMAX 600 // this is the ‘maximum’ pulse length count (out of 4096)

The term uint8_t is a C datatype, which is an unsigned integer 8 bits in
length. Unsigned means it uses only positive values, and 8 bits means it holds
values between 0 and 255. In this case, it is used to declare servonum, the
variable that stores the current servo as the program counts through them.
A standard int in Arduino code is 2 bytes of data (-32,768 to 32,767), which
can also be called an int16_t. You can find more details about int here:
http://arduino.cc/en/Reference/Int.

// our servo # counter
uint8_t servonum = 0;

In setup, the serial port is opened with a baud rate of 9600, and the opening
message “16 channel Servo test!” is sent to mark the start of the program.
The object pwm (or board 0, as you know it) is initialized using pwm.begin,
and the frequency of the servos is set to 60Hz.

void setup() {
 Serial.begin(9600);
 Serial.println(“16 channel Servo test!”);

 pwm.begin();

 pwm.setPWMFreq(60); // Analog servos run at ~60 Hz updates
}

Next is the custom function setServoPulse, which sets the pulse length in
seconds rather than hertz, but this function is not used in this example.

http://arduino.cc/en/Reference/Int

352 Part IV: Unlocking Your Arduino’s Potential

// you can use this function if you’d like to set the pulse length in seconds
// e.g. setServoPulse(0, 0.001) is a ~1 millisecond pulse width. its not

precise!
void setServoPulse(uint8_t n, double pulse) {
 double pulselength;

 pulselength = 1000000; // 1,000,000 us per second
 pulselength /= 60; // 60 Hz
 Serial.print(pulselength); Serial.println(“ us per period”);
 pulselength /= 4096; // 12 bits of resolution
 Serial.print(pulselength); Serial.println(“ us per bit”);
 pulse *= 1000;
 pulse /= pulselength;
 Serial.println(pulse);
 pwm.setPWM(n, 0, pulse);
}

In loop the current servo number is printed to the Serial Monitor for you
to see.

void loop() {
 // Drive each servo one at a time
 Serial.println(servonum);

Now that you know which servo you’re on, it’s time to move it. A for loop
is used to move the current servo from its minimum value to its maximum.
When that servo has reached its maximum value (SERVOMAX), it waits for
half a second and then a second for loop returns its value back from maxi-
mum value to minimum (SERVOMIN). When at its minimum, there is another
delay for a half second. The for loop increments the pulse one value at a
time to give a smooth movement. Notice that uint16_t is used to declare
the local variable pulselen; this is equivalent to an unsigned int in regu-
lar Arduino code. You can find out more about unsigned int values at
http://arduino.cc/en/Reference/UnsignedInt.

 for (uint16_t pulselen = SERVOMIN; pulselen < SERVOMAX; pulselen++) {
 pwm.setPWM(servonum, 0, pulselen);
 }
 delay(500);
 for (uint16_t pulselen = SERVOMAX; pulselen > SERVOMIN; pulselen--) {
 pwm.setPWM(servonum, 0, pulselen);
 }
 delay(500);

After one servo has completed its movement, servonum is incremented
by one. If servonum goes higher than 16, it is sent back to 0 because it has
reached the last servo. There is another bit of C shorthand here, which is
why the if statement can be written all on one line without curly braces({ }).

http://arduino.cc/en/Reference/UnsignedInt

353 Chapter 15: Multiplying Your Outputs with I2C

 servonum ++;
 if (servonum > 15) servonum = 0;
}

This is a great sketch for testing communication with the board and
allows you to control your servos in any way you want by using pwm.
setPWM(servonum, 0, pulselen). As with most libraries, this one is a work in
progress, and you may find many questions without answers, as well see that
many improvements and refinements could be made to it. The best place
to ask further questions about this board and the library is on the Adafruit
forum, where you can find other people asking the same questions and
very helpful people trying to answer them. Head over to http://forums.
adafruit.com and look in the Other Arduino products from Adafruit sec-
tion to find out more.

Buying Servo Motors
Now that you have a way to control lots of servos, you need to know where
to shop for them and what to look for. There are a variety of sites that sell
servo motors online, so a quick Google returns lots of options. The two main
applications for servos are in robotics and remote controlled aircraft, so any
shop or site that supplies these is likely to have a range of servos that are
specific to the application.

The strength of the servos, or the twisting force, is called torque and is usu-
ally measured in kilograms per centimetre (kg/cm) or pounds per inch (lb/
in). Servos can range in torque from miniature servos designed to move the
ailerons on a plane that provide around 0.2 kg/cm, to monster servos that
can be used as sail winches on boats (9.8 kg/cm). Just for comparison, the
torque created by an adult male hand is approximately 8 kg/cm (as NASA’s
human performance charts show at http://msis.jsc.nasa.gov/
sections/section04.htm).

Obviously, the amount of torque created depends on the strength of the
servo motor and the quality of the parts. A wide variety of servo motors
operate from 4V to 12V and cater to most needs. The main difference is the
amount of current that is required when the servo is pulling or pushing,
which is referred to as being “under load.” When the servo is exerting itself,
it can require much more voltage than when it has no load, so it is worth
testing individual servos with a multimeter connected to the power line to
monitor the current draw (as described in Chapter 5) and leaving a reason-
able margin for any additional current. It’s also worth noting that the average
power supply is only 70–80 percent efficient, meaning that a 1A power supply

http://forums.adafruit.com
http://forums.adafruit.com
http://msis.jsc.nasa.gov/sections/section04.htm
http://msis.jsc.nasa.gov/sections/section04.htm

354 Part IV: Unlocking Your Arduino’s Potential

may only really be supplying 700–800mA. Although it may be possible to get
1A out of it, it likely deteriorates quickly and so should be seen as the maxi-
mum and not the recommended supply under typical use.

Power doesn’t always dictate price, and with servos, you find a great variety
of seemingly less powerful servos for a high price. This is often because of
the physical build of the servo itself. The gears inside the servo are of great
importance, and depending on the material used, they can make a huge dif-
ference to the price and performance. Most hobby servos are for relatively
small loads and use nylon gears. This is great because nylon exerts almost no
wear on other nylon parts, even after thousands of uses. Nylon is self-lubri-
cating, requiring no additional grease. More serious servos use metal gears.
These can take much greater loads because they are not as flexible as nylon
and are less likely to break if they are under an excessive load.

Servos can also either be digital or analog, which relates to the way the
motor is controlled. Both types of servo have the same parts and the same
three wires, but digital motors have a microprocessor that can analyze the
signals sent to the servo and send pulses to the servo many times faster than
a traditional servo with analog electronics. With more signals per second, the
servo has a much faster response time. Because each pulse is a voltage, the
servo consumes a lot more current per second and, therefore, also is capable
of providing more torque and supporting a greater load. The drawback of
digital servos is the price and power consumption, but if you can justify it,
you won’t be disappointed.

There are a variety of brands out there to choose from, so the best thing to
do first is to research them. An excellent site that’s aptly named www.
servodatabase.com gives you a good idea of the cost versus performance
of most servos, as well as a good indication of the most popular ones.

If you’re looking for an affordable, basic servo that’s a bit bigger than the
hobby servos in most kits, you can’t go far wrong with a Futaba S3003
found at http://www.gpdealera.com/cgi-bin/wgainf100p.
pgm?I=FUTM0031). In this case, you cannot buy the motor directly from the
manufacturer, so you have to shop around. Two such suppliers are Servo
Shop in the United Kingdom (http://www.servoshop.co.uk/index.
php?pid=FUTS3003) and Servo City in the United States (http://www.
servocity.com/html/s3003_servo_standard.html). Happy shopping!

file:///Volumes/Working/Tech/9781118446379/9781118446379%20Text/9781118446379%20Final%20Text/www.servodatabase.com
file:///Volumes/Working/Tech/9781118446379/9781118446379%20Text/9781118446379%20Final%20Text/www.servodatabase.com
http://www.gpdealera.com/cgi-bin/wgainf100p.pgm?I=FUTM0031
http://www.gpdealera.com/cgi-bin/wgainf100p.pgm?I=FUTM0031
http://www.servoshop.co.uk/index.php?pid=FUTS3003
http://www.servoshop.co.uk/index.php?pid=FUTS3003
http://www.servocity.com/html/s3003_servo_standard.html
http://www.servocity.com/html/s3003_servo_standard.html

355 Chapter 15: Multiplying Your Outputs with I2C

Other Uses for I2C
Servo motors aren’t the only kind of object that you can control using
I2C. Other products are ready to be hooked up to an Arduino to help you
build a huge installation. One such product is the Addressable LED Ribbon
(https://www.sparkfun.com/products/11272), shown in Figure 15-6.
LED ribbon is a flexible tape of LEDs that can be stuck to a surface to allow
lights to cover a huge area. The ribbon itself is a type of flexible PCB that has
surface-mounted LEDs, resistors, and contacts, and has only recently become
widely available for an affordable price. You may have seen it in venues that
have mood lighting around the edges of the room.

Just like individual LEDs, this can either come as a single strip of an individ-
ual color or RGB, allowing you to tailor the color to the use. Most LED ribbon
is a single circuit, meaning that you can change the brightness or color of
the whole strip, but not affect the individual LEDs. Addressable LED Ribbon,
however, is different because it allows you to control each LED individually,
allowing full control of the brightness and color and creating a potential for
very cool animation.

Figure 15-6:
A reel of

addressable
LED ribbon.

There are many great online tutorials for integrating addressable LED ribbon
in your project. Check out the SparkFun (https://www.sparkfun.com/
products/11272) and Adafruit (http://learn.adafruit.com/digital-
led-strip) product pages for more details.

https://www.sparkfun.com/products/11272
https://www.sparkfun.com/products/11272
https://www.sparkfun.com/products/11272
http://learn.adafruit.com/digital-led-strip
http://learn.adafruit.com/digital-led-strip

356 Part IV: Unlocking Your Arduino’s Potential

Part V
Sussing Out

Software

In this part . . .

S
o, by this stage of the book, you must feel that you
have a pretty good grip for the physical world, wir-

ing, soldering, and uploading code. But what if I told you
there was a whole other virtual world out there as well?
Interested? It’s possible to combine your (now copious)
knowledge of electronics with software on your computer
to create stunning interactive visuals in the virtual world
that exists on your computer, or to use data from soft-
ware, your computer, or the Internet to create light,
sound, or motion in the real world.

Chapter 16

Getting to Know Processing
In This Chapter
▶ Getting excited about Processing
▶ Making shapes of all sizes and colors

I
n the previous chapters, you learn all about using Arduino as a stand-
alone device. A program is uploaded onto the Arduino and it carries out

its task ad infinitum until it is told to stop or powered down. You are affecting
the Arduino by simple, clear, electrical signals, and as long as there are no
outside influences or coding errors, and if the components last, the Arduino
reliably repeats its function. This simplicity is extremely useful for many
applications and allows the Arduino to not only serve as a great prototyping
platform but also work as a reliable tool for interactive products and installa-
tions for many years, as it already does in many museums.

Although this simplicity is something to admire, many applications are out-
side the scope of an Arduino’s capabilities. One of these (at least for now) is
running computer software. Although the Arduino is basically a computer,
it’s not capable of running comparably large and complex computer pro-
grams in the same way as your desktop or laptop. Many of these programs
are highly specialized depending on the task that you’re doing. You could
benefit hugely if only you could link this software to the physical world in the
same way your Arduino can.

Because the Arduino can connect to your computer and be monitored over
the serial port, other programs may also be able to do this, in the same way
that your computer talks to printers, scanners, or cameras. So by combin-
ing the physical world interaction capabilities of your Arduino with the data
crunching software capabilities of your computer, you can create projects
with an enormous variety of inputs, outputs, and processes.

Many specific programs are made for specific tasks, but until you want to
specify, it’s best to find software that you can experiment with — that is, be a
jack-of-all-trades in the same way that your Arduino is for the physical world.
Processing is a great place to start.

360 Part V: Sussing Out Software

In this chapter, you learn about Processing, the sister project that was in the
first stages of development around the same time as Arduino. Processing is
a software environment that, in the same way that an Arduino is used to test
circuits quickly, can be used to “sketch” programs quickly. Processing is
a great piece of open source software to learn about, and because of its
similarities to Arduino, learning it is even easier.

Looking Under the Hood
An Arduino can communicate over its serial port as a serial device, which
can be read by any program that can talk serial. Many programs are avail-
able, but Processing is one of the most popular.

Processing has an enormous breadth of applicationsranging visualizing data
to creating generative artwork to performing motion capture using your
webcam for digital performances. These are just a few niches, but you can
find a wealth of examples on the Processing exhibition to wet your digital
whistle. Head over to http://processing.org/exhibition/ to check
them out.

Processing is a Java-based language that looks very similar to C (on which
Arduino code is based) and C++. It is available for Windows, Mac OS, and
Linux. Ben Fry and Casey Reas developed Processing to allow artists, design-
ers, or anyone to experiment with code, rather than just developers and engi-
neers. In the same way that ideas are sketched out, Processing is designed to
sketch software. Programs can be quickly developed and adapted without a
huge investment of time.

Processing is a text-based IDE very similar to that of Arduino (in fact, it was
“borrowed” by the Arduino team when the Arduino integrated development
environment [IDE] was in development). A window (see Figure 16-1) dis-
plays the Java applet that the code creates. As with Arduino, the strength of
Processing is the vast community that shares and comments on sketches,
allowing the many participants to benefit from a diverse array of creative
applications Processing is open source and allows users to modify the
software as well as use it.

In this chapter, you learn how to get started with Processing, but for more
information, head over to the Processing site at http://processing.org/.

 Many other programming languages exist that can interface with Arduino. I
describe Max/Pure Data and OpenFrameworks in sidebars in this chapter.
For a list of even the most obscure, check the Arduino Playgound at
http://arduino.cc/playground/Main/Interfacing.

http://processing.org/exhibition/
http://processing.org/
http://arduino.cc/playground/Main/Interfacing

361 Chapter 16: Getting to Know Processing

Figure 16-1:
A typical

view of
Processing.

Max/PureData
Max (also previously known as Max/MSP) is
a visual programming language with a vast
variety of uses but is most commonly used for
audio, music and sound synthesis applications.
It is available for Windows, Mac OS, Linux, and
other, more obscure operating systems.

Unlike traditional textbased programming
languages, Max uses a graphical user inter
face to connect visual objects to one another
in the same way that traditional synthesizers
could be “patched” using wires to connect the
various functions of the instrument. Software
company Cycling ’74 released the commercial
software Max in 1990 based on earlier work by
Miller Puckette to create a system for interac
tive computer music. Although the software is

not open source, the application programming
interface (API) allows third parties to make their
own extensions to the software for specific
uses. Miller Puckette also developed a free and
open source, but completely redesigned, ver
sion of Max called PureData.

You can find more information about Max and
PureData on their respective web pages: http://
cycling74.com/products/max/
and http://puredata.info. To start com
municating between Max and Arduino, check
out the aptly named Maxuino (http://www.
maxuino.org/archives/category/
updates), and for PureData and Arduino, check
out Pduino (http://at.or.at/hans/pd/
objects.html).

(continued)

http://cycling74.com/products/max/
http://cycling74.com/products/max/
http://puredata.info
http://www.maxuino.org/archives/category/updates
http://www.maxuino.org/archives/category/updates
http://www.maxuino.org/archives/category/updates
http://at.or.at/hans/pd/objects.html
http://at.or.at/hans/pd/objects.html

362 Part V: Sussing Out Software

Installing Processing
Processing is free to download from http://processing.org/. To down-
load Processing, go to the Download page and select your platform. At the
time of writing, Processing was version 2.0 Beta 5 and supported Mac OS X,
Windows 32-bit and 64-bit, and Linux 32-bit and 64-bit. Remember that things
may change between when I put these words down and when you get started.

To install Processing:

 ✓ On a Mac: The .zip file unzips automatically and can be placed in your
application folder at ~/Applications/Processing. Or you can place the
application on the desktop. From there you can drag Processing to the
dock for easy access or create a desktop alias.

 ✓ On Windows: Unzip the .zip file and place the Processing folder
on your desktop or in a sensible location such as your Program Files
folder: C:/Program Files/Processing/. Create a shortcut to
Processing.exe and place it somewhere convenient, such as on your
desktop or in the Start menu.

(continued)

Other helpful links are on the Arduino play
ground at (http://www.arduino.cc/
playground/interfacing/MaxMSP

and http://www.arduino.cc/
playground/Interfacing/PD).

http://processing.org/
http://www.arduino.cc/playground/interfacing/MaxMSP
http://www.arduino.cc/playground/interfacing/MaxMSP
http://www.arduino.cc/playground/Interfacing/PD
http://www.arduino.cc/playground/Interfacing/PD

363 Chapter 16: Getting to Know Processing

openFrameworks
OpenFrameworks, an open source C++ tool
kit for experimenting with code, is actively
developed by Zachary Lieberman, Theo
Watson, and Arturo Castro, as well as other
members of the openFrameworks community.
OpenFrameworks runs on Windows, Mac OS,
Linux, iOS, and Android. OpenFrameworks is
not based on Java as Processing is; it is a C++
library that is designed to be the bare bones for
getting started with audiovisual applications.

