

Learning Continuous
Integration with Jenkins
Second Edition

A beginner's guide to implementing Continuous Integration
and Continuous Delivery using Jenkins 2

Nikhil Pathania

BIRMINGHAM - MUMBAI

Learning Continuous Integration with
Jenkins

Second Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Second edition: December 2017

Production reference: 1191217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78847-935-6

www.packtpub.com

http://www.packtpub.com

Credits

Author
Nikhil Pathania

Copy Editor
Safis Editing

Reviewer
Deep Mehta

Project Coordinator
Virginia Dias

Commissioning Editor
Vijin Boricha

Proofreader
Safis Editing

Acquisition Editor
Prateek Bharadwaj

Indexer
Rekha Nair

Content Development Editor
Sharon Raj

Graphics
Kirk D'Penha
Tania Dutta

Technical Editor
Khushbu Sutar

Production Coordinator
Melwyn Dsa

About the Author
Nikhil Pathania is currently practicing DevOps at Siemens Gamesa Renewable Energy. He
started his career as an SCM engineer and later moved on to learn various tools and
technologies in the fields of automation and DevOps. Throughout his career, Nikhil has
promoted and implemented Continuous Integration and Continuous Delivery solutions
across diverse IT projects.
He enjoys finding new and better ways to automate and improve manual processes and
help teams know more about their project's SDLC by bringing valuable metrics. He is also
actively working on utilizing Elastic Stack and container technologies efficiently for
DevOps.

In his spare time, Nikhil likes to read, write, and meditate. He is an avid climber and also
hikes and cycles.

You can reach Nikhil on twitter at @otrekpiko.

First and foremost, my beautiful wife, Karishma, without whose love and support this book
would not have been possible.
Great thanks to Deep Mehta who provided me with valuable feedback throughout the
writing process.
Special thanks to the following people who worked hard to make this book the best possible
experience for the readers: Sharon Raj, Khushbu Sutar, and the whole Packt Publishing
technical team working in the backend.
And finally, great thanks to the Jenkins community for creating such fantastic software.

About the Reviewer
Deep Mehta is a DevOps engineer who works in CI/CD automation. He is currently
working in the San Francisco Bay Area. He helps clients design resilient infrastructure,
identifying top microservices patterns and self-healing infrastructure automation. His area
of interest is large-scale distributed computing, data science, cloud, and system
administration.

I acknowledge my mom, papa, and sister for supporting me to produce this book.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https:/​/​www.​packtpub. ​com/ ​mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https:/​/​www.​amazon. ​com/ ​dp/ ​1788479351.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351

Table of Contents
Preface 1

Chapter 1: Concepts of Continuous Integration 7

Software Development Life Cycle 7
Requirement analysis 8
Design 8
Implementation 9
Testing 9
Evolution 9

Waterfall model of software development 9
Disadvantages of the Waterfall model 11
Advantages of the Waterfall model 11

Agile to the rescue 12
The twelve agile principles 12
How does the Agile software development process work? 13
Advantages of Agile software development process 14

The Scrum framework 15
Important terms used in the Scrum framework 15
How does Scrum work? 16

Sprint Planning 17
Sprint cycle 17
Daily Scrum meeting 17
Monitoring Sprint progress 17
Sprint Review 18
Sprint Retrospective 18

Continuous Integration 18
Agile runs on CI 19
Types of projects that benefit from CI 20

Elements of CI 21
Version control system 21
Branching strategy 21

GitFlow branching model 23
CI tool 24
Self-triggered builds 25
Code coverage 26

Code coverage tools 27

Table of Contents

[ii]

Static code analysis 27
Automated testing 29
Binary repository tools 30
Automated packaging 31

Benefits of using CI 32
Freedom from long integrations 32
Metrics 32
Catching issues faster 32
Rapid development 32

Spend more time adding features 33
Summary 33

Chapter 2: Installing Jenkins 34

Running Jenkins inside a servlet container 34
Prerequisites 35
Installing Java 35
Installing Apache Tomcat 36
Enabling the firewall and port 8080 38
Configuring the Apache Tomcat server 39
Installing Jenkins on the Apache Tomcat server 41
Installing Jenkins alone on an Apache Tomcat server 42
Setting up the Jenkins home path 43

Installing a standalone Jenkins server on Windows 44
Prerequisites 44
Installing Java 44
Installing the latest stable version of Jenkins 46
Starting, stopping, and restarting Jenkins on Windows 46

Installing a standalone Jenkins server on Ubuntu 49
Prerequisites 50
Installing Java 50
Installing the latest version of Jenkins 51
Installing the latest stable version of Jenkins 52
Starting, stopping, and restarting Jenkins on Ubuntu 53

Installing a standalone Jenkins server on Red Hat Linux 53
Prerequisites 54
Installing Java 54
Installing the latest version of Jenkins 55
Installing the latest stable version of Jenkins 55
Starting, stopping, and restarting Jenkins on Red Hat Linux 56

Table of Contents

[iii]

Running Jenkins behind a reverse proxy 57
Prerequisites 57
Installing and configuring Nginx 57
Configuring the firewall on a Nginx server 58
Starting, stopping, and restarting the Nginx server 61
Securing Nginx using OpenSSL 62

Creating an SSL certificate 62
Creating strong encryption settings 63
Modifying the Nginx configuration 64
Enabling the changes and testing our Nginx setup 67

Configuring the Jenkins server 69
Adding reverse proxy settings to the Nginx configuration 70
Running Nginx and Jenkins on the same machine 72

Running Jenkins on Docker 74
Prerequisites 74
Setting up a Docker host 74

Setting up the repository 74
Installing Docker 75
Installing from a package 77

Running the Jenkins container 77
Running a Jenkins container using a data volume 80

Testing the data volume 81
Creating development and staging instances of Jenkins 84

Prerequisites 84
Creating an empty data volume 84
Copying data between data volumes 85
Creating the development and staging instances 86

Summary 88

Chapter 3: The New Jenkins 89

The Jenkins setup wizard 89
Prerequisites 90
Unlocking Jenkins 90
Customizing Jenkins 91
Creating the first admin user 94

The new Jenkins pipeline job 94
Prerequisite 95
Creating a Jenkins pipeline job 95
The Global Tool Configuration page 99
Jenkins pipeline Stage View 101

Declarative Pipeline syntax 104

Table of Contents

[iv]

Basic structure of a Declarative Pipeline 104
The node block 104
The stage block 104
Directives 105
Steps 105

Jenkins pipeline syntax utility 107
Prerequisite 107

Installing the Pipeline Maven Integration Plugin 108
Creating a Jenkins pipeline using the pipeline syntax utility 109

Multibranch pipeline 115
Prerequisite 117

Adding GitHub credentials inside Jenkins 118
Configuring Webhooks on GitHub from Jenkins 119
Create a new repository on GitHub 122
Using a Jenkinsfile 123

Creating a Multibranch pipeline in Jenkins 124
Re-register the Webhooks 125
Jenkins Multibranch pipeline in action 127

Creating a new feature branch to test the multibranch pipeline 128
Jenkins Blue Ocean 130

Installing the Jenkins Blue Ocean plugin 130
View your regular Jenkins pipeline in Blue Ocean 131
Creating a pipeline in Blue Ocean 134

Summary 145

Chapter 4: Configuring Jenkins 146

The Jenkins Plugin Manager 146
Updating Jenkins plugins 148
Installing a new Jenkins plugin 148
Uninstalling or downgrading a Jenkins plugin 149
Configuring proxy settings in Jenkins 150
Manually installing a Jenkins plugin 151

Jenkins backup and restore 153
Installing the Periodic Backup plugin 154
Configuring the Periodic Backup plugin 154
Creating a Jenkins backup 156
Restoring a Jenkins backup 157
Viewing the backup and restore logs 158

Upgrading Jenkins 159
Upgrading Jenkins running on Tomcat Server 160
Upgrading standalone Jenkins running on Windows 162

Table of Contents

[v]

Upgrading standalone Jenkins running on Ubuntu 164
Upgrading Jenkins running on a Docker container 166

User administration 168
Enabling/disabling global security on Jenkins 169
Enabling/disabling computers to remember user credentials 169
Authentication methods 170

Delegating to a servlet container 170
Jenkins' own user database 171
LDAP 172
Unix user/group database 173

Creating new users inside Jenkins 173
People page 174

User information and settings in Jenkins 174
Authorization methods 175

Anyone can do anything 176
Legacy mode 176
Logged-in users can do anything 176
Matrix-based security 177
Project-based Matrix Authorization Strategy 178

Summary 181

Chapter 5: Distributed Builds 182

Distributed build and test 182
The Jenkins Manage Nodes page 184
Adding Jenkins slaves – standalone Linux machine/VMs 186

Passing environment variables to Jenkins slaves 189
Passing tools' locations to Jenkins slaves 190
Launching a Jenkins slave via SSH 191

More about the active Jenkins slave 192
Adding Jenkins slaves – standalone Windows machine/VMs 196

Launching a Jenkins slave via Java Web Start 198
Adding Jenkins slaves – Docker containers 201

Prerequisites 201
Setting up a Docker server 202

Setting up the repository 202
Installing Docker using apt-get 203
Installing Docker using a .deb package 204

Enabling Docker remote API 204
Modifying the docker.conf file 205
Modifying the docker.service file 206

Installing the Docker plugin 207
Configuring the Docker plugin 207

Table of Contents

[vi]

Creating a Docker image – Jenkins slave 209
Adding Docker container credentials in Jenkins 212
Updating the Docker settings inside Jenkins 213

Summary 215

Chapter 6: Installing SonarQube and Artifactory 216

Installing and configuring SonarQube 216
Installing Java 217
Downloading the SonarQube package 218
Running the SonarQube application 219
Resetting the default credentials and generating a token 220
Creating a project inside SonarQube 221
Installing the build breaker plugin for SonarQube 223
Creating quality gates 224
Updating the default quality profile 227
Installing the SonarQube plugin in Jenkins 229
Configuring the SonarQube plugin in Jenkins 230

Installing and configuring Artifactory 231
Installing Java 232
Downloading the Artifactory package 233
Running the Artifactory application 235
Resetting the default credentials and generating an API key 237
Creating a repository in Artifactory 238
Adding Artifactory credentials inside Jenkins 241
Installing the Artifactory plugin in Jenkins 242
Configuring the Artifactory Plugin 242

Summary 244

Chapter 7: Continuous Integration Using Jenkins 245

Jenkins CI design 245
Branching strategy 246

The master branch 246
The integration branch 246
The feature branch 246

The CI pipeline 247
Toolset for CI 248

Creating the CI pipeline 248
Creating a new repository on GitHub 249
Using the SonarQube scanner for Maven 249
Writing the Jenkinsfile for CI 250

Spawning a Docker container – build agent 250

Table of Contents

[vii]

Downloading the latest source code from VCS 251
Pipeline code to perform the build and unit test 251
Pipeline code to perform static code analysis 252
Pipeline code to perform integration testing 252
Pipeline code to publish built artifacts to Artifactory 253
Combined CI pipeline code 256

Using a Jenkinsfile 257
Creating a Multibranch Pipeline in Jenkins 259
Re-registering the Webhooks 260

Continuous Integration in action 262
Viewing static code analysis in SonarQube 266
Accessing SonarQube analysis right from Jenkins 268
Viewing artifacts in Artifactory 270
Failing the build when quality gate criteria are not met 271

Summary 273

Chapter 8: Continuous Delivery Using Jenkins 274

Jenkins CD design 274
Branching strategy 275

The release branch 275
CD pipeline 276
Toolset for CD 276

Creating a Docker image – performance testing 277
Adding Docker container credentials in Jenkins 282
Updating the Docker settings inside Jenkins 283

Creating a performance test using JMeter 284
Installing Java 285
Installing Apache JMeter 285
Starting JMeter 286
Creating a performance test case 286

Creating a thread group 287
Creating a sampler 289
Adding a listener 290

The CD pipeline 291
Writing the Jenkinsfile for CD 291

Revisiting the pipeline code for CI 291
Pipeline code to stash the build artifacts 292
Spawning a Docker container – performance testing 292
Pipeline code to start Apache Tomcat 293
Pipeline code to deploy build artifacts 293
Pipeline code to run performance testing 294
Pipeline code to promote build artifacts in Artifactory 295
Combined CD pipeline code 295

Table of Contents

[viii]

CD in action 298
Summary 300

Chapter 9: Continuous Deployment Using Jenkins 301

What is Continuous Deployment? 302
How Continuous Deployment is different from Continuous Delivery 302
Who needs Continuous Deployment? 304

Creating a production server 305
Installing Vagrant 305
Installing VirtualBox 307
Creating a VM using Vagrant 308

Creating a Vagrantfile 308
Spawning a VM using Vagrant 309
Adding production server credentials inside Jenkins 311

Installing a Jenkins slave on a production server 313
Creating a Jenkins Continuous Deployment pipeline 314

A revisit to the pipeline code for CD 315
Pipeline code for a production Jenkins slave 316
Pipeline code to download binaries from Artifactory 316
Combined Continuous Deployment pipeline code 319
Update the Jenkinsfile 321

Continuous Delivery in action 323
Summary 324

Chapter 10: Supporting Tools and Installation Guide 325

Exposing your localhost server to the internet 325
Installing Git on Windows/Linux 327

Installing Git on Windows 327
Installing Git on Linux 330

Index 332

Preface
In the past few years, the agile model of software development has seen a considerable
amount of growth around the world. There is massive demand for a software delivery
solution that is fast and flexible to frequent amendments, especially in the e-commerce
sector. As a result, the Continuous Integration and Continuous Delivery methodologies are
gaining popularity.

Whether small or big, all types of project gain benefits, such as early issue detection,
avoiding lousy code into production, and faster delivery, which leads to an increase in
productivity.

This book, Learning Continuous Integration with Jenkins Second Edition, serves as a step-by-
step guide to setting up a Continuous Integration, Continuous Delivery, and Continuous
Deployment system using hands-on examples. The book is 20% theory and 80% practical. It
starts by explaining the concept of Continuous Integration and its significance in the Agile
world, with a complete chapter dedicated to this. Users then learn to configure and set up
Jenkins, followed by implementing Continuous Integration and Continuous Delivery using
Jenkins. There is also a small chapter on Continuous Deployment, which talks primarily
about the difference between Continuous Delivery and Continuous Deployment.

What this book covers
Chapter 1, Concepts of Continuous Integration, gives an account of how some of the most
popular and widely used software development methodologies gave rise to Continuous
Integration. This is followed by a detailed explanation of the various requirements and best
practices to achieve Continuous Integration.

Chapter 2, Installing Jenkins, is a step-by-step guide all about installing Jenkins across
various platforms, including Docker.

Chapter 3, The New Jenkins, provides an overview of how the new Jenkins 2.x looks and
feels, with an in-depth explanation of its essential constituents. It also introduces readers to
the new features added in Jenkins 2.x.

Chapter 4, Configuring Jenkins, focuses on accomplishing some basic Jenkins administration
tasks.

Preface

[2]

Chapter 5, Distributed Builds, explores how to implement a build farm using Docker. It also
talks about adding standalone machines as Jenkins slaves.

Chapter 6, Installing SonarQube and Artifactory, covers installing and configuring SonarQube
and Artifactory for CI.

Chapter 7, Continuous Integration Using Jenkins, takes you through a Continuous Integration
design and the means to achieve it using Jenkins, in collaboration with some other DevOps
tools.

Chapter 8, Continuous Delivery Using Jenkins, outlines a Continuous Delivery design and the
means to achieve it using Jenkins, in collaboration with some other DevOps tools.

Chapter 9, Continuous Deployment Using Jenkins, explains the difference between
Continuous Delivery and Continuous Deployment. It also features a step-by-step guide to
implementing Continuous Deployment using Jenkins.

Appendix, Supporting Tools and Installation Guide, takes you through the steps required to
make your Jenkins server accessible over the internet and the installation guide for Git.

What you need for this book
To be able to follow everything described in the book, you will need a machine with the
following configurations:

Operating systems:
Windows 7/8/10
Ubuntu 14 and later

Hardware requirements:
A machine with a minimum 4 GB memory and a multicore
processor

Other requirements:
A GitHub account (public or private)

Who this book is for
This book is aimed at readers with little or no previous experience with Agile or
Continuous Integration and Continuous Delivery. It serves as a great starting point for
anyone who is new to this field and would like to leverage the benefits of Continuous
Integration and Continuous Delivery to increase productivity and reduce delivery time.

Preface

[3]

Build and release engineers, DevOps engineers, (Software Configuration
Management) SCM engineers, developers, testers, and project managers can all benefit from
this book.

Readers who are already using Jenkins for Continuous Integration can learn to take their
project to the next level, which is Continuous Delivery.

The current edition of the book is a complete reboot of its predecessor. Readers of the first
edition can take advantage of some of the new stuff discussed in the current edition, such as
Pipeline as Code, Multibranch Pipelines, Jenkins Blue Ocean, distributed build farms using
Docker, and more.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "This will
download a .hpi file on your system."

A block of code is set as follows:

stage ('Performance Testing'){
 sh '''cd /opt/jmeter/bin/
 ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
 $WORKSPACE/test_report.jtl''';
 step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

stage ('Performance Testing'){
 sh '''cd /opt/jmeter/bin/
 ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
 $WORKSPACE/test_report.jtl''';
 step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
}

Preface

[4]

The extra "\" used in some of the commands is used to only indicate that the command
continues in the next line. Any command-line input or output is written as follows:

 cd /tmp
 wget https://archive.apache.org/dist/tomcat/tomcat-8/ \
 v8.5.16/bin/apache-tomcat-8.5.16.tar.gz

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "From the Jenkins
dashboard, click on the Manage Jenkins | Plugin Manager | Available tab."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://www.packtpub.com/authors

Preface

[5]

Downloading the example code
You can download the example code files for this book from your account at http:/ ​/​www.
packtpub.​com. If you purchased this book elsewhere, you can visit http:/ ​/​www. ​packtpub.
com/​support and register to have the files emailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Learning- ​Continuous- ​Integration- ​with- ​Jenkins- ​Second- ​Edition. We
also have other code bundles from our rich catalog of books and videos available at https:/
/​github.​com/​PacktPublishing/ ​. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ ​/ ​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​LearningContinuousIntegrationwithJenkinsSecondEdition_ ​ColorImages.
pdf.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ ​/​www. ​packtpub. ​com/ ​submit- ​errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ ​/​www. ​packtpub. ​com/
books/​content/​support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Concepts of Continuous

Integration
We will begin this chapter with an overview of the two primary software development
methodologies of the era: Waterfall, and agile. An understanding of their concepts and
implications will help us answer how Continuous Integration (CI) came into existence.

Next, we will try to understand the concept behind CI and the elements that make it.
Reading through the topics, you will see how CI helps projects go agile. After completing
this chapter, you should be able to:

Describe how CI came into existence.
Define what CI is.
Describe the elements of CI.

Software Development Life Cycle
For those of you who are not familiar with the term: Software Development Life Cycle, let
us try to understand it.

The Software Development Life Cycle, also sometimes referred to as SDLC for short, is the
process of planning, developing, testing, and deploying software.

Concepts of Continuous Integration Chapter 1

[8]

Teams follow a sequence of phases, and each phase uses the outcome of its previous phase,
as shown in the following diagram:

Software Development Life Cycle

Let's take a look at the SDLC phases in detail.

Requirement analysis
This is the first stage of the cycle. Here, the business team (mostly comprised of business
analysts) perform a requirement analysis of their project's business needs. The requirements
can be internal to the organization, or external, from a customer. This study involves
finding the nature and scope of the requirements. With the gathered information, there is a
proposal to either improve the system or create a new one. The project cost gets decided,
and benefits are laid out. Then the project goals are defined.

Design
The second phase is the design phase. Here, the system architects and the system designers
formulate the desired features of the software solution and create a project plan. This plan
may include process diagrams, overall interface, and layout design, along with a vast set of
documentation.

Concepts of Continuous Integration Chapter 1

[9]

Implementation
The third phase is the implementation phase. Here, the project manager creates and assigns
work to the developers. The developers develop the code depending on the tasks and goals
defined in the design phase. This phase may last from a few months to a year, depending
on the project.

Testing
The fourth phase is the testing phase. When all the decided features are developed, the
testing team takes over. For the next few months, all features are thoroughly tested. Every
module of the software is collected and tested. Defects are raised if any bugs or errors occur
while testing. In the event of a failure, the development team quickly acts to resolve the
failures. The thoroughly tested code is then deployed into the production environment.

Evolution
The last phase is the evolution phase or the maintenance phase. Feedback from the
users/customers is analyzed, and the whole cycle of developing, testing, and releasing the
new features and fixes in the form of patches or upgrades repeats.

Waterfall model of software development
One of the most famous and widely used software development processes is the Waterfall
model. The Waterfall model is a sequential software development process. It was derived
from the manufacturing industry. One can see a highly structured flow of processes that
run in one direction. At the time of its creation, there were no other software development
methodologies, and the only thing the developers could have imagined was the production
line process that was simple to adapt for software development.

Concepts of Continuous Integration Chapter 1

[10]

The following diagram illustrates the Waterfall model of software development:

Waterfall model

The Waterfall approach is simple to understand, as the steps involved are similar to that of
the SDLC.

First, there is a requirement analysis phase, which is followed by the designing phase. There
is a considerable time spent on the analysis and the designing part. And once it's over, there
are no further additions or deletions. In short, once the development begins, there is no
modification allowed in the design.

Then comes the implementation phase, where the actual development takes place. The
development cycle can range from three months to six months. During this time, the testing
team is usually free. When the development cycle is completed, a whole week's time is
planned for performing the integration of the source code. During this time, many
integration issues pop up and are fixed immediately. This stage is followed by the testing
phase.

When the testing starts, it goes on for another three months or more, depending on the
software solution. After the testing completes successfully, the source code is then deployed
in the production environment. For this, a day or so is again planned to carry out the
deployment in production. There is a possibility that some deployment issues may pop up.
When the software solution goes live, teams get feedback and may also anticipate issues.

Concepts of Continuous Integration Chapter 1

[11]

The last phase is the maintenance phase. Feedback from the users/customers is analyzed,
and the whole cycle of developing, testing, and releasing new features and fixes in the form
of patches or upgrades repeats.

There is no doubt that the Waterfall model worked remarkably for decades. However, flaws
did exist, but they were simply ignored for a long time. Since, way back then software
projects had ample time and resources to get the job done.

However, looking at the way software technologies have changed over the past few years,
we can easily say that the Waterfall model won't suit the requirements of the current world.

Disadvantages of the Waterfall model
The following are some of the disadvantages of the Waterfall model:

Working software is produced only at the end of the SDLC, which lasts for a year
or so in most cases.
There is a huge amount of uncertainty.
It is not suitable for projects where the demand for new features is too frequent.
For example, e-commerce projects.
Integration is performed only after the entire development phase is complete. As
a result, integration issues are found at a much later stage and in large quantities.
There is no backward traceability.
It's difficult to measure progress within stages.

Advantages of the Waterfall model
By looking at the disadvantages of the Waterfall model, we can say that it's mostly suitable
for projects where:

The requirements are well documented and fixed.
There is enough funding available to maintain a management team, a testing
team, a development team, a build and release team, a deployment team, and so
on.
The technology is fixed, and not dynamic.
There are no ambiguous requirements. And most importantly, they don't pop up
during any other phase apart from the requirement analysis phase.

Concepts of Continuous Integration Chapter 1

[12]

Agile to the rescue
The name Agile rightly suggests quick and easy. Agile is a collection of methods where
software is developed through collaboration among self-organized teams. The principles
behind agile are incremental, quick, flexible software development, and it promotes
adaptive planning.

The Agile software development process is an alternative to the traditional software
development processes discussed earlier.

The twelve agile principles
The following are the twelve principles of the agile model:

Customer satisfaction through early and continuous delivery of useful software.
Welcome changing requirements, even late in development.
Working software is frequently delivered (in weeks, rather than months).
Close daily cooperation between businesses, people, and developers.
Projects are built around motivated individuals, who should be trusted.
Face-to-face conversation is the best form of communication (co-location).
Working software is the principal measure of progress.
Sustainable development—able to maintain a constant pace.
Continuous attention to technical excellence and good design.
Simplicity—the art of maximizing the amount of work not done—is essential.
Self-organizing teams.
Regular adaptation to changing circumstances.

To know more about the Agile principles visit the
link: http://www.agilemanifesto.org.

http://www.agilemanifesto.org

Concepts of Continuous Integration Chapter 1

[13]

The twelve principles of Agile software development indicate the expectations of the
current software industry and its advantages over the Waterfall model.

How does the Agile software development
process work?
In the Agile software development process, the whole software application is split into
multiple features or modules. These features are delivered in iterations. Each iteration lasts
for three weeks, and involves cross-functional teams that work simultaneously in various
areas, such as planning, requirement analysis, designing, coding, unit testing, and
acceptance testing.

As a result, no person sits idle at any given point in time. This is quite different from the
Waterfall model wherein while the development team is busy developing the software, the
testing team, the production team, and everyone else is idle or underutilized. The following
diagram illustrates the Agile model of software development:

Agile methodology

Concepts of Continuous Integration Chapter 1

[14]

From the preceding diagram, we can see that there is no time spent on requirement analysis
or design. Instead, a very high-level plan is prepared, just enough to outline the scope of the
project.

The team then goes through a series of iterations. Iteration can be classified as time frames,
each lasting for a month or even a week in some mature projects. In this duration, a project
team develops and tests features. The goal is to develop, test, and release a feature in a
single iteration. At the end of the iteration, the feature goes for a demo. If the clients like it,
then the feature goes live. But, if it gets rejected, the feature is taken as a backlog, re-
prioritized, and again worked upon in the consecutive iteration.

There is also a possibility of parallel development and testing. In a single iteration, one can
develop and test more than one feature in parallel.

Advantages of Agile software development
process
Let us see some of the advantages of the Agile software development process:

Functionality can be developed and demonstrated rapidly: In an agile process,
the software project is divided by features, and each feature is called as a backlog.
The idea is to develop either a single or a set of features right from its
conceptualization till its deployment, in a week or a month. This puts at least a
feature or two on the customer's plate, which they can then start using.
Resource requirement is less: In Agile, there are no separate development and
testing teams. Neither is there a build or release team, or a deployment team. In
Agile, a single project team contains around eight members. Each member of the
team is capable of doing everything.
Promotes teamwork and cross-training: Since there is a small team of about eight
members, the team members switch their roles in turns and learn from each
other's experience.
Suitable for projects where requirements frequently change: In an Agile model
of software development, the complete software is divided into features, and
each feature is developed and delivered in a short time span. Hence, changing the
feature, or even completely discarding it, doesn't affect the whole project.
Minimalistic documentation: This methodology focuses primarily on delivering
working software quickly, rather than creating huge documents. Documentation
exists, but it's limited to the overall functionality.

Concepts of Continuous Integration Chapter 1

[15]

Little or no planning required: Since features are developed one after the other
in a short period, there is no need for extensive planning.
Parallel development: Iteration consists of one or more features developed in
sequence, or even in parallel.

The Scrum framework
Scrum is a framework for developing and sustaining complex products that are based on
the Agile software development process. It is more than a process; it's a framework with
certain roles, tasks, and teams. Scrum was written by Ken Schwaber and Jeff Sutherland;
together, they created The Scrum Guide.

In a Scrum framework, the development team decides on how to develop a feature. This is
because the team knows best about the problem they are presented with. I assume most of
the readers are happy after reading this.

Scrum relies on a self-organizing and cross-functional team. The Scrum team is self-
organizing; hence, there is no overall team leader who decides which person will do which
task, or how a problem will be solved.

Important terms used in the Scrum framework
The following are the important terms used in the Scrum framework:

The Sprint: Sprint is a timebox during which a usable and potentially releasable
product gets created. A new Sprint starts immediately after the conclusion of the
previous Sprint. A Sprint may last between two weeks to one month, depending
on the project's command over Scrum.
Product Backlog: The Product Backlog is a list of all the required features in a
software solution. The list is dynamic. That is, now and then the customers or
team members add or delete items to the Product Backlog.
Sprint Backlog: The Sprint Backlog is the set of Product Backlog items, selected
for the Sprint.
Increment: The Increment is the sum of all the Product Backlog items completed
during a Sprint and the value of the Increments from all the previous Sprints.

Concepts of Continuous Integration Chapter 1

[16]

The Development Team: The Development Team does the work of delivering a
releasable set of features named Increment at the end of each Sprint. Only
members of the Development Team create the Increment. Development Teams
are empowered by the organization to organize and manage their work. The
resulting synergy optimizes the Development Team's overall efficiency and
effectiveness.
The Product Owner: The Product Owner is a mediator between the Scrum Team
and everyone else. He is the front face of the Scrum Team and interacts with
customers, infrastructure teams, admin teams, everyone involved in the Scrum,
and so on.
The Scrum Master: The Scrum Master is responsible for ensuring Scrum is
understood and enacted. Scrum Masters do this by ensuring that the Scrum Team
follows the Scrum theory, practices, and rules.

How does Scrum work?
The Product Owner, the Scrum Master, and the Scrum Team together follow a set of
stringent procedures to deliver the software features. The following diagram explains the
Scrum development process:

Scrum methodology

Concepts of Continuous Integration Chapter 1

[17]

Let us see some of the important aspects of the Scrum software development process that
the team goes through.

Sprint Planning
Sprint Planning is an opportunity for the Scrum Team to plan the features in the current
Sprint cycle. The plan is created mainly by the developers. Once the plan is created, it is
explained to the Scrum Master and the Product Owner. The Sprint Planning is a timeboxed
activity, and it is usually around eight hours in total for a one-month Sprint cycle. It is the
responsibility of the Scrum Master to ensure everyone participates in the Sprint Planning
activity.

In the meeting, the Development Team takes into consideration the following items:

The number of Product Backlogs to be worked on (both new and the old ones
from the last Sprint).
Team performances in the last Sprint.
Projected capacity of the Development Team.

Sprint cycle
During the Sprint cycle, the developers simply work on completing the backlogs decided in
the Sprint Planning. The duration of a Sprint may last from two weeks to one month,
depending on the number of backlogs.

Daily Scrum meeting
This happens on a daily basis. During the Scrum meeting, the Development Team discusses
what was accomplished yesterday, and what will be accomplished today. They also discuss
the things that are stopping them from achieving their goal. The Development Team does
not attend any other meeting or discussion apart from the Scrum meeting.

Monitoring Sprint progress
The Daily Scrum is a good opportunity for a team to measure its progress. The Scrum Team
can track the total work remaining, and by doing so, they can estimate the likelihood of
achieving the Sprint Goal.

Concepts of Continuous Integration Chapter 1

[18]

Sprint Review
In the Sprint Review, the Development Team demonstrates the features that have been
accomplished. The Product Owner updates on the Product Backlog status to date. The
Product Backlog list is updated depending on the product performance or usage in the
market. Sprint Review is a four-hour activity altogether for a one-month Sprint.

Sprint Retrospective
In this meeting, the team discusses the things that went well, and the things that need
improvement. The team then decides the points on which it has to improve to perform
better in the upcoming Sprint. This meeting usually occurs after the Sprint Review and
before the Sprint Planning.

Continuous Integration
Continuous Integration (CI) is a software development practice where developers
frequently integrate their work with the project's Integration branch and create a build.

Integration is the act of submitting your private work (modified code) to the common work
area (the potential software solution). This is technically done by merging your private
work (personal branch) with the common work area (Integration branch). Or we can say,
pushing your private branch to the remote branch.

CI is necessary to bring out issues encountered during the integration as early as possible.
This can be understood from the following diagram, which depicts various issues
encountered during a single CI cycle.

A build failure can occur due to either an improper code or a human error while doing a
build (assuming that the tasks are done manually). An integration issue can occur if the
developers do not rebase their local copy of code frequently with the code on the
Integration branch. A testing issue can occur if the code does not pass any of the unit or
integration test cases.

Concepts of Continuous Integration Chapter 1

[19]

In the event of an issue, the developer has to modify the code to fix it:

CI process

Agile runs on CI
The Agile software development process focuses mainly on fast delivery, and CI helps
Agile in achieving that speed. But how does CI do that? Let us understand by using a
simple case.

Developing a feature involves many code changes, and between every code change, there
are a set of tasks to perform, such as checking-in the code, polling the version control
system for changes, building the code, unit testing, integration, building on the integrated
code, integration testing, and packaging. In a CI environment, all these steps are made fast
and error-free by using a CI tool such as Jenkins.

Concepts of Continuous Integration Chapter 1

[20]

Adding notifications makes things even faster. The sooner the team members are aware of a
build, integration, or deployment failure, the quicker they can act. The following diagram
depicts all the steps involved in a CI process:

CI process with notifications

In this way, the team quickly moves from feature to feature. In simple terms, the agility of
the agile software development is greatly due to CI.

Types of projects that benefit from CI
The amount of code written for the embedded systems presents inside a car is more than
the one present inside a fighter jet. In today's world, embedded software is inside every
product, modern or traditional. Be it cars, TVs, refrigerators, wrist watches, or bikes; all
have little or more software-dependent features. Consumer products are becoming smarter
day by day. Nowadays, we can see a product being marketed more using its smart and
intelligent features than its hardware capabilities. For example, an air conditioner is
marketed by its wireless control features, and TVs are being marketed by their smart
features, like embedded web browsers, and so on.

Concepts of Continuous Integration Chapter 1

[21]

The need to market new products has increased the complexity of products. This increase in
software complexity had brought the Agile software development and CI methodologies to
the limelight, though there were times when agile software development was used by a
team of no more than 30-40 people that were working on a simple project. Almost all types
of projects benefit from CI: mostly the web-based projects, for example, the e-commerce
websites, and mobile phone apps.

CI and agile methodologies are used in projects that are based on Java, .NET, Ruby on Rails,
and every other programming language present today. The only place where you will see it
not being used is in the legacy systems. However, even they are going agile. Projects based
on SAS, Mainframes; all are trying to benefit from CI.

Elements of CI
Let us see the important elements of the CI process.

Version control system
This is the most basic and the most important requirement for implementing CI. A Version
Control System, sometimes also called a Revision Control System, is a tool to manage your
code history. It can be centralized or distributed. Some of the famous centralized version
control systems are SVN and IBM Rational ClearCase. In the distributed segment, we have
tools like GIT and Mercurial.

Ideally, everything that is required to build software must be version controlled. A version
control tool offers many features, such as tagging, branching, and so on.

Branching strategy
When using a Version Control System, keep the branching to a minimum. A few companies
have only one main branch, and all the development activity happens on that. Nevertheless,
most of the companies follow some branching strategies. This is because there is always a
possibility that a part of the team may work on one release, while others may work on
another release. Other times, there is a need to support the older release versions. Such
scenarios always lead companies to use multiple branches.

Concepts of Continuous Integration Chapter 1

[22]

GitFlow is another way of managing your code using multiple branches. In the following
method, the Master/Production branch is kept clean and contains only the releasable, ready-
to-ship code. All the development happens on the Feature branches, with the Integration
branch serving as a common place to integrate all the features. The following diagram is a
moderate version of the GitFlow:

Branching strategy

Concepts of Continuous Integration Chapter 1

[23]

GitFlow branching model
The following diagram illustrates the full version of GitFlow. We have a Master/Production
branch that contains only the production-ready code. The Feature branches are where all of
the development takes place. The Integration branch is where the code gets integrated and
tested for quality. In addition to that, we have release branches that are pulled out from the
Integration branch as and when there is a stable release. All bug fixes related to a release
happen in the Release branches. There is also a Hotfix branch that is pulled out of the
Master/Production branch as and when there is a need for a hotfix:

GitFlow branching strategy

Concepts of Continuous Integration Chapter 1

[24]

CI tool
What is a CI tool? Well, it is nothing more than an orchestrator. A CI tool is at the center of
the CI system, connected to the Version Control System, build tools, Binary Repository
Manager tool, testing and production environments, quality analysis tool, test automation
tool, and so on. There are many CI tools: Build Forge, Bamboo, and TeamCity, to name a
few. But the prime focus of our book is Jenkins:

Centralized CI server

A CI tool provides options to create pipelines. Each pipeline has its own purpose. There are
pipelines to take care of CI. Some take care of testing; some take care of deployments, and
so on. Technically, a pipeline is a flow of jobs. Each job is a set of tasks that run sequentially.
Scripting is an integral part of a CI tool that performs various kinds of tasks. The tasks may
be as simple as copying a folder/file from one location to the other, or they can be complex
Perl scripts to monitor machines for file modifications. Nevertheless, the script is getting
replaced by the growing number of plugins available in Jenkins. Now you need not script to
build a Java code; there are plugins available for it. All you need to do is install and
configure a plugin to get the job done. Technically, plugins are nothing but small modules
written in Java. They remove the burden of scripting from the developer's head. We will
learn more about pipelines in the upcoming chapters.

Concepts of Continuous Integration Chapter 1

[25]

Self-triggered builds
The next important thing to understand is the self-triggered automated build. Build
automation is simply a series of automated steps that compile the code and generate
executables. The build automation can take the help of build tools like Ant and Maven. The
self-triggered automated build is the most important part of a CI system. There are two
main factors that call for an automated build mechanism:

Speed.
Catching integration or code issues as early as possible.

There are projects where 100 to 200 builds happen per day. In such cases, speed plays an
important factor. If the builds are automated, then it can save a lot of time. Things become
even more interesting if the triggering of the build is made self-driven, without any manual
intervention. Auto-triggered build on every code change further saves time.

When builds are frequent and fast, the probability of finding an error (build error,
compilation error, or integration error) in the framework of SDLC is higher and faster:

Probability of error versus build graph

Concepts of Continuous Integration Chapter 1

[26]

Code coverage
Code coverage is the amount of code (in percentage) that is covered by your test case. The
metrics that you might see in your coverage reports could be more or less as defined in the
following table:

Type of coverage Description

Function The number of functions called out of the total number of functions
defined

Statement The number of statements in the program that are truly called out of
the total number

Branches The number of branches of the control structures executed

Condition The number of Boolean sub-expressions that are being tested for a true
and a false value

Line The number of lines of source code that are being tested out of the total
number of lines present inside the code

Types of code coverage

This coverage percentage is calculated by dividing the number of items tested by the
number of items found. The following screenshot illustrates the code coverage report from
SonarQube:

Code coverage report on SonarQube

Concepts of Continuous Integration Chapter 1

[27]

Code coverage tools
You might find several options to create coverage reports, depending on the language(s)
you use. Some of the popular tools are listed as follows:

Language Tools

Java Atlassian Clover, Cobertura, JaCoCo

C#/.NET OpenCover, dotCover

C++ OpenCppCoverage, gcov

Python Coverage.py

Ruby SimpleCov

Static code analysis
Static code analysis, also commonly called white-box testing, is a form of software testing
that looks for the structural qualities of the code. For example, it answers how robust or
maintainable the code is. Static code analysis is performed without actually executing
programs. It is different from the functional testing, which looks into the functional aspects
of software, and is dynamics.

Static code analysis is the evaluation of software's inner structures. For example, is there a
piece of code used repetitively? Does the code contain lots of commented lines? How
complex is the code? Using the metrics defined by a user, an analysis report is generated
that shows the code quality regarding maintainability. It doesn't question the code's
functionality.

Some of the static code analysis tools like SonarQube come with a dashboard, which shows
various metrics and statistics of each run. Usually, as part of CI, the static code analysis is
triggered every time a build runs. As discussed in the previous sections, static code analysis
can also be included before a developer tries to check-in his code. Hence, a code of low
quality can be prevented right at the initial stage.

Concepts of Continuous Integration Chapter 1

[28]

They support many languages, such as Java, C/C++, Objective-C, C#, PHP, Flex, Groovy,
JavaScript, Python, PL/SQL, COBOL, and so on. The following screenshots illustrate the
static code analysis report using SonarQube:

Static code analysis report

Static code analysis report

Concepts of Continuous Integration Chapter 1

[29]

Automated testing
Testing is an important part of an SDLC. To maintain quality software, it is necessary that
the software solution goes through various test scenarios. Giving less importance to testing
can result in customer dissatisfaction and a delayed product.

Since testing is a manual, time-consuming, and repetitive task, automating the testing
process can significantly increase the speed of software delivery. However, automating the
testing process is a bit more difficult than automating the build, release, and deployment
processes. It usually takes a lot of effort to automate nearly all the test cases used in a
project. It is an activity that matures over time.

Hence, when beginning to automate the testing, we need to take a few factors into
consideration. Test cases that are of great value and easy to automate must be considered
first. For example, automate the testing where the steps are the same, although they run
with different data every time. Further, automate the testing where software functionality is
tested on various platforms. Also, automate the testing that involves a software application
running with different configurations.

Previously, the world was mostly dominated by desktop applications. Automating the
testing of a GUI-based system was quite difficult. This called for scripting languages where
the manual mouse and keyboard entries were scripted and executed to test the GUI
application. Nevertheless, today the software world is completely dominated by web and
mobile-based applications, which are easy to test through an automated approach using a
test automation tool.

Once a code is built, packaged, and deployed, testing should run automatically to validate
the software. Traditionally, the process followed is to have an environment for SIT, UAT,
PT, and pre-production. First, the release goes through SIT, which stands for system
integration testing. Here, testing is performed on an integrated code to check its
functionality altogether. If the integration testing is passed, the code is deployed to the next
environment, which is UAT, where it goes through user acceptance testing, and then it can
lastly be deployed in PT, where it goes through performance testing. In this way, the testing
is prioritized.

It is not always possible to automate all the testing. But, the idea is to automate whatever
testing that is possible. The preceding method discussed requires the need to have many
environments and also a higher number of automated deployments into various
environments. To avoid this, we can go for another method where there is only one
environment where the build is deployed, and then the basic tests are run, and after that,
long-running tests are triggered manually.

Concepts of Continuous Integration Chapter 1

[30]

Binary repository tools
As part of the SDLC, the source code is continuously built into binary artifacts using CI.
Therefore, there should be a place to store these built packages for later use. The answer is,
using a binary repository tool. But what is a binary repository tool?

