

Exploring BeagleBone

__ Exploring BeagleBone

Tools and Techniques for Building with
Embedded Linux®

Derek Molloy

WILEY

Exploring BeagleBone

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wi ley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-93512-5
ISBN: 978-1-118-93513-2 (ebk)
ISBN: 978-1-118-93521-7 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or
108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-
rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wi ley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation.
If improperly wired, circuits described in this work may possibly cause damage to the device or physical injury. This
work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other profes-
sional services. If professional assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
website is referred to in this work as a citation and/or a potential source of further information does not mean that
the author or the publisher endorses the information the organization or website may provide or recommendations
it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wi ley.com.

Library of Congress Control Number: 2014951016

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written permission. Linux is a
registered trademark of Linus Torvalds. All other trademarks are the property of their respective owners. John Wiley
& Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

To Sally, Daragh, Eoghan, Aidan, and Sarah

(in order of age, not preference!)

About the Author

Dr. Derek Molloy is a senior lecturer in the School of Electronic Engineering,
Faculty of Engineering and Computing, Dublin City University, Ireland. He
lectures at undergraduate and postgraduate levels in object-oriented program-
ming with embedded systems, digital and analog electronics, and 3D computer
graphics. His research contributions are largely in the fields of computer and
machine vision, 3D graphics and visualization, and e-Learning.

Derek produces a popular YouTube series on the BeagleBone platform and a
wide variety of embedded Linux topics. His videos have introduced millions
of people to the BeagleBone, embedded Linux, and digital electronics topics.
In 2013, he launched a personal web/blog site, visited by thousands of people
every day, which integrates his YouTube videos with support materials, source
code, and user discussion.

Derek has received several awards for teaching and learning. He was the
winner of the 2012 Irish Learning Technology Association (ILTA) national award
for Innovation in Teaching and Learning for his learning-by-doing approach to
undergraduate engineering education, which utilizes electronic kits and online
video content. In 2012, he was also awarded the Dublin City University President’s
Award for Excellence in Teaching and Learning, as a result of fervent nominations
from his students and peers.

You can learn more about Derek and his work at his personal website
www.derekmolloy.ie.

vii

http://www.derekmolloy.ie

About the Technical Editors

Jason Kridner is the Software Community Development Manager for Sitara
ARM processors at Texas Instruments Incorporated (TI). During his over 20-year
tenure with TI, he has become an active leader in TI's open source initiative
and played an integral role in creating open-source development tools such
as BeagleBoard, BeagleBoard-xM BeagleBone, and now BeagleBone Black, a
credit-card-sized Linux computer platform based on TI's 1GHz Sitara AM335x
ARM® Cortex-A8 processor that runs Android 4.0 and Ubuntu software. As
a high-profile industry expert, Kridner has engaged audiences at a variety of
industry and developer shows including Maker Faire, OSCON, CES, Design,
Android Builders Summit, Linux Collaboration Summit, and the Embedded
Linux Conference.

Robert Zhu is a principal development manager at Microsoft for the Windows
Operating System Group. He is an expert in OS leading-edge development,
research, and design in computer engineering such as kernel, device driver,
and board support packages. Robert also gives training classes to OEMs on
driver development and Windows OS research. Before working for Microsoft,
he was with Digital Equipment Corporation (DEC), USA, as senior software
engineer on the 64-bit DEC Alpha platform for workstation server optimiza-
tion and performance tuning for Windows, and a software lead with Motorola
Wireless Division, Canada. He obtained his master of computer science at the
University of Washington; his master of computing and electrical engineering at
Simon Fraser University (SFU), Canada; his bachelor of engineering at Tsinghua
University; and did postgraduate work at SFU School of Engineering Science,
Canada. Robert was a co-author on Windows Phone 7 Programming for Android
and iOS Developers, as well as Windows Phone Programming Essentials and Learn
2D Game Development with C#.

Acquisitions Editor
Jim Minatel

Project Editor
Adaobi Obi Tulton

Technical Editors
Rob Zhu
Jason Kridner

Production Editor
Dassi Zeidel

Copy Editor
Luann Rouff

Manager of Content Development
and Assembly
Mary Beth Wakefield

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

Credits

Professional Technology & Strategy
Director
Barry Pruett

Business Manager
Amy Knies

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Patrick Redmond

Proofreader
Amy J. Schneider

Indexer
John Sleeva

Cover Designer
Wiley

Cover Image
Courtesy of Derek Molloy

Xi

Acknowledgments

Thank you to everyone at Wiley Publishing for their outstanding work on this
project: to Mary E. James, for encouraging me to take on this project, and for
allowing me the latitude to develop a book that engages in deeper learning;
to Jim Minatel for his expert support and help throughout the development of
this book; to Adaobi Obi Tulton, the project editor, for keeping everything on
track and for having the patience to deal with my many, many questions—I
greatly appreciate her hard work, diligence, encouragement, and support; to
Dassi Zeidel, the production editor, for her hard work in tying everything
together to create such a polished final product; to Luann Rouff, the copy edi-
tor, for meticulously translating this book into readable U.S. English, and for
adding all those Oxford commas! Thanks to the technical editors, Robert Zhu
(Microsoft) and Jason Kridner (BeagleBoard.org Foundation), for their expert
review and constructive feedback on the technical content in this book. Thanks
also to Cathy Wicks (Texas Instruments) and Nuria Llin (Texas Instruments)
for their advice and support in the development of this book.

Thank you also to the thousands of people who take the time to comment
on my YouTube videos, blog, and website articles. I truly appreciate all of the
feedback, advice, and comments—it has really helped in the development of
the topics in this book.

The School of Electronic Engineering, Dublin City University, is a great place
to work, largely because of its esprit de corps, and its commitment to rigorous,
innovative, and accessible engineering education. Thanks to Patrick McNally,
Head of School, and all of my colleagues in the school for supporting, encour-
aging, and even tolerating me in the development of this book. Thanks to (my
brother) David Molloy for his expert software advice and support. Thanks,
David, for keeping me grounded! Thanks to Jennifer Bruton for her meticulous

ese
X

Xiv

Acknowledgments

and expert review of the circuits, software, and content in this book. Thanks,
Jennifer, for listening! Thanks to Noel Murphy for his rigorous review of the
hardware chapters—he clearly missed his calling as a technical copy editor!
Thanks also to Martin Collier, Pascal Landais, Michele Pringle, Robert Sadleir,
Ronan Scaife, and John Whelan for their expertise, support, and advice, which
I sought on numerous occasions.

My biggest thank-you must, of course, go to my own family. This book was
written over seven months, predominantly at night and on weekends. Thanks
to my wife, Sally, and our children, Daragh, Eoghan, Aidan, and Sarah, for put-
ting up with me while I was writing this book. Thank you, Mam, Dad, David,
and Catriona for your lifelong inspiration, support, and encouragement. Finally,
thank you to my extended family for graciously excusing my absence at family
events for the past seven months—I have no excuses now!

Introduction
Partl
Chapter 1

BeagleBone Basics

The BeagleBone Hardware
Introduction to the Platform

Who Should Use the BeagleBone

When to Use the BeagleBone

When You Should Not Use the BeagleBone
BeagleBone Documentation
The BeagleBone Hardware

BeagleBone Versions

The BeagleBone Black Hardware
BeagleBone Accessories

Highly Recommended Accessories

Micro-SD Card (for Flashing the BBB)

External 5V Power Supply (for Flashing and Peripherals)

Ethernet Cable (for Network Connection)

HDMI Cable (for Connection to Monitors/ Televisions)
USB to Serial UART TTL 3.3V (for Finding Problems)

Optional Accessories

Contents

XXV

OO NNOANUTLWW =

e o o Gy G G G Y
N U1 Ul U1 v W =

17

USB Hub (to Connect Several USB Devices to a USB Host) 17
Micro-HDMI to VGA adapters (for VGA Video and Sound) 17

Wi-Fi Adapters (for Wireless Networking)

USB Webcam (for Capturing Images and Streaming Video) 18
USB Keyboard and Mouse (for General-Purpose Computing) 18

Capes

How to Destroy Your BeagleBone!
Summary

Support

Xv

xXvi Contents

Chapter2 The BeagleBone Black Software
Linux on the BeagleBone
Linux Distributions
Communicating with the BBB
Installing Drivers
Network Connections
Internet-over-USB
Regular Ethernet
Ethernet Crossover Cable
Communicating with the BBB
Serial Connection over USB
Serial Connection with the USB-to-TTL 3.3V Cable
Connecting through Secure Shell (SSH)
Secure Shell Connections using PuTTY
Chrome Apps: Secure Shell Client
Transferring Files Using PuTTY/psftp over SSH
Controlling the BeagleBone
Basic Linux Commands
First Steps
Basic File System Commands
Environment Variables
Basic File Editing
What Time Is It?
Package Management
Interacting with the BBB On-board LEDs
Shutdown
Node js, Cloud9, and BoneScript
Introduction to Node.js
Introduction to the Cloud9 IDE
Introduction to BoneScript
Summary
Further Reading

Chapter3 Exploring Embedded Linux Systems
Embedded Linux Basics
What Embedded Linux Offers
Is Linux Open Source and Free?
Booting the BeagleBone
The BeagleBone Bootloaders
Kernel Space and User Space
System V init (SysVinit)
Managing Linux Systems
The Super User
System Administration
The Linux File System
Linking to Files and Directories
Users and Groups

23
24
24
25
26
26
26
29
30
31
31
33
33
34
34
35
37
37
37
38
40
41
42
44
45
47
48
48
50
51
52
53

55
55
57
57
58
58
62
63
67
67
68
68
69
71

Contents

Chapter 4

File System Permissions
Exploring the File System
Commands for File Systems
find and whereis
more or less
Linux Commands
Standard Input and Output Redirection (>, >>, and <)
Pipes (| and tee)
Filter Commands (from sort to xargs)
echo and cat
diff
tar
md5sum
Linux Processes
Controlling Linux Processes
Foreground and Background Processes
The BusyBox Multi-call Binary
Other Linux Topics
Git
Getting Started with Git
Cloning a Repository (git clone)
Getting the Status (git status)
Adding to the Staging Area (git add)
Committing to the Local Repository (git commit)
Pushing to the Remote Repository (git push)
Advanced Git
Creating a Branch (git branch)
Merging the Branch (git merge)
Deleting a Branch (git branch -d)
Conclusions on Git
Desktop Virtualization
Code for This Book
Summary
Further Reading

Interfacing Electronics
Recommended Equipment
Digital Multimeter
Oscilloscopes
Basic Circuit Principles
Voltage, Current, Resistance, and Ohm’s Law
Voltage Division
Current Division
Implementing Circuits on a Breadboard
Digital Multimeters (DMMs) and Breadboards
Example Circuit: Voltage Regulation
Discrete Components

74
75
75
81
82
82
82
83
84
86
87
88
88
89
89
90
92
93
93
94
95
96
96
97
97
98
98
100
100
101
102
103
104
104

105
105
106
106
108
109
110
112
113
114
115
117

xviii Contents

Chapter 5

Diodes
Light-Emitting Diodes (LEDs)
Smoothing and Decoupling Capacitors
Transistors
Transistors as Switches
Field Effect Transistors (FETs) as Switches
Optocouplers/Opto-isolators
Switches and Buttons
Hysteresis
Logic Gates
Floating Inputs
Pull-Up and Pull-Down Resistors
Open-Collector and Open-Drain Outputs
Interconnecting Gates
Analog-to-Digital Conversion
Sampling Rate
Quantization
Operational Amplifiers
Ideal Operational Amplifiers
Negative Feedback and Voltage Follower
Positive Feedback
Concluding Advice
Summary
Further Reading

Practical BeagleBone Programming
Introduction
Performance of Different Languages
Setting the BBB CPU Frequency
Scripting Languages
Scripting Language Options
Bash
Perl
Python
JavaScript and Java
JavaScript and Node.js on the BBB
Java on the BBB
C and C++ on the BeagleBone
C and C++ Language Overview
Compiling and Linking
Writing the Shortest C/C++ Program
Variables and Operators in C/C++
Pointers in C/C++
C-Style Strings
LED Flashing Application in C
The C of C++
First Example and Strings in C++

117
118
121
123
124
127
128
130
132
133
137
138
139
140
141
142
142
143
143
146
146
147
147
148

149
149
150
153
153
154
155
157
158
161
161
164
167
169
170
172
174
177
180
181
183
183

Contents

Xix

Passing by Value, Pointer, and Reference
Flashing the LEDs Using C++ (non-OO)
Writing Your Own Multi-Call Binary
C++ with Classes
Overview of Object-Oriented Programming
Classes and Objects
Encapsulation
Inheritance
Object-Oriented LED Flashing Code
/Proc—Process Information File System
GLIBC and Syscall
Summary
Further Reading

Partll Interfacing, Controlling, and Communicating

Chapter 6 Interfacing to the BeagleBone Input/Outputs
General-Purpose Input/Outputs
Introduction to GPIO Interfacing
GPIO Digital Output
GPIO Digital Input
GPIO Configuration
Internal Pull-up and Pull-down Resistors
GPIO Pin Configuration Settings
C++ Control of GPIOs
The Linux Device Tree
The Flattened Device Tree (FDT)
Device Tree Overlays (DTOs)
Writing an Overlay
Compiling and Deploying an Overlay
The BBB Cape Manager
Loading a Device Tree Overlay
Removing an Overlay
Loading an Overlay on Boot
Analog Inputs and Outputs
Analog Inputs
Enabling the Analog Inputs
Input Application—A Simple Light Meter
Analog Outputs (PWM)
Output Application—Controlling a Servo Motor
Advanced GPIO Topics
More C++ Programming
Callback Functions
POSIX Threads
Linux poll (sys/poll.h)
Enhanced GPIO Class
GPIO-KEYS

185
186
186
187
188
188
189
190
191
195
195
197
197

199

201
201
202
204
207
208
208
209
214
219
219
221
221
222
222
223
225
226
226
226
227
228
231
233
235
235
235
236
238
239
243