OpenFrameworks is especially powerful with
graphics, allowing you to use OpenGL easily
for intensive rendering or video applications.
In contrast to Processing, Max, and PureData,
OpenFrameworks is not its own language; it is, in
fact, a collection of open source libraries, known
as a software framework — hence the name.

Because OpenFrameworks does not have its
own IDE, the software used to write and compile
the code depends on the platform. This feature
can make getting started difficult because there
is no centrally controlled IDE for continuity. The
benefit is that the C++ is highly versatile and can
be used on almost any platform you can think of,
including mobile operating systems.

You can find more details and tutorials at
http://www.openframeworks.cc/
and http://www.openframeworks.
cc/tutorials/introduction/000_
introduction.html. SparkFun also has a
great Arduino tutorial for using OpenFrameworks
with Arduino on Windows at http://www.
sparkfun.com/tutorials/318.

http://www.openframeworks.cc/
http://www.openframeworks.cc/tutorials/introduction/000_introduction.html
http://www.openframeworks.cc/tutorials/introduction/000_introduction.html
http://www.openframeworks.cc/tutorials/introduction/000_introduction.html
http://www.sparkfun.com/tutorials/318
http://www.sparkfun.com/tutorials/318

364 Part V: Sussing Out Software

Taking a look at Processing
When you have Processing installed, run the application. Processing opens
with a blank sketch (see Figure 16-2) similar to the Arduino window and is
divided into five main areas:

 ✓ Toolbar with buttons

 ✓ Tabs

 ✓ Text editor

 ✓ Message area

 ✓ Console

The blank sketch also contains a menu bar for the main Processing applica-
tion, which gives you drop-down menus to access the preferences of the pro-
cessing application, load recent sketches and import libraries, and perform
many other functions.

Figure 16-2:
The

Processing
application
is similar to

but different
from the

Arduino one.

365 Chapter 16: Getting to Know Processing

Here’s an overview of the Processing toolbar:

 ✓ Run: Executes or runs the code in the text editor as an applet (small
application) in a new window. The keyboard shortcuts for this is Ctrl+R
for Windows and Cmd+R for Mac OS.

 ✓ Stop: Stops the code from running and closes the applet window.

 ✓ New: Opens a new, blank sketch with a dated name and a character to
differentiate between sketches, such as sketch_121030a.

 ✓ Open: Lets you select from a directory, recent sketches, or the
Examples folder.

 ✓ Save: Saves the current sketch. When saving, assigning a descriptive
name rather than the preassigned name is best

 ✓ Export Application: Allows you to export your Processing sketch as a
self-contained application. This is useful when you need to run the appli-
cation at start-up or if you need to distribute the code to people who
don’t have Processing installed.

 ✓ Mode: Allows you to change mode between Java (standard), Android
(mobile and tables), and JavaScript (online applications). This capability
is a new development in the latest release. You can find more details on
these modes here: http://wiki.processing.org/w/Android and
http://wiki.processing.org/w/JavaScript.

 ✓ Tabs: Organizes multiple files in a Processing sketch. Use tabs in larger
programs to separate objects from the main sketch or to incorporate
look-up tables of data into a sketch.

 ✓ Text editor: Enters code into the sketch. Recognized terms or functions
are highlighted in appropriate colors for clarity. The text editor is the
same as that in the Arduino IDE.

 ✓ Message area: Displays errors, feedback, or information about the current
task. You might see a notification that the sketch saved successfully, but
more often than not, the message shows where errors are flagged.

 ✓ Console: Displays more details on your sketch. You can use the
println() function here to display the values in your sketch; addi-
tional detail on errors is also shown.

Trying Your First Processing Sketch
Unlike with Arduino, you don’t need an extra kit to get going with Processing,
which makes Processing extremely useful for learning about coding because
you can enter a line or two of code, click Run, and see what you’ve done.

http://wiki.processing.org/w/Android
http://wiki.processing.org/w/JavaScript

366 Part V: Sussing Out Software

Start your first sketch with these steps:

 1. Press Ctrl+N (in Windows) or Cmd+N (on a Mac) to open a new sketch.

 2. Click in the text editor and enter this line of code:
ellipse(50,50,10,10);

 3. Click the Run button.

 A new applet window opens, showing a white circle in the middle of a
gray box, as in Figure 16-3.

Well done! You’ve just written your first Processing program.

Figure 16-3:
A

Processing
sketch

that draws
an ellipse

with equal
dimensions,
also known
as a circle.

Done admiring your circle? That line of code draws an ellipse. An ellipse
normally is not circular, but you gave it the parameters to make a circle. The
word ellipse is highlighted in orange in the text editor, indicating that it is a
recognized function. The first two numbers are the coordinates of the ellipse,
which in this case are 50, 50. The unit of the numbers is in pixels. Because the
default window is 100 x 100 pixels, coordinates of 50, 50 put the ellipse in the
center. The 10, 10 values indicate the width and height of the ellipse, giving
you a circle. You could write the function as

ellipse(x,y,width,height)

The coordinates for the ellipse (or any shape or point, for that matter) are
written as x and y. These indicate a point in two-dimensional (2D) space,
which in this case is a point measured in pixels on your screen. Horizontal
positions are referred to as the x coordinate; vertical positions are the y

367 Chapter 16: Getting to Know Processing

coordinate. Depth used in 3D space is referred to as z. Add the following line
of code, just above ellipse() statement:

size(300,200);

Click the Run button and you get a rectangular window with the ellipse in
the top left of the window, as shown in Figure 16-4. The size() function is
used to define the size of the applet window in pixels, which in this case is
300 pixels wide and 200 pixels high. If your screen isn’t like Figure 16-4, you
may have put the statements in the wrong order. The lines of code are read
in order, so if the ellipse code is first, the blank window is drawn over the
ellipse. And with a rectangular window, you see that the coordinates are
measured from the top left.

Figure 16-4:
A resized

display win
dow shows
more about
the coordi

nate grid.

Coordinates are measured on an invisible a grid with the center point at 0,
0 for 2D (or 0, 0, 0 for 3D), which is referred to as the origin. This is based
on the Cartesian coordinate system, which you may have studied in school.
Numbers can be positive or negative, depending on which side of the origin
they are on. On computer screens, origin is at the top left because pixels are
drawn from top left to bottom right, one row at a time (check out Figure 16-5).
This means that the statement size(300,200) draws a window 300 pixels
from left to right on the screen and then 200 pixels from top to bottom.

368 Part V: Sussing Out Software

Figure 16-5:
How

the grid
looks on

computers.

Drawing shapes
To gain a better understanding of the possibilities you have in drawing
shapes, look at a few basic shapes:

 ✓ point()

 A single point is the most basic shape and is useful for making up more
complex shapes. Write this code and then click the Run button. Look
closely and you see a single black pixel in the center of the display
window (see Figure 16-6). That is the point that your code drew.
size(300,200);
point(150,100);

 Point can also be written as:
point(x,y);

 ✓ line()

 A line is made by connecting two points, which is done by defining the
start and end points. Write the code to generate a screen like the one in
Figure 16-7:
size(300,200);
line(50,50,250,150);

 You can also write a line written as
line(x1,y1,x2,y2);

369 Chapter 16: Getting to Know Processing

Figure 16-6:
If you look

closely, you
can see the

point.

Figure 16-7:
A line

between
two points.

370 Part V: Sussing Out Software

 ✓ rect()

 You can draw a rectangle a number of different ways. In this first exam-
ple, a rectangle is drawn by identifying the starting point and then the
width and height of the rectangle. Write the following code to draw a
rectangle in the center of your display window:
size(300,200);
rect(150,100,50,50);

 In this case, you have a rectangle that starts in at point 150,100 in the
center of the display window. That is the top-left corner of the rectangle,
and from there it has a width of 50, which extends the rectangle to the
right of the window, and a height of 50, which extends to the bottom of
the window. This function is particularly useful if you want the size of
the rectangle to remain constant but change the position of the rect-
angle. You could also write this as
rect(x,y,width,height);

 When drawing rectangles, you can choose among different modes (see
Figure 16-8). If the mode is set to center, the rectangle is drawn centered
around a point instead of being drawn from that point. Write the follow-
ing code and you see that the same values display a different position
when rectMode is changed to CENTER.
rectMode(CENTER);
size(300,200);
rect(150,100,50,50);

 You can see that the rectangle is now centered in the display window.
The shape extends equally from the center point both left to right and
top to bottom. You can also write this as
rect(x,y,width,height);

 You can also draw a rectangle by declaring two diagonally opposite cor-
ners. Write the following code, this time with rectMode set to CORNERS.
rectMode(CORNERS);
size(300,200);
rect(150,100,50,50);

 You see a rectangle that is quite different from the others because it
starts at the same point in the center, 150,100, but ends at point 50,50,
effectively doubling back on itself. You can also write this as
rect(x1,y1,x2,y2);

 ✓ ellipse()

 The first item covered in this chapter was ellipse, which can be used
to simply draw an ellipse. Write out the following code to draw an ellipse
in the center of the display window.
ellipse(150,100,50,50);

371 Chapter 16: Getting to Know Processing

Figure 16-8:
A selection

of differently
drawn

rectangles.

 It is clear that the default mode for ellipse is CENTER, unlike rect,
which is CORNER. This can also be written as:
ellipse(x,y,width,height);

 As with rectMode() it’s possible to set different modes (see Figure
16-9) for drawing ellipses using ellipseMode(). Write out the following
code to draw an ellipse from its corner instead of its center.
ellipseMode(CORNER);
size(300,200);
ellipse(150,100,50,50);

 This draws an ellipse from starting from its top-left corner with a width
of 50 and a height of 50. This can also be written as:
ellipse(x,y,width,height);

 It is also possible to draw an ellipse by specifying multiple corners.
Write out the following code to change the ellipseMode to CORNERS.
ellipseMode(CORNERS);
size(300,200);
ellipse(150,100,50,50);

 Similarly to rectMode(CORNERS) you see that the ellipse doubled
back on itself. The first corner is the center point of the sketch and the
second is at point 50,50.

372 Part V: Sussing Out Software

Figure 16-9:
A selection

of differ
ently drawn

ellipses.

Changing color and opacity
Now that you have an understanding of shapes, it’s time to affect their
appearance. The simplest way to do this is with color and opacity. In fact,
with this it is possible to see through each of the shapes and mix colors by
overlapping shapes.

Here are the details:

 ✓ background(0)

 This function changes the background of your sketch. You can choose
grayscale values, or color.

	 •	Grayscale

 Open a new sketch, and simply type the following code to change
the default gray window to black.

 background(0);

 Change 0 to 255 to change the color to white.
 background(255);

 Any value between 0 (black) and 255 (white) is a grayscale value.
The reason that this range is 0 to 255 is that there are 8 bits of
data in a byte (see Chapter 14), meaning that you need one byte to
store a grayscale color value.

373 Chapter 16: Getting to Know Processing

	 •	Color

 To liven things up a bit you can add color to your sketch back-
ground. Instead of 8-bit grayscale you can use 24-bit color, which is
8-bit red, 8-bit green, and 8-bit blue. The color of the background is
defined with three values instead of one.

 background(200,100,0);

 This gives you an orange background. The orange background is
composed of a red value of 200, a green value of 100, and a blue
value of 0. There are several color modes, but in this case this line
of code can be interpreted as:

 background(red,green,blue);

 ✓ fill()

 Want to change the color of the shapes you draw? Use fill to both set
color and control the shape’s opacity:

	 •	Color

 fill sets the color for any shape that is drawn after it. By calling
fill multiple times it is possible to change the color of several dif-
ferent shapes. Write out the following code to draw three ellipses
with different colors, as in Figure 16-10.

 background(255);
 noStroke();

 // Bright red
 fill(255,0,0);
 ellipse(50,35,40,40);

 // Bright green
 fill(0,255,0);
 ellipse(38,55,40,40);

 // Bright blue
 fill(0,0,255);
 ellipse(62,55,40,40);

 The background is set to white (255), and the function noStroke
removes border lines from the shapes (you can comment it out
to see the effect). The first circle to be drawn is red. You can see
this in the applet because the other two circles overlap it. The
red value is the highest possible (255), as is the second for green
and the third for blue. If another shape was drawn at the end
of the code it would be the same strong blue as that is the last
fill value.

374 Part V: Sussing Out Software

Figure 16-10:
The differ

ent colored
circles.

	 •	Opacity

 It’s also possible to affect the opacity of the colors, creating semi-
transparent shapes. By adding a fourth value to the fill function
you can set the opacity from 0 (fully transparent) to 255 (solid
color). Update the previous code with the following values to give
the circles transparency.

 background(255);
 noStroke();

 // Bright red
 fill(255,0,0,100);
 ellipse(50,35,40,40);

 // Bright green
 fill(0,255,0,100);
 ellipse(38,55,40,40);

 // Bright blue
 fill(0,0,255,100);
 ellipse(62,55,40,40);

Playing with interaction
All of this is fun, but it’s very static. In this example you learn how to quickly
inject some life into your sketches using your mouse as an input. To do this
you need to constantly update the sketch by looping through it over and
over again, sending new values in each loop. Write out the following code to
create an interactive sketch.

375 Chapter 16: Getting to Know Processing

void setup() {
}

void draw() {
ellipse(mouseX,mouseY,20,20);
}

This code draws an ellipse centered on your mouse pointer coordinates, so
when you move your mouse you leave a trail of ellipses behind, as shown in
Figure 16-11. The functions mouseX and mouseY are highlighted blue in the
text editor and take the coordinates of your mouse pointer within the display
window. The values are the number of pixels horizontally and vertically.

With luck, this code looks familiar to you. Instead of Arduino’s void setup
and void loop, Processing uses void setup and void draw. These work
in almost exactly the same way: setup runs once at the start of the sketch;
loop and draw run forever or until they are told to stop.

Figure 16-11:
Drawing lots

of ellipses
wherever

your mouse
pointer

goes.

Change the sketch slightly, and you can cover up all those previous ellipses
to only show the most recent (Figure 16-12).

void setup() {
}

void draw() {
background(0);
ellipse(mouseX,mouseY,20,20);

}

376 Part V: Sussing Out Software

Figure 16-12:
Just one

ellipse
wherever

your mouse
pointer is.

There is much more to Processing that I can’t cover in this book, but these
few points should be enough to gain a basic comprehension of how code
relates to visuals onscreen. You can find a wealth of examples, both on the
Processing site and included in the Processing software. The best approach
is always to run these examples and then tweak the values to see what hap-
pens. By experimenting, you learn what’s going on much more quickly, and
with no electronics, you are at much less risk of breaking things.

Chapter 17

Processing the Physical World
In This Chapter
▶ Turning on a real light with a virtual switch
▶ Graphing data from the physical world
▶ Sending signals between the Arduino and Processing

I
n the previous chapter, you learn the basics of Processing and its similari-
ties to and differences from Arduino. This chapter is all about combining

both of these tools to integrate the virtual and physical worlds. These few
exercises teach you the basics about sending and receiving data in both
Processing and Arduino. You can build on this knowledge to create your own
projects, maybe to generate some awesome onscreen visuals from your sen-
sors or to turn on a light every time someone mentions you on Twitter.

Making a Virtual Button
In this example, you learn how to make an onscreen button in Processing that
affects a physical LED on your Arduino. This is a great sketch to get started
with interactions between computers and the real world, and between an
Arduino and Processing.

You need:

 ✓ An Arduino Uno

 ✓ An LED

The setup is simple for this introduction to Arduino and Processing, requir-
ing only a single LED.

As shown in Figures 17-1 and 17-2, insert the long leg of the LED into pin 13
and the short leg into GND. If you don’t have an LED, you can simply monitor
the onboard LED marked L.

378 Part V: Sussing Out Software

Figure 17-1:
A circuit

diagram of
an Arduino

with and
LED con
nected to

pin 13.

Figure 17-2:
A sche
matic of

an Arduino
with

and LED
connected

to pin 13.

Setting up the Arduino code
After your circuit is assembled, you need the appropriate software to use it.
From the Arduino menu, choose File➪Examples➪04.Communication➪
PhysicalPixel to find the sketch.

This sketch contains both Arduino code and the relevant Processing code for
the sketch to work (it also has a variation in Max 5). The code beneath the
Arduino code is commented out to avoid interfering with the Arduino code.

379 Chapter 17: Processing the Physical World

 In older versions of Arduino, the sketch files ended with .pde, which is the
Processing suffix. This caused confusion, so now the Arduino suffix is .ino.
Different suffixes make it possible to have the Arduino sketch and the
Processing sketch in the same place. If you try to open a .pde in Arduino, the
application assumes that it is an old Arduino sketch and asks whether you
want to change the suffix to .ino.

/*
 Physical Pixel

 An example of using the Arduino board to receive data from the
 computer. In this case, the Arduino boards turns on an LED when
 it receives the character ‘H’, and turns off the LED when it
 receives the character ‘L’.

 The data can be sent from the Arduino serial monitor, or another
 program like Processing (see code below), Flash (via a serial-net
 proxy), PD, or Max/MSP.

