

Adventures in
Raspberry Pi®
Third Edition

Adventures in
Raspberry Pi®
Third Edition

Carrie Anne Philbin

Adventures in Raspberry Pi®, Third Edition

This edition first published 2017

© 2017 John Wiley and Sons, Inc.

Registered office

John Wiley & Sons, Inc., 111 River St, Hoboken, NJ 07030-5774.

For details of our global editorial offices, for customer services and for information about how to apply for permis-
sion to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the
Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the
UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publica-
tion is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold
on the understanding that the publisher is not engaged in rendering professional services. If professional advice or
other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Control Number: 2017937739

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/ or
its affiliates in the United States and/or other countries, and may not be used without written permission.
Raspberry Pi is a registered trademark of Raspberry Pi Foundation. All other trademarks are the property of their
respective owners. John Wiley & Sons, Ltd. is not associated with any product or vendor mentioned in the book.

A catalogue record for this book is available from the British Library.

ISBN 978‐1‐119‐26906‐9 (paperback); ISBN 978‐1‐119‐26907‐6 (ePub); 978‐1‐119‐26908‐3 (ePDF)

Set in 10/12.5 Chaparral Pro Light by SPi Global

Printed in the United States of America by Command Web Missouri

http://www.wiley.com

For Mum & Dad—my best teachers.

Publisher’s Acknowledgements

Some of the people who helped bring this book to market include the following:

Editorial
Series Creator: Carrie Anne Philbin
VP Consumer and Technology Publishing Director: Michelle Leete
Associate Director—Book Content Management: Martin Tribe
Professional Technology & Strategy Director: Barry Pruett
Acquisitions Editor: Jody Lefevere
Project Editor: Charlotte Kughen
Technical Editor: Martin O’Hanlon
Editorial Manager: Mary Beth Wakefield
Editorial Assistant: Matthew Lowe
Production Editor: Athiyappan Lalith Kumar

Marketing
Marketing Manager: Lorna Mein
Marketing Assistant: Polly Thomas

About the Author

CARRIE ANNE PHILBIN is an award winning Computing & ICT Teacher, Author &
YouTuber. She currently works as Director of Education for the Raspberry Pi Foundation
to put the power of computing and digital making into the hands of people all over the
world. She also volunteers on the board for Computing At School and as a Director of
the Python Software Foundation. Alongside her work in formal education in the UK,
Carrie Anne also hosts a Computer Science series on popular educational YouTube
channel Crash Course (www.youtube.com/crashcourse) and creates technology
tutorials on her own channel the Geek Gurl Diaries (www.geekgurldiaries.co.uk/).

http://www.youtube.com/crashcourse
http://www.geekgurldiaries.co.uk/

Acknowledgments

I would like to express my deep gratitude to the Raspberry Pi Foundation for allowing
me to set my creativity free on their marvellous inventions. In particular I’d like to
thank Alex Bradbury, Dr Sam Aaron and Nicholas Tollervey for their enthusiastic
encouragement and patient guidance. Their willingness to give their time so gener-
ously is very much appreciated. I would also like to thank Martin O’Hanlon and the
Raspberry Pi Community for their useful critiques of this work. Thanks to Jennifer
Mayberry for her design work and Sarah Wright for much of the art.

Special thanks should also be given to the staff of Pimoroni for providing necessary
equipment in order to complete elements of this book, as well as members of CAS
#include and the Rainham Library Book Club, for keeping my progress on schedule
with their kind words of encouragement. Thanks to my colleagues at Raspberry Pi,
PyConUK and the wider community who have been parts of these adventures for
many years.

My special thanks are also extended to my good friends—Emma, Sian, Helen, Viv and
Kylie—who are a constant source of inspiration in my life.

Finally, I wish to thank my parents, husband, brother and sister‐in‐law for their
patience, support and encouragement throughout.

T A B L E O F C O n T E n T s ix

Contents

Introduction . 1
What Is the Raspberry Pi and What Can You Do With It? .1
Who Should Read This Book? .2
What You Will Learn .2
What You Need for the Projects .3
How This Book Is Organised . .3
The Companion Website .4
Conventions .5
Reaching Out .6

Adventure 1
You Have a Raspberry Pi now What? 7

What Hardware Do You Need? .8
What Other Equipment Is Helpful? .9
Setting Up the Raspberry Pi . 11

Downloading and Copying the Raspbian Operating System 12
Plugging in the Hardware . 16
Installing and Configuring the Software . 16

Exploring the Desktop in Raspbian . 20
Shutting Down Your Raspberry Pi . 21
Connecting to a Wi‐Fi Network . 21
Backing Up an SD Card Image . 22

Adventure 2
Taking Command of.Your Raspberry Pi. 25

Exploring the Terminal . 27
Commands for Navigating Through Your File System . 29
Understanding sudo . 33
Launching Programs from the Command Line . 34
Managing Files and Directories . 34
Installing and Updating Applications . 35

Downloading and Installing Applications . 35
Learning More About an Application . 36
Upgrading Your Apps . 36

Editing Files . 37
Using Shutdown and Restart Commands . 38
Continuing Your Text Adventure . 39

A D V E n T U R E s I n R A s P B E R R Y P Ix

Adventure 3
Creating stories and Games
with scratch . 41

Getting Started with Scratch . 42
The Scratch Interface . 43
A Quick Hello from Scratch Cat . 44

Setting the Stage . 46
Creating Costumes and Original Sprites . 48

Using the Scratch Sprite Image Library . 48
Editing an Existing Sprite . 48
Creating Your Own Original Sprites . 50

Animating a Crazy Monkey . 50
Creating an Adventure Role‐Playing Game . 56

Creating Your Sprite and Stage . 56
Setting the Start Position of the Adventurer Sprite . 57
Creating Variables: Including Health Points for the Adventurer Sprite 58
Controlling the Direction and Movement of the Adventurer Sprite 60
Entering a Cave and Switching Backgrounds . 61
Creating Health‐Point‐Stealing Sprites . 68
Improving the Movement of the Adventurer Sprite Using if Blocks 69
Creating a Game Over Screen . 69
Ideas for Improvements to Your Game . 71

Adventure 4
Programming shapes with
Turtle Graphics . 75

Scratch Turtle Graphics . 76
Using Pen Down and Pen Up . 77
Drawing Simple Shapes .78
Using “clear” and Setting a Start Point .80
Using Variables Instead of Values . 80
Changing the Size and Colour of the Pen . 81
Creating Spiral Patterns . 82
Using User Input to Determine the Number of Sides . 82

Python Turtle Graphics . 84
Introducing Python Modules . 85
The Python 3 Environment and the Interpreter Window 85
Using the Turtle Module in Python . 85

T A B L E O F C O n T E n T s xi

The range Function . 91
Other Python Turtle Module Commands . 92

Some Super Spirals . 93
Further Adventures with Python Turtle . 95

Adventure 5
Programming with Python 99

Getting Set Up for Python . 100
Python Programming Language . 100
The IDLE Environment . 100
Programming in Python: Using a Function . 101

Using a Text Editor to Create a Code File . 104
Using the Python time and random Modules . 106
Python Text Adventure Game . 110

Getting User Input . 111
Using Conditionals . 111
Using a while Loop . 114
Using a Variable for Health Points . 116
Putting It All Together . 117
Defining Functions . 118
Creating a Main Game Loop . 120

Continuing Your Python Adventure . 124

Adventure 6
Programming Minecraft Worlds
on the Raspberry Pi . 127

Getting Started with Minecraft Pi . 128
Your First Minecraft Pi Python Program . 130
Using Coordinates in Minecraft Pi . 132

Finding the Player’s Location . 132
Changing the Player’s Location . 133
Placing a Block . 134
Placing Multiple Blocks . 136
Types of Blocks . 138

Creating a TNT Chain Reaction . 139
Creating a Diamond Transporter . 141
Sharing and Cloning Minecraft Pi Programs . 144
Further Adventures with Minecraft Pi . 145

A D V E n T U R E s I n R A s P B E R R Y P Ixii

Adventure 7
Coding Music with sonic Pi 147

Getting Started with Sonic Pi . 148
The Sonic Pi Interface . 149
Creating Your First Sounds with Sonic Pi . 151

Twinkle Twinkle Little Star . 154
Repeating Lines in a Loop . 156

First Electronic Track . 158
Using Different Synthesizer Sounds . 158
Using Prerecorded Samples . 159
Creating a Surprising Tune . 161
Using “rand” to Play Random Notes . 161
Using Algorithms . 162
Running Two Scripts at the Same Time . 164
Adding Effects . 164
Making a Recording of Your Music . 165

Further Adventures with Sonic Pi . 166

Adventure 8
Using the GPIO Pins on the
Raspberry Pi . 169

Using a Raspberry Pi GPIO Pin Layout Diagram . 170
Electronics Basics . 173
Using a Python Library to Control GPIO . 175
Making an LED Blink . 176

Creating the LEDblink Python Code . 177
Connecting the LEDblink Components . 178
Running LEDblink .py in IDLE . 180

Using a Button to Turn on an LED . 181
Creating the buttonLED Python Code . 181
Connecting the buttonLED Components . 182
Running buttonLED .py in IDLE . 183

Using a PIR Motion Sensor to Trigger a Sound . 184
Creating the Motion‐Sensing Python Code . 185
Connecting the PIRmotion Components . 186
Running PIRmotion .py in IDLE . 187

T A B L E O F C O n T E n T s xiii

The Marshmallow Challenge . 188
Creating the Marshmallow Button . 189
Mapping Marshmallow Input to a Keyboard Key . 191
Scratch Marshmallow Game . 192

Further Adventures with GPIO Pins . 195

Adventure 9
Experimenting with Cameras
and HATs . 197

Getting Started with the Raspberry Pi Camera . 198
Connecting the Camera to Your Raspberry Pi . 198
Programming the Picamera with Python . 200

Creating a Time‐Lapse Photography Program . 201
Mounting Your Camera . 203
Making a Movie of Your Images . 204

Getting Started with the Explorer HAT Pro . 206
Connecting the HAT to Your Raspberry Pi . 207
Downloading and Installing the Explorer HAT Library 207
Programming the LEDs . 209
Programming the Touch Pads . 211

Creating an Explorer HAT Pro Disco Trigger Trap . 212
Creating the Disco Trigger Trap Python Code . 213
Making the Aluminum Foil Trap . 215

Getting Started with the Sense HAT . 215
Programming the LED Matrix with Python . 217
Programming the Sensors to Find Out the Current Temperature 217
Creating Pixel Art . 218

Creating a Sense HAT Desk Thermometer . 220
Further Adventures with Cameras and HATs . 222

Adventure 10
The Big Adventure: Building a
Raspberry Pi Jukebox . 225

An Overview of the Jukebox Project . 226
What You Will Need . 227
Part One: Creating the LCD Screen . 228

Preparing the LCD Screen by Adding Headers . 228
Mounting the LCD Screen and Wiring Up the Breadboard 229
Adding Scripts to Drive the LCD Screen . 232

A D V E n T U R E s I n R A s P B E R R Y P Ixiv

Part Two: Downloading and Playing MP3s . 233
Installing a Media Player and Getting Music Files . 233
Writing a Jukebox Python Program . 236

Part Three: Controlling the Jukebox with Buttons . 240
Connecting the Buttons . 240
Adapting Your Jukebox Program to Include GPIO Buttons 242

Part Four: Displaying Jukebox Information on the LCD Screen 244
Finishing Up . 249

Appendix
Where to Go from Here . 251

Websites . 251
Clubs . 253
Inspiring Projects and Tutorials . 254
Videos . 254
Books and Magazines . 255

Glossary . 257

Index. 263

1

Introduction

ARE YOU AN intrepid adventurer? Do you like to try new things and learn new
skills? Would you like to be a pioneer in creating technology? Do you own a Raspberry
Pi, or are you considering getting one? If the answer is a resounding “Yes!” then this is
the book for you.

What Is the Raspberry Pi and
What Can You Do With It?
The Raspberry Pi is a computer. A very small computer. In fact, it is roughly the size of
a credit card. Don’t be fooled by its size; as we know, good things come in small pack-
ages. However, the Raspberry Pi does not come in a package at all. It does not come in
a case (although you can build one, as discussed in Adventure 1) and its circuit board
and chips are fully visible, as you can see in Figure 1. You can plug a Raspberry Pi into
a digital TV or monitor and use a USB keyboard and mouse with it, making it very easy
to use. Because of its size, you can easily transport it anywhere.

The Raspberry Pi gives you the opportunity to build and control a device that does
what you want it to do. For example, you can deploy your very own robot arm, con-
trolled by a program that you have written. You can design and create your own role‐
playing game, or produce beautiful computer art or music, all by using code.

Just because the Raspberry Pi is small doesn’t mean you can’t do big things with it.
Here are just a few examples of some incredible Pi projects:

• Launching teddy bears into space using high altitude ballooning (www.
raspberrypi.org/archives/4715)

• The ultimate bird feeder—it’s solar‐powered, takes photographs and tweets
images of birds! (www.raspberrypi.org/archives/4832)

• Crazy customised Halloween costumes like Doc Brown from Back to the Future
(www.raspberrypi.org/archives/4856)

• A robotic sailboat (www.raspberrypi.org/archives/4109)

• Pi‐controlled sculptures like the 15‐foot tall Mens Amplio with a brain that
lights up (www.raspberrypi.org/archives/4667)

In the final adventure of this book, you use your Pi to build a jukebox that plays your
favorite tunes and displays track information on an LCD screen. And with the skills
you learn throughout the book, you’ll be ready to dream up your own exciting
projects—and create them.

http://www.raspberrypi.org/archives/4715
http://www.raspberrypi.org/archives/4715
http://www.raspberrypi.org/archives/4832
http://www.raspberrypi.org/archives/4856
http://www.raspberrypi.org/archives/4109
http://www.raspberrypi.org/archives/4667

A D V E N T U R E S I N R A S P B E R R Y P I2

Who Should Read This Book?
Adventures in Raspberry Pi is for any young person who has an interest in making things
happen using computing. You might perhaps be unsure of how to get started or want
to further your current skills. Whatever your reasons, this book will be your guide for a
journey with your Raspberry Pi, the most important item in your backpack. Your trek
will take you from setting up your Pi, through learning the basics of programming, to
discovering how to create your own project. By the end of your adventures you will
have acquired the skills you need to become a pioneer of technology!

What You Will Learn
This book will help you discover some of the amazing things you can do with your new
Raspberry Pi, and introduce you to many of the developer tools and projects available
to you. With this book, you learn how to set up and use your Raspberry Pi easily so that
you can experience its potential for yourself. You learn the skills you need to design
and create your own computing projects.

FIGURE 1 Raspberry Pi computers.

I N T R o D U C T I o N 3

You find out that you can give instructions to your Raspberry Pi in a variety of ways,
using different programming languages and tools. The adventures in the book allow
you to experience programming using Scratch, Turtle Graphics, Python, Sonic Pi and
Minecraft Pi.

You also learn some computing (and electronics) concepts that you can apply to other
devices and programming situations. Many fundamental computing concepts are sim-
ilar for all programming languages, so once you understand the basics of programming
in one language you can apply that knowledge to others very easily.

What You Need for the Projects
First and foremost, of course, you need a Raspberry Pi. If you don’t already own one,
you can buy a Raspberry Pi from a distributor in your country. You also need a monitor
or other screen, a mouse and a keyboard to connect to your Raspberry Pi.

Each chapter—adventure—in the book notes any special items you need to build the
project covered in that adventure. Along with your Pi, some projects require Internet
access to enable you to download software or other materials. You need headphones or
speakers to listen to the music you make in Adventure 7. For the projects in
Adventures 8 through 10, you need some specific cables, wires, LEDs, resistors and
other hardware. You can purchase these items from your local electronics store, or
from various online retailers.

As final ingredients, you need some curiosity and a willingness to try new skills!

How This Book Is organised
Every chapter of the book is a separate adventure, teaching you to use new skills and
concepts while you create a project. The book is organised so that as you progress, the
concepts and projects get more complex, building on what you learned in earlier
adventures. Each chapter begins with an introduction to the language or tool for that
adventure, provides instructions for downloading, installing, and setting up whatever
you need, and usually gives you a short task to help you become familiar with the tool.
After you’ve got the basics, I lead you step by step through the instructions for the
main project.

In Adventures 1 and 2, you learn how to get started with your equipment and use com-
mon text commands, perhaps for the first time. These two chapters are necessary for
the beginner Pi explorer, as further adventures depend on the skills covered here.

The two most common ways to program a Raspberry Pi are to use the Scratch or
Python languages that come preinstalled on the Pi’s main operating system, Raspbian.
Adventures 3, 4 and 5 get you started with the basics of these languages.

A D V E N T U R E S I N R A S P B E R R Y P I4

In Adventure 3, you use Scratch, a simple drag‐and‐drop programming language, to
design and create your own computer game, while getting an introduction to the
 programming concepts of loops and variables. Adventure 4 is a bridge between Scratch
and the more conventional programming language, Python. In this adventure, you use
Turtle Graphics to create shapes and spirals with both programming languages. In
Adventure 5, you learn how to create an adventure game program that asks for user
input, uses lists, imports functions and prints text to the screen, all using text
 commands written in the programming language Python.

Adventures 6 and 7 take programming on the Raspberry Pi further by looking at two
developer tools that you can download and use with the Raspberry Pi: Minecraft Pi and
Sonic Pi. Minecraft Pi enables you to interact with and adapt the popular computer
game Minecraft, using Python code to build your own transporter. With Sonic Pi, you
can create electronic music by writing programs.

Another exciting aspect of using the Raspberry Pi is that it gives you the option to add
on to the main board by using GPIO pins. Adventure 8 looks at the GPIO pins in more
detail, introducing you to electronics and computer programming while you build a
program that uses a marshmallow to make a light blink (yes, you read that right).

You don’t always need to program individual electronic components; you can also buy
specially designed hardware that fits on top of the GPIO pins on the Raspberry Pi,
called HATs. In Adventure 9, you learn more about the features of the Sense HAT and
the Explorer HAT before programming them with Python.

Adventure 10 draws on the computing concepts and skills learned through completing
the preceding adventures in this book to create one big project—a jukebox. In this
chapter, you learn how to plan, design and create a project from start to finish.

Finally, the Appendix suggests where you might go next to learn more about the differ-
ent aspects of computer science and Raspberry Pi—including how to locate or set up
your own club to share project ideas with others.

The Companion Website
Throughout this book you’ll find references to the Adventures in Raspberry Pi compan-
ion website, www.wiley.com/go/adventuresinrp3E. (It’s a good idea to book-
mark that site so you can return to it as you need to.) The website includes video
tutorials to help you out if you get stuck, and code files for some of the more extensive
projects.

http://www.wiley.com/go/adventuresinrp3E

I N T R o D U C T I o N 5

Conventions
Throughout the book, there are some special boxes to guide and support you. They use
the following key:

These boxes explain complex computing concepts or terms.

These boxes are hints to make life easier.

These boxes include important warnings to keep you and your Raspberry Pi safe
when completing a step or project.

These boxes feature quick quizzes for you to test your understanding or make you
think more about the topic.

These boxes provide explanations or additional information about the topic at
hand.

A D V E N T U R E S I N R A S P B E R R Y P I6

You will also find two sets of sidebars in the book. Challenge sidebars ask you how you
might expand on the projects in the book to make changes or add new features. Digging
into the Code sidebars explain some of the special syntax or programming language, to
give you a better understanding of the computer languages.

When following steps or instructions using code, especially in adventures using
Python, you should type in the code as set out by the instructions. Sometimes you
need to type a very long line of code, longer than will fit on a single line in this book. If
you see a ↩ symbol at the end of a line of code, it means that line and the following
line are part of a single code line, so you should type them as one line, not on separate
lines. For example the following code should be typed on one line, not two:

print("Welcome to Adventures in Raspberry Pi by ↩
Carrie Anne Philbin")

Most chapters include a Quick Reference Table at the end to sum up the main com-
mands or concepts from the chapter. You can refer to these guides when you need a
refresher on the commands.

Whenever you complete a chapter, you unlock an achievement and collect a new badge.
You can collect badges to represent these achievements from the Adventures in
Raspberry Pi companion website (www.wiley.com/go/adventuresinrp3E).

Reaching out
The Appendix explains ways you can take your Raspberry Pi knowledge further, with
references to websites, organisations, videos and other resources. Many of those
resources include forums where you can ask questions or get in touch with other
Raspberry Pi users.

You can also contact me by sending me a message through my website, www.
geekgurldiaries.co.uk.

Time to start your adventures!

These boxes point you to videos on the companion website that walk you through
the tasks in the adventure.

http://www.wiley.com/go/adventuresinrp3E
http://www.geekgurldiaries.co.uk
http://www.geekgurldiaries.co.uk

7

You Have a Raspberry
Pi. Now What?

IN THE PAGES of this book you discover how to do great things with your Raspberry
Pi. You create art and music, programs, games, even create your own jukebox! But first,
you need to get your system working.

If you are new to Raspberry Pi, the initial tasks of getting it set up and running might
seem a little daunting, but it is not that complicated to do. By setting up the Raspberry
Pi yourself you learn more about how it and other computers work. You will encounter
technical jargon and procedures that you may not have come across before. In this
chapter, I show you how to set up your Raspberry Pi so it is ready for you to use for the
first time. I explain what hardware and software you need, and tell you how to put it

Adventure 1

Hardware refers to the physical elements of the computer that you can see and
touch. This includes everything inside the computer case, known as components.

Software is the term given to the programs that run on the computer
system. Programs are what make the hardware work, for example by making
a calculation or organising your files. There are two main types of software:
systems software, which runs and manages your computer; and application
software, which performs a specific task or function.

A D V E N T U R E S I N R A S P B E R R Y P I8

all together into a working system. You also find out how to create a backup copy of
your system in case you need to replace it at some stage in the future.

What Hardware Do You Need?
Of course, the first thing you need is a Raspberry Pi. If you have used games consoles
or computing devices before, you’ll notice something different about Raspberry Pi—it
doesn’t come with a power supply, a charger or any connecting cables. It doesn’t have
a storage device to keep your programs on either—or even a case!

So, to get started, you first need to get the following hardware together (see Figure 1‐1):

• A Raspberry Pi

• A 2A (amp) micro USB power adapter

• A USB keyboard and mouse

• A desktop computer or laptop with an SD card reader/writer—this is to enable
you to prepare an SD card with the software you need to run your Raspberry Pi

• An 8GB micro SD card

• An HDMI cable—you will be using this with an HDMI TV or monitor

• A monitor or TV

When I refer to SD cards in this chapter and throughout this book, I am also
referring to micro SD cards, which the Raspberry Pi model B+ and subsequent
models of boards (for example, Pi 2, Pi 3 and so on) use.

HDMI stands for High-Definition Multimedia Interface. HDMI devices are used
to transfer video and audio data from a source device—such as your Raspberry
Pi—to a compatible HDMI device like a digital TV or monitor.

USB stands for Universal Serial Bus. You have probably used a USB port on
a computer to plug in a webcam or a portable memory device like a memory
stick.

An SD card, or Secure Digital memory card, stores data or information. SD cards
are most often used in digital cameras to store images that can then be transferred
to a computer using an SD card reader. A micro SD card is much smaller in
physical size, and the Model B+ uses them instead of a standard SD card.

A D V E N T U R E 1 Y o U H AV E A R A S P B E R R Y P I . N o W W H A T ? 9

What other Equipment
Is Helpful?
The following additional accessories are not vital, but you might want to consider
acquiring some of them to improve your Raspberry Pi experience.

• A case—To protect your Raspberry Pi from damage and make it easier for you
to carry, think about buying a case like the PiBow shown in Figure 1‐2, designed
and manufactured by Pimoroni (https://shop.pimoroni.com). The great
thing about this case is that it’s colourful and fun, and the ports are also labelled
to remind you where each cable should be inserted.

If you don’t want to spend cash on a case, why not create your own by using the
Raspberry Pi Punnet? This template can be printed onto card stock, and then cut
out and folded into a box. You can really let yourself get creative here and cus-
tomise your case using pens, paints, stickers or coloured card stock to create a
masterpiece. You can download a template for the original Raspberry Pi from
this site: http://squareitround.co.uk/Resources/Punnet_net_

Mk1.pdf.

FIGURE 1-1 The essential hardware you’ll need before you can use your Raspberry Pi.

https://shop.pimoroni.com
http://squareitround.co.uk/Resources/Punnet_net_Mk1.pdf
http://squareitround.co.uk/Resources/Punnet_net_Mk1.pdf

A D V E N T U R E S I N R A S P B E R R Y P I10

Want a sturdier case? Build one with LEGO blocks! You can find instructions to
build the LEGO Raspberry Pi case shown in Figure 1‐3 on the official LEGO
 website, which you can reach through this shortened link: http://bit.
ly/1iF6PNE.

• A few spare SD cards—It’s worth having a few extra cards just in case the one
you’re using becomes corrupted or stops working for any reason. They are also
useful for backing up your files and projects—I explain how to do this at the end
of the chapter.

• An SD card reader/writer—You need an SD card reader/writer to enable
you to put the Raspberry Pi operating system software onto an SD card. You
download the operating system software onto your computer, plug the card
reader into a USB port on your computer and use it to copy the OS onto an SD
card that you can then load onto your Raspberry Pi. Many desktop computers
and laptops are already fitted with an SD card reader and writer but if your com-
puter or laptop doesn’t have one, you will have to get an external USB card
reader.

• A Raspberry Pi camera module—The Raspberry Pi camera module is a
Raspberry Pi camera board accessory for the Pi. It connects to the Pi with a flex
cable and can be used to take digital images of whatever the camera is pointed at.

FIGURE 1-2 The PiBow case can help protect your Raspberry Pi.
Reproduced by permission of Pimoroni

http://bit.ly/1iF6PNE
http://bit.ly/1iF6PNE

A D V E N T U R E 1 Y o U H AV E A R A S P B E R R Y P I . N o W W H A T ? 11

Setting Up the Raspberry Pi
Getting your Raspberry Pi up and running takes just three main steps. First, you need
to download the operating system software and copy it onto an SD card. Next, you
hook up the hardware—the mouse, keyboard and other components. Finally, you
install the software onto your Pi and configure a few settings. The next few sections
walk you through this process for a smooth launch. Don’t worry: Doing the actual
steps is much easier than reading these instructions!

FIGURE 1-3 Build a LEGO case for your Raspberry Pi.
Reproduced by permission of The Daily Brick

For a video that walks you through the steps of setting up your Raspberry Pi, visit
the companion website at www.wiley.com/go/adventuresinrp3E. Click
the Videos tab and select the SettingUpRaspberryPi file.

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E S I N R A S P B E R R Y P I12

Downloading and Copying the
Raspbian operating System
All personal computing devices need an operating system (OS) to make them run.
You’ve probably used a computer or laptop before, and the likelihood is that your com-
puter’s operating system was Microsoft Windows for a PC, or Mac OS X for a Mac
computer or Macbook. The Raspberry Pi can run a number of operating systems, but
the OS most people use is Raspbian, which is a distribution of the free Linux operat-
ing system. The projects in this book assume you are using Raspbian on your Raspberry
Pi, and the instructions in this section tell you how to download and install it.

Raspbian was created by a community of thousands of volunteers world‐wide.
You can connect to this community and learn more about Raspbian and Linux at www.
raspbian.org.

Preparing an SD Card to Store Your Software
A desktop or laptop computer uses a permanent storage device called a hard drive to
store information and applications. The Raspberry Pi doesn’t have a hard drive, how-
ever, so your operating system, applications, and information all have to be stored on
a removable SD card or micro SD card. This type of storage, known as flash memory,
is the same as the kind you use with a digital camera to store all your photographs.

Before you plug in all the cables and so on, you first need to prepare (or flash) an SD
card with the software the Raspberry Pi needs in order to run. This means that you
format your SD card or micro SD card and copy the free Raspbian OS onto it. If you
don’t do this step, your Raspberry Pi won’t recognise it as a storage device (like the
hard drive of your computer) from which you can boot software. Don’t worry if these
terms are unfamiliar to you—all will become clear as you read through this section.

MoRE ABoUT oPERATING SYSTEMS
An operating system (OS) is a type of software that allows people to create,
store and manage files and applications that contain information on a
computer. Examples of popular operating systems include Microsoft Windows,
Mac OS X and Linux.

Linux is a free, open source operating system. This means that the program-
ming code it is made with is free and open for anyone to look at and possibly
improve on. There are many versions, or distributions, of the Linux operating
system available. Raspbian, the OS you use on the Raspberry Pi, is a Linux
distribution. You may have heard of some other well-known Linux distribu-
tions, such as Ubuntu, Debian or Fedora.

http://www.raspbian.org/
http://www.raspbian.org/

A D V E N T U R E 1 Y o U H AV E A R A S P B E R R Y P I . N o W W H A T ? 13

Your card must be formatted, as described in the following steps, before any software
is loaded onto it.

1. The best way to ensure that the card is formatted correctly for use is to down-
load, install and use SD Formatter 4.0 (www.sdcard.org/downloads/
formatter_4) from the SD Association to your desktop or laptop computer.
(The built‐in Windows formatting tool only formats the first partition and not
the entire disk, so it is important that you use the SD formatter 4.0 tool instead.)

2. To download SD Formatter, follow the link in Step 1, and select either SD
Formatter 4.0 for Windows Download or SD Formatter 4.0 for MAC Download.
Read and agree to the terms and your download begins. Once the download is
complete, extract the file by clicking on Extract All and then run the setup appli-
cation following the onscreen steps.

3. With the SD Formatter installed on your computer, run the application. Make
sure that it has the right drive selected for your card; for example it might be
labeled D: or F: (see Figure 1‐4).You can find out which drive is your SD card by
looking in My Computer on a Windows computer or using Finder on Mac OS X.

4. Click the Option button and select FULL (erase) from the drop‐down menu.
When you are ready, double‐check that you have the correct drive selected, and
click Format.

The first thing a computer does when you turn it on is to start up, or boot, the
operating system.

You can buy SD cards with the Raspbian software preloaded onto them. This
type of card allows you to get up and running straight away and you can skip the
instructions on how to install the Raspbian software. However, I recommend you
walk through the installation steps in this chapter, rather than using a preloaded
card. It’s useful to learn how to complete the formatting process yourself so that
you understand how it’s done and can start fresh if anything goes wrong.

The program wipes all data from the card, so make sure you select the correct
drive!

https://www.sdcard.org/downloads/formatter_4/
https://www.sdcard.org/downloads/formatter_4/

A D V E N T U R E S I N R A S P B E R R Y P I14

Making It Easy with NOOBS
With your SD card formatted, you’re ready to copy the Raspbian software onto it. The
New Out Of Box Software (NOOBS) produced by the Raspberry Pi Foundation allows
you to copy the files you need straight onto the SD card like you would do with photo
or document files. It gives you the option of selecting which operating system you
want to install, and even provides recovery should you accidentally delete all your soft-
ware files.

If you are using a micro SD card, then you may need an adapter so that it fits an SD
card reader slot. The official Raspberry Pi NOOBS card has a micro SD card inside it, so
you can use it as an adapter.

FIGURE 1-4 Formatting an SD Card using the SD Formatter application

All the projects in this book are designed to run using the Raspbian OS included
in the NOOBS software. I recommend ensuring that you use the latest version
of NOOBS before starting any projects in this book; otherwise you may have
difficulty getting some of the projects to work.

First, you need to download NOOBS onto a desktop or laptop computer with an SD
card reader. After you download the software, you save it to an SD card for use with
your Raspberry Pi. The following steps walk you through the process:

1. Navigate to the Raspberry Pi website at www.raspberrypi.org and click the
Downloads tab at the top of the page. The New Out Of Box Software that you
want to download is at the top of the page. Click the link to select the latest
NOOBS .zip file.

The download file is a compressed file. Save the compressed file to your desktop
or laptop computer, and then extract the files by right‐clicking on the file and

http://www.raspberrypi.org/

A D V E N T U R E 1 Y o U H AV E A R A S P B E R R Y P I . N o W W H A T ? 15

selecting the Extract All option (on a Microsoft Windows computer). You will
then be given the option to extract the files to a directory or folder of your choice
so that you will easily be able to find it after the extraction is complete, as shown
in Figure 1‐5.

FIGURE 1-5 Extracting NOOBS to a directory on a windows computer

You should always download the latest version of NOOBS as the software is
being updated all the time. The latest version is usually listed at the top of the
page with a version number.

2. Place your formatted card into the card reader slot on your desktop computer or
laptop. Now copy the extracted NOOBS files from the directory or folder on your
computer and paste them onto your newly formatted SD card. You can do this
either by dragging the files from one window to another, or by highlighting them
all with your mouse, right‐clicking, and copy/pasting the files onto the card.

A D V E N T U R E S I N R A S P B E R R Y P I16

Plugging in the Hardware
Now it’s time to get your Raspberry Pi up and running. Find yourself a solid surface,
like a desk or table, big enough to hold all your equipment. Make sure it’s near some
main plug sockets. Ideally, you should also have access to a network device like a router
because you will likely want to access the Internet on your Raspberry Pi at some point,
but you don’t need access to a router to set up your Pi.

Set up your Raspberry Pi using the following steps:

1. Place the card with the NOOBS files you have loaded onto it into the card slot of
your Raspberry Pi on the back.

2. Plug a USB keyboard and mouse into the USB slots on the Pi.

3. Connect the HDMI cable from your TV or monitor to the HDMI port on the Pi
and turn on your TV or monitor. Some TVs and monitors accept input from lots
of different sources, so you may have to make sure that you set your TV or mon-
itor to the HDMI setting. Some TVs and monitors will auto‐detect the HDMI
when you power up your Raspberry Pi.

4. If you think you’ll be using the Internet on your Pi, connect a network cable to
the Ethernet port.

5. Start the Raspberry Pi by plugging in the micro USB power supply. It is impor-
tant to do this step last, as the Pi does not have a power button so the boot
process begins as soon as you plug in the Pi.

Okay, your Pi is running!

Installing and Configuring
the Software
When you power up your Raspberry Pi with a NOOBS SD card for the first time you
need to complete the setup of the software.

The new system loads and begins to resize the SD card’s partition. Partitions are used
to separate parts of a storage device from each other. Once NOOBS completes this
task your card has three partitions: one called the boot partition, which holds all the
files needed to start and run your Pi; one called the recovery partition; and one to store
any files that you create, or applications that you add later.

As noted in Step 5 of the following instructions, do not plug in the power
supply until you have completed the first four steps.

A D V E N T U R E 1 Y o U H AV E A R A S P B E R R Y P I . N o W W H A T ? 17

The NOOBS software gives you the choice of installing one of several different operat-
ing systems, including RaspBMC and Pidora as well as Raspbian. To use the projects in
this book, you should install Raspbian. See Figure 1‐6.

FIGURE 1-6 Selecting an operating system to install using NOOBS

Follow these steps to install Raspbian:

1. Select the operating system that you want to install—Raspbian—and click
Install. At this point you can also change any language settings.

2. You see a warning asking if you are sure you want to install the operating system
as it will overwrite any file system already on the card. Click Yes.

In future releases of NOOBS you will be able to install more than one operating
system at a time from the list provided. You might like to try another OS, such
as Windows 10 IoT (Internet of Things) or Ubuntu Mate, at a later date. You can
always use NOOBS on a different SD card, configured for another OS.

A D V E N T U R E S I N R A S P B E R R Y P I18

3. Wait for the operating system to be installed by following the progress bar on
the screen. Once complete, the Pi boots to the graphical user interface for the
Raspbian operating system.

After installation of the operating system, the desktop automatically loads. You
may want to configure some of the settings for your software. You do not need
to change any of the settings at this time, as you have the option of coming back
to this window (see Figure 1‐7) whenever you use your Pi by clicking the Menu
icon and selecting Preferences ➪ Raspberry Pi Configuration.

• Localisation—Selecting this option lets you set the language and time zone
for your Raspberry Pi. For example if you are in the UK, you may want to set
your language to English and time zone to GMT—Greenwich Mean Time.

• Interfaces—In this menu you can enable or disable the interface options.
For example, if you have a Raspberry Pi Camera (a Raspberry Pi accessory),
you should enable it here so that you are able to use it.

• System—Use this option to disable auto login and change the default pass-
word to add some security measures to your setup.

FIGURE 1-7 The Raspberry Pi Configuration window

Congratulations! You’ve successfully installed the software required to be able to use
your Raspberry Pi! Read on to explore the graphical user interface (see Figure 1‐8) of
Raspbian.

A D V E N T U R E 1 Y o U H AV E A R A S P B E R R Y P I . N o W W H A T ? 19

FIGURE 1-8 The Raspbian desktop

You may be used to using desktop computers or laptops that have windows, a
mouse pointer, and a desktop. This is typical of a graphical user interface, or GUI.

USING NooBS FoR RECoVERY
If anything goes wrong at any time after first running your Pi with NOOBS and
installing an operating system—for example, if you manage to corrupt your file
system, or if you would like to try one of the other operating systems packaged
in with NOOBS—simply hold the Shift key when booting your Raspberry Pi and
you go to the recovery screen.

A D V E N T U R E S I N R A S P B E R R Y P I20

Exploring the Desktop
in Raspbian
As you just saw, plugging in the power supply and booting the Raspberry Pi loads the
graphical user interface of the Raspbian operating system. You will see the default
Raspbian desktop shown in Figure 1‐8, with a taskbar across the top with the time on
the far right, and the main menu button icon (containing the Raspberry Pi logo) on the
far left. Some of the most commonly used applications can be launched from the Main
Menu such as Scratch (see Adventure 3), Python (see Adventure 5), and a web browser
that you can use to browse the World Wide Web if your Pi is connected to the Internet
via an Ethernet cable or Wi‐Fi. There are even some games for you to try out using
PyGame. Spend a few minutes checking out what applications are available by clicking
on the main menu and then each of the submenus in turn. Figure 1‐9 shows the appli-
cations available under the Programming submenu.

FIGURE 1-9 Using the main menu and file browser in Raspbian

A D V E N T U R E 1 Y o U H AV E A R A S P B E R R Y P I . N o W W H A T ? 21

To learn a little about how your Raspberry Pi is set up, try the following steps:

1. Click the main menu icon in the left corner of the taskbar.

2. From the main menu, select Accessories ➪ File Manager to open the file browser.
If you are logged in as the user pi, the browser displays the contents of your home
directory (/home/pi). This directory is fairly empty as you are yet to begin your
programming adventures with Raspberry Pi. You see a directory called Desktop.
Right‐click with your mouse on the desktop to open a drop‐down menu and
select Create New ➪ Empty File. Name the file hello and click Ok. You see an icon
appear on the desktop, and if you double‐click the directory folder Desktop in the
file manager window, you see that it contains the hello file too.

Shutting Down Your
Raspberry Pi
When you shut down your Raspberry Pi, it is very important that you don’t simply
remove the power supply, but make sure you always instruct the OS to shut down
safely. The Raspbian OS has a Shutdown button for shutting down your Raspberry Pi
cleanly if you are using the GUI—just click the main menu icon followed by Shutdown
to open a menu with options to shut down, reboot and log out.

However, if you are not using the GUI, you don’t see this icon and need to use a text
command to shut down your Raspberry Pi. You can learn how to do this in Adventure 2,
in the section “Using Shutdown and Restart Commands”.

Connecting to a Wi‐Fi Network
To browse the Internet or to download and install extra applications or programming
libraries, you need to connect your Raspberry Pi to the Internet. You can do this either
by using an Ethernet cable connected to an Internet‐enabled router or by configuring
the Wi‐Fi settings as described in the following steps:

1. Wi‐Fi connections can be made via the Wi‐Fi network icon on the taskbar,
located next to the volume setting icon. If you are using a Raspberry Pi 3, or an
earlier model with a Wi‐Fi adapter plugged into a USB port on the Raspberry Pi,
click this icon to see a list of available Wi‐Fi networks as shown in Figure 1‐10

2. While the Raspberry Pi is searching for a wireless network, you see a No Apps
found – scanning... message.

A D V E N T U R E S I N R A S P B E R R Y P I22

3. Click the network that you want to connect to. Once you’ve made your selection,
you may be asked to enter a password or network key to continue with the
connection.

4. Enter the password or network key and press Ok and wait for the network icon
to stop flashing and show the signal strength.

Backing Up an SD Card Image
You have only used your Raspberry Pi once so far, but you have already made changes
to the configuration of the operating system. As you move through the projects in this
book, you may want to back up your SD Card to a computer or laptop as you go along to
make sure you don’t lose any of your work if your SD card or micro SD card stops work-
ing for any reason. It is very easy to do this using a free Windows application called
Win32 Disk Imager. Download this application from http://sourceforge.net/
projects/win32diskimager before continuing with the following steps.

FIGURE 1-10 Connecting to a Wi‐Fi network

http://sourceforge.net/projects/win32diskimager/
http://sourceforge.net/projects/win32diskimager/

A D V E N T U R E 1 Y o U H AV E A R A S P B E R R Y P I . N o W W H A T ? 23

1. If you have not yet shut down your Raspberry Pi, follow the instructions in the
previous section to do so now, or by typing the following command into a
Terminal widow:

sudo halt

2. Take your SD card out of your Pi and place it into your computer’s SD card
reader.

3. Run the Win32 Disk Imager on your desktop computer by locating the folder
into which you extracted it and double‐clicking the application icon.

4. In the Image File dialog box (see Figure 1‐11), type a name of your choice for
your backed‐up image—Adventures_In_Pi, for example.

5. Click the folder icon to browse to a location on your computer where you would
like to save your backed‐up image.

6. Click Read to copy the image from the SD card to your computer.

7. Wait for the progress bar to become full before closing the software and remov-
ing your SD card.

In the future, when you become more skilled, it’s likely you will have multiple cards
with different project images on them. You can save all these to your computer
 separately. It’s a good idea to back them up in this way, to keep all your files safe. It is
also best to store one image on one card and use separate cards for each project you
work on.

FIGURE 1-11 Using Win 32 Disk Imager to make a backup of an SD card or
micro SD card

A D V E N T U R E S I N R A S P B E R R Y P I24

Raspberry Pi Startup Command Quick Reference Table

Command Description
sudo Gives the user root or super user permissions.
sudo halt Shuts down (halts) the power to the Raspberry Pi.
sudo reboot Shuts down the power to the Raspberry Pi and then restarts it.

Achievement Unlocked: Your Raspberry Pi is up and running!

In the Next Adventure
In Adventure 2, you learn about the power of text commands. You use
commands to instruct your Raspberry Pi and discover how to navigate the file
system, launch programs and download more applications to use with your Pi.

25

Taking Command
of Your Raspberry Pi

NOW THAT YOUR Raspberry Pi is up and running, how do you tell it what you want
it to do? Well, there are a number of ways to communicate with computers, depending
on what operating system (OS) it uses. Many of today’s OSs—like Microsoft Windows
and MAC OS X—use graphical user interfaces (GUIs). These have icons that you click
with a mouse, making the computer very easy to use. Raspbian, the OS you are using
on the Raspberry Pi, has a GUI (see Figure 2‐1), which loads after boot.