XX

Contents

Chapter 7

Chapter 8

Using GPIOs without Using sudo
Summary
Further Reading

Cross-Compilation and the Eclipse IDE
Setting Up a Cross-Compilation Toolchain
A Toolchain for Debian
Testing the Toolchain
Cross-Compilation with Third-Party Libraries (Multiarch)
Installing a Change Root
Installing an armhf Change Root
Emulating the armhf Architecture
Cross-Compilation Using Eclipse
Installing Eclipse on Desktop Linux
Configuring Eclipse for Cross-Compilation
Remote System Explorer
Integrating GitHub into Eclipse
Remote Debugging
Automatic Documentation (Doxygen)
Adding Doxygen Support in Eclipse
Building Debian for the BBB
Summary
Further Reading

Interfacing to the BeagleBone Buses
Introduction to Bus Communication
I’C
I’C Hardware
The ADXL345 Accelerometer
Using Linux I12C-Tools
i2cdetect
i2cdump
i2cget
i2cset
I’C Communication in C
Wrapping I°C Devices with C++ Classes
SPI
SPI Hardware
SPI on the BBB
Enabling the First SPI Bus (SPI0)
Testing the SPI Bus
A First SPI Application (74HC595)
Wiring the 74HC595 Circuit
SPI Communication Using C
Bidirectional SPI Communication in C++
The Second SPI Bus (SPI1)
The ADXL345 SPI Interface
Connecting the ADXL345 to the BBB

247
248
249

251
251
252
254
255
257
257
258
260
260
261
263
265
266
269
270
271
273
274

275
276
276
277
279
280
280
281
283
285
286
288
291
291
293
294
295
296
296
297
300
301
301
302

Contents

Wrapping SPI Devices with C++ Classes
Three-Wire SPI Communication
Multiple SPI Slave Devices on the BBB
UART
UARTSs on the BBB
The Arduino UART Example
BeagleBone to Arduino Serial Communication
Echoing the Minicom Program
UART Echo Example in C
UART Command Control of an Arduino
Logic-Level Translation
Summary
Further Reading

Chapter9 Interacting with the Physical Environment
Interfacing to Actuators
DC Motors
A BBB DC Motor Driver Circuit
Controlling a DC Motor Using sysfs
Controlling a DC Motor Using C++
Stepper Motors
The EasyDriver Stepper Motor Driver
A BBB Stepper Motor Driver Circuit
Controlling a Stepper Motor Using C++
Relays
Interfacing to Analog Sensors
Protecting the BBB ADC Inputs
Diode Clamping
Op-Amp Clamping
Analog Sensor Signal Conditioning
Scaling Using Voltage Division
Signal Offsetting and Scaling
Analog Interfacing Examples
Infrared Distance Sensing
ADXL335 Conditioning Example
Interfacing to Display Modules
Seven-Segment Displays
Character LCD Modules
Remote Control BeagleBone
Managing Services with Systemd
BBB Serial Connection to Desktop
Starting a Custom Service on Boot
Bluetooth
Installing an Adapter
Loadable Kernel Modules
Configuring a Bluetooth Adapter
Making the BBB Discoverable

303
307
308
309
310
312
314
314
316
318
321
324
324

325
326
327
329
330
331
333
334
335
336
338
340
342
342
343
345
345
346
349
349
353
354
354
359
363
364
366
369
370
370
371
372
373

XXii

Contents

Part il
Chapter 10

Android Application Development with Bluetooth
Building Dynamic Linked Libraries
Summary
Further Reading

Advanced BeagleBone Systems

The Internet of Things
The Internet of Things (IoT)
More Sensors (Things!)
A Room Temperature Sensor
Texas Instruments SensorTag
Connecting to Bluetooth Smart Devices
Building a Linux Package
Controlling a Bluetooth Smart Device
The BeagleBone as a Web Server
Installing a Web Server
Configuring an Apache Web Server
Creating Web Pages and Web Scripts
PHP on the BeagleBone
Replacing Bonel01 with the Custom Web Server
A C/C++ Web Client
Network Communications Primer
A C/C++ Web Client
Secure Communication Using OpenSSL
The BeagleBone as a Web Sensor
ThingSpeak
The Linux Cron Scheduler
System crontab
User crontab
Xively
Getting Started with Xively's PaaS
The Xively C Library
Sending E-mail from the BBB
If This Then That (IFTTT)
The C++ Client/Server
Managing Remote IoT Devices
BeagleBone Remote Monitoring
Linux Watchdog Timer
IoT Physical Networking
The BeagleBone and Wi-Fi
Wireless Network Adapters
Static IP Addresses
Power over Ethernet (PoE)

PoE Power Extraction Modules (PEMs) (Advanced Topic)

Summary
Further Reading
Note

374
376
376
377

379

381
382
384
384
385
385
386
387
388
389
389
390
392
393
394
395
396
398
399
400
402
402
404
405
406
407
409
411
412
415
416
416
418
418
419
422
423
424
425
426
426

Contents

xxiii

Chapter 11 BeagleBone with a Rich User Interface
Rich UI BBB Architectures
The BBB as a General-Purpose Computer
Connecting a Bluetooth Input Peripheral
BBB with a LCD Touch Screen Cape
Virtual Network Computing (VNC)
VNC Using VNC Viewer
VNC with Xming and PuTTY
VNC with a Linux Desktop Computer
Fat-Client Applications
Rich UI Application Development
Introduction to GTK+ on the BBB
The “Hello World” GTK+ Application
The Event-Driven Programming Model
The GTK+ Temperature Application
Introduction to Qt on the BBB

Installing Qt Development Tools on the BBB

The “Hello World” Qt Application
Qt Primer
Qt Concepts
The QObject Class
Signals and Slots
Qt Development Tools
A Qt Temperature Sensor GUI Application
Simple Qt Cross-Platform Development
Remote UI Application Development
Fat-Client Qt GUI Application
Multi-Threaded Server Applications
A Multi-Threaded Temperature Service
The Fat-Client as a Server
Parsing Stream Data
The BBB Client Application
Cross-Compiling Qt Applications
Building the Qt Libraries from Source
Remote Deploying a Test Application
Summary
Further Reading

Chapter 12 Images, Video, and Audio
Capturing Images and Video
USB Webcams
Video4Linux2 (V4L2)
Image Capture Utility
Video4Linux2 Utilities
Writing Video4Linux2 Programs
Streaming Video
Image Processing and Computer Vision

427
428
428
430
431
432
433
433
434
435
435
436
436
437
438
441
442
442
444
444
445
446
447
448
453
455
455
458
461
463
465
467
468
470
470
471
472

473
474
474
476
477
479
480
482
483

XXiv

Contents

Chapter 13

Index

Image Processing with OpenCV
Computer Vision with OpenCV
Boost

BeagleBone Audio
Core Audio Software Tools
Audio Devices for the BBB

HDMI and USB Audio Playback Devices

Internet Radio Playback

Recording Audio

Audio Network Streaming

Bluetooth A2DP Audio
Text-to-Speech

Online Text-to-Speech

Offline Text-to-Speech

A Bluetooth Speaking Clock and Temperature Sensor

Summary
Further Reading

Real-Time BeagleBone Interfacing
Real-Time BeagleBone
Real-Time Kernels
Real-Time Hardware Solutions
The PRU-ICSS Architecture
Important Documents
Getting Started with the PRU-ICSS
PRU-ICSS Enhanced GPIOs
PRU-ICSS Device Tree Overlay
The PRU-ICSS Package
A First PRU Program
The PRU-ICSS in Detail
Registers
Local and Global Memory
PRU Assembly Instruction Set
Applications of the PRU-ICSS
PRU-ICSS Performance Tests
Utilizing Regular Linux GPIOs
A PRU PWM Generator
A PRU Sine Wave Generator
An Ultrasonic Sensor Application
Additional PRU-ICSS Tools
The PRU Debugger
The TI PRU C Compiler
Summary
Further Reading

484
486
489
489
490
491
491
493
494
496
496
499
499
500
500
502
502

503
504
504
505
506
508
508
509
509
511
512
516
516
517
519
521
522
522
525
527
530
535
535
536
538
539

541

Introduction

The BeagleBone is amazing! Given the proliferation of smartphones, the idea
of holding in one hand a computer that is capable of performing two billion
instructions per second is easy to take for granted—but the fact that you can
modify the hardware and software of such a small yet powerful device and
adapt it to suit your own needs and create your own inventions is nothing short
of amazing. Even better, you can purchase it for as little as $45-$55.

The BeagleBone board on its own is too complex a device to be used by a
general audience; it is the ability of the BeagleBone to run embedded Linux that
makes the resulting platform accessible, adaptable, and powerful. Together,
Linux and embedded systems enable ease of development for devices that
can meet future challenges in smart buildings, the Internet of Things (IoT),
robotics, smart energy, smart cities, human-computer interaction (HCI), cyber-
physical systems, 3D printing, advanced vehicular systems, and many, many
more applications.

The integration of high-level Linux software and low-level electronics repre-
sents a paradigm shift in embedded systems development. It is revolutionary
that you can build a low-level electronics circuit and then install a Linux web
server, using only a few short commands, so that the circuit can be controlled
over the Internet. You can easily use the BeagleBone as a general-purpose Linux
computer, but it is vastly more challenging and interesting to get underneath
the hood and fully interface it to electronic circuits of your own design—and
that is where this book comes in!

This book should have widespread appeal for inventors, makers, students,
entrepreneurs, hackers, artists, dreamers—in short, anybody who wants to bring

XXV

XXVi

Introduction

the power of embedded Linux to their products, inventions, creations, or projects
and truly understand the BeagleBone in detail. This is not a recipe book—with
few exceptions, everything demonstrated here is explained at a level that will
enable you to design, build, and debug your own extensions of the concepts
presented here. Nor is there any grand design project at the end of this book
for which you must purchase a prescribed set of components and peripherals
in order to achieve a very specific outcome. Rather, this book is about provid-
ing you with enough background knowledge and “under-the-hood” technical
details to enable and motivate your own explorations.

I strongly believe in learning by doing, so I present low-cost, widely available
hardware examples in order that you can follow along. Using these hands-on
examples, I describe what each step means in detail, so that when you substitute
your own hardware components, modules, and peripherals you will be able to
adapt the content in this book to suit your needs. As for that grand project or
invention—that is left up to you and your imagination!

When writing this book I had the following aims and objectives:

m To explain embedded Linux and its interaction with electronic circuits—
taking you through the topics from mystery to mastery!

m To provide in-depth information and instruction on the Linux, electron-
ics, and programming skills that are required to master a pretty wide and
comprehensive variety of topics in this domain.

m To create a collection of practical “Hello World” hardware and software
examples on each and every topic in the book, from low-level interfacing,
general-purpose input/outputs (GPIOs), analog-to-digital converters
(ADCs), buses, and UARTS, to high-level libraries such as OpenCV, Qt,
and complex and powerful topics, such as real-time interfacing with the
PRU-ICSS.

m To ensure that each circuit and segment of code is specifically designed
to work on the BeagleBone. Every single circuit and code example in this
book was built and tested on the BeagleBone.

m To use the “Hello World” examples to build a library of code that you
can use and adapt for your own BeagleBone projects.

m To make all of the code available on GitHub in an easy-to-use form.

m To support this book with strong digital content, such as the videos
on the DerekMolloyDCU YouTube channel, and a custom website
www .exploringbeaglebone.com, which has been developed specifically
to support this book.

m To ensure that by the end of this book you have everything you need to
imagine, create, and build advanced BeagleBone projects.

http://www.exploringbeaglebone.com

Introduction xxvii

Why the BeagleBone Black?

The BeagleBone Black is a powerful single-board computer (SBC), and while there
are other SBCs available on the market such as the Raspberry PI and the Intel
Galileo, the BeagleBone has one key differentiator—it was built to be interfaced
to! For example, the BeagleBone's microprocessor even contains two additional
on-chip microcontrollers that can be used for real-time interfacing—an area in
which other Linux SBCs have significant difficulty.

Unlike most other SBCs, the BeagleBone is fully open source hardware. The
BeagleBoard.org Foundation provides source schematics, hardware layout, a
full bill of materials, and technical reference manuals, enabling you to modify
the design of the BeagleBone platform and integrate it into your own product.
In fact, you can even fork the hardware design on Upverter (www.upverter.com)
under a Creative Commons Attribution-ShareAlike license (see tiny.cc/ebb002
for the full schematics). This is a very useful feature should you decide to take
your newest invention to market!

How This Book Is Structured

There is no doubt that some of the topics in this book are quite complex—the
BeagleBone is a complex device! However, everything that you need to master
the device is present in the book within three major parts:

m Part I: BeagleBone Basics
m Part II: Interfacing, Controlling, and Communicating

m Part III: Advanced BeagleBone Systems

In the first part in the book, I introduce the hardware and software of the
BeagleBone platform in Chapters 1 and 2, and subsequently provide three
primer chapters:

m Chapter 3: Exploring Embedded Linux Systems
m Chapter 4: Interfacing Electronics

m Chapter 5: Practical BeagleBone Programming

If you are a Linux expert, electronics wizard, and/or software guru, then feel
free to skip the primer chapters; however, for everyone else I have put in place a
concise but detailed set of materials to ensure that you gain all the knowledge
required to effectively and safely interface to the BeagleBone.

In the second part of the book, Chapters 6 to 9, I provide detailed informa-
tion on interfacing to the BeagleBone GPIOs, analog inputs, buses (I°C, SPI),
UART devices, and USB peripherals. You'll learn how you can configure a

Xxviii

Introduction

cross-compilation environment so that you can build large-scale software appli-
cations for the BeagleBone. This part also describes how you can combine
hardware and software in order to provide the BeagleBone with the ability to
interact effectively with its physical environment.

The final part of the book, Chapters 10 to 13, describe how the BeagleBone
can be used for advanced applications such as Internet of Things (IoT); rich
user interfaces; images, video, and audio; and real-time interfacing. Along
the way you will meet many technologies, including TCP/IP, ThingSpeak,
Xively, PoE, Wi-Fi, Bluetooth, cron, Apache, PHP, e-mail, IFTTT, VNC,
GTK+, Qt, XML, multi-threading, client/server programming, V4L2, video
streaming, OpenCV, Boost, USB audio, Bluetooth A2DP, text-to-speech, and
the PRU-ICSS.

Conventions Used in This Book

This book is filled with source code examples and snippets that you can use to
build your own applications. Code and commands are shown as follows:

This 1s what source code looks like.

When presenting work performed in a Linux terminal it is often necessary
to display both input and output in a single example. A bold type is used to
distinguish the user input from the output—for example:

mol loyd@beaglebone:~$ ping www.exploringbeaglebone.com

PING Ibl.reg365.net (195.7.226.20) 56(84) bytes of data.