A binary repository tool is a Version Control System for binary files. Do not confuse this
with the Version Control System discussed in the previous sections. The former is
responsible for versioning the source code, and the latter is for binary files, such as .rar,
.war, .exe, .msi, and so on. Along with managing built artifacts, a binary repository tool
can also manage 3-party binaries that are required for a build. For example, the Maven
plugin always downloads the plugins required to build the code into a folder. Rather than
downloading the plugins again and again, they can be managed using a repository tool:

Repository tool

Concepts of Continuous Integration Chapter 1

[31]

From the above illustration, you can see as soon as a build gets created and passes all the
checks, the built artifact is uploaded to the binary repository tool. From here, the developers
and testers can manually pick them, deploy them, and test them. Or, if the automated
deployment is in place, then the built artifacts are automatically deployed to the respective
test environment. So, what're the advantages of using a binary repository?

A binary repository tool does the following:

Every time a built artifact gets generated, it is stored in a binary repository tool.
There are many advantages of storing the build artifacts. One of the most
important advantages is that the build artifacts are located in a centralized
location from where they can be accessed when needed.
It can store third-party binary plugins, modules that are required by the build
tools. Hence, the build tool need not download the plugins every time a build
runs. The repository tool is connected to the online source and keeps updating
the plugin repository.
It records what, when, and who created a build package.
It provides a staging like environments to manage releases better. This also helps
in speeding up the CI process.
In a CI environment, the frequency of build is too high, and each build generates
a package. Since all the built packages are in one place, developers are at liberty
to choose what to promote and what not to promote in higher environments.

Automated packaging
There is a possibility that a build may have many components. Let's take, for example, a
build that has a .rar file as an output. Along with that, it has some Unix configuration files,
release notes, some executables, and also some database changes. All of these different
components need to be together. The task of creating a single archive or a single media out
of many components is called packaging. Again, this can be automated using the CI tools
and can save a lot of time.

Concepts of Continuous Integration Chapter 1

[32]

Benefits of using CI
The following are some of the benefits of using CI. The list is brief, and not comprehensive.

Freedom from long integrations
Integrating the code rarely, as seen in the Waterfall model, can lead to merge hell. It is a
situation wherein teams spend weeks resolving the merge issues.

In contrast to this, integrating every single commit on your Feature branch with the
Integration branch and testing it for issues (CI) allows you to find integration issues as early
as possible.

Metrics
Tools like Jenkins, SonarQube, Artifactory, and GitHub allow you to generate trends over a
period. All of these trends can help project managers and teams to make sure the project is
heading in the right direction and with the right pace.

Catching issues faster
This is the most important advantage of having a carefully implemented CI system. Any
integration issue or merge issue gets caught early. The CI system has the facility to send
notification as soon as the build fails.

Rapid development
From a technical perspective, CI helps teams work more efficiently. Projects that use CI
follow an automatic and continuous approach while building, testing, and integrating their
code. This results in a faster development.

Developers spend more time developing their code and zero time building, packaging,
integrating, and deploying it, as everything is automated. This also helps teams that are
geographically distributed to work together. With a good software configuration management
process in place, people can work on widely distributed teams.

Concepts of Continuous Integration Chapter 1

[33]

Spend more time adding features
In the past, build and release activities were managed by the developers, along with the
regular development work. It was followed by a trend of having separate teams that
handled the build, release, and deployment activities. And it didn't stop there; this new
model suffered from communication issues and a lack of coordination among developers,
release engineers, and testers. However, using CI, all the build, release, and deployment
work gets automated. Therefore, the development team need not worry about anything
other than developing features. In most cases, even the complete testing is automated.
Therefore by using a CI process, the development team can spend more time developing
the code.

Summary
"Behind every successful agile project, there is a Continuous Integration process."

In this chapter, we took a glance through the history of software engineering processes. We
learned about CI and the elements that make it.

The various concepts and terminologies discussed in this chapter form a foundation for the
upcoming chapters. Without these, the coming chapters are mere technical know-how.

In the next chapter, we will learn how to install Jenkins on various platforms.

2
Installing Jenkins

This chapter is all about installing Jenkins across various platforms, and more. After
completing this chapter, you should be able to do the following:

Run Jenkins on a servlet container (Apache Tomcat)
Run Jenkins as a standalone application on Windows/Ubuntu/Red Hat
Linux/Fedora
Run Jenkins behind a reverse proxy server (Nginx)
Run Jenkins with Docker
Leverage the advantages of Docker data volumes
Run development, staging, and production instance of Jenkins using Docker

Running Jenkins inside a servlet container
Jenkins is available on the following servlet containers:

Apache Geronimo 3.0
GlassFish
IBM WebSphere
JBoss
Jetty
Jonas
Liberty profile
Tomcat
WebLogic

Installing Jenkins Chapter 2

[35]

In this section, you will learn how to install Jenkins on an Apache Tomcat server. Installing
Jenkins as a service on Apache Tomcat is quite simple. Either you can choose to run Jenkins
along with the other services already present on the Apache Tomcat server, or you can use
the Apache Tomcat server solely for running Jenkins.

Prerequisites
Before you begin, make sure you have the following things ready:

You need a system with at least 4 GB of memory and a Multi-core processor.
Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).
The machine should have Ubuntu 16.04 installed on it. Choose an LTS release
version.
Check for administrator privileges; the installation might ask for an admin
username and password.

Installing Java
Follow these steps to install Java on Ubuntu:

Update the package index:1.

 sudo apt-get update

Next, install Java. The following command will install the Java Runtime2.
Environment (JRE):

 sudo apt-get install default-jre

To set the JAVA_HOME environment variable, get the Java installation location. Do3.
this by executing the following command:

 update-java-alternatives -l

Installing Jenkins Chapter 2

[36]

The previous command will print the list of Java applications installed on your4.
machine along with their installation paths. Copy the Java path that appears on
your Terminal:

 java-1.8.0-openjdk-amd64 1081
 /usr/lib/jvm/java-1.8.0-openjdk-amd64

Open the /etc/environment file for editing using the following command:5.

 sudo nano /etc/environment

Add the Java path (the one that you copied earlier) inside the6.
/etc/environment file in the following format:

 JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-amd64"

Type Ctrl + X and choose Y to save and close the file.7.
Next, reload the file using the following command:8.

 sudo source /etc/environment

Installing Apache Tomcat
Follow these steps to download and then install Apache Tomcat server on your Ubuntu
machine:

Move to the /tmp directory and download the Tomcat application using the wget1.
command, as shown here:

 cd /tmp
 wget https://archive.apache.org/dist/tomcat/tomcat-8/ \
 v8.5.16/bin/apache-tomcat-8.5.16.tar.gz

To get a complete list of Apache Tomcat versions visit: https:/ ​/ ​archive.
apache. ​org/ ​dist/ ​tomcat/ ​.

Create a directory called /opt/tomcat using the following command:2.

 sudo mkdir /opt/tomcat

https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/

Installing Jenkins Chapter 2

[37]

Untar the content of the archive inside /opt/tomcat:3.

 sudo tar xzvf apache-tomcat-8*tar.gz \
 -C /opt/tomcat --strip-components=1

Next, create a systemd service file using the following command:4.

 sudo nano /etc/systemd/system/tomcat.service

Paste the following content into the file:5.

 [Unit]
 Description=Apache Tomcat Web Application Container
 After=network.target

 [Service]
 Type=forking

 Environment=JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64
 Environment=CATALINA_PID=/opt/tomcat/temp/tomcat.pid
 Environment=CATALINA_HOME=/opt/tomcat
 Environment=CATALINA_BASE=/opt/tomcat
 Environment='CATALINA_OPTS=-Xms512M -Xmx1024M
 -server -XX:+UseParallelGC'
 Environment='JAVA_OPTS=-Djava.awt.headless=true
 -Djava.security.egd=file:/dev/./urandom'

 ExecStart=/opt/tomcat/bin/startup.sh
 ExecStop=/opt/tomcat/bin/shutdown.sh

 RestartSec=10
 Restart=always

 [Install]
 WantedBy=multi-user.target

Type Ctrl + X and choose Y to save and close the file.6.
Next, reload the systemd daemon using the following command:7.

 sudo systemctl daemon-reload

Start the Tomcat service using the following command:8.

 sudo systemctl start tomcat

Installing Jenkins Chapter 2

[38]

To check the status of Tomcat service, run the following command:9.

 sudo systemctl status tomcat

You should see the following output:10.

 ● tomcat.service - Apache Tomcat Web Application Container
 Loaded: loaded (/etc/systemd/system/tomcat.service; disabled;
 vendor preset: enabled)
 Active: active (running) since Mon 2017-07-31 21:27:39 UTC;
 5s ago
 Process: 6438 ExecStart=/opt/tomcat/bin/startup.sh (code=exited,
 status=0/SUCCESS)
 Main PID: 6448 (java)
 Tasks: 44
 Memory: 132.2M
 CPU: 2.013s
 CGroup: /system.slice/tomcat.service
 └─6448 /usr/lib/jvm/java-1.8.0-openjdk-amd64/bin/java
 -Djava.util.logging.config.file=/opt/tomcat/conf/logging.properties
 -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogMan

Enabling the firewall and port 8080
Apache Tomcat runs on port 8080. Follow these steps to enable the firewall, if it's disabled:

Enable the firewall using the following command:1.

 sudo ufw enable

Allow traffic on port 8080:2.

 sudo ufw allow 8080

Enable OpenSSH to allow SSH connections using the following command:3.

 sudo ufw enable "OpenSSH"

Check the firewall status using the following command:4.

 sudo ufw status

Installing Jenkins Chapter 2

[39]

You should see the following output:5.

 Status: active
 To Action From
 -- ------ ----
 8080 ALLOW Anywhere
 OpenSSH ALLOW Anywhere
 8080 (v6) ALLOW Anywhere (v6)
 OpenSSH (v6) ALLOW Anywhere (v6)

You should now be able to access the Apache Tomcat server page at http://<IP6.
address of the Apache Tomcat>:8080.

Configuring the Apache Tomcat server
In this section, we will enable access to the Tomcat Manager app and Host Manager:

Open the tomcat-users.xml file for editing, which is present inside the1.
/opt/tomcat/conf directory:

 sudo nano /opt/tomcat/conf/tomcat-users.xml

The file will look something like the following, for simplicity, I have ignored the2.
comments inside the file:

 <?xml version="1.0" encoding="UTF-8"?>
 . . .
 <tomcat-users xmlns="http://tomcat.apache.org/xml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://tomcat.apache.org/xml tomcat-users.xsd"
 version="1.0">
 . . .
 <!--
 <role rolename="tomcat"/>
 <role rolename="role1"/>
 <user username="tomcat" password="<must-be-changed>"
 roles="tomcat"/>
 <user username="both" password="<must-be-changed>"
 roles="tomcat,role1"/>
 <user username="role1" password="<must-be-changed>"
 roles="role1"/>
 -->
 </tomcat-users>

Installing Jenkins Chapter 2

[40]

From the previous file, you can see the role and user fields are commented. We3.
need to enable a role and a user to allow access to the Tomcat Manager app page:

 <role rolename="manager-gui"/>
 <role rolename="admin-gui"/>
 <user username="admin" password="password"
 roles="manager-gui,admin-gui"/>

Finally, the file should look something as shown here (comments removed):4.

 <?xml version="1.0" encoding="UTF-8"?>
 <tomcat-users xmlns="http://tomcat.apache.org/xml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://tomcat.apache.org/xml tomcat-users.xsd"
 version="1.0">
 <role rolename="manager-gui"/>
 <role rolename="admin-gui"/>
 <user username="admin" password="password"
 roles="manager-gui,admin-gui"/>
 </tomcat-users>

Type Ctrl + X and choose Y to save and close the file.5.
By default, you are allowed to access Manager and Host Manager applications6.
only from within the Apache Tomcat server. Since, we will be managing services
running on Apache from a remote machine, we would need to remove these
restrictions.
Open the following two files, /opt/tomcat/webapps/manager/META-7.
INF/context.xml and /opt/tomcat/webapps/host-manager/META-
INF/context.xml.
Inside these files, comment the following section:8.

 <Context antiResourceLocking="false" privileged="true" >
 <!--<Valve className="org.apache.catalina.valves.RemoteAddrValve"
 allow="127\.\d+\.\d+\.\d+|::1|0:0:0:0:0:0:0:1" />-->
 <Manager sessionAttributeValueClassNameFilter="java\.lang\
 .(?:Boolean|Integer|Long|Number|String)|org\.apache\.catalina\
 .filters\.CsrfPreventionFilter\$LruCache(?:\$1)?|java\.util\
 .(?:Linked)$
 </Context>

Type Ctrl + X and choose Y to save and close the file.9.

Installing Jenkins Chapter 2

[41]

Restart the Tomcat server using the following command:10.

 sudo systemctl restart tomcat

Try to access the Manager app and the Host Manager from the Apache Tomcat11.
server home page.

Installing Jenkins on the Apache Tomcat server
You can perform the following steps if you do not wish to have a standalone server for
Jenkins master, and want to host it along with other services that exist on the Apache
Tomcat server:

Move to the /tmp directory and download the Jenkins application using the wget1.
command, as shown here:

 cd /tmp
 wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war

The previous command will download the latest stable version of jenkins.war2.
file.
Move the file from /tmp to /opt/tomcat/:3.

 sudo mv jenkins.war /opt/tomcat/webapps/

List the content of the /opt/tomcat/webapps/ directory :4.

 sudo ls -l /opt/tomcat/webapps

You should see the following output:

 total 68984
 -rw-rw-r-- 1 ubuntu ubuntu 70613578 Jul 19 22:37 jenkins.war
 drwxr-x--- 3 root root 4096 Jul 31 21:09 ROOT
 drwxr-x--- 14 root root 4096 Jul 31 21:09 docs
 drwxr-x--- 6 root root 4096 Jul 31 21:09 examples
 drwxr-x--- 5 root root 4096 Jul 31 21:09 manager
 drwxr-x--- 5 root root 4096 Jul 31 21:09 host-manager
 drwxr-x--- 10 root root 4096 Jul 31 22:52 jenkins

Installing Jenkins Chapter 2

[42]

You will notice that a jenkins folder automatically gets created the
moment you move the jenkins.war package to the webapps folder. This
is because the .war file is a web application archive file that automatically
gets extracted once deployed to the webapps directory. What we did is a
small deployment activity.

And that is all you need to do. You can access Jenkins using http://<IP5.
address of Tomcat server>:8080/jenkins.

Installing Jenkins alone on an Apache Tomcat
server
If you chose to have an Apache Tomcat server solely for using Jenkins, follow these steps:

Move to the /tmp directory and download the Jenkins application using the wget1.
command, as shown here:

 cd /tmp
 wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war

Rename the downloaded jenkins.war package to ROOT.war:2.

 sudo mv jenkins.war ROOT.war

Next, delete everything inside the /opt/tomcat/webapps directory by3.
switching to the root user:

 sudo su -
 cd /opt/tomcat/webapps
 sudo rm -r *

Now move the ROOT.war (renamed) package from the /tmp directory to the4.
/opt/tomcat/webapps folder:

 sudo mv /tmp/ROOT.war /opt/tomcat/webapps/

List the contents of the /opt/tomcat/webapps directory and you will notice a5.
ROOT folder automatically gets created:

 total 68964
 drwxr-x--- 10 root root 4096 Jul 31 23:10 ROOT
 -rw-rw-r-- 1 ubuntu ubuntu 70613578 Jul 19 22:37 ROOT.war

Installing Jenkins Chapter 2

[43]

It's always recommended to have a dedicated web server solely for
Jenkins.

You can access Jenkins by using http://<IP address of Tomcat6.
server>:8080/ without any additional path. Apparently, the Apache server is
now a Jenkins server.

Deleting the content of the /opt/tomcat/webapps directory (leaving
behind the ROOT directory and ROOT.war) and then moving the
jenkins.war file to the webapps folder is also sufficient to make Apache
Tomcat server solely for the use of Jenkins.

The step of renaming jenkins.war to ROOT.war is only necessary if you
want to make http://<IP address of Tomcat server>:8080/ the
standard URL for Jenkins.

Setting up the Jenkins home path
Before we start using Jenkins, there is one important thing to configure, the jenkins_home
path. When you install Jenkins as a service on Tomcat, the jenkins_home path is
automatically set to /root/.jenkins/. This is the location where all of the Jenkins
configurations, logs, and builds are stored. Everything that you create and configure on the
Jenkins dashboard is stored here.

We need to make it something more accessible, something like /var/jenkins_home. This
can be done in the following way:

Stop the Apache Tomcat server using the following command:1.

 sudo systemctl stop tomcat

Open the context.xml file for editing, which is present2.
inside /opt/tomcat/conf:

 sudo nano /opt/tomcat/conf/context.xml

Installing Jenkins Chapter 2

[44]

The file will look like this (comments removed):3.

 <?xml version="1.0" encoding="UTF-8"?>
 <Context>
 <WatchedResource>WEB-INF/web.xml</WatchedResource>
 <WatchedResource>${catalina.base}/conf/web.xml</WatchedResource>
 </Context>

Add the following line between <Context> </Context>:4.

 <Environment name="JENKINS_HOME" value="/var/jenkins_home"
 type="java.lang.String"/>

Start the Tomcat service using the following command:5.

 sudo systemctl start tomcat

Installing a standalone Jenkins server on
Windows
Installing Jenkins on Windows is quite simple. Before performing the steps to install Jenkins
on Windows, let's have a look at the prerequisites.

Prerequisites
Before we begin, make sure you have the following things ready:

We need a machine with at least 4 GB of RAM and a Multi-core processor.
Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).
The machine should have any one of the latest Windows OS (Windows 7/8/10,
Windows Server 2012/2012 R2/2016) installed on it.
Check for admin privileges; the installation might ask for admin username and
password.
Make sure port 8080 is open.

Installing Jenkins Chapter 2

[45]

Installing Java
Follow these steps to install Java:

Download the latest version of Java JRE (x86 or x64 based on your OS)1.
from https:/ ​/​java. ​com/ ​en/ ​download/ ​manual. ​jsp.
Follow the installation procedures.2.
To check that Java has been installed successfully, run the following command3.
using Command Prompt:

 java -version

You should get the following output:4.

 java version "1.8.0_121"
 Java(TM) SE Runtime Environment (build 1.8.0_121-b13)
 Java HotSpot(TM) 64-Bit Server VM (build 25.121-b13, mixed mode)

To set the JAVA_HOME, first get the Java installation path on Windows using the5.
following command:

 where java

The previous command should output the Java installation path, as shown in the6.
following command. Copy the path without \bin\java:

 C:\Program Files\Java\jdk1.8.0_121\bin\java

Open the Command Prompt as an administrator and run the following command7.
to set the JAVA_HOME path. Make sure to use the Java installation path that
appears on your screen:

 setx -m JAVA_HOME "C:\Program Files\Java\jdk1.8.121"

https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp

Installing Jenkins Chapter 2

[46]

Installing the latest stable version of Jenkins
To install the latest stable version of Jenkins, follow these steps in sequence:

Download the latest stable Jenkins package available at the Jenkins official1.
website, https://jenkins.io/download/. To install the latest stable version of
Jenkins, download the Long Term Support (LTS) release. Choose the weekly
release if you just want the latest version of Jenkins.
Unzip the downloaded package, and you will find a jenkins.msi file.2.
Run the jenkins.msi and follow the installation steps.3.
During the installation, you will get an option to choose your Jenkins installation4.
directory. By default, it will be C:\Program Files\Jenkins or C:\Program
Files (x86)\Jenkins. Leave it as it is and click on the Next button.
Click on the Finish button to complete the installation.5.

Starting, stopping, and restarting Jenkins on
Windows
Jenkins by default starts running when installed. In this section, the commands to start,
stop, restart, and check the status of the Jenkins services are shown:

Open the Services window from Command Prompt using the following1.
command:

 services.msc

Look for a service named Jenkins.2.
Right-click on the Jenkins service again and click Properties.3.
Under the General tab, you can see the Jenkins service name, the path to the4.
executable, the service status, and the start parameters.
Using the Startup type option, you can choose the way Jenkins starts on the5.
Windows machine. You can choose from Automatic, Manual, and Automatic
(Delayed Start). Make sure it's always set to Automatic.

https://jenkins.io/download/

Installing Jenkins Chapter 2

[47]

In the following service status, there is an option to manually Start, Stop, Pause,6.
and Resume the Jenkins service:

Configuring the Jenkins service startup option

Go to the next tab, which is Log On. Here, we define the username through7.
which Jenkins start.
You can either choose to use the Local System account (not recommended) or8.
you can create a special Jenkins user with special permissions (recommended):

Installing Jenkins Chapter 2

[48]

An exclusive account for Jenkins is always preferred. The reason is
that Local System account is not under control; it may get deleted or the
password may expire depending on the organization's policies, whereas
the Jenkins user account can be set with preferred policies and privileges.

Configuring the Jenkins service Log On option

The next tab is Recovery. Here, we can specify the action items in case the Jenkins9.
service fails to start.

Installing Jenkins Chapter 2

[49]

Here is an example. At the first failure, there is an attempt to restart Jenkins, at10.
the second failure an attempt is made to restart the computer. And lastly, at
subsequent failures, a program is run to debug the issue, or we can run a script
that sends the Jenkins failure log through email to the respective Jenkins admin
for investigation:

Configuring the Jenkins service Recovery option

Installing a standalone Jenkins server on
Ubuntu
Installing a Jenkins server on Ubuntu is quite easy. Before performing the steps to install
Jenkins on Ubuntu, let's have a look at the prerequisites.

Installing Jenkins Chapter 2

[50]

Prerequisites
Before we begin, make sure you have the following things ready:

We need a machine with at least 4 GB of RAM and a Multi-core processor.
Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).
The machine should have Ubuntu 16.04 installed on it. Choose a LTS release
version.
Check for admin privileges; the installation might ask for an admin username
and password.
Make sure port 8080 is open.

Installing Java
Follow these steps to install Java:

Update the package index using following command:1.

 sudo apt-get update

Next, install Java. The following command will install the JRE:2.

 sudo apt-get install default-jre

To set the JAVA_HOME environment variable, first get the Java installation3.
location. Do this by executing the following command:

 update-java-alternatives -l

The previous command will print the list of Java applications installed on your4.
machine along with their installation paths. Copy the Java path that appears on
your Terminal:

 java-1.8.0-openjdk-amd64 1081
 /usr/lib/jvm/java-1.8.0-openjdk-amd64

Installing Jenkins Chapter 2

[51]

Open the /etc/environment file for editing using the following command:5.

 sudo nano /etc/environment

Add the Java path (the one that you copied earlier) inside the6.
/etc/environment file in the following format:

 JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-amd64"

Type Ctrl + X and choose Y to save and close the file.7.
Next, reload the file using the following command:8.

 sudo source /etc/environment

Installing the latest version of Jenkins
To install the latest version of Jenkins, follow these steps in sequence:

Add the repository key to the system using the following command:1.

 wget --no-check-certificate -q -O \
 - https://pkg.jenkins.io/debian/jenkins-ci.org.key | \
 sudo apt-key add -

You should get an output of OK. Next, append the Debian package repository2.
address using the following command:

 echo deb http://pkg.jenkins.io/debian binary/ | \
 sudo tee /etc/apt/sources.list.d/jenkins.list

Update the package index:3.

 sudo apt-get update

Now, install Jenkins using the following command:4.

 sudo apt-get install jenkins

See the Starting, stopping, and restarting Jenkins on Ubuntu section if you are5.
required to start Jenkins.
Jenkins is now ready for use. By default, the Jenkins service runs on port 8080.6.
To access Jenkins, use http://localhost:8080/ or http://<Jenkins
server IP address>:8080/ in a browser .

Installing Jenkins Chapter 2

[52]

Installing the latest stable version of Jenkins
If you prefer to install a stable version of Jenkins, then follow these step in sequence:

Add the repository key to the system using the following command:1.

 wget --no-check-certificate -q -O - \
 https://pkg.jenkins.io/debian-stable/jenkins-ci.org.key | \
 sudo apt-key add -

You should get an output of OK. Next, append the Debian package repository2.
address using the following command:

 echo deb http://pkg.jenkins.io/debian-stable binary/ | \
 sudo tee /etc/apt/sources.list.d/jenkins.list

Update the package index:3.

 sudo apt-get update

Now, install Jenkins using the following command:4.

 sudo apt-get install jenkins

See the Starting, stopping, and restarting Jenkins on Ubuntu section if you are5.
required to start Jenkins.
Jenkins is now ready for use. By default, the Jenkins service runs on port 8080.6.
To access Jenkins, use http://localhost:8080/ or http://<Jenkins
server IP address>:8080/ in a browser.

In order to troubleshoot Jenkins, access the logs
file /var/log/jenkins/jenkins.log.

The Jenkins service runs under the user Jenkins, which is automatically
created upon installation.

Installing Jenkins Chapter 2

[53]

Starting, stopping, and restarting Jenkins on
Ubuntu
Jenkins by default starts running when installed. Here are the commands to start, stop,
restart, and check the status of the Jenkins service:

To start Jenkins, use the following command:1.

 sudo systemctl start jenkins

Similarly, to stop Jenkins, use the following command:2.

 sudo systemctl stop jenkins

To restart Jenkins, use the following command:3.

 sudo systemctl restart jenkins

To check the status of the Jenkins service, use the following systemctl4.
command:

 sudo systemctl status jenkins

You should see the following output:5.

 ● jenkins.service - LSB: Start Jenkins at boot time
 Loaded: loaded (/etc/init.d/jenkins; bad; vendor preset: enabled)
 Active: active (exited) since Wed 2017-07-19 22:34:39 UTC; 6min ago
 Docs: man:systemd-sysv-generator(8)

Installing a standalone Jenkins server on
Red Hat Linux
In this section, we will learn to install Jenkins on Red Hat Linux. The installation process
discussed here are also applies to Fedora.

Installing Jenkins Chapter 2

[54]

Prerequisites
Before we begin, make sure you have the following things ready:

We need a machine with at least 4 GB of RAM and a Multi-core processor.
Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).
The machine should have RHEL 7.3 installed on it.
Check for admin privileges; the installation might ask for an admin username
and password.
Make sure port 8080 is open.

Installing Java
Follow these steps to install Java:

Move to the /tmp directory and download Java:1.

 cd /tmp
 wget -O java_8.131.rpm \
 http://javadl.oracle.com/webapps/download/AutoDL? \
 BundleId=220304_d54c1d3a095b4ff2b6607d096fa80163

Next, install Java. The following command will install the JRE:2.

 sudo rpm -ivh java_8.131.rpm

To set the JAVA_HOME environment variable, first get the Java installation's3.
location. Do this by executing the following command:

 sudo alternatives --config java

The previous command will print the list of Java applications installed on your4.
machine, along with their installation paths. Copy the Java path that appears on
your Terminal:

 There is 1 program that provides 'java'.
 Selection Command

 *+ 1 /usr/java/jre1.8.0_131/bin/java

Installing Jenkins Chapter 2

[55]

Add the Java path (the one that you copied earlier) inside the5.
/etc/environment file using the following command:

 sudo sh \
 -c "echo JAVA_HOME=/usr/java/jre1.8.0_131 >>
 /etc/environment"

Installing the latest version of Jenkins
To install the latest version of Jenkins, follow these steps:

Add the Jenkins repository to the yum repository using the following command:1.

 sudo wget -O /etc/yum.repos.d/jenkins.repo \
 http://pkg.jenkins-ci.org/redhat/jenkins.repo
 sudo rpm --import https://jenkins-ci.org/redhat/jenkins-ci.org.key

Install Jenkins using the following command:2.

 sudo yum install jenkins

See the Starting, stopping, and restarting Jenkins on Red Hat Linux section if you are3.
required to start Jenkins.

Jenkins is now ready for use. By default, the Jenkins service runs on port 8080. To access
Jenkins, use http://localhost:8080/ or http://<Jenkins server IP
address>:8080/ in a browser.

Installing the latest stable version of Jenkins
If you prefer to install a stable version of Jenkins, then follow these steps:

Add the Jenkins repository to the yum repository using the following command:1.

 sudo wget -O /etc/yum.repos.d/jenkins.repo \
 http://pkg.jenkins-ci.org/redhat-stable/jenkins.repo
 sudo rpm --import https://jenkins-ci.org/redhat/jenkins-ci.org.key

Install Jenkins using the following command:2.

 sudo yum install jenkins

Installing Jenkins Chapter 2

[56]

See the Starting, stopping, and restarting Jenkins on Red Hat Linux section if you are3.
required to start Jenkins.

Starting, stopping, and restarting Jenkins on Red
Hat Linux
Here are the commands to start, stop, restart, and check the status of the Jenkins service:

To start Jenkins, use the following command:1.

 sudo systemctl start jenkins

Similarly, to stop Jenkins, use the following command:2.

 sudo systemctl stop jenkins

To restart Jenkins, use the following command:3.

 sudo systemctl restart jenkins

To check the status of the Jenkins service, use the following systemctl4.
command:

 sudo systemctl status jenkins

You should see the following output:5.

 ● jenkins.service - LSB: Jenkins Automation Server
 Loaded: loaded (/etc/rc.d/init.d/jenkins; bad;
 vendor preset: disabled)
 Active: active (running) since Wed 2017-07-19 18:45:47 EDT;
 2min 31s ago
 Docs: man:systemd-sysv-generator(8)
 Process: 1081 ExecStart=/etc/rc.d/init.d/jenkins start
 (code=exited, status=0/SUCCESS)
 CGroup: /system.slice/jenkins.service
 └─1706 /etc/alternatives/java
 -Dcom.sun.akuma.Daemon=daemonized -Djava.awt.headless=true
 -DJENKINS_HOME=/var/lib/j...

Installing Jenkins Chapter 2

[57]

In order to troubleshoot Jenkins, access the logs
in var/log/jenkins/jenkins.log.

The Jenkins service runs with the user Jenkins, which automatically gets
created upon installation.

Running Jenkins behind a reverse proxy
In this example, we will learn how to position an Nginx server (running on a standalone
machine) front of a Jenkins server (running on another standalone machine).

Prerequisites
Before we begin, make sure you have the following things ready:

We need two machines with at least 4 GB of RAM and a Multi-core processor.
One will run Nginx and the other will run Jenkins.
Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).
The machine should have Ubuntu 16.04 or greater installed on it.
Check for admin privileges; the installation might ask for an admin username
and password.
Both machines should be on the same network. The following setup assumes that
your organization has an intranet for all its services.

Installing and configuring Nginx
The installation of Nginx on Ubuntu is simple. Follow these steps to install an Nginx server
on Ubuntu:

Update the local package index:1.

 sudo apt-get update

Installing Jenkins Chapter 2

[58]

Install nginx using the following command:2.

 sudo apt-get install nginx

Configuring the firewall on a Nginx server
We need to configure the firewall on our Nginx server to allow access to the Nginx service.
Follow these steps:

Check the firewall status using the ufw command:1.

 sudo ufw status

 You should see the following output:

 Status: inactive

If it's enabled, move to step 3. But, if you find it disabled, then enable the firewall2.
using the following command:

 sudo ufw enable

 You should see the following output

 Command may disrupt existing ssh connections.
 Proceed with operation (y|n)? y
 Firewall is active and enabled on system startup

List the available configurations using the following command. You should see3.
three Nginx profiles and one OpenSSH profile:

 sudo ufw app list

 You should see the following output

 Available applications:
 Nginx Full
 Nginx HTTP
 Nginx HTTPS
 OpenSSH

Installing Jenkins Chapter 2

[59]

The Nginx Full profile opens port 80 (unencrypted) and port 443
(TLS/SSL).

The Nginx HTTP profile opens only port 80 (unencrypted).

The Nginx HTTPS profile opens only port 443 (TLS/SSL).

The OpenSSH profile opens only port 22 (SSH).

It is always recommended to enable the most restrictive profile.

To keep things simple, we will enable the Nginx Full profile, as shown in the4.
following command:

 sudo ufw allow 'Nginx Full'
 Rules updated
 Rules updated (v6)

Also, enable the OpenSSH profile if it's not active, as shown. This will allow us to5.
continue accessing our Nginx machine over SSH:

 sudo ufw allow 'OpenSSH'

You won't be able to log in to your Nginx machine if OpenSSH is disabled.

Verify the changes using the following command. You should see Nginx Full6.
and OpenSSH as allowed:

 sudo ufw status

 You should see the following output:

 Status: active
 To Action From
 -- ------ ----
 OpenSSH ALLOW Anywhere
 Nginx Full ALLOW Anywhere
 OpenSSH (v6) ALLOW Anywhere (v6)
 Nginx Full (v6) ALLOW Anywhere (v6)

Installing Jenkins Chapter 2

[60]

Check if the Nginx service is running using the systemctl command:7.

 systemctl status nginx

 You should see the following output:

 ● nginx.service - A high performance web server and a reverse proxy
 server
 Loaded: loaded (/lib/systemd/system/nginx.service; enabled;
 vendor preset: enabled)
 Active: active (running) since Thu 2017-07-20 18:44:33 UTC;
 45min ago
 Main PID: 2619 (nginx)
 Tasks: 2
 Memory: 5.1M
 CPU: 13ms
 CGroup: /system.slice/nginx.service
 ├─2619 nginx: master process /usr/sbin/nginx
 -g daemon on; master_process on
 └─2622 nginx: worker process

From the previous output, you can see that our Nginx service is running fine.8.
Now try to access it using the browser. First, get the IP address of your machine
using the ip route command:

 ip route

 You should see the following output:

 default via 10.0.2.2 dev enp0s3
 10.0.2.0/24 dev enp0s3 proto kernel
 scope link src 10.0.2.15
 192.168.56.0/24 dev enp0s8 proto kernel scope link
 src 192.168.56.104

Installing Jenkins Chapter 2

[61]

Now access the Nginx home page using http://<IP Address>:80. You should9.
see something similar to the following screenshot:

The Nginx index page

Starting, stopping, and restarting the Nginx
server
Now that we have your Nginx server up, let's see some commands we can use to manage
Nginx. Just like Jenkins, we will use the systemctl command to manage Nginx:

To stop Nginx, use the following command:1.

 sudo systemctl stop nginx

To start Nginx when it is stopped, use the following command:2.

 sudo systemctl start nginx

To restart Nginx, use the following command:3.

 sudo systemctl restart nginx

Installing Jenkins Chapter 2

[62]

To reload Nginx after making configuration changes, use the following4.
command:

 sudo systemctl reload nginx

Securing Nginx using OpenSSL
In this section, we will learn to set up a self-signed SSL certificate for use with our Nginx
server.

Creating an SSL certificate
Run the following command to create a self-signed key and a certificate pair using
OpenSSL:

sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
-keyout /etc/ssl/private/nginx-selfsigned.key -out \
/etc/ssl/certs/nginx-selfsigned.crt

The following table explains the arguments used in the previous command:

Parameters Description

req
This argument indicates that we want to use X.509 Certificate Signing
Request (CSR) management.

-x509
This argument allows us to create a self-signed certificate instead of
generating a certificate signing request.

-nodes
This argument allows OpenSSL to skip the option to authenticate our
certificate with a passphrase.

-days This argument sets the duration for which the certificate is valid.

-newkey rsa:
2048

This argument tells OpenSSL to generate a new certificate and a new
key at the same time. The rsa:2048 option makes the RSA key 2048
bits long.

-keyout
This argument allows you to store the generated private key file in the
location of your choice.

-out
This argument allows you to store the generated certificates in the
location of your choice.

Installing Jenkins Chapter 2

[63]

The moment you issue the following command to generate a private key and new
certificate, you will be prompted to provide information. The prompts will look something
as shown here:

Country Name (2 letter code) [AU]:DK
State or Province Name (full name) [Some-State]:Midtjylland
Locality Name (eg, city) []:Brande
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Deviced.Inc
Organizational Unit Name (eg, section) []:DevOps
Common Name (e.g. server FQDN or YOUR name) []:<IP address of Nginx>
Email Address []:admin@organisation.com

The Common Name (CN) field, also known as the Fully Qualified
Domain Name (FQDN) is very important. You need to provide the IP
address or the domain name of your Nginx server.

The /etc/ssl/private/ will now contain your nginx-selfsigned.key file and the
/etc/ssl/certs/ will contain your nginx-selfsigned.crt file.

Next, we will create a strong Diffie-Hellman group, which is used in negotiating Perfect
Forward Secrecy (PFS) with clients. We will do this by using openssl, as shown in the
following command:

sudo openssl dhparam -out /etc/ssl/certs/dhparam.pem 2048

This will take quite some time, but once it's done it will generate a dhparam.pem file inside
/etc/ssl/certs/.

Creating strong encryption settings
In the following section, we will set up a strong SSL cipher suite to secure our Nginx server:

Create a configuration file named ssl-params.conf1.
in /etc/nginx/snippets/ as shown here:

 sudo nano /etc/nginx/snippets/ssl-params.conf

Installing Jenkins Chapter 2

[64]

Copy the following code inside the file:2.

 # from https://cipherli.st/
 # and https://raymii.org/s/tutorials/
 Strong_SSL_Security_On_nginx.html

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;
 ssl_ciphers "EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH";
 ssl_ecdh_curve secp384r1;
 ssl_session_cache shared:SSL:10m;
 ssl_session_tickets off;
 ssl_stapling on;
 ssl_stapling_verify on;
 resolver 8.8.8.8 8.8.4.4 valid=300s;
 resolver_timeout 5s;
 # disable HSTS header for now
 #add_header Strict-Transport-Security "max-age=63072000;
 includeSubDomains; preload";
 add_header X-Frame-Options DENY;
 add_header X-Content-Type-Options nosniff;

 ssl_dhparam /etc/ssl/certs/dhparam.pem;

Type Ctrl + X and choose Y to save and close the file.3.

We have used the recommendations by Remy van Elst that are available
at https://cipherli.st/.

Modifying the Nginx configuration
Next, we will modify our Nginx configuration to enable SSL. Follow these steps:

First and foremost, take a backup of your existing Nginx configuration file named1.
default that is in /etc/nginx/sites-available/:

 sudo cp /etc/nginx/sites-available/default \
 /etc/nginx/sites-available/default.backup

https://cipherli.st/

Installing Jenkins Chapter 2

[65]

Now, open the file for editing using the following command:2.

 sudo nano /etc/nginx/sites-available/default

You will find a lot of commented lines inside the file. If you ignore them for a3.
while, you will probably see the following:

 server {
 listen 80 default_server;
 listen [::]:80 default_server;

 # SSL configuration

 # listen 443 ssl default_server;
 # listen [::]:443 ssl default_server;

 . . .

 root /var/www/html;

 . . .

 index index.html index.htm index.nginx-debian.html;
 server_name _;

 . . .

We will modify the configuration so that the unencrypted HTTP requests are4.
automatically redirected to encrypted HTTPS. We will do this by adding the
following three lines, as highlighted in the following code:

 server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name <nginx_server_ip or nginx domain name>;
 return 301 https://$server_name$request_uri;
 }

 # SSL configuration

 # listen 443 ssl default_server;
 # listen [::]:443 ssl default_server;

 . . .

Installing Jenkins Chapter 2

[66]

From the previous code, you can see that we have closed the server block.5.
Next, we will start a new server block, uncomment the two listen directives6.
that use port 443, and add http2 to these lines in order to enable HTTP/2, as
shown in the following code block:

 server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name <nginx_server_ip or nginx domain name>;
 return 301 https://$server_name$request_uri;
 }

 server {

 # SSL configuration

 listen 443 ssl http2 default_server;
 listen [::]:443 ssl http2 default_server;

 . . .

Next, we will add the location of our self-signed certificate and key. We just need7.
to include the two snippet files we set up:

 server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name <nginx_server_ip or nginx domain name>;
 return 301 https://$server_name$request_uri;
 }
 server {

 # SSL configuration

 listen 443 ssl http2 default_server;
 listen [::]:443 ssl http2 default_server;
 ssl_certificate /etc/ssl/certs/nginx-selfsigned.crt;
 ssl_certificate_key /etc/ssl/private/nginx-selfsigned.key;
 include snippets/ssl-params.conf;

 . . .

Installing Jenkins Chapter 2

[67]

Next, we will set the server_name value to our Nginx IP or domain name inside8.
our SSL server block. By default, the server_name may be set to an underscore
(_), as shown in the following code block:

 server {
 # SSL configuration

 . . .

 server_name <nginx_server_ip or nginx domain name>;

 . . .
 }

Type Ctrl + X and choose Y to save and close the file.9.

Enabling the changes and testing our Nginx setup
We will now restart Nginx to implement our new changes:

First, check whether there are any syntax errors in our files. Do this by typing the1.
following command:

 sudo nginx -t

If everything is successful, you should see something similar to the following2.
command output:

 nginx: [warn] "ssl_stapling" ignored, issuer certificate not found
 nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
 nginx: configuration file /etc/nginx/nginx.conf test is successful

Restart Nginx using the following command:3.

 sudo systemctl restart nginx

Next, access your Nginx server using http://<Nginx_IP_Address>:80. You4.
should notice that you have been automatically redirected to
https://<Nginx_IP_Address>:80.

Installing Jenkins Chapter 2

[68]

You will see a warning that looks similar to the following screenshot:5.

SSL warning

This is expected, as the certificate that we created isn't signed by one of your6.
browser's trusted certificate authorities.
Click on the Advanced... button and then click on Proceed to 192.168.56.1047.
(unsafe):

Proceeding as unsafe

Installing Jenkins Chapter 2

[69]

You should now be able to see the Nginx default page, as shown in the following8.
screenshot:

The Nginx index page with SSL encryption

Configuring the Jenkins server
In this section, we will perform some configurations on our Jenkins server. To set up a
Jenkins server in the first place, see the Installing a standalone Jenkins server on Ubuntu
section.

Once you have a Jenkins server up and running, follow these steps:

To make Jenkins work with Nginx, we need to update the Jenkins configuration1.
so that the Jenkins server listens only on the Jenkins IP address or the Jenkins
domain name interface rather than all interfaces (0.0.0.0). If Jenkins listens on
all interfaces, then it's potentially accessible on its original, unencrypted port
(8080).
To achieve this, modify the /etc/default/jenkins configuration file, as shown2.
in the following command:

 sudo nano /etc/default/jenkins

Installing Jenkins Chapter 2

[70]

Inside the file, scroll all the way down to the last line or just look for3.
the JENKINS_ARGS line.
Append the following argument to the existing value of JENKINS_ARGS:4.