If you use the Raspbian GUI, you simply click the icons to access the software pro-
grams. As an alternative to the GUI, you can communicate with the Raspberry Pi using
text‐based instructions, known as commands, without the need for a GUI. This form
of communication is called a command‐line interface, and the window into which
you type the commands is called a terminal. Although the GUI might be more user
friendly and easier to understand than text commands, text commands can be faster
when you become more experienced in using them. You can also do more things with
text commands, such as writing scripts, which are small programs that combine a
series of commands to carry out routine computing tasks. In later adventures you
write your own scripts to make something happen. When you first load a command‐
line terminal, you see the $ prompt on the screen, which tells you that the computer is
waiting for you to type a command.

Adventure 2

A D V E N T U R E S I N R A S P B E R R Y P I26

FIGURE 2-1 The Raspberry Pi GUI

By pressing CTRL+ALT and one of the function keys between F1 and F6, you
can switch among six different virtual terminals. You can log in to any of the
terminals and type commands at the prompt. Press CTRL+ALT+F7 to go back to
the desktop environment.

A command‐line interface (CLI) allows you to communicate with a computer
using text commands.

A terminal is a screen window that gives you access to the command-line
interface. The graphical Terminal is an example.

A D V E N T U R E 2 T A k I N G C o m m A N D o F Y o U R R A S P B E R R Y P I 27

Here’s an example of a way to use the command line: Suppose you have written a book
report on Hamlet and you want your Raspberry Pi to delete it. You might try typing
the following command at the prompt:

Delete the file hamlet.doc

If you do this, the file won’t be deleted, and you get this error message:

bash: Delete: command not found

You get the error because you can’t just type any command and expect the Raspberry
Pi to understand it! It only responds to a command when it is composed of a particular
set of defined words that it already understands. These commands can be very specific
and often need to be typed in a certain order to work. To delete your report, you must
use a command that Raspberry Pi understands. In this case, you need to use the rm
(remove) command:

rm hamlet.doc

If you learn these commands, you aren’t limited to using a GUI, and you can navigate
file systems and program the computer by using simple text commands. This can
sometimes be faster and more convenient than doing the same tasks in a GUI. Many
of the projects and tutorials in this book use some text commands, so this chapter
introduces you to some basic commands that help you save some time.

Exploring the Terminal
In this section, you become familiar with some common Linux text commands by
using the graphical Terminal within the Raspbian desktop environment, as shown in
Figure 2‐2. You can open this terminal in one of two ways:

• Open the Terminal from the taskbar by clicking on the icon with your mouse.

• Select Terminal from Accessories in the main menu.

To see a video about using the Terminal and the other tasks in this adventure, visit the
companion website at www.wiley.com/go/adventuresinrp3E and select
CommandLine.

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E S I N R A S P B E R R Y P I28

When Terminal is loaded, you see a black screen with the line pi@raspberrypi: ~ $,
as shown in Figure 2‐2. Let’s break down the parts of this line:

• pi refers to your username. You are logged in as the user pi.

• raspberrypi is the hostname of your device; this name identifies it on a net-
work. So you are the user pi on the device raspberrypi.

• After the hostname comes the current directory, which is represented by the ~
symbol (this symbol is called a tilde). This is a short way of referring to your
home directory, which is /home/pi when written in full.

• Finally, the Raspberry Pi asks you what you want it to do, by displaying the $
symbol as a prompt to enter a text command (see Figure 2‐3).

FIGURE 2-2 The Terminal open in the Raspbian Desktop Environment

A D V E N T U R E 2 T A k I N G C o m m A N D o F Y o U R R A S P B E R R Y P I 29

Now try to interact with the computer by typing a command: type date into the termi-
nal and press Enter.

The Raspberry Pi tells you the date and time without needing to display a graphical
clock, and the command provides you with a response quickly.

Commands for Navigating
Through Your File System
One of the most important tasks of an OS is to organise files and folders (called direc-
tories in Linux). These files and directories are organised into a tree‐like structure, in
which directories can contain other directories and files. The File Manager, shown in
Figure 2‐4, is a tool that lets you see what that structure looks like graphically. You can
access File Manager by clicking the icon next to the main menu at the top of the desk-
top environment, followed by Accessories and then File Manager.

You can use simple commands to navigate through the file system using the command
line. As with any navigation, you need to know where you are—your starting point—
before you can find your way forward. Type pwd at the terminal prompt and press
Enter:

pi@raspberrypi ~ $ pwd

FIGURE 2-3 Breakdown of pi@raspberrypi ~ $

A hostname is a word that identifies a computing device on a network. The
hostname of the Raspberry Pi is raspberrypi.

A D V E N T U R E S I N R A S P B E R R Y P I30

The Raspberry Pi responds by displaying this line on the screen:

/home/pi

The pwd command asks the Raspberry Pi to print the working directory, or show which
directory you are currently working in. The /home/pi response that appears shows
that you are currently located in the pi directory, which is inside the home directory.

As you can see in Figure 2‐5, if you give the command ls, it tells your Raspberry Pi to
output a list of the files and directories in the current directory. To see a list of files
and directories that are in /home/pi (the pi directory in your Raspberry Pi’s home
directory), type ls at the $ prompt and press Enter:

pi@raspberrypi ~ $ ls

FIGURE 2-4 The File Manager view of my Raspberry Pi file system

A D V E N T U R E 2 T A k I N G C o m m A N D o F Y o U R R A S P B E R R Y P I 31

Figure 2‐5 shows that inside this particular user’s /home/pi directory there are six
directories listed in blue (such as Desktop and Scratch), as well as one file in pink
(ocr_pi.png) and one in red (minecraft‐pi‐0.1.1.tar.gz). This list does not
really tell us much about those files or directories. To learn more about the contents of
the directory you are in, type ls ‐l. You are still using the ls command, but this time
adding the ‐l (which stands for long) parameter or option. This tells your Raspberry
Pi to show the list in a longer, more detailed format:

pi@raspberrypi ~ $ ls –l

As you can see in Figure 2‐6, the Raspberry Pi now gives you more information about
the files and directories that were listed in Figure 2‐5. This information includes the
size of the file, the date it was created, the owner of the file and what kind of permis-
sion you have to access it.

Output refers to the data that your computer gives in response, after you have
typed in a command.

Parameters modify the way that the standard command works (a bit like ticking
a tick box in a GUI program). Most Linux commands have lots of parameters that
modify the way that they work. Just to be clear: the ‐l parameter is a lowercase
L, not the numeral 1.

FIGURE 2-5 Using the ls command to show a list of the files and directories on my
Raspberry Pi

A D V E N T U R E S I N R A S P B E R R Y P I32

To move between directories or folders in the tree‐like structure, you can use the cd
(change directory) command. Try moving into the Desktop directory by typing cd
Desktop at the prompt:

pi@raspberrypi ~ $ cd Desktop

The next prompt from Raspberry Pi reads like this:

pi@raspberrypi ~/Desktop $

Notice how ~/Desktop has appeared as part of the prompt. This reminds you that
you are now in the Desktop directory, which in turn is inside your home directory.

You are now inside /home/pi/Desktop.

To go back to /home/pi, type the command cd .. (that’s cd followed by a space and
two full stops).

pi@raspberrypi ~ $ cd ..

FIGURE 2-6 Using the text command ls ‐l to list more information about files and
directories

A D V E N T U R E 2 T A k I N G C o m m A N D o F Y o U R R A S P B E R R Y P I 33

The cd .. command moves you up the directory tree to the parent directory. For
example, if you are in /home/pi/Desktop and type cd .. you move upwards through
the file system to /home/pi. To check where you are in the file system at any time,
type pwd to see your current directory, as shown in Figure 2‐7.

Understanding sudo
When you are logged into Raspberry Pi as the user pi, you have only limited access to
the ability to perform tasks on the device. This restriction prevents you from acciden-
tally deleting important files. Sometimes, however, you need to do things that affect
the whole system, such as installing a new program or adding a new user. The sudo
command lets you temporarily act as the super user (or root user) and gives you permis-
sion to do whatever you want on the system. This includes deleting every file on your
disk, so you must be very careful when you are logged in as sudo!

You may need to use sudo for some applications. Can you think why?

Some applications require the ability to make changes to protected parts of the system
or to interact with protected devices, and so must run as an administrator. For
instance, if you run the apt‐get command to install or upgrade an application you
must run it with sudo or else it fails because it doesn’t have permission to update the
necessary files.

FIGURE 2-7 Navigating the file system in Raspberry Pi’s Terminal

If you are ever lost in the file system and can’t remember where you are, just type
pwd to find out.

A D V E N T U R E S I N R A S P B E R R Y P I34

Launching Programs from the
Command Line
You can use text commands to launch programs from the command line, too, which is
often quicker than navigating the main menu and clicking an icon. It is also handy to
be able to do this if you do not have a mouse plugged in.

Try this. In Terminal, type the following command at the $ prompt:

leafpad

The leafpad application on the Raspberry Pi opens. (The leafpad application is a text
editor in which you can enter text. It is included with your Raspberry Pi installation.)

managing Files and Directories
You may sometimes want to create files, or copy, move or delete them. The following
Linux commands are useful for managing your files:

• cat—displays the contents of the text file

• cp—makes another copy of a file

• mv—moves a file to a new location

• rm—deletes (removes) a file

• mkdir—makes a directory

• rmdir—deletes (removes) a directory

• clear—allows you to clear the terminal

Type the following commands into the Terminal window, in the order they’re
given here. See if you can explain what is happening at each step:

pwd

cd desktop

ls

touch hello

leafpad hello

rm hello

cd ..

A D V E N T U R E 2 T A k I N G C o m m A N D o F Y o U R R A S P B E R R Y P I 35

Installing and Updating
Applications
The New Out Of Box Software, or NOOBS, that you learned about in Adventure 1
includes some applications that are installed along with the Raspbian operating sys-
tem. You can see these application icons on the desktop and also in the main menu. In
future adventures you use Scratch and Python 3 (IDLE), which are already installed.

If you connected your Raspberry Pi to the Internet as described in Adventure 1, you
can use text commands to download, install and update additional applications that
you may want to use.

Downloading and Installing
Applications
It’s easy to find new applications and install them on your Raspberry Pi. Try typing the
following command in a terminal and then pressing Enter:

sudo apt-get install vlc

Video LAN, or vlc for short, is an application that enables you to play media files on
your Raspberry Pi. The sudo apt‐get command tells Raspberry Pi to use the Internet
connection to find and install the application on your Raspberry Pi. This command
requires sudo because by installing a new application you are asking the Raspberry Pi
to change system files.

You see the terminal window fill with writing and, after a few seconds, the terminal
asks you to check that there is enough space on your SD card to install the application.
At this point you can either press the Y key for yes, to continue with the installation,
or the N key for no, to cancel the installation. Figure 2‐8 shows the screen display for
the vlc installation process. About halfway down the screen, you see the question “Do
you want to continue [Y/n]?” and see that I answered yes (y) to install the application.

Remember from earlier in this chapter that you can use a command to open an appli-
cation. After you have installed vlc, you can open it and see it work by typing vlc into a
terminal window, followed by the name of a video or sound file. Try typing the follow-
ing command in a terminal and then pressing Enter:

vlc /home/pi/python_games/match1.wav

A D V E N T U R E S I N R A S P B E R R Y P I36

vlc opens and plays the .wav sound file. Don’t forget to plug in headphones or speak-
ers if your monitor or TV does not have sound so you can hear, as well as see, your
media playing!

Learning more About an Application
Each Linux application or command has a “manual” file that gives a description of the
application and lists the options or features that are available. To read the manual for
any application, use the command man followed by the name of the application. For
example, to see the manual for the vlc text editor, simply type man vlc. Figure 2‐9
shows the manual for the vlc application.

The manual lists the options available with the application and shows you any extra
functions that are available for you to use. For the vlc application, for example, you can
choose to repeat all media files in a playlist by using the command vlc ‐L It is always a
good idea to read an application’s manual, and it can be very helpful if you forget the
order in which you need to write the commands.

Upgrading Your Apps
It is good practice to upgrade the applications that you have installed approximately
once every two weeks, or before you download and install a new application. Upgrades
for an application may provide new features, correct “bugs” that have been causing
problems in the application and resolve security issues that may threaten your system.

FIGURE 2-8 Using the apt‐get install command to download and install the vlc
application

A D V E N T U R E 2 T A k I N G C o m m A N D o F Y o U R R A S P B E R R Y P I 37

To upgrade your applications, you should first type the following command to down-
load information about any new versions of applications that are available:

sudo apt-get update

Next, type the following command to actually install the upgrades:

sudo apt-get upgrade

Editing Files
The nano command opens a text editor, which is an application that allows you to edit
text files. This program is useful if you want to make changes to lines of code or indi-
vidual settings inside a file. The following instructions walk you through the stages of
using nano to create and edit a text file (see Figure 2‐10).

1. Create a text file on the desktop. To do this, first use the cd command to navi-
gate to the Desktop directory, and then use the nano command, like this:

pi@raspberrypi ~ $ cd Desktop
pi@raspberrypi ~/Desktop $ nano hello

2. The nano program opens a text file called hello. You can type anything you like
into this text file—as you can see in Figure 2‐10, I typed “Hello Raspberry Pi
Adventurers!” Try typing your favourite quote from a film or the lyrics of a song.

FIGURE 2-9 Accessing an application’s manual to learn more

A D V E N T U R E S I N R A S P B E R R Y P I38

3. To exit the text editor, press CTRL+X. The following message appears:

Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES) ?

If you want to save the changes you have made to the file, press Y for yes. If you
do not want to make any changes, press N for no.

To learn more about using nano to edit files, run the man nano command and read
the manual.

Using Shutdown and Restart
Commands
When you start a Raspberry Pi, the device follows a set of instructions to load the
OS. Similarly, when you shut it down, it should follow a set of instructions to shut
down the OS in such a way that the file system stored on the SD card stays complete
and uncorrupted. It is therefore very important that you don’t simply remove the
power supply but make sure you always instruct the OS to shut down safely. From
the GUI, you can simply use the Shutdown icon from the main menu to shut down the

FIGURE 2-10 Using nano to edit a text file

A D V E N T U R E 2 T A k I N G C o m m A N D o F Y o U R R A S P B E R R Y P I 39

Raspberry Pi, as described in Adventure 1. Alternatively, from the Terminal, you do
this by using the shutdown command.

First, make sure that you close any open applications. After all applications are closed,
type the following command to start the shutdown process from the command line:

sudo halt

The ‐h option in this command stands for halt. When the system is “halted”, it is safe
to remove the power.

Sometimes, you might simply want to restart the OS. The following command, with
the ‐r (restart) option, shuts down and then restarts the Raspberry Pi:

sudo reboot

Continuing Your Text
Adventure
To learn more about commands and using terminals in Linux, click the Debian
Reference shortcut on the desktop of the Raspberry Pi and explore the information in
that program. To recall or review the commands in this chapter, refer to the following
Quick Reference Table.

Command Line Quick Reference Table

Command Description

cat Displays the contents (catalog) of the text file.
cd Changes directory. For example, the command cd Desktop moves

you into the Desktop directory.

cd .. Moves you up the directory tree to the parent directory.
cp Makes another copy of a file.
clear Allows you to clear the terminal.
date Displays the time and date.
ls Displays a list of files and folders in the current directory.
ls ‐l Provides a list that includes more detail about the files. The ‐l

parameter is a lowercase L (for long), not the numeral 1.
man Displays the manual or description file for the command.
mv Moves a file to a new location.
mkdir Makes a directory.

continued

A D V E N T U R E S I N R A S P B E R R Y P I40

Command Description
nano Opens the nano text editor. To open a specific text file, add the

filename; for example, nano hello opens the hello text file.
pwd Prints the working directory (shows which directory you are

currently working in).

rm xxx Deletes (removes) the file named xxx.
rmdir Deletes (removes) a directory.
sudo Gives the user root or super user permissions.
sudo

apt‐get

install xxx

Tells the Raspberry Pi to use the Internet to find, download and
install the xxx application.

sudo apt‐get

update
Downloads information about any new versions available for
 applications on your Raspberry Pi.

sudo apt‐get

upgrade
Installs available upgrades for all applications on your Raspberry Pi.

sudo halt Shuts down (halts) the power to the Raspberry Pi.
sudo reboot Shuts down the power to the Raspberry Pi and then restarts it.

Achievement Unlocked: Your Raspberry Pi responds to your commands!

Command Line Quick Reference Table continued

In the Next Adventure
In Adventure 3, you learn some basic programming skills. You create a crazy
monkey animation and a role-playing adventure game using the graphical
programming language and environment known as Scratch.

41

Creating Stories and
Games with Scratch

IF YOU CAN put together a jigsaw puzzle, you can create a computer program using
Scratch! With just a few clicks, you can have a bat fly around a castle, make a ninja
sneak past a guard or conjure up a flock of butterflies floating through a garden.

Scratch was developed by the Massachusetts Institute of Technology (MIT) Media Lab
to help young students learn basic control and programming concepts (https://
scratch.mit.edu). It is free to use and has become very popular throughout the
world. There is even an International Scratch Day, which is held every year to celebrate
and share the things people have created using the language.

Scratch is a graphical programming language. This means that, instead of writing text
commands, you connect blocks of code together to make a script that makes some-
thing happen. You can use Scratch to create interactive stories and computer games in
which you draw the scenery (called the stage) and the characters (called sprites). You
can also create music and art with Scratch.

In this adventure, you begin by creating the Scratch equivalent of a typical Hello
World! computer program and making Scratch Cat say “Hello”. After that, you create a
program with a monkey who moves around the screen and changes his facial expres-
sion. Finally, you create an entire role‐playing game incorporating a variety of back-
grounds and different ways to win points.

Adventure 3

https://scratch.mit.edu
https://scratch.mit.edu

A D V E N T U R E S I N R A S P B E R R Y P I42

Getting Started with Scratch
If you are using the latest version of the Raspberry Pi operating system Raspbian,
Scratch is already installed and you see the Scratch cat icon (see Figure 3‐1) in the
Programming Menu. To open Scratch, open the main menu at the top of the screen,
navigate to Programming and click Scratch (see Figure 3‐2).

Sprites are the characters that can be programmed to do something in Scratch.
The sprites wear costumes that can be customised.

The stage refers to the background for the sprites. You can add scripts to the stage
to allow the sprites to interact with it—for example, you might draw a wall that
stops your sprite from moving beyond a certain point.

FIGURE 3-1 The Scratch cat

You may have used Scratch in school but it might look a little different on your
Raspberry Pi. This is because you are using Scratch version 1.4 on the Raspberry Pi,
and there are other versions, including Scratch 2.0, which you may use in school or
code clubs through a web browser. If you are using a Raspberry Pi 2 or higher, then
you can use Scratch 2.0 in the web browser Chromium, by visiting scratch.mit.edu.

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 43

The Scratch Interface
The interface for Scratch includes four main panes, identified in Figure 3‐3:

• Stage—Your animations, stories and games are displayed in this pane so that
you can see what happens as you add backgrounds, characters and scripts to
your creations. The stage is set on a grid with an x axis and a y axis so that you
can program events or actions to take place at a specific location on the stage; for
example, you can have a star appear in the top right corner of the stage by giving
the appropriate x and y coordinates.

• Sprites palette—This pane displays the sprites or characters that you create
for your project. To see or edit scripts or costumes for a sprite, click the sprite in
the palette.

• Blocks palette—The Blocks palette is divided into two portions. The top portion
has eight labels—Motion, Looks, Sound, Pen, Control, Sensing, Operators and
Variables—each of which corresponds to a group of blocks that you can use to
program your projects. Click a label, and the blocks available for you to use appear
in the lower portion of the pane. To form scripts, you select the blocks you want
to use, drag them onto the Scripts tab (see the next bullet) and fit them together.

FIGURE 3-2 Opening Scratch from the Raspbian menu

A D V E N T U R E S I N R A S P B E R R Y P I44

• Scripts tab—The centre pane of the interface has three tabs along the top:
Scripts, Costumes or Backgrounds, and Sounds. When the Scripts tab is selected,
you can drag the programming blocks into this pane and fit them together to
build your scripts.

FIGURE 3-3 The Scratch interface

A Quick hello from Scratch Cat
The best way to learn how to use Scratch is simply to use it! In this project, you learn
the basics of using Scratch by following some simple instructions.

1. To begin, make sure that the cat sprite with the label Sprite1 is selected in the
Sprites palette and the label reads Sprite1.

2. In the centre pane, click the Scripts tab. You will drag blocks onto this tab to
 create a “script” that tells your program what actions to perform.

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 45

3. Click the Control label at the top of the Blocks palette to see all the control blocks
available.

4. Drag the control block labelled when clicked onto the Scripts tab, as shown

in Figure 3‐4. This control block is the “start button” of your program. It means that
when the green flag above the stage is clicked, the script you have created runs.

5. Click Motion at the top of the Blocks palette to see the available motion blocks.
From the list of choices, drag the move 10 steps block to the Scripts tab and
connect it with the control block that you placed in Step 4, as shown in Figure 3‐4.

6. Click Looks in the Blocks palette, drag say Hello! to the Scripts tab and
 connect it to the motion block you placed in Step 5.

7. Click Sound in the Blocks palette, drag play sound meow to the Scripts tab
and connect it to the looks block you placed in Step 6.

8. Finally, save your file, and then press the green flag in the top‐right corner above
the stage to see your script work.

Notice that the cat and the label Sprite1 appear at the top of the tab to indicate
that the current script will be applied to that sprite. Always check that you have
selected the correct item before working in the Scripts tab.

Some of the blocks have sections in the code that you can customise. For
example, in the motion block move 10 steps, you can change the 10 to any
number you like.

A D V E N T U R E S I N R A S P B E R R Y P I46

Congratulations! You have written your first program using Scratch. Of course, you
can do much more with Scratch than just move a cat around the screen. Next, you take
a look at the parts of Scratch that you can design yourself—the stage and costumes.

Setting the Stage
If you are creating an animated story or computer game using Scratch, you want to set
the scene by changing the background from its plain white default. You can do this in
two ways: by designing and drawing your own background or by selecting an image
from the Scratch library.

When completing a Scratch program containing scripts, it is good practice to save
your work at regular points and test that it works. To do this, click File ➪ Save As,
name your file and click Ok. Then press the appropriate key to start your script.
Scratch files can be saved into the Scratch Projects folder on your Raspberry Pi.
As you move through the instructions in this chapter, I remind you to save your
work at the end of each section.

FIGURE 3-4 The blocks for a quick Hello from Scratch cat

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 47

To prepare to change the background image, click the Stage icon, which is situated
next to the Sprites palette. Select the Backgrounds tab. You have a choice between
editing the current background or adding a new one:

• To edit the current background, click the Edit button in the Backgrounds tab in
the centre of the screen and the Paint Editor window appears, as shown in
Figure 3‐5. Use the drawing tools to draw a setting for your animation or game.
For example, you might want to draw a room or a maze.

• To add a new background, either click the Paint button to open the Paint Editor
window and create a scene, or click the Import button to use a scene from the
image library (see Figure 3‐6).

Scratch also has an option for you to use webcam images as backgrounds for
your Scratch projects. Click the Camera button to access this option. Before you
can use this function you need to have either a webcam plugged into a USB port
or the Raspberry Pi Cam plugged into the camera slot on the Pi board.

To see a video that walks you through the Scratch interface and shows you how
to create backgrounds and characters, visit the companion website at www.
wiley.com/go/adventuresinrp3E. Click the Videos tab and select the
QuickHelloFromScratch file.

FIGURE 3-5 The Scratch Paint Editor window

http://www.wiley.com/go/adventuresinrp3E
http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E S I N R A S P B E R R Y P I48

Creating Costumes and
original Sprites
Of course, you won’t always want to use Scratch Cat as your sprite—you may want other
animals, people, astronauts, flowers or even a basketball! Scratch has its own sprite library,
much like the background image library, which you can use to get more sprites for your
project. You can also edit these sprites, or simply draw original sprites of your own.

Using the Scratch Sprite Image
Library
To use a sprite design from the Scratch Sprite Library click the Choose New Sprite
from File icon at the top of the Sprites palette (the icon with the folder and star), as
shown in Figure 3‐7. Browse through the Things, People and Animals folders until you
find a sprite you want to use. Select it and click OK to add it to your Sprites palette.

Editing an Existing Sprite
Select a sprite from the Sprites palette. In the centre pane, click the Costumes tab to
switch from Scripts to Costumes. To edit the sprite, click the Edit button next to the
picture of your sprite under costume1 to open the Paint Editor window (see Figure 3‐8).
You can then use the drawing tools to add your own enhancements to the Scratch cat
sprite—why not give it a cape or a moustache? You’ll learn more about how to change
costumes to create variations of sprites in the next section.

FIGURE 3-6 The Import Background window

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 49

FIGURE 3-7 Using the Sprite Image Library

FIGURE 3-8 Editing an existing sprite using the Paint Editor—love the moustache!

A D V E N T U R E S I N R A S P B E R R Y P I50

Creating Your own original
Sprites
To create original sprites of your own, click the Paint New Sprite icon above the Sprites
palette (the icon with the paintbrush and star). The Paint Editor window is displayed,
and you can use a freehand paintbrush or shapes to create your own characters.

Play around with Scratch a bit to get comfortable with the different aspects of the
application. When you have a good feel for how it works, move on to the next section
to create an animated monkey!

Animating a Crazy monkey
It’s only natural for adventurers to come across challenges, especially on an expedition
through a wild jungle. A crazy monkey jumping all over the screen with a variety of
facial expressions is definitely going to be a fun challenge!

1. Open a new file by selecting File ➪ New. Delete the Scratch Cat sprite by right‐
clicking it and selecting Delete from the menu that is displayed.

For this project, you need a jungle style background and a monkey sprite. You
can draw your own using the Paint Editor in Scratch, or you can use the forest
background and the monkey sprite from the image libraries as described in the
previous section. Alternatively, if your Raspberry Pi is connected to the Internet,
you can download the jungle background and monkey sprite used in this project
from the Adventures in Raspberry Pi website at www.wiley.com/go/
adventuresinrp3E.

2. With the monkey sprite selected, click the Costumes tab. Rename the costume
to Monkey1 by clicking the sprite name above the Edit button and typing the
new name. Click the Copy button to make a duplicate of the monkey. You should
now see two monkeys on the Costumes tab: Monkey1 and Monkey2.

For a video that walks you through the Crazy Monkey Animation project, visit the
companion website at www.wiley.com/go/adventuresinrp3E. Click the
Videos tab and select the CrazyMonkey file.

http://www.wiley.com/go/adventuresinrp3E
http://www.wiley.com/go/adventuresinrp3E
http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 51

3. The next step is to change Monkey2’s expression. Click the Edit button for
Monkey2 to open the Paint Editor. Use the paintbrush tool to erase the mouth
on the monkey and replace it with a different one (see Figure 3‐9). You can
 continue to duplicate the monkey as many times as you like, changing the
expression on each one.

4. Continue to make copies of the costume and edit each new copy with a different
face. You can even change the eyes or move the tail!

5. Now click the Scripts tab. You are going to create a set of blocks to switch among
the costumes that you have created. In the Blocks palette, click Control and drag
the when clicked block onto the Scripts tab.

6. Click Looks in the Blocks palette and add switch to costume Monkey1 (see
Figure 3‐10). You can use the drop‐down arrow in this block to select the
 costume (expression) you want to start with.

FIGURE 3-9 Duplicating a sprite and changing the costume. Notice the different
expression on each monkey’s face.

A D V E N T U R E S I N R A S P B E R R Y P I52

7. In the Blocks palette, click Control to switch to the control blocks. Under the
first block in the Scripts tab, add the control block forever. Inside the forever
block add the control block wait 1 secs and the looks block next costume.
Figure 3‐11 shows the script at this point.

The forever block is a loop. It runs the same sequence of blocks over and over
again until you stop the program. In this case, you are making the monkey
change his facial expressions, over and over again. In computing, this kind of
repetition is called iteration.

FIGURE 3-10 First steps in the Crazy Monkey script

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 53

FIGURE 3-11 The Crazy Monkey script with a forever block

What do you think will happen when you click the green flag? What do you think
will happen if you press the red octagon? Try it and find out if you are correct.

A D V E N T U R E S I N R A S P B E R R Y P I54

Next, you add some more animation to your monkey by having him move as
well as change facial expressions.

8. With the Scripts tab still selected, underneath your first block add another when
 clicked control block.

9. Add the motion block go to x:0 y:0.

10. Again, you need to use a forever control block to repeat some instructions.
Inside the forever block, add three blocks from the Motion Blocks pal-
ette: move 10 steps; turn 15 degrees right; and if on edge,

bounce.

11. Note the three small buttons next to the monkey sprite at the top of the Scripts
tab (see Figure 3‐12 for reference). These control a sprite’s rotation. Click the
middle button, which directs the sprite to only face left and right. This
adds more animation to the monkey sprite and allows him to move more than
just his mouth.

Save your animation by clicking File ➪ Save As and naming it jungle animation
inside the Scratch Projects folder.

Figure 3‐12 shows the completed script. Notice that I have added a third block of com-
mands to include a sound effect for the animation.

The stage area in Scratch uses the coordinates x and y to refer to where your
sprite will appear on the stage. If you want your sprite to begin in the middle
of the stage, use x:0 and y:0. If you want your sprite to appear in the top
left portion of the stage, use x:‐163 and y:11. Notice that when you select
a sprite with your mouse you can see its coordinates at the top of the Script
tab (see Figure 3-12). Move the sprite with your mouse and watch as the
coordinates change to reflect the new position. The library also includes a handy
graph background that shows the x and y axes; you can import that graph from
the library to help you.

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 55

FIGURE 3-12 The completed Crazy Monkey animation script in Scratch

What do you think the monkey will do now? Will he still change costumes? Click
the green flag to find out!

A D V E N T U R E S I N R A S P B E R R Y P I56

Creating an Adventure
Role‐Playing Game
Now that you have conquered the crazy monkey in the jungle, it’s time to move on to
the next level by creating a first‐person adventure role‐playing game in Scratch.

In this project, you learn some programming concepts that are common no matter
what programming language you use (such as loops, if statements and variables) by
creating a game in which a single player can move through locations or rooms to reach
a magical key, trying to avoid deadly flowers along the way.

Creating Your Sprite and Stage
To begin, you need to draw an Adventurer sprite from a top‐down or bird’s eye view;
see the sprite in Figure 3‐13 for an example. (Don’t forget to delete the Scratch Cat
sprite first by right‐clicking it with your mouse and selecting Delete from the menu
that appears.)

Click the paintbrush icon next to New Sprite to open the Paint Editor window, and use
the tools to create your sprite. Make sure that you draw your Adventurer sprite facing
towards the right, as this will become important later in this project. You also need to
create an outside cave and inside cave stage background, labelling the locations
Outside and Inside, respectively. So that you do not lose any of your work in this
project, you should save your work as you go along. Refer to the “Setting the Stage”
section earlier in this adventure for a reminder on how to create a background.
Figure 3‐13 shows my version of the completed game in progress.

If a moving monkey with different faces is not exciting enough, you can
add some sound effects. Why not have a go yourself? What block do you
think you should begin with? See the lowest block of commands in
Figure 3-12 if you need help.

ChALLENGE

For a video of the Adventure Game project, visit the companion website at
www.wiley.com/go/adventuresinrp3E. From the Videos tab, select the
ScratchAdventureGame file.

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 57

Setting the Start Position of the
Adventurer Sprite
When the game begins, the Adventurer character always starts at a certain point on
the stage; after all, an adventure needs to start somewhere.

1. To set the start point, click the Adventurer Sprite and position it on the stage
where you want to start the game.

2. On the Scripts tab, drag the control block when clicked and the motion
block go to x: y: (see Figure 3‐14).

3. Set the x and y coordinates to where your Adventurer sprite is located on the
stage. You can find its exact coordinates by looking near the top of the Scripts
tab, between the sprite’s name and the tab labels.

4. You can also add a Motion block to point in direction _ if you want the
Adventurer sprite to be looking up, right, left or down at the start of the game.
The value you type into the block determines the direction the sprite faces: Use
the value 0 to make the sprite look up, –90 for the left, 90 for the right or 180 for
down. Try changing the value to see how your sprite responds (see Figure 3‐14).

FIGURE 3-13 Scratch adventure role‐playing game

A D V E N T U R E S I N R A S P B E R R Y P I58

Creating Variables: Including health
Points for the Adventurer Sprite
In role‐playing games, players (or rather, their characters) typically start with a certain
number of ‘health points’ or ‘lives’. As you play the game, these points may decrease as
you encounter foes or increase when you collect certain objects or overcome obstacles.
You can create variables in Scratch to allow for values that change, and use these
 variables inside different scripts. You can set the health points to a certain value—for
example, 50—at the start of the game and create scripts that will add or take away
points when triggered—for instance, finding a useful tool might add 10 health points.
This feature makes the game more interesting.

1. To create a variable, click Variables in the Blocks palette and then click Make a
Variable. The New Variable window opens and asks you to type a name for your
variable.

2. Name your variable Health and ensure that For all sprites is checked before
clicking OK. Figure 3‐15 shows the window with the correct settings.

3. You’ll see some orange blocks added to your Variables palette, and a small coun-
ter box appears on the stage (see Figure 3‐18).

FIGURE 3-14 Setting the start position for your sprite

A variable holds a value that can be changed. The health variable in your adventure
role-playing game is an example of a value that can be changed and used inside
different scripts.

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 59

4. Add the block Set Health to 0 to the starting point script you have already
created. You can then change the value of Health from 0 to 50. This means at
the start of the game when the green flag is clicked, the Adventurer sprite starts
with 50 health points. Figure 3‐16 shows the script up to this point.

5. Remember to save the work you have done so far by clicking File ➪ Save. Then
test that your scripts work by clicking the green flag icon.

FIGURE 3-15 Creating a variable

FIGURE 3-16 The Adventurer sprite start script so far

A D V E N T U R E S I N R A S P B E R R Y P I60

Controlling the Direction and
movement of the Adventurer Sprite
An important part of any computer game is being able to control the movement of a
sprite using keys or buttons. In Scratch you are able to create more than one script for
a sprite or for a stage, which can be run in parallel with each other. These multiple
scripts running at the same time are called threads in computing. You need to create
a number of scripts for the Adventurer sprite to be able to control the sprite’s
 movement.

1. Underneath the first script you created to set the start position and health
 variable, add a new when clicked control block.

2. Add a forever if block. Notice that this block has a hexagon shape in it. This
is designed so that you can add extra blocks, such as operators or sensing blocks,
to insert a condition. This means that the blocks contained within the forever
if loop run only if the condition is met. For this project, click Sensing in the
Blocks palette and add a key right arrow pressed block by dragging it
with your mouse and placing it inside the hexagon shape. This creates a
 conditional statement. Notice that you can change which key is referenced by
using the drop‐down menu on the block. This allows you to set different keys for
different directions of movement, as you do later in this project.

3. Add the motion block point in direction inside the forever if loop and
set it to 90, which points the sprite to the right.

4. Underneath this block and still inside the forever if loop, add the motion
block move 10 steps and change the value of steps to 20. See Figure 3‐17 to
see how the script should look at this point.

5. Test that this script works by clicking the green flag to start all the scripts, and
then pressing the right arrow on the keyboard.

6. Create three more scripts like this one for the left, up and down keys, changing
the values to move the Adventurer sprite in the correct direction for each arrow
key. Save and test your file.

In computing, a conditional statement is one in which an action will be taken
only if a certain condition is true. For example, in the block you create in Step 2,
the forever part of the forever if block loops the sequence of instructions
contained within its structure only if the right arrow key on the keyboard is pressed.

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 61

Entering a Cave and Switching
Backgrounds
The action in a role‐playing game typically involves the characters moving among dif-
ferent scenes. In this game, the Adventurer sprite begins outside a cave and has to
cross the stage to get to the cave entrance before going inside. At the start of this proj-
ect you were asked to create two backgrounds for the stage: one outside the cave that
you have been using so far, and one for the inside of the cave. But how do you get the
Adventurer sprite to switch between these backgrounds? You need a script for each of
the backgrounds, another script for the Adventurer sprite and another for the stage.

Adding a Script to Make the Adventurer
Sprite Move Between Backgrounds
Scratch programs are built with a collection of small scripts. Sometimes you need a
way to communicate among these scripts when certain things happen in your adven-
ture game—for example, when you move the Adventurer sprite from one location or
background to another. This next script uses a new sprite to act as a trigger, so that
when the Adventurer sprite touches it, a message is broadcast to all the sprites and
the stage at the same time, to alert them to the change.

1. First, you need to create a new sprite to act as the cave entrance. Simply click the
Paint New Sprite button (the paintbrush icon) on the Sprites palette and use the
circle tool to draw an ellipse that matches the entrance of your cave (see
Figure 3‐18). This ellipse is your new sprite.

2. Name the sprite portal and position it at your cave entrance on the opposite side
of the stage from where your Adventurer sprite starts. This new portal sprite
acts as the trigger to move between the two backgrounds.

3. Select the Adventurer sprite from the sprite palette and add another new script
to act as a thread on the Adventurer sprite Scripts tab. Add a when clicked
control block onto the Scripts tab of the Adventurer sprite, and add the wait
until_ block to it. This is another type of conditional block, but unlike with the

FIGURE 3-17 Controlling the direction and movement of the Adventurer Sprite

A D V E N T U R E S I N R A S P B E R R Y P I62

forever loop, the sequence of instructions happens only once when the condi-
tion is true. In this case the condition is true when the Adventurer sprite
‘touches’ the portal sprite.

4. Add the sensing block touching_ into the hexagon space on the wait until_
control block, and use the drop‐down menu to select the portal sprite, so the
block now reads wait until touching portal.

5. Add the control block broadcast_ and select New from the drop‐down menu.
Name the new broadcast message Level.

FIGURE 3-18 Cave entrance portal sprite and script. Notice the counter block in the top
left corner of the stage.

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 63

Adding a Script to Switch the Stage
So far, you have created a portal sprite that broadcasts a message when touched by the
Adventurer sprite, but that does not solve the problem of switching the backgrounds
of the stage. You need to add a script to the stage so that it responds to the message
that was broadcast when the portal sprite was touched.

1. Click the Stage icon in the Sprites palette. Add the control block when
clicked, followed by a switch to background_ looks block, and select
Outside from the drop‐down menu. Make sure that you have labelled your
stage backgrounds as Inside and Outside to correspond with your location
designs.

2. Add another control block, but this time use when I receive and select the
broadcast message Level from the drop‐down menu. Add the switch to

background_ looks block and choose Inside from the drop‐down menu.
Figure 3‐19 shows this script. Save your work so far and test to see if it works.

A broadcast message is used to coordinate the actions of different sprites and
the stage. It keeps all the scripts running for each sprite and keeps the stage
synchronized. In this case, when the Adventurer sprite touches the portal, a
message called Level is broadcast. This message triggers a script for the stage to
switch to the Inside cave background that you created.

FIGURE 3-19 Using broadcast on the stage to switch between backgrounds

A D V E N T U R E S I N R A S P B E R R Y P I64

3. Whenever you are creating more complicated scripts for multiple sprites and on
the stage, it is a good idea to test that they work. Click the green flag and use the
arrow keys on your keyboard to navigate the Adventurer sprite to the portal and
see what happens.

4. You may find that your Adventurer sprite is not positioned at the entrance of
your Inside cave background. Simply drag the Adventurer sprite to where you
would like it to start from on this stage background, make a note of the x and y
coordinates for this position and, on the script you have been making to move
the sprite between backgrounds (refer to Figure 3‐20), add the motion block go
to x:0 y:0. Replace the values with the new coordinates.

Creating an Enchanted Key to Exit the Cave
and Giving Extra Health Points
Rather than making another portal sprite to move to another level or background, why
not introduce a new sprite that behaves like a magic object?

1. Using the Sprites palette, click the Choose New Sprite From File icon and select
Key1 from the Things folder. Rename the sprite by clicking in the name box
above the centre tabs and typing Key.

2. Just like the script that you created to move the Adventurer sprite to the inside of
the cave, the script required for this sprite uses the wait until touching _
conditional and a new broadcast message called new_level, only this time the
Key sprite waits until it is touched by the Adventurer sprite to trigger the action,
as shown in Figure 3‐21.

FIGURE 3-20 Adventurer script to set location on new background

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 65

3. The script works only if you add another script to the stage so that when it
receives the new broadcast message for the new_level, it switches to the
Outside background. Click the Stage icon in the Sprites palette and follow the
steps in the preceding section (“Adding a Script to Switch the Stage”) to add a
new script that says: “When I receive new_level, switch to background Outside”.

FIGURE 3-21 The enchanted key script

You can have a little fun by adding looks blocks to make the key say some-
thing when it’s touched, and a variable block to increase the Adventurer
sprite’s health points. Try adding blocks to the script for those actions. Refer
to Figure 3-22 if you need help.

ChALLENGE

A D V E N T U R E S I N R A S P B E R R Y P I66

Using if Statements to Show and Hide Sprites
As it stands now, when you play this game the new sprites that you have created so far,
such as the portal sprite, remain visible even when you change backgrounds. This is a
little confusing. You really want the portal to show only on the first background,
Outside, and the key to show only on the second background, Inside. In this
 section, you learn how to add an if. . .else block to address this problem.

FIGURE 3-22 The enchanted key script, with blocks added for the challenge actions

If and if. . .else statements are common constructs in computer programming.
When you use an if statement, you are asking for a condition to be met, and then
making something happen if the condition set is true. For example: If it is raining,
then put up an umbrella. You can add another action for when the condition is false
using the else command. For example: If it is raining, then put up an umbrella;
else, wear sunglasses.

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 67

The script you create in the following steps tells the portal sprite to appear only when
background 1—the outside of the cave—is shown, and to remain hidden the rest of
the time.

1. In the portal sprite’s Scripts tab, add the control block when clicked and
attach a forever looping control block to it.

2. Add the control block if else inside the forever loop and drag the operator
block 0 = 0 into the if hexagon condition (refer to Figure 3‐23).

3. Place the sensing block of inside the first 0 of the operator block, and add the
value 1 to the second part of the same block.

4. Using the drop‐down menus on the sensing block, and starting with the second
value after of, change it to stage and then change the first value to back-
ground #.

5. Finally, add the looks block show under the if condition and the looks block
hide under else. Save and test your script.

FIGURE 3-23 An if else script is used to show and hide sprites in Scratch.

What amendments to this script would you need to create to hide the key
on the Outside background and show the key on the Inside back-
ground? Try making these changes to your script.

ChALLENGE

A D V E N T U R E S I N R A S P B E R R Y P I68

Creating health‐Point‐Stealing
Sprites
The Adventurer sprite can now move around the stage and move between stage back-
grounds using the broadcast message. However, as it stands, this will be a really easy
game to play and anyone playing the game may tire of it very quickly! You can make
the journey to the cave entrance more difficult for the player by adding obstacles that
will steal health points.

1. To add some obstacles to make it more difficult for the Adventurer sprite to get
around the stage, click the Paint New Sprite icon to create a new sprite. Use the
tools to draw a flower as your new sprite, and name it flower.

2. Add a script to the flower sprite by selecting it from the Sprites panel and then
dragging the control block when clicked onto the Scripts tab.

3. The obstacle needs to be a constant danger for the sprite, so you need a script
that is constantly running. To achieve that, add the forever if block. This
time the condition is if the Adventurer sprite is touching the flower then remove a
certain number of health points. Add the sensing block touching _. Figure 3‐24
shows the completed block.

