Kseigpligle

Continuous Integration
with Jenkins

Second Edition

A beginner's guide to implementing Continuous
Integration and Continuous Delivery using Jenkins 2

Iy

Learning Continuous
Integration with Jenkins

Second Edition

A beginner's guide to implementing Continuous Integration
and Continuous Delivery using Jenkins 2

Nikhil Pathania

BIRMINGHAM - MUMBAI

Learning Continuous Integration with
Jenkins

Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Second edition: December 2017

Production reference: 1191217

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78847-935-6

www.packtpub.com

http://www.packtpub.com

Machine

Learning With Go Understanding
Software

Packh
Packt>

Go to www.packtpub.com
and use this code in the
checkout:

Pack®

Author
Nikhil Pathania

Reviewer
Deep Mehta

Commissioning Editor
Vijin Boricha

Acquisition Editor
Prateek Bharadwaj

Content Development Editor
Sharon Raj

Technical Editor
Khushbu Sutar

Copy Editor
Safis Editing

Project Coordinator
Virginia Dias

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Kirk D'Penha
Tania Dutta

Credits

Production Coordinator

Melwyn Dsa

About the Author

Nikhil Pathania is currently practicing DevOps at Siemens Gamesa Renewable Energy. He
started his career as an SCM engineer and later moved on to learn various tools and
technologies in the fields of automation and DevOps. Throughout his career, Nikhil has
promoted and implemented Continuous Integration and Continuous Delivery solutions
across diverse IT projects.

He enjoys finding new and better ways to automate and improve manual processes and
help teams know more about their project's SDLC by bringing valuable metrics. He is also
actively working on utilizing Elastic Stack and container technologies efficiently for
DevOps.

In his spare time, Nikhil likes to read, write, and meditate. He is an avid climber and also
hikes and cycles.

You can reach Nikhil on twitter at Got rekpiko.

First and foremost, my beautiful wife, Karishma, without whose love and support this book
would not have been possible.

Great thanks to Deep Mehta who provided me with valuable feedback throughout the
writing process.

Special thanks to the following people who worked hard to make this book the best possible
experience for the readers: Sharon Raj, Khushbu Sutar, and the whole Packt Publishing
technical team working in the backend.

And finally, great thanks to the Jenkins community for creating such fantastic software.

About the Reviewer

Deep Mehta is a DevOps engineer who works in CI/CD automation. He is currently
working in the San Francisco Bay Area. He helps clients design resilient infrastructure,
identifying top microservices patterns and self-healing infrastructure automation. His area
of interest is large-scale distributed computing, data science, cloud, and system
administration.

I acknowledge my mom, papa, and sister for supporting me to produce this book.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

» Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788479351.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351
https://www.amazon.com/dp/1788479351

Table of Contents

Preface 1
Chapter 1: Concepts of Continuous Integration 7
Software Development Life Cycle 7
Requirement analysis 8
Design 8
Implementation 9
Testing 9
Evolution 9
Waterfall model of software development 9
Disadvantages of the Waterfall model 11
Advantages of the Waterfall model 11
Agile to the rescue 12
The twelve agile principles 12
How does the Agile software development process work? 13
Advantages of Agile software development process 14
The Scrum framework 15
Important terms used in the Scrum framework 15
How does Scrum work? 16
Sprint Planning 17

Sprint cycle 17

Daily Scrum meeting 17
Monitoring Sprint progress 17

Sprint Review 18

Sprint Retrospective 18
Continuous Integration 18
Agile runs on ClI 19
Types of projects that benefit from Cl 20
Elements of CI 21
Version control system 21
Branching strategy 21
GitFlow branching model 23

Cl tool 24
Self-triggered builds 25
Code coverage 26
Code coverage tools 27

Table of Contents

Static code analysis 27
Automated testing 29
Binary repository tools 30
Automated packaging 31
Benefits of using ClI 32
Freedom from long integrations 32
Metrics 32
Catching issues faster 32
Rapid development 32
Spend more time adding features 33
Summary 33
Chapter 2: Installing Jenkins 34
Running Jenkins inside a servlet container 34
Prerequisites 35
Installing Java 35
Installing Apache Tomcat 36
Enabling the firewall and port 8080 38
Configuring the Apache Tomcat server 39
Installing Jenkins on the Apache Tomcat server 41
Installing Jenkins alone on an Apache Tomcat server 42
Setting up the Jenkins home path 43
Installing a standalone Jenkins server on Windows 44
Prerequisites 44
Installing Java 44
Installing the latest stable version of Jenkins 46
Starting, stopping, and restarting Jenkins on Windows 46
Installing a standalone Jenkins server on Ubuntu 49
Prerequisites 50
Installing Java 50
Installing the latest version of Jenkins 51
Installing the latest stable version of Jenkins 52
Starting, stopping, and restarting Jenkins on Ubuntu 53
Installing a standalone Jenkins server on Red Hat Linux 53
Prerequisites 54
Installing Java 54
Installing the latest version of Jenkins 55
Installing the latest stable version of Jenkins 55
Starting, stopping, and restarting Jenkins on Red Hat Linux 56

[ii]

Table of Contents

Running Jenkins behind a reverse proxy 57
Prerequisites 57
Installing and configuring Nginx 57
Configuring the firewall on a Nginx server 58
Starting, stopping, and restarting the Nginx server 61
Securing Nginx using OpenSSL 62

Creating an SSL certificate 62
Creating strong encryption settings 63
Modifying the Nginx configuration 64
Enabling the changes and testing our Nginx setup 67
Configuring the Jenkins server 69
Adding reverse proxy settings to the Nginx configuration 70
Running Nginx and Jenkins on the same machine 72

Running Jenkins on Docker 74
Prerequisites 74
Setting up a Docker host 74

Setting up the repository 74
Installing Docker 75
Installing from a package 77
Running the Jenkins container 77
Running a Jenkins container using a data volume 80
Testing the data volume 81

Creating development and staging instances of Jenkins 84
Prerequisites 84
Creating an empty data volume 84
Copying data between data volumes 85
Creating the development and staging instances 86

Summary 88

Chapter 3: The New Jenkins 89

The Jenkins setup wizard 89
Prerequisites 90
Unlocking Jenkins 90
Customizing Jenkins 91
Creating the first admin user 94

The new Jenkins pipeline job 94
Prerequisite 95
Creating a Jenkins pipeline job 95
The Global Tool Configuration page 99
Jenkins pipeline Stage View 101

Declarative Pipeline syntax 104

[iii]

Table of Contents

Basic structure of a Declarative Pipeline 104
The node block 104

The stage block 104
Directives 105

Steps 105
Jenkins pipeline syntax utility 107
Prerequisite 107
Installing the Pipeline Maven Integration Plugin 108

Creating a Jenkins pipeline using the pipeline syntax utility 109
Multibranch pipeline 115
Prerequisite 117
Adding GitHub credentials inside Jenkins 118
Configuring Webhooks on GitHub from Jenkins 119

Create a new repository on GitHub 122

Using a Jenkinsfile 123
Creating a Multibranch pipeline in Jenkins 124
Re-register the Webhooks 125
Jenkins Multibranch pipeline in action 127
Creating a new feature branch to test the multibranch pipeline 128
Jenkins Blue Ocean 130
Installing the Jenkins Blue Ocean plugin 130
View your regular Jenkins pipeline in Blue Ocean 131
Creating a pipeline in Blue Ocean 134
Summary 145
Chapter 4: Configuring Jenkins 146
The Jenkins Plugin Manager 146
Updating Jenkins plugins 148
Installing a new Jenkins plugin 148
Uninstalling or downgrading a Jenkins plugin 149
Configuring proxy settings in Jenkins 150
Manually installing a Jenkins plugin 151
Jenkins backup and restore 153
Installing the Periodic Backup plugin 154
Configuring the Periodic Backup plugin 154
Creating a Jenkins backup 156
Restoring a Jenkins backup 157
Viewing the backup and restore logs 158
Upgrading Jenkins 159
Upgrading Jenkins running on Tomcat Server 160
Upgrading standalone Jenkins running on Windows 162

[iv]

Table of Contents

Upgrading standalone Jenkins running on Ubuntu 164
Upgrading Jenkins running on a Docker container 166
User administration 168
Enabling/disabling global security on Jenkins 169
Enabling/disabling computers to remember user credentials 169
Authentication methods 170
Delegating to a servlet container 170

Jenkins' own user database 171

LDAP 172

Unix user/group database 173
Creating new users inside Jenkins 173
People page 174
User information and settings in Jenkins 174
Authorization methods 175
Anyone can do anything 176

Legacy mode 176
Logged-in users can do anything 176
Matrix-based security 177
Project-based Matrix Authorization Strategy 178
Summary 181
Chapter 5: Distributed Builds 182
Distributed build and test 182
The Jenkins Manage Nodes page 184
Adding Jenkins slaves — standalone Linux machine/VMs 186
Passing environment variables to Jenkins slaves 189
Passing tools' locations to Jenkins slaves 190
Launching a Jenkins slave via SSH 191
More about the active Jenkins slave 192
Adding Jenkins slaves — standalone Windows machine/VMs 196
Launching a Jenkins slave via Java Web Start 198
Adding Jenkins slaves — Docker containers 201
Prerequisites 201
Setting up a Docker server 202

Setting up the repository 202

Installing Docker using apt-get 203

Installing Docker using a .deb package 204

Enabling Docker remote API 204
Modifying the docker.conf file 205
Modifying the docker.service file 206
Installing the Docker plugin 207
Configuring the Docker plugin 207

[v]

Table of Contents

Creating a Docker image — Jenkins slave 209
Adding Docker container credentials in Jenkins 212
Updating the Docker settings inside Jenkins 213
Summary 215
Chapter 6: Installing SonarQube and Artifactory 216
Installing and configuring SonarQube 216
Installing Java 217
Downloading the SonarQube package 218
Running the SonarQube application 219
Resetting the default credentials and generating a token 220
Creating a project inside SonarQube 221
Installing the build breaker plugin for SonarQube 223
Creating quality gates 224
Updating the default quality profile 227
Installing the SonarQube plugin in Jenkins 229
Configuring the SonarQube plugin in Jenkins 230
Installing and configuring Artifactory 231
Installing Java 232
Downloading the Artifactory package 233
Running the Artifactory application 235
Resetting the default credentials and generating an API key 237
Creating a repository in Artifactory 238
Adding Artifactory credentials inside Jenkins 241
Installing the Artifactory plugin in Jenkins 242
Configuring the Artifactory Plugin 242
Summary 244
Chapter 7: Continuous Integration Using Jenkins 245
Jenkins Cl design 245
Branching strategy 246
The master branch 246

The integration branch 246

The feature branch 246

The CI pipeline 247
Toolset for ClI 248
Creating the Cl pipeline 248
Creating a new repository on GitHub 249
Using the SonarQube scanner for Maven 249
Writing the Jenkinsfile for CI 250
Spawning a Docker container — build agent 250

[vil

Table of Contents

Downloading the latest source code from VCS 251

Pipeline code to perform the build and unit test 251

Pipeline code to perform static code analysis 252

Pipeline code to perform integration testing 252

Pipeline code to publish built artifacts to Artifactory 253
Combined ClI pipeline code 256

Using a Jenkinsfile 257
Creating a Multibranch Pipeline in Jenkins 259
Re-registering the Webhooks 260
Continuous Integration in action 262
Viewing static code analysis in SonarQube 266
Accessing SonarQube analysis right from Jenkins 268
Viewing artifacts in Artifactory 270
Failing the build when quality gate criteria are not met 271
Summary 273
Chapter 8: Continuous Delivery Using Jenkins 274
Jenkins CD design 274
Branching strategy 275
The release branch 275

CD pipeline 276
Toolset for CD 276
Creating a Docker image — performance testing 277
Adding Docker container credentials in Jenkins 282
Updating the Docker settings inside Jenkins 283
Creating a performance test using JMeter 284
Installing Java 285
Installing Apache JMeter 285
Starting JMeter 286
Creating a performance test case 286
Creating a thread group 287
Creating a sampler 289

Adding a listener 290

The CD pipeline 291
Writing the Jenkinsfile for CD 291
Revisiting the pipeline code for ClI 291

Pipeline code to stash the build artifacts 292
Spawning a Docker container — performance testing 292

Pipeline code to start Apache Tomcat 293

Pipeline code to deploy build artifacts 293

Pipeline code to run performance testing 294

Pipeline code to promote build artifacts in Artifactory 295
Combined CD pipeline code 295

[vii]

Table of Contents

CD in action 298
Summary 300
Chapter 9: Continuous Deployment Using Jenkins 301
What is Continuous Deployment? 302

How Continuous Deployment is different from Continuous Delivery 302

Who needs Continuous Deployment? 304

Creating a production server 305
Installing Vagrant 305

Installing VirtualBox 307

Creating a VM using Vagrant 308

Creating a Vagrantfile 308

Spawning a VM using Vagrant 309

Adding production server credentials inside Jenkins 31

Installing a Jenkins slave on a production server 313
Creating a Jenkins Continuous Deployment pipeline 314

A revisit to the pipeline code for CD 315

Pipeline code for a production Jenkins slave 316

Pipeline code to download binaries from Artifactory 316

Combined Continuous Deployment pipeline code 319

Update the Jenkinsfile 321
Continuous Delivery in action 323
Summary 324
Chapter 10: Supporting Tools and Installation Guide 325
Exposing your localhost server to the internet 325
Installing Git on Windows/Linux 327
Installing Git on Windows 327

Installing Git on Linux 330

Index 332

[viii]

Preface

In the past few years, the agile model of software development has seen a considerable
amount of growth around the world. There is massive demand for a software delivery
solution that is fast and flexible to frequent amendments, especially in the e-commerce
sector. As a result, the Continuous Integration and Continuous Delivery methodologies are
gaining popularity.

Whether small or big, all types of project gain benefits, such as early issue detection,
avoiding lousy code into production, and faster delivery, which leads to an increase in
productivity.

This book, Learning Continuous Integration with Jenkins Second Edition, serves as a step-by-
step guide to setting up a Continuous Integration, Continuous Delivery, and Continuous
Deployment system using hands-on examples. The book is 20% theory and 80% practical. It
starts by explaining the concept of Continuous Integration and its significance in the Agile
world, with a complete chapter dedicated to this. Users then learn to configure and set up
Jenkins, followed by implementing Continuous Integration and Continuous Delivery using
Jenkins. There is also a small chapter on Continuous Deployment, which talks primarily
about the difference between Continuous Delivery and Continuous Deployment.

What this book covers

chapter 1, Concepts of Continuous Integration, gives an account of how some of the most
popular and widely used software development methodologies gave rise to Continuous
Integration. This is followed by a detailed explanation of the various requirements and best
practices to achieve Continuous Integration.

Chapter 2, Installing Jenkins, is a step-by-step guide all about installing Jenkins across
various platforms, including Docker.

Chapter 3, The New Jenkins, provides an overview of how the new Jenkins 2.x looks and
feels, with an in-depth explanation of its essential constituents. It also introduces readers to
the new features added in Jenkins 2.x.

Chapter 4, Configuring Jenkins, focuses on accomplishing some basic Jenkins administration
tasks.

Preface

Chapter 5, Distributed Builds, explores how to implement a build farm using Docker. It also
talks about adding standalone machines as Jenkins slaves.

Chapter 6, Installing SonarQube and Artifactory, covers installing and configuring SonarQube
and Artifactory for CI.

Chapter 7, Continuous Integration Using Jenkins, takes you through a Continuous Integration
design and the means to achieve it using Jenkins, in collaboration with some other DevOps
tools.

Chapter 8, Continuous Delivery Using Jenkins, outlines a Continuous Delivery design and the
means to achieve it using Jenkins, in collaboration with some other DevOps tools.

Chapter 9, Continuous Deployment Using Jenkins, explains the difference between
Continuous Delivery and Continuous Deployment. It also features a step-by-step guide to
implementing Continuous Deployment using Jenkins.

Appendix, Supporting Tools and Installation Guide, takes you through the steps required to
make your Jenkins server accessible over the internet and the installation guide for Git.

What you need for this book

To be able to follow everything described in the book, you will need a machine with the
following configurations:

¢ Operating systems:
e Windows 7/8/10
e Ubuntu 14 and later

¢ Hardware requirements:
¢ A machine with a minimum 4 GB memory and a multicore
processor

e Other requirements:
¢ A GitHub account (public or private)

Who this book is for

This book is aimed at readers with little or no previous experience with Agile or
Continuous Integration and Continuous Delivery. It serves as a great starting point for
anyone who is new to this field and would like to leverage the benefits of Continuous
Integration and Continuous Delivery to increase productivity and reduce delivery time.

[2]

Preface

Build and release engineers, DevOps engineers, (Software Configuration
Management) SCM engineers, developers, testers, and project managers can all benefit from
this book.

Readers who are already using Jenkins for Continuous Integration can learn to take their
project to the next level, which is Continuous Delivery.

The current edition of the book is a complete reboot of its predecessor. Readers of the first
edition can take advantage of some of the new stuff discussed in the current edition, such as
Pipeline as Code, Multibranch Pipelines, Jenkins Blue Ocean, distributed build farms using
Docker, and more.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "This will
download a . hpi file on your system."

A block of code is set as follows:

stage ('Performance Testing') {
sh ''"'cd /opt/jmeter/bin/
./Jjmeter.sh -n -t SWORKSPACE/src/pt/Hello_World_Test_Plan.jmx -1
SWORKSPACE/test_report.jtl''"';
step([$class: 'ArtifactArchiver', artifacts: '**/*_Jtl1'])
t

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

stage ('Performance Testing') {
sh ''"'cd /opt/Jjmeter/bin/
./Jjmeter.sh -n -t SWORKSPACE/src/pt/Hello_World_Test_Plan.jmx -1
SWORKSPACE/test_report.jtl''';
step([$class: 'ArtifactArchiver', artifacts: '**/*_Jtl1'])

[3]

Preface

The extra "\" used in some of the commands is used to only indicate that the command
continues in the next line. Any command-line input or output is written as follows:

cd /tmp
wget https://archive.apache.org/dist/tomcat/tomcat-8/ \
v8.5.16/bin/apache-tomcat-8.5.16.tar.gz

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "From the Jenkins
dashboard, click on the Manage Jenkins | Plugin Manager | Available tab."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

[4]

http://www.packtpub.com/authors

Preface

Downloading the example code

You can download the example code files for this book from your account at http://www.
packtpub. com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files emailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your email address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSO »h =

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learning-Continuous—Integration-with-Jenkins-Second-Edition. We
also have other code bundles from our rich catalog of books and videos available at https:/
/github.com/PacktPublishing/. Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.

pdf.

[5]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningContinuousIntegrationwithJenkinsSecondEdition_ColorImages.pdf

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https://www.packtpub.com/
books/content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[6]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Concepts of Continuous
Integration

We will begin this chapter with an overview of the two primary software development
methodologies of the era: Waterfall, and agile. An understanding of their concepts and
implications will help us answer how Continuous Integration (CI) came into existence.

Next, we will try to understand the concept behind CI and the elements that make it.
Reading through the topics, you will see how CI helps projects go agile. After completing
this chapter, you should be able to:

e Describe how CI came into existence.
e Define what Cl is.
e Describe the elements of CI.

Software Development Life Cycle

For those of you who are not familiar with the term: Software Development Life Cycle, let
us try to understand it.

The Software Development Life Cycle, also sometimes referred to as SDLC for short, is the
process of planning, developing, testing, and deploying software.

Concepts of Continuous Integration Chapter 1

Teams follow a sequence of phases, and each phase uses the outcome of its previous phase,
as shown in the following diagram:

Software Development Life Cycle

Let's take a look at the SDLC phases in detail.

Requirement analysis

This is the first stage of the cycle. Here, the business team (mostly comprised of business
analysts) perform a requirement analysis of their project's business needs. The requirements
can be internal to the organization, or external, from a customer. This study involves
finding the nature and scope of the requirements. With the gathered information, there is a
proposal to either improve the system or create a new one. The project cost gets decided,
and benefits are laid out. Then the project goals are defined.

Design

The second phase is the design phase. Here, the system architects and the system designers
formulate the desired features of the software solution and create a project plan. This plan
may include process diagrams, overall interface, and layout design, along with a vast set of
documentation.

[8]

Concepts of Continuous Integration Chapter 1

Implementation

The third phase is the implementation phase. Here, the project manager creates and assigns
work to the developers. The developers develop the code depending on the tasks and goals
defined in the design phase. This phase may last from a few months to a year, depending
on the project.

Testing

The fourth phase is the testing phase. When all the decided features are developed, the
testing team takes over. For the next few months, all features are thoroughly tested. Every
module of the software is collected and tested. Defects are raised if any bugs or errors occur
while testing. In the event of a failure, the development team quickly acts to resolve the
failures. The thoroughly tested code is then deployed into the production environment.

Evolution

The last phase is the evolution phase or the maintenance phase. Feedback from the
users/customers is analyzed, and the whole cycle of developing, testing, and releasing the
new features and fixes in the form of patches or upgrades repeats.

Waterfall model of software development

One of the most famous and widely used software development processes is the Waterfall
model. The Waterfall model is a sequential software development process. It was derived
from the manufacturing industry. One can see a highly structured flow of processes that
run in one direction. At the time of its creation, there were no other software development
methodologies, and the only thing the developers could have imagined was the production
line process that was simple to adapt for software development.

[9]

Concepts of Continuous Integration Chapter 1

The following diagram illustrates the Waterfall model of software development:

Waterfall model

The Waterfall approach is simple to understand, as the steps involved are similar to that of
the SDLC.

First, there is a requirement analysis phase, which is followed by the designing phase. There
is a considerable time spent on the analysis and the designing part. And once it's over, there
are no further additions or deletions. In short, once the development begins, there is no
modification allowed in the design.

Then comes the implementation phase, where the actual development takes place. The
development cycle can range from three months to six months. During this time, the testing
team is usually free. When the development cycle is completed, a whole week's time is
planned for performing the integration of the source code. During this time, many
integration issues pop up and are fixed immediately. This stage is followed by the testing
phase.

When the testing starts, it goes on for another three months or more, depending on the
software solution. After the testing completes successfully, the source code is then deployed
in the production environment. For this, a day or so is again planned to carry out the
deployment in production. There is a possibility that some deployment issues may pop up.
When the software solution goes live, teams get feedback and may also anticipate issues.

[10]

Concepts of Continuous Integration Chapter 1

The last phase is the maintenance phase. Feedback from the users/customers is analyzed,
and the whole cycle of developing, testing, and releasing new features and fixes in the form
of patches or upgrades repeats.

There is no doubt that the Waterfall model worked remarkably for decades. However, flaws
did exist, but they were simply ignored for a long time. Since, way back then software
projects had ample time and resources to get the job done.

However, looking at the way software technologies have changed over the past few years,
we can easily say that the Waterfall model won't suit the requirements of the current world.

Disadvantages of the Waterfall model

The following are some of the disadvantages of the Waterfall model:

Working software is produced only at the end of the SDLC, which lasts for a year
or so in most cases.

There is a huge amount of uncertainty.

It is not suitable for projects where the demand for new features is too frequent.
For example, e-commerce projects.

Integration is performed only after the entire development phase is complete. As
a result, integration issues are found at a much later stage and in large quantities.

There is no backward traceability.
It's difficult to measure progress within stages.

Advantages of the Waterfall model

By looking at the disadvantages of the Waterfall model, we can say that it's mostly suitable
for projects where:

The requirements are well documented and fixed.

There is enough funding available to maintain a management team, a testing
team, a development team, a build and release team, a deployment team, and so
on.

The technology is fixed, and not dynamic.

There are no ambiguous requirements. And most importantly, they don't pop up
during any other phase apart from the requirement analysis phase.

[11]

Concepts of Continuous Integration Chapter 1

Agile to the rescue

The name Agile rightly suggests quick and easy. Agile is a collection of methods where
software is developed through collaboration among self-organized teams. The principles
behind agile are incremental, quick, flexible software development, and it promotes
adaptive planning.

The Agile software development process is an alternative to the traditional software
development processes discussed earlier.

The twelve agile principles

The following are the twelve principles of the agile model:

¢ Customer satisfaction through early and continuous delivery of useful software.
¢ Welcome changing requirements, even late in development.

e Working software is frequently delivered (in weeks, rather than months).

e Close daily cooperation between businesses, people, and developers.

¢ Projects are built around motivated individuals, who should be trusted.

o Face-to-face conversation is the best form of communication (co-location).

e Working software is the principal measure of progress.

e Sustainable development—able to maintain a constant pace.

¢ Continuous attention to technical excellence and good design.

e Simplicity—the art of maximizing the amount of work not done—is essential.
e Self-organizing teams.

e Regular adaptation to changing circumstances.

To know more about the Agile principles visit the
0 link: http://www.agilemanifesto.org.

[12]

http://www.agilemanifesto.org

Concepts of Continuous Integration Chapter 1

The twelve principles of Agile software development indicate the expectations of the
current software industry and its advantages over the Waterfall model.

How does the Agile software development
process work?

In the Agile software development process, the whole software application is split into
multiple features or modules. These features are delivered in iterations. Each iteration lasts
for three weeks, and involves cross-functional teams that work simultaneously in various
areas, such as planning, requirement analysis, designing, coding, unit testing, and
acceptance testing.

As a result, no person sits idle at any given point in time. This is quite different from the
Waterfall model wherein while the development team is busy developing the software, the
testing team, the production team, and everyone else is idle or underutilized. The following
diagram illustrates the Agile model of software development:

Review Release to Customer]

Develop Feature 1

Start a project
Define high level Requirement

Agile methodology

[13]

Concepts of Continuous Integration Chapter 1

From the preceding diagram, we can see that there is no time spent on requirement analysis
or design. Instead, a very high-level plan is prepared, just enough to outline the scope of the
project.

The team then goes through a series of iterations. Iteration can be classified as time frames,
each lasting for a month or even a week in some mature projects. In this duration, a project
team develops and tests features. The goal is to develop, test, and release a feature in a
single iteration. At the end of the iteration, the feature goes for a demo. If the clients like it,
then the feature goes live. But, if it gets rejected, the feature is taken as a backlog, re-
prioritized, and again worked upon in the consecutive iteration.

There is also a possibility of parallel development and testing. In a single iteration, one can
develop and test more than one feature in parallel.

Advantages of Agile software development
process

Let us see some of the advantages of the Agile software development process:

¢ Functionality can be developed and demonstrated rapidly: In an agile process,
the software project is divided by features, and each feature is called as a backlog.
The idea is to develop either a single or a set of features right from its
conceptualization till its deployment, in a week or a month. This puts at least a
feature or two on the customer's plate, which they can then start using.

* Resource requirement is less: In Agile, there are no separate development and
testing teams. Neither is there a build or release team, or a deployment team. In
Agile, a single project team contains around eight members. Each member of the
team is capable of doing everything.

e Promotes teamwork and cross-training: Since there is a small team of about eight
members, the team members switch their roles in turns and learn from each
other's experience.

¢ Suitable for projects where requirements frequently change: In an Agile model
of software development, the complete software is divided into features, and
each feature is developed and delivered in a short time span. Hence, changing the
feature, or even completely discarding it, doesn't affect the whole project.

¢ Minimalistic documentation: This methodology focuses primarily on delivering
working software quickly, rather than creating huge documents. Documentation
exists, but it's limited to the overall functionality.

[14]

Concepts of Continuous Integration Chapter 1

e Little or no planning required: Since features are developed one after the other
in a short period, there is no need for extensive planning.

e Parallel development: Iteration consists of one or more features developed in
sequence, or even in parallel.

The Scrum framework

Scrum is a framework for developing and sustaining complex products that are based on
the Agile software development process. It is more than a process; it's a framework with
certain roles, tasks, and teams. Scrum was written by Ken Schwaber and Jeff Sutherland;
together, they created The Scrum Guide.

In a Scrum framework, the development team decides on how to develop a feature. This is
because the team knows best about the problem they are presented with. I assume most of
the readers are happy after reading this.

Scrum relies on a self-organizing and cross-functional team. The Scrum team is self-
organizing; hence, there is no overall team leader who decides which person will do which
task, or how a problem will be solved.

Important terms used in the Scrum framework

The following are the important terms used in the Scrum framework:

e The Sprint: Sprint is a timebox during which a usable and potentially releasable
product gets created. A new Sprint starts immediately after the conclusion of the
previous Sprint. A Sprint may last between two weeks to one month, depending
on the project's command over Scrum.

¢ Product Backlog: The Product Backlog is a list of all the required features in a
software solution. The list is dynamic. That is, now and then the customers or
team members add or delete items to the Product Backlog.

e Sprint Backlog: The Sprint Backlog is the set of Product Backlog items, selected
for the Sprint.

¢ Increment: The Increment is the sum of all the Product Backlog items completed
during a Sprint and the value of the Increments from all the previous Sprints.

[15]

Concepts of Continuous Integration Chapter 1

e The Development Team: The Development Team does the work of delivering a
releasable set of features named Increment at the end of each Sprint. Only
members of the Development Team create the Increment. Development Teams
are empowered by the organization to organize and manage their work. The
resulting synergy optimizes the Development Team's overall efficiency and
effectiveness.

e The Product Owner: The Product Owner is a mediator between the Scrum Team
and everyone else. He is the front face of the Scrum Team and interacts with
customers, infrastructure teams, admin teams, everyone involved in the Scrum,
and so on.

e The Scrum Master: The Scrum Master is responsible for ensuring Scrum is

understood and enacted. Scrum Masters do this by ensuring that the Scrum Team
follows the Scrum theory, practices, and rules.

How does Scrum work?

The Product Owner, the Scrum Master, and the Scrum Team together follow a set of
stringent procedures to deliver the software features. The following diagram explains the
Scrum development process:

Product Backlog

Sprint Planning

' Y\
’ Sprint Backlog

Scrum methodology

& &
& &

Sprint Review &
Retrospective Meeting

@

1

)

Sprint 2-4 weeks

(

@

Shipping Features Daily Scrum

[16]

Concepts of Continuous Integration Chapter 1

Let us see some of the important aspects of the Scrum software development process that
the team goes through.

Sprint Planning

Sprint Planning is an opportunity for the Scrum Team to plan the features in the current
Sprint cycle. The plan is created mainly by the developers. Once the plan is created, it is
explained to the Scrum Master and the Product Owner. The Sprint Planning is a timeboxed
activity, and it is usually around eight hours in total for a one-month Sprint cycle. It is the
responsibility of the Scrum Master to ensure everyone participates in the Sprint Planning
activity.

In the meeting, the Development Team takes into consideration the following items:

¢ The number of Product Backlogs to be worked on (both new and the old ones
from the last Sprint).

e Team performances in the last Sprint.
e Projected capacity of the Development Team.