64 bytes from Ibl.reg365.net (195.7.226.20): icmp_req=1 ttl=55 time=25.6 ms
64 bytes from Ibl.reg365.net (195.7.226.20): 1cmp_req=2 ttl=55 time=25.6 ms

The § prompt indicates that a regular Linux user is executing a command,
and a # prompt indicates that a Linux superuser is executing a command. The
ellipsis symbol “. ..” is used whenever code or output not vital to understanding
a topic has been cut. Editing the output like this enables you to focus on only
the most useful information. You are encouraged to repeat the steps in this book
yourself, whereupon you will see the full output. In addition, the full source
code for all examples is provided along with the book.

There are some additional styles in the text. For example:

m New terms and important words appear in italics when introduced.
m Keyboard strokes appear like this: Ctrl+C.

m All URLs in the book refer to HTTP addresses and appear like this:
www .exploringbeaglebone.com.

http://www.exploringbeaglebone.com
http://www.exploringbeaglebone.com

Introduction

XXix

m A URL shortening service is used to create aliases for long URLs that are
presented in the book. These aliases have the form tiny.cc/ebb102 (e.g.,
link two in Chapter 1). Should the link address change after this book is
published, the alias will be updated.

There are several features used in this book to identify when content is of
particular importance or when additional information is available:

m This type of feature contains important information that can help you
avoid damaging your BeagleBone.

\[o A lT This type of feature contains useful additional information, such as links to
digital resources and useful tips, which can make it easier to understand the task at
hand.

FEATURE TITLE

This type of feature goes into detail about the current topic or a related topic.

What You'll Need

Ideally you should have a BeagleBone Black before you begin reading this book
so that you can follow along with the numerous examples in the text. Presently
the board is manufactured by both CircuitCo and Embest—the boards from
either manufacturer are compatible with the designs and operations in this
book. You can purchase one of the boards in the U.S. from online stores such as
Adafruit Industries, Digi-Key, Mouser, SparkFun, and Jameco Electronics. They
are available internationally from stores such as Farnell, Radionics, Watterott,
and Tigal.

A full list of recommended and optional accessories for the BeagleBone is
provided in Chapter 1—if you do not yet have a BeagleBone, it would be worth
reading that chapter before placing an order. In addition, each chapter contains
a list of the electronics components and modules required if you wish to fol-
low along with the text. The book website provides details about where these
components can be acquired.

Errata

We have worked really hard to ensure that this book is error free; however, it is
always possible that some were overlooked. A full list of errata is available on
each chapter's web page at the companion website. If you find any errors in the

Introduction

text or in the source code examples, I would be grateful if you could please use
the companion website to send them to me so that I can update the web page
errata list and the source code examples in the code repository.

Digital Content and Source Code

The primary companion site for this book is www.exploringbeaglebone.com. It
is maintained by the book's author and contains videos, source code examples,
and links to further reading. Each chapter has its own individual web page.
In the unlikely event that the website is unavailable, you can find the code at
www.wi ley.com/go/exploringbeaglebone.

I have provided all of the source code through GitHub, which allows you
to download the code to your BeagleBone with one command. You can also
easily view the code online at tiny.cc/ebb001. Downloading the source code
to your BeagleBone is as straightforward as typing the following at the Linux
shell prompt:

$ git clone https://github.com/derekmolloy/exploringBB.git

If you have never used Git before, don't worry—it is explained in detail in
Chapter 3. Now, on with the adventures!

http://www.exploringbeaglebone.com
http://www.wiley.com/go/exploringbeaglebone
https://github.com/derekmolloy/exploringBB.git

Exploring BeagleBone

In This Part

Chapter 1: The BeagleBone Hardware

Chapter 2: The BeagleBone Black Software
Chapter 3: Exploring Embedded Linux Systems
Chapter 4: Interfacing Electronics

Chapter 5: Practical BeagleBone Programming

The BeagleBone Hardware

In this chapter, you are introduced to the BeagleBone platform hardware. The
chapter focuses on the BeagleBone Black and the various subsystems and physical
inputs/outputs of the board. In addition, the chapter lists accessories that can
be very helpful in developing your own BeagleBone-based projects. By the end
of this chapter, you should have an appreciation of the power and complexity
of this computing platform. You should also be aware of the first steps to take
to protect your board from physical damage.

Introduction to the Platform

The BeagleBone is a compact, low-cost, open-source Linux computing platform
that can be used to build complex applications that interface high-level software
and low-level electronic circuits. It is an ideal platform for prototyping project
and product designs that take advantage of the power and freedom of Linux,
combined with direct access to input/output pins and buses, allowing you to
interface with electronics components, modules, and USB devices. The charac-
teristics of the BeagleBone platform are that it

m js powerful, as it contains a processor that can perform up to 2 billion
instructions per second,

m is lJow-cost, available for as little as $45-$55,

4

Part | = BeagleBone Basics

m supports many standard interfaces for electronics devices,

m uses little power, running at between 1 W (idle) and 2.3 W (peak),

m is expandable through the use of daughterboards and USB devices,

m js supported by a huge community of innovators and enthusiasts, and

m is open-hardware and supports open-software tools and applications.

The BeagleBone runs the Linux operating system, which means that you can
use many open-source software libraries and applications directly with it. Open-
source software driver availability also enables you to interface devices such as
USB cameras, keyboards and Wi-Fi adapters with your project, without having
to source proprietary alternatives. Therefore, you have access to comprehensive
libraries of code that have been built by a talented open-source community;
however, it is important to remember that the code typically comes without any
type of warranty or guarantee. If there are problems, then you have to rely on
the good nature of the community to resolve them. Of course, you could also
fix the problems yourself and make the solutions publicly available.

The BeagleBone platform is formed by the integration of a high-performance
microprocessor on a printed circuit board (PCB) and an extensive software ecosys-
tem. The physical PCB is not a complete product; rather it is a prototype reference
design that you can use to build a complete product. It is an open-hardware platform,
meaning that you can download and use the BeagleBone hardware schematics and
layout directly within your own product design. In fact, despite the impressive
capability of the BeagleBone platform, it does not fully expose all of the features
and interfaces of the Texas Instruments Sitara AM335x microprocessor.

One impressive feature of the BeagleBone is that its functionality can be
extended with daughterboards, called capes, that connect to the P8 and P9
headers (the two black 2x23 connector rows in Figure 1-1). You can design your

Figure 1-1: The BeagleBone Black computing platform (revision C board with printed pin labels)

Chapter 1 = The BeagleBone Hardware

own capes and attach them securely to your BeagleBone using these headers.
In addition, many capes are available for purchase that can be used to expand
the functionality of your BeagleBone platform. Some examples of these are
described toward the end of this chapter.

The BeagleBone PCBs were designed by Gerald Coley, a co-founder of the
BeagleBoard.org Foundation. However, the boards, and several of its capes,
are manufactured by CircuitCo (www.circuitco.com). The PCB layout for the
BeagleBone Black was also created by CircuitCo. Recently, Element14 (www
.element14.com) has begun manufacturing a BeagleBoard.org-compliant version
of the BeagleBone Black. Therefore, when you purchase a BeagleBone board,
you are not purchasing it from BeagleBoard.org; rather, BeagleBoard.org is the
focal point for a community of developers and users.

L[X CircuitCo has provided a short video of the BeagleBone Black manufacturing
process at tiny.cc/ebbl01—it highlights the complexity of the device and the
work that goes into its manufacture.

Who Should Use the BeagleBone

Anybody who wishes to transform an engineering concept into a real interactive
electronics product, project, prototype, or work of art should consider using the
BeagleBone. That said, integrating high-level software and low-level electron-
ics is not an easy task. However, the difficulty involved in an implementation
depends on the level of sophistication that the project demands.

The BeagleBone community is working hard to ensure that the BeagleBone
platform is accessible by everyone who is interested in integrating it into their
projects, whether they are students, makers, artists, or hobbyists. Tools and
software development environments, such as Jason Kridner’s BoneScript library
(Kridner is a co-founder of BeagleBoard.org and a technical editor of this book)
and the Cloud9 integrated development environment (IDE), enable users to
write and build code directly in a web browser that is capable of controlling
electronics hardware. BoneScript is introduced in Chapter 2. Developments like
Blockly (code.google.com/p/blockly) and Snap (snap.berkeley.edu) have
the potential to be integrated with BoneScript to further improve accessibility
for new users.

For more advanced users, with electronics or computing knowledge, the
BeagleBone platform enables additional development and customization to
meet specific project needs. Again, such customization is not trivial: You may
be an electronics expert, but high-level software programming and/or the Linux
operating system might cause you difficulty. Or, you may be a programming
guru but you have never wired an LED! This book aims to cater to all types
of users, providing each type of reader with enough Linux, electronics, and
software exposure to ensure that you can be productive, regardless of your
previous experience level.

http://www.element14.com
http://www.element14.com
http://www.circuitco.com
http://www.circuitco.com

Part | = BeagleBone Basics

When to Use the BeagleBone

The BeagleBone is perfectly placed for the integration of high-level software
and low-level electronics in any type of project. Whether you are planning to
build an automated home management system, robot, smart display, sensor
network, vending machine, or Internet-connected work of interactive art, the
BeagleBone has the processing power to do whatever you can imagine of an
embedded device.

The major advantage of the BeagleBone over more traditional embedded
systems, such as the Arduino, PIC, and AVR microcontrollers, is apparent when
you leverage the Linux OS for your projects. For example, if you built a home
automation system using the BeagleBone and you then decided that you wanted
to make certain information available on the Internet, you could simply install
the Apache web server. You could then use server-side scripting or your favorite
programming language to interface with your home automation system in order
to capture and share the information. Alternatively, your project might require
secure remote shell access. In that case, you could install a secure shell (SSH)
server, simply by using the Linux command sudo apt-get install sshd (these
commands are covered in Chapter 2). This could potentially save you weeks
of development work. In addition, you have the comfort of knowing that the
same software is running securely on millions of machines around the world.

Linux also provides you with device driver support for many USB peripherals
and adapters, making it possible for you to connect cameras, Wi-Fi adapters,
and other low-cost consumer peripherals directly to your platform, without the
need for complex and/or expensive software driver development.

When You Should Not Use the BeagleBone

The Linux OS was not designed for real-time or predictable processing. Its ker-
nel is not preemptive, which means that once the processor begins executing
kernel code it cannot be interrupted. This would be problematic if, for example,
you wished to sample a sensor precisely every one millionth of a second. If the
precise time arises to take a sample and the kernel is busy with a different task,
then it cannot be interrupted. Therefore, in its default state, the BeagleBone is
not an ideal platform for real-time systems applications. Real-time versions of
Linux are available, but they are currently targeted at very experienced Linux
developers. However, the BeagleBone does have an on-board solution that goes
some way toward resolving this problem. Within the BeagleBone’s AM335x,
there are two on-board microcontrollers, called Programmable Real-time Units
(PRUs), which can be programmed for real-time interfacing applications. This
is an advanced topic that is described in Chapter 13.

There are low-cost dedicated solutions available for real-time sampling
and control tasks (such as the TI Stellaris ARM platform) that may be more

Chapter 1 = The BeagleBone Hardware

appropriate. It is also important to remember that you can interconnect such
real-time microcontrollers to the BeagleBone via electrical buses (e.g., I?C, UART,
CAN bus, and Ethernet) and have the BeagleBone act as the central processor
for a distributed control system. This concept is described in Chapter 9 and
Chapter 10.

The second application type that the BeagleBone platform will find difficult is
that of playing high-definition video. The processing overhead of software decod-
ing and playing encoded video streams is immense, and is beyond the capability
of the BeagleBone at high-definition video resolutions. The Raspberry Pi (www
.raspberrypi.org) board has this capability because its Broadcom BCM2835
processor! was designed for multimedia applications, and it has a hardware
implementation of H.264/MPG-4 and MPG-2/VC-1 (via additional license)
decoders and encoders. For applications such as running XMBC home media
center (www.xbmc.org), you are better off purchasing a Raspberry Pi (Model
B+), but for building advanced applications that interface to electronics, the
BeagleBone is a clear choice.

BeagleBone Documentation

This book integrates my experiences in developing with the BeagleBone platform
along with supporting background materials on embedded Linux, software
development, and general electronics, to create an in-depth guide to building
with this platform. However, it is simply not possible to cover everything in
just one book, so I have avoided restating information that is listed in the key
documents and websites described in this section. The first starting point for
supporting documentation is always the following:

m The BeagleBoard.org website: This provides the main support for this
platform, with software guides, community links, and downloads to sup-
port your development. An excellent “Getting Started” guide and blog is
available at the website www.beagleboard.org.

A huge amount of documentation is available on the BeagleBone platform,
but the most important documents are as follows:

m BeagleBone Black System Reference Manual (SRM): This is the core
document that describes the BeagleBone Black hardware. Authored by
Gerald Coley, it is a comprehensive document that is complex in parts,
but it is important that you have a copy along with this book. It is a live
document, approximately 125 pages, that is released with every new revi-
sion of the BeagleBone. It is available free from the BeagleBone “Getting
Started” web page.

1 See www.broadcom.com/products/BCM2835 for further details.

http://www.xbmc.org
http://www.beagleboard.org
http://www.broadcom.com/products/BCM2835

8

Part | = BeagleBone Basics

m Sitara AM335x Cortex-A8 Technical Reference Manual (TRM): The key
component of the BeagleBone is its Texas Instruments microprocessor,
and this document contains anything you could possibly want to know
about its internal workings. The AM335x is a complex device, and that is
reflected in the length of the TRM—4,727 pages! If you need to understand
something about the inner workings of the microprocessor or the device
configuration on the BeagleBone, it is likely that the answer is contained
in this document. I refer to tables in the TRM throughout this book so that
hopefully you will become familiar with the language contained therein.
This document is available free from www.ti.com/product/am3358.