 -httpListenAddress=<IP Address of your Jenkins>

The final JENKINS_ARGS line should look something like this (single line):5.

 JENKINS_ARGS="--webroot=/var/cache/$NAME/war
 --httpPort=$HTTP_PORT
 --httpListenAddress=192.168.56.105"

Type Ctrl + X and choose Y to save and close the file.6.
To make the new configuration effective, restart the Jenkins server:7.

 sudo systemctl restart jenkins

To check whether Jenkins is running properly, execute the following command:8.

 sudo systemctl status jenkins

 You should see the following screenshot:

 ● jenkins.service - LSB: Start Jenkins at boot time
 Loaded: loaded (/etc/init.d/jenkins; bad;
 vendor preset: enabled)
 Active: active (exited) since Sat 2017-07-22 23:30:36 UTC;
 18h ago
 Docs: man:systemd-sysv-generator(8)

Adding reverse proxy settings to the Nginx
configuration
The following steps will help you to add reverse proxy settings to the Nginx configuration:

Open the Nginx configuration file for editing:1.

 sudo nano /etc/nginx/sites-available/default

Installing Jenkins Chapter 2

[71]

As we're sending all requests to our Jenkins server, comment out the default2.
try_files line, as shown in the following code block:

 location / {
 # First attempt to serve request as file, then
 # as directory, then fall back to displaying a 404.
 # try_files $uri $uri/ =404;
 }

Next, add the proxy settings as shown here:3.

 location / {
 # First attempt to serve request as file, then
 # as directory, then fall back to displaying a 404.
 #try_files $uri $uri/ =404;
 include /etc/nginx/proxy_params;
 proxy_pass http://<ip address of jenkins>:8080;
 proxy_read_timeout 90s;
 # Fix potential "It appears that your reverse proxy set up
 is broken" error.
 proxy_redirect http://<ip address of jenkins>:8080
 https://your.ssl.domain.name;
 }

Type Ctrl + X and choose Y to save and close the file.4.
Run the following command to check for any syntax errors in the Nginx5.
configuration file:

 sudo nginx -t

You should see the following output:

 nginx: [warn] "ssl_stapling" ignored, issuer certificate not found
 nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
 nginx: configuration file /etc/nginx/nginx.conf test is successful

If the output is error free, restart Nginx to make the new configuration effective.6.
Use the following command:

 sudo systemctl restart nginx

Installing Jenkins Chapter 2

[72]

Next, access your Nginx server using https://<nginx_ip_address>:80:7.

Jenkins getting started page

Running Nginx and Jenkins on the same machine
If you want to run Jenkins behind a reverse proxy server (Nginx) with the Jenkins server
and the Nginx server running on the same machine, then perform the following sections in
sequence:

Set up a machine with at least 4 GB of RAM and a Multi-core processor.1.
Depending on how you manage the infrastructure in your team, the machine2.
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), or a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).

Installing Jenkins Chapter 2

[73]

The machines should have Ubuntu 16.04 or greater installed on it.3.
Check for admin privileges; the installation might ask for an admin username4.
and password.
Install Nginx; refer to the Installing and configuring Nginx section.5.
Configure the firewall; refer to the Configuring the firewall on Nginx server section.6.
Secure the Nginx server using OpenSSL; refer to the Securing Nginx using7.
OpenSSL section.
Configure the firewall to allow traffic on port 8080 using the following8.
command:

 sudo ufw allow 8080

Next, check the firewall status using the following command:9.

 sudo ufw status

 You should see the following output:

 Status: active
 To Action From
 -- ------ ----
 OpenSSH ALLOW Anywhere
 Nginx Full ALLOW Anywhere
 8080 ALLOW Anywhere
 OpenSSH (v6) ALLOW Anywhere (v6)
 Nginx Full (v6) ALLOW Anywhere (v6)
 8080 (v6) ALLOW Anywhere (v6)

 Install Jenkins, refer to the Installing a standalone Jenkins server on Ubuntu section.10.
Configure the Jenkins server; refer to the Configuring the Jenkins server section.11.
While performing the steps mentioned in this section, make sure to put
127.0.0.1 in place of <IP Address of your Jenkins>.
Add the reverse proxy settings in Nginx; refer to the Adding reverse proxy settings12.
to Nginx configuration section. While performing the steps mentioned in this
section, you will be asked to enter the Jenkins server IP at various places inside
the Nginx configuration file. Since our Jenkins server is now running on the same
machine as Nginx, the value for <IP Address of your Jenkins> should be
localhost.

Installing Jenkins Chapter 2

[74]

Running Jenkins on Docker
The true advantage of having Jenkins on Docker is when you have to quickly create
multiple development and staging instances of your production Jenkins server. It's also
very useful in redirecting the traffic to a secondary Jenkins server while you perform
maintenance activities on the primary Jenkins server. While we will see these use cases
later, let's first try to run Jenkins on Docker.

Prerequisites
Before we begin, make sure you have the following things ready:

We need a machine with at least 4 GB of RAM (the more the better) and a Multi-
core processor.
Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).
The machines should have Ubuntu 16.04 or greater installed on it.
Check for admin privileges; the installation might ask for an admin username
and password.

Setting up a Docker host
In this section, we will learn how to install Docker using the repository method and using
the Debian package. Follow the steps in the following sections to set up a Docker host.

Setting up the repository
Follow these steps to set up a repository:

Execute the following command to let apt use a repository:1.

 sudo apt-get install apt-transport-https ca-certificates

Add Docker's official GPG key using the following command:2.

 curl -fsSL https://yum.dockerproject.org/gpg | sudo apt-key add -

Installing Jenkins Chapter 2

[75]

Verify that the key ID is exactly3.
58118E89F3A912897C070ADBF76221572C52609D using the following
command:

 apt-key fingerprint 58118E89F3A912897C070ADBF76221572C52609D

 You should see the following output:

 pub 4096R/2C52609D 2015-07-14
 Key fingerprint = 5811 8E89 F3A9 1289 7C07 0ADB F762 2157 2C52
 609D
 uid Docker Release Tool (releasedocker) docker@docker.com

Use the following command to set up the stable repository to download Docker:4.

 sudo add-apt-repository \
 "deb https://apt.dockerproject.org/repo/ubuntu-$(lsb_release \
 -cs) main"

It's recommended to always use the stable version of repository.

Installing Docker
After setting up the repository, perform the following steps to install Docker:

Update the apt package index using the following command:1.

 sudo apt-get update

To install the latest version of Docker, run the following command:2.

 sudo apt-get -y install docker-engine

To install a specific version of Docker, list the available versions using the3.
following command:

 apt-cache madison docker-engine

Installing Jenkins Chapter 2

[76]

 You should see the following output:

 docker-engine | 1.16.0-0~trusty |
 https://apt.dockerproject.org/repo ubuntu-trusty/main amd64
 Packages docker-engine | 1.13.3-0~trusty |
 https://apt.dockerproject.org/repo ubuntu-trusty/main amd64
 Packages
 ...

The output of the previous command depends on the type of repository
configured in the previous section (Setting up the repository).

Next, execute the following command to install the specific version of Docker:4.

 sudo apt-get -y install docker-engine=<VERSION_STRING>
 sudo apt-get -y install docker-engine=1.16.0-0~trusty

The Docker service starts automatically. To verify if Docker is installed and5.
running, execute the following command:

 sudo docker run hello-world

The previous command should run without any errors, and you should see a6.
Hello from Docker! message:

 Unable to find image 'hello-world:latest' locally
 latest: Pulling from library/hello-world
 b04784fba78d: Pull complete
 Digest: sha256:
 f3b3b28a45160805bb16542c9531888519430e9e6d6ffc09d72261b0d26ff74f
 Status: Downloaded newer image for hello-world:latest

 Hello from Docker!
 This message shows that your installation appears to be working
 correctly.
 ...

Installing Jenkins Chapter 2

[77]

Installing from a package
Follow these steps to install Docker using the .deb package:

Download the .deb package of your choice from https:/ ​/ ​apt.​dockerproject.1.
org/​repo/ ​pool/ ​main/ ​d/ ​docker- ​engine/ ​.
To install the downloaded package, execute the following command:2.

 sudo dpkg -i /<path to package>/<docker package>.deb

Verify your Docker installation by running the following command:3.

 sudo docker run hello-world

 You should see the following output:

 Hello from Docker!
 This message shows that your installation appears to be working
 correctly.

Running the Jenkins container
Now that we have our Docker host ready, let's run Jenkins:

Run the following command to start a Jenkins container. This might take some1.
time, as Docker will try to download the Jenkins Docker image
(jenkins/jenkins:lts) from Docker Hub:

 docker run -d --name jenkins_dev -p 8080:8080 \
 -p 50000:50000 jenkins/jenkins:lts

 You should see the following output:

 ...
 ...
 ...
 d52829d9da9e0a1789a3117badc862039a0084677be6a771a959d8467b9cc267

https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/

Installing Jenkins Chapter 2

[78]

The following table explains the Docker command that we used in the previous2.
command:

Parameters Description

docker Used to invoke the Docker utility.

run A Docker command to run a container.

-d This option runs the container in the backend.

--name This option allows you to give your container a name.

-p This option is used to map a container's port with the host.

jenkins/jenkins:lts
The name of the Docker image and its version used to create a
container. jenkins/jenkins is the Jenkins Docker image, and
lts is a particular version of that image.

To see the list of running containers, execute the following command:3.

 sudo docker ps --format "{{.ID}}: {{.Image}} {{.Names}}"

 You should see the following output:

 d52829d9da9e: jenkins/jenkins:lts jenkins_dev

To use the latest LTS release of Jenkins, use the jenkins/jenkins:lts
Jenkins Docker image.

To use the latest weekly release of Jenkins, use the jenkins/jenkins
Jenkins Docker image.

Make a note of your Docker host IP using the following command:4.

 sudo ip route

 You should see the following output:

 default via 10.0.2.2 dev enp0s3
 10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15
 172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.0.1
 192.168.56.0/24 dev enp0s8 proto kernel scope link
 src 192.168.56.107

Installing Jenkins Chapter 2

[79]

Your Jenkins server is now available on http:<IP Address of Docker5.
host>:8080. You should now be able to see the Jenkins Getting Started page.
To proceed with the Jenkins setup, you might need the initialAdminPassword6.
key. This file is inside /var/jenkins_home/secrets/. There are two ways you
can get the data inside the initialAdminPassword file. You can use the docker
exec command, as illustrated here:

 sudo docker exec -it jenkins_dev \
 cat /var/jenkins_home/secrets/initialAdminPassword

Or, by logging inside the running Jenkins container, using the same docker exec
command, as shown here:

 sudo docker exec -it jenkins_dev bash

Once you are inside the container, execute the following Linux command to get7.
the contents of the file:

 cat /var/jenkins_home/secrets/initialAdminPassword \

Both the commands will print the content of the initialAdminPassword file,
similar to the one shown as follows:

 1538ededb4e94230aca12d10dd461e52

Here, the -i option allows you to interact with your Docker container and
the -t option allocates a pseudo -tty.

While you are still inside the Jenkins container, notice that the jenkins_home8.
directory is present inside the /var/ directory and the jenkins.war file is
located inside /usr/share/jenkins.

The jenkins_home is a very important directory where all your Jenkins
jobs, builds, metadata, configurations, users, and everything, are stored.

Installing Jenkins Chapter 2

[80]

Running a Jenkins container using a data volume
In the previous sections, we created a Jenkins container without a mechanism to make the
data inside the jenkins_home directory persistent. In simple words, if for some reason you
delete the Jenkins container, you delete your jenkins_home directory.

Luckily, there is still a better way to run Jenkins with Docker, and that is by using data
volumes. Data volumes are special directories that make the data persistent and
independent of the container's life cycle. If a container writes data to a data volume,
deleting the container will still make the data available because the container and its
associated data volume are two different entities.

Let's create a Jenkins container using a data volume:

Run a Jenkins container using the following command:1.

 sudo docker run -d --name jenkins_prod -p 8080:8080\
 -p 50000:50000 -v jenkins-home-prod:/var/jenkins_home \
 jenkins/jenkins:lts

The -v jenkins-home-prod:/var/jenkins_home option will create a data2.
volume named jenkins-home-prod and will map it to the
/var/jenkins_home directory inside the container.
Execute the following command to see the contents of the /var/jenkins_home3.
directory inside the jenkins_prod Jenkins container:

 sudo docker exec -it jenkins_prod ls -lrt /var/jenkins_home

 You should see the following output:

 total 72
 drwxr-xr-x 2 jenkins jenkins 4096 Jul 26 20:41 init.groovy.d
 -rw-r--r-- 1 jenkins jenkins 102 Jul 26 20:41
 copy_reference_file.log
 drwxr-xr-x 10 jenkins jenkins 4096 Jul 26 20:41 war
 -rw-r--r-- 1 jenkins jenkins 0 Jul 26 20:41
 secret.key.not-so-secret
 -rw-r--r-- 1 jenkins jenkins 64 Jul 26 20:41 secret.key
 drwxr-xr-x 2 jenkins jenkins 4096 Jul 26 20:41 plugins
 drwxr-xr-x 2 jenkins jenkins 4096 Jul 26 20:41 jobs
 drwxr-xr-x 2 jenkins jenkins 4096 Jul 26 20:41 nodes
 -rw-r--r-- 1 jenkins jenkins 159 Jul 26 20:41
 hudson.model.UpdateCenter.xml
 -rw------- 1 jenkins jenkins 1712 Jul 26 20:41 identity.key.enc
 drwxr-xr-x 2 jenkins jenkins 4096 Jul 26 20:41 userContent

Installing Jenkins Chapter 2

[81]

 -rw-r--r-- 1 jenkins jenkins 907 Jul 26 20:41 nodeMonitors.xml
 drwxr-xr-x 3 jenkins jenkins 4096 Jul 26 20:41 logs
 -rw-r--r-- 1 jenkins jenkins 6 Jul 26 20:41
 jenkins.install.UpgradeWizard.state
 drwxr-xr-x 3 jenkins jenkins 4096 Jul 26 20:41 users
 drwx------ 4 jenkins jenkins 4096 Jul 26 20:41 secrets
 -rw-r--r-- 1 jenkins jenkins 94 Jul 26 20:41 jenkins.CLI.xml
 -rw-r--r-- 1 jenkins jenkins 1592 Jul 26 20:41 config.xml
 drwxr-xr-x 2 jenkins jenkins 4096 Jul 26 20:41 updates

To list your Docker volume, execute the following command:4.

 sudo docker volume ls

 You should see the following output:

 DRIVER VOLUME NAME

 local jenkins-home-prod

Now you have a Jenkins container with a persistent jenkins_home directory.5.

Testing the data volume
We will test our data volume by performing the following steps:

We will make some changes on our Jenkins server; this will modify the content1.
inside the /var/jenkins_home directory.
We will delete the Jenkins container.2.
We will create a new Jenkins container that will use the same data volume.3.
 Check for the active Jenkins container using the following command:4.

 sudo docker ps --format "{{.ID}}: {{.Image}} {{.Names}}"

 You should see the following output:

 5d612225f533: jenkins/jenkins:lts jenkins_prod

Access the Jenkins server using http://<ip address of docker5.
host>:8080.

Installing Jenkins Chapter 2

[82]

Get the contents of the initialAdminPassword file using the following6.
command:

 sudo docker exec -it jenkins_prod \
 cat /var/jenkins_home/secrets/initialAdminPassword

 You should see the following output:

 7834556856f04925857723cc0d0523d7

Paste the initialAdminPassword under the Administrator password field on7.
the Jenkins page and proceed with the Jenkins setup.
Create a new user at the Create First Admin User step, as shown in the following8.
screenshot:

Creating the first admin user on Jenkins

Proceed with the remaining steps.9.
Execute the following command to list the content of10.
the /var/jenkins_home/users directory. This the is location where you have
all the user accounts:

 sudo docker exec -it jenkins_prod ls -lrt /var/jenkins_home/users

Installing Jenkins Chapter 2

[83]

 Output should be as follows:

 total 4
 drwxr-xr-x 2 jenkins jenkins 4096 Jul 26 21:38 developer

Notice our newly created user developer is listed under the users directory.11.
Now let's delete the jenkins_prod Jenkins container using the following12.
commands:

 sudo docker kill jenkins_prod
 sudo docker rm jenkins_prod

List the existing Docker containers (running/stopped) using the following13.
command:

 sudo docker ps -a --format "{{.ID}}: {{.Image}} {{.Names}}"

You should see the following output. However, you shouldn't see jenkins_prod
in the list:

 3511cd609b1b: hello-world eloquent_lalande

List the volumes using the following command:14.

 sudo docker volume ls

You should see something similar. You can see that deleting the container did not
delete its associated data volume:

 DRIVER VOLUME NAME

 local jenkins-home-prod

Now let's create a new Jenkins container named jenkins_prod that uses the15.
existing jenkins-home-prod volume:

 sudo docker run -d --name jenkins_prod -p 8080:8080 \
 -p 50000:50000 -v jenkins-home-prod:/var/jenkins_home \
 jenkins/jenkins:lts

Try to access the Jenkins dashboard using http://<IP Address of Docker16.
host>:8080. You will not see the Jenkins setup page; instead, you should see the
login page.
Log in to Jenkins using the user that we created earlier. You should be able to log17.
in. This proves that our entire Jenkins configuration is intact.

Installing Jenkins Chapter 2

[84]

Creating development and staging instances
of Jenkins
Many times you are in need of a development or a staging instance of your Jenkins
production server to test something new. Docker makes it easy and safe to create multiple
instances of your Jenkins servers.

Here is how to do it. In this section, we will create a development and a staging instance of
Jenkins using our Jenkins production instance.

Prerequisites
Before we begin, make sure you have the following things ready:

We need a Docker host running a Jenkins instance (production), utilizing data
volumes
Refer to the Running a Jenkins container using a data volume section

Creating an empty data volume
We will create a data volume named jenkins-home-staging and jenkins-home-
development for our staging and development instances of Jenkins, respectively:

To create an empty jenkins-home-staging data volume, run the following1.
command:

 sudo docker volume create --name jenkins-home-staging

To create an empty jenkins-home-development data volume, run the2.
following command:

 sudo docker volume create --name jenkins-home-development

List the newly create data volumes using the docker volume command:3.

 sudo docker volume ls

Installing Jenkins Chapter 2

[85]

You should see the following output:

 DRIVER VOLUME NAME

 local jenkins-home-prod
 local jenkins-home-development
 local jenkins-home-staging

From the previous list, you can see the newly created data volumes named4.
jenkins-home-staging and jenkins-home-development.

If you have followed the previous section, you should also see the data
volume jenkins-home-prod that is being used by our Jenkins
production instance jenkins_prod.

Copying data between data volumes
We now have our newly created empty data volumes. Let's copy the content of jenkins-
home-prod to each of them:

Copy the content of jenkins-home-prod to jenkins-home-staging using the 1.
following command:

 sudo docker run --rm -it --user root \
 -v jenkins-home-prod:/var/jenkins_home \
 -v jenkins-home-staging:/var/jenkins_home_staging \
 jenkins/jenkins:lts bash -c "cd /var/jenkins_home_staging \
 && cp -a /var/jenkins_home/* ."

The previous command will do the following:2.
It will first create an interactive container using the Docker image for
Jenkins jenkins/jenkins:lts (the container is temporary).
All actions performed on this temporary container will be using the
root user. Notice the --user root option in the previous command.
It will mount the content of the jenkins-home-prod data volume
onto the /var/jenkins_home directory present inside the container.
Notice the -v jenkins-home-prod:/var/jenkins_home option.

Installing Jenkins Chapter 2

[86]

Similarly, it will mount the non-existing content of the jenkins-
home-staging data volume onto the non-existing
/var/jenkins_home_staging directory inside the container. Notice
the -v jenkins-home-staging:/var/jenkins_home_staging
option.
It will then, copy the content of /var/jenkins_home to
/var/jenkins_home_staging. Notice the bash -c "cd
/var/jenkins_home_staging && cp -a /var/jenkins_home/*"

option.

Now, copy the content of jenkins-home-prod to jenkins-home-3.
development using the following command:

 sudo docker run --rm -it --user root \
 -v jenkins-home-prod:/var/jenkins_home \
 -v jenkins-home-development:/var/jenkins_home_development \
 jenkins/jenkins:lts bash -c "cd /var/jenkins_home_development \
 && cp -a /var/jenkins_home/* ."

Now we have the same data on all the three data volumes: jenkins-home-prod,4.
jenkins-home-staging, and jenkins-home-development.

Creating the development and staging instances
Now that we have data volumes for development and staging, let's spawn the containers
using them:

To create a Jenkins staging instance named jenkins_staging using1.
the jenkins-home-staging data volume, run the following command:

 sudo docker run -d --name jenkins_staging \
 -v jenkins-home-staging:/var/jenkins_home -p 8081:8080 \
 -p 50001:50000 jenkins/jenkins:lts

Installing Jenkins Chapter 2

[87]

The previous command will create a Jenkins instance running on port
8080 and mapped to port 8081 of the Docker host. We choose a different
port on Docker host because we already have our Jenkins production
instance, jenkins_prod, running on port 8080, which is mapped to port
8080 of the Docker host.

The same reason applies to mapping port 50000 on the Jenkins instance to
port 50001 on the Docker host.

Try to access your Jenkins staging instance using http:<IP Address of2.
Docker host>:8081.
Similarly, to create a Jenkins development instance named3.
jenkins_development using the jenkins-home-development data volume,
run the following command:

 sudo docker run -d --name jenkins_development \
 -v jenkins-home-development:/var/jenkins_home -p 8082:8080 \
 -p 50002:50000 jenkins/jenkins:lts

The previous command will create a Jenkins instance running on port
8080 and mapped to port 8082 of the Docker host. We choose a different
port on the Docker host because port 8080 and 8081 are already in use on
the Docker host.

The same reason applies to mapping port 50000 on the Jenkins instance to
port 50002 on the Docker host.

Try to access your Jenkins development instance using http:<IP Address of4.
Docker host>:8082.

Installing Jenkins Chapter 2

[88]

Summary
In this chapter, we learned how to install Jenkins on an Apache Tomcat server and as a
standalone application on various operating systems. We also learned how to set up a
reverse proxy server (Nginx) in front of our Jenkins server and secured the connection using
SSL.

Above all, we learned how to run Jenkins on Docker. We also saw the advantages of using
data volumes on Docker and learned how to leverage them to create on-demand instances
(development or staging) of our Jenkins server.

The main objective of the current chapter was to show the readers how diverse Jenkins is in
many ways when it comes to the installation process and the variety of operating systems
that it supports. The Jenkins administration will be discussed in Chapter 4, Configuring
Jenkins.

In the next chapter, we will have a quick overview of what's new in Jenkins 2.x.

3
The New Jenkins

In this chapter, we will look at some of the new features that are now part of the Jenkins 2.x
release. After completing this chapter, you will have an understanding of the following:

The new Jenkins setup wizard
Jenkins pipeline as a code (Jenkins pipeline job)
Jenkins Stage view
Jenkins Declarative Pipeline syntax
Jenkins Multibranch pipeline
Jenkins pipeline syntax utility (Snippet Generator)
Jenkins credentials
Jenkinsfile
Jenkins Blue Ocean
Creating a pipeline in Jenkins Blue Ocean

The Jenkins setup wizard
When you access Jenkins for the first time, you are presented with the Getting Started
wizard. We have already been through this exercise in the previous chapter; nevertheless, in
the following section, we will take a deeper look at some of its important sections.

The New Jenkins Chapter 3

[90]

Prerequisites
Before we begin, make sure you have the following things ready:

A Jenkins server running on any of the platforms discussed in the previous
chapter (Docker, standalone, cloud, VM, servlet container, and so on).
Make sure your Jenkins server has access to the internet. This is necessary to
download and install plugins.

Unlocking Jenkins
When you access Jenkins for the first time, you are asked to unlock it using a secret initial
admin password. This password is stored inside the file initialAdminPassword, which is
located inside your jenkins_home directory. The file, along with its full path, is displayed
on the Jenkins page, as shown in the following screenshot:

On Windows: You can find the file under C:\Program Files
(x86)\Jenkins\secrets. If you have chosen to install Jenkins somewhere else,
then look for the file under <Jenkins installation directory>\secrets.
On Linux: You can find the file under /var/jenkins_home/secrets:

Unlocking Jenkins

The New Jenkins Chapter 3

[91]

Get the password from the initialAdminPassword file, paste it under the Administrator
password field, and click on Continue.

You can always log in to Jenkins using the password from the
intialAdminPassword file and the username admin.

Customizing Jenkins
Next, you are presented with two options to install the Jenkins plugins, as shown in the
following screenshot:

Customizing Jenkins

Choosing Install suggested plugins will install all the generic plugins for Jenkins, like Git,
Pipeline as Code, and so on (as suggested by the Jenkins community).

Choosing Select plugins to install will let you install the plugins of your choice.

The New Jenkins Chapter 3

[92]

In the following section, we will go ahead and choose the option Select plugins to install.
When you do, you should see the screen shown in the following screenshot. The following
page will list some of the most popular plugins, although it's not a complete list of Jenkins
plugins. You will notice that the suggested plugin is already selected (ticked) by default:

Choosing plugins to install

You can choose All, None, or the Suggested plugins.

The New Jenkins Chapter 3

[93]

Once you are done choosing plugins, click Install at the bottom of the page. The following
screenshot shows the Jenkins plugin installation:

Installing Jenkins plugins

The New Jenkins Chapter 3

[94]

Creating the first admin user
Once the plugins are installed, you will be asked to create an administrator user account, as
shown in the following screenshot. The following administrator account is different from
the temporary administrator user account that was used at the beginning of the setup
wizard (the initial admin account):

Creating your first Jenkins user

Fill in the fields appropriately and click on the Save and Finish button. Alternatively, you
can also choose to ignore creating a new administrator user and continue with the initial
administrator user by clicking on Continue as admin.

Next, on the following page, you will be greeted with a message saying, Jenkins is ready!
Your Jenkins setup is complete. Click on Start using Jenkins to proceed to the Jenkins
dashboard.

The new Jenkins pipeline job
Those who are already familiar with Jenkins are well aware of the freestyle Jenkins job. The
classic way of creating a pipeline in Jenkins is by using the freestyle job, wherein each CI
stage is represented using a Jenkins job (freestyle).

The Jenkins freestyle job is a web-based, GUI-propelled configuration. Any modification to
the CI pipeline requires you to log in to Jenkins and reconfigure each of the Jenkins freestyle
jobs.

The New Jenkins Chapter 3

[95]

The concept of Pipeline as Code rethinks the way we create a CI pipeline. The idea is to
write the whole CI/CD pipeline as a code that offers some level of programming and that
can be version controlled.

The following are some of the advantages of taking the Pipeline as Code route:

It's programmable
All of your CI/CD pipeline configurations can be described using just a single file
(Jenkinsfile)
It's version controllable, just like any other code
It comes with an option to define your pipeline using the Declarative Pipeline
syntax, which is an easy and elegant way of coding your pipeline

Let's take a look at the Jenkins pipeline job. We will try to look and get the feel of it by
creating a simple CI pipeline.

Prerequisite
Before we begin, make sure you have the following things ready:

A Jenkins server running on any of the platforms discussed in the previous
chapter (Docker, standalone, cloud, VM, servlet container, and so on).
Make sure your Jenkins server has access to the internet. This is necessary to
download and install plugins.
Make sure your Jenkins server has all the suggested plugins installed. See the
Customizing Jenkins section.

Creating a Jenkins pipeline job
Follow the given steps to create a Jenkins pipeline job:

From the Jenkins dashboard, click on the New Item link.1.
On the resultant page, you will be presented with various types of Jenkins jobs to2.
choose from.
Choose Pipeline, and give a name to your pipeline using the Enter an item name3.
field.

The New Jenkins Chapter 3

[96]

Once you are done, click on the OK button at the bottom of the page.4.
All kinds of Jenkins jobs (freestyle, pipeline, multibranch, and so on) now come5.
with a featured tab, as shown in the following screenshot:

The new tab feature in Jenkins jobs

We will quickly navigate to the pipeline section by clicking on the Pipeline tab.6.
The following screenshot depicts the pipeline section. Let us see this section in7.
detail:

The Definition field gives you two options to choose from—Pipeline
script and Pipeline script from SCM. If you choose the option
Pipeline script, then you define your pipeline code inside the Script
field. But, if you choose the option Pipeline script from SCM (not
shown in the screenshot), then your pipeline script (Jenkinsfile) is
automatically fetched from the Version Control System (We will
explore this option in the upcoming section).
To get a short description about any of the options, you can click on the
question mark icon.
The Pipeline Syntax is a utility that helps you to convert GUI
configurations into code. (We will explore this option in the upcoming
section).

The New Jenkins Chapter 3

[97]

The pipeline section

Now let us write some code inside the Script field to see how the pipeline works.8.
We will try some of the example code provided by Jenkins.
To do so, click on the try sample Pipeline… field and choose the GitHub +9.
Maven option, as shown in the following screenshot:

Choosing a sample pipeline script

The New Jenkins Chapter 3

[98]

This will fill the Script field with a sample code. 10.
The code is shown as follows. It's in the Declarative Pipeline syntax form:11.

 node {
 def mvnHome
 stage('Preparation') { // for display purposes
 // Get some code from a GitHub repository
 git 'https://github.com/jglick/
 simple-maven-project-with-tests.git'
 // Get the Maven tool.
 // ** NOTE: This 'M3' Maven tool must be configured
 // ** in the global configuration.
 mvnHome = tool 'M3'
 }
 stage('Build') {
 // Run the maven build
 if (isUnix()) {
 sh "'${mvnHome}/bin/mvn'
 -Dmaven.test.failure.ignore clean package"
 } else {
 bat(/"${mvnHome}\bin\mvn"
 -Dmaven.test.failure.ignore clean package/)
 }
 }
 stage('Results') {
 junit '**/target/surefire-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 }

Let us quickly scan through the pipeline script (we will explore more about12.
Declarative Pipeline syntax in the upcoming section):

The node {} is the main container which tells Jenkins to run the whole
pipeline script on the Jenkins master.
Inside the node {} container, there are three more containers, shown
as follows:

 stage('Preparation') {...}
 stage('Build') {...}
 stage('Results') {...}

The New Jenkins Chapter 3

[99]

The Preparation stage will download the Maven source code from a
GitHub repository and will tell Jenkins to use the M3 Maven tool that
is defined in the global configuration (we need to do this before we run
our pipeline).
The Build stage will build the Maven project.
The Results stage will archive the build artifacts along with the JUnit
testing results.

Save the changes made to the pipeline job by clicking on the Save button at the13.
bottom of the page.

The Global Tool Configuration page
Before we run the pipeline, it is important that we take a look at the Global Tool
Configuration page in Jenkins. This is the place where you configure tools that you think
will be used globally across all your pipelines: for example, Java, Maven, Git, and so on.

Let's say you have multiple build agents (Jenkins slave agents) that build your Java code,
and your build pipeline requires Java JDK, Maven, and Git. All you need to do is configure
these tools inside the Global Tool Configuration, and Jenkins will automatically summon
them while building your code on the build agents (Jenkins slave agents). There is no need
for you to install these tools on any of the build agents.

Let us configure the Maven tool inside Global Tool Configuration to make our pipeline
work. Follow the given steps:

To access the Global Tool Configuration page, do any one of the following:1.
From the Jenkins dashboard, click on Manage Jenkins | Global Tool1.
Configuration.
Or paste the URL http://<IP Address of your Jenkins2.
server>:8080/configureTools/ in your browser.

Scroll all the way down to the Maven section and click on the Add Maven2.
button. You will be presented with a list of options, as shown in the following
screenshot. Fill the information in as follows:

Provide a unique name for your Maven installation by filling the Name1.
field. (Make it M3 for our example pipeline to work.)

The New Jenkins Chapter 3

[100]

The Install from Apache option will appear by default. This will make2.
Jenkins download the Maven application from Apache:

Configuring Maven inside the Global Tool Configuration

Choose the latest Maven version using the Version field; I have chosen3.
to use Maven 3.5.0, as shown in the previous screenshot.

To choose a different installer first, delete the existing installer by clicking
on the Delete Installer button. Next, click on the Add Installer drop-
down menu and choose a different installer. The other options, apart from
Install from Apache are, Run Batch Command, Run Shell Command,
and Extract *.zip/*.tar.gz (not shown in the screenshot).

The New Jenkins Chapter 3

[101]

The Java tool is also needed to build the Maven project, but since we are building3.
our code on Jenkins master (which already has Java JDK), we can skip installing
the Java tool for now.
Once you are done with configuring Maven, scroll down to the bottom of the4.
page and click on the Save button.

Jenkins pipeline Stage View
Jenkins Stage View is a new feature that comes as a part of release 2.x. It works only with
Jenkins Pipeline and Jenkins Multibranch pipeline jobs.

Jenkins Stage View lets you visualize the progress of various stages of your pipeline in real
time. Let us see that in action by running our example pipeline:

On the Jenkins dashboard, under the All view tab, you will see your pipeline.1.
Click on the build trigger icon to run the pipeline, as shown in the following2.
screenshot:

Viewing pipeline on the Jenkins dashboard

To get to the Stage View, click on your pipeline name (which also happens to be a3.
link to your pipeline project page).

The New Jenkins Chapter 3

[102]

Alternatively, you can mouse over your pipeline name to get a drop-down menu4.
with a list of action items and links, as shown in the following screenshot:

A view of the pipeline menu

The Stage View page will look something like the following screenshot:5.

The Stage View

The New Jenkins Chapter 3

[103]

To view the build logs of a particular stage, mouse over the color-coded status6.
box, and you should see an option to view the logs. Clicking it will open up a
small pop-up window displaying the logs, as shown in the following screenshot:

Jenkins individual stage logs

To view the complete build log, look for the Build History on the left-hand side.7.
The Build History tab will list all the builds that have been run. Right-click on the
desired build number and click Console Output:

Accessing the console output

The New Jenkins Chapter 3

[104]

Declarative Pipeline syntax
In the previous section, we created a Jenkins pipeline to get a look at and feel for its various
components. We utilized the pipeline script that followed a declarative syntax to define our
pipeline.

The Declarative Pipeline syntax is a more simplified and structured version of the Groovy
syntax, the latter being more powerful due to its programmability. In this section, we will
learn about the Declarative Pipeline syntax in a bit more detail. This is important because in
the upcoming chapters we will be using the same to define our CI and CD pipelines.

Basic structure of a Declarative Pipeline
In simple terms, a Declarative Pipeline is a collection of multiple node blocks (nodes),
stage blocks (stages), directives, and steps. A single node block can have multiple stage
blocks, and vice versa. We can also run multiple stages in parallel. Let's see each of them in
detail.

The node block
A node block defines the Jenkins agent wherein its constituents (stage blocks, directives,
and steps) should run. The node block structure looks like the following:

node ('<parameter>') {<constituents>}

The following gives more information about the node block:

Defines: The node where the stage, directives, or steps should run
Constituents: Multiple stage blocks, directives, or steps
Required: Yes
Parameters: Any, label

The stage block
A stage block is a collection of closely related steps and directives that have a common
objective. The stage block structure looks like the following:

stage ('<parameter>') {<constituents>}

The New Jenkins Chapter 3

[105]

The following gives more information about the stage block:

Defines: A collection of steps and directives
Constituents: Multiple node blocks, directives, or steps
Required: Yes
Parameters: A string that is the name of the stage (mandatory)

Directives
The main purpose of directives is to assist the node block, stage block, and steps by
providing them with any of the following elements: environments, options, parameters,
triggers, tools.

The following gives more information about the stage block:

Defines: The node where the stage should run
Constituents: Environments, options, parameters, triggers, tools
Required: No, but every CI/CD pipeline has it
Parameters: None

Steps
Steps are the fundamental elements that make up the Declarative Pipeline. A step could be
a batch script or a shell script, or any other command that's executable. Steps have various
purposes, such as cloning a repository, building code, running tests, uploading artifacts to
the repository server, performing static code analysis, and so on. In the upcoming section,
we will see how to generate steps using the Jenkins pipeline syntax utility.

The following gives more information about the stage block:

Defines: It tells Jenkins what to do
Constituents: Commands, scripts, and so on. It's the fundamental block of a
pipeline
Required: No. But every CI/CD pipeline has it
Parameters: None

The New Jenkins Chapter 3

[106]

The following is the pipeline code that we used earlier. The node block, the stage blocks,
the directives, and the steps are highlighted using comments (//). As you can see, there are
three stage blocks inside the node block. A node block can have multiple stage blocks. In
addition to that, each stage block contains multiple steps, and one of them also contains a
directive:

// Node block
node ('master') {
 // Directive 1
 def mvnHome

 // Stage block 1
 stage('Preparation') {
 // Step 1
 git 'https://github.com/jglick/simple-maven-project-with-tests.git'
 // Directive 2
 mvnHome = tool 'M3'
 }

 // Stage block 2
 stage('Build') {
 // Step 2
 sh "'${mvnHome}/bin/mvn' clean install"
 }

 // Stage block 3
 stage('Results') {
 // Step 3
 junit '**/target/surefire-reports/TEST-*.xml'
 // Step 4
 archive 'target/*.jar'
 }

}

In the preceding code, note the line: node ('master') {. Here, the string master is a
parameter (label) that tells Jenkins to use the Jenkins master for running the contents of
the node block.

The New Jenkins Chapter 3

[107]

If you choose the parameter value as any, then all the stage nodes and their respective steps
and directives will be executed on any one of the available Jenkins slave agents.

We will learn more about the Declarative Pipeline in the upcoming chapters, wherein we
will try to write a CI/CD pipeline using it.

For more information about Declarative Pipeline syntax, refer
to https://jenkins.io/doc/book/pipeline/syntax/#declarative-secti
ons.
To get a list of all the available steps that are compatible with the
Declarative Pipeline, refer to https://jenkins.io/doc/pipeline/steps/.

Jenkins pipeline syntax utility
The Jenkins pipeline syntax utility is a quick and easy way to create pipeline code. The
pipeline syntax utility is available inside the Jenkins pipeline job; see the screenshot: The
pipeline section in the Creating a Jenkins pipeline job section.

In this section, we will recreate the pipeline that we created in the previous section, but this
time using the pipeline syntax utility.

Prerequisite
Before we begin, make sure you have the following things ready:

The Maven tool configured inside the Global Tool Configuration page (refer to
the The Global Tool Configuration page section)
Install Pipeline Maven Integration Plugin
The Java tool is also needed to build the Maven project, but since we are building
our code on Jenkins master (which already has Java JDK), we can skip installing
the Java tool

https://jenkins.io/doc/book/pipeline/syntax/#declarative-sections
https://jenkins.io/doc/book/pipeline/syntax/#declarative-sections
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/book/pipeline/syntax/#declarative-sections

The New Jenkins Chapter 3

[108]

Installing the Pipeline Maven Integration Plugin
Follow the given steps to install the Pipeline Maven Integration Plugin. The following
plugin will allow us to use the Maven tool inside our pipeline code:

From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins |1.
Available tab.
Type Pipeline Maven Integration inside the Filter field to search the2.
respective plugin, as shown in the following screenshot:

The Plugin Manager page

Click on the checkbox to select the respective plugin, and then click on the Install3.
without restart button to install it.
Once you click on the Install without restart button, you will see the plugin4.
getting installed, as shown in the following screenshot. Jenkins will first check for
the network connection, after which it will install the dependencies, and lastly, it
will install the plugin.

The New Jenkins Chapter 3

[109]

Some plugins might need a restart before they can be used. To do so, check the5.
option, Restart Jenkins when installation is complete and no jobs are running:

Plugin installation in progress

Creating a Jenkins pipeline using the pipeline syntax
utility
Follow the given steps to create a new Jenkins pipeline job:

From the Jenkins dashboard, click on the New Item link.1.
On the resultant page, you will be presented with various types of Jenkins jobs to2.
choose from.
Choose Pipeline, and give a name to your pipeline using the Enter an item name3.
field.
Once you are done, click on the OK button at the bottom of the page.4.
We will quickly navigate to the pipeline section by clicking on the Pipeline tab.5.

The New Jenkins Chapter 3

[110]

Under the Pipeline tab, click on the link named Pipeline Syntax. This will open6.
up a new tab, as shown in the following screenshot:

The Pipeline Syntax page

We will be using the following Snippet Generator to create pipeline code for7.
various blocks and steps.
Let us first generate a code for a node block:8.

On the Pipeline Syntax page, under the Steps section, choose node:1.
Allocate node using the Sample Step field, as shown in the following
screenshot.
In the Label field, add a string master. By doing so we tell Jenkins to2.
use the Jenkins master as the node of choice to execute our pipeline.
Click on the Generate Pipeline Script button to generate the code.3.
Copy the generated code and keep it aside on a text editor:4.

The New Jenkins Chapter 3

[111]

Generating code for the node block

Now, let us create two stage blocks named Preparation and Build:9.
On the Pipeline Syntax page, under the Steps section, choose stage:1.
Stage using the Sample Step field, as shown in the following
screenshot.
In the Stage Name field, add a string Preparation.2.
Click on the Generate Pipeline Script button to generate the code.3.
Copy the generated code and paste it inside the node block that we4.
generated earlier:

Generating code for the stage block

The New Jenkins Chapter 3

[112]

Similarly, repeat step 9 to create a stage block named Build. Paste the generated10.
code inside the node block and after the Preparation (the stage block).
Our pipeline code, so far, should look something like the following (without the11.
// some block lines):

 node('master') {

 stage('Preparation') {
 }

 stage('Build') {
 }

 }

Let us now create a step to download the source code from GitHub:12.
On the Pipeline Syntax page, under the Steps section, choose git: Git1.
using the Sample Step field, as shown in the following screenshot.
In the Repository URL field, add the link to the example GitHub2.
repository:
https://github.com/jglick/simple-maven-project-with-tes

ts.git.
Leave the rest of the options as is.3.
Click on the Generate Pipeline Script button to generate the code.4.
Copy the generated code, and paste it into the Preparation (the5.
stage block) that we generated earlier:

The New Jenkins Chapter 3

[113]

Generating code for the Git step

Next, let us generate a directive that will tell Jenkins to use the M3 Maven tool13.
that we have configured inside the Global Tool Configuration:

On the Pipeline Syntax page, under the Steps section, choose1.
withMaven: Provide Maven environment using the Sample Step
field, as shown in the following screenshot.
In the Maven field, choose M3, which is the Maven tool that we have2.
configured inside the Global Tool Configuration.
Leave the rest of the options as is.3.
Click on the Generate Pipeline Script button to generate the code.4.