4. Inside the forever if block, add the variable block change health by 1
and change the value from 0 to –10 so that it removes health points from the
player.

5. Add the looks block say ouch! for 2 secs after the variable block inside
the forever if loop block.

6. Remember to add the if else script to hide the flower sprite after the player
enters the cave, and then save and test your script.

FIGURE 3-24 Health‐point‐stealing flower sprite script

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 69

Improving the movement of the
Adventurer Sprite Using if Blocks
The player controls the Adventurer sprite by using the keys on the keyboard. This
works well when the sprite is on the stage using the Outside background, as there are
no walls. However, when it enters the cave, the sprite appears to be walking over the
walls. You can use another if condition to help stop this from happening.

1. Click the Adventurer sprite and locate the four scripts that control movement
using the arrow keys on the keyboard (refer to Figure 3‐17).

2. On one of the scripts, add a control block if inside the forever if loop,
above the point in direction 90 block that is already there.

3. Add the sensing block touching color into the blank hexagon on the if loop
you have just added. Select the colour of the walls by clicking the coloured square
box; this action turns the mouse cursor icon into a droplet icon, and you can
select the walls with your mouse, getting the exact colour match required.

4. Add the motion block move 10 steps inside the if loop and set the value
to –20 steps. Figure 3‐25 shows the new script.

5. Add the same extra piece of script to the three remaining control scripts for each
key. Don’t forget to save the file and test that your script works.

Creating a Game over Screen
Typically in role‐playing games, when a player loses all her health points, the game
ends and a Game Over screen is displayed. Follow these steps to create a Game Over
screen:

1. First you need to add a new Game Over background to the stage. You can either
paint a new one or duplicate one of the existing backgrounds and edit it to dis-
play Game Over across it in large letters (see Figure 3‐26).

2. Add another script to the Adventurer sprite. Click the sprite in the Sprites pal-
ette, and then drag the control block when clicked onto the Scripts tab.

Don’t forget to add the script to hide the flower sprite after the Adventurer sprite
enters the cave. After you have added this script, you can duplicate the flower
to cover the stage with more obstacles, making the game more interesting. To
duplicate the flower sprite, right-click it in the Sprites palette and click Duplicate.
You can do this as many times as you like to make multiple copies.

A D V E N T U R E S I N R A S P B E R R Y P I70

3. Add a forever control block underneath, and an if control block inside the
forever block.

4. Drag the operator block 0 < 0 inside the if blank hexagon, Add the variable
health inside the left side of the < sign and type the value 0.1 in the right
side.

5. Add the control block broadcast and create a new broadcast message called
Game Over.

The code of this script states that if the health of the Adventurer sprite is less than
0.1, the Game Over message is broadcast to all the sprites and the stage. You need to
add the following script to the stage to listen for this broadcast message to end
the game.

When I receive 'Game Over'
Switch to background 'Game Over'
Stop All

The Stop All control block stops all the scripts in Scratch from running, ending the
game.

Save the file and run the program to ensure it works as expected. If not, check your
work and correct it if you need to.

FIGURE 3-25 Completed script to control movement of right key

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 71

Ideas for Improvements to Your Game
Now that you’ve learned how to use Scratch, you may want to continue to improve
your game. Here are some further ideas to keep you going:

• Try setting some random events to happen during the game.

• Add music and sound effects to make it more exciting for the player.

• Create more sprites for the Adventurer sprite to interact with.

• Use a MaKey MaKey invention kit to create a custom game pad to match your
game. You can learn more about MaKey MaKey and order a kit at www.
makeymakey.com.

For the complete guide to Scratch, download the Scratch Reference Guide from
http://download.scratch.mit.edu/ScratchReferenceGuide14.pdf.

FIGURE 3-26 Creating a Game Over screen in Scratch

http://www.makeymakey.com
http://www.makeymakey.com
http://download.scratch.mit.edu/ScratchReferenceGuide14.pdf

A D V E N T U R E S I N R A S P B E R R Y P I72

Scratch Command Quick Reference Table

Command Description

Control Blocks
broadcast x Sends a message to all the sprites and the stage

which can be used to synchronize scripts across
 multiple sprites and the stage.

forever Repeatedly iterates actions within set.
forever if Checks whether a condition is true, over and over.

If the condition is true the program runs the blocks
inside.

if...else If the condition is true, the program runs the blocks
inside the if section. If not, it runs the blocks inside
the else section.

repeat x Sets number of times for action to repeat.
stop all Stops all scripts for all sprites.
wait x secs Sets time before executing next command.

when clicked Begins script when green flag icon is clicked.

when I receive x Begins script when a set broadcast message is
heard.

When x key pressed Begins script when designated key is pressed.

Motion Blocks
change x by _ Changes sprite’s position on the stage x axis by a

specified amount.
change y by _ Changes sprite’s position on the stage y axis by a

specified amount.
go to x:_ y:_ Moves sprite to set x and y coordinates on the

stage.
if on edge, bounce Turns sprite in the opposite direction if it touches

the edge of the stage.
move x steps Moves sprite forward or backwards x number of

steps.
point in direction x Points sprite in direction x.
point towards x Points sprite towards another sprite or a mouse

 cursor.
set x to _ Sets sprite’s position on the stage x axis to a

 designated place.

A D V E N T U R E 3 C R E A T I N G S T o R I E S A N D G A m E S w I T h S C R A T C h 73

Command Description

Control Blocks
set y to _ Sets sprite’s position on the stage y axis to a

designated place.
turn (clockwise) x degrees Rotates sprite clockwise x degrees.
turn (anti‐clockwise) x

degrees
Rotates sprite anti-clockwise x degrees.

Looks Blocks
change size by x Changes sprite’s size by x amount.
hide Hides a sprite from the stage.
next costume Changes sprite’s costume to the next costume in

the list.

Command Description
say xxx Shows sprite’s speech bubble saying xxx.
set size to x Sets a sprite’s size to x percent of its original size.
show Makes a sprite appear on the stage.
switch to background x Changes the background of the stage.
switch to costume x Changes the costume of a sprite.
think xxx Shows sprite’s thought bubble thinking xxx.

Variables Blocks
Change variable by x Changes the variable by x amount.
Make a variable Creates a new variable that you can name for

either a single sprite or for all sprites.
Set variable to x Sets the variable value to x.

Sensing Blocks
key x pressed If x key on the keyboard is pressed then reports

true.
touching color x If a sprite is touching a designated colour then

reports true.
touching x If a sprite is touching designated sprite, edge or

mouse cursor, then reports true.

A D V E N T U R E S I N R A S P B E R R Y P I74

Achievement Unlocked: You have created a program using Scratch!

In the Next Adventure
In the next adventure, you learn how to program art using Turtle Graphics.
In the first half, you use Scratch. In the second half, you use the programming
language Python, and you’re introduced to the Python programming
environment and some commands to enable you to draw shapes and repeat
them to make patterns.

75

SUPPOSE YOU COULD pick up a turtle, dip his tail into coloured ink, place him on
a piece of paper and make him walk around so that his tail paints a spiral shape, a pen-
tagon or a noughts and crosses grid? This adventure introduces you to different ways
that you can create shapes or line drawings using code.

You use a module called Turtle Graphics that works by directing a cursor (or turtle)
around the screen using movement instructions; see an example of the result in
Figure 4‐1. This movement leaves a colour trail like a pen, which means you are able to
program a computer to draw. Turtle Graphics was originally a feature of the program-
ming language LOGO (Logic Oriented Graphic Oriented), which was designed to teach
young people how to program using a logical sequence of steps by means of an
onscreen cursor called a turtle. LOGO continues to be a very popular way to learn logic
and sequencing in computer programming. Both Scratch and Python include turtle
modules that can be used to create shapes, drawings and patterns.

This adventure draws on many of the computing concepts you have already used in
previous tutorials in this book, such as sequencing, variables and loops, to create
shapes and spirals in both Scratch and Python programming environments on the
Raspberry Pi.

Programming Shapes
with Turtle Graphics

Adventure 4

A D V E N T U R E S I N R A S P B E R R Y P I76

Scratch Turtle Graphics
In this part of the adventure, you learn to use the basic features of Turtle Graphics in
Scratch by writing a script that turns any sprite into a “pen” to draw lines and shapes
on your stage.

FIGURE 4-1 An example of programming art on the Raspberry Pi

To see a tutorial on creating shapes with Scratch, visit the companion website at
www.wiley.com/go/adventuresinrp3E. Click the Videos tab and select the
ScratchShapes file.

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E 4 P R o G R A m m I N G S h A P E S w I T h T U R T l E G R A P h I c S 77

Using Pen Down and Pen Up
The pen down and pen up blocks instruct the sprite to start and stop drawing, in the
same way as you touch your pen to paper to draw a line and then lift it.

1. Open Scratch as you did in Adventure 3 by using the main menu to select
Programming ➪ Scratch. Once the application has loaded, maximise the size of
the stage by clicking the Switch to Full Stage icon above the stage on the right
side of the screen.

2. You can use the default Scratch Cat sprite as your “turtle”. However, you may
find it easier to give directions to the sprite if you have a bird’s‐eye (top‐down)
view. To change the sprite to a bird’s‐eye view of the Scratch Cat, right‐click the
Scratch Cat sprite in the Sprites palette and select Delete from the menu. Next,
click Choose New Sprite from File and browse to select Cat2 inside the Animals
directory. (Refer to Figure 3‐3 from Adventure 3 for a reminder of how the
Scratch interface is set up.)

3. Remember when starting any script in Scratch you need a trigger, so select the
When clicked control block and drag it onto the Scripts tab of the turtle
sprite.

4. Add the pen down block from the Pen blocks palette. This begins the drawing.

5. Add the motion block Move 10 steps and change the value to 100.

6. Add the pen up block to end the line drawing. Figure 4‐2 shows the result.

7. Select File ➪ Save As to name and save your file.

The “turtle” in the following project refers to whatever sprite you choose to act
as your pen. It doesn’t have to look like a turtle—in fact, the sprite library doesn’t
include a turtle image, but you can create one using the Paint Editor if you like.

To draw some of the shapes and spirals in this adventure using Scratch, you need
lots of space on the stage. Sometimes the “turtle” can go off screen, and this
can result in messy shapes! To make sure that you have plenty of space, click the
Switch to Full Stage icon above the stage on the right-hand side of the screen.

Keep in mind that the sprite directing the cursor in Turtle Graphics is always
called a turtle, even though the image might be a cat, a person or something
else.

A D V E N T U R E S I N R A S P B E R R Y P I78

Drawing Simple Shapes
Now draw a pentagon using the script that you already created, by using the following
steps.

1. Add the motion block turn 15 degrees underneath the move 100 steps
block and change the value from 15 to 72.

2. So far, the script will have drawn only one side of the five‐sided pentagon shape.
You could add five more move and turn blocks to the sequence, or you could
just add a loop to repeat, or iterate, the instruction five times. Add the control
block repeat under the pen down block to contain the motion blocks and
change the value to 5 (see Figure 4‐3).

How could you add to the script to turn the turtle round and draw another
line?

What does the pen up command do?

chAllENGE

FIGURE 4-2 Using pen down and pen up to draw a line in Scratch

A D V E N T U R E 4 P R o G R A m m I N G S h A P E S w I T h T U R T l E G R A P h I c S 79

3. Click the green flag to test that your turtle draws a pentagon.

4. Click File ➪ Save As to save your changes.

If the value of steps and the value of degrees to turn were set to 1, and the
repeat value set to 360, what shape do you think the turtle would draw?

Now that you have created a pentagon shape, how could you go about
making a hexagon shape, or an octagon shape?

chAllENGE

The turtle can turn 360 degrees in a circle, either left or right. This helps you draw
shapes. For example, to draw a square you would change the value of degrees to
90 to get the right-angled turn needed before drawing the next line.

FIGURE 4-3 The turtle pentagon script in Scratch

A D V E N T U R E S I N R A S P B E R R Y P I80

Using “clear” and Setting
a Start Point
You may have noticed that every time you press the button, the image you have just
drawn remains on the screen. This can be frustrating when you are testing scripts. To
ensure you have a clear stage every time you run a script, add the clear block from the
pen palette underneath the starting control block When clicked, as shown in
Figure 4‐4. This block tells the program to remove the previous action before proceeding.

Also notice that the turtle begins its drawing wherever it is located. This can affect your
drawing, and part of it may end up offscreen if the turtle is positioned too close to the
edge of the stage. To avoid this, you can add the motion block go to x: 0 y:0 to
set the start point of the pen, just like you did in Adventure 3 for the Adventurer sprite
in the final game project. Remember that Scratch uses x and y coordinates, with x:0
and y:0 being the middle of the stage. You can also set the direction that the sprite
faces before it draws your shape by using the motion block point in direction
90 after the start coordinates. Figure 4‐4 shows these blocks added to the script.

Using Variables Instead of Values
It is more logical to set variables for values that you want to use several times in pro-
gramming. In your pentagon drawing, you used values for the length of the side of the
shape (100 steps), the angle of the turn (72 degrees) and the number of sides (repeat 5).
In this part of the project, you create variables that make it easier to create similar
shapes in the future.

1. In the blocks palette, click Variables ➪ Make a Variable. You need to make three
variables, called Number_Sides, Angle and Side_Length.

2. Drag the three new variable blocks onto the script and set the value of Number_
Sides to 5, Angle to 72 and Side_Length to 100.

3. Underneath the variables blocks, add your simple shape script, but now instead
of the values that you typed into the boxes, add the variable names (see
Figure 4‐4).

4. Now that you are using variables, you no longer need to calculate the angle of
rotation. Instead, you can set the Angle variable to divide 360 (the number of
degrees in a circle) by the number of sides that you set. To do this, drag the
operators block 0 / 0 and replace the value 72 with it. Then type 360 into the
left box, and drag the variable block Number_Sides into the right box.

5. If you change the number of sides to 6, the script draws a hexagon; if you change
the number of sides to 4, it draws a square, and so on.

A D V E N T U R E 4 P R o G R A m m I N G S h A P E S w I T h T U R T l E G R A P h I c S 81

changing the Size and colour
of the Pen
To make your drawings look more interesting, you can also change the colour of the
pen and the thickness of the line.

1. Add the pen block set pen colour to to your pentagon script, after the
point in direction 90 block and before the repeat block.

2. Click the coloured square and use the eyedropper tool to select the shade you
want to use from the colour palette.

3. You can also use the set pen size to block to change the thickness of the
line. The higher the value you set, the thicker the line will be. Add this block to
the script under the set pen colour to block and before the repeat block,
and change the thickness of the pen line used in the pentagon script to 5.

4. Click the green flag to run the script. Figure 4‐5 shows the results.

FIGURE 4-4 Using variables instead of values in Scratch

A D V E N T U R E S I N R A S P B E R R Y P I82

creating Spiral Patterns
Once you have mastered drawing a single shape, you can start to think of ways to
repeat the shape over and over to make a spiral pattern.

Add to the pentagon script a repeat control block and a turn degrees block, so
that it looks like Figure 4‐6.

To make your spiral look more colourful, you can add the pen block Change pen

colour by 10 underneath the motion block turn 15 degrees. This changes the
colour of the pen after each pentagon shape has been drawn. Figure 4‐7 shows the
final script and the result.

Using User Input to Determine
the Number of Sides
It is always more fun to allow a user to interact with a program you have created. In
your turtle script, you can ask a user to set the value for the number of sides a shape in
the spiral can have.

1. Add the sensing block ask What’s your name? And wait underneath the
start point blocks and before the set variable blocks.

FIGURE 4-5 Setting the colour and size of the pen in Scratch

A D V E N T U R E 4 P R o G R A m m I N G S h A P E S w I T h T U R T l E G R A P h I c S 83

FIGURE 4-6 Creating repeating pentagon spirals

FIGURE 4-7 The results of adding the Change pen colour by 10 block

A D V E N T U R E S I N R A S P B E R R Y P I84

2. Change the question to “How many sides would you like your shape to have?”

3. Add the sensing block answer to the set Number_Sides block, where you
normally type the value. Your script should look like the one shown in Figure 4‐8.

4. Now run your script. It asks the user how many sides she wants before it draws
the spiral.

Python Turtle Graphics
This section gives you a quick taste of the Python programming language. Python
includes a turtle module that you can use to create shapes and spirals in a similar
way to Scratch. In this tutorial, you use the turtle module as an introduction to writ-
ing code in Python.

In Adventure 5, you get a more thorough introduction to the Python programming
language, the IDLE programming environment, and Python functions and modules.
In this adventure, you can just follow along with the instructions, and you begin to see
how the Scratch blocks correspond to Python coding.

FIGURE 4-8 Adding user input to a turtle spiral script in Scratch

A D V E N T U R E 4 P R o G R A m m I N G S h A P E S w I T h T U R T l E G R A P h I c S 85

Introducing Python modules
As you learn more about programming and continue to write code, you will discover
that many of the programs you write include similar tasks and require similar blocks of
code. To avoid the necessity of rewriting the same code over and over, most program-
ming languages include reusable blocks of code, called modules. Python has a large
number of modules containing useful code that you can reuse. You learn more about
modules in Adventure 5.

In this adventure, you use the Python turtle module to create graphics.

The Python 3 Environment and
the Interpreter window
To use Python, you need access to the programming environment Python 3, which is
also known as IDLE. To open Python 3 (IDLE), click the main menu and select
Programming ➪ Python 3, as shown in Figure 4‐9. You can type commands directly
into the Python 3 window after the prompt, which is represented by three >>> charac-
ters. You type a line of code and then press Enter to run it. This window is referred to
as an interpreter (or a shell), as it understands the language you are using, in this case
Python, and interprets the code one line at a time.

You learn more about the Python 3 programming environment in the next adventure.

Using the Turtle module in Python
In the first part of this project, you use the Python 3 interpreter, or shell, to add the
turtle module for use in Python, and write the code to create a shape.

1. To use a module within a Python program, use the Python keyword import fol-
lowed by the name of the module. In the window, type the following line after
the >>> prompt to import the turtle module:

import turtle

Now press Enter on your keyboard to get a new prompt.

For a video that walks you through using the Python interface to type commands,
visit the companion website at www.wiley.com/go/adventuresinrp3E.
Click the Videos tab and select the PythonIntro file.

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E S I N R A S P B E R R Y P I86

2. At the new prompt, type the following command, and then press Enter again:

alex = turtle.Turtle()

This command opens the Turtle Graphics window, with an arrow cursor in the
centre. The arrow cursor represents the turtle, whose movements create your
drawing.

The = symbol in Python assigns a name on the left side to whatever is on the
right side. This makes it easier to refer to it when writing lots of code. I have used
the name alex, but you can use any name.

You can change the arrow to a turtle shape, as shown in Figure 4‐10, by typing
the following code at the prompt:

alex.shape("turtle")

3. Just like in Scratch, you can create a pentagon shape by moving so many steps
and turning so many degrees. Type the following code, pressing Enter after each
line:

alex.forward(100)
alex.left(72)

FIGURE 4-9 Opening Python 3 (IDLE) from the application launcher on the Raspberry Pi

A D V E N T U R E 4 P R o G R A m m I N G S h A P E S w I T h T U R T l E G R A P h I c S 87

These lines tell the turtle to move forward 100 steps and then turn 72 degrees to the
left. How many times would you need to type these two lines of instructions or code
into the Python shell to draw a pentagon? Continue repeating these lines until you
have created the pentagon. Figure 4‐10 shows the final code and the completed shape.

You cannot save this code because you wrote it directly into the Python interpreter
window or shell so that you could see it working instantly. In the following sections,
you type your sequence of steps for the turtle to follow in a text editor window.

Your Python Turtle drawing will appear in a different window when you run the
commands. Sometimes windows overlap and you can’t see what is happening
on both of them, or you may get a white screen instead of your drawing. To get
over this problem, move the windows so that they are side by side as you’re
typing commands into the shell.

FIGURE 4-10 Drawing a pentagon in Python Turtle Graphics

A D V E N T U R E S I N R A S P B E R R Y P I88

Using a Text Editor
As you begin to create more complex programs, it becomes tiresome to type the com-
mands straight into the Python interpreter or shell window. It makes more sense to
type all your code into a text file before running it, using Python 3.

To open the text editor, click File ➪ New File from the menu at the top of the Python 3
interpreter or shell. Type all the code that you typed into the interpreter in the preced-
ing section, and save the new file to your Documents directory on your Raspberry Pi
as FirstTurtle.py (see Figure 4‐11). You can run the script by clicking Run ➪ Run
Module from the text editor toolbar.

You should use the text editor for the remainder of this adventure.

You can learn more about using Turtle Graphics with Python by selecting the
PythonTurtleShapes video from the companion website at www.wiley.com/go/
adventuresinrp3E.

FIGURE 4-11 Using the text editor to create and save files

http://www.wiley.com/go/adventuresinrp3E
http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E 4 P R o G R A m m I N G S h A P E S w I T h T U R T l E G R A P h I c S 89

Using for Loops and Lists
In your Python code so far, you have repeated the length of the line and the angle to
make a pentagon shape by writing them in sequence. Repeating sequences is a com-
mon practice in computer science. You can make this code more efficient by writing
the sequence once and then looping it five times. You have used looping before in
Scratch, when you used the forever block to make an action continue repeating. As you
learned in Adventure 3, each repeated instance of the looping code lines is called an
iteration.

To practice looping code, open a new text editor window and type the following code,
saving the file as FirstTurtle2.py.

import turtle
alex = turtle.Turtle()
alex.shape("turtle")

Next add a for loop:

for i in [0,1,2,3,4]:
 alex.forward(100)
 alex.left(72)

This code says, “for each instance (i) in the following list, move alex forward 100 steps
and then turn left 72 degrees”.

When you have finished typing the code, run it by selecting Run ➪ Run Module.

The for statement repeats forward and left five times, one time for each value in
the list. A list is represented in Python by square brackets. Numbered lists begin at 0
rather than 1. If you had written 0,1,2,3, inside the square brackets to form a list then
only four sides of the pentagon shape would be drawn. Likewise if you had written
0,1,2,3,4,5 then six sides of the pentagon shape would be drawn, which is one side too
many! Have a go yourself to see how numbering inside Python lists work.

By using a loop to repeat a sequence of code, you have saved yourself a number of lines
of code. By using iteration in your program you are thinking like a computer scientist.

Quite often, you will want your code to repeat or loop. In Scratch, you use the
repeat or forever blocks to iterate. In Python you can use a for loop.

A D V E N T U R E S I N R A S P B E R R Y P I90

Lists can contain more than numbers or integers. For example, they can contain infor-
mation to change the colour of the turtle pen.

Amend your Python pentagon code to look like the following, making sure to include
the letter a before color:

import turtle
alex = turtle.Turtle()
alex.shape("turtle")
for aColor in ["red", "blue", "yellow", "green", "purple"]:
 alex.color(aColor)
 alex.forward(100)
 alex.left(72)

Save the file as FirstTurtle3.py and run the module. You now have a more colour-
ful pentagon shape, as shown in Figure 4‐12.

FIGURE 4-12 Using loops and lists to create turtle shapes in Python

A D V E N T U R E 4 P R o G R A m m I N G S h A P E S w I T h T U R T l E G R A P h I c S 91

The range Function
In the last few steps you used a list of numbers or integers and then colours to loop the
turtle sequence in Python. Using lists is a very common coding task, especially if you
are looping steps a number of times. It is so common that there is a Python function
that you can use instead, the range function.

In a new text editor window, type the following code and save it as FirstTurtle4.
py. When you have finished typing the code, select Run ➪ Run Module to see the
code in action (see Figure 4‐13).

import turtle
alex = turtle.Turtle()
alex.shape("turtle")
for i in range(5):
 alex.forward(100)
 alex.left(72)

The range function in this program creates a list of numbers or integers in the same
way as the list you used before, [0,1,2,3,4,].

A function is a piece of code that you can use over and over. You learn more
about functions in Adventure 5.

DIGGING INTo ThE coDE
The casing of commands used in Python code is very important, otherwise
your code will not worvk as expected and you may get errors. In the examples
in this adventure most of the code is in lower case, except when creating the
“alex” turtle. The first “turtle” in the line alex = turtle.Turtle() is lower
case (t), but the second one is upper case (T).

A D V E N T U R E S I N R A S P B E R R Y P I92

other Python Turtle module
commands
Once you have mastered some Python Turtle basics to create simple shapes, you can
start to add extra lines of code to make your computer drawings more interesting.

Pen Up and Pen Down
Just as in Scratch, the Python turtle module includes code for the pen up and pen
down commands so that you can move the turtle cursor around the page without leav-
ing a line, just as if you were drawing a shape on a piece of paper with a pen. The code
is written as follows, surrounding the directional code.

alex.pendown()
alex.forward(100)
alex.penup()

FIGURE 4-13 Using the range function to loop in Python

A D V E N T U R E 4 P R o G R A m m I N G S h A P E S w I T h T U R T l E G R A P h I c S 93

Setting the Pen Colour and Size
You can set the colour of the turtle using .color followed by the name of the colour
you want to use inside brackets:

alex.color("blue")

Similarly, you can set the size of the pen by using .pensize followed by the number
of pixels you want to use inside brackets:

alex.pensize(5)

Stamping
You can use .stamp to leave an imprint of the turtle cursor on the screen to form a
pattern instead of, or as well as, using a pen line:

alex.stamp()

You can see the stamp in action in Figure 4‐15.

Some Super Spirals
You can put together combinations of the Python Turtle code you have learned, in
order to make some interesting shapes. Have a go yourself by typing the following two
sequences into new text editor windows and saving them as SpiralTurtle1.py
(shown in Figure 4‐14) and SpiralTurtle2.py (shown in Figure 4‐15). You can
change the pensize and color arguments to make your own creations.

The Spiral Turtle

import turtle
alex = turtle.Turtle()
alex.color("darkgreen")
alex.pensize(5)
alex.shape("turtle")
print (range(5,100,2))
for size in range(5,100,2):
 alex.forward(size)
 alex.left(25)

A D V E N T U R E S I N R A S P B E R R Y P I94

FIGURE 4-14 Using pensize and color to create SpiralTurtle1.py

The Spiral Turtle Stamp

import turtle
alex = turtle.Turtle()
alex.color("brown")
alex.shape("turtle")
print (range(5,100,2))
alex.penup()
for size in range(5,100,2):
 alex.stamp()
 alex.forward(size)
 alex.left(25)

A D V E N T U R E 4 P R o G R A m m I N G S h A P E S w I T h T U R T l E G R A P h I c S 95

Further Adventures with
Python Turtle
If you want to continue creating graphics using Turtle in Python, it’s worth checking
out the official Python Turtle online documentation at http://docs.python.
org/2/library/turtle.html. It includes all the Python Turtle commands that
you could use. Why not experiment and see what programming art you can create?

FIGURE 4-15 Using penup and stamp to create SpiralTurtle2.py

Turtle Graphics command Quick Reference Table

See also the Scratch Quick Reference Table in Adventure 3

Commands Description

Pen Blocks (Scratch)

change pen color by x Changes pen’s colour by x amount.

change pen shade by x Changes the pen’s shade by x amount.
clear Clears all pen marks and stamps from the stage.
pen down Puts down a sprite’s pen so that it will draw.

continued

http://docs.python.org/2/library/turtle.html
http://docs.python.org/2/library/turtle.html

A D V E N T U R E S I N R A S P B E R R Y P I96

Commands Description
pen up Lifts a sprite’s pen so it does not draw.
set pen color to x Sets a pen’s colour to your choice.
set pen shade to x Sets the pen’s shade by x amount.
set pen size x Set’s a pen’s line thickness to x.
stamp Stamps a sprite’s image on to the stage.

Turtle Module in Python
import turtle Imports the turtle module into Python. Should be at the

start of any Python Turtle program.

Creating and Naming the “turtle”
alex = turtle.Turtle() Opens the Turtle Graphics window, with an arrow cursor

in the centre, named alex. The arrow cursor represents
the turtle, whose movements create your drawing.

Move and Draw
forward(x) Moves the turtle forward by the specified distance x, in

the direction the turtle is headed.
left(x) Turns turtle left by x units.
right(x) Turns turtle right by x units.
stamp() Stamps a copy of the turtle shape onto the canvas at the

current turtle position.

Drawing State
pendown() Puts the pen down and draws when it moves.
penup() Picks the pen up and stops drawing.
pensize(x) Sets the thickness of the line drawn to x pixels.

Turtle State
shape(“turtle”) Sets the cursor icon. Possible values for the shape are

arrow, turtle, circle, square, triangle, classic.

Colour Control
color(“brown”) Sets pen colour.

Additional Commands
for for loops are traditionally used when you have a piece of

code that you want to repeat x number of times. Example:
for i in [0,1,2,3,4,]

for i in range(): A for loop using the range() function that creates a list
containing numbers.

range() The range() function generates a list of numbers in
progression.

Turtle Graphics command Quick Reference Table
continued

A D V E N T U R E 4 P R o G R A m m I N G S h A P E S w I T h T U R T l E G R A P h I c S 97

Achievement Unlocked: You can create Turtle Graphics on your Raspberry Pi!

In the Next Adventure
In the next adventure, you learn more about how to program in Python on the
Raspberry Pi. You use some of the same concepts you have already learned, such
as iteration (loops) and conditionals (if statements), as well as many new constructs,
to create a new game where players answer questions to determine how the game
will move forward.

99

Programming
with Python

PROGRAMMING WITH SCRATCH can be a lot of fun, but as you become more
skillful at creating games and graphics using this application, you may notice that
there are limits to what you can achieve with Scratch. Most computer programmers
use text‐based languages to create computer programs, including games, desktop
applications and mobile apps. Although text‐based programming may seem more
complicated at first, you will soon find that it is easier to achieve your goals by using
code. The Python code language is used by millions of programmers worldwide, includ-
ing developers at organisations like NASA, Google and CERN.

In this adventure, you discover what you need to set up Python on your Raspberry Pi.
You write a short program and learn to use a text editor. After that, you delve deeper
into Python, learning about modules and their applications, how to get user input and
how to use conditionals. Finally, you put all your new knowledge to use, creating a
text‐based adventure game in which your user (player) answers questions and your
game responds based on the answers.

Although this may seem like a major departure from the graphical world of Scratch pro-
gramming, the good news is that all of the programming concepts you learned in Scratch
apply to other languages as well, even those that seem very different. Concepts such as
using a sequence of instructions to make something happen, loops, conditionals and
variables are common throughout all programming languages. By the end of this adven-
ture, you’ll be able to write some basic Python programs on your Raspberry Pi!

Adventure 5

A D V E N T U R E S I N R A S P B E R R Y P I100

Getting Set Up for Python
The Raspbian operating system includes the programming environment called Python
IDLE. This section introduces you to the programming language and environment
used to create Python files and execute them.

Python Programming Language
The Raspberry Pi operating system Raspbian comes with a text‐based computer pro-
gramming language, Python, already installed. The Pi in Raspberry Pi is a nod towards
this programming language, as it is considered an easy language to pick up and is used
by coders all over the world.

To work with Python, you use the IDLE programming environment, or integrated
development environment (IDE).

The IDLE Environment
To create programs on the Raspberry Pi using Python, you use the Python program-
ming environment, which is called IDLE. Notice that there are two versions in the
menu system: Python 2 and Python 3 (see Figure 5‐1). The projects in this book require
Python 3, which you use in Adventure 4. Just like the English language, Python has
evolved through different versions, and some of the commands you learn in this
adventure will not work in older versions of IDLE like Python 2 on the Raspbian.

If you get stuck on a computing problem, you might find it helpful to use Scratch
to help you visualise what is happening.

An IDE or integrated development environment, also referred to as a
programming environment, is a software application used to write computer code
in a particular language, for example Python. The application has the capability to
create and edit code as well as run or execute the code. Many IDEs also provide
features to help programmers check for errors in their programs and debug or
resolve the errors.

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 101

Programming in Python: Using a
Function
To begin working with Python, open the main menu, navigate to Programming and
select Python 3. You use Python 3 throughout this book rather than earlier versions,
which use a different syntax. The Python shell, or command‐line interface, opens and
a prompt of three angle symbols (>>>) appears to indicate where you should type your
code, as shown in Figure 5‐2.

For your first Python program, you write only one line of code, using a function, a
piece of code that tells the computer to perform a specific task. For this program, you
use the print() function to tell the computer to print some text on the screen. Place
the string of text you want the computer to display inside the brackets, with quota-
tion marks around it.

FIGURE 5-1 The Raspberry Pi main menu, with Python’s IDLE and IDLE 3
programming environments (Python 2 and Python 3) both available

A D V E N T U R E S I N R A S P B E R R Y P I102

FIGURE 5-2 The Python 3 IDLE Shell

SYNTAX, ERRoRS AND DEBUGGING
YoUR CoDE
Syntax is a set of rules to check whether the code you have typed is valid
Python code. In the same way as the English language has rules about how to
properly combine subjects, verbs, objects and so on, each programming lan-
guage has its own syntax. When you make a mistake or a typo in your code,
your program may display a syntax error message.

A syntax error stops a program from running because the computer cannot
understand the code. This usually happens because a word was misspelled or
a character left out. The most common cause of syntax errors is missing the
colon at the end of loops and conditionals!

Error messages are posted to the screen to alert you to the problem, but these
messages can be difficult to understand. You might want to make some typing
mistakes on purpose with some simple example code, so you can see the sort
of error messages Python gives you. Try leaving out a quotation mark or
bracket, or misspelling a command, to find out what happens.

So what do you do when you get an error message? Debugging is the act of
locating the cause of any errors in your computer program code and fixing
them. When Python displays a syntax error, the line that contains the error is
repeated, with a little arrow underneath it pointing to where the error is likely to
originate. Look carefully at the line to spot any misspelled words or missing
characters, then correct the problem and try running the code again.

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 103

Place your cursor directly after the >>> prompt and type the following line:

print("I am an Adventurer")

Press Enter and see what happens (see Figure 5‐3).

When a program gets to be more than a few lines, it becomes harder to understand
and edit the code. Breaking a program’s code down into small sections makes it
easier to read and edit. A function is an example of a small section of code that
does a specific task, and once it is created you can use it over and over again.
An added benefit of using functions is that if you fix a bug you only have to fix it
in one place.

Like most programming languages, Python includes some standard functions
that the computer already understands, like the Python 3 print()function that
prints some text to the screen. You can also write your own functions, which you
do towards the end of this adventure.

A string refers to data or information entered as text (i.e., a “string” of characters).

FIGURE 5-3 The print() function in action

When you press Enter, the Python Shell “interprets” your code. In this case,
you gave the command to print the text between the quotation marks to the
screen. Well done! You have created your first computer program in Python.

A D V E N T U R E S I N R A S P B E R R Y P I104

Using a Text Editor to Create a
Code File
You use a text editor to create code files in Python in Adventure 4 when using the
turtle module. As I explain in Adventure 4, it makes sense to type all your code into
a text file using a text editor and save it, before you test that it works by running it
using IDLE. Using a text editor has the added bonus of syntax highlighting, which works
by adding colour to different words in your code to make it easier to read. If you use a
command‐line editor like nano (which you used in Adventure 2) that does not have
complete syntax highlighting, you may find it hard to read a long program. For the proj-
ects in this adventure, you use the Python 3 IDLE text editor as you did in Adventure 4.

In the Python programming language, you can create lists to store data—for example,
you might want a list of names of the students in your class to use in a program that
sends out invitations, or a list of favourite restaurants that your program could sug-
gest when you need an idea for dinner.

The following steps walk you through using a text editor to create a list of objects that
you will use later in your adventure game. In this exercise, you create a new file, add
the code to create an inventory, and then save the file.

1. Open Python 3 and click File from the menu at the top. Select New File to open
an untitled text file (see Figure 5‐4). Notice that this creates a new text editor
file, not a shell window, and therefore does not contain a prompt.

2. To save the file, click File ➪ Save As. Navigate to your Documents directory and
name the file Inventory before clicking Save. If you open your Documents
directory, you can see the file is now saved there and Python has added a .py to
the end of the filename, so the complete filename is Inventory.py.

3. In the new file, type the following:

inventory = ["Torch", "Pencil", "Rubber Band", "Catapult"]

This code creates a list named inventory. Each string, or piece of text data,
represents an item on that list.

4. Underneath the list, type the following:

print(inventory)

For a video that walks you through creating an inventory in Python, select
the Inventory video from the companion website at www.wiley.com/go/
adventuresinrp3E.

http://www.wiley.com/go/adventuresinrp3E
http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 105

5. Click File ➪ Save to save the file, and then run your small program by clicking
Run ➪ Run Module. Your list is printed to the screen, as shown in Figure 5‐5.

FIGURE 5-4 The Python 3 IDLE text editor and menu

FIGURE 5-5 Creating an inventory list in Python and using the print() function to
display its contents

A D V E N T U R E S I N R A S P B E R R Y P I106

6. Now adapt the last line of code to read:

print(inventory[3])

7. Save the file using File ➪ Save and then run the program again.

Using the Python time and
random modules
As mentioned in Adventure 4, Python has a large number of modules—useful blocks
of code that you can reuse to avoid having to rewrite the same code over and over each
time you need a program that performs the same task. For example, each time you
need a program that selects objects from a list randomly, you could write a new func-
tion or you could simply use the Python random module and save yourself a lot
of time.

In order to use a module within a Python program, you use the Python word import
followed by the name of the module. You can then access functions of that module in
your program.

In this section, you use the random module along with the inventory list you created
in Python to make a program that selects an item from the list randomly.

Starting with the Python file Inventory.py that you created earlier, you adapt the
code to create a new, interactive program that requests user input and responds
appropriately.

Your program should print Catapult as the output. Hang on—isn’t the catapult
the fourth object on the list and not the third? Why did it print the third object
when the command was to print the fourth?

The third object was printed because Python numbers items in a list starting at
0, rather than at 1: 0 = Torch, 1 = Pencil, 2 = Rubber Band, 3 = Catapult.

A module is a collection of reusable Python code that performs a specific
function. It may be used alone or combined with other modules. In this adventure,
for example, you use functions from the Python time module to add pauses.

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 107

As you write the code, you include comments. Comments are notes within your code
that explain what a line or section of code is intended to do. Each comment line begins
with the # symbol, which tells the computer running the program to ignore that line.
If a comment wraps over several lines you need to include a # sign at the beginning of
each line so that it is passed over by the IDE.

There are many good reasons for including comments inside your code. Comments
can help you remember what each part of the code is doing, should you leave it unfin-
ished for a while. In school, you may use comments to explain to your teacher what
each part of your code is doing. If you are working with others, comments help them
see what you have done already.

1. Begin your code with a comment line to indicate the code’s purpose. Open the
Inventory.py file that you created earlier and type the following line at the
top (above the inventory list that is already in the file):

Adventures in Raspberry Pi Python – Inventory

Note the # symbol at the start of the line, identifying it as a comment.

2. Use the import command to import the two Python modules you need, time
and random. You can add a comment to explain this step if you like, as shown in
the following code:

You will need the random module and the time module.

import random
import time

3. Press Enter to leave a blank line so that your code is easier to read and then use
the print() function to display two strings of text on the screen:

Enter a blank line here

print("You have reached the opening of a cave")
print("you decide to arm yourself with a ")

4. Use the sleep() function from the time module to make the program wait for
two seconds before asking the player a question by adding the argument (2) as
shown.

time.sleep(2)

A D V E N T U R E S I N R A S P B E R R Y P I108

5. Now you want the player to think of any item and type it in as her answer. The
following code displays the line Think of an object and waits for the player
to enter an answer. The player can type anything for her answer; for example,
she might type banana. The program then uses the print() function to dis-
play You look in your backpack for banana (or whatever object the
player typed).

quest_item = input("Think of an object\n")

print("You look in your backpack for ", quest_item)

time.sleep(2)

print("You could not find ", quest_item)
print("You select any item that comes to hand from the ↩
 backpack instead\n")
time.sleep(3)

The \n at the end of the string in the first line doesn’t get printed to the screen;
instead, an extra new line is printed. This is helpful for breaking up the text and
making it easier to read.

The ↩ character at the end of a code line means that line and the next one
should all be typed as a single line; do not add a line break or extra spaces
between them.

A function may produce a return value, which can be stored in a variable like
any other value. For instance, the input() function returns the string that the
player types, or the random.choice() function returns an item from the list
it is given as an argument.

An argument is a piece of information given to the function that it may use
to perform its task. The argument goes inside the parentheses that follow the
function name. In the code in step 4, for example, with the time.sleep()
function you use the argument (2), which is the number of seconds you want
the program to wait before implementing the next line.

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 109

6. Next comes the inventory list. You created this line earlier, so just leave it as
written:

inventory = ["Torch", "Pencil", "Rubber band", "Catapult"]

7. In the last part of the inventory program code, you use the choice() function
from the random module to pick an object from the inventory list and display
it to the user of the program. Type the following line below your inventory list:

print(random.choice(inventory))

Functions can take a number of arguments and return a result. Here you pass an
argument to the time.sleep() function to tell the program how many sec-
onds to wait, and then print the result of random.choice.

Figure 5‐6 shows the completed code.

Check that your program works by saving the file as inventory1.py in the
Documents folder on the Raspberry Pi and then clicking Run ➪ Run Module from the
toolbar. Enter input when the program prompts for it. You should see results similar
to those shown in Figure 5‐7.

FIGURE 5-6 Using modules in Python 3 to create an Inventory program

A D V E N T U R E S I N R A S P B E R R Y P I110

Python Text Adventure Game
Text adventure games are fun to create because they are stories you write for your
friends and families can interact with. All you need is a bit of imagination and, of
course, some programming skills.

In this tutorial, you create your own adventure game that uses text to direct the player
through the game. The program asks the player to make decisions on what to do next.
This may be as simple as finding out the direction in which she wants to turn next.

FIGURE 5-7 Getting a random item from the inventory list, using modules

What might happen if a user inputs the item torch when asked to think of an
item? Which of the following do you think that the program will print?

• You could not find torch

• Found torch from your backpack

• A torch! This will shed some light on the matter!

The answer is A. The program prints whatever you type in the string. It does not
currently look inside the inventory list.

Can you think of a way to improve this program so that it checks to see if the
item is already in the list?

Visit the companion website at www.wiley.com/go/adventuresinrp3E and
select PythonTextAdventure to see a video of this project.

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 111

Getting User Input
As the text adventure game relies on the player (user) to interact with the game to
make decisions, you will need to use the input() function.

direction1 = input("Do you want to go left or right? ")

This line of code asks the player to answer the question, “Do you want to go left or
right?” The program waits for the player to type an acceptable response—one that the
program can understand.

Using Conditionals
After the player has responded, you want something to happen based on her answer.
You therefore need to use a conditional statement. You used conditionals in your
Scratch adventure game in Adventure 3 to control the movement of the adventurer
sprite, using the forever if control block.

Remember that creating a conditional statement is like asking a question where there
are two or more outcomes. For example, you could ask the question “Is it raining?” If
the answer is yes, you should put on a raincoat; if the answer is no, you should go out
without a jacket. The key word used here is “if”.

You will use if in Python 3 to create your game conditions. Open a new Python IDLE
3 text editor window and save the file as AdventureGame.py.