Sprint cycle

During the Sprint cycle, the developers simply work on completing the backlogs decided in
the Sprint Planning. The duration of a Sprint may last from two weeks to one month,
depending on the number of backlogs.

Daily Scrum meeting

This happens on a daily basis. During the Scrum meeting, the Development Team discusses
what was accomplished yesterday, and what will be accomplished today. They also discuss
the things that are stopping them from achieving their goal. The Development Team does
not attend any other meeting or discussion apart from the Scrum meeting.

Monitoring Sprint progress

The Daily Scrum is a good opportunity for a team to measure its progress. The Scrum Team
can track the total work remaining, and by doing so, they can estimate the likelihood of
achieving the Sprint Goal.

[17]

Concepts of Continuous Integration Chapter 1

Sprint Review

In the Sprint Review, the Development Team demonstrates the features that have been
accomplished. The Product Owner updates on the Product Backlog status to date. The
Product Backlog list is updated depending on the product performance or usage in the
market. Sprint Review is a four-hour activity altogether for a one-month Sprint.

Sprint Retrospective

In this meeting, the team discusses the things that went well, and the things that need
improvement. The team then decides the points on which it has to improve to perform
better in the upcoming Sprint. This meeting usually occurs after the Sprint Review and
before the Sprint Planning.

Continuous Integration

Continuous Integration (CI) is a software development practice where developers
frequently integrate their work with the project's Integration branch and create a build.

Integration is the act of submitting your private work (modified code) to the common work
area (the potential software solution). This is technically done by merging your private
work (personal branch) with the common work area (Integration branch). Or we can say,
pushing your private branch to the remote branch.

Cl is necessary to bring out issues encountered during the integration as early as possible.
This can be understood from the following diagram, which depicts various issues
encountered during a single CI cycle.

A build failure can occur due to either an improper code or a human error while doing a
build (assuming that the tasks are done manually). An integration issue can occur if the
developers do not rebase their local copy of code frequently with the code on the
Integration branch. A testing issue can occur if the code does not pass any of the unit or
integration test cases.

[18]

Concepts of Continuous Integration Chapter 1

In the event of an issue, the developer has to modify the code to fix it:

Feature

Develop & Commit
Build & Unit test
S

Integrate

TP
Build or Unit test failure -

Integration Issues ;

Build Fa!lllre Build

Testing failure Integration testing

Package

W Q@B |l

CI process

Agile runs on CI

The Agile software development process focuses mainly on fast delivery, and CI helps
Agile in achieving that speed. But how does CI do that? Let us understand by using a
simple case.

Developing a feature involves many code changes, and between every code change, there
are a set of tasks to perform, such as checking-in the code, polling the version control
system for changes, building the code, unit testing, integration, building on the integrated
code, integration testing, and packaging. In a CI environment, all these steps are made fast
and error-free by using a CI tool such as Jenkins.

[19]

Concepts of Continuous Integration Chapter 1

Adding notifications makes things even faster. The sooner the team members are aware of a
build, integration, or deployment failure, the quicker they can act. The following diagram
depicts all the steps involved in a CI process:

Integration with notification

‘|

=,,~ Develop & Commit
i Build on Integrated code
with notification

“u

%, Packaging

Integration testing

Build with notification v with notification

o
Kt

CI process with notifications

In this way, the team quickly moves from feature to feature. In simple terms, the agility of
the agile software development is greatly due to CL.

Types of projects that benefit from CI

The amount of code written for the embedded systems presents inside a car is more than
the one present inside a fighter jet. In today's world, embedded software is inside every
product, modern or traditional. Be it cars, TVs, refrigerators, wrist watches, or bikes; all
have little or more software-dependent features. Consumer products are becoming smarter
day by day. Nowadays, we can see a product being marketed more using its smart and
intelligent features than its hardware capabilities. For example, an air conditioner is
marketed by its wireless control features, and TVs are being marketed by their smart
features, like embedded web browsers, and so on.

[20]

Concepts of Continuous Integration Chapter 1

The need to market new products has increased the complexity of products. This increase in
software complexity had brought the Agile software development and CI methodologies to
the limelight, though there were times when agile software development was used by a
team of no more than 30-40 people that were working on a simple project. Almost all types
of projects benefit from CI: mostly the web-based projects, for example, the e-commerce
websites, and mobile phone apps.

CI and agile methodologies are used in projects that are based on Java, .NET, Ruby on Rails,
and every other programming language present today. The only place where you will see it
not being used is in the legacy systems. However, even they are going agile. Projects based
on SAS, Mainframes; all are trying to benefit from CI.

Elements of CI

Let us see the important elements of the CI process.

Version control system

This is the most basic and the most important requirement for implementing CI. A Version
Control System, sometimes also called a Revision Control System, is a tool to manage your
code history. It can be centralized or distributed. Some of the famous centralized version
control systems are SVN and IBM Rational ClearCase. In the distributed segment, we have
tools like GIT and Mercurial.

Ideally, everything that is required to build software must be version controlled. A version
control tool offers many features, such as tagging, branching, and so on.

Branching strategy

When using a Version Control System, keep the branching to a minimum. A few companies
have only one main branch, and all the development activity happens on that. Nevertheless,
most of the companies follow some branching strategies. This is because there is always a
possibility that a part of the team may work on one release, while others may work on
another release. Other times, there is a need to support the older release versions. Such
scenarios always lead companies to use multiple branches.

[21]

Concepts of Continuous Integration Chapter 1

GitFlow is another way of managing your code using multiple branches. In the following
method, the Master/Production branch is kept clean and contains only the releasable, ready-
to-ship code. All the development happens on the Feature branches, with the Integration
branch serving as a common place to integrate all the features. The following diagram is a
moderate version of the GitFlow:

Integration Branch Hot Fix Branch Production Branch

Feature Branch Feature Branch

R01.00.00

@ Merge @ Merge @ Merge
R01.00.01
@ Merge @ Merge o
ﬁ ROZ.00.00

Branching strategy

[22]

Concepts of Continuous Integration Chapter 1

GitFlow branching model

The following diagram illustrates the full version of GitFlow. We have a Master/Production
branch that contains only the production-ready code. The Feature branches are where all of
the development takes place. The Integration branch is where the code gets integrated and
tested for quality. In addition to that, we have release branches that are pulled out from the
Integration branch as and when there is a stable release. All bug fixes related to a release
happen in the Release branches. There is also a Hotfix branch that is pulled out of the
Master/Production branch as and when there is a need for a hotfix:

Integration Branch Hot Fix Branch Production Branch

Feature Branch Feature Branch
@ Release Branch

GitFlow branching strategy

[23]

Concepts of Continuous Integration Chapter 1

Cl tool

What is a CI tool? Well, it is nothing more than an orchestrator. A CI tool is at the center of
the CI system, connected to the Version Control System, build tools, Binary Repository
Manager tool, testing and production environments, quality analysis tool, test automation
tool, and so on. There are many CI tools: Build Forge, Bamboo, and TeamCity, to name a
few. But the prime focus of our book is Jenkins:

VCS
Repository f Static code analysis
server - — server
= L= =
= Cl Server =
Testing farm Build farm

Production
environment

Centralized CI server

A CI tool provides options to create pipelines. Each pipeline has its own purpose. There are
pipelines to take care of CI. Some take care of testing; some take care of deployments, and
so on. Technically, a pipeline is a flow of jobs. Each job is a set of tasks that run sequentially.
Scripting is an integral part of a CI tool that performs various kinds of tasks. The tasks may
be as simple as copying a folder/file from one location to the other, or they can be complex
Perl scripts to monitor machines for file modifications. Nevertheless, the script is getting
replaced by the growing number of plugins available in Jenkins. Now you need not script to
build a Java code; there are plugins available for it. All you need to do is install and
configure a plugin to get the job done. Technically, plugins are nothing but small modules
written in Java. They remove the burden of scripting from the developer's head. We will
learn more about pipelines in the upcoming chapters.

[24]

Concepts of Continuous Integration Chapter 1

Self-triggered builds

The next important thing to understand is the self-triggered automated build. Build
automation is simply a series of automated steps that compile the code and generate
executables. The build automation can take the help of build tools like Ant and Maven. The
self-triggered automated build is the most important part of a CI system. There are two
main factors that call for an automated build mechanism:

e Speed.
¢ Catching integration or code issues as early as possible.

There are projects where 100 to 200 builds happen per day. In such cases, speed plays an
important factor. If the builds are automated, then it can save a lot of time. Things become
even more interesting if the triggering of the build is made self-driven, without any manual
intervention. Auto-triggered build on every code change further saves time.

When builds are frequent and fast, the probability of finding an error (build error,
compilation error, or integration error) in the framework of SDLC is higher and faster:

3

%% Probability of finding error

Frequency of build

Probability of error versus build graph

[25]

Concepts of Continuous Integration Chapter 1

Code coverage

Code coverage is the amount of code (in percentage) that is covered by your test case. The
metrics that you might see in your coverage reports could be more or less as defined in the

following table:

Type of coverage

Description

The number of functions called out of the total number of functions

Functi .
uneton defined
The number of statements in the program that are truly called out of
Statement
the total number
Branches The number of branches of the control structures executed
s The number of Boolean sub-expressions that are being tested for a true
Condition
and a false value
Line The number of lines of source code that are being tested out of the total

number of lines present inside the code

Types of code coverage

This coverage percentage is calculated by dividing the number of items tested by the
number of items found. The following screenshot illustrates the code coverage report from

SonarQube:
sonarqube Dashboards * Issues Measures Rules Quality Profiles Quality Gates Administration More »
A, = o
¢ 5 Pilot
Issues Measures Code Dashboardsv Administration v

Coverage

Quality Gate
Coverage
11.2% @ 80.0%

O 11.2% —

Coverage Coverage on New Code

Code coverage report on SonarQube

[26]

Concepts of Continuous Integration Chapter 1

Code coverage tools

You might find several options to create coverage reports, depending on the language(s)
you use. Some of the popular tools are listed as follows:

Language | Tools

Java Atlassian Clover, Cobertura, JaCoCo

C#/NET |OpenCover, dotCover

C+ OpenCppCoverage, gcov

Python |Coverage.py

Ruby SimpleCov

Static code analysis

Static code analysis, also commonly called white-box testing, is a form of software testing
that looks for the structural qualities of the code. For example, it answers how robust or
maintainable the code is. Static code analysis is performed without actually executing
programs. It is different from the functional testing, which looks into the functional aspects
of software, and is dynamics.

Static code analysis is the evaluation of software's inner structures. For example, is there a
piece of code used repetitively? Does the code contain lots of commented lines? How
complex is the code? Using the metrics defined by a user, an analysis report is generated
that shows the code quality regarding maintainability. It doesn't question the code's
functionality.

Some of the static code analysis tools like SonarQube come with a dashboard, which shows
various metrics and statistics of each run. Usually, as part of CI, the static code analysis is
triggered every time a build runs. As discussed in the previous sections, static code analysis
can also be included before a developer tries to check-in his code. Hence, a code of low
quality can be prevented right at the initial stage.

[27]

Concepts of Continuous Integration

Chapter 1

They support many languages, such as Java, C/C++, Objective-C, C#, PHP, Flex, Groovy,
JavaScript, Python, PL/SQL, COBOL, and so on. The following screenshots illustrate the
static code analysis report using SonarQube:

sonarqube Dashboards * Issues Measures Rules Quality Profiles Quality Gates
¢ £ Pilot
Issues Measures Code Dashboards~ Administration =
Custom
lzzues echinical Det O Blocker 1
184 T O Critical 20
@ Major !
Minor 78
Info 2
Static code analysis report
May 16 2017 Jul 06 2017 Jul 11 2017
1.4 1.24 1.25
Lines of Code 1131082 117,555 117,555
Unit Tests
Complexity 187,206 14528 14528
Complexit File Distribution / Complexity
! 1457
14,528
)) 334 249 g9 e 12 14
lass Fie || -— J— — .
78 65 0 5 10 20 30 60 80

Static code analysis report

[28]

Concepts of Continuous Integration Chapter 1

Automated testing

Testing is an important part of an SDLC. To maintain quality software, it is necessary that
the software solution goes through various test scenarios. Giving less importance to testing
can result in customer dissatisfaction and a delayed product.

Since testing is a manual, time-consuming, and repetitive task, automating the testing
process can significantly increase the speed of software delivery. However, automating the
testing process is a bit more difficult than automating the build, release, and deployment
processes. It usually takes a lot of effort to automate nearly all the test cases used in a
project. It is an activity that matures over time.

Hence, when beginning to automate the testing, we need to take a few factors into
consideration. Test cases that are of great value and easy to automate must be considered
first. For example, automate the testing where the steps are the same, although they run
with different data every time. Further, automate the testing where software functionality is
tested on various platforms. Also, automate the testing that involves a software application
running with different configurations.

Previously, the world was mostly dominated by desktop applications. Automating the
testing of a GUI-based system was quite difficult. This called for scripting languages where
the manual mouse and keyboard entries were scripted and executed to test the GUI
application. Nevertheless, today the software world is completely dominated by web and
mobile-based applications, which are easy to test through an automated approach using a
test automation tool.

Once a code is built, packaged, and deployed, testing should run automatically to validate
the software. Traditionally, the process followed is to have an environment for SIT, UAT,
PT, and pre-production. First, the release goes through SIT, which stands for system
integration testing. Here, testing is performed on an integrated code to check its
functionality altogether. If the integration testing is passed, the code is deployed to the next
environment, which is UAT, where it goes through user acceptance testing, and then it can
lastly be deployed in PT, where it goes through performance testing. In this way, the testing
is prioritized.

It is not always possible to automate all the testing. But, the idea is to automate whatever
testing that is possible. The preceding method discussed requires the need to have many
environments and also a higher number of automated deployments into various
environments. To avoid this, we can go for another method where there is only one
environment where the build is deployed, and then the basic tests are run, and after that,
long-running tests are triggered manually.

[29]

Concepts of Continuous Integration Chapter 1

Binary repository tools

As part of the SDLC, the source code is continuously built into binary artifacts using CI.
Therefore, there should be a place to store these built packages for later use. The answer is,
using a binary repository tool. But what is a binary repository tool?

A binary repository tool is a Version Control System for binary files. Do not confuse this
with the Version Control System discussed in the previous sections. The former is
responsible for versioning the source code, and the latter is for binary files, such as . rar,
.war, .exe, .msi, and so on. Along with managing built artifacts, a binary repository tool
can also manage 3-party binaries that are required for a build. For example, the Maven
plugin always downloads the plugins required to build the code into a folder. Rather than
downloading the plugins again and again, they can be managed using a repository tool:

Build & Unit test

O
&

Build on

integrated code E
= —= -
2T 0

Integration testing

_ (=
Som

Repository Server]

Repository tool

[30]

Concepts of Continuous Integration Chapter 1

From the above illustration, you can see as soon as a build gets created and passes all the
checks, the built artifact is uploaded to the binary repository tool. From here, the developers
and testers can manually pick them, deploy them, and test them. Or, if the automated
deployment is in place, then the built artifacts are automatically deployed to the respective
test environment. So, what're the advantages of using a binary repository?

A binary repository tool does the following:

Every time a built artifact gets generated, it is stored in a binary repository tool.
There are many advantages of storing the build artifacts. One of the most
important advantages is that the build artifacts are located in a centralized
location from where they can be accessed when needed.

It can store third-party binary plugins, modules that are required by the build
tools. Hence, the build tool need not download the plugins every time a build
runs. The repository tool is connected to the online source and keeps updating
the plugin repository.

It records what, when, and who created a build package.

It provides a staging like environments to manage releases better. This also helps
in speeding up the CI process.

In a CI environment, the frequency of build is too high, and each build generates
a package. Since all the built packages are in one place, developers are at liberty
to choose what to promote and what not to promote in higher environments.

Automated packaging

There is a possibility that a build may have many components. Let's take, for example, a
build that has a . rar file as an output. Along with that, it has some Unix configuration files,
release notes, some executables, and also some database changes. All of these different
components need to be together. The task of creating a single archive or a single media out
of many components is called packaging. Again, this can be automated using the CI tools
and can save a lot of time.

[31]

Concepts of Continuous Integration Chapter 1

Benefits of using CI

The following are some of the benefits of using CI. The list is brief, and not comprehensive.

Freedom from long integrations

Integrating the code rarely, as seen in the Waterfall model, can lead to merge hell. It is a
situation wherein teams spend weeks resolving the merge issues.

In contrast to this, integrating every single commit on your Feature branch with the
Integration branch and testing it for issues (CI) allows you to find integration issues as early
as possible.

Metrics

Tools like Jenkins, SonarQube, Artifactory, and GitHub allow you to generate trends over a
period. All of these trends can help project managers and teams to make sure the project is
heading in the right direction and with the right pace.

Catching issues faster

This is the most important advantage of having a carefully implemented CI system. Any
integration issue or merge issue gets caught early. The CI system has the facility to send
notification as soon as the build fails.

Rapid development

From a technical perspective, CI helps teams work more efficiently. Projects that use CI
follow an automatic and continuous approach while building, testing, and integrating their
code. This results in a faster development.

Developers spend more time developing their code and zero time building, packaging,
integrating, and deploying it, as everything is automated. This also helps teams that are
geographically distributed to work together. With a good software configuration management
process in place, people can work on widely distributed teams.

[32]

Concepts of Continuous Integration Chapter 1

Spend more time adding features

In the past, build and release activities were managed by the developers, along with the
regular development work. It was followed by a trend of having separate teams that
handled the build, release, and deployment activities. And it didn't stop there; this new
model suffered from communication issues and a lack of coordination among developers,
release engineers, and testers. However, using CI, all the build, release, and deployment
work gets automated. Therefore, the development team need not worry about anything
other than developing features. In most cases, even the complete testing is automated.
Therefore by using a CI process, the development team can spend more time developing
the code.

Summary

"Behind every successful agile project, there is a Continuous Integration process.”

In this chapter, we took a glance through the history of software engineering processes. We
learned about CI and the elements that make it.

The various concepts and terminologies discussed in this chapter form a foundation for the
upcoming chapters. Without these, the coming chapters are mere technical know-how.

In the next chapter, we will learn how to install Jenkins on various platforms.

[33]

Installing Jenkins

This chapter is all about installing Jenkins across various platforms, and more. After
completing this chapter, you should be able to do the following:

¢ Run Jenkins on a servlet container (Apache Tomcat)

Run Jenkins as a standalone application on Windows/Ubuntu/Red Hat
Linux/Fedora

Run Jenkins behind a reverse proxy server (Nginx)

Run Jenkins with Docker

Leverage the advantages of Docker data volumes

Run development, staging, and production instance of Jenkins using Docker

Running Jenkins inside a servlet container

Jenkins is available on the following servlet containers:

¢ Apache Geronimo 3.0
o GlassFish

e IBM WebSphere

* JBoss

o Jetty

e Jonas

Liberty profile
Tomcat
WebLogic

Installing Jenkins Chapter 2

In this section, you will learn how to install Jenkins on an Apache Tomcat server. Installing
Jenkins as a service on Apache Tomcat is quite simple. Either you can choose to run Jenkins
along with the other services already present on the Apache Tomcat server, or you can use
the Apache Tomcat server solely for running Jenkins.

Prerequisites

Before you begin, make sure you have the following things ready:

* You need a system with at least 4 GB of memory and a Multi-core processor.

¢ Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).

e The machine should have Ubuntu 16.04 installed on it. Choose an LTS release
version.

¢ Check for administrator privileges; the installation might ask for an admin
username and password.

Installing Java

Follow these steps to install Java on Ubuntu:
1. Update the package index:
sudo apt—-get update

2. Next, install Java. The following command will install the Java Runtime
Environment (JRE):

sudo apt—get install default-jre

3. To set the JAVA_HOME environment variable, get the Java installation location. Do
this by executing the following command:

update-java—-alternatives -1

[35]

Installing Jenkins Chapter 2

4. The previous command will print the list of Java applications installed on your
machine along with their installation paths. Copy the Java path that appears on
your Terminal:

java-1.8.0-openjdk—-amd64 1081
/usr/1lib/jvm/java-1.8.0-openjdk-amdé64

5. Open the /etc/environment file for editing using the following command:
sudo nano /etc/environment

6. Add the Java path (the one that you copied earlier) inside the
/etc/environment file in the following format:

JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-amd64"

7. Type Ctrl + X and choose Y to save and close the file.
8. Next, reload the file using the following command:

sudo source /etc/environment

Installing Apache Tomcat

Follow these steps to download and then install Apache Tomcat server on your Ubuntu
machine:

1. Move to the /tmp directory and download the Tomcat application using the wget
command, as shown here:
cd /tmp
wget https://archive.apache.org/dist/tomcat/tomcat-8/ \
v8.5.16/bin/apache-tomcat-8.5.16.tar.gz

To get a complete list of Apache Tomcat versions visit: https://archive.
apache.org/dist/tomcat/.

2. Create a directory called /opt/tomcat using the following command:

sudo mkdir /opt/tomcat

[36]

https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/
https://archive.apache.org/dist/tomcat/

Installing Jenkins Chapter 2

3. Untar the content of the archive inside /opt/tomcat:

sudo tar xzvf apache-tomcat-8*tar.gz \
-C /opt/tomcat —-strip-components=1

4. Next, create a systemd service file using the following command:
sudo nano /etc/systemd/system/tomcat.service
5. Paste the following content into the file:

[Unit]
Description=Apache Tomcat Web Application Container
After=network.target

[Service]
Type=forking

Environment=JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64
Environment=CATALINA_PID=/opt/tomcat/temp/tomcat.pid
Environment=CATALINA_HOME=/opt/tomcat
Environment=CATALINA_BASE=/opt/tomcat
Environment="'CATALINA_OPTS=-Xms512M -Xmx1024M

—-server —-XX:+UseParallelGC'
Environment='JAVA_OPTS=-Djava.awt.headless=true
-Djava.security.egd=file:/dev/./urandom'

ExecStart=/opt/tomcat/bin/startup.sh
ExecStop=/opt/tomcat/bin/shutdown.sh

RestartSec=10
Restart=always

[Install]
WantedBy=multi-user.target

6. Type Ctrl + X and choose Y to save and close the file.
7. Next, reload the systemd daemon using the following command:

sudo systemctl daemon-reload
8. Start the Tomcat service using the following command:

sudo systemctl start tomcat

[371]

Installing Jenkins Chapter 2

9. To check the status of Tomcat service, run the following command:
sudo systemctl status tomcat
10. You should see the following output:

@® tomcat.service - Apache Tomcat Web Application Container
Loaded: loaded (/etc/systemd/system/tomcat.service; disabled;
vendor preset: enabled)

Active: active (running) since Mon 2017-07-31 21:27:39 UTC;
5s ago
Process: 6438 ExecStart=/opt/tomcat/bin/startup.sh (code=exited,
status=0/SUCCESS)
Main PID: 6448 (java)
Tasks: 44
Memory: 132.2M
CPU: 2.013s
CGroup: /system.slice/tomcat.service
L6448 /usr/lib/jvm/java-1.8.0-openjdk-amdé64/bin/java
-Djava.util.logging.config.file=/opt/tomcat/conf/logging.properties
-Djava.util.logging.manager=org.apache. juli.ClassLoaderLogMan

Enabling the firewall and port 8080

Apache Tomcat runs on port 8080. Follow these steps to enable the firewall, if it's disabled:
1. Enable the firewall using the following command:
sudo ufw enable
2. Allow traffic on port 8080:
sudo ufw allow 8080
3. Enable OpenSSH to allow SSH connections using the following command:
sudo ufw enable "OpenSSH"
4. Check the firewall status using the following command:

sudo ufw status

[38]

Installing Jenkins Chapter 2

5. You should see the following output:

Status: active

To Action From

8080 ALLOW Anywhere
OpenSSH ALLOW Anywhere
8080 (v6) ALLOW Anywhere (v6)
OpenSSH (v6) ALLOW Anywhere (v6)

6. You should now be able to access the Apache Tomcat server page at http://<IP
address of the Apache Tomcat>:8080.

Configuring the Apache Tomcat server

In this section, we will enable access to the Tomcat Manager app and Host Manager:

1. Open the tomcat-users.xml file for editing, which is present inside the
/opt/tomcat/conf directory:

sudo nano /opt/tomcat/conf/tomcat-users.xml

2. The file will look something like the following, for simplicity, I have ignored the
comments inside the file:

<?xml version="1.0" encoding="UTF-8"7?>

<tomcat-users xmlns="http://tomcat.apache.org/xml"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://tomcat.apache.org/xml tomcat-users.xsd"
version="1.0">
<!l——
<role rolename="tomcat"/>
<role rolename="rolel"/>
<user username="tomcat" password="<must-be-changed>"
roles="tomcat"/>
<user username="both" password="<must-be-changed>"
roles="tomcat, rolel"/>
<user username="rolel" password="<must-be-changed>"
roles="rolel"/>
—-—>
</tomcat-users>

[39]

Installing Jenkins Chapter 2

3. From the previous file, you can see the role and user fields are commented. We
need to enable a role and a user to allow access to the Tomcat Manager app page:

<role rolename="manager-gui"/>

<role rolename="admin-gui"/>

<user username="admin" password="password"
roles="manager—-gui,admin-gui"/>

4. Finally, the file should look something as shown here (comments removed):

<?xml version="1.0" encoding="UTF-8"7?>
<tomcat-users xmlns="http://tomcat.apache.org/xml"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://tomcat.apache.org/xml tomcat-users.xsd"
version="1.0">

<role rolename="manager—-gui"/>

<role rolename="admin-gui"/>

<user username="admin" password="password"

roles="manager-gui,admin-gui"/>

</tomcat-users>

5. Type Ctrl + X and choose Y to save and close the file.

6. By default, you are allowed to access Manager and Host Manager applications
only from within the Apache Tomcat server. Since, we will be managing services
running on Apache from a remote machine, we would need to remove these
restrictions.

7. Open the following two files, /opt /tomcat /webapps/manager/META-
INF/context.xml and /opt/tomcat/webapps/host-manager/META-
INF/context.xml.

8. Inside these files, comment the following section:

<Context antiResourcelocking="false" privileged="true" >
<!-—<Valve className="org.apache.catalina.valves.RemoteAddrValve"
allow="127\.\d+\.\d+\.\d+|::1]0:0:0:0:0:0:0:1" />——>
<Manager sessionAttributeValueClassNameFilter="java\.lang\
. (?:Boolean|Integer|Long|Number|String) |org\.apache\.catalina\
.filters\.CsrfPreventionFilter\$LruCache (?:\$1)?|java\.util\
. (?:Linked) $

</Context>

9. Type Ctrl + X and choose Y to save and close the file.

[40]

Installing Jenkins

Chapter 2

10. Restart the Tomcat server using the following command:

sudo systemctl restart tomcat

11. Try to access the Manager app and the Host Manager from the Apache Tomcat

server home page.

Installing Jenkins on the Apache Tomcat server

You can perform the following steps if you do not wish to have a standalone server for
Jenkins master, and want to host it along with other services that exist on the Apache

Tomcat server:

1. Move to the /tmp directory and download the Jenkins application using the wget

command, as shown here:

cd /tmp

wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war

2. The previous command will download the latest stable version of jenkins.war

file.

3. Move the file from /tmp to /opt/tomcat/:

sudo mv jenkins.war /opt/tomcat/webapps/

4. List the content of the /opt/tomcat/webapps/ directory :

sudo 1ls -1 /opt/tomcat/webapps

You should see the following output:

total 68984

—rW—rw-r—-—
drwxr—-x———
drwxr—-x———
drwxr—-x———
drwxr—-x———
drwxr—-x———
drwxr—-x———

ouUuuUuo b WPE

ubuntu ubuntu 70613578

root
root
root
root
root
root

root
root
root
root
root
root

[41]

4096
4096
4096
4096
4096
4096

Jul
Jul
Jul
Jul
Jul
Jul
Jul

19
31
31
31
31
31
31

22:
21:
21:
21:
21:
21:
22:

37
09
09
09
09
09
52

jenkins.war
ROOT

docs
examples
manager
host-manager
jenkins

Installing Jenkins Chapter 2

You will notice that a jenkins folder automatically gets created the
moment you move the jenkins.war package to the webapps folder. This
is because the .war file is a web application archive file that automatically
gets extracted once deployed to the webapps directory. What we did is a
small deployment activity.

5. And that is all you need to do. You can access Jenkins using http://<IP

address of Tomcat server>:8080/jenkins.

Installing Jenkins alone on an Apache Tomcat
server

If you chose to have an Apache Tomcat server solely for using Jenkins, follow these steps:

1.

Move to the /tmp directory and download the Jenkins application using the wget
command, as shown here:

cd /tmp
wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war

Rename the downloaded jenkins.war package to ROOT.war:
sudo mv jenkins.war ROOT.war

Next, delete everything inside the /opt /tomcat /webapps directory by
switching to the root user:

sudo su -
cd /opt/tomcat/webapps
sudo rm -r *

Now move the ROOT . war (renamed) package from the /tmp directory to the
/opt/tomcat /webapps folder:

sudo mv /tmp/ROOT.war /opt/tomcat/webapps/

List the contents of the /opt /tomcat /webapps directory and you will notice a
ROOT folder automatically gets created:

total 68964
drwxr-x--—— 10 root root 4096 Jul 31 23:10 ROOT
—-rw—rw-r—— 1 ubuntu ubuntu 70613578 Jul 19 22:37 ROOT.war

[42]

Installing Jenkins Chapter 2

It's always recommended to have a dedicated web server solely for
Jenkins.

6. You can access Jenkins by using http://<IP address of Tomcat
server>:8080/ without any additional path. Apparently, the Apache server is
now a Jenkins server.

Deleting the content of the /opt /tomcat/webapps directory (leaving
behind the ROOT directory and ROOT . war) and then moving the
jenkins.war file to the webapps folder is also sufficient to make Apache
Tomcat server solely for the use of Jenkins.

The step of renaming jenkins.war to ROOT.war is only necessary if you
want to make http://<IP address of Tomcat server>:8080/ the
standard URL for Jenkins.

Setting up the Jenkins home path

Before we start using Jenkins, there is one important thing to configure, the jenkins_home
path. When you install Jenkins as a service on Tomcat, the jenkins_home path is
automatically set to /root /. jenkins/. This is the location where all of the Jenkins
configurations, logs, and builds are stored. Everything that you create and configure on the
Jenkins dashboard is stored here.