Key websites are also available to support your learning on this platform,
with combinations of tutorials, discussion forums, sample code libraries, Linux
distributions, and project ideas to stimulate your creative side. Here is a selec-
tion of important websites:

m The website for this book: www.exploringbeaglebone . com
m My personal blog site: www.derekmolloy.ie

m The eLinux.org website: www.elinux.org

m The eewiki: www.eewiki.net

m Hipstercircuits.com: www.hipstercircuits.com

m OZ9AEC: www.oz9aec.net

Getting started with the BeagleBone platform software is described in Chapter 2.
The remainder of this chapter discusses the BeagleBone PCB itself, explaining
the functionality that is available, summarizing the SRM, and providing some
examples of the types of peripherals and capes that you might like to connect
to the BeagleBone.

The BeagleBone Hardware

At its heart, the BeagleBone Black uses the Texas Instruments Sitara AM335x
Cortex A8 ARM microprocessor. While the BeagleBone Black is the focus of
this book, multiple boards have been developed by BeagleBoard.org, including
BeagleBoard, BeagleBoard XM, BeagleBone, BeagleBone Black, and the Arduino
Tre (BeagleBoard and Arduino combined on a single board). The BeagleBone is
discussed in detail in the next section, but here are some summary details on
the different boards (in historical order):

m (2008) BeagleBoard ($125): The original open-hardware ARM-based
development board that had HD video support. It has a 720MHz ARM
A8 processor but no on-board Ethernet.

http://www.ti.com/product/am3358
http://www.exploringbeaglebone.com
http://www.derekmolloy.ie
http://www.elinux.org
http://www.eewiki.net
http://www.hipstercircuits.com
http://www.oz9aec.net

Chapter 1 = The BeagleBone Hardware

= (2010) BeagleBoard xM ($149): Similar to BeagleBoard, except with a
1GHz ARM (AM37x) processor, 512MB memory, four USB ports, and
Ethernet support. Despite the low cost of the new BeagleBone boards,
the BeagleBoard xM is very popular for its C64+TMDSP core for digital
signal processing (DSP) applications.

= (2011) BeagleBone ($89): Smaller footprint than the BeagleBoard. It has a
720MHz processor and 256 MB memory, Ethernet support, and low-level/
output (e.g., analog to digital converters), but no on-board video support.

= (2013) BeagleBone Black ($45-$55): This board enhances the BeagleBone
with a 1GHz processor, 512MB of DDR3 memory, Ethernet, eMMC stor-
age, and HDMI video support.

The BeagleBone Black platform is the focus of this book, mainly due to its
feature set and price point in comparison to the other offerings; however, most
of the discussion in this book applies generally to all platforms.

BeagleBone Versions

As just mentioned, two versions of the BeagleBone are available: the older
BeagleBone White (BBW), or just BeagleBone; and the newer BeagleBone Black
(BBB). Both boards have a very small form factor, fitting neatly inside an Altoids
mint tin, as shown in Figure 1-2(a). Traditionally, Altoids tins have been upcycled
by engineers as a low-cost housing for electronics projects. Given the complex-
ity of the BeagleBone boards, it is impressive that they fit inside the tin—it also
helps to explain the rounded corners on the BeagleBone boards! Holes can be
formed in the case to provide access to the board connectors, but of course it
is necessary to electrically insulate the aluminum tin before using it to house
your board.

(@) (b)

Figure 1-2: (a) The BeagleBone Black (BBB) in an Altoids tin box; (b) the BeagleBone White
(BBW)

10

Part | = BeagleBone Basics

Table 1-1: The BeagleBone Black (BBB) vs. the BeagleBone White (BBW)

BEAGLEBONE
FEATURE BEAGLEBONE BLACK (BBB) WHITE (BBW)
Price About $45-$55 About $89
Processor 1GHz AM335x 720Mhz AM3359
Memory 512MB DDR3 (faster 1.6GB/s and lower 256 MB DDR2
power)
Storage On-board 2GB eMMC (4GB eMMC on Micro-SD card slot
the Revision C board) and micro-SD only
card slot
Video On-board HDMI No on-board HDMI.
Optional cape
available.
Debugging JTAG header present but not JTAG over USB
populated available
Serial Connection TTL header present but separate cable Serial over USB
needed

Input/Output Headers Almost the same, but fewer GPIO pins might be available due to
eMMC and HDMI functionality on the BBB

To achieve such a small form factor, the components are densely placed on
the BeagleBone, and a six-layer PCB is used to achieve interconnects. As an
example, the AM335x (ZCZ) processors used on the BeagleBone platforms have
a ball grid array of 324 pins, with a 0.80mm ball pitch.

Table 1-1 lists the main differences between the BBB boards and the BBW
boards. The first obvious difference is the price. Despite the improvement in
specification, the BBB is just over half the price of the BBW, and is very com-
petitively priced with other embedded Linux boards, such as the Raspberry Pi
(Model B+).

The manufacture cost of the BBB was reduced by removing certain functionality
from the BBW, such as the USB serial connection, USB JTAG debug emulation,
and a power expansion header. However, the step-up in functionality to include
on-board eMMC storage, HDMI video output, twice the memory, and a faster
processor for just over half the price means that the BBB represents particularly
impressive value for the money. It is clear that the BBB has reached a price/
performance sweet spot that has made it an exceptionally popular platform.
The eLinux.org website maintains a record of board shipment numbers that cur-
rently indicates 13,000 boards are shipping per month from CircuitCo. Despite
this fact, demand continues to outstrip supply, and recently new manufacturers
have come on-stream to help with meeting this demand.

Chapter 1 = The BeagleBone Hardware

11

The BeagleBone Black Hardware

Figure 1-3 and Figure 1-4 detail the core systems of the BBB. The first set of
callouts, 1 to 8, identify and describe the key systems on the BBB. The micro-
processor on the BBB is a Texas Instruments Sitara AM335x Cortex A8 ARM

Figure 1-3: Table of BBB subsystems and connectors

12 Part | = BeagleBone Basics

Figure 1-4: The BeagleBone Black (BBB) top and bottom views

Microprocessor.? It is a RISC (reduced instruction set computing) processor, so at
1,000MHz the processor executes 2,000 million instructions per second (MIPS).
The processor runs at about 1W idle and 2.3W for heavy processing loads.

2Earlier BBB boards used an XAM3359AZCZ100 processor, but more recent boards
(Rev B) use the AM3358BZCZ100. The feature set that is exposed to the BBB platform
is the same, so the notation AM335x is used.

Chapter 1 = The BeagleBone Hardware

13

The next set of callouts, 9 to 19, identifies the various connectors on the BBB,
their physical characteristics, and their function. For connector 18, the JTAG
connector, there are 20 pre-tinned pads. You need to purchase a connector (such
as Samtec FTR-110-03-G-D-06) for this and carefully solder it to the board. In
addition, you need a JTAG interface and associated debug software. The BBW
has on-board USB JTAG support.

If you would like these images for your own reference, Figures 1-3, 1-4, and 1-5
are available as a high-resolution PDF poster prints at the chapter web page:
www .exploringbeaglebone.com/chapterl/.

Figure 1-5 details the various inputs and outputs that are available on the
P8 and P9 headers. There are 92 pins in total on these headers (2x46); however,
not all are available for general-purpose input/outputs (GPIOs). Several of the
connections have a fixed configuration:

m Fight pins are connected to “digital” ground.

Figure 1-5: Table of functionality available on the P8 and P9 headers

http://www.exploringbeaglebone.com/chapter1/

14

Part | = BeagleBone Basics

m Nine pins are required for the analog inputs (seven inputs, ground, and
1.8V reference voltage).

m Six pins are allocated to voltage supplies: 3.3V (up to 250mA), 5V system
(up to 250mA) and 5V V, (up to 1A if powered via DC Jack—power can
be supplied to the board via the VDD_5V pins).

m Two are allocated to one of the I°C buses.

m Two are allocated to the power and reset buttons.

The remaining 65 connectors are available to be multiplexed to many different
functions, several of which are listed in Figure 1-5. The function of each of these
input/output types is discussed in Chapter 6 and Chapter 8.

BeagleBone Accessories

The BBB board is packaged with a USB 2.0 cable (micro-USB plug to USB A plug),
which is used to connect the BBB (via the USB Client Connector) to a desktop
computer. It does not come with a micro-SD card, as the Linux installation is
already present on the board’s eMMC. It will boot to Linux directly out of the
box. The BBW is packaged with a micro-SD card, as it has no on-board eMMC.

Highly Recommended Accessories

The following accessories are recommended for purchase along with your BBB
board. If you are planning to carry out development work with the BBB, then
you should probably have all of them.

Micro-SD Card (for Flashing the BBB)

A micro-SD card enables you to write new Linux images to your BBB. If you
accidently damage the Linux file system during your experimentation with
the BBB, the micro-SD card will enable you to restore your system. Ideally,
you should have two dedicated SD cards, one for a boot image and one for a
flasher image.

Purchase a micro-SD card of at least 4GB capacity. You may also require a
micro-SD-to-SD adapter so that it can be used in your computer’s card reader.
Many micro-SD cards are bundled with the adapter, which is a cheaper option than
purchasing them separately. The micro-SD card should be of Class 10 or greater,
as the faster read /write speed will save you time in writing images in particu-
lar. A blank micro-SD card can also be used for additional file system storage
(discussed in Chapter 3), so the greater the card capacity the better.

Chapter 1 = The BeagleBone Hardware

15

External 5V Power Supply (for Flashing and Peripherals)

You can power the BBB directly using the USB connection from your desktop/
laptop computer to the USB client connector on the BBB. For getting started with
the BBB, that is perfectly fine; however, once you begin to connect accessories
such as Wi-Fi adapters, USB cameras, or on-board displays, it is possible that
the power available over USB will not be sufficient for your configuration. Some
early BBB boards would not flash a new system image correctly without being
connected to an external 5V power supply.

You can purchase a 5V DC regulated switching power supply that plugs
directly into a mains supply. It should have a minimum DC output current
of 1A; however, you should aim for a 2A current supply (2A x 5V = 10W) if
possible. The 5V barrel connector (5.5mm diameter) from the supply should
be center positive. If you plan on running multiple BBBs simultaneously,
then you will need to power them using external power supplies (barrel or
USB), as connecting two BBBs to your PC simultaneously requires careful
software configuration and can cause Internet connectivity instabilities
under Windows.

Ethernet Cable (for Network Connection)

The BBB can use a special networking mode, called Internet-over-USB, to cre-
ate a virtual network between the BBB and your desktop; however, if you are
connecting the BBB to your home network, then don’t forget to purchase a Cat5
network patch cable to connect your BBB to the network using its RJ-45 10/100
Ethernet connector. If you are planning to use more than one BBB simultane-
ously, you could invest in a low-cost four-port switch, which can be placed close
to your desktop computer (see Chapter 2).

HDMI Cable (for Connection to Monitors/Televisions)

The BBB has a HDMI framer and can be easily connected to a monitor or tele-
vision that has a HDMI or DVI connector. The BBB has a micro-HDMI socket
(HDMI-D), so be careful to match that to your monitor/television type (usually
HDMI-A or DVI-D). The cable you are likely to need is a “HDMI-Micro-D Plug
to HDMI-A Male Plug.” A 1.8m (6ft.) cable should cost no more than $10. Be
very careful with your purchase—a HDMI-C (mini-HDMI) connector will not
fit the BBB.

Alternatively, you can purchase a low-cost ($3) micro-HDMI (HDMI-D) plug
to regular HDMI (HDMI-A) socket adapters or micro-HDMI (HDMI-D) plug
to DVI-D socket adapter cables. These enable you to use regular-size HDMI-A
or to connect to DVI-D devices, respectively (see Figure 1-6(a)).

16 Part | = BeagleBone Basics

(a) (b)

Figure 1-6: (a) BBB connected to micro-HDMI-to-HDMI adapter and then to a low-cost
HDMI-A-to-DVI-D cable (b) A micro-HDMI-to-VGA adapter with audio line output

USB to Serial UART TTL 3.3V (for Finding Problems)

The USB-to-serial UART TTL serial cable is one accessory that is really useful
when there are problems with the Linux distribution on your board. I find
it invaluable when finding and fixing problems with my students” boards. It
connects to the 6 pin J1 header, which is beside the P9 header on the BBB. The
black side of the cable is connected to pin 1 (the white dot) and the green side is
closest to the USB host connector (see Figure 1-7). Only three pins are used on
the BBB: pin 1 ground (black), pin 4 receive (orange), and pin 5 transmit (yellow).

Figure 1-7: The USB-to-TTL 3.3V serial cable and its connection to the BBB (connection colors
are black, brown, red, orange, yellow, and green)

Please ensure that you purchase the 3.3V level version and ideally purchase
a version with a six-way 0.1” female header pre-attached (it does sell with only
bare wires, which I purchased by accident!). This cable contains a chipset and

Chapter 1 = The BeagleBone Hardware

17

requires that you install drivers on your desktop computer, creating a new COM
port. The FTDI TTL-232R-3V3 cable works very well and provides a very stable
connection (about $20). See tiny.cc/ebb102 for the datasheet and the “VCP”
link to the software drivers for this adapter cable.

If you are planning to flash your own images to the BBB or if you have a
board that is not booting, I recommend that you purchase one of these cables.
The use of this cable is discussed in Chapter 2 and Chapter 3.

Optional Accessories

The following sections describe optional accessories that you may need, depend-
ing on the applications that you are developing (see Figure 1-8).

(@) (b) ©

Figure 1-8: (a) USB Wi-Fi adapters; (b) the Logitech C920 camera; and (c) a Velleman USB hub
(bus powered)

USB Hub (to Connect Several USB Devices to a USB Host)

If you are planning to connect more than one USB device to the BBB at the
same time, then you will need a USB hub. USB hubs are either bus powered or
externally powered. Externally powered hubs are more expensive; however, if
you are powering several power-hungry adapters (Wi-Fi in particular), then you
may need a powered hub. Ensure that you plug the USB hub into the BBB host
connector before powering on the BBB. I have tried different brands of USB hub
and they have all worked without difficulty.

Micro-HDMI to VGA adapters (for VGA Video and Sound)

Several low-cost micro-HDMI-to-VGA adapters are for sale (e.g., on Amazon or
eBay) for converting the HDMI output to a VGA output. As well as providing for
VGA video output, many of these connectors provide a separate 3.5mm audio
line out, which can be used if you wish to play audio using your BBB, without

18

Part | = BeagleBone Basics

requiring a television, high-end amplifier, or monitor (see Figure 1-6(b)). There
are also USB audio adapters available that can provide high-quality playback
and recording functionality. These adapters and their usage are described in
Chapter 12.