1. Import the modules that you need for the program. As in the inventory pro-
gram, you need the sleep() function from the time module, so import that
module with the following code:

import time

2. Later in this game, you may want to give your player health points that could go
up or down depending on which directions she takes in the adventure. The num-
ber of remaining health points is stored in a variable. To include that feature,
type the following line:

hp = 30

3. Now use the print() function to tell your player where she is located in the
game, and then use the sleep() function to wait one second before moving on.

print("You are standing on a path at the edge of a ↩
 jungle. There is a cave to your left and a beach ↩
 to your right.")

time.sleep(1)

A D V E N T U R E S I N R A S P B E R R Y P I112

4. As in the inventory program, you want to get input from the player of your
game. In this case, you need to know if she wants to turn left or right, and the
player’s answer is then labelled as direction1.

direction1 = input("Do you want to go left or right? ")

5. Create conditions depending on the player’s answer. You need one condition if
the player chooses left and another if she chooses right. You may remember
using conditionals in Scratch in Adventure 3. In Python, you use if, elif (else if)
and else to check conditions:

if direction1 == "left":
 print("You walk to the cave and notice there is an ↩
 opening.")

elif direction1 == "right":
 print("You walk to the beach but remember you do ↩
 not have any swimwear.")

else:
 print("You think for a while")

if, elif and else are the Python words used to check conditions. In the pre-
ceding code, if the player types left, the program prints the statement, “You
walk to the cave and notice there is an opening”; else if (elif) the player types
right, the program prints a different piece of text. Finally, if the player types in
any answer that is not left or right (else), the program prints, You think
for a while. Figure 5‐8 shows this code in the text editor.

FIGURE 5-8 Using conditionals in a Python adventure game

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 113

DIGGING INTo ThE CoDE
In Adventure 3, you created conditions for the Scratch role-playing game using
an if...else block like the one in Figure 5-9. In Scratch, the blocks for each
part of a condition are automatically indented slightly for you within the if...
else block. You can easily see which parts of the condition need to be met by
how far they are indented. In Python code, you have to add indents to show
which lines of code are part of the conditional. Python code also uses the colon
(:) to show where you might need to indent. Take a look at Figure 5-9 to
 compare indentation in the if...else statements in Scratch and Python.

FIGURE 5-9 Using if...else statements in Scratch (top) and
Python (bottom)

A D V E N T U R E S I N R A S P B E R R Y P I114

6. Test to see if your code works by first saving the file as AdventureGame.py in
Documents on the Raspberry Pi, and then running it by selecting Run ➪ Run
Module. You should see a display similar to Figure 5‐10.

Using a while Loop
So far, the player has not been required to input specific answers in order for the game
to move on. If the player does not input anything at all, the game simply stalls; and if
the player types an unrecognized answer, the game says, You think for a while.
You want the player to input one of the responses that you have defined, left or
right, to move on to the next location. You can ensure she inputs one of the desired
responses by adding a while loop to your code. This loops the user input question
until the player types in a response that you were looking for—left or right—to move
on. For example:

Loop until we get a recognised response
while True:
 direction1 = input("Do you want to go left or right? ")

FIGURE 5-10 Using Run Module to test conditionals in Python adventure game

What happens if the player types LEFT or RiGhT instead of left or right?
Will the condition still be met?

To make sure that the player types in the correct lowercase response that you
require to meet the conditions, you can use a lowercase function so that if the
player types in capital letters, the program turns the text into lowercase, which is
a recognised response to the if, elif, else conditions.

direction1 = direction1.lower()

Add this line before the first if statement used, and after asking the player to
input a direction. See the final game code towards the end of this adventure for
reference.

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 115

 direction1 = direction1.lower()
 if direction1 == "left":
 print("You walk to the cave and notice there is an ↩
 opening.")
 break # leave the loop
 elif direction1 == "right":
 print("You walk to the beach but remember you do not ↩
 have any swimwear.")
 break # leave the loop
 else:
 print("You think for a while")

In this code, shown also in Figure 5‐11, you can see in bold text the Python words
while True: added before the user input question, and break added within the
conditionals for left and right. The while True: condition loops the question over
and over until the player enters either left or right so that the game does not end if
the player types anything else.

FIGURE 5-11 Using a while loop in the Python adventure game

Indentation refers to how far from the margin a line of code is typed. Indentation
of code in Python is very important, especially when you begin to add more
structure to your code by using conditionals and loops. In Adventures 3 and 4,
you used conditionals and loops in Scratch. When you added a forever loop,
you placed individual blocks inside it. These blocks inside the loop were indented
from the rest of the statement. It is similar in Python. After you type while
True: the next line should be indented, otherwise your code may not work. The
same is true of the conditionals if, else and elif.

A D V E N T U R E S I N R A S P B E R R Y P I116

Using a Variable for health Points
In the text adventure game so far, you have created a variable for health points
(hp = 30), like the variable you created in the Scratch adventure game in Adventure 3.
Here you have given an initial value that changes as the player plays the game. The
value you have given is 30, but this could be any value of your choosing.

Now code can be added that changes the hp value based on the decisions made by the
player. You name a variable using the form name = value, as in the following
example:

hp = 30

Here are two ways to change the value of the hp variable in Python 3:

To subtract 10, use hp = hp – 10 or hp ‐= 10.

To add 10, use hp = hp + 10 or hp += 10.

You can use the following symbols to program calculations:

‐ Subtract

+ Add

* Multiply

/ Divide

< Less than

> Greater than

The following symbols produce a value that is True or False, so they are useful in
conditionals:

== Equals

!= Not equals

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 117

To make the game more interesting for the player, you can add some code to the end
of what you have already written to tell her how many health points she has after each
move:

Check health points after the player has made a move
print("You now have ", hp, "health points")
if hp <= 0:
 print("You are dead. I am sorry.")

The last two lines add a conditional so that if the value of the hp variable is less than
or equal to 0, the statement You are dead. I am sorry. is displayed and the
game ends.

Putting It All Together
Now put all the elements together in your text adventure game by typing the following
program into a new Python 3 IDLE text editor window:

You can download the completed AdventureGame1.py code file from the
companion website at www.wiley.com/go/adventuresinrp3E but, as
I mentioned earlier, you will learn more by typing in the code as you read
through the steps.

Python Text Adventure Game

Python Text Adventure Game

import time

Create health point variable
hp = 30

Tell player their location and wait 1 second
print("You are standing on a path at the edge of a jungle. ↩
 There is a cave to your left and a beach to your right.")
time.sleep(1)

Loop until we get a recognised response
while True:
 direction1 = input("Do you want to go left or right? ")
 # Convert to lower case to accept LEFT and RiGhT etc.

continued

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E S I N R A S P B E R R Y P I118

Test to see whether your code works by saving the file as AdventureGame1.py in
your Documents directory on the Raspberry Pi and then running it (see Figure 5‐12).
(Be sure to add the 1 in the filename to keep this file separate from your original
AdventureGame.py file.)

Defining Functions
Although the game works, you will find it difficult to scale it up to include more loca-
tions and directions, such as going into the cave and then deeper into the cave, espe-
cially if the game relies on input from players to make decisions. You could add more
conditionals by copying and pasting those you have already created, but your code will
get messy and out of control very quickly. It will also be difficult to locate any bugs, or
make changes without introducing even more bugs!

Python Text Adventure Game continued

 direction1 = direction1.lower()
 if direction1 == "left":
 print("You walk to the cave and notice there is an ↩
 opening.")
 print("A small snake bites you, and you lose 20 health ↩
 points.")
 hp = hp - 20
 break # leave the loop
 elif direction1 == "right":
 print("You walk to the beach but remember you do not ↩
 have any swimwear.")
 print("The cool water revitalizes you. You have never ↩
 felt more alive, gain 70 health points.")
 hp += 70
 break # leave the loop
 else:
 print("You think for a while")
 time.sleep(1)

Check health points after the player has made a move
print("You now have ", hp, "health points")
if hp <= 0:
 print("You are dead. I am sorry.")

print("Your adventure has ended, goodbye.")

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 119

The best solution is to create your own functions. Until now you have been using pre‐
existing functions from other Python modules such as time and random, but you can
also create your own. Writing your own functions is easy; for example, this is how you
would write a function called multiply that multiplies its two arguments and returns
the result:

def multiply(m, n):
 return m * n

Just like the functions you use earlier in this adventure, these can take a number of
arguments and return a result. They are a very useful way of organising your code. You
can use various ways to reorganise your code into different functions. This process is
called refactoring and is a logical process when developing computer programs. One
way of reorganising the adventure game you have created so far is to create and use
two functions: get_input() and handle_room().These functions are described in
the following sections.

FIGURE 5-12 Using Run Module in Python to play AdventureGame1.py

Refactoring is a way of restructuring code you have already written to make it
more efficient and easy to read, and to avoid bugs. If you find yourself copying
and pasting large sections of code, this is usually a good indicator that you need
to refactor your code!

A D V E N T U R E S I N R A S P B E R R Y P I120

The get_input Function
The get_input() function keeps asking the player to enter input (using the text in
the prompt argument) until it matches one of the accepted inputs. For example:

get_input("Do you want to go left or right? ", ["left", ↩
"right"])

This function keeps asking the player the same question until she types one of the
accepted inputs, which in this case are left and right.

The handle_room Function
The handle_room() function contains the main logic for changing locations in the
adventure game. The function takes the current location as its argument, and then
uses conditionals to decide what to do based on that location. For most locations, the
function asks the player to input a direction. The specific input determines which loca-
tion the player moves to next.

Creating a main Game Loop
Up to this point, you wrote all your game logic in the while loop. With the following
code, you move most of the logic into separate functions, avoiding repetitive code. The
new loop calls the handle_room() function to perform a task appropriate for the
current room, and then updates the location variable with the new room. This is a
little more advanced than the code you have written so far. It requires you to check
and double‐check that your indentation is correct and you have not made any syntax
errors!

Open a new text editor window and save the file as AdventureGame2.py in your
Documents directory. Follow the steps below to add functions to your adventure
game.

1. Begin by creating the health point variable as before; it is important to do this at
the start as it is a global variable, meaning it can be accessed by the functions
you define:

Create health points variable
hp = 30

You can download the completed AdventureGame2.py code file from the
companion website at www.wiley.com/go/adventuresinrp3E but, as I
mentioned earlier, you will learn more by typing in the code as you read through
the steps.

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 121

2. Define the first of the functions, get_input(). The word def introduces a
function definition. This function asks for input from the player with the given
prompt, and as it contains a while loop it keeps retrying until the player types
one of the words in the accepted list, left or right. The in keyword enables you
to check easily whether a value is in a list or not.

def get_input(prompt, accepted):
 while True:
 value = input(prompt).lower()

 if value in accepted:
 return value
 else:
 print("That is not a recognised answer,↩
 must be one of ", accepted)

3. Define the function handle_room(), which takes the current location, per-
forms an action based on that location, and then returns the new location. For
example, if the location is start, the game asks which direction the player
wants to go and uses that answer to move the user to a new room.

def handle_room(location):
 global hp

 if location == "start":

 print("You are standing on a path at the edge of a ↩
 jungle. There is a cave to your left and a beach to ↩
 your right.")
 direction = get_input("Do you want to go left or ↩
 right? ",
 ["left", "right"])

 if direction == "left":
 return "cave"
 elif direction == "right":
 return "beach"

Remember to indent your code correctly here, as three levels of indentation are
being used.

A D V E N T U R E S I N R A S P B E R R Y P I122

 elif location == "cave":
 print("You walk to the cave and notice there is an ↩
 opening.")
 print("A small snake bites you, and you lose 20 ↩
 health points.")
 hp = hp - 20

 answer = get_input("Do you want to go deeper?", ↩
 ["yes", "no"])
 if answer == "yes":
 return "deep_cave"
 else:
 return "start"

 elif location == "beach":
 print("You walk to the beach but remember you do ↩
 not have any swimwear.")
 print("The cool water revitalizes you. You have never ↩
 felt more alive, gain 70 health points.")
 hp += 70
 return "end"

 else:
 print("Programmer error, room ", location, " is ↩
 unknown")
 return "end"

4. Add a loop to the game that loops until the player reaches the special end
location that ends the game.

location = "start"
Loop until we reach the special "end" location
while location != "end":
 location = handle_room(location) # update location

5. As the game also relies on the player having health points, at each turn the
 program needs to check how many health points the player has and determine
that the player is not dead, because this would end the game.

 # Check we are not dead each turn
 print("You now have ", hp, "health points.")
 if hp <= 0:
 print("You are dead. I am sorry.")
 break

print("Your adventure has ended, goodbye.")

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 123

Each time around, the loop checks that the health points are greater than or equal to
zero (checking that the player is not dead!) so that the game can continue. The loop
also ends if the location returned by handle_room is end, a special room name indi-
cating the end of the game. Figure 5‐13 shows the refactored code using functions in
the Python adventure game.

Compare the code of AdventureGame2.py to AdventureGame1.py and
note the changes. Do you think refactoring the code was a good idea?

How can you add more locations to the code you have created so far for the
adventure game?

How many different times must you run the program to try all possible
paths through the code to make sure that it works?

Can you add the inventory list to the text adventure game so that the player
can make decisions about using objects?

ChALLENGE

FIGURE 5-13 The Python Adventure Game in action, using the newly defined functions

A D V E N T U R E S I N R A S P B E R R Y P I124

Continuing Your Python
Adventure
If you want to learn more about programming in Python on your Raspberry Pi, you can
find a wide assortment of resources. Here are a few to try:

• For more detailed information on Python basics, I recommend Python Basics by
Chris Roffey (Cambridge University Press, 2012).

• The official Python documentation is available at http://docs.python.
org/3.

• Visit http://inventwithpython.com for links to online PDFs that teach
you how to invent your own computer game with Python.

Python Command Quick Reference Table

Command Description

The # symbol is used at the beginning of a code line
to indicate the line is a comment, not part of the
 program’s instructions to the computer.

\n Returns a new line in a string.
break Breaks out of a for or while loop.
def Allows you to define a function of your creation.
elif Short for ‘else if’, the elif syntax allows you to create

multiple conditions that make something happen when
they return a value of true.

for for loops are traditionally used when you have a piece
of code which that you want to repeat x number of
times.

if Sets a condition which, if true, makes something hap-
pen.

if...else Sets a condition which, if true, makes one set of things
happen, or if false makes a different set of things hap-
pen.

import Imports modules and libraries to add more functionality
to your code.

input() A function that asks for user input and converts it into a
string.

inventory = ["Torch",

"Pencil", "Rubber Band",

"Catapult"]

An example of a list in Python. Lists can contain values
or strings that are separated by commas and encased in
square brackets.

name = value An example of a variable.

print() A function that prints anything inside the brackets.

http://docs.python.org/3/
http://docs.python.org/3/
http://inventwithpython.com/

A D V E N T U R E 5 P R o G R A m m I N G w I T h P Y T h o N 125

Command Description
print(inventory[3]) An example of using the print() function to print item

number 3 in the inventory list.
random A Python module that returns a random value.
return The return keyword is used when a function is ready to

return a value.
time Python module that provides various time-related

 functions, such as sleep.
while A while loop continually repeats if a given condition is

true.

Achievement Unlocked: You can program in Python on your Raspberry Pi!

In the Next Adventure
The next chapter introduces you to the computer game Minecraft—more
specifically, you use the Minecraft Pi version created for use on the Raspberry Pi.
This special version of the game allows you to use Python programming code to
manipulate the Minecraft world in some way. For example, you learn how to post
messages to the chat window, add different blocks to create structures, and
teleport across the Minecraft world in which your player is located.

127

Programming
Minecraft Worlds
on the Raspberry Pi

MINECRAFT IS A computer game that allows you to build any computer world you
like, by using virtual building blocks (see Figure 6‐1). You can let your imagination run
riot—there are no limits! The game was created by Markus Persson (who also goes by
the gamer tag Notch). Players collect (or mine) blocks from the world around them,
using nothing but a trusty axe, while avoiding monsters who might be set on eliminat-
ing them. You can learn more about Minecraft and register to play an online demo
version at https://minecraft.net.

Adventure 6

https://minecraft.net/

A D V E N T U R E S I N R A S P B E R R Y P I128

Getting Started with
Minecraft Pi
Minecraft Pi is pre‐installed on the Raspbian operating system. You can run it by using
the menu system and navigating to Games and selecting Minecraft Pi, as shown in
Figure 6‐2. It is similar to the Minecraft Pocket Edition.

1. You can Open Minecraft Pi by clicking the desktop menu and selecting Minecraft
Pi from the Games menu.

2. Click Start Game to see a list of Minecraft worlds that you can join. On your first
go, however, this list is empty.

3. Click Create New to generate a Minecraft world in build mode. Minecraft has
two modes—Survival and Build. In Build mode, you are able to construct objects
without having to avoid monsters who may end your life.

4. Play around a bit and familiarize yourself with the controls (see Table 6‐1) for
playing Minecraft in Creative mode.

Being able to play Minecraft is one fun aspect of Minecraft Pi, but what is more excit-
ing is being able to use Python code to manipulate the Minecraft environment. Time
to dive in.

FIGURE 6-1 Minecraft

129A D V E N T U R E 6 P R O G R A M M I N G M I N E C R A F T W O R L D S

FIGURE 6-2 Opening Minecraft Pi from the Raspbian menu

For a video that walks you through setting up Minecraft Pi, visit the companion
website at www.wiley.com/go/adventuresinrp3E. Click the Videos tab,
and select the MinecraftPiSetup file.

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E S I N R A S P B E R R Y P I130

Your First Minecraft
Pi Python Program
Now that you have created a new world and explored, it’s time to see what adventures
you can have with code in the Minecraft world. In this project, you run a Minecraft
game and write a Python program to test that your connection to the game works. You
do this by displaying a message in the game.

1. Begin by opening Python 3 (IDLE) and running Minecraft Pi—if it is not already
open.

2. When Minecraft Pi has loaded, click Start Game and select a world from the list.
(If you have not yet created any worlds, click Create New to enter Creative mode,
as instructed earlier.)

3. Navigate back to the Python 3 window with your mouse, and open a new file by
selecting File ➪ New File.

4. Type the following code into the text editor file:

from mcpi.minecraft import Minecraft

Minecraft Pi has programming libraries for Python, which you have been using
so far in this book and also Java. In this adventure we will be using Python 3.

Table 6-1 Minecraft Pi Controls

Key press/mouse
movement Action

W Moves player forward.

A Moves player left.

S Moves player back.

D Moves player right.

Spacebar Makes player jump. Tap the spacebar twice to make the
player fly.

Tab Releases the mouse so you can click on other windows.

Esc Returns you to the menu.

Move the mouse Allows you to see around the player and point the player in a
particular direction.

Left- click Breaks the blocks around you.

Right- click Places a block.

131A D V E N T U R E 6 P R O G R A M M I N G M I N E C R A F T W O R L D S

As in previous Python programs you have created, here you are importing a
module that you need in your program—in this case, the minecraft module.
Now type the following command (being sure to use the correct capitalisation):

mc = Minecraft.create()

This line connects your program to Minecraft and enables you to start interact-
ing with it. Remember, you must have Minecraft running and be in a game for
your program to work.

5. Create a message string using the following code:

msg = ("I am starting my Minecraft Pi Adventures")

Then type the following line to post your message to the Minecraft chat window:

mc.postToChat(msg)

6. Save your file as testmcpi.py in your Documents folder.

7. Run your program by clicking Run and Run Module.

You see your message displayed in the Minecraft game window open on your
screen, as shown in Figure 6‐3.

FIGURE 6-3 Your first Minecraft Pi Python program

A D V E N T U R E S I N R A S P B E R R Y P I132

Using Coordinates in
Minecraft Pi
You can see how easy it is to make something interesting happen in the Minecraft game
environment using Python code. Minecraft gives the appearance of three dimensions.
To achieve this, Minecraft Pi uses x, y and z coordinates to generate a 3D environment,
with x representing left to right, y representing up and down and z representing for-
ward and back (see Figure 6‐4).

Finding the Player’s Location
To understand coordinates within Minecraft, in this part of the adventure you find out
the current coordinates of your player and then transport her to a different location by
changing the coordinates. Begin by writing a program to locate your player.

1. In Python 3 (IDLE) open a new file and save it as location.py.

FIGURE 6-4 x, y and z coordinates

133A D V E N T U R E 6 P R O G R A M M I N G M I N E C R A F T W O R L D S

2. In the new file, first import the modules you need in this program by typing the
following code:

from mcpi.minecraft import Minecraft
import time

mc = Minecraft.create()

time.sleep(1)
pos = mc.player.getPos()

In the last line, you use the command getPos to get the position of your
Minecraft player. Next, you want to display that information in the Minecraft
chat window so you can see it in the game. To do that, type the following code:

mc.postToChat("You are located x=" +str(pos.x) + ", y=" ↩
 +str(pos.y) +", z=" +str(pos.z))

pos.x gives the x coordinate, pos.y gives the y coordinate, and pos.z gives
the z coordinate.

3. Press CTRL+S on the keyboard to save your code.

4. Run the program by pressing F5 on the keyboard.

The coordinates for the player’s location are displayed in the chat window (see
Figure 6‐5).

DIGGING INTO THE CODE
postToChat requires a string, and pos.x is a number. str() converts the
number into a string, and Python allows you to add different strings together to
make one long string.

Changing the Player’s Location
Now that you can easily detect your player’s position within Minecraft, why not change
her location? Amend location.py by adding the following lines of code at the end of
your program:

time.sleep(2)
mc.postToChat("Get ready to fall from the sky!")

time.sleep(5)
mc.player.setPos(pos.x, pos.y + 60, pos.z)

A D V E N T U R E S I N R A S P B E R R Y P I134

When you run this code, the player suddenly changes position. The last line of code—mc.

player.setPos(pos.x, pos.y + 60, pos.z)—adds 60 only to the y axis (up and
down). The result is that the player is suddenly transported from her current position to
the middle of the sky—and because the player has nothing to stand on, she starts to fall!
In the next section, you discover how to give your player something to stand on.

Placing a Block
Traditionally, Minecraft is played by building structures such as shelters, homes and
other buildings. In fact, you can build whole cities if you are good at the game and have
spent lots of time farming and creating the different levels of material blocks. However,
if you use a version of Minecraft that you can manipulate with code, you don’t need to
spend hours building a structure; you can simply program it to happen.

FIGURE 6-5 Using getPos and setPos to locate and move a player in Minecraft Pi

Before you start this section, it is important that you create a new world in
Minecraft Pi by clicking the Create New button after starting the game from the
title menu. This places the player at the home position. If you do not do this, you
might not be able to see the blocks you create in the next section.

135A D V E N T U R E 6 P R O G R A M M I N G M I N E C R A F T W O R L D S

1. Create a new file and save it as placeblock.py.

2. Then, type the following code into the text editor window:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
x, y, z = mc.player.getPos()

mc.setBlock(x+1, y, z, 1)

By finding the player’s position and storing the values in x, y and z coordinates
(refer to Figure 6‐4), you can place a block in relation to where your player is in
the world. By adding 1 to the player’s x coordinate, you are asking for a block to
be placed 1 block length away from the player’s position on the x axis. This is fol-
lowed by the block type you wish to use—the value 1 represents STONE in this
example (see Figure 6‐6). The result in Minecraft Pi is a single block of stone
appearing next to the player.

3. Press CTRL+S to save your work. Test your code to see what happens by
pressing F5.

FIGURE 6-6 Using setBlock in Minecraft Pi

A D V E N T U R E S I N R A S P B E R R Y P I136

Placing Multiple Blocks
Placing one block at a time is still going to be time‐consuming and not very helpful if
you want to build a bigger structure. But with the addition of one letter, you can place
more than one block at a time.

So far, with setBlock you have been using one set of coordinates to tell the game
where to place a single block. The setBlocks command (note the added s at the end)
works in much the same way as setBlock. You start with a set of x, y and z coordi-
nates that indicate where in the Minecraft world you want the blocks to be placed.
Then the second set of x, y and z coordinates represent the number of blocks needed to
make the shape you want to create:

setBlocks(x1, y1, z1, x2, y2, z2, blocktype)

For example, to generate a cube you would type:

setBlocks(0, 0, 0, 10, 10, 10, 103)

The first three numbers are the location where the blocks should be placed. The last
three are the number of blocks. So the preceding code would place 10 melon type
blocks (block ID 103) on the x axis, 10 on the y axis and 10 on the z axis, forming a
cube (see Figure 6‐7).

However, if you try to use this script you may not be able to find your cube of melons,
as Minecraft Pi sets the blocks from the center location (0, 0, 0) of the world.
Depending on the terrain, this could be inside a mountain!

It makes more sense to place the blocks where the player is located, so that you can
find a nice empty spot for your cube. To do this, you need to get the player’s position
using the following code:

x, y, z = mc.player.getTilePos()

See if you can navigate to a new location and then place some different
blocks using the setBlock command. You can find the full list of blocks
supported in Minecraft Pi in the file block.py, which is located in /opt/
minecraft‐pi/api/python/mcpi/.

CHALLENGE

137A D V E N T U R E 6 P R O G R A M M I N G M I N E C R A F T W O R L D S

FIGURE 6-7 Using setBlocks to make a cube in Minecraft Pi

DIGGING INTO THE CODE
Until now, you have used the position of the player as a starting point for inter-
acting blocks; this allows you to find out what block the player is standing on or
place blocks around the player. However, this poses a problem if you want to
place multiple blocks. The x, y and z coordinates returned by the getPos()
function are decimals (also known as floats), as your player can be in the middle
of a block in Minecraft—but to interact with blocks you need to use whole
numbers (aka integers). So instead, use the function getTilePos(), which
returns the block (or tile) that the player is standing on.

Try changing the values for the block coordinates and see what cubes and
cuboids (rectangular cubes) you can make. See Figure 6-7 if you need some
 guidance.

How might you use setBlocks to build a wall?

CHALLENGE

A D V E N T U R E S I N R A S P B E R R Y P I138

You can then use setBlocks, adding the coordinates of the player’s location to
 indicate where you would like the blocks to be placed:

mc.setBlocks(x, y, z, x+10, y+10, z+10, 103)

You may find that you end up inside this cube because the first set of coordinates is the
player’s position! You could change the location coordinates in the same way:

mc.setBlocks(x+1, y+1, z+1, x+11, y+11, z+11, 103)

Try this yourself by modifying your existing code, and see if you can get it to work.

Types of Blocks
There are many different types of blocks in Minecraft Pi that you can use to code struc-
tures and objects. So far, you have used STONE (block ID 1) and MELON (block ID 103).
You can find a list of the different blocks and their IDs online, but to get you started
here are a few of my favourites:

AIR = 0

WATER = 8

LAVA = 10

GOLD_ORE = 14

GLASS = 20

WOOL = 35

FLOWER_CYAN = 38

TNT = 46

DIAMOND_ORE = 56

DIAMOND_BLOCK = 57

GLOWING_OBSIDIAN = 246

Rather than using the numbers in your code, you can use variables like we do in the
Scratch adventure game in Adventure 3. In this case you are storing the block ID val-
ues to make it easier to remember the block type. To create a variable in Python, type
the name of the variable you would like to use. Then place the value of the block after
an equal sign to assign it:

lava = 10
mc.setBlock(x, y, z, lava)

139A D V E N T U R E 6 P R O G R A M M I N G M I N E C R A F T W O R L D S

There are some blocks that have extra properties. For example, WOOL has an extra
parameter for specifying the colour of wool you want to use. To change the colour of
wool, you can type

wool = 35
mc.setBlock(x, y, z, wool, 4)

The value 4 used after the block ID sets the colour of the WOOL block to yellow. Try
some others numbers to see what colours you can make the block.

Creating a TNT Chain Reaction
If there is one block that can bring a smile to your face, it is the TNT block. This block
has the exciting extra property of being able to explode! You can set the block by using
the following code:

tnt = 46
mc.setBlock(x, y, z, tnt)

Just like the other blocks you have used before, like STONE and MELON, this code
places a block that doesn’t do very much. You need to tell Minecraft Pi that you want
it to be able to explode when your player hits it with his sword. Like WOOL, TNT has an
extra value to make it exploding TNT, and it is the value 1.

tnt = 46
mc.setBlock(x, y, z, tnt, 1)

Run your code and use your player to hit the block with your sword. The block begins
to flash; a few seconds later it explodes. To create a chain reaction you need to write a
program that drops blocks as the player walks or flies around the world.

1. Open a new Python 3 (IDLE 3) file and save it as droptnt.py

2. Import the modules that you need:

from mcpi.minecraft import Minecraft
import time

3. Set up the connection to Minecraft, and create a tnt variable:

mc = Minecraft.create()
tnt = 46

A D V E N T U R E S I N R A S P B E R R Y P I140

4. Create a continuous loop known as a while True: loop to continuously get
the player’s position and store the values in x, y and z coordinates:

while True:
 x, y, z = mc.player.getTilePos()

5. Staying inside the loop, set the tnt block with the extra exploding value:

 mc.setBlock(x, y, z, tnt, 1)

6. Add a short period of time so that the tnt blocks drop at regular intervals:

 time.sleep(0.1)

7. Save your program and test that it works by running it and then having your
player run around the Minecraft world. You should see tnt blocks drop behind
you. To start the chain reaction explosion, hit the tnt block closest to you with
your sword. Figure 6‐8 shows the code and the dropped tnt blocks.

FIGURE 6-8 Causing a TNT explosion chain reaction in Minecraft Pi

141A D V E N T U R E 6 P R O G R A M M I N G M I N E C R A F T W O R L D S

Creating a Diamond
Transporter
When you are playing Minecraft in Creative mode, it takes a lot of time to move from
one side of the world to the other. You can speed things up by creating a diamond
block transporter to whisk you from location to location. To do this, you will use
setBlock, getPos and setPos.

To see a tutorial for diamond transporter program, visit the companion website
at www.wiley.com/go/adventuresinrp3E. Click the Videos tab and select
the DiamondTransporter file.

1. Open a new Python 3 (IDLE 3) file and save it as transporter.py.

2. Import the modules that you need:

from mcpi.minecraft import minecraft
import time

3. Set up the connection to Minecraft, create a variable to store the diamond block
ID and post a message to the screen:

mc = Minecraft.create()
diamond = 57
mc.postToChat("A Transporter Adventure")
time.sleep(5)

The time delays are important in this code, so that you can move the player
around the Minecraft world before the transporter blocks are placed.

4. Place a diamond block as the first transporter location, underneath the player’s
position:

ts1 = mc.player.getTilePos()
mc.setBlock(ts1.x, ts1.y - 1, ts1.z, diamond)
mc.postToChat("First transport block created")
time.sleep(2)

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E S I N R A S P B E R R Y P I142

5. Display a message on the screen to tell the player to move, and find the second
location where he wants to be able to transport to and from:

mc.postToChat("Find another location in 30 seconds")
time.sleep(30)
ts2 = mc.player.getTilePos()
mc.setBlock(ts2.x, ts2.y -1, ts2.z, diamond)
mc.postToChat("Second transport block created")
time.sleep(2)

6. Create a while True: loop to continuously check the player’s position. If the
player is positioned on the first transporter diamond block location, his location
is changed to where the second diamond block is located. If the player is posi-
tioned on the second transporter diamond block location, his location is changed
to where the first diamond block is located.

while True:
 x, y, z = mc.player.getTilePos()
 if(x == ts1.x) and (y == ts1.y) and (z == ts1.z):
 mc.player.setPos(ts2.x, ts2.y, ts2.z)
 if(x == ts2.x) and (y == ts2.y) and (z == ts2.z):
 mc.player.setPos(ts1.x, ts1.y, ts1.z)
 time.sleep(0.5)

Figure 6‐9 shows the code, and Figure 6‐10 shows the diamond transporter in
position.

Can you improve the transporter program in the following ways?

• Modify the code so that a player can set the second transporter loca-
tion when and where she wants it. Instead of using a timer, you
could use input!

• Modify the code so that it can post to chat with a countdown num-
ber every five seconds, so that the player knows how long she has
left to move.

CHALLENGE

143A D V E N T U R E 6 P R O G R A M M I N G M I N E C R A F T W O R L D S

FIGURE 6-9 Code for the diamond transporter program for
Minecraft Pi

FIGURE 6-10 The diamond transporter, ready for action!

A D V E N T U R E S I N R A S P B E R R Y P I144

Sharing and Cloning Minecraft
Pi Programs
When the Minecraft community meets the Raspberry Pi community, good things
 happen. Many people enjoy sharing the programs they have made for Minecraft Pi so
that you can clone them or make copies of them to use on your own Raspberry Pi. You
can find shared Minecraft Pi programs on the Minecraft Pi forum (www.minecraft
forum.net/forum/216‐minecraft‐pi‐edition/) or the Raspberry Pi forum
(www.raspberrypi.org/forums). Many programmers who share their code use
an online repository such as GitHub (https://github.com) so that you can easily
download their code, try it out, and help improve it. Why not have a go at downloading
Martin O’Hanlon’s Minecraft Cannon program? This program places a cannon where
your player is positioned in Minecraft Pi. You use the Terminal command line to move
the cannon up or down before firing blocks. Check out the video at www.youtube.
com/watch?v=6NHorP5VuYQ to see it in action, and use the following steps to
download and use it yourself:

1. Open a Terminal window. If your Raspbian image is not up to date you may not
be able to install the required applications, so first update your application pack-
ages by typing the following command into the terminal:

sudo apt-get update

2. Type the following line:

sudo apt-get install git-core

This command installs an application called git‐core that lets you clone the
code that Martin has placed on a repository called github.

3. After git‐core is installed, type the following code to have git‐core create a
clone of the Cannon program on your Raspberry Pi:

cd ~
git clone ↩
 https://github.com/martinohanlon/minecraft-cannon.git

cd minecraft-cannon

4. After you have navigated to the minecraft‐cannon directory, type the
 following command to start the Minecraft cannon program:

python minecraft-cannon.py

Now you’re ready to play with the cannon! To control the cannon, shown in
Figure 6‐11, you can use the following commands in Terminal window:

• start—Start up the cannon

• rotate [0‐360 degrees]—Rotate the cannon between 0 and 360 degrees

http://www.minecraftforum.net/forum/216-minecraft-pi-edition/
http://www.minecraftforum.net/forum/216-minecraft-pi-edition/
http://www.raspberrypi.org/forums
https://github.com/
http://www.youtube.com/watch?v=6NHorP5VuYQ
http://www.youtube.com/watch?v=6NHorP5VuYQ

145A D V E N T U R E 6 P R O G R A M M I N G M I N E C R A F T W O R L D S

• tilt [0‐90 degrees]—Tilt the cannon upwards between 0 and 90 degrees

• fire—Fire the cannon

• exit—Exit and clear the cannon

FIGURE 6-11 Minecraft Pi cannon

Further Adventures with
Minecraft Pi
Minecraft Pi allows you to be really creative. As well as finding programs created by
other people, you can find online tutorials to generate things like rainbows, bridges
and other games like Snake inside your Minecraft world. Here’s a list to get you started:

• Make a colourful rainbow with the tutorial at www.minecraftforum.
net/topic/1638036‐my‐first‐script‐for‐minecraft‐pi‐api‐a‐

rainbow/.

• You can’t go wrong following Martin O’Hanlon’s Minecraft Pi tutorials on his web-
site, Stuff about=“code”: www.stuffaboutcode.com/p/minecraft.html.

http://www.minecraftforum.net/topic/1638036-my-first-script-for-minecraft-pi-api-a-rainbow/
http://www.minecraftforum.net/topic/1638036-my-first-script-for-minecraft-pi-api-a-rainbow/
http://www.minecraftforum.net/topic/1638036-my-first-script-for-minecraft-pi-api-a-rainbow/
http://www.stuffaboutcode.com/p/minecraft.html

A D V E N T U R E S I N R A S P B E R R Y P I146

• Advance your programming skills using Craig Richardson‘s Python Minecraft Pi
Book (http://arghbox.files.wordpress.com/2013/06/minecraft
book.pdf) and API cheat sheet (http://arghbox.files.wordpress.
com/2013/06/table.pdf).

• Further develop your Python skills with Adventures in Minecraft by David Whale
and Martin O’Hanlon (www.wiley.com/go/adventuresinminecraft).

Minecraft Pi Command Quick Reference Table

Command Description
from mcpi.minecraft import

minecraft
Imports the Minecraft modules.

mc = minecraft.create() Connects to Minecraft Pi by creating the Minecraft
object.

pos = mc.player.getPos() Returns the players position with floats.
pos = mc.player.getTilePos() Returns the players position with integers.
postToChat(msg) Posts a message to chat in Minecraft Pi.
setBlock Sets a block at coordinates.
setBlocks Sets blocks between two sets of coordinates.
setPos Sets the position of a player.

Achievement Unlocked: Why dig when you can code with Minecraft Pi?

In the Next Adventure
In the next adventure, you transform your Raspberry Pi into an electronic synthe-
sizer as you learn how to program music using an application called Sonic Pi!

http://arghbox.files.wordpress.com/2013/06/minecraftbook.pdf
http://arghbox.files.wordpress.com/2013/06/minecraftbook.pdf
http://arghbox.files.wordpress.com/2013/06/table.pdf
http://arghbox.files.wordpress.com/2013/06/table.pdf
http://www.wiley.com/go/adventuresinminecraft

147

THE RASPBERRY PI can be many things—a standalone computer, a games
machine and even a music synthesizer. The way we as humans interact with computers
has changed over the years. Computers are no longer just devices on which to create
text files or play computer games. They are also communication devices, transporters
and musical instruments!

Creating music using computers is not a new idea. Computer music has its roots in
electronics, and a growing number of musicians are turning to code to create new
sounds. Chiptune is a style of music that uses sound chips from old computers and
consoles from the 1980s and 1990s, like the Nintendo Game Boy. Pixelh8 (https://
en.wikipedia.org/wiki/Pixelh8) and 2xAA (http://brkbrkbrk.com) are
chiptune artists and computer programmers who program their music before it is per-
formed. Other computer music programmers prefer to code their music live, feeling
the atmosphere around them and responding to it with sound. They are called live
 coders. Sam Aaron (http://sam.aaron.name/) is a computer scientist by day but a
live coder by night who performs at events, creating his code live on a big screen so the
audience can see it as it happens (see Figure 7‐1).

Your Raspberry Pi has a headphone/speaker jack port so that you can listen to sounds.
You also have a keyboard and mouse that allow you to type code. In this adventure,
you put those features to good use by creating music with code using an application
called Sonic Pi (http://sonic‐pi.net). You will become a computer music
 programmer!

Coding Music with
Sonic Pi

Adventure 7

https://en.wikipedia.org/wiki/Pixelh8
https://en.wikipedia.org/wiki/Pixelh8
http://brkbrkbrk.com/
http://sam.aaron.name/
http://sonic-pi.net/

A D V E N T U R E S I N R A S P B E R R Y P I148

Getting Started with Sonic Pi
To create music in this adventure you use an application designed to be used on the
Raspberry Pi called Sonic Pi. Sonic Pi was created by Dr Sam Aaron, a live coder of
music, and is based on his more complex music system called Overtone. Sonic Pi is
already installed automatically as part of the operating system, Raspbian. However,
improvements are always being made to Sonic Pi, meaning that you may want to
update and upgrade to the latest version before you begin the tutorials in this chapter.

FIGURE 7-1 Dr Sam Aaron’s live coding screen during a performance

Make sure that you are using the most up-to-date Raspbian operating system
available to use the latest version of Sonic Pi. Remember, if you ever want to
update and upgrade the packages on your operating system, you can type sudo
apt‐get update && sudo apt‐get upgrade into a Terminal window.
Sam is always improving the application, so if you want to use the latest and
greatest version, it’s worth following his work at https://sonic‐pi.net.

https://sonic-pi.net

A D V E N T U R E 7 C o D I N G M U S I C w I T h S o N I C P I 149

You can find Sonic Pi on the main menu under Programming. Figure 7‐2 shows the
upgrade command being executed.

The Sonic Pi Interface
Before you start creating music, you’ll find it helpful to get to know the Sonic Pi inter-
face and what each panel is used for first. You may need to resize the application win-
dow to see the whole interface.

To be able to hear the sounds, you need to connect your Raspberry Pi to a sound
device. This can be headphones/earphones or speakers connected to the Pi
using the jack port, or an HDMI TV or monitor with built-in speakers, connected
with an HDMI cable. The better the quality of sound, the more fun you will have!

FIGURE 7-2 Using apt‐get update && upgrade to get the latest version of
Sonic Pi

A D V E N T U R E S I N R A S P B E R R Y P I150

The elements of the Sonic Pi interface are identified in Figure 7‐3:

• The programming panel—The main panel in Sonic Pi, on the left side. This is
where you type your code to make music.

• The output panel or log—The upper panel on the right side. This is where you
will see information about your program as it runs.

• Buffers—You can use different workspaces, called buffers, to create and save
your code. In this adventure, you use a different buffer for each exercise. You can
move between them using the tabs along the bottom of the programming panel.

• Play and Stop buttons—Click these buttons to start and stop your music
scripts.

• Save button—Sonic Pi automatically saves what you write in the programming
panel. However, if you want to save your code into a text file to store it else-
where, you can use the Save button at the top of the application to do so.

FIGURE 7-3 The Sonic Pi interface

A D V E N T U R E 7 C o D I N G M U S I C w I T h S o N I C P I 151

• Load button—If you have saved any Sonic Pi code into a text file to store it
elsewhere, you can use the Load button at the top of the application to locate it
and open it.

• Record button—This button allows you to create a sound file recording of your
coded music for playback on a media player.

• Size buttons—You can change the size of the text to make it bigger or smaller
to make it easier to read and spot any errors.

• Help—Sonic Pi has built‐in information about the code that you can use. It also
has some example programs that you can play with.

• Preferences—You are able to change the level of volume with this button and
force the sound to go to your headphones rather than your monitor, or vice
versa.

Creating Your First Sounds
with Sonic Pi
Now that you are familiar with the Sonic Pi interface, it’s time to start making some
noise! In this first project you learn how to play single notes and chords, add timings
and play Twinkle Twinkle Little Star.

1. To play your first note, open Buffer 0 and type the following:

play 60

Now click the Play button in the top‐left side of the application. Not only do you
hear your note playing, but you see information displayed in the output panel,
as shown in Figure 7‐4:

synth :beep, {note: 60}

If you do not hear a note being played, check the preferences by clicking the icon,
to make sure the right output and volume is set.

Visit the companion website at www.wiley.com/go/adventuresinrp3E
and select FirstSounds to see a video of this project.

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E S I N R A S P B E R R Y P I152

2. Change your line of code so that it looks like this:

pley 60

Click the Play button. You don’t hear anything, as Sonic Pi found a syntax error
in your code because you misspelled play. You see an error (as in Figure 7‐5).
Sonic Pi is letting you know there is an error.

3. Fix the error by changing pley to play. Now try playing a few notes one after
the other in sequence by typing the following underneath your first note:

play 67
play 69

Click the Play button. It sounds like the notes are being played at the same time,
like a chord. This is no good if you want to play ‘Twinkle Twinkle Little Star’, as
all music is played to a beat. You need to introduce delays between each of the
notes in the sequence.

4. Add delays to your code by typing sleep 0.5 in between each of the play
instructions like this:

play 60
sleep 0.5
play 67
sleep 0.5
play 69

Click the Play button. You hear the notes play with a half‐second delay between
them.