 The circuit:
 * LED connected from digital pin 13 to ground

 created 2006
 by David A. Mellis
 modified 30 Aug 2011
 by Tom Igoe and Scott Fitzgerald

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/PhysicalPixel
 */

const int ledPin = 13; // the pin that the LED is attached to
int incomingByte; // a variable to read incoming serial data into

void setup() {
 // initialize serial communication:
 Serial.begin(9600);
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
}

void loop() {
 // see if there’s incoming serial data:
 if (Serial.available() > 0) {
 // read the oldest byte in the serial buffer:
 incomingByte = Serial.read();
 // if it’s a capital H (ASCII 72), turn on the LED:
 if (incomingByte == ‘H’) {
 digitalWrite(ledPin, HIGH);
 }
 // if it’s an L (ASCII 76) turn off the LED:

380 Part V: Sussing Out Software

 if (incomingByte == ‘L’) {
 digitalWrite(ledPin, LOW);
 }
 }
}

Now go through the steps to upload your sketch.

With the Arduino set up to receive a message from Processing, you need to
set up the Processing sketch to send a signal message over the same serial
port to your Arduino.

Setting up the Processing code
This code is available within multiline comment markers (/* */) at the
bottom of the Arduino PhysicalPixel sketch. Copy the code within the com-
ment markers, paste it into a new Processing sketch, and save it with an
appropriate name, such as PhysicalPixel.

 // mouseover serial

 // Demonstrates how to send data to the Arduino I/O board, in order to
 // turn ON a light if the mouse is over a square and turn it off
 // if the mouse is not.

 // created 2003-4
 // based on examples by Casey Reas and Hernando Barragan
 // modified 30 Aug 2011
 // by Tom Igoe
 // This example code is in the public domain.

 import processing.serial.*;

 float boxX;
 float boxY;
 int boxSize = 20;
 boolean mouseOverBox = false;

 Serial port;

 void setup() {
 size(200, 200);
 boxX = width/2.0;
 boxY = height/2.0;
 rectMode(RADIUS);

 // List all the available serial ports in the output pane.
 // You will need to choose the port that the Arduino board is

381 Chapter 17: Processing the Physical World

 // connected to from this list. The first port in the list is
 // port #0 and the third port in the list is port #2.
 println(Serial.list());

 // Open the port that the Arduino board is connected to (in this case #0)
 // Make sure to open the port at the same speed Arduino is using (9600bps)
 port = new Serial(this, Serial.list()[0], 9600);

 }

 void draw()
 {
 background(0);

 // Test if the cursor is over the box
 if (mouseX > boxX-boxSize && mouseX < boxX+boxSize &&
 mouseY > boxY-boxSize && mouseY < boxY+boxSize) {
 mouseOverBox = true;
 // draw a line around the box and change its color:
 stroke(255);
 fill(153);
 // send an ‘H’ to indicate mouse is over square:
 port.write(‘H’);
 }
 else {
 // return the box to it’s inactive state:
 stroke(153);
 fill(153);
 // send an ‘L’ to turn the LED off:
 port.write(‘L’);
 mouseOverBox = false;
 }

 // Draw the box
 rect(boxX, boxY, boxSize, boxSize);
 }

Click the Run button to execute the Processing sketch, and an applet
appears. The applet shows a black background with a gray square in the
middle, representing your virtual button (shown in Figure 17-3). If you move
your mouse over the gray square (or pixel), you can see that its edges turn
white. If you then look at your Arduino, you see that whenever your mouse
hovers over the gray square, the LED on your board illuminates, giving you a
physical representation of your pixel.

If your LED doesn’t light, double-check your wiring:

 ✓ Make sure that you’re using the correct pin number.

 ✓ Make sure that the LED legs are the correct way around.

382 Part V: Sussing Out Software

 ✓ Check that your Arduino code uploaded correctly and that your
Processing code has no errors. Note that you cannot upload while the
Processing sketch is communicating with your Arduino, so you need to
stop the sketch before uploading.

Figure 17-3:
Your

Processing
applet

displaying
the virtual

pixel.

Understanding the Processing
PhysicalPixel sketch
Wherever possible, dividing projects into their elements is a good idea.
You may have many inputs and outputs, but if you deal with them one at a
time, they are easier to understand and easier to troubleshoot. Because the
Processing side is the input, you’re wise to start with that.

The structure of a Processing sketch is similar to Arduino. You include librar-
ies and declare variables at the start of the sketch and set fixed values or
initializations in setup. The draw function then repeats its process until
told otherwise.

Processing uses libraries to add functionality in the same way as Arduino does.
In this case, a serial communication library is needed to talk to the Arduino.
In Arduino, this library is included by using #include <libraryName.h>,
but in Processing, you use the import keyword, followed by the name and the
syntax * to load all the related parts of that library.

import processing.serial.*;

A float is a floating-point number, one with a decimal place, such as 0.5, 10.9,
and so on. In this case, two floating-point numbers are declared, boxX and
boxY. These are the coordinates for the location of the box.

float boxX;
float boxY;

Next, boxSize defines the size of the box as an integer, or whole number.
Because it is square, only one value is needed.

int boxSize = 20;

383 Chapter 17: Processing the Physical World

A Boolean (which can be only true or false) is used to communicate that the
mouse is over the box. This is set to start as false.

boolean mouseOverBox = false;

The last thing to do is create a new serial port object. Many serial connec-
tions could be in use by your computer, so it’s important that each one be
named so that it can be used as needed. In this case, you are using only one
port. The word serial is specific to the serial library to indicate that you want
to create a new serial object (connection), and the word port is the name of
the object (connection) used to refer to the port from this point on. Think of
it as giving your cat a collar. If too many cats are in a room, they all look fairly
similar and follow the same general rules, but they are still all individual.
If you put a colored collar on each cat with its name printed on it, you can
easily identify which one is which.

Serial port;

In setup, the first item to define is the size of the display window. This is set
to 200 pixels square.

void setup() {
 size(200,200);

The variables for boxX and boxY are set to be proportional to the width and
height of the display window. They are always equal to half the width and
height, respectively. Next, rectMode is set to RADIUS, which is similar to
CENTER, but instead of specifying the overall width and height of the rect-
angle, RADIUS specifies half the height and width. (CENTER could be inter-
preted as diameter in that respect.) Because the coordinates of the box are
centered and are aligned to the center point of the display window, the box is
also perfectly centered.

 boxX = width/2.0;
 boxY = height/2.0;
 rectMode(RADIUS);

Your computer may have a lot of serial connections, so it’s best to print a list
of them to locate your Arduino.

 println(Serial.list());

The most recent port usually appears at the top of this list in position 0, so if
you’ve just plugged in your Arduino, the first item is likely the one you want.
If you are not using the Serial.list function, you could replace Serial.
list()[0] with another number in the list, which will be printed in the con-
sole. You can also replace Serial.list()[0] with the exact name of the
port, such as /dev/tty.usbmodem26221 or COM5. Specifying the exact name
is also useful if you have multiple Arduinos connected to the same computer.
The number 9600 refers to the baud rate, the rate at which you are communi-
cating with the Arduino.

384 Part V: Sussing Out Software

 If the baud rate number is not the same on both ends (the sending and receiv-
ing end), the data will not be received.

 port = new Serial(this, Serial.list()[0], 9600);
}

In draw, the first task is to draw a black background.

void draw()
{
 background(0);

Processing uses the same (or similar) conditionals as Arduino. This if state-
ment tests the mouse value to see whether it is over the box area. If mouseX
is greater than the box coordinate (center), minus the size of the box (half
the box width), and less than the box coordinate (center), plus the size of the
box (half the box width), the horizontal position is over the box. This state-
ment is used again with the vertical position, using AND statements (&&) to
add to the conditions of the if statement. Only if all these are true can the
Boolean mouseOverBox be declared true.

 // Test if the cursor is over the box
 if (mouseX > boxX-boxSize && mouseX < boxX+boxSize &&
 mouseY > boxY-boxSize && mouseY < boxY+boxSize) {
 mouseOverBox = true;

To indicate that mouseOverBox is true, the code draws a white line around
the box. Rather than requiring that another box be drawn, the white line
appears simply by changing the stroke or outline value (stroke is a term
common in most graphics software). The stroke is set to 255, which outlines
the box in white.

 // draw a line around the box and change its color:
 stroke(255);

Fill is set to 153, a mid-gray, which colors the next object that is drawn.

 fill(153);

Then the all important communication is sent. The statement port.
write is similar to Serial.print but is used for writing to a serial port in
Processing. The character sent is H for high.

 // send an ‘H’ to indicate mouse is over square:
 port.write(‘H’);
 }

The else statement tells Processing what to do if the mouse is not over the box.

 else {

385 Chapter 17: Processing the Physical World

The stroke value is set to the same mid-gray as the box. The box fill color
remains the same whether active or inactive.

 // return the box to its inactive state:
 stroke(153);
 fill(153);

The character L is sent to the serial port to signify that the LED should be
set low.

 // send an ‘L’ to turn the LED off:
 port.write(‘L’);

The Boolean mouseOverBox is set to false.

 mouseOverBox = false;
 }

Finally, the box (technically a rectangle) itself is drawn. Its coordinates are
always centered, and its size remains the same; the only difference is that the
color applied by the if statement. If the mouse is over the box, the stroke
value is changed to white (active), and if not, the stroke value is set to the
same gray as the box and appears to not be there (inactive).

 // Draw the box
 rect(boxX, boxY, boxSize, boxSize);
}

Understanding the Arduino
Physical Pixel sketch
In the preceding section, you find out how the Processing side works, provid-
ing a signal. The signal is sent over the serial connection to your Arduino,
so in this section I explain what the Arduino code does with it. The Arduino
code for this example is relatively simple compared to other examples in this
book and is great for understanding how a serial connection is made. I always
recommend starting with this sketch for any Processing-to-Arduino commu-
nication. It’s great as a foundation to make sure that your hardware and soft-
ware are working, and you can then build on it or adapt it as needed.

First, the constant and variable values are declared. The LED pin — pin 13 —
is the LED output and does not change, so it is marked as a constant. The
incomingByte value does change and is declared as an integer. Note that it
is declared as an integer (int), not a character (char). I explain why a bit later.

const int ledPin = 13; // the pin that the LED is attached to
int incomingByte; // a variable to read incoming serial data into

386 Part V: Sussing Out Software

In setup, the serial communication is initialized and set to a matching baud
rate of 9600.

 Remember that in Processing and Arduino, if you change the speed of the
device or application sending data, you also must change the speed of the
device or application receiving. When communicating with a computer, you
must choose from a range of values: 300, 600, 1200, 2400, 4800, 9600, 14400,
19200, 28800, 38400, 57600, or 115200.

void setup() {
 // initialize serial communication:
 Serial.begin(9600);

Pin 13, or ledPin as it is named, is set to be an output.

 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
}

The first action in the loop is to determine whether any data is available.
Serial.available reads the serial buffer, which stores any data sent to
the Arduino before it is read. Nothing happens until data is sent to the buffer.

By checking that the value is greater than 0, you reduce the number of read-
ings considerably. Reading lots of 0 or null values can considerably slow down
the operation of your Arduino and any programs or hardware reading from it.

void loop() {
 // see if there’s incoming serial data:
 if (Serial.available() > 0) {

If a value is greater than 0, it is stored in the int variable incomingByte.

 // read the oldest byte in the serial buffer:
 incomingByte = Serial.read();

Now you need to know if the data received is what your program is expect-
ing. Processing sent H as a character, but that is just a byte of data that can
be understood as a number or a character. In this case, you’re treating it
as an integer. This if statement checks to see whether the integer value is
equal to 72, which is equal to the character H in ASCII. The inverted commas
indicate that it is a character and not a variable. The statement if (incom-
ingByte == 72) { would return the same result.

 // if it’s a capital H (ASCII 72), turn on the LED:
 if (incomingByte == ‘H’) {

If the values are equal, pin 13 is set HIGH.

 digitalWrite(ledPin, HIGH);
 }

387 Chapter 17: Processing the Physical World

If the value is the character L, or the integer value 76, the same pin is set LOW.

 // if it’s an L (ASCII 76) turn off the LED:
 if (incomingByte == ‘L’) {
 digitalWrite(ledPin, LOW);
 }
 }
}

This is a very basic Processing-to-Arduino interaction, but it works great
as the basis for larger projects. In this example, the onscreen interaction
is the input and could be swapped out for more useful or elaborate inputs.
One such input is face tracking: so that When your face is at the center of
the screen, the signal is sent. On the Arduino side of the code, as is true of
Processing, a vast array of outputs could be triggered besides lighting an LED
(lovely though it is). For instance, you could link optocouplers to a remote
and begin playback whenever a high signal is sent, and you could pause play-
back whenever a low signal is sent. (See the bonus chapter at www.dummies.
com/go/arduinofd for more about working with optocouplers.)

Drawing a Graph
In the preceding section of this chapter, you see how to send a signal in
one direction. Want to learn how to send signals the other direction, from
Arduino to Processing? In this example, you find out how to read the value of
a potentiometer being read by your Arduino and and display it visually in a
Processing applet.

You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ A potentiometer

 ✓ Jump wires

This basic circuit uses a potentiometer to send an analog value to Processing
that can be interpreted and displayed on an onscreen graph. Assemble the
circuit connection the center pin of the potentiometer to analog pin 0, fol-
lowing Figures 17-4 and 17-5. The potentiometer is wired with the central pin
connected to analog pin 0. Of the other two pins, one is connected to 5V and
the other to GND. By reversing these pins it’s possible to change the direc-
tions that the potentiometer counts in when turned.

http://www.dummies.com/go/arduinofd
http://www.dummies.com/go/arduinofd

388 Part V: Sussing Out Software

Figure 17-4:
A circuit

diagram for
a potentiom

eter input.

Figure 17-5:
A schematic

for a
potentiom
eter input.

389 Chapter 17: Processing the Physical World

Setting up the Arduino code
After you assemble your circuit, you need the appropriate software to use it.
From the Arduino menu, choose File➪Examples➪04.Communication➪Graph
to find the sketch. This sketch contains both Arduino code and the relevant
Processing code for the sketch to work (and has a variation in Max 5 as well).
The Processing code beneath the Arduino code is commented out to avoid
interferenceing with the Arduino code.

/*
 Graph

 A simple example of communication from the Arduino board to the computer:
 the value of analog input 0 is sent out the serial port. We call this “serial”
 communication because the connection appears to both the Arduino and the
 computer as a serial port, even though it may actually use
 a USB cable. Bytes are sent one after another (serially) from the Arduino
 to the computer.

 You can use the Arduino serial monitor to view the sent data, or it can
 be read by Processing, PD, Max/MSP, or any other program capable of reading
 data from a serial port. The Processing code below graphs the data received
 so you can see the value of the analog input changing over time.

 The circuit:
 Any analog input sensor is attached to analog in pin 0.

 created 2006
 by David A. Mellis
 modified 9 Apr 2012
 by Tom Igoe and Scott Fitzgerald

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/Graph
 */

void setup() {
 // initialize the serial communication:
 Serial.begin(9600);
}

void loop() {
 // send the value of analog input 0:
 Serial.println(analogRead(A0));
 // wait a bit for the analog-to-digital converter
 // to stabilize after the last reading:
 delay(2);
}

Now go through the steps to upload your sketch.

390 Part V: Sussing Out Software

With the Arduino now set up to send a message to Processing, you need to
set up the Processing sketch to receive that message over the serial port.

Setting up the Processing code
This code is found within multiline comments markers (/* */) at the
bottom of the Arduino Graph sketch. Copy the code within the comment
markers and then paste it into a new processing sketch, saved with an appro-
priate name, such as Graph.

// Graphing sketch

// This program takes ASCII-encoded strings
// from the serial port at 9600 baud and graphs them. It expects values in the
// range 0 to 1023, followed by a newline, or newline and carriage return

// Created 20 Apr 2005
// Updated 18 Jan 2008
// by Tom Igoe
// This example code is in the public domain.

import processing.serial.*;

Serial myPort; // The serial port
int xPos = 1; // horizontal position of the graph

void setup () {
 // set the window size:
 size(400, 300);

 // List all the available serial ports
 println(Serial.list());
 // I know that the first port in the serial list on my mac
 // is always my Arduino, so I open Serial.list()[0].
 // Open whatever port is the one you’re using.
 myPort = new Serial(this, Serial.list()[0], 9600);
 // don’t generate a serialEvent() unless you get a newline character:
 myPort.bufferUntil(‘\n’);
 // set inital background:
 background(0);
}
void draw () {
 // everything happens in the serialEvent()
}
void serialEvent (Serial myPort) {
 // get the ASCII string:
 String inString = myPort.readStringUntil(‘\n’);

 if (inString != null) {

391 Chapter 17: Processing the Physical World

 // trim off any whitespace:
 inString = trim(inString);
 // convert to an int and map to the screen height:
 float inByte = float(inString);
 inByte = map(inByte, 0, 1023, 0, height);

 // draw the line:
 stroke(127, 34, 255);
 line(xPos, height, xPos, height - inByte);

 // at the edge of the screen, go back to the beginning:
 if (xPos >= width) {
 xPos = 0;
 background(0);
 }
 else {
 // increment the horizontal position:
 xPos++;
 }
 }
}

Click the Run button to execute the Processing sketch, and an applet
appears. The applet has a black background with a purple graph represent-
ing the analog Arduino input, as shown in Figure 17-6. As you turn the poten-
tiometer, the purple graph changes to match it. The graph is updated over
time, so as the reading progresses, the graph fills the horizontal space. When
it reaches the edge of the display window, the graph resets to the starting
point, starting at the left side again.