Wi-Fi Adapters (for Wireless Networking)

Many different Wi-Fi adapters are available, such as those in Figure 1-8(a);
however, not all adapters will work on the BBB. The Linux distribution and
the chipset inside the adapter will determine the likelihood of success.
You can find a list of adapters that are confirmed as working at tiny.cc/
ebb103. However, please be aware that manufacturers can change chipsets
within the same product and that buying an adapter from the list does not
guarantee that it will work. You are more likely to succeed if you can con-
firm the chipset in the adapter you are planning to purchase, and evaluate
that against the list. Wi-Fi configuration and applications are discussed in
detail in Chapter 10, which tests a range of different low-cost adapters that
are widely available.

USB Webcam (for Capturing Images and Streaming Video)

Attaching a USB webcam can be a low-cost method of integrating image and
video capture into your BBB projects. In addition, utilizing Linux libraries such
as Video 4 Linux and Open Source Computer Vision (OpenCV) enables you to
build “seeing” applications.

In Chapter 12, different webcams are examined, but the text focuses on the
use of the Logitech C920 webcam in particular for video streaming applica-
tions (see Figure 1-8(b)). It is a relatively pricey webcam (at about $70) but it is
capable of streaming full HD video directly using the BBB, as it has H.264/
MPG-4 hardware encoding built into the camera. This greatly reduces the
workload for the BBB, allowing the processor to be available for other tasks.
As with Wi-Fi adapters, it would be useful to confirm that a webcam works
with the BBB before you purchase it for that specific purpose. I test several
camera types in Chapter 12.

USB Keyboard and Mouse (for General-Purpose Computing)

It is possible to connect a USB keyboard and mouse separately to a USB hub or
to use a 2.4GHz wireless keyboard and mouse combination. Very small wireless
handheld combinations are available, such as the Rii 174 Mini, Rii i10, and eSynic
mini, all of which include a handheld keyboard with integrated touchpad. A
USB Bluetooth adapter is also useful for connecting peripherals to the BBB. A
similar Bluetooth keyboard/touchpad is used in Chapter 11.

Chapter 1 = The BeagleBone Hardware

19

Capes

Capes are daughterboards that can be attached to the P8/P9 expansion headers on
the BeagleBone. They are called capes (as in Superman’s cape!) due to the shape of
the boards as they wrap around the RJ-45 Ethernet connector. You can connect up
to four capes at any one time, when they are compatible with each other.

Some capes use a significant number of pins. For example, you will look
at the LCD4 cape in Chapter 11. It uses the P8 header pins 27 through 46 and
some of the analog inputs for its buttons and resistive touch interface. If you are
using the eMMC for booting the BBB, then very few pins remain for GPIO use.
In addition, the LCD cape does not carry forward the pin headers. Figure 1-9
shows two views of this cape when connected to the BBB, running the standard
BBB Debian Linux distribution.

Figure 1-9: The LCD4 cape (top and bottom view)

More than 50 capes are currently available for the BeagleBone; a full list can
be found at www.beagleboard.org/cape. Here is a selection of some example
capes that you might find useful in your projects (see Figure 1-10):

m The LCD capes are available in different sizes: 7”7 (800x480), 4” (480x272),
and 3” (320x240), with the 4” version captured in Figure 1-9. They have
resistive touch screens, meaning you use a stylus (or fingernail) to interact
with the screens. This is different than the capacitive touch screens on
recent phones/tablets.

m The Adafruit Proto cape is a low-cost (~$10) bare cape, which you can
use to transfer your breadboard design to a more solid platform. Several
other breadboard and prototyping capes are available.

m The Replicape ($179) is an impressive open-source 3D printer cape that
has five stepper motor drivers, including micro-stepping support. See
www.thing-printer.com for more information.

m The Valent F(x) LOGi-Bone FPGA development board cape ($89) adds FPGA
capabilities to the BBB with a Spartan 6 LX9. FPGAs provide programmable

http://www.beagleboard.org/cape
http://www.thing%E2%80%90printer.com

20 Part | = BeagleBone Basics

logic blocks that allow for very fast I/O operations, but does so with an
increase in complexity. This cape also provides an Arduino header, enabling
it to interface directly to shields that have been developed for the Arduino
platform. This cape is discussed briefly at the beginning of Chapter 13.

m There are camera capes such as the 3.1MP Camera cape from www
.beagleboardtoys.com that provides an alternative to USB webcams;
however, it cannot be used at the same time as the eMMC, so the BBB
must be booted from the micro-SD card.

(@) (b)

(c) (d)

Figure 1-10: (a) The Proto cape; (b) Valent F(x) LOGi-Bone; (c) Camera cape; and (d) Adafruit BBB
case

You have to be very careful about compatibility when interconnecting capes.
There is a compatibility table covering the more common capes at tiny.cc/
ebb104. The preceding list is just a small selection. Many more capes are avail-
able and it is likely that additional capes will be developed over time.

How to Destroy Your BeagleBone!

The BBB and BBW are complex and delicate devices that are very easily dam-
aged if you do not show due care. If you are moving up from boards like the
Arduino to the BeagleBone platform, then you have to be especially careful

http://www.beagleboardtoys.com
http://www.beagleboardtoys.com

Chapter 1 = The BeagleBone Hardware

when connecting circuits that you built for that platform to the BBB. Unlike the
Arduino Uno, the microprocessor on the BBB cannot be replaced. If you damage
the microprocessor, you will have to buy a new board!

Here are some things that you should never do:

m Do not shut the BBB down by pulling out the power jack/USB power.
You should shut down the board correctly using a software shutdown
(e.g., by pressing the power button once) or by holding the power but-
ton for about eight seconds for a “hard” power down. This enables the
PMIC to shut down the board correctly. If you have to remove power by
disconnecting the power supply, hold the reset button while doing so in
order to lower system power usage.

= Do not place a powered BBB on metal surfaces (e.g., aluminum-finish
computers) or on worktops with stray/cut-off wire segments, resistors,
etc. If you short the pins on the P8/P9 headers you can easily destroy
your board. You can buy a case from suppliers such as Adafruit (see
Figure 1-10(d)). Alternatively, you can attach small rubber feet to the BBB.

m Do not connect circuits that source/sink other than very low currents
from/to the P8/P9 headers. The maximum current that you can source
from many of these header pins is 4-6mA and the maximum current you
can sink is 8mA. The power rail and ground pins can source and sink
larger currents. The Arduino allows currents of 40mA on each input/
output. This issue is covered in Chapter 4 and Chapter 6.

m The GPIO pins are 3.3V tolerant (the ADCs are 1.8V tolerant). Do not con-
nect a circuit that is powered at 5V or you will destroy the board. This is
discussed in Chapter 4, Chapter 6, and Chapter 8.

m Do not connect circuits that apply power to the P8/P9 pins while the BBB
is not powered on. Make sure that all self-powered interfacing circuits are
gated by the 3.3V supply line. This is covered in Chapter 6.

Here are two steps that you should always follow:

m Carefully check the pin numbers that you are using. There are 46 pins in
each header, and it is very easy to plug into header connector 21 instead of
19. For connections in the middle of the headers, I always count twice—up
from the left and down from the right. In addition, there is a very useful
set of P8/P9 labels available at tiny.cc/ebb105 that you can print at 100%
scale and attach to your BBB, as illustrated in Figure 1-1.

m Read the SRM in detail before connecting complex circuits of your own
design to the BBB.

If your BBB is dead and it is your fault, then I'm afraid that after you per-
form all of the checks at www.beagleboard.org/support, you will have to

http://www.beagleboard.org/support

22

Part | = BeagleBone Basics

purchase a new board. If it is not your fault, then see the BBB SRM manual and
www.beagleboard.org/support website to return a defective board for repair
by requesting a return merchandise authorization (RMA) number.

Summary

After completing this chapter, you should be able to:
m Describe the capability of the BeagleBone and its suitability for different
project types.

m Source the important documents that will assist you in working with the
BBB platform.

m Describe the major hardware systems and subsystems on the BBB.

m Jdentify important accessories that you can buy to enhance the capability
of your BBB.

m Have an appreciation of the power and complexity of the BBB as a physi-
cal computing platform.

m Be aware of the first steps to take in protecting your board from physical
damage.

Support

The key sources of additional support documentation are listed earlier in this
chapter. If you are having difficulty with the BeagleBone platform and the issues
are not described in the documentation, then you should use these two resources:

m The BeagleBoard Google Group, which is available at groups
.google.com/d/forum/beagleboard. Please read the frequently asked
questions (FAQs) and search the current questions before posting a new
question.

m There is a live chat available at www.beagleboard.org/chat or directly
on the Beagle IRC channel (by joining #beagle on irc.freenode.net)
using a free IRC client such as X-Chat for Linux, HexChat for Windows,
or Colloquy for Mac OS X.

Please remember that the people in this group and IRC channel are commu-
nity members who volunteer their time to respond to questions.

http://www.beagleboard.org/support
http://www.beagleboard.org/chat

The BeagleBone Black Software

In this chapter, you are introduced to the Linux operating system and soft-
ware tools that can be used with the BeagleBone. This chapter aims to ensure
that you can connect to your BeagleBone and control it. By the end of this
chapter you should be able to “blink” a system LED having followed a step-
by-step guide that demonstrates how you can use Linux shell commands in a
Linux terminal window. In this chapter, you are also introduced to a library of
BeagleBone functions, called BoneScript, which can be used with Node.js and
the Cloud9 integrated development environment to build code that flashes the
same system LED.

Equipment Required for This Chapter:

m BeagleBone Black board
m Supplied USB cable (USB A male to mini-USB A male)
m Micro-SD card (4GB or greater; Class 10+) (optional)

m Network infrastructure and cabling (optional)

Further details on this chapter are available at www.exploringbeaglebone
.com/chapter2/

23

http://www.exploringbeaglebone.com/chapter2/
http://www.exploringbeaglebone.com/chapter2/

24

Part | = BeagleBone Basics

Linux on the BeagleBone

A Linux distribution is a publicly available version of Linux that is packaged
with a set of software programs and tools. There are many different Linux dis-
tributions, which are typically focused on different applications. For example,
high-end server owners might install Red Hat Enterprise, Debian, or OpenSUSE;
desktop users might install Ubuntu, Debian, Fedora, or Linux Mint. The list is
endless, but at the core of all distributions is a common Linux kernel, which
was conceived and created by Linus Torvalds in 1991.

In deciding on a Linux distribution to use for your embedded system platform,
it would be sensible to choose one for which the following apply:

m The distribution is stable and well supported.

m There is a good package manager.

m The distribution is lean and suited to a low storage footprint.
m There is good community support for your particular device.

m There is device driver support for any peripherals you wish to attach.

Linux Distributions

There are many different distributions of Linux for embedded system platforms,
including expensive proprietary versions for real-time programming. At their
heart, they all use the mainline Linux kernel, but each distribution contains
different tools and configurations that result in quite different user experiences.
The main open-source distributions used by the community on the BBB board
include Debian, Angstrt')m, Ubuntu, and Arch Linux.

Debian (contraction of Debbie and Ian!) is a community-driven Linux distribu-
tion that has an emphasis on open-source development. There is no commercial
organization involved in the development of Debian; in fact, there is a formal
social contract (tiny.cc/ebb201) that states that Debian will remain entirely
free (as in software freedom). The Debian distribution is used for many of the
practical steps in this book and is recommended as the distribution of choice for
the BBB, as it is currently distributed with new BBB boards. In addition, Debian
is used throughout this book as the distribution for the Linux desktop computer,
as it provides excellent support for cross-platform development through the
Embedded Debian (Emdebian) project (see www.debian.org).

Angstrom is a stable and lean Linux distribution that is widely used on embed-
ded systems. The team of developers behind Angstrom is experienced in custom-
izing Linux distributions for embedded devices such as set-top boxes, mobile
devices, and networking devices. Impressively, Angstrém can scale down to
devices with only megabytes of flash storage. Angstrom makes extensive use
of BusyBox, a multicall binary (a single executable that can do the job of many)
used to create a compact version of command-line utilities that are found on

http://www.debian.org

Chapter 2 = The BeagleBone Black Software

25

Linux systems. Many of my YouTube videos use Angstrém, as it was the primary
distribution for the BeagleBone for quite some time.

Ubuntu is very closely related to Debian; in fact, it is described on the Ubuntu
website (www . ubuntu. com) as follows: “Debian is the rock upon which Ubuntu is
built.” Ubuntu is one of the most popular desktop Linux distributions, mainly
because of its focus on making Linux more accessible to new users. It is easy to
install and has excellent desktop driver support, and there are binary distribu-
tions available for the BBB.

Arch Linux is a lightweight and flexible Linux distribution that aims to “keep it
simple,” targeting competent Linux users in particular by giving them complete
control and responsibility over the system configuration. There are pre-built
versions of the Arch Linux distribution available for the BBB; however, compared
to the other distributions, it currently has less support for new Linux users with
the BBB platform (see www.archlinux.org).

\[* " Don’t be too worried that you might damage the Linux file system when you
are practicing with the BBB. In the worst case, you might have to write a new Linux
image to the board. It takes about 20-45 minutes to write the image to the board.
There is a guide to writing a new image to the BBB on this chapter’s web page at

www . exploringbeaglebone.com/chapter2/.

Communicating with the BBB

When you are ready to try out your BBB, the first thing you should do is con-
nect it to your desktop computer using the supplied USB lead. After you apply
power, the BBB will connect to the desktop in USB client mode. Once connected
and discovered, your file manager, such as Windows Explorer, will display the
contents of the BBB’s FAT partition, as shown in Figure 2-1. The BeagleBoard.
org team has put together a really excellent HTML guide on getting started
with the BBB. You should double-click the sTART.htm file to display the guide,
which is illustrated in Figure 2-1, within a web browser.

Figure 2-1: The BBB START.htm guide to setting up your BBB

http://www.ubuntu.com
http://www.archlinux.org
http://www.exploringbeaglebone.com/chapter2/

26

Part | = BeagleBone Basics

m Be very careful that you do not delete the files that appear in the
folder in Figure 2-1, such as MLO, u-boot . img, and uEnv.txt. These files are vital to

your BBB booting correctly. In future releases of Linux for the BBB, it is likely that such
files will move to the /boot directory on the Linux partition.