FIGURE 7-4 Creating sounds using Sonic Pi

A D V E N T U R E 7 C o D I N G M U S I C w I T h S o N I C P I 153

The numbers used after play in Sonic Pi represent notes. Each note is a key on a
piano (http://computermusicresource.com/midikeys.html). The play 60
is actually a C, and play 69 is a G. These numbers are MIDI keyboard note numbers.

The numbers used after sleep represents timings: 1 is one second, and 0.5 is half a
second.

FIGURE 7-5 syntax error in Sonic Pi

DIGGING INTo ThE CoDE
You may notice that Sonic Pi does not use the same sort of programming
language that you have used in previous adventures. It actually uses a different
programming language called Ruby. Ruby uses the same computing concepts
as Scratch and Python, such as conditionals, iteration and data structures.

A MIDI keyboard, or Musical Instrument Digital Interface, is a musical instrument
that can communicate with a computer. Piano sheet music notes and MIDI
keyboard notes are the same, only sheet music notes are represented by letters
G, C, A, and so on, whereas MIDI keyboard notes are represented by numbers.
(In fact, MIDI note numbers are in semitone steps. G, A, B are tones whereas 67,
68, 69 are semitones.)

http://computermusicresource.com/midikeys.html

A D V E N T U R E S I N R A S P B E R R Y P I154

Twinkle Twinkle Little Star
You have the building blocks to generate a simple tune with notes C, G and A—or in
this case 60, 67 and 69—along with delays in between those notes using sleep (see
Figure 7‐6).

Amend your code so that it looks like the following, and click Play:

play 60
sleep 0.5
play 60
sleep 0.5
play 67
sleep 0.5
play 67
sleep 0.5
play 69
sleep 0.5
play 69
sleep 0.5
play 67

Remember that Sonic Pi runs through each line in your code in sequence. You could go on
and write the next part of the tune, but you will end up with a long list of play and
sleep, which could get confusing to read, especially if you mistype a line and create a bug.

FIGURE 7-6 Using play and sleep to play ‘Twinkle Twinkle Little Star’ in Sonic Pi

A D V E N T U R E 7 C o D I N G M U S I C w I T h S o N I C P I 155

It makes more sense to rewrite this code using a data structure. In this case you can
use a list like the ones you created in Python in Adventures 4 and 5. To create a list in
Ruby, you use square brackets and separate the items in the list with commas in much
the same way as in Python.

Type the following example list into Buffer 1 and click Play:

play_pattern [60, 60, 67, 67, 69, 69, 67]

You will notice that the same tune plays, but the delays between the notes are quite
slow. To speed up the timing you can set the beats per minute (BPM). At the top of
Buffer 1, above the line of code you have just written, type this line:

use_bpm 150

Click Play and the delay between the notes will decrease, giving the effect of speeding
up the tune. The value 150 in this code is the beats per minute (BPM).

In computer science, a data structure is a particular way of storing and organizing
related pieces of information. For example, in a list or array like play_pattern
[60, 67, 69], the list enclosed by square brackets in this line of code is an
example of a data structure. See Figure 7-7.

FIGURE 7-7 Using a list in Sonic Pi to play notes

A D V E N T U R E S I N R A S P B E R R Y P I156

Repeating Lines in a Loop
Musical tunes are sometimes made up of repeating notes or phrases. For example, in
‘Twinkle Twinkle Little Star’, the third and fourth lines, ‘up above the world so high’
and ‘like a diamond in the sky’, use the same notes. In your Sonic Pi code you could
type these lines out twice, like this:

play_pattern [67,67,65,65,64,64,62]
sleep 0.5
play_pattern [67,67,65,65,64,64,62]

Or instead you could use a loop:

2.times do
 play_pattern [67,67,65,65,64,64,62]
 sleep 0.5
end

Can you recreate the rest of ‘Twinkle Twinkle Little Star’ in code by trans-
lating the following musical notes into MIDI note numbers? Refer to the
table at http://computermusicresource.com/midikeys.html to
match the notes to the correct numbers.

Each line could be put into a play_pattern [] data structure:

C C G G A A G (You have already written this part of the song)

F F E E D D C

G G F F E E D

G G F F E E D

C C G G A A G

F F E E D D C

Can you translate another song into MIDI notes and re-create it using
Sonic Pi?

For one more challenge, try introducing variables to define the notes. For
example:

C=60

D=62

play_pattern[C,C,G,G,A,A,D]

ChALLENGE

http://computermusicresource.com/midikeys.html

A D V E N T U R E 7 C o D I N G M U S I C w I T h S o N I C P I 157

All the code between do and end is repeated; in this case, 2.times tells the program
to play it twice. You will see that the colour of the words do and end have automati-
cally changed to gold and are bold, as in Figure 7‐8. Programs that use colours for
syntax highlighting in this way make it easier for you to read your code. In this exam-
ple, it is important that the code you want to repeat is between do and end, so Sonic
Pi highlights those words to show you this.

You could change the value 2 to make the loop repeat more times. For example, if you
wanted to play the line five times you would type 5.times do, followed by the code
you want repeated, and then end. If you want to loop sections of code forever, then
you would type loop do, followed by the code, and then end.

Your ‘Twinkle, Twinkle’ tune might not sound the way you expect it to sound. Can you
figure out what you may need to add to improve it?

It is good practice to indent your code when you create loops in code. Indenting
makes it easier to read, especially if you are searching for a bug to fix to make
your music play. All code between do and end should be indented.

FIGURE 7-8 Using repeating loops in Sonic Pi

A D V E N T U R E S I N R A S P B E R R Y P I158

First Electronic Track
It’s time to take a step up from nursery rhymes and start making some cool‐sounding
electronic beats using Sonic Pi. In this project you create a complete track in the style
of the electronic artists mentioned earlier. Use a new Buffer to try the following exer-
cises and adapt them to create a cool tune.

Using Different Synthesizer Sounds
So far you have used the default Sonic Pi synthesizer sound, called beep. You can
change the sound by using the use_synth command, followed by the name of the
synth (fm, in this example) after a colon symbol:

use_synth :fm

This line of code must be placed above the instructions to play a note, a pattern or a
sleep, like this:

use_synth :fm
5.times do
 play 49
 sleep 1
end

use_bpm 150
use_synth :beep
2.times do
 play_pattern [67,67,65,65,64,64,62]
 sleep 0.5
end

Figure 7‐9 shows the use of different synths in Sonic Pi.

Visit the companion website at www.wiley.com/go/adventuresinrp3E and
select ElectronicMusicTrack for a video of this project.

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E 7 C o D I N G M U S I C w I T h S o N I C P I 159

In this example, you would hear the MIDI note 49 play five times using the fm sound,
and then the list of notes played twice using the beep sound.

For a list of all the different synths in Sonic Pi that you can try out, click the Help but-
ton and then select Synths from the navigation menu.

More sounds will be added to the Sonic Pi application in time, so be sure to watch for
them and keep your Pi application packages updated using sudo apt‐get update.

Using Prerecorded Samples
Not only can you create music in Sonic Pi using single notes, you can also create music
with samples. Samples are prerecorded sounds or tunes that you can bring into your
code. This is a really simple way to make your music track sound amazing!

To use a sample, you need to add the code sample :name of sample in the
sequence of your music program where you want it to play.

In this example, misc_burp is the name of the sample. Open a new Buffer and type
the following:

loop do
 sample :misc_burp
 sleep 1
end

FIGURE 7-9 Using different synthesizer sounds in Sonic Pi

A D V E N T U R E S I N R A S P B E R R Y P I160

There are lots of samples included with Sonic Pi to try. To find the names of them, click
Help in the top menu, followed by Samples on the bottom of the Help window (see
Figure 7‐10).

There are lots of fun ways in which you can use samples. For example, you can change
how the burp sounds, by adding some additional code, which is highlighted in bold:

n = 2
loop do
 n = n – 0.2
 sample :misc_burp, rate: n
 sleep 1
end

Now click Play to hear how the burp sounds.

In this example, to begin with a variable has been used to store a value of 2, which is
then modified inside the loop each time it is played. This value affects the rate at which
the sample is played. The default rate at which samples play is 1. Each time around the
loop, 0.2 is subtracted from the sample rate, changing the way it sounds. You can do
this with any of the Sonic Pi samples.

FIGURE 7-10 Finding samples from the Help window

A D V E N T U R E 7 C o D I N G M U S I C w I T h S o N I C P I 161

Creating a Surprising Tune
So far, you have run your music program in sequence and then using a repeating loop.
To add an element of fun, you could add a junction using a conditional. You used con-
ditionals in Adventures 3 and 5 in both Scratch and Python. Setting conditions allows
different paths to be followed, as if you were at a junction.

Type the following example script into your current Buffer to try it out (see Figure 7‐11):

10.times do
 if rand < 0.5
 play 62
 else
 play 50
 end
 sleep 0.25
end

The first line is the start of the repeating loop. Everything after do and before end will
be played 10 times. The second line is the start of the conditional statement. The con-
dition used here is like flipping a coin: rand stands for random, and it returns a ran-
dom value between 0 and 1. If the value returned is less than 0.5 then this statement
is true and the midi note 62 is played. If the value returned is not less than 0.5, then
the statement is false and MIDI note 50 is played instead. Only one of the play steps
is run. To complete the condition, end is used. Each time the loop plays, a new value
for rand is generated.

Using “rand” to Play Random Notes
You can use rand in other interesting ways outside of a conditional too. For example,
you could use it to play a random note in a sequence.

Underneath the conditional sequence, after the final end line, type the following:

3.times do
 play 60 + rand(10)
 sleep 0.5
end

What do you think happens if the rand returns the value 0.5? Is the statement
true or false?

A D V E N T U R E S I N R A S P B E R R Y P I162

The first line is the start of the repeating loop. Everything after do and before end is
played three times. The next line uses a calculation to determine what note it will play.
The code play 60 + rand(10) plays a random note between 60 and 69 because you are
adding a random number between 0 and 10 to 60 to make a random note each time;
for example, 61, 68, 63. Changing the value of play 60 sets the lowest note, whilst
changing the value of rand(10) changes the range of the highest note.

This makes the music sound more interesting, especially if it is inside a loop, as each
time it is played a different note could be heard between the MIDI note numbers you
specify.

Using Algorithms
You don’t always need to write brand new lines of code to add functionality to your
programs. You can use built‐in algorithms instead, as in this code:

play_pattern [60,72,65,80].sort

This code is an example of a sorting algorithm you can use in Sonic Pi. When the pro-
gram is run, the algorithm sorts the numbers in the list into ascending order from
lowest to highest.

FIGURE 7-11 Using conditionals and random in Sonic Pi

A D V E N T U R E 7 C o D I N G M U S I C w I T h S o N I C P I 163

You can also use .reverse to reverse the numbers in a list and .shuffle to ran-
domly shuffle the numbers in a list as shown in the following code:

use_bpm 150
loop do
 if rand < 0.5
 play_pattern [60,62,65]
 else
 play_pattern [60,62,65].reverse
 end
 sleep 0.125
end

In this code, shown in the Sonic Pi interface in Figure 7‐12, .reverse has been used
inside a conditional, so that if the random value returned by rand is less than 0.5 then
the notes 60, 62 and 65 play in order. If any other value is returned then the notes are
played in reverse.

An algorithm is a set of rules to be followed to calculate or solve a problem.
Common algorithms are those used for sorting information or data, as can be
seen by the sorting algorithm animations at www.sorting‐algorithms.
com. Rather than writing a sequence of code to sort the MIDI notes that you
used in a list in Sonic Pi, for example, you could use an existing sorting algorithm,
.sort.

FIGURE 7-12 Using algorithms to change the order of notes in lists

http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/

A D V E N T U R E S I N R A S P B E R R Y P I164

Running Two Scripts at the
Same Time
Electronic synthesized music usually has a repeating beat that you can nod your head
or dance along to, with a tuneful melody playing at the same time. This is similar to the
way pianists typically play with two hands on a piano. One hand plays one set of notes
of a song, usually in a lower octave, while the other hand plays a different set of notes.

In Sonic Pi you can use live loops to run more than one script simultaneously, in much
the same way as you can do in Scratch. To run multiple tunes at the same time, encase
the first tune between live_loop do and end. Each live loop that you create needs
to be given a unique name. For example:

live_loop :beat do
 sample :drum_heavy_kick
 sleep 0.5
end

Here the name beat has been assigned to the live loop by typing a colon (:) followed
by the name.

Underneath, write a second tune inside a live loop called melody as in Figure 7‐13.
Although this section of code is beneath the first in sequence, it is played at the same
time as the first live loop, just as two hands can play the piano simultaneously.

live_loop :melody do
 use_synth :mod_saw
 20.times do
 play_pattern [65,60,62,62,67,60,62,62]
 sleep 1
 end
end

Adding Effects
Modern synthesizers have the ability to add effects to sounds. Sonic Pi is no different
in that you are able to add studio effects such as reverb, echo and distortion to
your code.

To use an effect on your code, or section of your code, wrap it with with_fx :name
of effect do at the start and end at the bottom like this:

with_fx :reverb do
 sample :guit_e_fifths
end

A D V E N T U R E 7 C o D I N G M U S I C w I T h S o N I C P I 165

You are also able to add effects on top of effects, as long as you wrap with do and end.
Here is an example:

with_fx :reverb do
 with_fx :distortion do
 sample :guit_e_fifths
 end
end

Play around with some effects and add them to your music track. The Help window
includes a list of effects that you can use; look under the subheading fx.

Making a Recording of Your Music
By now you will have a music track that you want to listen to on other devices, or that
you want to share with friends and family. You could save your code in a text file by
clicking on the Save button and then sending it to other people for them to copy into
Sonic Pi and play. Alternatively, you can create a recording of how the music sounds.

With a Buffer open displaying the code that you have written to make your music
track, click the Record button, quickly followed by the Play button. Once your music
has finished, press the Record button again to stop the recording. You are asked to
name your recording and save it. It is saved as a .wav file, which is a type of sound file
that you can play on computing devices (see Figure 7‐14).

FIGURE 7-13 Playing multiple tunes at the same time using threads

A D V E N T U R E S I N R A S P B E R R Y P I166

Further Adventures with
Sonic Pi
If you have enjoyed learning how to make music using Sonic Pi and the programming
language Ruby, you can continue having fun with it by looking at these resources:

• Sonic Pi website (http://sonic‐pi.net)

• Kids Ruby (www.kidsruby.com)

• Live Coding Music (http://toplap.org/category/music)

• Official Ruby Documentation (www.ruby‐lang.org/en)

• Sonic Pi: Live & Coding (http://www.sonicpiliveandcoding.com)

FIGURE 7-14 Saving your coded music as a sound file

http://sonic-pi.net/
http://www.kidsruby.com/
http://toplap.org/category/music/
http://www.ruby-lang.org/en/
http://www.sonicpiliveandcoding.com

A D V E N T U R E 7 C o D I N G M U S I C w I T h S o N I C P I 167

Sonic Pi Command Quick Reference Table

Command Description

live_loop :name do...end Runs any code between do and end at the same time
as another live_loop block.

play x Plays note x.
play_pattern

[60,60,67,67,69,69,67]
Plays a pattern of notes inside a list.

rand Returns a random number.
.reverse An algorithm that reverses the order of notes in a list.
.shuffle An algorithm that shuffles the order of notes in a list.
use_synth :fm Sets the synth sound; in this example, the fm sound.
with_fx :reverb do ... end Adds an effect to a block of sounds; in this example,

reverb is added to any code between do and end.
x.times do...end Runs any code between do and end x number of

times.

Achievement Unlocked: Head bopping, toe tapping creator of coded
 computer music with Sonic Pi!

In the Next Adventure
In the next adventure, you’ll see that you can use Raspberry Pi as more than
just a tool for programming. With a little knowledge of electronics you are able
to create circuits, control lights and even use marshmallows as input buttons to
control computer games—all thanks to the GPIO pins on the Raspberry Pi!

169

Using the GPIO Pins
on the Raspberry Pi

THE GENERAL PURPOSE INPUT OUTPUT (GPIO) pins on the Raspberry Pi are
what make it really special. The behaviour of these pins can be controlled or
 programmed—by you! You can use the pins to sense and control physical objects in
the real world, like lights and switches. The pins are located on the main board of the
Raspberry Pi, shown in Figure 8‐1.

In this adventure, you learn some basics of electronics and then discover how to
output to a light‐emitting diode (LED), making it light up using your Raspberry Pi. For
the final project in the adventure, you hook up a marshmallow (yes, a real marshmal-
low) to input a signal to your Raspberry Pi to play a Scratch marshmallow game that
senses the press of a button.

Adventure 8

A D V E N T U R E S I N R A S P B E R R Y P I170

Using a Raspberry Pi GPIO
Pin Layout Diagram
Raspberry Pi projects using GPIO pins give you the opportunity to use electronics
 concepts and techniques to make something happen electronically, such as making an
LED light up. Many of the pins have different purposes, and the instructions in this
adventure tell you which pin to use for each connection.

FIGURE 8-1 The General Purpose Input Output (GPIO) pins on a Raspberry Pi

Input refers to the raw data or information that can be entered into a computer
system like a Raspberry Pi before it is processed. An example of an input device is
a push button or a microphone. The Raspberry Pi has pins that can be connected
to these and other devices.

Output refers to the data or information that is communicated to you as it exits a
computer system like a Raspberry Pi after it has been processed. An example of
an output device is a speaker or monitor screen.

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 171

There are two revisions of the GPIO pin layout for the Raspberry Pi: one with 26 pins
and one with 40 pins. The first Raspberry Pi had 26 GPIO pins. More were added from
the Model B+ onwards, although in this chapter, you only use the first 26, so it doesn’t
matter which Raspberry Pi model you have. Simply ensure that your software is up to
date. You can remind yourself how to update the software by returning to Adventure 2.
Figure 8‐2 shows the layout of all 40 pins on the latest Raspberry Pi board. The first 26
pins have the same layout as the pins on the original Raspberry Pi 1 Model B board.
You should refer to this diagram when connecting cables to the pins and when writing
your code to program them.

You can find this diagram, along with more detail about each GPIO at https://
pinout.xyz/#.

FIGURE 8-2 Layout of the GPIO pins on a
Raspberry Pi Model B+

https://pinout.xyz/
https://pinout.xyz/

A D V E N T U R E S I N R A S P B E R R Y P I172

To make it easier to tell which pin is which, Dr Simon Monk has created a Raspberry
Leaf template with a label for each pin—you can cut these out and place them over the
pins. It is a good idea to download, print and cut out a Raspberry Leaf to help you know
which pins to use in the projects in this adventure. You can download the template
from the Adventure in Raspberry Pi website or from Dr Monk’s electronics website
(www.doctormonk.com/2013/02/raspberry‐pi‐and‐breadboard‐
raspberry.html). Dr Monk’s site has templates for both the Rev 1 and Rev 2 boards;
be sure to download the correct version for your board. This Raspberry Pi 1 template
can be used on a Model B+ Raspberry Pi board as well as on both the Raspberry Pi 2 and
Pi3, but it fits only the first 26 pins. See Figure 8‐3.

If you have an original Raspberry Pi, you can still follow the steps, but ensure that
you refer to the layout diagram for your board and use the pin numbers from that
diagram in your programs, and not those specified in the instructions.

FIGURE 8-3 The Raspberry Leaf for a
Raspberry Pi Model B Rev 2 board

http://www.doctormonk.com/2013/02/raspberry-pi-and-breadboard-raspberry.html
http://www.doctormonk.com/2013/02/raspberry-pi-and-breadboard-raspberry.html

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 173

Instead of using a paper leaf, you can buy metal pin labels like the one from RasP.io
(http://rasp.io/portsplus). The metal pin labels are great if you plan to use
them a lot because they’re more durable than paper, which can tear when you repeat-
edly put it on and take it off of the pins.

You can also buy special cases for the Raspberry Pi that include a GPIO pin diagram on
them to help you identify the pins, like the one from Pimoroni called the Coupe
(https://shop.pimoroni.com/products/pibow-coupe-for-raspberry-
pi-3).

You should take great care when connecting cables to the GPIO pins on your
Raspberry Pi. There are two reasons for this. First, you should be cautious to
protect yourself from harm. Second, the Raspberry Pi is a 3.3V device, and if
you plug in anything at a higher voltage than that it will damage the processor
and possibly render your board useless.

It is also very important that you connect any external components to the
correct pins on the Raspberry Pi, so it is essential that you refer to the correct
GPIO revision layout diagram.

Electronics Basics
You are delving into a new world of electronics by using the Raspberry Pi’s GPIO pins.
If you have never created any electronic circuits before, following the tutorials in this
adventure is a good place to learn basic electronics. To get started, you should become
familiar with the electronic concepts and components in the following list.

• Current is the rate at which electrical energy flows past a point in a circuit. It is
the electrical equivalent of the flow rate of water in pipes. Current is measured
in amperes (A). Smaller currents are measured in milliamperes (mA).

• Voltage is the difference in electrical energy between two points in a circuit. It
is the electrical equivalent of water pressure in pipes, and it is this pressure that
causes a current to flow through a circuit. Voltage is measured in volts (V).

• Resistors are electrical components that resist current in a circuit. For exam-
ple, LEDs can be damaged by too much current, but if you add the correct value
resistor in series with the LED in the circuit to limit the amount of current, the
LED is protected. Resistance is measured in ohms. You need to pick a resistor
with the correct value to limit the current through a circuit; the value of a resis-
tor is shown by coloured bands that are read from left to right. The exercises in
this adventure use some resistors and explain how to read the value.

http://rasp.io/portsplus
https://shop.pimoroni.com/products/pibow-coupe-for-raspberry-pi-3
https://shop.pimoroni.com/products/pibow-coupe-for-raspberry-pi-3

A D V E N T U R E S I N R A S P B E R R Y P I174

• A diode is a device that lets current flow in only one direction. A diode has two
terminals, called anode and cathode. Current will flow through the diode only
when positive voltage is applied to the anode, and negative voltage to the
cathode.

• A light‐emitting diode or LED is a diode that lights up when electricity passes
through it. An LED is an example of an output device. LEDs allow current to
pass in only one direction. They come in a variety of colours and have one short
leg and one long leg, which helps you determine which way round they need to
be placed in a circuit for current to flow through them. The exercises in this
adventure use some LEDs.

• A capacitor is used to store an electric charge. The capacity that this compo-
nent has is measured in farads (F). A farad is a very large quantity, so most of the
capacitors you see are measured in microfarads.

• A breadboard is a reusable device that allows you to create circuits without
needing to solder all the components. Breadboards have a number of holes into
which you can push wires or jumper cables and components to create circuits.
The two columns of holes on either side of the breadboard, between the red and
blue lines, are for power. The column next to the red line is for positive connec-
tions and the column next to the blue line is for negative connections (see
Figure 8‐4 for an example of a breadboard). The exercises in this adventure use a
breadboard.

• Jumper cables can be used to connect the GPIO pins on the Raspberry Pi to a
breadboard or other components. They are reusable and do not require solder-
ing. They come in different formats: female‐to‐male; female‐to‐female; and
male‐to‐male.

• A circuit diagram shows you which electronic components, represented by
symbols, are connected to complete a circuit and in what order they should be
placed. The exercises in this adventure include circuit diagrams to help you
understand how the circuit works and to show you the order in which the com-
ponents need to be placed for current to flow through.

Figure 8‐4 shows a half‐size breadboard, a variety of jumper cables, an LED, a push
button and some resistors.

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 175

Using a Python Library
to Control GPIO
To use Python to control the GPIO pins, you first need a Python GPIO library installed
onto your Raspberry Pi. A library is a collection of already written code that you can
use. For example, libraries contain modules that you can use in your code, like the
sleep function from the time module that you used in previous adventures. In this
adventure, you use the GPIO library to sense and control the pins.

The Python library to control GPIO, called gpiozero, should be preinstalled on your
Raspberry Pi. If you are using an early distribution of Raspbian or another Pi operating
system, however, you may need to download and install gpiozero. You can find instruc-
tions on how to do this in the gpiozero library documents (http://gpiozero.
readthedocs.io/en/docs‐updates/installing.html). (See Figure 8‐5).

FIGURE 8-4 Electronic components

http://gpiozero.readthedocs.io/en/docs-updates/installing.html
http://gpiozero.readthedocs.io/en/docs-updates/installing.html

A D V E N T U R E S I N R A S P B E R R Y P I176

Making an LED Blink
With the gpiozero Python library on a Raspberry Pi, you can use the GPIO pins to make
something physical happen. In this project you control an LED and make it blink.

Along with your Raspberry Pi you need the following items, shown in Figure 8‐6:

• A breadboard

• Two jumper cables

• An LED

• A 330 ohm resistor

FIGURE 8-5 Official gpiozero instructions to download and install the Python
GPIO Library

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 177

Creating the LEDblink Python Code
The first part of the project is to write the code that makes your LED blink.

1. Open Python 3 (IDLE) to program the GPIO pins, and select File ➪ New File
to create a blank text editor window to write your Python code to control the
GPIO pins.

Type the following code into your text editor window:

from gpiozero import LED
import time

FIGURE 8-6 Components for exercise to make an LED blink

You can purchase the components that you need from the following shops:

Adafruit—www.adafruit.com/

CPC Farnell—http://cpc.farnell.com

RS Components—http://uk.rs‐online.com/web

SKPang—www.skpang.co.uk

The Pi Hut—www.thepihut.com

http://www.adafruit.com/
http://cpc.farnell.com/
http://uk.rs-online.com/web%20
http://www.skpang.co.uk/
http://www.thepihut.com

A D V E N T U R E S I N R A S P B E R R Y P I178

These two lines import the modules and their functions that you need to control
the GPIO pins on the Raspberry Pi, and to create timed delays between the LED
turning on and off. (You use the time module in Adventure 5 to wait for user
input in the inventory program and the text‐based adventure game.)

2. In this project, you are outputting to an LED. Therefore you need to set up the
pin that the LED connects to on the Raspberry Pi as an output. To do this, use
the command led = LED(23).

3. Use a while True loop to set the output of GPIO 23 to on, which turns on the
LED followed by a pause for one second. Then set the output of GPIO 23 to off,
followed by another one‐second pause. When this is looped over and over, the
LED repeatedly turns on and off with a one‐second delay between each change
in state.

while True:
 led.on()
 time.sleep(1)
 led.off()
 time.sleep(1)

4. Save the file as LEDblink.py in Documents.

DIGGING INTO ThE CODE
gpiozero is a Python library created especially for the Raspberry Pi GPIO
pins. It has been designed to make it as simple as possible to program every-
day GPIO components like LEDs, buttons, buzzers, sensors and motor control-
lers. With other Python libraries like RPi.GPIO, you are required to specify
which pins you are going to use and then configure them as inputs and out-
puts. Once you understand more about programming and electronics you may
want to graduate to using a lower-level library to fully appreciate how to control
hardware with code. The exercises in this book use gpiozero to help you
take your first steps with physical computing.

Connecting the LEDblink
Components
Before running your program to make the LED blink, you need to assemble the elec-
tronic components and connect them to the Raspberry Pi GPIO pins. Figure 8‐7 shows
the Raspberry Pi on the left and a breadboard on the right. Use this diagram and the
following steps to help you connect the right cables and components in the circuit.

1. Start by plugging a female‐to‐male jumper cable from GPIO pin 23 of your
Raspberry Pi to the A10 hole on your breadboard (the red cable in Figure 8‐7).

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 179

It helps to use different coloured wires. The jumper cable easily fits onto the pins
of your Raspberry Pi on one end, and the other end fits into the holes on the
breadboard. Make sure that you gently push them down as far as they will go to
make a secure connection.

2. Plug another female‐to‐male jumper cable from a ground pin, sometimes repre-
sented as GND on Raspberry Pi GPIO diagrams (the blue cable in the figure). On
a Raspberry Pi board, the third pin from the top on the outside strip is a ground
pin (see Figure 8‐7). Remember to use Figure 8‐2 so that you know which pins
are which!

FIGURE 8-7 Circuit diagram to connect components to Raspberry Pi for a blinking LED

3. Plug the other end of the jumper cable into a hole in the second column, between
the red and blue lines on the breadboard. Remember that these two columns
between the red and blue lines are for power—one for positive (red) and one for
negative (blue). You want to plug your jumper cable into the blue negative col-
umn, three rows down.

A D V E N T U R E S I N R A S P B E R R Y P I180

4. Add a 330 ohm resistor by pushing one of its legs into E5 and the other leg into
a hole in row five of the blue negative power column on the breadboard. It does
not matter which way round the resistor is placed.

Remember that LEDs can only pass current in one direction. For the LED to
work, you must make sure that you place the longer leg into the same row (D10)
as the jumper cable connecting to GPIO 23. The short leg must be placed into a
hole on the same row as the resistor (D5). Refer to Figure 8‐7 for guidance.

Running LEDblink.py in IDLE
Now that you have created your LED circuit, you can run your Python code. Select
Run ➪ Run Module in the Python 3 (IDLE) menu.

You should see your LED turn on and off. Is that cool or what?

To interrupt the program, press CTRL + C on the keyboard. Figure 8‐8 shows the code.

FIGURE 8-8 Programming in Python 3 on Raspberry Pi to make an LED blink

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 181

Using a Button to Turn
on an LED
So far, you have controlled an LED, which is an output device. In this exercise you add
an input device in the form of a button that starts the light sequence when pushed.

For this project, you need your Raspberry Pi plus the following items:

• A breadboard

• Five jumper cables

• A simple push button

• An LED

• A 330‐ohm resistor to protect the LED

Creating the buttonLED Python Code
In Python 3 (IDLE), amend your LEDblink program to include the following lines
(highlighted in bold):

from gpiozero import LED, Button
import time

led = LED(23)
button = Button(24)

As before, you set a GPIO for output (GPIO 23). You also need to set a GPIO pin to
detect input. Use GPIO 24 for this purpose.

In the previous project, you used a while True loop to repeatedly turn an LED on
and off with a one‐second interval. In this project, you only want the LED to turn on
when the button is pushed; therefore, you need to introduce a condition. You use if
to set the condition: if the button (connected to GPIO 24) is pressed, then turn the LED
(connected to GPIO 23) on. But this is only one part of the condition. You also need to
set the conditions for the button not being pushed; what should the LED do then? For
this part of the condition, you use else: else the LED should be off.

while True:
 if button.is_pressed:
 led.on()
 else:
 led.off()
 time.sleep(0.1)

Save the file as buttonLED.py in Documents.

A D V E N T U R E S I N R A S P B E R R Y P I182

Connecting the buttonLED
Components
As with the program for making an LED blink, before you run your button LED pro-
gram you need to assemble the electronic components and connect them to the
Raspberry Pi GPIO pins. If you use the component configuration from the previous
exercise, you need to add only a few extra parts. Figure 8‐9 shows the Raspberry Pi on
the left and a breadboard on the right. Follow this diagram to help you connect the
right cables and components in the circuit.

1. Leaving the original circuit complete, take a small button switch and place it
across the ride in the centre of the breadboard, with two legs in holes on column
E and two legs in holes in column F on rows 21 and 23, as shown in Figure 8‐9.

2. When the button is in place, take a male‐to‐male jumper cable (green cable) and
place one end into A23 on the same row as the other leg of the button on
column E. Place the other end into the blue (negative) ground column of the
breadboard.

3. Connect a male‐to‐female jumper cable (yellow cable) from A21 on the
 breadboard to GPIO pin 24 on the Raspberry Pi.

4. Finally, add a male‐to‐female jumper cable (black cable) from the red column
near the top of the breadboard to the top GPIO pin 3V3, which will power the
circuit.

If you have an early Raspberry Pi model, you can compare your configuration to the
one shown in Figure 8‐9.

Why did you add time.sleep(0.1) to the while loop in the buttonLED.
py program? What might happen if you remove it? Have a go to find out!

ChALLENGE

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 183

Running buttonLED.py in IDLE
As before, you need to run your code from Python 3 (IDLE). To do this select
Run ➪ Run Module.

When you press the button, the LED should light up, as shown in Figure 8‐10. The
LED should not light up until you press the button on your circuit. If the light comes
on before you press the button or does not light when you press the button, go back
and check your wiring using the diagrams.

FIGURE 8-9 Circuit diagram to connect components to Raspberry Pi for button LED

A D V E N T U R E S I N R A S P B E R R Y P I184

Using a PIR Motion Sensor
to Trigger a Sound
Buttons or switches are a great way to trigger something to happen, such as turning on
a light. However, they are not the only components you can have fun with. In this
exercise you create a circuit with a Passive Infrared (PIR) motion sensor so that
when it detects movement, text is printed on the screen.

FIGURE 8-10 Pressing the button makes the LED light up!

Why not improve your code so that when you press the button once it
turns on the LED, and when you press the button again it turns off
the LED?

ChALLENGE

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 185

For this project, you need your Raspberry Pi plus the following items:

• Three female‐to‐female jumper cables

• A Passive Infrared (PIR) motion sensor

• Your Raspberry Pi GPIO pin labeller to help you identify the GPIO pins that you
need to use

All living things emit radiation all of the time. It is nothing to worry about as the
type of radiation we emit is infrared radiation (IR), which is pretty harmless at low
levels.

A PIR motion sensor detects changes in the amount of IR radiation it receives.
When there is a significant change in the amount of IR the sensor detects, a pulse
is triggered. This means that a PIR motion sensor can detect when someone
moves in front of it.

We can use a PIR motion sensor to trigger an event using code.

Creating the Motion‐Sensing
Python Code
The first part of this project is to write the code that detects motion with the PIR
motion sensor and output some text to the screen.

1. Open Python 3 (IDLE) and select File ➪ New File to create a blank text editor
window to write your Python code. Like the other GPIO python programs you
have written you need to import the modules and libraries you need.

Type the following code into your text editor window:

from gpiozero import MotionSensor
import time

2. In this project, you are using a PIR motion sensor as an input. Therefore you
need to set up the GPIO pin that the PIR motion sensor connects to on the
Raspberry Pi as an input. To do this, use this command:

pir = MotionSensor(4)

A D V E N T U R E S I N R A S P B E R R Y P I186

3. Create a condition inside a loop by typing the following:

while True:
 if pir.motion_detected:
 print("Detected you moving")
 time.sleep(1)

Remember that indentation is important in Python. time.sleep(1) needs to
be indented the same amount as the if command.

4. Save the file as PIRmotion.py in Documents.

Connecting the PIRmotion
Components
If you have any components connected to your Raspberry Pi from previous activities
then remove them so that all your GPIO pins are free for use. Figure 8‐11 shows the
Raspberry Pi on the left and a PIR motion sensor on the right. Follow the diagram in
the figure to help you connect the right cables and components in the circuit.

1. Take a look at your PIR motion sensor. It has three pins labeled VCC, GND and
OUT. (You may need to take the plastic case off the top of your sensor to see the
labels.) You need to connect each of these pins to GPIO pins on your Raspberry
Pi for it to work.

2. Connect a female‐to‐female jumper cable (yellow cable) from the pin labeled
OUT on the PIR motion sensor to GPIO pin 4 on the Raspberry Pi.

3. Add a female‐to‐female jumper cable (black cable) from the GND pin on the PIR
motion sensor to any ground pin.

4. Finally, add a female‐to‐female jumper cable (red cable) from the PIR pin labeled
VCC to the top right GPIO pin 5V. This cable powers the circuit.

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 187

Running PIRmotion.py in IDLE
As before, you need to run your code from Python 3 (IDLE). To do this select
Run ➪ Run Module.

When you move in front of the PIR motion sensor, the statement Detected you
moving should appear on the screen, as shown in Figure 8‐12. If the text does not
appear on the screen, go back and check your wiring using the diagrams. PIR motion
sensors can be tricky to debug. Try placing the sensor inside a cardboard box or cup so
that you can limit the field it is sensing movement from.

FIGURE 8-11 Circuit diagram to connect components to Raspberry Pi for PIR motion
sensor

A D V E N T U R E S I N R A S P B E R R Y P I188

The Marshmallow Challenge
Using the Raspberry Pi GPIO pins for electronic projects can be a great way to learn.
However, you can have some fun too. In this project, you use your new GPIO pin
Python programming knowledge to use a marshmallow as an input button, map it to a
keyboard letter and use it to control a game that you have created in Scratch!
Figure 8‐13 shows the game in action. You need these items:

FIGURE 8-12 Movement detected and printed to the screen on a Raspberry Pi

Why not add an output component light an LED or buzzer to trigger when
the PIR motion sensor detects movement?

ChALLENGE

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 189

• Two female‐to‐female jumper cables

• Some marshmallows (yes, real ones!)

• Two metal pins or metal paper clips

• Your Raspberry Pi GPIO pin labeller to help you identify the GPIO pins that you
need to use

FIGURE 8-13 The Marshmallow Game

Creating the Marshmallow Button
The first step is to write the code to create a marshmallow button. Follow these steps:

1. Open Python 3 (IDLE) from the programming menu and create a new file by
selecting File ➪ New File. Save the empty file as marshmallow.py in the
Document directory.

A D V E N T U R E S I N R A S P B E R R Y P I190

2. Type the following code:

from gpiozero import Button
import time

button = Button(4)

while True:
 if button.is_pressed:
 print("Marshmallow makes a good input")
 time.sleep(0.1)

Press CTRL+S to save the file.

3. Take a jumper cable and carefully push a pin into the end. (You could even use a
paper clip that has been straightened out.) Take the other end of the jumper
cable and push it into GPIO pin 4 on your Raspberry Pi.

Do the same with the second jumper cable, only this time plug it into a ground
pin on the Raspberry Pi.

Poke the other ends of both jumper cables (the metal pin ends) into a marshmal-
low, as shown in Figure 8‐14.

FIGURE 8-14 Connecting jumper cables to
GPIO pins and a marshmallow

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 191

4. Go back to your Python code and press F5 to run it.

Now gently squeeze the marshmallow and your marshmallow message is printed
to the shell window. If nothing happens, check that you have pushed the pins
into the marshmallow and cables as far as they will go.

Now that you have tested to see that your marshmallow button works, you need to
map it to a keyboard key so that when the marshmallow is pressed, the game thinks
that the letter a on the keyboard is being pressed. This becomes important when you
make or download a Scratch Marshmallow Game.

Mapping Marshmallow Input
to a Keyboard Key
Follow these steps to map your marshmallow button to a key on the keyboard:

1. In a Terminal window type the following command:

sudo pip3 install pyuserinput

This command downloads and installs pyuserinput, an application and library
that you need to be able to map your keyboard keys in your Python code.

Figure 8‐15 shows the code for this step.

2. Edit the marshmallow code to use the pykeyboard Python library to map the
input of the marshmallow to a key on the keyboard.

Amend the Python code to include the new lines (shown in bold):

from gpiozero import Button
from pykeyboard import PyKeyboard
import time

button = Button(4)
k = PyKeyboard()

while True:
 if button.is_pressed:
 print("marshmallow makes a good input")
 k.press_key("a")
 time.sleep(0.1)
 k.release_key("a")
 time.sleep(0.1)

Here the a keyboard key has been used for the marshmallow button. You could
use any letter of the alphabet.

A D V E N T U R E S I N R A S P B E R R Y P I192

3. Press CTRL + S to save your program, then test press F5 on your keyboard to
test that the program works.

You should also test the program by pressing marshmallow, which should result
in the letter a being displayed.

Scratch Marshmallow Game
Now that your marshmallow is mapped to the a key, you can create a Scratch game
with a counter to count each time you squeeze the marshmallow. You can download
the completed Scratch Marshmallow Game from the Adventures in Raspberry Pi web-
site at www.wiley.com/go/adventuresinrp3E. The object of the game is to see

FIGURE 8-15 Downloading and extracting python‐uinput

The marshmallow button may not work if you do not have a keyboard plugged in.

http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 193

how many marshmallow presses you can record in 10 seconds, using the marshmallow
input button that you have created. Refer to Figure 8‐16, the completed game in
Scratch, as you work through the following steps.

1. Open Scratch by opening the main menu at the top of the screen and navigating
to Programming ➪ Scratch. Select File ➪ Save As and name the file Marshmallow
Game before clicking Save.

2. Delete the Cat Scratch sprite by right‐clicking the sprite and selecting Delete
from the drop‐down menu.

FIGURE 8-16 Scratch Marshmallow Game

3. Click the Paint New Sprite icon above the Sprites palette (the icon with the
paintbrush and star) and draw a marshmallow character using the paint editor.
You can use the rectangle or circle shape tools to create your marshmallow.
Alternatively, if you feel confident you can try using the paintbrush tool to draw
freehand. When you are happy with your design, click OK to exit the Paint Editor
window.

Another option, if your Raspberry Pi is connected to the Internet, is to download
the marshmallow sprite used in this project (marshmallow.png) from the
Adventures in Raspberry Pi website at www.wiley.com/go/adventures
inrp3E.

http://www.wiley.com/go/adventuresinrp3E
http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E S I N R A S P B E R R Y P I194

4. You need to create two variables for this game. Click Variables in the Blocks pal-
ette and then click Make a Variable. The New Variable window opens and asks
you to type a name for your variable. Name the first variable counter and
ensure that For all sprites is checked before clicking OK. This variable counts the
number of times the marshmallow button has been pressed.

Follow the same steps to create a second variable and name it timer. This vari-
able sets the time limit for the marshmallow challenge.

5. Now that all the blocks you need to create the scripts for the marshmallow game
are available, click Control on the Blocks palette and drag the control block
When clicked onto the Scripts tab for the marshmallow sprite. Add a
forever if control block underneath and connect them.

6. Click the Sensing blocks palette and select the key space pressed block. Place
it into the hexagonal space on the forever if control block. After you have
placed this block you need to change space to a or the letter of the key to which
you assigned your marshmallow button‐press in the previous part of this project.

7. Add the variable block change counter by 1 inside the forever if block,
followed by the sound block play drum 48 for 0.2 beats. Change the drum
to 76 using the drop‐down menu.

8. When the game begins, the counter needs to be reset to 0 to record the player’s
score. Add another when clicked control block to the Scripts tab and con-
nect a set counter to 0 variable block to it.

9. Remember to save the work you have done so far by selecting File ➪ Save. Then
test that your game script written so far works, by clicking the icon and using
your marshmallow button to check whether the counter records how many
times it is pressed. Don’t forget that the Python script you created for the but-
ton needs to be running too!

10. To give the player a time limit, you need to add two more scripts. Add another
when clicked control block to the Scripts tab and connect the sensing
block reset timer to it. Underneath, connect a forever looping control
block, and a set timer to 0 variable block inside it. (You may need to select
Timer from the Variable block drop‐down menu.)

Click the Operators blocks palette and select the round block. Place it inside the
set timer variable block where the value 0 is. Then add the sensing block
timer inside the empty space of the round operator block you just placed.

This completed variable block should now read set timer to round timer.
This script resets the timer at the start of the game to 0, and then counts upwards
every second.

11. The final script sets the time limit for the game. Add a when clicked
control block to the Scripts tab, and connect a wait until control block to it,
followed by a stop all control block.

A D V E N T U R E 8 U S I N G T h E G P I O P I N S O N T h E R A S P B E R RY P I 195

Drag the operators block _ = _ (equal to) and place it inside the wait until
hexagon space. In the left‐hand space before the = sign, add the variable block
timer and on the right‐hand side type the value 10.

This script waits until the timer reaches 10 seconds before stopping the game.

12. Finally, save your game by selecting File ➪ Save. Then test that your scripts work
by clicking the icon and using your marshmallow button to check whether
the counter records how many times it is pressed, and the timer counts up to 10
before stopping the game.