We need to make it something more accessible, something like /var/jenkins_home. This
can be done in the following way:

1. Stop the Apache Tomcat server using the following command:
sudo systemctl stop tomcat

2. Open the context . xml file for editing, which is present
inside /opt /tomcat /conf:

sudo nano /opt/tomcat/conf/context.xml

[43]

Installing Jenkins Chapter 2

3. The file will look like this (comments removed):

<?xml version="1.0" encoding="UTF-8"7?>
<Context>
<WatchedResource>WEB-INF/web.xml</WatchedResource>
<WatchedResource>${catalina.base}/conf/web.xml</WatchedResource>
</Context>

4. Add the following line between <Context> </Context>:

<Environment name="JENKINS_HOME" value="/var/Jjenkins_home"
type="java.lang.String"/>

5. Start the Tomcat service using the following command:

sudo systemctl start tomcat

Installing a standalone Jenkins server on
Windows

Installing Jenkins on Windows is quite simple. Before performing the steps to install Jenkins
on Windows, let's have a look at the prerequisites.

Prerequisites

Before we begin, make sure you have the following things ready:

e We need a machine with at least 4 GB of RAM and a Multi-core processor.

¢ Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).

¢ The machine should have any one of the latest Windows OS (Windows 7/8/10,
Windows Server 2012/2012 R2/2016) installed on it.

¢ Check for admin privileges; the installation might ask for admin username and
password.

e Make sure port 8080 is open.

[44]

Installing Jenkins Chapter 2

Installing Java

Follow these steps to install Java:

1.

Download the latest version of Java JRE (x86 or x64 based on your OS)
from nttps://java.com/en/download/manual . jsp.

Follow the installation procedures.

To check that Java has been installed successfully, run the following command
using Command Prompt:

java —-version
You should get the following output:
java version "1.8.0_121"
Java (TM) SE Runtime Environment (build 1.8.0_121-bl3)

Java HotSpot (TM) 64-Bit Server VM (build 25.121-bl3, mixed mode)

To set the JAVA_HOME, first get the Java installation path on Windows using the
following command:

where java

The previous command should output the Java installation path, as shown in the
following command. Copy the path without \bin\java:

C:\Program Files\Java\jdkl.8.0_121\bin\java

Open the Command Prompt as an administrator and run the following command
to set the JAVA_HOME path. Make sure to use the Java installation path that
appears on your screen:

setx -m JAVA_HOME "C:\Program Files\Java\jdkl.8.121"

[45]

https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp
https://java.com/en/download/manual.jsp

Installing Jenkins Chapter 2

Installing the latest stable version of Jenkins

To install the latest stable version of Jenkins, follow these steps in sequence:

1.

Download the latest stable Jenkins package available at the Jenkins official
website, https://jenkins.io/download/. To install the latest stable version of
Jenkins, download the Long Term Support (LTS) release. Choose the weekly
release if you just want the latest version of Jenkins.

Unzip the downloaded package, and you will find a jenkins.msi file.

Run the jenkins.msi and follow the installation steps.

During the installation, you will get an option to choose your Jenkins installation
directory. By default, it will be C:\Program Files\Jenkins or C:\Program
Files (x86)\Jenkins. Leave it asitis and click on the Next button.

Click on the Finish button to complete the installation.

Starting, stopping, and restarting Jenkins on
Windows

Jenkins by default starts running when installed. In this section, the commands to start,
stop, restart, and check the status of the Jenkins services are shown:

1.

@

Open the Services window from Command Prompt using the following
command:

services.msc

Look for a service named Jenkins.

Right-click on the Jenkins service again and click Properties.

Under the General tab, you can see the Jenkins service name, the path to the
executable, the service status, and the start parameters.

Using the Startup type option, you can choose the way Jenkins starts on the
Windows machine. You can choose from Automatic, Manual, and Automatic
(Delayed Start). Make sure it's always set to Automatic.

[46]

https://jenkins.io/download/

Installing Jenkins Chapter 2

6. In the following service status, there is an option to manually Start, Stop, Pause,
and Resume the Jenkins service:

Jenkins Properties (Local Computer) *
General LogOn Recovery Dependencies

Service name: Jenkins
Digplay name: Jenkins

Description: Jenking Continuous Integration Server

Path to executable:
"C:\Program Files 86)\Jenking'jenkins exe"

Startup type: |A.|_rtnmatic e

Service status: Stopped
Start Stop Pause Besume

You can specify the start parameters that apply when you start the service
from here.

Start parameters: |

Cancel oy

Configuring the Jenkins service startup option

7. Go to the next tab, which is Log On. Here, we define the username through
which Jenkins start.

8. You can either choose to use the Local System account (not recommended) or
you can create a special Jenkins user with special permissions (recommended):

[47]

Installing Jenkins Chapter 2

An exclusive account for Jenkins is always preferred. The reason is

that Local System account is not under control; it may get deleted or the
password may expire depending on the organization's policies, whereas
the Jenkins user account can be set with preferred policies and privileges.

Jenkins Properties (Local Computer) x

General Log On Recovery Dependencies

Log on as:

() Local System account
Allow service to interact with desktop

(@) This account: |.Jenkins| | Browse ..
Password: |ooooooooooooooo |
Confirm passwaord: |ooooooooooooooo |

Corcel | [sonl

Configuring the Jenkins service Log On option

9. The next tab is Recovery. Here, we can specify the action items in case the Jenkins
service fails to start.

[48]

Installing Jenkins

Chapter 2

10. Here is an example. At the first failure, there is an attempt to restart Jenkins, at
the second failure an attempt is made to restart the computer. And lastly, at
subsequent failures, a program is run to debug the issue, or we can run a script
that sends the Jenkins failure log through email to the respective Jenkins admin

for investigation:

General LogOn Recovery

actions.

First failure:

Second failure:
Subsequert failures:
Reset fail count after:

Restart service after:

Jenkins Properties (Local Computer)

Dependencies

Select the computer's respanse if this service fails. Help me set up recovery

Rlestart the Service k4
Restart the Computer -
Run a Program w

days

P]
minutes

Fun program

Program:

[JEnable actions for stops with emors ; Bestart Computer Options...

Browse. ..

Command line parameters:

[Append fail count to end of command line (fail=%1%)

Cancel Aoy

Configuring the Jenkins service Recovery option

Installing a standalone Jenkins server on

Ubuntu

Installing a Jenkins server on Ubuntu is quite easy. Before performing the steps to install
Jenkins on Ubuntu, let's have a look at the prerequisites.

[49]

Installing Jenkins Chapter 2

Prerequisites

Before we begin, make sure you have the following things ready:

e We need a machine with at least 4 GB of RAM and a Multi-core processor.

¢ Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).

e The machine should have Ubuntu 16.04 installed on it. Choose a LTS release
version.

e Check for admin privileges; the installation might ask for an admin username
and password.

e Make sure port 8080 is open.

Installing Java

Follow these steps to install Java:
1. Update the package index using following command:
sudo apt-get update
2. Next, install Java. The following command will install the JRE:
sudo apt-get install default-jre

3. To set the JAVA_HOME environment variable, first get the Java installation
location. Do this by executing the following command:

update-java-alternatives -1

4. The previous command will print the list of Java applications installed on your
machine along with their installation paths. Copy the Java path that appears on
your Terminal:

java-1.8.0-openjdk—amd64 1081
/usr/1lib/jvm/java-1.8.0-openjdk-amdé64

[50]

Installing Jenkins Chapter 2

5. Open the /etc/environment file for editing using the following command:
sudo nano /etc/environment

6. Add the Java path (the one that you copied earlier) inside the
/etc/environment file in the following format:

JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk—amde64"

7. Type Ctrl + X and choose Y to save and close the file.
8. Next, reload the file using the following command:

sudo source /etc/environment

Installing the latest version of Jenkins

To install the latest version of Jenkins, follow these steps in sequence:
1. Add the repository key to the system using the following command:
wget —--no-check-certificate -q -0 \
- https://pkg.jenkins.io/debian/jenkins-ci.org.key | \
sudo apt-key add -

2. You should get an output of OK. Next, append the Debian package repository
address using the following command:

echo deb http://pkg.jenkins.io/debian binary/ | \
sudo tee /etc/apt/sources.list.d/jenkins.list

3. Update the package index:
sudo apt-get update

4. Now, install Jenkins using the following command:
sudo apt—-get install jenkins

5. See the Starting, stopping, and restarting Jenkins on Ubuntu section if you are
required to start Jenkins.

6. Jenkins is now ready for use. By default, the Jenkins service runs on port 8080.
To access Jenkins, use http://localhost:8080/ or http://<Jenkins
server IP address>:8080/ in a browser .

[51]

Installing Jenkins Chapter 2

Installing the latest stable version of Jenkins

If you prefer to install a stable version of Jenkins, then follow these step in sequence:
1. Add the repository key to the system using the following command:
wget —--no-check-certificate -q -0 - \
https://pkg.jenkins.io/debian-stable/jenkins-ci.org.key | \
sudo apt-key add -

2. You should get an output of OK. Next, append the Debian package repository
address using the following command:

echo deb http://pkg.jenkins.io/debian-stable binary/ | \
sudo tee /etc/apt/sources.list.d/jenkins.list

3. Update the package index:
sudo apt-get update

4. Now, install Jenkins using the following command:
sudo apt—-get install jenkins

5. See the Starting, stopping, and restarting Jenkins on Ubuntu section if you are
required to start Jenkins.

6. Jenkins is now ready for use. By default, the Jenkins service runs on port 8080.
To access Jenkins, use http://localhost:8080/ or http://<Jenkins
server IP address>:8080/ in a browser.

In order to troubleshoot Jenkins, access the logs
file /var/log/jenkins/jenkins.log.

The Jenkins service runs under the user Jenkins, which is automatically
created upon installation.

[52]

Installing Jenkins Chapter 2

Starting, stopping, and restarting Jenkins on
Ubuntu

Jenkins by default starts running when installed. Here are the commands to start, stop,
restart, and check the status of the Jenkins service:

1. To start Jenkins, use the following command:
sudo systemctl start jenkins

2. Similarly, to stop Jenkins, use the following command:
sudo systemctl stop jenkins

3. To restart Jenkins, use the following command:
sudo systemctl restart jenkins

4. To check the status of the Jenkins service, use the following systemct1l
command:

sudo systemctl status jenkins
5. You should see the following output:
® jenkins.service - LSB: Start Jenkins at boot time
Loaded: loaded (/etc/init.d/jenkins; bad; vendor preset: enabled)

Active: active (exited) since Wed 2017-07-19 22:34:39 UTC; 6min ago
Docs: man:systemd-sysv—-generator (8)

Installing a standalone Jenkins server on
Red Hat Linux

In this section, we will learn to install Jenkins on Red Hat Linux. The installation process
discussed here are also applies to Fedora.

[53]

Installing Jenkins Chapter 2

Prerequisites

Before we begin, make sure you have the following things ready:

e We need a machine with at least 4 GB of RAM and a Multi-core processor.

¢ Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).

e The machine should have RHEL 7.3 installed on it.

¢ Check for admin privileges; the installation might ask for an admin username
and password.

e Make sure port 8080 is open.

Installing Java

Follow these steps to install Java:
1. Move to the /tmp directory and download Java:
cd /tmp
wget -0 java_8.131.rpm \
http://javadl.oracle.com/webapps/download/AutoDL? \
BundleId=220304_d54c1d3a095b4£f£f2b6607d096£fa80163
2. Next, install Java. The following command will install the JRE:

sudo rpm -ivh java_8.131.rpm

3. To set the JAVA_HOME environment variable, first get the Java installation's
location. Do this by executing the following command:

sudo alternatives --config java

4. The previous command will print the list of Java applications installed on your
machine, along with their installation paths. Copy the Java path that appears on
your Terminal:

There is 1 program that provides 'java'.
Selection Command

*+ 1 /usr/java/jrel.8.0_131/bin/java

[54]

Installing Jenkins Chapter 2

5. Add the Java path (the one that you copied earlier) inside the
/etc/environment file using the following command:

sudo sh \

-c "echo JAVA_HOME=/usr/java/jrel.8.0_131 >>
/etc/environment"

Installing the latest version of Jenkins

To install the latest version of Jenkins, follow these steps:

1. Add the Jenkins repository to the yum repository using the following command:
sudo wget -O /etc/yum.repos.d/jenkins.repo \
http://pkg.jenkins—ci.org/redhat/jenkins. repo
sudo rpm —-import https://jenkins-ci.org/redhat/jenkins-ci.org.key

2. Install Jenkins using the following command:

sudo yum install jenkins

3. See the Starting, stopping, and restarting Jenkins on Red Hat Linux section if you are
required to start Jenkins.

Jenkins is now ready for use. By default, the Jenkins service runs on port 8080. To access
Jenkins, use http://localhost:8080/ or http://<Jenkins server IP
address>:8080/ in a browser.

Installing the latest stable version of Jenkins

If you prefer to install a stable version of Jenkins, then follow these steps:

1. Add the Jenkins repository to the yum repository using the following command:
sudo wget -0 /etc/yum.repos.d/jenkins.repo \
http://pkg.jenkins—-ci.org/redhat-stable/jenkins.repo
sudo rpm —-import https://jenkins-ci.org/redhat/jenkins-ci.org.key

2. Install Jenkins using the following command:

sudo yum install jenkins

[551]

Chapter 2

Installing Jenkins

3. See the Starting, stopping, and restarting Jenkins on Red Hat Linux section if you are

required to start Jenkins.

Starting, stopping, and restarting Jenkins on Red

Hat Linux

Here are the commands to start, stop, restart, and check the status of the Jenkins service:

1. To start Jenkins, use the following command:

sudo systemctl start jenkins

2. Similarly, to stop Jenkins, use the following command:

sudo systemctl stop jenkins

3. To restart Jenkins, use the following command:

sudo systemctl restart Jjenkins

4. To check the status of the Jenkins service, use the following systemctl

command:

sudo systemctl status jenkins

5. You should see the following output:

® jenkins.service - LSB: Jenkins Automation Server
Loaded: loaded (/etc/rc.d/init.d/jenkins; bad;

vendor preset: disabled)
Active: active (running) since Wed 2017-07-19 18:45:47 EDT;

2min 31s ago
Docs: man:systemd-sysv—-generator (8)
Process: 1081 ExecStart=/etc/rc.d/init.d/jenkins start

(code=exited, status=0/SUCCESS)
CGroup: /system.slice/jenkins.service

L—1706 /etc/alternatives/java
—Dcom. sun. akuma.Daemon=daemonized -Djava.awt.headless=true

-DJENKINS_HOME=/var/lib/j. ..

[561]

Installing Jenkins Chapter 2

In order to troubleshoot Jenkins, access the logs

0 invar/log/jenkins/jenkins.log.
The Jenkins service runs with the user Jenkins, which automatically gets

created upon installation.

Running Jenkins behind a reverse proxy

In this example, we will learn how to position an Nginx server (running on a standalone
machine) front of a Jenkins server (running on another standalone machine).

Prerequisites

Before we begin, make sure you have the following things ready:

¢ We need two machines with at least 4 GB of RAM and a Multi-core processor.
One will run Nginx and the other will run Jenkins.

¢ Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).

¢ The machine should have Ubuntu 16.04 or greater installed on it.

e Check for admin privileges; the installation might ask for an admin username
and password.

¢ Both machines should be on the same network. The following setup assumes that
your organization has an intranet for all its services.

Installing and configuring Nginx

The installation of Nginx on Ubuntu is simple. Follow these steps to install an Nginx server
on Ubuntu:

1. Update the local package index:

sudo apt—-get update

[571

Installing Jenkins Chapter 2

2. Install nginx using the following command:

sudo apt-get install nginx

Configuring the firewall on a Nginx server

We need to configure the firewall on our Nginx server to allow access to the Nginx service.

Follow these steps:

1. Check the firewall status using the ufw command:

sudo ufw status

You should see the following output:
Status: inactive
2. If it's enabled, move to step 3. But, if you find it disabled, then enable the firewall
using the following command:

sudo ufw enable

You should see the following output

Command may disrupt existing ssh connections.

Proceed with operation (y|n)? y
Firewall is active and enabled on system startup

3. List the available configurations using the following command. You should see
three Nginx profiles and one OpenSSH profile:

sudo ufw app list
You should see the following output

Available applications:
Nginx Full
Nginx HTTP
Nginx HTTPS
OpenSSH

[581]

Installing Jenkins

Chapter 2

The Nginx Full profile opens port 80 (unencrypted) and port 443

(TLS/SSL).

The Nginx HTTP profile opens only port 80 (unencrypted).

The Nginx HTTPS profile opens only port 443 (TLS/SSL).

The OpenssH profile opens only port 22 (SSH).

It is always recommended to enable the most restrictive profile.

4. To keep things simple, we will enable the Nginx Full profile, as shown in the

following command:

sudo ufw allow
Rules updated

'Nginx Full'

Rules updated (v6)

5. Also, enable the OpenssH profile if it's not active, as shown. This will allow us to
continue accessing our Nginx machine over SSH:

sudo ufw allow

'OpenSSH'

You won't be able to log in to your Nginx machine if OpenSSH is disabled.

6. Verify the changes using the following command. You should see Nginx Full
and OpenSSH as allowed:

sudo ufw status

You should see the

Status: active
To

OpenSSH

Nginx Full
OpenSSH (v6)
Nginx Full (v6)

following output:

Action

From

Anywhere
Anywhere
Anywhere
Anywhere

(vé)
(vé)

[591]

Installing Jenkins Chapter 2

7. Check if the Nginx service is running using the systemctl command:
systemctl status nginx

You should see the following output:

® nginx.service - A high performance web server and a reverse proxy
server
Loaded: loaded (/lib/systemd/system/nginx.service; enabled;
vendor preset: enabled)
Active: active (running) since Thu 2017-07-20 18:44:33 UTC;
45min ago
Main PID: 2619 (nginx)

Tasks: 2
Memory: 5.1M
CPU: 13ms

CGroup: /system.slice/nginx.service
—2619 nginx: master process /usr/sbin/nginx
-g daemon on; master_process on
L—2622 nginx: worker process

8. From the previous output, you can see that our Nginx service is running fine.
Now try to access it using the browser. First, get the IP address of your machine
using the ip route command:

ip route

You should see the following output:

default via 10.0.2.2 dev enpO0s3

10.0.2.0/24 dev enp0s3 proto kernel

scope link src 10.0.2.15

192.168.56.0/24 dev enp0s8 proto kernel scope link
src 192.168.56.104

[60]

Installing Jenkins Chapter 2

9. Now access the Nginx home page using http://<IP Address>:80. You should
see something similar to the following screenshot:

[Welcome to nginx! x

<« C | ® 192.168.56.104 a + :

i Apps »

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
wiorking. Further configuration is required.

For onlineg documeantation and support please refer to nginx.org.
Commercial support is available at nainx.com.

Thank you for using nginx.

The Nginx index page

Starting, stopping, and restarting the Nginx
server

Now that we have your Nginx server up, let's see some commands we can use to manage
Nginx. Just like Jenkins, we will use the systemct1 command to manage Nginx:

1. To stop Nginx, use the following command:
sudo systemctl stop nginx

2. To start Nginx when it is stopped, use the following command:
sudo systemctl start nginx

3. To restart Nginx, use the following command:

sudo systemctl restart nginx

[61]

Installing Jenkins

Chapter 2

4. To reload Nginx after making configuration changes, use the following
command:

sudo systemctl reload nginx

Securing Nginx using OpenSSL

In this section, we will learn to set up a self-signed SSL certificate for use with our Nginx

server.

Creating an SSL certificate

Run the following command to create a self-signed key and a certificate pair using

OpenSSL:

sudo openssl req -x509 -nodes —-days 365 —-newkey rsa:2048 \
-keyout /etc/ssl/private/nginx-selfsigned.key -out \
/etc/ssl/certs/nginx-selfsigned.crt

The following table explains the arguments used in the previous command:

Parameters Description
This argument indicates that we want to use X.509 Certificate Signing
req
Request (CSR) management.
%509 This argument allows us to create a self-signed certificate instead of
generating a certificate signing request.
—nodes This argument allows OpenSSL to skip the option to authenticate our
certificate with a passphrase.
-days This argument sets the duration for which the certificate is valid.

-newkey rsa:
2048

This argument tells OpenSSL to generate a new certificate and a new
key at the same time. The rsa:2048 option makes the RSA key 2048
bits long.

—keyout

This argument allows you to store the generated private key file in the
location of your choice.

—out

This argument allows you to store the generated certificates in the
location of your choice.

[62]

Installing Jenkins Chapter 2

The moment you issue the following command to generate a private key and new
certificate, you will be prompted to provide information. The prompts will look something
as shown here:

Country Name (2 letter code) [AU]:DK

State or Province Name (full name) [Some-State]:Midtjylland

Locality Name (eg, city) []:Brande

Organization Name (eg, company) [Internet Widgits Pty Ltd]: Deviced.Inc
Organizational Unit Name (eg, section) []:DevOps

Common Name (e.g. server FQDN or YOUR name) []:<IP address of Nginx>
Email Address []:admin@Rorganisation.com

The Common Name (CN) field, also known as the Fully Qualified
Domain Name (FQDN) is very important. You need to provide the IP
address or the domain name of your Nginx server.

The /etc/ssl/private/ will now contain your nginx-selfsigned.key file and the
/etc/ssl/certs/ will contain your nginx-selfsigned.crt file.

Next, we will create a strong Diffie-Hellman group, which is used in negotiating Perfect
Forward Secrecy (PFS) with clients. We will do this by using openss1, as shown in the
following command:

sudo openssl dhparam -out /etc/ssl/certs/dhparam.pem 2048

This will take quite some time, but once it's done it will generate a dhparam. pem file inside
/etc/ssl/certs/.

Creating strong encryption settings

In the following section, we will set up a strong SSL cipher suite to secure our Nginx server:

1. Create a configuration file named ssl-params.conf
in /etc/nginx/snippets/ as shown here:

sudo nano /etc/nginx/snippets/ssl-params.conf

[63]

Installing Jenkins Chapter 2

2. Copy the following code inside the file:

from https://cipherli.st/
and https://raymii.org/s/tutorials/
Strong_SSL_Security_On_nginx.html

ssl_protocols TLSvl TLSv1l.1 TLSvl1.2;
ssl_prefer_server_ciphers on;

ssl_ciphers "EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH";
ssl_ecdh_curve secp384rl;

ssl_session_cache shared:SSL:10m;

ssl_session_tickets off;

ssl_stapling on;

ssl_stapling_verify on;

resolver 8.8.8.8 8.8.4.4 valid=300s;

resolver_timeout 5s;

disable HSTS header for now

#add_header Strict-Transport-Security "max-age=63072000;
includeSubDomains; preload";

add_header X-Frame-Options DENY;

add_header X-Content-Type-Options nosniff;

ssl_dhparam /etc/ssl/certs/dhparam.pem;

3. Type Ctrl + X and choose Y to save and close the file.

We have used the recommendations by Remy van Elst that are available
at https://cipherli.st/.

Modifying the Nginx configuration

Next, we will modify our Nginx configuration to enable SSL. Follow these steps:

1. First and foremost, take a backup of your existing Nginx configuration file named
default thatisin /etc/nginx/sites-available/:

sudo cp /etc/nginx/sites—-available/default \
/etc/nginx/sites—available/default .backup

[64]

https://cipherli.st/

Installing Jenkins Chapter 2

2. Now, open the file for editing using the following command:
sudo nano /etc/nginx/sites—-available/default

3. You will find a lot of commented lines inside the file. If you ignore them for a
while, you will probably see the following;:

server A
listen 80 default_server;
listen [::]:80 default_server;

SSL configuration

listen 443 ssl default_server;
listen [::]:443 ssl default_server;

root /var/www/html;

index index.html index.htm index.nginx-debian.html;
server_name _;

4. We will modify the configuration so that the unencrypted HTTP requests are
automatically redirected to encrypted HTTPS. We will do this by adding the
following three lines, as highlighted in the following code:

server {
listen 80 default_server;
listen [::]:80 default_server;

server_name <nginx_server_ip or nginx domain name>;
return 301 https://$server_name$Srequest_uri;
SSL configuration

listen 443 ssl default_server;
listen [::]:443 ssl default_server;

[65]

Installing Jenkins Chapter 2

5. From the previous code, you can see that we have closed the server block.

6. Next, we will start a new server block, uncomment the two 1isten directives
that use port 443, and add http2 to these lines in order to enable HTTP/2, as
shown in the following code block:

server A
listen 80 default_server;
listen [::]:80 default_server;

server_name <nginx_server_ip or nginx domain name>;
return 301 https://$server_name$Srequest_uri;

server A
SSL configuration

listen 443 ssl http2 default_server;
listen [::]:443 ssl http2 default_server;

7. Next, we will add the location of our self-signed certificate and key. We just need
to include the two snippet files we set up:

server |
listen 80 default_server;
listen [::]:80 default_server;

server_name <nginx_server_ip or nginx domain name>;
return 301 https://$server_name$Srequest_uri;
}

server |
SSL configuration

listen 443 ssl http2 default_server;

listen [::]:443 ssl http2 default_server;

ssl_certificate /etc/ssl/certs/nginx-selfsigned.crt;
ssl_certificate_key /etc/ssl/private/nginx-selfsigned.key;
include snippets/ssl-params.conf;

[66]

Installing Jenkins Chapter 2

8. Next, we will set the server_name value to our Nginx IP or domain name inside
our SSL server block. By default, the server_name may be set to an underscore
(L), as shown in the following code block:

server |
SSL configuration

server_name <nginx_server_ip or nginx domain name>;

}

9. Type Ctrl + X and choose Y to save and close the file.

Enabling the changes and testing our Nginx setup

We will now restart Nginx to implement our new changes:

1. First, check whether there are any syntax errors in our files. Do this by typing the
following command:

sudo nginx -t

2. If everything is successful, you should see something similar to the following
command output:

nginx: [warn] "ssl_stapling" ignored, issuer certificate not found

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok

nginx: configuration file /etc/nginx/nginx.conf test is successful
3. Restart Nginx using the following command:

sudo systemctl restart nginx

4. Next, access your Nginx server using http://<Nginx_IP_Address>:80. You
should notice that you have been automatically redirected to
https://<Nginx_IP_Address>:380.

[67]

Installing Jenkins

Chapter 2

5. You will see a warning that looks similar to the following screenshot:

Your connection is not private

Attackers might be trying to steal your information from [for example,

passwords, messages, or credit cards).

O Automatically report details of possible security incidents to Google. Privacy policy

ADVANCED Back to safety

SSL warning

6. This is expected, as the certificate that we created isn't signed by one of your
browser's trusted certificate authorities.

7. Click on the Advanced... button and then click on Proceed to 192.168.56.104
(unsafe):

A

Your connection is not private

Attackers might be trying to steal your information from 192.168.56.104 (for example,
passwords, messages, or credit cards). NET:ERR_CERT_AUTHORITY_INVALID

Automatically send some system information and page content to Google to help detect

dangerous apps and sites. Privacy policy

This server could not prove thatit is 192.168.56.104; its security certificate is not trusted
by your computer's operating system. This may be caused by a misconfiguration or an
attacker intercepting your connection. Learn more.

Proceed to 192.168.56.104 (unsafe)

HIDE ADVANCED Back to safety

Proceeding as unsafe

[68]

Installing Jenkins Chapter 2

8. You should now be able to see the Nginx default page, as shown in the following

screenshot:
E G
[Welcome to nginx! X
& C | A Motsecure | b#%://192.168.56.104 e
H Apps »

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

The Nginx index page with SSL encryption

Configuring the Jenkins server

In this section, we will perform some configurations on our Jenkins server. To set up a
Jenkins server in the first place, see the Installing a standalone Jenkins server on Ubuntu
section.

Once you have a Jenkins server up and running, follow these steps:

1. To make Jenkins work with Nginx, we need to update the Jenkins configuration
so that the Jenkins server listens only on the Jenkins IP address or the Jenkins
domain name interface rather than all interfaces (0.0.0.0). If Jenkins listens on
all interfaces, then it's potentially accessible on its original, unencrypted port
(8080).

2. To achieve this, modify the /etc/default/jenkins configuration file, as shown
in the following command:

sudo nano /etc/default/jenkins

[69]

Installing Jenkins Chapter 2

3. Inside the file, scroll all the way down to the last line or just look for
the JENKINS_ARGS line.

4. Append the following argument to the existing value of JENKINS_ARGS:
~httpListenAddress=<IP Address of your Jenkins>

5. The final JENKINS_ARGS line should look something like this (single line):
JENKINS_ARGS="--webroot=/var/cache/$SNAME/war
——httpPort=$HTTP_PORT

——httpListenAddress=192.168.56.105"

6. Type Ctrl + X and choose Y to save and close the file.
7. To make the new configuration effective, restart the Jenkins server:

sudo systemctl restart jenkins
8. To check whether Jenkins is running properly, execute the following command:
sudo systemctl status jenkins

You should see the following screenshot:

® jenkins.service - LSB: Start Jenkins at boot time
Loaded: loaded (/etc/init.d/jenkins; bad;
vendor preset: enabled)
Active: active (exited) since Sat 2017-07-22 23:30:36 UTC;
18h ago
Docs: man:systemd-sysv—-generator (8)

Adding reverse proxy settings to the Nginx
configuration

The following steps will help you to add reverse proxy settings to the Nginx configuration:
1. Open the Nginx configuration file for editing:

sudo nano /etc/nginx/sites-available/default

[70]

Installing Jenkins Chapter 2

2. As we're sending all requests to our Jenkins server, comment out the default
try_files line, as shown in the following code block:

location / {
First attempt to serve request as file, then
as directory, then fall back to displaying a 404.
try_files S$Suri Suri/ =404;

}

3. Next, add the proxy settings as shown here:

location / {
First attempt to serve request as file, then
as directory, then fall back to displaying a 404.
#try_files Suri Suri/ =404;
include /etc/nginx/proxy_params;
proxy_pass http://<ip address of jenkins>:8080;
proxy_read_timeout 90s;
Fix potential "It appears that your reverse proxy set up
is broken" error.
proxy_redirect http://<ip address of jenkins>:8080
https://your.ssl.domain.name;

}

4. Type Ctrl + X and choose Y to save and close the file.
5. Run the following command to check for any syntax errors in the Nginx
configuration file:

sudo nginx -t

You should see the following output:

nginx: [warn] "ssl_stapling" ignored, issuer certificate not found
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

6. If the output is error free, restart Nginx to make the new configuration effective.
Use the following command:

sudo systemctl restart nginx

[71]

Installing Jenkins Chapter 2

7. Next, access your Nginx server using https://<nginx_ip_address>:80:

&l [=la] =

£ Jenkins [Jenkins] x
< C | A Notsecure | b#75//192.168.56.104/login?from=%2F T

i Apps

Getting Started

Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a
password has been written to the log (not sure where to find it?)
and this file on the server:

/var/lib/jenkins/secrets/initialAdminPassword

Please copy the password from either location and paste it
below.