Figure 17-6:
A purple

graph
showing

your sensor
reading.

If you don’t see a graph, double-check your wiring:

 ✓ Make sure you’re using the correct pin number.

 ✓ Make sure that the potentiometer is wired the correct way around.

392 Part V: Sussing Out Software

 ✓ Check that your Arduino code uploaded correctly and that your
Processing code has no errors. Note that you cannot upload while the
Processing sketch is communicating with your Arduino, so stop the
sketch before uploading.

Understanding the Arduino Graph sketch
In setup, the code just needs to initialize the serial port. This is given a baud
rate of 9600, which must match the baud rate in the Processing sketch.

The analog input pins are set to input by default, so you don’t need to set
their pinMode.

void setup() {
 // initialize the serial communication:
 Serial.begin(9600);
}

In the loop, a single line is used to print the value of the sensor to the serial port.
The pin is directly named rather than being given a variable (such as analog
Pin) because no repeat mentions occur. This pin is A0, or analog input pin 0.

void loop() {
 // send the value of analog input 0:
 Serial.println(analogRead(A0));

Analog readings are made extremely quickly, usually quicker than they can
be converted to a digital format. Sometimes this speed causes errors, so a
short delay of 2 milliseconds between readings can really help to stabilize the
results. Think of it like a tap that limits the flow of water.

 // wait a bit for the analog-to-digital converter
 // to stabilize after the last reading:
 delay(2);
}

Understanding the Processing
Graph sketch
When data is sent to the serial port, Processing reads that data and inter-
prets it to draw the bar graph. First you import the serial library into the
sketch and create a new instance of it. In this case, the new serial port object
is called myPort.

import processing.serial.*;

Serial myPort; // The serial port

393 Chapter 17: Processing the Physical World

One integer, defined as xPos , keeps track of where the latest bar in the bar
graph is drawn (the x position).

int xPos = 1; // horizontal position of the graph

In setup, the display window is defined as 400 pixels wide and 300 pixels tall.

void setup () {
 // set the window size:
 size(400,300);

To find the correct serial port, Serial.list is called and printed to the
console with println. The function println is similar to Serial.println
in Arduino but is used in Processing for monitoring values. These values
print to the console rather than the serial port and are used for debugging
rather than communication.

 // List all the available serial ports
 println(Serial.list());

Your Arduino is likely to appear at the top of the list, so myPort uses posi-
tion 0 as the Arduino serial port. If you are not using the Serial.list
function, you can replace Serial.list()[0] with another number in the
list, which prints in the console. You can also replace Serial.list()[0]
with the exact name of the port, such as /dev/tty.usbmodem26221 or COM5.
Specifying the name is also useful if you have multiple Arduinos connected
to the same computer. The number 9600 refers to the baud rate, the rate at
which you are communicating with the Arduino. If this is not the same on
both ends, the data will not be received.

 myPort = new Serial(this, Serial.list()[0], 9600);

In this example, you have another way to sort out the good data from the
bad. The function serialEvent triggers every time data arrives in the serial
buffer. This line checks to see whether a character followed by a newline
character is sent, such as Serial.println(100) on the Arduno side.
Newline, or Return on a keyboard, has an ASCII character, which is referred
to as \n. The line could also look for other special characters, such as tab \t.

 // don’t generate a serialEvent() unless you get a newline character:
 myPort.bufferUntil(‘\n’);

To start, the background is colored black.

 // set inital background:
 background(0);
}

In draw, there is nothing to do because serialEvent is monitoring the
serial port and triggering whenever a newline character is present. Which the
comment in the code reminds you of!

394 Part V: Sussing Out Software

void draw () {
 // everything happens in the serialEvent()
}

The function serialEvent is part of the serial library and triggers whenever
data arrives in the serial buffer. Because the bufferUntil(‘\n’) condition
has been used, serialEvent triggers when a newline character is buffered.

void serialEvent (Serial myPort) {

A temporary string is declared to store the data read from myPort. This is
also read until a newline character appears. Because the Arduino is send-
ing an integer followed by a newline, followed by an integer, and so on, each
value is read individually.

 // get the ASCII string:
 String inString = myPort.readStringUntil(‘\n’);

An if statement checks that the string contains data and is not equal to 0
or null.

 if (inString != null) {

To make sure that no anomalies exist, the trim function is used to remove
spaces, tabs, and carriage returns from the string. The trim function effectively
removes all formatting from the characters so that they can be read clearly.

 // trim off any whitespace:
 inString = trim(inString);

Now the clean string of numbers is converted into a float, called inByte. The
float is declared on the left side of the equation and is made equal to the float
conversion of inString. You can also use parentheses around the variable
to convert it to other types of data, such as int() or byte().

 // convert to an int and map to the screen height:
 float inByte = float(inString);

The newly declared inByte is then mapped or scaled to a more useful
range. The range of the sensor is 0 to 1023, so inByte is scaled to a range of
0 to the height of the display window, keeping the display proportional with-
out exceeding the height of the window.

 inByte = map(inByte, 0, 1023, 0, height);

This bar graph is extremely detailed, with one bar represented by a column
of pixels. These awesome visuals are created by using the line function. To
change the color of the line to purple, the stroke value is set to its RGB com-
ponents. The line is defined by its start and end point. Because it is

395 Chapter 17: Processing the Physical World

displaying a graph, you want lots of vertical lines with varying heights. As
you can see, the x or horizontal coordinates are the same variable. The
height coordinate for one end of the line is equal to the height of the window,
which fixes the height coordinate to the bottom edge of the window. The
other height value is equal to the height minus the inByte value, meaning
that the greater the value, the nearer the top of the line is to the top of the
window.

 // draw the line:
 stroke(127, 34, 255);
 line(xPos, height, xPos, height - inByte);

 Note that if you’re having trouble choosing a color, you can choose Tools➪
Color Selector on the Processing menu. The Color Selector shows a color
wheel that gives the red, green, and blue values of any color you select, as
well as the hexadecimal value, as you can see in Figure 17-7.

Figure 17-7:
The builtin

color wheel
can be

really
useful.

This next bit of code handles the movement of the xPos or horizontal position
of the graph over time. If xPos is greater than or equal to the width, the line
reaches beyond the edge of the display window. If this happened, the variable
is returned to 0, and a new background is drawn to cover the old graph.

// at the edge of the screen, go back to the beginning:
 if (xPos >= width) {
 xPos = 0;
 background(0);
 }

If xPos is not equal to the width, it is increased by one pixel for the next reading.

 else {
 // increment the horizontal position:
 xPos++;
 }
 }
}

396 Part V: Sussing Out Software

This is a great exercise for getting familiar with communication between
Arduino to Processing. The Arduino could easily be sending data from an
analog sensor detecting sound, movement, or light. The Processing side
things are a little more complicated, but largely because you are generating
a complicated visual. The graph could just as easily be an ellipse that gets
bigger or smaller as the values change. Why not try it?

Sending Multiple Signals
The only thing better than sending signals to Processing is sending multiple
signals, right? Sending multiple signals is often a stumbling block, though,
because although sending values from multiple sensors is easy, handling
them in the correct order on the other end can often be difficult. In this exam-
ple, you learn how to send data from three separate sensors attached to your
Arduino to a Processing sketch.

You need:

 ✓ An Arduino Uno

 ✓ A breadboard

 ✓ Two 10k ohm potentiometers

 ✓ A pushbutton

 ✓ A 10k ohm resistor

 ✓ Jump wires

The circuit is a combination of three separate inputs. Although they all use
the same power and ground, you can think of the inputs individually. Two
potentiometers provide two values. These are wired in the same way as you
would wire a light or temperature sensor, with one side wired to 5V and the
other wired to the analog input pin that is reading it as well as to GND via a
resistor. These could actually be replaced with any analog inputs with the
appropriate resistors. The pushbutton provides a digital input as well. One
side of the pushbutton is wired to 5V and the other is wired to the digital
pin reading it as well as GND via a resistor. Complete the circuit as shown in
Figures 17-8 and 17-9.

397 Chapter 17: Processing the Physical World

Figure 17-8:
A circuit

diagram for
two analog
inputs and
one digital.

Figure 17-9:
A schematic

for two
analog

inputs and
one digital.

398 Part V: Sussing Out Software

Setting up the Arduino code
After you assemble your circuit, you need the appropriate software to use
it. From the Arduino menu, choose File➪Examples➪04.Communication➪
SerialCallResponse. This sketch contains both Arduino code and the relevant
Processing code for the sketch to work (along with a variation in Max 5 as
well). The Processing code beneath the Arduino code is commented out to
avoid interference with the Arduino sketch.

/*
 Serial Call and Response
 Language: Wiring/Arduino

 This program sends an ASCII A (byte of value 65) on startup
 and repeats that until it gets some data in.
 Then it waits for a byte in the serial port, and
 sends three sensor values whenever it gets a byte in.

 Thanks to Greg Shakar and Scott Fitzgerald for the improvements

 The circuit:
 * potentiometers attached to analog inputs 0 and 1
 * pushbutton attached to digital I/O 2

 Created 26 Sept. 2005
 by Tom Igoe
 modified 24 April 2012
 by Tom Igoe and Scott Fitzgerald

 This example code is in the public domain.
 http://www.arduino.cc/en/Tutorial/SerialCallResponse

 */

int firstSensor = 0; // first analog sensor
int secondSensor = 0; // second analog sensor
int thirdSensor = 0; // digital sensor
int inByte = 0; // incoming serial byte

void setup()
{
 // start serial port at 9600 bps:
 Serial.begin(9600);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for Leonardo only
 }

 pinMode(2, INPUT); // digital sensor is on digital pin 2
 establishContact(); // send a byte to establish contact until receiver

 // responds
}

void loop()

399 Chapter 17: Processing the Physical World

{
 // if we get a valid byte, read analog ins:
 if (Serial.available() > 0) {
 // get incoming byte:
 inByte = Serial.read();
 // read first analog input, divide by 4 to make the range 0-255:
 firstSensor = analogRead(A0)/4;
 // delay 10ms to let the ADC recover:
 delay(10);
 // read second analog input, divide by 4 to make the range 0-255:
 secondSensor = analogRead(1)/4;
 // read switch, map it to 0 or 255L
 thirdSensor = map(digitalRead(2), 0, 1, 0, 255);
 // send sensor values:
 Serial.write(firstSensor);
 Serial.write(secondSensor);
 Serial.write(thirdSensor);
 }
}

void establishContact() {
 while (Serial.available() <= 0) {
 Serial.print(‘A’); // send a capital A
 delay(300);
 }
}

Upload this code to your Arduino. Now that the Arduino is set up to send
data to Processing, you need to set up the Processing sketch to receive and
interpret the data over the serial port.

Setting up the Processing code
You find the Processing code within multiline comment markers (/* */) at
the bottom of the Arduino SerialCallResponse sketch. Copy the code within
the comment markers into a new Processing sketch and save with an appro-
priate name, such as SerialCallResponse.

// This example code is in the public domain.

import processing.serial.*;

int bgcolor; // Background color
int fgcolor; // Fill color
Serial myPort; // The serial port
int[] serialInArray = new int[3]; // Where we’ll put what we receive
int serialCount = 0; // A count of how many bytes we receive
int xpos, ypos; // Starting position of the ball
boolean firstContact = false; // Whether we’ve heard from the

 // microcontroller
void setup() {

400 Part V: Sussing Out Software

 size(256, 256); // Stage size
 noStroke(); // No border on the next thing drawn

 // Set the starting position of the ball (middle of the stage)
 xpos = width/2;
 ypos = height/2;

 // Print a list of the serial ports, for debugging purposes:
 println(Serial.list());

 // I know that the first port in the serial list on my mac
 // is always my FTDI adaptor, so I open Serial.list()[0].
 // On Windows machines, this generally opens COM1.
 // Open whatever port is the one you’re using.
 String portName = Serial.list()[0];
 myPort = new Serial(this, portName, 9600);
}

void draw() {
 background(bgcolor);
 fill(fgcolor);
 // Draw the shape
 ellipse(xpos, ypos, 20, 20);
}

void serialEvent(Serial myPort) {
 // read a byte from the serial port:
 int inByte = myPort.read();
 // if this is the first byte received, and it’s an A,
 // clear the serial buffer and note that you’ve
 // had first contact from the microcontroller.
 // Otherwise, add the incoming byte to the array:
 if (firstContact == false) {
 if (inByte == ‘A’) {
 myPort.clear(); // clear the serial port buffer
 firstContact = true; // you’ve had first contact from the microcontroller
 myPort.write(‘A’); // ask for more
 }
 }
 else {
 // Add the latest byte from the serial port to array:
 serialInArray[serialCount] = inByte;
 serialCount++;

 // If we have 3 bytes:
 if (serialCount > 2) {
 xpos = serialInArray[0];
 ypos = serialInArray[1];
 fgcolor = serialInArray[2];

 // print the values (for debugging purposes only):
 println(xpos + “\t” + ypos + “\t” + fgcolor);

 // Send a capital A to request new sensor readings:

401 Chapter 17: Processing the Physical World

 myPort.write(‘A’);
 // Reset serialCount:
 serialCount = 0;
 }
 }
}

Click the Run button to execute the Processing sketch, and an applet appears.
The applet has a black background, and whenever you press the pushbutton, a
white dot appears. Move the potentiometers to move the dot horizontally and
vertically. When you release the pushbutton, the dot disappears.

If you don’t see the correct behavior, double-check your wiring:

 ✓ Make sure that you’re using the correct pin numbers.

 ✓ Make sure that the potentiometers are wired the correct way around.

 ✓ Check that your Arduino code uploaded correctly and that your
Processing code has no errors. Note that you cannot upload while the
Processing sketch is communicating with your Arduino, so stop the
sketch before uploading.

Understanding the Arduino
SerialCallResponse sketch
At the start of the sketch, four variables are declared. Three of them are for the
sensor values and one stores an incoming byte from the Processing sketch.

int firstSensor = 0; // first analog sensor
int secondSensor = 0; // second analog sensor
int thirdSensor = 0; // digital sensor
int inByte = 0; // incoming serial byte

In setup, the serial port is established with a baud rate of 9600. The while
statement continually checks for the presence of a serial connection before
proceeding. The statement is interpreted as “while there is not a serial
connection, do nothing.” This line of code is only needed only for the new
Leonardo boards.

void setup()
{
 // start serial port at 9600 bps:
 Serial.begin(9600);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for Leonardo only
 }

402 Part V: Sussing Out Software

Pin 2 is the pushbutton pin and is set as an input using pinMode.

pinMode(2, INPUT); // digital sensor is on digital pin 2

A special custom function called establishContact is called to signal to
the Processing sketch that the Arduino is ready.

 establishContact(); // send a byte to establish contact until receiver
responds

}

In the loop, an if statement checks whether any data being sent is greater
than 0. If it is, that byte is read into the variable inByte.

void loop()
{
 // if we get a valid byte, read analog ins:
 if (Serial.available() > 0) {
 // get incoming byte:
 inByte = Serial.read();

The firstSensor variable stores the value of the potentiometer on analog
pin 0 after dividing it by 4. This simple math reduces the range from 0 to 1023
to 0 to 255.

 // read first analog input, divide by 4 to make the range 0-255:
 firstSensor = analogRead(A0)/4;

A short break of 10 milliseconds occurs to give the analog-to-digital converter
plenty of time to process the first value.

 // delay 10ms to let the ADC recover:
 delay(10);

The second sensor is read and converted in the same way and then the code
writes to the secondSensor variable.

 // read second analog input, divide by 4 to make the range 0-255:
 secondSensor = analogRead(1)/4;

The switch is a little different. To scale the values, the map function is used.
The first value inside the map function is the variable to be mapped. In this
case, it is not a variable but rather a direct digitalRead of pin 2. Saving
the digitalRead value to a variable first in this case is neither necessary
nor beneficial. The range of the switch is 0 to 1, and it is mapped to the
same range as the other sensors, 0 to 255. The converted value is stored in
thirdSensor.

 // read switch, map it to 0 or 255L
 thirdSensor = map(digitalRead(2), 0, 1, 0, 255);

403 Chapter 17: Processing the Physical World

Each of the sensor values is then sent one at a time to the serial port using
Serial.write.

 // send sensor values:
 Serial.write(firstSensor);
 Serial.write(secondSensor);
 Serial.write(thirdSensor);
 }
}

At the end of the sketch is the custom function establishContact that was
called in setup. This monitors the serial port to see whether a serial connec-
tion is available. If not, establishContact it sends a capital “A” to the serial
port every 300 milliseconds. When a connection is available, the function stops.

void establishContact() {
 while (Serial.available() <= 0) {
 Serial.print(‘A’); // send a capital A
 delay(300);
 }
}

Understanding the Processing
SerialCallResponse sketch
Now examine what’s happening on the Processing side to establish contact,
interpret the values, and display the data. The first action to take in the
Processing sketch is to import the serial library.

import processing.serial.*;

Many variables need to be declared for this sketch. The first two are colors
for the background and shapes.

int bgcolor; // Background color
int fgcolor; // Fill color

A new instance of serial port is created, called myPort.