What other functionality could you add to this game? Here are some ideas:

• Costumes for the marshmallow sprite so that when the button is
pressed it becomes animated.

• A Stage background with a Game Over screen. This would also
require scripts to broadcast a message, like the one for the
Adventurer Game in Adventure 3.

• A scoreboard for the highest number of presses.

You could also make a similar game using Python.

ChALLENGE

Further Adventures
with GPIO Pins
As you can see, programming the GPIO pins on the Raspberry Pi opens a Pandora’s box
of opportunity. With a little electronics know‐how and some imagination you can con-
trol lots of things in the real world. The Raspberry Pi website (www.raspberrypi.
org) is full of great examples of how people are controlling their environments with
their Pis.

Now that you have learned how to combine some basic electronics powered and com-
manded by the Raspberry Pi, you may want to continue learning more. Here are some
resources to take you further:

• To learn more about gpiozero and code for other components: https://
gpiozero.readthedocs.io

• Alex Eames’ website RasPi.TV has a basic set of tutorials: http://raspi.tv/
category/raspberry‐pi

• If you want to learn how to control the Raspberry Pi GPIO pins using Scratch,
the Raspberry Pi website has some great ideas: www.raspberrypi.org/
learning/physical‐computing‐with‐scratch/

http://www.raspberrypi.org/
http://www.raspberrypi.org/
https://gpiozero.readthedocs.io
https://gpiozero.readthedocs.io
http://raspi.tv/category/raspberry-pi
http://raspi.tv/category/raspberry-pi
https://www.raspberrypi.org/learning/physical-computing-with-scratch/
https://www.raspberrypi.org/learning/physical-computing-with-scratch/

A D V E N T U R E S I N R A S P B E R R Y P I196

• To learn more about electronic projects and using the Raspberry Pi GPIO pins,
the Adafruit Learning System is a great platform to start with: http://learn.
adafruit.com/

GPIO Pins Command Quick Reference Table

Command Description
from gpiozero import

LED, Button
Imports the Raspberry Pi gpiozero module

Led = LED(2) Creates an LED against a pin number as well as identifying
it as an output

led.on() Sets output GPIO to true or on
led.off() Sets output GPIO to false or off
if button.is_pressed: Sets a condition for a button press
if pir.motion_

detected:
Sets a condition for a PIR motion sensor

Achievement Unlocked: Conquering electronics with a Raspberry Pi!

In the Next Adventure
You don’t always need to program individual electronic components; you can
also buy specially designed hardware that fits on top of the GPIO pins on the
Raspberry Pi, called HATs or connect to the Raspberry Pi board connectors like
the camera accessory. In Adventure 9, you learn more about the features of the
Raspberry Pi Camera, the Sense HAT and the Explorer HAT before programming
them with Python.

http://learn.adafruit.com/
http://learn.adafruit.com/

197

BEING ABLE TO connect components to the Raspberry Pi GPIO pins and control
them with code is one of the Raspberry Pi’s most fantastic features, but individual
components can be quite fiddly, which means they can be easy to lose and difficult to
debug when projects do not work the first time! Luckily there are extra accessories
developed for use with the Raspberry Pi that can be added on top to extend its features
and cut down the amount of time required to build breadboard circuits.

One of the easiest and most exciting‐to‐use peripherals is a camera. The official
Raspberry Pi camera slots straight onto the Raspberry Pi, and you can use it to capture
images and videos. Lots of projects make use of the small setup like the NatureBytes
wildlife cam kit (http://naturebytes.org/), which detects the movement of ani-
mals in the wild and captures a picture of them. This camera is a great way to find out
what types of wildlife visit your garden or neighbourhood!

Raspberry Pi accessories that are fitted on top of the GPIO pins are referred to as HAT,
which stands for Hardware Added on Top. These components are easy to fit and program
from your Raspberry Pi. In this adventure, you’re introduced to two different HATs: the
Explorer HAT made by Sheffield‐based makers Pimoroni, and the Sense HAT, which was
designed by the Raspberry Pi Foundation for use on board the International Space
Station (ISS) as part of the Astro Pi project. There are two Raspberry Pis with Sense HATs
onboard the ISS; both run code written by school‐aged children from countries taking
part in educational initiatives from the European Space Agency (ESA).

Adventure 9
Experimenting with
Cameras and HATs

http://naturebytes.org/

A D V E N T U R E S I N R A S P B E R R Y P I198

It is worth noting that HATs are not compatible with the original Raspberry Pi that has
26 pins. HATs only work with Raspberry Pis that have 40 pins.

Getting Started with the
Raspberry Pi Camera
The Raspberry Pi Camera (see Figure 9‐1) is an inexpensive accessory designed by
the makers of the Raspberry Pi. After you add this accessory, your Raspberry Pi will
be transformed into a full HD camera to take still images and record video. You can
even use it at night with the infrared camera (the Raspberry Pi NoIR Camera)!

FIGURE 9-1 The Raspberry Pi Camera Module (top) and Raspberry Pi NoIR
Camera Module (bottom)

Connecting the Camera to
Your Raspberry Pi
The first step is to connect the camera to your Raspberry Pi. Note: Ensure that your
Raspberry Pi is disconnected from any power or peripherals before you begin.

1. Locate the camera port on the Raspberry Pi (see Figure 9‐2). It is in between the
HDMI port and the Ethernet port. This is where the ribbon cable of the camera
will slot into.

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 199

2. Use your fingernails to pull up the sides of the camera connector on the
Raspberry Pi.

3. Place the camera ribbon cable into the slot with the blue strip facing the Ethernet
and USB ports.

4. While you hold the ribbon cable in place, push down the camera port connector
that you opened in step 2.

5. Once the camera is connected, plug in the rest of your peripherals and boot your
Raspberry Pi.

6. Open the Raspberry Pi Configuration tool by clicking the Main Menu, navigat-
ing to Preferences and selecting it from the menu.

7. Click Interfaces and check the enabled box next to camera. Click OK and then
reboot your Raspberry Pi to enable the camera.

FIGURE 9-2 Connecting the Raspberry Pi Camera

A D V E N T U R E S I N R A S P B E R R Y P I200

Programming the Picamera
with Python
Use the following steps to write a Python program to capture a picture using your
Picamera:

1. Open Python 3 (IDLE) and select File ➪ New File to create a blank text editor
window to write your Python code to control the camera.

2. Type the following code into your text editor window:

from picamera import PiCamera
import time
camera = PiCamera()

3. Write the program that captures an image. Enter the following code:

camera.start_preview()
time.sleep(5)
camera.capture("/home/pi/Pictures/image.jpg")
camera.stop_preview()

The first line will start the camera preview so that you can see the camera image
(see Figure 9‐3) and store it into the Pictures directory on your Raspberry Pi. The
preview will then stop and disappear from your screen.

4. Save your code as first‐camera.py and then run your code by selecting
Run ➪ Run Module to test that it works. You can see the photo that was
captured by navigating to the Pictures folder and opening image.jpg.

When saving your Python code as a new .py file, avoid using the names of
libraries that you have imported. For example, when using the picamera python
library do not save any code as picamera.py as your code will not work! It
is a very common mistake and can be very frustrating when you try to debug
your code.

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 201

FIGURE 9-3 Capturing an image with Python and the Raspberry Pi Camera

Creating a Time‐Lapse
Photography Program
To create a time‐lapse or stop‐frame animation you need to take lots of images and
store them before converting them into a video.

Now that you can capture a single image, you can write code to take lots of pictures in
a sequence using a loop.

1. Open a new Python3 (IDLE 3) file and save it as timelapse.py.

2. Import the modules that you need to use the camera:

from picamera import PiCamera
import time
camera = PiCamera()

3. Create a variable to number the images that are taken by the camera:

img_no = 0

A D V E N T U R E S I N R A S P B E R R Y P I202

4. Create a while True loop to wait five seconds, capture an image, and save it
with an image number:

while True:
 time.sleep(5)
 img_name = 'image{0:02d}.jpg'.format(img_no)
 camera.capture(img_name)
 img_no += 1

5. Save your code, click Run, and then click by Run Module to test that your program
works. You can check your code against figure 9‐4 below. In your Pictures direc-
tory you should see a new file called image01.jpg. If your program is still running,
image02.jpg should appear after five seconds, and so on through all the pictures.

DIGGING INTO THE CODE
In this code you have used a variable called img_no (shorthand for image number)
outside the loop. Remember that computer programs work in sequence and when
run the value is set to 0. Then each time around the loop the value 1 is added and
stored in the variable img_no using the += operator, which you may remember
using in Adventure 5 to accumulate health points in your adventure game. This
means that each time around the loop the image number changes, which is impor-
tant for a time lapse because you want every image to be stored in order.

Within the loop, you have created a variable img_name in which img_no is
called to name the picture that is captured. The name is made up of the word
image and the file extension that identifies it as an image (in this case .jpg).
Between those strings is the image number value, which has increased by 1,
and {0:02d}, which limits the length of the picture number to two digits.

FIGURE 9-4 Time‐lapse photography Python program

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 203

mounting Your Camera
To make a smooth time‐lapse series, it is important that you place your camera so that
it does not move.

1. Find a way to secure your camera. You can purchase Raspberry Pi cases that also
hold your camera in place. Check out some of these options:

• ModMyPi’s Pi Camera Box (https://www.modmypi.com/raspberry‐pi/
camera/camera‐cases/nwazet‐pi‐camera‐box‐bundle‐

case,‐lens‐and‐wall‐mount‐b‐plus)

• Multicomp Pi‐BLOX Case (https://www.modmypi.com/raspberry‐pi/
cases/multicomp/multicomp‐pi‐blox‐case‐blue)

Alternatively you can mount the camera without a case using products like
Pimoroni’s Raspberry Pi Camera Mount (https://shop.pimoroni.com/
products/raspberry‐pi‐camera‐mount), which allows you to connect
the camera to any standard tripod.

You don’t need to use a purpose built case or mount for your camera. You could
use your maker skills to 3D print a case or mount, or stick it to a wall with adhesive,
or cut a hole in a paper cup or even build a mount with LEGO blocks as shown
in Figure 9-5.

2. Find a location to place your camera. Where you place it depends on what you
want to create a time‐lapse video of. It could be looking out into a garden so that
you can see plants growing over time, or pointed towards a building site so that
you can watch buildings seemingly appear from nowhere!

3. After you have decided where to put your camera, think about whether you need
to amend the timings in your code. One picture taken every five seconds may
result in a very long and boring video. To adapt your time.sleep, replace 5 with
3600 to take a picture every hour or 1800 to take a picture every 30 minutes.

4. Run your program and leave the camera and Raspberry Pi set up for a few days.
Check on it at least once every day to see that the program is still running and
capturing images.

https://www.modmypi.com/raspberry-pi/camera/camera-cases/nwazet-pi-camera-box-bundle-case,-lens-and-wall-mount-b-plus
https://www.modmypi.com/raspberry-pi/camera/camera-cases/nwazet-pi-camera-box-bundle-case,-lens-and-wall-mount-b-plus
https://www.modmypi.com/raspberry-pi/camera/camera-cases/nwazet-pi-camera-box-bundle-case,-lens-and-wall-mount-b-plus
https://www.modmypi.com/raspberry-pi/cases/multicomp/multicomp-pi-blox-case-blue
https://www.modmypi.com/raspberry-pi/cases/multicomp/multicomp-pi-blox-case-blue
https://shop.pimoroni.com/products/raspberry-pi-camera-mount
https://shop.pimoroni.com/products/raspberry-pi-camera-mount

A D V E N T U R E S I N R A S P B E R R Y P I204

making a movie of Your Images
Now that you have lots of images you can transform them into a time‐lapse video
using an application called avconv.

1. Open a terminal window and type the following to check that your system files
are up to date and install any required packages:

sudo apt-get update && upgrade

2. Download and install the tools you need to convert images to a movie with the
following command:

sudo apt-get install libav-tools

3. Make sure the application avconv is installed and use it to stitch all your photos
together to make a video as shown in Figure 9‐6. Type the following command:

avconv –r 10 –i image%02d.jpg –qscale 2 timelapse.mp4

FIGURE 9-5 A Raspberry Pi Camera mount built out of LEGO blocks

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 205

4. Play your completed video by using the application omxplayer with the follow-
ing command:

omxplayer timelapse.mp4

You are using image%02.d.jpg in this command instead of image{0:02d}.
jpg. This naming convention is a common format that both Python and avconv
understand, and it means the photos will be passed in to the video in order to
create your time-lapse video.

FIGURE 9-6 Making a time‐lapse video with avconv in the terminal

A D V E N T U R E S I N R A S P B E R R Y P I206

Getting Started with the
Explorer HAT Pro
Apart from the first Raspberry Pi, all versions of the Raspberry Pi have 40 GPIO pins.
HATs like the Explorer HAT Pro and Sense HAT have been designed so that they can
fit on top of the 40 pins (see Figure 9‐7).

The Explorer Hat has a number of features that make it a fun accessory for your future
adventures:

• Four LEDs (red, yellow, green and blue)

• Eight buttons: four capacitive touch pads (labeled 1, 2, 3 and 4) and four capaci-
tive crocodile clip pads (labeled 5, 6, 7 and 8)

Try creating a stop frame animation with paper drawings, clay figures or
even LEGO mini figures to entertain your family and friends. You could
even upload them to a video streaming service to share your talents with
the world!

CHALLENGE

FIGURE 9-7 Pimoroni’s Explorer HAT Pro

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 207

• Two H‐bridge motor drivers

• A mini breadboard for individual components

You can learn more about the board at shop.pimoroni.com/products/
explorer‐hat including information about where you can buy them.

Before programming the extra features that your Explorer HAT Pro brings to your
Raspberry Pi, you need to connect the Explorer HAT Pro, download the libraries you
need and test that it works.

Connecting the HAT to
Your Raspberry Pi
The first step is to connect the Explorer HAT Pro to your Raspberry Pi. Ensure that
your Raspberry Pi is disconnected from any power or peripherals to begin.

1. Start by putting the Explorer Hat Pro directly on top of the 40 GPIO pins on
your Raspberry Pi so that the numbered pads (1 to 4) are sitting above the HDMI
connector. Each pin should connect to the header on the HAT.

2. Push the HAT down to ensure that every pin is covered and that it is connected
securely to your Raspberry Pi.

3. Before you connect the power supply to boot to the desktop, connect your
Raspberry Pi to a monitor, keyboard and mouse. You need to connect to the
Internet to download the Python libraries you need to program the Explorer
HAT. Connect it via a network (Ethernet) cable or by connecting to a Wi‐Fi
 network.

Downloading and Installing the
Explorer HAT Library
The Python library you need to program the Explorer HAT is not installed on the
Raspbian with PIXEL operating system by default. Follow these steps to download and
install it onto your Raspberry Pi:

1. Open a Terminal window by clicking the icon in the taskbar.

2. Download the library by typing

curl https://get.pimoroni.com/explorerhat | bash

https://shop.pimoroni.com/products/explorer-hat
https://shop.pimoroni.com/products/explorer-hat

A D V E N T U R E S I N R A S P B E R R Y P I208

3. When prompted press Y on the keyboard and Enter to continue with the
 download.

It will take a few seconds, depending on your Internet connection speed, for the
download to start. The terminal window displays a progress bar formed of dots
for you to check how long the download will take. When it is complete you can
move on to step 4.

4. In the prompt to continue with the installation, press Y and Enter to install the
Explorer HAT Python library. (See Figure 9‐8.)

5. The library also installs some example code that you can use to test that your
HAT is working correctly. Navigate to the examples directory by typing

cd Pimoroni/explorerhat/examples

This command runs the file, in this case a script or program that contains a
series of commands, that you download before you are able to check it. You
should use this only if you trust the website that you are downloading from. You
can check what the file contains before you run it by typing curl https://
get.pimoroni.com/explorerhat into a terminal window and reading
through the outputted text.

FIGURE 9-8 Explorer HAT library downloading and installation via the Terminal
on Raspberry Pi

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 209

6. Run the test example by typing

python3 test.py

You should see the LEDs on the board flash. If you press the touch pads with
your finger you see some text outputted to the Terminal window.

You may remember using the cd command in previous adventures to change
directories or folders from the command line. You use it here to move from
/home/pi into the directory /home/pi/Pimoroni/explorerhat/examples
where the explorerhat library is located. Remember you can use the ls com-
mand to list other examples and python3 name_of_file.py to run them.

DIGGING INTO THE CODE
Are you wondering about some of the commands and terms in the code?
Here’s a short breakdown of some of the new bits.

• curl is a command-line tool for downloading files from the Internet.

• The pipe character (|) used in the command in step 2 redirects the output
from the first command into the second command. In this example, you
are downloading a script using curl and then processing the download
through bash (the terminal), which then runs the script. This makes it
possible for you to write just one command instead of a number of sepa-
rate commands. Many command-line tools are designed to be written in
this way to make it easier for the user.

Programming the LEDs
Now that you have the Explorer HAT and the Python library installed, you can pro-
gram the HAT. Let’s start with the red, yellow, green and blue LEDs.

1. Open Python 3 (IDLE) and select File ➪ New File to create a blank text editor
window to write your Python code to control the Explorer HAT LEDs.

Type the following code into your text editor window:

import explorerhat
import time

These two lines import the modules and their functions that you will need to
control the explorer hat.

2. Underneath those lines, type the following to turn the red LED on:

explorerhat.light.red.on()

A D V E N T U R E S I N R A S P B E R R Y P I210

3. Add a time.sleep(1) to keep the LED on.

4. Turn off the red LED by typing

explorerhat.light.red.off()
time.sleep(1)

You can program the other color LEDs on the Explorer HAT in a similar way:

explorerhat.light.green.on()

explorerhat.light.yellow.on()

explorerhat.light.blue.on()

You can turn them off with these commands:

explorerhat.light.green.off()

explorerhat.light.yellow.off()

explorerhat.light.blue.off()

5. Save the file as explorelights.py in Documents. Then run your program by
clicking on Run ➪ Run Module.

You could place this sequence inside a while True loop so that the red LED turns on
for one second and then off again repeatedly.

Try creating a traffic light sequence using the red, yellow and green LEDs
using .on(), time.sleep(1) and .off(). See Figure 9-9 if you need
some guidance.

CHALLENGE

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 211

Programming the Touch Pads
You’ve programmed outputs on your Explorer HAT, now let’s program some inputs,
like the touch buttons on the HAT.

1. Open Python 3 (IDLE) and select File ➪ New File to create a blank text editor
window. Type the following code into your text editor window to import the
modules you need:

import explorerhat

2. Create an action that will happen when the button is pressed inside a function.
Remember: A function is a chunk of code that does a specific task. In this case,
the task is printing a statement to the interpreter window showing which but-
ton has been pressed:

def button_pressed(channel, event):
 print("Button " + str(channel))

FIGURE 9-9 Creating a traffic light sequence with the Explorer HAT

A D V E N T U R E S I N R A S P B E R R Y P I212

3. Call the function in a command like this:

explorerhat.touch.pressed(button_pressed)

This line should not be indented, as it is the command to call the function rather
than being code inside.

4. Save the file as explorebutton.py in Documents. Then run your program by
selecting Run ➪ Run Module.

5. Press any of the touch pad buttons (numbered between 1 and 8) on the Explorer
Hat numbered. Each time you touch one, the number of that button is printed
to the interpreter window. Pretty neat!

Creating an Explorer HAT
Pro Disco Trigger Trap
Trigger traps are fun to create because you can use them to surprise friends and family,
especially if it is Halloween. You can even use them as a way of detecting when some-
one goes into your room. In this project, you use the Explorer HAT Pro to detect a
button press that triggers lights and sounds before capturing an image of the intruder.

For this project, you need your Raspberry Pi, Explorer HAT Pro and the following
items:

• A crocodile clip cable

• Aluminum foil

• A speaker

• Raspberry Pi camera

Connect your camera before putting your Explorer HAT Pro onto the GPIO pins, as
shown in Figure 9‐10.

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 213

Creating the Disco Trigger
Trap Python Code
You begin this project by writing the trigger trap disco light and sound program.

1. Open Python 3 (IDLE) and select File ➪ New File to create a blank text editor
window. Type the following code into your text editor window to import the
modules you need:

import explorerhat, time, random, os, sys
from picamera import PiCamera

2. Set up the camera and set the image resolution using the following code:

camera = PiCamera()
camera.resolution = (1024, 768)
img_no = 1

As you are planning on capturing lots of pictures over a period of time, you don’t
want to overwrite any of the images, so create a variable containing the value 1
outside of the program loop (as you did earlier in the chapter) so that each time
an image is captured, it is stored with a unique filename.

FIGURE 9-10 Explorer HAT Pro Disco Trigger Trap Project

A D V E N T U R E S I N R A S P B E R R Y P I214

3. Create a list of the different colour LEDs on the Explorer HAT. (Just like the
inventory program you wrote in Adventure 5.)

colours = [explorerhat.light.red,
explorerhat.light.blue,
explorerhat.light.green,
explorerhat.light.yellow]

Here you have used the variable called colours to store your list of items.

4. Create a function that contains a for loop. Each time around the loop a colour
LED is selected from the list and turns it on for 0.1 second; then the LED turns
off.

def disco():
 for i in range(25):
 result = random.choice(colours)
 result.on()
 time.sleep(0.1)
 result.off()

Unlike a while True: loop, the for loop only repeats 25 times. You can
change the value to repeat any number of times that you like, but remember the
program will take a long time to move on if the sequence is too long!

5. Create another function for the button press to trigger the disco lights:

def button_pressed(channel, event):
 print("Button " +str(channel))
 img_name = 'image{0:02d}.jpg'.format(img_no)
 camera.capture(img_name)
 disco()

 os.system('omxplayer /opt/sonic-↩
 pi/etc/samples/loop_amen_full.flac')

This function triggers a print statement, captures an image and stores it, calls
the disco function so the LED lights on the explorer HAT light up randomly
25 times and plays a sample from sonic pi. If you ran your program now nothing
would happen, because the code is inside a function that needs to be called.

6. Under the code you added in step 5, add a while True: loop and a condi-
tional to call your button press function:

while True:
 if explorerhat.touch.pressed(button_pressed):
 img_no += 1
 time.sleep(5)

7. Save the file as triggertrap.py in Documents. Then run your program by
selecting Run ➪ Run Module. Press one of the capacitive touch buttons on the
explorer HAT to trigger the disco.

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 215

making the Aluminum Foil Trap
The button press you have programmed is waiting to be pressed by the capacitive
touch pads on the Explorer HAT. It would be difficult for someone to accidently trigger
those small buttons, so you need to make an aluminum foil trap to place on the floor.

1. Take a crocodile clip cable and connect one end to a capacitive touch button on
the Explorer HAT. Use one of the buttons numbered between 5 and 8.

2. Use the aluminum to create a rectangle shape about 20cm by 30cm.

3. Clip the other end of the crocodile clip cable to the aluminum foil rectangle.

4. Run your program and check that the disco starts when you touch the foil trap.

5. Place the foil trap where no one can see it but it still works. Near a door to a
room is a good spot. Make sure that you point your camera towards the same
place too.

You can purchase longer cables for your Raspberry Pi camera to extend it. This is
useful for projects where you want to position your camera away from the project
build (as with the trigger trap). The camera cables come in sizes ranging from
50mm to 457mm.

Getting Started with
the Sense HAT
The Raspberry Pi Sense HAT was created as part of British ESA Astronaut Tim Peake’s
mission to the International Space Station (ISS) in December 2015. (See Figure 9‐11.)
Two special Raspberry Pis with sense HATs and camera accessories were transported to
the ISS so that space experiments coded by school children could be run by the astro-
nauts. (The special Raspberry Pi units are called Astro Pi units.) You can find out more
about these missions on the official Astro Pi website (https://astro‐pi.org).

https://astro-pi.org

A D V E N T U R E S I N R A S P B E R R Y P I216

The Sense HAT has a number of sensors built into it, which gives the board its name.
They include

• Temperature and humidity sensors

• Biometric pressure sensor

• Movement sensors, in particular accelerometer, gyroscope and magnetometer
sensor

It also has an 8x8 LED matrix and a joystick.

To learn more about each individual sensor, visit the Astro Pi website hardware page
https://astro‐pi.org/about/hardware/sense‐hat/.

You connect the Sense HAT to the GPIO pins on a Raspberry Pi in the same way as the
Explorer HAT. Make sure that the power is disconnected before you connect the Sense
HAT, and be careful to cover all the pins.

If you do not have access to the Sense HAT hardware then you can try these exercises
using the Sense HAT emulator either online (https://trinket.io/sense‐hat)
or on the Raspberry Pi. You can find it on the Programming menu of Raspbian.

FIGURE 9-11 British ESA Astronaut Tim Peake holding an Astro Pi onboard the ISS
Image courtesy of ESA CC-BY-SA 3.0 IGO

https://astro-pi.org/about/hardware/sense-hat/
https://trinket.io/sense-hat

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 217

Programming the LED
matrix with Python
One of the most exciting parts of the Sense Hat is the LED matrix. There are 64 neopix-
els (a type of colour LED) that you can program to do all sorts of things, like scroll text
and make images! In this activity you are going to scroll a message:

1. Open Python 3 (IDLE) and select File ➪ New File to create a blank text editor
window. and Type the following code into your text editor window to import the
module you need:

from sense_hat import SenseHat
sense = SenseHat()

2. Underneath, write the command to scroll text on the LED matrix with a string
of text. This is similar to writing a print statement only rather than appearing on
the screen it scrolls across the sense HAT:

sense.show_message("Hello Sense HAT!")

3. Save the file as sensehatimages.py in Documents. Then run your program
by selecting Run ➪ Run Module. Watch your Sense HAT come to life with your
message.

Programming the Sensors to Find
Out the Current Temperature
Scrolling messages on the LED matrix of the Sense HAT is a useful feature to report
readings from the sensors on the HAT. For example, you can find out the current tem-
perature and scroll the value on the matrix by following these steps:

1. Underneath the first two lines of your program, create a variable to store the
current temperature sensor reading with the following line:

temp = sense.get_temperature()

2. The temperature sensor is so accurate that it reports its value to 14 decimal
places, which scroll across the LED matrix. To round the value up to one decimal
place, use this command on the next line:

temp = round(temp, 1)

3. Create a variable to store the contents of your message you want to be displayed
as a string, like this:

msg = "Temperature = {0}".format(temp)

4. Adapt sense.show_message line to read:

sense.show_message(msg)

5. Save and run your file. You see the current temperature scroll across the matrix.

A D V E N T U R E S I N R A S P B E R R Y P I218

Creating Pixel Art
Each LED on the Sense HAT can be programmed to show a different colour. They work
by mixing red, green and blue to make all the colours of the rainbow. By setting the
colour of each individual LED you can create pixel images made of light.

1. Design your pixel art image. The best way to do this is to use squared or graph
paper and some colouring pencils. Map out eight squares by eight squares on the
paper to represent the Sense HAT matrix.

2. Draw a design by colouring in some of the individual squares, as shown in
Figure 9‐12.

FIGURE 9-12 Designing pixel art images for the Sense HAT matrix

You can program some of the other sensors in a similar way, like humidity and
pressure:

sense.get_humidity()

sense.get_pressure()

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 219

3. Use a pen to label each of the squares with a letter that represents the colour
contained inside. For example, if the cell is coloured in yellow, then write a y in
the same cell.

4. Open Python 3 (IDLE) and select File ➪ New File to create a blank text editor
window. Type the following code into your text editor window to import the
module you need:

from sense_hat import SenseHat
sense = SenseHat()

5. Create variables to store the RGB values of the colours of your drawing, like so:

b = (0, 0, 255)
e = (0, 0, 0)

DIGGING INTO THE CODE
Red, green and blue can be mixed together by lights, such as LEDs, to create
lots of other colours. Each LED on the Sense HAT matrix can be set to a differ-
ent colour using RGB colour values like this:

r = (255, 0, 0)

p = (128, 0, 128)

The first colour is red, and we know this because contained within the brackets
are three values, one for red, one for green and one for blue. The red value is
the highest possible value of 255, and the other two values are the lowest pos-
sible value of zero. So red is not being mixed with any other colour.

The second value is purple, which is a mix of some red, no green and some
blue. You can continue to mix colours in this way to change the colour of the
LEDs on the Sense Hat matrix. You can use this website to mix RGB colours:
https://www.w3schools.com/colors/colors_rgb.asp

6. Create a list with a variable name to represent your image, and type each letter
on the first row of your drawing separated by commas like this:

happy = [e, e, e, e, e, e, e, e,

https://www.w3schools.com/colors/colors_rgb.asp

A D V E N T U R E S I N R A S P B E R R Y P I220

7. Move onto the next line of your code and type the next row of letters, then the
next until you have written out your image as code like this:

happy = [
 e, e, e, e, e, e, e, e,
 e, e, e, e, e, e, e, e,
 e, e, b, e, e, b, e, e,
 e, e, e, e, e, e, e, e,
 e, b, e, e, e, e, b, e,
 e, e, b, b, b, b, e, e,
 e, e, e, e, e, e, e, e
]

This list now has a colour set for every pixel in the LED matrix. All that is needed
is to call the list when setting the pixels; use the line

sense.set_pixels(happy)

8. Save your file as pixel‐art.py and run your file. Your LED matrix shows your
image with its lights.

Creating a Sense HAT
Desk Thermometer
Displaying sensor data can be really useful. For example, if you know the temperature
before you leave your home, you can decide whether to wear a hat, gloves and a scarf
or a t‐shirt and shorts!

1. Open Python 3 (IDLE) and select File ➪ New File to create a blank text editor
window. Type the following code into your text editor window to import the
module you need:

from sense_hat import SenseHat
import time
sense = SenseHat()

2. Create variables for each colour that you use in your drawing.

e = (0, 0, 0)
b = (0, 0, 255)
r = (255, 0, 0)
y = (255, 255, 0)
s = (192, 192, 192)

3. Create three different pixel images that represent different temperatures like a
sun, a snowflake and something in between! Make a list with a memorable vari-
able name for each, like this:

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 221

cold = [
 e, b, e, b, e, b, e, b,
 b, b, b, s, s, b, b, e,
 e, b, s, b, b, s, b, b,
 b, s, b, s, s, b, s, e,
 e, s, b, s, s, b, s, b,
 b, b, s, b, b, s, b, e,
 e, b, b, s, s, b, b, b,
 b, e, b, e, b, e, b, e
]

mild = [
 y, b, e, b, e, b, e, y,
 b, y, b, y, y, b, y, e,
 e, b, y, b, b, y, b, b,
 b, y, b, y, y, b, y, e,
 e, y, b, y, y, b, y, b,
 b, b, y, b, b, y, b, e,
 e, y, b, y, y, b, y, b,
 y, e, b, e, b, e, b, y
]

hot = [
 y, y, e, y, e, y, e, y,
 y, y, r, y, y, r, y, e,
 e, r, y, r, r, y, r, y,
 y, y, r, y, y, r, y, e,
 e, y, r, y, y, r, y, y,
 y, r, y, r, r, y, r, e,
 e, y, r, y, y, r, y, y,
 y, e, y, e, y, e, y, y
]

4. Create a loop to get the current temperature, round that value to one decimal
place and store it as a string in a variable called msg.

while True:
 temp = sense.get_temperature()
 temp = round(temp, 1)
 msg = "Temp = {0} ".format(temp)

5. Create some conditions: If the temperature is between –10 and 15 degrees C
then show the cold pixel art. If the temperature is between 15 and 20 degrees C,
show the mild image. If the temperature is between 20 and 50 degrees C, show
the hot image:

 if temp > -10 and temp < 15:
 sense.set_pixels(cold)

A D V E N T U R E S I N R A S P B E R R Y P I222

 elif temp > 20 and temp < 50:
 sense.set_pixels(hot)
 elif temp > 15 and temp < 20:
 sense.set_pixels(mild)

6. Still inside the while True loop, add a 10 second sleep before displaying the
temperature message. Figure 9‐13 shows what the looping code should look like.

 time.sleep(10)
 sense.show_message(msg, scroll_speed=0.05)

7. Save your code as desk‐thermometer.py and run it. Each time around the
loop the temperature is scrolled across the LED matrix and displays the right
image for that temperature.

FIGURE 9-13 The desk thermometer Python code using the Sense HAT emulator

Further Adventures with
Cameras and HATs
Adding accessories like HATs and a camera can expand the Raspberry Pi hardware
allowing you to build amazing projects. There are lots of different add‐ons to choose
from, and once you start experimenting, your collection will grow!

Now that you have played around with these accessories you may want to learn more.
Here are some resources to get you started:

A D V E N T U R E 9 E x P E R I m E N T I N G w I T H C A m E R A S A N D H A T S 223

• If you are interested in wildlife, then check out NatureBytes a kit to build a wild-
life trigger trap kit http://naturebytes.org/.

• Create an infrared bird box to help support the bird population in your area with
this official Raspberry Pi learning resource https://www.raspberrypi.
org/learning/infrared‐bird‐box/.

• Make a Minecraft Thermometer with the Explorer HAT using this Pimo roni
tutorial https://learn.pimoroni.com/tutorial/explorer‐hat/

making‐a‐minecraft‐thermometer.

• Don’t have a Sense HAT, don’t worry; you can use the Sense Hat emulator on
the Raspberry Pi, which you can find in the Programming menu or online at
https://trinket.io/sense‐hat.

• For lots of Sense HAT projects, you can’t go wrong with the free MagPi Essentials
book, Experimenting with the Sense HAT, which you can download from
https://www.raspberrypi.org/magpi‐issues/Essentials_

SenseHAT_v1.pdf.

Accessories Command Quick Reference Table

Command Description

From picamera import PiCamera Imports the picamera modules

camera.start_preview()

camera.stop_preview()

Starts the camera preview

Stops the camera preview
camera.capture(‘/home/pi/Pictures/

image.jpg’)
Captures a jpeg image and stores it in the
Pictures directory

avconv –r 10 –i image%02d.jpg –

qscale 2 timelapse.mp4
Converts a series of images into a movie
using avconv

import explorerhat Imports the Explorer HAT module

explorerhat.light.red.on()

explorerhat.light.red.off()

Switches the red LED on the Explorer
HAT on and then off

explorerhat.touch.pressed(button_

pressed)
Posts a message to chat in Minecraft Pi

from sense_hat import SenseHat

sense = SenseHat()

Imports the Sense HAT modules

sense.show_message(“Hello

Sense HAT!”)
Scrolls a test string across the LED matrix
on the Sense HAT

temp = sense.get_temperature() Gets the current temperature from the
temperature sensor on the Sense HAT

sense.set_pixels(happy) Sets all the pixels on the LED matrix of
the Sense HAT at the same time

http://naturebytes.org/
https://www.raspberrypi.org/learning/infrared-bird-box/
https://www.raspberrypi.org/learning/infrared-bird-box/
https://learn.pimoroni.com/tutorial/explorer-hat/making-a-minecraft-thermometer
https://learn.pimoroni.com/tutorial/explorer-hat/making-a-minecraft-thermometer
https://trinket.io/sense-hat
https://www.raspberrypi.org/magpi-issues/Essentials_SenseHAT_v1.pdf
https://www.raspberrypi.org/magpi-issues/Essentials_SenseHAT_v1.pdf

A D V E N T U R E S I N R A S P B E R R Y P I224

Achievement Unlocked: Experimented with cameras and HATs

In the Next Adventure
The final adventure in this book is a humongous Raspberry Pi project. It draws
on all the computational skills you have learned on your Pi journey so far and
walks you through making a Pi jukebox with an LCD display, Play, Stop and Skip
buttons and a box! The adventure involves acquiring extra parts for your
Raspberry Pi, such as an LCD screen. The project may seem intimidating at first,
but as with all challenging endeavors, you will feel triumphant when you have
completed it.

225

The Big Adventure:
Building a Raspberry
Pi Jukebox

ONE OF THE Raspberry Pi’s special qualities is the fact that you can transform it into
a dedicated device of its own. In this adventure, you transform your Raspberry Pi into
a jukebox, complete with buttons to select and play tracks, and an LCD screen to dis-
play the song names. Figure 10‐1 shows my version of the completed project.

We call the act of making something with technology digital making. A build project
like this one gives you the opportunity to be creative and innovative through messing,
building, designing, hacking and making. It is also a lot of fun.

I hope this adventure will whet your appetite for more big Raspberry Pi projects. If you
want to continue your Raspberry Pi journey, I’ve included a few resources at the end of
the adventure to give you some ideas. The more you work with the Raspberry Pi and
learn about what it can do, the more you’ll come up with your own big project ideas!

Adventure 1 0

A D V E N T U R E S I N R A S P B E R R Y P I226

An Overview of the Jukebox
Project
This final adventure is slightly more complicated than the other projects in this book.
A big project like this is great for drawing together many of the skills you have learned
in previous adventures. Because this project is complex, I’ve broken the instructions
into four parts. But before you dive in to the details, here’s a short road map of what
you’ll be doing.

• In Part One, you use Python to create the LCD screen for the jukebox.

• In Part Two, you add the software to download and play MP3 files.

• In Part Three, you use the GPIO pins to connect buttons to your circuit and
write a program so that you can use the buttons to play, pause and skip tracks.

• In Part Four, you write the code to make the LCD screen information about the
MP3 files that are being played.

FIGURE 10-1 The completed Adventures in Raspberry Pi Big Jukebox Project!

A D V E N T U R E 1 0 B U I L D I N G A R A S P B E R R Y P I J U K E B O X 227

Finally, you may want to finish up your project by designing a box for your Pi jukebox,
to conceal the wiring and circuitry, make it more user‐friendly and enhance the way
it looks.

All the completed code files for this project are available for download from the
companion website at www.wiley.com/go/adventuresinrp3E. As I’ve
said in other adventures, you learn far more by following the instructions in this
book, typing in the code yourself and figuring out how to fix any problems. However,
if you have difficulty getting something to work, you might want to compare your
code to the download files to check whether you’ve missed something.

What You Will Need
To complete this big project, you need your Raspberry Pi and a number of extra
 components. You can purchase all the components from online electronic retailers,
and none of them require soldering. Here’s what you need:

• Your Raspberry Pi and peripherals including an SD card with an up‐to‐date
Raspbian with PIXEL image installed (see Adventure 1)

• A small speaker that uses the headphone/speaker port on your Pi (like the
speaker in Figure 10‐1)

• A full‐sized breadboard

• A 16 x 2 character 3.3v parallel liquid crystal display (LCD)

• A 10K potentiometer

• Four buttons, like the one used in Adventure 8 to turn on and off an LED

• Four 10k ohm resistors

• Solderless headers

• Female‐to‐male jumper cables and male‐to‐male jumper cables

• A Raspberry Pi GPIO pin labeller

• A cardboard box

• Some decorations or paint to make your jukebox look cool

A full list of products used in this adventure and where they can be purchased can
be found on the Adventures in Raspberry Pi website at www.wiley.com/go/
adventuresinrp3E.

http://www.wiley.com/go/adventuresinrp3E
http://www.wiley.com/go/adventuresinrp3E
http://www.wiley.com/go/adventuresinrp3E

A D V E N T U R E S I N R A S P B E R R Y P I228

Part One: Creating the LCD
Screen
In the first part of this project, you need to assemble the electronic components for
your jukebox. This project involves many more cables and components than previous
adventures, so you should be extra careful about checking your work against the
 figures and wiring diagrams. Then, after you have set up the electronics, you will down-
load some files that you’ll use later to be able to display text on the LCD screen.

Preparing the LCD Screen
by Adding Headers
When you buy or receive your LCD screen, you may find that the header pins that you
need in order to connect the LCD screen onto a breadboard are not included with it. In
this case, you may need to ask an adult to solder the headers on for you; or, alterna-
tively, you can use solderless headers, which need to be pushed all the way into the
holes to make a good connection. Although it may seem easier to use solderless head-
ers, they can be quite difficult to push into place, and you might need a lot of patience

An LCD (liquid crystal display) is an electronic display, usually quite thin and
flat, that is typically used in digital calculators and digital watches to display
information like the time. In this project, your LCD screen shows the names of
the songs playing on the jukebox—you don’t need a monitor for the Pi jukebox.

A potentiometer is a variable resistor. In this project, it enables you to adjust the
contrast on the display to make it easier to read what is on the LCD screen by
turning an adjuster wheel.

Many big electronic projects require you to solder parts together. If you have
spent money on expensive components this can be a daunting task, even for
proficient tinkerers. It can also be very painful should you accidentally burn
yourself with a soldering iron. Luckily, items like breadboards, jumper cables and
solderless headers make it possible to make cool electronic projects without the
need to solder. If there is an adult in your household or at school who is nifty with
soldering tools and has some experience, however, it may be a good idea to ask
them to help you solder headers onto any expensive components to save you
from fiddling around with solderless headers in this tutorial.

A D V E N T U R E 1 0 B U I L D I N G A R A S P B E R R Y P I J U K E B O X 229

to do it. I find that wiggling the headers in small groups of five or six at a time, while
applying pressure, is the best way to add them to the LCD screen.

Mounting the LCD Screen and Wiring
Up the Breadboard
Follow these steps to set up the LCD screen. Refer to Figure 10‐2 for additional guid-
ance as you work.

1. Lay your full breadboard out lengthways in front of you so that the longest side
runs parallel to the edge of the table directly in front of you. Push your prepared
LCD screen’s header pins into the holes, starting from C5 and going all the way
to C21.

2. Add the potentiometer into pins F1 to F3 above the left end of the LCD screen.
You will be using the potentiometer to adjust the contrast of the LCD screen.

3. Place your unplugged Raspberry Pi next to the breadboard (see Figure 10‐2) and
add the Raspberry Pi GPIO pin labeller (http://rasp.io/portsplus) for
your Raspberry Pi board revision over the top of the GPIO pins (you’ll remember
the pin labeller from Adventure 8). You will be connecting quite a lot of jumper
cables from the LCD screen to your Raspberry Pi, and you’ll find it easier with
the pin labeller in place as a guide.

4. Wire the LCD screen using the following guidelines so you can send data to it.
Start with pin 1 (the far left) of the LCD screen and attach the cable to the cor-
rect destination (use the diagram in Figure 10‐2 to help you):

• Pin 1 of the LCD goes to the ground or negative blue strip of the breadboard
(black male‐to‐male cable on diagram).

• Pin 2 of the LCD goes to the 3.3v or positive red strip of the breadboard (red
male‐to‐male cable on diagram).

• Pin 3 (Vo) connects to the middle of the potentiometer (orange male‐to‐male
on diagram). Note that the potentiometer has three pins; the orange
wire should be placed in a breadboard slot above the potentiometer in the
middle.

• Pin 4 (RS) connects to the Raspberry Pi GPIO 25 (yellow male‐to‐female
cable).

• Pin 5 (RW) goes to the ground or negative of the breadboard (black male‐to‐
male cable).

http://rasp.io/portsplus

A D V E N T U R E S I N R A S P B E R R Y P I230

• Pin 6 (EN) connects to the Raspberry Pi GPIO 24 (green male‐to‐female
cable).

• Skip LCD Pins 7, 8, 9 and 10.

• Pin 11 (D4) connects to the Raspberry Pi GPIO 23 (blue male‐to‐female
cable).

• Pin 12 (D5) connects to the Raspberry Pi GPIO 17 (yellow male‐to‐female
cable).