The New Jenkins Chapter 3

[114]

Copy the generated code and paste it into the Build (the stage block)5.
that we generated earlier:

Generating code for the withMaven directive

Lastly, generate a pipeline code for our Maven build command:14.
On the Pipeline Syntax page, under the Steps section, choose sh: Shell1.
Script using the Sample Step field, as shown in the following
screenshot. This is a step to create a shell script.
In the Shell Script field, type mvn -Dmaven.test.failure.ignore2.
clean package, which is the Maven command to build, test, and
package the code. This will be the content of our shell script.
 Click on the Generate Pipeline Script button to generate the code.3.
Copy the generated code and paste it into the withMaven (directive)4.
that we generated earlier:

The New Jenkins Chapter 3

[115]

Generating code for the maven build

Our final pipeline script should look something like the following (without the //15.
some block lines):

 node('master') {

 stage('Preparation') {
 git 'https://github.com/jglick/
 simple-maven-project-with-tests.git'
 }

 stage('Build') {
 withMaven(maven: 'M3') {
 sh 'mvn -Dmaven.test.failure.ignore clean
 package'
 }
 }

 }

Now switch to the pipeline job configuration page.16.
Scroll to the Pipeline section and paste the preceding pipeline code inside the17.
Script field.
Click on the Save button at the bottom of the page.18.

We will see more examples in the upcoming chapters when we try to create a CI/CD
pipeline using the Declarative Pipeline syntax, utilizing the pipeline syntax utility.

The New Jenkins Chapter 3

[116]

Multibranch pipeline
In this section, we will learn about the multibranch pipeline job in Jenkins. This is one of the
new features added to Jenkins release 2.x.

The Multibranch pipeline allows you to automatically create a pipeline for each branch on
your source control repository. This is depicted in the following screenshot. A Multibranch
pipeline works using a Jenkinsfile that is stored along with your source code inside a
version control repository. A Jenkinsfile is nothing but a pipeline script that defines your
CI pipeline:

Auto-generated pipeline for a new branch

In addition to that, the Multibranch pipeline is designed to trigger a build whenever there is
a new code change on any of the branches on your Git/GitHub repository. This is depicted
in the following screenshot:

The New Jenkins Chapter 3

[117]

Usage of multibranch pipeline for continuous integration

Prerequisite
Before we begin, make sure you have the following things ready:

The Maven tool configured inside the Global Tool Configuration page (refer to
the section: The Global Tool Configuration page).
Install Pipeline Maven Integration Plugin.
The Java tool is also needed to build the Maven project, but since we are building
our code on Jenkins master (which already has Java JDK), we can skip installing
the Java tool.

The New Jenkins Chapter 3

[118]

Install GitHub plugin (already installed if you have chosen to install the
recommended plugins during the Jenkins setup wizard).
Make sure your Jenkins URL is accessible from the internet. If you are using a
staging or a development environment to perform this exercise, and your Jenkins
server doesn't have a domain name, your Jenkins server might not be accessible
from the internet. To make your Jenkins URL accessible over the internet, refer to
the Exposing your local server to the internet section in the Appendix, Supporting
Tools and Installation Guide.

Adding GitHub credentials inside Jenkins
In order to make Jenkins communicate with GitHub, we need to add GitHub account
credentials inside Jenkins. We will do this using the Jenkins Credentials Plugin. If you have
followed the Jenkins setup wizard (discussed at the beginning of the chapter), you will find
the Credentials feature on the Jenkins dashboard (see the left-hand side menu).

Follow the given steps to add the GitHub credentials inside Jenkins:

From the Jenkins dashboard, click on Credentials | System | Global credentials1.
(unrestricted).
On the Global credentials (unrestricted) page, from the left-hand side menu,2.
click on the Add Credentials link.
You will be presented with a bunch of fields to configure (see the following3.
screenshot):

Choose Username with password for the Kind field.1.
Choose Global (Jenkins, nodes, items, all child items, etc) for the2.
Scope field.
Add your GitHub username to the Username field.3.
Add your GitHub password to the Password field.4.
Give a unique ID to your credentials by typing a string in the ID field.5.
Add some meaningful description to the Description field.6.
Click on the Save button once done:7.

The New Jenkins Chapter 3

[119]

Adding GitHub credentials inside Jenkins

And that's how you save credentials inside Jenkins. We will use these GitHub4.
credentials shortly.

Configuring Webhooks on GitHub from Jenkins
Now that we have saved GitHub account credentials inside Jenkins, let's configure Jenkins
to talk to GitHub. We will do this by configuring the GitHub settings inside the Jenkins
configuration.

Carefully follow the given steps to configure GitHub settings inside Jenkins:

From the Jenkins dashboard, click on Manage Jenkins | Configure System.1.
On the resultant Jenkins configuration page, scroll all the way down to the2.
GitHub section.
Under the GitHub section, click on the Add GitHub Server button and choose3.
GitHub Servers from the available drop-down list. Doing so will display a bunch
of options for you to configure.
 Let us configure them one by one, as follows:4.

Give your GitHub server a name by adding a string to the Name field.1.
Under the API URL field, add https://api.github.com (default2.
value) if you are using a public GitHub account. Otherwise, if you are
using GitHub Enterprise, then specify its respective API endpoint.

The New Jenkins Chapter 3

[120]

 Make sure the Manage hooks option is checked:3.

Configuring the GitHub server

Click on the Advanced… button (you will see two of them; click on the4.
second one). Doing so will display a few more fields to configure.
Under the Additional actions field, click on Manage additional5.
GitHub actions and choose Convert login and password to token
from the available list (you will see only one option to choose).
 This will further disclose new fields to configure.6.
Select the From credentials option (active by default). Using the7.
Credentials field, choose the GitHub credentials that we created in the
previous section (ID: github_credentials).
Next, click on the Create token credentials button. This will generate a8.
new personal access token on your GitHub account:

Converting GitHub credentials to a token

The New Jenkins Chapter 3

[121]

To view your personal access token on GitHub, log in to your GitHub9.
account and navigate to Settings | Developer settings | Personal
access tokens:

Personal access token on GitHub

Once done, click on the Save button at the bottom of the Jenkins10.
configuration page.
 An entry of the respective personal access token will also be added11.
inside the Jenkins credentials. To view it, navigate to Jenkins
dashboard | Credentials | System | api.github.com, and you
should see a credential entry of the Kind secret text.

We are not yet done with our GitHub configuration inside Jenkins. Follow the5.
remaining steps as follows:

From the Jenkins dashboard, click on Manage Jenkins | Configure1.
System.
Scroll all the way down to the GitHub section.2.
Using the Credentials field, choose the newly generated credentials of3.
the Kind secret text (the personal access token entry inside Jenkins).
Now, click on the Test connection button to test our connection4.
between Jenkins and GitHub.

The New Jenkins Chapter 3

[122]

Once done, click on the Save button at the bottom of your Jenkins5.
configuration page:

Testing the connection between Jenkins and GitHub

We are now done with configuring GitHub settings inside Jenkins.6.

Create a new repository on GitHub
In this section, we will create a new repository on GitHub. Make sure you have Git installed
on the machine that you will use to perform the steps mentioned in the following section
(refer to the Installing Git on Windows/Linux section in the Appendix, Supporting Tools and
Installation Guide).

Follow the given steps to create a repository on GitHub:

Log in to your GitHub account.1.
To keep things simple, we will reuse the source code from the repository2.
at https:/ ​/​github. ​com/ ​jglick/ ​simple- ​maven- ​project- ​with- ​tests. ​git. This is
the repository that we have been using to create a Jenkins pipeline.
The easiest way to reuse a GitHub repository is to fork it. To do so, just access the3.
above repository from your internet browser and click on the Fork button, as
shown in the following screenshot:

Forking a GitHub project

https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git

The New Jenkins Chapter 3

[123]

Once done, a replica of the preceding repository will be visible on your GitHub4.
account.

Using a Jenkinsfile
Jenkins multibranch pipeline utilizes Jenkinsfile. In the following section, we will learn how
to create a Jenkinsfile. We will reuse the example pipeline script that we created in the
previous section to create our Jenkinsfile. Follow the given steps:

Log in to your GitHub account.1.
Navigate to the forked repository simple-maven-project-with-tests.2.
Once on the repository page, click on the Create new file button to create a new3.
empty file that will be our Jenkinsfile, as shown in the following screenshot:

Creating a new file on GitHub

Name your new file Jenkinsfile by filling the empty text box, as shown in the4.
following screenshot:

Naming your new file on GitHub

Add the following code to your Jenkinsfile:5.

 node ('master') {
 checkout scm
 stage('Build') {
 withMaven(maven: 'M3') {

The New Jenkins Chapter 3

[124]

 if (isUnix()) {
 sh 'mvn -Dmaven.test.failure.ignore clean package'
 }
 else {
 bat 'mvn -Dmaven.test.failure.ignore clean package'
 }
 }
 }
 stage('Results') {
 junit '**/target/surefire-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 }

Once done, commit the new file by adding a meaningful comment, as shown in6.
the following screenshot:

Committing your new file on GitHub

Creating a Multibranch pipeline in Jenkins
Follow the given steps to create a new Jenkins pipeline job:

From the Jenkins dashboard, click on the New Item link.1.
On the resultant page, you will be presented with various types of Jenkins jobs to2.
choose from.
Choose Multibranch Pipeline, and give a name to your pipeline using the Enter3.
an item name field.

The New Jenkins Chapter 3

[125]

Once you are done, click on the OK button at the bottom of the page.4.
Scroll to the section Branch Sources. This is the place where we configure the5.
GitHub repository that we want to use.
Click on the Add Source button and choose GitHub. You will be presented with6.
a list of fields to configure. Let us see them one by one (see the following
screenshot):

For the Credentials field, choose the GitHub account credentials (Kind1.
as Username with Password) that we created in the previous section.
Under the Owner field, specify the name of your GitHub organization2.
or GitHub user account.
The moment you do so, the Repository field will list all the repositories3.
that are on your GitHub account.
Choose simple-maven-project-with-tests under the Repository4.
field.
Leave the rest of the options at their default values:5.

Configuring the multibranch pipeline

Scroll all the way down and click on the Save button.7.

Re-register the Webhooks
Before we proceed, let us re-register the Webhooks for all our Jenkins pipelines:

To do so, from the Jenkins dashboard, click on Manage Jenkins | Configure1.
System.
On the Jenkins configuration page, scroll all the way down to the GitHub section.2.
Under the GitHub section, click on the Advanced… button (you will see two of3.
them; click on the second one).

The New Jenkins Chapter 3

[126]

This will display a few more fields and options. Click on the Re-register hooks4.
for all jobs button.
The preceding action will create new Webhooks for our multibranch pipeline on5.
the respective repository inside your GitHub account. Do the following to view
the Webhooks on GitHub:

Log in to your GitHub account.1.
Go to your GitHub repository, simple-maven-project-with-2.
tests in our case.
Click on the repository Settings, as shown in the following screenshot:3.

Repository Settings

On the Repository Settings page, click on Webhooks from the left-4.
hand side menu. You should see the Webhooks for your Jenkins server,
as shown in the following screenshot:

Webhooks on GitHub repository

The New Jenkins Chapter 3

[127]

Jenkins Multibranch pipeline in action
Follow the given steps:

From the Jenkins dashboard, click on your Multibranch pipeline.1.
 On your Jenkins Multibranch pipeline page, from the left-hand side menu, click2.
on the Scan Repository Now link. This will scan the repository for branches with
Jenkinsfile, and will immediately run a pipeline for every branch that has got a
Jenkinsfile, as shown in the following screenshot:

Pipeline for the master branch

On your Multibranch pipeline page, from the left-hand side menu, click on Scan3.
Repository Log. You will see something like that which is shown as follows.
Notice the highlighted code. You can see that the master branch met the criteria,
as it had a Jenkinsfile and a pipeline was secluded for it. There was no pipeline
scheduled for the testing branch since there was no Jenkinsfile on it:

Started by user nikhil pathania
[Mon Aug 14 22:00:57 UTC 2017] Starting branch indexing...
22:00:58 Connecting to https://api.github.com using
******/****** (credentials to access GitHub account)
22:00:58 Connecting to https://api.github.com using
******/****** (credentials to access GitHub account)
Examining nikhilpathania/simple-maven-project-with-tests

 Checking branches...

 Getting remote branches...

 Checking branch master

 Getting remote pull requests...

The New Jenkins Chapter 3

[128]

 'Jenkinsfile' found
 Met criteria
Scheduled build for branch: master

 Checking branch testing
 'Jenkinsfile' not found
 Does not meet criteria

 2 branches were processed

 Checking pull-requests...

 0 pull requests were processed

Finished examining nikhilpathania/simple-maven-project-with-
tests

[Mon Aug 14 22:01:00 UTC 2017] Finished branch indexing.
Indexing took 2.3 sec
Finished: SUCCESS

You need not always scan the repository. The GitHub Webhooks is configured to4.
trigger a pipeline automatically whenever there is a push or a new branch on
your GitHub repository. Remember, a Jenkinsfile should also be present on the
respective branch to tell Jenkins what it needs to do when it finds a change in the
repository.

Creating a new feature branch to test the multibranch
pipeline
Let us now create a feature branch out of the master branch and see if Jenkins can run a
pipeline for it:

To do so, log in to your GitHub account.1.
Go to your respective GitHub repository; in our case it's simple-maven-2.
project-with-tests.

The New Jenkins Chapter 3

[129]

Click on the Branch: master button and type a name for your new branch in the3.
empty text box. Next, click on the Create branch: feature option to create a new
branch named feature, as shown in the following screenshot:

Creating a feature branch

This should immediately trigger a pipeline inside Jenkins for our new feature4.
branch:

Pipeline for the new feature branch

The New Jenkins Chapter 3

[130]

Jenkins Blue Ocean
The Jenkins Blue Ocean is a completely new way of interacting with Jenkins. It's more of a
UI sidekick to the main Jenkins application. The following are some the features of Jenkins
Blue Ocean:

Improved visualizations
Pipeline editor
Personalization
Quick and easy pipeline setup wizard for Git and GitHub

The pipelines that you create using your classic Jenkins interface can be visualized in the
new Jenkins Blue Ocean, and vice versa. As I said earlier, Jenkins Blue Ocean is a UI
sidekick to the main Jenkins application.

In the following section, we will visualize the Jenkins pipelines that we created in the
previous section in Blue Ocean. We will also create a new pipeline, just to get a look at and
feel for the new Jenkins Blue Ocean interface.

Installing the Jenkins Blue Ocean plugin
In order to use the Jenkins Blue Ocean plugin, we need to install the Blue Ocean plugin for
Jenkins. Follow the given steps:

From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins.1.
On the Plugin Manager page, click on the Available tab.2.
Using the Filter option, search for Blue Ocean, as shown in the following3.
screenshot:

The New Jenkins Chapter 3

[131]

Installing the Jenkins Blue Ocean plugin

From the list of items, choose Blue Ocean and click on Install without restart.4.
You only need Blue Ocean and nothing else.
The dependency list for Blue Ocean is big, so you will see a lot of stuff getting5.
installed along with the Blue Ocean plugin on the Installing Plugins/Upgrades
page.

View your regular Jenkins pipeline in Blue Ocean
In this section, we will try to visualize our existing Jenkins pipelines that we have created in
the previous sections:

On the Jenkins dashboard, you should now see a new link on the left-hand side1.
menu with the name Open Blue Ocean.
Click on the Open Blue Ocean link to go to the Jenkins Blue Ocean dashboard.2.
The following is what you should see (refer to the following screenshot):

The Administration link will take you to the Manage Jenkins page.1.
The Pipelines link will take you to the Jenkins Blue Ocean dashboard2.
that you are seeing now.
The icon (arrow within a square) will take you to the classic Jenkins3.
dashboard.

The New Jenkins Chapter 3

[132]

The New Pipeline button will open up the pipeline creation wizard for4.
Git- and GitHub-based projects.
A list of pipelines (highlighted as e):5.

The Jenkins Blue Ocean dashboard

Let us have a look at our multibranch pipeline. Click on your multibranch3.
pipeline from the Jenkins Blue Ocean dashboard. Doing so will open up the
respective multibranch pipeline page, as shown in the following screenshot:

The button (highlighted as a) will take you to the pipeline1.
configuration page.
The Activity tab will list all the current and past pipelines.2.
The Branches tab will show you an aggregate view of the pipelines for3.
each branch.
The Pull Requests tab will list all the open pull requests on your4.
branches.

The New Jenkins Chapter 3

[133]

The button (highlighted as e) is used to rerun the pipeline:5.

Multibranch pipeline in Blue Ocean

Now let us see the individual build page. To do so, from the Jenkins pipeline4.
page (see the preceding screenshot), click on any of the builds, and you will be
taken to the build page of the respective pipeline, as shown in the following
screenshot:

The Changes tab will list the code changes that triggered the build.1.
The Artifacts tab will list all the artifacts that are generated by the2.
build.
The button (highlighted as c) will rerun your build.3.
The section (highlighted as d) displays some metrics about your build.4.
This Stage View (highlighted as e) will list all the sequential and5.
parallel stages.
The Steps Results section will show you all the steps of a particular6.
stage that you have selected (in the following screenshot, I have
selected the stage Results).

The New Jenkins Chapter 3

[134]

Each listed step (highlighted as g) can be expanded and its log can be7.
viewed:

Build page in Blue Ocean

This was a short overview of how your Jenkins pipeline (the one that you created using the
classic Jenkins UI) should look in Blue Ocean. It has demonstrated pretty much everything.
However, I encourage readers to keep exploring.

Creating a pipeline in Blue Ocean
In this section, we will see how to create a new pipeline from the Jenkins Blue Ocean
dashboard. We will look at the new pipeline creation wizard in Blue Ocean. Before you
begin make the following things ready:

Fork the following repository: https:/ ​/ ​github. ​com/ ​nikhilpathania/ ​hello-
world-​example. ​git into your GitHub account. We will be using it in the example
described in the following section
Install the JUnit plugin (https:/ ​/​plugins. ​jenkins. ​io/​junit) for Jenkins

https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit

The New Jenkins Chapter 3

[135]

Follow the given steps:

From the Jenkins Blue Ocean dashboard, click on the New Pipeline button.1.
Jenkins will ask you to choose between Git and GitHub. For our current exercise,
we will choose GitHub:

Choosing between Git and GitHub repositories

Next, Jenkins will ask you to provide the GitHub access token for your GitHub2.
account. Click on the Create an access key here link to create a new one:

GitHub access token field

In a new tab, you will be asked to log in to your GitHub account.3.
Once you log in, you will be taken directly to the GitHub settings page to create a4.
New personal access token.
Type a small description for the Token description field to identify your token.5.
Leave the options under the Select scopes section at their default values:

Creating a GitHub personal access token

The New Jenkins Chapter 3

[136]

Click on the Generate new token button at the bottom of the page to generate a6.
new Personal access token:

GitHub personal access token

Copy the newly created personal access token and paste it inside your GitHub7.
access token field, then click on the Connect button (see the following
screenshot).
Next, click on the listed organization:8.

Choosing the GitHub account

You can choose between New Pipeline and Auto-discover Jenkinsfiles. In the9.
following example, we will choose the New Pipeline option:

Choosing between creating and discovering pipelines

The New Jenkins Chapter 3

[137]

Next, you will be asked to choose a repository from the list of available10.
repositories on your GitHub account. You can utilize the Search… option to look
for the desired repository in case it's not listed. In our current example, we will
choose the hello-world-example repo:

Choosing a repository

The next thing Jenkins will ask you to do is create a pipeline. Since there is no11.
Jenkinsfile found on the respective repository, click on the Create Pipeline button
to create a Jenkinsfile:

Creating a new pipeline

The New Jenkins Chapter 3

[138]

The page to create a pipeline will look like that which follows. On the left-hand12.
side, you will find a visualization of your pipeline, and on the right-hand side,
you will find the utility to choose the blocks, stages, and steps (similar to the
pipeline syntax utility that we saw in the previous section):

Blue Ocean pipeline editor

Let us first choose an Agent to run our pipeline. To do so, from the Pipeline13.
Settings, using the Agent field, choose the option label. Then type master under
the Label field, as shown in the following screenshot. In this way, we are telling
Jenkins to run our pipeline on the Jenkins master:

Creating a node block

Next, let us create a stage named Build that will build our source code. To do so,14.
click on the + button, available on the pipeline visualization.

The New Jenkins Chapter 3

[139]

You will be asked to name your new stage. Do so by typing Build under the15.
Name your stage field, as shown in the following screenshot:

Creating a build stage

Next, we will add a step to build our Maven code. To do so, click on the + Add16.
step button.
You will be asked to choose from a list of available steps, as shown in the17.
following screenshot:

The step menu

Ours is a Maven project. Therefore, we might need to set up the Maven18.
environment first, to tell Jenkins which Java and Maven tool it can use.
To do so, search for Provide Maven environment using the search box (find19.
steps by name):

Choosing the provide Maven environment step

The New Jenkins Chapter 3

[140]

Not all Jenkins plugins are compatible with Jenkins Blue Ocean. The list is
still small. However, it's expected to grow over time.

When you click on the Provide Maven environment step, you will be presented20.
with a list of fields to configure, as shown in the following screenshot. Type M3
under the Maven field and leave rest of the options as is:

Configuring the provide maven environment step

At the bottom of the configuration page, click on the + Add step button to create a21.
new child step that will build our Maven code.
Choose Shell Script from the list of available steps, if your Jenkins master is a22.
Linux machine. Choose Windows Batch Script, if it's a Windows machine.
Type the following code inside the textbox for Shell Script/Windows Batch23.
Script:

 mvn clean install

Configuring the shell script child step

The New Jenkins Chapter 3

[141]

Click on the back arrow to go back to the previous menu. You should now see24.
your new step, Shell Script, listed under the Child steps section, as shown in the
following screenshot:

Shell script as one of the child steps

Click on the back arrow to go back to the previous menu.25.
Next, let us create a stage named Results, wherein we will archive our built26.
artifacts and the XML result reports. To do so, click on the + button available on
the pipeline visualization.
You will be asked to name your new stage. Do so by typing Results under the27.
Name your stage field, as shown in the following screenshot:

Creating a results stage

Next, we will add a few steps on our new stage. The first one will be a step to28.
publish our test results report. To do so, click on the + Add step button.
Choose Publish JUnit test result report from the list of available steps. You will29.
be presented with a list of options to configure:

Add **/target/surefire-reports/TEST-*.xml under the1.
TestResults field.

The New Jenkins Chapter 3

[142]

Leave the rest of the options as is:2.

Configuring the publish JUnit test result report step

Click on the back arrow to go back to the previous menu. 30.
Click on the + Add step button again to add a new step.31.
Choose Archive the artifacts from the list of available steps. You will be 32.
presented with a list of options to configure:

Add target/*.jar under the Artifacts field.1.
Leave the rest of the options as is:2.

Configuring the Archive the artifacts step

The New Jenkins Chapter 3

[143]

Click on the back arrow to go back to the previous menu.33.
Finally, click on the Save button at the top-right corner of the page to save your34.
pipeline configuration.
A pop-up window will ask you to add some Description and choose the branch35.
on which to commit the pipeline configuration.
Once done, click on the Save & run button:36.

Saving the pipeline

This will immediately run a pipeline on the respective branch, as shown in the37.
following screenshot:

A successful build on the master branch

The New Jenkins Chapter 3

[144]

You will notice that a new file has been created inside your repository under the38.
master branch:

Jenkinsfile listed inside the source code

The following should be the content of the file:39.

pipeline {
 agent {
 node {
 label 'master'
 }
 }
 stages {
 stage('Build') {
 steps {
 withMaven(maven: 'M3') {
 sh 'mvn clean install'
 }
 }
 }
 stage('Results') {
 steps {
 junit '**/target/surefire-reports/TEST-*.xml'
 archiveArtifacts 'target/*.jar'
 }
 }
 }
}

The New Jenkins Chapter 3

[145]

Summary
In the preceding chapter, we got hands-on experience of almost all of the new features in
Jenkins. We chose modest examples to keep our pipelines simple. Nevertheless, in the
upcoming chapters, we will learn to create a full-fledged CI/CD pipeline using all of the
new features in Jenkins.

In the next chapter, we will take a look at some of the administrative tasks in Jenkins.

4
Configuring Jenkins

In this chapter, we will learn how to perform some basic Jenkins administration tasks, as
follows:

Updating/installing/uninstalling/downgrading Jenkins plugins
Installing Jenkins plugins manually
Performing Jenkins backup and restore
Upgrading Jenkins on various platforms (Windows/Linux/servlet)
Upgrading Jenkins running inside a Docker container
Creating and managing users in Jenkins
Learning various authentication methods in Jenkins
Configuring various authorization methods in Jenkins

Jenkins comes with a pile of items to configure. The more plugins you install, the more
there is to configure. In this chapter, we will cover only the basic administrative tasks in
Jenkins. We will learn more about the Jenkins configuration in the upcoming chapters,
wherein we will try to add up more plugins to Jenkins in order to achieve Continuous
Integration (CI) and Continuous Delivery (CD).

The Jenkins Plugin Manager
Jenkins derives most of its power from plugins. Jenkins plugins are pieces of software that
upon installation enhance the Jenkins functionality. A plugin that is installed inside Jenkins
manifests itself as a parameter or a configurable item inside a Jenkins job or inside the
Jenkins system configuration, or event as a step under the Snippet Generator (in case it's
compatible with the Declarative Pipeline syntax).

Configuring Jenkins Chapter 4

[147]

The following screenshot shows the Jenkins system configuration. It's a setting to configure
the SonarQube tool (a static code analysis tool). The respective configuration is available
only after installing the Jenkins plugin for SonarQube:

SonarQube settings inside Jenkins system configuration

There is a special section inside Jenkins to manage plugins. In this section, we will learn
how to manage plugins using the Jenkins Plugin Manager:

From the Jenkins dashboard click on Manage Jenkins.1.
Once on the Manage Jenkins page, click on Manage Plugins. You can also access2.
the same Jenkins Plugin Manager page using the <Jenkins
URL>/pluginManager link.

You will see the following four tabs: Updates, Available, Installed, and3.
Advanced.

Configuring Jenkins Chapter 4

[148]

Updating Jenkins plugins
The Updates tab lists out all of the plugins that need an update, as shown in the following
screenshot:

Updating Jenkins plugins

To update a plugin, select it by clicking on its respective checkbox and click on the
Download now and install after restart button.

To update all plugins listed under the Update tab, click on All (available at the bottom of
the page). This will select all the plugins. Then, click on the Download now and install
after restart button to install the updates.

On the Updates tab, at the bottom of the page, you will see a button named Check now.
Click on it to refresh the list of plugins that are displayed under the Updates tab. This will
check for plugin updates.

Installing a new Jenkins plugin
The Available tab lists all plugins available for Jenkins. Plugins that are installed on your
Jenkins instance will not be listed here.

Configuring Jenkins Chapter 4

[149]

The following screenshot shows a list of available plugins for Jenkins:

The plugins are grouped based on their functionality

To install a plugin, select it by clicking on its respective checkbox. Then, at the bottom of the
page click on either the Install without restart button (to install the plugin immediately) or
on the Download now and install after restart button (the name is self-explanatory).

Just like the Updates tab, here too you will see a button named Check now. Clicking on it
will refresh the list of plugins under the Available tab.

Uninstalling or downgrading a Jenkins plugin
The Installed tab lists all the plugins currently installed on your Jenkins instance. As shown
in the following screenshot, you can see there is an option to uninstall a plugin as well as
downgrade it.

You can always choose to downgrade a plugin, in the event your Jenkins instance becomes
unstable or your CI/CD pipeline does not do well, after a plugin update:

Configuring Jenkins Chapter 4

[150]

List of installed Jenkins plugin

Configuring proxy settings in Jenkins
Under the Advanced tab, you will see a section named HTTP Proxy Configuration. This is
the place where you configure your proxy settings to allow Jenkins to fetch updates from
the internet:

HTTP Proxy Configuration settings

Leave these fields empty if your Jenkins server is not behind any firewall and has direct
access to the internet.

Configuring Jenkins Chapter 4

[151]

Jenkins uses the HTTP Proxy Configuration details when you try to install or upgrade a
Jenkins plugin. It also uses this information to update the list of Jenkins plugins available on
the Update tab and the Available tab.

To test your proxy settings, do the following:

Under the HTTP Proxy Configuration section, click on the Advanced… button.1.
Add a URL to the Test URL field and click on the Validate Proxy button.2.
You should see a message: Success, as shown in the following screenshot.3.
Click on the Submit button to save the settings:4.

Checking the proxy settings

Manually installing a Jenkins plugin
Under the Advanced tab, just after the HTTP Proxy Configuration section, you will see
another section named Upload Plugin. It provides you with the facility to install or upgrade
a Jenkins plugin.

This feature is helpful when your Jenkins instance does not have internet access and you are
in need of a new plugin or you need to upgrade an existing plugin. Imagine a situation
where you have a Jenkins instance running inside a local area network, but with no access
to the internet, or shall we say the Jenkins online plugin repository. In such cases, you will
first download the required Jenkins plugin from the online Jenkins repository, and then you
will transport it to the Jenkins master server using a removable media. And finally, you will
use the Upload Plugin section to install the required Jenkins plugin.

Let us try to install a plugin manually by following the given steps:

From a machine that has access to the internet, open the website: https:/ ​/1.
updates. ​jenkins- ​ci. ​org/ ​download/ ​plugins/ ​.

https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/

Configuring Jenkins Chapter 4

[152]

The preceding site contains the list of all plugins available for Jenkins, as shown2.
in the following screenshot:

Jenkins plugin index

In the following example, we will install a plugin named logstash.3.
On the index page, search for logstash and click on it.4.
You will see all available versions of the respective plugin. Click on the one that5.
you need (I choose to install the latest):

List of versions available for a plugin

This will download a .hpi file on your system.6.
When you download a plugin, it is also important that you download its7.
dependencies (other Jenkins plugins).
All the dependencies (Jenkins plugins) must be installed before installing the8.
desired plugin.
Copy this .hpi file (logstash.hpi) to your Jenkins server or to any machine9.
that has access to your Jenkins dashboard.

Configuring Jenkins Chapter 4

[153]

Now, log in to your Jenkins server. From the Jenkins dashboard, navigate to10.
Manage Jenkins | Manage Plugins | Advanced.
On the Advanced tab, under the Upload Plugin section, do the following (as11.
shown in the following screenshot):
Click on the Browse… button under the File field.12.
From the resultant window, upload the downloaded .hpi file.13.
Once done, click on the Upload button:14.

Manually uploading a Jenkins plugin

Jenkins will now proceed with the plugin installation.15.

Jenkins backup and restore
What happens if someone accidentally deletes important Jenkins configurations? Although
this can be avoided using stringent user permissions that we will see in the User
Administration section, imagine a situation where someone working on the Jenkins
configuration wants to restore to a previous stable Jenkins configuration.

From what we have learned so far, we know that the entire Jenkins configuration is stored
under the Jenkins home directory. It is C:\jenkins (Windows), /var/jenkins_home
(Apache Tomcat), /var/lib/jenkins (Linux). In the following section, we will learn how
to back up and restore the Jenkins configuration using a plugin, the Periodic Backup
plugin.

Configuring Jenkins Chapter 4

[154]

Installing the Periodic Backup plugin
Follow the given steps to install the Periodic Backup plugin:

From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins.1.
On the Plugin Manager page, click on the Available tab.2.
Using the Filter option, search for Periodic Backup, as shown in the following3.
screenshot:

Installing the Periodic Backup plugin

From the list of items choose Periodic Backup and click on Install without4.
restart. You only need Blue Ocean and nothing else.

Configuring the Periodic Backup plugin
We need to tell the Periodic Backup plugin what to back up, where to back up, and how
frequent to back up before we even start using it. Follow the given steps:

From the Jenkins dashboard go to Manage Jenkins | Periodic Backup Manager.1.
When you access the Periodic Backup Manager for the first time you will see the2.
following notification:

The Periodic Backup plugin has not been configured yet. Click here to
configure it.

Configuring Jenkins Chapter 4

[155]

Click on the Click here to configure it link.3.
You will be taken to the Periodic Backup Manager page, and you will find quite4.
a few options to configure. Let us see them one by one (as shown in the following
screenshot).
The Root Directory, <your Jenkins home directory>, is your Jenkins home5.
directory.
The Temporary Directory field should be a directory located on your Jenkins6.
server machine. As the name says, this directory is used as a temporary location
to perform archive/unarchive operations during the backup/restore process. It
can be any directory and should be outside Jenkins home directory.
The Backup schedule (cron) field is where you define when or how frequent to7.
make a backup. Do not leave this field empty. Note that the field accepts cron
syntax. For example, to back up daily at midnight, use the following cron syntax
without quotes: 0 0 * * *.
The Validate cron syntax button is to validate the cron that you have entered in8.
the Backup schedule (cron) field.
The Maximum backups in location field tells Jenkins not to store backups9.
greater than the number described here.
The Store no older than (days) field tells Jenkins to delete any backup that is10.
older than this value.
Under File Management Strategy, you have two options to choose from:11.
ConfigOnly and FullBackup. If you choose the ConfigOnly option, Jenkins will
back up all the .xml files from the Jenkins home directory and the config.xml
files of all the jobs. But, if you choose FullBackup, then Jenkins will back up the
whole Jenkins home directory.
Under Storage Strategy, you have three options to choose from: NullStorage,12.
TarGzStorage, and ZipStorage (with multi-volume support). You can choose the
one that suits your requirement.
Under Backup Location, you can add multiple backup locations to store your13.
backups. To do so, click on the Add Location button and choose LocalDirectory.
Next, under the Backup directory path field, add the location where you want
Jenkins to store the backup. Also, do not forget to check the Enable this location
checkbox. You can choose multiple locations and enable all of them.

Configuring Jenkins Chapter 4

[156]

Periodic Backup configurations

Creating a Jenkins backup
Now that we have configured the Periodic Backup plugin, let us run a backup to test our
settings. To do so, on the Periodic Backup Manager page, click on the Backup Now! link
available on the left-hand side menu.

You will see the notification on the Periodic Backup Manager page while the backup is in
progress as Creating backup….

Configuring Jenkins Chapter 4

[157]

Once the backup is complete, you will see it listed on the same page, as shown in the
following screenshot:

List of backup

Restoring a Jenkins backup
Let us now test restoring a Jenkins backup. But before we do that, let us make some
configuration changes to see if the restore operation works. We will do this by making some
configuration changes on the Configure System page:

From the Jenkins dashboard, click on Manage Jenkins |Configure System.1.
On the Configure System page, change the values for the following fields.2.
Change the value of the # of executors field from 2 to 5.3.
Change the value of the Quiet period field from 5 to 10.4.
Click on the Save button at the bottom of the page.5.
Now, let us restore Jenkins to a point previous to the above changes.6.
From the Jenkins dashboard, click on Manage Jenkins | Periodic Backup7.
Manager.
On the resultant page, choose the backup that we created in the previous section8.
and click on the Restore selected backup button.
You will see the following message:9.

Restoring backup…

Refresh the page, and from the Jenkins dashboard click on Manage Jenkins |10.
Configure System.
You will find the value of the # of executors field as two and the Quiet period11.
field as five.

Configuring Jenkins Chapter 4

[158]

Viewing the backup and restore logs
You can see the whole log with respect to Jenkins backup and restore. To view the details
logs, perform the following steps:

From the Jenkins dashboard, click on Manage Jenkins | System Log.1.
On the Logs page, under the Log Recorders section, click on2.
org.jenkinsci.plugins.periodicbackup.
You will find the complete log of the backup and the restore action performed3.
here, as shown in the following screenshot:

Jenkins Periodic Backup log

Configuring Jenkins Chapter 4

[159]

Upgrading Jenkins
There are two kinds of Jenkins releases: LTS Release and Weekly Release. The Jenkins Weekly
Release contains new features and bug fixes, whereas the LTS (Long Term Support) Release are
special releases that are considered stable over a period of 12 weeks. It's recommended that
you always choose an LTS Release for your Jenkins server:

Jenkins download page

Jenkins by itself notifies you when there is a newer version available (provided your Jenkins
server has access to the internet), as shown in the following screenshot:

Configuring Jenkins Chapter 4

[160]

Jenkins notification about the availability of a new version

Upgrading Jenkins running on Tomcat Server
In the following section, we will learn to update Jenkins running inside a servlet (Apache
Tomcat). Follow the given steps:

Log in to your Apache Tomcat server machine as the root user.1.
Download the latest (LTS) version of jenkins.war under the /tmp directory2.
using the following command:

 cd /tmp

 wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war

To download a specific version of Jenkins (LTS), go to the following link:
http:/ ​/ ​mirrors. ​jenkins. ​io/ ​war-​stable/ ​ and choose the desired version
of Jenkins (for example, http:/​/ ​mirrors. ​jenkins. ​io/​war- ​stable/ ​2.​73.
1/​jenkins. ​war).

To download a specific version of Jenkins (Weekly), go to the following
link: http:/ ​/ ​mirrors. ​jenkins. ​io/ ​war/ ​ and choose the desired version of
Jenkins (for example, http:/ ​/​mirrors. ​jenkins. ​io/ ​war/ ​2.​78/ ​jenkins.
war).

http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war

Configuring Jenkins Chapter 4

[161]

Before we upgrade Jenkins, it is important that we take a backup of our3.
jenkins_home directory. Refer to the Creating a Jenkins backup section.

Always run a backup of Jenkins before upgrading Jenkins.

Now, stop the tomcat service using the following command:4.

 systemctl stop tomcat

Next, go to the location where the current jenkins.war file is present. In our5.
case, it is /opt/tomcat/webapps:

 cd /opt/tomcat/webapps/

If you have chosen to use Tomcat Server solely to run Jenkins, you may
find ROOT.war instead of jenkins.war under the webapps directory.
Refer to the Installing Jenkins alone on Apache Tomcat Server section,
from Chapter 2, Installing Jenkins.

Take a backup of your existing jenkins.war or ROOT.war and place it6.
somewhere outside the webapps directory (for example, the /tmp directory):

 cp jenkins.war /tmp/jenkins.war.last.stable.version

 Or:

 cp ROOT.war /tmp/ROOT.war.last.stable.version

Now, delete the current jenkins.war or ROOT.war file inside the webapps7.
directory:

 rm –r jenkins.war

 Or:

 rm –r ROOT.war

Configuring Jenkins Chapter 4

[162]

Next, move the new jenkins.war that you have downloaded from the /tmp8.
directory to the webapps directory. If you are using Apache Tomcat Server solely
for running Jenkins, then rename the destination.war file as ROOT.war:

 mv /tmp/jenkins.war /opt/tomcat/webapps/jenkins.war

 Or:

 mv /tmp/jenkins.war /opt/tomcat/webapps/ROOT.war

Now, start the Tomcat service using the following command:9.

 systemctl start tomcat

Log in to your Jenkins instance. To confirm the Jenkins version, look at the10.
bottom-right corner of your Jenkins dashboard, where you will find a new
Jenkins version number.

Upgrading standalone Jenkins running on
Windows
Upgrading a standalone Jenkins server on Windows is a simple task. Follow the given
steps:

Download the latest jenkins.war from https:/ ​/ ​jenkins. ​io/ ​download/ ​. Or, if1.
you are looking for a particular Jenkins version that you want to upgrade to, then
download it from the following link: http:/ ​/ ​mirrors. ​jenkins. ​io/​war- ​stable/ ​.
Before we upgrade Jenkins it is important that we take a backup of our2.
jenkins_home directory. Refer to the Creating a Jenkins backup section under
the Jenkins backup and restore section.

Always run a backup of Jenkins before upgrading Jenkins.

On a Jenkins standalone instance (running on a Windows machine), the
jenkins.war file is present inside the jenkins_home directory. Hence,
backing up the jenkins_home directory is enough.

https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/

Configuring Jenkins Chapter 4

[163]

Next, stop the Jenkins service. To do that, execute services.msc from Windows3.
Run. This will open the Windows services page.
Search for the Jenkins service (usually named Jenkins). Stop the Jenkins service,4.
as shown in the following screenshot:

Stopping a Jenkins service

Or, you can also stop the Jenkins service from the Windows Command Prompt5.
(Run as administrator), using the following command:

 net stop Jenkins

 The output is as follows:

 The Jenkins service is stopping.
 The Jenkins service was stopped successfully.

Next, replace the jenkins.war file, present under C:\Program Files6.
(x86)\Jenkins\, with the newly downloaded jenkins.war file.
After replacing the jenkins.war file, start the Jenkins service from the services7.
window, as shown in the following screenshot:

Configuring Jenkins Chapter 4

[164]

Starting a Jenkins service

Or, you can also start the Jenkins service from the Windows Command Prompt8.
(Run as administrator), using the following command:

 net start Jenkins

 The output is as follows:

 The Jenkins service is starting.
 The Jenkins service was started successfully.

Log in to your Jenkins instance. To confirm the Jenkins version, look at the9.
bottom-right corner of your Jenkins dashboard, where you should see a new
Jenkins version number.

Upgrading standalone Jenkins running on
Ubuntu
In the following section, we will learn how to update Jenkins running on Ubuntu. Follow
the given steps:

Log in to your Jenkins server machine as a root user.1.