Administrator password

Jenkins getting started page

Running Nginx and Jenkins on the same machine

If you want to run Jenkins behind a reverse proxy server (Nginx) with the Jenkins server
and the Nginx server running on the same machine, then perform the following sections in

sequence:

1. Set up a machine with at least 4 GB of RAM and a Multi-core processor.

2. Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any
other cloud platform), or a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).

[72]

Installing Jenkins Chapter 2

10.
11.

12.

The machines should have Ubuntu 16.04 or greater installed on it.

Check for admin privileges; the installation might ask for an admin username
and password.

Install Nginx; refer to the Installing and configuring Nginx section.
Configure the firewall; refer to the Configuring the firewall on Nginx server section.

Secure the Nginx server using OpenSSL; refer to the Securing Nginx using
OpenSSL section.

Configure the firewall to allow traffic on port 8080 using the following
command:

sudo ufw allow 8080
Next, check the firewall status using the following command:
sudo ufw status

You should see the following output:

Status: active

To Action From

OpenSSH ALLOW Anywhere
Nginx Full ALLOW Anywhere
8080 ALLOW Anywhere
OpenSSH (v6) ALLOW Anywhere (v6)
Nginx Full (v6) ALLOW Anywhere (v6)
8080 (v6) ALLOW Anywhere (v6)

Install Jenkins, refer to the Installing a standalone Jenkins server on Ubuntu section.

Configure the Jenkins server; refer to the Configuring the Jenkins server section.
While performing the steps mentioned in this section, make sure to put
127.0.0.1in place of <IP Address of your Jenkins>.

Add the reverse proxy settings in Nginx; refer to the Adding reverse proxy settings
to Nginx configuration section. While performing the steps mentioned in this
section, you will be asked to enter the Jenkins server IP at various places inside
the Nginx configuration file. Since our Jenkins server is now running on the same
machine as Nginx, the value for <IP Address of your Jenkins> should be
localhost.

[73]

Installing Jenkins Chapter 2

Running Jenkins on Docker

The true advantage of having Jenkins on Docker is when you have to quickly create
multiple development and staging instances of your production Jenkins server. It's also
very useful in redirecting the traffic to a secondary Jenkins server while you perform
maintenance activities on the primary Jenkins server. While we will see these use cases
later, let's first try to run Jenkins on Docker.

Prerequisites
Before we begin, make sure you have the following things ready:
¢ We need a machine with at least 4 GB of RAM (the more the better) and a Multi-
core processor.
¢ Depending on how you manage the infrastructure in your team, the machine
could be an instance on a cloud platform (such as AWS, DigitalOcean, or any

other cloud platform), a bare metal machine, or it could be a VM (on VMware
vSphere or any other server virtualization software).

¢ The machines should have Ubuntu 16.04 or greater installed on it.
e Check for admin privileges; the installation might ask for an admin username
and password.

Setting up a Docker host

In this section, we will learn how to install Docker using the repository method and using
the Debian package. Follow the steps in the following sections to set up a Docker host.

Setting up the repository

Follow these steps to set up a repository:
1. Execute the following command to let apt use a repository:
sudo apt—-get install apt-transport-https ca-certificates
2. Add Docker's official GPG key using the following command:

curl -£fsSL https://yum.dockerproject.org/gpg | sudo apt-key add -

[74]

Installing Jenkins Chapter 2

3. Verify that the key ID is exactly
58118E89F3A912897C070ADBF76221572C52609D using the following
command:

apt-key fingerprint 58118E89F3A912897CO070ADBF76221572C52609D

You should see the following output:

pub 4096R/2C52609D 2015-07-14
Key fingerprint = 5811 8E89 F3A9 1289 7C07 OADB F762 2157 2C52
609D
uid Docker Release Tool (releasedocker) docker@docker.com
4. Use the following command to set up the stable repository to download Docker:
sudo add-apt-repository \
"deb https://apt.dockerproject.org/repo/ubuntu-$ (1lsb_release \

—-cs) main"

It's recommended to always use the stable version of repository.

Installing Docker
After setting up the repository, perform the following steps to install Docker:

1. Update the apt package index using the following command:
sudo apt-get update

2. To install the latest version of Docker, run the following command:
sudo apt—get -y install docker-engine

3. To install a specific version of Docker, list the available versions using the
following command:

apt—-cache madison docker—engine

[75]

Installing Jenkins Chapter 2

You should see the following output:

docker-engine | 1.16.0-0O~trusty |
https://apt.dockerproject.org/repo ubuntu-trusty/main amdé4
Packages docker—engine | 1.13.3-0O~trusty |
https://apt.dockerproject.org/repo ubuntu-trusty/main amdé4
Packages

The output of the previous command depends on the type of repository
configured in the previous section (Setting up the repository).

4. Next, execute the following command to install the specific version of Docker:

sudo apt—get -y install docker—-engine=<VERSION_STRING>
sudo apt—get -y install docker—-engine=1.16.0-0~trusty

5. The Docker service starts automatically. To verify if Docker is installed and
running, execute the following command:

sudo docker run hello-world

6. The previous command should run without any errors, and you should see a
Hello from Docker! message:

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

b04784fba78d: Pull complete

Digest: sha256:
£3b3b28a45160805bb16542c9531888519430e9e6d6££c09d72261b0d26££74 €

Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working
correctly.

[76]

Installing Jenkins Chapter 2

Installing from a package
Follow these steps to install Docker using the . deb package:

1. Download the . deb package of your choice from https://apt.dockerproject.
org/repo/pool/main/d/docker—-engine/.

2. To install the downloaded package, execute the following command:
sudo dpkg —-i /<path to package>/<docker package>.deb

3. Verify your Docker installation by running the following command:
sudo docker run hello-world

You should see the following output:

Hello from Docker!
This message shows that your installation appears to be working
correctly.

Running the Jenkins container

Now that we have our Docker host ready, let's run Jenkins:

1. Run the following command to start a Jenkins container. This might take some
time, as Docker will try to download the Jenkins Docker image
(jenkins/jenkins:1ts) from Docker Hub:

docker run -d --name jenkins_dev -p 8080:8080 \
-p 50000:50000 jenkins/jenkins:lts

You should see the following output:

d52829d9da%e0al1789a3117badc862039a0084677be6a771a959d8467b9¢cc267

[77]

https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/
https://apt.dockerproject.org/repo/pool/main/d/docker-engine/

Installing Jenkins Chapter 2

2. The following table explains the Docker command that we used in the previous

command:

Parameters Description

docker Used to invoke the Docker utility.

run A Docker command to run a container.

-d This option runs the container in the backend.

—--name This option allows you to give your container a name.

-p This option is used to map a container's port with the host.
The name of the Docker image and its version used to create a

jenkins/jenkins:1lts|container. jenkins/jenkins is the Jenkins Docker image, and
1ts is a particular version of that image.

3. To see the list of running containers, execute the following command:
sudo docker ps ——format "{{.ID}}: {{.Image}} {{.Names}}"
You should see the following output:
d52829d9da%e: jenkins/jenkins:lts Jjenkins_dev

To use the latest LTS release of Jenkins, use the jenkins/jenkins:1ts
Jenkins Docker image.

To use the latest weekly release of Jenkins, use the jenkins/jenkins
Jenkins Docker image.

4. Make a note of your Docker host IP using the following command:
sudo ip route

You should see the following output:

default via 10.0.2.2 dev enpOs3

10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15
172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.0.1
192.168.56.0/24 dev enp0s8 proto kernel scope link

src 192.168.56.107

[78]

Installing Jenkins Chapter 2

5. Your Jenkins server is now available on http:<IP Address of Docker
host>:8080. You should now be able to see the Jenkins Getting Started page.

6. To proceed with the Jenkins setup, you might need the initialAdminPassword
key. This file is inside /var/jenkins_home/secrets/. There are two ways you

can get the data inside the initialAdminPassword file. You can use the docker
exec command, as illustrated here:

sudo docker exec -it jenkins_dev \
cat /var/jenkins_home/secrets/initialAdminPassword

Or, by logging inside the running Jenkins container, using the same docker exec
command, as shown here:

sudo docker exec -it jenkins_dev bash

7. Once you are inside the container, execute the following Linux command to get
the contents of the file:

cat /var/jenkins_home/secrets/initialAdminPassword \

Both the commands will print the content of the initialAdminPassword file,
similar to the one shown as follows:

1538ededb4e94230acal2dl0dd46le52

Here, the -i option allows you to interact with your Docker container and
the —t option allocates a pseudo -tty.

8. While you are still inside the Jenkins container, notice that the jenkins_home
directory is present inside the /var/ directory and the jenkins.war fileis
located inside /usr/share/jenkins.

The jenkins_home is a very important directory where all your Jenkins
jobs, builds, metadata, configurations, users, and everything, are stored.

[79]

Installing Jenkins Chapter 2

Running a Jenkins container using a data volume

In the previous sections, we created a Jenkins container without a mechanism to make the
data inside the jenkins_home directory persistent. In simple words, if for some reason you
delete the Jenkins container, you delete your jenkins_home directory.

Luckily, there is still a better way to run Jenkins with Docker, and that is by using data
volumes. Data volumes are special directories that make the data persistent and
independent of the container's life cycle. If a container writes data to a data volume,
deleting the container will still make the data available because the container and its
associated data volume are two different entities.

Let's create a Jenkins container using a data volume:
1. Run a Jenkins container using the following command:

sudo docker run -d —--name jenkins_prod -p 8080:8080\
-p 50000:50000 -v jenkins-home-prod:/var/jenkins_home \
jenkins/jenkins:1lts

2. The -v jenkins-home-prod:/var/jenkins_home option will create a data
volume named jenkins-home-prod and will map it to the
/var/jenkins_home directory inside the container.

3. Execute the following command to see the contents of the /var/jenkins_home
directory inside the jenkins_prod Jenkins container:

sudo docker exec —-it jenkins_prod 1ls -lrt /var/jenkins_home

You should see the following output:

total 72
drwxr-xr-x 2 jenkins jenkins 4096 Jul 26 20:41 init.groovy.d
—-rw-r——r—— 1 jenkins jenkins 102 Jul 26 20:41
copy_reference_file.log
drwxr-xr-x 10 jenkins jenkins 4096 Jul 26 20:41 war
—-rw-r——r—— 1 jenkins jenkins 0 Jul 26 20:41
secret .key.not-so-secret
-rw-r——r—-— jenkins jenkins 64 Jul 26 20:41 secret.key
drwxr—-xr—-x jenkins jenkins 4096 Jul 26 20:41 plugins
drwxr—-xr-x jenkins jenkins 4096 Jul 26 20:41 jobs
drwxr—-xr—-x jenkins jenkins 4096 Jul 26 20:41 nodes
—-rw-r——r—— 1 jenkins jenkins 159 Jul 26 20:41
hudson.model.UpdateCenter.xml
—-rw——————— 1 jenkins jenkins 1712 Jul 26 20:41 identity.key.enc
drwxr-xr-x 2 jenkins jenkins 4096 Jul 26 20:41 userContent

NDNDNDPR

[801]

Installing Jenkins Chapter 2

—-rw-r——r—— 1 jenkins jenkins 907 Jul 26 20:41 nodeMonitors.xml
drwxr-xr-x 3 jenkins jenkins 4096 Jul 26 20:41 logs
—-rw-r——r—— 1 jenkins jenkins 6 Jul 26 20:41

jenkins.install.UpgradeWizard.state
drwxr-xr-x 3 jenkins jenkins 4096 Jul 26 20:41 users
jenkins jenkins 4096 Jul 26 20:41 secrets
1 jenkins jenkins 94 Jul 26 20:41 jenkins.CLI.xml
—-rw-r——r—— 1 jenkins jenkins 1592 Jul 26 20:41 config.xml
drwxr-xr-x 2 jenkins jenkins 4096 Jul 26 20:41 updates

Q.
H
5
]

|

|

|

|

I
-~

4. To list your Docker volume, execute the following command:
sudo docker volume 1s

You should see the following output:

DRIVER VOLUME NAME
local jenkins—home-prod

5. Now you have a Jenkins container with a persistent jenkins_home directory.

Testing the data volume

We will test our data volume by performing the following steps:

1. We will make some changes on our Jenkins server; this will modify the content
inside the /var/jenkins_home directory.

2. We will delete the Jenkins container.

w

We will create a new Jenkins container that will use the same data volume.
4. Check for the active Jenkins container using the following command:

sudo docker ps ——format "{{.ID}}: {{.Image}} {{.Names}}"

You should see the following output:

5d612225£f533: jenkins/jenkins:lts jenkins_prod

5. Access the Jenkins server using http://<ip address of docker
host>:8080.

[81]

Installing Jenkins Chapter 2

6. Get the contents of the initialAdminPassword file using the following
command:

sudo docker exec -it jenkins_prod \
cat /var/jenkins_home/secrets/initialAdminPassword

You should see the following output:

7834556856£04925857723cc0d0523d7

7. Paste the initialAdminPassword under the Administrator password field on
the Jenkins page and proceed with the Jenkins setup.

8. Create a new user at the Create First Admin User step, as shown in the following
screenshot:

Getting Started

Create First Admin User

Username: developer

Password: eessesene
Confirm password. | ssessssss

Full name: nikhil pathania

Jenkins 2.60.2 Continue as admin Save and Finish

Creating the first admin user on Jenkins

9. Proceed with the remaining steps.

10. Execute the following command to list the content of
the /var/jenkins_home/users directory. This the is location where you have
all the user accounts:

sudo docker exec -it jenkins_prod ls -1lrt /var/jenkins_home/users

[82]

Installing Jenkins Chapter 2

Output should be as follows:

total 4
drwxr-xr-x 2 jenkins jenkins 4096 Jul 26 21:38 developer

11. Notice our newly created user developer is listed under the users directory.

12. Now let's delete the jenkins_prod Jenkins container using the following
commands:

sudo docker kill jenkins_prod
sudo docker rm jenkins_prod

13. List the existing Docker containers (running/stopped) using the following
command:

sudo docker ps -a ——format "{{.ID}}: {{.Image}} {{.Names}}"

You should see the following output. However, you shouldn't see jenkins_prod
in the list:

3511cd609blb: hello-world eloquent_lalande
14. List the volumes using the following command:
sudo docker volume ls

You should see something similar. You can see that deleting the container did not
delete its associated data volume:

DRIVER VOLUME NAME
local jenkins—-home-prod

15. Now let's create a new Jenkins container named jenkins_prod that uses the
existing jenkins-home-prod volume:

sudo docker run -d —-name jenkins_prod -p 8080:8080 \
-p 50000:50000 -v jenkins-home-prod:/var/jenkins_home \
jenkins/jenkins:1lts

16. Try to access the Jenkins dashboard using http://<IP Address of Docker
host>:8080. You will not see the Jenkins setup page; instead, you should see the
login page.

17. Log in to Jenkins using the user that we created earlier. You should be able to log
in. This proves that our entire Jenkins configuration is intact.

[83]

Installing Jenkins Chapter 2

Creating development and staging instances
of Jenkins

Many times you are in need of a development or a staging instance of your Jenkins
production server to test something new. Docker makes it easy and safe to create multiple
instances of your Jenkins servers.

Here is how to do it. In this section, we will create a development and a staging instance of
Jenkins using our Jenkins production instance.

Prerequisites

Before we begin, make sure you have the following things ready:

e We need a Docker host running a Jenkins instance (production), utilizing data
volumes

¢ Refer to the Running a Jenkins container using a data volume section

Creating an empty data volume

We will create a data volume named jenkins-home-staging and jenkins—home-
development for our staging and development instances of Jenkins, respectively:

1. To create an empty jenkins-home-staging data volume, run the following
command:

sudo docker volume create —-—-name jenkins-home-staging

2. To create an empty jenkins—home-development data volume, run the
following command:

sudo docker volume create —--name jenkins-home-development
3. List the newly create data volumes using the docker volume command:

sudo docker volume 1s

[84]

Installing Jenkins Chapter 2

You should see the following output:

DRIVER VOLUME NAME

local jenkins—home-prod

local jenkins—home-development
local jenkins—-home-staging

4. From the previous list, you can see the newly created data volumes named
jenkins-home-staging and jenkins—home—development.

If you have followed the previous section, you should also see the data
volume jenkins-home-prod that is being used by our Jenkins
production instance jenkins_prod.

Copying data between data volumes

We now have our newly created empty data volumes. Let's copy the content of jenkins-
home-prod to each of them:

1. Copy the content of jenkins-home-prod to jenkins—home-staging using the
following command:

sudo docker run —-rm -it —-user root \

-v jenkins-home-prod:/var/jenkins_home \

-v jenkins-home-staging:/var/jenkins_home_staging \
jenkins/jenkins:1lts bash -c "ecd /var/jenkins_home_staging \
&& cp —a /var/jenkins_home/* ."

2. The previous command will do the following;:

e It will first create an interactive container using the Docker image for
Jenkins jenkins/jenkins:1ts (the container is temporary).

e All actions performed on this temporary container will be using the
root user. Notice the ——user root option in the previous command.

o It will mount the content of the jenkins—home-prod data volume
onto the /var/jenkins_home directory present inside the container.
Notice the -v jenkins-home-prod:/var/jenkins_home option.

[85]

Installing Jenkins Chapter 2

e Similarly, it will mount the non-existing content of the jenkins-
home-staging data volume onto the non-existing
/var/jenkins_home_staging directory inside the container. Notice
the —v jenkins-home-staging:/var/jenkins_home_staging
option.

e It will then, copy the content of /var/jenkins_home to
/var/jenkins_home_staging. Notice the bash -c¢ "cd
/var/jenkins_home_staging && cp —a /var/jenkins_home/*"
option.

3. Now, copy the content of jenkins-home-prod to jenkins-home-
development using the following command:

sudo docker run —--rm -it --user root \

-v jenkins-home-prod:/var/jenkins_home \

-v jenkins-home-development:/var/jenkins_home_development \
jenkins/jenkins:1lts bash -c "cd /var/jenkins_home_development \
&& cp -a /var/jenkins_home/* ."

4. Now we have the same data on all the three data volumes: jenkins-home-prod,
jenkins-home-staging, and jenkins—home—development.

Creating the development and staging instances

Now that we have data volumes for development and staging, let's spawn the containers
using them:

1. To create a Jenkins staging instance named jenkins_staging using
the jenkins-home-staging data volume, run the following command:

sudo docker run —-d ——name jenkins_staging \
-v jenkins-home-staging:/var/jenkins_home -p 8081:8080 \
-p 50001:50000 jenkins/jenkins:1lts

[86]

Installing Jenkins Chapter 2

The previous command will create a Jenkins instance running on port
8080 and mapped to port 8081 of the Docker host. We choose a different
port on Docker host because we already have our Jenkins production
instance, jenkins_prod, running on port 8080, which is mapped to port
8080 of the Docker host.

The same reason applies to mapping port 50000 on the Jenkins instance to
port 50001 on the Docker host.

2. Try to access your Jenkins staging instance using http:<IP Address of
Docker host>:8081.

3. Similarly, to create a Jenkins development instance named
jenkins_development using the jenkins-home-development data volume,
run the following command:

sudo docker run -d —--name jenkins_development \
-v jenkins-home-development:/var/jenkins_home -p 8082:8080 \
-p 50002:50000 jenkins/jenkins:lts

The previous command will create a Jenkins instance running on port
8080 and mapped to port 8082 of the Docker host. We choose a different
port on the Docker host because port 8080 and 8081 are already in use on
the Docker host.

The same reason applies to mapping port 50000 on the Jenkins instance to
port 50002 on the Docker host.

4. Try to access your Jenkins development instance using http:<IP Address of
Docker host>:8082.

[871]

Installing Jenkins Chapter 2

Summary

In this chapter, we learned how to install Jenkins on an Apache Tomcat server and as a
standalone application on various operating systems. We also learned how to set up a
reverse proxy server (Nginx) in front of our Jenkins server and secured the connection using
SSL.

Above all, we learned how to run Jenkins on Docker. We also saw the advantages of using
data volumes on Docker and learned how to leverage them to create on-demand instances
(development or staging) of our Jenkins server.

The main objective of the current chapter was to show the readers how diverse Jenkins is in
many ways when it comes to the installation process and the variety of operating systems
that it supports. The Jenkins administration will be discussed in chapter 4, Configuring
Jenkins.

In the next chapter, we will have a quick overview of what's new in Jenkins 2.x.

[881]

The New Jenkins

In this chapter, we will look at some of the new features that are now part of the Jenkins 2.x
release. After completing this chapter, you will have an understanding of the following:

¢ The new Jenkins setup wizard

¢ Jenkins pipeline as a code (Jenkins pipeline job)

¢ Jenkins Stage view

e Jenkins Declarative Pipeline syntax

e Jenkins Multibranch pipeline

e Jenkins pipeline syntax utility (Snippet Generator)
¢ Jenkins credentials

¢ Jenkinsfile

¢ Jenkins Blue Ocean

¢ Creating a pipeline in Jenkins Blue Ocean

The Jenkins setup wizard

When you access Jenkins for the first time, you are presented with the Getting Started
wizard. We have already been through this exercise in the previous chapter; nevertheless, in
the following section, we will take a deeper look at some of its important sections.

The New Jenkins Chapter 3

Prerequisites

Before we begin, make sure you have the following things ready:

¢ A Jenkins server running on any of the platforms discussed in the previous
chapter (Docker, standalone, cloud, VM, servlet container, and so on).

¢ Make sure your Jenkins server has access to the internet. This is necessary to
download and install plugins.

Unlocking Jenkins

When you access Jenkins for the first time, you are asked to unlock it using a secret initial
admin password. This password is stored inside the file initialAdminPassword, which is
located inside your jenkins_home directory. The file, along with its full path, is displayed
on the Jenkins page, as shown in the following screenshot:

e On Windows: You can find the file under C:\Program Files
(x86) \Jenkins\secrets. If you have chosen to install Jenkins somewhere else,
then look for the file under <Jenkins installation directory>\secrets.

e On Linux: You can find the file under /var/jenkins_home/secrets:

Getting Started

Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a password has been written
to the log (not sure where to find it?) and this file on the server:

/var/jenkins_home/secrets/initialAdminPassword

Please copy the password from either location and paste it below.

Administrator password

Unlocking Jenkins

[90]

The New Jenkins Chapter 3

Get the password from the initialAdminPassword file, paste it under the Administrator
password field, and click on Continue.

You can always log in to Jenkins using the password from the
intialAdminPassword file and the username admin.

Customizing Jenkins

Next, you are presented with two options to install the Jenkins plugins, as shown in the
following screenshot:

Getting Started

Customize Jenkins

Plugins extend Jenkins with additional features to support many different needs.

Install suggested Select plugins to

plugins install

Install plugins the Jenkins Select and install plugins
community finds most most suitable for your needs.
useful

Jenkins 2.60.2

Customizing Jenkins

Choosing Install suggested plugins will install all the generic plugins for Jenkins, like Git,
Pipeline as Code, and so on (as suggested by the Jenkins community).

Choosing Select plugins to install will let you install the plugins of your choice.

[91]

The New Jenkins Chapter 3

In the following section, we will go ahead and choose the option Select plugins to install.

When you do, you should see the screen shown in the following screenshot. The following
page will list some of the most popular plugins, although it's not a complete list of Jenkins
plugins. You will notice that the suggested plugin is already selected (ticked) by default:

Getting Started
Organization and Administration All | None | Suggested Selected (20/57)
Build Features Note that the full list of plugins is not shown here. Additional plugins can be installed in the Plugin Manager
once the initial setup is complete. See the Wiki for more information.
Build Tools i i I
Build Analysis and Reporting Organization and Administration (2/3) -
Pipelines and Continuous Delivery I Dashboard View 2 D¢
Source Code Management Jenking view that shows various cuts of build information via configured portlets.
Distributed Builds ¥ Folders Plugin * 14
User Management and Security This plugin allows users to create "folders" to organize jobs. Users can define custom taxonomies (like by

project type, organization type etc). Folders are nestable and you can define views within folders. Maintained

Notifications and Publishing by CloudBees, Inc.

¥ OWASP Markup Formatter Plugin * 34

Uses policy definitions to allow limited HTML markup in user-submitted text.

Build Features (4/10)

™ build-name-setter » 64
¥ build timeout plugin ~ 154
Aborts a build if it's taking too long

" Config File Provider Plugin # 54

Ability to provide configuration files (e.g. settings.xml for maven, XML, groovy, custom files,...) loaded through
the Ul which will be copied to the job workspace =]

0.2 Back m

Choosing plugins to install

o
=]
a

Jenkin

You can choose All, None, or the Suggested plugins.

[92]

The New Jenkins

Chapter 3

Once you are done choosing plugins, click Install at the bottom of the page. The following

screenshot shows the Jenkins plugin installation:

Getting Started

Getting Started

+ Folders Plugin " OWASP Markup build timeout plugin
Formatter Plugin
Timestamper Workspace Cleanup Ant Plugin
Plugin
Pipeline GitHub Branch Source Pipeline: GitHub Groovy
Plugin Libraries
Git plugin Subversion Plug-in SSH Slaves plugin
+" PAM Authentication LDAP Plugin Email Extension Plugin
plugin

Jenkins 2.60.2

Credentials Binding
Plugin

Gradle Plugin

Pipeline: Stage View
Plugin

Matrix Authorization
Strategy Plugin

Mailer Plugin

bouncycastle &

Folders l_?lugin

OWASP Markup Formatter Plugin
PRM Authentication plugin
e 3 Plugin

Jenkina Mailer Plugin

*# - required dependency

Installing Jenkins plugins

[93]

The New Jenkins Chapter 3

Creating the first admin user

Once the plugins are installed, you will be asked to create an administrator user account, as
shown in the following screenshot. The following administrator account is different from
the temporary administrator user account that was used at the beginning of the setup
wizard (the initial admin account):

Getting Started

Create First Admin User

Username: jenkins_admin
Password: sssssssss
Confirm password: sssssssss
Full name: nikhil pathania

E-mail address: admin@company.org

Jenkins 2.60.2 Continue as admin Save and Finish

Creating your first Jenkins user

Fill in the fields appropriately and click on the Save and Finish button. Alternatively, you
can also choose to ignore creating a new administrator user and continue with the initial
administrator user by clicking on Continue as admin.

Next, on the following page, you will be greeted with a message saying, Jenkins is ready!
Your Jenkins setup is complete. Click on Start using Jenkins to proceed to the Jenkins
dashboard.

The new Jenkins pipeline job

Those who are already familiar with Jenkins are well aware of the freestyle Jenkins job. The
classic way of creating a pipeline in Jenkins is by using the freestyle job, wherein each CI
stage is represented using a Jenkins job (freestyle).

The Jenkins freestyle job is a web-based, GUI-propelled configuration. Any modification to
the CI pipeline requires you to log in to Jenkins and reconfigure each of the Jenkins freestyle
jobs.

[94]

The New Jenkins Chapter 3

The concept of Pipeline as Code rethinks the way we create a CI pipeline. The idea is to
write the whole CI/CD pipeline as a code that offers some level of programming and that
can be version controlled.

The following are some of the advantages of taking the Pipeline as Code route:

e It's programmable

e All of your CI/CD pipeline configurations can be described using just a single file
(Jenkinsfile)

e It's version controllable, just like any other code

e [t comes with an option to define your pipeline using the Declarative Pipeline
syntax, which is an easy and elegant way of coding your pipeline

Let's take a look at the Jenkins pipeline job. We will try to look and get the feel of it by
creating a simple CI pipeline.

Prerequisite

Before we begin, make sure you have the following things ready:

¢ A Jenkins server running on any of the platforms discussed in the previous
chapter (Docker, standalone, cloud, VM, servlet container, and so on).

¢ Make sure your Jenkins server has access to the internet. This is necessary to
download and install plugins.

¢ Make sure your Jenkins server has all the suggested plugins installed. See the
Customizing Jenkins section.

Creating a Jenkins pipeline job
Follow the given steps to create a Jenkins pipeline job:

1. From the Jenkins dashboard, click on the New Item link.

2. On the resultant page, you will be presented with various types of Jenkins jobs to
choose from.

3. Choose Pipeline, and give a name to your pipeline using the Enter an item name
field.

[95]

The New Jenkins Chapter 3

4. Once you are done, click on the OK button at the bottom of the page.

5. All kinds of Jenkins jobs (freestyle, pipeline, multibranch, and so on) now come
with a featured tab, as shown in the following screenshot:

Tabs

General

Fipeline name | jenkins_pipeline_demo

Description

[Plain text] Preview

Pipeline Name

The new tab feature in Jenkins jobs

6. We will quickly navigate to the pipeline section by clicking on the Pipeline tab.
7. The following screenshot depicts the pipeline section. Let us see this section in
detail:
¢ The Definition field gives you two options to choose from—Pipeline
script and Pipeline script from SCM. If you choose the option
Pipeline script, then you define your pipeline code inside the Script
field. But, if you choose the option Pipeline script from SCM (not
shown in the screenshot), then your pipeline script (Jenkinsfile) is
automatically fetched from the Version Control System (We will
explore this option in the upcoming section).
¢ To get a short description about any of the options, you can click on the
question mark icon.

¢ The Pipeline Syntax is a utility that helps you to convert GUI
configurations into code. (We will explore this option in the upcoming
section).

[96]

The New Jenkins

Chapter 3

Type of Definition Pipeline tab
\ .
\\
AN \
\\ Pipeline
¥
- - \\
hY
Pipeline \
\\
M
\
Definition Pipeline script j
Script z try sample Pipeline. .. j @
/
//
A
e
/
// ¥ Use Groovy Sandbox /'@'
A
Pipeline Syntax
/ \
-/ \,
Place where you write your script \\ A short description
N about the option
\
\\—
The Pipeline Syntax Utility

The pipeline section

8. Now let us write some code inside the Script field to see how the pipeline works.
We will try some of the example code provided by Jenkins.

9. To do so, click on the try sample Pipeline... field and choose the GitHub +
Maven option, as shown in the following screenshot:

Pipeline

Definition

Pipeline script

Script

-

try sample Pipeline._ . j ®

try sample Fipeline. ..