Serial myPort; // The serial port

An array of integer values is created and declared to be three values long.

int[] serialInArray = new int[3]; // Where we’ll put what we receive

An integer counter is declared to keep track of how many bytes have been read.

int serialCount = 0; // A count of how many bytes we receive

404 Part V: Sussing Out Software

The integer values xpos and ypos store the coordinates of the dot.

int xpos, ypos; // Starting position of the ball

A Boolean stores a value that indicates whether contact has been made with
the Arduino.

boolean firstContact = false; // Whether we’ve heard from the
microcontroller

In setup, the size of the display window is set. The function noStroke
ensures that no borders are on shapes drawn from this point on in the sketch.

void setup() {
 size(256, 256); // Stage size
 noStroke(); // No border on the next thing drawn

The starting values for the dot are set to be the center of the display window:
half the width and half the height, respectively.

 // Set the starting position of the ball (middle of the stage)
 xpos = width/2;
 ypos = height/2;

To make the serial connection, a serial list is drawn.

 // Print a list of the serial ports, for debugging purposes:
 println(Serial.list());

Your Arduino usually tops the list, so the temporary string portName stores
the name of position 0 in the list, and myPort uses that connection when the
serial port is set. Note that this could actually be written as Serial(this,
Serial.list()[0], 9600);.

If you are not using the Serial.list function, you can replace Serial.
list()[0] with another number in the list, which is printed in the console.
You can also replace Serial.list()[0] with the exact name of the port.
This is useful if you have multiple Arduinos connected. The number 9600
refers to the baud rate and must be the same on both ends.

 String portName = Serial.list()[0];
 myPort = new Serial(this, portName, 9600);
}

In draw, the background is drawn first. Because the background is undefined,
it has a default value of 0, which is black. The fill color is also undefined for
now, so the ellipse is black as well.

void draw() {
 background(bgcolor);
 fill(fgcolor);

405 Chapter 17: Processing the Physical World

The ellipse is drawn, centered on the display window, with a fixed diameter
of 20 pixels.

 // Draw the shape
 ellipse(xpos, ypos, 20, 20);
}

Most of the action happens in serialEvent, which affects the ellipse being
constantly drawn by the draw loop.

void serialEvent(Serial myPort) {

If data is sent over the serial port, it triggers a serialEvent. The first
byte of data is read using myPort.read and stored to the temporary
variable inByte.

 // read a byte from the serial port:
 int inByte = myPort.read();

If the Processing sketch is not already in contact with a serial device, it
proceeds to the next if statement to see whether the byte is the character
A. If so, the buffer clears and the Boolean firstContact is set to true and
sends an A character back. Remember that establishContact function
on the Arduino? It repeatedly sends the character A until the connection is
made. When an A is sent back the other way, it triggers the if statement
if (Serial.available() > 0), which starts sending the data from the
Arduino. This technique is called handshaking, a mutual negotiation between
two parts of a system to establish a connection.

 if (firstContact == false) {
 if (inByte == ‘A’) {
 myPort.clear(); // clear the serial port buffer
 firstContact = true; // you’ve had first contact from the microcontroller
 myPort.write(‘A’); // ask for more
 }
 }

If firstContact is true, the program reads bytes as they arrive and adds
them in order to the array serialInArray.

 else {
 // Add the latest byte from the serial port to array:
 serialInArray[serialCount] = inByte;

Every time a byte is read, the counter increases by one.

 serialCount++;

When the counter is greater than 2, all three bytes have been read and
assigned their tasks.

406 Part V: Sussing Out Software

 // If we have 3 bytes:
 if (serialCount > 2) {

The potentiometer on analog 0 reflects the horizontal position of the dot; the
potentiometer on analog 1 is the vertical position; and the button is the fill color.

 xpos = serialInArray[0];
 ypos = serialInArray[1];
 fgcolor = serialInArray[2];

These values are also printed in the console for debugging, to check that every-
thing is operating as intended. In Processing, you can combine many values in
a print or println statement by using the + symbol. You can also use the
symbol \t to put a tab in between each value to space them neatly.

 // print the values (for debugging purposes only):
 println(xpos + “\t” + ypos + “\t” + fgcolor);

Another capital A is sent to trigger the if (Serial.available() > 0)
conditional and repeat the process.

 // Send a capital A to request new sensor readings:
 myPort.write(‘A’);

The serialCount value is reset to 0 for the next set of values.

 // Reset serialCount:
 serialCount = 0;
 }
 }
}

This is a great way to get started reading multiple sensors into a computer
program. Why not build your own giant keyboard to reenact a scene from the
Tom Hanks film “Big”? Or, gather data from a variety of sensors to monitor the
weather around your house? The output for this sketch is extremely basic but
offers huge potential for amazing and creative ways to map data. A few Web
searches for “data visualization” gives you an idea of what’s possible.

Part VI
The Part of Tens

In this part . . .

T
his wouldn’t be a For Dummies book without a Part of
Tens. Here, I list lots of handy resources for aspiring

Arduin-ists such as yourselves. These chapters list a
selection of websites that are great for inspiring yourself
as well as keeping up with all the new Arduino kit out
there. I also introduce you to a few hobby shops that stock
all sorts of Arduino-compatible components, and to a few
larger electronics and hardware shops that are great to
know about when you’re looking for that special something.

Chapter 18

Ten Places to Learn More
about Arduino

In This Chapter
▶ Looking for inspiration on the web
▶ Searching for tutorials and further reading
▶ Finding communities in the real world

I
f this is your first step into the world of Arduino, you will be relieved to
know that you have an abundance of resources available to you on the

Internet. You can find new, Arduino-compatible hardware, projects, tutorials,
and even inspiration. In this chapter, I offer ten popular websites to help you
on your journey of discovery.

Arduino Blog
http://arduino.cc/blog/

The Arduino blog is a great source of all Arduino-related news. You can find
news on the latest official hardware and software as well as on other interest-
ing projects. Also found here are talks that the Arduino team wants to share
with the community.

Hack a Day
http://hackaday.com

Hack a Day is an excellent resource for all sorts of technological magic. In
addition to presenting a lot of Arduino-related projects and posts, the site
offers equal amounts of just about any other category of technology that you
can think of. This site contains an excellent collection of posts and informa-
tion to fuel the imagination.

http://arduino.cc/blog/
http://hackaday.com/

410 Part VI: The Part of Tens

SparkFun
http://www.sparkfun.com/news

SparkFun manufactures and sells all sorts of products to make your projects
possible, and many of these involve Arduino. SparkFun has an excellent
and well-maintained newsfeed that always has some sort of interesting new
product or kit to show off. The company also provides excellent videos that
explain its kits and document any events that the SparkFun team hosts or
attends.

MAKE
http://blog.makezine.com

MAKE is hobbyist magazine that celebrates all kinds of technology. Its blog
covers all kinds of interesting do-it-yourself (DIY) technology and projects
for inspiration. Arduino is so important to this community that it has its own
subsection in the blog.

Adafruit
http://www.adafruit.com/blog/

Adafruit is an online shop, repository, and forum for all kinds of kits to help
you make your projects work. Its blog announces the ever growing selection
of available Adafruit products as well as other interesting tech news.

Bildr
http://bildr.org

Bildr is an excellent resource that provides in-depth, community-published
tutorials. As well as providing clear tutorials, Bildr also has excellent illus-
trations, making the connections easy to follow. Many of the tutorials are
Arduino based and provide all the code and information on the components
that you will need as well as where to buy the parts.

http://www.sparkfun.com/news
http://blog.makezine.com
http://www.adafruit.com/blog/
http://bildr.org

411 Chapter 18: Ten Places to Learn More about Arduino

Instructables
http://www.instructables.com/

Instructables is a web-based documentation platform that allows people to
share their projects and step-by-step instructions on how to make them.
Instructables isn’t just about Arduino or even technology, so you can find a
whole world of interesting material there.

YouTube
www.youtube.com

YouTube is a great place to kill time, but rather than watching cats do funny
things, why not enter Arduino in the site’s search box to discover new
projects that people are sharing. YouTube videos won’t always be the most
reliable sources for well-documented projects, but they provide you with a
broad look at Arduino projects in action. Watching videos is especially useful
for seeing the proper result of projects.

Hackerspaces
http://hackerspaces.org

Hackerspaces are physical spaces where artists, designers, makers, hack-
ers, coders, engineers, or anyone else can meet to learn, socialize, and col-
laborate on projects. Hackerspaces are found in a loose network all over the
world, and a good place to start to find one near you is the map at http://
hackerspaces.org/wiki/List_of_Hacker_Spaces.

Forum
http://arduino.cc/forum/

The Arduino Forum is a great place to get answers to specific Arduino ques-
tions. You often find that other people are working through the same prob-
lems that you are, so with some thorough searching, you’re likely to find the
answer to almost any problem.

http://www.instructables.com/
http://hackerspaces.org
http://hackerspaces.org/wiki/List_of_Hacker_Spaces
http://hackerspaces.org/wiki/List_of_Hacker_Spaces
http://arduino.cc/forum/
http://www.youtube.com

412 Part VI: The Part of Tens

Friends, Colleagues, and Workshops
Starting out in the world of Arduino can be difficult on your own. You can
find many sources on the Internet, but one of the best ways to learn is with
friends and colleagues, because learning together teaches you much more
than learning on your own can.

Even better is to go to workshops and meet other people. You may find that
they have exactly the same interests, allowing you to pool what you know;
or they may have completely different interests, providing an opportunity
to show you something that you never knew about. Arduino workshops are
going on all over the world, so with some careful searching in the Arduino
Forum, Hackerspace forums, and Google, you should be able to find a work-
shop near you.

Chapter 19

Ten Great Shops to Know
In This Chapter
▶	Finding Arduino stores in the United Kingdom

▶	Discovering suppliers that ship all over the world

W
hen it comes to buying parts for your project, you’ll find a huge and
growing number of shops that cater for your needs. These stores also

deal in other hobby electronics as well as Arduino, but they stock a variety of
boards and components that you can use in your Arduino project. This chap-
ter provides just a small sample of the stores out there, so shop around.

Shops in the United Kingdom
If you live in the United Kingdom, you’re spoilt for choice! It’s like the wild
west of hobby electronics, and a vast number of smaller companies distrib-
ute Arduino-related kits. The ones mentioned here represent just a few of the
stores out there; many more have varieties of Arduino-related stock, so don’t
limit yourself to these. Most of these stores also distribute to all corners of
the world with the major courier services.

Cool Components
http://www.coolcomponents.co.uk

SCool Components started business in 2004 and was the first company in
the UK to stock Arduino products. They’re based in South West London
and offer a collection service, making them the first port of call for all the
London-based hobbyists, artists and designers, especially those who need
last-minute kit for projects. They have one of the largest ranges of Arduino
related products and also stock other hardware needed to craft your projects,
including 3-D Printers and CNC milling machines.

http://www.skpang.co.uk

414 Part VI: The Part of Tens

Technobots
http://www.technobotsonline.com

Technobots was established 2001 and is a supplier of electronic and
mechanical components based in Totton, Hampshire. These people supply a
huge variety of electrical, electronic, and mechanical parts, with more than
8,000 product lines. I haven’t found this company’s variety of pre-crimped
wires and headers — in all shapes and sizes — anywhere else in the United
Kingdom. Pre-crimped wires and headers are very useful for connecting
boards neatly and effectively.

Proto-PIC
http://proto-pic.co.uk

Proto-PIC is based in Kirkcaldy in Fife, Scotland. The company is owned and
operated by RelChron Ltd, which started with the much more serious job of
developing “a software system to assist with the pressure testing process in
the subsea-oil manufacturing industry,” according to the company’s website.
Starting in 2006, the company developed in-house hardware and software,
and using this base of knowledge, it started Proto-PIC for electronics hobby-
ists and enthusiasts. One of the best things about Proto-PIC is that the com-
pany doesn’t ship items in jiffy bags but rather in reuseable plastic boxes,
which you can never have enough of.

Oomlout
http://www.oomlout.com

Oomlout describes itself as a “plucky little design house” with offices
in Leeds, Yorkshire (design), Point Roberts, Washington (shipping) and
Vancouver, British Columbia (manufacturing). The store produces a variety
of open source products as well as its own Arduino kits, such as the ARDX
kit, which is great for getting started with Arduino.

RoboSavvy
http://robosavvy.com/store

RoboSavvy sells numerous Arduino-compatible products but caters more to
the robotics crowd, providing support and distribution for a large number of

http://www.technobotsonline.com
http://proto-pic.co.uk
http://www.oomlout.com
http://robosavvy.com/store

415 Chapter 19: Ten Great Shops to Know

robotics products imported from around the world. RoboSavvy was estab-
lished in 2004 and is based in Hampstead, London.

Active Robots
http://www.active-robots.com

Active Robots is a leading supplier and manufacturer of robotics and elec-
tronics products based in Radstock, Somerset. As well as selling a range of
Arduino-related products, the company has a great selection of more robotics-
specific kits, such as relay boards (for driving lots of bigger loads safely) and
linear servos.

Shops around the World
Arduino developers can find a great number of local distributors to choose
from in almost any country. Here are a few that manufacture and distribute
their products worldwide.

Adafruit (U.S.)
http://www.adafruit.com/

MIT engineer Limor “Ladyada” Fried founded Adafruit in 2005. Through its
website, the company offers a wealth of resources, including products that
company designs and makes itself; other products sourced from all over;
tools and equipment to help you make them; and tutorials, forums, and
videos covering a wide range of topics. Adafruit is based in New York, New
York (it’s a wonderful town!). It distributes worldwide and has distributors in
many countries.

Arduino Store (Italy)
http://store.arduino.cc/

Arduino Store was official opened in May 2011 to sell Arduino products
directly rather than solely through distributors. The store sells all the official
Arduino branded products as well as a few select third-party ones. It also
sells the TinkerKit that is designed to make Arduino and electronics even
simpler for beginners by using plugs to connect inputs and outputs rather
than requiring breadboards or soldering.

http://www.active-robots.com
http://www.adafruit.com/
http://store.arduino.cc/

416 Part VI: The Part of Tens

Seeed Studio (China)
http://www.seeedstudio.com/

Seeed Studio is based in Shenzhen, China, and is self-described as an “open
hardware facilitation company.” The shop uses local manufacturing to quickly
make prototypes and small-scale projects that are distributed worldwide. In
addition to manufacturing and selling products, the company offers a commu-
nity area on its website where people can vote for the projects that they want
Seeed Studio bring to fruition (http://www.seeedstudio.com/wish/).

SparkFun (U.S.)
http://www.sparkfun.com/

SparkFun sells all sorts of parts for every variety of electronics projects. As
well as selling Arduino-compatible hardware, it designs and makes a lot of
its own boards and kits. SparkFun has an excellent site that acts as a shop
front, a support desk, and a classroom for Arduino-ists. SparkFun also has
very active (and vocal) commenters on each of its product pages, which help
to support and continually improve the company’s products. SparkFun was
founded in 2003 and is based in Boulder, Colorado.

http://www.seeedstudio.com/
http://www.seeedstudio.com/wish/
http://www.sparkfun.com/

Chapter 20

Ten Places to Find Parts
and Components

In This Chapter
▶ Finding parts for your projects anywhere in the world
▶ Finding local shops
▶ Reusing old parts

Y
ou can find many Arduino-related shops in the world, but there are also
a number of suppliers that are good to know about when shopping for

parts and components.

RS Components (World)
http://www.rs-components.com

RS Components markets itself as “the world’s largest distributor of electron-
ics and maintenance products,” so it’s a reliable source of products available
in an extensive range and at low prices. RS also has a sister company that
operates in the United States, Allied Electronics.

Farnell (World)
http://www.farnell.com

Farnell is a British suppler of electronics with an enormous range of com-
ponents to choose from. It operates worldwide under the Premier Farnell
Group. This company is made up of several sister companies that allow
the group to distribute to 24 countries in Europe (Farnell), North America
(Newark Electronics) and Asia Pacific (Element14).

http://www.rs-components.com
http://www.farnell.com

418 Part VI: The Part of Tens

Rapid (World)
http://www.rapidonline.com

Rapid is one of the United Kingdom’s leading electronics distributors. Its
main promise is to source components quicker than other suppliers. Among
its stock is a huge selection of educational electronics kits, ideal for those
who are just starting out with soldering.

Digi-Key (World)
http://www.digikey.com

Digi-Key is one of the largest distributors of electronic components in North
America. The company originally started by supplying the hobbyist market of
amateur radio enthusiasts, but it has since grown into the international elec-
tronics distributor that it is today.

eBay (World)
www.ebay.com

One person’s junk is another person’s treasure, and eBay is a great source
of tech products that need a new home. Many parts are available through
eBay — even quite specific ones. But better than that, you can find other bits
of consumer electronics that you can hack to suit your own ends.

Maplin (U.K.)
http://www.maplin.co.uk

Maplin is a consumer electronics shop that can be found in most city centers
across the United Kingdom, providing all sorts of electronic products as well
as a fair selection of components, kits, and tools. Maplin can be a lifesaver
for Arduin-ists when they’re caught in a tight spot. The company has also
recently started stocking a range of Arduino products that show off the new
Arduino branded retail packaging.

http://www.rapidonline.com
http://www.digikey.com
http://www.maplin.co.uk
http://www.ebay.com

419 Chapter 20: Ten Places to Find Parts and Components

RadioShack (U.S.)
http://www.radioshack.com

RadioShack sells a wide range of consumer electronics product accessories
and has more than 7,000 stores in the United States. As well as stocking more
conventional consumer electronics, it offers a selection of electronics compo-
nents, kits, and tools.