Configuring Jenkins Chapter 4

[165]

Download the latest (LTS) version of jenkins.war under the /tmp directory,2.
using the following command:

 cd /tmp

 wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war

To download a specific version of Jenkins (LTS), go to the following link:
http:/ ​/ ​mirrors. ​jenkins. ​io/ ​war-​stable/ ​ and choose the desired version
of Jenkins (for example, http:/​/ ​mirrors. ​jenkins. ​io/​war- ​stable/ ​2.​73.
1/​jenkins. ​war).

To download a specific version of Jenkins (Weekly), go to the following
link: http:/ ​/ ​mirrors. ​jenkins. ​io/ ​war/ ​ and choose the desired version of
Jenkins (for example, http:/ ​/​mirrors. ​jenkins. ​io/ ​war/ ​2.​78/ ​jenkins.
war).

Before we upgrade Jenkins, it is important that we take a backup of our3.
jenkins_home directory. Refer to the Creating a Jenkins Backup section under
the Jenkins backup and restore section.

Always run a backup of Jenkins before upgrading Jenkins.

Now, stop the jenkins service, using the following command:4.

 systemctl stop jenkins

Next, go to the location where the current jenkins.war file is present. In our5.
case, it is /usr/share/jenkins/:

 cd /usr/share/jenkins/

Take a backup of your existing jenkins.war and place it somewhere outside the6.
jenkins directory (for example, the /tmp directory):

 cp jenkins.war /tmp/jenkins.war.last.stable.version

http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war

Configuring Jenkins Chapter 4

[166]

Now, delete the current jenkins.war file inside the jenkins directory:7.

 rm –r jenkins.war

Next, move the new jenkins.war file that you have downloaded from the /tmp8.
directory to the jenkins directory:

 mv /tmp/jenkins.war /usr/share/jenkins/jenkins.war

Now, start the jenkins service using the following command:9.

 systemctl start jenkins

Log in to your Jenkins instance. To confirm the Jenkins version, look at the10.
bottom-right corner of your Jenkins dashboard, where you will find a new
Jenkins version number.

Upgrading Jenkins running on a Docker
container
In the following section, we will learn how to update a Jenkins instance running inside a
Docker container:

The following section is applicable only if you are running your Jenkins
instance using a data volume for your jenkins_home directory. See
the Running Jenkins on Docker, Running a Jenkins container using a data
volume sections from the Chapter 2, Installing Jenkins.

Log in to your Docker host machine.1.
Look for the running Jenkins container, using the following command:2.

 sudo docker ps --format "{{.ID}}: {{.Image}} {{.Names}}"

The output is as follows:

 d52829d9da9e: jenkins/jenkins:lts jenkins_prod

Configuring Jenkins Chapter 4

[167]

You should get an output similar to the previous snippet. Note the Jenkins3.
container name, in my example it is jenkins_prod.
We will stop and then delete the running Jenkins container using the following4.
Docker commands. But, before you stop and delete your Jenkins instance, make
sure that there is no job running on your Jenkins server:

 sudo docker stop <your jenkins container name>
 sudo docker rm <your jenkins container name>

List the available Docker images on your Docker host, using the following5.
command. You can see we have a Jenkins Docker image:
jenkins/jenkins:lts. However, that is no longer the latest:

 sudo docker images

 The output is as follows:

 REPOSITORY TAG IMAGE ID CREATED SIZE
 jenkins/jenkins lts 6376a2961aa6 7 weeks ago 810MB
 hello-world latest 1815c82652c0 3 months ago 1.84kB

Download the latest Jenkins Docker image, using the following command:6.

 sudo docker image pull jenkins/jenkins:2.73.1

The aforementioned command may take a while to download the Jenkins
Docker image.

At the time of writing this chapter, 2.73.1 was the latest Jenkins release
(LTS). Choose the desired version of Jenkins by modifying the command.

Once the download is completed, execute the sudo docker images7.
command again, as shown in the following segment. Note the new Jenkins
Docker image. In my example, it is jenkins/jenkins:2.73.1:

 sudo docker images

Configuring Jenkins Chapter 4

[168]

The output is as follows:

 REPOSITORY TAG IMAGE ID CREATED SIZE
 jenkins/jenkins 2.73.1 c8a24e6775ea 24 hours ago 814MB
 jenkins/jenkins lts 6376a2961aa6 7 weeks ago 810MB
 hello-world latest 1815c82652c0 3 months ago 1.84kB

Now let us start a new Jenkins container using the newly downloaded Jenkins8.
Docker image (we will reuse the old Jenkins container name):

 sudo docker run -d --name jenkins_prod \
 -p 8080:8080 -p 50000:50000 \
 -v jenkins-home-prod:/var/jenkins_home \
 jenkins/jenkins:2.73.1

The following table explains the Docker commands that we used before:9.

docker Used to invoke Docker utility.

run It's a Docker command to run a container.

-d This option runs the container on the backend.

--name This option gives a name to your container.

-p This option is used to map a container's port with the host.

jenkins/jenkins:2.73.1
The name of the Docker image and its version used to create
a container. jenkins/jenkins is the Jenkins Docker image
and 2.73.1 is a particular version of that image.

Log in to your Jenkins instance. You should see all your jobs/settings intact. To10.
confirm the Jenkins version, look at the bottom-right corner of your Jenkins
dashboard, where you will find a new Jenkins version number.

User administration
Let's see what Jenkins has to offer in the area of user administration. From the Jenkins
dashboard, click on Manage Jenkins | Configure Global Security to access the Configure
Global Security page.

Configuring Jenkins Chapter 4

[169]

You can also access the Configure Global Security page by using
the <Jenkins URL>/configureSecurity/ link.

In the following section, we will stick to the options that are related to user authentication
and permissions. We will look at the other security options in the upcoming chapters.

Enabling/disabling global security on Jenkins
Once on the Configure Global Security page, you will see that the Enable security option
is already enabled. The Enable security option should always be on; disabling it will make
Jenkins accessible to anyone who has the Jenkins URL, with no restrictions of any kind.

Enabling/disabling computers to remember user
credentials
When users try to access Jenkins, they are offered an option to be remembered on their
respective computers, as shown in the following screenshot:

Remember me on this computer option

This behavior is enabled by default. To disable this feature, tick the Disable remember me
option available under the Configure Global Security page.

Configuring Jenkins Chapter 4

[170]

Authentication methods
Jenkins offers a variety of authentication methods to choose from. The following is a list of
available options:

Delegate to servlet container
Jenkins' own user database
LDAP
Unix user/group database

Jenkins' authentication methods

The Jenkins' own user database option is enabled by default. The initial users that we
created during the Jenkins setup wizard are all stored under the Jenkins' own user
database. There is no actual database of any kind, and all user information is saved as XML
files. Let us take a quick look at each of the authentication methods.

Delegating to a servlet container
This option can be used only when you are running your Jenkins server from a servlet
container, such as Apache Tomcat and so on. Enabling this option will allow Jenkins to
authenticate users using the servlet containers’ realm.

For example, in the Configure the Apache Tomcat Server sub-section under the Running Jenkins
inside a servlet container section from the Chapter 2, Installing Jenkins, we modified the
tomcat-user.xml file to create users and access. That is an example of
the UserDatabaseRealm.

That means, if your Jenkins server is running on Apache Tomcat server and you have
configured the UserDatabaseRealm, then all users defined in the tomcat-user.xml file
will be able to access Jenkins.

Configuring Jenkins Chapter 4

[171]

Refer to the following website to see all types of realms supported by
Apache Tomcat: http:/ ​/ ​tomcat. ​apache. ​org/ ​tomcat- ​8. ​0-​doc/ ​realm-
howto. ​html#Standard_ ​Realm_ ​Implementations. ​

Jenkins' own user database
This option is enabled by default. Under this scheme, Jenkins stores all the user information
inside XML files. This option is good for small organizations or if you are exploring Jenkins
and are yet to make it a part of your organization.

There is also an option to allow users to sign up at the login page. To enable it, tick the
Allow users to sign up option available under Jenkins' own user database.

This will enable a link named Create an account at the Jenkins login page, as shown in the
following screenshot:

Allow user to sign up option

As a new user, when you click on the Create an account link you will be asked to fill in
some basic details about yourself, such as username, password, email, full name, and so on.
Once you are done filling in the necessary information you will be allowed to access
Jenkins.

What you as a new user are allowed to see/do on Jenkins depends on the Authorization
settings inside Jenkins. We will learn about the Authorization settings later in the current
chapter.

http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations

Configuring Jenkins Chapter 4

[172]

LDAP
This is one of the most widely used authentication methods in most organizations. If you do
not see the LDAP option listed under the Access Control | Security Realm section, then
check for the LDAP plugin.

The following option, as shown in the following screenshot allows Jenkins to authenticate
users using an LDAP server. Contact the IT administration team in your organization to
provide the LDAP server details (if your organization uses LDAP).

For more information about the LDAP configuration, refer to the LDAP
plugin page: https:/ ​/ ​wiki. ​jenkins. ​io/ ​display/ ​JENKINS/ ​LDAP+Plugin.

https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin

Configuring Jenkins Chapter 4

[173]

Unix user/group database
The following option works if Jenkins is installed on a Unix/Linux machine. When enabled,
Jenkins delegates the authentication to the underlying OS. In other words, all users/groups
that are configured on the underlying OS get access to Jenkins.

You need not configure anything inside Jenkins to make this option work. However, all
users on the underlying OS should have access to the /etc/shadow file.

Use the following command to make the /etc/shadow file accessible to all users:

sudo chmod g+r /etc/shadow

Creating new users inside Jenkins
The following section is only applicable if you are using Jenkins' own user database as the
Authentication method. Perform the following steps to manually add users to your Jenkins
server.

From the Jenkins dashboard, click on Manage Jenkins | Manage Users.1.
On the Manage Users page, from the left-hand side menu, click on Create User.2.
On the resultant page, you will be asked to provide some basic information about3.
the user, as shown in the following screenshot:

Creating a user in Jenkins

Fill the fields with appropriate values and click on the Create User button.4.

Configuring Jenkins Chapter 4

[174]

The Manage Users link is only available if you are using Jenkins' own
user database as the Authentication method.

People page
The People page displays all users that have access to the Jenkins server, as shown in the
following screenshot:

The Jenkins People page

User information and settings in Jenkins
Click on any particular user ID or name (see the following screenshot) to get information
about the respective user. You will be taken to the users' Status page, as seen in the
following screenshot:

The users' Status page

Configuring Jenkins Chapter 4

[175]

On the users' Status page you will see the following options on the left-hand side menu:
Status, Builds, Configure, My Views and Credentials. Let us explore some of them in
detail:

The Builds page will display information about all the Jenkins builds that were
run by the current user.
The My Views page will take you to the views that are accessible by the current
user. If no views are configured for the current user, then the My Views page will
show the default All view (Jenkins dashboard).
The Credentials link will take you to the Credentials page. However, the
Credentials page will display additional information with respect to the current
user, as shown in the following screenshot:

Jenkins credentials scoped to a user

Authorization methods
Jenkins offers a variety of authorization methods to choose from. The following is a list of
available options:

Anyone can do anything
Legacy mode
Logged-in users can do anything
Matrix-based
Project-based Matrix Authorization Strategy

Configuring Jenkins Chapter 4

[176]

The Logged-in users can do anything option is enabled by default. Let us take a quick look
at each of the authorization methods.

To access the Jenkins Authorization settings, from the Jenkins dashboard navigate to
Manage Jenkins | Configure Global Security | Access Control.

Anyone can do anything
When you choose this option, Jenkins does not perform any authorization. Anyone who has
access to Jenkins gets full control, including anonymous users. This option is not
recommended.

Legacy mode
When you choose this option, Jenkins behaves the way it used to be before release 1.164. In
simple terms, Jenkins will look for a user named Admin (irrespective of the Authentication
method you use). This Admin user will be provided administrative privilege, and the rest of
the users will be treated as anonymous users. This option is again not recommended.

Logged-in users can do anything
This is the default authentication setting that Jenkins comes with when you install and set
up a new Jenkins server. The name is self-explanatory, that is, logged-in users are
administrators by default. Again, this option is not recommended.

Under the Logged-in users can do anything field, there is an option named Allow
anonymous read access (disabled by default). When this option is ticked (enabled), anyone
who has access to the Jenkins URL will be straight away taken to the Jenkins dashboard
with read-only access to all Jenkins jobs. However, you are required to log in in order to
edit a Jenkins job or view Jenkins' configuration.

Configuring Jenkins Chapter 4

[177]

Matrix-based security
This is one of the most widely used Authorization methods in Jenkins. Let us explore it in
detail by performing the following steps:

Enable the Matrix-based security authorization method by selecting it. You will1.
be presented with the following matrix:

Matrix-based security configurations

From the previous screenshot, you can see the columns represent various items in2.
Jenkins and the rows represent various users. At the bottom of the matrix there is
an option to add users.
Let us add some users and provide them some permissions.3.
To add a user, enter the exact username of the user in the User/group to add4.
field, and click on the Add button.
You can see from the following screenshot that I have added four users (refer to5.
the People page section to see the list of users that you can add in here). If you are
using Jenkins' own user database then create a few users (refer to the Creating
new users inside Jenkins section):

Adding users to the matrix

Configuring Jenkins Chapter 4

[178]

Now, let us give them some permissions by selecting the appropriate checkbox.6.
You can see from the following screenshot that I have given full access to the user
jenkins_admin. The users jenkins_developer and jenkins_tester have
been given access to read and execute Jenkins jobs, and the jenkins_user user
has been given only read access:

Providing permissions using the Matrix

Leave the rest of the settings as they are and click on the Save button at the7.
bottom of the page.
To check the configuration, log in as each user and confirm what you see on the8.
Jenkins dashboard.

Project-based Matrix Authorization Strategy
In the previous section, we saw the matrix-based security authorization feature, which gave
us a good amount of control over the users and permissions.

However, imagine a situation where your Jenkins server has grown to a point where it
contains hundreds of Jenkins jobs and many users, and you want to control user
permissions at the job level (project level).

Configuring Jenkins Chapter 4

[179]

In such a case, we need the Project-based Matrix Authorization Strategy:

User permission at job level

Let us learn how to configure the Project-based Matrix Authorization Strategy. Perform
the following steps:

To access the Jenkins Authorization settings, from the Jenkins dashboard1.
navigate to Manage Jenkins | Configure Global Security | Access Control.
Select the Project-based Matrix Authorization Strategy option. You will be2.
presented with the following matrix:

Project-based Matrix Authorization Strategy configurations

For now, add a user and give it full permissions. To add a user, type the exact3.
username of the user in the User/group to add field, and click on the Add button.

Configuring Jenkins Chapter 4

[180]

You can see from the following screenshot that I have added the user4.
jenkins_admin with full permissions:

Adding users to the matrix

Leave the rest of the settings as they are and click on the Save button at the5.
bottom of the page.
Next, from the Jenkins dashboard right-click on any of the Jenkins jobs and select6.
Configure.
Once on the Jobs Configuration page, scroll all the way down to the Enable7.
project-based security option and enable it.
The moment you enable the project-based security, a matrix table will appear, as8.
shown in the following screenshot:

Project-based security configurations inside Jenkins job

Let us add some users and provide them some permissions.9.
To add a user, enter the exact username of the user in the User/group to add10.
field, and click on the Add button.

Configuring Jenkins Chapter 4

[181]

You can see from the following screenshot that I have added the user11.
jenkins_developer with some permissions:

Providing permissions using the Matrix

Once done, click on the Save button at the bottom of the page.12.
Now log in as the user that you have just given permissions to for the respective13.
Jenkins job (in our example it is jenkins_developer).
You will find that the user can only see the Jenkins job that it has permission to14.
access.
Similarly, you can configure user permissions on each and every job that you15.
create in Jenkins.

Summary
In this chapter, we saw how to configure some of the basic but important elements in
Jenkins, all with the help of some practical examples. Jenkins upgrade, Jenkins backup, and
Jenkins user management are some of the important things we learned in this chapter.

The next chapter is all about the Jenkins master-slave architecture and the
Jenkins Distributed Build System.

5
Distributed Builds

Jenkins' master-slave architecture makes it easy to distribute work across multiple slave
machines. This chapter is all about configuring Jenkins slaves across various platforms. The
following are the topics that we will cover:

An overview of the Jenkins node manager
Installing a Jenkins slave on a standalone Linux machine
Installing a Jenkins slave on a standalone Windows machine
Installing and configuring the Docker plugin for creating on-demand Jenkins
slaves

Distributed build and test
In the following section let us learn a little bit about the distributed build and testing.
Imagine you have a really fat unit test or integration test suite. If you can divide them in
small parts then you can run them in parallel. To run them in parallel you need multiple
clones of your build/test machines. If you have them in place either using Docker or using
some other mechanism, then the remaining thing to do is to make them a Jenkins slave
agent.

The following illustration shows how a Jenkins pipeline to build, unit test and integration
test utilizes the distributed build/test farm in Jenkins. You can see, we have two categories
of Jenkins slave agents: Standalone Jenkins slave for build and unit test, and standalone
Jenkins slave for integration test.

Distributed Builds Chapter 5

[183]

The unit testing is distributed across three Jenkins slave agents for build and unit
test (category 1), and the integration testing is distributed across two Jenkins slave agents
for integration testing (category 2).

Distributed build and testing farm using Jenkins standalone slave agents

The Jenkins slave agents are categorized using labels. We will learn more about labels in
the up-coming sections.

It is also much better and easy to spawn on demand Jenkins slaves using Docker. Shown as
follows is the Docker version of the same concept that we discussed previously. Here the
Jenkins slave are created on demand using the Docker images.

You can see in the following illustration, we have two types of Docker images: Docker
image for build and unit test, and Docker image for integration test. The Docker slave
agents are created using these Docker images. The unit testing is distributed across three
Docker slave agents for build and unit test (category 1), and the integration testing is
distributed across two Docker slave agents for integration testing (category 2).

Again here the Docker slave agents are categorized using labels. We will learn more about
labels in the up-coming sections:

Distributed Builds Chapter 5

[184]

Distributed build and testing farm using Jenkins and Docker slave agents

The Jenkins Manage Nodes page
In the following section, we will take a look at the Jenkins Manage Nodes page:

From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.1.
On the left-hand side, you will see a menu; the options are as explained in the2.
following screenshot:

Jenkins Manage Nodes page

Distributed Builds Chapter 5

[185]

On the right-hand side, you will also see a table showing the list of available3.
Jenkins slaves, as shown in the following screenshot:

List of available nodes

Since we haven't configured any Jenkins slaves yet, the list (as shown in the4.
preceding screenshot) contains only one entry: that is, master.
Along with the node's Name, the table also displays other useful information5.
about the node, such as its Architecture, the amount of Free Disk Space, and
the Response Time.
To enable/disable the amount of information being displayed about each node,6.
click on the Configure link (see the Jenkins Manage Nodes page screenshot). This
will take you to the next page, as shown in the following screenshot:

Preventive Node Monitoring options

Distributed Builds Chapter 5

[186]

Uncheck/Check the relevant options to disable/enable them. The Free Space7.
Threshold option is important. If the amount of Free Disk Space and Free Temp
Space goes below the specified value (by default it's set to 1GB), then the nodes
go offline. This prevents the Jenkins pipeline from running on slaves that have
run out of disk space and eventually failing.

Adding Jenkins slaves – standalone Linux
machine/VMs
In the following section, we will try to add a standalone Linux machine as a Jenkins slave.
Make sure you have Java installed on your soon-to-be Jenkins slave machine. Follow the
given steps:

From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.1.
From the left-hand side menu, click on New Node. On the resultant page you2.
will be asked to provide a name for your node and choose the type, as shown in
the following screenshot:

Adding a name and choosing the agent type (type of slave)

Add a meaningful name under the Node name field and choose the agent type.3.
For now, there is only one type of agent to choose from: that is, Permanent
Agent. These are the types of agents that are mainly physical machines and VMs.
Click on the OK button to proceed.4.

Distributed Builds Chapter 5

[187]

On the resultant page, you will see the following options to configure, as shown5.
in the following screenshot:

Jenkins slave configuration

Let's see them one by one:

We already used the Name field to give a name to our Jenkins slave.1.
Use the Description field to add some notes about the Jenkins slave: for example,2.
purpose, type, what it can build or test, and tools installed.
The # of executors field is used to describe the number of parallel builds a Jenkins3.
slave (agent) is allowed to run. Choosing a value greater than 1, say 3, will allow
the Jenkins slave to run three builds in parallel. This could also result in each
build taking more time than usual. Choose wisely.

Distributed Builds Chapter 5

[188]

The Remote root directory field is used to define a directory path on the Jenkins4.
slave that will serve as a dedicated workspace for Jenkins to perform build
activities.
The Labels field is the most important. You can add multiple labels (separated by5.
a space) to your Jenkins slave. In order to run a pipeline on a particular slave you
will use its label, as shown in the preceding screenshot. We have added a maven-
build-1 label, which says it's a Jenkins slave to build a Maven project.
The Usage field is used to define how Jenkins schedules build on this node. It6.
contains two options, as follows:

Use this node as much as possible: This is the default option. This
mode makes the current Jenkins slave open to all the pipelines that
haven't been configured to run on a specific Jenkins slave.
Only build jobs with label expressions matching this node: In this
mode, Jenkins will only build a project on this node when that project
is restricted to certain nodes using a label expression, and that
expression matches this node's name and/or labels.

The Launch method field describes how Jenkins starts this Jenkins slave. It7.
contains four options, shown as follows. In the following example, we will use
the SSH method to launch our Jenkins slave. See the Launching a Jenkins slave via
SSH section:

Launch agent via Java Web Start: This allows an agent to be launched
using Java Web Start. In this case, a Java Network Launch Protocol
(JNLP) file must be opened on the agent machine, which will establish
a TCP connection to the Jenkins master. If you have enabled security
via the Configure Global Security page, you can customize the port on
which the Jenkins master will listen for incoming JNLP agent
connections.
Launch agent via execution of command on the master: This starts an
agent by having Jenkins execute a command from the master. Use this
when the master is capable of remotely executing a process on another
machine, for example, via SSH or remote shell (RSH).
Launch slave agents via SSH: This starts a slave by sending
commands over a secure SSH connection. The slave needs to be
reachable from the master, and you will have to supply an account that
can log in on the target machine. No root privileges are required.
Let Jenkins control this Windows slave as a Windows service: This
starts a Windows slave by a remote management facility built into
Windows. It is suitable for managing Windows slaves. Slaves need to
be IP reachable from the master.

Distributed Builds Chapter 5

[189]

The Availability field defines how Jenkins starts, stops, and uses the Jenkins8.
slaves. It has three options, as follows:

Keep this agent online as much as possible: In this mode, Jenkins will
keep this agent online as much as possible. If the agent goes offline, for
example, due to a temporary network failure, Jenkins will periodically
attempt to restart it.
Take this agent online and offline at specific times: In this mode,
Jenkins will bring this agent online at the scheduled time(s), remaining
online for a specified amount of time. If the agent goes offline while it
is scheduled to be online, Jenkins will periodically attempt to restart it.
After this agent has been online for the number of minutes specified in
the Scheduled Uptime field, it will be taken offline. If Keep online
while builds are running is checked, and the agent is scheduled to be
taken offline, Jenkins will wait for any builds that may be in progress
to be completed.
Take this agent online when in demand, and offline when idle: In
this mode, Jenkins will bring this agent online if there is demand, that
is, if there are queued builds that meet the following criteria: They have
been in the queue for at least the specified In demand delay time
period
They can be executed by this agent (for example, have a matching label
expression)

 This agent will be taken offline if:

There are no active builds running on this agent
This agent has been idle for at least the specified Idle delay
time period

Passing environment variables to Jenkins slaves
Follow the given steps to pass the environment variables:

You will see a section named Node Properties. Using these options, you can pass1.
predefined environment variables to the Jenkins slaves and tools locations.
As shown in the following screenshot, you can pass environment variables to the2.
Jenkins slaves. It is possible to pass multiple environment variables (by clicking
on the Add button). These environment variables are available to the Jenkins
pipeline during its execution:

Distributed Builds Chapter 5

[190]

Passing environment variables to the Jenkins slaves

With the advent of Pipeline as Code feature in Jenkins, it is possible to
define and use environment variables right within the Jenkins pipeline
code (pipeline script/Jenkinsfile). Therefore, the option of defining
environment variables (as demonstrated in the preceding screenshot)
become less significant.

Passing tools' locations to Jenkins slaves
As shown in the following screenshot, you can specify the location of certain tools on the
Jenkins slave, overriding the global configuration:

Passing tools' locations to the Jenkins slaves

Distributed Builds Chapter 5

[191]

Launching a Jenkins slave via SSH
To launch the slave via SSH, follow these steps:

When you choose the Launch slave agents via SSH option, you are presented1.
with options, as shown in the following screenshot.
The Host field is where you can define the IP address or the hostname of the2.
Jenkins slave machine.
The Credentials field allows you to choose the relevant credentials saved inside3.
Jenkins to authenticate the Jenkins slave. To create a new credential, click on the
Add button beside the Credentials field (create a credential of the Kind:
Username with password):

Configure Launch slave agent via SSH properties

The user that you use to authenticate the Jenkins slave should have
read/write permissions for the directory path defined under the Remote
root directory field.

Distributed Builds Chapter 5

[192]

The last option, Host Key Verification Strategy, defines how Jenkins verifies the4.
SSH key presented by the remote host while connecting. This option is valid only
when using credentials of the Kind: SSH username with private key. There are
four options available, as follows:

Known hosts file Verification Strategy: This checks the known_hosts
file (~/.ssh/known_hosts) for the user Jenkins is executing under, to
see if an entry exists that matches the current connection. This method
does not make any updates to the known_hosts file, instead it uses the
file as a read-only source and expects someone with suitable access to
the appropriate user account on the Jenkins master to update the file as
required, potentially using the ssh hostname command to initiate a
connection and update the file appropriately.
Manually provide key Verification Strategy: This checks that the key
provided by the remote host matches the key set by the user who
configured this connection.
Known trusted key Verification Strategy: This checks that the remote
key matches the key currently marked as trusted for this host.
Depending on the configuration, the key will be automatically trusted
for the first connection, or an authorized user will be asked to approve
the key. An authorized user will be required to approve any new key
that gets presented by the remote host.
Non verifying Verification Strategy: This does not perform any
verification of the SSH key presented by the remote host, allowing all
connections regardless of the key they present.

Once you are done configuring all the options, click on the Save button.5.

More about the active Jenkins slave
In the following section, we will take a look at the various other configurable options
available to us for the Jenkins slave agent that we have just added. Jenkins also provides a
lot of general information about its slaves that we will see here. Follow these steps:

From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.1.
On the right-hand side you will also see a table showing the list of available2.
Jenkins slaves. New to the list will be our newly added Jenkins slave.
Click on the Jenkins slave name to access its configurations and metadata.3.

Distributed Builds Chapter 5

[193]

On the resultant page (Jenkins slave Status page), on the left-hand side menu you4.
will see a few options, as shown in the following screenshot:

Jenkins slave page

Most of the preceding links (from the preceding screenshot) are self-explanatory.5.
However, let's look at some of them in detail.
The Log link is where you will find all the logs with respect to the Jenkins slave.6.
After adding a Jenkins slave, if it does not come online, the Log is where you
need to look. Authentication issues, permission issues, and everything else while
connecting to the Jenkins slaves gets listed here. See the following screenshot:

Jenkins slave logs

Distributed Builds Chapter 5

[194]

The System Information link will show you most of the system information7.
about the respective Jenkins slave, such as System Properties, and Environment
Variables. See the preceding screenshot. You won't be visiting here frequently.
Nevertheless, it's useful when debugging build errors caused due to system tools,
environment variables, and so on:

Jenkins slave System Information

The Build History link will show you a timeline of all the builds that were8.
performed on the respective Jenkins slave.
On the Jenkins slave Status page, you will see the labels that are attached to the9.
respective Jenkins slave and, also, information about the projects that are
associated with the following Jenkins slave. See the following screenshot:

Jenkins slave Status page

Distributed Builds Chapter 5

[195]

There is an option to make the Jenkins slave temporarily offline by clicking on the10.
Mark this node temporarily offline button. When you click on the button, you
will be asked to add a note (optional) before taking the Jenkins slave offline:

Making a Jenkins slave offline

To bring the offline node back online, from the Jenkins Status page, click on the11.
Bring this node back online button:

Bringing a Jenkins slave online

Distributed Builds Chapter 5

[196]

Adding Jenkins slaves – standalone
Windows machine/VMs
In the following section, we will try to add a standalone Windows machine as a Jenkins
slave. Make sure you have Java installed on your soon-to-be Jenkins slave machine. Follow
the given steps:

From the left-hand side menu, click on New Node. On the resultant page, you1.
will be asked to provide a name for your node and choose the type, as shown in
the following screenshot:
From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.2.

Adding a name and choosing the agent type (type of slave)

Add a meaningful name under the Node name field and choose the agent type as3.
Permanent Agent. These are the types of agents that are mainly physical
machines and VMs. Also, there is an option to clone an existing Jenkins slave. To
do so, choose the Copy Existing Node option and under the Copy from field,
enter the name of the Jenkins slave source.
In the following example however, we will choose the Permanent Agent option.4.
Click on the OK button to proceed.5.

Distributed Builds Chapter 5

[197]

On the resultant page, you will see the following options to configure, as shown6.
in the following screenshot. We have already seen them before:

Jenkins slave configurations

Since this is a Windows build agent, there are two ways we can launch the7.
Jenkins slave, as shown here:

Launch agent via Java Web Start: This allows an agent to be launched
using Java Web Start. In this case, a JNLP file must be opened on the
agent machine, which will establish a TCP connection to the Jenkins
master. If you have enabled security via the Configure Global
Security page, you can customize the port on which the Jenkins master
will listen for incoming JNLP agent connections.
Let Jenkins control this Windows slave as a Windows service: This
starts a Windows slave by a remote management facility built into
Windows. It is suitable for managing Windows slaves. Slaves need to
be IP reachable from the master.

Distributed Builds Chapter 5

[198]

Launching a Jenkins slave via Java Web Start
In the following section, we will learn how to launch a Jenkins slave on Windows using the
Java Web Start method.

For the Launch method field, choose Launch agent via Java Web Start.1.
Click on the Save button.2.
From the Jenkins Manage Nodes page, click on the Jenkins slave name. In our3.
example it's standalone-windows-slave.
On the resultant page (Jenkin slave Status page), you will see the following4.
options, as shown here:

Jenkins slave connection method (Java Web Start)

Do nothing on the Jenkins server.5.
Now, log in to your prospective Jenkins slave machine (Windows) and open the6.
Jenkins dashboard.
From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.7.
From the Jenkins Manage Nodes page, click on the Jenkins slave name. In our8.
example it's standalone-windows-slave.
Now, either run the command, as shown in the following screenshot, or click on9.
the Launch button.

Distributed Builds Chapter 5

[199]

If you choose to click on the Launch button, you will see the following pop-up10.
window, as shown in the following screenshot:

Opening the slave-agent.jnlp file

Choose as the Open with option the Java(TM) Web Start Launcher (default)11.
option, and click on the OK button.
You will get another pop-up window, asking you to confirm that you would like12.
to run this application. Click on Run, as shown in the following screenshot:

Running the Jenkins Remoting Agent

Distributed Builds Chapter 5

[200]

Finally, you will see a small window showing the Jenkins slave connection status13.
as Connected, as shown in the following screenshot:

Jenkins slave agent window

Your Jenkins slave (Windows) is now connected. To make it a Windows service,14.
click on File (previous screenshot), and choose Install as a service.
Open the Run utility and give the command services.msc to open the15.
Windows Services utility. In the list of services, you will find the Jenkins slave
agent service, as shown in the following screenshot:

Jenkins slave listed as a Windows service

Right-click on the Jenkins slave Windows service and choose Properties.16.

Distributed Builds Chapter 5

[201]

In the Properties window, go to the Log On tab. Under the Log on as section,17.
choose the This account option, and provide the administrator account details (a
user with admin privileges on the Jenkins slave machine), as shown in the
following screenshot:

Jenkins slave service properties

Your Jenkins slave (on Windows) is now installed.18.

Adding Jenkins slaves – Docker containers
In the following section, we will learn how to install and configure the Docker plugin that
will allow us to spawn on-demand Jenkins slaves (Docker containers) from a CI pipeline.
The Docker containers are started by the CI pipeline, and once the build is done, they are
destroyed. In the following section, we will only see the configuration part. It is in the next
chapter that we will see this process in action.

Prerequisites
Before we begin, make sure you have the following things ready:

A Jenkins server running on any of the following platforms: Docker, standalone,
cloud, VM, servlet container, and so on. (refer to Chapter 2, Installing Jenkins).

Distributed Builds Chapter 5

[202]

Your Jenkins server should have access to the internet. This is necessary to
download and install plugins.
Your Jenkins server can talk to GitHub using the GitHub plugin. (Refer to the
Add GitHub credentials inside Jenkins and Configure Webhooks on GitHub from Jenkins
sections from Chapter 3, The New Jenkins).
You might also need Java, Git, and Maven configured on your Jenkins server.
(Refer to the The new Jenkins pipeline job subsection under the The Global Tool
Configuration page section of Chapter 3, The New Jenkins).
A Docker server.

Setting up a Docker server
To install Docker, you need a machine with any one of the following Ubuntu OSes (64-bit):
Yakkety Yak 16.10, Xenial Xerus 16.04, or Trusty Tahr 14.04. Make sure curl is also
installed. Follow the steps given to set up a Docker server.

Setting up the repository
Follow the given steps to set up a repository:

Execute the following command to let apt use a repository:1.

 sudo apt-get install apt-transport-https ca-certificates

Add the Docker's official GPG key using the following command:2.

 curl -fsSL https://yum.dockerproject.org/gpg | sudo apt-key add -

Verify that the key ID is exactly3.
58118E89F3A912897C070ADBF76221572C52609D, using the following
command:

 apt-key fingerprint 58118E89F3A912897C070ADBF76221572C52609D

You should see a similar output:4.

 pub 4096R/2C52609D 2015-07-14
 Key fingerprint = 5811 8E89 F3A9 1289 7C07 0ADB F762 2157 2C52 609D
 Uid Docker Release Tool (releasedocker) docker@docker.com

Distributed Builds Chapter 5

[203]

Use the following command to set up a stable repository to download Docker:5.

 sudo add-apt-repository \
 "deb https://apt.dockerproject.org/repo/ubuntu-$(lsb_release -cs) \
 main"

It's recommended to always use the stable version of the repository.

Installing Docker using apt-get
Now that you have set up the repository, perform the following steps to install Docker:

Update the apt package index using the following command:1.

 sudo apt-get update

To install the latest version of Docker, execute the following command:2.

 sudo apt-get -y install docker-engine

However, if you wish to install a specific version of Docker, execute the following3.
command:

 apt-cache madison docker-engine

This will give you a list of available versions:4.

 docker-engine | 1.16.0-0~trusty |
 https://apt.dockerproject.org/repo
 ubuntu-trusty/main amd64 Packages
 docker-engine | 1.13.3-0~trusty |
 https://apt.dockerproject.org/repo
 ubuntu-trusty/main amd64 Packages

The output of the preceding command depends on the type of repository
configured in the previous section, Setting up the repository.

Next, execute the following command to install the specific version of Docker:5.

 sudo apt-get -y install docker-engine=<VERSION_STRING>

Distributed Builds Chapter 5

[204]

 Example: sudo apt-get -y install docker-engine=1.16.0-0~trusty

The docker service starts automatically. To verify whether Docker is installed6.
and running, run the following command:

 sudo docker run hello-world

If the preceding command runs without any errors, and you see a hello world7.
message, it means Docker is installed and running.

 Hello from Docker!
 This message shows that your installation appears to be
 working correctly.

Installing Docker using a .deb package
For some reason, if you are unable to install Docker using the preceding repository method,
you can download the .deb package.

Download the .deb package of your choice from https:/ ​/ ​apt.​dockerproject.1.
org/​repo/ ​pool/ ​main/ ​d/ ​docker- ​engine/ ​.
To install the downloaded package, type the following:2.

 sudo dpkg -i /<path to package>/<docker package>.deb

Verify your Docker installation by running the following command:3.

 sudo docker run hello-world

If the preceding command runs without any errors, and you see a hello4.
world message, it means Docker is installed and running.

 Hello from Docker!
 This message shows that your installation appears to be
 working correctly.

Enabling Docker remote API
Jenkins (through the Docker plugin) uses the Docker remote API to communicate with a
Docker server. The Docker remote API allows external applications to communicate with
the Docker server using REST APIs. Docker remote APIs can also be used to get information
about all the running containers inside the Docker server.

https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/

Distributed Builds Chapter 5

[205]

To enable the Docker remote API, we need to modify Docker's configuration file.
Depending on your OS version and the way you have installed Docker on your machine,
you might need to choose the right configuration file to modify. Shown, as follows, are two
methods that work on Ubuntu.

Modifying the docker.conf file
Follow these steps to modify the docker.conf file. These configurations are important to
allow Jenkins to communicate with the Docker host:

Log in to your Docker server, make sure you have sudo privileges.1.
Execute the following command to edit the docker.conf file:2.

 sudo nano /etc/init/docker.conf

Inside the docker.conf file, go to the line containing DOCKER_OPTS=.3.

You will find the DOCKER_OPTS= variable at two places inside the
docker.conf file. First, in the pre-start script section, and next in the
post-start script section. Use the DOCKER_OPTS= variable under the pre-
start script section.

Set the value of DOCKER_OPTS to the following:4.

 DOCKER_OPTS='-H tcp://0.0.0.0:4243 -H unix:///var/run/docker.sock'

The preceding setting will bind the Docker server to the Unix socket, as well as5.
on TCP port 4243. 0.0.0.0, which makes the Docker engine accept connections
from anywhere.

If you want your Docker server to accept connections from only your
Jenkins server, then replace 0.0.0.0 with your Jenkins server IP.

Restart the Docker server using the following command:6.

 sudo service docker restart

To check if the configuration has worked, type the following:7.

 curl -X GET http://<Docker server IP>:4243/images/json

Distributed Builds Chapter 5

[206]

The preceding command will list all the images present on your Docker
server, if any.

Modifying the docker.service file
Follow the given steps to modify the docker.service file:

Execute the following command to edit the docker.service file:1.

 sudo nano /lib/systemd/system/docker.service

Inside the docker.service file, go to the line containing ExecStart=.2.
Set the value of ExecStart= as shown:3.

 ExecStart=/usr/bin/docker daemon -H fd:// -H tcp://0.0.0.0:4243

The preceding setting will bind the Docker server to the Unix socket.4.
Furthermore, on TCP port 4243. 0.0.0.0, it makes the Docker engine accept
connections from anywhere.

If you want your Docker server to accept connections from only your
Jenkins server, replace 0.0.0.0 with your Jenkins server IP.

Execute the following command to make the Docker daemon notice the modified5.
configuration:

 systemctl daemon-reload

Restart the Docker server using the following command:6.

 sudo service docker restart

To check whether the configuration has worked, type the following:7.

 curl -X GET http://<Docker server IP>:4243/images/json

Distributed Builds Chapter 5

[207]

The preceding command will list all the images present on your Docker
server, if any.

Installing the Docker plugin
To create Docker containers (build agents) on the fly, we need to install the Docker plugin
for Jenkins. To achieve this, follow the given steps:

From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins |1.
Available tab. You will be taken to the Jenkins Manage Plugins page.
Enter Docker Plugin in the Filter field, as shown in the following screenshot:2.

Installing the Docker plugin

Select the Docker Plugin from the list and click on the Install without restart3.
button.
Restart Jenkins if needed.4.

Configuring the Docker plugin
Now that we have our Docker plugin installed, let's configure it:

From the Jenkins dashboard, click Manage Jenkins | Configure System.1.
Once on the Configure System page, scroll all the way down to the Cloud2.
section (see the following screenshot).

Distributed Builds Chapter 5

[208]

Click on the Add a new cloud button and choose Docker from the available3.
options.
On the resultant page, you will find a good number of settings to configure.4.
Give your Docker server a name using the Name field.5.
Add your Docker server URL under the Docker URL field.6.
Click on the Test Connection button to check whether Jenkins can communicate7.
with Docker server:

Configuring the Docker plugin to talk to the Docker server

At the end of the page, click on the Apply and Save buttons. We will come back8.
here later to make further configurations.

Distributed Builds Chapter 5

[209]

Creating a Docker image – Jenkins slave
Enabling the Docker remote API made the communication between Jenkins and the Docker
server possible. Now we need a Docker image on the Docker server. This Docker image will
be used by Jenkins to create Docker containers (Jenkins slaves) on the fly. To achieve this,
follow the steps as shown:

Log in to your Docker server. Give the following command to check the available1.
Docker images:

 sudo docker images

From the following screenshot, you can see we have two docker images2.
(ubuntu and hello-world) already on our Docker server:

List the Docker images

If your Docker server is a freshly backed-up machine, then you will see no images3.
at this point.
We will build a Docker image for our use from the ubuntu Docker image. To do4.
so, download the Docker image for ubuntu using the following command:

 docker pull ubuntu

You can find more Docker images for various OSes at https:/ ​/​hub.
docker. ​com/ ​.

Once the pull gets completed, give the sudo docker images command again.5.
Now you should see a Docker image for Ubuntu, as shown in the preceding
screenshot.