Hella World

Choosing a sample pipeline script

[97]

The New Jenkins Chapter 3

10. This will fill the Script field with a sample code.
11. The code is shown as follows. It's in the Declarative Pipeline syntax form:

node {
def mvnHome
stage ('Preparation') { // for display purposes
// Get some code from a GitHub repository
git 'https://github.com/jglick/
simple-maven-project-with-tests.git'
// Get the Maven tool.
// ** NOTE: This 'M3' Maven tool must be configured
/] ** in the global configuration.
mvnHome = tool 'M3'
}
stage ('Build') {
// Run the maven build
if (isUnix()) |
sh "'${mvnHome}/bin/mvn'
—-Dmaven.test.failure.ignore clean package"
} else {
bat (/"${mvnHome }\bin\mvn"
-Dmaven.test.failure.ignore clean package/)

}
stage ('Results') {

junit '**/target/surefire-reports/TEST-*.xml'
archive 'target/*.jar'

}

12. Let us quickly scan through the pipeline script (we will explore more about
Declarative Pipeline syntax in the upcoming section):
e The node {} is the main container which tells Jenkins to run the whole
pipeline script on the Jenkins master.

e Inside the node {} container, there are three more containers, shown
as follows:

stage ('Preparation') {...}
stage ('Build') {...}
stage ('Results') {...}

[98]

The New Jenkins Chapter 3

e The Preparation stage will download the Maven source code from a
GitHub repository and will tell Jenkins to use the M3 Maven tool that
is defined in the global configuration (we need to do this before we run
our pipeline).

¢ The Build stage will build the Maven project.

e The Results stage will archive the build artifacts along with the JUnit
testing results.

13. Save the changes made to the pipeline job by clicking on the Save button at the
bottom of the page.

The Global Tool Configuration page

Before we run the pipeline, it is important that we take a look at the Global Tool
Configuration page in Jenkins. This is the place where you configure tools that you think
will be used globally across all your pipelines: for example, Java, Maven, Git, and so on.

Let's say you have multiple build agents (Jenkins slave agents) that build your Java code,
and your build pipeline requires Java JDK, Maven, and Git. All you need to do is configure
these tools inside the Global Tool Configuration, and Jenkins will automatically summon
them while building your code on the build agents (Jenkins slave agents). There is no need
for you to install these tools on any of the build agents.

Let us configure the Maven tool inside Global Tool Configuration to make our pipeline
work. Follow the given steps:

1. To access the Global Tool Configuration page, do any one of the following:
1. From the Jenkins dashboard, click on Manage Jenkins | Global Tool
Configuration.
2. Or paste the URL http://<IP Address of your Jenkins
server>:8080/configureTools/ in your browser.

2. Scroll all the way down to the Maven section and click on the Add Maven
button. You will be presented with a list of options, as shown in the following
screenshot. Fill the information in as follows:

1. Provide a unique name for your Maven installation by filling the Name
field. (Make it M3 for our example pipeline to work.)

[991]

The New Jenkins

Chapter 3

2. The Install from Apache option will appear by default. This will make
Jenkins download the Maven application from Apache:

Maven

Maven installations

List of Maven installations on this system

Name of your Maven installation

Maven
Mame M3

¥ Install automatically ®

Install from Apache

Version I 350 vl

Delete Installer

Add Installer -

Delete Maven

Add Maven

Maven version

Configuring Maven inside the Global Tool Configuration

3. Choose the latest Maven version using the Version field; I have chosen
to use Maven 3.5.0, as shown in the previous screenshot.

To choose a different installer first, delete the existing installer by clicking

on the Delete Installer button. Next, click on the Add Installer drop-

down menu and choose a different installer. The other options, apart from
Install from Apache are, Run Batch Command, Run Shell Command,
and Extract *.zip/*.tar.gz (not shown in the screenshot).

[100]

The New Jenkins Chapter 3

3. The Java tool is also needed to build the Maven project, but since we are building
our code on Jenkins master (which already has Java JDK), we can skip installing
the Java tool for now.

4. Once you are done with configuring Maven, scroll down to the bottom of the
page and click on the Save button.

Jenkins pipeline Stage View

Jenkins Stage View is a new feature that comes as a part of release 2.x. It works only with
Jenkins Pipeline and Jenkins Multibranch pipeline jobs.

Jenkins Stage View lets you visualize the progress of various stages of your pipeline in real
time. Let us see that in action by running our example pipeline:

1. On the Jenkins dashboard, under the All view tab, you will see your pipeline.
2. Click on the build trigger icon to run the pipeline, as shown in the following

screenshot:
Run Pipeline
™
All + N .
S W Name | Last Success Last Failure Last Duratio}\
.
jenkins_pipeling_demao MNIA MNIA MNIA 3.2)
Pipeling name

Viewing pipeline on the Jenkins dashboard

3. To get to the Stage View, click on your pipeline name (which also happens to be a
link to your pipeline project page).

[101]

The New Jenkins

Chapter 3

4. Alternatively, you can mouse over your pipeline name to get a drop-down menu

with a list of action items and links, as shown in the following screenshot:
Mouseover here to get the menu
Al + ¢
s w Name | _—
- jenkins_pipeline_demo ~
lcon: SML

“_» Changes
@ Build Now —

@ Delete Pipeline

k Configure ——

), Full Stage View —

) Pipeline Syntax

_Run Pipeline

Accer:s the Pipeline
configuration page

Access the Full Stage View|
A view of the pipeline menu
5. The Stage View page will look something like the following screenshot:
Expected stage run time based on history
: Stage name
Stage View . p
e
\ e
Pipeline number \ Preparation Build Results
/ 1s 3s 133ms
-'lll.l
Aug 10 O]
) 1s 3s 133ms

01:28 /

i /!

/ j.f

Y\ Contains Built artifacts / S; -

Color coded status age run time
| W
Execution date and time
The Stage View

[102]

The New Jenkins Chapter 3

6. To view the build logs of a particular stage, mouse over the color-coded status
box, and you should see an option to view the logs. Clicking it will open up a
small pop-up window displaying the logs, as shown in the following screenshot:

Stage Logs (Build) b 4
@ Checks if running on a Unix-like node (self time 1ms)

@ Shell Script — 'fvarfjenkins_home/tools/hudson tasks Maven_Maveninstallation/M3/bin/mvn' -Dmaven test failure.ignore
clean package — (self ime 3s)

[| e L]
[INFO] Building simple-maven-project-with-tests 1.8-SNAPSHOT

[| e

[INFO]

[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @ simple-maven-project-with-tests ---

[INFO] Deleting /var/jenkins_home/workspace/jenkins_pipeline_demo/target

[INFO]

[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ simple-maven-project-with-tests ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] skip non existing resourceDirectory /var/jenkins_home/workspace/jenkins_pipeline_ demo/src/main/resc
urces

[INFO]

[INFO] --- maven-compiler-plugin:3.l:compile (default-compile) @ simple-maven-project-with-tests ---
[INFO] Mo sources to compile

[INFO]

[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources) @ simple-maven-project-with-te
S ===

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] skip non existing resourceDirectory /var/jenkins_home/workspace/jenkins_pipeline_demo/src/test/reso

urces

Jenkins individual stage logs

7. To view the complete build log, look for the Build History on the left-hand side.
The Build History tab will list all the builds that have been run. Right-click on the
desired build number and click Console Output:

Build History trend =

find
@ #3 Aug 9, 2017 11:28 PM

_:; Changes
: 'SS for failures
ﬁ Console Output

“~ Edit Build Information

Accessing the console output

[103]

The New Jenkins Chapter 3

Declarative Pipeline syntax

In the previous section, we created a Jenkins pipeline to get a look at and feel for its various
components. We utilized the pipeline script that followed a declarative syntax to define our
pipeline.

The Declarative Pipeline syntax is a more simplified and structured version of the Groovy
syntax, the latter being more powerful due to its programmability. In this section, we will
learn about the Declarative Pipeline syntax in a bit more detail. This is important because in
the upcoming chapters we will be using the same to define our CI and CD pipelines.

Basic structure of a Declarative Pipeline

In simple terms, a Declarative Pipeline is a collection of multiple node blocks (nodes),
stage blocks (stages), directives, and steps. A single node block can have multiple stage
blocks, and vice versa. We can also run multiple stages in parallel. Let's see each of them in
detail.

The node block

A node block defines the Jenkins agent wherein its constituents (stage blocks, directives,
and steps) should run. The node block structure looks like the following:

node ('<parameter>') {<constituents>}
The following gives more information about the node block:

¢ Defines: The node where the stage, directives, or steps should run
¢ Constituents: Multiple stage blocks, directives, or steps

¢ Required: Yes

e Parameters: Any, label

The stage block

A stage block is a collection of closely related steps and directives that have a common
objective. The stage block structure looks like the following:

stage ('<parameter>') {<constituents>}

[104]

The New Jenkins Chapter 3

The following gives more information about the stage block:

Defines: A collection of steps and directives

Constituents: Multiple node blocks, directives, or steps

Required: Yes

Parameters: A string that is the name of the stage (mandatory)

Directives

The main purpose of directives is to assist the node block, stage block, and steps by
providing them with any of the following elements: environments, options, parameters,
triggers, tools.

The following gives more information about the st age block:

Defines: The node where the stage should run

Constituents: Environments, options, parameters, triggers, tools

Required: No, but every CI/CD pipeline has it
Parameters: None

Steps

Steps are the fundamental elements that make up the Declarative Pipeline. A step could be
a batch script or a shell script, or any other command that's executable. Steps have various
purposes, such as cloning a repository, building code, running tests, uploading artifacts to
the repository server, performing static code analysis, and so on. In the upcoming section,
we will see how to generate steps using the Jenkins pipeline syntax utility.

The following gives more information about the st age block:

Defines: It tells Jenkins what to do

Constituents: Commands, scripts, and so on. It's the fundamental block of a
pipeline

Required: No. But every CI/CD pipeline has it
Parameters: None

[105]

The New Jenkins Chapter 3

The following is the pipeline code that we used earlier. The node block, the stage blocks,
the directives, and the steps are highlighted using comments (/ /). As you can see, there are
three stage blocks inside the node block. A node block can have multiple stage blocks. In
addition to that, each stage block contains multiple steps, and one of them also contains a
directive:

// Node block
node ('master') {
// Directive 1

def mvnHome

// Stage block 1
stage ('Preparation') {
// Step 1
git 'https://github.com/jglick/simple-maven-project-with-tests.git'
// Directive 2
mvnHome = tool 'M3'

}

// Stage block 2
stage ('Build') {
// Step 2
sh "'${mvnHome}/bin/mvn' clean install"

}

// Stage block 3
stage ('Results') {
// Step 3
junit '**/target/surefire-reports/TEST-*.xml'
// Step 4
archive 'target/*.jar'

}

In the preceding code, note the line: node ('master') {.Here, the string masterisa
parameter (1abel) that tells Jenkins to use the Jenkins master for running the contents of
the node block.

[106]

The New Jenkins Chapter 3

If you choose the parameter value as any, then all the stage nodes and their respective steps
and directives will be executed on any one of the available Jenkins slave agents.

We will learn more about the Declarative Pipeline in the upcoming chapters, wherein we
will try to write a CI/CD pipeline using it.

For more information about Declarative Pipeline syntax, refer

to https://jenkins.io/doc/book/pipeline/syntax/#declarative—-secti
ons.

To get a list of all the available steps that are compatible with the
Declarative Pipeline, refer to https://jenkins.io/doc/pipeline/steps/.

Jenkins pipeline syntax utility

The Jenkins pipeline syntax utility is a quick and easy way to create pipeline code. The
pipeline syntax utility is available inside the Jenkins pipeline job; see the screenshot: The
pipeline section in the Creating a Jenkins pipeline job section.

In this section, we will recreate the pipeline that we created in the previous section, but this
time using the pipeline syntax utility.

Prerequisite

Before we begin, make sure you have the following things ready:

e The Maven tool configured inside the Global Tool Configuration page (refer to
the The Global Tool Configuration page section)

e Install Pipeline Maven Integration Plugin

¢ The Java tool is also needed to build the Maven project, but since we are building
our code on Jenkins master (which already has Java JDK), we can skip installing
the Java tool

[107]

https://jenkins.io/doc/book/pipeline/syntax/#declarative-sections
https://jenkins.io/doc/book/pipeline/syntax/#declarative-sections
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/book/pipeline/syntax/#declarative-sections

The New Jenkins Chapter 3

Installing the Pipeline Maven Integration Plugin

Follow the given steps to install the Pipeline Maven Integration Plugin. The following
plugin will allow us to use the Maven tool inside our pipeline code:

1. From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins |
Available tab.

2. Type Pipeline Maven Integration inside the Filter field to search the
respective plugin, as shown in the following screenshot:

Search plugins

List all plugins available for Jenkins

Filter: I ', Pipeline Maven Integration

Updates Available nstalled Advanced
Install | Name Version

Pipeline Maven Integration Plugin

This plugin provides integration with Pipeline, configures

~ maven enviranment to use within a pipeline job by calling 2-5-2
sh mwn or bat mvn. The selected maven installation will be
configured and prepended to the path

Install without restart Download now and install after restart
Update information obtained: 1 hr 30 min ago m

Install selected plugin

The Plugin Manager page

3. Click on the checkbox to select the respective plugin, and then click on the Install
without restart button to install it.

4. Once you click on the Install without restart button, you will see the plugin
getting installed, as shown in the following screenshot. Jenkins will first check for
the network connection, after which it will install the dependencies, and lastly, it
will install the plugin.

[108]

The New Jenkins Chapter 3

5. Some plugins might need a restart before they can be used. To do so, check the
option, Restart Jenkins when installation is complete and no jobs are running;:

Installing Plugins/Upgrades

Preparation
+ Checking internet connectivity

* Checking update center connectivity

s SUCCESS
Config File Provider Plugin) Success
Pipeline Maven Integration Plugin Installing

I

> Go back to the top page
(you can start using the installed plugins right away)

E-:p I Restart Jenkins when installation is complete and no jobs are running

Plugin installation in progress

Creating a Jenkins pipeline using the pipeline syntax
utility
Follow the given steps to create a new Jenkins pipeline job:

1. From the Jenkins dashboard, click on the New Item link.

2. On the resultant page, you will be presented with various types of Jenkins jobs to
choose from.

3. Choose Pipeline, and give a name to your pipeline using the Enter an item name
field.

4. Once you are done, click on the OK button at the bottom of the page.

5. We will quickly navigate to the pipeline section by clicking on the Pipeline tab.

[109]

The New Jenkins

Chapter 3

6. Under the Pipeline tab, click on the link named Pipeline Syntax.

up a new tab, as shown in the following screenshot:

This will open

Overview

used to define various steps. Pick a step you are interested in from th

would call the stiep with that configuration. You may copy and paste t
statement into your script, or pick up just the options you care about.

values.)

Steps

Sample Step

archiveArtifacts: Archive the artifacts

List of Steps Step configuration

This Snippet Generator will help you learn the Pipeline Script code which can be

e list, configure

it, click Generate Pipeline Script, and you will see a Pipeline Script| statement that

e whole
(Most

parameters are optional and can be omitted in your script, leaving therp at default

Files to archive

Advanced...

Generate Pipeline Script

—

Click to generate pipeline code Generated pipeline code

The Pipeline Syntax page

7. We will be using the following Snippet Generator to create pipeline code for

various blocks and steps.
8. Let us first generate a code for a node block:

1. On the Pipeline Syntax page, under the Steps section, choose node:
Allocate node using the Sample Step field, as shown in the following

screenshot.

2. In the Label field, add a string master. By doing so we tell Jenkins to
use the Jenkins master as the node of choice to execute our pipeline.

3. Click on the Generate Pipeline Script button to generate the code.
4. Copy the generated code and keep it aside on a text editor:

[110]

The New Jenkins

Chapter 3

Steps

Sample Step o de- Allocate node

Label master

Label master is serviced by 1 node

Generate Pipeline Script

node('master’) {
Il some block

}

@ &

Generating code for the node block

9. Now, let us create two stage blocks named Preparation and Build:
1. On the Pipeline Syntax page, under the Steps section, choose stage:
Stage using the Sample Step field, as shown in the following

screenshot.

2. In the Stage Name field, add a string Preparation.

@

Click on the Generate Pipeline Script button to generate the code.

4. Copy the generated code and paste it inside the node block that we

generated earlier:

Steps
Sample Step stage: Stage

Stage Mame

Generate Pipeline Script

stage(Preparation’) {
il some block

}

Preparation

@

Generating code for the stage block

[111]

The New Jenkins Chapter 3

10. Similarly, repeat step 9 to create a stage block named Build. Paste the generated
code inside the node block and after the Preparation (the stage block).

11. Our pipeline code, so far, should look something like the following (without the
// some block lines):

node ('master') {

stage ('Preparation') {

}

stage ('Build') {
}

}

12. Let us now create a step to download the source code from GitHub:

1. On the Pipeline Syntax page, under the Steps section, choose git: Git
using the Sample Step field, as shown in the following screenshot.

2. In the Repository URL field, add the link to the example GitHub
repository:
https://github.com/jglick/simple-maven-project-with-tes
ts.git.

3. Leave the rest of the options as is.

4. Click on the Generate Pipeline Script button to generate the code.

5. Copy the generated code, and paste it into the Preparation (the
stage block) that we generated earlier:

[112]

The New Jenkins Chapter 3

Steps

Sample Step git: Git j

Repositary URL https://github.com/jglick/simple-maven-project-w

Branch master

Credentials - none - j o= Add -

¥ Include in polling?

¥ Include in changelog?

Generate Pipeline Script

git "https-//github_com/jglick/simple-maven-project-with-tests_git’

Generating code for the Git step

13. Next, let us generate a directive that will tell Jenkins to use the M3 Maven tool
that we have configured inside the Global Tool Configuration:

1. On the Pipeline Syntax page, under the Steps section, choose
withMaven: Provide Maven environment using the Sample Step
field, as shown in the following screenshot.

2. In the Maven field, choose M3, which is the Maven tool that we have
configured inside the Global Tool Configuration.

3. Leave the rest of the options as is.

4. Click on the Generate Pipeline Script button to generate the code.

[113]

The New Jenkins Chapter 3

5. Copy the generated code and paste it into the Build (the stage block)
that we generated earlier:

Steps
Sample Step withMaven: Provide Maven environment j
Maven M3 -|®
JOK — Use system default JOK — j ©

Maven Settings Config — Use system default settings or file path — j (2]

Global Maven Settings Config - Use system default settings or file path — j (7))

Options

Generate Pipeline Script

withMaven{maven: "M3) {
/I some block

}

Add Option -

Generating code for the withMaven directive

14. Lastly, generate a pipeline code for our Maven build command:

1. On the Pipeline Syntax page, under the Steps section, choose sh: Shell
Script using the Sample Step field, as shown in the following
screenshot. This is a step to create a shell script.

2. In the Shell Script field, type mvn -Dmaven.test.failure.ignore
clean package, which is the Maven command to build, test, and
package the code. This will be the content of our shell script.

3. Click on the Generate Pipeline Script button to generate the code.

4. Copy the generated code and paste it into the withMaven (directive)
that we generated earlier:

[114]

The New Jenkins Chapter 3

Steps
Sample Step o ghall Script j

Shell Script nmwn -Dmaven test failure.ignore clean package @

Advanced...

Generate Pipeline Script

sh ‘mwn -Dmaven_test failure_ignore clean package’

Generating code for the maven build

15. Our final pipeline script should look something like the following (without the //
some block lines):

node ('master') {

stage ('Preparation') {
git 'https://github.com/jglick/
simple-maven-project-with-tests.git'

}

stage ('Build') {
withMaven (maven: 'M3') {

sh 'mvn -Dmaven.test.failure.ignore clean
package'

}

}

16. Now switch to the pipeline job configuration page.

17. Scroll to the Pipeline section and paste the preceding pipeline code inside the
Script field.

18. Click on the Save button at the bottom of the page.

We will see more examples in the upcoming chapters when we try to create a CI/CD
pipeline using the Declarative Pipeline syntax, utilizing the pipeline syntax utility.

[115]

The New Jenkins Chapter 3

Multibranch pipeline

In this section, we will learn about the multibranch pipeline job in Jenkins. This is one of the
new features added to Jenkins release 2.x.

The Multibranch pipeline allows you to automatically create a pipeline for each branch on
your source control repository. This is depicted in the following screenshot. A Multibranch
pipeline works using a Jenkinsfile that is stored along with your source code inside a
version control repository. A Jenkinsfile is nothing but a pipeline script that defines your
CI pipeline:

Source Control

©

Feature Branch 1 Integratlon Branch Fearum Branch 2

IIIIDD

SOUI’CE code Jﬂnklnsﬂe SDUI’CE code J‘:'I"IHII'ISHE Source code .-emcf 15fie

|
'
i
i
:
L

Pipeline for Feature Branch 1

Build & Unit test

Build & Unit test Integration test

Pipeline for Integration Branch

Fipeline for Feature Branch 2 Q

S—

[Build & Unit test

B <i=0< in a Cl pipsline
- Cl pipeline

Auto-generated pipeline for a new branch

In addition to that, the Multibranch pipeline is designed to trigger a build whenever there is
a new code change on any of the branches on your Git/GitHub repository. This is depicted
in the following screenshot:

[116]

The New Jenkins

Chapter 3

Feature Branch 1 Integration Branch

[] Build & Unit test)4
[] Build & Unit test)4

[] Build & Unit test [E¥CEREEEE ®

Feature Branch 2

[] Build & Unit test -4

] Build & Unit test AV SEEEEES *

[] Build & Unit test [V S ®

® Code commit
B 5t-o= in a Cl pipeline
X Fail

" Pass
— Skip

Build & Unit test
Integration test

Build & Unit test
Integration test

Build & Unit test
Integration test

v
v

X

v
v

Usage of multibranch pipeline for continuous integration

Prerequisite

Before we begin, make sure you have the following things ready:

e The Maven tool configured inside the Global Tool Configuration page (refer to
the section: The Global Tool Configuration page).

e Install Pipeline Maven Integration Plugin.

e The Java tool is also needed to build the Maven project, but since we are building
our code on Jenkins master (which already has Java JDK), we can skip installing
the Java tool.

[117]

The New Jenkins

Chapter 3

e Install GitHub plugin (already installed if you have chosen to install the
recommended plugins during the Jenkins setup wizard).

e Make sure your Jenkins URL is accessible from the internet. If you are using a
staging or a development environment to perform this exercise, and your Jenkins
server doesn't have a domain name, your Jenkins server might not be accessible
from the internet. To make your Jenkins URL accessible over the internet, refer to
the Exposing your local server to the internet section in the Appendix, Supporting
Tools and Installation Guide.

Adding GitHub credentials inside Jenkins

In order to make Jenkins communicate with GitHub, we need to add GitHub account
credentials inside Jenkins. We will do this using the Jenkins Credentials Plugin. If you have
followed the Jenkins setup wizard (discussed at the beginning of the chapter), you will find
the Credentials feature on the Jenkins dashboard (see the left-hand side menu).

Follow the given steps to add the GitHub credentials inside Jenkins:

1. From the Jenkins dashboard, click on Credentials | System | Global credentials
(unrestricted).

2. On the Global credentials (unrestricted) page, from the left-hand side menu,
click on the Add Credentials link.

3. You will be presented with a bunch of fields to configure (see the following
screenshot):

1.
2.

N oUW

Choose Username with password for the Kind field.

Choose Global (Jenkins, nodes, items, all child items, etc) for the
Scope field.

Add your GitHub username to the Username field.

Add your GitHub password to the Password field.

Give a unique ID to your credentials by typing a string in the ID field.
Add some meaningful description to the Description field.

Click on the Save button once done:

[118]

The New Jenkins Chapter 3

Kind Username with password j
Scope Global (Jenkins, nodes, items, all child items, etc) j @
Username name@org.com (7))
Password 4 eennse (3]
D github_credentials (7))
Description credentials to access GitHub account ®
=

Adding GitHub credentials inside Jenkins

4. And that's how you save credentials inside Jenkins. We will use these GitHub
credentials shortly.

Configuring Webhooks on GitHub from Jenkins

Now that we have saved GitHub account credentials inside Jenkins, let's configure Jenkins
to talk to GitHub. We will do this by configuring the GitHub settings inside the Jenkins
configuration.

Carefully follow the given steps to configure GitHub settings inside Jenkins:

1. From the Jenkins dashboard, click on Manage Jenkins | Configure System.

2. On the resultant Jenkins configuration page, scroll all the way down to the
GitHub section.

3. Under the GitHub section, click on the Add GitHub Server button and choose
GitHub Servers from the available drop-down list. Doing so will display a bunch
of options for you to configure.

4. Let us configure them one by one, as follows:

1. Give your GitHub server a name by adding a string to the Name field.

2. Under the API URL field, add https://api.github.com (default
value) if you are using a public GitHub account. Otherwise, if you are
using GitHub Enterprise, then specify its respective API endpoint.

[119]

The New Jenkins Chapter 3

3. Make sure the Manage hooks option is checked:

GitHub Servers
GitHub Server .@.
Name default_github_account ®
APTURL https://api.github.com)
Credentials - none - j o Add ~ ©
Test connection IEI
Manage hooks ®

Configuring the GitHub server

4. Click on the Advanced... button (you will see two of them; click on the
second one). Doing so will display a few more fields to configure.

5. Under the Additional actions field, click on Manage additional
GitHub actions and choose Convert login and password to token
from the available list (you will see only one option to choose).

6. This will further disclose new fields to configure.

7. Select the From credentials option (active by default). Using the
Credentials field, choose the GitHub credentials that we created in the
previous section (ID: github_credentials).

8. Next, click on the Create token credentials button. This will generate a
new personal access token on your GitHub account:

Additional actions
Convert login and password to token (7]

GItHuD API URL https:/fapi_github.com

' From credentials

Credentials | seses ks kesees seses sess srewen precess (cradentials fo acce j o= Add ~

Created credentials with id 311a8cc5-a2c0-41fe-b13e-e6bd1dasb040
(can use it for GitHub Server Config)

Create token credentials

' From login and password

Delete

Converting GitHub credentials to a token

[120]

The New Jenkins Chapter 3
9. To view your personal access token on GitHub, log in to your GitHub
account and navigate to Settings | Developer settings | Personal
access tokens:
Perscna| access tokens Generate new token Revoke all

repo:status

Tokens you have generated that can be used to access the GitHub APL

Jenkins GitHub Plugin token (http:// soessssxsnswin/) — adminrrepo_hook, repo, Neverused | Edit = Delete

10.

11.

Personal access token on GitHub

Once done, click on the Save button at the bottom of the Jenkins
configuration page.

An entry of the respective personal access token will also be added
inside the Jenkins credentials. To view it, navigate to Jenkins
dashboard | Credentials | System | api.github.com, and you
should see a credential entry of the Kind secret text.

5. We are not yet done with our GitHub configuration inside Jenkins. Follow the
remaining steps as follows:

1.

From the Jenkins dashboard, click on Manage Jenkins | Configure
System.

Scroll all the way down to the GitHub section.

Using the Credentials field, choose the newly generated credentials of
the Kind secret text (the personal access token entry inside Jenkins).
Now, click on the Test connection button to test our connection
between Jenkins and GitHub.

[121]

The New Jenkins Chapter 3

5. Once done, click on the Save button at the bottom of your Jenkins
configuration page:

GitHub Servers
GitHub Server 3]
Name default_github_account @
APIURL https://api.github_com @
Credentials giyn (hitps:/apl.github.com) auto generated token j -hd~ | @
Credentials verified for user nikhilpathania, rate limit: 4997 | 1o connection @
Manage hooks W @

Testing the connection between Jenkins and GitHub

6. We are now done with configuring GitHub settings inside Jenkins.

Create a new repository on GitHub

In this section, we will create a new repository on GitHub. Make sure you have Git installed
on the machine that you will use to perform the steps mentioned in the following section
(refer to the Installing Git on Windows/Linux section in the appendix, Supporting Tools and
Installation Guide).

Follow the given steps to create a repository on GitHub:

1. Log in to your GitHub account.

2. To keep things simple, we will reuse the source code from the repository
at https://github.com/jglick/simple-maven-project-with-tests.git. Thisis
the repository that we have been using to create a Jenkins pipeline.

3. The easiest way to reuse a GitHub repository is to fork it. To do so, just access the

above repository from your internet browser and click on the Fork button, as
shown in the following screenshot:

jglick / simple-maven-project-with-tests ©@watch~ | 0 | %star | 4 YFork 101

£» Code Issues 0 Pull requests 0 Projects 0 Wiki Insights

A Maven project that just has some test failures (and skips) at random, to demonstrate result reporting.

Forking a GitHub project

[122]

https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git
https://github.com/jglick/simple-maven-project-with-tests.git

The New Jenkins Chapter 3

4. Once done, a replica of the preceding repository will be visible on your GitHub
account.

Using a Jenkinsfile

Jenkins multibranch pipeline utilizes Jenkinsfile. In the following section, we will learn how
to create a Jenkinsfile. We will reuse the example pipeline script that we created in the
previous section to create our Jenkinsfile. Follow the given steps:

1. Log in to your GitHub account.

2. Navigate to the forked repository simple-maven-project-with-tests.

3. Once on the repository page, click on the Create new file button to create a new
empty file that will be our Jenkinsfile, as shown in the following screenshot:

P 5 commits ¥ 2 branches T 0 releases 22 1 contributor

Branch: master v New pull request Create new file | Upload files | Find file Clone or download ~

Creating a new file on GitHub

4. Name your new file Jenkinsfile by filling the empty text box, as shown in the
following screenshot:

<> Code Pull requests 0 Projects 0 Wiki Settings Insights =
simple-maven-project-with-tests / Jenkinsfile or cancel
<> Edit new file @ Preview Spaces ¥ 2 % No wrap 3

Naming your new file on GitHub
5. Add the following code to your Jenkinsfile:

node ('master') {
checkout scm
stage ('Build') {
withMaven (maven: 'M3') {

[123]

The New Jenkins Chapter 3

if (isUnix()) A
sh 'mvn -Dmaven.test.failure.ignore clean package'

}

else {
bat 'mvn -Dmaven.test.failure.ignore clean package'

}
}
}
stage ('Results') {
junit '**/target/surefire-reports/TEST-*.xml'

archive 'target/*.jar'

}

6. Once done, commit the new file by adding a meaningful comment, as shown in
the following screenshot:

Commit new file

added a Jenkinsfile

® o Commit directly to the master branch.

1N Create a new branch for this commit and start a pull request. Learn more about pull requests.

Committing your new file on GitHub

Creating a Multibranch pipeline in Jenkins

Follow the given steps to create a new Jenkins pipeline job:

1. From the Jenkins dashboard, click on the New Item link.

2. On the resultant page, you will be presented with various types of Jenkins jobs to
choose from.

3. Choose Multibranch Pipeline, and give a name to your pipeline using the Enter
an item name field.

[124]

The New Jenkins Chapter 3

4. Once you are done, click on the OK button at the bottom of the page.

5. Scroll to the section Branch Sources. This is the place where we configure the
GitHub repository that we want to use.

6. Click on the Add Source button and choose GitHub. You will be presented with
a list of fields to configure. Let us see them one by one (see the following
screenshot):

1. For the Credentials field, choose the GitHub account credentials (Kind
as Username with Password) that we created in the previous section.