• Pin 13 (D6) connects to the Raspberry Pi GPIO 27 (green male‐to‐female
cable).

• Pin 14 (D7) connects to the Raspberry Pi GPIO 22 (blue male‐to‐female
cable).

• Pin 15 (LED +) goes to the positive red strip on the breadboard (red male‐to‐
male cable).

• Pin 16 (LED –) goes to the ground black strip on the breadboard or GND
(black male‐to‐male cable).

• Connect the red strip on the breadboard to the Raspberry Pi 3.3V (red male‐
to‐female cable).

• Connect the ground strip on the breadboard to the Raspberry Pi ground or
GND (black male‐to‐female cable).

FIGURE 10-2 Circuit diagram for wiring the LCD screen and potentiometer

A D V E N T U R E 1 0 B U I L D I N G A R A S P B E R R Y P I J U K E B O X 231

• On the potentiometer, connect the left pin to the ground or negative blue
strip of the breadboard (black male‐to‐male cable), and the right pin to the
3.3v or positive red strip of the breadboard (red male‐to‐male cable).

5. Double‐check the diagram (Figure 10‐2) and picture (Figure 10‐3) to check that
you have wired up your LCD and potentiometer correctly. When you are happy
that your wiring is correct, plug your Raspberry Pi, complete with SD card, into
a monitor, keyboard, mouse and, finally, power supply. You need to connect
to the Internet either by plugging in a network (Ethernet) cable or by connecting
to Wi‐Fi.

FIGURE 10-3 Mounted LCD screen and potentiometer

Remember, if you connect GPIO pins incorrectly you could damage your
Raspberry Pi. Always double‐check your wiring before you connect it to a power
supply.

A D V E N T U R E S I N R A S P B E R R Y P I232

6. The LCD screen should light up. If it does not, return to the wiring diagram and
instructions and check your work. Twist the potentiometer until you see the
first line of the LCD fill with boxes.

Adding Scripts to Drive the LCD
Screen
Next, you need to download the Python code required to display information on the
LCD screen. Make sure that your Pi is connected to the Internet either by an Ethernet
cable or by Wi‐Fi, so that you can download the files you need.

1. After booting your Pi, open a Terminal window, type the following code and
press Enter:

sudo apt-get update
sudo apt-get upgrade

After you have checked that all your application packages are up to date, you
can make a copy of the Adafruit Raspberry Pi Python files that I’ve modified, by
typing:

git clone https://github.com/MissPhilbin/Adventure_10.git

2. After the code is copied, navigate to the directory or folder containing the
Python code for a 16 x 2 LCD screen by typing the following into the command
line of a Terminal window and pressing Enter:

cd Adventure_10

3. Now run the Python code by typing the following command and then pressing
Enter (Figure 10‐4):

python3 Adafruit_CharLCD.py

You should see the following appear on your LCD screen:

This is a test!

4. As you twist the potentiometer back and forth, the letters fade and become
more vibrant.

5. Copy the files into your Documents directory where you will be saving your
jukebox Python program by typing:

cp Adafruit_CharLCD.py /home/pi/Documents/

Later in this project you will use these files to help you write a program that displays
MP3 track information onto the LCD screen of your jukebox.

A D V E N T U R E 1 0 B U I L D I N G A R A S P B E R R Y P I J U K E B O X 233

FIGURE 10-4 Downloading the modified Adafruit_CharLCD.py

Part Two: Downloading and
Playing MP3s
Now that the LCD screen is set up, it’s time to download and play some music files on
your Raspberry Pi. To play music files on your Raspberry Pi, you need to download and
install a media player and test that it works. Once you have installed the player and
some music to listen to, you write a program that lets you create a playlist and shuffle
or skip tracks.

Installing a Media Player and
Getting Music Files
In Adventure 2 you downloaded and installed a media player called vlc, which you
will be able to use to play music files in this project. You may want to double‐check that
it is installed by typing this command in a Terminal window, which downloads and
installs the application:

sudo apt-get install vlc

If vlc is already installed then you see the message vlc is already the newest
version; otherwise the installation will continue.

The vlc application is a media player. It enables you to play different types of media,
such as videos and music, from the command line. This is helpful for your jukebox
project as the plan is to control the player from the LCD screen using input buttons
that you will add later in this project.

Next, you need some music files to play. You may have some MP3s on a desktop or
laptop computer that you can transfer to your Pi using a portable storage device like a

A D V E N T U R E S I N R A S P B E R R Y P I234

USB memory stick. Alternatively, you could download an album from the Free
Music Archive using a web browser on the Raspberry Pi. To do this, your Raspberry Pi
needs to be connected to the Internet, either through an Ethernet cable or to a Wi‐Fi
 network. Use the following steps to get music from the Free Music Archive:

1. Open the web browser by clicking the web browser icon on the taskbar or by
clicking on the main menu and selecting Internet ➪ Chromium Web Browser. In
the URL address bar of the web browser, type the following URL and press Enter
(Figure 10‐5):

freemusicarchive.org

FIGURE 10-5 Using the web browser to download legal MP3 audio files

The Free Music Archive is home to high‐quality audio files that you are free to
download and listen to. The content is cleared for certain types of use by the
artists and is not prohibited from download by copyright laws.

A D V E N T U R E 1 0 B U I L D I N G A R A S P B E R R Y P I J U K E B O X 235

2. Find some music that you like by browsing the website. When you have located
a song that you like and want to download, click the download arrow next to the
name of the song and the MP3 file starts to download. You can check its prog-
ress by looking at the progress bar at the bottom of the web browser window.
When the bar is full, the download is complete. This file downloads to your
/home/pi/Downloads directory.

3. Once the download is complete, test to see if vlc can play the MP3 music file. In
a Terminal window, type cvlc followed by the path or folder structure and then
the MP3 filename. For example:

cvlc /home/pi/Downloads/CAP_01_Adventures_In_Pi.mp3

The vlc application outputs a lot of things to the console screen, many of them
claiming to be “errors”, but you don’t need to worry about them.

vlc plays your downloaded MP3 file. Make sure that you have headphones or a
speaker plugged into your Pi so that you can hear the file.

To stop the file from playing, press CTRL + C on the keyboard.

4. The vlc.py file that you downloaded earlier is in the Adventure_10 directory.
You need to copy this file into your Documents folder so that you can use it in
your Python jukebox program. To copy the file, type:

cp /home/pi/Adventure_10/vlc.py /home/pi/Documents

You can download an entire album from the Free Music Archive using the Download
Album link. Extract the MP3 files from the compressed zip folder by clicking on the
completed progress bar at the bottom of the web browser page and following onscreen
extraction instructions. Alternatively, type the following into a Terminal window to
unzip the files, after using cd to change to the destination directory or folder:

unzip filename.zip

You may also want to create a folder to store all your MP3 files. You could use the File
Manager application to do this, but why not practice the commands you learned in
Adventure 2 for use in a Terminal window or at the command line?

To create a directory or folder, use the mkdir command, as follows:

mkdir music

A D V E N T U R E S I N R A S P B E R R Y P I236

This command creates a folder named music.

To move a file from one directory or folder to another, you use the mv command; for
example:

cd Downloads
mv CAP_01_Adventures_In_Pi.mp3 /home/pi/music

This line moves the MP3 file from the current directory into the music directory.

To play all the MP3 files inside a directory or folder, type cvlc followed by the name
of the folder, followed by an asterisk (*); for example:

cvlc music/*.mp3

Figure 10‐6 shows the output.

So easy, right?

Writing a Jukebox Python Program
Playing one MP3 at a time is fine, but any real music lover wants to play an entire
directory or playlist, and perhaps shuffle the songs, or even skip tracks. This is the part
of any big project where you can decide the functionality you want to add, as you are
going to write a program in Python to interact with the vlc application using its
library.

FIGURE 10-6 Playing audio MP3 files using vlc in Terminal. The MP3 file plays,
despite the error message.

A D V E N T U R E 1 0 B U I L D I N G A R A S P B E R R Y P I J U K E B O X 237

As in previous adventures, you use Python 3 to create the jukebox controls. Follow
these steps:

1. Open Python 3(IDLE) by selecting the application from the main menu. Click
File ➪ New File to open a new text file. Alternatively, you could use a command‐
line text editor like nano.

2. In the first line, as in previous projects using Python, you import the modules
and libraries that you need. For example, the glob module is used for getting a
list of MP3 files in a directory, the random module is used to shuffle the MP3
files inside the list, sys is used for sys.exit and getting command‐line argu-
ments, and vlc is the Python interface to the vlc library libvlc. Type:

import glob, random, sys, vlc

3. Leave a one‐line gap underneath and then type:

if len(sys.argv) <= 1:
 print("Please specify a folder with mp3 files")
 sys.exit(1)

sys.argv is a list that contains the arguments passed to the program on the
command line. You may remember accessing programs from the command line in
earlier adventures. For instance, if you typed python3 jukebox.py /home/
pi/music into the command line, then the list would contain jukebox.py at
position 0 and /home/pi/music at position 1 (the zero position always contains
the name of the program that was run). So the first argument is at position 1.

4. The next part of the program loads a list of MP3s:

folder = sys.argv[1]
files = glob.glob(folder+"/*.mp3")
if len(files) == 0:

 print("No mp3 files in directory", folder, ↩
"..exiting")

 sys.exit(1)

As described before, position 1 in sys.argv is the first command‐line argu-
ment. The glob function allows you to get a list of files matching a pattern. The
pattern "*.mp3" expands to any file that ends in .mp3, so files = glob.
glob(folder+"/*.mp3") produce a list of all files ending in .mp3 inside the
folder given on the command line. If the directory contains no MP3s there won’t
be anything for the jukebox to play, so you exit early using sys.exit.

5. Now you are able to use the random module to shuffle the list of MP3 files to
put them in a random order. Underneath the previous code, type:

random.shuffle(files)

6. Leave a blank line and then type the following lines:

player = vlc.MediaPlayer()
medialist = vlc.MediaList(files)

A D V E N T U R E S I N R A S P B E R R Y P I238

mlplayer = vlc.MediaListPlayer()
mlplayer.set_media_player(player)
mlplayer.set_media_list(medialist)

This part of the code sets up how you will be using the vlc library. The details
aren’t important, but you set up a MediaListPlayer, which is a Player that
plays a MediaList (rather than just having one track queued at a time).

7. Later in the project, you are going to add buttons to play, pause and skip between
tracks, so here you need to add a while loop to read the input of buttons, and
use keyboard buttons 1, 2, 3, 4 to test that it works. Begin your while loop with
this code:

while True:
 button = input("Hit a button ")
 if button == "1":
 print("Pressed play button")
 if mlplayer.is_playing():
 mlplayer.pause()
 else:
 mlplayer.play()
 elif button == "2":
 print("Pressed stop button")
 mlplayer.stop()

The 1 key on your keyboard acts as the play/pause button, whereas the 2 key acts
as the stop button. Inside the while loop, you have used some conditionals. Be
careful with your indentation here!

The first level of the condition depends on which button is pressed: if 1 is
pressed or else if (elif) 2 is pressed. Inside each button press is a second condi-
tion. If button 1 is pressed when a track is playing, the media player pauses. If
nothing is playing, the media player plays a random track. If button 2 is pressed,
the media player stops the track after printing Pressed stop button to the
screen.

8. When the stop button is pressed, you want to make it so that when you hit play
again the tracks have been reshuffled. To do that, you sort the list of files again
using random, and then replace the MediaList using that reshuffled list of
files. Directly underneath the last line of the previous code, and at the same level
of indentation, type these lines:

 random.shuffle(files)
 medialist = vlc.MediaList(files)
 mlplayer.set_media_list(medialist)

9. Add two more buttons to this loop to skip back and forward. Be careful of the
indentation of your code, as you are continuing the first conditional (see
Figure 10‐7). Directly underneath the last line type the following:

A D V E N T U R E 1 0 B U I L D I N G A R A S P B E R R Y P I J U K E B O X 239

 elif button == "3":
 print("Pressed back button")
 mlplayer.previous()
 elif button == "4":
 print("Pessed forward button")
 mlplayer.next()
 else:
 print("Unrecognised input")

10. Save your file as jukebox1.py inside your Documents directory, by clicking
File ➪ Save As and navigating to Documents inside /home/pi.

11. Finally, test to see if your code works by running it from a Terminal window by
changing to the Documents directory and typing:

python3 jukebox1.py /home/pi/music

FIGURE 10-7 Writing a jukebox program in Python 3 (IDLE)

A D V E N T U R E S I N R A S P B E R R Y P I240

Part Three: Controlling the
Jukebox with Buttons
Your jukebox uses buttons to control the playback of music on your Raspberry Pi. In
this part of the project, you connect your buttons to your circuit and modify your pro-
gram so that you can use the buttons to play, pause and skip tracks. You require four
buttons: one to play, one to pause, one to skip tracks backwards and one to skip tracks
forwards. You add these buttons to the breadboard next to the LCD screen.

Connecting the Buttons
In the following steps, you add the four buttons to the breadboard and connect
them with wires to the Raspberry Pi GPIO. Refer to the wiring diagram in Figure 10‐8
as you work.

You must turn off the power supply before doing Step 5, so I advise you to go
ahead and do that now.

1. Push the buttons into the breadboard so that the legs bridge the gap along the
center of the board (in the same way as the LED button project in Adventure 8).

2. Take a 10K ohm resistor and push one end into a hole, one down from the left
button leg on the side of the breadboard where the LCD screen is mounted (the
south side). Place the other end of the resistor into a hole in the blue (negative)
power column of the breadboard, again on the south side.

3. Take a male‐to‐male jumper cable and place one end into a hole on the north
side of the breadboard, on the same row as the other leg of the button (a white
cable in Figure 10‐8), and place the other end into the red (positive) power col-
umn on the north side of the breadboard.

4. Repeat Steps 2 and 3 for the three remaining buttons, using three more resistors
and male‐to‐male jumper cables.

5. Connect the buttons to the Raspberry Pi GPIO pins. Make sure your Raspberry
Pi is powered off before you start. You have already used many of the pins
for the LCD screen—but don’t worry; you only need four—one for each button.
Take a male‐to‐female jumper cable, and push the male pin into the hole that you
left between the button leg and the resistor. Push the female end into GPIO 11
(a green cable in Figure 10‐8). This first button is the play button.

A D V E N T U R E 1 0 B U I L D I N G A R A S P B E R R Y P I J U K E B O X 241

6. Repeat this step for the stop button, only this time connect the female end of
the jumper cable to GPIO 7 (a red cable in the Figure 10‐8).

7. Repeat Step 5 again for the skip tracks backwards button, connecting to GPIO 4;
and the skip tracks forwards button, connecting to GPIO 10 (blue cables in
Figure 10‐8).

8. Finally connect the south ground rail to the north ground rail on the breadboard
with a male‐to‐male jumper wire.

FIGURE 10-8 Wiring diagram for the four jukebox buttons

If you are using a full‐sized breadboard, the power and ground rails should run
all the way down the strip, which means that your LCD screen and buttons
will be powered. However, if you are using a full‐sized breadboard that has two
halves, like the one used in Figure 10‐9, you will need to bridge the channels so
that power and ground extend all the way along the strip. To do this, take two
male‐to‐male jumper cables and bridge the gap by pushing one end of the cable
into the red (positive) power column hole on one side of the breadboard and
the other end into a hole on the other side of the breadboard in the same red
(positive) power column. Repeat this step for the blue (negative) ground column.
See Figure 10‐9.

The circuit being used here has pull‐down resistors, which are as valid as pull‐up
resistors and will not damage your Pi.

A D V E N T U R E S I N R A S P B E R R Y P I242

Adapting Your Jukebox Program to
Include GPIO Buttons
With the physical buttons connected to the breadboard and Raspberry Pi GPIO pins,
you need to adapt the jukebox program code for them to work.

1. Open jukebox1.py using Python 3 (IDLE) and edit the code to include the
parts highlighted in the following code:

import glob, random, sys, vlc, time
from gpiozero import Button

Aside from the modules you imported earlier, you need to import the time
module so that you can use the sleep function in your code, and you need to
import gpiozero so that you can set up the buttons for input in the code.

2. The next part of the code remains the same:

if len(sys.argv) <= 1:
 print("Please specify a folder with mp3 files")
 sys.exit(1)
folder = sys.argv[1]

FIGURE 10-9 Completed wiring of Pi jukebox with buttons

A D V E N T U R E 1 0 B U I L D I N G A R A S P B E R R Y P I J U K E B O X 243

files = glob.glob(folder+"/* .mp3")
if len(files) == 0:

 print("No mp3 files in directory", folder, ↩
 "..exiting")

 sys.exit(1)
random.shuffle(files)
player = vlc.MediaPlayer()
medialist = vlc.MediaList(files)
mlplayer = vlc.MediaListPlayer()
mlplayer.set_media_player(player)
mlplayer.set_media_list(medialist)

3. Add the code to set up the GPIO to use the physical buttons you added to your
breadboard and connected to your Raspberry Pi:

PLAY_BUTTON = Button(11, pull_up=False)
STOP_BUTTON = Button(7, pull_up=False)
BACK_BUTTON = Button(4, pull_up=False)
FORWARD_BUTTON = Button(10, pull_up=False)

In this code, you assign each GPIO that you are using to appropriately named
variables. Putting these in all uppercase is a convention often used in Python
when you don’t intend to reassign or change those variables. The advantage of
this method is that you can refer to a pin (for example, PLAY_BUTTON) multiple
times in your code. This has two advantages: It’s easy to see what the name
refers to; and if you change the GPIO pin for some reason the name only needs
to be updated in one place.

4. Amend the while loop code that reads and reacts to the input. The new code
uses methods from gpiozero to detect when a physical button is pressed. The
changes are highlighted in bold in the following code (be sure to add the hash
marks, also in bold, to comment out the lines as shown):

while True:
 # button = input("Hit a button ")
 if PLAY_BUTTON.is_pressed:
 print("Pressed play button")
 if mlplayer.is_playing():
 mlplayer.pause()
 else:
 mlplayer.play()
 elif STOP_BUTTON.is_pressed:
 print("Pressed stop button")
 mlplayer.stop()
 random.shuffle(files)
 medialist = vlc.MediaList(files)
 mlplayer.set_media_list(medialist)

A D V E N T U R E S I N R A S P B E R R Y P I244

 elif BACK_BUTTON.is_pressed:
 print("Pressed back button")
 mlplayer.previous()
 elif FORWARD_BUTTON.is_pressed:
 print("Pressed forward button")
 mlplayer.next()
else:
print("Unrecognised input")
 time.sleep(0.3)

Detecting GPIO input here uses the same methods as you used in Adventure 8;
you just check each of the GPIO pins to see if it is connected to 3.3V (a logic
high) or connected to ground (a logic low). You want to add a sleep for a short
time (0.3 seconds) at the end, otherwise the same press might register multiple
times. When a mechanical switch is pressed, it “bounces” between logical high
and low, which would be read as multiple presses. Here you are “debouncing” it
by ignoring changes that happen just after pressing the button.

5. Save this file as jukebox2.py inside your Documents directory.

6. It is now time to test whether your code works with your buttons. To run your
adapted jukebox program, open a Terminal window, and navigate to your
Documents folder using the following command:

cd Documents

Then type this command:

python3 jukebox2.py /home/pi/music

Now press your jukebox buttons. Is everything working as you want it to work?

Part Four: Displaying
Jukebox Information
on the LCD Screen
Right at the start of this big project, you connected an LCD screen to a breadboard and
wired it to work using some adapted test code from Adafruit. Since then, you’ve pretty
much ignored the display. It’s time to use the LCD screen to output information about
the MP3 file that is being played—the name of the artist, the name of the track and
the name of the album. That information comes from the metadata stored within the
MP3 file.

A D V E N T U R E 1 0 B U I L D I N G A R A S P B E R R Y P I J U K E B O X 245

The vlc library allows you to attach code to certain events, such as when the track is
changed on an MP3 file. This allows you to have a function that is called any time the
selected event happens during playback.

1. Open jukebox2.py using Python 3 (IDLE) and edit the code to add the last
line:

import glob, random, sys, vlc, time
from gpiozero import Button
from Adafruit_CharLCD import *

Here the code has been amended to import the modified Adafruit_CharLCD
library. You use from Adafruit_CharLCD instead of import because the class
in there is called Adafruit_CharLCD. That means that, if you didn’t use
import * as I have done here, you would have to type Adafruit_CharLCD.
AdafruitCharLCD—which would seem silly!

2. The next part of the code remains the same:

if len(sys.argv) <= 1:
 print("Please specify a folder with mp3 files")
 sys.exit(1)
folder = sys.argv[1]
files = glob.glob(folder+"/*.mp3")
if len(files) == 0:

 print("No mp3 files in directory", folder, ↩
 "..exiting")

 sys.exit(1)
random.shuffle(files)

player = vlc.MediaPlayer()
medialist = vlc.MediaList(files)
mlplayer = vlc.MediaListPlayer()
mlplayer.set_media_player(player)
mlplayer.set_media_list(medialist)

PLAY_BUTTON = Button(11, pull_up=False)
STOP_BUTTON = Button(7, pull_up=False)
BACK_BUTTON = Button(4, pull_up=False)
FORWARD_BUTTON = Button(10, pull_up=False)

Metadata is data that describes some other sort of data. In this case, it is textual
data such as the name of the artist and track, which helps to describe the audio
data stored in an MP3 file. For MP3s, this can be stored inside the MP3 file
alongside the audio data.

A D V E N T U R E S I N R A S P B E R R Y P I246

3. After setting up vlc and GPIO, you can set up the LCD screen by typing the
 following lines:

lcd = Adafruit_CharLCD()
lcd.clear()
lcd.message("Hit play!")

4. Leave a blank line to update the LCD screen when the track changes and then
type the following code:

def handle_changed_track(event, player):

 media = player.get_media()

 media.parse()

 artist = media.get_meta(vlc.Meta.Artist) or ↩

 "Unknown artist"

 title = media.get_meta(vlc.Meta.Title) or ↩

 "Unknown songtitle"

 album = media.get_meta(vlc.Meta.Album) or ↩

 "Unknown album"

 lcd.clear()

 lcd.message(title+"\n"+artist+" ‐ "+album)

playerem = player.event_manager()

playerem.event_attach(vlc.EventType.MediaPlayerMediaChanged,↩
handle_changed_track, player)

Let’s walk through some of this code. The two lines at the end make it so that the
handle_changed_track function is called any time the file being played
changes. This function is called if you start playback or press one of the skip but-
tons, but also when a track finishes and the next one starts.

Looking inside the handle_changed_track function, media.parse()
causes the program to read the metadata stored in that MP3 file (the artist, track
name, and so on).

artist = media.get_meta(vlc.Meta.Artist) gets the Artist metadata.
The line artist = media.get_meta(vlc.Meta.Artist) or "Unknown
artist" is, roughly speaking, a handy short way of writing the following:

if media.get_meta(vlc.Meta.Artist):
 artist = media.get_meta(vlc.Meta.Artist)
else
 artist = "Unknown artist"

You include this code to handle the case where the MP3 didn’t have any embed-
ded metadata.

For the lcd.message there are two important things to note. First, anything
after the newline (\n) is displayed on the second line of your LCD screen.
Second, you use the + character to join strings together into one longer string.

A D V E N T U R E 1 0 B U I L D I N G A R A S P B E R R Y P I J U K E B O X 247

5. Add one last line of code beneath the while loop:

while True:
 # button = input("Hit a button ")
 if PLAY_BUTTON.is_pressed:
 print("Pressed play button")
 if mlplayer.is_playing():
 mlplayer.pause()
 else:
 mlplayer.play()
 elif STOP_BUTTON.is_pressed:
 print("Pressed stop button")
 mlplayer.stop()
 random.shuffle(files)
 medialist = vlc.MediaList(files)
 mlplayer.set_media_list(medialist)
 elif BACK_BUTTON.is_pressed:
 print("Pressed back button")
 mlplayer.previous()
 elif FORWARD_BUTTON.is_pressed:
 print("Pressed forward button")
 mlplayer.next()
else:
print("Unrecognised input")
 time.sleep(0.3)
 lcd.scrollDisplayLeft()

The while loop is repeated roughly every 0.3 seconds, so the LCD screen
scrolls that often. This means that you can read artist and track names that are
longer than the LCD screen, and it scrolls at a pleasantly readable speed using
lcd.scrollDisplayLeft().

6. Save this file as jukebox3.py inside your Documents directory, by clicking on
File ➪ Save As and navigating to Documents inside /home/pi.

To run your final jukebox program, open a Terminal and navigate to your Documents
folder using this command:

cd Documents

Then type the following command:

python3 jukebox3.py /home/pi/music

Press your jukebox buttons and check whether the MP3 metadata is now being
 displayed on the LCD screen and whether it changes when you move between
tracks using the buttons (Figure 10‐10). You may see some warnings but you can
ignore them.

248

FIGURE 10-10 Jukebox LCD in action displaying MP3 metadata

USING THE JUKEBOX WITHOUT
A MONITOR
If you want the Jukebox program to run whenever your Raspberry Pi is turned
on, without needing it to be plugged into a keyboard, mouse or monitor, you
need to modify the /etc/rc.local file. The /etc/rc.local script runs
when your Raspberry Pi is starting up, at the end of the boot process. Adding
the command to run the jukebox Python program to this script means the
program runs whenever the Raspberry Pi starts up, so that you do not have to
give the command to run it.

To set up the jukebox to run after booting, type the following line into a
Terminal:

sudo nano /etc/rc.local

Next, scroll down through the code and add the following line before exit 0
(see Figure 10‐11):

python3 /home/pi/Documents/jukebox3.py /home/pi/music &

A D V E N T U R E S I N R A S P B E R R Y P I

A D V E N T U R E 1 0 B U I L D I N G A R A S P B E R R Y P I J U K E B O X 249

The ampersand symbol (&) used at the end of the above line is really important.
Without it your Raspberry Pi will not complete the boot process, and you could
lose all your hard work!

Save and exit the nano txt editor using Ctrl + X, accept the changes to the file
by pressing Y, and press Enter.

Restart your Raspberry Pi to make sure that the program automatically runs,
using the command:

sudo reboot

FIGURE 10-11 Modifying /etc/rc.local using Terminal

Finishing Up
Once you have tested everything and are happy that it all works, you can transfer your
Raspberry Pi, wiring, components and breadboard into a cardboard box that you have
prepared by measuring and cutting holes for the LCD screen, buttons, speaker and
power supply. You could also wrap the box in copies of album covers, paste on a couple
of old vinyl records, or add your own designs with pens or stickers to suit your taste.

A D V E N T U R E S I N R A S P B E R R Y P I250

Achievement Unlocked: Your big Raspberry Pi project!

Further Adventures: Continuing Your Journey with
the Raspberry Pi
Its ability to enable you to create big standalone projects like the jukebox, which
let you practice your computer programming and electronics skills and use some
ingenuity and creativity of your own, is what makes the Raspberry Pi such a
special little device. It allows you to be the creator of technology around you—
and should you get tired of your latest project, you can reincarnate your Pi in a
new project!

Here are a couple of resources to help you on your way:

• Raspberry Pi Projects (http://eu.wiley.com/WileyCDA/WileyTitle/
productCd‐1118555430.html) by Dr Andrew Robinson and Mike Cook
(Wiley, 2014) contains 16 super projects using the Raspberry Pi. They include a
chicken that reads out your tweets, lights that respond to music and a computer‐
controlled slot car racing project.

• The official Raspberry Pi website (www.raspberrypi.org) adds a new post
every day featuring Raspberry Pi projects from around the world, often with
links to tutorials on how to make your own. It also has a Resources section with
lots of projects for you to make with your Raspberry Pi.

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118555430.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118555430.html
http://www.raspberrypi.org/

251

Appendix

Where to Go
from Here

NOW THAT YOU have completed the adventures in this book, it’s likely that you will
want to embark on your own exciting expeditions with Raspberry Pi. Hopefully you
have learned some skills that will help you begin your own projects and you may wish
to learn more.

There are an abundance of resources that can take you further:

• Websites

• Clubs

• Inspiring projects/tutorials

• Videos

• Books and magazines

Websites
A great way to further your adventures with Raspberry Pi is to use some of the fantas-
tic websites that are springing up all over the Internet. There is a great culture flourish-
ing there and plenty of opportunities for you to show off your Raspberry Pi projects

A D V E N T U R E S I N R A S P B E R R Y P I252

and explain how you created them so that others can have a go too. Some of the most
notable and popular websites are listed here.

• The official Raspberry Pi Foundation website (www.raspberrypi.org) This
is the official website of the Raspberry Pi Foundation. It’s more than simply a
resource to download the latest software for your Pi, as it features a blog with a
new article every day on new developments, project ideas and inspirational sto-
ries, and the entire Raspberry Pi community uses the website’s forum to discuss
ideas, projects, and future developments. It is designed mainly for adults, which
means it can be a little daunting at first, but if you are stuck on a project you can
post a question and someone will know the answer and be able to help you out.

It also features a Resources section that hosts lots of project tutorials to help you
learn and create with Raspberry Pi.

• All About Code (www.allaboutcode.co.uk) This website was created by
Joshua Lowe when he started to learn about computing at primary school. It
includes his blog that details all the projects he has worked on with step‐by‐step
tutorials so that others can follow along. He has even written his own Scratch
and Python worksheets, as well as software that runs on a Raspberry Pi to make
it easier for younger students to learn how to code.

• Adafruit Learning System (learn.adafruit.com/category/learn‐
raspberry‐pi) The Adafruit learning system website features detailed
 lessons on electronics. You may recall that for the jukebox project in Adventure
10 you used some code from Adafruit to get the LCD display up and running.
Not only does Adafruit provide open‐source code for electronics projects on its
site but it also has a dedicated section with lessons on Raspberry Pi GPIO that
you can follow at your own pace, as well as project ideas and tutorials featuring
both Pi and electronics.

• <Stuff about=”code” /> (www.stuffaboutcode.com) In Adventure 6 you
had a taste of what it is like to be a games developer of sorts by using Python
code to make something happen in the world of Minecraft. If you enjoyed that
project and would like more tutorials on Minecraft Pi, head over to Martin
O’Hanlon’s website, Stuff about=“code”, where you’ll find one of the largest
collections of Minecraft Pi tutorials on the Internet. Projects range from having
live Twitter feeds appear in Minecraft Pi blocks to firing cannons. There are
plenty of fun ideas just waiting for you to try.

• The official Python website (www.python.org/doc) The Python Software
Foundation has placed all the documents relating to the Python programming
language online. The website includes tutorials as well as reference material for
all the commands you are likely to use. It’s a great site if you get stuck with writ-
ing code, especially if your program is generating syntax errors! The site can be
quite confusing to navigate at first, but you will find it a valuable reference point
when coding.

http://www.raspberrypi.org/
http://www.allaboutcode.co.uk
http://learn.adafruit.com/category/learn-raspberry-pi
http://learn.adafruit.com/category/learn-raspberry-pi
http://www.stuffaboutcode.com/
http://www.python.org/doc/

A P P E N D I x W H E R E T o G o f R o m H E R E 253

Clubs
It is always fun to share your computing ideas and projects with other people of your
own age. There are many clubs for young people and their Raspberry Pis. Some of these
are run at weekends by adults who work as professional coders. They can give you
inspiration for new projects, teach you new skills and help you if you are stuck. Here is
a list of some popular clubs and groups:

• Code Club (www.codeclub.org.uk) Code Club is an international network
of free after‐school coding clubs for children aged 9–13. They are usually located
in schools—you can use the Code Club website to find the nearest one to where
you live.

• Coder Dojo (www.coderdojo.com) At Coder Dojo you can learn how to
code, as well as develop websites, apps, programs, games and more. Dojos are set
up, run by and taught by volunteers, many of them professional programmers.
Some Dojos organise tours of technology companies, bring in guest speakers to
talk about their careers and what they do, and organise events. In addition to
learning to code, you get to meet like‐minded people, and show off what you’ve
been working on. You can find out if there is a Coder Dojo near you by using the
CoderDojo search on the website.

• Raspberry Jam (www.raspberrypi.org/jam) Raspberry Jam is a rapidly
growing global network of user groups that meet regularly to support hobbyists,
developers, teachers, students, children and families—in fact, anybody who
would like to put their Raspberry Pi to good use. You can find out what Raspberry
Jams are happening in your area on the official Raspberry Pi Foundation website.
Some events are held especially for young people and take place in computer‐
based offices.

• Pioneers (www.raspberrypi.org/pioneers) Pioneers is an informal pro-
gram for young people aged between 12 and 15 years of age. The challenges have
been designed to be open‐ended, so that those taking part can be as creative as
they like. Participants must use digital technologies to make their project. That
might mean programming a computer, building a website, hacking some
 hardware (like Raspberry Pi or Arduino), or using a 3D printer! Professional
developers and makers assist the young people taking part who volunteer their
time to help teams respond to creative and innovative challenges set by the
Raspberry Pi Foundation. Not only is it a great way to learn how to code and
make things, it’s also a great way to meet other young people and develop a
 network of friends—and a lot of fun!

• School clubs Check to see if there is a Raspberry Pi or coding club at your
school. If not, why not approach your ICT or computing teacher and ask about
helping to start one? To start your own school club you need these things:

• A teacher or adult willing to help supervise and run the club. This could be a
teaching assistant, technician or a parent.

http://www.codeclub.org.uk/
http://www.coderdojo.com/
http://www.raspberrypi.org/jam
http://www.raspberrypi.org/pioneers

A D V E N T U R E S I N R A S P B E R R Y P I254

• A venue, such as a classroom, with tables, chairs and access to power sockets
and possibly the Internet, although that is not essential.

• A suitable time to hold the club, perhaps after school one night every week.
Your teacher will be able to help you with this.

• Some posters to advertise your club.

• Some enthusiastic club members who own their own Raspberry Pis to bring
along.

Inspiring Projects and
Tutorials
Once you have had an idea for a Raspberry Pi project and you have spent the time
making it happen, you may wish to share your success with others. Many people do
this through attending Raspberry Jams. Others write posts in a blog, or they add their
projects to a Raspberry Pi ideas website so that others can have a go too!

• MAKE: (http://makezine.com/category/electronics/raspberry‐
pi/) The popular magazine MAKE: features a Raspberry Pi section full of Pi
projects on its website. Projects include step‐by‐step tutorials with pictures and
videos that are easy to follow.

• Instructables: (http://www.instructables.com/howto/Raspberry+Pi/)
This website features lots of creative projects in tutorial form contributed by
 people from around the world. You can search for ‘Raspberry Pi’ and you’ll be
 presented with weird and wacky ideas to inspire your adventures.

Videos
There are some great video resources on the Internet on how to use your Raspberry Pi,
some of which include tutorials on how to create a particular project.

• The Raspberry Pi Foundation Official YouTube Channel (https://www.
youtube.com/channel/UCFIjVWFZ__KhtTXHDJ7vgng) This YouTube
channel curates great tutorial videos about Raspberry Pi in one place. The
Raspberry Pi Foundation also produces videos on all the inspiring work the
foundation does. It is a great place to start if you are new to Raspberry Pi.

• The Raspberry Pi Guy (www.youtube.com/user/TheRaspberryPiGuy)
This young adult started his video channel as a teenager when he received his first
Raspberry Pi. He’s posted lots of great tutorial videos for building cool gizmos
with Raspberry Pi technology. My favourite is remote‐controlled electric
 skateboard (https://www.youtube.com/watch?v=2WLEur3M8Yk)! He also

http://makezine.com/category/electronics/raspberry-pi/
http://makezine.com/category/electronics/raspberry-pi/
http://www.instructables.com/howto/Raspberry+Pi/
https://www.youtube.com/channel/UCFIjVWFZ__KhtTXHDJ7vgng
https://www.youtube.com/channel/UCFIjVWFZ__KhtTXHDJ7vgng
http://www.youtube.com/user/TheRaspberryPiGuy
https://www.youtube.com/watch?v=2WLEur3M8Yk

A P P E N D I x W H E R E T o G o f R o m H E R E 255

produces excellent review videos giving his opinions about different products,
which can be useful to watch if you are thinking of buying extra components for
your Raspberry Pi.

• Raspberry Pi 4 Beginners (www.pibeginners.com) On this website you will
find lots of short video explanations, tutorials and projects to teach you material
specific to Raspberry Pi. For example, if you want to learn how to add your Pi to
a wireless network or find out how to view your Pi’s file system information, this
is the place for you. The videos are created by Matthew Manning, and the web-
site is curated by a team of Pi enthusiasts willing to help people learn about
Linux.

• RasPi.TV (http://raspi.tv) If you are interested in learning more about
the GPIO pins on the Raspberry Pi, or how to control real‐world objects like
lights, for example, you’ll find this website and the video tutorials created by
Alex Eames really helpful. Programming electronics adds an extra element of
fun but it can also be quite difficult to understand what is happening in a circuit.
Alex’s videos contain simple explanations to help you learn. RasPi.TV has some
detailed projects for enthusiastic learners, using extra hardware that interfaces
with the Raspberry Pi, like the RasPiO Pro Hat.

• Geek Gurl Diaries (www.geekgurldiaries.co.uk) The Geek Gurl Diaries
are a collection of video logs, interviews and tutorials designed for young girls.
There are a number of Raspberry Pi‐based tutorials, including the famous Little
Box of Geek project that demonstrates how to turn your Raspberry Pi into a
fortune printing box.

Books and magazines
If you have enjoyed learning from this book, you may like to progress onto other
books. There are a number of publications that will take you further after Adventures in
Raspberry Pi. Here are some recommendations:

• Raspberry Pi User Guide, Fourth Edition, by Eben Upton and Gareth Hardacree
(Wiley, 2016)

• Raspberry Pi For Dummies, 2nd Edition, by Sean McManus and Mike Cook
(Wiley, 2014)

• Raspberry Pi Projects, by Dr Andrew Robinson and Mike Cook (Wiley, 2014)

• Learning Python with Raspberry Pi, by Alex Bradbury and Ben Everard (Wiley,
2014)

• Adventures in Minecraft, by David Whale and Martin O’Hanlon (Wiley, 2014)

• Adventures in Python, by Craig Richardson (Wiley, 2015)

http://www.pibeginners.com/
http://raspi.tv/
http://www.geekgurldiaries.co.uk/

A D V E N T U R E S I N R A S P B E R R Y P I256

• The MagPi Magazine (www.raspberrypi.org/magpi/) This monthly
magazine for Raspberry Pi users contains articles that cover coding, robotics and
electronics. Each issue is free to view online. All you need to do is navigate to the
website, click an issue and follow the download links. You can buy hard copies of
the magazine from Pi Supply (www.pi-supply.com/product-category/
cables-and-accessories/books-and-magazines/).

• Raspberry Pi Weekly (https://www.raspberrypi.org/weekly/) This
weekly newsletter is delivered electronically to your email if you sign up. It con-
tains a roundup of all the Raspberry Pi news from the community and the
Raspberry Pi Foundation.

https://www.raspberrypi.org/magpi/
https://www.pi-supply.com/product-category/cables-and-accessories/books-and-magazines/
https://www.pi-supply.com/product-category/cables-and-accessories/books-and-magazines/
https://www.raspberrypi.org/weekly/

Glossary

algorithm A set of rules to be followed to calculate or solve a problem. Common
algorithms are those used for sorting information or data.

argument A piece of information given to a function, which the function then
uses to perform its task. The argument goes inside the brackets that follow the
function name. In the function time.sleep(2), for example, you use the
argument (2), which is the number of seconds you want the program to wait
before executing the next line.

boot The first thing a computer does when you turn it on is to start up, or boot,
the operating system.

breadboard A reusable device that allows you to create circuits without needing to
solder all the components. Breadboards have a number of holes into which you
push wires or jumper cables and components to create circuits. The two col-
umns of holes on either side of the breadboard are for power. The column next
to the red line is for positive connections and the column next to the blue line
is for negative connections.

broadcast A message used to coordinate the actions of different sprites and the
stage in Scratch. The broadcast message keeps all the scripts running for each
sprite and keeps the stage synchronized.

capacitor Electronic component used to store an electric charge. The capacity of
this component is measured in farads (F). A farad is a very large quantity, so
most of the capacitors you see will be measured in microfarads.

circuit diagram A diagram showing which electronic components, represented by
symbols, are connected to complete a circuit and in what order they should be
placed.

CLI (command-line interface) The CLI screen allows you to communicate with a
computer by typing in text commands.

comments Notes within your code that explain what a line or section of code is
intended to do. Each comment line begins with the # symbol, which tells the
computer running the program to ignore that line.

258 A D V E N T U R E S I N R A S P B E R R Y P I

conditional A conditional statement is a piece of code that instructs the program
to take an action only if a certain condition is true. The most commonly used
conditionals are if and if…else statements.

current The rate at which electrical energy flows past a point in a circuit. It is the
electrical equivalent of the flow rate of water in pipes. Current is measured in
amperes (A). Smaller currents are measured in milliamperes (mA).

data structure A particular way of storing and organizing related pieces of infor-
mation. Lists and arrays are types of data structures.

debugging The act of locating the cause of any errors in your computer program
code and fixing them.

diode A device that lets current flow in only one direction. A diode has two termi-
nals, called anode and cathode. Current will flow through the diode only when
positive voltage is applied to the anode, and negative voltage to the cathode.

flash memory A type of storage, the same kind you use with a digital camera to
store all your photographs.

function A section of code that does a specific task; once the function is created
you can use it over and over again. Python, like most programming languages,
includes some standard functions that the computer will already understand,
like the print()function that prints some text to the screen. You can also
write your own functions.

GUI (graphical user interface) A way to interact with a computer that uses
 windows, icons and a mouse pointer.

hardware Refers to the physical elements of the computer that you can see and
touch. This includes everything inside the computer case, known as
components.

HDMI (High-Definition Multimedia Interface) HDMI devices are used to trans-
fer video and audio data from a source device—such as your Raspberry Pi—to
a compatible HDMI device like a digital TV or monitor.

hostname A word that identifies a computing device on a network. The hostname
of the Raspberry Pi is raspberrypi.

IDE (integrated development environment) A software application used to write
computer code in a particular language, for example Python; also referred to as
a programming environment. The application has the capability to create and
edit code, as well as run or execute the code. Many IDEs also provide features
to help programmers debug or check for errors in their programs.

259G L O S S A R Y

if/if…else statements Conditional constructs commonly used in computer pro-
gramming. When you use an if statement, you are asking whether a condition
is met, and then making something happen if the condition set is true. For
example: If it is raining, then put up an umbrella. You can add another action
for when the condition is false using the else command. For example: If it is
raining, then put up an umbrella; else, wear sunglasses.

input The raw data or information entered into a computer system like a
Raspberry Pi before it is processed. Input devices include keyboards, push but-
tons and microphones. The Raspberry Pi has pins that can be connected to
these and other devices.

interpreter An application that checks and runs a computer program line by line.

iteration Repeating a sequence.

jumper cables Used to connect the GPIO pins on the Raspberry Pi to a breadboard
or other components. They are reusable and do not require soldering. They
come in different formats: female-to-male; female-to-female; and
male-to-male.

LCD (liquid crystal display) An electronic display, usually quite thin and flat, that
is typically used in digital calculators and digital watches to display informa-
tion such as the time.

library A collection of reusable software functions that allow you do something
useful.