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Distributed Builds Chapter 5

[210]

We will now upgrade our Ubuntu Docker image with all the necessary6.
applications that we need to run our build. They are as follows:

Java JDK (latest)
Git
Maven
A user account to log in to the Docker container
sshd (to accept an SSH connection)

Execute the following command to run a Docker container using the Ubuntu7.
Docker image. This will create a container, and open up its bash shell:

 sudo docker run -i -t ubuntu /bin/bash

Now, install all the required applications as you would do on any normal Ubuntu8.
machine. Let's begin by creating a jenkins user:

Execute the following command and follow the user creation steps, as1.
shown in the following screenshot:

 adduser jenkins

Creating a user

Check the new user using the switch user command:2.

 su jenkins

Distributed Builds Chapter 5

[211]

Switch back to the root user by typing exit.9.
Next, we will install the SSH server. Execute the following commands in10.
sequence:

 apt-get update
 apt-get install openssh-server
 mkdir /var/run/sshd

Next, we will install Git using the following command:11.

 apt-get install git

Install Java JDK using the following command:12.

 apt-get install openjdk-8-jdk

Install Maven using the following command:13.

 apt-get install maven

Next, exit the container by typing exit.14.
We need to save (commit) all the changes that we made to our Docker container.15.
Get the CONTAINER ID of the container that we worked on recently by listing all16.
the inactive containers, as shown in the following screenshot:

 sudo docker ps -a

List of inactive containers

Note the CONTAINER ID, and execute the commit command to commit the17.
changes that we made to our container, shown as follows:

 sudo docker commit <CONTAINER ID> <new name for the container>

Distributed Builds Chapter 5

[212]

We have named the container maven-build-slave-0.1, as shown in the18.
following screenshot:

Docker commit command

Once you have committed the changes, a new Docker image gets created.19.
Execute the following Docker command to list the images:20.

 sudo docker images

List the Docker images

You can see our new Docker image, with the name maven-build-slave-0.1.21.
We will now configure our Jenkins server to use the Docker image to create
Jenkins slaves (build agents).

Adding Docker container credentials in Jenkins
Follow the given steps to add credentials inside Jenkins to allow it to talk to Docker:

From the Jenkins dashboard, navigate to Credentials | System | Global1.
credentials (unrestricted).
Click on the Add Credentials link on the left-hand side menu to create a new2.
credential (see the following screenshot).
Choose a Kind as Username with Password.3.
Leave the Scope field to its default value.4.
Add a username for your Docker image (jenkins, as per our example) under the5.
Username field.
Under the Password field, add the password.6.
Add an ID under the ID field, and some description under the Description field.7.

Distributed Builds Chapter 5

[213]

Once done, click on the OK button:8.

Create credentials inside Jenkins

Updating the Docker settings inside Jenkins
Follow the given steps to update the Docker settings inside Jenkins:

From the Jenkins dashboard, click on Manage Jenkins | Configure System.1.
Scroll all the way down to the Cloud section (see the following screenshot).2.
Under the Cloud section, click on the Add Docker Template button and choose3.
Docker Template.
You will be presented with lots of settings to configure. However, to keep this4.
demo simple, let's stick to the important settings:

Under the Docker Image field, enter the name of the Docker image1.
that we created earlier. In our case, it's maven-build-slave-0.1.
Under the Labels field, add a label. The Docker container will be2.
recognized using this label by your Jenkins pipeline. Add
a docker label.
The Launch Method should be Docker SSH computer launcher.3.
Under the Credentials field, choose the credentials that we created to4.
access the Docker container.
Make sure the Pull strategy option is set to Never pull.5.
Leave the rest of the other options to their default values.6.
Once done, click on Apply and then Save:7.

Distributed Builds Chapter 5

[214]

Configuring the Docker plugin settings

Now your Jenkins server is all set to create Jenkins slaves on demand using5.
Docker.

Distributed Builds Chapter 5

[215]

Summary
In this chapter, we learned how to add and configure Jenkins slaves on standalone
Windows and Linux machines (physical/VMs), using two widely used methods: Launching
Jenkins slave via SSH and Launching Jenkins Slave via Java Web Start. We also learned
how to install and configure the Docker plugin for Jenkins that allows us to create on-
demand Docker containers (Jenkins slaves) for our CI.

In the next chapter, we will learn how to implement continuous integration using Jenkins,
and we will utilize the distributed build farm using Jenkins Docker containers (Jenkins
slaves) to perform our CI.

6
Installing SonarQube and

Artifactory
In this chapter, we will learn about SonarQube, which is a popular open source tool for
static code analysis. We will also learn about Artifactory, which is another popular open
source tool for version controlling binary files. In this chapter, you will learn about the
following topics:

Installing a standalone SonarQube server
Creating a project inside SonarQube
Installing the build breaker plugin for SonarQube
Creating a quality gate and a quality profile
Installing and configuring the SonarQube plugin in Jenkins
Installing a standalone Artifactory server
Creating a repository inside Artifactory
Installing and configuring the Artifactory plugin in Jenkins

Installing and configuring SonarQube
Apart from integrating code in a continuous way, CI pipelines nowadays also include tasks
that perform continuous inspection—inspecting code for its quality in a continuous
approach.

Continuous inspection deals with inspecting and avoiding code that is of poor quality.
Tools such as SonarQube help us in achieving this. Every time a code gets checked-in
(committed), a code analysis is performed on the code.

Installing SonarQube and Artifactory Chapter 6

[217]

This analysis is based on some rules defined by the code analysis tool. If the code passes the
error threshold, it's allowed to move to the next step in its life cycle. But, if it crosses the
error threshold, it's dropped.

Some organizations prefer checking the code for its quality, right at the moment when the
developer tries to check-in the code. If the analysis is good, the code is allowed to be
checked-in, or else the check-in is cancelled and the developer needs to work on the code
again.

SonarQube is a code quality management tool that allows teams to manage, track, and
improve the quality of their source code. It is a web-based application that contains rules,
alerts, and thresholds, all of which can be configured. It covers the seven types of code
quality parameters, which are architecture and design, duplications, unit tests, complexity,
potential bugs, coding rules, and comments.

SonarQube is an open source tool that supports almost all popular programming languages
with the help of plugins. SonarQube can also be integrated with a CI tool such as Jenkins to
perform continuous inspection, which we will see shortly.

So, first let's learn how to install SonarQube. In the following section, we will learn how to
install SonarQube on Ubuntu 16.04.

Installing Java
Follow these steps to install Java:

Update the package index:1.

sudo apt-get update

Next, install Java. The following command will install the JRE:2.

sudo apt-get install default-jre

To set the JAVA_HOME environment variable, first get the Java installation3.
location. Do this by executing the following command:

update-java-alternatives –l

You should get a similar output:4.

java-1.8.0-openjdk-amd64 1081 /usr/lib/jvm/java-1.8.0-openjdk-amd64

Installing SonarQube and Artifactory Chapter 6

[218]

The path in the preceding output is the JAVA_HOME location. Copy it.5.
Open the /etc/environment file for editing:6.

sudo nano /etc/environment

Add the following line inside the /etc/environment file, as shown here:7.

JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-amd64"

Type Ctrl + X and choose Y to save and close the file.8.
Next, reload the file using the following command:9.

 sudo source /etc/environment

Downloading the SonarQube package
The following steps will help you to download the SonarQube package:

Download the latest version of the SonarQube installation package by navigating1.
to https:/ ​/​www. ​sonarqube. ​org/​downloads/ ​.

It is recommended that you always install the latest LTS* version of
SonarQube.

Move to the /tmp folder:2.

cd /tmp

Download the SonarQube ZIP package, using wget, as shown in the following3.
command. Here, I am downloading SonarQube version 5.6.7 (LTS*):

wget https://sonarsource.bintray.com/Distribution/sonarqube/
sonarqube-5.6.7.zip

Next, unzip the SonarQube ZIP package inside the /opt directory, using the4.
following command:

unzip sonarqube-5.6.7.zip -d /opt/

https://www.sonarqube.org/downloads/
https://www.sonarqube.org/downloads/
https://www.sonarqube.org/downloads/
https://www.sonarqube.org/downloads/
https://www.sonarqube.org/downloads/
https://www.sonarqube.org/downloads/
https://www.sonarqube.org/downloads/
https://www.sonarqube.org/downloads/
https://www.sonarqube.org/downloads/
https://www.sonarqube.org/downloads/
https://www.sonarqube.org/downloads/
https://www.sonarqube.org/downloads/

Installing SonarQube and Artifactory Chapter 6

[219]

To use the unzip command, make sure you have the zipping tool installed
on your Ubuntu machine. To install the ZIP tool, execute the following
command:
sudo apt-get install zip

You can also download the SonarQube ZIP package on a different
machine and then move it to your SonarQube server, using WinSCP.

Move to the extracted folder and list its content:5.

cd /opt/sonarqube-5.6.7/

ls -lrt

The bin/ folder contains all the scripts to install and start SonarQube, and
the logs/ folder contains the SonarQube logs.

Running the SonarQube application
Follow these steps to start the SonarQube server:

Move to /opt/sonarqube-5.6.6/bin/linux-x86-64/. In our current1.
example, we are starting SonarQube on a 64-bit Linux OS:

cd /opt/sonarqube-5.6.6/bin/linux-x86-64/

Run the sonar.sh script to start SonarQube, as shown in the following2.
command:

./sonar.sh start

You should see a similar output:3.

Starting SonarQube...
Started SonarQube.

To access SonarQube, use the following link in your favorite web4.
browser: http://localhost:9000/ or http://<IP-Address>:9000.

Installing SonarQube and Artifactory Chapter 6

[220]

Right now there are no user accounts configured in SonarQube. However,
by default there is an admin account with the username as admin and the
password as admin.
Make sure you have at least 4 GB of memory to run the 64-bit version of
SonarQube.

Resetting the default credentials and generating a
token
Follow these steps to reset the credentials and generate a token:

Open the SonarQube link in your favorite browser and switch to admin user.1.
From the SonarQube dashboard, click on Administrator | My Account |2.
Security (tab).
On the resultant page, under the Change password section, do the following:3.

Add your old password (admin) under the Old Password field.1.
Add a new password under the New Password field.2.
Reconfirm your new password by adding it again in the Confirm3.
Password field.
Once done, click on the Change Password button.4.

On the same page under the Tokens section, there is an option to generate a4.
token. Jenkins can use this token to access SonarQube. Perform the following
steps to generate a new token:

Under the Tokens section, add a name for your new token, using the1.
Generate Tokens field by clicking on the Generate button.
A new token will get generated, as shown in the following screenshot.2.

Installing SonarQube and Artifactory Chapter 6

[221]

Copy and save this token, has we will need it later:3.

Creating a token inside SonarQube

Creating a project inside SonarQube
In the following section, we will create a project inside SonarQube. The project will be used
to display the static code analysis:

From the SonarQube dashboard, click on Administration | Projects (tab) |1.
Management.
On the resultant page, click on the Create Project button.2.

Installing SonarQube and Artifactory Chapter 6

[222]

On the resultant window, fill in the respective details, as illustrated in the3.
following steps:

Add a name under the Name field.1.
Add a key under the Key field.2.
Click on the Create button to create the project:3.

Creating a project inside SonarQube

You can see your newly created project on the Project Management page, as4.
shown in the following screenshot:

Newly created project inside SonarQube

Installing SonarQube and Artifactory Chapter 6

[223]

Installing the build breaker plugin for SonarQube
The build breaker plugin is available for SonarQube. It's exclusively a SonarQube plugin
and not a Jenkins plugin. This plugin allows the CI system (Jenkins) to forcefully fail a
Jenkins build if a quality gate condition is not satisfied. To install the build breaker plugin,
perform the following steps:

Before downloading the plugin, first refer to the compatibility table. This will1.
help us in downloading the right plugin version. The compatibility table is
available at https:/ ​/ ​github. ​com/ ​SonarQubeCommunity/ ​sonar- ​build- ​breaker.
Download the build breaker plugin from https:/ ​/​github. ​com/2.
SonarQubeCommunity/ ​sonar- ​build- ​breaker/ ​releases.
Move to the /tmp directory and download the build breaker plugin, using the3.
following command:

cd /tmp

wget https://github.com/SonarQubeCommunity/
sonar-build-breaker/releases/download/2.2/
sonar-build-breaker-plugin-2.2.jar

Move the downloaded .jar file to the location4.
opt/sonarqube-5.6.7/extensions/plugins/:

cp sonar-build-breaker-plugin-2.2.jar \
/opt/sonarqube-5.6.7/extensions/plugins/

Restart SonarQube, using the following commands:5.

cd /opt/sonarqube-5.6.7/bin/linux-x86-64

sudo ./sonar.sh restart

You should see a similar output:6.

Stopping SonarQube...
Waiting for SonarQube to exit...
Stopped SonarQube.
Starting SonarQube...
Started SonarQube.

After a successful restart, go to the SonarQube dashboard and log in as7.
administrator.

https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases
https://github.com/SonarQubeCommunity/sonar-build-breaker/releases

Installing SonarQube and Artifactory Chapter 6

[224]

Click on the Administration link from the menu bar.8.
On the Administration page, you will see the Build Breaker option under the9.
CATEGORY sidebar, as shown in the following screenshot; do nothing:

The build breaker plugin settings inside SonarQube

The build breaker plugin has been installed successfully.10.

Creating quality gates
For the build breaker plugin to work, we need to create a quality gate; it's nothing but a rule
with some conditions. When a Jenkins pipeline runs, it will execute the quality profiles and
the quality gate. If the quality gate check passes successfully then the Jenkins pipeline
continues, but if it fails then the Jenkins pipeline is aborted. Nevertheless, the analysis still
happens.

Installing SonarQube and Artifactory Chapter 6

[225]

Follow these steps to create a quality gate in SonarQube:

From the SonarQube dashboard, click on the Quality Gates link from the menu1.
bar.
On the resultant page, click on the Create button at the top-left corner.2.
You will get a pop-up window, as shown in the following screenshot. Add a3.
name for your quality gate under the Name field, and click on the Create button:

Creating a new quality gate

You will see your new quality gate listed on the Quality Gates page, as shown in4.
the following screenshot:

The new quality gate

Installing SonarQube and Artifactory Chapter 6

[226]

Let us now add a condition to our quality gate by choosing one from the Add5.
Condition menu:

Condition menu

The following screenshot shows a condition named Major Issues. If it's greater6.
than 1 but less than 50 it's a WARNING, and if it's greater than 50, it's an
ERROR, as shown in the following screenshot. This is just an example; you can
configure any number of conditions you like:

Configuring the quality gate

Next, let us make sure that the example project that we created earlier in7.
SonarQube uses our newly created quality gate. To do so, from the SonarQube
dashboard click on Administration | Projects (tab) | Management.
On the resultant page, you will see the example project that we created earlier in8.
SonarQube. Click on it.
On the resultant page, click on Administration (tab) | Quality Gate.9.

Installing SonarQube and Artifactory Chapter 6

[227]

Under the Quality Gate section, you will see an option to choose the quality gate10.
from the list of available quality gates in SonarQube. Choose the one that we
created recently and click on the Update button:

Associating a quality gate to a project

Updating the default quality profile
In the following section, we will modify the default quality profile for Java (Sonar way),
which we intend to use for our static code analysis. Follow these steps:

From the SonarQube dashboard, click on the Quality Profiles link from the menu1.
bar. On the resultant page, you will see all the quality profiles that exist on
SonarQube, as shown in the following screenshot:

List of quality profiles in SonarQube

Installing SonarQube and Artifactory Chapter 6

[228]

From the previous screenshot, you can see that the default quality profile for2.
Java: Sonar way contains 254 active rules. Let us try to add more rules.
Click on the Activate More button.3.
On the resultant page, you will see something, as shown in the following4.
screenshot:

List of inactive rules

This is the place where you can add and remove rules from your quality profile.5.
Let us activate all the inactive rules for Java.

Installing SonarQube and Artifactory Chapter 6

[229]

To do this, from the top-right corner of the page, click on Bulk Change | Activate6.
In Sonar way, as shown in the following screenshot:

Activating rules in bulk

You will see a popup asking you to confirm the changes. Click on the Apply7.
button and proceed.
Next, from the menu bar, click on the Quality Profiles link. On the resultant8.
page, click on the Sonar way quality profile for Java, and now you should see a
greater number of rules than before.

The list of rules and default quality profiles visible on SonarQube depends
on the installed plugin. To get rules for your desired language, install its
respective SonarQube plugin.

Installing the SonarQube plugin in Jenkins
Follow these steps to install the SonarQube plugin for Jenkins:

From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins |1.
Available (tab). You will be taken to the Jenkins Manage Plugins page.

Installing SonarQube and Artifactory Chapter 6

[230]

Enter SonarQube in the Filter field, as shown in the following screenshot:2.

Installing the SonarQube plugin

Select SonarQube Scanner for Jenkins from the list and click on the Install3.
without restart button.
Restart Jenkins if needed.4.

Configuring the SonarQube plugin in Jenkins
Now that we have our SonarQube plugin installed, let us configure it:

From the Jenkins dashboard, click Manage Jenkins | Configure System.1.
Once on the Configure System page, scroll down all the way to the SonarQube2.
servers section.
Under the SonarQube servers section, click on the Add SonarQube button. You3.
will be presented with settings to configure, as shown in the following
screenshot. Let us see them one by one.
Give your SonarQube server a name using the Name field.4.
Enter the SonarQube server URL under the Server URL field.5.
Add Artifactory credentials under the Default Deployer Credentials.6.
Add the token that we created inside SonarQube under the Server authentication7.
token field.

Installing SonarQube and Artifactory Chapter 6

[231]

Click on the Test Connection button to test the Jenkins connection with8.
Artifactory:

Configuring the SonarQube plugin

Once done, click on the Save button at the end of the page to save the settings.9.

Installing and configuring Artifactory
Continuous integration results in frequent builds and packages. Hence, there is a need for a
mechanism to store all this binary code (builds, packages, third-party plugins, and so on) in
a system akin to a version control system.

Installing SonarQube and Artifactory Chapter 6

[232]

Since version control systems such as Git, TFS, and SVN store code and not binary files, we
need a binary repository tool. A binary repository tool such as Artifactory or Nexus tightly
integrated with Jenkins provides the following advantages:

Tracking builds (who triggers? What code was built?)
Dependencies
Deployment history

The following diagram depicts how a binary repository tool such as Artifactory works with
Jenkins to store build artifacts. In the coming topics, we will learn how to achieve this by
creating a Jenkins job to upload code to Artifactory:

Jenkins pipeline pushing built artifacts to Artifactory

In the current book, we will be dealing with Artifactory to store our builds. Artifactory is a
tool used to version control binaries. The binaries can be anything from built code,
packages, executables, Maven plugins, and so on.

In the following section, we will set up Artifactory on Ubuntu 16.04.

Installing Java
Follow these steps to install Java:

Update the package index:1.

sudo apt-get update

Installing SonarQube and Artifactory Chapter 6

[233]

Next, install Java. The following command will install the JRE:2.

sudo apt-get install default-jre

To set the JAVA_HOME environment variable, first get the Java installation3.
location. Do this by executing the following command:

update-java-alternatives –l

You should get a similar output:4.

java-1.8.0-openjdk-amd64 1081 /usr/lib/jvm/java-1.8.0-openjdk-amd64

The path in the preceding output is the JAVA_HOME location. Copy it.5.
Open the /etc/environment file for editing:6.

sudo nano /etc/environment

Add the following line inside the /etc/environment file, as shown here:7.

JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-amd64"

Type Ctrl + X and choose Y to save and close the file.8.
Next, reload the file using the following command:9.

 sudo source /etc/environment

Downloading the Artifactory package
Follow the given steps to download the Artifactory package:

Download the latest version of Artifactory (open source) from https:/ ​/​www.1.
jfrog.​com/ ​open- ​source/ ​ or https:/ ​/​bintray. ​com/​jfrog/ ​artifactory/ ​jfrog-
artifactory- ​oss- ​zip.
To download Artifactory Pro, visit https:/ ​/ ​bintray. ​com/ ​jfrog/ ​artifactory-2.
pro/​ or https:/ ​/​bintray. ​com/ ​jfrog/ ​artifactory- ​pro/ ​jfrog- ​artifactory-
pro-​zip.

https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip

Installing SonarQube and Artifactory Chapter 6

[234]

It is recommended that you always install the latest LTS version of
Artifactory.

In the following chapter, we will use Artifactory Pro to demonstrate code
promotion using properties in the upcoming chapter.

Refer to https:/ ​/​www. ​jfrog.​com/ ​confluence/ ​display/ ​RTF/
Artifactory+Pro#ArtifactoryPro- ​ActivatingArtifactoryPro to learn
the process of activating Artifactory Pro.

Move to the /tmp folder:3.

cd /tmp

Download the Artifactory Pro ZIP package, using wget, as shown in the4.
following code. Here, I am downloading Artifactory version 5.5.2 (LTS*):

wget
https://jfrog.bintray.com/artifactory-pro/org/artifactory/pro/jfrog
-artifactory-pro/5.5.2/jfrog-artifactory-pro-5.5.2.zip

You can download the Artifactory ZIP package on a different machine
(from a browser) and then move it to your to-be Artifactory server,
using WinSCP.

Next, unzip the SonarQube ZIP package inside the /opt directory, as shown in5.
the following code:

sudo unzip jfrog-artifactory-pro-5.5.2.zip -d /opt/

Or, if the downloaded ZIP package has a strange name:

sudo unzip \
download_file\?file_path\=jfrog-artifactory-pro-5.5.2.zip \
–d /opt/

To use the unzip command, make sure you have the zipping tool installed
on your Ubuntu machine. To install the ZIP tool, execute the following
command:
sudo apt-get install zip

https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro

Installing SonarQube and Artifactory Chapter 6

[235]

Move to the extracted folder and list its content:6.

cd /opt/artifactory-pro-5.5.2/

ls -lrt

The bin/ folder contains all the scripts to install and start Artifactory, and the logs/ folder
contains the Artifactory logs.

Running the Artifactory application
Follow the given steps to start the Artifactory server:

Move to the /opt/artifactory-pro-5.5.2/bin/ directory and run the1.
installService.sh script:

sudo ./installService.sh

You should see a similar output:2.

Installing artifactory as a Unix service that will run as user
artifactory
Installing artifactory with home /opt/artifactory-pro-5.5.2
Creating user artifactory...creating... DONE

Checking configuration link and files in
/etc/opt/jfrog/artifactory...
Moving configuration dir /opt/artifactory-pro-5.5.2/etc
/opt/artifactory-pro-5.5.2/etc.original...creating the link and
updating dir... DONE
Creating environment file
/etc/opt/jfrog/artifactory/default...creating... DONE
** INFO: Please edit the files in /etc/opt/jfrog/artifactory to set
the correct environment
Especially /etc/opt/jfrog/artifactory/default that defines
ARTIFACTORY_HOME, JAVA_HOME and JAVA_OPTIONS
Initializing artifactory.service service with systemctl... DONE

Setting file permissions... DONE

************ SUCCESS ****************
Installation of Artifactory completed

Please check /etc/opt/jfrog/artifactory, /opt/artifactory-
pro-5.5.2/tomcat and /opt/artifactory-pro-5.5.2 folders

Installing SonarQube and Artifactory Chapter 6

[236]

You can activate artifactory with:
> systemctl start artifactory.service

Start the Artifactory service, using any of the following commands:3.

sudo service artifactory start

 Or:

sudo /etc/init.d/artifactory start

 Or:

sudo systemctl start artifactory

You can check the Artifactory installation by executing any of the following4.
commands:

service artifactory check

 Or:

/etc/init.d/artifactory check

 Or:

sudo ./artifactoryctl check

Access the Artifactory dashboard by navigating to http://<Server IP5.
Address>:8081/.

Right now there are no user accounts configured in Artifactory. However,
by default there is an admin account with the username as admin and the
password as password.

Make sure you have at least 4 GB of memory to run the 64-bit version of
Artifactory.

Installing SonarQube and Artifactory Chapter 6

[237]

Resetting the default credentials and generating
an API key
Follow the given steps to reset the Artifactory credentials:

Access the Artifactory dashboard using the following link: http://<Server IP1.
Address>:8081/.
Log in as admin using the initial default credentials for admin.2.
From the Artifactory dashboard, click on Welcome, admin | Edit Profile.3.
Enter your current password in the Current Password field and press the Unlock4.
button.
On the resultant page, under Personal Settings, add your email ID.5.
Under the Change Password section, add a new password to reset the default6.
credentials for the admin user.
Next, under the Authentication Settings section, click on Generate key (gear7.
logo) to generate a new API key.
Copy the generated API key by clicking on the copy button (see the following8.
screenshot).
We might need this API key later for authentication:9.

Artifactory API key

Once done, click on the Save button.10.

Installing SonarQube and Artifactory Chapter 6

[238]

Creating a repository in Artifactory
In the following section, we will create a genetic repository inside Artifactory. The
repository will be used to store the build artifacts:

From the Artifactory dashboard, on the left-hand side menu, click on Admin |1.
Repositories | Local, as shown in the following screenshot:

Creating a local repository in Artifactory

The resultant page will show you all the Local Repositories currently available,2.
as shown in the following screenshot:

List of all the Local Repositories

Installing SonarQube and Artifactory Chapter 6

[239]

Click on the New button at the top-right corner to create a new local repository3.
(see the following screenshot).
You will be presented with a pop-up window with a list of various types of4.
repositories to choose from, shown as follows. Choose the Generic type (see the
following screenshot):

Option to choose various types of repositories

Give your repository a name by adding a value under the Repository Key field,5.
as shown in the following screenshot. Leave the rest of the settings to their
default values:

Installing SonarQube and Artifactory Chapter 6

[240]

Naming our new local repository

Once done, click on the Save & Finish button.6.
Now we have our new local repository, as shown in the following screenshot:7.

Our newly created local repository

Installing SonarQube and Artifactory Chapter 6

[241]

Adding Artifactory credentials inside Jenkins
Follow the given steps to create credentials inside Jenkins to talk to Artifactory:

From the Jenkins dashboard, click on Credentials | System | Global credentials1.
(unrestricted).
Click on the Add Credentials link on the left-hand side menu to create a new2.
credential (see the following screenshot).
Choose Kind as Username with Password.3.
Leave the Scope field to its default value.4.
Add the Artifactory username under the Username field.5.
Under the Password field, add the password.6.
Add an ID under the ID field and a description under the Description field.7.
Once done, click on the OK button:8.

Adding Artifactory credentials inside Jenkins

Installing SonarQube and Artifactory Chapter 6

[242]

Installing the Artifactory plugin in Jenkins
Follow the given steps to install the Artifactory plugin for Jenkins:

From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins |1.
Available (tab). You will be taken to the Jenkins Manage Plugins page.
Enter Artifactory in the Filter field, as shown in the following screenshot:2.

Installing the Artifactory Plugin

Select the Artifactory Plugin from the list and click on Install without restart3.
button.
Restart Jenkins if needed.4.

Configuring the Artifactory Plugin
Now that we have our Artifactory Plugin installed, let us configure it:

 From the Jenkins dashboard, click Manage Jenkins | Configure System.1.
Once on the Configure System page, scroll down all the way to the Artifactory2.
section.
Under the Artifactory section, click on the Add button. You will be presented3.
with the following settings to configure, as shown in the following screenshot.
Let us look at them one by one.

Installing SonarQube and Artifactory Chapter 6

[243]

Give your Artifactory server a name, using the Server ID field.4.
Enter the Artifactory server URL under the URL field.5.
Add Artifactory credentials under the Default Deployer Credentials, as shown6.
in the following screenshot.
Click on the Test Connection button to test the Jenkins connection with7.
Artifactory:

Configuring the Artifactory Plugin

Once done, click on the Save button at the end of the page to save the settings.8.

Installing SonarQube and Artifactory Chapter 6

[244]

Summary
In this chapter, we learned how to install and configure SonarQube and Artifactory. In
today's world, static code analysis forms an important part of the CI pipeline (although it is
not necessary). Similarly, Artifactory is a popular tool used to store all the build artifacts
that are generated by the CI pipeline. Once the CI pipeline is complete, Artifactory take the
center stage. It is from Artifactory that all the built artifacts are deployed to various testing
environments, and it is with Artifactory that we perform code promotion.

We will learn more about these tools in the next chapter, which is about implementing
continuous integration using Jenkins.

7
Continuous Integration Using

Jenkins
We will begin this chapter with a Continuous Integration (CI) design that covers the
following areas:

A branching strategy
A list of tools for CI
A Jenkins pipeline structure

The CI design will serve as a blueprint that will guide the readers in answering the how,
why, and where of CI being implemented. The design will cover all the necessary steps
involved in implementing an end-to-end CI pipeline.

The CI design discussed in this chapter should be considered as a template
for implementing CI, and not a full and final model. The branching
strategy and the tools used can all be modified and replaced to suit the
purpose.

Jenkins CI design
Almost every organization creates one before they even begin to explore the CI and DevOps
tools. In this section, we will go through a very general CI design.

Continuous Integration includes not only Jenkins or any other similar CI tool for that
matter, but it also deals with how you version control your code, the branching strategy you
follow, and so on.

Continuous Integration Using Jenkins Chapter 7

[246]

Various organizations may follow different kinds of strategies to achieve CI, since it all
depends on the requirement and type of the project.

Branching strategy
It's always good to have a branching strategy. Branching helps you organize your code. It is
a way to isolate your working code from the code that is under development. In our CI
design, we will start with three types of branches:

The master branch
The integration branch
The feature branch

This branching strategy is a slimmer version of the GitFlow workflow branching model.

The master branch
One can also call it a production branch. It holds the working copy of the code that has
been delivered. The code on this branch has passed all the testing. No development
happens on this branch.

The integration branch
The integration branch is also known as the mainline branch. This is where all the features
are integrated, built, and tested for integration issues. Again, no development happens here.
However, developers can create feature branches out of the integration branch and work on
them.

The feature branch
Lastly, we have the feature branch. This is where the actual development takes place. We
can have multiple feature branches spanning out of the integration branch.

The following illustration shows a typical branching strategy that we will be using as part
of our CI design. We will be creating two feature branches spanning out from the
Integration/Mainline Branch, which itself spans out from the master branch:

Continuous Integration Using Jenkins Chapter 7

[247]

Branching strategy

A commit on the feature branch or the integration branch (a merge will create a commit)
will go through a build, static code analysis, and integration test phase. If the code passes
these phases successfully, the resultant package is uploaded to Artifactory (binary
repository).

The CI pipeline
We are now at the heart of the CI design. We will be creating a Multibranch Pipeline in
Jenkins that will have the following stages:

Fetch the code from the version control system (VCS) on a push event1.
(initialization of the CI pipeline).
Build and unit test the code, and publish a unit test report on Jenkins.2.

Continuous Integration Using Jenkins Chapter 7

[248]

Perform static code analysis on the code and upload the result to SonarQube. Fail3.
the pipeline if the number of bugs crosses the threshold defined in the quality
gate.
Perform integration testing and publish a unit test report on Jenkins.4.
Upload the built artifacts to Artifactory along with some meaningful properties.5.

The purpose of the previous CI pipeline is to automate the process of continuously
building, testing (unit test and integration test), performing static code analysis, and
uploading the built artifacts to the binary repository. Reporting for failures/success happens
at every step. Let us discuss these pipelines and their constituents in detail.

Toolset for CI
The example project for which we are implementing CI is a simple Maven project. In
this chapter, we will see Jenkins working closely with many other tools. The following table
contains the list of tools and technologies involved in everything that we will be seeing:

Technology Characteristic

Java Primary programming language used for coding

Maven Build tool

JUnit Unit testing and integration testing tools

Jenkins Continuous Integration tool

GitHub Version control system

SonarQube Static code analysis tool

Artifactory Binary repository manager

Creating the CI pipeline
In this section, we will learn how to create the CI pipeline discussed in the previous section.
We will perform the following steps:

We will create a source code repository in GitHub
We will create a Jenkinsfile to describe the way we build, unit test, perform static
code analysis, integration test, and publish built artifacts to Artifactory

Continuous Integration Using Jenkins Chapter 7

[249]

We will utilize Docker to spawn build agents to run our CI pipeline
We will create a Multibranch Pipeline in Jenkins

It is important that you have configured the Configuring Webhooks on GitHub from Jenkins
section from Chapter 3, The New Jenkins.

Creating a new repository on GitHub
Let us create a new repository on GitHub. Make sure you have Git installed on the machine
that you will use to perform the steps mentioned in the following section:

Log in to your GitHub account.1.
In this chapter, we will use the source code from https:/ ​/​github. ​com/2.
nikhilpathania/ ​hello- ​world- ​greeting. ​git as an example.
Try to fork the repository mentioned in the previous link. To do so, just access the3.
repository from your internet browser and click on the Fork button, as shown in
the following screenshot:

Forking a GitHub project

Once done, a replica of the repository will be visible under your GitHub account.4.

Using the SonarQube scanner for Maven
Ideally, we need the SonarQube scanner to perform static code analysis on a project.
However, we will use the SonarQube scanner utility for Maven instead, as the example
source code that we are using in the current chapter is a Maven project.

To do so, add the following code to your .pom file:

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <sonar.language>java</sonar.language>
</properties>

https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git

Continuous Integration Using Jenkins Chapter 7

[250]

You need not perform the previous step if you have forked the following
repository:
https:/ ​/​github. ​com/ ​nikhilpathania/ ​hello- ​world- ​greeting. ​git.

Writing the Jenkinsfile for CI
In the following section, we will learn how to write pipeline code for our Continuous
Integration.

Spawning a Docker container – build agent
First, let us create pipeline code to create a Docker container (Jenkins slave), which will act
as our build agent.

If you can recall, in the Adding Jenkins slaves – Docker containers section from Chapter
5, Distributed Builds, we learned to create a Docker image (maven-build-slave-0.1) that
was meant for creating Docker containers (Jenkins slaves). We will use the same Docker
image over here to spawn Jenkins Slave Agents for our CI pipeline.

In our Jenkinsfile, to spawn a Docker container (Jenkins slave) we need to write a code
block for node with the label as docker:

node('docker') {
}

Where docker is a label for the maven-build-slave-0.1 Docker template.

We would like to perform the following tasks on the docker node:

Perform build
Perform unit tests and publish the unit test report
Perform static code analysis and upload the results on SonarQube
Perform integration testing and publish the integration test report
Publish artifacts to Artifactory

All the previous tasks are various stages of our CI pipeline. Let's write pipeline code for
each one of them.

https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git
https://github.com/nikhilpathania/hello-world-greeting.git

Continuous Integration Using Jenkins Chapter 7

[251]

Downloading the latest source code from VCS
We want our Jenkins pipeline to download the latest change pushed to the master branch
on our GitHub repository:

scm checkout

Wrap the previous step inside a stage called Poll:

stage('Poll') {
 scm checkout
}

Pipeline code to perform the build and unit test
The example project that we are using in the current chapter is a Maven project. Therefore,
the pipeline code for the build is a simple shell script that runs the mvn clean command:

sh 'mvn clean verify -DskipITs=true';
junit '**/target/surefire-reports/TEST-*.xml'
archive 'target/*.jar'

Where -DskipITs=true is the option to skip the integration test and perform only the
build and unit test.

The junit '**/target/surefire-reports/TEST-*.xml' command enables Jenkins to
publish JUnit unit test reports on the Jenkins pipeline page. **/target/surefire-
reports/TEST-*.xml is the directory location where the unit test reports are generated.

Your Maven .pom file should have maven-surefire-
plugin and maven-failsafe-plugin for the previous command to
work.
You also need the Jenkins JUnit plugin (installed by default).

Wrap the previous step inside a stage called Build & Unit test:

stage('Build & Unit test'){
 sh 'mvn clean verify -DskipITs=true';
 junit '**/target/surefire-reports/TEST-*.xml'
 archive 'target/*.jar'
}

Continuous Integration Using Jenkins Chapter 7

[252]

Pipeline code to perform static code analysis
The pipeline code to perform static code analysis is a simple shell script that will run the
Maven commands, as shown in the following command block. This is made possible using
the SonarQube scanner utility for Maven. Remember the configuration that we saw in
the Using the SonarQube scanner for Maven section:

sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
-Dsonar.projectKey=example-project -Dsonar.projectVersion=$BUILD_NUMBER';

The -Dsonar.projectName=example-project option is the option to pass the
SonarQube project name. In this way, all our results will be visible under the
projectName=example-project that we created in the previous chapter.

Similarly, the -Dsonar.projectKey=example-project option allows the SonarQube
scanner for the Maven utility to confirm the projectKey=example-project with
SonarQube.

The -Dsonar.projectVersion=$BUILD_NUMBER option allows us to attach the Jenkins
build number with every analysis that we perform and upload to
SonarQube. $BUILD_NUMBER is the Jenkins environment variable for the build number.

Wrap the previous step inside a stage called Static Code Analysis:

stage('Static Code Analysis'){
 sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
 -Dsonar.projectKey=example-project -
Dsonar.projectVersion=$BUILD_NUMBER';
}

Pipeline code to perform integration testing
The pipeline code to perform integration testing is a shell script that will run the Maven
commands, as shown in the following command block:

sh 'mvn clean verify -Dsurefire.skip=true';
junit '**/target/failsafe-reports/TEST-*.xml'
archive 'target/*.jar'

Continuous Integration Using Jenkins Chapter 7

[253]

Where -Dsurefire.skip=true is the option to skip unit testing and perform only the
integration testing.

The junit '**/target/failsafe-reports/TEST-*.xml' command enables Jenkins to
publish JUnit unit test reports on the Jenkins pipeline page. **/target/failsafe-
reports/TEST-*.xml is the directory location where the integration test reports are
generated.

Wrap the previous step inside a stage called Integration Test:

stage ('Integration Test'){
 sh 'mvn clean verify -Dsurefire.skip=true';
 junit '**/target/failsafe-reports/TEST-*.xml'
 archive 'target/*.jar'
}

Your Maven .pom file should have maven-surefire-plugin and
maven-failsafe-plugin for the previous command to work.
You also need the Jenkins JUnit plugin (installed by default).

Pipeline code to publish built artifacts to Artifactory
To upload the build artifacts to Artifactory, we will use the File Specs. The File Specs code is
shown in the following code block:

"files": [
 {
 "pattern": "[Mandatory]",
 "target": "[Mandatory]",
 "props": "[Optional]",
 "recursive": "[Optional, Default: 'true']",
 "flat" : "[Optional, Default: 'true']",
 "regexp": "[Optional, Default: 'false']"
 }
]

Continuous Integration Using Jenkins Chapter 7

[254]

The following table states the parameters from the preceding code:

Parameters Condition Description

pattern [Mandatory]

Specifies the local filesystem path to artifacts that should be
uploaded to Artifactory. You can specify multiple artifacts by
using wildcards or a regular expression, as designated by the
regexp property.
If you use a regexp, you need to escape any reserved characters
(such as ., ?, and so on) used in the expression using a
backslash \. Since version 2.9.0 of the Jenkins Artifactory plugin
and version 2.3.1 of the TeamCity Artifactory plugin, the pattern
format has been simplified and uses the same file separator / for
all operating systems, including Windows.

target [Mandatory]

Specifies the target path in Artifactory in the following format:
[repository_name]/[repository_path]. If the pattern
ends with a slash, for example, repo-name/a/b/, then b is
assumed to be a folder in Artifactory and the files are uploaded
into it. In the case of repo-name/a/b, the uploaded file is
renamed to b in Artifactory. For flexibility in specifying the
upload path, you can include placeholders in the form
of {1}, {2}, {3}... which are replaced by corresponding
tokens in the source path that are enclosed in parentheses. For
more details, please refer to the Using Placeholders article
(https:/ ​/​www. ​jfrog. ​com/ ​confluence/ ​display/ ​RTF/
Using+File+Specs#UsingFileSpecs- ​UsingPlaceholders).

props [Optional]

List of key=value pairs separated by a semicolon (;) to be
attached as properties to the uploaded properties. If any key can
take several values, then each value is separated by a comma
(,). For example,
key1=value1;key2=value21,value22;key3=value3.

flat
[Default:
true]

If true, artifacts are uploaded to the exact target path specified
and their hierarchy in the source filesystem is ignored.
If false, artifacts are uploaded to the target path while
maintaining their filesystem hierarchy.

recursive
[Default:
true]

If true, artifacts are also collected from subdirectories of the
source directory for upload.
If false, only artifacts specifically in the source directory are
uploaded.

https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders

Continuous Integration Using Jenkins Chapter 7

[255]

regexp
[Default:
false]

If true, the command will interpret the pattern property, which
describes the local filesystem path of artifacts to upload, as a
regular expression.
If false, the command will interpret the pattern property as a
wildcard expression.

The following is the File Specs code that we will use in our pipeline:

def server = Artifactory.server 'Default Artifactory Server'
def uploadSpec = """{
 "files": [
 {
 "pattern": "target/hello-0.0.1.war",
 "target": "example-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;Performance-Tested=No"
 }
]
}"""
server.upload(uploadSpec)

The following table states the parameters from the preceding code:

Parameters Description

def server = Artifactory.server 'Default
Artifactory Server'

This line tells Jenkins to use the
existing Artifactory server
configured in Jenkins. In our
example, it is the default Artifactory
server.

Default Artifactory Server
This is the name of the Artifactory
server configured inside Jenkins.

"pattern": "target/hello-0.0.1.war",

This line of code will look at a file
named hello-0.0.1.war inside
the directory target, which is again
inside the Jenkins workspace
directory.

"target": "example-project/${BUILD_NUMBER}/",

This line of code will try to upload
the build artifacts to the Artifactory
repository named helloworld-
greeting-project. It will place
the artifact inside a folder named
after the build number inside the
Artifactory repository.

Continuous Integration Using Jenkins Chapter 7

[256]

${BUILD_NUMBER}
The Jenkins environment variable for
the build number.

"props": "Integration-Tested=Yes;Performance-
Tested=No"

This code creates two key-value
pairs and assigns them to the
uploaded artifacts. These key-
value pairs can be used as labels
for code promotion in Artifactory.