Ultraleds (U.K.)
http://www.ultraleds.co.uk

Ultraleds is a U.K.-based specialist supplier of LED lighting products and
other accessories to use them. Ultraleds stocks more conventional LED
replacement bulbs for use around the house and offers a wide range of low-
voltage DC LED ribbon and bulbs at extremely competitive prices.

EnvironmentalLights.com (U.S.)
http://www.environmentallights.com

EnvironmentalLights.com is a leading supplier of sustainable and energy-
efficient lighting based in San Diego, California. It offers a huge variety of LED
lighting that can be used for an equally huge number of applications. The
company may even give you ideas for new projects as well.

Skip/Dumpster Diving (World)
People are always amazed at the amount of useful stuff that’s thrown away,
but they rarely know what’s useful and what’s not. The key is to know what
you’re looking for and find out whether you can salvage the parts you need
for your project. This may take a bit of Googling because there are so many
products and components out there that could be of use to your project. The
motor is one such component that can be extremely expensive if bought new
but is used in a variety of consumer electronics that are often discarded with-
out a thought. Printers and scanners use relatively complex and expensive
stepper motors to work, which can be used again another day. Also, because
these everyday objects are mass-produced, even the cost of a new printer
with several motors can be cheaper than buying motors on their own.

http://www.radioshack.com
http://www.ultraleds.co.uk
http://www.environmentallights.com

420 Part VI: The Part of Tens

Index
• Symbols •
*/ (asterisk forward slash), 51
\t (back slash t), 121
!= (comparison symbol), 220
{} (curly brackets/braces), 54, 352
= = (double equal sign), 98
// (double forward slash), 52
/* (forward slash asterisk), 51
\t (front slash t), 121
mA (microamps), 71
/* */ (multiline comment markers), 380
- (negative), 64, 83, 142
||(or), 98
+ (positive), 64, 75, 83, 142
“ “ (quotation marks), 121
[] (square brackets), 231
~ (tilde), 22

• A •
A socket, 69
AAC (Advanced Audio Coding), 294
AC voltage, 70
Active Robots (supplier), 28, 415
AC-to-DC adaptor, 23
Adafruit Industries (distributor), 26, 28,

176, 293, 295, 296, 299, 302, 303, 308,
339, 353, 355, 410, 415

Adafruit Motor/Stepper/Servo Shield Kit
v1.0, 299–300

Adafruit Wave Shield v1.1, 293
Adafruit_PWMServoDriver.h

library, 350
Addressable LED Ribbon, 355
adhesive putty, 131, 187, 197, 201
Advanced Audio Coding (AAC), 294
Albion Café, 169
Allen, Bruce (developer), 279
Amazon (supplier), 28

ambient sensor, 283
amperes (I), 77
amps (A), 69, 71, 75, 77
analog input pins/analog in pins, 20, 21
analog out pins, 22
analog sensors, 110, 116, 227–233
AnalogInOutSerial circuit, 201
AnalogInOutSerial sketch

implementing, 268–271, 283–286
setting up, 116–119
understanding, 120–121, 271, 286

AnalogInput sketch, 106–112
analogRead function, 111, 232
analog-to-digital converter, 111
analogWrite function, 97, 121, 132, 320
AnalogWriteMega sketch, 318–324
Android, 26, 363
anode (+), 84, 125
application programming interface (API),

165, 361
Arduin-ists, 1
Arduino. See also specific topics

blog for, 308, 409
boards for, 18, 24–27
community for, 289, 295
downloads, 34
environment, 39–40, 46, 92, 99, 129, 131
history of, 8–11
installing, 34–39
learning-by-doing approach, 11–14, 309
as name encompassing host of

concepts, 17
purpose of, 7, 41
as trademarked brand, 24

Arduino (supplier), 291, 300, 303, 304, 305
Arduino BT, 26
Arduino CAN-Bus, 413
Arduino DMX Shield, 413
Arduino Duemilanove (board), 26
Arduino Ethernet, 26

422 Arduino For Dummies

Arduino Ethernet shield, 170
Arduino Fio/Funnel I/O (board), 27
Arduino forums, 15, 34, 411, 412
Arduino Graph sketch, 389–390, 392
Arduino Leonardo (board), 26
Arduino LilyPad (board), 27
Arduino Mega 2560, 315–318
Arduino Mega 2560 R3, 26
Arduino Mega ADK, 26
Arduino Mini R5, 26
Arduino Nano 3.0 (board), 26
Arduino PhysicalPixel sketch, 380–381,

385–387
Arduino Playground, 16, 39, 279, 309, 313,

360, 362
Arduino Pro (board), 24, 27
Arduino Pro Mini (board), 27, 168
Arduino Proto Kit, 195
Arduino Serial board, original, 10
Arduino SerialCallResponse sketch,

398–399, 401–403
Arduino Shield List, 309
Arduino Software (IDE), 21
Arduino Starter Kit, 31
Arduino Store, 28, 308, 415
Arduino Uno, 30, 315, 316–317
Arduino Uno R3, 18–23
Arduino Uno R3 SMD, 19
Arduino Wi-Fi Shield, 175
Arduino Wireless Shield, 176
arrays, 153–155
asterisk forward slash (*/), 51
ATmega 328 microcontroller chip, 19–20,

23, 26, 111
ATmega328P-PU chip, 44–45
ATmega2560 microprocessor, 316
Atmel (chip manufacturer), 19
Atmel AVR processor, 298
ATMEL chip, 44
average variable, 231

• B •
back slash t (\t), 121
Badger, Paul (developer), 261
Baker Tweet project, 169–171

Banzi, Massimo (developer), 10
Barragán, Hernando (designer), 9
base-2, 328
base-10, 328
base-16, 328
Basic Stamp, 7, 9, 11
batteries, 23, 75, 82. See also lithium

batteries
baud rate, 116
beginner’s kit, 29–31
bench-top power supply, 345
Berg (design consultancy), 175
BERG Cloud, 175, 176, 177
BERG Cloud Bridge, 176
biaxial wire, 346
Big Lamp, 174, 175
Bildr (website), 410
binary number system, 328, 332, 334
bit (of memory), 328
bitsToSend variable, 337
bitWrite function, 337
black

as color of ground, 94
as one of two colors of negative (-), 64, 86

bleeps, 73
Blink sketch, 42–43, 50–57
blinking better

building BlinkWithoutDelay sketch,
211–213

overview, 209–211
understanding BlinkWithoutDelay sketch,

214–216
blinking L, 49
blinking LEDs

in AnalogInput sketch, 111, 112
compared to animating them, 323–326

BlinkWithoutDelay sketch
setting up, 211–213
understanding, 214–216

block comment, 51–52
blogs

Arduino, 409
Arduino-related, 308–309

blue, as one of two colors of negative (-), 64
Bluetooth devices, 26, 169
Blu-Tack (adhesive putty), 131, 187, 343

423423 Index

boards
identifying, 43–44
specific. See specific boards

Booleans, 252, 383
Borch, Malthe (developer), 163
Bostik (company), 187
bouncing, 216–221
Bowman, James (developer), 298
Boxall, John (developer), 296, 307
braiding wire connectors, 206
breadboards, 63–65
brightness variable, 97, 98
brushed DC motors, 125
brushes, copper, 124
Buechley, Leah (designer/developer), 27
built-in clock, 341
built-in color wheel, 395
Burton, 167
butane soldering iron, 183
Button circuit, 101
Button sketch, 100–106
buttons

compared to switches, 242
making better, 221–227
making them easier, 242–247
making virtual button, 377–387
StateChangeDetection sketch, 221–227
toggle buttons, 242

buttonState variable, 104, 116, 219, 220,
221, 275, 276

buzzers, 30, 146–148, 248
byte (of memory), 328
byte variable, 337

• C •
C (programming language), 50, 52, 153,

352, 360
C++ (programming language), 360, 363
cable ties, 207
cables, custom, 344
cabling, 207
calibrating inputs, 233–239
Calibration sketch, 233–239
Calix, Mira (composer), 165
capacitive pin, 265

capacitive sensors, 258–259, 261–262
Capacitive Touch Keypads, 258
CapPinSketch sketch, 261–265
CapSense library, 259–262, 265, 311, 313
carriage return, 116
cascading multiple shift registers, 338
case sensitive, 54
Castro, Arturo (developer), 363
cathode (-), 84, 125
Cellular Shield with SM5100B, 306–307
center negative plug, 23
center positive plug, 23
CERN Larger Hadron Collider, 123
char (characters), 153
chicken game, 177–178
China, Arduino suppliers in, 416
chips

ATmega 328 microcontroller chip, 19–20,
23, 26, 111

ATmega328P-PU chip, 44–45
ATMEL chip, 44
microcontroller chip, 7, 11
PCA9685 chip, 339–341
plated-through hole (PTH) chip, 19
surface mount device (SMD) chip, 19
TLC5940 chip, 338

chocolate block (choc blocks), 206
Chorus project, 165–167
CIID (Copenhagen Institute of Interaction

Design), 163, 165
circuit bending, 13–14
circuit diagrams

analog input and LED output, 269
Arduino with LED connected to pin

13, 378
button, 222, 256
electret mic, 284
knock sensor, 249
LED in pin 13, 212
light sensor circuit, 229, 235
light-sensor controlled Theremin, 157
LV-EZO, 278
piezo buzzer circuit, 148
PIR sensor, 274
potentiometer input, 388
pushbutton circuit, 217, 244

424 Arduino For Dummies

circuit diagrams (continued)
PWM Driver board wiring, 347
servo and potentiometer, 143
servo circuit, 139
simple circuit diagrams, 82–84
transistor circuit, 128, 134
two analog inputs and one digital, 397
working with, 82–85

circuit layouts
analog input and LED output, 269
button, 222, 255
electret mic, 284
knock sensor, 249
light sensor, 228, 234
LV-EZO, 278
PIR sensor, 274
pushbutton, 217, 244
for using a 74HC595, 330

circuits
based on chemical properties, 14
braiding wire connectors, 206
cleaning up, 203
knowing, 201–202
laying out, 202
preparing wire, 203
prototyping of on breadboards, 64
setting up, 201–205
soldering, 203
testing your shield, 205
twisting wire connectors, 206
using equations to build, 77–81
using stripboard rather than PCB, 204

clippers, 188, 193, 196, 203
coaxial wire, 346
code

ability to access USB for changes in, 206
as case sensitive, 54
using existing code for different

hardware, 276
code lines

AnalogInOutSerial sketch, 118–119,
270–271, 285–286

AnalogInput sketch, 109
AnalogWriteMega sketch, 320–321,

324–326
Arduino Graph sketch, 389

Arduino PhysicalPixel sketch, 380–381
Arduino SerialCallResponse sketch,

398–399
blinking better, 210
BlinkWithoutDelay sketch, 212–213
Button sketch, 105
Calibration sketch, 235–236
CapPinSketch sketch, 262–263
checked for syntax errors, 129
clicking pushbutton, 226
comments, 51, 52
Debounce sketch, 217–219
delay code, 56–57
DigitalInputPullup sketch, 245
DigitalReadSerial sketch, 114, 275
Fade sketch, 96
Fading, 99
functions, 53
Hello World sketch, 331–332, 335–336
I2C PWM/Servo Driver sketch, 348–350
interactive sketch, 375
Knob sketch, 144
Knock sketch, 250–251
loop code, 56
for loops, 100
MaxSonar sketch, 280
Motor sketch, 129
MotorControl sketch, 134, 136
MotorSpeed sketch, 130–131
PitchFollower sketch, 158
Processing Graph sketch, 390–391
Processing SerialCallResponse sketch,

399–401
serial communication line, 120
setup, 55
shiftOutCode, 335–336
Smoothing sketch, 229–230, 232
StateChangeDetection sketch, 223–224
Sweep sketch, 139–140
toneKeyboard sketch, 256–257
toneMelody sketch, 149–150
updating ledState variable, 215
virtual button sketch, 379–380

coil of wire. See electromagnets
color coding, 85–86, 94
color wheel, 395

425425 Index

colors. See also specific colors
changing of in Processing, 372–374
colored code represented by bold, 99
of core functions, 54–56
of GND (ground), 86, 94
of insulated equipment wire, 66, 192
of negative (-), 86
of positive (+), 64, 86
of power, 94
resistor color charts, 87–89
of wires in servo motors, 138

COM socket (Common), 69
comments (section of code), 51–52
common ground, 22
community-contributed libraries, 313
comparison symbol (! =), 220
Compass Card system, 171–173
Compass Lounge (National Maritime

Museum, London), 171
Compile button, 129
compiler/compiling, 39
Compiling Sketch message, 47
components and parts for Arduino,

417–419
connector strips, 206
constant integers (const), 110
constrain function, 238
continuity, checking of, 73
continuity test function, 201
Cooking Hacks (supplier), 308
Cool Components (distributor), 28, 344
Copenhagen Institute of Interaction Design

(CIID), 163, 165
copper braid, 190
copper brushes, 124
core function, 54
costs

of Arduino compared to Wiring board, 11
beginner’s kits, 31
of sensors. See sensors, costs of
of shields, 291–305, 307

counters, 211, 225–227, 403, 405
crocodile clips, 69, 186, 197, 262
Cuartielles, David (developer), 10
curly brackets/braces {}, 54, 352

current
flow of, 75
measuring of in a circuit, 71

custom cables, 344
Cycling 74 (software company), 361

• D •
darkValue, 211
data transfer, cutting costs of, 173
datasheets, 86–87
DC motors, 31, 125–130, 340
DC voltage, 70
Debounce sketch, 216–221
debugging, 117
Dechamps-Sonsino, Alexandra (developer),

174–175
decimal number system, 328–329, 332, 336
declarations, 51, 52
define function, 153
degrees of freedom sensors, 168
delay function, 56–57
de-soldering, 184, 190
de-soldering wire, 190
Diecimila (Arduino board), 18, 33
DigiKey (supplier), 206, 418
digital display, on multimeter, 68
digital multimeter, 68
digital music services, 163
digital pins, 20, 21, 56
digital signals, 20, 282
digital sketchbook, 9, 10
DigitalInputPullup sketch, 243–247
digitalRead function, 104
DigitalReadSerial sketch

implementing, 273–275
setting up, 112–115
understanding, 115–116, 276

digitalWrite function, 56, 216, 237, 252
DIL (dual in-line package), 316
dimmer circuit, 117, 205
dimmer switch, 106
diodes, 30, 125, 126, 127
DIP (dual in-line package), 316
distance, measuring, 277–282

426 Arduino For Dummies

distributors. See suppliers
dome conditions, 112
Done Compiling message, 47
Done Uploading message, 48
double equal sign (==), 98
double forward slash (//), 52
Drain (Collector), 127
draw function, 382
dual in-line package (DIP) (DIL), 316
Duemilanove (board), 33
duty cycle, 93
dynamos, 125
Dziekan, Vince (designer), 167

• E •
EB-85A module, 302
eBay, 418
EEPROM library, 310
electret microphone, 282–283
electric generators, 125
electric motors

as components in beginner’s kit, 31
DC motors. See DC motors
diagram of, 124
transistor circuit to drive, 133
working with, 123–125

electric signals, 20
electricity, 75–77
electromagnetic field, 123, 258
electromagnets, 31, 123, 124
electronics

disposal of materials, 185
overview, 14–15
preparation of workspace for, 32
schools of thought around, 11–14

electronics distributors, 29
Electronics For Dummies (Ross, Shamieh,

and McComb), 75
electronics wire, 191
Element14 (distributor), 417
ellipse statement, 366
EM-406a module, 301, 302, 303
EM-408 module, 302
enclosures, 205–206
encoder, 136

EnvironmentalLights.com, 419
equations, for building circuits, 77–81
equipment wire, 66, 191–192, 203
e-textiles, 27
Ethernet library, 310
Ethernet shield, 173, 304–305
Ethernet Shield R3, 304–305
Ethernet Shield R3 with Power-over-

Ethernet (PoE), 304–305
European Union Waste Electrical and

Electronic Equipment Directive
(WEEE), 185

external supply jack/external power jack,
22–23, 56, 93, 206

eye protection, 193

• F •
fadeAmount variable, 97
fadeValue variable, 100
Farnell (electronics distributor), 29,

206, 417
file extensions, naming, 379
Fio (board), 24
Firmata library, 310
Fitzsimmons, Duncan (cofounder Vitamins

Design Ltd.), 167
fixed power supply, 346
fixed resistors, 30
fixed-temperature soldering iron, 181–182
Flap to Freedom game, 177–178
flex sensitive potentiometer, 32
float (floating-point numbers), 153, 264, 382
flux-cored solder/flux, 185–186, 193
FM radio module, 164
for loops, 100, 132, 141, 154, 155, 231, 258,

322–324, 333–334, 337, 352
force sensors, 252–254
forums

Adafruit Industries, 353, 410, 415
Arduino, 411
in general, 16, 291, 295

forward slash asterisk (/*), 51
forward voltage, 79, 94
frequency, 69
friction, 65

427427 Index

Fried, Limor (Ladyada) (Adafruit
founder), 415

Fry, Ben (developer), 9, 360
functions, 53
Fun-Tak (adhesive putty), 187
Futaba S3003 servo motor, 354