2. Under the Owner field, specify the name of your GitHub organization
or GitHub user account.

3. The moment you do so, the Repository field will list all the repositories
that are on your GitHub account.

4. Choose simple-maven-project-with-tests under the Repository
field.

5. Leave the rest of the options at their default values:

Branch Sources
GitHub
Credentials j (credentials t j o= Add ~ @
Owner nikhilpathania ®
REpOSIONY gimple-maven-project-with-tests j (2}

Configuring the multibranch pipeline

7. Scroll all the way down and click on the Save button.

Re-register the Webhooks

Before we proceed, let us re-register the Webhooks for all our Jenkins pipelines:

1. To do so, from the Jenkins dashboard, click on Manage Jenkins | Configure
System.

2. On the Jenkins configuration page, scroll all the way down to the GitHub section.

3. Under the GitHub section, click on the Advanced... button (you will see two of
them; click on the second one).

[125]

The New Jenkins

Chapter 3

4. This will display a few more fields and options. Click on the Re-register hooks
for all jobs button.

5. The preceding action will create new Webhooks for our multibranch pipeline on
the respective repository inside your GitHub account. Do the following to view
the Webhooks on GitHub:

1. Log in to your GitHub account.

2. Go to your GitHub repository, simple-maven-project-with-
tests in our case.

3. Click on the repository Settings, as shown in the following screenshot:

nikhilpathania / simple-maven-project-with-tests

forked from jglick/simple-maven-project-with-tests

<» Code Pull requests 0 Projects 0 Wiki Settings

Repository Settings

4. On the Repository Settings page, click on Webhooks from the left-
hand side menu. You should see the Webhooks for your Jenkins server,
as shown in the following screenshot:

When th

WEbhOOkS Add webhook

Webhoaoks allow external servicas to be notified when certain events happen within your repository.

Learn more in our Webhooks Guide.

e specified events happen, we'll send a POST reguest to each of the URLs you provide.

[e o e o /github-webhooky/ (pull_request and push) Edit = Delete

‘Webhooks on GitHub repository

[126]

The New Jenkins Chapter 3

Jenkins Multibranch pipeline in action

Follow the given steps:

1. From the Jenkins dashboard, click on your Multibranch pipeline.

2. On your Jenkins Multibranch pipeline page, from the left-hand side menu, click
on the Scan Repository Now link. This will scan the repository for branches with
Jenkinsfile, and will immediately run a pipeline for every branch that has got a
Jenkinsfile, as shown in the following screenshot:

jenkins_multibranch_pipeline_demo

A Maven project that just has some test failures (and skips) at random, to demonstrate
result reporting.

Branches (1)
5 W Name | Last Success Last Failure Last Duration
,J master 17 sec - #1 MNIA 6.4 sec i?_)

Pipeline for the master branch

3. On your Multibranch pipeline page, from the left-hand side menu, click on Scan
Repository Log. You will see something like that which is shown as follows.
Notice the highlighted code. You can see that the master branch met the criteria,
as it had a Jenkinsfile and a pipeline was secluded for it. There was no pipeline
scheduled for the testing branch since there was no Jenkinsfile on it:

Started by user nikhil pathania

[Mon Aug 14 22:00:57 UTC 2017] Starting branch indexing...
22:00:58 Connecting to https://api.github.com using
*kkkkkx /[*kk*x*k*k* (credentials to access GitHub account)
22:00:58 Connecting to https://api.github.com using
*kkkkkx /[*kk*x*k*k* (credentials to access GitHub account)
Examining nikhilpathania/simple-maven-project-with-tests

Checking branches. ..
Getting remote branches...
Checking branch master

Getting remote pull requests...

[127]

The New Jenkins Chapter 3

'Jenkinsfile' found
Met criteria
Scheduled build for branch: master

Checking branch testing
'Jenkinsfile' not found
Does not meet criteria

2 branches were processed
Checking pull-requests...
0 pull requests were processed

Finished examining nikhilpathania/simple-maven-project-with-
tests

[Mon Aug 14 22:01:00 UTC 2017] Finished branch indexing.
Indexing took 2.3 sec
Finished: SUCCESS

4. You need not always scan the repository. The GitHub Webhooks is configured to
trigger a pipeline automatically whenever there is a push or a new branch on
your GitHub repository. Remember, a Jenkinsfile should also be present on the
respective branch to tell Jenkins what it needs to do when it finds a change in the
repository.

Creating a new feature branch to test the multibranch
pipeline
Let us now create a feature branch out of the master branch and see if Jenkins can run a

pipeline for it:

1. To do so, log in to your GitHub account.
2. Go to your respective GitHub repository; in our case it's simple-maven-—
project-with-tests.

[128]

The New Jenkins Chapter 3

3. Click on the Branch: master button and type a name for your new branch in the
empty text box. Next, click on the Create branch: feature option to create a new
branch named feature, as shown in the following screenshot:

¢ Code Pull requests 0 Projects 0 Wiki Settings

Branch: master ~ | simple-maven-project-with-tests / Jenkinsfile

Switch branches/tags

featu re|

Branches Tags

P Create branch: feature

from ‘master’

Creating a feature branch

4. This should immediately trigger a pipeline inside Jenkins for our new feature
branch:

jenkins_multibranch_pipeline_demo

A Maven project that just has some test failures (and skips) at random, to demonstrate
result reporting.

Branches (2) Pull Requests (0
S W MName | Last Success Last Failure Last Duration
< feature 7min24 sec-#1 N/A 6.8 sec [*3)
(*) master 7 min55sec-#1 NA 5.6 sec (3]

Pipeline for the new feature branch

[129]

The New Jenkins Chapter 3

Jenkins Blue Ocean

The Jenkins Blue Ocean is a completely new way of interacting with Jenkins. It's more of a
Ul sidekick to the main Jenkins application. The following are some the features of Jenkins
Blue Ocean:

e Improved visualizations

e Pipeline editor

¢ Personalization

¢ Quick and easy pipeline setup wizard for Git and GitHub

The pipelines that you create using your classic Jenkins interface can be visualized in the
new Jenkins Blue Ocean, and vice versa. As I said earlier, Jenkins Blue Ocean is a Ul
sidekick to the main Jenkins application.

In the following section, we will visualize the Jenkins pipelines that we created in the
previous section in Blue Ocean. We will also create a new pipeline, just to get a look at and
feel for the new Jenkins Blue Ocean interface.

Installing the Jenkins Blue Ocean plugin

In order to use the Jenkins Blue Ocean plugin, we need to install the Blue Ocean plugin for
Jenkins. Follow the given steps:

1. From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins.
2. On the Plugin Manager page, click on the Available tab.

3. Using the Filter option, search for Blue Ocean, as shown in the following
screenshot:

[130]

The New Jenkins

Chapter 3

Install |

Blue Ocean

Install without restart Download now and install after restart

Filter: | “4 Blue Ocean

Available nstalled Advanced

Name Version

Blue Ocean is a new project that rethinks the user

experience of Jenkins. Designed from the ground up for 117
Jenkins Pipeline and compatible with Freestyle jobs, Blue

Ocean reduces clutter and increases clarity for every

member of your team

information obtained: 23 hr ago m

Installing the Jenkins Blue Ocean plugin

4. From the list of items, choose Blue Ocean and click on Install without restart.
You only need Blue Ocean and nothing else.

5. The dependency list for Blue Ocean is big, so you will see a lot of stuff getting
installed along with the Blue Ocean plugin on the Installing Plugins/Upgrades

page.

View your regular Jenkins pipeline in Blue Ocean

In this section, we will try to visualize our existing Jenkins pipelines that we have created in
the previous sections:

1. On the Jenkins dashboard, you should now see a new link on the left-hand side
menu with the name Open Blue Ocean.

2. Click on the Open Blue Ocean link to go to the Jenkins Blue Ocean dashboard.
The following is what you should see (refer to the following screenshot):

1.
2.

The Administration link will take you to the Manage Jenkins page.
The Pipelines link will take you to the Jenkins Blue Ocean dashboard
that you are seeing now.

The icon (arrow within a square) will take you to the classic Jenkins
dashboard.

[131]

The New Jenkins Chapter 3

4. The New Pipeline button will open up the pipeline creation wizard for
Git- and GitHub-based projects.

5. Alist of pipelines (highlighted as e):

Jenkins Fipelines Administration E Logout
d

Pipelines Q Mew Pipeline
Mame 9 Health Branches PR
jenkins_multibranch_pipeline_dema fo 1 passing ‘ﬂi"
jenkins_pipeline_dermo &N - - 'ifi’
jenkins_pipeline_pipeline_syntax_demo b - z 'T:i"

1.1.7 - Core 2.60.2 - 9d9e8bé - (mo branch) - 12th August 2017 12:30 AM

The Jenkins Blue Ocean dashboard

3. Let us have a look at our multibranch pipeline. Click on your multibranch
pipeline from the Jenkins Blue Ocean dashboard. Doing so will open up the
respective multibranch pipeline page, as shown in the following screenshot:

1. The button (highlighted as a) will take you to the pipeline
configuration page.

2. The Activity tab will list all the current and past pipelines.

3. The Branches tab will show you an aggregate view of the pipelines for
each branch.

4. The Pull Requests tab will list all the open pull requests on your
branches.

[132]

The New Jenkins

Chapter 3

5.

Jenkins

The button (highlighted as e) is used to rerun the pipeline:

Pipelines Administration 2]

b c d

a
‘ jenkins_multibranch_pipeline_demo Y¢r & Activity Branches Pull Requests

Status Run Commit Branch Message Duration Completed e
1 @7e52ae feature Push event to branch feature 6s 21 hours ago O
° 4 B7e52ae master Started by user nikhil pathania 5s 21 hours ago o

Multibranch pipeline in Blue Ocean

4. Now let us see the individual build page. To do so, from the Jenkins pipeline
page (see the preceding screenshot), click on any of the builds, and you will be
taken to the build page of the respective pipeline, as shown in the following
screenshot:

1.
2.

L

The Changes tab will list the code changes that triggered the build.

The Artifacts tab will list all the artifacts that are generated by the
build.

The button (highlighted as ¢) will rerun your build.

The section (highlighted as d) displays some metrics about your build.
This Stage View (highlighted as e) will list all the sequential and
parallel stages.

The Steps Results section will show you all the steps of a particular
stage that you have selected (in the following screenshot, I have
selected the stage Results).

[133]

The New Jenkins Chapter 3

7. Each listed step (highlighted as g) can be expanded and its log can be
viewed:

v jenkins_multibranch_pipeline_demo 4 Pipeline Changes Tests Artifacts &) a5 X

Branch: master [@ 5s No changes
Commit: 07e52ae @© 21 hours ago Started by user nikhil pathania

Steps Results o e A

3
4 > *"/target/surefire-reports/TEST-*.xml Publish JUnit test result report <1s
8 > target/*jar Archive artifacts <1s

Build page in Blue Ocean

This was a short overview of how your Jenkins pipeline (the one that you created using the
classic Jenkins UI) should look in Blue Ocean. It has demonstrated pretty much everything.
However, I encourage readers to keep exploring.

Creating a pipeline in Blue Ocean

In this section, we will see how to create a new pipeline from the Jenkins Blue Ocean
dashboard. We will look at the new pipeline creation wizard in Blue Ocean. Before you
begin make the following things ready:

e Fork the following repository: https://github.com/nikhilpathania/hello-
world-example.git into your GitHub account. We will be using it in the example
described in the following section

e Install the JUnit plugin (https://plugins.jenkins.io/junit) for Jenkins

[134]

https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://github.com/nikhilpathania/hello-world-example.git
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit

The New Jenkins Chapter 3

Follow the given steps:

1. From the Jenkins Blue Ocean dashboard, click on the New Pipeline button.
Jenkins will ask you to choose between Git and GitHub. For our current exercise,
we will choose GitHub:

O Where do you store your code?

‘ Q Git ‘ ‘) Github

Choosing between Git and GitHub repositories

2. Next, Jenkins will ask you to provide the GitHub access token for your GitHub
account. Click on the Create an access key here link to create a new one:

O Connect to Github

Jenkins needs an access key to authorize itself with Github. Create an

access key here.

| =

GitHub access token field

3. In anew tab, you will be asked to log in to your GitHub account.

4. Once you log in, you will be taken directly to the GitHub settings page to create a
New personal access token.

5. Type a small description for the Token description field to identify your token.
Leave the options under the Select scopes section at their default values:

New personal access token

Personal access tokens function like ordinary OAuth access tokens. They can
HTTPS, or can be used to authenticate to the API over Basic Authentication.

Token description

blue_ocean_jenkins

What's this token for?

Creating a GitHub personal access token

[135]

The New Jenkins Chapter 3

6. Click on the Generate new token button at the bottom of the page to generate a
new Personal access token:

Personal access tokens Generate new token Revoke all

Tokens you have generated that can be used to access the GitHub APL

Make sure to copy your new personal access token now. You won't be able to see it again!

+ 122adaldbac7a%9a@es8221d7f87456d3b6cedads [fa Edit | Delete

GitHub personal access token

7. Copy the newly created personal access token and paste it inside your GitHub
access token field, then click on the Connect button (see the following
screenshot).

8. Next, click on the listed organization:

o Which organization does the repository belong to?

~™ nikhilpathania

Choosing the GitHub account

9. You can choose between New Pipeline and Auto-discover Jenkinsfiles. In the
following example, we will choose the New Pipeline option:

o Create a single Pipeline or discover all Pipelines?

New Pipeline

Create a Pipeline from a single repository.

Auto-discover Jenkinsfiles

Create Pipelines for any repository in this
organization that contain a Jenkinsfile.

Choosing between creating and discovering pipelines

[136]

The New Jenkins Chapter 3

10. Next, you will be asked to choose a repository from the list of available
repositories on your GitHub account. You can utilize the Search... option to look
for the desired repository in case it's not listed. In our current example, we will
choose the hello-world-example repo:

O Choose a repository

Loaded 3 repositories.

Qs

‘ hello-world-example

Projectlenkins

simple-maven-project-with-tests

Create Pipeline

Choosing a repository

11. The next thing Jenkins will ask you to do is create a pipeline. Since there is no
Jenkinsfile found on the respective repository, click on the Create Pipeline button
to create a Jenkinsfile:

O There are no Jenkinsfiles in hello-world-example

Create Pipeline

Creating a new pipeline

[137]

The New Jenkins Chapter 3

12. The page to create a pipeline will look like that which follows. On the left-hand
side, you will find a visualization of your pipeline, and on the right-hand side,
you will find the utility to choose the blocks, stages, and steps (similar to the
pipeline syntax utility that we saw in the previous section):

nikhilpathania / hello-world-example Cancel

Pipeline Settings

Agent

Start

none -

Environment

MName Value

Blue Ocean pipeline editor

13. Let us first choose an Agent to run our pipeline. To do so, from the Pipeline
Settings, using the Agent field, choose the option label. Then type master under
the Label field, as shown in the following screenshot. In this way, we are telling
Jenkins to run our pipeline on the Jenkins master:

Pipeline Settings

Agent

| label v

Label*

| master |

Creating a node block

14. Next, let us create a stage named Build that will build our source code. To do so,
click on the + button, available on the pipeline visualization.

[138]

The New Jenkins Chapter 3

15. You will be asked to name your new stage. Do so by typing Build under the
Name your stage field, as shown in the following screenshot:

Build Build

e

Start

+ Add step

Creating a build stage

16. Next, we will add a step to build our Maven code. To do so, click on the + Add
step button.

17. You will be asked to choose from a list of available steps, as shown in the
following screenshot:

Choose step type

Shell Script

Print Message

Enforce time limit

Retry the body up to N times

Sleep

The step menu

18. Ours is a Maven project. Therefore, we might need to set up the Maven
environment first, to tell Jenkins which Java and Maven tool it can use.

19. To do so, search for Provide Maven environment using the search box (find
steps by name):

Choose step type
provide

Provide Maven environment

Choosing the provide Maven environment step

[139]

The New Jenkins Chapter 3

Not all Jenkins plugins are compatible with Jenkins Blue Ocean. The list is
still small. However, it's expected to grow over time.

20. When you click on the Provide Maven environment step, you will be presented
with a list of fields to configure, as shown in the following screenshot. Type M3
under the Maven field and leave rest of the options as is:

Build / Provide Maven
environment

GlobalMavenSettingsConfig

GlobalMavenSettingsFilePath

Jdk

Maven

M3

Configuring the provide maven environment step

21. At the bottom of the configuration page, click on the + Add step button to create a
new child step that will build our Maven code.

22. Choose Shell Script from the list of available steps, if your Jenkins master is a
Linux machine. Choose Windows Batch Script, if it's a Windows machine.

23. Type the following code inside the textbox for Shell Script/Windows Batch
Script:

mvn clean install

Build / Shell Script

myn clean install

Configuring the shell script child step

[140]

The New Jenkins Chapter 3

24. Click on the back arrow to go back to the previous menu. You should now see
your new step, Shell Script, listed under the Child steps section, as shown in the
following screenshot:

Options
This property type is not supported

Child steps

Shell Script

Shell script as one of the child steps

25. Click on the back arrow to go back to the previous menu.

26. Next, let us create a stage named Results, wherein we will archive our built
artifacts and the XML result reports. To do so, click on the + button available on
the pipeline visualization.

27. You will be asked to name your new stage. Do so by typing Results under the
Name your stage field, as shown in the following screenshot:

Build Results Results

Oo—e

Start

Creating a results stage

28. Next, we will add a few steps on our new stage. The first one will be a step to
publish our test results report. To do so, click on the + Add step button.
29. Choose Publish JUnit test result report from the list of available steps. You will
be presented with a list of options to configure:
1. Add **/target/surefire-reports/TEST-*.xml under the
TestResults field.

[141]

The New Jenkins

Chapter 3

2. Leave the rest of the options as is:

Results / Publish JUnit test result report ---

TestResults*
** [target/surefire-reports/TIl
AllowEmptyResults

HealthScaleFactor

KeeplongStdio

TestDataPublishers
This property type is not supported

Configuring the publish JUnit test result report step

30. Click on the back arrow to go back to the previous menu.
31. Click on the + Add step button again to add a new step.

32. Choose Archive the artifacts from the list of available steps. You will be
presented with a list of options to configure:
1. Add target/*.jar under the Artifacts field.

2. Leave the rest of the options as is:

Results / Archive the artifacts .-+

Artifacts®
target/* jar
AllowEmptyArchive
CaseSensitive
DefaultExcludes

Excludes

Fingerprint

OnlylfSuccessful

Configuring the Archive the artifacts step

[142]

The New Jenkins Chapter 3

33. Click on the back arrow to go back to the previous menu.

34. Finally, click on the Save button at the top-right corner of the page to save your
pipeline configuration.

35. A pop-up window will ask you to add some Description and choose the branch
on which to commit the pipeline configuration.

36. Once done, click on the Save & run button:

Save Pipeline

Saving the pipeline will commit a Jenkinsfile to the repository.

Description

created a pipeline script ‘

° Commit to master
O Commit to new branch

Saving the pipeline

37. This will immediately run a pipeline on the respective branch, as shown in the
following screenshot:

. nikhilpathania / hello-world-example Y¥ Activity Branches Pull Requests

Status Run Commit Branch Message Duration Completed

o 3 0b58117 master Updated Jenkinsfile 7s a minute ago O

A successful build on the master branch

[143]

The New Jenkins Chapter 3

38. You will notice that a new file has been created inside your repository under the
master branch:

~* nikhilpathania Updated Jenkinsfile

i src added files to source control
£ .gitignore added files to source control
E) Jenkinsfile Updated Jenkinsfile

[E) LICENSE added files to source control
[E) README.md added files to source control
E pomxml added files to source control

Jenkinsfile listed inside the source code
39. The following should be the content of the file:

pipeline {
agent {
node {
label 'master'
}
}
stages {
stage ('Build') {
steps {
withMaven (maven: 'M3') {
sh 'mvn clean install’

}
}
stage ('Results') {
steps {
junit '**/target/surefire-reports/TEST-*.xml'
archiveArtifacts 'target/*.jar'

[144]

The New Jenkins Chapter 3

Summary

In the preceding chapter, we got hands-on experience of almost all of the new features in
Jenkins. We chose modest examples to keep our pipelines simple. Nevertheless, in the
upcoming chapters, we will learn to create a full-fledged CI/CD pipeline using all of the
new features in Jenkins.

In the next chapter, we will take a look at some of the administrative tasks in Jenkins.

[145]

Configuring Jenkins

In this chapter, we will learn how to perform some basic Jenkins administration tasks, as
follows:

¢ Updating/installing/uninstalling/downgrading Jenkins plugins

e Installing Jenkins plugins manually

¢ Performing Jenkins backup and restore

e Upgrading Jenkins on various platforms (Windows/Linux/servlet)
¢ Upgrading Jenkins running inside a Docker container

¢ Creating and managing users in Jenkins

¢ Learning various authentication methods in Jenkins

¢ Configuring various authorization methods in Jenkins

Jenkins comes with a pile of items to configure. The more plugins you install, the more
there is to configure. In this chapter, we will cover only the basic administrative tasks in
Jenkins. We will learn more about the Jenkins configuration in the upcoming chapters,
wherein we will try to add up more plugins to Jenkins in order to achieve Continuous
Integration (CI) and Continuous Delivery (CD).

The Jenkins Plugin Manager

Jenkins derives most of its power from plugins. Jenkins plugins are pieces of software that
upon installation enhance the Jenkins functionality. A plugin that is installed inside Jenkins
manifests itself as a parameter or a configurable item inside a Jenkins job or inside the
Jenkins system configuration, or event as a step under the Snippet Generator (in case it's
compatible with the Declarative Pipeline syntax).

Configuring Jenkins Chapter 4

The following screenshot shows the Jenkins system configuration. It's a setting to configure
the SonarQube tool (a static code analysis tool). The respective configuration is available
only after installing the Jenkins plugin for SonarQube:

SonarQube

Environment variables Enable injection of SonarQube server configuration as build environment variables

SonarQube installations
ame
Sonar

Server URL

Default is http:/flocalhost:8000
SonarQube account login

SonarQube account password

Disable

Check to quickly disable SonarQube on all jobs.

Advanced...

Delete SonarQube

Add SonarQube

List of SonarQube installations

SonarQube settings inside Jenkins system configuration

There is a special section inside Jenkins to manage plugins. In this section, we will learn
how to manage plugins using the Jenkins Plugin Manager:

1. From the Jenkins dashboard click on Manage Jenkins.

2. Once on the Manage Jenkins page, click on Manage Plugins. You can also access
the same Jenkins Plugin Manager page using the <Jenkins
URL>/pluginManager link.

3. You will see the following four tabs: Updates, Available, Installed, and
Advanced.

[147]

Configuring Jenkins Chapter 4

Updating Jenkins plugins

The Updates tab lists out all of the plugins that need an update, as shown in the following
screenshot:

Updates
Install Name | Version Installed
Ant Plugin
- o) 1.7 1.5
Blue Ocean

1.1.7

Blue Ocean Pipeline Editor

Updating Jenkins plugins

To update a plugin, select it by clicking on its respective checkbox and click on the
Download now and install after restart button.

To update all plugins listed under the Update tab, click on All (available at the bottom of
the page). This will select all the plugins. Then, click on the Download now and install
after restart button to install the updates.

On the Updates tab, at the bottom of the page, you will see a button named Check now.
Click on it to refresh the list of plugins that are displayed under the Updates tab. This will
check for plugin updates.

Installing a new Jenkins plugin

The Available tab lists all plugins available for Jenkins. Plugins that are installed on your
Jenkins instance will not be listed here.

[148]

Configuring Jenkins Chapter 4

The following screenshot shows a list of available plugins for Jenkins:

Available

Install | Name Version
\MET Development
Agent Launchers and Controllers

Android Development

r Android Emulator Plugin 215
Android Lint Plugin

r Parses Android Lint output and displays 2.5
Android Signing Plugin

r 225

The plugins are grouped based on their functionality

To install a plugin, select it by clicking on its respective checkbox. Then, at the bottom of the
page click on either the Install without restart button (to install the plugin immediately) or
on the Download now and install after restart button (the name is self-explanatory).

Just like the Updates tab, here too you will see a button named Check now. Clicking on it
will refresh the list of plugins under the Available tab.

Uninstalling or downgrading a Jenkins plugin

The Installed tab lists all the plugins currently installed on your Jenkins instance. As shown
in the following screenshot, you can see there is an option to uninstall a plugin as well as
downgrade it.

You can always choose to downgrade a plugin, in the event your Jenkins instance becomes
unstable or your CI/CD pipeline does not do well, after a plugin update:

[149]

Configuring Jenkins Chapter 4

Updates Awailable Installed Advanced
Enabled Name | Version Previously installed version Uninstall

Ant Plugin

~ Adds Apache Ant 17 Downgrade to 1.5 m

support to Jenkins
Authentication Tokens
APl Plugin
This plugin provides
an API for 11
converting o
credentials into
authentication
tokens in Jenkins

List of installed Jenkins plugin

Configuring proxy settings in Jenkins

Under the Advanced tab, you will see a section named HTTP Proxy Configuration. This is
the place where you configure your proxy settings to allow Jenkins to fetch updates from
the internet:

pdates Awailable nstalled Advanced
HTTP Proxy Configuration
Server
Port H @
User name

Password

HTTP Proxy Configuration settings

Leave these fields empty if your Jenkins server is not behind any firewall and has direct
access to the internet.

[150]

Configuring Jenkins Chapter 4

Jenkins uses the HTTP Proxy Configuration details when you try to install or upgrade a
Jenkins plugin. It also uses this information to update the list of Jenkins plugins available on
the Update tab and the Available tab.

To test your proxy settings, do the following:

1. Under the HTTP Proxy Configuration section, click on the Advanced... button.
2. Add a URL to the Test URL field and click on the Validate Proxy button.

3. You should see a message: Success, as shown in the following screenshot.

4. Click on the Submit button to save the settings:

Test URL https:/fwww.google com

Success Validate Proxy

Checking the proxy settings

Manually installing a Jenkins plugin

Under the Advanced tab, just after the HTTP Proxy Configuration section, you will see
another section named Upload Plugin. It provides you with the facility to install or upgrade
a Jenkins plugin.

This feature is helpful when your Jenkins instance does not have internet access and you are
in need of a new plugin or you need to upgrade an existing plugin. Imagine a situation
where you have a Jenkins instance running inside a local area network, but with no access
to the internet, or shall we say the Jenkins online plugin repository. In such cases, you will
first download the required Jenkins plugin from the online Jenkins repository, and then you
will transport it to the Jenkins master server using a removable media. And finally, you will
use the Upload Plugin section to install the required Jenkins plugin.

Let us try to install a plugin manually by following the given steps:

1. From a machine that has access to the internet, open the website: https://

updates.jenkins-ci.org/download/plugins/.

[151]

https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/

Configuring Jenkins Chapter 4

2. The preceding site contains the list of all plugins available for Jenkins, as shown
in the following screenshot:

Index of /download/plugins

Name Last modified Size Description

3 Parent Directory

(03 AnchorChain/ 2017-09-11 21:16
E}Apical_oadtest." 2017-09-11 21:16
(3 BlameSubversion/ 2017-09-11 21:16

Jenkins plugin index

3. In the following example, we will install a plugin named logstash.
4. On the index page, search for logstash and click on it.

5. You will see all available versions of the respective plugin. Click on the one that
you need (I choose to install the latest):

logstash

‘=" permalink to the latest
= 13.0
=120
=111

List of versions available for a plugin

6. This will download a . hpi file on your system.

7. When you download a plugin, it is also important that you download its
dependencies (other Jenkins plugins).

8. All the dependencies (Jenkins plugins) must be installed before installing the
desired plugin.

9. Copy this . hpi file (logstash.hpi) to your Jenkins server or to any machine
that has access to your Jenkins dashboard.

[152]

Configuring Jenkins Chapter 4

10. Now, log in to your Jenkins server. From the Jenkins dashboard, navigate to
Manage Jenkins | Manage Plugins | Advanced.

11. On the Advanced tab, under the Upload Plugin section, do the following (as
shown in the following screenshot):

12. Click on the Browse... button under the File field.
13. From the resultant window, upload the downloaded . hpi file.
14. Once done, click on the Upload button:

Upload Plugin

You can upload a hpi file to install a plugin from outside the central plugin
repository.

File: | = Browse... | logstash.hpi

Manually uploading a Jenkins plugin

15. Jenkins will now proceed with the plugin installation.

Jenkins backup and restore

What happens if someone accidentally deletes important Jenkins configurations? Although
this can be avoided using stringent user permissions that we will see in the User
Administration section, imagine a situation where someone working on the Jenkins
configuration wants to restore to a previous stable Jenkins configuration.

From what we have learned so far, we know that the entire Jenkins configuration is stored
under the Jenkins home directory. Itis C: \ jenkins (Windows), /var/jenkins_home
(Apache Tomcat), /var/1lib/jenkins (Linux). In the following section, we will learn how
to back up and restore the Jenkins configuration using a plugin, the Periodic Backup
plugin.

[153]

Configuring Jenkins Chapter 4

Installing the Periodic Backup plugin

Follow the given steps to install the Periodic Backup plugin:

1. From the Jenkins dashboard, click on Manage Jenkins | Manage Plugins.
2. On the Plugin Manager page, click on the Available tab.

3. Using the Filter option, search for Periodic Backup, as shown in the following
screenshot:

Filter: | “% Periodic Backup

Available
Install | Name Version

v Periodic Backup

15
Install without restart Download now and install after restart
. . . . Check
information obtained: 7 hr 28 min ago

Installing the Periodic Backup plugin

4. From the list of items choose Periodic Backup and click on Install without
restart. You only need Blue Ocean and nothing else.

Configuring the Periodic Backup plugin

We need to tell the Periodic Backup plugin what to back up, where to back up, and how
frequent to back up before we even start using it. Follow the given steps:

1. From the Jenkins dashboard go to Manage Jenkins | Periodic Backup Manager.

2. When you access the Periodic Backup Manager for the first time you will see the
following notification:

The Periodic Backup plugin has not been configured yet. Click here to
configure it.

[154]

Configuring Jenkins Chapter 4

10.

11.

12.

13.

Click on the Click here to configure it link.

You will be taken to the Periodic Backup Manager page, and you will find quite
a few options to configure. Let us see them one by one (as shown in the following
screenshot).

The Root Directory, <your Jenkins home directory>,isyour Jenkins home
directory.

The Temporary Directory field should be a directory located on your Jenkins
server machine. As the name says, this directory is used as a temporary location
to perform archive/unarchive operations during the backup/restore process. It
can be any directory and should be outside Jenkins home directory.