Wrap the previous step inside a stage called Publish:

stage ('Publish'){
 def server = Artifactory.server 'Default Artifactory Server'
 def uploadSpec = """{
 "files": [
 {
 "pattern": "target/hello-0.0.1.war",
 "target": "helloworld-greeting-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;Performance-Tested=No"
 }
]
 }"""
 server.upload(uploadSpec)
}

Combined CI pipeline code
The following is the complete combined code that will run inside the docker node:

node('docker') {
 stage('Poll') {
 checkout scm
 }
 stage('Build & Unit test'){
 sh 'mvn clean verify -DskipITs=true';
 junit '**/target/surefire-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage('Static Code Analysis'){
 sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
 -Dsonar.projectKey=example-project -
Dsonar.projectVersion=$BUILD_NUMBER';
 }
 stage ('Integration Test'){
 sh 'mvn clean verify -Dsurefire.skip=true';

Continuous Integration Using Jenkins Chapter 7

[257]

 junit '**/target/failsafe-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage ('Publish'){
 def server = Artifactory.server 'Default Artifactory Server'
 def uploadSpec = """{
 "files": [
 {
 "pattern": "target/hello-0.0.1.war",
 "target": "example-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;Performance-Tested=No"
 }
]
 }"""
 server.upload(uploadSpec)
 }
}

Using a Jenkinsfile
Jenkins Multibranch Pipelines utilize Jenkinsfiles. In this section, we will learn how to create
a Jenkinsfile. We will use the example pipeline script that we created in the previous section
to create our Jenkinsfile. Follow these steps:

Log in to your GitHub account.1.
Navigate to the forked repository.2.
Once on the repository page, click on the Create new file button to create a new3.
empty file that will be our Jenkinsfile, as shown in the following screenshot:

Creating a new file on GitHub

Continuous Integration Using Jenkins Chapter 7

[258]

Name your new file Jenkinsfile by filling in the empty textbox, as shown in4.
the following screenshot:

Naming your new file on GitHub

Add the following code in your Jenkinsfile:5.

node('docker') {
 stage('Poll') {
 checkout scm
 }
 stage('Build & Unit test'){
 sh 'mvn clean verify -DskipITs=true';
 junit '**/target/surefire-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage('Static Code Analysis'){
 sh 'mvn clean verify sonar:sonar
 -Dsonar.projectName=example-project
 -Dsonar.projectKey=example-project
 -Dsonar.projectVersion=$BUILD_NUMBER';
 }
 stage ('Integration Test'){
 sh 'mvn clean verify -Dsurefire.skip=true';
 junit '**/target/failsafe-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage ('Publish'){
 def server = Artifactory.server 'Default Artifactory
Server'
 def uploadSpec = """{
 "files": [
 {
 "pattern": "target/hello-0.0.1.war",
 "target": "example-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;Performance-
Tested=No"
 }
]
 }"""

Continuous Integration Using Jenkins Chapter 7

[259]

 server.upload(uploadSpec)
 }
}

Once done, commit the new file by adding a meaningful comment, as shown in6.
the following screenshot:

Committing your new file on GitHub

Creating a Multibranch Pipeline in Jenkins
Follow these steps to create a new Jenkins pipeline job:

From the Jenkins dashboard, click on the New Item link.1.
On the resultant page, you will be presented with various types of Jenkins jobs to2.
choose from.
Choose Multibranch Pipeline, and give a name to your pipeline using the Enter3.
an item name field.
Once you are done, click on the OK button at the bottom of the page.4.
Scroll to the Branch Sources section. This is the place where we configure the5.
GitHub repository that we want to use.
Click on the Add Source button and choose GitHub. You will be presented with6.
a list of fields to configure. Let us see them one by one (see the following
screenshot).
For the Credentials field, choose the GitHub account credentials (Kind:7.
Username with Password) that we created in the previous section.

Continuous Integration Using Jenkins Chapter 7

[260]

Under the Owner field, specify the name of your GitHub organization or GitHub8.
user account.
The moment you do so, the Repository field will list all the repositories that are9.
on your GitHub account.
Choose hello-world-greeting under the Repository field.10.
Leave the rest of the options to their default values:11.

Configuring the Multibranch Pipeline

Scroll all the way down to the Build Configuration section. Make sure12.
the Mode field is set to by Jenkinsfile and the Script Path field is set to
Jenkinsfile:

Build configuration

Scroll all the way down and click on the Save button.13.

Re-registering the Webhooks
Now, let us re-register the Webhooks for all our Jenkins pipelines. To do so, perform the
following steps:

On the Jenkins dashboard, click on Manage Jenkins | Configure System.1.
On the Jenkins configuration page, scroll all the way down to the GitHub section.2.

Continuous Integration Using Jenkins Chapter 7

[261]

Under the GitHub section, click on the Advanced… button (you will see two of3.
them; click on the second one).
This will display a few more fields and options. Click on the Re-register hooks4.
for all jobs button.
The previous action will create new Webhooks for our Multibranch Pipeline on5.
the respective repository inside your GitHub account. Do the following to view
the Webhooks on GitHub:

Log in to your GitHub account.1.
Go to your GitHub repository, hello-world-greeting in our case.2.
Click on the repository Settings button, as shown in the following3.
screenshot:

Repository settings

On the repository Settings page, click on Webhooks from the left-hand4.
side menu. You should see the Webhooks for your Jenkins server, as
shown in the following screenshot:

Webhooks on GitHub repository

Continuous Integration Using Jenkins Chapter 7

[262]

Continuous Integration in action
Follow the given steps:

From the Jenkins dashboard, click on your Multibranch Pipeline.1.
On the Jenkins Multibranch Pipeline page, from the left-hand side menu, click on2.
the Scan Repository Now link. This will scan the repository for branches and
Jenkinsfiles, and will immediately run a pipeline for every branch that has got a
Jenkinsfile, as shown in the following screenshot:

Pipeline for the master branch

On the Multibranch Pipeline page, from the left-hand side menu, click on Scan3.
Repository Log. You will see something similar to the following output. Notice
the highlighted code. You can see the master branch met the criteria, as it had a
Jenkinsfile and a pipeline was scheduled for it. There was no pipeline scheduled
for the testing branch since there was no Jenkinsfile on it:

Started by user nikhil pathania
[Sun Nov 05 22:37:19 UTC 2017] Starting branch indexing...
22:37:19 Connecting to https://api.github.com using
nikhilpathania@hotmail.com/****** (credentials to access GitHub
account)
22:37:20 Connecting to https://api.github.com using
nikhilpathania@hotmail.com/****** (credentials to access GitHub
account)
Examining nikhilpathania/hello-world-greeting
 Checking branches...
 Getting remote branches...
 Checking branch master
 Getting remote pull requests...
 ‘Jenkinsfile’ found
 Met criteria
Changes detected: master
(c6837c19c3906b0f056a87b376ca9afdff1b4411
1e5834a140d572f4d6f9665caac94828b779e2cd)Scheduled build for
branch: master
1 branches were processed

Continuous Integration Using Jenkins Chapter 7

[263]

Checking pull-requests...
0 pull requests were processed
Finished examining nikhilpathania/hello-world-greeting
[Sun Nov 05 22:37:21 UTC 2017] Finished branch indexing.
Indexing took 2.1 sec
Finished: SUCCESS

You need not always scan for the repository. The GitHub Webhooks
are configured to automatically trigger a pipeline whenever there is a
push or a new branch on your GitHub repository. Remember, a
Jenkinsfile should also be present on the respective branch to tell
Jenkins what it needs to do when it finds a change in the repository.

From your Jenkins Multibranch Pipeline page (<Jenkins URL>/job/<Jenkins4.
Multi-branch pipeline name>/), click on the respective branch pipeline (see
the following screenshot).
On the resultant page, you will see the Stage View for the master branch5.
pipeline:

Pipeline Stage View

Continuous Integration Using Jenkins Chapter 7

[264]

To see the unit test and integration test results, click on Latest Test Result link,6.
which is available on the same page below the Stage View, as shown in the
following screenshot:

On the resultant page, you will see a detailed report about the unit as well as the7.
integration test execution, as shown in the following screenshot:

Test report using JUnit plugin

You can click on the individual tests to get more details.8.

Continuous Integration Using Jenkins Chapter 7

[265]

While on the same page, on the left-hand side menu there is a link9.
named History, which gives you a historic graph about the number of metrics
related to the test execution over a period of time:

Test execution history

Continuous Integration Using Jenkins Chapter 7

[266]

Viewing static code analysis in SonarQube
Let us take a look at the static code analysis report performed as part of our CI pipeline.
Follow these steps:

Open the SonarQube link, using your favorite browser. You should see1.
something similar to the following screenshot:

SonarQube homepage

Continuous Integration Using Jenkins Chapter 7

[267]

From the SonarQube dashboard, using the menu option, click on the Log in link.2.
Enter your SonarQube credentials.3.
On the resultant page, under the PROJECTS widget, click on the example-4.
project project.
You will see an overview of the static code analysis of your project (see the5.
following screenshot):

Static code analysis overview

Continuous Integration Using Jenkins Chapter 7

[268]

Click on Measures | Coverage. On the resultant page, you will get a nice6.
overview of your code coverage and unit test result report, as shown in the
following screenshot:

Code coverage report and unit test report

Accessing SonarQube analysis right from
Jenkins
You can access your static code analysis report right from your CI pipeline. Follow these
steps:

From your Jenkins dashboard, click on your Multibranch Pipeline. Next, click on1.
the respective branch pipeline (master in our example).

Continuous Integration Using Jenkins Chapter 7

[269]

Once you are on your branch pipeline, hover your mouse on the Static Code2.
Analysis stage and click on Logs. See the following screenshot:

Fetching individual stage logs

In the resultant pop-up window named Stage Logs (Static Code Analysis), scroll3.
all the way down to the end. You should see a link to the SonarQube analysis
page. See the following screenshot:

SonarQube analysis link from Jenkins logs

Continuous Integration Using Jenkins Chapter 7

[270]

Clicking on the link, as shown in the previous screenshot, will take you straight4.
to the SonarQube dashboard of the respective project.

Viewing artifacts in Artifactory
Let us see how our artifacts look when uploaded to Artifactory. Follow these steps:

From your favorite browser, access the Artifactory link. From the Artifactory1.
dashboard, log in using the Log in link.
Click on the Artifacts tab on the left-hand side menu. You should see your2.
repository listed under the Artifact Repository Browser, as shown in the
following screenshot:

Artifact Repository Browser

Expand the repository, and you should see the built artifact along with the3.
properties, as shown in the following screenshot:

Continuous Integration Using Jenkins Chapter 7

[271]

Artifact generated by the CI pipeline

Failing the build when quality gate criteria are not
met
In the following section, we will tweak the SonarQube quality gate that we created in the
previous chapter, such that it should fail the Jenkins CI pipeline. Follow these steps to
simulate this scenario:

Log in to your SonarQube server and click on Quality Gates from the menu bar.1.
From the left-hand side menu, click on the quality gate: example-quality-gate2.
that we created in the previous chapter.
Now, change the value of the ERROR field from 50 to 3. 3.

Continuous Integration Using Jenkins Chapter 7

[272]

Click on Update. Finally, everything should look as shown in the following4.
screenshot:

Updating the SonarQube quality gate

Next, make some changes on the GitHub repository to trigger a CI pipeline in5.
Jenkins.
Log in to Jenkins and navigate to your Jenkins Multibranch CI Pipeline. You6.
should see something similar to the following screenshot:

Failed CI pipeline

Continuous Integration Using Jenkins Chapter 7

[273]

Click on the failed stage of the respective pipeline to fetch its logs. In the pop-up7.
window, scroll all the way down. You should see the reason for the pipeline
failure, as shown in the following screenshot (arrow):

SonarQube logs with quality gate status

Summary
In this chapter, we learned how to create a Multibranch CI Pipeline that gets triggered on a
push event, performs build, static code analysis, integration testing, and uploads the
successfully tested binary artifact to Artifactory. Lastly, we saw the whole CI pipeline in
action from the perspective of a developer.

The CI design discussed in the book can be modified to suit the needs of any type of project;
the users just need to identify the right tools and configurations that can be used with
Jenkins.

In the next chapter, we will extend our CI pipeline to do more in the area of QA.

8
Continuous Delivery Using

Jenkins
We will begin this chapter with a Continuous Delivery design that covers the following
areas:

Branching strategy
A list of tools for Continuous Delivery
A Jenkins pipeline structure

The Continuous Delivery (CD) design will serve as a blueprint that will guide the readers
in answering the how, why, and where of the CD being implemented. The design will cover
all the necessary steps involved in implementing an end-to-end CD pipeline.

The CD design, discussed in this chapter, should be considered as a template for
implementing CD, and not a full and final model. All the tools used can be modified and
replaced to suit the purpose.

Jenkins CD design
In this section, we will go through a very general CD design.

Continuous Delivery Using Jenkins Chapter 8

[275]

Branching strategy
In Chapter 7, Continuous Integration Using Jenkins, we followed a branching strategy for the
CI that included the following:

The master branch
The integration branch
The feature branch

This branching strategy is a slimmer version of the GitFlow workflow branching model.

While CI can be performed on integration/development branches or feature branches, CD is
carried out only on the integration and release branches.

The release branch
Some teams go with the strategy of having a release branch. A release branch is created
after a successfully-tested code goes live in production (distributed to customers) from the
master branch. The purpose of creating a release branch is to support bug fixes on the
respective release:

Branching strategy

Continuous Delivery Using Jenkins Chapter 8

[276]

CD pipeline
We are now at the heart of the CD design. We will not create a new pipeline; instead, we
will build on the existing CI Multibranch Pipeline in Jenkins. The new CD pipeline will
have the following stages:

Fetch the code from the version control system (VCS) on a push event1.
(initialization of the CI pipeline).
Build and unit test the code; publish a unit test report on Jenkins.2.
Perform static code analysis on the code and upload the result to SonarQube. Fail3.
the pipeline if the number of bugs crosses the threshold defined in the quality
gate.
Perform integration testing; publish a unit test report on Jenkins.4.
Upload the built artifacts to Artifactory along with some meaningful properties.5.
Deploy the binaries to the testing environment.6.
Execute testing (quality analysis).7.
Promote the solution in Artifactory and mark it as a release candidate.8.

The purpose of the preceding CD pipeline is to automate the process of continuously
deploying, testing (QA), and promoting the build artifacts in the binary repository.
Reporting for failures/success happens at every step. Let us discuss these pipelines and their
constituents in detail.

In the real world, the QA may contain multiple stages of testing, such as
performance testing, user acceptance testing, component testing, and so
on. To keep things simple, we will perform only performance testing in
our example CD pipeline.

Toolset for CD
The example project for which we are implementing CI is a simple Maven project.
Therefore, we will see Jenkins working closely with many other tools.

Continuous Delivery Using Jenkins Chapter 8

[277]

The following table contains the list of tools and technologies involved in everything that
we will be seeing:

Tool/Technology Description

Java Primary programming language used for coding

Maven Build tool

JUnit Unit test and integration test tools

Jenkins CI tool

GitHub VCS

SonarQube Static code analysis tool

Artifactory Binary repository manager

Apache Tomcat Application server to host the solution

Apache JMeter Performance testing tool

Creating a Docker image – performance
testing
In this section, we will create a Docker image for our performance testing (PT). This Docker
image will be used by Jenkins to create Docker containers, wherein we will deploy our built
solution and execute our performance tests. Follow the given steps:

Log in to your Docker server. Give the following command to check the available1.
Docker images:

 sudo docker images

From the following screenshot, you can see I have three Docker images (ubuntu,2.
hello-world, and maven-build-slave-0.1) already on my Docker server:

Listing the Docker images

Continuous Delivery Using Jenkins Chapter 8

[278]

We will build a new Docker image for running our PT using the Ubuntu Docker3.
image.
Let us upgrade our Ubuntu Docker image with all the necessary application that4.
we need to run our tests, which are as follows:

Java JDK (latest)
Apache Tomcat (8.5)
Apache JMeter
A user account to log in the Docker container
OpenSSH daemon (to accept SSH connection)
Curl

Execute the following command to run a Docker container using the Ubuntu5.
Docker image. This will create a container and open up its bash shell:

sudo docker run -i -t ubuntu /bin/bash

Now, install all the required application as you would do on any normal Ubuntu6.
machine. Let's begin with creating a jenkins user:

Execute the following command and follow the user creation steps,1.
shown as follows:

adduser jenkins

Creating a user

Continuous Delivery Using Jenkins Chapter 8

[279]

Check the new user, using the switch user command:2.

su jenkins

Switch back to the root user by typing exit.7.
Next, we will install the SSH server. Execute the following commands in8.
sequence:

apt-get update

apt-get install openssh-server

mkdir /var/run/sshd

Follow the given steps to install Java:9.
Update the package index:1.

apt-get update

Next, install Java. The following command will install the Java2.
Runtime Environment (JRE):

apt-get install default-jre

The best way to install Tomcat 8.5 is to download the latest binary release and10.
then configure it manually:

Move to the /tmp directory and download Apache Tomcat 8.5, using1.
the following commands:

cd /tmp

wget
https://archive.apache.org/dist/tomcat/tomcat-8/v8
.5.11/bin/apache-tomcat-8.5.11.tar.gz

We will install Tomcat inside the home/jenkins/ directory. To do so,2.
first switch to the jenkins user. Create a tomcat directory inside
/home/jenkins/:

su jenkins

mkdir /home/jenkins/tomcat

Continuous Delivery Using Jenkins Chapter 8

[280]

Then extract the archive to it:3.

tar xzvf apache-tomcat-8*tar.gz \
-C /home/jenkins/tomcat --strip-components=1

Switch back to the root user by typing exit.11.
Apache JMeter is a good tool to perform performance testing. It's free and open12.
source. It can run in both GUI and command-line mode, which makes it a
suitable candidate for automating performance testing:

Move to the /tmp directory:1.

cd /tmp

Download apache-jmeter-3.1.tgz, or whichever is the latest stable2.
version, from http:/ ​/ ​jmeter. ​apache. ​org/ ​download_ ​jmeter. ​cgi:

wget
https://archive.apache.org/dist/jmeter/binaries/ap
ache-jmeter-3.1.tgz

We will install JMeter inside the opt/jmeter/ directory. To do so,3.
create a jmeter directory inside /opt:

mkdir /opt/jmeter

Then extract the archive to the /opt/jmeter/ directory and also give4.
it the appropriate permissions:

tar xzvf apache-jmeter-3*.tgz \
-C /opt/jmeter --strip-components=1

chown -R jenkins:jenkins /opt/jmeter/

chmod -R 777 /opt/jmeter/

Follow the given step to install curl:13.

apt-get install curl

http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi

Continuous Delivery Using Jenkins Chapter 8

[281]

Follow the given steps to save all the changes that we made to the Docker image:14.
Exit the container by typing exit.1.
We need to save (commit) all the changes that we did to our Docker2.
container.
Get the CONTAINER ID of the container that we worked on recently by3.
listing all the inactive containers, as shown in the following screenshot
after the command:

sudo docker ps -a

Listing inactive containers

Note the CONTAINER ID, and execute the following command to save4.
(commit) the changes that we made to our container:

sudo docker commit <CONTAINER ID> <new name for
the container>

I have named my container performance-test-agent-0.1, as5.
shown in the following screenshot:

Docker commit command

Once you have committed the changes, a new Docker image gets6.
created.

Continuous Delivery Using Jenkins Chapter 8

[282]

Execute the following docker command to list images, as shown in the7.
following screenshot after the command:

sudo docker images

Listing the Docker images

You can see our new Docker image with the name performance-8.
test-agent-0.1. We will now configure our Jenkins server to use
the performance-test-agent-0.1 Docker image to create Jenkins
slaves (build agents).

Adding Docker container credentials in Jenkins
Follow the given steps to add credentials inside Jenkins to allow it to talk to Docker:

From the Jenkins dashboard, navigate to Credentials | System | Global1.
credentials (unrestricted).
Click on the Add Credentials link on the left-hand side menu to create a new2.
credential (see the following screenshot).
Choose Kind as Username with Password.3.
Leave the Scope field to its default value.4.
Add a username for your Docker image (jenkins, as per our example) under5.
the Username field.
Under the Password field, add the password.6.
Add an ID under the ID field, and a description under the Description field.7.

Continuous Delivery Using Jenkins Chapter 8

[283]

Once done, click on the OK button:8.

Creating credentials inside Jenkins

Updating the Docker settings inside Jenkins
Follow the given steps to update the Docker settings inside Jenkins:

From the Jenkins dashboard, click on Manage Jenkins | Configure System.1.
Scroll all the way down to the Cloud section.2.
Under the Cloud section, click on the Add Docker Template button and choose3.
Docker Template.
You will be presented with a lot of settings to configure (see the following4.
screenshot). However, to keep this demonstration simple, let us stick to the
important settings.
Under the Docker Image field, enter the name of the Docker image that we5.
created earlier. In my case, it is performance-test-agent-0.1.
Under the Labels field, add a label. The Docker container will be recognized,6.
using this label by your Jenkins pipeline. I have added the docker_pt label.
Launch Method should be Docker SSH computer launcher.7.
Under the Credentials field, choose the credentials that we created to access the8.
Docker container.
Make sure that the Pull strategy option is set to Never pull.9.
Leave the rest of the options to their default values.10.

Continuous Delivery Using Jenkins Chapter 8

[284]

Once done, click on Apply and then Save:11.

Creating a Docker Template for integration testing

Creating a performance test using JMeter
In this section, we will learn how to create a simple performance test using the JMeter tool.
The steps mentioned should be performed on your local machine. The following steps are
performed on a machine with Ubuntu 16.04.

Continuous Delivery Using Jenkins Chapter 8

[285]

Installing Java
Follow the given steps to install Java:

Update the package index:1.

sudo apt-get update

Next, install Java. The following command will install the JRE:2.

sudo apt-get install default-jre

To set the JAVA_HOME environment variable, first get the Java installation3.
location. Do this by executing the following command:

sudo update-alternatives --config java

Copy the resultant path and update the JAVA_HOME variable inside4.
the /etc/environment file.

Installing Apache JMeter
Follow the given steps to install Apache JMeter:

Move to the /tmp directory:1.

cd /tmp

Download apache-jmeter-3.1.tgz, or whichever is the latest stable version,2.
from http:/ ​/ ​jmeter. ​apache. ​org/ ​download_ ​jmeter. ​cgi:

wget
https://archive.apache.org/dist/jmeter/binaries/apache-jmeter-3
.1.tgz

We will install JMeter inside the /opt/jmeter directory. To do so, create a3.
jmeter directory inside /opt:

mkdir /opt/jmeter

http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi

Continuous Delivery Using Jenkins Chapter 8

[286]

Then extract the archive to it:4.

tar xzvf apache-jmeter-3*.tgz \
-C /opt/jmeter --strip-components=1

Starting JMeter
Follow the given steps to start JMeter:

To start JMeter, move to the JMeter installation directory and run the jmeter.sh,1.
script using the following command:

cd /opt/jmeter/bin

./jmeter.sh

The JMeter GUI utility will open up in a new window.2.

Creating a performance test case
By default, you will see an example test plan. We will create a new test plan by modifying
the existing template:

Rename the test plan to Hello_World_Test_Plan, as shown in the following1.
screenshot:

Creating a test plan

Continuous Delivery Using Jenkins Chapter 8

[287]

Save it inside the examples folder by clicking on the Save button from the menu2.
items or by clicking Ctrl + S, as shown in the following screenshot:

Saving the test plan

Creating a thread group
Follow the given steps to create a thread group:

Add a thread group. To do so, right-click on Hello_World_Test_Plan and1.
select Add | Threads (Users) | Thread Group:

Creating a thread group

Continuous Delivery Using Jenkins Chapter 8

[288]

In the resultant page, give your thread group a name and fill the options as2.
follows:

Select Continue for the option Action to be taken after a Sampler1.
error.
Add Number of Threads (users) as 1.2.
Add Ramp-Up Period (in seconds) as 1.3.
Add Loop Count as 1:4.

Configuring a thread group

Continuous Delivery Using Jenkins Chapter 8

[289]

Creating a sampler
Follow the given steps to create a sampler:

Right-click on Hello_World_Test_Plan and select Add | Sampler | HTTP1.
Request:

Adding a Sampler

Name the HTTP Request appropriately and fill the options as follows:2.
Add Server Name or IP as <IP Address of your Testing Server1.
machine>.
Add Port Number as 8080.2.
Add Path as /hello.0.0.1/:3.

Continuous Delivery Using Jenkins Chapter 8

[290]

Configuring a sampler

Adding a listener
Follow the given steps to add a listener:

Right-click on Hello_World_Test_Plan and select Add | Listener | View1.
Results Tree:

Adding a Listener

Continuous Delivery Using Jenkins Chapter 8

[291]

Do nothing; leave all the fields as they are.2.
Save the whole configuration by clicking on the Save button in the menu items or3.
by clicking Ctrl + S.
Copy the .jmx file from /opt/jmeter/bin/examples.4.
Under your Maven project, create a folder named pt inside the src directory and5.
add the .jmx file inside it.
Upload the code to GitHub.6.

The CD pipeline
We have all the required tools and the Docker image is ready. In this section, we will create
a pipeline in Jenkins that will describe our CD process.

Writing the Jenkinsfile for CD
We will build on the CI pipeline that we created earlier. Let's first revisit our CI pipeline,
and then we will add some new stages to it as part of the CD process.

Revisiting the pipeline code for CI
The following is the complete combined code that was part of the CI:

node('docker') {
 stage('Poll') {
 checkout scm
 }
 stage('Build & Unit test'){
 sh 'mvn clean verify -DskipITs=true';
 junit '**/target/surefire-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage('Static Code Analysis'){
 sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
 -Dsonar.projectKey=example-project
 -Dsonar.projectVersion=$BUILD_NUMBER';
 }
 stage ('Integration Test'){
 sh 'mvn clean verify -Dsurefire.skip=true';
 junit '**/target/failsafe-reports/TEST-*.xml'
 archive 'target/*.jar'

Continuous Delivery Using Jenkins Chapter 8

[292]

 }
 stage ('Publish'){
 def server = Artifactory.server 'Default Artifactory Server'
 def uploadSpec = """{
 "files": [
 {
 "pattern": "target/hello-0.0.1.war",
 "target": "example-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;Performance-Tested=No"
 }
]
 }"""
 server.upload(uploadSpec)
 }
}

Pipeline code to stash the build artifacts
The Jenkins pipeline uses a feature called stash to pass build artifacts across nodes. In the
following step, we will stash a few build artifacts that we wish to pass to the docker_pt
node, wherein we will perform our performance test:

stash includes: 'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx',
name: 'binary'

In the preceding code:

name: Name for the stash
includes: Comma-separated files to include

Spawning a Docker container – performance testing
First, let us create a pipeline code that will create a Docker container (Jenkins slave) using
the performance-test-agent-0.1 Docker image for performance testing:

node('docker_pt') {
}

Where docker_pt is the label for the performance-test-agent-0.1 Docker template.

Continuous Delivery Using Jenkins Chapter 8

[293]

We would like to perform the following tasks on the docker_pt node:

Start Tomcat.1.
Deploy the build artifacts to Tomcat on the testing environment.2.
Perform performance testing.3.
Promote the build artifacts inside Artifactory.4.

All the preceding tasks are various stages of our CD pipeline. Let's write the pipeline code
for each one of them.

Pipeline code to start Apache Tomcat
The pipeline code to start Apache Tomcat on the performance testing agent is a simple shell
script that will run the ./startup.sh script present inside the Tomcat installation
directory:

sh '''cd /home/jenkins/tomcat/bin
./startup.sh''';

Wrap the preceding step inside a stage called Start Tomcat:

stage ('Start Tomcat'){
 sh '''cd /home/jenkins/tomcat/bin
 ./startup.sh''';
}

Pipeline code to deploy build artifacts
The pipeline code to deploy build artifacts happens in two steps. First, we will un-stash the
binary package that we stashed from the previous node Docker block. Then, we deploy the
un-stashed files into the webapps folder inside the Tomcat installation directory on our
testing environment. The code is as follows:

unstash 'binary'
sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';

Continuous Delivery Using Jenkins Chapter 8

[294]

Wrap the preceding step inside a stage called Deploy:

stage ('Deploy){
 unstash 'binary'
 sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
}

Pipeline code to run performance testing
The pipeline code to execute the performance testing is a simple shell script that evokes the
jmeter.sh script and passes the .jmx file to it. The test result is stored inside a .jtl file
that is then archived. The code is as follows:

sh '''cd /opt/jmeter/bin/
./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
$WORKSPACE/test_report.jtl''';

step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])

The following table gives the description the preceding code snippet:

Code Description

./jmeter.sh -n -t <path to the .jmx
file> -l <path to save the .jtl file>

This is the jmeter command to execute
the performance test plan (the .jmx
files) and generate a test result
(the .jtl files).

step([$class: 'ArtifactArchiver',
artifacts: '**/*.jtl'])

This line of code will archive all files
with the .jtl extension.

Wrap the previous step inside a stage called Performance Testing:

stage ('Performance Testing'){
 sh '''cd /opt/jmeter/bin/
 ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
$WORKSPACE/test_report.jtl''';
 step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
}

Continuous Delivery Using Jenkins Chapter 8

[295]

Pipeline code to promote build artifacts in Artifactory
The way we are going to promote build artifacts in Artifactory is by using the properties
(key-value pair) feature. All builds that have passed performance testing will be applied
a Performance-Tested=Yes tag. The code is as follows:

withCredentials([usernameColonPassword(credentialsId: 'artifactory-
account', variable: 'credentials')]) {
 sh 'curl -u${credentials} -X PUT
"http://172.17.8.108:8081/artifactory/api/storage/example-project/${BUILD_N
UMBER}/hello-0.0.1.war?properties=Performance-Tested=Yes"';
}

The following table gives the description the preceding code snippet:

Code Description

withCredentials([usernameColonPassword(credentialsId:
'artifactory-account', variable: 'credentials')]) {
}

We are using the
withCredentials plugin
inside Jenkins to pass
Artifactory credentials to
the curl command.

curl -u<username>:password -X PUT "<artifactory
server URL>/api/storage/<artifactory repository
name>?properties=key-value"

This is the curl command
to update the property
(key-value pair) on the
build artifact present
inside Artifactory. The
curl command makes
use of the REST API
features of Artifactory.

Wrap the previous step inside a stage called Promote build in Artifactory:

stage ('Promote build in Artifactory'){
 withCredentials([usernameColonPassword(credentialsId: 'artifactory-
account', variable: 'credentials')]) {
 sh 'curl -u${credentials} -X PUT
"http://172.17.8.108:8081/artifactory/api/storage/example-project/${BUILD_N
UMBER}/hello-0.0.1.war?properties=Performance-Tested=Yes"';
 }
}

Continuous Delivery Using Jenkins Chapter 8

[296]

Combined CD pipeline code
The following is the complete combined code that will run inside the docker_pt node:

node('docker_pt') {
 stage ('Start Tomcat'){
 sh '''cd /home/jenkins/tomcat/bin
 ./startup.sh''';
 }
 stage ('Deploy '){
 unstash 'binary'
 sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
 }
 stage ('Performance Testing'){
 sh '''cd /opt/jmeter/bin/
 ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
 $WORKSPACE/test_report.jtl''';
 step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
 }
 stage ('Promote build in Artifactory'){
 withCredentials([usernameColonPassword(credentialsId:
 'artifactory-account', variable: 'credentials')]) {
 sh 'curl -u${credentials} -X PUT
 "http://172.17.8.108:8081/artifactory/api/storage/example-project/
 ${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-
Tested=Yes"';
 }
 }
}

Let us combine the preceding code with the pipeline code for CI to get the complete CD
pipeline code, shown as follows:

node('docker') {
 stage('Poll') {
 checkout scm
 }
 stage('Build & Unit test'){
 sh 'mvn clean verify -DskipITs=true';
 junit '**/target/surefire-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage('Static Code Analysis'){
 sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
 -Dsonar.projectKey=example-project -
Dsonar.projectVersion=$BUILD_NUMBER';
 }

Continuous Delivery Using Jenkins Chapter 8

[297]

 stage ('Integration Test'){
 sh 'mvn clean verify -Dsurefire.skip=true';
 junit '**/target/failsafe-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage ('Publish'){
 def server = Artifactory.server 'Default Artifactory Server'
 def uploadSpec = """{
 "files": [
 {
 "pattern": "target/hello-0.0.1.war",
 "target": "example-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;Performance-Tested=No"
 }
]
 }"""
 server.upload(uploadSpec)
 }
 stash includes:
'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx',
 name: 'binary'
}
node('docker_pt') {
 stage ('Start Tomcat'){
 sh '''cd /home/jenkins/tomcat/bin
 ./startup.sh''';
 }
 stage ('Deploy '){
 unstash 'binary'
 sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
 }
 stage ('Performance Testing'){
 sh '''cd /opt/jmeter/bin/
 ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
 $WORKSPACE/test_report.jtl''';
 step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
 }
 stage ('Promote build in Artifactory'){
 withCredentials([usernameColonPassword(credentialsId:
 'artifactory-account', variable: 'credentials')]) {
 sh 'curl -u${credentials} -X PUT
 "http://172.17.8.108:8081/artifactory/api/storage/example-project/
 ${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-
Tested=Yes"';
 }
 }
}

Continuous Delivery Using Jenkins Chapter 8

[298]

CD in action
Make some changes on your GitHub code or just trigger the Jenkins pipeline from the
Jenkins dashboard:

Log in to Jenkins, and from the Jenkins dashboard click on your Multibranch1.
Pipeline. You should see something like the following:

Jenkins CD pipeline in action

Log in to the Artifactory server and see if the code has been uploaded and2.
promoted using the properties, shown as follows:

Build artifacts being promoted inside Artifactory

Continuous Delivery Using Jenkins Chapter 8

[299]

Let us see our CD pipeline in Jenkins Blue Ocean. To do so, navigate to your3.
Jenkins Multibranch CD pipeline (<Jenkins URL>/job/<Jenkins
multibranch pipeline name>/).
On the pipeline page, click on the Open Blue Ocean link available on the left-4.
hand side menu.
You will be taken to your Multibranch Pipeline page in Blue Ocean, as shown in5.
the following screenshot:

Click on the master branch to see its pipeline. You should see something like the6.
following:

Continuous Delivery Using Jenkins Chapter 8

[300]

Summary
In this chapter, we learned how to create an end-to-end CD pipeline that gets triggered on a
push event, performs builds, static code analysis, and integration testing, uploads the
successfully tested binary artifact to Artifactory, deploys the code to the testing
environment, performs some automated testing, and promotes the binaries in Artifactory.

The CD design discussed in the book can be modified to suit the needs of any type of
project. The users just need to identify the right tools and configurations that can be used
with Jenkins.

In the next chapter, we will learn about Continuous Deployment, how different it is from
Continuous Delivery, and more.

9
Continuous Deployment Using

Jenkins
This chapter begins by defining and explaining Continuous Deployment. We will also try to
differentiate between Continuous Deployment and Continuous Delivery. Continuous
Deployment is a simple, tweaked version of the Continuous Delivery pipeline. Hence, we
won't be seeing any major Jenkins configuration changes or any new tools.

The following topics will be covered in the chapter:

Creating a production server
Installing a Jenkins slave on a production server
Creating a Jenkins Continuous Deployment pipeline
Continuous Delivery in action

Continuous Deployment Using Jenkins Chapter 9

[302]

What is Continuous Deployment?
The process of continuously deploying production-ready features into the production
environment, or to the end user, is termed as Continuous Deployment.

Continuous Deployment in a holistic sense means, the process of making production-ready
features go live instantly without any intervention. This includes building features in an agile
manner, integrating and testing them continuously, and deploying them into the
production environment without any breaks.

Continuous Deployment in a literal sense means, the task of deploying any given package
continuously in any given environment. Therefore, the task of deploying packages into a
testing server and a production server conveys the literal meaning of Continuous
Deployment.

How Continuous Deployment is different from
Continuous Delivery
First, the features are developed, and then they go through a cycle, or Continuous
Integration, or through testing of all kinds. Anything that passes the various tests is
considered as a production-ready feature. These production-ready features are then labeled
in Artifactory (not shown in this book) or kept separately to segregate them from non-
production ready features.

This is similar to the manufacturing production line. The raw product goes through phases
of modifications and testing. Finally, the finished product is packaged and stored in the
warehouses. From the warehouses, depending on the orders, it gets shipped to various
places. The product doesn't get shipped immediately after it's packaged.

Continuous Deployment Using Jenkins Chapter 9

[303]

We can safely call this practice Continuous Delivery. The following illustration depicts the
Continuous Delivery life cycle:

Continuous Delivery pipeline

Continuous Deployment Using Jenkins Chapter 9

[304]

On the other hand, a Continuous Deployment life cycle looks somewhat as shown in the
following illustration. The deployment phase is immediate without any break. The
production-ready features are immediately deployed into production:

Continuous Deployment pipeline

Who needs Continuous Deployment?
One might have the following questions rolling in their minds: how can I achieve Continuous
Deployment in my organization, what could be the challenges, how much testing do I need to
incorporate and automate? The list goes on.

Continuous Deployment Using Jenkins Chapter 9

[305]

However, technical challenges are one thing. What's more important to decide is whether
we really need it. Do we really need Continuous Deployment?

The answer is, not always and not in every case. Since, from our definition of Continuous
Deployment and our understanding from the previous topic, production-ready features get
deployed instantly into the production environments.

In many organizations, it's the business that decides whether or not to make a feature live,
or when to make a feature live. Therefore, think of Continuous Deployment as an option,
and not a compulsion.

On the other hand, Continuous Delivery; which means creating production-ready features
in a continuous way, should be the motto for any organization.

Creating a production server
In the following section, let us create a production server that will host our hello world
application. We will later extend our Continuous Delivery pipeline to automatically deploy
fully testing binary artifacts on our production server.

In the following example, our production server is a simple Tomcat server. Let us create one
using Vagrant.

Installing Vagrant
In this section, we will install Vagrant on Ubuntu. Make sure you perform these steps as a
root user or with an account having root privileges (sudo access):

Open up a Terminal and type the following command to download Vagrant:1.

wget
https://releases.hashicorp.com/vagrant/1.8.5/vagrant_1.8.5_x86_
64.deb

Continuous Deployment Using Jenkins Chapter 9

[306]

Or, you can also download the latest Vagrant package from the Vagrant website
at https:/ ​/​www. ​vagrantup. ​com/ ​downloads. ​html:

Vagrant download webpage

Use the latest version of Vagrant and VirtualBox available. Using an older
version of Vagrant with a newer version of VirtualBox or vice versa may
result in issues while creating VMs.

Once the download is complete, you should see a .deb file.2.
Execute the following commands to install Vagrant using the downloaded3.
package file. You may be prompted to provide a password:

sudo dpkg -i vagrant_1.8.5_x86_64.deb

sudo apt-get install -f

Once the installation is complete, check the installed version of Vagrant by4.
executing the following command:

vagrant --version

You should see a similar output:5.

Vagrant 1.8.5

https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html

Continuous Deployment Using Jenkins Chapter 9

[307]

Installing VirtualBox
Vagrant needs Oracle VirtualBox to create virtual machines. However, it's not limited to just
Oracle VirtualBox, you can use VMware too. Follow the given steps to install VirtualBox on
your machine:

To run Vagrant with either VMware or AWS, visit https:/ ​/​www.
vagrantup. ​com/ ​docs/ ​getting- ​started/ ​providers. ​html.

Add the following line to your sources.list file present inside the /etc/apt1.
directory:

deb http://download.virtualbox.org/virtualbox/debian \
xenial contrib

According to your Ubuntu distribution, replace xenial with vivid,
utopic, trusty, raring, quantal, precise, lucid, jessie, wheezy, or
squeeze.

Download and register the keys using the following commands. You should2.
expect a output: OK for both the commands.

wget -q \
https://www.virtualbox.org/download/oracle_vbox_2016.asc -O- |
sudo apt-key add -

wget -q \
https://www.virtualbox.org/download/oracle_vbox.asc -O- |
sudo apt-key add –

To install VirtualBox, execute the following commands:3.

sudo apt-get update

sudo apt-get install virtualbox-5.1

Execute the following command to see the installed VirtualBox version:4.

VBoxManage –-version

https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html
https://www.vagrantup.com/docs/getting-started/providers.html

Continuous Deployment Using Jenkins Chapter 9

[308]

You should see a similar output:5.

5.1.6r110634

Ubuntu/Debian users might want to install the dkms package to ensure
that the VirtualBox host kernel modules (vboxdrv, vboxnetflt, and
vboxnetadp) are properly updated if the Linux kernel version changes
during the next apt-get upgrade. For Debian, it is available in Lenny
backports and in the normal repository for Squeeze and later. The dkms
package can be installed through the Synaptic package manager or
through the following command:
sudo apt-get install dkms

Creating a VM using Vagrant
In the following section, we will spawn up a VM that will act as our production server
using Vagrant and VirtualBox.

Creating a Vagrantfile
We will create a Vagrantfile to describe our VM. Follow the given steps:

Create a new file named Vagrantfile using the following command:1.

sudo nano Vagrantfile

Paste the following code into the file:2.

-*- mode: ruby -*-
vi: set ft=ruby :
Vagrant.configure(2) do |config|
config.vm.box = "ubuntu/xenial64"

config.vm.define :node1 do |node1_config|
node1_config.vm.network "private_network", ip:"192.168.56.31"
node1_config.vm.provider :virtualbox do |vb|
vb.customize ["modifyvm", :id, "--memory", "2048"]
vb.customize ["modifyvm", :id, "--cpus", "2"]
end
end
end

Continuous Deployment Using Jenkins Chapter 9

[309]

Choose the IP address, memory, and number of CPUs accordingly.

Type Ctrl + X, and then Y to save the file.3.