Installing Drivers

Follow the steps in the guide displayed in Figure 2-1, which mainly involve
browsing to the Drivers folder and installing the correct version. Under Windows
you may receive Windows driver certification warnings on multiple occasions.
Continue with the process and do not click Cancel. Under Windows 8, you may
have to restart the computer in a troubleshooting mode in order to disable “driver
signature enforcement”—please see the chapter web page. Once this process
is complete, several new devices are available on your desktop computer. For
example, you will now have the following devices:

m Access to the FAT partition of the BBB (like a USB memory key).
m Serial access to the BBB using a new Gadget Serial driver.

m A Linux USB Ethernet/RNDIS Gadget (for Internet-over-USB). RNDIS stands
for Remote Network Driver Interface Specification.

The Windows Device Manager displays these new devices. Similar steps for
Linux and Macintosh desktop computers are available in the startup guide.
These new devices can be used to connect to the BBB.

Network Connections

There are three main ways to connect to and communicate with the BBB over
the network, each with its own advantages and disadvantages. The first way is
to use Internet-over-USB, which creates a “private” virtual LAN using a single
USB cable. The second way is to use regular Ethernet, and the third is to use an
Ethernet crossover cable. Connecting to the BBB over a network can be a stumbling
block for beginners. It is usually straightforward if you are working at home
with control of your own network; however, complex networks, such as those in
universities, can have multiple subnets for wired and wireless communication. In
such complex networks, routing restrictions may make it difficult, if not impos-
sible, to connect to the BBB over regular Ethernet. All three methods are suitable
for connecting your BBB to Windows, Macintosh, and Linux desktop machines.

Internet-over-USB

The standard BBB distributions provide support for Internet-over-USB using
the Linux USB Ethernet/RNDIS Gadget device. For new users, and for users
within complex network infrastructures, this is probably the best way to get
started with the BBB. For this setup you only need the BBB board, the supplied

Chapter 2 = The BeagleBone Black Software

27

USB cable, and access to a desktop computer, ideally with administrator access
levels. Table 2-1 describes the advantages and disadvantages of Internet-over-
USB for connecting to the BBB.

Table 2-1: Advantages and Disadvantages of BBB Internet-over-USB

ADVANTAGES DISADVANTAGES

Provides a good stable network setup for Without significant effort, you are limited to
beginners. a single BBB per desktop.

When you do not have access to, or control Network sharing configuration can be

of, network infrastructure hardware you can difficult, especially on Macintosh desktop
still connect the BBB to the Internet. computers. Additional configuration must

also be performed on the BBB.

Power is supplied by your desktop machine Your desktop machine must be running in
over USB. order to transfer data to/from the Internet.

\[* A NT By default, with Internet-over-USB, the BBB has the fixed IP address 192.168.7.2
and the desktop machine has the fixed address 192.168.7.1.

For example, if you fully installed the BBB drivers under Windows, you should
now have a new network connection (Start > type view Network Connections).
Figure 2-2 captures a typical Network Connections window under Windows.
In this case, “Local Area Connection 9” is the Linux USB Ethernet/RNDIS
Gadget. The desktop computer remains connected to your regular LAN, which
provides access to the Internet, and to a new “private” LAN that contains only
your desktop computer (192.168.7.1) and your BBB (192.168.7.2). You can open a
web browser and connect to the BBB’s web server by typing 192.168.7.2 in the
address bar, as illustrated in Figure 2-2.

Figure 2-2: Windows Network Connections with Internet-over-USB connection LAN 9, and a
web browser connection

28

Part | = BeagleBone Basics

At this point you can connect to the BBB’s web server using a web browser,
so you have a fully functional private network; however, you may also want the
BBB to have full direct access to the Internet so that you can download files and
update Linux software directly on the BBB. To do this, you need to share your main
network adapter, so that traffic from the BBB can be routed through your desktop
machine to the Internet. For example, under Windows use the following steps:

1. Choose your desktop/laptop network adapter that provides you with
Internet access. Right-click it and choose Properties.

2. Inthe dialog that appears, as shown on the left-hand side of Figure 2-3, click
the Sharing tab at the top and enable the option Allow other network users...

3. In the drop-down list, choose your BBB private LAN (e.g., referring back
to Figure 2-2, this is “Local Area Connection 9”). Click OK.

4. Right-click the BBB private LAN (e.g., LAN 9) and select Properties.

5. Double-click Internet Protocol Version 4. In this dialog, select Obtain an IP
address automatically and enable Obtain DNS server address automati-
cally (see Figure 2-3 on the right-hand side).

6. Click OK and then OK again to save the configurations.

Figure 2-3: Configuring the Network Connection Sharing Properties under Windows

If all goes well, you will not have noticed any difference at this point and you
should be able to reload the web page that is shown in Figure 2-2. The impact of
the last two steps can only be appreciated when you open a terminal connection
to the BBB. A link to a video guide for configuring network sharing for Mac OS
X is available at tiny.cc/ebb202.

m If you are planning to jump ahead, there is one more step to complete
before your BBB will be able to “see” the Internet. This change, which has to be made

directly on the BBB, is covered in the section titled “What Time Is It?”

Chapter 2 = The BeagleBone Black Software

29

NETWORK SHARING FORLINUX DESKTOP USERS

The settings for a Linux desktop to enable network sharing are as follows:

1. With the Internet-over-USB device attached, type i fconfigorip addrina
terminal, which results in a display of the attached network interfaces.

2. Find your main adapter (e.g., eth0) and Internet-over-USB adapter (e.g., eth1).

3. Use the iptables program to configure the Linux kernel firewall rules:
molloyd@debian:~$ sudo iptables --table nat --append
POSTROUTING --out-interface eth0 -j MASQUERADE
molloyd@edebian: ~$ sudo iptables --append FORWARD --in-
interface ethl -j ACCEPT

4. Then, use the following command to turn on IP forwarding:
molloydedebian:~$ sudo sh -c "echo 1 > /proc/sys/net/ipvé4/
ip forward"

Regular Ethernet

By “regular” Ethernet, | mean connecting the BBB to a network in the same way
that you would connect your desktop computer using a wired connection. For
the home user and power user, regular Ethernet is probably the best solution
for networking and connecting to the BBB. Table 2-2 lists the advantages and
disadvantages of using this type of connection. The main issue is the complex-
ity of the network—if you understand your network configuration and have
access to the router settings, then this is by far the best configuration. If your
network router is distant from your desktop computer, you can use a small
network switch, which can be purchased for as little as $10-$20. Alternatively,
you could purchase a wireless access point with integrated multiport router,
for $25-$35. This is useful for wireless BBB applications and also for extending
the range of your wireless network.

Table 2-2: Regular BBB Ethernet Advantages and Disadvantages

ADVANTAGES DISADVANTAGES

You have full control over IP address settings You might need administrative control or
and dynamic/static IP settings. knowledge of the network infrastructure.
You can connect and interconnect many BBBs The BBB needs a source of power (which

to a single network (including wireless devices). can be a mains-powered adapter).

The BBB can connect to the Internet withouta The setup is more complex for beginners
desktop computer being powered on. if the network structure is complex.

The first challenge with this configuration is finding your BBB on the net-
work. By default, the BBB is configured to request a Dynamic Host Configuration

30

Part | = BeagleBone Basics

Protocol (DHCP) IP address. In a home network environment this service is
usually provided by a DHCP server that is running on the integrated Modem-
Firewall-Router-LAN (or some similar configuration) that connects the home
to an Internet Service Provider (ISP).

DHCP servers issue IP addresses dynamically from a pool of addresses for
a fixed time interval, called the lease time, which is specified in your DHCP
configuration. When this lease expires, your BBB is allocated a different IP
address the next time it connects to your network. This can be frustrating, as
you may have to search for your BBB on the network again. It is possible to set
the IP address of your BBB to be static, so that it is fixed at the same address
each time the board connects. Wireless connections and static IP connections
are discussed in Chapter 10.

There are a few different ways to find your BBB’s dynamic IP address:

m Use a web browser to access your home router (often address 192.168.1.1,
192.168.0.1, or 10.0.0.1). Log in and look under a menu such as “Status”
for the “DHCP Table.” You should see an entry that details the allocated
IP address, the physical MAC address, and the lease time remaining for
a device with host name “beaglebone,” for example:

Leased Table
IP Address MAC Address Client Host Name Register Information
192.168.1.116 c8:a0:30:c0:6b:48 beaglebone Remains 23:59:51

m Use a port-scanning tool like nmap under Linux or the Zenmap GUI version
that is available for Windows (see tiny.cc/ebb203). The command nmap
-T4 -F 192.168.1.* will scan for devices on a subnet. You are searching
for an entry that has three or four open ports (e.g., 22 for SSH, 80 for the
BBB guide, 8080 for the Apache web server, and 3000 for the Cloud 9 IDE).
It may also identify itself with Texas Instruments.

m You could use a Serial-over-USB connection to connect to the BBB and type
ifconfig to find the IP address. The address is the “inet addr” associated
with the etho adapter. This is discussed shortly.

Once you have the IP address, you can test that it is valid by entering it in the
address bar of your web browser—192.168.1.116 in the example above. Your
browser should display the page that is shown in Figure 2-2.

Ethernet Crossover Cable

An Ethernet crossover cable is a cable that has been modified to enable two
Ethernet devices to be connected directly together, without the need for
an Ethernet switch. It can be purchased as a cable or as a plug-in adapter.
If you have an RJ-45 crimping tool, you could even make one by swap-
ping the transmit pair (green, white/green) with the receive pair (orange,

Chapter 2 = The BeagleBone Black Software

31

white/orange) on one end of a 10Base-T or 100Base-TX Ethernet cable (the
Gigabit Ethernet cable is different). Many desktop machines have an automatic
crossover detection function (Auto-MDIX) that enables a regular Ethernet
cable to be used. Similar to the Internet-over-USB network configuration,
this connection type can be used when you do not have access to network
infrastructure and/or where the Internet-over-USB network configuration is
not working correctly. Table 2-3 describes the advantages and disadvantages
of this connection type.

Table 2-3: Crossover Cable Network Advantages and Disadvantages

ADVANTAGES DISADVANTAGES

When you do not have access to network If your desktop machine has only one
infrastructure hardware you can still con- network adapter then you will lose access
nect to the BBB. to the Internet. It is best used with a device

that has multiple adapters.

BBB may have Internet access if the desktop ~ BBB still needs a source of power (can be a
has two network adapters. mains-powered adapter).

Provides a reasonably stable network setup. Requires a specialized Ethernet crossover
cable or adapter, unless your desktop has
Auto-MDIX.

Communicating with the BBB

Once you have networked the BBB, the next thing you might want to do is
communicate with the BBB. You can connect to the BBB using either a serial
connection over USB, USB-to-TTL, or a network connection, such as that just
discussed. The network connection should be your main focus, as that type of
connection provides your BBB with full Internet access. The serial connection is
generally used as a fallback connection when problems arise with the network
connection. As such, you may skip the next section, but the information is here
as a reference for when problems arise.

[\[eX 03 The default superuser account for Angstrém, Debian, and Arch Linux has
username root and no password (just press Enter). Ubuntu does not have a superuser
login by default—Ilog in as ubuntu with the password temppwd.

Serial Connection over USB

If you installed the device drivers for the BBB in the previous section, the Gadget
Serial device will allow you to connect to the BBB directly using a terminal
emulator program. Serial connections are particularly useful when the BBB is
close to your desktop computer and connected via the USB cable. It is often a

32

Part | = BeagleBone Basics

fallback communications method when something goes wrong with the network
configuration or software services on the BBB.

To connect to the BBB via the serial connection, you need a terminal program.
Several third-party applications are available for Windows, such as RealTerm
(tiny.cc/ebb204) and PuTTY (www.putty.org). PUTTY is also used in the next
section. Most distributions of desktop Linux include a terminal program (try
Ctrl+Alt+T or use Alt+F2 and type gnome-terminal under Debian). A terminal
emulator is included by default under Mac OS X (e.g., use screen /dev/tty
.usbmodemfal33 115200).

To connect to the BBB over the USB serial connection you need to know some
information:

m Port number: You can find this by opening the Windows Device Manager
and searching under the Ports section. Figure 2-4 captures an example
Device Manager, where the Gadget Serial device is listed as COM20. This
will be different on different machines.

m Speed of the connection: By default you need to enter 115,200 baud to
connect to the BBB.

m Other information you may need for other terminal applications: Data
bits = 8; Stop bits = 1; Parity = none; and, Flow control = XON/XOFFE.

Figure 2-4: Windows Device Manager and opening a PuTTY serial connection to the BBB

Save the configuration with a session name so that it is available each time
you wish to connect. After you click Open, it is important that you press Enter
when the window appears. When connecting to Debian, you should see the fol-
lowing output:

Debian GNU/Linux 7 beaglebone ttyGS0

default username:password is [debian:temppwd]
The IP Address for usbO is: 192.168.7.2
beaglebone login:

which allows you to log in with username root. There is no password by default
(just press Enter).

http://www.putty.org

Chapter 2 = The BeagleBone Black Software

33

On a Linux desktop computer you can install the screen program and con-
nect to the serial-over-USB device with the commands:

molloyd@debian:~$ sudo apt-get install screen
molloydedebian:~$ screen /dev/ttyUSB0/ 115200

Serial Connection with the USB-to-TTL 3.3V Cable

For this serial connection type you need the specialized cable that is described
in Chapter 1. Find the COM port from Windows Device Manager that is associ-
ated with a device called “USB Serial Port.” Plug in the cable to the 6-pin con-
nector beside the P9 header (black lead to the white dot/]J1). You can then open
a serial connection using PuTTY (115,200 baud) and you will see the same BBB
login prompt as above. However, when you reboot the board you will also see
the full console output as the BBB boots, which begins with:

U-Boot 2013.10-00016-gale6bc6e (Feb 25 2014 - 10:27:54)
I2C: ready
DRAM: 512 MiB. ..

This is the ultimate fallback connection, as it allows you to see what is hap-
pening during the boot process, which is described in the next chapter.

Connecting through Secure Shell (SSH)

Secure Shell (SSH) is a very useful network protocol for secure encrypted com-
munication between network devices. You can use an SSH terminal client to
connect to the SSH server that is running on port 22 of the BBB, which allows
you to do the following;:

m [og in remotely to the BBB and execute commands.
m Transfer files to and from the BBB using the SSH File Transfer Protocol (SFIP).

m Forward X11 connections, which allows you to perform virtual network
computing (covered in Chapter 11).