The Backup schedule (cron) field is where you define when or how frequent to
make a backup. Do not leave this field empty. Note that the field accepts cron
syntax. For example, to back up daily at midnight, use the following cron syntax
without quotes: 0 0 * * *,

The Validate cron syntax button is to validate the cron that you have entered in
the Backup schedule (cron) field.

The Maximum backups in location field tells Jenkins not to store backups
greater than the number described here.

The Store no older than (days) field tells Jenkins to delete any backup that is
older than this value.

Under File Management Strategy, you have two options to choose from:
ConfigOnly and FullBackup. If you choose the ConfigOnly option, Jenkins will
back up all the . xm1 files from the Jenkins home directory and the config.xml
files of all the jobs. But, if you choose FullBackup, then Jenkins will back up the
whole Jenkins home directory.

Under Storage Strategy, you have three options to choose from: NullStorage,
TarGzStorage, and ZipStorage (with multi-volume support). You can choose the
one that suits your requirement.

Under Backup Location, you can add multiple backup locations to store your
backups. To do so, click on the Add Location button and choose LocalDirectory.
Next, under the Backup directory path field, add the location where you want
Jenkins to store the backup. Also, do not forget to check the Enable this location
checkbox. You can choose multiple locations and enable all of them.

[155]

Configuring Jenkins Chapter 4

Root Directory fvarfjenkins_home
Temporary Directory ftmp @
Backup schedule {cron) NREE

Validate cron syntax
Maximum backups in location 10 @
Store no older than (days) 7 ®

File Management Strategy

= ConfigOnly @
" FullBackup
Storage Strategy

TarGzStorage Delete

Add Storage ~

Backup Location

LocalDirectory
Backup directory path

Jienkins_backup @

¥ Enable this location @

directory "jenkins_backup® OK Validate path
Delete

Periodic Backup configurations

Creating a Jenkins backup

Now that we have configured the Periodic Backup plugin, let us run a backup to test our
settings. To do so, on the Periodic Backup Manager page, click on the Backup Now! link
available on the left-hand side menu.

You will see the notification on the Periodic Backup Manager page while the backup is in
progress as Creating backup....

[156]

Configuring Jenkins Chapter 4

Once the backup is complete, you will see it listed on the same page, as shown in the
following screenshot:

" ConfigOnly created on Sat Sep 16 18:45:43 UTC 2017

Restore selected backup

List of backup

Restoring a Jenkins backup

Let us now test restoring a Jenkins backup. But before we do that, let us make some
configuration changes to see if the restore operation works. We will do this by making some
configuration changes on the Configure System page:

NS DN

10.

11.

From the Jenkins dashboard, click on Manage Jenkins | Configure System.
On the Configure System page, change the values for the following fields.
Change the value of the # of executors field from 2 to 5.

Change the value of the Quiet period field from 5 to 10.

Click on the Save button at the bottom of the page.

Now, let us restore Jenkins to a point previous to the above changes.

From the Jenkins dashboard, click on Manage Jenkins | Periodic Backup
Manager.

On the resultant page, choose the backup that we created in the previous section
and click on the Restore selected backup button.

You will see the following message:
Restoring backup...

Refresh the page, and from the Jenkins dashboard click on Manage Jenkins |
Configure System.

You will find the value of the # of executors field as two and the Quiet period
field as five.

[157]

Configuring Jenkins Chapter 4

Viewing the backup and restore logs

You can see the whole log with respect to Jenkins backup and restore. To view the details
logs, perform the following steps:

1. From the Jenkins dashboard, click on Manage Jenkins | System Log.

2. On the Logs page, under the Log Recorders section, click on
org.jenkinsci.plugins.periodicbackup.

3. You will find the complete log of the backup and the restore action performed
here, as shown in the following screenshot:

Started PeriodicBackup

backup_2017_09_16_23_15 36_131.tar.gz copied to
/jenkins backup/backup 2017 _09_1& 23 15 36 131.tar.gz

backup_2017_09_16_23_15 36_131.phobj copied to /jenkins_backup
/backup_2017_09_16 23_15_36_131.pbobi

Deleting the temporary file
/tmp/backup 2017 _09_16 23_15 36_131.pbab]

Checking for redundant and old backups in the location.

Deleting temporary file
/emp/backup_2017_09_16_23_15_36_131.tar.gz

Backup finished successfully after 18 ms
Finished PeriodicBackup. 19 ms

The final result directory /ctmp/finalResult is not empty,
deleting...

Jrmp/finalResult does not exist, making new directory

Copying /jenkins_backup/backup 2017_09_16 23 11 31 835.tar.gz
to /tmp/backup_2017_09_16_23_11_31_835.tar.gz

Archive /jenkins backup/backup 2017 09_16 23 11 31 835.tar.gz
copied to /cmp/backup_2017_09_16_23_11 31_835.tar.gz

Extracting files from
/rmp/backup 2017_09_16 23_11_31_835.tar.gz to /tmp/finalResult

Restoring of files finished

Reloading configuration...

Restoration finished after 592 ms

Jenkins Periodic Backup log

[158]

Configuring Jenkins Chapter 4

Upgrading Jenkins

There are two kinds of Jenkins releases: LTS Release and Weekly Release. The Jenkins Weekly
Release contains new features and bug fixes, whereas the LTS (Long Term Support) Release are
special releases that are considered stable over a period of 12 weeks. It's recommended that
you always choose an LTS Release for your Jenkins server:

Long-term Support Weekly

(l—TS) A new release is produced weekly to
deliver bug fixes and features to users
and plugin developers.

LTS (Long-Term Support) releases are
chosen every 12 weeks from the stream
of regular releases as the stable release

Changelog | Past Releases
for that time period. Leam more... gelog|

Changelog | Upgrade Guide | Past

Releases
£ Deploy Jenkins 2.73.1 £ Download Jenkins 2.78 for:
Arch Linux &3
B Download Jenkins 2.73.1 for: Docker
Docker FreeBSD 3
FreeBSD Gentoo &%
Gentoo &5 Mac OS X
Mac OS X QpenBSD &%

Jenkins download page

Jenkins by itself notifies you when there is a newer version available (provided your Jenkins
server has access to the internet), as shown in the following screenshot:

[159]

Configuring Jenkins Chapter 4

Manage Jenkins

+. New version of Jenkins (2.73.1) is available for download (changelog).

b Configure System
Configure global settings and paths

| Configure Global Security
| Secure Jenkins; define who is allowed to access/use the system

Configure Credentials
% Configure the credential praviders and types

Jenkins notification about the availability of a new version

Upgrading Jenkins running on Tomcat Server

In the following section, we will learn to update Jenkins running inside a servlet (Apache
Tomcat). Follow the given steps:

1. Log in to your Apache Tomcat server machine as the root user.

2. Download the latest (LTS) version of jenkins.war under the /tmp directory
using the following command:

cd /tmp

wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war

To download a specific version of Jenkins (LTS), go to the following link:
http://mirrors.jenkins.io/war-stable/ and choose the desired version
of Jenkins (for example, http://mirrors.jenkins.io/war-stable/2.73.
1/jenkins.war).

To download a specific version of Jenkins (Weekly), go to the following
link: nttp://mirrors.jenkins.io/war/ and choose the desired version of
Jenkins (for example, http://mirrors.jenkins.io/war/2.78/jenkins.

war).

[160]

http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war

Configuring Jenkins Chapter 4

3. Before we upgrade Jenkins, it is important that we take a backup of our
jenkins_home directory. Refer to the Creating a Jenkins backup section.

Always run a backup of Jenkins before upgrading Jenkins.

4. Now, stop the tomcat service using the following command:
systemctl stop tomcat

5. Next, go to the location where the current jenkins.war file is present. In our
case, it is /opt /tomcat /webapps:

cd /opt/tomcat/webapps/
If you have chosen to use Tomcat Server solely to run Jenkins, you may
find ROOT . war instead of jenkins.war under the webapps directory.

Refer to the Installing Jenkins alone on Apache Tomcat Server section,
from chapter 2, Installing Jenkins.

6. Take a backup of your existing jenkins.war or ROOT.war and place it
somewhere outside the webapps directory (for example, the /tmp directory):

cp jenkins.war /tmp/jenkins.war.last.stable.version

Or:

cp ROOT.war /tmp/ROOT.war.last.stable.version
7. Now, delete the current jenkins.war or ROOT . war file inside the webapps
directory:

rm -r jenkins.war

Or:

rm —-r ROOT.war

[161]

Configuring Jenkins Chapter 4

8. Next, move the new jenkins.war that you have downloaded from the /tmp
directory to the webapps directory. If you are using Apache Tomcat Server solely
for running Jenkins, then rename the destination.war file as ROOT.war:

mv /tmp/jenkins.war /opt/tomcat/webapps/jenkins.war
Or:

mv /tmp/jenkins.war /opt/tomcat/webapps/ROOT.war

9. Now, start the Tomcat service using the following command:

systemctl start tomcat

10. Log in to your Jenkins instance. To confirm the Jenkins version, look at the
bottom-right corner of your Jenkins dashboard, where you will find a new
Jenkins version number.

Upgrading standalone Jenkins running on
Windows

Upgrading a standalone Jenkins server on Windows is a simple task. Follow the given
steps:

1. Download the latest jenkins.war from https://jenkins.io/download/. Or, if
you are looking for a particular Jenkins version that you want to upgrade to, then
download it from the following link: http://mirrors.jenkins.io/war-stable/.

2. Before we upgrade Jenkins it is important that we take a backup of our
jenkins_home directory. Refer to the Creating a Jenkins backup section under
the Jenkins backup and restore section.

Always run a backup of Jenkins before upgrading Jenkins.

On a Jenkins standalone instance (running on a Windows machine), the
jenkins.war file is present inside the jenkins_home directory. Hence,
backing up the jenkins_home directory is enough.

[162]

https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/

Configuring Jenkins Chapter 4

3. Next, stop the Jenkins service. To do that, execute services.msc from Windows
Run. This will open the Windows services page.

4. Search for the Jenkins service (usually named Jenkins). Stop the Jenkins service,
as shown in the following screenshot:

Mame Status Startup Type Log On As

Automatic Local System

{£L KtmRm for Distributed Transaction Coordinats Start Manual (Trigger Start) MNetwork Service
Q}; Link-Layer Topology Discovery Mapper Stop Manual Local Service

% Local Session Manager Pause utomatic ocal System
Ll Local § Manag A Local Sy
l.,':,%?;Microsoft (R} Diagnostics Hub Standard Colle Bz Manual Local Systermn
£k Microsoft Account Sign-in Assistant Restart Manual (Trigger Start] Lecal System
Q;Microsoft 1ISCSI Initiator Service Manual Local Systemn

% Microsoft Passport asks anual (Trigger Start ocal System
EEM ft Passpi All Task M | (Trigger Start) Local Sy
Q};Microsoﬁ Passport Container Refresh Manual (Trigger Start) Local Service

. res|
‘£ Microsoft Software Shadow Copy Provider Manual Local Systermn

% Microsoft Storage Spaces roperties anua ebwork Service
M ft Storage Sp SMP Prope: M I M k S

. Microsoft Windows outer Service. anual (Trigger Start ocal Systemn
M ft Wind SMS R 5 o M | (Trigger Start) Local Sy
{:J.'; Met.Tcp Port Sharing Service = Disabled Local Service

Stopping a Jenkins service

5. Or, you can also stop the Jenkins service from the Windows Command Prompt
(Run as administrator), using the following command:

net stop Jenkins

The output is as follows:

The Jenkins service is stopping.
The Jenkins service was stopped successfully.

6. Next, replace the jenkins.war file, present under C: \Program Files
(x86) \Jenkins)\, with the newly downloaded jenkins.war file.

7. After replacing the jenkins.war file, start the Jenkins service from the services
window, as shown in the following screenshot:

[163]

Configuring Jenkins Chapter 4
Mame Status Startup Type Log On As
Local System
{55 KtmRm for Distributed Transaction Coordinator Start al (Trigger Start]) Network Service
-J.“,) Link-Layer Topology Discovery Mapper Stop al Local Service
-E,.} Local Session Manager Paiee matic Local System
{5k Microsoft (R) Diagnostics Hub Standard Collector Se Resume al Local Systemn
Q;Microsoft Account Sign-in Assistant Rectaet al (Trigger Start) Local System
-\.‘:,:J_‘;Microsoft iSCSl Initiator Service . al Local System
.5;‘% Microsoft Passport All Tasks al (Trigger Start) Local System
-J.“,) Microsoft Passport Container al (Trigger Start) Local Service
-E,.} Microsoft Software Shadow Copy Provider Refresh al Local System
.5;‘% Microsoft Storage Spaces SMP Properties al Metwork Service
£k Microsoft Windows SMS Router Service. al (Trigger Start) Local System
-E,.} Met.Tcp Port Sharing Service e led Local Service

Starting a Jenkins service

8. Or, you can also start the Jenkins service from the Windows Command Prompt
(Run as administrator), using the following command:

net start Jenkins

The output is as follows:

The Jenkins service is starting.
The Jenkins service was started successfully.

9. Log in to your Jenkins instance. To confirm the Jenkins version, look at the
bottom-right corner of your Jenkins dashboard, where you should see a new
Jenkins version number.

Upgrading standalone Jenkins running on
Ubuntu

In the following section, we will learn how to update Jenkins running on Ubuntu. Follow
the given steps:

1. Log in to your Jenkins server machine as a root user.

[164]

Configuring Jenkins Chapter 4

2. Download the latest (LTS) version of jenkins.war under the /tmp directory,
using the following command:

cd /tmp

wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war

To download a specific version of Jenkins (LTS), go to the following link:
http://mirrors.jenkins.io/war-stable/ and choose the desired version

of Jenkins (for example, http://mirrors.jenkins.io/war-stable/2.73.
1/jenkins.war).

To download a specific version of Jenkins (Weekly), go to the following
link: http://mirrors. jenkins.io/war/ and choose the desired version of
]enkhﬁ;Gorexanqﬂe,http://mirrors.jenkins.io/war/Z.78/jenkins.

war).

3. Before we upgrade Jenkins, it is important that we take a backup of our
jenkins_home directory. Refer to the Creating a Jenkins Backup section under
the Jenkins backup and restore section.

Always run a backup of Jenkins before upgrading Jenkins.

4. Now, stop the jenkins service, using the following command:

systemctl stop jenkins

5. Next, go to the location where the current jenkins.war file is present. In our
case, itis /usr/share/jenkins/:
cd /usr/share/jenkins/
6. Take a backup of your existing jenkins.war and place it somewhere outside the

jenkins directory (for example, the /tmp directory):

cp jenkins.war /tmp/jenkins.war.last.stable.version

[165]

http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war-stable/2.73.1/jenkins.war
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war
http://mirrors.jenkins.io/war/2.78/jenkins.war

Configuring Jenkins Chapter 4

7. Now, delete the current jenkins.war file inside the jenkins directory:
rm -r jenkins.war
8. Next, move the new jenkins.war file that you have downloaded from the /tmp
directory to the jenkins directory:

mv /tmp/jenkins.war /usr/share/jenkins/jenkins.war

9. Now, start the jenkins service using the following command:

systemctl start jenkins

10. Log in to your Jenkins instance. To confirm the Jenkins version, look at the
bottom-right corner of your Jenkins dashboard, where you will find a new
Jenkins version number.

Upgrading Jenkins running on a Docker
container

In the following section, we will learn how to update a Jenkins instance running inside a
Docker container:

The following section is applicable only if you are running your Jenkins
instance using a data volume for your jenkins_home directory. See
the Running Jenkins on Docker, Running a Jenkins container using a data
volume sections from the chapter 2, Installing Jenkins.

1. Log in to your Docker host machine.
2. Look for the running Jenkins container, using the following command:
sudo docker ps ——format "{{.ID}}: {{.Image}} {{.Names}}"

The output is as follows:

d52829d9da9e: jenkins/jenkins:1lts jenkins_prod

[166]

Configuring Jenkins Chapter 4

3. You should get an output similar to the previous snippet. Note the Jenkins
container name, in my example it is jenkins_prod.

4. We will stop and then delete the running Jenkins container using the following
Docker commands. But, before you stop and delete your Jenkins instance, make
sure that there is no job running on your Jenkins server:

sudo docker stop <your jenkins container name>

sudo docker rm <your jenkins container name>

5. List the available Docker images on your Docker host, using the following
command. You can see we have a Jenkins Docker image:
jenkins/jenkins:1lts. However, that is no longer the latest:

sudo docker images

The output is as follows:

REPOSITORY TAG IMAGE ID CREATED SIZE
jenkins/jenkins 1ts 6376a296laab 7 weeks ago 810MB
hello-world latest 1815c82652c0 3 months ago 1.84kB

6. Download the latest Jenkins Docker image, using the following command:
sudo docker image pull jenkins/jenkins:2.73.1
The aforementioned command may take a while to download the Jenkins
Docker image.
At the time of writing this chapter, 2.73.1 was the latest Jenkins release

(LTS). Choose the desired version of Jenkins by modifying the command.

7. Once the download is completed, execute the sudo docker images
command again, as shown in the following segment. Note the new Jenkins
Docker image. In my example, itis jenkins/jenkins:2.73.1:

sudo docker images

[167]

Configuring Jenkins Chapter 4

The output is as follows:

REPOSITORY TAG IMAGE ID CREATED SIZE

jenkins/jenkins 2.73.1 c8a24e6775ea 24 hours ago 814MB
jenkins/jenkins 1ts 6376a296laa6 7 weeks ago 810MB
hello-world latest 1815c82652c0 3 months ago 1.84kB

8. Now let us start a new Jenkins container using the newly downloaded Jenkins
Docker image (we will reuse the old Jenkins container name):

sudo docker run -d —--name jenkins_prod \
-p 8080:8080 -p 50000:50000 \

-v jenkins-home-prod:/var/jenkins_home \
jenkins/jenkins:2.73.1

9. The following table explains the Docker commands that we used before:

docker Used to invoke Docker utility.

run It's a Docker command to run a container.

-d This option runs the container on the backend.

—-name This option gives a name to your container.

-p This option is used to map a container's port with the host.
The name of the Docker image and its version used to create

jenkins/jenkins:2.73.1a container. jenkins/jenkins is the Jenkins Docker image
and 2.73.1 is a particular version of that image.

10. Log in to your Jenkins instance. You should see all your jobs/settings intact. To
confirm the Jenkins version, look at the bottom-right corner of your Jenkins
dashboard, where you will find a new Jenkins version number.

User administration

Let's see what Jenkins has to offer in the area of user administration. From the Jenkins
dashboard, click on Manage Jenkins | Configure Global Security to access the Configure
Global Security page.

[168]

Configuring Jenkins Chapter 4

You can also access the Configure Global Security page by using
0 the <Jenkins URL>/configureSecurity/ link.

In the following section, we will stick to the options that are related to user authentication
and permissions. We will look at the other security options in the upcoming chapters.

Enabling/disabling global security on Jenkins

Once on the Configure Global Security page, you will see that the Enable security option
is already enabled. The Enable security option should always be on; disabling it will make
Jenkins accessible to anyone who has the Jenkins URL, with no restrictions of any kind.

Enabling/disabling computers to remember user
credentials

When users try to access Jenkins, they are offered an option to be remembered on their
respective computers, as shown in the following screenshot:

User: Ijenkins_admin

Password: Iooooooooo

¥ Remember me on this computer

Remember me on this computer option

This behavior is enabled by default. To disable this feature, tick the Disable remember me
option available under the Configure Global Security page.

[169]

Configuring Jenkins Chapter 4

Authentication methods

Jenkins offers a variety of authentication methods to choose from. The following is a list of
available options:

Delegate to servlet container

Jenkins' own user database
LDAP
Unix user/group database

Access Control Security Realm

' Delegate to senet container

& Jenkins' own user database

" Allow users to sign up

b~

C LDAP

b~

' Unix user/group database

b

Jenkins' authentication methods

The Jenkins' own user database option is enabled by default. The initial users that we
created during the Jenkins setup wizard are all stored under the Jenkins' own user
database. There is no actual database of any kind, and all user information is saved as XML
files. Let us take a quick look at each of the authentication methods.

Delegating to a servlet container

This option can be used only when you are running your Jenkins server from a servlet
container, such as Apache Tomcat and so on. Enabling this option will allow Jenkins to
authenticate users using the servlet containers’ realm.

For example, in the Configure the Apache Tomcat Server sub-section under the Running Jenkins
inside a servlet container section from the chapter 2, Installing Jenkins, we modified the
tomcat-user.xnl file to create users and access. That is an example of

the UserDatabaseRealm.

That means, if your Jenkins server is running on Apache Tomcat server and you have
configured the UserDatabaseRealm, then all users defined in the tomcat-user.xml file
will be able to access Jenkins.

[170]

Configuring Jenkins Chapter 4

Refer to the following website to see all types of realms supported by

Apache Tomcat: http://tomcat .apache.org/tomcat-8.0-doc/realm-
howto.html#Standard_Realm_Implementations.

Jenkins' own user database

This option is enabled by default. Under this scheme, Jenkins stores all the user information
inside XML files. This option is good for small organizations or if you are exploring Jenkins
and are yet to make it a part of your organization.

There is also an option to allow users to sign up at the login page. To enable it, tick the
Allow users to sign up option available under Jenkins' own user database.

This will enable a link named Create an account at the Jenkins login page, as shown in the
following screenshot:

* Jenkins' own user database | User I

W' Allow users to sign up Password: |

[T Remember me on this computer

Create an account if you are not a member yet.

Allow user to sign up option

As anew user, when you click on the Create an account link you will be asked to fill in
some basic details about yourself, such as username, password, email, full name, and so on.
Once you are done filling in the necessary information you will be allowed to access
Jenkins.

What you as a new user are allowed to see/do on Jenkins depends on the Authorization
settings inside Jenkins. We will learn about the Authorization settings later in the current
chapter.

[171]

http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations
http://tomcat.apache.org/tomcat-8.0-doc/realm-howto.html#Standard_Realm_Implementations

Configuring Jenkins Chapter 4

LDAP

This is one of the most widely used authentication methods in most organizations. If you do
not see the LDAP option listed under the Access Control | Security Realm section, then
check for the LDAP plugin.

The following option, as shown in the following screenshot allows Jenkins to authenticate
users using an LDAP server. Contact the IT administration team in your organization to
provide the LDAP server details (if your organization uses LDAP).

© LDAP @
Server
Server @
root DN (7]
" Allow blank rootDN
User search base @
User search filter uid={0} @
Group search base @
Group search filter @
Group membership € Parse user attribute for list of LDAP groups
' search for LDAP groups containing user

Manager DN @
Manager Password @
Display Name LDAP attribute displayname @
Email Address LDAP attribute | . 7))

For more information about the LDAP configuration, refer to the LDAP
plugin page: https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin.

[172]

https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin
https://wiki.jenkins.io/display/JENKINS/LDAP+Plugin

Configuring Jenkins Chapter 4

Unix user/group database

The following option works if Jenkins is installed on a Unix/Linux machine. When enabled,
Jenkins delegates the authentication to the underlying OS. In other words, all users/groups
that are configured on the underlying OS get access to Jenkins.

You need not configure anything inside Jenkins to make this option work. However, all
users on the underlying OS should have access to the /etc/shadow file.

Use the following command to make the /etc/shadow file accessible to all users:

sudo chmod g+r /etc/shadow

Creating new users inside Jenkins

The following section is only applicable if you are using Jenkins' own user database as the
Authentication method. Perform the following steps to manually add users to your Jenkins
server.

1. From the Jenkins dashboard, click on Manage Jenkins | Manage Users.
2. On the Manage Users page, from the left-hand side menu, click on Create User.

3. On the resultant page, you will be asked to provide some basic information about
the user, as shown in the following screenshot:

Create User

Username:

Password:

Full name:

|
|
Confirm password: I
|
E-mail address: |

Creating a user in Jenkins

4. Fill the fields with appropriate values and click on the Create User button.

[173]

Configuring Jenkins Chapter 4

The Manage Users link is only available if you are using Jenkins' own
user database as the Authentication method.

People page
The People page displays all users that have access to the Jenkins server, as shown in the
following screenshot:

User Id Name Last Commit Activity 1 On
nikhilpathania

» hello-

& nikhilpathania nikhilpathania 1 mo 1 day world-
example »

temp

& jenkins_admin nikhil pathania LN

The Jenkins People page

User information and settings in Jenkins

Click on any particular user ID or name (see the following screenshot) to get information
about the respective user. You will be taken to the users' Status page, as seen in the
following screenshot:

& reore &} nikhil pathania
Ol status
= Builds

o i Jenkins User Id: jenkins_admin
Configure

& My views

,ﬁ Credentials

The users' Status page

[174]

Configuring Jenkins Chapter 4

On the users' Status page you will see the following options on the left-hand side menu:
Status, Builds, Configure, My Views and Credentials. Let us explore some of them in
detail:

¢ The Builds page will display information about all the Jenkins builds that were
run by the current user.

e The My Views page will take you to the views that are accessible by the current
user. If no views are configured for the current user, then the My Views page will
show the default All view (Jenkins dashboard).

¢ The Credentials link will take you to the Credentials page. However, the

Credentials page will display additional information with respect to the current
user, as shown in the following screenshot:

Stores scoped to User: nikhil pathania

P Store | Domains

.& User nikhil pathania % (global} & blueocean-git-domain % blueocean-github-domain

Stores from parent

P Store | Domains

-Q Jenkins d; (global) d; api_github_ com

Jenkins credentials scoped to a user

Authorization methods

Jenkins offers a variety of authorization methods to choose from. The following is a list of
available options:

¢ Anyone can do anything

¢ Legacy mode

¢ Logged-in users can do anything
Matrix-based

Project-based Matrix Authorization Strategy

[175]

Configuring Jenkins Chapter 4

The Logged-in users can do anything option is enabled by default. Let us take a quick look
at each of the authorization methods.

To access the Jenkins Authorization settings, from the Jenkins dashboard navigate to
Manage Jenkins | Configure Global Security | Access Control.

Anyone can do anything

When you choose this option, Jenkins does not perform any authorization. Anyone who has
access to Jenkins gets full control, including anonymous users. This option is not
recommended.

Legacy mode

When you choose this option, Jenkins behaves the way it used to be before release 1.164. In
simple terms, Jenkins will look for a user named Admin (irrespective of the Authentication
method you use). This Admin user will be provided administrative privilege, and the rest of
the users will be treated as anonymous users. This option is again not recommended.

Logged-in users can do anything

This is the default authentication setting that Jenkins comes with when you install and set
up a new Jenkins server. The name is self-explanatory, that is, logged-in users are
administrators by default. Again, this option is not recommended.

Under the Logged-in users can do anything field, there is an option named Allow
anonymous read access (disabled by default). When this option is ticked (enabled), anyone
who has access to the Jenkins URL will be straight away taken to the Jenkins dashboard
with read-only access to all Jenkins jobs. However, you are required to log in in order to
edit a Jenkins job or view Jenkins' configuration.

[176]

Configuring Jenkins Chapter 4

Matrix-based security

This is one of the most widely used Authorization methods in Jenkins. Let us explore it in
detail by performing the following steps:

1. Enable the Matrix-based security authorization method by selecting it. You will
be presented with the following matrix:

Overall Credentials Agent Job Run View SCM Metrics
s
I d
Userigroup & 8 2o g3 50 o Z_2c9 e
P S 2 998 £ ws5298328599:2=z22°2286€599 2, 558 <
gmﬂiggggﬁgg§g§§36'2§g<mg§%$52§mg D8
gammgg %gmmmg QEmemagm‘{ESﬂ’“’g =
= m = @ o @ o 3
5‘ = O
7]
FNSTeTu Yo (o TUESI S A SR SR S Sl A S i o A s A S A Y oA N AN AN AN AN AN AN A AN N A
Add
User/group to add: I

Matrix-based security configurations

2. From the previous screenshot, you can see the columns represent various items in
Jenkins and the rows represent various users. At the bottom of the matrix there is
an option to add users.

3. Let us add some users and provide them some permissions.

4. To add a user, enter the exact username of the user in the User/group to add
field, and click on the Add button.

5. You can see from the following screenshot that I have added four users (refer to
the People page section to see the list of users that you can add in here). If you are
using Jenkins' own user database then create a few users (refer to the Creating
new users inside Jenkins section):

Overall Credentials Agent Job Run View SCM Metrics
s L
3 o
Userigroup gﬂ%’%%%s?ggsggggggSgggggggggggg;g%Ei
z28gsEeadgescgacgespcsagaricgzrad 068
s 2 3 = g 3 3 a 2 3 g 5
2
Anonymous Si sl sil =i sl il =il sl sl il Wil it nl i nil it nll =il i i ndl wif =i il ui wil =i mi n BT =l =il =t
Gpnknszamn OO CCOCOCCOCOCCCOCCOCCOCCOCNCCCOOCCOCOCOE DR B EE D
& Jenkins_ceveloper T O T OO CC OO CCOOCCOCCOCOCNCCOOCO 00O EOE 0O
spnmstester OO C O COCCOCOCCCOCCOCNCOCCOCNCCCOOCCOCCOFECOE - EE D
sensuser CCCCOCOCCOCOCCCOCCOCCOCCOCNCCCOOCCOCCOFECOCCCCD

Adding users to the matrix

[177]

Configuring Jenkins Chapter 4

6. Now, let us give them some permissions by selecting the appropriate checkbox.
You can see from the following screenshot that I have given full access to the user
jenkins_admin. The users jenkins_developer and jenkins_tester have
been given access to read and execute Jenkins jobs, and the jenkins_user user
has been given only read access:

Overall Credentials Agent Job Run View SCM Metrics
= § [w] = T =
g a 9 Q o 9] =
w32 0988 p35098298339252 8885382 58 ¢
= = =1 S @m = & [=1 L5/} = =3
BSCESE SEEC R SBEERECREFEERERT F2°
- 2 =4 2 83
& jenkins_admin VEVMFFVFNYVFFVVFEMVVEFEFFMRFERFYFERFFFNEREREFERFFEFERFEKERFRFRFFY
4jenkins developer O M C D DD CCCOCCOCOCCOMMEMOOOOMEOEOMIEOVMEEDN F FRFWV
& jenkins_tester rFrkCCOooCoCoCoCccCCcCEMEMMEMCOCCODOMEOODORMOMELDRERFRFRFEM
& jenkins_user | 20 S S S S e ol S Sl SR R SN S SR sl el Su RN U N RN A A AN A SR AN A A T R
Anonymous | 20 S S A S e ol S Sl SN R SN SR SR SRl Sl Su RN S SN RN A S AN A SR AN AN WA N A

Providing permissions using the Matrix

7. Leave the rest of the settings as they are and click on the Save button at the
bottom of the page.

8. To check the configuration, log in as each user and confirm what you see on the
Jenkins dashboard.

Project-based Matrix Authorization Strategy

In the previous section, we saw the matrix-based security authorization feature, which gave
us a good amount of control over the users and permissions.