Spawning a VM using Vagrant
In this section, we will create a VM using the Vagrantfile that we created just now:

Type the following command to spawn a VM using the preceding Vagrantfile:1.

 vagrant up node1

It will take a while for Vagrant to bring up the machine. Once it is done, execute2.
the following command to log in to the new VM:

 vagrant ssh node1

The output is as follows:

Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-83-generic
x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 Get cloud support with Ubuntu Advantage Cloud Guest:
 http://www.ubuntu.com/business/services/cloud
0 packages can be updated.
0 updates are security updates.

ubuntu@ubuntu-xenial:~$

We are now inside the VM. We will upgrade our VM with all the necessary3.
applications that we need to run our application:

Java JDK (latest)
Apache Tomcat (8.5)
A user account to log in to the Docker container

Continuous Deployment Using Jenkins Chapter 9

[310]

Open SSH daemon—sshd (to accept SSH connections)
Curl

Now, install all the required applications as you would do on any normal Ubuntu4.
machine. Let's begin with creating a jenkins user:

Execute the following command and follow the user creation steps:1.

adduser jenkins

The output is as follows:

Adding user `jenkins' ...
Adding new group `jenkins' (1001) ...
Adding new user `jenkins' (1001) with group
`jenkins' ...
Creating home directory `/home/jenkins' ...
Copying files from `/etc/skel' ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for jenkins
Enter the new value, or press ENTER for the
default
 Full Name []: Nikhil Pathania
 Room Number []:
 Work Phone []:
 Home Phone []:
 Other []:
Is the information correct? [Y/n] Y

Check the new user using the switch user command:2.

su jenkins

Switch back to the root user by typing exit.5.
Next, we will install the SSH server. Execute the following command in sequence6.
(ignore if the openssh-server application and the /var/run/sshd directory
path already exist):

sudo apt-get update

sudo apt-get install openssh-server

sudo mkdir /var/run/sshd

Continuous Deployment Using Jenkins Chapter 9

[311]

Follow the given steps to install Java:7.
Update the package index:1.

sudo apt-get update

Next, install Java. The following command will install the JRE:2.

sudo apt-get install default-jre

The best way to install Tomcat 8.5 is to download the latest binary release, then8.
configure it manually:

Move to the /tmp directory and download Apache Tomcat 8.5 using1.
the following commands:

cd /tmp

wget
https://archive.apache.org/dist/tomcat/tomcat-8/v8.5.11
/bin/apache-tomcat-8.5.11-deployer.tar.gz

We will install Tomcat inside the $HOME directory. To do so, create a2.
tomcat directory inside $HOME:

mkdir $HOME/tomcat

Then, extract the archive to it:3.

sudo tar xzvf apache-tomcat-8*tar.gz \
-C $HOME/tomcat --strip-components=1

Exit the VM by typing exit in the Terminal.9.

Adding production server credentials inside Jenkins
In order to make Jenkins communicate with the production server, we need to add the
account credentials inside Jenkins.

Continuous Deployment Using Jenkins Chapter 9

[312]

We will do this using the Jenkins Credentials plugin. If you have followed the Jenkins setup
wizard (discussed at the beginning of the chapter), you will find the Credentials feature on
the Jenkins dashboard (see the left-hand side menu):

Follow the given steps:

From the Jenkins dashboard, click on Credentials | System | Global credentials1.
(unrestricted).
On the Global credentials (unrestricted) page, from the left-hand side menu,2.
click on the Add Credentials link.
You will be presented with a bunch of fields to configure.3.
Choose Username with password for the Kind field.4.
Choose Global (Jenkins, nodes, items, all child items, etc) for the Scope field.5.
Add a username under the Username field.6.
Add a password under the Password field.7.
Give a unique ID to your credentials by typing a string under the ID field.8.
Add a meaningful description under the Description field.9.
Click on the Save button once done:10.

Adding credentials inside Jenkins

Continuous Deployment Using Jenkins Chapter 9

[313]

Installing a Jenkins slave on a production
server
In this section, we will install a Jenkins slave on the production server. This will allow us to
perform deployment on the production server. Execute the following steps:

From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.1.
Once on the Node Manager page, from the left-hand side menu click on New2.
Node.
Give your new Jenkins slave node a name, as shown:3.

Adding a new Jenkins slave

On the resultant page, you will be presented with a large number of options. Let4.
us see them one by one.
For the Remote root directory field, add the value /home/jenkins.5.
For the Labels field, add the value production.6.
For the Usage field, choose Use this node as much as possible.7.
For the Launch method field, choose the option Launch slave agents via SSH.8.
Under the Host field, add the IP address of the production server.9.
Under the Credentials field, choose the credentials that we created in the10.
previous section.

Continuous Deployment Using Jenkins Chapter 9

[314]

Leave the rest of the options as they are.11.
Once done, click on the Save button:12.

Configuring the Jenkins slave

Creating a Jenkins Continuous Deployment
pipeline
In the following section, we will extend our Continuous Delivery pipeline to perform
deployment.

Continuous Deployment Using Jenkins Chapter 9

[315]

A revisit to the pipeline code for CD
The following is the complete combined code that was part of the CD:

node('docker') {
 stage('Poll') {
 checkout scm
 }
 stage('Build & Unit test'){
 sh 'mvn clean verify -DskipITs=true';
 junit '**/target/surefire-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage('Static Code Analysis'){
 sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
 -Dsonar.projectKey=example-project
 -Dsonar.projectVersion=$BUILD_NUMBER';
 }
 stage ('Integration Test'){
 sh 'mvn clean verify -Dsurefire.skip=true';
 junit '**/target/failsafe-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage ('Publish'){
 def server = Artifactory.server 'Default Artifactory Server'
 def uploadSpec = """{
 "files": [
 {
 "pattern": "target/hello-0.0.1.war",
 "target": "example-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;Performance-Tested=No"
 }
]
 }"""
 server.upload(uploadSpec)
 }
 stash includes:
 'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx',
 name: 'binary'
}
node('docker_pt') {
 stage ('Start Tomcat'){
 sh '''cd /home/jenkins/tomcat/bin
 ./startup.sh''';
 }
 stage ('Deploy '){
 unstash 'binary'

Continuous Deployment Using Jenkins Chapter 9

[316]

 sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
 }
 stage ('Performance Testing'){
 sh '''cd /opt/jmeter/bin/
 ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
 $WORKSPACE/test_report.jtl''';
 step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
 }
 stage ('Promote build in Artifactory'){
 withCredentials([usernameColonPassword(credentialsId:
 'artifactory-account', variable: 'credentials')]) {
 sh 'curl -u${credentials} -X PUT
 "http://192.168.56.102:8081/artifactory/api/storage/example-project/
 ${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-Tested=Yes"';
 }
 }
}

Pipeline code for a production Jenkins slave
First, let us create a node block for our Jenkins slave, production-server:

node('production') {
}

Where production is the label for the Jenkins slave node, production-server.

We would like to deploy the build artifacts to Tomcat on the production server on
the production node.

Let's write the pipeline code for it.

Pipeline code to download binaries from
Artifactory
To download the build artifacts from Artifactory, we will use the File Specs. The File Specs
code looks as follows:

"files": [
 {
 "pattern": "[Mandatory]",
 "target": "[Mandatory]",
 "props": "[Optional]",

Continuous Deployment Using Jenkins Chapter 9

[317]

 "recursive": "[Optional, Default: 'true']",
 "flat" : "[Optional, Default: 'true']",
 "regexp": "[Optional, Default: 'false']"
 }
]

The following table describes the various parameters used:

Parameters Description

pattern

[Mandatory]

Specifies the local filesystem path to artifacts that should be uploaded to
Artifactory. You can specify multiple artifacts by using wildcards or a regular
expression as designated by the regexp property.
If you use a regexp, you need to escape any reserved characters (such as .,
?, and so on) used in the expression using a backslash \.
Since version 2.9.0 of the Jenkins Artifactory plugin and version 2.3.1 of the
TeamCity Artifactory plugin, the pattern format has been simplified and uses
the same file separator / for all operating systems, including Windows.

target

[Mandatory]

Specifies the target path in Artifactory in the following format:
[repository_name]/[repository_path]

If the pattern ends with a slash, for example, repo-name/a/b/, then b is
assumed to be a folder in Artifactory and the files are uploaded into it. In the
case of repo-name/a/b, the uploaded file is renamed to b in Artifactory.
For flexibility in specifying the upload path, you can include placeholders in
the form of {1}, {2}, {3}... which are replaced by corresponding tokens
in the source path that are enclosed in parentheses. For more details, please
refer to the Using Placeholders document at https:/ ​/​www. ​jfrog. ​com/
confluence/ ​display/ ​RTF/ ​Using+File+Specs#UsingFileSpecs-
UsingPlaceholders.

props

[Optional]
List of key=value pairs separated by a semi-colon (;) to be attached as
properties to the uploaded properties. If any key can take several values,
then each value is separated by a comma (,). For example,
key1=value1;key2=value21,value22;key3=value3.

https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders
https://www.jfrog.com/confluence/display/RTF/Using+File+Specs#UsingFileSpecs-UsingPlaceholders

Continuous Deployment Using Jenkins Chapter 9

[318]

flat

[Default: true]

If true, artifacts are uploaded to the exact target path specified and their
hierarchy in the source filesystem is ignored.
If false, artifacts are uploaded to the target path while maintaining their
filesystem hierarchy.

recursive

[Default: true]

If true, artifacts are also collected from subdirectories of the source directory
for upload.
If false, only artifacts specifically in the source directory are uploaded.

regexp

[Default: false]

If true, the command will interpret the pattern property, which describes
the local filesystem path of artifacts to upload, as a regular expression.
If false, the command will interpret the pattern property as a wildcard
expression.

The following is the File Specs code that we will use in our pipeline:

def server = Artifactory.server 'Default Artifactory Server'
def downloadSpec = """{
 "files": [
 {
 "pattern": "example-project/$BUILD_NUMBER/*.zip",
 "target": "/home/jenkins/tomcat/webapps/"
 "props": "Performance-Tested=Yes;Integration-Tested=Yes",
 }
]
}""
server.download(downloadSpec)

Wrap the preceding step inside a stage called Deploy to Prod:

stage ('Deploy to Prod'){
 def server = Artifactory.server 'Default Artifactory Server'
 def downloadSpec = """{
 "files": [
 {
 "pattern": "example-project/$BUILD_NUMBER/*.zip",
 "target": "/home/jenkins/tomcat/webapps/"
 "props": "Performance-Tested=Yes;Integration-Tested=Yes",
 }
]

Continuous Deployment Using Jenkins Chapter 9

[319]

 }""
server.download(downloadSpec)
}

Wrap the Deploy to Prod stage inside the production node block:

node ('production') {
 stage ('Deploy to Prod'){
 def server = Artifactory.server 'Default Artifactory Server'
 def downloadSpec = """{
 "files": [
 {
 "pattern": "example-project/$BUILD_NUMBER/*.zip",
 "target": "/home/jenkins/tomcat/webapps/"
 "props": "Performance-Tested=Yes;Integration-Tested=Yes",
 }
]
 }""
 server.download(downloadSpec)
 }
}

Combined Continuous Deployment pipeline code
The following is the combined Continuous Deployment pipeline code:

node('docker') {
 stage('Poll') {
 checkout scm
 }
 stage('Build & Unit test'){
 sh 'mvn clean verify -DskipITs=true';
 junit '**/target/surefire-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage('Static Code Analysis'){
 sh 'mvn clean verify sonar:sonar -Dsonar.projectName=example-project
 -Dsonar.projectKey=example-project
 -Dsonar.projectVersion=$BUILD_NUMBER';
 }
 stage ('Integration Test'){
 sh 'mvn clean verify -Dsurefire.skip=true';
 junit '**/target/failsafe-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage ('Publish'){

Continuous Deployment Using Jenkins Chapter 9

[320]

 def server = Artifactory.server 'Default Artifactory Server'
 def uploadSpec = """{
 "files": [
 {
 "pattern": "target/hello-0.0.1.war",
 "target": "example-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;Performance-Tested=No"
 }
]
 }"""
 server.upload(uploadSpec)
 }
 stash includes:
 'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx',
 name: 'binary'
}
node('docker_pt') {
 stage ('Start Tomcat'){
 sh '''cd /home/jenkins/tomcat/bin
 ./startup.sh''';
 }
 stage ('Deploy '){
 unstash 'binary'
 sh 'cp target/hello-0.0.1.war /home/jenkins/tomcat/webapps/';
 }
 stage ('Performance Testing'){
 sh '''cd /opt/jmeter/bin/
 ./jmeter.sh -n -t $WORKSPACE/src/pt/Hello_World_Test_Plan.jmx -l
 $WORKSPACE/test_report.jtl''';
 step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
 }
 stage ('Promote build in Artifactory'){
 withCredentials([usernameColonPassword(credentialsId:
 'artifactory-account', variable: 'credentials')]) {
 sh 'curl -u${credentials} -X PUT
 "http://192.168.56.102:8081/artifactory/api/storage/example-project/
 ${BUILD_NUMBER}/hello-0.0.1.war?properties=Performance-Tested=Yes"';
 }
 }
}
node ('production') {
 stage ('Deploy to Prod'){
 def server = Artifactory.server 'Default Artifactory Server'
 def downloadSpec = """{
 "files": [
 {
 "pattern": "example-project/$BUILD_NUMBER/*.zip",
 "target": "/home/jenkins/tomcat/webapps/"

Continuous Deployment Using Jenkins Chapter 9

[321]

 "props": "Performance-Tested=Yes;Integration-Tested=Yes",
 }
]
 }""
 server.download(downloadSpec)
 }
}

Update the Jenkinsfile
A Jenkins Multibranch CD Pipeline utilizes a Jenkinsfile. In this section, we will update our
existing Jenkinsfile. Follow the given steps:

Log in to your GitHub account.1.
Navigate to the forked repository.2.
Once on the repository page, click on the Jenkinsfile. Next, on the resultant3.
page click on the Edit button to edit your Jenkinsfile.
Replace the existing content with the following code:4.

node('docker') {
 stage('Poll') {
 checkout scm
 }
 stage('Build & Unit test'){
 sh 'mvn clean verify -DskipITs=true';
 junit '**/target/surefire-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage('Static Code Analysis'){
 sh 'mvn clean verify sonar:sonar
 -Dsonar.projectName=example-project
 -Dsonar.projectKey=example-project
 -Dsonar.projectVersion=$BUILD_NUMBER';
 }
 stage ('Integration Test'){
 sh 'mvn clean verify -Dsurefire.skip=true';
 junit '**/target/failsafe-reports/TEST-*.xml'
 archive 'target/*.jar'
 }
 stage ('Publish'){
 def server = Artifactory.server
 'Default Artifactory Server'
 def uploadSpec = """{
 "files": [

Continuous Deployment Using Jenkins Chapter 9

[322]

 {
 "pattern": "target/hello-0.0.1.war",
 "target": "example-project/${BUILD_NUMBER}/",
 "props": "Integration-Tested=Yes;
 Performance-Tested=No"
 }
]
 }"""
 server.upload(uploadSpec)
 }
 stash includes:
 'target/hello-0.0.1.war,src/pt/Hello_World_Test_Plan.jmx',
 name: 'binary'
}
node('docker_pt') {
 stage ('Start Tomcat'){
 sh '''cd /home/jenkins/tomcat/bin
 ./startup.sh''';
 }
 stage ('Deploy '){
 unstash 'binary'
 sh 'cp target/hello-0.0.1.war
/home/jenkins/tomcat/webapps/';
 }
 stage ('Performance Testing'){
 sh '''cd /opt/jmeter/bin/
 ./jmeter.sh -n -t
$WORKSPACE/src/pt/Hello_World_Test_Plan.jmx
 -l $WORKSPACE/test_report.jtl''';
 step([$class: 'ArtifactArchiver', artifacts: '**/*.jtl'])
 }
 stage ('Promote build in Artifactory'){
 withCredentials([usernameColonPassword(credentialsId:
 'artifactory-account', variable: 'credentials')]) {
 sh 'curl -u${credentials} -X PUT
 "http://192.168.56.102:8081/artifactory/api/storage/
 example-project/${BUILD_NUMBER}/hello-0.0.1.war?
 properties=Performance-Tested=Yes"';
 }
 }
}
node ('production') {
 stage ('Deploy to Prod'){
 def server = Artifactory.server
 'Default Artifactory Server'
 def downloadSpec = """{
 "files": [
 {

Continuous Deployment Using Jenkins Chapter 9

[323]

 "pattern": "example-project/$BUILD_NUMBER/*.zip",
 "target": "/home/jenkins/tomcat/webapps/"
 "props": "Performance-Tested=Yes;
 Integration-Tested=Yes",
 }
]
 }""
 server.download(downloadSpec)
 }
}

Once done, Commit the new file by adding a meaningful comment.5.

Continuous Delivery in action
Make some changes to your GitHub code or just trigger the Jenkins pipeline from the
Jenkins dashboard.

Log in to Jenkins, and from the Jenkins dashboard click on your Multibranch Pipeline. You
should see something similar to the following screenshot:

Jenkins Continuous Deployment pipeline in action

Continuous Deployment Using Jenkins Chapter 9

[324]

Summary
This marks the end of Continuous Deployment. In this chapter, we learned how to achieve
Continuous Deployment using Jenkins. Also, I hope the confusion between Continuous
Delivery and Continuous Deployment is clear. There were no major setups or
configurations in the chapter, as all the necessary things were achieved in the previous
chapters while implementing Continuous Integration and Continuous Delivery.

I really hope this book serves as a means for you to go out there and experiment more with
Jenkins.

Until next time, cheers!

10
Supporting Tools and

Installation Guide
This chapter will take you through the steps required to make your Jenkins server accessible
over the internet. We will also cover the steps required for installing Git on Windows and
Linux.

Exposing your localhost server to the
internet
You are required to create Webhooks on GitHub in order to trigger a pipeline in Jenkins.
Also, for the GitHub Webhooks to work, it is important that the Jenkins server is accessible
over the internet.

While practicing the examples described in this book, you may feel a need to make your
Jenkins server accessible over the internet, which is installed in your sandbox environment.

In the following section, we will use a tool named ngrok to achieve this feat. Perform the
following steps to make your Jenkins server accessible over the internet:

Log in to the Jenkins server machine (standalone Windows/Linux machine). If1.
you are running Jenkins using Docker, log in to your Docker host machine (most
probably, Linux).
Download the ngrok application from https:/ ​/​ngrok. ​com/​download.2.
What you download is a ZIP package. Extract it using the unzip command (to3.
install the ZIP utility on Ubuntu, execute sudo apt-get install zip).

https://ngrok.com/download
https://ngrok.com/download
https://ngrok.com/download
https://ngrok.com/download
https://ngrok.com/download
https://ngrok.com/download
https://ngrok.com/download
https://ngrok.com/download
https://ngrok.com/download

Supporting Tools and Installation Guide Chapter 10

[326]

Run the following command to unzip the ngrok ZIP package:4.

unzip /path/to/ngrok.zip

To run ngrok on Linux, execute the following command:5.

./ngrok http 8080

Alternatively, run the following command:

nohup ./ngrok http 8080 &

To run ngrok on Windows, execute the following command:6.

ngrok.exe http 8080

You should see a similar output, as shown as follows; the highlighted text is the7.
public URL of localhost:8080:

ngrok by @inconshreveable (Ctrl+C to quit)
Session Status online
Version 2.2.8
Region United States (us)
Web Interface http://127.0.0.1:4040
Forwarding http://8bd4ecd3.ngrok.io -> localhost:8080
Forwarding https://8bd4ecd3.ngrok.io -> localhost:8080
Connections ttl opn rt1 rt5 p50 p90
0 0 0.00 0.00 0.00 0.00

Copy the preceding public URL.8.
Log in to your Jenkins server. From the Jenkins dashboard, navigate to Manage9.
Jenkins | Configure System.
On the Jenkins configuration page, scroll all the way down to the Jenkins10.
Location section and add the public URL generated using ngrok inside the
Jenkins URL field.
Click on the Save button to save the settings.11.
You will now be able to access your Jenkins server using the public URL over the12.
internet.
While creating Webhooks on GitHub, use the public URL generated using ngrok.13.

Supporting Tools and Installation Guide Chapter 10

[327]

Installing Git on Windows/Linux
The steps mentioned in the following sections are required to install Git on Windows and
Linux:

Installing Git on Windows
To install Git on Windows, follow these steps:

You can download Git from https:/ ​/​git- ​scm. ​com/ ​downloads: 1.

Click on the downloaded executable and proceed with the installation steps.2.
Accept the license agreement and click on Next.3.

https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads

Supporting Tools and Installation Guide Chapter 10

[328]

Select all the components and click on Next, as shown in the following4.
screenshot:

Choose the default editor used by Git, and click on Next. 5.
Adjust your path environment by selecting the appropriate environment and6.
click on Next, as shown in the following screenshot:

Supporting Tools and Installation Guide Chapter 10

[329]

Choose Use OpenSSH as the SSH executable and click on Next:7.

Select Use the OenSSL library as the HTTPS transport backend and click on8.
Next:

Supporting Tools and Installation Guide Chapter 10

[330]

Choose the line ending conversion that suits you the best and click on Next.9.
Choose the terminal emulator and click on Next. 10.
Select the Enable file system caching and Enable Git Credentials Manager11.
options, as shown in the following screenshot, and click on Install:

The Git installation should begin now. Once it's complete, click on Finish.12.

Installing Git on Linux
Perform the following steps to install Git on Linux:

Installing Git on Linux is simple. In this section, we will install Git on Ubuntu1.
(16.04.x).
Log in to your Ubuntu machine. Ensure that you have admin privileges. 2.
Open a terminal in case you are using the GUI.3.
Execute the following commands in sequence:4.

sudo apt-get update

sudo apt-get install git

Supporting Tools and Installation Guide Chapter 10

[331]

Execute the following command to check the Git installation:5.

git --version

You should get the following result:6.

git version 2.15.1.windows.2

Index

.

.deb package
 download link 77

A
Agile
 about 12
 principles 12
 software development process, advantages 14
 software development process, working 13
Apache JMeter
 installing 285
Apache Tomcat server
 configuring 39
 installing 36
 Jenkins alone, installation 42
 Jenkins, installing 41
 realms, reference 170
Artifactory application
 running 235
Artifactory package
 download link 233
Artifactory plugin
 configuring 242
 installing, in Jenkins 242
Artifactory Pro
 reference 233
Artifactory
 API key, generating 237
 configuring 231
 credentials, adding inside Jenkins 241
 default credentials, resetting 237
 installing 231
 Java, installing 232
 package, downloading 233
 repository, creating 238

authentication methods
 delegating, to servlet container 170
 LDAP 172
 Unix user/group database 173
 user database 171
authorization methods
 about 176
 control option 176
 legacy mode 176
 logged-in users 176
 matrix-based security 177
 Project-based Matrix Authorization Strategy 178
automated testing 29

B
benefits, Continuous Integration (CI)
 issue catch 32
 metrics 32
 no long integrations 32
 rapid development 32
 time consumption, for adding features 33
binary repository tools 30
branching strategy, Jenkins CI design
 about 246
 feature branch 246
 integration branch 246
 master branch 246
build breaker plugin
 installing, for SonarQube 223
 reference 223

C
CD pipeline
 about 291
 Jenkinsfile, writing 291
Certificate Signing Request (CSR) 62

[333]

CI pipeline
 creating 248
 Jenkinsfile, using 257
 Jenkinsfile, writing 250
 multibranch pipeline, creating 259
 repository, creating on GitHub 249
 SonarQube scanner, using for Maven 249
 Webhooks, re-registering 260
Common Name (CN) 63
Continuous Delivery (CD)
 about 146, 274
 lifecycle 302
 using 298, 323
Continuous Deployment
 about 302
 audience 304
 differentiating, with Continuous Delivery 302
 lifecycle 304
Continuous Integration (CI)
 about 7, 18, 146
 agile, running 19
 artifacts, viewing in Artifactory 270
 benefits 32
 elements 21
 projects 20
 quality gate criteria fail scenario 271
 SonarQube analysis, accessing 268
 static code analysis, viewing 266
 using 262

D
data volume
 testing 81
 used, for running Jenkins container 80
Declarative Pipeline
 reference 107
 structure 104
 syntax 104
development and staging instances, Jenkins
 creating 84, 86
 data, copying between data volumes 85
 empty data volume, creating 84
 prerequisites 84
development process, Scrum
 Daily Scrum meeting 17

 retrospective 18
 review 18
 Sprint cycle 17
 Sprint Planning 17
 Sprint progress, monitoring 17
distributed build and testing 182, 183
Docker container
 credentials, adding in Jenkins 282
 Jenkins, upgrading 166
Docker host
 installing 75
 installing, from package 77
 repository, setting up 74
 setting up 74
Docker image
 creating 277
 reference 209
Docker remote API
 docker.conf file, modifying 205
 docker.service file, modifying 206
 enabling 204
Docker server
 installing, .deb package used 204
 installing, apt-get used 203
 repository, setting up 202
 setting up 202
Docker
 Jenkins, running 74
 settings, updating inside Jenkins 283

E
elements, Continuous Integration (CI)
 automated packaging 31
 automated testing 29
 binary repository tools 30
 branching strategy 21
 code coverage 26
 code coverage, tools 27
 self-triggered builds 25
 static code analysis 27
 version control system 21

F
Fully Qualified Domain Name (FQDN) 63

[334]

G
Git
 download link 327
 installing, on Linux 327, 330
 installing, on Windows 327

I
Internet
 localhost server, exposing 325

J
Java Network Launch Protocol (JNLP) 188
Java Runtime Environment (JRE) 35, 279
Java Web Start
 Jenkins slave, launching 198
Jenkins backup
 creating 156
 logs, restoring 158
 logs, viewing 158
 restoring 157
Jenkins Blue Ocean plugin
 features 130
 installing 130
 pipeline, creating 134, 142
 viewing 131
Jenkins CD design
 about 274
 branching strategy 275
 branching, release branch 275
 CD pipeline 276
 toolset 276
Jenkins CI design
 about 245
 branching strategy 246
 pipeline 247
 toolset 248
Jenkins Continuous Deployment pipeline
 code 315
 code, for downloading binaries from Artifactory

316

 code, for production Jenkins slave 316
 Combined Continuous Deployment pipeline code

319

 creating 314

 Jenkinsfile, updating 321
Jenkins Manage Nodes page 184, 186
Jenkins pipeline job
 about 94
 creating 95
 Global Tool Configuration page 99
 prerequisites 95
 Stage View 101, 103
Jenkins pipeline syntax utility
 about 107
 Pipeline Maven Integration Plugin, installing 108
 prerequisite 107
 used, for creating Jenkins pipeline 109, 115
Jenkins pipeline
 creating, with Jenkins pipeline syntax utility 115
 creating, with pipeline syntax utility 109
Jenkins Plugin Manager
 about 146
 Available tab 148
 downgrading 149
 Jenkins plugin, manual installation 151
 Jenkins plugin, uninstalling 149
 proxy settings, configuring 150
 updating 148
Jenkins setup wizard
 about 89
 prerequisites 90
Jenkins slave
 about 192, 194
 adding, prerequisites 201
 Docker container credentials, adding 212
 Docker containers, adding 201
 Docker image, creating 209
 Docker plugin, configuring 207
 Docker plugin, installing 207
 Docker remote API, enabling 204
 Docker server, setting up 202
 Docker settings, updating 213
 environment variables, passing 189
 installing, on production server 313
 launching, via Java Web Start 198, 201
 launching, via SSH 191
 standalone Linux machine, adding as 186
 standalone Windows machine, adding as 196
 tools' location, passing 190

[335]

Jenkins, running behind reverse proxy
 and nginx running on same machine 72
 firewall, configuring on nginx server 58
 Jenkins server, configuring 69
 nginx server, restarting 61
 nginx server, securing with OpenSSL 62
 nginx server, starting 61
 nginx server, stopping 61
 nginx, configuring 57
 nginx, installing 57
 prerequisites 57
 reverse proxy setting, adding to nginx

configuration 70
Jenkins, running inside servlet container
 Apache Tomcat server, configuring 39
 Apache Tomcat, installing 36
 firewall and port 8080, enabling 38
 home path, setting up 43
 Java, installing 35
 prerequisites 35
Jenkins, running on Docker
 data volume, using 80
 Docker host, setting up 74
 prerequisites 74
 steps 77
Jenkins
 backup and restore 153
 on Docker container, upgrading 166
 reference 160
 running, behind reverse proxy 57
 running, inside servlet container 34
 running, on Docker 74
 setup wizard 89
 upgradation, running on Tomcat Server 160
 upgrading 159
Jenkinsfile, creating for CD
 combined CD pipeline code 296
 Docker container, spawning 292
 pipeline code 291
 pipeline code, for deploying build artifacts 293
 pipeline code, for performance testing execution

294

 pipeline code, for promoting build artifacts 295
 pipeline code, for starting Apache Tomcat 293
 stash feature, for passing build artifacts 292

Jenkinsfile, writing for CI
 combined CI pipeline code 256
 Docker container, spawning 250
 latest source code, downloading from VCS 251
 pipeline code, for performing build and unit test

251

 pipeline code, for performing integration testing
252

 pipeline code, for performing static code analysis
252

 pipeline code, for publishing built artifacts 253
JMeter
 used, for creating performance test (PT) 284

L
labels 183
Linux
 Git, installing 327, 330
localhost server
 exposing, to Internet 325
Long Term Support (LTS) 46

M
mainline branch 246
multibranch pipeline
 about 116
 creating, in Jenkins 124
 prerequisite 117
 using 127

N
nginx, securing with OpenSSL
 changes, enabling 67
 configuration, modifying 64
 setup, testing 67
 SSL certificate, creating 62
 strong encryption settings, creating 63
ngrok application
 download link 325

P
packaging 31
People page
 about 174

[336]

 user information and settings 174
Perfect Forward Secrecy (PFS) 63
performance test (PT), creating
 case, creating 286
 Java, installing 285
 JMeter, installing 285
 JMeter, starting 286
 JMeter, using 284
 listener, adding 290, 291
 sampler, creating 289
 thread group, creating 287
Periodic Backup plugin
 configuring 154
 installing 154
prerequisites, multibranch pipeline
 GitHub credentials , adding inside Jenkins 118
 Jenkinsfile, using 123
 new repository, creating on GitHub 122
 testing, with new feature branch 128
 Webhook, configuring on GitHub 119
 Webhooks, re-registering 125
production branch 246
production server
 creating 305
 credentials, adding inside Jenkins 311
 Jenkins slave, installing 313
 Vagrant, installing 305
 VirtualBox, installing 307
 VM, creating with Vagrant 308

R
Red Hat Linux
 standalone Jenkins server, installing 53
remote shell (RSH) 188

S
Scrum framework
 about 15
 Development Team 16
 increment 15
 Product Backlog 15
 Product Owner 16
 Scrum Master 16
 Sprint 15

 Sprint Backlog 15
 working 16
servlet container
 Jenkins, running 34
setup wizard
 first admin user, creating 94
 Jenkins, customizing 91, 93
 Jenkins, unlocking 90
Software Development Life Cycle (SDLC)
 about 7
 design 8
 evolution 9
 implementation 9
 requirement analysis 8
 testing 9
software development
 Waterfall model 9
SonarQube application
 executing 219
SonarQube
 build breaker plugin, installing 223
 configuring 216
 configuring, in Jenkins 230
 default credentials, setting 220
 default quality profile, updating 227
 installing 216
 installing, in Jenkins 229
 Java, installing 217
 package, downloading 218
 project, creating 221
 quality gates, creating 224
 static code analysis, viewing 266
 token, generating 220
standalone Jenkins server installation, on Red Hat

Linux
 Java, installing 54
 latest version, installing 55
 prerequisites 54
 restarting 56
 stable version, installing 55
 starting 56
 stopping 56
standalone Jenkins server installation, on Ubuntu
 Java, installing 50
 latest version, installing 51

 prerequisites 50
 restarting 53
 stable version, installing 52
 starting 53
 stopping 53
standalone Jenkins server installation, on Windows
 Java, installing 45
 latest stable version, installing 46
 prerequisites 44
 restarting 46
 starting 46
 stopping 46
standalone Jenkins server
 installing, on Red Hat Linux 53
 installing, on Ubuntu 49
 installing, on Windows 44
standalone Jenkins
 upgrading, on Ubuntu 164
 upgrading, on Windows 162
standalone Linux machine
 adding, as Jenkins slaves 186
static code analysis 27
structure, Declarative Pipeline
 directives 105
 node block 104
 stage block 104
 step element 105

T
Tomcat Server
 Jenkins, upgrading 160

U
Ubuntu
 standalone Jenkins server, installing 49
 standalone Jenkins, upgrading 164
user administration

 about 168
 authentication methods 170
 authorization methods 175
 global security, enabling/disabling 169
 new users, creating 173
 People page 174
 user credentials remember option,

enabling/disabling 169

V
Vagrant
 download link 306
 installing 305
 used, for creating VM 308
 used, for spawning VM 309
version control system (VCS) 276
VirtualBox
 installing 307
 URL 307
VM
 creating, with Vagrant 308
 production server credentials, adding inside

Jenkins 311
 spawning, Vagrant used 309
 Vagrantfile, creating 308

W
Waterfall model
 advantages 11
 disadvantages 11
 of software development 9
white-box testing 27
Windows
 Git, installing 327
 standalone Jenkins server, installing 44
 standalone Jenkins, upgrading 162

	Title Page
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Concepts of Continuous Integration
	Software Development Life Cycle
	Requirement analysis
	Design
	Implementation
	Testing
	Evolution

	Waterfall model of software development
	Disadvantages of the Waterfall model
	Advantages of the Waterfall model

	Agile to the rescue
	The twelve agile principles
	How does the Agile software development process work?
	Advantages of Agile software development process

	The Scrum framework
	Important terms used in the Scrum framework
	How does Scrum work?
	Sprint Planning
	Sprint cycle
	Daily Scrum meeting
	Monitoring Sprint progress
	Sprint Review
	Sprint Retrospective

	Continuous Integration
	Agile runs on CI
	Types of projects that benefit from CI

	Elements of CI
	Version control system
	Branching strategy
	GitFlow branching model

	CI tool
	Self-triggered builds
	Code coverage
	Code coverage tools

	Static code analysis
	Automated testing
	Binary repository tools
	Automated packaging

	Benefits of using CI
	Freedom from long integrations
	Metrics
	Catching issues faster
	Rapid development
	Spend more time adding features

	Summary

	Chapter 2: Installing Jenkins
	Running Jenkins inside a servlet container
	Prerequisites
	Installing Java
	Installing Apache Tomcat
	Enabling the firewall and port 8080
	Configuring the Apache Tomcat server
	Installing Jenkins on the Apache Tomcat server
	Installing Jenkins alone on an Apache Tomcat server
	Setting up the Jenkins home path

	Installing a standalone Jenkins server on Windows
	Prerequisites
	Installing Java
	Installing the latest stable version of Jenkins
	Starting, stopping, and restarting Jenkins on Windows

	Installing a standalone Jenkins server on Ubuntu
	Prerequisites
	Installing Java
	Installing the latest version of Jenkins
	Installing the latest stable version of Jenkins
	Starting, stopping, and restarting Jenkins on Ubuntu

	Installing a standalone Jenkins server on Red Hat Linux
	Prerequisites
	Installing Java
	Installing the latest version of Jenkins
	Installing the latest stable version of Jenkins
	Starting, stopping, and restarting Jenkins on Red Hat Linux

	Running Jenkins behind a reverse proxy
	Prerequisites
	Installing and configuring Nginx
	Configuring the firewall on a Nginx server
	Starting, stopping, and restarting the Nginx server
	Securing Nginx using OpenSSL
	Creating an SSL certificate
	Creating strong encryption settings
	Modifying the Nginx configuration
	Enabling the changes and testing our Nginx setup

	Configuring the Jenkins server
	Adding reverse proxy settings to the Nginx configuration
	Running Nginx and Jenkins on the same machine

	Running Jenkins on Docker
	Prerequisites
	Setting up a Docker host
	Setting up the repository
	Installing Docker
	Installing from a package

	Running the Jenkins container
	Running a Jenkins container using a data volume
	Testing the data volume

	Creating development and staging instances of Jenkins
	Prerequisites
	Creating an empty data volume
	Copying data between data volumes
	Creating the development and staging instances

	Summary

	Chapter 3: The New Jenkins
	The Jenkins setup wizard
	Prerequisites
	Unlocking Jenkins
	Customizing Jenkins
	Creating the first admin user

	The new Jenkins pipeline job
	Prerequisite
	Creating a Jenkins pipeline job
	The Global Tool Configuration page
	Jenkins pipeline Stage View

	Declarative Pipeline syntax
	Basic structure of a Declarative Pipeline
	The node block
	The stage block
	Directives
	Steps

	Jenkins pipeline syntax utility
	Prerequisite
	Installing the Pipeline Maven Integration Plugin
	Creating a Jenkins pipeline using the pipeline syntax utility

	Multibranch pipeline
	Prerequisite
	Adding GitHub credentials inside Jenkins
	Configuring Webhooks on GitHub from Jenkins
	Create a new repository on GitHub
	Using a Jenkinsfile

	Creating a Multibranch pipeline in Jenkins
	Re-register the Webhooks
	Jenkins Multibranch pipeline in action
	Creating a new feature branch to test the multibranch pipeline

	Jenkins Blue Ocean
	Installing the Jenkins Blue Ocean plugin
	View your regular Jenkins pipeline in Blue Ocean
	Creating a pipeline in Blue Ocean

	Summary

	Chapter 4: Configuring Jenkins
	The Jenkins Plugin Manager
	Updating Jenkins plugins
	Installing a new Jenkins plugin
	Uninstalling or downgrading a Jenkins plugin
	Configuring proxy settings in Jenkins
	Manually installing a Jenkins plugin

	Jenkins backup and restore
	Installing the Periodic Backup plugin
	Configuring the Periodic Backup plugin
	Creating a Jenkins backup
	Restoring a Jenkins backup
	Viewing the backup and restore logs

	Upgrading Jenkins
	Upgrading Jenkins running on Tomcat Server
	Upgrading standalone Jenkins running on Windows
	Upgrading standalone Jenkins running on Ubuntu
	Upgrading Jenkins running on a Docker container

	User administration
	Enabling/disabling global security on Jenkins
	Enabling/disabling computers to remember user credentials
	Authentication methods
	Delegating to a servlet container
	Jenkins' own user database
	LDAP
	Unix user/group database

	Creating new users inside Jenkins
	People page
	User information and settings in Jenkins

	Authorization methods
	Anyone can do anything
	Legacy mode
	Logged-in users can do anything
	Matrix-based security
	Project-based Matrix Authorization Strategy

	Summary

	Chapter 5: Distributed Builds
	Distributed build and test
	The Jenkins Manage Nodes page
	Adding Jenkins slaves – standalone Linux machine/VMs
	Passing environment variables to Jenkins slaves
	Passing tools' locations to Jenkins slaves
	Launching a Jenkins slave via SSH

	More about the active Jenkins slave
	Adding Jenkins slaves – standalone Windows machine/VMs
	Launching a Jenkins slave via Java Web Start

	Adding Jenkins slaves – Docker containers
	Prerequisites
	Setting up a Docker server
	Setting up the repository
	Installing Docker using apt-get
	Installing Docker using a .deb package

	Enabling Docker remote API
	Modifying the docker.conf file
	Modifying the docker.service file

	Installing the Docker plugin
	Configuring the Docker plugin
	Creating a Docker image – Jenkins slave
	Adding Docker container credentials in Jenkins
	Updating the Docker settings inside Jenkins

	Summary

	Chapter 6: Installing SonarQube and Artifactory
	Installing and configuring SonarQube
	Installing Java
	Downloading the SonarQube package
	Running the SonarQube application
	Resetting the default credentials and generating a token
	Creating a project inside SonarQube
	Installing the build breaker plugin for SonarQube
	Creating quality gates
	Updating the default quality profile
	Installing the SonarQube plugin in Jenkins
	Configuring the SonarQube plugin in Jenkins

	Installing and configuring Artifactory
	Installing Java
	Downloading the Artifactory package
	Running the Artifactory application
	Resetting the default credentials and generating an API key
	Creating a repository in Artifactory
	Adding Artifactory credentials inside Jenkins
	Installing the Artifactory plugin in Jenkins
	Configuring the Artifactory Plugin

	Summary

	Chapter 7: Continuous Integration Using Jenkins
	Jenkins CI design
	Branching strategy
	The master branch
	The integration branch
	The feature branch

	The CI pipeline
	Toolset for CI

	Creating the CI pipeline
	Creating a new repository on GitHub
	Using the SonarQube scanner for Maven
	Writing the Jenkinsfile for CI
	Spawning a Docker container – build agent
	Downloading the latest source code from VCS
	Pipeline code to perform the build and unit test
	Pipeline code to perform static code analysis
	Pipeline code to perform integration testing
	Pipeline code to publish built artifacts to Artifactory
	Combined CI pipeline code

	Using a Jenkinsfile
	Creating a Multibranch Pipeline in Jenkins
	Re-registering the Webhooks

	Continuous Integration in action
	Viewing static code analysis in SonarQube
	Accessing SonarQube analysis right from Jenkins
	Viewing artifacts in Artifactory
	Failing the build when quality gate criteria are not met

	Summary

	Chapter 8: Continuous Delivery Using Jenkins
	Jenkins CD design
	Branching strategy
	The release branch

	CD pipeline
	Toolset for CD

	Creating a Docker image – performance testing
	Adding Docker container credentials in Jenkins
	Updating the Docker settings inside Jenkins

	Creating a performance test using JMeter
	Installing Java
	Installing Apache JMeter
	Starting JMeter
	Creating a performance test case
	Creating a thread group
	Creating a sampler
	Adding a listener

	The CD pipeline
	Writing the Jenkinsfile for CD
	Revisiting the pipeline code for CI
	Pipeline code to stash the build artifacts
	Spawning a Docker container – performance testing
	Pipeline code to start Apache Tomcat
	Pipeline code to deploy build artifacts
	Pipeline code to run performance testing
	Pipeline code to promote build artifacts in Artifactory
	Combined CD pipeline code

	CD in action
	Summary

	Chapter 9: Continuous Deployment Using Jenkins
	What is Continuous Deployment?
	How Continuous Deployment is different from Continuous Delivery
	Who needs Continuous Deployment?

	Creating a production server
	Installing Vagrant
	Installing VirtualBox
	Creating a VM using Vagrant
	Creating a Vagrantfile
	Spawning a VM using Vagrant
	Adding production server credentials inside Jenkins

	Installing a Jenkins slave on a production server
	Creating a Jenkins Continuous Deployment pipeline
	A revisit to the pipeline code for CD
	Pipeline code for a production Jenkins slave
	Pipeline code to download binaries from Artifactory
	Combined Continuous Deployment pipeline code
	Update the Jenkinsfile

	Continuous Delivery in action
	Summary

	Chapter 10: Supporting Tools and Installation Guide
	Exposing your localhost server to the internet
	Installing Git on Windows/Linux
	Installing Git on Windows
	Installing Git on Linux

	Index
	Humble bundle_CDP.pdf
	Table of Contents
	Test
	Index