LED (Light Emitting Diode) A diode that lights up when electricity passes
through it. LEDs allow current to pass in only one direction. They come in a
variety of colours, and have one short leg and one long leg, which helps you to
determine which way round they need to be placed in a circuit for current to
flow through them.

loop A sequence of code that repeats.

MIDI (Musical Instrument Digital Interface) keyboard A musical instrument
that can communicate with a computer. Piano sheet music notes and MIDI
keyboard notes are the same, only sheet music notes are represented by letters
G, C, A, and so on, whereas MIDI keyboard notes are represented by numbers.

module A collection of reusable Python code that performs a specific function. It
may be used alone or combined with other modules. For example, you can use
functions from the Python time module to add pauses in your programs.

nano A text editor that enables you to write code from the command line.

260 A D V E N T U R E S I N R A S P B E R R Y P I

NOOBS (New Out Of Box Software) A set of software produced by the Raspberry
Pi Foundation, to be downloaded onto a computer and copied to an SD card
that will be used on a Raspberry Pi.

operating system (OS) A type of software that allows people to create, store and
manage files and applications that contain information on a computer.
Examples of popular operating systems include Microsoft Windows, Mac OS X
and Linux. Raspbian is a popular operating system for the Raspberry Pi.

parameters Options to commands that modify the way that the standard com-
mand works (a bit like ticking a tick box in a GUI program). Most Linux com-
mands have lots of parameters that modify the way that they work.

output The data that your computer gives in response, after you have typed in a
command. Examples of output devices include speakers and monitor screens.

potentiometer A type of resistor with an adjustable button to vary the resistance
of current.

refactoring A way of restructuring code you have already written to make it more
efficient and easy to read, and to avoid bugs. If you find yourself copying and
pasting large sections of code, this is usually a good indicator that you need to
refactor your code!

resistors Electrical components that resist current in a circuit. For example, LEDs
can be damaged by too much current, but if you add the correct value resistor
in series with the LED in the circuit to limit the amount of current, the LED
will be protected. Resistance is measured in ohms. You need to pick a resistor
with the correct value to limit the current through a circuit; the value of a
resistor is shown by coloured bands that are read from left to right.

SD card (Secure Digital memory card) A small memory card that stores data or
information. SD cards are most often used in digital cameras, to store images
that can then be transferred to a computer using an SD card reader.

SD card reader/writer A device for reading information stored on SD cards and
for writing information to SD cards.

software The term given to the programs that run on the computer system.
Programs are what make the hardware work, for example by making a calcula-
tion or organising your files. There are two main types of software: systems
software, which runs and manages your computer; and application software,
which performs a specific task or function.

sprites The characters that can be programmed to do something in Scratch. The
sprites wear costumes that can be customised.

261G L O S S A R Y

stage Refers to the background for the sprites in Scratch. You can add scripts to
the stage to allow the sprites to interact with it—for example, you might draw
a wall that stops your sprite from moving beyond a certain point.

string Data or information entered as text, i.e., a “string” of characters.

sudo The sudo command lets you temporarily act as the super user (or root user)
and gives you permission to do whatever you want on the system.

syntax A set of rules to check whether the code you have typed is valid code. In
the same way as the English language has rules about how to properly combine
subjects, verbs, objects and so on, each programming language has its own
syntax.

syntax error An error that stops a program from running because the computer
cannot understand the code.

terminal A screen window that gives you access to the command-line interface.
The graphical LXTerminal is an example.

threads A way to run more than one script simultaneously.

turtle An imaginary pen used to create graphic images using a sequence of
instructions in the Turtle Graphics program.

uinput A special hardware driver that allows other programs to inject keypresses
into the system as if you had pressed a real key on the keyboard. It is a special
kernel driver that has to be installed inside the Linux kernel in order to do its
work.

USB (Universal Serial Bus) port A type of opening on a computer used to plug in
devices such as a webcam, or a portable memory device like a memory stick.

variable A code construct that holds a value that can be changed. The health
variable in your adventure role-playing game in Adventure 3 is an example of a
value that can be changed and used inside different scripts.

voltage The difference in electrical energy between two points in a circuit. It is the
electrical equivalent of water pressure in pipes, and it is this pressure that
causes a current to flow through a circuit. Voltage is measured in volts (V).

SYMBOLS AND
NUMERICS
command, 124
+ (add) symbol, 116
>>> (angle symbols), 101
/ (divide) symbol, 116
== (equals) symbol, 116
> (greater than) symbol, 116
>= (greater than or equal to) symbol, 116
< (less than) symbol, 116
<= (less than or equal to) symbol, 116
* (multiply) symbol, 116
!= (not equals) symbol, 116
‐ (subtract) symbol, 116
2xAA (website), 147

A
Aaron, Sam (computer scientist), 147, 148
accessories, 9–11
Adafruit Learning System (website),

177, 196, 252
add (+) symbol, 116
adding

effects, 164–165
headers to LCD screen, 228–229
scripts, 61–64, 232–233

adventure role‐playing games, 56–74
Adventures in Minecraft (Whale and O’Hanlon),

146, 255
Adventures in Python (Richardson), 255
alex = turtle.Turtle() command, 96
algorithms

defined, 257
using, 162–163

All About Code (website), 252
aluminum foil trap, 215
angle symbols (>>>), 101
animating crazy monkeys, 50–56
API cheat sheet, 146
applications

installing, 35–37
“manual” file for, 36
updating, 35–37

argument, 108, 257
Astro Pi (website), 215, 216
avconv application, 204–206
avconv ‐r 10 ‐i image%02d.jpg‐qscale

2 timelapse.mp4 command, 223

B
backgrounds

Scratch, 47
switching, 61–67

backing up SD card images, 22–24
badges, 6
blocks

placing, 134–138
types of, 138–139

Blocks palette, 43
books, as resources, 255–256
boot, 12, 13, 257
Bradbury, Alex (author)

Learning Python with Raspberry Pi, 255
breadboard

defined, 174, 257
wiring, 229–232

break command, 124
broadcast, 257
broadcast command, 63, 72
buffers (Sonic Pi interface), 150
buttonLED

connecting components, 182–183
creating, 181–182
running in IDLE, 183–184

buttons
connecting, 240–242
controlling jukebox with, 240–244
GPIO, 242–244
turning on LEDs with, 181–184

C
cables

connecting, 173
purchasing, 215

camera.capture() command, 223

Index

A D V E N T U R E S I N R A S P B E R R Y P I

cameras. see also Raspberry Pi Camera
about, 197–198
module for, 10
mounting, 203–204

camera.start_preview() command, 223
camera.stop_preview() command, 223
capacitor, 174, 257
case, 9, 10
cat command, 34, 39
caves, entering, 61–67
cd command, 32–33, 39, 209
Challenge sidebars, 6
change pen color by x command, 95
change pen shade by x command, 95
change size by command, 73
Change variable by command, 73
change x by_ command, 72
change y by_ command, 72
changing

color of pen, 81–82
player location, 133–134
size of pen, 81–82

choice() function, 109
circuit diagram, 174, 257
clear command, 34, 39, 80, 95
CLI (command‐line interface), 25, 26, 257
cloning programs, 144–145
clubs, as resources, 253–254
code

creating files with text editor, 104–106
debugging, 102
for music (see Sonic Pi)

Code Club, 253
Code sidebars, 6
Coder Dojo, 253
.color command, 93, 96
colors

pen, 93
RGB, 219

command‐line interface (CLI), 25, 26, 257
commands

about, 25
alex = turtle.Turtle(), 96
avconv ‐r 10 ‐i image%02d.jpg‐

qscale 2 timelapse.mp4, 223
break, 124
broadcast, 63, 72
camera.capture(), 223
camera.start_preview(), 223
camera.stop_preview(), 223
cat, 34, 39
cd, 32–33, 39, 209
change pen color by x, 95
change pen shade by x, 95

change size by, 73
Change variable by, 73
change x by_, 72
change y by_, 72
clear, 34, 39, 80, 95
color, 93, 96
cp, 34, 39
curl, 209
date, 39
def, 124
elif, 124
else, 66
exit, 145
explorerhat.light.red.off(), 223
explorerhat.light.red.on(), 223
explorerhat.touch.pressed(button_

pressed), 223
fire, 145
forever, 72, 89
forever if, 60, 72, 111
forward(x), 96
General Purpose Input Output (GPIO) pins,

196
getPos(), 133, 137, 141–142
getTilePos(), 137
go to, 72
from gpiozero import LED,

Button, 196
hide, 73
for i in range():, 96
if button.is_pressed:, 196
if on edge, bounce, 72
if pir.motion_detected:, 196
import, 107, 124
import explorehat, 223
import turtle, 96
inventory = ["Torch," "Pencil,"

"Rubber Band," Catapult"], 124
key x pressed, 73
Led=LED(), 196
led.off(), 196
led.on(), 196
left(x), 96
live_loop :name do...end, 167
ls, 30, 31, 39, 209
Make a variable, 73
man, 36, 39
mc=minecraft.create(), 146
from mcpi.minecraft import

minecraft, 146
Minecraft, 146
mkdir, 34, 39, 235
move x steps, 72
n, 124

I N D E X 265

name=value, 124
nano, 37–38, 40
for navigating file system, 29–33
next costume, 73
.off(), 210
.on(), 210
pen down, 77–78, 92, 95, 96
pen up, 77–78, 92, 96
pensize, 93, 96
from picamera import PiCamera, 223
play x, 167
play_pattern(), 156, 167
point in direction, 72
point towards, 72
pos=mc.player.getPos(), 146
pos=mc.player.getTilePos(), 146
postToChat, 133, 146
pwd, 30, 33, 40
Python, 92–93, 124–125
rand, 161–162, 163, 167
range, 91–92, 96
repeat, 72, 89
return, 125
.reverse, 163, 167
right(x), 96
rm, 34, 40
rmdir, 34, 40
rotate, 144
say, 73
Scratch, 72–73
sense.get_humidity(), 218
sense.get_pressure(), 218
from sense_hat import SenseHat

sense=SenseHat, 223
sense.set_pixels(), 223
sense.show_message(), 223
set pen color to x, 96
set pen shade to x, 96
set pen size to x, 96
set size to, 73
Set variable to, 73
set x to, 72
set y to, 73
setBlock, 136, 138, 141–142, 146
setBlocks, 146
setPos, 141–142, 146
shape("turtle"), 96
show, 73
.shuffle, 163, 167
shutdown, 38–39
Sonic Pi, 167
.sort, 163
stamp(), 93, 96
start, 144

stop all, 72
sudo, 24, 33, 40, 261
sudo halt, 24, 40
sudo reboot, 24, 40
switch to background, 73
switch to costume, 73
temp=sense.get_temperature(), 223
think, 73
tilt, 145
touching, 73
touching color, 73
turn (anti‐clockwise) x degrees, 73
turn (clockwise) x degrees, 73
Turtle Graphics module, 95–96
use_synth, 158–159, 167
wait x secs, 72
when I receive, 72
when x clicked, 72
when x key pressed, 72
with_fx :reverb do...end, 167
x.times do...end, 167

comments, 107, 257
conditional statement, 60, 111
conditional(s)

defined, 258
using, 111–114

configuring software, 16–19
connecting

buttonLED components, 182–183
buttons, 240–242
cables, 173
camera to Raspberry Pi, 198–199
Explorer HAT Pro to Raspberry Pi, 207
LEDblink components, 178–180
PIRmotion components, 186–187
to Wi‐Fi networks, 21–22

controlling
direction and movement of sprites, 60–61
GPIO pins with Python library, 175–176
jukebox with buttons, 240–244
Minecraft, 130

conventions, explained, 5–6
Cook, Mike (author)

Raspberry Pi For Dummies, 2nd Edition, 255
Raspberry Pi Projects, 250, 255

coordinates
in Scratch, 54
using in Minecraft, 132–139

copying Raspbian operating system, 12–15
costumes, creating, 48–50
Coupe (Pimoroni) (website), 173
cp command, 34, 39
CPC Farnell (website), 177
crazy monkeys, animating, 50–56

A D V E N T U R E S I N R A S P B E R R Y P I

creating
adventure role‐playing games, 56–74
buttonLED, 181–182
code files with text editor, 104–106
costumes, 48–50
diamond transporters, 141–143
enchanted keys, 64–66
Explorer HAT Pro disco trigger traps,

212–215
Game Over screens, 69–71
games with Scratch, 41–73
health‐point‐stealing sprites, 68–69
LEDblink Python code, 177–178
liquid crystal display (LCD), 228–233
main game loops, 120–123
marshmallow button, 189–191
motion‐sensing Python code, 185–186
movies of images, 204–206
pixel art, 218–220
Raspberry Pi Jukebox (see Raspberry Pi

Jukebox)
Sense HAT desk thermometers, 220–222
sounds with Sonic Pi, 151–157
spiral patterns, 82, 93–95
sprites, 48–50, 56–57
stages, 46–48, 56–57
stories with Scratch, 41–73
time‐lapse photography programs, 201–206
TNT chain reactions, 139–140
variables, 58–59

CTRL+ALT+DEL, 26
curl command, 209
current, 173, 258

D
data structure, 155, 258
date command, 39
debugging

code, 102
defined, 258

def command, 124
desktop, Raspbian, 20–21
determining number of sides using user input,

82–84
diamond transporters, creating, 141–143
digital making, 225
diode, 174, 258
direction, controlling for sprites, 60–61
directories, managing, 34
divide (/) symbol, 116
do, 156, 161, 164–165
downloading

applications, 35–36
Explorer HAT library, 207–209

marshmallow sprite, 193–194
MP3s, 233–239
NOOBS, 14–15
Raspbian operating system, 12–15
Scratch Marshmallow Game, 192
Scratch Reference Guide, 71
SD Formatter, 13
Win32 Disk Imager, 22–23

drawing simple shapes, 78–79
driving LCD screen, 232–233

E
Eames, Alex (programmer), 195, 255
editing

files, 37–38
sprites, 48–49

effects, adding, 164–165
electronic tracks, 158–166
electronics, basics of, 173–175
elif command, 124
else command, 66
enchanted keys, creating, 64–66
end, 156, 161, 164–165
entering caves, 61–67
equals (==) symbol, 116
equipment, additional, 9–11
Everard, Ben (author)

Learning Python with Raspberry Pi, 255
examples, project, 1
exit command, 145
Experimenting with the Sense HAT, 223
Explorer HAT Pro

connecting to Raspberry Pi, 207
creating disco trigger traps, 212–215
downloading library, 207–209
getting started, 206–212

explorerhat.light.red.off() command,
223

explorerhat.light.red.on() command,
223

explorerhat.touch.pressed(button_

pressed) command, 223

F
files

commands for navigating, 29–33
editing, 37–38
managing, 34

finding
player location, 132–133
temperature, 217–218

fire command, 145
flash memory, 12, 258

I N D E X 267

for i in range(): command, 96
for loops, 89–90, 96, 124
forever command, 72, 89
forever if command, 60, 72, 111
forever loop, 115
formatting SD cards, 13–14
forward(x) command, 96
Free Music Archive, 234
from gpiozero import LED, Button

command, 196
from mcpi.minecraft import minecraft

command, 146
from picamera import PiCamera

command, 223
from sense_hat import SenseHat

sense=SenseHat command, 223
functions

choice(), 109
defined, 91, 103, 258
defining, 118–120
get_input(), 119, 120, 121
handle_room(), 119, 120, 121
input(), 108, 111, 124
print(), 103, 105–106, 107, 108, 111,

124, 125
random.choice(), 108
sleep(), 107, 111, 154, 175, 242
time.sleep(), 108, 109, 181–182,

186, 210
using, 101–103

G
Game Over screens, creating, 69–71
games

adventure role‐playing, 56–74
creating with Scratch, 41–73

Geek Gurl Diaries (website), 255
General Purpose Input Output (GPIO) pins

about, 169–170
basics of electronics, 173–175
commands, 196
controlling with Python library, 175–176
layout diagrams, 170–173
making LEDs blink, 176–180
marshmallow challenge, 188–195
projects with, 195–196
resources, 195–196
triggering sounds with PIR motion sensors,

184–188
turning on LEDs with buttons, 181–184

get_input() function, 119, 120, 121
getPos() command, 133, 137, 141–142
getTilePos() command, 137
getting started

Explorer HAT Pro, 206–212
Minecraft, 128–130
Raspberry Pi Camera, 198–201
Sense HAT, 215–220
Sonic Pi, 148–149

GitHub, 144
glob module, 237
go to command, 72
GPIO pins. see General Purpose Input Output

(GPIO) pins
gpiozero library, 175–176, 178, 195, 242–244
graphical user interface (GUI), 19, 258
greater than or equal to (>=) symbol, 116
greater than (>) symbol, 116
GUI (graphical user interface), 19, 258

H
handle_room() function, 119, 120, 121
hard drive, 12
Hardacree, Gareth (author)

Raspberry Pi User Guide, Fourth Edition, 255
hardware

defined, 7, 258
plugging in, 16
requirements for, 8–9

Hardware Added on Top (HATs), 197–198, 258
HDMI (High‐Definition Multimedia Interface), 8
headers, adding to LCD screen, 228–229
health points, using variables for, 116–117
health‐point‐stealing sprites, creating, 68–69
Help (Sonic Pi interface), 151
hide command, 73
hiding sprites, 66–67
High‐Definition Multimedia Interface (HDMI),

8, 258
hostname, 29, 258

I
IDE (integrated development environment)

defined, 100, 258
IDLE, 100–101
using functions, 101–103

IDLE (Python 3). see also Python
about, 85, 100–101
running buttonLED.py in, 183–184
running LEDblink.py in, 180
running PIRmotion.py in, 187–188

if button.is_pressed: command, 196
if else statement, 66
if on edge, bounce command, 72
if pir.motion_detected: command, 196
if statement, 66–67, 69, 114, 124, 259
if...else statement, 72, 113, 124, 259

A D V E N T U R E S I N R A S P B E R R Y P I

images
creating movies of, 204–206
SD card, 22–24

import command, 107, 124
import explorehat command, 223
import turtle command, 96
improving movement of sprites, 69
including GPIO buttons, 242–244
indentation, 115, 121, 156
input

defined, 170, 259
mapping to keyboard keys, 191–192

input() function, 108, 111, 124
installing

applications, 35–37
media players, 233–236
Raspbian, 17–19
software, 16–19

Instructables (website), 254
integrated development environment (IDE)

defined, 100, 258
IDLE, 100–101
using functions, 101–103

interface
options for, 18
Scratch, 43–44
Sonic Pi, 149–151

Internet of Things (Windows 10 IoT), 17
interpreter, 85, 259
inventory = ["Torch," "Pencil,"

"Rubber Band," Catapult"]
command, 124

iteration, 52, 89, 259

J
jumper cables, 174, 259

K
key x pressed command, 73
Kids Ruby (website), 166

L
language, programming, 100
layout diagrams, General Purpose Input Output

(GPIO) pins, 170–173
LCD (liquid crystal display)

adding headers to, 228–229
creating, 228–233
defined, 228, 259
displaying jukebox information on,

244–249
driving, 232–233
mounting, 229–232

Learning Python with Raspberry Pi (Bradbury and
Everard), 255

LED matrix, programming with Python, 217
LEDblink

connecting components, 178–180
creating, 177–178
running in IDLE, 180

Led=LED() command, 196
led.off() command, 196
led.on() command, 196
LEDs (light‐emitting diodes)

defined, 174, 259
making them blink, 176–180
programming, 209–211
turning on with buttons, 181–184

left(x) command, 96
LEGO case, 10, 11
less than or equal to (<=) symbol, 116
less than (<) symbol, 116
library, 259
light‐emitting diodes (LEDs)

defined, 174, 259
making them blink, 176–180
programming, 209–211
turning on with buttons, 181–184

lines, repeating in loops, 156–157
Linux, 12
liquid crystal display (LCD)

adding headers to, 228–229
creating, 228–233
defined, 228, 259
displaying jukebox information on, 244–249
driving, 232–233
mounting, 229–232

live coders, 147
Live Coding Music (website), 166
live_loop :name do...end command, 167
Load button (Sonic Pi interface), 151
localisation option, 18
location

changing for players, 133–134
finding for players, 132–133

Logic Oriented Graphic Oriented (LOGO), 75
loops, 52, 89–90, 96, 114–115, 120–121,

124–125, 156–157, 178, 181, 182, 210,
222, 238, 243, 259

Lowe, Joshua (blogger), 252
ls command, 30, 31, 39, 209

M
magazines, as resources, 255–256
MagPi Essentials, 223
MagPi Magazine, 256
main game loops, creating, 120–123

I N D E X 269

MAKE (magazine), 254
Make a variable command, 73
man command, 36, 39
mapping marshmallow input to keyboard keys,

191–192
marshmallow button, creating, 189–191
marshmallow challenge, 188–195
marshmallow sprite, downloading, 193–194
McManus, Sean (author)

Raspberry Pi For Dummies, 2nd Edition, 255
mc=minecraft.create() command, 146
media players, installing, 233–236
metadata, 244–245
metal pin labels, 173
micro SD cards, 8
MIDI keyboard, 153, 259
Minecraft

about, 127–128
cloning programs, 144–145
commands, 146
controls, 130
creating TNT chain reactions, 139–140
diamond transporters, 141–143
getting started, 128–130
projects in, 145–146
Python program, 130–131
resources for, 145–146
sharing programs, 144–145
using coordinates, 132–139
website, 127

Minecraft Pi forum (website), 144
Minecraft Pi tutorials (website), 145
mkdir command, 34, 39, 235
ModMyPi’s Pi Camera Box, 203
modules. see also specific modules

defined, 106, 259
Python, 85

monitor, 248–249
Monk, Simon (doctor), 172
mounting

cameras, 203–204
LCD screen, 229–232

move x steps command, 72
movement

controlling for sprites, 60–61
improving for sprites, 69

movies, creating of images, 204–206
MP3s, downloading and playing, 233–239
Multicomp Pi‐BLOX Case, 203
multiply (*) symbol, 116
music

coding (see Sonic Pi)
obtaining files, 233–236

Musical Instrument Digital Interface (MIDI),
153, 259

mv command, 34, 39

N
n command, 124
name=value command, 124
nano, 259
nano command, 37–38, 40
NatureBytes (website), 197, 223
New Out Of Box Software (NOOBS)

about, 14–15
defined, 260
using for recovery, 19

next costume command, 73
NOOBS. see New Out Of Box Software

(NOOBS)
not equals (!=) symbol, 116

O
obtaining music files, 233–236
.off() command, 210
Official Ruby Documentation (website), 166
O’Hanlon, Martin (author)

Adventures in Minecraft, 146, 255
Minecraft Pi tutorials, 145

.on() command, 210
opening

Python 3, 85
text editor, 88

operating system (OS), 12, 260
output, 31, 170, 260
output panel/log (Sonic Pi interface), 150
Overtone, 148

P
parameters, 31, 260
passive infrared (PIR) motion sensor

about, 184
connecting PIRmotion components,

186–187
creating motion‐sensing Python code,

185–186
running PIRmotion.py in IDLE, 187–188

Peake, Tim (astronaut), 215–216
pen, changing size and color, 81–82
pen down command, 77–78, 92, 95, 96
pen up command, 77–78, 92, 96
pensize command, 93, 96
Philbin, Carrie Anne (author), contact

information for, 6
Pi. see Raspberry Pi

A D V E N T U R E S I N R A S P B E R R Y P I

picamera, programming with Python,
200–201

Pimoroni
about, 9
Coupe (website), 173
tutorials, 223
website, 207

Pioneers, 253
PIRmotion

creating components, 186–187
running in IDLE, 187–188
triggering sounds with sensors, 184–188

The Pi Hut (website), 177
pixel art, creating, 218–220
Pixelh8 (website), 147
placing blocks, 134–138
Play button (Sonic Pi interface), 150
play x command, 167
playing MP3s, 233–239
play_pattern() command, 156, 167
plugging in hardware, 16
point in direction command, 72
point towards command, 72
pos=mc.player.getPos() command, 146
pos=mc.player.getTilePos() command,

146
postToChat command, 133, 146
potentiometer, 228, 260
Preferences (Sonic Pi interface), 151
preparing SD cards, 12
prerecorded samples, 159–160
print() function, 103, 105–106, 107, 108,

111, 124, 125
programming

environment for, 100 (see also integrated
development environment (IDE))

language (see Python)
LED matrix with Python, 217
LEDs, 209–211
Minecraft (see Minecraft)
picamera with Python, 200–201
with Python (see Python)
sensors, 217–218
shapes (see Turtle Graphics module)
touch pads, 211–212

programming panel (Sonic Pi interface), 150
programs

cloning and sharing, 144–145
launching from command line, 34

projects
examples of, 1
with General Purpose Input Output (GPIO)

pins, 195–196

Minecraft, 145–146
requirements for, 3
as resources, 254
Sense HAT, 223

purchasing cables, 215
pwd command, 30, 33, 40
Python. see also IDLE (Python 3)

about, 85, 99
commands, 92–93, 124–125
controlling GPIO pins with library, 175–176
creating code files with text editor, 104–106
creating motion‐sensing code, 185–186
documentation (website), 124
Minecraft, 130–131
modules, 85
programming LED matrix with, 217
programming picamera with, 200–201
random module, 106–110
range function, 91–92
resources for, 124–125
setting up, 100–103
text adventure game, 110–123
time module, 106–110
using Turtle module in, 85–90
website, 252
writing Jukebox Python programs, 236–239

Python Basics (Roffey), 124
Python Turtle (website), 95

Q
Quick Reference Table, 6

R
rainbow tutorial (website), 145
rand command, 161–162, 163, 167
random module, 106–110, 119, 125, 237
random.choice() function, 108
range command, 91–92, 96
Raspberry Jam, 253
Raspberry Leaf template, 172
Raspberry Pi. see also specific topics

about, 1–2, 7–8
connecting camera to, 198–199
connecting Explorer HAT Pro to, 207
forum (website), 144
GPIO pin labeller (website), 229
project examples, 1
setting up, 11–19
shutting down, 21
uses for, 1–2
website, 14, 195, 223, 250

Raspberry Pi 4 Beginners (website), 255

I N D E X 271

Raspberry Pi Camera
about, 10
creating time‐lapse photography programs,

201–206
getting started, 198–201

Raspberry Pi For Dummies, 2nd Edition
(McManus and Cook), 255

Raspberry Pi Foundation (website),
252, 254

Raspberry Pi Guy (website), 254–255
Raspberry Pi Jukebox

about, 225–227
controlling with buttons, 240–244
creating LCD screen, 228–233
displaying information on LCD screen,

244–249
downloading MP3s, 233–239
equipment needed for, 227–228
playing MP3s, 233–239

Raspberry Pi Projects (Robinson and Cook),
250, 255

Raspberry Pi Punnet, 9
Raspberry Pi User Guide, Fourth Edition (Upton

and Hardacree), 255
Raspberry Pi Weekly, 256
Raspbian

defined, 12
desktop, 20–21
downloading and copying operating system,

12–15
installing, 17–19
updating, 148
website, 12

Rasp.io (website), 173
RasPi.TV (website), 195, 255
Record button (Sonic Pi interface), 151
recording music, 165–166
recovery, using NOOBS for, 19
refactoring, 119, 260
repeat command, 72, 89
repeating lines in loops, 156–157
requirements

for hardware, 8–9
for projects, 3

resistors, 173, 260
resources

books, 255–256
clubs, 253–254
General Purpose Input Output (GPIO) pins,

195–196
magazines, 255–256
Minecraft, 145–146
projects, 254
for Python, 124–125

for Sonic Pi, 166
tutorials, 254
videos, 254–255
websites, 251–252

return command, 125
return value, 108
.reverse command, 163, 167
RGB colors, 219
Richardson, Craig (author), 146

Adventures in Python, 255
right(x) command, 96
rm command, 34, 40
rmdir command, 34, 40
Robinson, Andrew (author)

Raspberry Pi Projects, 250, 255
Roffey, Chris (author)

Python Basics, 124
rotate command, 144
RS Components (website), 177
running

buttonLED.py in IDLE, 183–184
LEDblink.py in IDLE, 180
PIRmotion.py in IDLE, 187–188
scripts, 164

S
Save button (Sonic Pi interface), 150
saving, in Scratch, 46
say command, 73
school clubs, 253–254
Scratch

about, 41–42
animating a crazy monkey, 50–56
commands, 72–73
coordinates in, 54
creating adventure role‐playing games,

56–74
creating costumes, 48–50
creating sprites, 48–50
creating stage, 46–48
creating stories and games with, 41–73
getting started with, 42–46
interface, 43–44
marshmallow game, 192–195
saving in, 46
using, 44–46
versions of, 42

Scratch Marshmallow Game, 192
Scratch Reference Guide (website), 71
Scratch Sprite Library, 48
scripts

adding, 61–64, 232–233
running, 164

A D V E N T U R E S I N R A S P B E R R Y P I

Scripts tab, 44
SD card reader/writer, 10
SD Formatter 4.0, 13
Secure Digital (SD) memory card

about, 8, 10
backing up images, 22–24
buying, 13
defined, 260
formatting, 13–14
preparing, 12

Sense HAT
creating desk thermometers, 220–222
emulator (website), 216, 223
getting started, 215–220
projects, 223

sense.get_humidity() command, 218
sense.get_pressure() command, 218
sense.set_pixels() command, 223
sense.show_message() command, 223
sensors, programming, 217–218
set pen color to x command, 96
set pen shade to x command, 96
set pen size to x command, 96
set size to command, 73
Set variable to command, 73
set x to command, 72
set y to command, 73
setBlock command, 136, 138, 141–142, 146
setBlocks command, 146
setPos command, 141–142, 146
setting

color of pen, 93
size of pen, 93
start points, 56–57, 80

setup
copying Raspbian operating system, 12–15
downloading Raspbian operating

system, 12–15
installing software, 16–19
plugging in hardware, 16
Python, 100–103
Raspberry Pi, 11–19

shapes, programming. see Turtle Graphics
module

shape("turtle") command, 96
sharing programs, 144–145
show command, 73
showing

jukebox information on LCD screen,
244–249

sprites, 66–67
.shuffle command, 163, 167
shutdown command, 38–39
shutting down Raspberry Pi, 21

sidebars, 6
sides, determining number of using user input,

82–84
simple shapes, drawing, 78–79
size, pen, 81–82, 93
Size buttons (Sonic Pi interface), 151
SKPang (website), 177
sleep() function, 107, 111, 154, 175, 242
software

configuring, 16–19
defined, 7, 260
installing, 16–19

Sonic Pi
about, 147–148
commands, 167
creating sounds with, 151–157
electronic tracks, 158–166
getting started, 148–149
interface, 149–151
resources for, 166
website, 147, 166

Sonic Pi: Live & Coding (website), 166
.sort command, 163
sorting algorithms animations, 163
sound device, 149
sounds

creating with Sonic Pi, 151–157
triggering with PIR motion

sensors, 184–188
spiral patterns, creating, 82, 93–95
sprites

controlling direction and movement
for, 60–61

creating, 48–50, 56–57
defined, 42, 260
editing, 48–49
health‐point‐stealing, 68–69
hiding, 66–67
improving movement for, 69
setting start position for, 56–57
showing, 66–67

Sprites palette, 43
stage

about, 43
creating, 56–57
creating in Scratch, 46–48
defined, 42, 261

stamp() command, 93, 96
stamping, 93
start command, 144
start points, setting, 56–57, 80
stop all command, 72
Stop button (Sonic Pi interface), 150
stories, creating with Scratch, 41–73

I N D E X 273

str(), 133
strings

defined, 103, 261
of text, 101

stuffaboutcode (website), 252
subtract (‐) symbol, 116
sudo, 261
sudo command, 24, 33, 40, 261
sudo halt command, 24, 40
sudo reboot command, 24, 40
switch to background command, 73
switch to costume command, 73
switching backgrounds, 61–67
syntax, 261
syntax errors, 102, 261
syntax highlighting, 104
synthesizer sounds, 158–159
system option, 18

T
temperature, finding, 217–218
temp=sense.get_temperature()

command, 223
terminal, 25–29, 261
Terminal command line, 144
text adventure game

about, 110
code for, 113
creating main game loops, 120–123
functions, 118–120
getting user input, 111
putting it together, 117–118
strings of, 101
using conditionals, 111–114
using variables for health points, 116–117
using while loop, 114–115

text editor
creating code files with, 104–106
using, 88

think command, 73
threads, 60, 261
tilt command, 145
time module, 106–110, 111, 119, 125,

175, 178
time‐lapse photography programs, creating,

201–206
time.sleep() function, 108, 109, 181–182,

186, 210
TNT block, 139–140
TNT chain reactions, creating, 139–140
touch pads, programming, 211–212
touching color command, 73
touching command, 73

triggering sounds with PIR motion sensors,
184–188

turn (anti‐clockwise) x degrees
command, 73

turn (clockwise) x degrees command, 73
turning on LEDs with buttons, 181–184
turtle, 261
Turtle Graphics module

about, 75–76
commands, 95–96
creating spiral patterns, 93–95
pen down, 77–78
pen up, 77–78
Python, 84–93

tutorials
Pimoroni, 223
as resources, 254

“Twinkle Twinkle Little Star” (song), 154–155
2xAA (website), 147

U
Ubuntu Mate, 17
uinput, 261
Universal Serial Bus (USB), 8, 261
updating

applications, 35–37
Raspbian, 148

Upton, Eben (author)
Raspberry Pi User Guide, Fourth Edition, 255

USB (Universal Serial Bus), 8, 261
user input, determining number of sides using,

82–84
use_synth command, 158–159, 167

V
values, compared with variables, 80–81
variables

compared with values, 80–81
creating, 58–59

defined, 261
using for health points, 116–117

versions, Scratch, 42
videos, as resources, 254–255
voltage, 173, 261

W
wait x secs command, 72
websites

Aaron, Sam (computer scientist), 147
Adafruit Learning System, 177, 196, 252
All About Code, 252
API cheat sheet, 146

A D V E N T U R E S I N R A S P B E R R Y P I

websites (continued)
Astro Pi, 215, 216
Code Club, 253
Coder Dojo, 253
Coupe (Pimoroni), 173
CPC Farnell, 177
downloading marshmallow sprite, 193–194
Experimenting with the Sense HAT, 223
Geek Gurl Diaries, 255
GitHub, 144
GPIOs, 171
gpiozero library, 175, 195
Instructables, 254
Kids Ruby, 166
LEGO, 10
Linux, 12
Live Coding Music, 166
MagPi Magazine, 256
MAKE (magazine), 254
MIDI keyboard, 153
Minecraft, 127
Minecraft Pi forum, 144
ModMyPi’s Pi Camera Box, 203
Multicomp Pi‐BLOX Case, 203
NatureBytes, 197, 223
Official Ruby Documentation, 166
online PDFs, 124
Pimoroni, 9, 207, 223
Pioneers, 253
The Pi Hut, 177
Pixelh8, 147
Python, 124, 252
Python Turtle, 95
rainbow tutorial, 145
Raspberry Jam, 253
Raspberry Leaf template, 172
Raspberry Pi, 14, 195, 223, 250
Raspberry Pi 4 Beginners, 255
Raspberry Pi forum, 144
Raspberry Pi Foundation, 252, 254
Raspberry Pi GPIO pin labeller, 229
Raspberry Pi Guy, 254–255
Raspberry Pi project examples, 1
Raspberry Pi Punnet, 9

Raspberry Pi Weekly, 256
Raspbian, 12
Rasp.io, 173
RasPi.TV, 195, 255
as resources, 251–252
RGB colors, 219
RS Components, 177
Scratch Marshmallow Game, 192
Scratch Reference Guide, 71
SD Formatter 4.0, 13
Sense HAT emulator, 216, 223
SKPang, 177
Sonic Pi, 147, 166
Sonic Pi: Live & Coding, 166
sorting algorithms animations, 163
stuffaboutcode, 252
Terminal command line, 144
2xAA, 147
Wiley, 4, 6, 11, 27, 47, 50, 56, 76, 85,

88, 104, 110, 117, 120, 129, 141,
151, 158, 227

Win32 Disk Imager, 22
Whale, David (author)

Adventures in Minecraft, 146, 255
when I receive command, 72
when x clicked command, 72
when x key pressed command, 72
while loop, 114–115, 120, 121, 125, 181–182,

238, 243
while True loop, 178, 181–182, 210, 222
Wi‐Fi networks, connecting to, 21–22
Wiley (website), 4, 6, 11, 27, 47, 50, 56, 76,

85, 88, 104, 110, 117, 120, 129, 141,
151, 158, 227

Win32 Disk Imager, downloading, 22–23
Windows 10 IoT (Internet of Things), 17
wiring breadboard, 229–232
with_fx :reverb do...end command, 167
writing Jukebox Python programs, 236–239

X–Y–Z
x.times do...end command, 167

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	What Is the Raspberry Pi and What Can You Do With It?
	Who Should Read This Book?
	What You Will Learn
	What You Need for the Projects
	How This Book Is Organised
	The Companion Website
	Conventions
	Reaching Out

	Adventure 1 You Have a Raspberry Pi. Now What?
	What Hardware Do You Need?
	What Other Equipment Is Helpful?
	Setting Up the Raspberry Pi
	Downloading and Copying the Raspbian Operating System
	Plugging in the Hardware
	Installing and Configuring the Software

	Exploring the Desktop in Raspbian
	Shutting Down Your Raspberry Pi
	Connecting to a Wi‐Fi Network
	Backing Up an SD Card Image

	Adventure 2 Taking Command of Your Raspberry Pi
	Exploring the Terminal
	Commands for Navigating Through Your File System
	Understanding sudo
	Launching Programs from the Command Line
	Managing Files and Directories
	Installing and Updating Applications
	Downloading and Installing Applications
	Learning More About an Application
	Upgrading Your Apps

	Editing Files
	Using Shutdown and Restart Commands
	Continuing Your Text Adventure

	Adventure 3 Creating Stories and Games with Scratch
	Getting Started with Scratch
	The Scratch Interface
	A Quick Hello from Scratch Cat

	Setting the Stage
	Creating Costumes and Original Sprites
	Using the Scratch Sprite Image Library
	Editing an Existing Sprite
	Creating Your Own Original Sprites

	Animating a Crazy Monkey
	Creating an Adventure Role‐Playing Game
	Creating Your Sprite and Stage
	Setting the Start Position of the Adventurer Sprite
	Creating Variables: Including Health Points for the Adventurer Sprite
	Controlling the Direction and Movement of the Adventurer Sprite
	Entering a Cave and Switching Backgrounds
	Creating Health‐Point‐Stealing Sprites
	Improving the Movement of the Adventurer Sprite Using if Blocks
	Creating a Game Over Screen
	Ideas for Improvements to Your Game

	Adventure 4 Programming Shapes with Turtle Graphics
	Scratch Turtle Graphics
	Using Pen Down and Pen Up
	Drawing Simple Shapes
	Using “clear” and Setting a Start Point
	Using Variables Instead of Values
	Changing the Size and Colour of the Pen
	Creating Spiral Patterns
	Using User Input to Determine the Number of Sides

	Python Turtle Graphics
	Introducing Python Modules
	The Python 3 Environment and the Interpreter Window
	Using the Turtle Module in Python
	The range Function
	Other Python Turtle Module Commands

	Some Super Spirals
	Further Adventures with Python Turtle

	Adventure 5 Programming with Python
	Getting Set Up for Python
	Python Programming Language
	The IDLE Environment
	Programming in Python: Using a Function

	Using a Text Editor to Create a Code File
	Using the Python time and random Modules
	Python Text Adventure Game
	Getting User Input
	Using Conditionals
	Using a while Loop
	Using a Variable for Health Points
	Putting It All Together
	Defining Functions
	Creating a Main Game Loop

	Continuing Your Python Adventure

	Adventure 6 Programming Minecraft Worlds on the Raspberry Pi
	Getting Started with Minecraft Pi
	Your First Minecraft Pi Python Program
	Using Coordinates in Minecraft Pi
	Finding the Player’s Location
	Changing the Player’s Location
	Placing a Block
	Placing Multiple Blocks
	Types of Blocks

	Creating a TNT Chain Reaction
	Creating a Diamond Transporter
	Sharing and Cloning Minecraft Pi Programs

	Adventure 7 Coding Music with Sonic Pi
	Getting Started with Sonic Pi
	The Sonic Pi Interface
	Creating Your First Sounds with Sonic Pi
	Twinkle Twinkle Little Star
	Repeating Lines in a Loop

	First Electronic Track
	Using Different Synthesizer Sounds
	Using Prerecorded Samples
	Creating a Surprising Tune
	Using “rand” to Play Random Notes
	Using Algorithms
	Running Two Scripts at the Same Time
	Adding Effects
	Making a Recording of Your Music

	Further Adventures with Sonic Pi

	Adventure 8 Using the GPIO Pins on the Raspberry Pi
	Using a Raspberry Pi GPIO Pin Layout Diagram
	Electronics Basics
	Using a Python Library to Control GPIO
	Making an LED Blink
	Creating the LEDblink Python Code
	Connecting the LEDblink Components
	Running LEDblink.py in IDLE

	Using a Button to Turn on an LED
	Creating the buttonLED Python Code
	Connecting the buttonLED Components
	Running buttonLED.py in IDLE

	Using a PIR Motion Sensor to Trigger a Sound
	Creating the Motion‐Sensing Python Code
	Connecting the PIRmotion Components
	Running PIRmotion.py in IDLE

	The Marshmallow Challenge
	Creating the Marshmallow Button
	Mapping Marshmallow Input to a Keyboard Key
	Scratch Marshmallow Game

	Further Adventures with GPIO Pins

	Adventure 9 Experimenting with Cameras and HATs
	Getting Started with the Raspberry Pi Camera
	Connecting the Camera to Your Raspberry Pi
	Programming the Picamera with Python

	Creating a Time‐Lapse Photography Program
	Mounting Your Camera
	Making a Movie of Your Images

	Getting Started with the Explorer HAT Pro
	Connecting the HAT to Your Raspberry Pi
	Downloading and Installing the Explorer HAT Library
	Programming the LEDs
	Programming the Touch Pads

	Creating an Explorer HAT Pro Disco Trigger Trap
	Creating the Disco Trigger Trap Python Code
	Making the Aluminum Foil Trap

	Getting Started with the Sense HAT
	Programming the LED Matrix with Python
	Programming the Sensors to Find Out the Current Temperature
	Creating Pixel Art

	Creating a Sense HAT Desk Thermometer
	Further Adventures with Cameras and HATs

	Chapter 10 The Big Adventure: Building a Raspberry Pi Jukebox
	An Overview of the Jukebox Project
	What You Will Need
	Part One: Creating the LCD Screen
	Preparing the LCD Screen by Adding Headers
	Mounting the LCD Screen and Wiring Up the Breadboard
	Adding Scripts to Drive the LCD Screen

	Part Two: Downloading and Playing MP3s
	Installing a Media Player and Getting Music Files
	Writing a Jukebox Python Program

	Part Three: Controlling the Jukebox with Buttons
	Connecting the Buttons
	Adapting Your Jukebox Program to Include GPIO Buttons

	Part Four: Displaying Jukebox Information on the LCD Screen
	Finishing Up

	Appendix Where to Go from Here
	Websites
	Clubs
	Inspiring Projects and Tutorials
	Videos
	Books and Magazines

	Glossary
	Index
	EULA