However, imagine a situation where your Jenkins server has grown to a point where it
contains hundreds of Jenkins jobs and many users, and you want to control user
permissions at the job level (project level).

[178]

Configuring Jenkins

Chapter 4

In such a case, we need the Project-based Matrix Authorization Strategy:

Jenkins Job A Jenkins Job D

Jenkins Job B Jenkins Job E

Jenkins Job C

User permission at job level

Let us learn how to configure the Project-based Matrix Authorization Strategy. Perform
the following steps:

1. To access the Jenkins Authorization settings, from the Jenkins dashboard
navigate to Manage Jenkins | Configure Global Security | Access Control.

2. Select the Project-based Matrix Authorization Strategy option. You will be
presented with the following matrix:

User/group

1915IUILPY
peay
ajealn

1
|

Anonymous I 7

User/group to add:

BElE]

- sulewogabeuely

Overall Credentials

21epdn
Mals

9

plng
ainBuuon

|
|

Agent Job Run
=) o =
O w =} =)
gQggamggngzm;gﬁ
S8 as3sc2a8ac2diagz2
T @ zo0 e agog © 2 T 2
- o 3 @ = 2
o
| I Y | IR SN AN R A AN AR WA WA A

Add

21epdn
ainBuuon

|
|

View

alealn
BElE]

1
|

SCM Metrics
Tz
T =
i) = T
& g gﬁ%
a @ 3 0=
m C
o 3
= o
oo

Project-based Matrix Authorization Strategy configurations

3. For now, add a user and give it full permissions. To add a user, type the exact

username of the user in the User/group to add field, and click on the Add button.

[179]

Configuring Jenkins Chapter 4

4. You can see from the following screenshot that I have added the user
jenkins_admin with full permissions:

Overall Credentials Agent Job Run View SCM Metrics

= —

T

> 32 o g 4 o = o)

=4 @ o 5 =] =
serigoup - 5 2 0 98 & c 2559583088992 =z22393€§5292, 58 <
EmmEU%%:‘E3m53§:gﬁ'm50<m%5§%ﬁ'm5mg O%g

2 o gw 8 g 2 c 2 gy EgFo e gadsg®TesaPgc g I &

3 3 z = @ 5 z < o @ 2 3

5_ — [e] = o

]

Anonymous [N 200 R S IR R SN SN SuR S DA RN DAY SRR R RN SR AN SRR SR BARY SURY SR AN SRR SR AN AR WA WA SN A WA
& jenkins_ admn v W W W W V WM W W VvV F VW F V¥V V¥V FVFNVWVMVFVVFZV¥Fvvvv©VFEFVEFVFFEWV

Adding users to the matrix

5. Leave the rest of the settings as they are and click on the Save button at the
bottom of the page.

6. Next, from the Jenkins dashboard right-click on any of the Jenkins jobs and select
Configure.

7. Once on the Jobs Configuration page, scroll all the way down to the Enable
project-based security option and enable it.

8. The moment you enable the project-based security, a matrix table will appear, as
shown in the following screenshot:

¥ Enable project-based security
" Block inheritance of global authorization matrix

Credentials Job Run View SCM
5
S
o = o
@ =] 5
et 0 9 & £ < 29892 F =2 2785997,
B e uUg2s2ghaocsiEaSBaiaod
@ ® 5 & Qggﬁmmmﬂgmga’gﬁmﬂ
o @ - @ @
2
w
Anonymous 0 D DD D DD D000 @Ea

User/group to add: Add

Project-based security configurations inside Jenkins job

9. Let us add some users and provide them some permissions.
10. To add a user, enter the exact username of the user in the User/group to add
field, and click on the Add button.

[180]

Configuring Jenkins Chapter 4

11. You can see from the following screenshot that I have added the user
jenkins_developer with some permissions:

Credentials Job Run View SCM
5
= [e] = O
User/grou L c =) S c
JoP 0P e g <pES8F2s2288559°8 2
&0 92 z2a@a822svs20a8d0d
ﬂhﬂhgﬂ: ©® £ @ @g ® ez g 5T @
o @ - o o]
5
Anonymous rrooooooooooroooroo oo rorr
& jenkins developer O O O OO MMEMOOCOCOCEOCOMEOMIEOENMERFERF F

Providing permissions using the Matrix

12. Once done, click on the Save button at the bottom of the page.

13. Now log in as the user that you have just given permissions to for the respective
Jenkins job (in our example it is jenkins_developer).

14. You will find that the user can only see the Jenkins job that it has permission to
access.

15. Similarly, you can configure user permissions on each and every job that you
create in Jenkins.

Summary

In this chapter, we saw how to configure some of the basic but important elements in
Jenkins, all with the help of some practical examples. Jenkins upgrade, Jenkins backup, and
Jenkins user management are some of the important things we learned in this chapter.

The next chapter is all about the Jenkins master-slave architecture and the
Jenkins Distributed Build System.

[181]

Distributed Builds

Jenkins' master-slave architecture makes it easy to distribute work across multiple slave
machines. This chapter is all about configuring Jenkins slaves across various platforms. The
following are the topics that we will cover:

e An overview of the Jenkins node manager

Installing a Jenkins slave on a standalone Linux machine

Installing a Jenkins slave on a standalone Windows machine

Installing and configuring the Docker plugin for creating on-demand Jenkins
slaves

Distributed build and test

In the following section let us learn a little bit about the distributed build and testing.
Imagine you have a really fat unit test or integration test suite. If you can divide them in
small parts then you can run them in parallel. To run them in parallel you need multiple
clones of your build/test machines. If you have them in place either using Docker or using
some other mechanism, then the remaining thing to do is to make them a Jenkins slave
agent.

The following illustration shows how a Jenkins pipeline to build, unit test and integration
test utilizes the distributed build/test farm in Jenkins. You can see, we have two categories
of Jenkins slave agents: Standalone Jenkins slave for build and unit test, and standalone
Jenkins slave for integration test.

Distributed Builds

Chapter 5

The unit testing is distributed across three Jenkins slave agents for build and unit

test (category 1), and the integration testing is distributed across two Jenkins slave agents

for integration testing (category 2).

LJenkins Master

Unit test (1-50)

Unit test (50-100)

%Ikl%\gf

Unit test (100-150)

Distributed, parallel
Unit testing

M standalone Jenkins Slave machine
I stace in a Cl pipeline

Cl pipeling

@Jenkins Slave Label

—

Integration test (50-100)

Standalone Jenkins Slave
for Integration test]

.If
Integration test {1-50)

Distributed, parallel
Integration testing

Distributed build and testing farm using Jenkins standalone slave agents

The Jenkins slave agents are categorized using labels. We will learn more about labels in

the up-coming sections.

It is also much better and easy to spawn on demand Jenkins slaves using Docker. Shown as
follows is the Docker version of the same concept that we discussed previously. Here the
Jenkins slave are created on demand using the Docker images.

You can see in the following illustration, we have two types of Docker images: Docker
image for build and unit test, and Docker image for integration test. The Docker slave
agents are created using these Docker images. The unit testing is distributed across three
Docker slave agents for build and unit test (category 1), and the integration testing is

distributed across two Docker slave agents for integration testing (category 2).

Again here the Docker slave agents are categorized using labels. We will learn more about

labels in the up-coming sections:

[183]

Distributed Builds

Chapter 5

lJenkins Master

Docker image
for build & uni
Docker image
for integration

Docker host

&
-

it test

test

Container usi

build & unit test image

Ve
/

[l
Unit test (1-50)

(I

Unit test {50-100)

N

1}

E

Unit test (100-150)

Distributed, parallel
Unit testing

II[H]I[H]] Docker container
I Stace in a Cl pipeline

Cl pipeline

Container using the
integration test image

Integration test (1-50)

Integration test {50-100)

Distributed, parallel
Integration testing

Distributed build and testing farm using Jenkins an

d Docker slave agents

The Jenkins Manage Nodes page

In the following section, we will take a look at the Jenkins Manage Nodes page:

1. From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.

2. On the left-hand side, you will see a menu; the options are as explained in the
following screenshot:

Back to Dashboard
% Manage Jenkins —
B newhode —

"' Configure —___

Build Queue =

Mo builds in the queue.

Click to create a new node

General configuration

Jenkins Manage Nodes page

[184]

Distributed Builds Chapter 5

3. On the right-hand side, you will also see a table showing the list of available
Jenkins slaves, as shown in the following screenshot:

s Name | Architecture Clock Difference Free Disk Space Free Swap Space Free Temp Space Response Time

B aster - Linux (amded) In sync 519 GB @oB 519 GB oms ﬁ'

Data obtained 15 min 15 min 15 min 15 min 15 min 15 min

List of available nodes

4. Since we haven't configured any Jenkins slaves yet, the list (as shown in the
preceding screenshot) contains only one entry: that is, master.

5. Along with the node's Name, the table also displays other useful information
about the node, such as its Architecture, the amount of Free Disk Space, and
the Response Time.

6. To enable/disable the amount of information being displayed about each node,
click on the Configure link (see the Jenkins Manage Nodes page screenshot). This
will take you to the next page, as shown in the following screenshot:

Preventive Node Monitoring

M Architecture (3]
' Clock Difference ®
I Free Disk Space ©
Free Space Threshold 1GB)
I Free Swap Space

¥ Free Temp Space (7))
Free Space Threshold 1GB ®
¥ Response Time (7]

o

Preventive Node Monitoring options

[185]

Distributed Builds Chapter 5

7. Uncheck/Check the relevant options to disable/enable them. The Free Space
Threshold option is important. If the amount of Free Disk Space and Free Temp
Space goes below the specified value (by default it's set to 1GB), then the nodes
go offline. This prevents the Jenkins pipeline from running on slaves that have
run out of disk space and eventually failing.

Adding Jenkins slaves - standalone Linux
machine/VMs

In the following section, we will try to add a standalone Linux machine as a Jenkins slave.
Make sure you have Java installed on your soon-to-be Jenkins slave machine. Follow the
given steps:

1. From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.

2. From the left-hand side menu, click on New Node. On the resultant page you
will be asked to provide a name for your node and choose the type, as shown in
the following screenshot:

Mode name

' Permanent Agent

Adds a plain, permanent agent to Jenkins. This is called "permanent”
because Jenkins doesn't provide higher level of integration with these
agents, such as dynamic provisioning. Select this type if no other agent
types apply — for example such as when you are adding a physical
computer, virtual machines managed outside Jenkins, etc.

Adding a name and choosing the agent type (type of slave)

3. Add a meaningful name under the Node name field and choose the agent type.
For now, there is only one type of agent to choose from: that is, Permanent
Agent. These are the types of agents that are mainly physical machines and VMs.

4. Click on the OK button to proceed.

[186]

Distributed Builds

Chapter 5

5. On the resultant page, you will see the following options to configure, as shown
in the following screenshot:

MName

Description

of executors

Remaote root directory

Labels

Usage

Launch method

Availability

Node Properties

™ Tool Locations

Save

standalone-linux-slave

®

maven build agent

(]

Lk
®

fvarfjenkins

&

maven-build-1

®

Use this node as much as possible

Launch agent via Java Web Start

Le Lo
®

(]

Advanced...

Keep this agent online as much as possible j @

" Environment variables

Let's see them one by one:

1. We already used the Name field to give a name to our Jenkins slave.

Jenkins slave configuration

2. Use the Description field to add some notes about the Jenkins slave: for example,
purpose, type, what it can build or test, and tools installed.

3. The # of executors field is used to describe the number of parallel builds a Jenkins
slave (agent) is allowed to run. Choosing a value greater than 1, say 3, will allow
the Jenkins slave to run three builds in parallel. This could also result in each
build taking more time than usual. Choose wisely.

[187]

Distributed Builds Chapter 5

4. The Remote root directory field is used to define a directory path on the Jenkins
slave that will serve as a dedicated workspace for Jenkins to perform build
activities.

5. The Labels field is the most important. You can add multiple labels (separated by
a space) to your Jenkins slave. In order to run a pipeline on a particular slave you
will use its label, as shown in the preceding screenshot. We have added a maven-
build-1 label, which says it's a Jenkins slave to build a Maven project.

6. The Usage field is used to define how Jenkins schedules build on this node. It
contains two options, as follows:
¢ Use this node as much as possible: This is the default option. This
mode makes the current Jenkins slave open to all the pipelines that
haven't been configured to run on a specific Jenkins slave.

¢ Only build jobs with label expressions matching this node: In this
mode, Jenkins will only build a project on this node when that project
is restricted to certain nodes using a label expression, and that
expression matches this node's name and/or labels.

7. The Launch method field describes how Jenkins starts this Jenkins slave. It
contains four options, shown as follows. In the following example, we will use
the SSH method to launch our Jenkins slave. See the Launching a Jenkins slave via
SSH section:

¢ Launch agent via Java Web Start: This allows an agent to be launched
using Java Web Start. In this case, a Java Network Launch Protocol
(JNLP) file must be opened on the agent machine, which will establish
a TCP connection to the Jenkins master. If you have enabled security
via the Configure Global Security page, you can customize the port on
which the Jenkins master will listen for incoming JNLP agent
connections.

e Launch agent via execution of command on the master: This starts an
agent by having Jenkins execute a command from the master. Use this
when the master is capable of remotely executing a process on another
machine, for example, via SSH or remote shell (RSH).

e Launch slave agents via SSH: This starts a slave by sending
commands over a secure SSH connection. The slave needs to be
reachable from the master, and you will have to supply an account that
can log in on the target machine. No root privileges are required.

¢ Let Jenkins control this Windows slave as a Windows service: This
starts a Windows slave by a remote management facility built into
Windows. It is suitable for managing Windows slaves. Slaves need to
be IP reachable from the master.

[188]

Distributed Builds Chapter 5

8. The Availability field defines how Jenkins starts, stops, and uses the Jenkins
slaves. It has three options, as follows:

¢ Keep this agent online as much as possible: In this mode, Jenkins will
keep this agent online as much as possible. If the agent goes offline, for
example, due to a temporary network failure, Jenkins will periodically
attempt to restart it.

¢ Take this agent online and offline at specific times: In this mode,
Jenkins will bring this agent online at the scheduled time(s), remaining
online for a specified amount of time. If the agent goes offline while it
is scheduled to be online, Jenkins will periodically attempt to restart it.
After this agent has been online for the number of minutes specified in
the Scheduled Uptime field, it will be taken offline. If Keep online
while builds are running is checked, and the agent is scheduled to be
taken offline, Jenkins will wait for any builds that may be in progress
to be completed.

e Take this agent online when in demand, and offline when idle: In
this mode, Jenkins will bring this agent online if there is demand, that
is, if there are queued builds that meet the following criteria: They have
been in the queue for at least the specified In demand delay time
period

e They can be executed by this agent (for example, have a matching label
expression)

This agent will be taken offline if:

¢ There are no active builds running on this agent

¢ This agent has been idle for at least the specified Idle delay
time period

Passing environment variables to Jenkins slaves

Follow the given steps to pass the environment variables:

1. You will see a section named Node Properties. Using these options, you can pass
predefined environment variables to the Jenkins slaves and tools locations.

2. As shown in the following screenshot, you can pass environment variables to the
Jenkins slaves. It is possible to pass multiple environment variables (by clicking
on the Add button). These environment variables are available to the Jenkins
pipeline during its execution:

[189]

Distributed Builds Chapter 5

Node Properties

I Environment variables

List of variables Mame kibana usemame

Value kibana_password

Add

Passing environment variables to the Jenkins slaves

With the advent of Pipeline as Code feature in Jenkins, it is possible to
define and use environment variables right within the Jenkins pipeline
code (pipeline script/Jenkinsfile). Therefore, the option of defining
environment variables (as demonstrated in the preceding screenshot)
become less significant.

Passing tools' locations to Jenkins slaves

As shown in the following screenshot, you can specify the location of certain tools on the
Jenkins slave, overriding the global configuration:

7| Tool Locations

List of tool locations
Name \taven) M3 j

Home fpath/to/the/maven/application/onfthe/Jenkins/Slave

Delete

Add

Passing tools' locations to the Jenkins slaves

[190]

Distributed Builds Chapter 5

Launching a Jenkins slave via SSH

To launch the slave via SSH, follow these steps:

1. When you choose the Launch slave agents via SSH option, you are presented
with options, as shown in the following screenshot.

2. The Host field is where you can define the IP address or the hostname of the
Jenkins slave machine.

3. The Credentials field allows you to choose the relevant credentials saved inside
Jenkins to authenticate the Jenkins slave. To create a new credential, click on the
Add button beside the Credentials field (create a credential of the Kind:
Username with password):

Launch method

Launch slave agents via SSH j (7))

Host 192.168.56.221

Credentials e S j o= Add ~ (7]

Host Key Verification Strategy verifying Verification Strategy j (3}

Configure Launch slave agent via SSH properties

The user that you use to authenticate the Jenkins slave should have
read/write permissions for the directory path defined under the Remote
root directory field.

[191]

Distributed Builds Chapter 5

4. The last option, Host Key Verification Strategy, defines how Jenkins verifies the
SSH key presented by the remote host while connecting. This option is valid only
when using credentials of the Kind: SSH username with private key. There are
four options available, as follows:

¢ Known hosts file Verification Strategy: This checks the known_hosts
file (~/ . ssh/known_hosts) for the user Jenkins is executing under, to
see if an entry exists that matches the current connection. This method
does not make any updates to the known_hosts file, instead it uses the
file as a read-only source and expects someone with suitable access to
the appropriate user account on the Jenkins master to update the file as
required, potentially using the ssh hostname command to initiate a
connection and update the file appropriately.

e Manually provide key Verification Strategy: This checks that the key
provided by the remote host matches the key set by the user who
configured this connection.

¢ Known trusted key Verification Strategy: This checks that the remote
key matches the key currently marked as trusted for this host.
Depending on the configuration, the key will be automatically trusted
for the first connection, or an authorized user will be asked to approve
the key. An authorized user will be required to approve any new key
that gets presented by the remote host.

¢ Non verifying Verification Strategy: This does not perform any
verification of the SSH key presented by the remote host, allowing all
connections regardless of the key they present.

5. Once you are done configuring all the options, click on the Save button.

More about the active Jenkins slave

In the following section, we will take a look at the various other configurable options
available to us for the Jenkins slave agent that we have just added. Jenkins also provides a
lot of general information about its slaves that we will see here. Follow these steps:

1. From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.

2. On the right-hand side you will also see a table showing the list of available
Jenkins slaves. New to the list will be our newly added Jenkins slave.

3. Click on the Jenkins slave name to access its configurations and metadata.

[192]

Distributed Builds Chapter 5

4. On the resultant page (Jenkins slave Status page), on the left-hand side menu you
will see a few options, as shown in the following screenshot:

Gives you a status|
of your Jenkins Slave {current page)|

Back to List

~ ~ Click to delete the Jenkins Slave
L), Status —— —

® Delete Agent — Lists all the builds that

ran on this Jenkins Slave
#.. Configure —

= Build History —

Load Statistics ——

Script Console Gives build metrics, such as|

Queue length...etc
Blos —

! System Imforr‘r_l_atinn Jenkins Slave connection logs

{9 Disconnect

— System information about
the Jenkins Slave

Click to disconnect the Jenkins Slave

Jenkins slave page

5. Most of the preceding links (from the preceding screenshot) are self-explanatory.
However, let's look at some of them in detail.

6. The Log link is where you will find all the logs with respect to the Jenkins slave.
After adding a Jenkins slave, if it does not come online, the Log is where you
need to look. Authentication issues, permission issues, and everything else while
connecting to the Jenkins slaves gets listed here. See the following screenshot:

[s5H] Starting slave process: cd "/wvar/jenkins" && java -jar slave.jar
«===[JENEINS REMOTING CRFRCITY]===»channel started

Slave.jar version: 3.7

This is a Unix agent

Evacuated stdout

Egent successfully connected and online

2

Jenkins slave logs

[193]

Distributed Builds Chapter 5

7. The System Information link will show you most of the system information
about the respective Jenkins slave, such as System Properties, and Environment
Variables. See the preceding screenshot. You won't be visiting here frequently.
Nevertheless, it's useful when debugging build errors caused due to system tools,
environment variables, and so on:

System Properties

Name | Value
awt.toolkit sun_awt.X11.XToolkit
file_encoding UTF-8
file_encoding pkg sun.io
file_separator /
java.awt.graphicseny sun.awt.X11GraphicsEnvironment

Environment Variables

Name | Value
_ Jusr/binfjava
HOME /home/nikhil
LANG en_US.UTF-8
LOGNAME nikhil

Jenkins slave System Information

8. The Build History link will show you a timeline of all the builds that were
performed on the respective Jenkins slave.

9. On the Jenkins slave Status page, you will see the labels that are attached to the
respective Jenkins slave and, also, information about the projects that are
associated with the following Jenkins slave. See the following screenshot:

gj Agent standalone-linux-slave (maven build agent)

—rt
Mark this node temporarily offline

Labels

maven-build-1 =

Projects tied to standalone-linux-slave

MNone

Jenkins slave Status page

[194]

Distributed Builds Chapter 5

10. There is an option to make the Jenkins slave temporarily offline by clicking on the
Mark this node temporarily offline button. When you click on the button, you
will be asked to add a note (optional) before taking the Jenkins slave offline:

Taking standalone-linux-slave Offline

You can optionally explain why you are taking this node offine, so that others
can see why:

maintenance activity

Mark this node temporarily offline

Making a Jenkins slave offline

11. To bring the offline node back online, from the Jenkins Status page, click on the
Bring this node back online button:

'.- I Agent standalone-linux-slave (maven build agent)

Bring this node back online
Update offline reason

Oct 15, 2017 11:57:00 PM
— Disconnected by jenkins_admin : maintenance activity

Bringing a Jenkins slave online

[195]

Distributed Builds Chapter 5

Adding Jenkins slaves - standalone
Windows machine/VMs

In the following section, we will try to add a standalone Windows machine as a Jenkins
slave. Make sure you have Java installed on your soon-to-be Jenkins slave machine. Follow
the given steps:

1.

From the left-hand side menu, click on New Node. On the resultant page, you
will be asked to provide a name for your node and choose the type, as shown in
the following screenshot:

From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.

Node name standalone-windows-slave
& Permanent Agent

Adds a plain, permanent agent to Jenkins. This is called "permanent” because Jenkins
doesn't provide higher level of integration with these agents, such as dynamic provisioning.
Select this type if no other agent types apply — for example such as when you are adding
a physical computer, virtual machines managed outside Jenkins, etc.

" Copy Existing Node
Copy from

Adding a name and choosing the agent type (type of slave)

Add a meaningful name under the Node name field and choose the agent type as
Permanent Agent. These are the types of agents that are mainly physical
machines and VMs. Also, there is an option to clone an existing Jenkins slave. To
do so, choose the Copy Existing Node option and under the Copy from field,
enter the name of the Jenkins slave source.

In the following example however, we will choose the Permanent Agent option.
Click on the OK button to proceed.

[196]

Distributed Builds

Chapter 5

6. On the resultant page, you will see the following options to configure, as shown

in the following screenshot. We have already seen them before:

Name

Description

of executors

Remate root directory

Labels

Usage

Launch method

Awvailability

standalone-windows-slave

maven build agent

1

c:/jenkins

maven-build-2

Use this node as much as possible

Launch agent via Java Web Start

Keep this agent online as much as possible

Advanced...

Jenkins slave configurations

7. Since this is a Windows build agent, there are two ways we can launch the
Jenkins slave, as shown here:
¢ Launch agent via Java Web Start: This allows an agent to be launched

using Java Web Start. In this case, a JNLP file must be opened on the

agent machine, which will establish a TCP connection to the Jenkins

master. If you have enabled security via the Configure Global

Security page, you can customize the port on which the Jenkins master
will listen for incoming JNLP agent connections.

¢ Let Jenkins control this Windows slave as a Windows service: This
starts a Windows slave by a remote management facility built into
Windows. It is suitable for managing Windows slaves. Slaves need to
be IP reachable from the master.

[197]

Distributed Builds Chapter 5

Launching a Jenkins slave via Java Web Start

In the following section, we will learn how to launch a Jenkins slave on Windows using the
Java Web Start method.

1.
2.
3.

For the Launch method field, choose Launch agent via Java Web Start.

Click on the Save button.

From the Jenkins Manage Nodes page, click on the Jenkins slave name. In our
example it's standalone-windows—-slave.

On the resultant page (Jenkin slave Status page), you will see the following
options, as shown here:

Connect agent to Jenkins one of these ways:

Launch agent from browser

* Run from agent command line:

java -jar slave.jar -jnlpUrl http://192.168.56.107:8080
Socomputer/standalone-windows—-slave,/slave-agent.jnlp -secret
26dc2653a211e735b1d3ca7612c96TER335ckbEdT7EL14%e4e2600707baalc

E2eB3

Jenkins slave connection method (Java Web Start)

Do nothing on the Jenkins server.

Now, log in to your prospective Jenkins slave machine (Windows) and open the
Jenkins dashboard.

From the Jenkins dashboard, click on Manage Jenkins | Manage Nodes.

From the Jenkins Manage Nodes page, click on the Jenkins slave name. In our
example it's standalone-windows-slave.

Now, either run the command, as shown in the following screenshot, or click on
the Launch button.

[198]

Distributed Builds

Chapter 5

10. If you choose to click on the Launch button, you will see the following pop-up

11.

12.

window, as shown in the following screenshot:

Opening slave-agent.jnip

You have chosen to open:
=, slave-agent.jnip

which is: JNLP File (355 bytes)
from: http:/192. 168.56. 107:8080

X

What should Firefox do with this file?

Java(TM) Web Start Launcher (default)

i~ Save File

[~ Do this automatically for files like this from now on.

[

o |

Cancel

Opening the slave-agent.jnlp file

Choose as the Open with option the Java(TM) Web Start Launcher (default)

option, and click on the OK button.

You will get another pop-up window, asking you to confirm that you would like
to run this application. Click on Run, as shown in the following screenshot:

Do you want to run this application?

Name: Jenkins Remoting Agent
((Publisher: Infradna Inc (Kohsuke Kawaguchi)

— Locations: http://192. 168,56, 107:8080
Launched from downloaded JNLP file

[~ Do not show this again for this app from the publisher above

U More Information

This application will run with unrestricted access which may put your computer and personal
information at risk. Run this application only if you trust the locations and publisher above.

Cancel |

Running the Jenkins Remoting Agent

[199]

Distributed Builds Chapter 5

13. Finally, you will see a small window showing the Jenkins slave connection status
as Connected, as shown in the following screenshot:

Jenkinsslaveagﬂlt - 0] x|

File

Connected

Jenkins slave agent window

14. Your Jenkins slave (Windows) is now connected. To make it a Windows service,
click on File (previous screenshot), and choose Install as a service.

15. Open the Run utility and give the command services.msc to open the
Windows Services utility. In the list of services, you will find the Jenkins slave
agent service, as shown in the following screenshot:

Mame - | Description | Siatk... | Startup Type | Log On As
% Juniper Network Connect Service Manages... Started Automatic Local System
ﬂ Jenkins agent (jenkinsslave-c__jenkins) This serv... Automatic Local System

Jenkins slave listed as a Windows service

16. Right-click on the Jenkins slave Windows service and choose Properties.

[200]

Distributed Builds Chapter 5

17. In the Properties window, go to the Log On tab. Under the Log on as section,
choose the This account option, and provide the administrator account details (a
user with admin privileges on the Jenkins slave machine), as shown in the
following screenshot:

Jenkins agent (jenkinsslave-c__jenkins) Pro |
"General Log On I F{eco\reryl Dependencies I
Log on as:

" Local System account
| Bllowy service bointeract with desktop

% This account: IAcIministlator Browse .. |

Password: I...............

Corffirm password: Iooooooooooooooo

Help me configure user account log on options.

0K I Cancel Apphy

Jenkins slave service properties

18. Your Jenkins slave (on Windows) is now installed.

Adding Jenkins slaves — Docker containers

In the following section, we will learn how to install and configure the Docker plugin that
will allow us to spawn on-demand Jenkins slaves (Docker containers) from a CI pipeline.
The Docker containers are started by the CI pipeline, and once the build is done, they are
destroyed. In the following section, we will only see the configuration part. It is in the next
chapter that we will see this process in action.

Prerequisites

Before we begin, make sure you have the following things ready:

¢ A Jenkins server running on any of the following platforms: Docker, standalone,
cloud, VM, servlet container, and so on. (refer to chapter 2, Installing Jenkins).

[201]

Distributed Builds Chapter 5

* Your Jenkins server should have access to the internet. This is necessary to
download and install plugins.

¢ Your Jenkins server can talk to GitHub using the GitHub plugin. (Refer to the
Add GitHub credentials inside Jenkins and Configure Webhooks on GitHub from Jenkins
sections from Chapter 3, The New Jenkins).

¢ You might also need Java, Git, and Maven configured on your Jenkins server.
(Refer to the The new Jenkins pipeline job subsection under the The Global Tool
Configuration page section of Chapter 3, The New Jenkins).

e A Docker server.

Setting up a Docker server

To install Docker, you need a machine with any one of the following Ubuntu OSes (64-bit):
Yakkety Yak 16.10, Xenial Xerus 16.04, or Trusty Tahr 14.04. Make sure curl is also
installed. Follow the steps given to set up a Docker server.

Setting up the repository

Follow the given steps to set up a repository:
1. Execute the following command to let apt use a repository:
sudo apt—get install apt-transport-https ca-certificates
2. Add the Docker's official GPG key using the following command:
curl -fsSL https://yum.dockerproject.org/gpg | sudo apt-key add -

3. Verify that the key ID is exactly
58118E89F3A912897CO7OADBF76221572052609Dgumngthefoﬂowdng

command:

apt—-key fingerprint 58118E89F3A912897C070ADBF76221572C52609D
4. You should see a similar output:
pub 4096R/2C52609D 2015-07-14

Key fingerprint = 5811 8E89 F3A9 1289 7C07 OADB F762 2157 2C52 609D
Uid Docker Release Tool (releasedocker) docker@docker.com

[202]

Distributed Builds Chapter 5

5. Use the following command to set up a stable repository to download Docker:
sudo add-apt-repository \
"deb https://apt.dockerproject.org/repo/ubuntu-$ (1lsb_release -cs) \

main"

It's recommended to always use the stable version of the repository.

Installing Docker using apt-get

Now that you have set up the repository, perform the following steps to install Docker:
1. Update the apt package index using the following command:
sudo apt-get update
2. To install the latest version of Docker, execute the following com