By default, the BBB Linux distributions run an SSH server (sshd on Debian
and Dropbear on Angstrom) that is bound to port 22. There are a few advantages
in having an SSH server available as the default method by which you log in
remotely to the BBB. In particular, you can open port 22 of the BBB to the Internet
using the port forwarding functionality of your router. Please ensure that you
set a password on the root user account before doing this. You can then remotely
log in to your BBB from anywhere in the world if you know the BBB’s IP address.
A service called dynamic DNS that is supported on most routers allows your
router to register its latest address with an online service. The online service
then maps a domain name of your choice to the latest IP address that your ISP

34

Part | = BeagleBone Basics

has given you. The dynamic DNS service usually has an annual cost, for which
it will provide you with an address of the form dereksBBB.servicename.com.

Secure Shell Connections using PuTTY

PuTTY (www.putty.org) was mentioned earlier as a way of connecting to the
BBB using serial-over-USB. PuTTY is a free, open-source terminal emulator,
serial console, and SSH client that you can also use to connect to the BBB over
the network. PuTTY has a few very useful features:

m [t supports serial and SSH connections.

m [t installs an application called psftp that enables you to transfer files to
and from the BBB over the network from your desktop computer.

m [t supports SSH X11 forwarding, which is required in Chapter 11.

Figure 2-5 captures the PuTTY Configuration settings: Choose ssu as the
connection type; enter the IP address for your BBB (192.168.7.2 if you are using
Internet-over-USB); accept Port 22 (the default); and then save the session with
a useful name for future use. Click Open and log in using your username and
password. You may get a security alert that warns about man-in-the-middle
attacks, which may be a concern on insecure networks. Accept the fingerprint
and continue. Mac OS X users can run the Terminal application with very similar
settings (e.g.,, ssh -X root@192.168.7.2).

Figure 2-5: PuTTY SSH Configuration settings beside an open SSH terminal connection

You will see the basic commands that can be issued to the BBB later in this
chapter, but first it is necessary to examine how you can transfer files to and
from the BBB.

Chrome Apps: Secure Shell Client

The Chrome web browser has support for Chrome Apps—applications that
behave like locally installed (or native) applications but are written in HTMLS5,

mailto:root@192.168.7.2
http://www.putty.org

Chapter 2 = The BeagleBone Black Software

35

JavaScript, and CSS. Many of these applications use Google’s Native Client
(NaCl, or Salt!), which is a sandbox for running compiled C/C++ applications
directly in the web browser, regardless of the OS. The benefit of NaCl is that
applications can achieve near-native performance levels, as they can contain
code that uses low-level instructions.

There is a very useful “terminal emulator and SSH client” Chrome App
available. Open a new tab on the Chrome browser and click the Apps icon.
Go to the Chrome Web Store and search the store for “Secure Shell.” Once it
is installed, it will appear as the Secure Shell App when you click the Apps
icon again. When you start up the Secure Shell App, you will have to set
the connection settings as in Figure 2-5, and the application will appear as
in Figure 2-6.

Figure 2-6: The SSH Chrome App

Transferring Files Using PuTTY/psftp over SSH

The PuTTY installation also includes file transfer protocol (ftp) support that enables
you to transfer files to and from the BBB over your network connection. You
can start up the psftp (PuTTY secure file transfer protocol) application by typing
psftp in the Windows Start command text field.

At the psftp> prompt you can connect to the BBB by typing open root@192.168.7.2
(e.g., the BBB address for Internet-over-USB). Your desktop machine is now referred
to as the local machine and the BBB is referred to as the remote machine. When
you issue a command, you are typically issuing it on the remote machine. After
connecting you are placed in the home directory of the user account that you
used. Therefore, under the BBB Debian distribution, if you connect as root you
are placed in the /root directory.

To transfer a single file c:\temp\test.txt from the local desktop computer to
the BBB you can use the following steps:

psftp: no hostname specified; use "open host.name" to connect
psftp> open root@192.168.7.2

Using username "root". Debian GNU/Linux 7

Remote working directory is /root

psftp> led c:\temp

New local directory is c:\temp

mailto:root@192.168.7.2
mailto:root@192.168.7.2

36

Part |

BeagleBone Basics

psftp> mkdir test

mkdir /root/test: OK

psftp> put test.txt

local:test.txt => remote:/root/test.txt

psftp> dir test.*

Listing directory /root
-TW-r--r-- 1 root root 6 May 15 04:17 test.txt

Commands that are prefixed with an 1 refer to commands issued for the

local machine, e.g., 1cd (local change directory) or 1pwd (local print working
directory). To transfer a single file, the put command is issued, which transfers
the file from the local machine to the remote machine. The get command can
be used to transfer a file in reverse. To “put” or “get” multiple files you can
use the mput or mget commands. Use help if you have forgotten a command.

If you are using a Linux client machine, you can use the command sftp instead

of psftp. Almost everything else remains the same. The sftp client application
is also installed on the BBB distribution by default, so you can reverse the order
of communication, that is having the BBB act as the client and another machine
as the server.

Here are some useful hints and tips with the psftp/sftp commands:

mget -r * will perform a recursive get of a directory. This is very useful
if you wish to transfer a folder that has several subfolders. The -r option
can also be used on get, put, and mput commands.

dir *.txt will apply a filter to display only the . txt files in the current
directory.

mv can be used to move a file/directory on the remote machine to a new
location on the remote machine.

reget can be used to resume a download that was interrupted. The par-
tially downloaded file must exist on the local machine.

The psftp command can be issued as a single line or a local script at the
command prompt. You could create a file test . scr that contains a set of
psftp commands to be issued. You can then execute psftp from the com-
mand prompt, passing the password using -pw and the script file using
-b (or -be to continue on error, or -bc to display commands as they are
run), as follows:

c:\temp>more test.scr

lcd c:\temp\down

cd /tmp/down

mget *

quit

c:\temp>psftp root@192.168.7.2 -pw mypassword -b test.scr
Using username "root".

Remote working directory is /home/root . . .

mailto:root@192.168.7.2

Chapter 2 = The BeagleBone Black Software

37

Controlling the BeagleBone

At this point you should be able to communicate with the BBB using an SSH
client application, so this section investigates the commands that you can issue
to interact with the BBB.

Basic Linux Commands

When you first connect to the BBB with SSH you are prompted to log in. You
can log in with username root, which does not require a password:

login as: root

Debian GNU/Linux 7

BeagleBoard.org BeagleBone Debian Image 2014-10-08

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack Debian
root@beaglebone: ~#

You are now connected to the BBB, and the Linux terminal is ready for your
command. The # prompt means that you are logged in to a superuser account
(discussed in Chapter 3). For a new Linux user this step can be quite daunting,
as it is not clear what arsenal of commands is at your disposal. This section
provides you with sufficient Linux skills to get by. It is written as a reference
with examples, so that you can come back to it when you need help.

First Steps

The first thing you might do is determine which version of Linux you are run-
ning. This can be useful when you are asking a question on a forum:

root@beaglebone: ~# uname -a
Linux beaglebone 3.8.13-bone67 #1 SMP Wed Sep 24 21:30:03 UTC 2014 armv7l
GNU/Linux

In this case, Linux 3.8.13 is being used, which was built for the ARMv.7 archi-
tecture on the date that is listed.

The Linux kernel version is described by numbers in the form X.Y.Z. The X
number changes only very rarely (version 2.0 was released in 1996 and 3.0 in
2011). The Y value changes rarely, every two years or so (3.8 was released in
February 2013 and 3.13 in January 2014). The Z value changes regularly.

Next, you could use the passwd command to set a superuser account password:

root@beaglebone: ~# passwd

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

Table 2-4 lists other useful first step commands.

http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

38

Part | = BeagleBone Basics

Table 2-4: Useful First Commands in Linux

COMMAND DESCRIPTION

more /etc/issue Returns the Linux distribution you are using

ps -p $$ Returns the shell you are currently using (e.g., bash)

whoami Returns who you are currently logged in as

uptime Returns how long the system has been running

top Lists all of the processes and programs executing. Press Ctrl+C

to close the view

Basic File System Commands

This section describes the basic commands that you will need in order to move
around on, and manipulate, a Linux file system. When using Debian and Ubuntu
user accounts, you often must prefix the word sudo at the start of certain com-
mands. That is because sudo is a program that allows users to run programs
with the security privileges of the superuser. User accounts are discussed in the
next chapter. For the moment, the basic file system commands that you need
are listed in Table 2-5.

Table 2-5: Basic File System Commands

OPTIONS AND FURTHER
NAME COMMAND INFORMATION EXAMPLE(S)

List files 1ls -a shows all (including hidden files) 1s -al
-1 displays long format
-R gives a recursive listing
-r gives a reverse listing
-t sorts last modified
-S sorts by file size
-h gives human readable file sizes

Current pwd Print the working directory pwd -P

directory -P prints the physical location

Change cd Change directory cd /home/root
directory cdthenEnterorcd ~/ takesyou cd /

to the home directory

cd / takesyou to the file system
root

cd .. takesyou up alevel

Make a mkdir Make a directory mkdir test
directory

Delete a file rm Delete afile rm bad.txt
or directory -r recursive delete (use for rm -r test

directories)
-d remove empty directories

Chapter 2 = The BeagleBone Black Software

39

OPTIONS AND FURTHER

NAME COMMAND INFORMATION EXAMPLE(S)
Copyafileor cp -T recursive copy cp a.txt b.txt
directory -u copy only if the source is newer

than the destination or the desti- cp -r test testa

nation is missing
-v verbose copy (i.e., show

output)
Move a file mv -1 prompts before overwrite mv a.txt c.txt
or directory No -r for directory. Moving to mv test testb
the same directory performs a
renaming.
Create an touch Create an empty file or update the touch d.txt
empty file modification date of an existing
file.
View content more View the contents of a file. Usethe more d.txt
of afile Space key for the next page.
Get the cal Display a text-based calendar. cal 01 2015

calendar

That covers the basics but there is so much more!—the next chapter describes
file ownership, permissions, searching, I/O redirection, and more. The aim of
this section is to get you up and running. Table 2-6 describes a few shortcuts
that make life easier when working with most Linux shells.

Table 2-6: Some Time-Saving Terminal Keyboard Shortcuts

SHORTCUT DESCRIPTION

Up arrow Gives you the last command you typed, and then the previous commands
(repeat) on repeated presses
Tab key Auto-completes the file name, the directory name, or even the executable

command name. For example, to change to the Linux /tmp directory you
can type cd /t and then press Tab, which will auto-complete the com-
mand to cd /tmp/. If there are many options, press the Tab key again to
see all of the options as a list

Ctrl+A Brings you back to the start of the line you are typing

Ctrl+E Brings you to the end of the line you are typing

Ctrl+U Clears to the start of the line. Ctrl+E and then Ctrl+U clears the line

Ctrl+L Clears the screen

Ctrl+C Kills whatever process is currently running

Ctrl+Z Puts the current process into the background. Typing bg then leaves it run-

ning in the background, and £g then brings it back to the foreground. This
is discussed under Linux Processes in the next chapter

Part | = BeagleBone Basics

Here is an example that uses several of the commands in Table 2-5 to create
a directory called test in which an empty text file hello.txt is created. The
entire test directory is then copied to the /tmp directory, which is off the root
directory:

root@beaglebone:~# cd ~/
root@beaglebone: ~# pwd

/root

root@beaglebone: ~# mkdir test
root@beaglebone:~# cd test
root@beaglebone:~/test# touch hello.txt
root@beaglebone:~/test# ls
hello.txt

root@beaglebone:~/test# cd ..
root@beaglebone:~# cp -r test /tmp
root@beaglebone: ~# cd /tmp/test/
root@beaglebone: /tmp/test# 1ls
hello.txt

m Linux assumes that you know what you are doing! It will gladly allow
you to do a recursive deletion of your root directory when you are logged in as root (I
won't list the command). Think before you type when logged in as root!

N[Ol Sometimes it is possible to recover files that are lost through accidental dele-
tion if you use the extundelete command immediately after the deletion. Read the
command manual page carefully, then use steps, such as:

molloyd@beaglebone:~/ $ sudo apt-get install extundelete
molloyde@beaglebone:~/ $ mkdir ~/undelete

molloyde@beaglebone:~/ $ e¢d ~/undelete/

molloyd@beaglebone: ~/undeletes sudo extundelete --restore-all
--restore-directory . /dev/mmcblkOp2

Environment Variables

Environment variables are named values that describe the configuration of your
Linux environment, such as the location of the executable files or your default
editor. To get an idea of the environment variables that are set on the BBB, issue
an env call, which provides you with a list of the environment variables on your
account. Here, env is called on the Debian BBB image:

root@beaglebone: ~# env
TERM=xterm

SHELL=/bin/bash
SSH_CLIENT=192.168.7.1 18533 22

Chapter 2 = The BeagleBone Black Software

SSH_TTY=/dev/pts/3
USER=root
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin. . .

You can view and modify environment variables according to the
following example, which adds the /root directory to the PATH environment
variable:

root@beaglebone: ~# echo $PATH
/usr/local/sbin:/usr/local/bin: /usr/sbin: /usr/bin:/sbin:/bin
root@beaglebone: ~# export PATH=$PATH:/root

root@beaglebone: ~# echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/root

This change will be lost on reboot. Permanently setting environment variables
requires modifications to your .profile file when using sh, ksh, or bash shells,
and to your .login file when using csh or tcsh shells. To do this, you need to be
able to perform file editing in a Linux terminal window.

Basic File Editing

A variety of editors are available, but perhaps one of the easiest to use for new
users is also one of the most powerful—the GNU nano editor. You can start up
the editor by typing nano followed by the name of an existing or new filename;
for example, typing nano hello.txt will display the view captured in Figure 2-7
(after the text has been entered!). Typing nano -c¢ hello.txt will also display
line numbers, which is very useful when debugging program code. You can
move freely around the file in the window using the arrow keys and edit or
write text at the cursor location. You can see some of the nano shortcut keys
listed on the bottom bar of the editor window, but there are many more, some
of which are presented in Table 2-7.