• G •
Gaggero, Clara (cofounder Vitamins

Design Ltd.), 167
game controller, 297
Gameduino, 298–299
Gate (Base), 127
Geiger Counter - Radiation Sensor

Board, 307–308
GitHub, 260, 313
global variables, 215
GND (ground), 22, 57, 86, 94
Good Night Lamp project, 174–175
Google

Arduino workshops, 412
datasheets, 86–87
info on load sensors and resistance, 254
KITT from Knight Rider, 326
servo motors, 353
transistor product numbers, 127
web services, 165
XBee Wireless Module info, 164

Google Code, 293, 314, 338
GPS Logger Shield Kit v1.1, 302–303
GPS Shield Retail Kit, 301–302
graph, drawing, 387–396
graphical user interface (GUI), 10, 39,

40, 361
ground rail, 64

• H •
Hack A Day website, 308, 409
hackerspaces, 411
hacking, 12
hacking existing toys, 178
Hasselhoff, David (businessman), 325
header pins, 196, 342–343

header sockets, 20, 196
Hello World sketch, 329–335
hertz (Hz), 69
hobby motors, 125, 136, 354
home printer project, 175–177
hot air gun, 184
hot glue, 207
Hypernaked (creative agency), 167
Hz (hertz), 69

• I •
I (amperes), 77
I2C (eye-squared-see/eye-two-see)

(communication protocol)
described, 339–341
other uses for, 355
use of to communicate with shield, 296

I2C PWM/Servo Driver board
assembling, 341–343
layout of, 340
using, 343–353

I2C PWM/Servo Driver sketch, 350–353
IC (integrated circuit), 19, 65, 201
ICO (design consultancy), 177, 178
icons, explained, 4
ICSP (In-Circuit Serial Programming)

connector, 196
IDE (integrated development

environment), 33, 39, 360, 363
IDII (Interaction Design Institute Ivera), 8
if loop, 211
if statements, 98, 105, 112, 215, 220, 225,

232, 246, 286, 352, 384
Import Library drop-down list, 312
IMU (inertial measurement units), 168
In-Circuit Serial Programming (ICSP)

connector, 196
include function, 150
index, 231
inertial measurement units (IMU), 168
infinity symbol, as sign of official Arduino

board, 26
infrared (IR) proximity sensor, 277–278
ino (naming convention), 16, 379
inputPin variable, 231

428 Arduino For Dummies

inputs
buttonPin (pin 2) as, 104
calibrating, 233–239
described, 15
fixing of to enclosure, 206

Instructables (documentation platform), 411
instruments, making, 156–160
insulated equipment wire, 66
int (integers), 52, 153, 214, 266, 351
integer variables, 97
integrated circuit (IC), 19, 65, 201
integrated development environment

(IDE), 33, 39, 360, 363
interaction, playing with, 374–376
interaction design, 8
Interaction Design Institute Ivera (IDII), 8
interactive Arduino project,

Button sketch as, 104
interval variable, 214
Inventor’s Kit by SparkFun, 31, 32
iOS, openFrameworks, 363
IR (infrared) proximity sensor, 277–278
Italy, Arduino suppliers in, 415
Ivera (Italian king), 10

• J •
Japan, use of Radiation Sensor Board in,

307–308
Java (programming language), 360
Joule, James Prescott (physicist), 80
Joule’s Law, 77, 80–81
Joystick Shield, 290, 297–298
jump wires, 63, 65, 66–67, 344

• K •
keyboards, 12–13, 25, 254, 255, 406
Kin (design studio), 171, 174
kinetic installations, Chorus, 165–167
kits

Adafruit Motor/Stepper/Servo Shield Kit
v1.0, 299–300

Arduino Proto Kit, 195
Arduino Starter Kit, 31

beginner’s, 29–32
GPS Logger Shield Kit v1.1, 302–303
GPS Shield Retail Kit, 301–302
Inventor’s Kit by SparkFun, 31, 32
Proto Shield Kit, 194, 201
Proto Shield Kit Rev3, 291–292
Proto-PIC Boffin Kit, 31
ProtoSnap kit, 27
Start Kit for Arduino (ARDX), 31
TinkerKit, 300

KITT (fictional character), 325
Knight Rider (TV series), 325
Knob sketch, 142–146
knock sensor, 247–248
Knock sketch, 248–252
Kobayashi, Shigeru (designer), 27

• L •
L LED, 23, 49
laser pens, 267
laser pointers, 267
laser trip wires, 267–268
lasers, tripping along with, 267–271
lastButtonState variable, 219, 220, 221
Last.fm, 165
LCD (liquid crystal display), 295
LCD screen, 170
LCD Shield, 290
LDRs (light-dependant resistors), 30, 228
lead poisoning, 185
lead solder, 185
lead-free solder, 185, 186
least significant bit (LSB), 332
LED fade sketch

setting up, 93–96
tweaking, 98–100
understanding, 97–98
using for loops, 100

LED ribbon, 355
led variable, 53, 97
ledPin variable, 110, 111, 238
LEDs, 7. See also light-emitting diodes (LEDs)
ledState variable, 215, 219, 252
Leonardo (board), 26
Leone, Alex (developer), 338

429429 Index

Liberium (supplier), 307
libraries
Adafruit_PWMServoDriver.h, 350

browsing, 309–314
CapSense, 259–262, 265, 311, 313
community-contributed, 313
EEPROM, 310
Ethernet, 310
Firmata, 310
installing additional, 311–313
LiquidCrystal, 310
Mac OS X, 311
obtaining contributed libraries, 313–314
Processing using, 382
removing, 312
reviewing standard libraries, 309–311
SD, 310
serial communication, 382
servo, 140, 145, 310
SoftwareSerial, 310
SPI, 310
Stepper, 311
TimerOne/Timer 1, 313, 314
WiFi, 311
Wire, 311
Wire.h, 350
writing your own, 314

Lieberman, Zachary (developer), 363
light bulbs, 80
light switch circuit, 75, 82–84
light-dependant resistors (LDRs), 30, 228
light-emitting diodes (LEDs)

ability to access within enclosure, 206
in basic switch circuit, 76
blinking brighter, 57–58
blinking compared to animating, 323–326
in Compass Card system, 172
as components in beginner’s kit, 30
controlling lots of by shifting out, 327–338
controlling multiple, 315–326
fading of, 92, 93–100, 120
LED ribbon, 355
lots of, wired up to Mega, 319
secured in circuit board, 202
in simple circuit diagram, 82, 84
on Uno board, 23–24

LilyPad (board), 24
linear potentiometer, 32
Linksys Wi-Fi adapter, 170
Linux

Arduino, 33
Max/Pure Data, 361
menu bar in, 39
openFrameworks, 363
Processing, 360

LiPower Shield, 300–301
liquid crystal display (LCD), 295
LiquidCrystal library, 310
lithium batteries, 27, 168, 301
Lithium Polymer USB Charger and Battery

by SparkFun, 301
Little Lamps, 174, 175
Little Printer project, 175–177
load sensors, 252–254
local variables, 215
locks, electrically operated, 123
Locktite (company), 187
long leg (anode or +), 57
long variable, 53, 214, 220, 281
lookup table, 159
loop function, 52, 56, 97, 100, 220, 266, 276,

281, 333
lowpass filter, 266
LSB (least significant bit), 332

• M •
mA socket, 69
Mac OS

Max/Pure Data, 361
menu bar in, 39
naming of serial ports, 45
openFrameworks, 363
Processing, 360

Mac OS X, libraries, 311
Mac OS X Leopard, 37
Mac OS X Lion, 37
Mac OS X Mountain Lion, 37
Mac OS X Snow Leopard, 37
Macintosh OS X, 33
magical box of Baker Tweet project,

169–170

430 Arduino For Dummies

magnetic switch, 31
magnets, 123, 164. See also electromagnets
mains cable, 66
MAKE (hobbyist magazine), 309, 410
Maker Shed (supplier), 308
manual wire strippers, 188
map function, 120, 159, 238, 338
Maplin (retailer) (UK), 14, 182, 183, 184,

206, 247, 345, 346, 418
Maxbotix (supplier), 277, 278
Maxiuno, 361
Max/MSP (programming language), 164, 361
Max/Pure Data (programming language),

360–362
MaxSonar code, 279
MaxSonar sketch

implementing, 278–281
understanding, 281–282

McComb, Gordon (author)
Electronics For Dummies, 75

mechanical wire strippers, 188, 189
Mega 2560 (board), 26, 33
melody, playing of, 147, 153–156
menu bar, 39
message area, 40, 129
metal alloy, 179
microamps (mA), 71
microcontroller chip, 7, 11
microcontrollers, 7, 9, 11, 14–15, 216
microphone, 282–283
microSD card reader, 294, 296, 304, 305
microswitches, 242
MIDI (musical instrument digital interface),

294, 295
MIDI Shield, 295
milliamps (mA), 71
millis function, 215, 237, 265, 266
Mini (board), 27
mobile phone, 306
mode parameter, 55
model numbers, 87
mode-selection dial, on multimeter, 68
modified external power supply, 345
Modified Toy Orchestra, 13
Moggridge, Bill (designer), 8
Moog synthesizer, 11–12

motion detection, 271–276
Motor Shield R3, 300
Motor sketch, 126–130
MotorControl sketch, 132–136
motorPin, 135, 136
MotorSpeed sketch, 130–132
motorValue variable, 135–136
movement, detecting, 271–276
MP3 Player Shield, 294–295
multicore equipment wire, 66, 191, 192, 203
multi-line comment, 51–52
multiline comment markers (/* */), 380
multimeter

continuity test function, 201
described, 68–69
uses of, 70–73, 89, 101, 189–190

multi-voltage power supply, 346
museum exhibits, use of buttons in, 242
music industry, 295
musical instrument digital interface (MIDI),

294, 295
myservo (servo object), 141
myservo.write, 145

• N •
naming

conventions, ino, 16, 39
file extensions, 379
function or variable names containing

multiple words, 53–54
guidelines for Arduino boards, 26
servos, 141

Nano (board), 26, 27
National Maritime Museum (London),

171, 174
needle-nose pliers, 63, 67–68, 189
negative (-), 64, 83, 142
new button, 40
Newark Electronics (distributor), 417
newspaper, creating your own, 175
NG (Arduino board), 18
Nightrider-style LED bar, 318
Nintendo GameBoy, 13, 295
Nip, Andrew (developer), 163
noises, 146–155

431431 Index

Nokia, 167
Nokia 6100 screen, 296
noTone function, 155
NPN-type transistor, 127
numberToDisplay variable, 333, 334
numReadings variable, 231
nylon gears, 354

• O •
Ogg Vorbis, 294
Ohm, Georg Simon (physicist), 77
ohms, 69, 72, 77, 89
Ohm’s Law, 77–79
ON LED, 23
1 values, 115, 328
Oomlout (design house), 28, 31, 414
opacity, changing of in Processing, 374
open button, 40
open source software, 15–16
open-collector, 273
openFrameworks (programming language),

178, 360, 363
OpenGL, 363
optocouplers, 65
orange, as indicative of core function,

54–56
O’Shea, Chris (developer), 178
outputs

described, 15
fixing of to enclosure, 206
inverting of, 105
ledPin (pin 13) as, 104
motors. See electric motors

outputValue variable, 120–121
oxidation, in soldering, 185, 193

• P •
P2N2222A transistor, 127
packages, 19
packaging your project, 205–207
paper tape, packaging of resistors

on reel of, 89

parts and components for Arduino,
417–419

passive infrared (PIR) sensor, 271
passive resistors, 72
patching, 11–12
PCA9685 chip, 339–341
PCB (printed circuit board), 7, 89, 194
PDIP (plastic dual in-line package), 316, 317
Pduino, 361
pendulums in motion, 165–166
perfboard, 204
phone switchboards, 11
photo diodes, 30
photo resistors, 30
physical computing, 9
PhysicalPixel sketch

setting up, 380–382
understanding Arduino sketch, 385–387
understanding Processing sketch,

382–385
PIC microcontroller, 7, 9
piezo buzzer, 30, 146–148
piezo element, 164
piezo sensors, 247–248
piezo speaker, 308
piezoelectric buzzer, 146
pin current limitations, 80
pin parameter, 55
pinMode, 55, 104, 237
PIR (passive infrared) sensor, 271
pirSensor pin, 276
pitches.h file, 150–152
pitches.h tab, 150, 153, 257, 258
PitchFollower sketch, 156–160
plan chests, 171–172
plastic dual in-line package (PDIP), 316, 317
plated-through hole (PTH) chip, 19
Playground. See Arduino Playground
pliers, needle-nose, 63, 67–68
plumbing valves, automated, 123
PNP-type transistor, 127
Poke (creative company), 169
Poke London, 169, 171
polarity

button with polarity flipped, 106
changing, 123, 124, 146

432 Arduino For Dummies

polarity (continued)
DC motors as not having, 125
LEDs as having, 84
as marked on top of board, 347
reverse polarity, 23
some piezos as having, 148
swapping of, 107
testing of, 346

Pololu (supplier), 344
portable soldering iron, 181, 182–183
positive (+), 64, 75, 83, 142
potentiometers (pots), 30, 32, 107, 108,

110, 119, 133, 142, 202, 229, 387
potValue variable, 135
power (P)

calculating, 80
colors of, 86
as important to color code, 94

power pins, 20, 22
power rail, 64
power strip, table top, 180
power supply

bench-top, 345
efficiency of, 353–354
external, 22–23, 56, 93, 206, 346
fixed, 346
modified external, 345
multi-voltage, 346
for soldering workspace, 180–181

pre-made multicore jump wire packets, 67
Premier Farnell Group, 417
pressure pads, 253, 254
pressure sensors, 252–254
printed circuit board (PCB), 7, 89, 194
Pro 328 - 3.3V/8Mhz, 301
Pro Micro -3.3V/8Mhz, 301
probes, on multimeter, 69, 70
Processing (open source software)

applet displaying virtual pixel, 382
changing color and opacity with, 372–374
described, 9, 360–361
drawing a graph, 387–396
drawing shapes, 368–372
influence of on Arduino, 10, 15, 39

installing, 362
making virtual button, 377–387
playing with interaction, 374–376
sending multiple signals, 396–406
showing results on bar graph using, 227
taking look at, 364–365
toolbar, 365
trying first sketch with, 365–376
view of, 361

Processing Graph sketch, 390–396
Processing PhysicalPixel sketch, 382–385
Processing SerialCallResponse sketch,

399–401, 403–406
Processing-to-Arduino communication, 385
programming languages

C, 50, 52, 153, 352, 360
C++, 360, 363
Java, 360
Max/MSP, 164, 361
Max/Pure Data, 360–362
openFrameworks, 178, 360, 363
PureData, 361

progress bar, 48
projects. See also specific projects

packaging of, 205–207
securing board and other elements, 207
wiring of, 206–207

Proto Shield Kit, 194, 201
Proto Shield Kit Rev3, 291–292
Proto-PIC (supplier), 28, 31, 414
Proto-PIC Boffin Kit, 31
ProtoScrew Shield, 292–293
ProtoSnap kit, 27
prototyping

Arduino as device for quick, 42, 359
Arduino Nano 3.0 as ideal for, 26
of circuit on solder-less breadboard, 201
of circuits on breadboards, 64
described, 63
mechanical joints as great for, 179
Skube project as example of using

Arduino for, 163
prototyping tools, 63–69
PTH (plated-through hole) chip, 19

433433 Index

Puckette, Miller (software developer), 361
pull-down resistor, 58, 243
pull-up resistor, 243
pulse width modulation (PWM), 22, 92–93,

120, 132, 141, 237
pulseIn function, 281
pulselen variable, 352
PureData (programming language), 361
Push Snowboarding project, 167–169
pushButton pin, 276
pushbuttons

on Button circuit, 101
complexity of, 242
as components in beginner’s kit, 30
costs of, 242
in DigitalReadSerial sketch, 113
in Good Night Lamp, 175
in simple circuit diagram, 82–83
soldering of, 200–201
where to use, 242–243

PWM (pulse width modulation), 22, 92–93,
120, 132, 141, 237

pwm object, 350, 351
PWR (source of power), 64

• Q •
quad flat package (QFP), 316
Quad-band Cellular Duck Antenna SMA, 306
quotation marks (“ “), 121

• R •
Radiation Sensor Board, 307–308
Radio Shack (retailer) (US), 14, 182, 206,

247, 346
range finders, 277–278
Rapid (electronics distributor), 29, 418
raw sensor value, 111
reading variable, 220
readings array, 231
.readPin function, 265
read-write heads on hard disks, 123

Reas, Casey (developer), 9, 360
rechargeable lithium batteries, 168, 301
rectifier diodes, 30
red

as color of positive (+), 64, 86
as possible color of power, 94

reed switch, 164
registerWrite function, 336
relaying back data over network, 173
relays, 31
RelChron Ltd., 414
remote controls, 206
reset button, 24
resistance, 69, 72–73, 94
resistor color charts, 87–89, 94
resistor values, 94
resistors

built-in pull-down resistor, 58
color bands on, 88–89
as components in beginner’s kit, 30
fixed, 30
general rule when choosing, 319
light-dependant, 30, 228
packaging of, 89
passive, 72
photo, 30
reading value of, 72
in simple circuit diagram, 82, 84
variable, 30, 72, 107, 116