Figure 2-7: The GNU nano editor being used to edit an example file in a PUTTY Linux terminal
window

Part | = BeagleBone Basics

Table 2-7: Nano Shortcut Keys—A Quick Reference

KEYS COMMAND KEYS COMMAND

Ctri+G Help Ctrl+Y Previous page

Ctrl+C Cancel Ctrl+_ or Ctrl+/ Go to line number

Ctrl+X Exit (prompts save) Alt+/ Go to end of file

Ctrl+L Enable long line Ctrl+6 Start marking text (then move
wrapping with arrows to highlight)

Ctrl+O Save Ctrl+K or Alt+6 Cut marked text

Arrows Move around Ctrl+U Paste text

Ctrl+A Go to start of line Ctrl+R Insert content of another file

(prompts for location of file)

Ctrl+E Go to end of line Ctrl+wW Search for a string
Ctrl+Space Next word Alt+W Find next

Alt+Space Previous word Ctrl+D Delete character under cursor
Ctrl+V Next page Ctrl+K Delete entire line

Ctrl+K appears to delete the entire line but it actually removes the line to
a buffer, which can be pasted using Ctrl+U. This is a quick way of repeating multiple
lines. Also, Mac users may have to set the meta key in the Terminal application to get
the Alt functionality. Select Terminal > Preferences > Settings > Keyboard, and
choose Use option as meta key.

What Time s It?

A simple question like this causes more difficulty than you can imagine. If you
type date at the shell prompt, you may get the following:

root@beaglebone: ~# date
Thu May 15 06:55:54 UTC 2014

which is many months out of date in this case, where the BBB connected to the
desktop PC using an Internet-over-USB connection. However, it is likely that
the date and time are correct if you are connected via “regular” Ethernet.

If it is wrong, why did the BBB team not set the clock time on your board? The
answer is that they could not. Unlike a desktop PC, there is no battery backup on
the BBB to ensure that the BIOS settings are retained—in fact, there is no BIOS!
That topic will be examined in detail in the next chapter, but for the moment
you need a way to set the time, and for that you can use the NTP (Network Time
Protocol). The NTP is a networking protocol for synchronizing clocks between
computers. If your BBB has the correct time, that is only because your BBB is
obtaining it from your network.

Chapter 2 = The BeagleBone Black Software

43

One way to set the date and time is to find your closest NTP server pool by
going to www.pool.ntp.org (the closest server to me is ie.pool.ntp.org for
Ireland) and entering the following commands:

root@beaglebone: /etc/network# date

Thu May 15 07:28:21 UTC 2014

root@beaglebone: /etc/network# /usr/sbin/ntpdate -b -s -u ie.pool.ntp.org
root@beaglebone: /etc/network# date

Sun Oct 12 19:07:37 UTC 2014

The time is now correct, but that is only the case until you reboot. If this com-
mand failed (e.g., you received the message “Error resolving ...”), then see the
following feature on the “BeagleBone Internet-over-USB Settings.”

BEAGLEBONE INTERNET-OVER-USB SETTINGS

If you are using Internet-over-USB, then the call to ntpdate likely failed, as you need
to direct the IP traffic from your BBB through your desktop machine. You must first set
up network connection sharing as detailed earlier in the “Internet-over-USB” section.
Then, type the following in a BBB SSH terminal:

root@beaglebone: ~# ping 8.8.8.8

connect: Network is unreachable

root@beaglebone:~# /sbin/route add default gw 192.168.7.1
root@beaglebone: ~# ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

64 bytes from 8.8.8.8: icmp reg=2 ttl=51 time=13.0 ms. ..

This change means that all traffic is being routed through your desktop computer
to the Internet. If this step fails you should check your Internet-over-USB sharing set-
tings (perhaps disable and re-enable sharing). You should now be able to resolve
domain names too under Debian—for example:

root@beaglebone: ~# ping www.google.com

PING www.google.com (74.125.138.106) 56(84) bytes of data.

64 bytes from www.google.com (74.125.138.106): icmp reqg=2 ttl=51
time=13.0 ms. . .

If the preceding step fails then you may need to update your nameserver as
follows:

root@beaglebone:~# echo "nameserver 8.8.8.8" >> /etc/resolv.conf

This step should not be necessary if the resolv.conf file already contains name-
server entries. If you are still having problems, modify /etc/network/interfaces
and add the following line to the file:

dns-nameservers 8.8.8.8

If you are still having difficulties, check whether your virus protection software is
preventing ping calls and network connection sharing.

http://www.pool.ntp.org
http://www.google.com
http://www.google.com
http://www.google.com

44

Part | = BeagleBone Basics

All of the settings described above are lost on reboot. You can use nano to edit your
.profilefile (e.g., type nano ~/.profile)and add the following two lines to the
end of your .profile file:

/sbin/route add default gw 192.168.7.1
/usr/sbin/ntpdate -b -s -u ie.pool.ntp.org

This addition will slow down the login process. Alternatively, you can use a script
such as the internetOverUSB script thatis in the /chp02 directory of the GitHub
repository. It must be executed using the sudo command. The latter approach is pref-
erable if you are switching between “regular” Ethernet and Internet-over-USB.

After you set the time, you can set your time zone. Use the following com-
mand, which provides a text-based user interface that allows you to choose your
location. The BBB is set for Irish Standard Time (IST) in this example:

root@beaglebone: ~# dpkg-reconfigure tzdata
root@beaglebone: ~# date
Mon Oct 13 00:16:47 IST 2014

Package Management

At the beginning of this chapter, a good package manager was listed as a key
feature of a suitable Linux distribution. A package manager is a set of software tools
that automate the process of installing, configuring, upgrading, and removing
software packages from the Linux operating system. Different Linux distribu-
tions use different package managers: Angstrém uses OPKG, Ubuntu and Debian
use APT (Advanced Packaging Tool) over DPKG (Debian Package Management
System), and Arch Linux uses Pacman. Each has its own usage syntax, but their
operation is largely similar. For example, the first row in Table 2-8 lists the com-
mand for installing a package using different managers. The table also lists
other package management commands that can be used.

Wavemon is a useful tool that you can use in configuring Wi-Fi connections
(see Chapter 10). If you execute the command you will see that the package is
not installed:

root@beaglebone: ~# wavemon
-bash: wavemon: command not found

The platform-specific (Debian in this case) package manager can be used to
install the package, once you determine the package name:

root@beaglebone: ~# apt-cache search wavemon
wavemon - Wireless Device Monitoring Application
root@beaglebone: ~# apt-get install wavemon
Reading package lists .. .Done. ..

Setting up wavemon (0.7.5-3) ...

Chapter 2 = The BeagleBone Black Software

45

Table 2-8: Common Package Management Commands (Using Nano as an Example Package)

COMMAND ANGSTROM DEBIAN/UBUNTU
Install a package. opkg install nano sudo apt-get

install nano
Update the package index. opkg update sudo apt-get update
Upgrade the packages on opkg upgrade sudo apt-get upgrade
your system.*
Is nano installed? opkg list-installed dpkg-query -1

|grep nano |grep nano

Is a package containing the opkg list|grep apt-cache search nano
string nano available? nano
Get more information about opkg info nano apt-cache show nano
a package. apt-cache policy nano
Get help. opkg apt-get help
Download a packagetothe opkg download nano sudo apt-get
current directory. download nano
Remove a package. opkg remove nano sudo apt-get

remove nano

Clean up old packages. Nontrivial. Search for sudo apt-get clean
“opkg-clean script”

*|t is not recommended that you do this. It can take quite some time to run (often several hours), and serious
issues can arise if the BBB runs out of space during the upgrade.

The wavemon command now executes, but unfortunately it will not do any-
thing until you configure a wireless adapter (see Chapter 10):

root@beaglebone: ~# wavemon
wavemon: no supported wireless interfaces found

Sometimes package installations fail, perhaps because another required
package is missing. There are force options available with the package commands to
override checks. (e.g., --force-yes with the apt-get command). Try to avoid force
options if possible, as having to use them is symptomatic of a different problem. Typing
sudo apt-get autoremove can be very useful when packages fail to install.

Interacting with the BBB On-board LEDs

In this section you are going to examine how you can change the behavior of
the BBB on-board user LEDs—the four blue LEDs in the top corner of the board.
Each LED provides information about the BBB’s state:

m [USRO flashes in a heartbeat sequence, indicating the BBB is alive.
m USRI flashes during micro-SD card activity.

46

Part | = BeagleBone Basics

m USR?2 flashes depending on the level of CPU activity.
m USRS3 flashes during eMMC activity.

You can change the behavior of these LEDs to suit your own needs, but you will
temporarily lose this useful activity information.

Sysfs is a virtual file system that is available under recent Linux kernels. It
provides you with access to devices and drivers that would otherwise only be
accessible within a restricted kernel space. This topic is discussed in detail in
Chapter 6; however, at this point it would be useful to briefly explore the mechan-
ics of how sysfs can be used to alter the behavior of the user LEDs.

Using your SSH client, you can connect to the BBB and browse to the direc-
tory /sys/class/leds. The output is as follows:

root@beaglebone:~# cd /sys/class/leds
root@beaglebone: /sys/class/leds# 1ls
beaglebone:green:usr0 beaglebone:green:usr2
beaglebone:green:usrl beaglebone:green:usr3

N[Ol N3 Sysfs directory locations can vary somewhat under different versions of the
Linux kernel. Please check the web page associated with this chapter if the preceding
directory is not present on your Linux kernel.

You can see the four (green!) LED sysfs mappings—usro0, usri, usr2, and usr3.
You can change the directory to alter the properties of one of these LEDs—for
example, usr3 (use the Tab key to reduce typing):

root@beaglebone: /sys/class/leds# cd beaglebone\:green)\:usr3
root@beaglebone:/sys/class/leds/beaglebone:green:usr3# ls
brightness device max brightness power subsystem trigger uevent

Here you see various different file entries that give you further information and
access to settings. Please note that this section uses some commands that are
explained in detail in the next chapter.

You can determine the current status of an LED by typing:

root@beaglebone:/sys/class/leds/beaglebone:green:usr3# cat trigger
none nand-disk mmcO [mmcl] timer oneshot heartbeat backlight gpio cpu0. ..

where you can see that the USR3 LED is configured to show activity on the mmc1
device—the eMMC. You can turn this trigger off by typing:

root@beaglebone: /sys/class/leds/beaglebone:green:usr3# echo none > trigger

and you will see that the LED stops flashing completely. You can use more
trigger to see the new state. Now that the LED trigger is off, you can turn the
USR3 LED fully on or off using:

Chapter 2 = The BeagleBone Black Software

47

root@beaglebone: /sys/class/leds/beaglebone:green:usr3# echo 1 > brightness
root@beaglebone: /sys/class/leds/beaglebone:green:usr3# echo 0 > brightness

You can even set the LED to flash at a time interval of your choosing. If you
watch carefully you will notice the dynamic nature of sysfs. If you perform an 1s
command at this point, the directory will appear as follows, but will shortly change:

root@beaglebone: /sys/class/leds/beaglebone:green:usr3# ls
brightness device max brightness power subsystem trigger uevent

To make the LED flash you need to set the trigger to timer mode by typ-
ing echo timer > trigger. You will see the USR3 LED flash at a one-second
interval. Notice that there are new delay on and delay_ off file entries in the
beaglebone:green:usr3 directory, as follows:

root@beaglebone: /sys/class/leds/beaglebone:green:usr3# echo timer > trigger
root@beaglebone: /sys/class/leds/beaglebone:green:usr3f# ls

brightness delay on max _brightness subsystem uevent

delay off device power trigger

The LED flash timer makes use of these new delay on time and delay off
time file entries. You can find out more information about these values by using
the concatenate (catenate) command, for example:

root@beaglebone:/sys/class/leds/beaglebone:green:usr3# cat delay on
500

which reports the time delay in milliseconds. To make the USR3 LED flash at
10Hz (i.e., on for 50ms and off for 50ms) you can use:

root@beaglebone:/sys/class/leds/beaglebone:green:usr3# echo 50 > delay on
root@beaglebone: /sys/class/leds/beaglebone:green:usr3# echo 50 > delay off

Typing echo mmcl > trigger returns the LED to its default state, which
results in the delay_on and delay_off file entries disappearing.

Shutdown

m Physically disconnecting the power without allowing the kernel
to unmount the eMMC or the SD card can cause corruption of your file system. The

power management chip also needs to be informed of a shutdown.

One final issue to discuss in this section is the correct shutdown procedure
for your BBB, as improper shutdown can potentially corrupt the ext4 file system
and/or lead to increased boot times due to file system checks. Here are some
important points on shutting down, rebooting, and starting the BBB:

m Typing shutdown -h now shuts down the board correctly. You can delay
this by five minutes by typing shutdown -h +5.

48

Part | = BeagleBone Basics

m Typing reboot will reset and reboot the board correctly.

= You can press the power button (see Figure 1-4) once to “soft” (as in
software) shutdown the board correctly.

m Holding the power button for approximately eight seconds performs a
hard system power down. This should be avoided unless the board is
frozen and will not soft shutdown.

m Press the power button to start the board. Try to avoid physically discon-
necting and reconnecting the power jack or USB lead.

If your project design is enclosed and you need an external soft power down,
it is possible to wire an external button to a BBB GPIO input and write a shell
script that runs on startup to poll the GPIO for an input. If that input occurs,
then /sbin/shutdown -h now can be called directly.

Node.js, Cloud9, and BoneScript

The BBB Linux distribution comes complete with a set of technologies that you
can use to quickly get started with developing software and hardware applica-
tions on the BBB. These are called Node.js, Cloud9, and BoneScript—Node.js is
a programming language, Cloud9 is a software development environment in
which you can write Node.js code, and BoneScript is a library of code for Node.js
that allows you to interact with BBB hardware.

Introduction to Node.js

Node s is a platform for building network applications that uses the same
JavaScript engine as the Google Chrome web browser. JavaScript is the program-
ming language that is often used to create interactive interfaces within web pages.
Simply put, Node s is JavaScript on the server side. Its runtime environment
and library of code enables you to run JavaScript code applications, without a
browser, directly at the Linux shell prompt.

Node.js uses an event-driven, nonblocking input/output model. Event-driven
programming is commonplace in user-interface programming. It essentially means
that the program’s flow of execution is driven by user actions or messages that
are transferred from other threads or processes. Interestingly, the fact that it uses
nonblocking I/O means that it is suitable for interfacing to the input/output pins
on your BBB,