Restriction of Hazardous Substances
Directive (RoHS), 185

reverse current, 126–129
reverse polarity, 23
reverse voltage, 79
RGB LCD Shield w/16 x 2 character display,

295–296
RoboSavvy (supplier), 28, 414–415
RoHS (Restriction of Hazardous

Substances Directive), 185
Ross, Dickon (author)

Electronics For Dummies, 75
RS Components (electronics distributor),

29, 206, 304, 344, 417
RX LED, 23, 48

434 Arduino For Dummies

• S •
safety goggles, 193
save button, 40
schematics

AnalogInput circuit, 108
Arduino with LED connected to pin 13, 378
circuit to fade an LED, 95
dimmer circuit, 118
of diode, 125
LED controller circuit, 320
potentiometer input, 388
of pushbutton circuit, 102, 114
PWM Driver board, 348
two analog inputs and one digital, 397
for using one 74HC595, 331

screen burn, 172
screw terminals, 206, 207
SD card reader, 293, 294
SD cards, 293, 303, 304, 310
SD library, 310
SE-10 (PIR sensor), 273
Seeduino (board), 26
Seeed Studio (open hardware facilitation

company), 26, 308, 416
Seeed Studio blog, 309
sensing with style, 258–267
sensorMax variable, 237, 238
sensorMin variable, 237, 238
sensorPin, 238
sensors

ambient sensor, 283
calibrating, 233–239
capacitive sensors, 258
costs of, 242, 247–248, 253, 259, 268, 272,

277, 283
force sensors, 252–254
infrared proximity sensor, 277
load sensors, 252–254
passive infrared (PIR) sensor, 271
pressure sensors, 252–254
pushbuttons. See pushbuttons
smoothing of, 227–233
ultrasonic range finder, 277

sensorVal variable, 246

sensorValue variable, 110, 111, 120,
237, 238

serial, 112
Serial (Arduino board), 18
serial communication, 116
serial communication library, 382
serial connections, 46
serial monitor, 112, 117, 226
serial monitor button, 40, 115, 119
serial monitor window, 115
serial peripheral interface (SPI), 299, 310
serial port, 45, 159
serial port object, 383
Serial.begin, 116
Serial.list, 383
Serial.print, 306
Serial.printIn, 116, 121
Serial.read, 336
series, current as measured in, 71
Servo City (US), 354
servo library, 140, 145, 310
servo motors

buying, 353–354
as components in beginner’s kit, 31
with control knob, 143
controlling, 142–146
getting to know, 136

servo object, 140, 145
Servo Shop (UK), 354
Servo.h (servo library), 140, 145, 310
servonum variable, 351, 352
servos, 339–340
set LED on, 56
setServoPulse function, 351
setup function, 52, 53, 54, 97, 266, 281
74HC595 pins, 329
74HC595 shift register, 65, 327, 328–330
Shamieh, Cathleen (author)

Electronics For Dummies, 75
Shape (supplier), 277
shapes, drawing, 368–372
shields

as additional boards, 20
assembling, 194–197
considering combinations of, 290–291
costs of, 291–305, 307

435435 Index

documentation of, 309
looking at, 289–309
reviewing the field, 291–308
staying current with, 308–309

shift register, 327, 334, 338
shifting in, 338
shiftOut function, 334, 337
shiftOutCode

implementing, 329–333
tweaking, 334–335
understanding, 333–334

shopping, 27–29. See also suppliers
short circuit, 75, 127
short leg (cathode or -), 57
shortcut, creating, 36
signal wire, 94
signals, sending multiple, 396–406
SIM card, 306, 307
sine waves, 146–147
single-core equipment wire, 66, 191
single-line comment, 52
SK Pang (supplier) (UK), 28, 413
sketch twice, solder once, 202
sketches. See also specific sketches

as made up of lines of code, 51
as names of Arduino programs, 10, 39
in Processing compared to in Arduino, 382
tweaking, 59
uploading, 47–49, 91–92
working with first Arduino sketch, 41–50

skip/dumpster diving, 419
Skube project, 163–165
SMA connector, 306
SMD (surface mount device) chip, 19
smoothing function, 266
smoothing of sensors, 227–232
Smoothing sketch, 228–233
snowboarding project, 167–169
sockets, on multimeter, 69
software

configuring, 45–47
GitHub as repository of, 260
open source, 15–16. See also Processing

(open source software)
Processing. See Processing (open source

software)

software framework, 363
SoftwareSerial library, 310
solar panel, 23
solder, 185–186
solder fumes, 181, 186, 193
solder joint, as pyramid-shaped, 200
solder stations, 181, 184–185
solder sucker, 190, 191
solder wick, 190–191
soldered circuit board, 180
soldering

acquiring technique, 197–201
adhesive putty, 187
assembling shield, 194–197
assembly, 196
choosing soldering iron, 181–185
cleaning soldering iron, 193
don’t eat solder, 193
equipment wire, 191–192
eye protection, 193
fixed-temperature soldering iron, 181–182
getting what you need for, 180–192
handling soldering iron, 192–193
header pins, 196–197
I2C PWM/Servo Driver board, 342–343
laying out all pieces of circuit, 195–196
as making project last longer, 65
multimeter, 189
needle-nose pliers, 189
portable soldering iron, 182–183
safety, 192–193
temperature-controlled soldering iron,

183–184
third hand/helping hand for, 186–187
tinning the tip, 198–199
understanding, 179–180
ventilation while, 193
wire cutters, 188
wire strippers, 188–189

soldering gun, 179
soldering iron, 179–185, 192–193, 198
solid core wire, 203
sound symbol, on multimeter dial, 73
sounding a tone, 68, 73, 146
sounding devices, 30

436 Arduino For Dummies

sounds
with piezo, 247
playing of. See noises
as way to detect presence, 282

Source (Emitter), 127
source of power (PWR), 64
SparkFun Color LCD Shield, 296
SparkFun Electronics (distributor) (US), 26,

27, 28, 293, 294, 295, 297, 300, 302, 304,
306, 308, 344, 355, 363, 410, 416

SparkFun Electronics blog, 309
Speak & Spell (device), 13–14
speaker, on multimeter dial, 73
speed, changing/controlling of on motor,

130–136
SPI (serial peripheral interface), 299, 310
SPI library, 310
spinning, of DC motor, 125–130
Spitz, Andrew (developer), 163, 165
sponge (for soldering), 198
Spotify, 165
square brackets ([]), 231
square wave, 146–147
stackable headers, 196
Start Kit for Arduino (ARDX), 31
StateChangeDetection sketch, 221–227
Stepper library, 311
stripboard, 204, 207
stroke, 384
style, sensing with, 258–267
suffixes, 379
suppliers, 27–29, 413–416, 418–419. See

also specific suppliers
surface mount device (SMD) chip, 19
Sweep sketch, 137–142
sweeping movements, 137–142
switches, compared to buttons, 242
symbols

for integrated circuit (IC), 85
for simple circuit diagram components, 82

syntax errors, 129

• T •
tabs, 121, 150
Tai, Steven (colleague of author), 185

Tangible User Interface module, 163
tap sensor, 164
tape

paper tape, 89
Velcro-type tape, 207

tax benefits, for using lead-free solder, 185
Technobots (supplier), 28, 344, 414
temperature changes, 272
temperature for soldering iron, 198
temperature sensors, 30
temperature-controlled soldering iron, 181,

183–184
terminal blocks, 206
test leads, 69
testing presence, 282–286
text editor, 40
TFT (thin-film transistor), 296
TFT Touch Shield, 296
Theremin, Léon, 156
Theremin circuit, 157
the Theremin, 156
thermal printers, 176
thin quad flat package (TQFP), 316, 317
thin-film transistor (TFT), 296
third ground by pin 13, 22
third hand/helping hand, 186–187, 197, 342
thisPin variable, 322, 323
thisReading variable, 231
tick sound, 146
tilde (~), 22
TimerOne/Timer 1 library, 313, 314
TinkerKit, 300
tinning the tip (soldering), 198–199
tip cleaner (soldering), 199
TLC5940 chip, 338
toggle buttons, 242
Tomlinson, Benjamin (developer), 178
tone, sounding of, 68, 73, 146
tone function, 160
toneKeyboard sketch, 254–258
toneMelody sketch, 147–153
toolbar, 39–40
tools, for prototyping, 63–69
torque, 353
total variable, 231
total1 variable, 265

437437 Index

TQFP (thin quad flat package), 316, 317
transistor circuit, 128, 133, 134
transistors, 31, 127
trenches, 64–65
triangle waves, 146–147
tri-board, 204
troubleshooting

not seeing any lights, 23–24
not seeing blinking L, 49

turquoise, color of official Arduino board, 26
tutorials

Adafruit Motor/Stepper/Servo Shield, 299
GPS Logger Shield Kit v1.1, 303
I2C, 296
integrating addressable LED ribbon, 355
Joystick Shield, 298
MIDI, 295
MP3 Player Shield, 294–295
RGB LCD Shield, 296
shiftOutCode, 331
TFT Touch Shield, 296
WiFi Shield, 305
XBee 1mW Chip Antenna - Series 1

(802.15.4), 304
Tweets, 26
tweets projects, 169
twisting wire connectors, 206
Twitter, 26, 169
TX LED, 23, 48
typos, 245

• U •
UHU (company), 187
Ultraleds (supplier), 419
ultrasonic range finder, 277–278
unbroken tone, 73
United Kingdom, Arduino suppliers in, 28,

413–415, 418, 419. See also Maplin; SK
Pang

United States, Arduino suppliers in, 28, 415,
416, 419. See also Adafruit Industries;
Radio Shack; SparkFun Electronics

United Visual Artists (UVA), 165, 167
universal serial bus (USB), 112
unsigned int values, 352

unsigned long, 214
upload button, 40, 48
USB (universal serial bus), 112
USB A-B cable, 22, 30, 34, 56
USB ports, 127
USB socket, 22, 45
USB/DC Lithium Polymer battery charger

by Adafruit, 301
UVA (United Visual Artists), 165, 167

• V •
V&A Village Fete, 177
vacuum pickup tool, 184
val variable, 145
van der Vleuten, Ruben (developer), 163
variable resistors, 30, 72, 107, 116
variables

described, 52–53
global variables, 215
integer variables, 97
local variables, 215

Velcro-type tape, 207
ventilated environment, 193
verify button, 39, 47
Verplank, Bill (designer), 8
VGA-compatible display, 298
vibration, measurement of, 248
Vin (voltage in), 22
Vitamins Design Ltd., 167, 169
void, 53–54
void loop (section of code), 51, 53, 54
void loop function, 56
void setup (section of code), 51, 53, 54
voltage (v)

AC voltage, 70
DC voltage, 70
5v as required for Uno, 56
forward voltage, 79, 94
generated when electronic instrument

generates sound, 12
measuring of in a circuit, 70–71
probe for measuring, 69
relationship among voltage, current, and

resistance, 77

438 Arduino For Dummies

voltage (v) (continued)
resistor function, 58
reversals of, 125
reverse voltage, 79
7-12v as recommended for Uno R3, 23
as supplied to circuit through positive

end of battery, 76
testing of, 346
voltage in (Vin), 22

voltage in (Vin), 22
volume control knob, 106, 116
VWHz socket, 69

• W •
Watson, Theo (developer), 363
watts (P), 75, 77, 80
Wave Shield, 293
waves, 146–147
wearable electronics, 27
WEEE (European Union Waste Electrical and

Electronic Equipment Directive), 185
Weller solder stations, 184
Westaway, Adrian (cofounder Vitamins

Design Ltd.), 167
whichPin variable, 337
whichState variable, 337
while loop, 237
white, as possible color of power, 94
White Tack (adhesive putty), 187
WiFi library, 311
WiFi Shield, 305–306
Windows

installing Arduino, 34–36
libraries, 312
Max/Pure Data, 361
menu bar in, 39
naming of serial ports, 45

openFrameworks, 363
Processing, 360

Windows 7, 34
Windows 8, 34
Windows Media Audio (WMA), 294
Windows Vista, 34
Windows XP, 34
WingShield Industries, 292
wire cutters, 188
Wire library, 311
wire strippers, 188–189, 203
Wire.h library, 350
Wireless Proto Shield, 303–304
Wireless SD Shield, 303–304
Wiring board, 7, 9–11
Wiring project, 9
WMA (Windows Media Audio), 294
workshops on Arduino, 412
workspace

preparation of general workspace, 32
for soldering, 180–181

• X •
XBee 1mW Chip Antenna - Series 1

(802.15.4), 304
XBee wireless module, 27, 164, 176, 303,

304

• Y •
YouTube, 411

• Z •
zero indexing, 144
0 values, 115, 328

http://www.Dummies.com/go/mobile
http://www.Dummies.com/go/iphone/apps

	About the Author
	Contents at a Glance
	Table of Contents
	Foreword
	Introduction
	About This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Getting to Know Arduino
	Chapter 1: What Is Arduino and Where Did It Come From?
	Where Did Arduino Come From?
	Learning by Doing
	Electronics
	Inputs
	Outputs
	Open Source

	Chapter 2: Finding Your Board and Your Way Around It
	Getting to Know the Arduino Uno R3
	Discovering Other Arduino Boards
	Shopping for Arduino
	Kitted Out: Starting with a Beginner’s Kit
	Preparing a Workspace

	Chapter 3: Downloading and Installing Arduino
	Installing Arduino
	Surveying the Arduino Environment

	Chapter 4: Blinking an LED
	Working with Your First Arduino Sketch
	Looking Closer at the Sketch
	Blinking Brighter
	Tweaking the Sketch

	Part II: Getting Physical with Arduino
	Chapter 5: Tools of the Trade
	Finding the Right Tools for the Job
	Using the Multimeter to Measure Voltage, Current, and Resistance

	Chapter 6: A Primer on Electricity and Circuitry
	Understanding Electricity
	Using Equations to Build Your Circuits
	Working with Circuit Diagrams
	Color Coding
	Datasheets
	Resistor Color Charts

	Chapter 7: Basic Sketches: Inputs, Outputs, and Communication
	Uploading a Sketch
	Using Pulse Width Modulation (PWM)
	The LED Fade Sketch
	The Button Sketch
	The AnalogInput Sketch
	Talking Serial

	Chapter 8: More Basic Sketches: Motion and Sound
	Working with Electric Motors
	Discovering Diodes
	Spinning a DC Motor
	Changing the Speed of Your Motor
	Controlling the Speed of Your Motor
	Getting to Know Servo Motors
	Creating Sweeping Movements
	Controlling Your Servo
	Making Noises
	Making an Instrument

	Part III: Building on the Basics
	Chapter 9: Learning by Example
	Skube
	Chorus
	Push Snowboarding
	Baker Tweet
	The National Maritime Museum’s Compass Lounge and Compass Card
	The Good Night Lamp
	Little Printer
	Flap to Freedom

	Chapter 10: Soldering On
	Understanding Soldering
	Gathering What You Need for Soldering
	Staying Safe while Soldering
	Assembling a Shield
	Acquiring Your Soldering Technique
	Building Your Circuit
	Packaging Your Project

	Chapter 11: Getting Clever with Code
	Blinking Better
	Taking the Bounce Out of Your Button
	Making a Better Button
	Smoothing Your Sensors
	Calibrating Your Inputs

	Chapter 12: Common Sense with Common Sensors
	Making Buttons Easier
	Exploring Piezo Sensors
	Utilizing Pressure, Force, and Load Sensors
	Sensing with Style
	Tripping Along with Lasers
	Detecting Movement
	Measuring Distance
	Testing, Testing . . . Can Anybody Hear This?

	Part IV: Unlocking Your Arduino’s Potential
	Chapter 13: Becoming a Specialist with Shields and Libraries
	Looking at Shields
	Browsing the Libraries

	Chapter 14: Sensing More Inputs and Controlling More Outputs
	Controlling Multiple LEDs
	Controlling Lots of LEDs by Shifting Out

	Chapter 15: Multiplying Your Outputs with I2C
	What Is I2C?
	Assembling the I2C PWM/Servo Driver
	Using the I2C PWM/Servo Driver
	Understanding the I2C PWM/Servo Driver Sketch
	Buying Servo Motors
	Other Uses for I2C

	Part V: Sussing Out Software
	Chapter 16: Getting to Know Processing
	Looking Under the Hood
	Trying Your First Processing Sketch

	Chapter 17: Processing the Physical World
	Making a Virtual Button
	Drawing a Graph
	Sending Multiple Signals

	Part VI: The Part of Tens
	Chapter 18: Ten Places to Learn More about Arduino
	Arduino Blog
	Hack a Day
	SparkFun
	MAKE
	Adafruit
	Bildr
	Instructables
	YouTube
	Hackerspaces
	Forum
	Friends, Colleagues, and Workshops

	Chapter 19: Ten Great Shops to Know
	Shops in the United Kingdom
	Shops around the World

	Chapter 20: Ten Places to Find Parts and Components
	RS Components (World)
	Farnell (World)
	Rapid (World)
	Digi-Key (World)
	eBay (World)
	Maplin (U.K.)
	RadioShack (U.S.)
	Ultraleds (U.K.)
	EnvironmentalLights. com (U.S.)
	Skip/Dumpster Diving (World)

	Index

